
Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

Web-based

Secure Application Control

Bastian Braun

February, 2015

Eingereicht an der Fakultät für Informatik und Mathematik der Universität Passau

Reviewers: Prof. Dr. Joachim Posegga
Prof. Dr. Frank Piessens





Abstract

The world wide web today serves as a distributed application platform. Its origins,
however, go back to a simple delivery network for static hypertexts. The legacy from
these days can still be observed in the communication protocol used by increasingly
sophisticated clients and applications. This thesis identifies the actual security require-
ments of modern web applications and shows that HTTP does not fit them: user and
application authentication, message integrity and confidentiality, control-flow integrity,
and application-to-application authorization. We explore the other protocols in the web
stack and work out why they can not fill the gap. Our analysis shows that the underlying
problem is the connectionless property of HTTP. However, history shows that a fresh
start with web communication is far from realistic. As a consequence, we come up with
approaches that contribute to meet the identified requirements.

We first present impersonation attack vectors that begin before the actual user authen-
tication, i.e. when secure web interaction and authentication seem to be unnecessary.
Session fixation attacks exploit a responsibility mismatch between the web developer and
the used web application framework. We describe and compare three countermeasures
on different implementation levels: on the source code level, on the framework level, and
on the network level as a reverse proxy.

Then, we explain how the authentication credentials that are transmitted for the
user login, i.e. the password, and for session tracking, i.e. the session cookie, can
be complemented by browser-stored and user-based secrets respectively. This way, an
attacker can not hijack user accounts only by phishing the user’s password because an
additional browser-based secret is required for login. Also, the class of well-known session
hijacking attacks is mitigated because a secret only known by the user must be provided
in order to perform critical actions.

In the next step, we explore alternative approaches to static authentication creden-
tials. Our approach implements a trusted UI and a mutually authenticated session using
signatures as a means to authenticate requests. This way, it establishes a trusted path
between the user and the web application without exchanging reusable authentication
credentials. As a downside, this approach requires support on the client side and on the
server side in order to provide maximum protection. Another approach avoids client-
side support but can not implement a trusted UI and is thus susceptible to phishing and
clickjacking attacks.

Our approaches described so far increase the security level of all web communication
at all time. This is why we investigate adaptive security policies that fit the actual
risk instead of permanently restricting all kinds of communication including non-critical
requests. We develop a smart browser extension that detects when the user is authen-
ticated on a website meaning that she can be impersonated because all requests carry
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her identity proof. Uncritical communication, however, is released from restrictions to
enable all intended web features.

Finally, we focus on attacks targeting a web application’s control-flow integrity. We
explain them thoroughly, check whether current web application frameworks provide
means for protection, and implement two approaches to protect web applications: The
first approach is an extension for a web application framework and provides protection
based on its configuration by checking all requests for policy conformity. The second
approach generates its own policies ad hoc based on the observed web traffic and as-
suming that regular users only click on links and buttons and fill forms but do not craft
requests to protected resources.
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Zusammenfassung

Das heutige World Wide Web ist eine verteilte Plattform für Anwendungen aller Art: von
einfachen Webseiten über Online Banking, E-Mail, multimediale Unterhaltung bis hin
zu intelligenten vernetzten Häusern und Städten. Seine Ursprünge liegen allerdings in
einem einfachen Netzwerk zur Übermittlung statischer Inhalte auf der Basis von Hyper-
texten. Diese Ursprünge lassen sich noch immer im verwendeten Kommunikationspro-
tokoll HTTP identifizieren. In dieser Arbeit untersuchen wir die Sicherheitsanforderun-
gen moderner Web-Anwendungen und zeigen, dass HTTP diese Anforderungen nicht
erfüllen kann. Zu diesen Anforderungen gehören die Authentifikation von Benutzern
und Anwendungen, die Integrität und Vertraulichkeit von Nachrichten, Kontrollflussin-
tegrität und die gegenseitige Autorisierung von Anwendungen. Wir untersuchen die
Web-Protokolle auf den unteren Netzwerk-Schichten und zeigen, dass auch sie nicht
die Sicherheitsanforderungen erfüllen können. Unsere Analyse zeigt, dass das grundle-
gende Problem in der Verbindungslosigkeit von HTTP zu finden ist. Allerdings hat die
Geschichte gezeigt, dass ein Neustart mit einem verbesserten Protokoll keine Option für
ein gewachsenes System wie das World Wide Web ist. Aus diesem Grund beschäftigt
sich diese Arbeit mit unseren Beiträgen zu sicherer Web-Kommunikation auf der Basis
des existierenden verbindungslosen HTTP.

Wir beginnen mit der Beschreibung von Session Fixation-Angriffen, die bereits vor der
eigentlichen Anmeldung des Benutzers an der Web-Anwendung beginnen und im Erfol-
gsfall die temporäre Übernahme des Benutzerkontos erlauben. Wir präsentieren drei
Gegenmaßnahmen, die je nach Eingriffsmöglichkeiten in die Web-Anwendung umgesetzt
werden können.

Als nächstes gehen wir auf das Problem ein, dass Zugangsdaten im WWW sowohl
zwischen den Teilnehmern zu Authentifikationszwecken kommuniziert werden als auch
für jeden, der Kenntnis dieser Daten erlangt, wiederverwendbar sind. Unsere Ansätze
binden das Benutzerpasswort an ein im Browser gespeichertes Authentifikationsmerkmal
und das sog. Session-Cookie an ein Geheimnis, das nur dem Benutzer und der Web-
Anwendung bekannt ist. Auf diese Weise kann ein Angreifer weder ein gestohlenes
Passwort noch ein Session-Cookie allein zum Zugriff auf das Benutzerkonto verwenden.

Darauffolgend beschreiben wir ein Authentifikationsprotokoll, das vollständig auf die
Übermittlung geheimer Zugangsdaten verzichtet. Unser Ansatz implementiert eine ver-
trauswürdige Benutzeroberfläche und wirkt so gegen die Manipulation derselben in
herkömmlichen Browsern.

Während die bisherigen Ansätze die Sicherheit jeglicher Web-Kommunikation erhöhen,
widmen wir uns der Frage, inwiefern ein intelligenter Browser den Benutzer – wenn nötig
– vor Angriffen bewahren kann und – wenn möglich – eine ungehinderte Kommunikation
ermöglichen kann. Damit trägt unser Ansatz zur Akzeptanz von Sicherheitslösungen bei,
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die ansonsten regelmäßig als lästige Einschränkungen empfunden werden.
Schließlich legen wir den Fokus auf die Kontrollflussintegrität von Web-Anwendungen.

Bösartige Benutzer können den Zustand von Anwendungen durch speziell präparierte
Folgen von Anfragen in ihrem Sinne manipulieren. Unsere Ansätze filtern Benutzeran-
fragen, die von der Anwendung nicht erwartet wurden, und lassen nur solche Anfragen
passieren, die von der Anwendung ordnungsgemäß verarbeitet werden können.
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1 Introduction

There are two main divisions in the field of web security: secure web applications and
secure web communication. The field of secure web applications has been treated thor-
oughly in the past and is well understood today, hence we focus on the communication
between the client and the server in the world wide web as the web has become the
dominant network to remotely control applications though it has never been meant to
be.

1.1 Motivation

When Tim Berners-Lee proposed the introduction of hypertexts as “a single user-
interface to large classes of information (reports, notes, data-bases, computer docu-
mentation and on-line help)” [15], he could not foresee that he actually invented the
world wide web that eventually evolved from the proposed delivery network for static
hypertexts to a fully fledged application platform giving the users access to their bank
accounts, email, multimedia entertainment and most recently a user interface to control
their smart home devices like the washing machine and home heating.

The web’s evolution was driven by upcoming use cases and business models that re-
quired new features. On the server side, the most important technical milestone is the in-
troduction of programmable web pages using the common gateway interface (CGI) [111]
together with the option to store web data persistently in databases and access that
data via respective interfaces. These technologies enabled the dynamic compilation of
requested web pages. The respective development on the client side includes the intro-
duction of JavaScript to enable dynamic user interfaces, HTTP cookies to enable the
client-side storage of data, and third-party plug-ins like Java, Flash, and Silverlight to
enable the execution of browser-independent code in distinct runtime environments.

While the architecture on both sides of the communication channel has changed thor-
oughly during the past 25 years of web evolution, the communication protocol remained
almost the same. Since the standardization of HTTP 0.9 in 1991 [14], only minor
changes have been applied to the protocol as all subsequent versions were supposed to
be backwards-compatible with the initial version. HTTP version 1.0 [13] introduced
methods for requests, e.g. POST, PUT, OPTIONS, HEAD, and DELETE, to enhance the com-
mand options for the browser beyond the previously standardized GET. It defines safe
and idempotent methods where GET is supposed to be both, meaning that GET requests
are only supposed to retrieve information but not to change the server’s state. POST re-
quests, however, are meant to transmit data and trigger its processing possibly leading
to state changes. The current HTTP version 1.1 [60] dates back to 1999 and regards
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the trend towards web pages that enclose multiple files like images, script files, and style
sheets. It improves the performance of page loads by re-using an established TCP con-
nection to transfer those files sequentially. Finally, the draft of HTTP version 2.0 [11]
also concentrates on performance improvements. It introduces parallel requests (request
multiplexing), improved data compression, and server-side content pushing. Looking
back, the protocol’s evolution compensates the delay caused by the increased number
and size of modern web page elements. New protocol versions do not reflect the changed
security requirements introduced by the new web application business models.

Despite the missing adaption of the protocol’s security properties, one can argue that
HTTP plays an important role in the success story of the world wide web. It started with
text-based, simple, and stateless websites and browsers communicating over a simple and
connectionless protocol while giving fast and easy access to remotely stored information.
The initial web actually had no business model and no threats in mind. The applications
and the protocol were comprehensible, thus, lowering the burden for the development
of new features without breaking existing functionality. New and upcoming application
scenarios were only a small step ahead, fostering a sometimes chaotic series of inventions
and the uncoordinated introduction of feature support1.

The same kind of history also applies to security measures. The introduction of new
features is usually accompanied by attacks that misuse the new scope of action. For in-
stance, the invention of JavaScript led to the unauthorized execution of code by cross-site
scripting attacks. The implementation of HTTP cookies as authentication credentials
together with web pages being compiled from several domains facilitated cross-site re-
quest forgery attacks. In consequence, new band-aid solutions came up to mitigate the
unintended exploitation of new features be it cookie attributes (secure, HTTPonly) or
HTTP headers (CORS, CSP, PKP, HSTS). It is characteristic for the development of the
world wide web that the thorough countermeasure against SQL injection, i.e. prepared
statements, was actually invented to increase the speed of database queries but not for
security reasons. Today, each website must implement the necessary protection instead
of being based on a secure protocol.

We identified two particularly interesting aspects concerning the fast and dynamic
introduction of new features on the client side and on the server side in combination
with the missing adaption of the communication protocol HTTP:

• First, HTTP was never meant to carry authentication or session information as
neither was envisaged at the design time of HTTP. Today, however, most web appli-
cations offer personalized user accounts and have a need for secure authentication
and session management. In the tradition of the simple and stateless protocol,
authentication happens in the simplest possible way by transmitting confidential
authentication data (password, session cookie) in plain text. We will explore how
far more sophisticated authentication protocols can be run over HTTP.

• Second, modern stateful web applications implement intended control flows where
the user is supposed to perform one step after the other. The connectionless HTTP,

1See, for instance, the development of JavaScript vs JScript, Plug-ins vs ActiveX, HTTP 2.0 vs SPDY.
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however, has no control-flow concept, meaning that technically, users can request
every action at all application states. We will show the consequences and identify
protective measures for stateful web applications.

1.2 Thesis Outline and Contributions

1.2.1 Thesis Overview

We will sketch how a fresh protocol could be to meet the security requirements of modern
web applications. The comparison with other protocols in the Internet reveals that a
connection-oriented protocol suits the needs of modern web applications best. However,
history shows that there is no way for a fresh start using a completely different protocol.
Also, the evolvement of the web has been driven by performance improvements and new
features – but not increased security. For these reasons, we will then explore approaches
for secure authentication and control-flow integrity given the known HTTP protocol.

Section 2 describes the technical background of our work, the attacks in scope, and
identifies the attacks’ root causes. We explore in Section 3 how other protocols in the
Internet meet their security requirements which overlap those of modern web applica-
tions. Also, we inspect lower-layer protocols of the web stack in order to identify their
protection capabilities.

Section 4 is dedicated to attack vectors on session cookies that are not renewed after
authentication. We will argue that session cookies are left unchanged due to a mismatch
of responsibilities of the web developer and the web application framework. Due to
the connectionless nature of HTTP, an attacker can reuse a cookie he set before user
authentication in the victim’s browser. After user authentication, this cookie gives access
to the user’s account. We make the following contributions in Section 4:

• For one, we give a thorough documentation of existing session fixation attack
vectors and take steps to assess the attack surface of web applications developed
with state-of-the-art web frameworks.

• Second, we provide an approach for transparent, light-weight protection on the
framework level. It allows ‘patching’ web applications without access to the code
but just to the underlying framework.

• Furthermore, we developed a proxy-based solution that implements session fixation
protection with neither access to the application code nor to the framework.

• In addition, we explain session fixation prevention at development phase and, thus,
provide comprehensive protection against session fixation vulnerabilities.

We delve into the reusability of authentication credentials in Section 5. Beside the
problem that passwords and session cookies are sent over the wire, they are not bound
to the user or her browser, meaning that an attacker can use them to access the user’s
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account without further ado. We present two approaches that bind browser-stored cre-
dentials and user knowledge to prevent the exploitation of stolen credentials. Overall,
Section 5 makes the following contributions:

• We identify the root cause for the ongoing threat of phishing attacks in the in-
effective countermeasures proposed so far that can be divided into incomplete,
cumbersome, and incompatible countermeasures.

• Then, we present our light-weight approach that provides robust security guaran-
tees, even in case that the user’s password was successfully stolen. The approach
does not require second devices nor does it alter the authentication interaction
from the user’s point of view.

• Concerning web session attacks, we identify their common root cause in the browser-
level authentication implemented by session cookies and the missing user context.

• We present our approach that requires user interaction before security critical
actions are performed by the web application. This way, impersonation attacks
are rendered ineffective.

While augmented credentials are hard to exploit, we show in Section 6 how an au-
thentication protocol in the web can avoid sending cleartext credentials. After an initial
setup phase, the client and the server can exchange authenticated messages over HTTP
without the need to enter passwords and without using session tokens. We focus on mo-
bile web applications. However, the approach is well applicable to desktop computers,
too. In Section 6, we make the following contributions:

• We analyze how common web authentication attacks, such as phishing or click-
jacking, manifest themselves in mobile scenarios and identify a common root cause
– the lack of a trusted UI of the browser.

• We propose a novel authorization delegation scheme for mobile web applications
that leverages a native companion application. It serves as a trust anchor for
the mobile web application’s client side through providing the missing trusted UI
capabilities.

• We report on a practical implementation of our system as an app for the two
currently dominating mobile operating systems, iOS and Android. In this context,
we show how the concept can be realized through leveraging the platform-specific
facilities for inter-app cooperation.

We explained above that security approaches usually narrow down the scope of new
features in order to prevent their misusage. In Section 7, we condense the state-of-the-
art protection approaches against attacks on session credentials and relax the imposed
restrictions for uncritical cases. In this sense, we comply with the web community’s drift
towards more features and less restrictions. Section 7 makes the following contributions:
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• We analyze existing approaches for secure session tracking and identify five central
measures in respect to handling of the session credential.

• Based on this observation, we phrase a permissive policy for the uncritical cases
and a restrictive policy for security sensitive situations.

• We describe a model for secure web session tracking, that applies both policies as
required and overcomes CSRF, session hijacking, sidejacking, and session fixation
attacks.

• We report on an implementation of the approach’s client-side part as a Firefox
extension, which applies a heuristic to waive the need for server-side support.

Section 8 is dedicated to control-flow integrity. Web applications implementing multi-
step workflows are inherently vulnerable to attacks on the application state. In the
hypertext scenario envisioned by Tim Berners-Lee, there were no such workflows and,
hence, no need for a protocol-level control of request sequences. Today, however, every
web application must implement protection. We make the following contributions in
Section 8:

• We analyze recent attacks on web applications with respect to user-defined requests
and identify their root cause in the missing explicit control-flow definition and
enforcement.

• Then, we evaluate the most prevalent web application frameworks in order to assess
how far real-world web applications can use existing means to explicitly define and
enforce intended control flows. While we find that all tested frameworks allow
individual retrofit solutions, only one out of ten provides a dedicated control-flow
integrity protection feature.

• Based on this result, we provide our first approach, a control-flow monitor that
is applicable to legacy as well as newly developed web applications. It expects
a control-flow definition as input and provides guarantees to the web application
concerning the sequence of incoming requests and carried parameters.

• Our second approach copes without a hand-crafted policy. It dynamically derives
a policy ad hoc on a per-workflow basis by analyzing the web traffic.

Section 9 concludes our findings.

1.2.2 Associated Publications

Parts of and ideas underlying this thesis have been previously published in the following
documents:

• Michael Schrank, Bastian Braun, Martin Johns, and Joachim Posegga. Session
Fixation – the Forgotten Vulnerability. In Sicherheit 2010: Sicherheit, Schutz und
Zuverlässigkeit, Lecture Notes in Informatics (LNI), Springer, pages 341 - 352,
2010. [154]
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• Martin Johns, Bastian Braun, Michael Schrank, and Joachim Posegga. Reliable
Protection Against Session Fixation Attacks. In Proceedings of the 2011 ACM
Symposium on Applied Computing (SAC 2011), ACM, pages 1531 - 1537, 2011. [86]

• Bastian Braun, Martin Johns, Johannes Köstler, and Joachim Posegga. PhishSafe:
Leveraging Modern JavaScript API’s for Transparent and Robust Protection. In
Proceedings of the Fourth ACM Conference on Data and Application Security and
Privacy (ACM CODASPY 2014), ACM, pages 61 - 72, 2014. [21]

• Bastian Braun, Stefan Kucher, Martin Johns, and Joachim Posegga. A User-
level Authentication Scheme to Mitigate Web Session-based Vulnerabilities. In
Proceedings of Trust, Privacy and Security in Digital Business (TrustBus ’12),
Lecture Notes in Computer Science (LNCS), Springer, pages 17 - 29, 2012. [22]

• Bastian Braun, Martin Johns, Johannes Köstler, and Joachim Posegga. A Trusted
UI for the Mobile Web. In Proceedings of the 29th IFIP International Information
Security and Privacy Conference (IFIP SEC 2014), IFIP Advances in Information
and Communication Technology, Springer, pages 127 - 141, 2014. [20]

• Bastian Braun, Korbinian Pauli, Joachim Posegga, and Martin Johns. LogSec:
Adaptive Protection for the Wild Wild Web. In Proceedings of the 2015 ACM
Symposium on Applied Computing (SAC 2015), ACM, 2015. [23]

• Bastian Braun, Christian v. Pollak, and Joachim Posegga. A Survey on Control-
Flow Integrity Means in Web Application Frameworks. In Proceedings of the 18th
Nordic Conference on Secure IT Systems (NordSec 2013), Lecture Notes in Com-
puter Science (LNCS), Springer, pages 231 - 246, 2013. [24]

• Bastian Braun, Patrick Gemein, Hans P. Reiser, and Joachim Posegga. Control-
Flow Integrity in Web Applications. In Proceedings of the International Sympo-
sium on Engineering Secure Software and Systems (ESSoS 2013), Lecture Notes
in Computer Science (LNCS), Springer, pages 1 - 16, 2013. [18]

• Bastian Braun, Caspar Gries, Benedikt Petschkuhn, and Joachim Posegga. Ghos-
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29th IFIP International Information Security and Privacy Conference (IFIP SEC
2014), IFIP Advances in Information and Communication Technology, Springer,
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2 Web Communication and Respective
Attacks

We start with explaining the details of authentication in web applications and attacks
on authentication and authenticated sessions. We show that these attacks share some
common root causes.

2.1 Basics of Web Communication

We want to quickly describe the basics of web communication, i.e. HTTP. The commu-
nication between a browser and a web application consists of HTTP requests – sent by
the browser – and related HTTP responses by the web application. For brevity, we will
use the terms request and response in the remainder of this document.

The browser starts the communication with a request towards the web application.
The application processes the request, i.e. it stores sent data or assembles requested
data and compiles an HTML document to answer the request. This document is finally
sent back to the browser in a response. A pair of request and response is called HTTP
round trip. The browser renders the document, meaning that it displays a graphical
representation to the user. The user interacts with the document, for example she enters
data into provided forms or clicks an embedded hyperlink. Parts of the interaction can
be processed locally in the browser by JavaScript code. Eventually, communication with
the web application becomes necessary, e.g. to drop user data or to retrieve new data.
This communication starts a new HTTP round trip.

2.2 Authentication

An increasing number of web applications provide personalized content to users, e.g.
email, eCommerce, and social network providers. In order to control the access to
the user’s account, the user and the web application agree on a user ID and a shared
secret upon account setup. When the user wants to log into her account, she provides
her credentials and the web application compares those with its internal record. The
security of this approach relies on the confidentiality of the shared secret.

In the remainder of this document, we will use the terms user ID and username as
well as shared secret, password, and PIN interchangeably.

Technically, in form-based authentication, the user’s ID and password are communi-
cated using HTML forms. After the user has entered her credentials, she submits the
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form. This causes the web browser to create an HTTP request which carries the values
in the form of GET or POST parameters. In particular, this implies that the password is
sent in clear text to the server – though the transmission may be encrypted on a lower
layer of the web stack, e.g. SSL or IPsec (see Section 3.2).

2.3 Authentication Tracking in the Web

The user authentication (see Section 2.2) happens within one HTTP round trip. Sub-
sequent HTTP round trips, however, must also contain evidence to originate from the
user in order to process them in the correct user context. For this reason, web applica-
tions implement sessions that allow to chain requests. Sessions are usually implemented
using HTTP cookies [102]. Cookies have a name, a value, and a set of attributes, among
them the domain they stem from and an expiration date. The same-origin policy [150]
regulates a cookie’s scope: if set by www.example.com, the cookie will be appended to
all requests targeting the same host, independent of the protocol (http, https) and the
port. However, web applications can relax a cookie’s scope, i.e. *.example.com in the
above case.

Upon user login, the web application issues a cookie that will serve as the session
identifier until the user logs out. The user’s browser stores the cookie and appends it to
every request targeting the cookie’s domain. The web application accepts every request
carrying a user’s session cookie to be part of the user’s session. This way, the session
cookie becomes the user’s de-facto credential for the lifetime of the session. Again, as
with the password, this credential is communicated in clear text on the HTTP layer.
We will use the terms session identifier, session ID, and SID interchangeably in this
document.

Basically, there are two alternative options to chain the requests of authenticated
users:

• First, web applications can embed hyperlinks in their responses that contain the
session ID as an HTTP parameter [60]. A user’s interaction will then trigger a
request that carries the session ID as a parameter. This approach, however, comes
with a number of security issues: the session ID is accessible to JavaScript code
from foreign domains, it occurs in log files of web proxies and web applications, it
is stored as part of the URL in bookmarks, and a user recommending a URL to a
friend also gives access to her session.

• Second, HTTP has a built-in user authentication mechanism that provides an au-
thentication tracking feature [62]. This approach, however, is rarely implemented
for two reasons: For one, the initial user authentication happens in a neutral
browser pop-up that is not customizable at all. This is not only a design issue
but also facilitates spoofing attacks. Second, in the basic authentication protocol,
the browser stores user credentials until it is closed, and, for every request towards
the authentication domain, it adds the credentials as an HTTP Authorization

header. Later, the more sophisticated digest authentication protocol came up but
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this was too late to stop the upcoming HTML form-based authentication together
with cookie-based session tracking.

2.4 Control-flow Integrity in Web Applications

Given the authentication tracking means described above, a web application and a
browser can establish a session and implement multi-step workflows. Those workflows
consisting of a sequence of user actions, however, pose an inherent threat to web appli-
cations if they do not preserve control-flow integrity.

In order to understand control-flow integrity in web applications, it is important to
have a notion of connectionless and connection-oriented protocols. We will describe
those protocols and their implications in more detail in Section 3. For now, we can
consider a protocol as a set of valid messages. A message is valid if it complies with
the protocol syntax. The important difference between connectionless and connection-
oriented protocols is the following: The set of valid messages is static during a protocol
run for connectionless protocols. Connection-oriented protocols, on the contrary, have a
variable set of valid messages which means that the validity of a message always depends
on the messages exchanged in the past since the establishment of the connection.

HTTP is a connectionless protocol. The logic of current web applications, however,
is stateful. This means that a web application may change its internal state upon
processing a user request. For example, a social network must update its state to store
that a user has a new friend, and the eCommerce application must maintain the user’s
shopping cart. Some workflows even require multiple steps by the user. For instance,
a shopping workflow might first require to put items to the cart, then log in, provide a
shipping address and shipping speed, choose a payment option, and finally review the
complete order. For every step, the user is supposed to fill some form and press a button.

Putting things together, the set of valid HTTP messages remains static while web
applications expect particular, i.e. changing, requests in the next step. So, web appli-
cations must ensure that the processing of requests does not lead to an insecure state.
Considering the shopping workflow above, a web application must make sure that a ma-
licious user can not request the address of the review page without providing payment
details. This is an inherent semantic problem of all stateful web applications. A web
application preserves control-flow integrity if every request leads to an application state
that is part of the application’s intended logic.

2.5 Attacks on Web Applications

In this section, we explain the attacks on web applications that are in scope of this thesis.
All described attacks are related to web communication and exploit the connectionless
nature of HTTP. Section 3 will analyze in more detail the root causes of the attacks.
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2.5.1 Phishing

The term phishing subsumes all attacks that aim to obtain the user’s password via
tricking the user to interact with a web resource that claims to be a legitimate part of
the targeted web application but in fact is under the control of the attacker.

Attack Method

The Anti-Phishing Working Group (APWG)2 states that phishing schemes use “spoofed
e-mails purporting to be from legitimate businesses and agencies, designed to lead con-
sumers to counterfeit websites that trick recipients into divulging financial data such
as usernames and passwords.” [173] Attackers usually send emails or personal instant
messages and put pressure on the recipients to perform actions intended by the attacker.
For instance, recipients are told that their email quota is reached, their credit card is
disabled, or an invoice has not been paid. Usually, to increase the pressure and omit
a reconsideration, immediate steps are allegedly necessary. These steps require logging
into an account on a website. In this scenario, attackers know the target business. All
they need to do is copy the public design of the website and send bulk emails. In order
to educate customers, anti-phishing campaigns published rules of conduct. For example,
users are advised to not click on links embedded in emails if the link does not include
the expected domain of the (seeming) sender. As another rule of thumb, reliable emails
contain the recipient’s name and maybe other personal information which is supposedly
not known to a phisher.

The following attack vectors emerged in the past and illustrate the ongoing arms race
between phishers and the anti-phishing community.

Concealing the Target Domain In order to answer the anti-phishing suggestions,
phishers took measures to make embedded links look familiar to the user. These mea-
sures range from open redirects on the target website, over URLs featuring a target
domain prefix and URL shorteners hiding the target, up to malicious relying parties in
single sign-on protocols.
Open Redirects First of all, a phisher’s chance is considerably higher if the link the
victim is supposed to click appears to belong to the expected domain. In that sense,
an attacker can succeed if he finds an open redirect function on the target web appli-
cation. Web applications redirect their users for several reasons: when a requested web
page is not found (HTTP 404), users are redirected to a landing page that explains
what happened. Webmail providers redirect their customers via ‘de-referrers’ to avoid
that the actual URL of the read email appears as a part of the subsequent request to
the foreign domain (in the Referrer header). Open redirects do not sanitize their in-
put, i.e., the redirect target and source. Given that the attacker prepared a phishing
site for example.com that has an open redirect, he can send out emails asking users to
click on https://www.example.com/redirect?target=example-attack.com. A bet-
ter masking is possible by URL encoding the target parameter. Finally, the victim

2http://www.apwg.org/
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sees an https link to the expected domain and can eventually check the SSL lock on
https://www.example-attack.com but is attacked, though.
Confusing URLs Second, it is often sufficient to make the URL appear innocent at a
first glance. Non-expert users can hardly distinguish between the host, domain, and path
elements of a URL. Phishers exploit this weakness crafting links like
https://www.example.com.attacker-domain.com which seem to contain the expected
domain name example.com. Similar approaches include typos in the URL, e.g.
https://www.gooogle.com.

A more sophisticated attack is known as international domain name (IDN) homograph
attack [64]. This attack makes use of so-called homographs, characters from non-latin
alphabets that are indistinguishable for humans but interpreted by browsers as different
symbols.
URL Shorteners The emerging trend towards URL shorteners, that save characters
on Twitter and prevent line breaks in emails, makes people familiar with short URLs
and redirects to unpredictable URLs. Attackers exploit that people are more used to
click on links from bit.ly, tinyurl.com, is.gd, or goo.gl than on links containing
unknown domains. If the target website looks convincing enough, the user’s focus is
caught on the content [194].
Malicious Relying Parties Single sign-on (SSO) protocols require the user to log in
once with her identity provider to obtain access to all related accounts. If the user first
visits a relying party, she is redirected to her identity provider. A malicious relying party
can redirect the user to a phishing identity provider to request the user’s credentials.

Spear Phishing Spear phishing denotes a particular phishing attack vector that targets
a set of victims the attacker has information about. While this attack is restricted to
those users the attacker could gain knowledge about, it can still hit thousands of users.
The first step in a common scenario is a data leak of a company’s customer database.
In most cases, there is a laxer security policy in place if the database does not contain
critical data like passwords, social security numbers, or credit card information. Using
the obtained data, however, an attacker can address his victims personally including the
name, correct email address, and account number which used to be an indicator of a
benign message.

Browser-less Phishing A phisher can circumvent browser-based countermeasures if
the user does not use her browser to follow his instructions. As a matter of fact, users
regularly experience that colleagues or friends quickly ask for information by email or
instant messenger. Phishers convey the notion of this scenario to make their victims
reply with the credentials.

2.5.2 Session Hijacking

A successful session hijacking attack gives the attacker control over the user’s account
for the lifetime of the established session. The attacker gains knowledge of the user’s
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session token and impersonates the user towards the web application. As we pointed
out in Section 2.3, the session token is the only authentication credential after the user
login. There are basically three options for the attacker to obtain knowledge of the
session token:

• Sidejacking [69]: First, the attacker can wiretap the communication between the
user’s machine and the web server. In order to extract the session token from
observed web traffic, the attacker first becomes a man in the middle (MITM), e.g.
by an ARP spoofing attack [187]. The MITM position gives him access to all
web traffic from the victim’s machine. This step is not necessary in unprotected
wireless networks (hotspots) common in public environments like train stations,
airports, and hotels. Every peer in the vicinity of a hotspot can eavesdrop all
traffic via the air interface.

Some web applications use SSL to encrypt the communication and protect against
MITM attacks. In this case, the attacker can prevent the establishment of a secure
connection using SSL stripping [110] if the communication starts unencrypted.

• Session hijacking via XSS [54]: Second, the attacker can steal the session token
from the user’s browser. The attacker first performs a cross-site scripting (XSS) at-
tack to inject JavaScript code that reads the stored cookies (via document.cookie)
and transmits them to the attacker’ site, e.g. via a crafted POST or GET request.

• Third-party JavaScript inclusions [126]: Third, the attacker can try and inject
malicious code into a JavaScript library that is included by the target domain.
This code is treated as same-domain content though loaded from a third-party
domain and, hence, has full access to the page content including the stored cookies.

Finally, an attacker can also try to guess the correct session token via a brute-force
attack [92]. We ignore this attack because today’s web applications use long random
strings as session tokens which can hardly be guessed before the session ends [30].

Session hijacking attacks are enabled by the easy transferability of the session to-
ken: Cookies and SIDs stored as HTTP parameters are easily accessible to embedded
JavaScript code. When stolen, they can be reused by the attacker because they are
not bound to the client environment. Neither cookies nor HTTP parameters have been
invented with high security requirements in mind but have a high significance today.

We will describe a special variant of a session hijacking attack in the next section.

2.5.3 Session Fixation

Session fixation [99] is a variant of session hijacking (see above). The main difference to
the variants discussed above is that session fixation does not rely on SID theft. Instead,
the adversary tricks the victim to send an SID that is controlled by the adversary to the
server. This can be achieved either by supplying a crafted URL including this SID as a
parameter to the victim (in case that the vulnerable web application accepts parameter-
based SIDs) or by finding a way to set a copy of this SID cookie to the victim’s browser
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(more on this attack vector in Section 4.2.1). See Figure 2.1 for a brief example of the
attack via a crafted URL. The individual steps of the attack are the following:

Figure 2.1: An exemplified session fixation attack [99].

• The attacker obtains an SID value from the server (1,2).

• He tricks the victim to issue an HTTP request using this SID during the authen-
tication process (3,4).

• The server receives a request that already contains an SID. Consequently, it uses
this SID value for all further interaction with the user and along with the user’s
authorization state (5).

• Now, the attacker can use the SID to access otherwise restricted resources utilizing
the victim’s authorization context (6).

Why does Session Fixation Exist?

At first glance, the session fixation attack pattern seems both contrived and unlikely.
Why would an application accept a user’s SID that was not assigned by the application
to this user in the first place? The root problem lies within the following mismatch of
responsibilities.

SID management is executed by the utilized programming framework or the appli-
cation server. All related tasks, such as SID generation, verification, communication,
or mapping between SID values to session storage, are handled transparently to the
application. The programmer does not need to code any of these tasks manually.

However, the act of authenticating a user and subsequently adding authorization in-
formation to her session data is an integral component of the application’s logic. Con-
sequently, it is the programmer’s duty to implement the corresponding processes. The
framework has no knowledge about the utilized authentication scheme or the employed
authorization roles.
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Finally, in general, modern web application frameworks assign SID values automat-
ically with the very first HTTP response that is sent to a user. This is done to track
application usage even before any authentication processes have been executed, e.g.,
while the user accesses the public part of the application. Often the programmer is not
aware of this underlying framework-level SID functionality as he is not responsible for
managing the SIDs. He simply relies on the framework-provided automatism.

The combination of the circumstances listed above leads to situations in which ap-
plications neglect to reissue SID values after a user’s authorization state has changed.
This in turn causes session fixation vulnerabilities: As the SID remains unchanged, any
initial SID value which was fixed by the attacker stays “valid” and, thus, can be abused.

Why does Client Recognition not Help?

An HTTP session can be considered as the abstraction of a dedicated communication
channel between the client and the server. Only the knowledge of the communication
channel’s name (SID) is needed to access this channel. Hence, knowing the SID enables
the adversary to conduct a session hijacking attack.

Additional measures, such as browser recognition (which can be trivially circum-
vented) or IP binding, have been proposed to address this problem. These measures
raise the bar, but they can not finally solve the problem. Instead, they bring new
problems under certain circumstances. For instance, IP binding makes a service unus-
able if accessed from anonymity networks that tend to send packages from changing IP
addresses. A mobile device switching from a mobile network to WiFi at home gets a
new public address and looses the current session with unsaved data. Network address
translation (NAT) is used in mobile, company, and university networks. All requests
from the same network appear to come from the same address and thus eliminate IP
binding protection. That is why we disregard such additional security measures for the
remainder of this document unless any measure plays a decisive role.

Session Fixation and Session Hijacking via XSS

The session fixation attack is similar to the session hijacking attack via XSS in that
it needs a vulnerability to prepare the attack. Like the XSS vulnerability allows the
attacker to steal the SID, i.e. to gain knowledge of the communication channel’s name,
the session fixation attack needs a preceding attack to fixate the victim’s SID before
connection establishment to the web application. So, the attacker sets up a new session
and receives an SID. Next, he makes the victim use the same SID. Thus, he transfers
the communication channel’s end point to the victim. Finally, the attacker can take
over the victim’s session after the latter authenticates against the application. Thus,
the attacker uses the authenticated communication channel addressed by the well-known
SID without ever authenticating himself.

The main reason for the session fixation vulnerability lies in the missing renaming
of the communication channel after authentication. The SID is not security-critical
data before authentication as the user is still unknown and neither the user nor the
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channel are trustworthy. However, after the authentication process has been passed
successfully, the same communication channel with the same name has become trusted
and confidential. The same data must turn from not confidential to confidential as the
web application must rely on the opponent’s identity being proved by the shared secret
channel name. So, only the authorized client is supposed to know the ‘ticket’ to the
established communication channel. This can be easily guaranteed by renewing the SID
after every authorization raise, e.g. from an unauthenticated user to an authenticated
user but also from an unprivileged user to an administrator.

2.5.4 Clickjacking

A clickjacking attack [144] exploits the fact that the user’s perception may vary from
the page rendering outcome by the browser. In this attack scenario, the victim is a user
that has an account at the target web application. To perform an attack, the attacker
prepares a web page that makes the user perform actions on the target web application.
Compared to the attacks described so far, the attacker does not learn any credentials of
the victim – neither the password nor the session token. Instead, he makes the victim
perform actions in the attacker’s interest.

Figure 2.2: Compromising target display integrity via a transparent overlay [100].

Huang et al. identify three kinds of integrity violations where each kind can be used
to run a clickjacking attack [81]:

• Target Display Integrity: Clickjacking attacks compromising the target display
integrity use transparency and overlay elements to deceive the user. There are two
options for the attacker: Either he overlays the button of his own web page where
the user will probably click with a transparent version of the button on the target
web page where the user is supposed to click (see Figure 2.2 for an example). In
this scenario, the user only sees the attacker’s page but not the button she actually
clicks.
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Figure 2.3: Compromising target display integrity via a non-transparent context over-
lay [100].

Or, the attacker displays the target web page but overlays some parts such that
the user can not determine the correct context of the button she clicks though the
button is visible (see Figure 2.3 for an example).

• Pointer Integrity: Clickjacking attacks compromising pointer integrity exploit the
fact that web pages can define many attributes of the user’s mouse pointer, includ-
ing the shape, position, and transparency. An attacker can hide the actual mouse
pointer and show a new mouse pointer at a different position (see Figure 2.4 for an
example). The browser, however, records the clicks at the actual pointer position.
In fact, the user can not know where she clicks just by observing the visible mouse
pointer.

Figure 2.4: Compromising pointer integrity [81].

• Temporal Integrity: Clickjacking attacks compromising temporal integrity lead
the user to believe that she clicks on the link or button of her choice but change
the content under the mouse pointer in the very last moment before the click.
An attacker needs to estimate when the user will click and exchange the content
quickly such that the user can not react. There are two common attack scenarios:
For a double clickjacking attack, the attacker makes the victim double click several
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buttons, e.g. in the course of an online game. Between the first and the second
click in some round, he moves a window with the target web page loaded from
the background to the foreground (see Figure 2.5 for an example). The button
triggering the intended action must be at the same position as the button the user
clicked first. The attack is successful if the user’s intention to double click leaves
no time to react.

Second, a clickjacking via history navigation attack first loads the target web page
in a browser window and immediately forwards to the attacker’s site. The attacker
triggers the browser’s back navigation function when the user will probably click
a button on the attacker’s page on the same position as the target button on the
last web page. Browsers store the last visited web page in their local cache and
load it immediately.

Figure 2.5: Compromising temporal integrity via double clickjacking [100].

In any case, the attacker can make the user perform arbitrary actions as long as these
are invokable by mouse clicks.

In summary, clickjacking attacks rely on a mismatch between the user interface as it
is perceived by the victim and the actual technical context of the web page elements in
the browser. The root cause of clickjacking attacks can be found in the missing trusted
path between the user and the web application. Web users facing clickjacking attacks
can not know the impact of their click actions. Transferred to the physical world, the
user of a coke vending machine will not buy the drink of her choice if the buttons are
wrongly tagged.

2.5.5 Cross-site Request Forgery

Just like a clickjacking attacker, a cross-site request forgery (CSRF) attacker does not
learn the victim’s secret credentials, neither the password nor the SID. However, in
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contrast to a clickjacking attack, the attacker does not make the user but rather her
browser perform actions in his interest. In order to achieve his goal, he inserts a crafted
link into some web page that makes the user’s browser send a request to the target web
application, seemingly on behalf of the user.

For example, the attacker might put http://www.yourbank.com/transfer.php?from=
your_acc&to=my_acc into an image (<img>) tag on any website. Upon visiting this web-
site, the user’s browser tries to retrieve a picture and sends the crafted request to the
banking website. The attack is successful if the victim is logged into her account at
yourbank.com at the same time. Her browser will attach the SID cookie to the request
and legitimate the money transfer.

The CSRF attack is an instance of the confused deputy problem [74]. A confused
deputy is defined as a principal that is innocently fooled into misusing its authorization
status. The browser plays the role of the confused deputy in CSRF attack scenarios
because it appends the session cookies to cross-domain requests and thus authorizes the
attacker-initiated requests on behalf of the victim.

We now leave the field of attacks on the authentication relation between a user and
a web application and change over to attacks targeting a web application’s request
processing.

2.5.6 Exploiting Race Conditions

In this section, we start describing the class of attacks on control-flow integrity. These
are not related to authentication issues but rather give the attacker unauthorized access
to application resources or allow him to manipulate the application’s state in his interest.
Race condition exploits belong to the latter category.

In order to exploit race conditions [135] in web applications, attackers can send several
crafted requests almost in parallel. Web applications are multi-threaded by design and,
so, have an inherent concurrency property when receiving several requests in a short
time frame. There is no low-level serialization of requests for performance reasons. The
actual application semantics can be changed if the web application does not handle
concurrent requests by proper synchronization.

In one real-world example, a web application provided an interface to send a limited
number of SMS text messages per day [138]. The web application first checked the
current amount of sent messages (time-of-check), then delivered the message according
to the received request, and finally updated the number of sent messages in the database
(time-of-use). Attackers were able to send more messages than allowed by the web
application by crafting a number of HTTP requests, each containing the receiver and
text of the message to be sent. These requests were sent almost in parallel and the multi-
threaded web application processed the incoming requests concurrently. This way, the
attacker exploited the fact that the messages were sent before the respective database
entry was updated, leading to the delivery of all requested messages. The developers’
underlying assumption was that users finish one transmission process before sending the
next message and do not request one operation of the workflow several times in parallel.

While race conditions are in general known for years, they are a crucial aspect of
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control-flow integrity because the expected sequence of steps in a workflow can be ma-
nipulated. Instead of proceeding to the next step, the same action is executed repeatedly.
This way, the attack leads to a corrupt application state.

2.5.7 HTTP Parameter Manipulation

HTTP requests can contain parameters in addition to the receiving host, path, and
resource. As the parameters are sent by the client, the user can control the parame-
ters’ values and which parameters are sent to the web application. Manipulations of
request parameters belong to the most common attacks on control-flow integrity: An
attacker only has to take an embedded URL from a web page, guess the meaning of the
parameters, and try values of his interest.

In 2011, the Citigroup faced an attack on their customers’ data [177]. The attack-
ers were able to access names, credit card numbers, e-mail addresses and transaction
histories. All the attackers had to do was simply counting up the account number in
the respective HTTP parameter in the web browser’s address bar. By automation, they
obtained confidential data of more than 200,000 customers.

Attackers can run more sophisticated attacks given a profound knowledge of the web
application: Wang et al. [190] found a bunch of logic flaws in well-known merchant
systems and Cashier-as-a-Service (CaaS) services. These flaws allowed them to buy
any item for the price of the cheapest item in the store. They started two shopping
workflows, one purchasing only a cheap item and the other purchasing an arbitrary
number of intended items. After payment of the cheap item, they inserted the orderID

from the expensive workflow to call an updateOrderStatus function, thus marking the
expensive order paid.

Technically speaking, web users can call arbitrary functions of the web application
with arbitrary parameters. In the Citigroup example, the attackers were not authorized
to use the other customers’ account numbers as parameters. The CaaS example exploited
an unauthorized combination of parameters from different workflows.

File inclusion attacks are a special kind of HTTP parameter manipulation. The suc-
cessful attacker gains access to protected resources be it static documents or application
functions. The attacker exploits the fact that the output of web applications is often
generated on-the-fly from static and dynamic content. A malicious user might among
other things be able to trick the application into disclosing locally stored, confidential
data.

For instance, an application might offer the URL
http://example.com/?view=welcome.html as a hyperlink. In this case, the view pa-
rameter holds the name of a file that is supposed to be included in the output. An
attacker can change the parameter value to /etc/passwd. He succeeds if the applica-
tion fails to detect the manipulation.

A successful file inclusion attack allows to access all files that are readable to the web
server process. Hence, a file inclusion attack is another instance of the confused deputy
problem beside CSRF attacks (see Section 2.5.5).
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2.5.8 Unsolicited Request Sequences

Attackers can not only modify the requests’ parameters but also craft requests to any
method of the web application. Besides manipulated HTTP parameters, web applica-
tions might face unexpected requests to any method.

For instance, in another given scenario by Wang et al. [190], a malicious shopper
is able to add items to his cart between checkout and payment. After starting the
checkout workflow which redirects the user to an external CaaS, the amount to pay is
fixed. However, he can still add items to the cart in a parallel browser tab. When the
user is redirected to the online shop providing a digital payment receipt, the current
items from the shopping cart are shipped. He is only charged the value of his cart at
checkout time. The recently added items are shipped but not invoiced.

The underlying root causes are the same as those of HTTP parameter manipulation
(see above): Users can call any function of the web application at any time with ar-
bitrary parameters. There is no protection on the protocol level with HTTP being a
connectionless protocol with a static set of valid messages (see Section 2.4).

Unsolicited request sequences require good knowledge of the web application’s public
interface. This knowledge, however, can be obtained by studying the application during
regular use.

2.5.9 Forceful Browsing

A forceful browsing attacker exploits predictable naming schemes in combination with
insufficient access control.

For instance, left installation scripts for PHP-based web applications are popular
targets for forceful browsing attacks. An administrator uploads such a script to the web
server and calls it via her browser in order to install a web application. Attackers can
call the installation script and reconfigure the application if the administrator forgets to
delete it.

In 2010, a group of attackers gained access to 114,000 user records of iPad owners
by requesting a server-side script that was supposed to embed user details into a web
page [170]. The attackers could easily guess the naming scheme and access restricted
application functions.

Forceful browsing attacks are similar to unsolicited request sequences (see above) by
their nature. However, they usually target application features the attacker is generally
not authorized to access. On the other side, unsolicited request sequences target function
calls covered by the user’s access rights but not expected by the application at this point
of the workflow.

2.5.10 Compromising Use of the “Back” Button

Current web browsers are fitted with a so-called “Back” button. It is meant to navigate
back to the last visited web page. The compromising use of the button is actually
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not an attack but a client feature which may have accidental side effects on the web
application’s state.

Depending on the configuration, the last request either has to be repeated in order to
display the page or the content is loaded from the browser’s local storage (“cache”). In
the context of a workflow, the user takes one step back which in some cases is unwanted
and also undetectable by the web application. In fact, the usage of this button usually
invokes the last action again rather than rolling back the last changes. Hallé et al.
describe related navigation errors [72].

2.5.11 Further Attacks on User Accounts

We want to stress that there are more attacks on user accounts in the web, e.g. based
on malware that is installed locally on the victim’s machine. These, however, are out of
our scope.
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3 How Protocols can Meet the Web’s
Security Requirements

HTTP was invented in order to transport hypertext documents upon request from a
server to a client (or even vice versa, see HTTP PUT). The client’s request carried the
precise location of the document, the supported encoding schemes, character sets, and
languages. The server could compile the response to the client’s request using only
the information from the request: It looked up the requested document and optionally
transcoded it to make it readable for the client. The stateless HTTP perfectly fitted the
needs in the first days of the web being stateless and simple.

Today, however, the web has grown up to a fully fledged, distributed, and state-
ful application platform. This grown platform has additional requirements: user and
application authentication, message integrity and confidentiality, control-flow integrity,
and application-to-application authorization. Users need to authenticate towards web
applications before accessing their accounts. Also, web applications need to authenti-
cate towards the users to make them provide possibly private or confidential data. The
exchanged messages must be integrity and confidentiality protected to prevent injec-
tion and spoofing attacks and keep the user’s private and confidential data secret. The
workflows of modern web applications comprise multiple steps, each changing the ap-
plication’s state. Hence, a web application must enforce the sequence of state-changing
requests to prevent state tampering. Finally, modern web applications embed content
from third-party web applications. The content is retrieved via the user’s browsers and
on behalf of the user. Only authorized applications must be able to perform third-party
requests.

Of all those requirements, the only feature that can be implemented in HTTP is user
authentication [62] but even this is rarely used (see Section 2.3). In the remainder of
this section, we will explain the concept of connection-oriented protocols to meet similar
security requirements and examine the lower-layer protocols used in the world wide web
on their suitability to meet the security requirements.

3.1 Connection-oriented and Connectionless Protocols

We first explain how other protocols on the application layer achieve similar security re-
quirements to today’s web and then identify the connection-orientedness as the common
basis.

The Secure Shell (SSH) protocol is used to establish a connection between two mu-
tually authenticated peers, a client and a server. Both peers run a challenge-response
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authentication protocol and exchange session keys during connection setup in order to
protect the integrity and confidentiality of exchanged messages.

Also, the Simple Mail Transfer Protocol (SMTP) first establishes a connection between
the client’s mail user agent (MUA) and the mail server (MSA). SMTP is a simple text-
based protocol and in that sense similar to HTTP. However, it preserves control-flow
integrity by accepting only a precisely defined sequence of client commands. This is
possible for two reasons: First, SMTP is a single-purpose protocol only meant to deliver
email. So, the application logic is tied to the protocol. Second, the established connection
allows the server to chain requests on protocol level and detect violations in the protocol
flow immediately. For instance, the client misbehaves if it does not start mail delivery
using the MAIL command. Web applications, on the contrary, receive a random sequence
of GET and POST requests that can only be linked by the application using HTTP cookies.
Hence, unauthorized request sequences do not violate the HTTP protocol specification.

We have seen that an established connection between a client and a server can serve
as the basis for integrity and confidentiality protection of messages (as SSH does) and
to control the sequence of user actions on the protocol level (as SMTP does). Protocols
establishing a connection are called connection-oriented protocols :

Definition 1 (Connection-oriented Protocol). A client-server protocol is connection
oriented if the participants first establish a connection. They may negotiate connection
parameters that hold until renegotiation or connection closure. In the second phase, the
participants exchange the payload. Parameters from the first phase are applied to ex-
changed messages. Recipients can put messages into correct order. Finally, the connec-
tion is finished and no payload can be exchanged unless a new connection is established.

The connection setup phase allows mutual authentication and the exchange of sym-
metric keys. Those keys can be used to preserve message integrity and confidentiality
in the second phase. The established connection can also preserve control-flow integrity
and protect against unauthorized commands from third-party applications: Both prop-
erties are granted if the second phase follows a well-defined control flow (like SMTP, see
above) and access to the connection on the client side is only permitted for authorized
applications. The first phase can be used to agree on an application-specific control flow
if necessary. Referring to the definition above, SSH and SMTP are connection-oriented
protocols. HTTP, however, is a connectionless protocol3:

Definition 2 (Connectionless Protocol). A client-server protocol is connectionless if the
client starts sending the payload without a preface. The protocol does not guarantee that
messages are received nor the order of reception in case of successful delivery.

Considering the definitions above, we can derive an important property of connection-
oriented protocols: Due to the correct ordering of messages, the protocol can define vari-
ant sets of messages for each protocol step. The sequence of received messages adheres

3The definitions are based on Tanenbaum’s definition of connection-oriented and connectionless ser-
vice respectively [168]. Tanenbaum distinguishes between services and protocols. In his definition,
services provide an interface to the service users on higher layers. The communication protocol used
by the same-layer services on two hosts may be changed without actually changing the service. In
our case, however, we focus on the world wide web and consider the protocols on each layer given.
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to the protocol if and only if the sequence of sent messages adheres to the protocol. We
showed above that SMTP makes use of this property because every email transmission
must start with the characteristic MAIL command. The established connection ensures
that this command is received before the subsequent RCPT denoting the recipient of the
email.

This property does not hold for connectionless protocols. As messages can arrive in any
sequence, each received message must be processed independently of previously received
messages. For this reason, connectionless protocols have constant sets of messages and
no protocol steps.

Looking at the historic context of HTTP, the choice of a connectionless protocol makes
sense: The protocol was meant to enable requests for and the delivery of public and static
text documents. There was no need for client or server authentication, nor message
integrity or confidentiality, and no control-flow integrity or authorization. Instead, the
inventors of the world wide web around Tim Berners-Lee chose the protocol that perfectly
fits their needs and remains as simple as possible.

Today, however, it is more difficult and cumbersome to meet the security requirements
of the web using a connectionless protocol than using a connection-oriented protocol
because every property must be implemented individually by each application. In doing
so, malfunctions and incompatibilities are inevitable. In the end, every application
provider faces a tradeoff between functionality and security.

In the next section, we shed light on the protocols used in the world wide web on
the layers below HTTP to see how far these protocols can support the intended security
features.

3.2 Connection-oriented Protocols in the Web Stack

The goal of this section is to find out how far the security requirements of modern web
applications can be met on the layers below HTTP. We consider the TCP/IP reference
model as the basis for the web [168]. The respective layers and protocols are IP and
IPsec on the Internet layer, TCP on the transport layer, and HTTP plus SSL/TLS on
the application layer. In the remainder of this thesis, we call these protocols the web
stack. In our analysis, we focus on the connection-oriented protocols IPsec, TCP, and
SSL/TLS. The last section showed that connectionless protocols can hardly achieve the
desired properties.

3.2.1 IPsec

While the most common protocol of the network layer, the Internet Protocol (IP), is
connectionless, there is a derivative connection-oriented protocol suite named Inter-
net Protocol security (IPsec) that provides confidentiality, authentication, and integrity.
There are plenty options and parameters for running IPsec. Among others, IPsec can
connect two hosts, two networks, or one host with one network. We focus on the abstract
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features that are common for all the variations and use the term “peer” to refer to IPsec
end points.

IPsec adheres to the three-phase schema we described for connection-oriented pro-
tocols: First, the Internet Key Exchange protocol version 2 (IKEv2) [93] is used to
authenticate the participating peers, establish a secure channel, and finally exchange
so-called Security Associations (SAs). Each SA subsumes a security configuration in-
cluding cryptographic algorithms, keys, key lifetimes, and initialization vectors. There
is one SA for each pair of communicating peers and each direction. In the second phase,
the peers exchange data and apply an SA for each message. The last phase is connection
termination.

IPsec provides security features on a host-to-host level but not on application-to-
application or user-to-user levels, i.e. there is no authentication of users or applications.
Control-flow integrity and application-to-application authorization are out of scope for
IPsec.

3.2.2 TCP

The Transmission Control Protocol (TCP) implements the transport layer of the web
stack. Its purpose is to make sure that sent messages are finally received, permutations
of messages can be detected, and repeated messages can be discarded. So, TCP provides
a feature of connection-oriented protocols as a service to the upper layers.

The three phases of TCP are first the connection establishment by a so-called three-
way handshake. Then, the payload can be exchanged over the connection. Finally, the
client or the server can initiate the connection finalization phase.

TCP introduces port numbers. Given that each port is assigned to only one applica-
tion, TCP provides address-based application authentication. However, the information
contained in a TCP header is not cryptographically protected making it vulnerable to
spoofing attacks. There is no user authentication nor message integrity, confidential-
ity, nor application-to-application authorization. TCP allows the receiving host to put
received messages in order. However, there is still no control-flow integrity protection
for two reasons: First, a new TCP connection is established for each HTTP round trip,
meaning that TCP can only enable the correct defragmentation of single HTTP messages
but not control sequences of HTTP round trips. Long-term TCP connections consume
considerable resources on the server side and are not an option4. Second, TCP makes
sure that sent messages are received in order but can not check if the user is authorized
to send the message.

4We outlined in Section 1.1 that recent HTTP versions allow re-using an established TCP connection.
This, however, is meant to transmit all elements of a single web page. The TCP connection is closed
when the page is loaded, and a new TCP connection must be established for the next step in the
web application’s workflow.
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3.2.3 SSL/TLS

The Transport Layer Security protocol and its predecessor Secure Socket Layer provide
security features on a sublayer of the application layer. The differences are so marginal
that both protocols are used interchangeably. We focus on the more recent TLS and
omit mentioning SSL for now.

TLS establishes a connection between two applications, e.g. a browser and a web
application. It provides integrity, confidentiality, and authentication for messages ex-
changed between those applications. Applications must explicitly enable TLS by calling
TLS functions instead of TCP functions. Hence, it is not transparent like e.g. IPsec.
There are a couple of application-layer protocols being run over a secure TLS link. Be-
side the Hypertext Transfer Protocol (HTTP) which is most interesting for this work,
there are for instance the Simple Mail Transfer Protocol (SMTP), the Post Office Pro-
tocol version 3 (POP3), the Internet Message Access Protocol (IMAP), and the Session
Initiation Protocol (SIP). Usually, the TLS-enabled applications run on different TCP
ports than the non-TLS version of the same application. This fact illustrates that TLS
is interwoven with the application layer and not only a protocol on a lower layer.

TLS implements the three phases of connection-oriented protocols the following way:
The client starts a TLS session with the server by performing a so-called TLS hand-
shake. During this handshake, client and server first agree on the protocol version and
the cipher settings to use. The client can check the server’s authenticity based on the
presented certificate. Vice versa, client authentication is also possible but without prac-
tical relevance. When the connection is established, exchanged messages are integrity
and confidentiality protected. Finally, the connection is closed.

TLS is one step forward towards secure web communication. However, TLS can not
meet all security requirements of today’s web:

• First, only the website that is actually requested can be authenticated. This does
not necessarily mean that it is the site the user wanted to access as typographical
errors and phishing attacks have shown.

• Second, the user is not authenticated. Client-side TLS authentication is defined
but key handling turned out to be too complicated for most users in practice.

• Third, TLS does not maintain a session on application layer. The link between
HTTP and TLS is not implemented on session level. This means that attackers
can steal an HTTP session token and reuse it in a different TLS session5.

• Fourth, TLS can not provide security for cross-domain communication. There
are legitimate and malicious requests from one web application towards another.
The distinction of both is out of scope for TLS, because TLS does not cover
authorization issues.

5There are approaches against session hijacking attacks that bind the HTTP session to the TLS
session [8, 6]. These were published during our research on this topic and have no practical relevance
so far.
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• Finally, though TLS is connection oriented, an attacker’s messages compromising
the application’s control-flow integrity still comply with TLS.

The last two points, TLS’ inability to prevent cross-domain attacks and attacks on
control-flow integrity, show that TLS is meant as a universally applicable protocol on
a sublayer of the application layer, e.g. together with SMTP, POP3, IMAP, SIP (see
above). The root cause is that TLS is agnostic about the syntax of application-layer
protocols. Concerning web applications, TLS can not address web documents which
is the main purpose of HTTP. So, TLS can not enforce authorization policies. Such
policies, however, are necessary to express the allowed sequences of user requests and
access rights for third-party web applications.

Practical Issues with SSL/TLS

There are a couple of practical issues with SSL/TLS beside the conceptual issues con-
cerning the security requirements of today’s web applications.

SSL Stripping Most web applications serve content both encrypted, via HTTPS, as
well as unencrypted, via HTTP. Unfortunately, browsers default to HTTP if the user
does not explicitly specify the protocol when she accesses a web page. In consequence,
in the majority of all cases, the first HTTP request to a server is sent via plain HTTP.
This opens a loophole for a network-based man-in-the-middle attacker – the so-called
SSL-stripping attacks [110]. For this first request, an end-to-end SSL/TLS connection
has not been established yet. Thus, the attacker can set himself in between the browser
and the server and modify the server’s responses. This way, even if the server requires
HTTPS for certain operations and tries to redirect the browser accordingly, the attacker
can simply remove these redirection attempts from the server’s responses, before they
reach the client. The client is forced to indefinitely communicate unencrypted.

Further Issues with SSL/TLS The recent past has shown, that the current state of
SSL/TLS is not fully bullet proof. For one, the security of HTTPS-based communication
heavily relies on the security policies and practice of the Certification Authorities (CAs)
that issue the root certificates which are included in web browsers by default. However,
issues in that domain have been reported repeatedly, e.g., unlimited RA certificates have
been issued [75] and the internal systems of several CA’s have been compromised [50, 49].
As the CA system and its security is out of reach of the application’s developers and
operators, the current approach offers severely limited options to mitigate such threats.

3.2.4 Wrap-up

All protocols in the web stack are connection-oriented except the Internet Protocol (IP)
and the application-layer HTTP. The protocols in between use connections in order to
achieve integrity and confidentiality (IPsec, TLS) as well as reliability (TCP) properties
over a connectionless, unprotected and best-effort-based IP connection. Clients and
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servers first exchange necessary parameters in a multi-step connection establishment
phase. Then, they maintain the agreed configuration and use the secure connection
until it is closed. For the whole protocol run, both client and server can easily detect if
a message does not comply with the protocol. For instance, the server can immediately
cancel communication if a client does not start the TLS handshake with the characteristic
ClientHello message including supported cipher suites.

To sum up, disregarding the practical security issues of SSL/TLS that have come up
in the last years, there are protocols in the web stack to authenticate hosts (IPsec) or
applications (SSL/TLS) and provide message integrity and confidentiality. However,
user authentication and application authentication on user level, i.e. verifying that the
requested application is the intended, is not covered. Finally, addressing web documents
and, thus, all kinds of authorization issues lie in the domain of HTTP.

3.3 The Unfeasibility of Connection-oriented HTTP

Regarding the current security requirements of web applications, a connection-oriented
HTTP version seems natural. Browsers and web applications regularly establish ses-
sions on HTTP level in order to chain requests. So far, these sessions can not meet the
requirements phrased above. By admitting connections on application level, browsers
and web applications could negotiate security parameters in a session establishment
phase. A multi-step mutual challenge-response authentication on protocol-level could
overcome phishing attacks and allow the establishment of session keys. Using session
keys, authentication could be preserved until the session ends. Concerning the autho-
rization issues which appear as CSRF attacks and attacks on control-flow integrity, a
connection-oriented version of HTTP could exchange workflow definitions in the estab-
lishment phase. Any violation of such definitions would become observable immediately.
In order to overcome cross-application authorization problems, every third-party web
application first needs to establish a connection with the target application, e.g. via
the user’s browser. This allows to enforce sophisticated and customizable authorization
policies.

In practice, however, a connection-oriented variant of HTTP is unrealistic for two
reasons: First, replacing the communication infrastructure of the full-grown web requires
tremendous efforts and is fault-prone by nature. Second, introducing a new protocol that
almost doubles the number of exchanged messages and binds resources for a rather long
time is not an option in a web where performance is the first selling point. In this thesis,
we present the results of our applied research activities. We show that we can head for
secure HTTP sessions using our add-on approaches for legacy connectionless HTTP.
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After we explained in the last section that a connection-oriented version of HTTP could
meet the security requirements of modern web applications but is not achievable under
real-world assumptions, we now start to describe our contributions to web-based secure
application control given the well-known connectionless HTTP protocol.

4.1 Motivation

The lack of an established connection means that there is no closed channel between
both communication participants. Instead, they establish a virtual channel that can be
addressed via an ID (see Section 2.3). Every adversary knowing this ID gains access to
the channel and can impersonate the actual account owner.

We will show that it is crucial to issue a fresh ID when the authentication status of
the user changes to a higher level, e.g. from an anonymous session to a regular user or
from a regular user to an administrator. Leaving the ID unchanged means that the ID’s
security properties concerning confidentiality and integrity must be upgraded according
to the associated privileges . As it is impossible to make possibly leaked information
private again, a new ID must be issued.

Contribution

Our contribution is threefold: For one, we give a thorough documentation of existing
attack vectors and take steps to assess the attack surface of web applications developed
with state-of-the-art web frameworks. Second, we provide an approach for transparent,
light-weight protection on the framework level. It allows ‘patching’ web applications
without access to the code but just to the underlying framework. Furthermore, we de-
veloped a proxy-based solution that implements session fixation protection with neither
access to the application code nor to the framework. In addition, we explain session fix-
ation prevention at the development phase and, thus, provide comprehensive protection
against session fixation vulnerabilities.

4.2 Exploiting Session Fixation

We first describe various options for the preconditional session ID fixation in the victim’s
browser. Then, we check the practical feasibility of one of these attack vectors and assess
how vulnerable the most common open source CMS are for session fixation attacks.
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4.2.1 Attack Vectors

Given the sources of session fixation vulnerabilities as described in Section 2.5.3, a broad
field of attack vectors comes into play. All attacks strive to ‘implant’ a known SID to
the victim’s browser. As described in Section 2.3, SIDs are communicated either via
HTTP parameters or cookies.

URL Parameter

The easiest way to push an SID to the user’s browser is a URL parameter (see Figure 2.1)
in situations in which the attacked application accepts such SIDs. The attacker generates
a valid SID, e.g. 1337, of the vulnerable application on address http://www.example.

com. Then, he sends the URL http://www.example.com/?SID=1337 to the victim. For
example, he could promise that the pictures from his last summer holiday are published
there. The victim’s browser sends a request to the application making use of the given
SID if she clicks on this link. From the application’s point of view, she already has a
valid session. So, it does not need to deliver a new SID.

As a next step, the victim provides her credentials and logs in to the application. The
session has not changed but she is now logged in. The application still identifies the
victim by her SID that is sent with every request. However, the attacker also knows this
SID and can thus act as the victim in her account. Therefore, he does not even have to
interfere in the communication between the victim and the application. The only thing
to do is sending a request to the application like http://www.example.com/account_

balance.php?SID=1337.

Cookies

A slightly more difficult way for the attacker are cookies set by the application. In this
scenario, the adversary requests a session cookie from the application. Then, he needs to
make his victim accept the same cookie. There are several options for him to reach his
goal as we will show. When the victim owns the adversary’s session cookie, her browser
will provide this cookie to the application. As the adversary can use this cookie, too, he
can own his victim’s session.

• Setting cookies via XSS: The adversary can use XSS to set a cookie in his
victim’s browser if the web application is vulnerable to this attack. Therefore,
he inserts JavaScript code into a web page in the same domain, .example.com.
When the victim visits this page, the cookie will be set. The adversary can set
the expiry date to a date in distant future so that the cookie will not be deleted
when the victim restarts her browser. Unlike a cookie stealing attack, the victim
does not have to be logged in, thus, the attack also works at the public part of
the application. In the past, we saw browser vulnerabilities that even allowed the
attacker to set the cookie from a foreign domain [201].

• Setting cookies via meta tags: Under certain circumstances, a web application
might allow user-provided HTML markup but filters user-provided JavaScript. In
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such cases, the attacker might be able to inject special meta tags. The tag <meta

http-equiv="Set-Cookie" Content="SID=1337"; expires=Monday, 07-Mar-

2016 12:00:00 GMT"> sets a cookie which is valid until March 2016.

• Setting cookies via cross-protocol attacks: The same-origin policy [150] ex-
plicitly includes the port of the URL that was utilized to retrieve JavaScript code
as a mandatory component of its origin. In consequence, if a service in a given
domain allows the adversary to execute JavaScript, e.g., via XSS, services in that
domain which are hosted on different ports are unaffected by this.

However, HTTP cookies are shared across ports [103]. Thus, cross-protocol attacks
come into play: Cross-protocol attacks [179, 3] (see below for further explanations)
allow the adversary to create XSS-like situations via exploiting non-HTTP servers,
such as SMTP or FTP, that are hosted on the same domain.

First, the adversary prepares a website with a specially crafted HTML form [179].
The form contains JavaScript code to set the attacker’s cookie at his victim’s
browser. The target of this form is the targeted non-HTTP server6. To avoid URL
encoding of the content, the adversary chooses the
enctype="multipart/form-data" parameter. The target server interprets the
HTTP request as a valid request of its own protocol, e.g. FTP [39]. However,
most of the incoming commands cannot be understood and will be reflected with
a respective error message. This message generally contains the erroneous input
which is in our case the JavaScript code with the cookie. For compatibility reasons,
browsers take all textual input as HTTP even without any valid HTTP header.
So, the browser accepts the cookie since it comes from a server in the same domain.

• Subdomain Cookie Bakery: JavaScript’s same-origin policy prohibits the set-
ting of cookies for other domains. Nevertheless, this only applies to top level
domains. Therefore, a possible attack vector is setting a cookie using a vulnerable
subdomain, e.g. JavaScript code or a meta tag on vulnerable.example.com can
set a cookie which is subsequently sent by the victims browser for example.com.
Hence, a vulnerable application on a subdomain may compromise the session se-
curity of the whole top level domain.

Web applications running on so-called DynDNS (dynamic DNS) domains are par-
ticularly susceptible to subdomain cookie bakery because all users of the service
share the same domain. There is a similar scenario with a number of shared hosting
providers.

• HTTP Response Splitting: In case the web application is vulnerable to HTTP
response splitting, the attacker could use this to send his cookie to the victim’s
browser [96]. Therefore, he needs a redirected page that includes unfiltered user-
provided content and a proxy with a web cache.

6NB: Some browser, e.g., Firefox, block HTTP requests to certain well known ports. In such cases the
attack requires a susceptible server on a non-blocked port to function.
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First, the attacker sends a crafted HTTP request through the proxy to http:

//www.example.com/redirect.php. The application takes information from the
attacker’s request to generate the target of the redirection, e.g. /app_by_lang.

php?lang=attacker’s parameter. This way, he can influence the Location header
field where the redirection URL is denoted. He can then shape a request that fin-
ishes the HTTP response and append a new response. The latter is now fully con-
trolled by himself, i.e. he can use the Set-Cookie header and deliver his cookie, e.g.
/redirect.php?lang=en%0d%0a Content-Length:%200%0d%0a%0d%0aHTTP/1.1%

20200%20OK%0d%0aContent-Type:%20text/html%0d%0aSet-Cookie:%20SID=1337%

0d%0a Content-Length:%2019%0d%0a%0d%0a<html>Foobar</html> [96]. The
proxy caches the second response if the attacker manages to send a harmless request
to http://www.example.com/ at the right time. The actual answer to his second
request will be discarded and considered superfluous. Finally, the proxy serves his
specially crafted HTTP response to requests on http://www.example.com/.

The attack works similarly if the application takes user-provided data to set a
cookie. In this case, the Set-Cookie header serves as an entry point instead of
the Location header.

Figure 4.1: A header injection attack to fixate a session cookie in the victim’s browser.

• HTTP Header Injection: Finally, the attacker could run an HTTP header injec-
tion attack, see Figure 4.1. He prepares a special URL like http://www.example.

com/app_by_lang.php?lang=en%0d%0aSet-Cookie:%20SID=1337%0d%0a and
sends this to his victim. Then, the victim has to click on the link. The web
application’s response will set the cookie in the victim’s browser. When the vic-
tim logs in, the attacker can own her account. We tested the feasibility of header
injection attacks and give results in Section 4.2.3.

4.2.2 Impact and Discussion

Currently, session fixation is only a second stage attack that usually requires several
preconditions.
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The attacker needs another vulnerability to provide his cookie to the victim. Alterna-
tively, he must mislead the victim into clicking on his link if the target web application
allows URL parameters for session management. We presented different attack vectors
in Section 4.2.1. In case the attacker is successful at the first step, he has to make
the victim log into her account. The SID is useless as long as it does not belong to a
logged-in user. However, the attacker neither knows when the victim logs in nor when
she logs out again. He has an unknown window of opportunity. Finally, the target web
application has to be vulnerable (see Section 2.5.3 for an analysis of the vulnerability).
Actually, it would be essential for a broad attack to provide a unique cookie for each
victim. Otherwise, one victim would take the session of another. This is however not
always easy to implement for the attacker depending on the attack vector.

When the conditions are met, though, session fixation is a severe attack that allows
the attacker to fully impersonate the victim. It is generally not obvious to the victim
to be under attack, especially if she is not familiar with session fixation. Most attack
scenarios appear to be a software malfunction to the unexperienced user. The victim
may even not notice the attack afterwards depending on the actions of the attacker on
her behalf.

4.2.3 Practical Experiments

Next, we take steps to assess to which degree session fixation poses a realistic threat.
For this purpose, we conduct two series of practical experiments.

First, we test open-source content management systems (CMS) for session fixation
issues. This way, we aim to get an estimate if developers are actually aware of the lin-
gering threat of session fixation or if they unknowingly rely on the framework’s protection
mechanisms.

The result of these tests suggests that a considerable fraction of existing applications
indeed are susceptible to session fixation under circumstances that allow the attacker to
set cookies on the victim’s browser (see Section 4.2.1). Consequently, we examine several
popular web application frameworks with respect to their susceptibility to potential
header injection vulnerabilities.

Examination of Open-source CMS

We adhere to the following testing methodology in order to assess an application’s sus-
ceptibility to session fixation (see Figure 4.2): First, we verify that the application indeed
issues SIDs before any authentication processes have been undertaken. Then, we test if
the application leaves the SID unchanged in case a successful authentication process has
happened. If these tests could be answered with ‘yes’, we conclude that under certain
circumstances the application could expose susceptibility to session fixation. The final
test probes which attack vectors (see Section 4.2.1) were applicable.

We consider several open-source web applications in their configuration ‘out-of-the-
box’. The applications implement user management on their own. The results are given
in Table 4.1. A plus sign (+) in a column denotes that the application is vulnerable to
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Figure 4.2: Our testing methodology to assess an application’s susceptibility to session
fixation attacks.

the respective attack vector. An application is vulnerable to Cookie if it accepts foisted
cookies. The attacker can be successful if he manages to set a cookie at the victim’s
browser. In case the application allows session tracking via a URL parameter, it is
vulnerable to URL. Finally, those applications which are vulnerable to SID allow the
attacker to utilize arbitrary SID values that have not been generated by the application
in the first place.

Running Header Injection Attacks

We analyze common web application frameworks to comprehend the feasibility of HTTP
header injection attacks. Therefore, we implement web pages which either set a cookie or
do forwarding respectively. The web pages accept attacker-controlled input to determine
the forwarding target and the cookie value.

• PHP: Usually, HTTP forwarding in PHP is implemented by the use of the header()
function. We implement a page that takes one parameter and inserts this into the
Location header field. We provide valid input but append the payload to set our
cookie. In the initial configuration (PHP 5.3.0, Apache 2.2.11), the cookie is not
set but we get a warning message because header() may not contain more than a
single header line since version 4.4.2 and 5.1.2 and our new line is detected. Then,
we downgrade (PHP 5.1.1, Apache 2.0.63) and the attack is successful. As the
forwarding works as expected, we are able to set the cookie ‘drive-by’ without any
notice for the victim.

Cookie setting is done with the setcookie() function. We append a line break
and a new Set-Cookie header. However, the function URL-encodes the cookie
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Application Version Cookie URL SID Lang
Joomla 1.5 + - + PHP
CMSmadesimple 1.6.6 + - + PHP
PHPFusion 7.00.06 - - + PHP
Redmine 0.9.2 + - - PHP
XWiki 2.0.2.24648 + - - Java
JAMWiki 0.9 + + + Java
Wordpress 2.9.1 - - - PHP
Novaboard 1.1.2 + - + PHP
PHPBB 3.0.6 - - - PHP
SimpleMachinesForum 1.1.11 - - - PHP
Magento Shop 1.3.4.2 + - - PHP
OSCommerce 2.2 RC 2a + - - PHP

Table 4.1: Results of our tests on session fixation vulnerabilities of open-source CMS. A
plus sign (+) in a column denotes that the application is vulnerable to the
respective attack vector.

value and thus transforms our : and = characters to non-interpreted URL codes.
We can avoid URL encoding of our input by using setrawcookie(). However, it
prohibits control characters in the value field.

• J2EE: For the Java test scenario, we use Tomcat 6.0.20 as a servlet container. The
redirection could not be successfully spoofed. The payload is treated as part of the
URL. During our cookie setting approach, we get a java.lang.

IllegalArgumentException due to the control characters in the payload.

• CherryPy: We make use of CherryPy (version 3.1.2) to test the Python functions.
The injection to the Location header is successful whereas the cookie value turns
out to be not exploitable.

• Perl: We also implement a Perl (version 5.10.1 with CGI.pm version 3.48) script
that does nothing but forwarding to a given site. Indeed, we manage to set a
cookie at the victim’s site, however, for some reason the equal sign between the
cookie name and its value is finally coded as a colon and a blank. So, we get a
cookie with a given value but without a name. Then, we insert two equal signs
and the second one is not recoded. Actually, we are able to set an arbitrary cookie
which name ended with a colon.

The cookie setting scenario is more difficult due to the URL encoding of cookie
names and values. We are not able to set our own cookie given that we can
influence the value of an unimportant cookie.

• Ruby on Rails: For Rails (version 1.9.1), we omit the tests for header injection
in forwarding sites as this vulnerability was recently patched [192, 155].
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During the cookie task, we face the same situation as in the Perl scenario. Cookies
must be declared and cannot be set as ordinary headers. The value that we insert
is thus first URL encoded and never interpreted. So, we do not find a way to
escape the cookie value context.

4.3 Server-side Measures Against Session Fixation

With 66 % of the examined CMS being vulnerable to at least one attack vector, we list
three alternative approaches to counter session fixation. The proposed techniques are
designed to fit different situations in respect to the degree of control of the vulnerable
application’s source code or the application server respectively.

4.3.1 Code-level Countermeasures

As described above, the root cause of session fixation problems is in general a mismatch
in the implementation of the session handling, which usually is done on the framework
level, and the authentication management, which is realized on the application layer.
Consequently, the application’s developer has to renew a user’s session identifier man-
ually every time this user’s authentication state changes (see Figure 4.3) to be secure
against session fixation. Note that only the SID is renewed but the stored session data
(e.g. a shopping cart) is then tied to the new SID.

1 if ($authentication_successful){

2 $_session["authenticated"] = true;

3 session_regenerate_id ();

4 }

Figure 4.3: Protecting an application on the code level against session fixation attacks,
exemplified at PHP [140].

While this requirement can be fulfilled rather straight forward for newly written appli-
cations, the same task might prove hard for non-trivial legacy applications, depending
on the complexity of the application’s authentication management and its degree of
encapsulation within the code base.

In addition, assessing if a given application is susceptible to session fixation based
on the application’s source code alone is also non-trivial. In most cases, a manual test
through monitoring and manipulating HTTP communication with the application is
easier (see Figure 4.2).

4.3.2 Protection on the Framework Level

We designed a transparent, light-weight solution that takes protective measures on the
framework level in order to overcome the divide between the framework’s session tracking
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and the application’s authentication management that is responsible for session fixation
vulnerabilities.

Protection Methodology

Our approach functions by mirroring the advised behaviour of Section 4.3.1 within the
application framework: Whenever an authentication process has been executed, a new
session identifier is generated. However, on the framework level, no knowledge about the
internal processes of the application exists. Therefore, the protection mechanism has to
deduce that an authentication process has taken place through observations of data that
is available on the framework level.

While many characteristics in respect to observable application behavior depend on
the utilized combination of application framework and server, we expect one data source
to be available universally: the ongoing HTTP communication between the user and the
application. Therefore, our solution aims to derive the information regarding authenti-
cation processes from this data.

We propose the following methodology: The countermeasure is integrated in the
framework’s component that is responsible for parsing incoming HTTP requests. These
requests are examined whether they contain HTTP parameters that might carry pass-
word data. Such parameters can be identified by their name, provided by the appli-
cation’s operator. Whenever such a parameter is detected in an incoming request, the
framework-internal functions for the session identifier regeneration are triggered to cre-
ate a new SID value for the user. This approach renews the session identifier even if the
authentication attempt fails. However, this does not pose a problem as the user and the
application then share a new valid SID.

Implementation and Evaluation

For our practical experiments, we chose the J2EE application framework [167] as the
implementation target. We realized the actual protection mechanism in the form of
a J2EE filter. J2EE filters are a properly defined way to add framework components
to applications that intercept all incoming and/or outgoing HTTP communication (see
Figure 4.4). Our filter implements the functionality as described above: All incoming
HTTP requests are examined for HTTP parameters which carry the name of a pre-
configured password field. If such a parameter is found, the J2EE session container is
triggered to issue a fresh JSESSIONID value to the user’s session. So, the session data
remains with a new identifier.

Realizing the mechanism in the form of a J2EE filter has several advantages: Fore-
most, no changes to the application server have to be applied, all necessary components
are part of a deployable application. Furthermore, only minor changes to the applica-
tion’s web.xml meta file have to be applied to integrate our mechanism into an existing
application. The only configuration that has to be done is providing the name(s) of the
application’s password parameter(s). Thus, outfitting an existing J2EE application with
our solution is easily and quickly done.
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Figure 4.4: The model of J2EE filters to handle request and response objects.

We test our implementation manually using a vulnerable J2EE application. For this
purpose, we choose the open-source J2EE-based Wiki JamWiki, Version 0.8.0 [80] which
is susceptible to session fixation7. After installing the software on our test system, we
verify that the installed version is in fact vulnerable, using the testing method outlined
in Section 4.2.3.

In the next step, we add our J2EE filter to the installation and enter the name of
JAMWiki’s password parameter (j password) to the filter’s configuration file. Finally,
after restarting the application server, we verify that after every login attempt, the
JSESSIONID value indeed changes and, thus, the vulnerability is properly mitigated.

4.3.3 Protection via a Reverse Proxy

In certain situations, it is neither feasible to fix a vulnerable application’s source code
nor to apply a framework-level countermeasure, as described in Section 4.3.2. Such
scenario include, for instance, the hosting of closed-source applications, mission-critical
applications which cannot be patched timely because of otherwise expected downtime, or
legacy applications that require frameworks which do not support session re-generation,
such as PHP prior to version 4.3.2 [140]. Furthermore, sometimes a short-term solution
is needed even if an application-inherent fix can be applied later, e.g., when an identified
vulnerability is under active attack and the fix is still under development.

In all these scenarios, an application-external solution is required – a generic self-
standing protection mechanism that does not necessitate alteration of the actual appli-
cation or its application server. In this section, we propose a method for transparent,
proxy-based protection against session fixation attacks for such scenarios.

7We discovered the software’s vulnerability during our first experiments with session fixation. We
informed the JAMWiki authors and the vulnerability is fixed.
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Challenges

Several hurdles have to be overcome to implement such a solution. In this section, we
list the identified problems and briefly outline our corresponding solutions.

• Application-external solution: The protection mechanism necessarily has to
take its measures outside of the actual application as in the given situation (see
above) resolving the situation directly at the application is not possible. Conse-
quently, we designed our solution in the form of a server-side reverse proxy.

• Complementing the application’s session management: Our proxy has no
direct control over the application’s internal session management, unlike our so-
lution that we presented in Section 4.3.2. For this reason, our solution has to be
able to invalidate fixed sessions while maintaining legitimate application usage.
We solve this problem through the introduction of a secondary session identifier
that is issued by the proxy (PSID). The proxy’s identifier management component
is tightly secured against session fixation and only requests which carry a valid
PSID are forwarded by the proxy to the actual web application.

• Login detection: Similar to the framework-level solution described in Section 4.3.2,
detecting that a login process has happened is crucial for the solution to function
properly. We tackle this problem analogously.

In the following section we give details on how we solved the above mentioned problems.

Protection Methodology

As outlined above, we introduce a proxy which monitors the communication between
the user and the vulnerable application. The proxy implements a second-level session
identifier management. In addition to the SIDs that are set by the application, the proxy
issues a second identifier (the proxy SID – PSID).

Whenever an HTTP request without a PSID value is received by the proxy, this request
is regarded to be the user’s very first request to the application. If the request carries any
stale SID values, such data is discarded. For the corresponding HTTP response a fresh
PSID value is generated and attached to the response via set-cookie (see Figure 4.5).
In the course of the following HTTP communication, the application’s responses are
monitored for outgoing SID values that are to be assigned from the application to the
user. If such a value is detected, the combination of the PSID and SID value is stored
by the proxy. From now on, only requests that contain a valid combination of these
two values are forwarded to the application (see Figure 4.6). Requests that are received
with an invalid combination of SID/PSID are treated as if they would carry no session
information. Consequently, they are stripped off all Cookie headers before sending them
to the application and are outfitted with a fresh PSID value upon response.

The proxy monitors the HTTP requests’ data for incoming password parameters to
provide protection against session fixation. If a request contains such a parameter,
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Figure 4.5: Issuing the proxy SID against session fixation attacks.

Figure 4.6: Verifying the proxy SID to overcome session fixation attacks.

the proxy assumes that an authentication process has happened and renews the PSID
value, adds an according Set-Cookie header to the corresponding HTTP response, and
invalidates the former PSID/SID combination. This way, only the session identifier is
renewed whereas the session data remains unchanged. The PSID is even renewed if the
authentication attempt fails. This, however, is no threat as the new PSID does not have
any security requirements.

Implementation and Evaluation

We implement a prototype in Python to test our approach and utilize CherryPy [171]
as the basis for the proxy server. CherryPy is a lightweight web framework which
offers a smart interface for developers of web applications. CherryPy only provides the
framework for handling incoming requests and rendering responses to clients, hence,
providing the proxy’s front-end. The Python module Urllib2 [61] implements the back-
end communication with the vulnerable application. It provides methods for retrieving
data from a URL using either HTTP GET or POST requests and access to appended
cookies.

The proxy implements the issuing and verification of PSIDs as described above. The
PSID value is stripped off incoming requests before they are forwarded to the application
to avoid potential problems that some applications might expose when they receive
unexpected parameters or headers.

We again test our implementation against JAMWiki and verify the provided protection
by observing the proxy’s behavior in respect to ongoing login processes.
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4.3.4 Discussion

We presented three different protective measures that can be utilized by a web applica-
tion’s operator to avoid session fixation problems. Each of the measures is targeted at
a distinct scenario in respect to the level of control that the operator has when it comes
to altering the web application’s internals.

Fixing the problem within the application logic through reworking the authentication
handling code, as shown in Section 4.3.1, should always be the first choice as long as
no restrictions exist when it comes to altering the source code and timely applying the
resulting security patch. The main problem that can be encountered in this scenario is
that the authentication and session handling code in a given application might turn out
to be non-trivial and spread. For the fix to function properly, it is essential that all code
segments, in which a user’s authorization level changes because of an authentication
process, are addressed correctly. If one of such processes is missed in the creation of
the security patch, the protection is incomplete. For this reason, the handling of session
fixation should be an integral part of the software development process and addressed
from the begin on.

The second proposed measure (see Section 4.3.2) is applicable if a direct alteration
of the application’s source code is not feasible but the utilized application server and
framework are under full control. Such situations mainly arise, if the operator of the ap-
plication is a different entity than the application’s developer. This applies, for instance,
for third-party components, closed-source applications, or legacy applications for which
the original author has left the company long time ago. The described approach provides
reliable protection, as every authentication process causes the framework to renew the
SID value. Furthermore, the approach is very light-weight. This stems from two charac-
teristics: For one, the mechanism is completely stateless. It does not require temporary
storage of any data as it only reacts based on incoming password parameters. Further-
more, it is closely integrated to the existing framework infrastructure. Consequently,
there is no need to execute any complex operations on its own – all the hard work, such
as parsing the HTTP headers and parameters, is done by the application framework.
These characteristics result in a runtime behavior that, at least if implemented in the
form of a J2EE filter, does not cause noticeable performance overhead. Finally, as the
mechanism operates completely transparent to the application, the patch of an existing
application is easy and straightforward. The main drawback is that the implementation
of the countermeasure is specific for an application framework. The protection might be
lost and has to be reintroduced if changes in the runtime infrastructure are taken, such
as exchanging the underlying application server – a characteristic that does not apply
to handling session fixation directly on the source code level.

The third discussed countermeasure (see Section 4.3.3) is to be used whenever no
changes at all to the vulnerable system are possible (see above for a list of reasons).
It is designed to be completely self-standing and can be set up to protect arbitrary
web applications simply by positioning it between the application and the user. It
is reasonable to expect that the proposed mechanism can be easily integrated to an
existing web application firewall (WAF) [137]. WAFs are in essence web proxies which
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were introduced for the exact same scenario as the discussed countermeasure – to protect
against web application attacks without altering the application itself. Consequently,
WAFs already handle all operations, such as parsing incoming requests, that are required
by our countermeasure. In turn, our countermeasure itself is comparatively light-weight
and does not add significant complexity to a WAF’s functionality.

It depends on the given situation which of the three described measures is to be taken.
In general, if possible, the solution that is most closely integrated to the application’s
core functionality should be chosen to reduce the setup complexity and avoid potential
security regression due to future changes in the application’s infrastructure.

4.4 Related Work

Session fixation has received little attention in the past, mostly due to the vulnerability’s
obscurity and the fact that more severe XSS vulnerabilities are still very common in
current web applications.

The first public paper on session fixation appeared in 2002 [99]. It describes the
basic fundamentals of the attack and the most obvious attack vectors. However, it
provides no information about the spreading of the vulnerability or more advanced
attack schemes. Furthermore, OWASP and WASC added articles about session fixation
to their security knowledge bases. The OWASP article [136] briefly names common
session fixation issues and attack vectors. In contrast, the WASC article [191] also
provides small code examples of different attacks. Both sources name the HTTP response
splitting attack as an attack vector, but they do not discuss its impact in today’s world
of web applications. Furthermore, they lack a general rating of the attack.

Web application firewalls are server-side proxies that aim to mitigate security prob-
lems. However, as the OWASP best practices guide on web Application Firewalls (WAF)
[137] states, current WAFs can only prevent session fixation “if the WAF manages the
sessions itself.” In comparison, our approach does not touch the application-level ses-
sion management and only introduces additional security-related information for each
request.

Furthermore, several protection techniques have been proposed that utilize proxies to
mitigate related web application vulnerabilities, either to counter XSS attacks [95, 85],
for CSRF protection [88, 90], or for client-side detection of SSL-stripping attacks [128].

4.5 Summary

In this section, we thoroughly examined session fixation: We described various session
fixation attack vectors in detail and conducted two sets of tests (Section 4.2.3). First,
we examined open-source applications for evidence that their developers were aware of
the vulnerability class, i.e., we tested if session identifiers were changed after an authen-
tication process. Only 4 out of 12 applications take this measure. Consequently, the
remaining 8 applications would be vulnerable to session fixation if a supporting problem,
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such as a header injection flaw, exists (one application was vulnerable out of the box
due to URL support; the issue has been fixed in the meantime). Secondly, motivated
by the outcome of the first set of tests, we examined various web application program-
ming frameworks with respect to protection against header injection flaws. These tests
resulted in the observation that the majority of the regarded frameworks indeed take
measures to protect against header injection vulnerabilities, thus, indirectly protecting
otherwise vulnerable applications against session fixation attacks.

Based on our observation that most web applications are vulnerable if an attacker
is able to fixate the session ID with the victim, we proposed three distinct server-side
measures against session fixation: For one, we showed how to avoid the problem in
the applications’ development phase (Section 4.3.1). Furthermore, we presented two
approaches to fix running web applications with reasonable interference (Sections 4.3.2
and 4.3.3). These countermeasures require minimal configuration effort, which solely
consists in providing the parameter names of the session identifier and password fields,
thus, allowing fast and easy mitigating freshly detected session fixation issues. Our
countermeasures are robust in respect to failed login attempts as the actual link between
the server-side session storage and the application’s user is preserved in all cases.

In sum, we provided defensive solutions for all potential scenarios in respect to control
over an application’s source code which can be encountered when operating a web appli-
cation and, thus, achieve complete protection coverage against session fixation attacks.

4.6 Conclusion

Section 3 explained the conceptual differences between connection-oriented and connec-
tionless protocols. We explained in Section 2.3 that web applications use HTTP cookies
to implement sessions as a connection replacement. Session fixation attacks occur if
the attacker can determine the victim’s session ID and thus access the session using
his knowledge (see Section 2.5.3). Transferred to connection-oriented protocols, the at-
tacker would have to initiate an anonymous connection, then make his victim use this
connection and authenticate, and finally take over the authenticated connection to act
in the victim’s name.

We showed that session fixation attacks can be thwarted if the web application issues
a fresh session ID when the authentication status of the user changes. Our approach
implements this kind of protection automatically on the server side. This allows an
attacker to access the victim’s session only as long as it is not authenticated yet. Similarly
to establishing a connection, the web application assigns a new session ID upon login
that is only known to the user’s browser and the web application and thus excludes third
parties that know the ID of the unauthenticated session.

In the next section, we will consider the problem that, by default, all authentication
credentials are sent over the wire and not bound to the user or her browser. This fact
makes stolen passwords and cookies reusable for attackers and thus facilitates session
fixation and session hijacking attacks.
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We showed in the last section that web applications must issue a fresh session ID when
the authentication status raises in order to protect the access to the established channel.
However, even a new session ID is only a piece of information exchanged between the
communication peers and – when stolen – sufficient to access a user’s account. The same
is true for the user’s password for the initial authentication.

5.1 Introduction

Due to the missing connection establishment, there is a favor for one-step authentication
processes in web applications: Browsers send all shared secrets in order to authenticate,
first the password and then the session cookie. There is no binding of secrets to another
authentication factor nor to the user’s browser. Consequently, an attacker who gains
access to any message carrying these secrets can fully impersonate the victim because
he owns all secrets.

For the user login, the browser only sends information entered by the user. This step
can be replicated by any user from any machine only by knowing the entered information.
Then, the browser maintains an assigned session cookie to authenticate all subsequent
steps. In this phase, the single account access token is sent back and forth plus stored
by two communication parties. Again, an attacker gaining knowledge can impersonate
the user.

In this section, we will show our approaches to augment the existing authentication
credentials. We bind the user’s knowledge – the password – to her browser to overcome
phishing attacks. Then, we add user knowledge to the browser-based session tracking
to authorize security-critical actions and mitigate CSRF, session hijacking, session fix-
ation, and clickjacking attacks. Hence, user knowledge and browser-stored credentials
complement each other, and an attacker needs to steal both in order to hijack a user’s
account.
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5.2 Augmenting the Password with Transparent
Browser Authentication

The term “phishing” describes a class of social engineering attacks on authentication
systems, that aim to steal the victim’s authentication credential, e.g., the username and
password. The severity of phishing is recognized since the mid-1990’s and a considerable
amount of attention has been devoted to the topic. However, currently deployed or pro-
posed countermeasures are either incomplete, cumbersome for the user, or incompatible
with standard browser technology. In this section, we show how modern JavaScript
API’s can be utilized to build PhishSafe, a robust authentication scheme, that is im-
mune against phishing attacks, easily deployable using the current browser generation,
and requires little change in the end-user’s interaction with the application. We evaluate
the implementation and find that it is applicable to web applications with low efforts
and causes no tangible overhead.

5.2.1 Motivation

From a security point of view, passwords are a terrible choice for authentication. They
are easily stolen. Often, they are easy to guess, due to the fact that they were chosen in
a fashion that allows the user to remember them (e.g., names of pets, children, or cars).
And they are frequently reused, causing the compromise of one server to probably affect
several independent applications as well.

However, it is an unrealistic assumption, that we will reach a situation, in which
password-based authentication loses its significance, even in the presence of well designed
password-less techniques, such as client-side SSL authentication, and promising new
developments, such as Mozilla Persona [120].

Unlike all alternatives, the user’s requirements to utilize password authentication are
extremely light-weight: All she needs to logon, is to remember her username and pass-
word. Password-less authentication systems either require preconfigured state on the
device, such as installed client-side certificates, the presence of specific hardware, such
as smart card readers, or the possession of additional items, e.g., a cell phone to obtain
out-of-band credentials [65].

This characteristic of password authentication is even amplified in the presence of web
applications: The only remaining software requirement is, that on the utilized computer
a web browser is installed, something that can be taken for granted since several years.
Hence, no matter in which situation a user is, as long as she remembers her password
and has a networked device with a web browser at her disposal, she is able to access
her applications. No other system for networked applications offers similar properties.
It can even be argued that the ease of password authentication was one of the success
factors of the web.

However, the passwords’ strength – their ease of use – is also their biggest weakness:
As easily they are entered, as easily they are stolen, in case that a used password field
is actually under the control of the attacker.
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In variants, this class of attack, known under the term phishing, is probably as old
as the discipline of password authentication itself, having its roots in social engineering
attacks [119]. The severity of phishing is recognized since the mid-1990’s and a consid-
erable amount of attention has been devoted to the topic. However, as we will show
in Section 5.2.2, currently deployed or proposed countermeasures are either incomplete,
cumbersome for the user, or incompatible with standard browser technology.

In this section, we present PhishSafe, a light-weight approach that provides robust
security guarantees, even in case that the user’s password was successfully stolen. The
core of our approach is a transparent browser-personalization process, that is invisible to
the user. This way, unlike the majority of existing anti-phishing approaches, PhishSafe
does not burden the user with altered authentication interaction or additional burdens,
such as recognizing security indicators or visual authenticity clues. On the contrary: As
long as a user predominately uses only a single browser, she won’t notice a difference to
the currently established, insecure scheme.

5.2.2 The Context of Phishing Attacks

While phishing attacks have a long history, phishing activity has not decreased over
time (see Figure 5.2). The attackers’ strategy, however, has changed to counter the anti-
phishing means in use, for instance, phishing sites move faster to prevent blacklisting
(see Figure 5.1). In this section, we model the attackers’ capabilities, evaluate proposed
anti-phishing solutions, and analyze why those solutions have not significantly reduced
phishing activities.

Attacker Models

In order to estimate a phishing attacker’s capabilities, we define two attackers. These
attackers define the scope of our work, i.e., we present existing approaches against these
kinds of attackers in Section 5.2.2 and propose PhishSafe, our countermeasure, in Sec-
tion 5.2.3.

We consider a phishing attacker as a remote web participant. He is able to set up web-
sites and email accounts, can send emails and messages via instant messengers (IMs). He
can obtain valid SSL certificates for his domains. We do not assume timing constraints,
i.e., he can react immediately on any input at all time.

Moreover, we consider an XSS attacker. He has all capabilities of the phishing attacker
but can also inject JavaScript code into vulnerable web pages.

Neither of both has control over the user’s platform nor over the network. We neglect
browser vulnerabilities and respective exploits. Also, they can not break cryptography.

Current Solutions

Several approaches have been applied so far to mitigate phishing attacks. In this section,
we name them and explain their strengths and weaknesses. We find that they are either
incomplete, cumbersome for the user, or incompatible with standard browser technology.
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Incomplete Countermeasures One class of countermeasures suffers from incomplete-
ness in terms of false positives and false negatives, i.e., they do not protect against
phishing on some sites and prevent access to genuine sites suspected to phishing.

Browser vendors, e.g. Microsoft8 and Google9, as well as third parties, e.g. Phish-
Tank10, provide lists of malicious and genuine websites. Browsers query their list upon
accessing a website and check whether this site is known for phishing. The blacklists
suffer from a window of vulnerability between the setup of a phishing site and its listing
[160]. This window can be decreased by real-time queries towards the list providers for
each unknown domain. The additional online query slows down page loading and reveals
almost the complete browsing history to the list providers. List providers went over to
classify websites automatically to capture phishing sites earlier [193], however, at the
expense of accuracy, i.e., more false positives and false negatives [107]. The extraction of
features from phishing sites provoked an arms race between phishers, who have a finan-
cial interest in passing those filters, and the blacklist providers. Among other features,
phishers reduce the uptimes of their sites (see Figure 5.1) to make the blacklists come to
nothing. The trend lasts and led to an average uptime of one day in 2012 leaving only
very short reaction time to blacklist providers [172].

Figure 5.1: The average online time of phishing sites in days between Oct ’04 and Dec
’07, the time of acquisition by the APWG, src: Regular APWG Phishing
Attack Trends Reports [174].

Countermeasures Cumbersome for the User Another class of approaches makes use
of the increasing propagation of mobile devices. Users need to enter a second credential
that is either received or generated by their mobile device in order to login or perform

8http://windows.microsoft.com/en-US/windows-vista/Phishing-Filter-frequently-asked-questions
9https://support.google.com/chrome/answer/99020?hl=en

10http://www.phishtank.com/
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critical actions. This breaks their ongoing workflow as they need to switch to a differ-
ent device. Example implementations include Google Authenticator [65] and one-time
passwords sent to cell phones. Beside the fact that malware now also targets mobile
devices to intercept received tokens [48], both approaches can not help against our at-
tacker models (see above) because the attacker only needs to wait for the victim to enter
her credentials and relay all gathered user data to the actual web application in real
time. This way, the user serves as an oracle that provides the needed information. In
this scenario, the attacker plays the role of a man in the middle without manipulation
on the network layer.

Client-side SSL aims at replacing username/password-based logins. Though SSL could
overcome most of currently known weaknesses in knowledge-based authentication, it has
not become popular probably due to its setup complexity for non-expert users. Finally,
SSL certificates are hardly portable. A user can login to web accounts from every device
using an off-the-shelf browser and her password. It is rather difficult to store, carry, and
use an SSL certificate securely on an untrusted computer.

Countermeasures Incompatible with Standard Browser Technology A family of
approaches extends the user’s browser [94, 146, 199, 45, 198, 195, 142, 76, 180, 33, 145,
112, 31, 200, 157] (see Section 5.4 for details). Browser extensions and toolbars share a
number of drawbacks:

• They provide no protection by default but only protect risk-aware users after
installation.

• They are inherently incompatible with standard browser technology and can only
protect users of supported browsers while porting them to other browsers is hard. [141]

• The majority of browser-based solutions aims at detecting phishing websites while
accessed. However, most users ignore issued warnings and more rely on the web
content to estimate a website’s authenticity. [194]

• Browser toolbars, that classify websites into phishing and harmless, are susceptible
to false positives and false negatives, i.e. letting phishing sites pass while warning
of genuine sites. Case studies showed that a high detection rate often comes with
a high false positive rate. [202]

• Phishing is a particular problem on mobile devices while existing approaches are
hard to port because of the limited screen size. [58]

• Phishers can evade most browser-based protection approaches by asking victims
to reply by email to their inquiry.

Summary We can conclude that the existing approaches still leave room for phishing
attacks. None of the current solutions offers thorough protection for all users. The
volatile number of active phishing sites reflect the ongoing arms race between phish-
ers and anti-phishing blacklist providers (see Figure 5.2). The more stable number of
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phishing campaigns shows the unabated activity of phishers over a long period. Matters
are complicated by more targeted spear phishing attacks which are harder to detect by
generic features than common large-scale attacks.

Figure 5.2: Phishing statistics since Aug. 2004 in terms of active phishing sites (dark
grey) and email phishing campaigns (pale grey), src: Anti-Phishing Working
Group (APWG) Reports [174].

Emerging consumer-oriented SSO protocols like Mozilla Persona [120], OpenID [132],
and OAuth [73] decrease the user’s attack surface. Nevertheless, they still require user
logins with the identity provider and, thus, cannot remedy phishing attacks. SAML [106]
and Shibboleth [83] target business environments and require a higher level of coordina-
tion between participants, thus, are more suitable for closed application scenarios. We
provide more details in Section 5.4.1.

The Weakest Link: The User

After analyzing existing countermeasures and modern attack vectors (see Section 2.5.1),
we identify the user as the weakest link. We find that phishing attacks abuse the user’s
misconception concerning her communication partner in the world wide web. Transferred
to the physical world, a phishing attacker would set up a storefront that looks familiar
to many people. In the virtual world of the world wide web, the attacker can succeed
much easier for several reasons.

First of all, the user has no personal reference point in terms of location. Informally
speaking, she does not know where she actually is. Most users are not familiar with
domains and URLs, and even if they were, they could still be misled by exploiting
weaknesses in the Domain Name System (DNS spoofing, pharming). The international
domain name (IDN) homograph attack [64] even deceived skilled security experts.

Second, users learned to assess a person’s trustworthiness. While this assessment
can be manipulated, there is hardly any natural feeling of trustworthiness with respect
to programs and machines nor do reliable indicators help. Existing approaches focus
on proving an email’s (e.g. DKIM [37], SenderID [117]) or a website’s (e.g. https)
trustworthiness but not the opposite, i.e. in an attack scenario, they do not provide
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any helpful hint. Teaching users to check SSL indicators inspired phishing attackers to
spoof those indicators or obtain valid certificates for similar domains, e.g. gooogle.com.
Such indicators are missing on most mobile devices due to the limited screen size [130].
The opposite approach – warning users instead of indicating trustworthiness – made
users being annoyed and ignore such warnings [51], because users want to make things
happen and not think about security, so they do whatever is asked for in even unusual
emails [47]. Attackers increase their chances by threatening their victims, for example,
announcing bad consequences like blocking an email account or disabling the credit card.
This strategy prevents that users contemplate on the message’s reliability.

Third, automation allows large-scale attacks making the efforts worthwhile. The in-
tention to classify phishing attempts led to an arms race meaning that attacks evolve
and require new features to detect phishing [59].

To sum up, we conclude that the user must not play a decisive role in phishing
protection nor can the user behavior be supposed to change. An algorithmic approach
is needed to rule out phishing attacks.

5.2.3 PhishSafe

In this section, we describe the idea of our authentication scheme, named PhishSafe,
that avoids the drawbacks identified in Section 5.2.2. Section 5.2.4 gives details of the
implementation.

Design Goals

Following the lessons learned from previous approaches and current phishing techniques
(see Section 5.2.2), we phrase the following design goals for PhishSafe: It

• sidesteps the arms race between phishers and the anti-phishing community,

• reduces reliance on the user,

• avoids dependence on the browser’s interface,

• waives the need for additional devices and the installation of protective tools, and

• withstands the attackers defined in Section 5.2.2.

Our design goals are in parts inspired by Parno et al. [139] (see Section 5.4). In the
remainder of this section, we motivate our design goals in more detail.

Sidestep the Arms Race Between Phishers and the Anti-Phishing Community It
is important to quit the arms race with financially motivated phishers that are always
one step ahead. The anti-phishing community can only react on new phishing techniques
while phishers update their features again.
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Reduce Reliance on the User We showed in Section 5.2.2 that the user is the weakest
link in phishing scenarios. Hence, a reliable countermeasure must not rely on the user.
Instead, it must tolerate that the user can be tricked and gives away all credentials she
knows.

Avoid Dependence on the Browser’s Interface Approaches relying on the browser’s
interface either require the installation of additional software (e.g., toolbars or extensions,
thus, excluding users of not supported browsers or platforms) or can be spoofed using
JavaScript or a favicon (e.g., simulating an SSL lock symbol). The interface is even
hidden on mobile devices due to the limited screen size.

Waive the Need for Additional Devices and the Installation of Protective Tools
The need for second devices makes processes more complex and requires considerable
changes of the used logon procedure. Those devices must be always at hand, secure, and
have a direct connection to the browser to transfer control. Obtaining passcodes from a
second device is not an option because these can be phished and exploited.

The usage of protective software is always limited to risk-aware users utilizing a sup-
ported platform.

Withstand the Attackers Defined in Section 5.2.2 We modeled the attackers ac-
cording to realistic assumptions. So, a reliable approach must provide protection against
their attacks.

High-level Overview

The main idea of PhishSafe is to release the user from responsibility: she neither needs
to perform special actions nor check security indicators nor keep a secret other than
her password. Instead, she will use a second factor she does not know and, thus, can
not disclose to a phisher. This factor is stored in her browser and attached to logins
towards the genuine web application. The web application prohibits logins without
proper second factor authentication. An attacker luring his victim on a phishing site
can obtain her password but not the second factor credential. However, the password
alone is not enough to login. The second factor is established during account setup and,
if necessary, restored after visiting a URL sent by email.

Detailed Authentication Process

As emphasized above, the authentication scheme implements two-factor authentication
without the user knowing about it. In order to apply our authentication scheme, the
website stores a secret token in the persistent web storage of the user’s browser (see
below for details). The user does not have to be aware of this token nor does she have
to care. The important point is that this token is subject to the same-origin policy
(SOP) [150] and not accessible to web applications on foreign domains.
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When the user accesses the login page, a challenge string is invisibly included in the
HTML form beside the username and password input fields. The page also embeds
JavaScript code that computes the second factor credential from the challenge and the
secret browser token using an HMAC function [101]. The second factor is then appended
to the HTML form and transmitted to the web application together with the username
and password. The web application verifies the second factor by performing the same
computation that happened in the browser. It denies access to the user account if the
verification fails.

A phisher could lure the user into visiting his prepared page. Given that the user
does not detect the attack, she enters her username and password and sends them to
the attacker’s site. Then, the attacker tries to log into the user’s account exploiting the
phished credentials. The web application, however, denies access because the necessary
browser token is not available to compute the valid second factor.

There are scenarios where a browser is not only used by one user but at least two
where both have an account on the same web application respectively, e.g., a family
sharing one laptop (and OS account) or tablet PC. In this case, they would share the
same browser token. This is also true for guests accessing the web application via this
browser just once. We prevent such unintended sharing of the browser token by assigning
it to the respective user account in the browser’s storage, i.e., the second factor can only
be computed if a browser token associated with the given username is found.

Browser Enrollment

The idea how PhishSafe proceeds has been described above. What remains is PhishSafe’s
bootstrapping, i.e., the process that establishes the token in the user’s browser. There
are two options when the token is stored: during account setup or, afterwards, whenever
the user logs in from a previously unknown browser.

Figure 5.3: Setting and using the browser-stored authentication token to overcome phish-
ing attacks.
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The web application can set a token during the registration process unless the user
opts out, e.g., because she uses a friend’s device. After the user chooses username and
password, the token is stored in the browser’s web storage.

Restoring the Browser Token We assume that account information includes the user’s
email address and leverage this as a second channel for token installation. Given that
the user uses more than one device to access the web application, changes her browser,
reinstalls her operating system or firmware, or just deletes the browser’s web storage for
privacy reasons, she needs an opportunity to restore her browser token. The password
alone is insufficient because the attacker can learn it and so use it to equip his browser
with a valid token.

Usual second authentication tokens are not sufficient, either. Examples for this class
are apps or devices that issue two-step verification numbers, e.g. Google Authentica-
tor [65] and RSA SecurID [53], as well as one-time passcodes sent to the cell phone or
by email. A phishing attacker could lure the victim on his page and at the same time
request the original login page. When the victim provides her password, he forwards it
and is prompted with an input field for the second authentication step. Then, he leads
his victim to believe that her browser token needs to be reset and requests the same
authentication credential that he is supposed to enter. Finally, he only needs to forward
the user’s second factor credential to finally own the password and the browser token.
Note that this attack even works with passcodes sent to the user’s cell phone because
the application indeed sends such a code to the user (upon the attacker’s request). We
believe that receiving the code makes the actual phishing attack even more credible.
The attacker acts as a man in the middle.

Our authentication scheme uses complete URLs that must be clicked (or copied and
pasted to the browser) by the user. When the user enters her username and password
on the login page but no respective browser token is found, the web application sends
a confirmation email to her account. The email contains a unique URL that must be
accessed within the same session context as the login request. In the attack scenario
described above, the attacker’s login attempt triggers the email confirmation. However,
if the user clicks on the provided link, she accesses the real web application but not the
phishing page. At that point, the attack becomes detectable for the web application
because the session context does not match. The attacker never obtains the necessary
input to obtain a valid browser token.

One-time Account Access Finally, the user might use a public computer to access
the web application. So, a persistent credential in the browser’s web storage is not ap-
propriate. For this reason, PhishSafe also provides one-time access. The only difference
to the above described browser token reset is that no token is stored. After the user
enters her username and password and no browser token for this username is found, she
is asked if she is using a public computer or if she trusts all users of this computer and
uses it regularly. In both cases, the web application sends an email with a unique URL.
However, if the user requests the URL from a public computer, no browser token is set
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and access to the account is granted only once. The token handling logic is given in
Figure 5.3.

Protection Against the XSS Attacker

The authentication process described above perfectly protects against the phishing at-
tacker (see Section 5.2.2). The XSS attacker, however, could inject JavaScript code that
is executed within the same domain context as the web application. This allows him to
read the browser’s web storage and obtain the secret browser token. For this reason, we
move the token and all related computations to a secure subdomain. Given that the ac-
tual web application runs on www.example.com, a subdomain, e.g., auth.example.com,
is responsible to handle and store the secure browser token. This subdomain only con-
tains static JavaScript dedicated to this task and nothing else. Based on this, we consider
well audited and XSS-free code to be feasible. An HTML document served from the
subdomain and embedded into the main web application as an invisible iframe contains
the JavaScript code. This way, we leverage the guarantees provided by the same-origin
policy [150] and the postMessage API [161] to prohibit access by the XSS attacker to
the browser token while enabling controlled interaction between the web application and
the secure subdomain.

Hence, the challenge appended to the login form is submitted to the secure subdomain
via JavaScript and the postMessage API. The code of the subdomain computes the
HMAC of the challenge using the browser token. The HMAC is then sent back to the
original document and attached to the subsequent login request (see Figure 5.4). Please
note that all this communication happens within the browser.

5.2.4 Implementation

The implementation of our proposed authentication scheme comprises three interacting
components: the TokenManager handles the browser token in the secure subdomain,
the Authenticator assembles necessary input for the login, and the server-side Account-
Manager fits into legacy or new web applications in order to handle browser challenges
and responses.

Client-side Components

We first describe the client-side components, the TokenManager that is loaded in the
iframe from the secure subdomain and the Authenticator that delivers the web applica-
tion’s challenge to the TokenManager and appends the retrieved response to the HTML
login form.

The TokenManager The TokenManager implements the necessary functions to fetch
the browser token, compute the HMAC of the token and the web application’s challenge,
and return an error message if no token is found. It runs in the domain context of a secure
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subdomain. We use the CryptoJS11 library as an implementation of the cryptographic
functions.

The TokenManager uses the browser’s localStorage part of the web storage [77].
Web storage is supported by all major browsers on mobile and desktop platforms which
makes our authentication scheme platform and browser independent. The localStorage
is persistent, i.e., it is not cleared on a regular basis as the sessionStorage is. The
storage is limited in size per origin between 5 and 25 Mbytes depending on the browser
which, however, is far more than necessary for our purposes. Web storage is meant for
pairs of identifiers and values where both must be strings. More complex data structures
can be stored as JSON objects [38] that are easily converted to string and back. The
TokenManager uses JSON to store the username and the associated browser token.

The communication interface of the TokenManager is restricted to a function that
expects a challenge and a username as input and provides an HMAC as the output (see
Figure 5.4). The Authenticator’s direct access to the subdomain’s localStorage is prohib-
ited by the same-origin policy [150]. So, the Authenticator needs to use the JavaScript
postMessage API [161] that enables two web documents in a browser to communicate
across origin boundaries in a secure manner. A postMessage(msg, target) call ex-
pects a message string and the target origin as parameters. The receiving document
needs to register an event handler to receive a message. The triggered event comes with
additional metadata provided by the browser, e.g., the origin of the sender. This allows
the receiver, i.e., the TokenManager, to carefully check the sender’s authenticity.

Figure 5.4: Leveraging the domain-isolated token storage to protect the authentication
token against XSS attackers.

11http://code.google.com/p/crypto-js/
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The Authenticator The HTML login form contains two additional hidden fields for
PhishSafe: AuthChallenge and AuthResponse. The first contains the web application’s
challenge, the second is initially blank. The Authenticator reads the challenge and the
user’s username from the input field. It passes both arguments to the TokenManager
and reads back the answer. The answer either contains the computed HMAC or an
error. In the success case, the Authenticator rewrites the login form’s AuthResponse

field to append the response. It prompts the user if the TokenManager reported that no
browser token was found (see Figure 5.5).

Figure 5.5: Prompting the user if no anti-phishing token is found.

Server-side Component

The server-side part of PhishSafe consists of a single component, the AccountManager.

The AccountManager The AccountManager implements the server-side part of our
authentication scheme. We equipped WordPress with the AccountManager as a plugin.
The integration required only reasonable efforts and no changes of the application code
due to the modular architecture of WordPress together with the hooking feature. We

75



5 Augmenting Authentication Credentials Against Account Hijacking

consider the integration into modular or new web applications as an easy task while
necessary efforts might be bigger for non-modular legacy applications.

The AccountManager issues the user’s browser token and adds the invisible iframe
and the Authenticator to the web application’s login page. It generates a new challenge
for every user login, adds the AuthChallenge and AuthResponse fields to the HTML
login form, and checks incoming login requests for valid responses.

The XSS attacker could inject a payload that reads the user’s username, password,
and the returned HMAC for authentication. Having all this information, he can log into
the web application without a valid browser token. For this reason, the AccountManager
sets a cookie in the user’s browser. This cookie has a random value that is saved by the
AccountManager together with the user’s current challenge. Only login requests that
carry this cookie and the valid response are processed. The cookie has the HttpOnly and
the Secure flags set to prevent it from being read by the attacker’s payload or during
plain http transport.

Security Configuration Though it is not part of our attacker model, we leverage two
more modern security features to shelter from SSL stripping [110] and pharming [184]
attacks. A man-in-the-middle attacker performing an SSL stripping attack could prevent
the user’s browser from using https and then read transmitted information or even inject
code into the document loaded in the invisible iframe. A pharming attacker could serve
own code on behalf of the abused web application and so bypass the same-origin policy.
Both attackers could hijack the secure browser token.

To overcome these attacks, the AccountManager adds HTTP Strict Transport Security
(HSTS) [79] and Public Key Pinning (PKP) [55] policy headers to the web application’s
HTTP responses. HSTS makes sure that the browser only contacts the website using
https. There is an inherent bootstrapping problem before the first request, i.e., the
website must ensure that the browser eventually receives the HSTS header. Google
Chromium and Mozilla Firefox overcome this problem using a static list of pre-defined
domains12. The PKP policy prevents that a pharming attacker presents his own certifi-
cate. After receiving the policy header, the browser only accepts SSL certificates with
the pinned public key.

5.2.5 Evaluation

We evaluate the security properties of our authentication scheme and validate our design
goals from Section 5.2.3.

Security Evaluation

We first explain how far PhishSafe protects users against the attackers defined in Sec-
tion 5.2.2. Then, we give details of further security properties, and finally, we identify
open issues of the proposed scheme.

12http://www.chromium.org/sts
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The Phishing Attacker The phishing attacker counterfeits the design of a web appli-
cation in scope and lures victims. The latter can be done either by email or by links and
ads on other websites. In any case, our proposed authentication scheme does not prevent
a victim from accessing the phishing page. However, the information the phisher can
obtain is not sufficient to abuse the user’s account because the web application denies
access if no valid response is appended to the login request.

The XSS Attacker The XSS attacker differs from the phishing attacker in his ability
to execute JavaScript code on vulnerable domains. For instance, the XSS attacker could
perform a reflected XSS attack by sending a specially crafted link via email or IM. The
injected payload can read the username, password, the current challenge for login and
the respective response if a browser token is stored in the browser. However, we assumed
that the attacker can not break cryptography, thus, he can not compute the browser
token from the challenge and the response. The captured data is still insufficient because
it lacks the related cookie which is inaccessible to JavaScript. Finally, we consider the
task to develop invulnerable static code for the secure subdomain feasible such that there
is no attack vector for the XSS attacker.

Further Security Advantages The proposed authentication approach comes with ad-
ditional security features.

First of all, though running purely in the browser, the scheme thwarts email-based
phishing attempts. Phishers try to evade browser-based protection by asking the victims
to reply to their phishing emails and give credentials in the email. The obtained user-
name and password, however, do not give an attacker access to the user’s web account.
We consider phishing for the browser token to be infeasible as it requires major efforts
and advanced knowledge of a user to read the token from the browser’s web storage.

Phishing attacks rely on unprepared users that disclose credentials. This general obser-
vation holds true for any kind of credentials a user may know. So, second authentication
factors that must be entered by the user in a web form are inherently susceptible to
phishing attacks, too. Examples include one-time passcodes sent to the user’s cellphone
or generated by apps. Our approach utilizes complete URLs to overcome second factor
phishing. A user clicking on a link not only proves access and knowledge but is also
directed to the right web application.

Open Issues Next, we emphasize on potential attacks on our authentication scheme.
Our approach relies on the security of the user’s email account. The attacker can

request and read the confirmation URL sent to the user if he has access to the email
account and the user’s credentials to the target web application. We are here in line with
today’s best practices for password reset as virtually all web applications offer email-
based processes at least if no cell phone number is given or the attacker pretends the
cell phone is stolen.

An email account can not be protected if the confirmation URL is sent to the same
address. There are two options to make sure that the user can always access the confir-
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mation URL: First, the user can provide an alternative email account where the confir-
mation URL is sent to. Second, the email provider can offer application-specific pass-
words13. These passwords are chosen by the provider and not remembered by the user.
Instead, they are stored by client applications to obtain access to the user’s account.
Given an application-specific password and an email client on a PC or mobile device,
access to the confirmation URL is assured.

An attacker can try to acquire the confirmation URL sent to the user by making the
user enter it into a prepared input field on the phishing site. The easiest way to avoid
this is to make the user click on the link. Moreover, a highlighted warning in the email
reduces the attacker’s chances.

A window of vulnerability towards a pharming attacker remains before the first PKP
header is received by the user’s browser (see Section 5.2.4). As long as the browser did
not pin the server’s public key, a pharming attacker can present a spoofed certificate and
submit malicious content. In the future, a similar pre-defined list of certificates might
be implemented as it happened for HSTS.

Finally, though completely out of scope of our authentication scheme, fully fledged
spyware can read and transmit the browser token. Less elaborate keyloggers, however,
are ineffective because the browser token is never entered via the keyboard.

Validation of Design Goals

In this section, we evaluate the compliance of PhishSafe with the design goals given in
Section 5.2.3.

Sidestep the Arms Race Between Phishers and the Anti-Phishing Blacklist Commu-
nity Our approach does not exploit features of phishing sites or emails for classification.
So, there is no motivation for actions and reactions. In fact, we do not consider phishing
activities at all but only hide some piece of information from phishers. We argued in
the section above that phishers can hardly learn the browser token.

Reduce Reliance on the User The security of the approach barely relies on the user.
She neither needs to enter her credentials only when a dedicated indicator is shown, nor
does she need to remember additional credentials. In fact, the only change compared
to her used workflow is the decision if a computer is trusted or not and the click on the
confirmation link. The actual login procedure does not change at all on regularly used
browsers.

Avoid Dependence on the Browser’s Interface PhishSafe does not depend on the
browser’s interface, nor does it change the browser’s appearance. This feature not only
avoids confusing the user but is one important aspect of cross-platform applicability (see
below).

13https://support.google.com/accounts/answer/185833
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Waive the Need for Additional Devices and the Installation of Protective Tools
PhishSafe only needs an off-the-shelf browser and neither relies on extensions, nor tool-
bars, nor third-party plug-ins, like Flash or Silverlight. A second device is also not
necessary.

Withstand the Attackers Defined in Section 5.2.2 We showed above that PhishSafe
resists attacks by the phishing attacker and the XSS attacker.

Further Points PhishSafe runs on mobile as well as desktop browsers because all mod-
ern browsers support the WebStorage and postMessage APIs. It does not rely on visual
indicators which makes it applicable on mobile devices with limited screen size.

PhishSafe can easily complement other approaches. If the browser maintains a black-
list of phishing sites, it can prevent that the user reveals her credentials. Approaches
leveraging a secure password entry field to some degree also work together with PhishSafe
even though details need to be sorted out.

5.2.6 Summary

In the course of this section, we analyzed the root causes for the continuing prevalence
of phishing attempts and classified existing solutions into three main categories: in-
complete countermeasures prone to false positives and false negatives, countermeasures
cumbersome for the user compared to common logon processes, and countermeasures
relying on browser extensions or toolbars, thus, expecting risk-awareness by the user
and excluding users of not supported browsers and platforms.

Then, we identified the user as the weakest link when it comes to phishing protection.
She can neither be expected to apply cumbersome countermeasures, nor install protective
tools, nor take care of security indicators. We presented PhishSafe, a reliable approach
to overcome phishing attacks, that runs in browsers out of the box and barely changes
known logon processes. The user must only decide if she uses her private browser or not.
This way, PhishSafe implements a two-factor authentication scheme where the second
factor is only accessible to the genuine web application but not to the phisher nor to
the user. Without knowing the second factor, the user cannot disclose the necessary
information for account access to an attacker.

PhishSafe can be easily deployed by web application providers and is not susceptible
to the chicken-and-egg problem. Moreover, it complements SSO protocols and anti-
phishing blacklists.
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5.3 Augmenting the Session Cookie with User
Knowledge to Mitigate Web Session-based
Vulnerabilities

After the initial login, web browsers authenticate to web applications by sending the
session credentials with every request. Several attacks exist which exploit conceptual
deficiencies of this scheme, e.g. CSRF, session hijacking, session fixation, and clickjack-
ing. We analyze these attacks and identify their common root causes in the browser
authentication scheme and the missing user context. These root causes allow the at-
tacker to mislead the browser and misuse the user’s session context. Based on this result,
we present a user authentication scheme that prohibits the exploitation of the analyzed
vulnerabilities. Our mechanism works by binding image data to individual sessions
and requiring the submission of this data along with security-critical HTTP requests.
This way, an attacker’s exploitation chances are limited to a theoretically arbitrary low
probability to guess the correct session image.

5.3.1 Motivation

Web applications must identify and authenticate their users in order to provide personal-
ized services in the world wide web. Upon signing up, users generally choose a username
and a password that can be used as a shared secret to establish future sessions. After
the authentication of the user, the web application assigns a unique temporary token to
the user. This token is stored in the browser and subsequently used by the browser and
the application to tell this user and others apart. Several attacks target the browser or
the token to hijack established sessions. Clickjacking and CSRF mislead the victim’s
browser to send requests that are determined by the attacker. Session hijacking and
session fixation aim at sharing the token with the attacker.

In this section, we introduce a method to authenticate security-sensitive operations.
Our approach, named Session Imagination, can be applied to existing web applications
and mitigates the above mentioned attacks. Specifically, we apply the two steps of iden-
tification and authentication to established sessions. After login, the user is equipped
with a shared secret that is not stored in her browser. The former universal token then
serves as the identification that is complemented by the shared secret as the authentica-
tion for security critical operations. The shared secret can not be stolen by an attacker,
and the browser can not be lured into misusing the secret.

Contribution

Our contribution is twofold: We identify the above mentioned attacks’ common root
causes and provide an applicable solution that implements the well-known and approved
concept of identification and authentication to web sessions. This solution remedies
basic deficiencies of current web session implementations. We give details about the
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authentication scheme and its implementation, evaluate the approach, and show that
the protection goals are achieved.

5.3.2 The Root Causes of Web Session-based Attacks

The attacks on web sessions described in Section 2.5 share common root causes.
First, session authentication means authentication performed by the browser. For the

user’s perception, only one authentication step happens, namely the login where she
provides her username and password. The rest of the session handling is transparent to
the user. As explained in Section 2.3, HTTP does not have a session feature and, thus,
session handling has to be implemented using session identifiers on the application layer.
This fallback solution provides authentication of the browser with every request instead
of authentication of the user as it would be required. The following example illustrates
this fact: One person logs into her account on a web page, then leaves her computer to
have a coffee. Every other person could now interact with the web application on behalf
of the user logged in because the browser will do transparent authentication. So, as
long as the browser maintains the session ID, all requests are authenticated. The same
person accesses a terminal next to the coffee maker. She visits the same web application
but she will not be able to access her account without another login though she already
authenticated towards this web application.

Second, on the opposite side, the server can not distinguish different contexts of a
request. On the server side, incoming requests generated by a JavaScript command, an
image tag, or the click of a user respectively are all alike. The requests do not contain
evidence that they are intended by the user. The server can not decide whether the user
is aware of the action that is caused by a request.

To sum up, the common root causes of session hijacking, CSRF, clickjacking, and
session fixation are in fact browser authentication instead of user authentication along
with the server’s unability to determine a request’s initiation context.

Browser-level and User-level Authentication

The authentication of HTTP requests can be divided into two classes: browser-level and
user-level authentication.

Browser-level authentication is the current practice in web applications, meaning that
after the user provided her credentials for login, the authentication token is cached and
subsequent requests are implicitly applied by automatically sending the authentication
token. In this case, the browser performs authentication on behalf of the user because
the user logged in to the personalized service. Examples of implicit, e.g. browser-level,
authentication are the above mentioned cookies, client-side SSL authentication, HTTP
authentication (basic and digest), and authentication based on the client’s IP address.

The other principle is user-level authentication. In this case, another authentication
step for a user’s requests is added. We require the user’s explicit consent to a user-
level authentication step such that this step can not be taken by the browser only but
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additional action by and knowledge of the user is required. Examples of explicit, user-
level authentication are re-entering the username and password and passcodes received
as text messages.

We identified two attack vectors emerging from browser-level authentication. First,
CSRF and clickjacking attacks make the browser send a request and authenticate on be-
half of the user even though the authenticated user does not acknowledge. This problem
is known as the ‘confused deputy problem’ [74]. The browser stores all secret information
that is needed to authenticate the requests. The underlying assumption becomes evident
in the attack scenarios: All requests are supposed to be only initiated by deliberate user
clicks or by the browser that fetches regular content. This assumption stems from the
early days of the world wide web when web applications were not personalized. The ad-
dition of web sessions and cookies turned this established assumption to a security risk.
The web application can not decide whether the user deliberately initiated the requests.
Uncommon request sequences may indicate CSRF attacks, clickjacking attacks simulate
regular user sessions and are harder to detect.

Second, while CSRF and clickjacking are based on requests initiated by the victim’s
browser and without her consent, there is another attack vector that exploits the fact
that browser-stored information can be easily transferred. Session hijacking and session
fixation attacks strive to impersonate the user from different machines towards the web
application. Both attacks share the same goal, namely the attacker and the victim share
the same SID and are thus indistinguishable from the web application’s point of view.

Both attack vectors are based on the same conceptual deficiency: Due to browser-level
authentication, no user input is needed to supply evidence that the authenticated user
intends the requested action. On the opposite, request authentication including user
interaction prevents the attack vectors and remedies the conceptual deficiency.

5.3.3 Session Imagination

We implemented a new approach for user-level authentication, named Session Imagi-
nation, to address the root causes described in Section 5.3.2. Thereby, we focused on
overcoming the vulnerabilities’ root causes (see Section 5.3.2). In this section, we will
describe our solution that aims at mitigating CSRF, clickjacking, session hijacking, and
session fixation attacks. Session Imagination separates identification and authentication
in web sessions and relies on visual authentication tokens which can be easily remem-
bered and recognized by the user while the authentication token is not stored in the
browser.

Attacker Model and Protection Goals

We model the attacker to be a regular web participant. He can send messages, access web
applications and set up his own websites. However, he does neither control the other
user’s machine or platform nor those of the web application nor the communication
infrastructure between them.
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Figure 5.6: A fresh session image is given immediately after login. This image has to be
remembered throughout the session and identified among a set of images to
legitimate security-critical requests.

Our goal is to protect a web application and its users against CSRF (see Section 2.5.5),
session hijacking (see Section 2.5.2), session fixation (see Section 2.5.3), and clickjacking
(see Section 2.5.4). Protection means that an attacker’s chances to reach his goals are
limited to an upper bound of probability. The actual upper bound may be configurable.
The attacker must not be able to increase this probability. For the sake of complete-
ness, we must say that we aim at securing authentication tracking and do not consider
an attacker who owns the login credentials. For example, a phishing attacker gaining
knowledge of username and password can still use a protected web application in the
victim’s name. We presented an effective approach to defend against phishing attacks
in Section 5.2.

The User-level Authentication Scheme

Session Imagination uses images as per-session user-level authentication tokens. That
means that every user is assigned an image upon login. This image is displayed once
immediately after login (see Figure 5.6).

It is then used together with a conventional session ID in a cookie to authenticate
security-critical requests. For example, in an online shop, a set of critical actions is
defined, e.g. sending an order or changing the shipping address. Upon requesting such
an action, the user has to choose the right image among a given set before the action
is executed (see Figure 5.7). In our example implementation, we used circles, triangles,
hexagons, arrows, squares, and ellipses as images. One could also use more usual images
like animals, shoes, or hats. We call this intermediate step the ‘challenge’. A brief
overview of the Session Imagination steps is given in Figure 5.8.

For every new challenge, the images’ shape is slightly varied. That does not affect
the user’s ability to distinguish the right image from the others but makes simple image
recognition, e.g. by automatic hashing, harder. As an example, consider the images in
Figure 5.9 which represent the same six “classes” as those given in Figure 5.7. Differ-
ences between two images of the same class can occur in terms of orientation (where
appropriate), line color, and fill color. If pictures of animals or items serve as session
secret, similar classes can be used. Users are expected to be able to distinguish cats
from dogs etc.

The next point of image recognizability is the Uniform Resource Identifier (URI). The
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Figure 5.7: Before a critical operation is executed, the respective request has to be au-
thenticated. Therefore, the user has to identify the correct session image.

Figure 5.8: An overview of authentication steps related to Session Imagination. We used
descriptive file names for the pictures for the sake of clarity.

provided images could be identified by their file names, e.g. circle1.png. Given that,
an attacker can conclude the image shape from the name which can be stolen by an
XSS attack in conjunction with the session cookie. So, we implemented random names
for all provided images. The names are regenerated with every response. They serve as
one-time passwords that the user does not have to remember because she can identify
the correct password by the corresponding image which is valid for the whole session.

In the run of an XSS attack, the attacker could record the user’s click and use a
canvas element [185] to prepare an exact copy of the session image. The attacker can
choose size 0 x 0 to avoid that the attack is detected by the victim. Next, the canvas
is serialized and transmitted to the attacker’s domain, e.g. by a hidden form or as a
GET parameter. As a countermeasure, the images are integrated as iframes [186] from
a different subdomain than the actual web page. The same-origin policy (SOP) [150]
prevents that the attacker’s payload injected in the web page can read the image data.

Finally, the order of images must change with every challenge to avoid recognisability
by position, e.g. “always the left most image”. In particular, clickjacking attacks are
much easier if the sequence of images is predictable. The examples given in Figure 5.7
and Figure 5.9 illustrate how the images are re-arranged. The classes that are used in
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Figure 5.9: The actual shapes of the session images vary. This does not lower identifia-
bility by users but prohibits image recognition by hashing.

both examples are the same which is necessary to prevent intersection attacks. Other-
wise, the attacker could prompt several challenges and compute the intersection. The
remaining set must contain the correct class because the user must always be able to
choose the correct image. This way, the attacker could reduce the number of candidates
with every new challenge.

Session Imagination implements a user-level authentication scheme where the browser
is not able to authenticate high-security requests transparently. The conventional sepa-
ration of identification and authentication is restored. The SID in the cookie serves as
a temporal identification while the correct image is the authentication. As we pointed
out in Section 5.3.2, a user-level authentication scheme prevents all attacks under con-
sideration.

5.3.4 Evaluation

We evaluate Session Imagination in terms of performance, its protection properties with
respect to the attacks in scope, and its usability. Also, we describe the conceptual
differences to related approaches and options to increase the security gain.

Performance

The performance evaluation of Session Imagination can be restricted to the measure-
ment of the additional steps required for the authentication of security-critical actions.
The restriction to security-critical actions limits the overhead. In our prototype imple-
mentation, we considered an online shop as a use case. Putting items to the cart was
possible without additional efforts while checking out and changing account information
was classified as security-critical. So, for an average shopping trip, only one additional
step is necessary.

Protection Goals

Next, we come back to the protection goals named in Section 5.3.3. We will show that
Session Imagination is able to overcome all of the respective vulnerabilities and, thus,
meet the goals. This is achieved by the introduction of identification and authentication
for requests to overcome the conceptual deficiency of SID-based authentication.

85



5 Augmenting Authentication Credentials Against Account Hijacking

Session Hijacking and Session Fixation Session hijacking and session fixation attacks
both aim to steal the established session context. Session Imagination does not prevent
stealing or setting the session ID. So, we consider the case that the attacker already owns
the correct SID. Then, he can act on behalf of his victim unless he faces a challenge where
his only chance is guessing the right image. A session hijacking attack that makes use
of XSS does not increase the attacker’s probability. The payload can not access the
images because they are served as iframes from a different domain. The right image is
not stored on the victim’s machine such that the attacker can not steal or set the right
image in the same way as the respective cookie.

CSRF A CSRF attacker can make the victim send a request for a security-critical
operation. Though the attacker can generally not read back the application’s response,
he might know the application and can thus predict the form of the next request. This
would be the answer to the challenge. At this point, the attacker not only has to guess
the right image among the given ones but he has to guess the right image name which is
a dynamic and random string of variable length. This is due to the fact that this string
is used as a response parameter to decide whether the user clicked the right image and
the attacker can not read the web page to learn the provided names. In this scenario,
the attacker’s chances are lower than guessing the right image among the provided ones.

Clickjacking A clickjacking attack prohibits the victim’s context awareness which is
crucial for passing the challenges.

If the attack starts before user authentication, the attacker would have to include
the target web application’s user login while pretending to log in on the attacker’s site.
Moreover, the attacker would have to make the victim provide her credentials of the
target web application. We consider this to be infeasible.

If the victim is already logged in at the target web application, the attack must fail
because the attacker would have to make the victim deliberately click on the session
image of another web application. This task can be rendered impossible if the session
images contain their web application’s context, like the company’s logo. If the attacker
overlays the images with his own images to hide the context, the attack fails because
the attacker can not link the user’s session image with the respective attacker image.
So, the user ends up clicking an arbitrary image which is equal to guessing the image.

To sum up, in all scenarios, the attacker can not increase his chance higher than the
probability to guess the correct image.

Relation to Other Approaches

Relation to Picture-based Authentication Approaches based on password pictures
differ in major aspects from our approach. First, we implement a secret on a session
basis. The user thus does not have to remember another persistent password in the form
of picture categories. Case studies on the long-term memorability of graphical passwords
do not apply to our approach. Moreover, an attacker gaining knowledge of the user’s
session image can not use this after the user logs out and in again in our approach.
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Second, the user is not free to choose the picture. This fact avoids that the attacker
can take advantage of familiarity with the victim to guess the correct image (e.g. the
respective user loves cats).

Relation to CAPTCHAs A CAPTCHA [2] denotes a “Completely Automated Public
Turing test to tell Computers and Humans Apart”. It is meant to provide a task that
can be easily solved by a human but is hard to solve for a computer. However, a
CAPTCHA contains all information that is needed to solve the task while the task
consists in extracting this information. This would allow an attacker to hijack a session
after stealing the session ID.

Relation to Other User-level Authentication Schemes The most wide-spread ap-
proach to make sure that the user is willing to perform the particular action is to require
username and password entry again. This, however, is less secure compared to Session
Imagination. First, the credentials entry form can be easily spoofed by an attacker (by
XSS or phishing) which makes the victim provide her confidential login data to the at-
tacker. Second, the username and the password can be easily stored in the browser. This
makes the browser again the storage point of all information needed to hijack sessions.

The other common approach is to enter passcodes that have been received via text
message. This approach has similar security properties as Session Imagination, e.g.
guessing is still theoretically possible and an attacker owning the victim’s platform will
still succeed. However, this procedure induces additional cost and requires an additional
device with GSM connectivity. Mobile and smartphones are hence excluded from ac-
cessing the respective web application because they are required as an end point of the
independent second channel. Session Imagination does not require GSM availability and
can be used with a single device.

Usability

We conducted a survey in order to assess the usability of Session Imagination. Therefore,
we set up an online shop equipped with Session Imagination. 40 users had to provide
the correct session image to check out and enter or change the shipping address. We
found that 95% of them have never forgotten the correct session image. Next, we asked
the test people whether they prefer another password entry (17, 5%), passcodes via SMS
(22, 5%), or Session Imagination (47, 5%). The remaining 12, 5% do not like any of
these. Nevertheless, 92, 5% would accept additional effort if this protects them from
fraud. 47, 5% consider 2-5 challenges acceptable in the course of an online shopping
trip where 45% tolerate only 1 challenge. Overall, we can say that a vast majority of all
testers accept Session Imagination challenges and prefer this procedure to the alternative
approaches.
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Improvements to Decrease the Attacker’s Chances

In our prototype implementation, we presented six images to the user, i.e. an attacker
has a chance of 16.67% to guess the right image. More images can reduce the attacker’s
chances and increase security. As an alternative, a big picture could be presented where
the user has to click a certain area to authenticate. The security level then depends on
the number of areas. Further, aligned style sheets allow the provider to include many
pictures while only some of them are visible to the user. This allows to increase security
without lowering usability.

5.3.5 Summary

In this section, we thoroughly examined fundamental deficiencies in today’s web session
management and identified the common root causes of four widespread vulnerabilities,
namely session hijacking with XSS, session fixation, CSRF, and clickjacking. The root
causes lie in the use of browser-level authentication schemes and the missing user context
on the server side.

Based on these insights, we proposed a user-level authentication scheme, named Ses-
sion Imagination. It makes use of images as session-based secrets that are shared between
the user and the web application. We showed its effectiveness in the sense that it mit-
igates the above mentioned vulnerabilities. The attacker’s chances can be expressed as
the probability to guess the correct session image. At the same time, this probability
can be set by design to an arbitrary low value by providing a considerable number of
images. The limit depends on the actual design of the user interface. We showed its
usability in a survey which confirms advantages in terms of user friendliness, universal
applicability, cost, and security over the two state-of-the-art approaches. Session Imag-
ination is applicable with reasonable efforts to new and existing web applications. It is
technology independent and does not create new requirements on the client side.

In sum, we provide a solution that does not tamper with the symptoms of some
vulnerability but resolves the underlying problem of web session-based deficiencies. In
the course of this, we achieved the mitigation of at least four vulnerabilites that are
exploited in practice.

5.4 Related Work

We distinguish the related work between anti-phishing approaches that prevent the leak-
age of the user’s password and approaches to facilitate secure sessions that prevent
session hijacking and cross-site attacks.

5.4.1 Secure Login

There is a long history of approaches to overcome phishing attacks. We classify the
existing body of work into three categories: approaches that augment the visible user
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interface with trust indicators, approaches leveraging sophisticated authentication pro-
tocols to prevent that the real password is sent to the attacker, single sign-on protocols,
and approaches aiming to distinguish between reliable and phishing sites.

Augmenting the User Interface

A number of approaches tries to protect the user from phishing attempts using individual
authenticity features. The overall goal is to ensure that the user enters her password
only if a pre-shared symbol indicates trustworthiness. Basic approaches just embed
personalized images in the login page [149, 182].

Other approaches require the installation of client-side extensions to tune the browser’s
user interface. They display custom names, logos, and the certification authority (CA) of
the visited website [76], open personalized windows including user-defined pictures [45],
combine images with custom names of websites [199], or use colored frames to indicate
the website’s trust level [195, 198].

This class of approaches burdens the user with challenging tasks, including

• remembering a visual authenticity feature [149, 182, 76, 199],

• tolerating adverse impacts on usability and browsing experience [195],

• passing complex setup processes, for instance, choosing site labels, master pass-
words, appropriate protection service providers, and finally start the protection
feature by hand [199],

• manually maintaining a list of supporting sites and compare two displayed pictures
to authenticate the server before login [45], and

• install a dedicated browser [198].

Finally, these approaches are not portable and require support by the server and the
client, thus being subject to a chicken-and-egg problem.

Sophisticated Authentication Protocols

The second class of phishing mitigation approaches applies changes to the common user-
name and password based authentication. The main goal is to not submit the password
in plaintext to an unauthenticated remote server but mutually authenticate client and
server [68, 159, 180], utilize a zero-knowledge protocol to avoid transmitting confiden-
tial information [97], check for user-specific knowledge that changes over time [129], use
trusted second devices to establish an authenticated session [139], generate site-specific
passwords from a seed [146], or use bookmarks as a secure entry point [1].

The implementation of non-standard authentication protocols by design requires effort
on both communication parties for support. The user either needs to store and maintain
a particular bookmark for every protected website [1], remember to activate protection
before entering her credentials [146], install a plugin [180] or a browser toolbar and
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regularly verify that it is not spoofed [159], use a dedicated browser [97] or a second
device that must be trustworthy but also able to establish a direct connection with the
browser [139], or remember every past action with respect to this account [129], while
some approaches are not implemented or practically evaluated [68].

Single Sign-on

A set of so-called single sign-on protocols aims at releasing the user from maintaining one
unique password for each web account respectively, among them OpenID [132], Mozilla
Persona [120] (aka BrowserID), SAML [106], and Shibboleth [83]. They allow a user
to login once with a single authority in order to access several accounts at different
providers.

The distributed authorization protocol OAuth [73] is used in some cases to log into
third party web applications, too. A previous login with the provider, usually a social
network, is required.

These protocols decrease the credential management overhead caused by the trend of
an increasing number of web accounts. Nevertheless, the user must log in once in order
to apply such a protocol. In this respect, PhishSafe complements those approaches to
secure the one remaining login.

Detecting Phishing Sites

This class of approaches tries to identify phishing sites in order to warn the user and
prevent information leakage. There are three main vectors for site classification: First,
approaches use web crawlers to check websites for phishing features [193, 197, 59]. These
approaches utilize machine learning algorithms to update their classification criteria.
They generate blacklists of suspicious domains. Browsers can download those blacklists
and warn the user whenever she accesses a listed site. The delay between the setup
of a phishing site and the time it is listed in the browsers grants phishers a temporal
advance.

Approaches of the second vector attempt to classify visited websites in real time [94,
142, 33, 145, 112]. These approaches do not suffer the time delay the blacklisting ap-
proaches have. However, they create an overhead for examination for every page access.

Finally, some approaches feed suspicious websites with bogus credentials and observe
the reaction on those spoofed login requests [31, 200, 157]. The point is that phishing
sites supposedly accept all combinations of username and password or always answer
with an error message.

All described vectors for the classification of phishing sites are part of an arms race
with phishers. The approaches rely on features that can be easily changed by phishers to
circumvent classification. In a next step, the classification criteria can be adjusted and
so on. Moreover, classification is always prone to mistakes, i.e., genuine websites may
be classified as phishing attempts while phishing sites are treated as genuine. Neverthe-
less, phishing detection approaches can serve as a first line of defense and complement
PhishSafe to prevent the leakage of username and password.
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5.4.2 Secure Sessions

Session hijacking prevention either prohibits script access to session cookies [124, 85] or
the execution of unauthorized script code [122].

Session fixation protection strives to renew the SID after authentication [99, 154, 86].
Server-side CSRF protection validates the transmitted referer [10] or request-specific

nonces [90]. Client-side approaches strip off authentication information from suspicious
requests [88, 151].

Clickjacking [143, 144] attacks can be partially thwarted by HTTP headers [118, 121].
However, all these approaches target only one of the attacks respectively, e.g. they

protect against CSRF attacks but can not thwart clickjacking or combinations of CSRF
and XSS [90]. Moreover, some of the standard defenses turned out to not provide the
aimed protection level [203, 152].

There is no web-based approach with the same scope of protection as Session Imagi-
nation.

5.5 Conclusion

While the connection establishment phase of connection-oriented protocols offers to ne-
gotiate shared session secrets using well understood authentication protocols, today’s
web applications still send out shared secrets. In this section, we presented a combina-
tion of user knowledge and browser authentication to overcome two inherent issues of
the web:

• First, users can be tricked to enter confidential information on a forged web page
because they can hardly distinguish two websites with the same user interface
and similar domain names. Browsers, on the other side, can easily enforce the
same-origin policy and hide secrets stored in the context of one domain from other
domains.

• Second, while browsers can distinguish domains, they can not know the user’s
intent. This makes them susceptible to confused deputy attacks [74] meaning that
an attacker can make them perform actions on behalf of the user but contrary to
her interest.

Using our approaches, valid authentication is only possible with the user’s and the
browser’s approval making user impersonation attacks harder.

We will show in the next section how a shared secret negotiation phase can happen
using connectionless HTTP. After setting a password, no shared secret must be trans-
mitted for mutual authentication.
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The last section pointed out that no single credentials – neither passwords nor session
tokens – must be transmitted as long as they are reusable by an adversary. However, an
attacker may still learn the user’s password and try reusing it on web applications that
do not support our approach. Also, an attacker learning the session ID can try to guess
the correct image and has at least a tiny chance to succeed.

The connection-establishment phase of connection-oriented protocols allows to run
sophisticated authentication protocols before proceeding to the second phase. These
protocols support the mutual authentication of both communication participants and
the agreement on temporary shared secrets without sending out credentials.

In this section, we will present our approach to implement a respective authentication
protocol and thus simulate the connection-establishment phase of connection-oriented
protocols. After the account setup, no confidential data is exchanged neither for the
user login nor for session tracking.

Modern mobile devices come with first class web browsers that rival their desktop
counterparts in power and popularity. However, recent publications point out that
mobile browsers are particularly susceptible to attacks on web authentication, such as
phishing or clickjacking. We analyze those attacks and find that existing countermea-
sures from desktop computers can not be easily transferred to the mobile world. The
attacks’ root cause is a missing trusted UI for security critical requests. Based on this
result, we provide our approach, the MobileAuthenticator, that establishes a trusted
path to the web application and reliably prohibits the described attacks. With this ap-
proach, the user only needs one tool to protect any number of mobile web application
accounts. Based on the implementation as an app for iOS and Android respectively, we
evaluate the approach and show that the underlying interaction scheme easily integrates
into legacy web applications.

6.1 Motivation

Since the introduction of the original iPhone in 2008, mobile devices are first class citizens
in the world of computing. Due to the impressive advances in energy consumption,
mobile processor power, and display quality, the majority of the common computing
tasks can nowadays be done as easily on a mobile device as on a “real” computer on the
desktop.

However, while the computational power of the mobile devices is almost comparable
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to their desktop counterparts, other key differences, in areas such as screen estate, UI
paradigms, or operating system induced limitations, remain for the foreseeable future.
These differences have a significant impact on the device’s security characteristics: Re-
duced screen estate results in significant less space for visual security indicators that
could help combating phishing attacks [4, 58]. Changed user interaction paradigms al-
low for different clickjacking variants [108]. Virtual keyboards on mobile devices lead to
choosing insecure passwords, due to necessary, uncomfortable context switches between
letters, numbers, and special characters [58]. And finally, the current restrictions in mo-
bile operating systems and the lack of an extension model for iOS’ mobile browser render
most of the currently proposed attack mitigation tools impossible on mobile devices.

As we will explore in Section 6.2, these limitations especially amplify security threats
against mobile web authentication. For this reason, we propose a novel authorization
delegation scheme using a native application, the MobileAuthenticator, that functions
as a companion application to the mobile web browser. In this section, we make the
following contributions:

• We analyze how common web authentication attacks, such as phishing or click-
jacking, manifest themselves in mobile scenarios and identify a common root cause
– the lack of a trusted UI of the browser.

• We propose a novel authorization delegation scheme for mobile web applications
that leverages a native companion application. It serves as a trust anchor for
the mobile web application’s client side through providing the missing trusted UI
capabilities.

• We report on a practical implementation of our system as an app for the two
currently dominating mobile operating systems, iOS and Android. In this context,
we show how the concept can be realized through leveraging the platform-specific
facilities for inter-app cooperation.

6.2 Security Threats to Mobile Web Applications

In this section, we discuss phishing, XSS, CSRF, session fixation, and clickjacking attacks
in respect to how they apply to mobile web applications. Furthermore, we explore if
previously proposed solutions can be adopted in a mobile environment.

6.2.1 Threat Classes

In general, mobile web applications are susceptible to the same class of threats as their
desktop counterparts. However, it has been shown that several attack types, such as
phishing or clickjacking, are harder to solve in the mobile scenario, due to their direct
interplay with the available screen estate and web browser chrome [58, 153, 4]. In this
section, we list applicable security issues and briefly discuss special aspects of the mobile
case.
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Phishing

It has been shown [130, 58, 4] that mobile web applications expose a higher level of
susceptibility to such attacks, mainly due to the significantly reduced availability of
optical indicators, such as browser chrome or SSL indicators.

Clickjacking

For the mobile case, Rydstedt et al. [153] coin the term tapjacking for this attack vector
as users do not click but tap on their mobile devices. One of their techniques is zooming
elements of the target web page. They found that the hosting (i.e., attacking) page can
set a zoom factor overriding the iframe’s own scaling. This way, an attacker can include
a transparent “Like” or “Tweet” button fitting the entire width of the screen.

CSRF

The mobile case is similar to the desktop scenario with a slight exception: Client-side
protection approaches like CsFire [151] do not work because mobile browsers have no or
not sufficient extension support.

XSS

There is actually no difference between XSS attacks on mobile browsers and desktop
browsers.

Session Fixation

The mobile case is very similar to the desktop case. However, sessions in some mobile
web applications expire later [153], or do not expire at all but only delete the client-
side session cookie upon logout [28]. This extends the attacker’s control over the user’s
account.

6.2.2 On the Infeasibility of Existing Mitigation Approaches in
Mobile Web Scenarios

In this section, we discuss several potential solutions to the outlined security problems
and show their insufficiency in the realm of mobile web applications.

Client-side SSL Authentication

The current generation of – at least Android – smart phones is missing proper tools sup-
port for certificate management. Furthermore, the usage of this authentication method
only solves a subset of the identified security implications, i.e., all issues that exist in
connection with the potential stealing of passwords (i.e., mainly phishing). However,
security problems that concern attacker-initiated state changes (e.g. caused by XSS,
CSRF, or clickjacking) remain unprotected.
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Browser Extensions or Plug-ins

A potential approach to overcome shortcomings of web browser-based applications is to
include the security mechanism directly into the browser using a browser extension or
plugins, such as Silverlight or Flash. However, the web browsers in current smart phones
do not support plugins14, and the only browser offering support for extensions is Firefox
Mobile for Android with only a limited number of APIs15.

Dedicated Modified Browsers

It is possible to deploy dedicated web browsers to mobile devices, which incorporate
enhanced security mechanisms. However, they can not be used within applications that
offer an integrated web-view, nor can they be set to serve as the default browser on iOS
platforms, thus, excluding roughly half of all users. Finally, developing and maintaining
a special browser variant is of high effort and cost, which is also a major roadblock for
this potential approach.

Local Network-layer Helpers

Finally, there are several approaches that rely on local network-layer utilities, such as
HTTP proxies. Such tools cannot be deployed to the current generation of mobile
devices.

6.2.3 Root Cause Analysis

Generally speaking, a web application is a reactive system. The web server receives
incoming HTTP requests and reacts according to the implemented business logic of the
application. A subset of the incoming requests lead to changes in the server-side state
while others only retrieve data stored on the server. The first case may represent security
sensitive actions on the application data if received as part of an authenticated session.
The handling of such requests requires special attention. Within this section, we will
repeatedly utilize the term authorized action.

Definition 3. Authorized Action An authorized action is a security sensitive event
on the server that is triggered by an incoming authenticated request, meaning that the
user authorized the web application to perform the requested action on her behalf.

Which events have to be considered security sensitive highly depends on the internal
logic of the application. Hence, the applicable set of authorized actions has to be deter-
mined on a per-application basis. Frequently encountered examples include the login to
the application, changing the user’s data record, and ordering and purchasing of services
or goods. For all such actions, the underlying assumption is that the owner of the cre-
dential (password or authenticated SID) is the originator of the triggering event and that

14The Android platform offered limited support for Flash on a subset of existing devices. Adobe
discontinued support by Aug 15, 2012. See http://adobe.ly/1a1EpPH.

15See http://mzl.la/1fwQNoX and http://bit.ly/1k7NQOE for details.
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the details of the action have not been tampered with by unauthorized third parties. All
discussed security issues have in common, that the application’s back-end component
(i.e., the web server) cannot distinguish authorized actions, which have been conducted
intentionally by the user, from authorized actions, that have either been conducted di-
rectly by the attacker (e.g., through credentials that have been stolen via phishing or
XSS) or have been initiated by the attacker via tricking the user (through clickjacking
or CSRF). What web applications are missing is a trusted path between the user and
the back-end system. The back-end system needs reliable evidence, that the initiated
security sensitive actions have indeed been deliberately conducted by the user:

Definition 4. Trusted Path An application provides a trusted path, if it can be verified
on the server side that all incoming authorized actions are caused with the user’s explicit
consent and that their integrity is ensured.

6.3 Mobile Authenticator

Figure 6.1: Overview of our Mo-
bileAuthenticator ap-
proach for a trusted UI
and signed requests.

The general idea of our approach is to establish
a trusted path between the user and the web
application in order to protect the user against
the attacks given in Section 6.2.1. We imple-
ment the approach as an app but we envisage
it as an integral feature of mobile operating sys-
tems. The mobile application enables the user
to communicate securely with the web applica-
tion’s server side using authorized actions that
(1) have been explicitly initiated by the user, (2)
thus are fully intended by the user, instead of
being created without her consent (i.e., through
clickjacking or XSS), and (3) have not been tam-
pered with. This way, the security functionality
is strongly separated from the web application’s
browser-based front-end, and hence, the web-
specific weaknesses and limitations do not apply
anymore. The actual application logic can still
be implemented as a cross-platform web applica-
tion which can be accessed on any web-enabled
mobile device. The only part that needs to be
implemented as a native application for each mo-
bile platform is the MobileAuthenticator. The
MobileAuthenticator itself provides generic security functionality. As a consequence, it
can serve as a trusted interface for more than one mobile web application.
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6.3.1 Providing a Trusted Path Through an App

We propose to introduce the MobileAuthenticator as a dedicated system app that serves
as a trust anchor for the user in the communication with the web application. It es-
tablishes a trusted path between the UI and the application’s back-end. However, as
extending modern mobile operating systems is out of our scope, we describe the approach
as an app that can be installed by the user.

Concept

The MobileAuthenticator is a dedicated application that encapsulates the user’s creden-
tials and authorization state and that maintains a trust relationship with the web server.
Authorized actions are routed through the MobileAuthenticator on behalf of the web
application. The mobile web browser never receives, processes, or sends credentials that
can be utilized for conducting authorized actions. This way, the MobileAuthenticator
serves both as a trusted UI for the mobile web interface as well as a second authenti-
cation factor, effectively elevating all supporting web applications to using an implicit
two-factor authentication scheme.

Interaction Pattern

For most purposes, the interaction between the web browser and the mobile web applica-
tion remains unchanged. Only in cases, when the user initiates an authorized action, the
control flow is routed via the MobileAuthenticator, implementing a challenge/response
scheme to capture the user’s intend.

1. Using a dedicated interaction bridge between the web browser and the MobileAu-
thenticator, the authorized action, which is supposed to be triggered, as well as all
needed parameters including the server’s challenge are passed over to the app.

2. The user explicitly acknowledges the authorized action in the trusted UI of the Mo-
bileAuthenticator. This causes the MobileAuthenticator to compute the response
to the server’s challenge.

3. The MobileAuthenticator passes the control back to the browser including a ded-
icated credential which allows the triggered authorized action to be conducted.

4. This credential is passed from the web front-end to the server.

Please note: This process is only executed when authorized actions are conducted. For
the vast majority of a user’s web interaction, the web application remains unchanged
(see Section 6.5.3). This also entails, that general authentication tracking is done the
regular way, i.e., using HTTP cookies, and that application handling does not change
significantly from a user’s perspective.
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6.3.2 Components

The overall architecture consists of three main components: The actual MobileAuthen-
ticator that runs on the mobile device and provides the trusted UI, a server-side module
that evaluates incoming requests and checks the integrity of the authentication token,
and a JavaScript library that is delivered to the browser and takes care of delegation
between all participants.

MobileAuthenticator

The client-side component, the MobileAuthenticator, maintains a repository of pre-
configured authorized actions including a human understandable description of each
action’s impact. Upon receiving a security critical request from the browser, it looks up
the respective action’s details in its repository, displays the description to the user, and
asks for consent. The MobileAuthenticator signs the request using a shared secret with
the web application, and passes it back to the browser, if the user agreed.

Server-side Module

On the web application’s server side a counterpart is needed that maintains a trust rela-
tionship with the user’s MobileAuthenticator instance and implements the challenge/re-
sponse process to accept incoming authorized actions.

AuthenticationBroker

The AuthenticationBroker is a small JavaScript library that provides the necessary in-
terface to the application’s web front-end to delegate authorized actions to the Mo-
bileAuthenticator for obtaining user consent. Upon receiving the MobileAuthenticator’s
response, the acknowledged request is routed to the web application for processing. It
is evident that the AuthenticationBroker itself is not security critical. This is an impor-
tant fact because otherwise malicious injected script code might be able to manipulate
or disable the AuthenticationBroker and, thus, run an attack. The worst impact of an
attack against the AuthenticationBroker, however, is a denial-of-service that prevents
authenticated requests from being routed towards the MobileAuthenticator.

6.3.3 Initial Enrollment on the Mobile Device

Each instance of the MobileAuthenticator that the user wants to use has to be enrolled
individually. In this process, the web application’s server-side and the application in-
stance initiate a device specific trust context, represented through a shared secret. This
enrollment process works as follows.

After the account setup, the web application provides the user with a unique URL
pointing back to the application, which carries parameters that identify the enrollment
process. The user copies this URL to the MobileAuthenticator. The MobileAuthentica-
tor displays the application’s domain to ask the user for confirmation. The user confirms
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by entering her password which is then used by the MobileAuthenticator for authenti-
cation. After the initial authentication step terminated successfully, the MobileAuthen-
ticator and the web application compute a shared secret using the Diffie-Hellman key
exchange. This secret is not only specific for the user but also for this particular Mo-
bileAuthenticator instance. The MobileAuthenticator then discards the user password
as it is no longer needed. All further app-to-server interaction uses the shared secret
for authentication. As long as this secret is valid, the user will not be required to enter
her password again. Finally, the web application supplies a repository of configured
authorized actions, including parameters and actionID, and a human understandable
description of each request’s impact. The MobileAuthenticator is able to maintain sev-
eral of such (shared key, repository) records and can thus protect all user accounts for
compatible web applications on the device.

6.3.4 User Login

After the MobileAuthenticator and the web application are synchronized, the overall
login procedure adheres to the following protocol: The user first accesses the web ap-
plication’s login page in her mobile browser. The server can not utilize user-specific
credentials at this step as the user is not authenticated yet. Instead, it issues a chal-
lenge consisting of its AppID, the login’s ActionID and a timestamp. The challenge is
signed using the web application’s private key. The respective public key is stored in
the MobileAuthenticator during enrollment.

When tapping the login button, the control is delegated by the AuthenticationBroker
to the MobileAuthenticator. In this step, the server challenge is pushed to the Mo-
bileAuthenticator that takes over and asks the user whether she wants to login to this
web application. A phishing attack would fail at this point, as the password is never
entered to the mobile device for login.

If the signature is valid, the MobileAuthenticator compiles the response from the
server’s challenge, the username, and the device ID and signs it using HMAC with the
shared secret, and control is transferred back to the browser. Finally, the Authentica-
tionBroker sends the signed login request to the web application.

Upon receiving this request, the web server extracts the username and device ID and
verifies that the request was indeed signed using the shared secret and, thus, finishes
the user’s login process. Username and device ID are required to pick the correct shared
secret for signing and verification.

6.3.5 Conducting Authorized Actions

The process for conducting further authorized actions is similar to the login process. For
the login, the MobileAuthenticator witnesses the user’s consent and proves the request’s
integrity and its own authentication by signing the request using the shared secret.
The same features are necessary for authorized actions: First, in the browser, the user
taps a link or a button requesting an authorized action. The respective request is then
relayed to the MobileAuthenticator that obtains the user’s consent, signs, and returns
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the request to the browser. The AuthenticationBroker forwards the request to the web
application that checks the signature and performs the requested authorized action.

6.3.6 Unknown Authorized Actions

During enrollment, the server pushes a list of allowed authorized actions to the Mo-
bileAuthenticator. If the web application has been updated since the enrollment of the
MobileAuthenticator instance, it can happen that the MobileAuthenticator receives a
request for an unknown authorized action. In this case, the MobileAuthenticator up-
dates its local repository by a new list from the web application. This update process
can also be triggered in a regular manner or based on push messages. After receiving the
updated list from the web server, the MobileAuthenticator verifies that the requested
authorized action is indeed listed. If this is not the case, the app rejects the action
request.

6.3.7 Challenge and Response Formats

In this section, we briefly specify the challenge/response formats.

Server Challenge

For a given authorized action challenge, the server compiles a tuple consisting of:

CTuple = {AppID,UserID,ActionID, timestamp}.

The server HMAC-signs this tuple with the user-specific shared secret to allow the
MobileAuthenticator to verify the challenge’s authenticity. The values in this tuple have
the following meanings:

• AppID & UserID : Identifiers of the web application and the user account, to allow
the MobileAuthenticator to choose the correct authentication context.

• ActionID : Unambiguous identifier of the requested authorized action.

• timestamp: Each challenge can be assigned a dedicated lifespan to mitigate po-
tential replay attacks.

The resulting challenge consists of the tuple and the corresponding HMAC signature:

SChallenge = HMAC(CTuple, shared secret).

On the server-side, the challenge is bound to the user’s session and, thus, to her session
identifier.
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Client Response

After interacting with the user to capture her explicit consent, the MobileAuthenticator
creates the response by assembling the response tuple:

RTuple = {SChallenge, (Parameter1), ..., (Parameteri)}.

Again, this tuple is HMAC-signed using the shared secret:

CResponse = HMAC(RTuple, shared secret).

The existence and number of the parameters depends on the authorized action. For
instance, the login procedure requires the username and device ID, while the transfer of
money in a banking application will most likely include the amount and the receiving
account number in the signed response value.

6.4 Implementation

To practically evaluate the feasibility of our concept, we implemented the solution for
the two leading mobile operating systems, iOS and Android. Furthermore, we outfitted
the popular CMS Wordpress with server-side support for our system.

6.4.1 Client-side Implementation

Figure 6.2: Triggering an authorized
action using the Mo-
bileAuthenticator app.

In this section, we point out the platform-
dependent differences between the implementa-
tions for iOS and Android respectively. Our im-
plementation shows that the approach can be
put into practice without support by platform
providers though we favor an integration into the
mobile platforms.

Implementation for iOS

On iOS, communication between apps, such as
the web browser and the MobileAuthenticator is
severely limited. The only – for our purpose – us-
able channel is leveraging custom URL schemes:
An iOS app can register a URL scheme, such as
mobileauth:, which is registered with the oper-
ating system on app installation. When a differ-
ent app accesses a URL that starts with this cus-
tom URL scheme, iOS conducts a context switch
and activates the application that has registered
the scheme while pushing the calling app into
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background. The activated app receives the full URL in form of a string for further
processing.

We use this mechanism to delegate the authorized action from the web browser
to the MobileAuthenticator: The AuthenticationBroker (see Section 6.3.2) compiles a
mobileauth-URL which carries the server’s challenge and the required parameters. Fur-
thermore, the location of the active web document is attached to the URL as the callback
URL. Then, the script makes the browser request the compiled mobileauth URL via as-
signing it to document.location. This, in turn, causes the operating system to activate
the MobileAuthenticator. After user acknowledgment, the MobileAuthenticator calls the
callback (http-)URL and appends the CResponse as a hash identifier. This prevents a
page reload in the browser and submits the response to the AuthenticationBroker.

Implementation for Android

Figure 6.3: Obtaining user consent
to perform an autho-
rized action with the
MobileAuthenticator.

The MobileAuthenticator provides a background
service that is started right after the boot pro-
cess completed. This service hosts a WebSocket
server and is therefore accessible from the de-
vice’s browser using the AuthenticationBroker
and the HTML5 WebSocket API. The Authen-
ticationBroker establishes a WebSocket connec-
tion to the MobileAuthenticator’s background
service when it hooks an attempt for an autho-
rized action. It obtains the challenge from the ac-
tion’s HTML meta data and pushes the request
together with the challenge to the background
service. The background service then launches
an activity bringing the MobileAuthenticator to
foreground (see Figure 6.2). After the user took a
decision (either consent or denial, see Figure 6.3),
the app computes the HMAC on the entire re-
quest, including the challenge, appends it and
sends the whole string back to the Authentica-
tionBroker using the established WebSocket con-
nection.

6.4.2 Server-side Implementation

We implemented the server-side components to support the MobileAuthenticator and
integrated them into the popular PHP weblog Wordpress as a plug-in. This allows to
support legacy web applications without changing the existing codebase. There are three
logical components of the plug-in: First, a client administration component manages the
enrollment process for new devices, including a device confirmation in the user account,
and the revocation of authorized device connections, e.g. because the device was lost or
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stolen (see Section 6.5). Second, an action verification component issues new challenges
and checks incoming requests for valid response tokens. These two components are
generic and need no adaption to the particular web application. The last component,
however, is application specific. It glues the above components into the legacy code,
incorporates the client administration function into the user profile pages, and activates
a central request filter that checks if an incoming request targets an authorized action.
If so, it forwards the request to the action verification component. The Authentication-
Broker is a JavaScript file that is included with every web page. It is roughly 10kb,
is stored in the browser’s LocalStorage together with a list of authorized actions, and
hooks requests for those actions.

6.5 Evaluation

We evaluate the MobileAuthenticator with respect to its security and protection prop-
erties as well as to its usability.

6.5.1 Security Evaluation

Phishing

An attack can only succeed if the user enters credentials on a phishing site ignoring the
fact that this is not necessary on her device. Expecting a redirect to the MobileAuthen-
ticator, users become suspicious if their used comfort is missing.

Clickjacking

An attacker can still lure his victim into clicking on links but the target web application
then redirects the victim to the MobileAuthenticator where the attack becomes obvious
and the victim does not acknowledge the targeted authorized action.

CSRF

An attack is only detectable for a potential victim if the attacker can forward his payload
to the MobileAuthenticator (see Section 6.4). Even if the attacker manages to do so,
the victim suddenly faces the MobileAuthenticator asking for permission to perform an
authorized action on a different website.

XSS

Injected JavaScript code can perform all actions on the user’s behalf. It can raise
new authorized actions and redirect the respective requests to the MobileAuthenticator.
However, due to the missing shared secret, it can not sign the requests. So, as long
as users do not acknowledge unintended actions, no authorized action can be triggered.
The only damage an XSS attacker can cause is a denial-of-service by discarding all signed
requests and, thus, preventing intended authorized actions.
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Session Fixation

The attacker can still get access to the user’s account. The login step elevates the session
cookie to an authorized state granting access to the owner. However, the attacker can
not perform authorized actions because he has no access to the shared secret.

No More Password Entry

Felt and Wagner discussed the fact that mobile keyboards actively discourage the usage
of complicated, and thus secure, passwords, as the entry of numbers or special characters
require cumbersome context switches [58]. Our scheme obliterates the necessity of enter-
ing passwords completely. Hence, the password cannot be stolen, as it is neither stored
nor entered again. Moreover, this process allows the usage of arbitrarily complicated
application (master) passwords, as the usability drawbacks upon password entry do not
apply for our system.

Device-specific Credentials

As a matter of fact, mobile devices get lost or stolen from time to time. A thief or finder
can use the MobileAuthenticator to log into accounts and conduct authorized actions,
once he vanquished the display lock. However, there is built-in protection against this
threat: During enrollment (see Section 6.3.3), the MobileAuthenticator and the web
application compute a shared secret. The MobileAuthenticator does not store the user
password. So, the user only has to revoke the shared secret in her account to prevent any
access using the lost device. A thief, in contrast, can not exclude the user as changing
the password is not possible without knowing the old password.

6.5.2 Attacking the MobileAuthenticator

We briefly discuss attacks that might apply directly to our implemented mechanism.
The proposed solution as a system app is not susceptible to these attacks.

App Spoofing

An attacker may offer a malicious app via the respective platform’s market, i.e., Apple’s
App Store or Google Play. When installed on a user’s device, it could try to obtain user
credentials pretending to be the legitimate MobileAuthenticator. The only occasion is
the registration of new accounts in the MobileAuthenticator. This, however, is initialized
by the user, usually by shortcuts on her home screen. So, as long as this malicious app
is not able to replace the legitimate app shortcut with its own, the attacker can not gain
confidential knowledge. We want to emphasize that spoofing the legitimate app when
the AuthenticationBroker forwards the server’s challenge for signing does not reveal any
credentials to the malicious app, because the user only confirms or denies but does not
enter anything.
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The implementation as a system app can register an exclusive protocol scheme such
that the registration URL is instantly forwarded to the MobileAuthenticator.

Task Interception

There is a task interception attack on Android devices. A malicious app having the
necessary permissions (given by the user at installation time) can poll running tasks and
display a phishing screen as soon as the target app is started. The user, expecting this
screen, would probably enter the credentials. Finally, the malicious app can exit and
call the genuine app. This kind of attack is not promising when run on the MobileAu-
thenticator because the background service is permanently running, thus, revealing no
indication for the moment to spoof the MobileAuthenticator screen.

6.5.3 Usability

Felt et al. phrase crucial criteria for user-friendly interaction with respect to questions
and user-based decisions [57]. We generalize and apply their criteria though they study
mobile apps and their questions for permissions. In fact, the MobileAuthenticator is
similar because it needs a user’s decision on the permission to perform an authorized
action. We show that the MobileAuthenticator complies with their criteria.

Their first point is to conserve user attention and only ask if the respective question
has severe consequences. The MobileAuthenticator only comes into play when such
confirmation is necessary. This way, we limit user interaction to the absolute minimum
while, in the end, the web application determines the actual authorized actions (see
Section 6.2.3).

Second, a usable security mechanism avoids interrupting the user’s primary task with
explicit security decisions. We achieve this by integrating the user question into the
usual workflow. For instance, the MobileAuthenticator can ask the user for consent while
presenting an overview of the purchase, including payment information, goods, shipping,
etc. The user expects such a final inquiry. So, the integration of the MobileAuthenticator
does not interrupt the user’s primary task.

Finally, Felt et al. recommend using a trusted UI for non-revertible, severe, and user
initiated actions. The authorized actions are generally not revertible, which means that
the MobileAuthenticator can not let them happen and revert if needed. They are severe,
meaning that carelessness is not an option and drawing the user’s attention is justified.
Finally, authorized actions are generally user initiated. This is an important point why
one can expect the user to confirm her intent. Other, i.e., implicit, actions can not
be confirmed that easily because the user does not know what to decide and why that
dialogue popped up.

For instance, a usual shopping workflow and an online banking transaction only require
one acknowledgment using the MobileAuthenticator respectively. This acknowledgment
can be smoothly embedded in the workflow as a last step being expected by the user
anyway. Social networks need to assess their users’ risk: publicly posted messages
on the one hand are deletable (i.e., revertible), so there is no need for a trusted UI.
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On the other hand, however, annoying or insulting posts might damage the victim’s
reputation which is non-revertible and severe. This decision could also be left to each
customer weighing her personal or business interests respectively. As a rule of thumb,
an acknowledgment step using the MobileAuthenticator is at least necessary when a
re-authentication (providing the password again) or second-factor authentication (e.g.,
via Google Authenticator, one-time passcodes, flicker codes) has been in place.

6.6 Related Work

There is no other approach covering the whole range of authentication-based attacks.
Existing approaches either protect the login process against phishing [33, 45, 7, 76, 125,
147] or target session-based attacks [151, 81, 90, 165, 86, 148, 124]. Finally, the related
body of work includes authentication and authorization protocols in the web [120, 106,
83, 73, 132].

GuarDroid [178] aims at establishing a trusted path between the user and the web ap-
plication using a modified execution platform (firmware). It protects against malicious
apps installed on the mobile device and prevents the leakage of the user’s password.
GuarDroid does not require changes of the installed apps nor of the remote web ap-
plication, however, it can not protect against session-based attacks which still allow a
malicious app to impersonate the user towards the web application. GuarDroid causes
considerable network latency and requires the user to set, remember, and check a secure
passphrase that authenticates the secure login form and delays the system boot process.
Finally, the user is responsible to verify the target URL for login requests to prevent
phishing attacks, thus, demanding a high level of awareness and increasing the risk that
users just click through the dialogue.

Other existing approaches for trusted paths concerning user login [28] and user actions
in authenticated sessions [22] focus on surfing web applications using desktop browsers.

6.7 Summary

In this section, we presented a web authorization delegation scheme for mobile devices
that utilizes a native companion app, the MobileAuthenticator, to realize a trusted UI.
For a set of predefined authorized actions, our system reliably mitigates state chang-
ing effects of currently known user impersonation attacks, such as phishing, CSRF, or
clickjacking.

Furthermore, the MobileAuthenticator effectively becomes the user’s authentication
credential, obliterating the necessity to frequently enter passwords on the mobile de-
vice, thus, correcting the usability drawbacks that are observed when entering secure
passwords on mobile keyboards.

The MobileAuthenticator itself is independent from specific characteristics of the pro-
tected web application and, thus, can serve as the central trust anchor for many different,
independent applications. In consequence, a future integration of such a service on a
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platform level into the mobile operating system is a compelling option.

6.8 Conclusion

Our approach shows that more sophisticated authentication protocols are possible over
the connectionless HTTP without changing the user experience significantly. We showed
in another approach that a challenge-response-based authentication protocol and signed
requests for secure session tracking are possible using an off-the-shelf desktop browser [87].
Concerning our definition of connection-oriented protocols in Section 3.1, our approaches
make one step towards running a connection-oriented protocol on top of HTTP. However,
we left out the definition of valid messages to protect the web application’s control-flow
integrity. This field was out of our scope and is covered in Section 8.

The next section will shed light on the security policies applied to web sessions with
differing security requirements. Not all web communication needs the highest possible
protection. Instead, there are scenarios that require a higher level of security and sce-
narios which benefit from unrestricted communication between unauthenticated partici-
pants. We will explain how web communication covering uncritical and security-critical
web sessions at the same time should be.
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The last section showed how the authentication phase of connection-oriented protocols
can be transferred to the connectionless HTTP. A connection-oriented version of HTTP
could leverage sophisticated security features (see Section 3.3). However, there is still a
part of the web that benefits from the original idea of a connectionless and lightweight
communication protocol. Browsers as the general access clients must support both parts
of the web: the security-critical web applications as well as the easily accessible web pages
providing non-critical content.

Today, a web browser is a user’s gateway to a multitude of web applications, each
with its own balance between confidentiality and integrity versus cross-application con-
tent sharing. Modern web browsers apply the same permissive security policy to all
content regardless of its demand for security – a behavior that enables attacks such as
CSRF or sidejacking. Existing countermeasures to defend against such attacks enforce
overly strict policies which expose incompatibilities with real-world web applications.
As a consequence, users get annoyed by malfunctions. In this section, we show how the
browser can enforce enhanced security policies, if necessary, and permit modern com-
munication features, if possible, based on the user’s authentication status and a web
application’s public interfaces. Our approach reliably protects the user against CSRF,
session hijacking, sidejacking, and session fixation attacks while it does not decrease
functionality. We present the implementation as a browser extension, named LogSec,
that does not rely on server-side support and is transparent for the user.

7.1 Motivation

The past twenty-five years let the world wide web grow from a functionally limited
set of isolated web pages on loosely coupled servers to a fully fledged interconnected
application platform. The increasing functionality enabled new applications that are
in no way inferior to their desktop counterparts – be it games, office applications, web
mail, or multimedia applications. However, the upcoming new applications and their
respective business models have been accompanied by an increasing number of attacks
on web applications, web users, and their connection – web sessions. Looking back, the
new web features are boon and bane of the world wide web.

Security researchers began to understand vulnerabilities as a misuse of functionality.
Usual protection approaches include more or less targeted restrictions of implemented
features to mitigate exploitation schemes. However, business models for the web differ
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in their need for functionality and security. For instance, online banking websites aim to
be isolated with no third-party communication and high requirements for confidentiality
and integrity. On the opposite side, multimedia websites are usually mashups combining
content from different origins like social network and bookmarking plugins, ads, and
message boards.

In this section, we present LogSec, an approach that selectively applies security pro-
tection approaches depending on the actual need. We aim to permit functionality where
appropriate and limit functionality where needed to serve the needs of all kinds of web
applications.

A Tale of Two Webs

In the general perception, everything accessed through a web browser constitutes “the
web”. The Google search page? Is in “the web”. The new music video? In “the web”.
Most people’s email? The access is through “the web”. And online banking? As well
on “the web”.

However, when approaching the matter from a more abstract point of view, one can
deduce two highly disparate usage scenarios for web technologies: For one, there is
the traditional web of information, as it was envisioned in 1989 by Tim Berners-Lee,
including decentralized servers, coupled by hyperlinks and iframes, providing mostly
public information. On the other hand, service providers take advantage of the web
browser to implement sophisticated front-ends for fully fledged web applications that
rival the traditional host-based application architecture.

While both use cases share the exact same set of underlying technologies, namely
HTTP, HTML, CSS, and JavaScript, their security and functionality requirements are
highly different: The mostly stateless, information-centric web profits from the web’s
original focus on blurring the boundaries between physical servers. It leverages the
easy, HTML-driven combination of multi-origin resources in a single web document.
However, for the application-focused scenarios, robust security would demand much
stricter isolation between mutual distrusting web origins than it is currently the case in
unmodified browsers.

The result of this mismatch is an ever growing set of attacks on authenticated ses-
sions of web applications (see Section 7.2.2). To mitigate the attacks, a set of client-
and server-side countermeasures has been proposed and deployed, touching nearly all
dimensions of web session handling (see Section 7.2.3). However, each of these protective
measures comes with its own set of restrictions, which in turn potentially interfere with
the functionality requirement of the informational web.

Contributions and Organization

We make the following contributions:

• We analyze existing approaches for secure session tracking and identify five central
measures in respect to handling of the session credential.
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• Based on this observation, we phrase a permissive policy for the web of information
and a restrictive policy for security sensitive web applications.

• We describe a model for secure web session tracking, that applies both policies as
required and overcomes CSRF, session hijacking, sidejacking, and session fixation
attacks.

• We report on an implementation of the approach’s client-side part as a Firefox
extension, which applies a heuristic to waive the need for server-side support.

In the next section, we describe attacks on web session tracking and respective counter-
measures. Section 7.3 describes our approach that satisfies the security and functionality
requirements of the two webs. In Section 7.4, we describe our browser extension and
evaluate it in Section 7.5. Section 7.6 presents related approaches before Section 7.7
summarizes and Section 7.8 concludes.

7.2 The Current State of (Secure) Web Session
Tracking

We describe the current state of countermeasures against CSRF, session hijacking via
XSS, sidejacking, and session fixation. Then, we condense security attributes from
the countermeasures and compile two kinds of security policies: a permissive and a
restrictive policy. In the next sections, we will apply those policies based on the user’s
authentication status.

7.2.1 Applicable Attacker Models

There are two main attacker models concerning attacks on web session tracking: The
web attacker exploits application-level vulnerabilities, runs his own websites and injects
JavaScript code into foreign web pages to steal session cookies. He embeds cross-domain
resources in his applications to run CSRF attacks.

The network attacker targets the communication link between the browser and the web
application. He extracts information from unencrypted messages and impersonates the
user if possible. We assume that the network attacker is not able to break cryptography
or forge SSL certificates.

7.2.2 Web Session Tracking: Attacks & Countermeasures

In this section, we briefly describe the current countermeasures to the attacks of interest.
For a description of the actual attacks and their root causes, we refer to Section 2.5.
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CSRF

Web applications append random tokens to URLs requiring protection. The request
is only processed if the correct token is present [90]. Client-side protection strips au-
thentication information, i.e., cookies and the HTTP authorization header, from sus-
picious cross-domain requests [151, 42, 104]. A cross-domain request is suspicious if it
is not initiated by the user [151], the involved domains have not revealed cooperation
previously [42], or the target domain accepts authenticated requests from all other do-
mains [104]. Other approaches completely isolate different applications in the browser
thus allow no cross-domain communication at all [32].

All the client-side approaches suffer from false positives: Cookies and HTTP headers
are needed in the information-centric web to foster cross-application communication.
Stripping them prevents the functionality of social networks’ recommendation features.
Existing sessions are reset meaning that entered data is lost. The latter happens when
a foreign website issues a cross-domain request to the site maintaining the session. The
target site receives a request without cookies and issues a new set of cookies, thus
overwrites withheld cookies in the browser. For instance, the user filled her shopping
cart and clicks a link on a price comparison website that leads her back to the online
shop with her cart. The shop overwrites the user’s session cookies aiming to initialize a
new session because the last request had no cookies appended.

Session Hijacking (via XSS)

The common protection prevents JavaScript access to session cookies. This can be done
using the HttpOnly flag [124] that is set by the server (or by a client-side heuristic [169])
and enforced by the browser. A client-side proxy can be used to maintain session cookies
beyond the reach of injected JavaScript code [127].

The impact of falsely protected cookies is a lack of application functionality that relies
on JavaScript access to cookies. Also, the flag is rarely used: A case study showed that
only 16 % of Alexa Top 100,000 websites utilize HttpOnly cookies [162].

Sidejacking & SSL Stripping

The common countermeasure is a policy that makes the browser only access a website
via HTTPS. Such a policy can be either pushed by the server [79] or defined on the
client side using a customized set of URL rewriting rules [176].

Beside the tremendous efforts necessary to manually maintain lists of URL rewriting
rules, there is a risk that outdated rules prohibit user access to websites.

Session Fixation

The most reliable protection against session fixation attacks is to issue a new session
identifier during login (see Section 4). Client-side approaches can only provide partial
protection, leaving cookies fixed by HTTP headers out of scope and stripping legitimate
cookies set by JavaScript [43].
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Overprotective approaches prevent user logins despite the absence of attacks.

7.2.3 Permissive and Restrictive Session Tracking Policies

As it can be seen in Section 7.2.2, all currently deployed and proposed countermeasures
against web session attacks rely on posing restrictions in respect to the handling of either
the session credential or the authenticated web data. In the remainder of this section, we
systematically deduce the various individual restrictions taken by the countermeasures
and derive a resulting “secure” session tracking policy.

Dimensions of Protective Session Policies

The primary focus of the regarded countermeasures is the handling of the session cre-
dential. More precisely, we can isolate five separate measures in respect to the session
credential:

1. Read access: Read access via JavaScript to security sensitive cookies is prevented
to hinder XSS-based session hijacking [127, 32, 124].

2. Write access: Write access to session cookies is either prevented or monitored to
prevent session fixation attacks [32, 43]

3. Cookie scope: By default, a cookie’s scope includes all valid superdomains, ef-
fectively giving a subdomain full control over the cookie’s value. Attacks such
as session hijacking and session fixation can be mitigated through tightening the
cookie’s scope to only the precise issuing domain [17].

4. Cookie transport (HTTP): Anti-CSRF [151, 42, 32, 88] measures prevent the
browser from blindly attaching session cookies to outgoing cross-domain HTTP
requests and requests to targets with overly permissive cross-domain policies [104].

5. Cookie transport (Network): Finally, measures have been introduced that prevent
the insecure transport over unencrypted channels to avoid network-level leakage of
the session credential [79, 176].

The exact specifics of how and where (browser/server) these protective measures are
applied to the session credential depend on the individual techniques. For details, please
refer to Section 7.2.2 and Section 7.6 as well as the corresponding publications.

Deriving Session Security Policies

Using the analysis from above, we can deduce two separate security policies. These
policies are based on the discussed countermeasures and the standard native treatment
of session identifiers by unmodified web browsers:
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Permissive Policy The permissive policy represents the standard browser behavior: Ses-
sion cookies are attached to an outgoing HTTP request only based on the request’s
target domain, regardless of the origin or security context of the request. The ses-
sion cookie can be read and written by JavaScript if the same-origin policy is
satisfied. Furthermore, all standard rules for cookies apply: The cookie’s value
can be read and written by subdomains, and the utilized protocol (i.e., http or
https) is ignored when communicating the value over the network.

Restrictive Policy The restrictive policy is the superset of all observed protective mea-
sures: The session cookie is only attached to same-origin HTTP requests or cross-
origin requests that satisfy security conditions, i.e., a non-wildcard whitelisting of
the cross-domain target. The cookie’s values can neither be written nor read by
JavaScript. Finally, the cookie only applies to the exact domain that it has been
set for and can only be communicated via the https protocol.

While the permissive policy is good for flexibility and interoperability, especially in
cross-domain scenarios, it enables the various, previously discussed security problems.
The restrictive policy on the other hand cannot be applied blindly to all HTTP cookies,
as this would render various legitimate use cases impossible. Hence, a proper balance
between these two extremes is needed.

7.3 Secure Web Session Tracking: How It Should Be

Section 7.2 described the tradeoff of secure and permissive web session tracking and
introduced the notion of a comprehensive security policy. In this section, we go into the
details of our approach that switches secure and permissive policies based on the current
attack surface.

7.3.1 Goal: State-dependent Session Tracking Behavior

The overall goal of our approach is to make the browser apply the most appropriate
web session tracking security policy with respect to the current threat potential. The
threat potential is best estimated based on the user’s authentication relation with the
web application. More precisely, as long as no personal information has been exchanged
between the user and the web application, a permissive policy can be applied. For
instance, reading news on a website does not require elaborate protection. The potential
damage that can be caused by an attacker is negligible in such a situation. Existing
protection approaches are not able to allow insecure, i.e., plain HTTP, communication
or extensive cross-domain communication for a better user experience in these situations.

However, as soon as a personalized context is established between the user and the
web application, the communication with this application must be protected. In this
phase, there is a session record on the server side that links all requests carrying the
session token to the user’s identity. Attackers must not be able to perform actions on
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behalf of the user. The communication channel, the session credential, and cross-domain
requests must undergo sanity checks to prevent user impersonation.

The distinction between harmless and security critical contexts allows the browser to
enforce restrictions – if necessary – and enable rich communication features – if possible.
This way, unwanted and annoying side effects of security implementations are mitigated.

7.3.2 Approach: Server-side Push of the Authentication Status

After explaining the overall goal of our approach, we now give details how we achieve this
goal. While powerful security means have been proposed in the past (see Section 7.2.2
for pointers), the main issue is the determination of the authentication status. Taking
into account that session records and user profiles are assigned on the server side, it
must be the web application that decides on the actual authentication context. So, the
web application pushes the current status to the browser. The browser can then apply
the appropriate security policy. This approach has a couple of advantages.

First, the implementation can happen asynchronously. A web server can start pushing
authentication information at any time in a fashion that is ignored by legacy browsers,
e.g. using HTTP headers or cookies. Vice versa, a supporting browser can still access
legacy web applications that do not push the user’s authentication context. In both
cases, the browser enforces the permissive default policy without a negative impact on
the web application’s functionality. As soon as the browser and the web application
support authentication context switches, users benefit from the increased protection
level. In this sense, the introduction of the authentication context is similar to that of
the content security policy (CSP) [165].

Second, the approach does not rely on the installation of third party features like
browser extensions or toolbars. This provides protection “out of the box” without aware-
ness and actions by the user.

Finally, the standardized browser support makes the impact on web communication
predictable for the application provider. The provider can start pushing the user’s
authentication context when the application’s compatibility is proved. This prevents the
frequent negative side effects of security means annoying users and reducing acceptance.

The auth Cookie Attribute

The client-side state is usually determined by HTTP cookies. We use a special cookie
to set the session status on the client side. For this, we introduce a new cookie flag,
named auth, indicating an authenticated session. The server issues a cookie having the
auth flag set as soon as the session enters an authenticated or personalized state. This
happens after the login process has terminated successfully or when personal data is
entered without a login, for instance to purchase a flight ticket. The cookie must not be
readable nor writable by JavaScript to prevent user impersonation by session hijacking
or session fixation attacks. Also, the cookie is only sent back to the server over a secure
channel. In this way, the auth flag implies the HttpOnly and Secure flags. As cookies
are sent with every request, the web application can check the client-side authentication
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status and correct it if necessary. The cookie-based approach comes along with benefits
compared to HTTP header-based implementations:

• A cookie directly affects the browser’s state instead of instructing the browser to
change its state. Also, this state persists by default after the document is unloaded.

• Just like a session on the server side, a cookie has a lifetime that can be set accord-
ing to the session lifetime on the server side. This way, the browser switches the
authentication status when the server-side session expires without further commu-
nication.

• The authentication status depends on the domain, subdomain, and/or the path of
the web application. So, the scope of a cookie fits the needs of the authentication
scope definition.

Please note that we do not advocate to use cookies as the only authentication creden-
tial after login but to use one particular cookie in addition to existing authentication.

7.3.3 Restriction of Authenticated Cross-domain Communication to
Public Interfaces

Given the authentication status of a session, the browser can determine which requests
might have an impact on the user’s account. However, modern web applications imple-
ment intended cross-domain interaction patterns, e.g. social media and bookmarking
plugins. These require user authentication for cross-domain requests to assign actions
to a user account. Unfortunately, such benign requests are methodically indistinguish-
able from malicious requests from the browser’s perspective. This is the main reason
why client-side protection approaches against CSRF attacks intercept too many requests
leading to an unintended loss of functionality (see Section 7.2.2). Again, only web ap-
plications can reliably declare their intended interfaces for authenticated cross-domain
requests. A list of intended interfaces must be pushed to the browser which then only
permits intended cross-domain communication.

An authenticated request to a web application’s public interface should not have an
immediate impact on the user record. Instead, public interfaces allow read-only access,
e.g. a list of friends who like the current web page. Such a request does not change the
user’s account data and thus can not cause harm if it is issued by a third-party domain.
Public interfaces may also serve as landing pages to start a workflow, for instance the
opportunity to like the current page in the next step. This next step is then a same-
domain request.

The declaration of public interfaces is by its nature equivalent to the definition of a
policy. Usually, servers deliver policies using HTTP headers. Recent examples are the
cross-origin resource sharing (CORS) [181], content security policy (CSP) [165], public
key pinning (PKP) [55], and HTTP strict transport security (HSTS) [79] policies. These
approaches define document-wise (CORS, CSP) or site-wise policies (PKP, HSTS) that
are eventually enforced by the browser. Consequently, the server pushes the list of public
interfaces as an HTTP header.
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7.3.4 Security Benefits

After explaining how our approach works, we show that it protects against the common
attacks on web session tracking.

Cross-site Request Forgery

The core of CSRF attacks is the execution of authenticated actions on third-party web
applications on behalf of the victim. Given the authentication status with the respective
third-party application, the browser can ensure that authenticated cross-domain requests
only target public interfaces.

Session Hijacking via XSS

For session hijacking, the attacker needs to share session credentials with his victim.
Since the web application delivers the special auth cookie when the user is authenti-
cated, it can require this cookie as one authentication element. This cookie is by design
not accessible to injected JavaScript code and thus not susceptible to session hijacking
attacks.

Sidejacking & SSL Stripping

Sidejacking attacks base on the insecure submission of session credentials. The auth

cookie, however, as one part of the authentication is only transmitted over secure chan-
nels. Also, a man-in-the-middle attacker that redirects the user to insecure channels
can not succeed because the browser detects the plain HTTP communication and avoids
sending the auth cookie.

Session Fixation

In our approach, the attacker needs to inject a Set-Cookie header into an HTTPS
response from the target application’s domain in order to set an auth cookie in the
victim’s browser. He needs to be able to run code on the server side or control the
victim’s browser, e.g. via a malicious extension, to achieve this. In both cases, the
attacker has more powerful options than running a session fixation attack.

7.4 Implementation of Client-side Protection

As discussed in Section 7.3, in an idealized world, the web browser would apply different
policies for session handling depending on the user’s authentication status. However,
up to this point, browsers do not implement our adaptive session tracking policy. For
this reason, we conducted a practical implementation in the form of a Firefox extension
named LogSec. Implementing the measure in this fashion has two advantages:
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category name keywords

login login, log in, signin, sign in, sign up, anmelden, nicht
angemeldet, abgemeldet

logout logout, sign out, log out, log out, lgout, abmelden, sitzung
beenden, eingeloggt

pwd password, pwd, passwd, pass, passwort
keeploggedin keep me signed in, keep me logged in, stay logged in, au-

tomatisch anmelden
accsettings account settings, account einstellungen, kontoeinstellungen
...

Table 7.1: An excerpt of LogSec’s keyword categories and assigned expressions.

• For one, through using our extension, end users can benefit from the security ad-
vantages of our approach today, without having to wait for the uncertain adoption
of the technique by the browser vendors.

• Furthermore, this practical implementation gives us the opportunity to gain expe-
rience using it under realistic circumstances. Consequently, this implementation
was used as the basis of our practical evaluation in Section 7.5.

The main drawback of our implementation is the missing support from the server side.
Currently, web servers do not provide browsers with dedicated indicators that the au-
thentication status of the user has changed. Nonetheless, we have to make up for this
absent component to provide the projected protection characteristics for end users today.
Therefore, we designed a heuristic which automatically deduces authentication status
changes through passively monitoring the browser’s web traffic.

7.4.1 Detecting Session Status

LogSec implements a binary session status detection: Either the user is authenticated
on a domain or not. This section outlines the details of the implemented heuristic.

Keywords & Categories

The basic indicators of our session status detection heuristic are used keywords. We
found that not only visible page content but also embedded links reveal information
regarding the session status. Strong indicators confirm the last user action in plain text
(e.g. “You successfully logged in”) or offer the respective status changing action as a
link (e.g. “Logout”). When the user clicks a respective link, the HTTP request contains
keywords, thus indicates an ongoing status change. We subsume synonymous words,
respective abbreviations, and short phrases in categories (see Table 7.1).
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Scoring

In order to evaluate the keywords found in requests and page content, we assign numeric
values to each category of keywords. Keywords that suggest an authenticated session
have a positive value, keywords that feature an unauthenticated session have a negative
value (see Table 7.2). LogSec maintains a score value for each domain the user visits.
Initially, the score is 0 for every domain, and the status is not authenticated. For each
request and each page load, the extension adds up the values of all finds. Different
weights are assigned to keywords found in requests and page content (see Table 7.2).
We name the result the request offset and content offset respectively. Each offset can be
positive or negative depending on the occurrence of login and logout indicators. There
are two cases:

• Either the user is not authenticated, yet. Then, a positive offset is added to the
domain score. The status switches to authenticated if the score exceeds a given
threshold. A negative offset, however, is ignored as it confirms the current status
and contains no new information.

• Or the user is already authenticated. Then, accounting happens the other way
around. Only a negative offset has an impact while positive ones provide no new
information. The status switches to not authenticated if the score falls below a
given threshold.

After each status switch, the score is reset to 0. Finally, there are evident indicators
for a change of the status. An HTTP POST request having a username and a password

parameter makes LogSec switch to authenticated immediately. The recognized names
of the parameters are again sets of keywords, e.g. user, userid, and passwd, pwd,
pass respectively. If the login fails, there is a short phase where the user is protected
though not authenticated. After the next page load, the status switches back to not
authenticated if the page contains a login form.

Another evident indicator is the Authorization header in an HTTP request [63].
LogSec sets the status to authenticated for the target domain of the request. In case
the provided credentials are not valid (or no credentials are provided at all), the web
application answers with HTTP status code 401 Unauthorized, the last unambiguous
indicator. The status then switches to not authenticated for the requested domain.

7.4.2 Protection Features

The achievable security level of the LogSec extension is lower than the security level of the
approach described in Section 7.3. The extension can not rely on server-side support and
thus assumptions concerning the authentication cookie and a web application’s public
interfaces. Nevertheless, it provides reliable protection against CSRF and sidejacking,
and at least partial protection against session hijacking via XSS and session fixation.

In order to identify session cookies among all cookies set by the web application, we
leverage a heuristic [127] that relies on the cookie’s name, the length and the entropy of
the value. The underlying assumption is that session cookies must not be guessable.
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category found in . . . influences impact

logout hyperlink content offset +5
logout source code content offset +4
login and pwd source code content offset –4
accsettings source code content offset +1
pwd, keeploggedin, forgot source code content offset –1
login form action content offset –2
login request URL request offset +2
logout request URL status false
credentials POST request status true
Auth. header request status true
HTTP 401 response status false

Table 7.2: LogSec’s keyword categories and their related weighting.

CSRF

Basically, only the same-origin policy is enforced and cookies are appended, if the session
status with the target domain is not authenticated. If, however, the user is authenticated
on the target domain, the request passes through a series of checks (see Figure 7.1). The
basic rationale behind these checks is to allow authenticated cross-domain requests if
the domains provide an indication for collaboration.

Figure 7.1: The CSRF protection policy of the LogSec browser extension: combining
observable cross-domain interaction with authentication status information.

Requests issued by Flash and Silverlight are not subject to the same-origin policy nor
to the CORS policy headers. Instead, each target domain defines its own cross-domain
policy, i.e., a set of domains that is allowed to perform authenticated actions on the
target domain. A domain providing a wildcard policy allows every other domain to
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perform actions on behalf of the user. So, cross-domain requests that are generated by
those plugins must either target a domain that does not have a wildcard cross-domain
policy or must not be authenticated [104]. LogSec strips session cookies from cross-
domain requests to wildcard domains. If, however, the target domain only allows a
limited set of other domains to send authenticated cross-domain requests, we assume a
trust relationship and let the request pass unmodified.

Cross-domain requests that are generated by HTML content need to pass the following
check. An authenticated cross-domain request from B to A is allowed if:

• Either A previously forwarded the user to B, i.e. B returns control now [42]. A
forwards to B if it redirects the user to a URL on B or if the user sends an HTTP
POST request from A to B, for instance to process the payment after a purchase.

• or A authorizes cross-domain requests by explicitly listing B in an
Access- Control-Allow-Origin HTTP response header. We assume that the ex-
plicit authorization using CORS is sufficient to allow authenticated cross-domain
requests. A wildcard (∗) CORS policy is not sufficient.

In general, LogSec allows authenticated cross-domain communication if it finds hints
for collaboration between both domains. This approach copes without a list of public
interfaces (see Section 7.3.3).

Sidejacking

The aim of sidejacking protection is to prevent that session cookies are sent over an
insecure channel if the user is authenticated on the target domain. LogSec allows unre-
stricted communication before the login and prevents the leakage of session cookies after
the login via unencrypted channels.

Session Hijacking via XSS

It is not an option to blindly mark all cookies as HttpOnly because the web application
might rely on JavaScript access to some of them. Instead, LogSec flags identified session
cookies after login if no other cookie is marked HttpOnly. The rationale is that either
developers are not aware of this attribute then no cookie is flagged, or developers are
aware and flag at least one cookie then the rest must be accessible by JavaScript to
prevent a loss of functionality [169].

Session Fixation

A web application is vulnerable if it does not issue fresh session identifiers during user
login. Most web applications, however, deliver more than one cookie that matches our
session cookie criteria. Since LogSec does not know the meaning of all these cookies,
there is a tradeoff between security and usability: On the one hand, LogSec could issue
a session fixation warning if at least one session cookie remains unchanged after login.
In this case, it covers all possible session fixation vulnerabilities but also suffers false
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positives, i.e., cases where the actual session cookie is changed but another cookie is
not. On the other hand, LogSec could only issue a warning if all session cookies remain
unchanged after login. In this case, every warning is a true session fixation vulnerability
but some vulnerable sites may be missed. We implement a conservative approach and
only trigger the session fixation warning if no session cookie is renewed or freshly issued
upon login. In this case, the vulnerability is proved. We implemented an optional session
fixation protection feature that finds the logout link, performs the logout to invalidate
the fixed session, requests the login page without cookies appended to obtain a new set
of session cookies, and sends the login credentials again.

7.5 Evaluation

We evaluate our implemented approach, LogSec, in terms of its login detection accuracy,
functionality and provided security.

7.5.1 Login Detection Quality

The login detection accuracy is important for the protective impact of LogSec and the
improved functionality of websites where the user is not authenticated.

Evaluated Websites

We used the Alexa Top 300 worldwide list (effective 31-08-2013) and removed apparently
illegal and suspect sites, for instance file sharing and streaming of material protected by
copyright, to determine the overall login status detection rate. Afterwards, we registered
an account for every single site where possible. We failed to resolve Russian captchas
and to provide a Chinese cell phone number that was required to receive an activation
token. Finally, a number of sites do not offer the possibility to create a user account.
We used the remaining set of 100 different domains as a basis to evaluate the login
detection rate. We performed a manual login on every website and checked whether
LogSec determined the status correctly.

Detection Accuracy

Our evaluation shows that LogSec is able to correctly recognize authenticated sessions on
96 % of all sites. The detection of authenticated sessions is crucial for security because
web sessions falsely identified as not authenticated are not protected by LogSec.

The session is properly identified as not authenticated on 82 % of the websites. These
sites benefit from the relaxed security protection and thus from better usability.

The used domain set includes many websites with different languages for which we
do not have any keywords. Currently, the list contains English and German keywords.
Nevertheless, LogSec’s login detection rate on these sites is similar to the rate on English
and German sites. We identified the reason in the fact that action parameters in links
or credentials in POST requests are still English expressions. As a matter of fact,
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adding support for more languages is straightforward: All words that are added to a
category are recognized as an indicator. So, one only needs to add respective keywords
and abbreviations in any language for “login”, “logout”, “password”, etc. to the list of
keywords (see Table 7.1).

We found that the detection of the login status works correctly on many websites
implementing a login via single sign-on (SSO). We tested Yahoo, Facebook, Google, and
Twitter as identity providers and flickr, 4shared, and Pinterest as relying parties to log
in. Also, Google implements a similar protocol to log in to Youtube. LogSec successfully
detected the login and logout on all these sites. Finally, LogSec successfully detected
SSO logins for Microsoft’s live apps.

Lessons Learned from Status Detection

In order to improve the authentication detection rate, we analyzed the reasons for false
positives, that are identified as authenticated but the session is actually not, and false
negatives, that are identified not authenticated though the session actually is.

• Initially, LogSec counted all request and content offsets independently from the
current status. So, indicators supporting the current status were counted again
and again with every user request. As a result, a high number of request-response-
pairs without a status change added to extremely high or low scores that did not
switch when a status change finally happened. We fixed this issue by only counting
indicators for the opposite status, as described in Section 7.4.1.

• We found that some images, for instance representing the logout action, have
characteristic names, e.g. logout.jpg. Those images are only loaded when the
user is logged in to visualize the logout action. However, LogSec identified the
request for a resource with a characteristic name as a strong indicator for a logout
step. We went over to ignoring requests for images and gained a significantly better
detection rate.

• Another issue occurred when the browser terminated. By default, Firefox keeps
cookies across browsing sessions as long as they do not expire. LogSec, however,
reset the session status for all domains when Firefox was closed. As a consequence,
the session was maintained in the browser but the extension lost track. We coupled
the lifetime of the session status on the cookie management to overcome this
problem.

• Finally, LogSec is not able to determine the context of keywords. Every find
contributes to the offset. In one example, the article of an online newspaper
contained a huge number of keywords that alter the score and thus the session
status. This is the only issue we could not fix yet.
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7.5.2 Security

We consider the security features of LogSec (see Section 7.4.2) and analyze how an
attacker may bypass protection. We want to stress that the approach presented in
Section 7.3 provides reliable protection against all of the attacks.

CSRF

A CSRF attacker attacking web application A must find another web application B
to plant his payload. B must be either whitelisted in one of A’s cross-domain policies
(CORS, Flash, or Silverlight) or the target of a redirection from A. In the latter case,
the payload must be injected into a web page that is accessed by the user as part of the
respective cross-domain workflow. The overall attack surface is substantially restricted
if A does not have an open redirect function.

Sidejacking

A sidejacking attacker can only succeed if the target web application does not change
the session ID after login – which results in a session fixation vulnerability, see below.
Then, the attacker can reuse the session cookie that is transmitted insecurely before the
login. A sidejacking attack on the authenticated session cookie must fail because it is
only sent using a secure connection.

Session Hijacking via XSS

A session hijacking attack is only possible if a web application marks at least one cookie
as HttpOnly but not the necessary session cookie. LogSec sets the HttpOnly flag for all
session cookies if no cookie has the flag set.

Session Fixation

As mentioned in Section 7.4.2, we had to trade off security against user annoyance.
LogSec is able to provide complete protection if false alarms are tolerable, or provide
partial protection with no false alarms. During our evaluation, LogSec correctly iden-
tified a session fixation vulnerability in the Stud.IP campus management system of the
University of Passau. We reported our finding and the vulnerability is fixed by now.

Manipulation of LogSec’s Status Tracking

An attacker may embed cross-domain resources to make the browser send respective
requests and switch the status as detected by LogSec. For instance, an (invisible) image
from example.com/logout.jsp could trigger LogSec’s logout detection on example.com

even if this resource does not even exist. If successful, the user’s account on example.com

would no longer be protected. For this reason, LogSec’s logout detection ignores cross-
domain requests. A web application provider may still confuse our status tracking on
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his own website. In his domain, however, a provider has more powerful attack options
anyway.

7.5.3 Functionality of Websites

In order to evaluate a possible negative impact on functionality, we performed a manual
analysis of those websites where LogSec determined the login status correctly (see Sec-
tion 7.5.1). We say that a website behaves as expected if typical actions can be conducted
without any noticeable interference. Typical actions for a web mail service for instance
are signing in, checking the inbox, and sending an email. We found that 94 % of all sites
behave as expected with LogSec enabled.

We checked social network buttons as a special case for cross-domain communication:
The user is authenticated on the target web application but there is no hint (in terms of
cross-domain policy whitelisting or redirects) for cooperation between the currently vis-
ited website and the social network. So, the first request targeting the social network’s
domain contains no session cookies. Usually, this request loads an iframe, so that the
user’s like action happens within this iframe as a same-domain request. The social but-
tons of Twitter and Google work flawlessly. However, utilizing Facebook’s Like button
is not possible. The button is visible as are all social plugins but clicking the button
has no effect. During our first checks with LogSec, we did not have issues with the Like
button. At some time, Facebook switched to only accept Likes after the iframe is loaded
in the respective user context. The introduction of public interfaces (see Section 7.3.3)
would preserve the whole functionality.

7.6 Related Work

There is a number of approaches to overcome insecure cross-domain interaction in the
browser. None of them considers the session status as a factor for security relaxation.
Instead, they isolate content from different origins more strictly then today’s common
browsers.
FF+ [26] is a formal approach to model client-side session integrity. While the protec-

tion goals overlap ours, the focus is more on security than on preserving usability with
existing security approaches. The implementation SESSINT heavily interferes in web
communication: It strictly separates all domains in the browser unless there is explicit
user action that serves as an indicator for intended cross-domain interaction. It enforces
HTTPS for all connections after submission of a login form and marks received cookies
as HttpOnly and Secure. Users must explicitly justify the initial page load to avoid its
classification as a cross-domain request.

Gazelle [189] and its predecessor OP Browser [70] are functionally complete web
browsers that apply OS design principles. Different origins are separated like pro-
cesses, and communication between them must use explicit communication channels.
Tahoma [35] goes in a similar direction but also emphasizes an additional layer for sep-
aration of the browser and the underlying OS. Also, it strengthens the user’s knowledge
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about and the control over a web application’s code and content. In OMash [36], web
pages are treated like objects in object-oriented programming languages, i.e., each page
can have private and public interfaces to communicate with other pages. MashupOS [188]
introduces four types of content isolation, the respective application is supposed to de-
pend on the trust level between the content provider and the content integrator.

While these approaches describe a thorough and secure restart of browser technol-
ogy and cross-domain interaction, they are not compatible with most of modern web
applications. Other approaches modify existing browsers to mitigate selective issues:
SOMA [131] extends the same-origin policy for inclusions of third-party content by a
mutual confirmation step of the content provider as well as the integrator. This way,
SOMA wants to prevent malicious cross-domain requests and mitigate CSRF and XSS
attacks at the cost of one additional HTTP request per third-party domain. Doppel-
ganger [158] aims at deriving the privacy-optimized cookie policy for any web application.
It detects differences in the application’s response depending on whether the respective
request has cookies or not. The rationale is that no cookies are needed if the response
is equal. Security considerations are not part of this approach.

Calzavara et al. [30] did a thorough analysis of real-world cookies to classify them
as either authentication cookies or not. They compare the results of several heuristics,
among those our session cookie classification heuristic, with their verified results. Our
approach turns out to be over-approximating, meaning that it identifies the vast majority
of authentication cookies correctly but misclassifies some other cookies as authentication
cookies. As a result, our approach provides thorough protection but still has an impact
on usability.

7.7 Summary

In this section, we revisited the fundamentals of secure web session tracking. After
reviewing the existing body of work on this subject, we condensed two applicable security
policies: the permissive policy, representing the default behavior of the web browser, and
the restrictive policy, the superset of all measures taken by existing attack mitigation
techniques. Furthermore, we observed a mismatch in how the web is used: For one,
there is the information-centric use case, which profits from the web’s original focus on
cross-server navigation and communication flows. In the application-centric use case,
however, web technologies are utilized to create sophisticated applications. While the
former case’s functionality requirements are hurt by the restrictive policy, the latter
case’s security potentially suffers under the permissive policy. We propose an adaptive
switching of the applicable session tracking policy, depending on the authentication
status of the user, in order to create a reasonable balance between these extremes.

We presented our technique in two fashions. For one, we showed how browsers could
implement the policies natively using server-supplied meta information whenever the
user’s authentication status changes. Our approach is easy to integrate. Legacy web
applications can upgrade using a server-side module or a reverse proxy if code changes are
not an option. It allows a stepwise integration without breaking existing functionality.
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Supporting browsers and web applications benefit from a higher security level while
communication is left unchanged as long as one communication party does not support
our approach. The browser’s behavior is predictable for the web application provider
at any time. This is important to prevent annoying side effects and malfunction as it
happens with purely client-side approaches.

Furthermore, we presented LogSec, an extension for the Firefox browser, that makes
the approach’s benefits available for end users immediately. We substituted the server’s
precise authentication status indication with a heuristic method, which deduces au-
thentication status changes automatically through passively monitoring the user’s web
browsing.

Regardless of the chosen implementation approach, we are able to provide authen-
ticated users with all essential protective measures through applying adaptive session
tracking policies. These measures robustly mitigate widespread session attacks without
affecting the general functionality requirements of the public web.

7.8 Conclusion

Our approach unifies the best of two worlds: the lightweight flexibility of the connection-
less HTTP and the enforcement of security features to protect communication channels
as an approximation of established connections. This way, it has regard to the dual use
of today’s web and not only to the maximum security level.

With this section, we finalize our steps towards secure authentication and session
tracking in the web. The next section will address the missing alignment of valid mes-
sages by the connectionless HTTP. We will show how web applications can protect
against state manipulations.
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8 Request Filtering to Preserve
Control-flow Integrity

The previous sections contributed to a better user authentication and session tracking. In
this section, we explain an inherent problem of connectionless protocols in combination
with stateful applications: The set of valid messages is not adapted by the protocol
because connectionless protocols have a static set of valid messages (see Section 2.4).
Stateful applications, however, have dynamic interfaces meaning that for each step in
the execution of a workflow, only a subset of all valid messages must be processed
because the processing of other messages would lead to an unforeseen state. In sum, an
attacker can exploit the connectionless nature to manipulate an application’s state in
his interest if the application does not prevent respective attempts. We will show how
web applications can filter unforeseen requests and preserve control-flow integrity.

8.1 Introduction

Modern web applications frequently implement complex control flows, which require
the users to perform actions in a given order. Users interact with a web application
by sending HTTP requests with parameters and in response receive web pages with
hyperlinks that indicate the expected next actions. If a web application takes for granted
that the user sends only those expected requests and parameters, malicious users can
exploit this assumption by crafting harming requests. We analyze recent attacks on
web applications with respect to user-defined requests and identify their root cause in
the missing explicit control-flow definition and enforcement. Then, we evaluate the
most prevalent web application frameworks in order to assess how far real-world web
applications can use existing means to explicitly define and enforce intended control
flows. While we find that all tested frameworks allow individual retrofit solutions, only
one out of ten provides a dedicated control-flow integrity protection feature.

Based on this result, we provide our first approach, a control-flow monitor that is
applicable to legacy as well as newly developed web applications. It expects a control-
flow definition as input and provides guarantees to the web application concerning the
sequence of incoming requests and carried parameters. It protects the web application
against race condition exploits, a special case of control-flow integrity violation. More-
over, the control-flow monitor supports modern browser features like multi-tabbing and
back-button usage. We evaluate our approach and show that it induces a negligible
overhead.

Our second approach, named Ghostrail, is also a control-flow monitor. It works as a
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proxy and is meant to be applied when access to and knowledge of the web application
business logic is unavailable. It observes incoming requests and lets only those pass that
were provided as next steps in the last web page. Ghostrail protects the web applica-
tion against race condition exploits, the manipulation of HTTP parameters, unsolicited
request sequences, and forceful browsing. We evaluate the approach and show that it
neither needs a training phase nor a manual policy definition while it is suitable for a
broad range of web technologies.

8.2 Root Causes for Attacks on Control-flow Integrity

Several kinds of attacks exploit the fact that attackers can craft arbitrary requests in-
stead of clicking on provided hyperlinks. Real-world examples of control-flow integrity
violations are race conditions (see Section 2.5.6), manipulated HTTP parameters (see
Section 2.5.7), unsolicited request sequences (see Section 2.5.8), and the compromising
use of the browser’s “Back” button (see Section 2.5.10).

Web application developers assume that users first request one of possibly several
application entry points, e.g. the base directory at http://www.example.com. Upon
the first request, the web application sends a given response containing a set of hyperlinks
or a redirect instruction to the browser. As users tend to click on hyperlinks in order to
navigate through the application, developers might assume that only the given requests
will be accessed next. However, the user is technically not bound to click on one of
the provided hyperlinks but she can still send requests that are not provided within
this response. Sent requests can differ from provided hyperlinks in terms of addressed
methods and HTTP parameters. Vulnerable web applications fail to handle unintended
user behavior in terms of sequences of requests.

More formally, web application developers implement implicit control-flow graphs. In
each state, sending a request leads to a subsequent state in the graph. Executing a
step corresponds to changing the server-side state. Control-flow weaknesses occur if an
attacker is able to address at least one method, i.e., cause a state-changing action, that
is not meant to be addressed in the respective session state. This transition does not
exist in the respective control-flow graph due to the developer’s assumption that the
request does not happen at that time. Vice versa, a web application implementing a
control-flow graph with transitions for all requests in every state is not susceptible to
control-flow weaknesses.

Forceful browsing attacks and some cases of HTTP parameter manipulation can be
overcome with access control. The other attack vectors, however, include only requests
that are in the scope of the user’s rights. Access control mechanisms prevent users from
accessing sensitive API methods at all times. Control-flow integrity protection, however,
prohibits access to regular API methods in an unsolicited order or context.

The measure to achieve this can partially overlap with CSRF protection: Web appli-
cations can issue tickets in the form of nonces that must be appended to requests [90]. A
request without a ticket is not processed. This prevents that CSRF attackers can craft
requests that are finally executed on behalf of the victim. In some cases, this can also
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prevent attacks on control-flow integrity: First, nonces must be unique for every request.
Some web applications use only one ticket for a user session to save server-side resources.
While a session-wide ticket reliably prevents CSRF attacks, it can not prohibit attacks
on control-flow integrity. Second, a ticket must be bound to the whole request including
all parameters. Otherwise, an attacker could tamper with unprotected parameters and
change a request’s context. The first example concerning HTTP parameter manipulation
given in Section 2.5.7 describes such an attack. Third, the ticket must be invalidated
immediately after use to prevent race condition exploits and faults due to “Back” button
usage. Both of these scenarios use correct request-ticket combinations but more often
than expected. Finally, even if all these measures are taken properly, there is still an
open attack vector: The user can start the same workflow in different sessions up to the
point where a race condition exploit should be run. Then, he can perform the next step
in all sessions in parallel with all requests equipped with correct tickets.

Existing web applications enforce the intended control flow based on session-contained
parameters. This allows only the implicit definition of workflows. The previous actions
are assumed to set the parameters and, thus, allow the execution of next actions. The
actual workflows are not explicitly determined preventing the proper assessment of en-
abled workflows. The central and explicit definition of facilitated workflows provides
guarantees of request sequences to the relying web application. One crucial aspect of
reliable request sequences are controlled HTTP parameters as we show by the attacks
in Section 2.5.7.

To sum up, we can say that uncontrolled sequences of user requests might cause
confusions on the web application’s state if it does not take care of handling even un-
provided requests. In the next section, we dive deeper into precautions provided by web
application frameworks.

8.3 Survey: Control-flow Integrity Means in Web
Application Frameworks

Modern web applications are usually developed with the help of web application frame-
works. Such frameworks encapsulate basic functionality that can be reused for appli-
cation development at a large granularity level. Typical features include session ini-
tialization and cookie delivery as well as HTTP communication and HTML content
generation support. The application code then implements the actual business logic and
uses high-level functions provided by the framework.

Almost every web application that implements a business logic spanning several
request-response round trips has a need for control-flow integrity. So, a control-flow in-
tegrity module should be reusable. Web application frameworks provide sets of reusable
features to facilitate web application development. In this section, we examine the ten
most prevalent web application frameworks on their support for control-flow integrity.
This gives us an insight how far the majority of web applications can use and add control-
flow integrity protection without changing the application or the underlying framework.
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Looking at it the other way round, missing support requires developers to manually
implement protection means, which, as history shows, leads to more weaknesses because
the implementation is often either omitted or flawed. We also check two crucial aspects
of control-flow integrity: parameter integrity, which means that malicious users can not
tamper with the HTTP parameters’ data type, and race condition protection, which
mitigates attack vectors based on the same request sent multiple times in parallel.

8.3.1 Probed Web Application Frameworks

In this section, we describe our survey on control-flow integrity protection means of
the most prevalent web application frameworks. We tested the top 10 web application
frameworks according to the BuiltWith index [27] on 12 Jan 2013. The list contains the
most common server technologies among the 10,000 most popular websites. However, it
also includes technologies that are out-of-scope for our survey because they only denote
the platform, e.g. PHP. We are aware that PHP itself does not provide any control-flow
integrity means, thus, we omitted all technologies that do not fall within the following
definition:

“A framework is a set of classes that embodies an abstract design for
solutions to a family of related problems, and supports reuses at a larger
granularity than classes.” [89]

The in that way derived frameworks are Apache Tapestry [175], Google Web
Toolkit [67], Spring [164], CodeIgniter [52], CakePHP [29], Kohana [98], ASP.NET [113]
(Web Forms [115], MVC [114], and Web Pages [116]), and Ruby on Rails [41]. At the
time of publication, Django [46] reached considerable popularity such that we quickly
go into Django as well.

The testing procedure included first a check of the manuals on hints concerning control-
flow integrity means. More precisely, we looked for existing functionality that can be
configured, e.g. by providing a policy, and then enforces control-flow integrity features.
The customer should not be required to implement but only configure enforcement.
We compiled a chain of basic web pages that are connected via links and buttons and
supplied a control-flow integrity policy whenever an enforcement feature is mentioned.
Next, we tried to overcome the intended control flow by crafting requests.

Then, we tested each framework for race condition protection means which are a
crucial part of control-flow integrity (see Section 2.5.6). We crafted a web page that
accepts user requests and expects a textual parameter. The content of this parameter is
posted to a message board, and a message counter keeps track on the number of posts.
We allowed a maximum of five messages. A small script quickly sent message requests
to that page trying to post more messages than actually allowed.

Finally, we wanted to learn how the request parser behaves. Therefore, we changed
the given HTTP GET and POST parameters to see whether there is any enforcement
based on the data type or a constant value.
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Enforcing Sequences of Actions

In this section, we describe our findings on control-flow integrity means in the top 10
web application frameworks (see above). Our first reference point is each framework’s
manual. In case of promising hints, we conducted our practical test run, a simple flow
definition and violating requests.

An incoming request can cause a sequence of server-side operations in Apache
Tapestry [175]. Every request is first handled by a master dispatcher which forwards
the request to the respective processing and page rendering routines. These routines can
trigger new events (event bubbling). The web application reaches a stable state when all
events finished processing. However, there is no enforcement mechanism to control the
sequence of user actions.

Google Web Toolkit [67] allows the developer to write Java code which is then
translated to server-side Java classes and client-side JavaScript code by the GWT SDK
(Software Development Kit). Most operations and all user interaction happen on the
client side. The client-side code communicates with the web server using AJAX requests
(Asynchronous JavaScript and XML) [123]. These requests are called remote procedure
calls because they call procedures on the server side. There is no enforcement mechanism
concerning the sequence of processed requests.

Spring [164] is actually a modular Java framework. It becomes a web application
framework by including the web module. In that combination, Spring implements a
model-view-controller (MVC) architecture without any control-flow integrity protection.
However, Spring is extensible by so-called projects16 among which Spring Web Flow [163]
is meant to provide flow control for web applications. It inserts a special web flow
controller into the MVC-based application in order to ensure that every incoming request
can be checked for policy compliance. Developers can define intended control flows as
XML or as Java code. A control-flow definition contains a number of states and for
each state its outgoing transitions. Processed requests trigger a state transition if they
contain the respective flowExecutionKey and eventID. The flowExecutionKey denotes
the access key to the control flow while the eventID is the transition’s identifier. Both
are transmitted as HTTP parameters. This allows Spring Web Flow to distinguish
between tabs and, thus, allow multiple control flows in separate browser tabs without
interference. It can also control side effects caused by the usage of the browser’s “Back”
button in such a way that it prevents accidental re-execution of the last action (see
Section 2.5.10). In our practical test runs, we made sure that the flow definition was
properly enforced. We crafted requests to all existing actions but no spoofed request
was processed.

CodeIgniter [52] is a PHP-based web application framework implementing an MVC
architecture. A dispatcher receives all incoming requests and forwards them to their
respective controller. A file named routes.php does the assignment of requests to
controllers. The included security library17 processes all incoming requests and outgoing
responses after the dispatcher and before the controller. However, it only sanitizes user

16See http://www.springsource.org/projects for a complete list.
17See http://ellislab.com/codeigniter/user-guide/libraries/security.html for details.
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input to prevent XSS and equips links in outgoing responses with nonces to prevent
CSRF. A control-flow integrity enforcement mechanism is not part of the framework.

CakePHP [29] like CodeIgniter is a PHP-based web application framework imple-
menting an MVC architecture. The basic request processing is also similar: A dis-
patcher forwards all incoming requests to controllers according to the configuration file
routes.php. CakePHP comes with a security component18 that can be used by con-
trollers to prevent CSRF and form tampering, require given HTTP methods (i.e. GET,
POST, PUT, and DELETE) or SSL, or restrict the communication between controllers.
None of these features, however, allows the enforcement of control-flow integrity prop-
erties.

Kohana [98] also falls into the category of PHP-based frameworks that implement an
MVC architecture. The central configuration file is named Bootstrap.php. It gathers
the basic configuration, lists included modules which provide additional functionality,
and defines responsible controllers based on the requested URL. The supplied security
class19 offers protection routines against XSS, SQL injection, and to check input con-
formity. Control-flow integrity protection is not offered.

ASP.NET [113] is a web application framework built on the .NET framework
for Windows operating systems. It allows to implement web applications in the pro-
gramming languages C# and VB.NET. ASP.NET comprises three distinct application
paradigms:

• ASP.NET Web Forms [115] generates web applications that consist of objects
called pages. Pages contain HTML code and server-side controls. Those controls
are triggered on incoming requests and perform data processing before a response
is rendered and sent back to the client. The provided state management20 offers
data storage options across request-response round trips, similar to cookies and
session records. There is no control concerning state transitions.

• ASP.NET MVC [114] again follows the model-view-controller architecture. The
central dispatcher is named Global.asax. It assigns incoming requests to their
respective controllers. An authorization filter 21 can be executed before the request
is processed by the assigned controller. This filter checks a user’s access rights to
the requested action but does not control the sequence of actions.

• ASP.NET Web Pages [116] is the most lightweight web application framework of
the ASP.NET family. Its application model is similar to Web Forms. Web Pages
contain more HTML code enriched by dynamic server-side features while Web
Forms generate most HTML elements dynamically. From a control-flow integrity
point of view, there is no big difference between both.

18See http://book.cakephp.org/2.0/en/core-libraries/components/security-component.html
for details.

19See http://kohanaframework.org/3.3/guide/kohana/security for details.
20See http://msdn.microsoft.com/en-us/library/75x4ha6s.aspx for details.
21See http://msdn.microsoft.com/en-us/library/dd505057(v=vs.98).aspx for details.
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With Ruby on Rails [41], a developer implements model-view-controller-based web
applications in Ruby. The underlying principle is equivalent to the above described
MVC-based web application frameworks: The action dispatch component forwards re-
quests to controllers based on a given configuration file, named routes.rb. Filters can
be applied before and after the execution of the controller. However, there is no given
control-flow integrity protection mechanism.

Django [46] is also MVC-based and uses regular expressions to assign requests to
views. The request can be checked by middleware components before and after being
processed by the view.

In summary, it can be stated that Spring with Web Flow offers the only control-
flow integrity protection feature in the field of common web application frameworks.
Common security features are anti-CSRF tokens, authorization management, and input
validation against XSS and SQL injection. It seems to us that control-flow integrity has
not yet received much attention and is overlooked in web application development.

Race Condition Protection

Section 2.5.6 shows that race conditions can be a severe problem in web applications.
Roughly speaking, they occur whenever some action can be executed next but only a
limited number of times. This is usually the case for repetition-bounded state changing
actions. It depends on the application’s business logic which actions are concerned. So,
a web application framework should offer means to define such actions and respective
requests in order to make the framework process them sequentially instead of parallel.
We could endorse the results given above that none of the frameworks offers such pro-
tection with the exception of Spring Web Flow which we will take a deeper look at in
this section.

Figure 8.1: The intended flow for sending a message. First, the message text is entered.
Next, the message is transmitted, and finally, a confirmation is given.

We implemented a number of web pages that allow the user to first enter a message
text. Then, the message is sent via HTTP POST to the message board and a confirma-
tion is given in the last step. The intended flow is given in Figure 8.1. We crafted the
respective Spring Web Flow policy. Listing 8.1 shows the pseudo code of the method
that receives the request.

i f db . sentMessages < 5 {
board . inc ludeMessage (m) ;
db . update ( sentMessages++) ;

}

Listing 8.1: Pseudo code of the message processing method
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The goal was to send a high number of messages and make more than five accepted
for the message board. In a first attempt, we requested the message form, learned the
request target and parameters for the message submission and sent 20 messages almost
in parallel. The result shows that only one of the messages was accepted. It seemed
that the flowExecutionKey and eventID were checked before the actual application code
handled the request.

In a next attempt, we started the same flow in ten distinct browser tabs, thus obtaining
ten different flowExecutionKeys, as Web Flow is able to handle multi-tabbed browsing.
We were able to sent eight messages upon virtually clicking “Send” simultaneously in
all ten tabs. Just for the record, we repeated the last experiment using ten different
browsers instead of browser tabs and succeeded again. The difference between the last
two configurations from the server’s point of view is that all ten requests belong to
the same user session in the first case and to ten different user sessions in the second
case. In both scenarios, the actual flow definition was not violated because all steps
were performed in the right order and there were no interfering requests within each
single flow. The actual exploit happened on a logical level. The number of parallel
executions of the same control flow within the same session or the same user account
was not limited. There is no policy statement to define such restrictions. So, developers
need to take care and implement customized solutions.

Parameter Enforcement

Next, we checked whether changes of the expected data type in request parameters lead
to faults in web applications. For instance, we sent a request http://www.example.

com/controller/action/foo while the application expected a numerical parameter,
e.g. http://www.example.com/controller/action/13.

Our observation shows that the underlying programming language plays a decisive
role: The Java-based frameworks fail while casting the unexpected string type to the
integer variable. Apache Tapestry can not find an appropriate handler for our request
and responded with a default page. Google Web Toolkit and Spring (incl. Web Flow)
raise exceptions, undeclared and NoMatchingTransitionException respectively. The
type-safe nature of Java in this case prohibits unintended user input, albeit the request
is processed in the opposite case: A method expecting a string also accepted a number
which is then, however, interpreted as a string.

The situation is different for PHP-based frameworks, because PHP does not have
inherent type safety. The web application frameworks, however, all offer type matching
expressions. CodeIgniter knows types :num and :any which include numerical values
and all values respectively. CakePHP and Kohana suggest to enforce data types by
means of regular expressions. The expression ’param’ => ’[0-9]+’ makes sure that
only integers are accepted for parameter param.

There is another problem for ASP.NET web applications because they can be imple-
mented in C# or VB.NET, thus not benefit from underlying data types. The attempt
to maintain type safety is similar to the PHP world. So-called constraints can define
regular expressions. The integer definition looks like the following: param = @ "\d +"
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where d is the symbol for a digit.
Ruby on Rails also accepts constraints, i.e. regular expressions defining the range of

accepted values for parameters. The integer definition is :param => /[0-9]+/

Finally, Django assigns requests to views based on regular expressions, i.e. requests
with forged parameters can be sorted out before they are processed.

We can conclude that web application frameworks contribute to type safety in web ap-
plications. This makes those attacks harder which rely on request processing weaknesses
based on parameter type manipulation.

Summary

Our tests show that the support for control-flow integrity in web application frame-
works is insufficient. Existing approaches relying on implicit control-flow enforcement
are dangerous for several reasons: First, modules are per se not reusable because their
control-flow settings do not apply in a new context. Second, setting values to indicate
that some action has been performed can have side effects allowing also subsequent
actions of the same workflow or the repeated execution of the next action. Finally, au-
thorization must always be distributed because the permission is given in one method
while the check is performed in a different method. The need for framework-inherent
control-flow integrity can only be fulfilled by Spring Web Flow (see Table 8.1).

Framework Version CFI RC Param. Language

Apache Tapestry 5 – – + Java
Google Web Toolkit 2.5 – – + Java
Spring/Web Flow 3.2.2/2.3.0 –/+ –/≈ + Java
CodeIgniter 2.1.3 – – + PHP
CakePHP 2.3.0 – – + PHP
Kohana 3.3.0 – – + PHP
ASP.NET Web Forms 4.5 – – + C#, VB.NET
ASP.NET MVC 4 – – + C#, VB.NET
ASP.NET Web Pages 2 – – + C#, VB.NET
Ruby on Rails 1.9.3 – – + Ruby
Django 1.5.1 – – + Python

Table 8.1: The results of our survey on control-flow integrity enforcement in modern
web application frameworks. A plus (+) denotes that the protection feature
is provided in the framework. A minus (–) means that there is no regular
support for such protection. CFI is the property to enforce the right order in
request processing. RC stands for race condition protection. Param. is the
ability to ensure type safety of received request parameters. The Spring Web
Flow race condition protection is a special case because it can only protect
against single-flow race conditions.

Nevertheless, almost all frameworks in scope provide suitable execution points to hook
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into. The central dispatchers of the MVC-based frameworks can observe every request
passing by. Equipping those dispatchers with a control-flow integrity feature seems
natural. Moreover, most of the frameworks have filters, that are executed before and
after the controller processes the request. Table 8.2 gives a list of dispatchers and filters.

Framework Dispatcher Filters

Apache Tapestry Master Dipatcher –
Google Web Toolkit Web.xml –
CodeIgniter routes.php pre controller, post controller
CakePHP routes.php beforeFilter, afterFilter
Kohana Bootstrap.php before, after
ASP.NET Web Forms Global.asax –
ASP.NET MVC Global.asax OnActionExecuting, OnActionExecuted
ASP.NET Web Pages Global.asax –
Ruby on Rails ActionDispatch beforeFilter, afterFilter
Django URLconf Middleware

Table 8.2: The frameworks have single points of processing determined by their design,
so-called dispatchers. Some even provide filter routines that are executed
before and after request processing.

8.3.2 Summary

Our findings on the current support for control-flow integrity in the most prevalent web
application frameworks show that this problem does not yet receive the attention it
deserves. All frameworks but Spring with the Web Flow project lack related properties.
No framework provides race condition protection features beyond single-flow request
sequences. Only the type safety of received HTTP parameters is commonly supported.

8.4 Enforcing Control-flow Integrity in Web Application
Frameworks

In the last section, we explained that the integration of a control-flow integrity en-
forcement module in modern web application frameworks is reasonable and necessary
to prevent all related attacks. However, we found no sufficient support in the most
prevalent frameworks. For this reason, this section presents a novel approach to enforce
control-flow integrity on the framework level.

The specific contributions are as follows:

• First, we define a formal language for specifying explicitly the control flow of a
web application.
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• Second, we define a control mechanism that makes sure that only client requests
that comply with the control-flow specification are executed.

• Third, we integrate the control mechanism in a framework based on the model-
view-controller (MVC) model, making our approach both easy to use for newly
developed applications and easy to integrate in already existing applications.

• Finally, we show that our approach is effective and practical by demonstrating
that it enables the removal of several kinds of real-world security problems, while
having a low run-time overhead.

8.4.1 Preserving Control-flow Integrity

Race condition exploits (see Section 2.5.6), HTTP parameter manipulation attacks (see
Section 2.5.7), unsolicited request sequences (see Section 2.5.8), and compromising back
button usage (see Section 2.5.10) are accomplished by user actions that violate given con-
trol flows. This section provides detailed information of how we prevent an unintended
action from getting executed and, thus, from violating the integrity of a control flow.
Roughly speaking, our approach checks every received request against a control-flow
policy in order to determine whether it is part of a legitimate workflow.

Technical Background

For every web application, the application developer knows the intended control flow.
This control flow can be denoted as a sequence of actions. Considering each action as
a transition in a graph, we finally obtain the control-flow graph of the web application.
So, the application developer deploys the control-flow graph of the web application.

The enforcement of the intended control flow requires a central entity that takes care
of each incoming request. The popular MVC architecture provides such an entity by
design (see Figure 8.2). Every request has to pass the application’s controller, which
encapsulates the business logic. The controller consists of several classes, each containing
various methods. Therefore, one action of a control flow in our definition language is
defined as <class name>.<method name>. From a granularity view, this is appropriate
because a request addresses one method. In sum, a control-flow graph is given as a
sequence of methods of controller classes.

Protection Goals

Our approach protects web applications from malicious users that perform attacks using
arbitrary request sequences. As a side effect, the approach protects honest users against
CSRF attacks to some extent because attackers have to follow the intended control flow
to finally commit their abusive request. In more detail, our approach has the following
goals:
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Figure 8.2: The design pattern of MVC-based web applications.

• Request coverage: Upon each incoming request, the approach shall determine the
control-flow context of this request and take a decision whether the request is
permitted. It updates the context accordingly if the request is allowed to pass.

• Feature support: The approach must be usable with state-of-the-art browser fea-
tures, including the use of a back button as well as multiple browser tabs (multi-
tabbing) for the same session. Each tab shall be permitted to use a different control
flow.

• Race condition protection: The approach must prevent race conditions for actions
that might serve as a target for an attacker. These actions can be specified in the
control-flow graph.

• HTTP parameter check: The approach must be able to control HTTP parameters
and their values.

• Uncritical resources: All web applications have unclassified resources such as the
“About us” information. These resources shall be accessible without restrictions,
independently of ongoing workflows.
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Enforcing Control-flow Integrity

In this section, we provide details how we achieve the above mentioned goals. We
propose an architecture based on an explicit control-flow specification and server-side
enforcement. Our approach, a control-flow monitor, combines several mechanisms to
enforce control-flow integrity. We show that all user interactions are intercepted and
checked. Besides simple checks that sequences of requests are compatible with sequences
in the control-flow graph, several situations require dedicated treatment, as explained in
the following.

Back-button Support A widespread feature of modern browsers is the back button
that allows the user to view the last web page again. As users are used to click that
button whenever they feel like revisiting the last page, we implemented support for this
step in our monitor. Therefore, the control-flow monitor records the trace of steps of
the user. A request is considered a step backwards if it addresses the last method and
this method is not meant as a next step in the control-flow graph. However, the control-
flow monitor by default prohibits the backwards traversal due to the issues described in
Section 2.5.10. Instead, the usage of the back button has to be allowed in the control-flow
graph for each step.

Multi-tabbing Support Modern web browsers usually allow several tabs in the same
window. As these tabs share the client-side data, e.g. cookies [102], across all instances,
they are hardly distinguishable from the server side. Hence, without multi-tabbing sup-
port, actions in one tab would violate the control flow in another. In order to overcome
this drawback, the control-flow monitor inserts client-side identifiers for different tabs to
tell them apart. This way, each tab can be treated individually though logged in at the
same web application.

Race Condition Prevention The monitor prevents the exploitation of race condition
vulnerabilities (see Section 2.5.6) by disabling the parallel execution of susceptible ac-
tions. In general, these are actions that add, update, or delete data after reading. We
achieve this goal with a locking mechanism. The control-flow monitor creates a tempo-
rary lock named by the session ID of the user. This means race condition protection
on session level. Moreover, protection on control-flow and user level is possible by using
a control-flow ID and the user ID respectively. Even a system-wide protection can be
implemented using one unique ID file for all users.

Parameter Validation The client-side manipulation of HTTP parameters can lead to
unintended application states (see Section 2.5.7). Thus, request parameters have to be
checked for validity on the server side before they are processed. Instead of leaving
this task to each method, the control-flow monitor provides means to centrally enforce
given parameter properties. First, the data type of each parameter can be defined.
As a side effect, this feature also mitigates injection attacks (XSS, SQL injection) that
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need to transmit control characters. Second, parameters can be marked as “write once
read many” (WORM). This allows to set the parameter’s value once but not change
it afterwards, meaning that this value is immutable for the rest of the session. This
provides an invariant guarantee to the web application. One use case is the user ID that
is supposed to not change during a session. Third, parameter names can be excluded
for given workflows. This feature can protect web applications from unintended data
manipulation. For instance, it prevents the setting of control flow-invariant parameters.

Definition of Uncritical Methods All web applications contain uncritical methods.
Accessing these methods does not harm the application’s control-flow integrity. For
instance, a chat function can be allowed beside the enforced workflow. Similarly, AJAX
calls that update the user’s view but do not change the application’s state can also be
allowed.

Control-flow Definition In this section, we provide details on the syntax of the control-
flow graph definition language. The following clauses and operators can be combined
recursively.

• Method1 → Method2 — After accessing Method1, the user is allowed to access
Method2.

• (Method1|Method2) — The user is allowed to access Method1 or Method2 in the
first place, but she is not allowed to change her decision after clicking the back
button.

• (&Method1|&Method2) — Like above but the user is allowed to change her decision
after clicking the back button – denoted by the & symbol.

• @Method{x} — The user is allowed to access Method repeatedly. It is possible to
define a maximum number x of allowed executions.

• ?Method — The back button support for Method is enabled, i.e. the user can
navigate one step backwards after having called this method.

• !Method — The race condition protection is active for this method. As long as
this method is executed, no other protected method is executed in the context of
the same session, user account, or system-wide (see above).

• Method[+par1=type1,*par2=type2] — Only parameters par1 and par2 are al-
lowed for Method where they can be sent via POST (+) or GET (*) and have data
types type1 and type2 respectively. Predefined data types include bool, numeric,
and string. A policy for the whole control flow can be set by
addParameterTypeGlobal("*par=type").

• addForbiddenParameters("par") — Parameter par must not occur in the whole
control flow.
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• addParametersGlobal("par") — Parameter par can be set once but is immutable
afterwards.

The nesting of clauses allows for defining complex control-flow policies. We provide
simple examples below and a more sophisticated case in Section 8.4.2.

The Implementation

Several challenges need to be addressed in order to implement our control-flow monitor.
Most importantly, the monitor has to be integrated into an application framework, which
can be a complex task especially for existing applications. In addition, handling race
conditions and multi-tabbing also deserve more detailed attention.

Figure 8.3: Our implemented modification of the design pattern of MVC-based web ap-
plications w.r.t. Figure 8.2.

Integration into Web Applications We implemented our control-flow monitor as a
PHP module. It is run by the router (see Figure 8.3) before the controller class is called.
This strategic position makes sure that, first, all requests have to pass our control-flow
monitor before being processed by the web application and, second, the monitor is easy
to integrate into existing web applications.

As a proof of concept, we integrated the monitor into a web application that is based on
the CodeIgniter framework [52]. In fact, the only change on an existing web application
affects the one line of code that calls the responsible controller. This line has to be
slightly modified to include our monitor (see Listing 8.2).

We use Aspect Oriented Programming (AOP) to inject the control-flow monitor as a
processing step into the call sequence of all controllers. This allows the developer to
apply changes on the application the same way as if there were no control-flow monitor.
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include (APPPATH. ’ c o n t r o l l e r s / ’ .$RTR−>f e t c h d i r e c t o r y ( ) .$RTR−>f e t c h c l a s s ( )
. ’ . php ’ ) ;

//must be changed to
AOP: : p roce s s (APPPATH. ’ c o n t r o l l e r s / ’ .$RTR−>f e t c h d i r e c t o r y ( ) .$RTR−>

f e t c h c l a s s ( ) . ’ . php ’ ,
$ SESSION [ ’ ’ atom parentFramework ’ ’ ]−>getCacheFolderName ( ) ) ;

Listing 8.2: Dynamic Inclusion of Controller Classes in the CodeIgniter Framework [52]

Multi-tabbing Support As explained before, multi-tabbing requires the unique iden-
tification of tabs. This identification is implemented in JavaScript. Moreover, a tab
handler is implemented on the server side as part of the control-flow monitor. The
JavaScript code triggers an AJAX message whenever a tab is opened, closed, or a tab
switch is performed by the user. A tab switch message by the client makes the tab
handler change the tab context on the server side. When the user opens a new tab
by clicking on the “open link in new tab” option in the browser, this tab is assigned a
session-unique identifier. We use the window.name property of the window DOM object
to store the identifier. An AJAX request transmits the new identifier to the tab handler.
The new tab is assigned the advanced position in the control-flow graph while the first
tab holds the former position. Both tabs then run the same control flow, however, it is
enforced individually, i.e. a control-flow violation in one tab has no effect on the other
tab as the respective tab record is duplicated when the new tab is opened.

The control-flow monitor stores flow-related information per tab, i.e. the active
control-flow graph that is currently enforced in this tab and the respective position
in the graph. The user’s session ID and other high-level information is still stored in the
session record. This allows, for instance, to consider several products in different tabs,
then add some of them in the same shopping cart and finally check out in one tab that
starts the checkout control flow.

An attacker stripping or manipulating the embedded tracking code can not trick the
system to gain advantages. The code only signals the current tab to the web application.
A manipulation would cause the web application to assign the next request to a different
tab. This, however, is equivalent to perform the request in the respective tab. The
intended action is only executed if the request is allowed there. Then, however, the
attacker has not increased his scope of action. In all other cases, the manipulation leads
to voiding the current control flow.

Race Condition Prevention Whenever a protected method is executed, the control-
flow monitor tries to create a file with the current session ID. If this creation fails due
to an existing file with the same name, the request is not processed and an error page is
displayed. After processing the protected method, the file lock is released again. This
allows the next protected method to be executed.

The race condition protection mechanism does not prevent the processing of unpro-
tected methods, e.g. in a different tab. The fine granularity of the locking makes sure
that a single locked method has no impact on the usability of other sessions of the user
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SMS. showForm −> !SMS. validateAndSendForm

Listing 8.3: Control-flow Definition to Protect SMS Delivery from Race Conditions

Checkout . l og In
−> Payment . chooseMethod
−> Payment . v a l i d a t e S t a t u s
−> Checkout . completeOrder

Listing 8.4: Control-flow Definition to Prevent Adding Items after Checkout

or the interactions of other users.

Examples

In this section, we show the usage of our control-flow definition language. We give
examples with respect to the real-world scenarios in Sections 2.5.6 and 2.5.8 but assume
a simplified technical implementation to keep the control flows simple and clear. We
give details on the application of our control-flow monitor in the context of the Amazon
checkout process in Section 8.4.2.

Preventing Race Conditions in SMS Delivery In the first example [138], attackers
managed to bypass the delivery limit of an SMS portal by exploiting a race condition
vulnerability. We assume the following control flow to send an SMS: First, the user
requests the SMS input form. Then, after entering all necessary information, the user
submits the form. The related control-flow definition ensures that, first, the input form
has to be accessed before the submission, and, second, the submission must be protected
against race condition attacks, see Listing 8.3.

The control-flow definition allows access to the method validateAndSendForm only
after requesting showForm. This prevents the attacker from sending the message infor-
mation directly to the delivery gateway. Of course, a capable attacker might send the re-
quests to the showForm method in an automated fashion. However, as the
validateAndSendForm method is protected against race condition attempts, e.g. on
the user level, the attacker’s requests will only be processed sequentially. This avoids
sending more messages than actually allowed.

Prevent Adding Items to the Shopping Cart Between Checkout and Payment A
more complex example is given by Wang et al. [190]. After requesting the checkout, the
user was able to add more items to her shopping cart. These items were not charged.
In order to prevent this sequence of requests, the checkout workflow has to be properly
defined. The method that adds goods to the cart must not be accessible during this
workflow. The respective control-flow definition is given in Listing 8.4.

After the authentication, i.e. login, the user chooses her favorite payment method
and is redirected to a payment service provider. The actions on the payment service
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1 Login . index
2 −> ( Address . chooseEx i s t ing | Address . addNew)
3 −> Shipping . p r e f e r e n c e s
4 −> ( ( Payment . chooseEx i s t ing
|Payment . addNewCreditCard )
|Payment . addNewDebitCard )

5 −> ( B i l l i n g . chooseEx i s t ing | B i l l i n g . addNew)
6 −> Order . placeOrder

Listing 8.5: Definition of Amazon’s Checkout Control Flow

provider’s site are not part of the definition because they happen on a different domain
that is not controlled by the same control-flow monitor. The next request within the
scope of the definition is the payment status validation after the user’s return. Finally,
the order is completed, the goods are shipped to the user, and the cart is reset. During
the whole process, no addition of items to the cart is granted.

8.4.2 Discussion & Evaluation

In this section, we discuss the properties of our control-flow monitor. We show that it
produces a negligible overhead and evaluate the protection goals defined in Section 8.4.1.
Finally, we explain its possible application scenarios and limits.

Performance Evaluation

As described in Section 8.4.1, the control-flow monitor is applied between the router
and the controller of the web application. It examines the received HTTP request with
respect to the requested method and the parameters and checks these against a given
policy. This application overhead is independent of the web application’s execution time.
The delay relates to the complexity of the given policy, though.

We used Xdebug (version 2.1.2) [196] to determine the control-flow monitor’s overhead
in a virtual machine with Debian 6 as the operating system and Apache2 as the web
server with PHP 5.5.3.3-7 on an Intel Core-i7-2600 (Intel-VT activated) with 3.4 GHz
and 2 GB RAM. For evaluation purposes, we implemented the checkout process of
Amazon. Therefore, we analyzed the control flow on amazon.com by hand and derived
the control-flow definition given in Listing 8.5. Note that the controller and method
names are simplified for readability reasons. The control-flow definition does not allow
usage of the back button because Amazon prohibits it, too.

We measured the runtime overhead ten times and computed the average for each step
in the control flow (see Table 8.3). The respective graph shows a peak in the fourth state
due to the triple branching (see Figure 8.4). Branches, namely alternative paths through
the control flow, cause most of the overhead, the earlier a branch occurs the bigger its
overhead. This is the reason why step 2 causes more overhead than step 5. We assume
that some overhead can be saved by a more efficient policy parsing algorithm. Overall,
the induced delay ranges between 8.9 and 9.6 milliseconds per request. We consider
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Runs
Step 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th avg

1 8.9 8.2 8.4 10.2 11.0 8.7 8.2 9.4 8.3 7.7 8.9
2 10.2 9.9 9.3 9.8 10.1 9.8 9.0 8.2 9.5 9.1 9.5
3 10.1 9.2 10.9 8.6 9.6 8.2 9.5 9.0 9.0 8.4 9.2
4 8.3 10.1 10.0 10.2 9.4 9.8 10.3 7.8 10.6 9.0 9.6
5 8.8 11.0 10.1 8.3 8.4 10.0 8.6 7.9 7.7 9.8 9.1
6 10.0 8.5 8.1 8.5 8.4 8.4 9.6 9.7 8.0 10.4 9.0

Table 8.3: The overhead caused by the control flow monitor in [ms]

Figure 8.4: Induced overhead by the control-flow monitor in order to protect the Amazon
checkout process.

this an acceptable effort with respect to the security gain. In order to determine the
monitor’s scalability to several user sessions, we set up 100 parallel user sessions and
repeated the measurement. While the overall response time increased, we found out
that there is no measurable difference to the scenario with only one user in terms of the
monitor’s overhead.

There is a one-time overhead for the generation of the temporary controller class file
(see Section 8.4.1). This overhead occurs once whenever a new controller class is added
or an existing class is modified. The first call on this class takes 60% to 90% more
time than the subsequent calls. For usability concerns, this overhead can be neglected
because the web application provider could easily initiate an appropriate request, thus,
preventing all users from facing the mentioned delay.
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Mage Checkout CartControl ler . indexAct ion −>
Mage Checkout OnepageControl ler . indexAct ion −>
Mage Checkout OnepageControl ler . s a v e B i l l i n g A c t i o n −>
Mage Checkout OnepageControl ler . saveShippingAct ion −>
Mage Checkout OnepageControl ler . saveShippingMethodAction −>
Mage Checkout OnepageControl ler . savePaymentAction −>
Mage Checkout OnepageControl ler . rev iewAct ion −>
Mage Checkout OnepageControl ler . succe s sAct i on

Listing 8.6: Control-Flow Definition of the Magento [109] Online Shop

Discussion

In this section, we evaluate our findings with respect to the protective goals defined in
Section 8.4.1. We have to note that the monitor is responsible for control-flow integrity
while other tasks like session management and user authentication are handled by the
framework in place.

Every incoming HTTP request has to pass the router in the assumed MVC architec-
ture. So, all requests are finally processed by our control-flow monitor. Our security
evaluation showed that in fact all requests are treated by the monitor and accepted or
rejected appropriately. The control-flow monitor achieves complete protection against
maliciously crafted requests as well as erroneous navigation attempts.

However, the protection level depends on the sound definition of control flows. The
definition has to be provided by the application developer. The implications from this
fact are twofold. First, the definition requires a deep knowledge of the web applica-
tion and its methods. The knowledge and understanding of the web application must
already exist to implement and maintain the web application. This allows developers
to provide accurate control-flow policies. So, we consider this a feasible task for an ex-
pert. Second, the necessary policy-definition efforts stay within reasonable bounds. The
class.method-based policy language abstracts from the implementation of functional
modules but is still close to the web application’s architecture. We crafted the control-
flow policy for the checkout of the open source shop Magento [109] (see Listing 8.6)
in order to estimate the complexity in real-world use cases, and find that the policy
definition is even feasible for us who are not the developers of Magento.

Our control-flow monitor provides multi-tabbing and back-button support, thus proves
usable with modern browser features. This increases the usability and ensures acceptance
by the end users. This way, security is not achieved at the expense of a limited user
experience.

To the best of our knowledge, our approach is the first to effectively protect against
race condition exploits. The control-flow monitor allows the flexible definition of the
protection level, ranging from control flow-based over user-level up to system-wide pro-
tection.

Policies on HTTP parameters can be defined including both GET and POST param-
eters. Policy rules can apply in terms of the data type, the limitation on a single value
assignment, and the exclusion of parameters for given workflows. Our parameter control
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means are suitable to prevent the attacks described in Section 2.5.7.
The definition of uncritical methods allows the monitor to focus on a comprehensible

set of relevant method calls. For instance, there can be unhindered access to pictures
because they are not part of the business logic. Confidential data can be protected
by access control means. AJAX requests can be divided into state-changing and other
requests. The state-changing requests can be covered by the control-flow definition,
the others are excluded and pass the control-flow monitor. As AJAX requests also call
server-side methods, their control-flow definition is straightforward with respect to the
web application’s control flow.

Our approach is easily applicable at the development phase though one of its most
advantageous features is its usability with legacy web applications. We implemented a
PHP-based proof of concept. Nevertheless, a Java-based implementation can be achieved
with acceptable effort, e.g. by a J2EE filter. Even non-MVC-based web applications
can be equipped with the monitor. However, the integration causes more overhead if
a central request handler is missing. Then, all calls on server-side actions have to be
intercepted separately.

The control-flow monitor does not aim at replacing the web application’s business
logic. As a matter of fact, it provides reasonable and reliable guarantees concerning
the sequence of requests and properties of provided parameters. The web application
still has to make sure that user-generated content fits the expected information. For
instance, a sequence of requests containing semantic garbage but matching the defined
control flow will still succeed to finally request the intended method.

8.4.3 Summary

We explained the complex problem of control-flow vulnerabilities and showed its high
practical relevance by real-world examples, i.e. existing vulnerabilities and attacks. We
identified the root causes in the modular addressability of web applications together
with the implicit and scattered definition of workflows. Our solution overcomes this
problem by the explicit definition and enforcement of intended workflows. To the best
of our knowledge, it is the first approach that covers the whole bandwidth of related
vulnerabilities, including race conditions, HTTP parameter manipulation, unsolicited
request sequences, and the compromising use of the back button. Moreover, it is the
first approach that properly handles client-side features like back-button usage and multi-
tabbing. We showed that this approach can prevent all described attacks and causes
negligible overhead.

In sum, we provided a thorough approach that is applicable to existing and newly
developed web applications and provides guarantees to the developer concerning the
sequences of incoming requests as well as the format and values of parameters. This
allows to separate web application semantics from control-flow integrity. As a side effect,
the presented approach mitigates CSRF and injection (XSS, SQL injection) attacks.

We suppose that write access to the web application framework is granted. In multi-
tenant environments, however, the underlying framework may be used but not adapted.
In this case, an external approach is required which we will present in the next section.
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8.5 Providing Ad-hoc Control-flow Integrity for Web
Applications

This section presents an alternative approach for avoiding problems related to control-
flow integrity in web applications. Based on the assumption that all client-side requests
are potentially compromised and benign usage only includes mouse clicks and form input
after visiting the site’s entry page, the approach replicates a user’s mouse clicks and
form input in a server-side sandbox. Requests triggered by the sandbox are trustworthy
because they adhere to the assumed user interaction with the web application. We show
that this approach provides ad-hoc protection against attacks on the web application’s
control flow without the need for a learning phase or a manual policy definition. It
functions as a reverse proxy and is thus independent of the server-side technology. No
adaptations are required on the web application making the approach applicable to new
and legacy applications. The induced load can be outsourced to scalable, e.g. cloud-
based, platforms if necessary.

8.5.1 Preserving Control-flow Integrity Ad Hoc

In this section, we present Ghostrail, our ad-hoc approach to overcome race condition
exploits (see Section 2.5.6), HTTP parameter manipulation including file inclusion at-
tacks (see Section 2.5.7), unsolicited request sequences (see Section 2.5.8), and forceful
browsing (see Section 2.5.9). We give details on the implementation in Section 8.5.2.

High-level Overview

The idea behind Ghostrail is the ad-hoc enforcement of control-flow integrity based on
the developer’s assumptions phrased in Section 8.2: Users first request one entry point
of the web application, e.g. www.example.com, and then click on links and buttons or
fill in forms. We assume that the attacker is a web user that controls all client-side data
and applications within his domain. However, he can not bypass reverse proxies. He
can send messages to the server but does not control the server-side platform.

Ghostrail operates as a traffic monitor on the server side. It protects a web application
by filtering out incoming requests that are not generated by user clicks and form entries.
In order to determine whether a request arises from regular interaction between the
user and the current web page, Ghostrail analyzes the last web page delivered by the
web application. A request is accepted if the web page contained the respective link.
Otherwise – the page did not contain the requested URL – the request is considered
crafted and, thus, possibly malicious because it violates the assumption that the user
only interacts with the web application using clicks and filling in forms. Ghostrail has a
three-tier whitelisting approach to derive regular requests:

• First, Ghostrail queries an application-wide whitelist of always allowed requests.
The list contains the application’s entry points, e.g. the start page, and possibly
all requests to public resources that do not change the application’s state.
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• Second, Ghostrail parses the last web page delivered by the web application. It
compiles a list of static references found in HTML and CSS documents. Those
references denote hyperlinks, i.e., possible next user clicks, or embedded resources
that are needed by the browser to render the web page, e.g. images. We give more
details on static reference extraction below.

• Third, Ghostrail renders web pages in server-side sandboxes to determine dynami-
cally generated requests, e.g. using AJAX and JavaScript. Those requests can not
be determined by the static parser in step 2. Ghostrail accepts requests from the
client side if the sandbox triggered the same request. We describe the sandbox-
based request detection below.

Ghostrail lets only requests found in any of these three lists pass. This way, it enforces
the assumption that users only interact with the web application using mouse clicks
and form input. Due to the fact that the whitelists in step 2 and step 3 are compiled
ad hoc, Ghostrail neither needs a pre-release learning phase to generate its control-flow
policy nor a hand-crafted control-flow definition. However, as Ghostrail operates on
automatically generated whitelists of references, every reference it fails to extract may
degrade the usability of the web application. It is therefore crucial to extract as many
references as possible. By extraction we mean the analysis, classification and storage of
reference information that is embedded in content delivered by the web application. In
the remainder of this section, we provide details on how Ghostrail extracts references
statically and dynamically.

Extraction of Static References

In this section, we give details on how Ghostrail extracts static URLs from delivered web
pages. Static references usually occur in HTML and CSS files. Other web resources like
JavaScript and Flash, i.e., ActionScript, mainly utilize dynamic URL generation. They
assemble the requests based on user input or the client-side state. We explain dynamic
URL tracking in the next section. Finally, media files like images are ignored because
they do not contain links for subsequent requests.

HTML is a tag-based language, i.e., the elements of a web page are described as
tags. There is a limited number of HTML tags that may contain URLs: <a>, <link>,
<iframe>, <script>, <img>, <area>, <embed>, <form>, <base>, and <meta>. Ghostrail
parses these tags and extracts URLs found. However, not all HTML content is trust-
worthy. Web applications often allow users to provide own content, e.g. in the form
of comments that are embedded in the HTML output. An attacker could easily abuse
such a feature by posting the URLs he wants to request next. It is therefore possible
and necessary to configure Ghostrail so that it excludes user-provided content from ref-
erence extraction within HTML documents. The second type of static content that may
contain references is CSS data. As this is limited to only one syntax element (url()),
an adequate regular expression performs the reference extraction.

There can be different URLs that are semantically identical, e.g. http://example.

org/?par1=foo&par2=bar and http://example.org/?par2=bar&par1=foo. Ghostrail
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normalizes URLs in order to prevent misclassification.
During reference extraction, Ghostrail tags whitelisted URLs either as a transition

or as an extension. Transitions make the browser replace the current web page while
extensions only update a part of the page, e.g. in an iframe or by an AJAX request, or
load an additional page in a new browser window (or tab) without modifying the parent
window. A transition invalidates all previous whitelisted URLs whereas an extension
adds new URLs to the whitelist.

Replication of Client-side Execution

Beside the static references, dynamically generated requests play an important role
within modern web applications. Applications that used to be installed and executed
on a local machine, for instance office apps, move to the web and become accessible via
a web browser. The synchronization of the client and server state as well as seamless
interface updates require dynamic request generation and response processing, known
as AJAX. The same is true for the search-as-you-type feature during user input. Such
dynamically generated requests can not be determined using the static reference extrac-
tion described above because the static analysis of JavaScript code is fault-prone and
requires manual code annotations [71]. Ghostrail, however, aims to protect web applica-
tions without the need to change the application code. Instead, we equipped Ghostrail
with a server-side replica of the user’s browser to track the execution of JavaScript and
derive the respective requests. Ghostrail maintains one replica for each user session.
Each replica runs in a sandbox and virtually performs the same actions that happen in
the user’s browser.

Figure 8.5: Initial loading of a web page in the sandbox.

In order to monitor a user’s actions, Ghostrail injects a few lines of JavaScript code
into every delivered web page. This code monitors all user actions that can trigger
JavaScript events. This is necessary because JavaScript has an event-driven execution
paradigm: Code is not executed linearly but triggered by user actions, timing, or state
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changes of the web page. While timing and state changes also happen in the server-side
replica without further ado, user actions must be transmitted to keep track. Interesting
user actions include mouse movements, mouse clicks, and keystrokes.

Figure 8.6: Dynamic reference extraction by replicating a user’s action.

The server-side replica virtually renders the same web page as the user, it executes the
same JavaScript code, and it simulates the user’s mouse movements, clicks, and form
input, i.e., only expected – thus benign – user actions. The requests from the replica
are the condensed set of expected user requests. So, Ghostrail adds them to the user’s
whitelist. It is important to stress that Ghostrail only receives user actions from the
client side but not the respective state change in the user’s browser. This is a crucial
point because it limits a malicious user’s scope: Transmitting state changes allows an
attacker to modify his browser such that it finally generates an attack request. For
instance, a hash function may compute a URL parameter. The modified browser would
always output /etc/passwd, independent of the input. Transmitting the output would
allow the attacker to inject crafted requests into Ghostrail’s whitelist. Limited to user
actions, he can only spoof mouse clicks, movements and keystrokes on the web page.
However, all these actions are within the scope of expected user interaction so there is
no attack even if these actions are spoofed.

Figure 8.5 shows the initial loading of a web page in the sandbox. The replica is
initiated with the start of the user session (steps A/B). After the page has been fetched
from the web application (steps D/E), it is send as a response to the client and the replica
(step F). The replica does not interact directly with the web application to prevent
a double impact on the application state. Also, the duplication of the application’s
response (step F) ensures that both the client and the replica share the same content.
After the page load, the user can interact with the web page. Figure 8.6 shows an
example how Ghostrail classifies dynamic references. The user clicks on an element
(step A). The details are transmitted to Ghostrail and forwarded to the replica (step B)
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which simulates the same mouse click. The subsequent request to click.php (step C) is
recorded by Ghostrail as legitimate because it is the result of intended user interaction.
So, Ghostrail accepts and forwards the user request (step D).

8.5.2 Implementation

In this section, we describe the implementation of Ghostrail and the sandboxed replica.
We implemented Ghostrail as a reverse proxy using Node.js (version 0.10.0) [91]. This
reverse proxy manages all requests and responses and directs the replicas as well as
the static reference parser. This design allows to outsource CPU- or memory-intensive
processes to other machines. The reverse proxy buffers incoming requests, queries the
three-tiered list of regular requests (see Section 8.5.1) and finally accepts or rejects the
request. It forwards the web application’s responses to the static reference parser and
the respective replica for further analysis. In the remainder of this section, we focus on
the implementation of the replicas and the handling of client-side data.

The Sandboxed Replica

Ghostrail initiates a fresh replica for each user session – and destroys replicas when
the session ends. We implemented the replicas using PhantomJS [78], a fully-fledged,
GUI-less, and WebKit-based browser. Due to the WebKit basis, the replicas support
all major web technologies like JavaScript, AJAX, CSS, JSON and SVG. Replicas do
not need to run on the same machine as Ghostrail. They can be distributed to cloud-
based computing platforms to scale with varying load. The communication between the
replicas and Ghostrail is based on HTTP and WebSockets.

Ghostrail injects a small piece of JavaScript code into every web page that is delivered
to the user. This code establishes a WebSocket connection with Ghostrail to transmit
user actions. Ghostrail records three kinds of user actions:

• Mouse clicks: Ghostrail records mouse clicks by injecting the onclick event
handler for the whole web page. In order to simulate the click in the right page
area, the (x, y) coordinates relative to the browser window are appended. Also,
the dimensions of the browser window must be transmitted to configure the replica
with the same size.

• Mouse movements: Mouse movements can trigger onmouseover events on a web
page. Hence, Ghostrail records mouse movements above a configurable threshold
using the onmousemove event handler. The threshold is necessary to avoid an
overload of Ghostrail.

• Key strokes: Requests can contain user-defined data from an HTML form. Ghos-
trail must record every key stroke (using onkeypress and onkeyup event handlers)
to simulate the user input. This is the only option to relate the resulting request
to regular user behavior, i.e., entering data into form fields.
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While Ghostrail injects new event handlers into the web page, there could be other event
handlers that fire first and bypass Ghostrail’s events. For instance, an event handler that
redirects the browser to another page is executed first such that Ghostrail loses track
and forbids future regular requests. We overcome this issue the following way: There
are two options for the order of cascading event handlers, namely event bubbling and
event capturing [82]. Event bubbling triggers the innermost event of the DOM tree first,
i.e., for nested elements where each has an onclick event handler, the event of the
inner element fires first when the user clicks. Event capturing has the reverse execution
order. Ghostrail enforces event capturing and assigns its event handlers to the outermost
element of the DOM tree, i.e., document.

Handling Browser Cache and History

Browsers cache web content locally in order to improve performance. Upon the next
page access, they first query their local cache and restore the page without the need to
request it again from the website. This, however, poses a problem to Ghostrail if it can
not observe the local page load and extract the references from the cached page. We
implemented a twofold cache management in Ghostrail to overcome this issue: First,
Ghostrail adds the Cache-Control: no-cache HTTP header [60] to each response to
prevent caching on the client side. More precisely, the browser may cache the respective
content but must revalidate every usage with the server. However, we found that the
Chrome and the Firefox browser still cache at least the last visited page and reuse it
without revalidation. Second, the client-side code detects the click that loads the cached
resource. Then, the replica performs the same click and loads the same content from
the local cache provided by PhantomJS.

Beside the local cache, browsers also maintain a local browsing history. This history
allows users to navigate back and forth. PhantomJS supports the browsing history
since version 1.8 such that the replica can emulate the navigation through the browsing
history.

8.5.3 Evaluation

We evaluate the security gain by Ghostrail, investigate a possible impact of Ghostrail
on the protected web application’s availability, and give results of our performance mea-
surements.

The Security Gain by Ghostrail

In order to evaluate the security gain by Ghostrail, we first describe how Ghostrail pro-
tects web applications against race condition exploits, HTTP parameter manipulation
including file inclusion attacks, unsolicited request sequences, and forceful browsing.
Then, we explain our practical evaluation using the intentionally vulnerable web appli-
cation Google Gruyere [66].
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Race Conditions An attacker who exploits race conditions in web applications must
send the same request many times in parallel. If the request is compiled dynamically, he
must prepare the respective input in his browser and send the form using a mouse click to
make the request be also sent by the replica and thus be whitelisted. In any case, as soon
as Ghostrail accepts the attacker’s first request, it immediately discards the whitelist of
requests and waits for the application response to refill the list of expected requests. So,
Ghostrail rejects the second request unless it is extracted from the subsequent page.

HTTP Parameter Manipulation HTTP parameter manipulation attacks rely on the
user’s ability to freely change the parameters of a given request, e.g. to change the
given account ID or message ID. While an attacker can still craft arbitrary requests in
his browser’s address line, Ghostrail rejects all requests that do not match an extracted
request from the current page.

Unsolicited Request Sequences Unsolicited request sequences occur if an attacker
can assemble a request to call application functions when they are not supposed to be
called. In the example given in Section 2.5.8, the attacker knows the request that adds
items to his shopping cart. As Ghostrail discards previously allowed requests, the crafted
request is not whitelisted after checkout and thus rejected.

Forceful Browsing A forceful browsing attacker also needs to craft a targeted request
that is not part of the current web page. So, Ghostrail rejects forceful browsing attempts
by design.

Case Study: Protection of Google Gruyere In order to evaluate Ghostrail’s protec-
tion in practice, we set up Google Gruyere that is vulnerable to forceful browsing, file
inclusion, and reflected cross-site scripting (XSS) attacks. With Ghostrail in place, none
of the attacks on Gruyere worked. However, we want to emphasize that injection attacks
like XSS and SQL injection are out of scope for Ghostrail. If the attacker enters the pay-
load into a form field, Ghostrail regards the resulting request as benign. So, protected
applications still need to sanitize user input from free text form fields. Nevertheless,
Ghostrail limits possible user input via drop-down menus or radio buttons to the given
options.

Ghostrail’s Compatibility with SSL/TLS As Ghostrail plays the role of a traffic mon-
itor, it must be the server-side endpoint of SSL connections with the client side. Given
that it runs in the same domain as the protected web application, we do not consider
this point a serious issue. If needed, the communication between Ghostrail and the web
application, as well as between Ghostrail and the replicas, can be encrypted again.
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The Impact of Ghostrail on the Availability of the Protected Web Application

We evaluated whether Ghostrail has a negative impact on the web application’s avail-
ability. A negative side effect can occur if Ghostrail fails to extract a regular reference
that is accessed by the user in the next step. In that case, Ghostrail mistakenly classifies
the user request as unexpected (false negative). The evaluation is threefold: First, we
set up a demo web application that implements a broad range of modern web technolo-
gies, i.e., redirects, CSS, jQuery as a representative JavaScript library, dynamic page
updates via AJAX, and the navigation to dynamically generated URLs. This approach
is meant to find out whether there are general compatibility issues of Ghostrail with any
web technology. We used Selenium [156] to direct an instance of Firefox and Chromium
respectively. Each browser performed virtually 1,000 user actions, resulting in 20,648
requests overall (each user action can trigger several requests). Afterwards, we analyzed
Ghostrail’s log files and did not find any blocked request. Please note that every blocked
request would be a false negative because the virtual users only clicked on links or filled
forms – what we defined as compliant behavior.

Second, we set up Ghostrail as a reverse proxy for the Alexa Top 20 websites. We used
Selenium again to make Firefox perform 200 user actions on each website. Overall, we
recorded 18,319 requests with a false rejection rate of 17.57%. Our analysis showed that
blocked requests contained customized elements. Some websites perform a kind of client
fingerprinting, i.e., they read browser and system features that differ for Firefox and the
replica and add such information to the requests. The replica proved able to simulate the
more common User-Agent: string for client classification. Another source for blocked
requests are client-side timestamps and random numbers generated by JavaScript and
appended to requests. In these cases, the outcome of the code execution differs for the
browser and the replica. While we had to consider each web application as a black box,
the application provider can configure Ghostrail more appropriately to avoid most of the
false rejections, e.g. by adding a rule that ignores differing parameters if they match the
expected pattern and if their processing may not cause harm. We avoid transmitting the
random numbers and timestamps from the client side to the replica for synchronization
because this would allow a malicious user to inject arbitrary HTTP parameters.

Third, we accessed three websites manually to learn the perceivable impact of Ghos-
trail. This is important because the raw number of blocked requests does not make a
point concerning the impact on the web application’s availability.

• Google search: The search function was usable without interference. Only the auto
completion did not work due to differing request parameters.

• Amazon: We were able to search items, add them to our cart and checkout. How-
ever, we did not see product recommendations. The almost complete functionality
of Amazon is particularly interesting because we experienced the highest number
of falsely rejected requests (≈ 60%). This result calls the significance of the raw
number of false rejections into question.

• Wikipedia: We did not experience any issues on the availability.
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We found that Ghostrail is able to allow workflows which span several domains. For
instance, Ghostrail may protect an online shopping web application. When the user
is redirected to a third-party cashier like PayPal, Ghostrail can not track the payment
process (however, the cashier may run another instance of Ghostrail). Hence, the first
request that leads the user back to the shopping application must be whitelisted as an
application entry point.

Instead of redirecting, a web application may include third-party content in its own
pages. Then, the replica fetches the same content but does not provide cookies nor
authenticating HTTP parameters to avoid requests on behalf of the user.

Performance

Finally, we evaluated the performance impact of Ghostrail. We measured the HTTP
round trip time between sending a request and receiving the response. We used the
testbed with our demo application described above in order to avoid independent factors
on the performance. The size of the served web pages ranges from 225KB to 450KB, and
the round-trip overhead was between 250ms and 360ms. For applications with real-time
requirements, e.g. online games, Ghostrail may only be an intermediate solution. For
other applications, it is possible to scale the number of Ghostrail and replica instances
with the load.

8.5.4 Summary

We identified the root causes of control-flow integrity compromises in the attacker’s pos-
sibility to craft arbitrary requests at any time together with the developer’s assumption
that users only follow provided links. Ghostrail overcomes this problem by the ad-hoc
generation of next-step policies. It is the first approach that neither needs a repeated
training phase nor a manual policy definition and covers the whole bandwidth of related
vulnerabilities, including race conditions, HTTP parameter manipulation, unsolicited
request sequences, and forceful browsing. Ghostrail is compatible with all modern web
technologies including mash-up’s and JavaScript libraries while it is applicable to all
new and legacy web applications without any changes on the application code. For
high-traffic applications, the induced load can be moved to any appropriate platform.
In sum, we provided a thorough approach that provides guarantees to the developer
concerning the sequences of incoming requests including the values of parameters. As
a side effect, Ghostrail mitigates CSRF and injection (XSS, SQL injection) attacks in
most cases.

8.6 Related Work

The Open Web Application Security Project (OWASP) coined the term failure to re-
strict URL access [133] to describe a similar vulnerability as our control-flow weakness.
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However, it is more focused on access-control flaws that can be exploited by forced-
browsing attacks [134] to find a deep link [25] to a high-privilege web page. Workflows
and control-flow integrity play a tangential role in the description.

We divide other related work in navigation-restriction means, detection of server-
side state violation, protection against and detection of client-side manipulation, race
condition detection, and access-control mechanisms that mitigate direct URL access
attempts.

There are different names for the respective attacks and vulnerabilities though not big
differences in their technical details. In some cases, the attack allowing a malicious user
to compose his own sequence of actions is called workflow violation attack [34], state vio-
lation attack [105], workflow attack [9, 84] or the attack exploiting web application logic
vulnerabilities [56]. Partial overlap exists with HTTP parameter pollution attacks [5]
and parameter tampering attacks [16].

8.6.1 Navigation-restriction Means

These approaches restrict the web application’s request surface towards the user. They
limit the accepted requests to a predefined set and prevent arbitrary navigation by users.

BAYAWAK [84] is a powerful tool to enforce request integrity. The basic idea is to
prevent access to all server-side resources by giving them unique temporary interface
identifiers (IID). The IIDs are changed with every request. In each response, the hy-
perlinks carry the necessary IID to address the intended next resources. Requests to
arbitrary resources are prevented due to missing identifiers. BAYAWAK appends the
IID as an HTTP parameter, e.g. ?IID=x. All necessary attributes in all web pages have
to be modified to include the IID. It remains open how dynamically generated requests
are equipped with the IID. By design, multi-tabbing and back-button support as well as
page reloads can not be granted as the session-bound IID must be outdated. Race con-
dition protection depends on the actual implementation of this concept, namely whether
the parallel execution of requests with the same IID is possible or excluded.

Hallé et al. propose a model checking-based approach to prevent navigation errors [72].
They explain their navigation state machines that allow the execution of given actions
only immediately after a preceding action. For example, the modification of user ac-
counts is only admitted if requested right after listing all user accounts. Moreover,
parameter values can be defined as a prerequisite for actions. The approach focuses
more on unintentionally caused errors than on security issues based on malicious user
behavior. Complete workflows can not be defined explicitly. Instead, only ordered pairs
of actions can be set. Multi-tabbing and race conditions are not handled.

8.6.2 State Violation Detection

The approaches that we describe in this section aim at detecting unintended or unusual
server states. They infer the intended application states during a training phase or
by static code analysis and raise an alarm as soon as the detected state deviates from
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the known states, but they do not intend to make workflows explicit and control the
interactions with users.

MiMoSA [9] detects violations of workflow integrity if intended workflows are en-
forced based on PHP session variables, request parameters, and database tables. It uses
a cascade of dynamic and static analysis of PHP code together with model checking
techniques to identify program paths that finally lead to an insecure state – either due
to workflow attacks or due to injection attacks, like XSS and SQL injection.

Swaddler [34] detects anomalous combinations of session states and code execution
points in PHP-based web applications after a learning phase. It assumes that attacks
lead to observable differences in the application’s state with respect to a threshold. In
that sense, it is comparable to the functioning of an intrusion detection system (IDS).

BLOCK [105] follows a black-box approach to detect state violation attacks based on
input/output invariants. In this case, input means the requested action, input param-
eters, and the session state while the output is the new session state and the HTTP
response. The invariants are derived during an attack-free training phase. Discrepancies
between the observed input/output and known invariants cause an alarm.

Waler [56] follows a similar but white-box approach. It attempts to infer invariants
by running dynamic analysis. Invariants are determined by if statements and equality
relations between session variables and database entries. Finally, Waler uses model
checking to find invariants-violating program paths.

With existing approaches, every change on the web application needs a new pre-release
learning phase to derive the policy automatically [9, 34, 56, 105]. Their policies can
never be sound because training phases always miss unusual scenarios. Also, all such
approaches must be fuzzy by design because they neglect the actual request context,
e.g. HTTP parameters like an ID that change case-by-case but must not be changed
by the user. Ghostrail and our control-flow monitor are able to enforce exact parameter
matching without a need for policy updates.

8.6.3 Client-side Manipulation Detection

Malicious users not only craft individual HTTP requests or manipulate request headers
to achieve their goals. Depending on the business logic of the web application, changes
on the client-side JavaScript code can cause damage to the application provider. Ex-
isting approaches statically analyze JavaScript to determine the expected sequence of
requests [71] or check the web application for exploitable HTTP parameter pollution vul-
nerabilities [5]. Two approaches replicate the client-side computation on the server side
to detect deviations: NoTamper [16] focuses on input validation of HTML forms, while
Ripley [183] follows a similar approach to Ghostrail. It replicates client-side JavaScript
events in a server-side replica. However, Ripley is only applicable during development
but not for legacy applications. Also, it relies on a distributing compiler thus excludes
non-fitting technologies. Technically, Ripley ignores mouse movements on the client side
and can not track respective events. As it uses event bubbling, it misses client-side events
that redirect the browser. Ripley can not handle JavaScript code from different domains
like common JavaScript libraries, mash-ups, and the postMessage API for communica-
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tion between iframes. In that sense, Ghostrail is the consequent next step after Ripley
because it covers modern application scenarios and all relevant user actions, thus makes
less assumptions. Ripley and Ghostrail still share the same issues with randomness and
timestamps.

8.6.4 Race Conditions

Race conditions [135] are explained in detail in Section 2.5.6. An attacker exploiting
this vulnerability can execute one function more often than intended by the application
developer.

Paleari et al. [138] describe an approach to detect race condition vulnerabilities in
LAMP22-based web applications. They dynamically log SQL queries at runtime and
analyze the log file to find possible race conditions based on the series of SQL clauses.

8.6.5 Access Control Mechanisms

As we pointed out in the beginning of this section, attackers might run forced-browsing
attacks to gain access to restricted resources. They exploit weaknesses in static access
limitations. Ghostrail has a similar goal, however, our access rules are dynamic and
change with respect to the past actions.

The approach of Sun et al. [166] finds access control vulnerabilities in web applications.
Therefore, they compute the difference of sitemaps for privileged and unprivileged users
and try to directly address pages of this set.

Nemesis [40] implements an information flow-based approach to prevent access control
and authentication bypass attacks. The respective server-side language interpreter (e.g.
PHP) has to be modified to track the information flow through the web application.
This way, the users’ rights are mapped to the file system and database.

Desmet et al. [44] verify the protection provided by a WAF against forced-browsing
attacks. They first model the read and write operations of web application compo-
nents to the shared session record and statically verify this model. Next, they apply
static verification to show that all web traffic passing the WAF, i.e. adhering to the
WAF’s enforcement policy, is compliant with the components’ access to the shared ses-
sion record, meaning that there is no unintended sequence of access attempts. Finally,
they dynamically enforce the WAF’s policy at runtime.

8.7 Conclusion

In this section, we first showed that current web application frameworks do not provide
sufficient means to protect a web application’s control-flow integrity. Based on this
observation, we developed two options for protection: First, a control-flow monitor
can be plugged in frameworks adhering to the MVC architecture. It expects a policy
defining request sequences, and filters the requests not matching the definition. Second,

22LAMP stands for Linux, Apache, MySQL, PHP, the classical web server architecture.
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our control-flow proxy is applicable without providing a policy. It learns the expected
next requests by examining the last visited web page and thus enforces the common
assumption that users only access a web application on dedicated entry pages and then
click on links and buttons.

The combination of our control-flow monitor and the advanced authentication protocol
described in Section 6 implements the desired features of connection-oriented protocols
over the connectionless HTTP: The authentication protocol provides mutual authenti-
cation, preserves message integrity and confidentiality, and obtains the user’s consent
to critical cross-application requests, the control-flow monitor provides control-flow in-
tegrity and prevents state manipulation by unauthorized request sequences. So, we can
conclude that we achieved the intended security features given the real-world protocols.
More research is necessary concerning the consequences of pushing control-flow integrity
policies to browsers. On the one hand, the client-side enforcement of such policies can
save server load and improve the reaction time, on the other hand, received requests
must still be validated to detect manipulations bypassing the enforcement on the client
side.
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We conclude the thesis with a summary of the past sections, name future work and
problems that remain open after this thesis, and finally give an outlook on current
developments in the field of web communication security.

9.1 Summary

In this thesis, we identified crucial security requirements of modern web applications
that are not covered by HTTP on the application layer: message integrity and confi-
dentiality, user and application authentication, control-flow integrity, and application-
to-application authorization. We showed that those requirements are best met by a
connection-oriented protocol. However, the connection-oriented protocols of the web
stack can only cover message integrity and confidentiality, and the exchange of the
web’s dominating protocol is out of scope to achieve the other requirements. Taking
the connectionless HTTP protocol as given, we came up with practical approaches to
improve the security of modern web communication.

We showed in Section 3 that SSL/TLS can preserve message integrity and confiden-
tiality. However, the ultimate reliance on a vast number of certificate authorities and the
tremendous implementation issues (see Poodle, Heartbleed, a.o.) are severe problems
that create the need for more sustainable solutions. Our approach implementing secure
user and application authentication (see Section 6) provides all necessary elements to
sign and encrypt messages before sending. It does not establish a secure connection
but works on a message level. There is no need for a public key infrastructure because
the respective keys are exchanged on a peer-to-peer basis. However, a trust anchor is
required for the initial account setup.

In order to implement secure user and application authentication in the short run, web
applications need to issue fresh session identifiers upon user login (see Section 4) and bind
user credentials entered into web forms and browser-stored credentials together to avoid
that an attacker can easily reuse stolen passwords and session cookies (see Section 5).
This mitigates the conceptual problem that secrets are currently entered and sent to
non-authenticated communication partners – and thus hardly remain secret. Also, a
user’s acknowledgment to security-critical actions delivers the browser from its role as
a confused deputy. Our more sophisticated approach overcomes the fundamental issue
concerning the transmission of confidential data (see Section 6). It supplies the needs of
modern web applications in the long run because it requires adaptions on the client side
and on the server side – the well-known chicken-and-egg problem. Our implementations
prove the applicability on mobile devices. A desktop edition can be implemented as a

163



9 Conclusion

browser extension, natively in the browser, or as a standalone tool.
While the established standard for message integrity and confidentiality suffers con-

siderable weaknesses, the official standard for secure application-to-application autho-
rization CORS [181] still lacks support. For the time being, our approach presented in
Section 7 implements a heuristic to estimate the risk of e.g. cross-application requests.
It lets uncritical requests pass while authenticated, i.e. critical, requests undergo a se-
ries of sanity checks one of them the check for an allowing CORS policy. This way, the
approach helps immediately and bridges the time until CORS is introduced widely. The
more CORS is introduced the more accurate our approach can prevent cross-application
attacks and let intended communication pass.

Finally, control-flow integrity is an inherent requirement of web applications that
implement workflows. We showed that attacks on an application’s control-flow integrity
can have severe consequences. Unprotected applications can apply ad-hoc protection
using our self-learning proxy (see Section 8.5). It neither requires access to the code
nor a policy as input and thus perfectly fits as a quick fix. The runtime overhead,
however, will make it a temporary solution in most cases. In the long run, control-flow
integrity must be taken into account at development time. As one part of the web
application development process, a control-flow integrity policy must be phrased and
shipped together with the application. This policy is enforced by a respective module of
the underlying web application framework as are all kinds of regular tasks demanded by
the majority of web applications. We presented an appropriate module in Section 8.4.

9.2 Future Work and Open Problems

There is an ongoing trend to use web technologies for home automation, so-called smart
homes. For instance, vendors of heaters and washing machines install web servers on
their devices which provide a user interface to control and ‘program’ the devices. This
use case can be considered the next business model driving the development of the web,
and again, the simple nature of HTTP together with the universal availability of client
devices, i.e. all networked devices with a browser, paves the way for this step. Looking
ahead, the smart home scenario will bring a new set of challenges concerning secure
communication:

Secure Machine-to-Machine Authentication We explained the pitfalls of current user
authentication towards web applications and the other direction: the authentica-
tion of a web application towards a user. In smart home scenarios, however,
a number of devices need to communicate with each other in order to provide
holistic services. During this communication, authentication is crucial to prevent
spoofing attacks leading to harmful results for the user. The example of Vaillant
recently showed the impact of a security breach. In this case, the heater control
was world readable and writable23. In machine-to-machine authentication scenar-

23See http://www.hotforsecurity.com/blog/vulnerability-in-vaillant-heating-systems-

allows-unauthorized-access-5926.html
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ios, there is no secret credential that is only known by the user. Considering the
basic user-centric authentication means, i.e. knowledge, biometry, and ownership,
there must be a secret piece of information stored on each device serving as the
authentication factor. The challenges include the definition of an authentication
protocol as well as the protection against physical attacks.

Secure Session Migration There is an increasing number of mobile devices in most
households, each with its own pros and cons. Cell phones, for instance, are usu-
ally taken along while tablet PCs are sometimes too bulky. At home, however,
the bigger screen of a tablet PC is favorable. So, a user might start the heater
before coming home and check the content of the fridge using her cell phone while
she switches to her tablet PC after arrival to tune the home entertainment sys-
tem. Current web technologies require a new user authentication when the user
exchanges the device. The scenario described above, however, demands usable, i.e.
seamless, and secure session migration.

The Domain Paradigm Web technologies have always relied on the well-known domain
principle: The same-origin policy separates content from different domains and
SSL/TLS assigns a public key to a domain. In a smart home scenario, however,
the separation of devices and services into domains is not straightforward:

• Assigning a unique domain to each device means applying the strongest sep-
aration. Hence, cross-device communication in the user’s browser is severely
limited. Such communication is however wanted because a user’s action might
have an impact on more than one device which means that the information
about this action must spread.

• Unifying all devices of the same household in one domain, on the other hand,
means almost unrestricted cross-device communication – for the prize of un-
restricted access of each device to personal information provided by other
devices. Also, a security breach of one device immediately threatens the
security of all smart devices in the house.

History shows that technical decisions like the separation of devices into domains
must not be left to the user because users tend to prefer functionality over security
and can hardly estimate the impact of their decision.

Attacker Model It is necessary to understand how an appropriate attacker model is for
the smart home scenario, i.e. how far are conventional attacker models applicable
to smart homes. For instance, at a first glance, the local nature of a smart home
could serve as a starting point for trust. Then, each person coming close to the
devices gains access including visitors, intruders, and sometimes neighbors. On
the contrary, attackers might regularly take the position of a man in the middle
or take control of a previously trusted device by stealing it.

Off-topic Challenges Related challenges concerning the security of smart homes include
preserving the privacy of users and patching vulnerable services. We omit a further
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discussion of these topics because they are out of our scope.

Finally, developing a secure input form for user credentials is still an open problem.
Such a form must not be forgeable by an attacker – which usually means that its design
must not be predictable – but easily verifiable by each user – meaning that it must have a
constant look – without burdening the user with the verification of secret authentication
properties. The login forms used by browsers for HTTP authentication as well as today’s
HTML form-based login forms are easy to spoof and thus not suitable. Without a
secure input form, however, phishing attacks will not end unless no user credentials
must be entered at all for authentication. We want to emphasize that even protocols
implementing sophisticated authentication protocols without transmitting the password
(e.g. BetterAuth [87]) are susceptible to phishing attacks without a secure input form.

9.3 Outlook

In order to render a modern web page, the browser must issue an average of 100 HTTP
requests24. For this reason, the focus of the new HTTP version 2.0 [11] lies on per-
formance, a more effective usage of network resources, and the reduction of latency on
the client side25. Nevertheless, it continues the tradition of backwards compatibility.
The goals are supposed to be achieved by HTTP header compression, connection mul-
tiplexing using parallel streams, i.e. issuing several requests right after the other via
the same TCP connection, and a new feature that allows web servers to push content
that has not been requested yet. Servers can push elements of a requested web page like
JavaScript and CSS files together with the response anticipating the client’s request for
these elements next.

From a security point of view, the new version will not contribute to the requirements
of modern web applications we discussed in this thesis. While Google’s draft SPDY [12],
which is the blueprint of HTTP 2.0, provided at least the mandatory use of SSL/TLS,
this feature was removed in the draft of the HTTP 2.0 specification for compatibility
reasons concerning intermediaries, e.g. proxies, that provide authentication, caching,
security scanning, and the like. Finally, there is no user or application authentication,
message integrity and confidentiality depends on the optional usage of SSL/TLS, the
application-to-application authorization can eventually be implemented using CORS –
which at least runs faster thanks to HTTP 2.0 – and preserving control-flow integrity
remains each application’s own business.

Summing up, the contributions of this thesis are still valid after the introduction of
HTTP 2.0. All approaches are applicable with HTTP 2.0 though the clear structure of
request-response round trips will be watered down. Nevertheless, web applications will
react on requests and perform respective actions. In this context, request authentica-
tion and control-flow integrity remain crucial elements of web communication security.
We believe that the message-based security provided by our authentication protocol in

24see http://httparchive.org/trends.php, Nov 2014
25https://http2.github.io/
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Section 6 will also have performance benefits compared to the conventional SSL/TLS
channel due to the new connection multiplexing with parallel streams. However, the
example of SPDY shows that only a big player in the web market can establish changes
on the client side and on the server side, for instance, to introduce a sophisticated
authentication protocol.
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