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ABSTRACT

Quantum computing is an emerging technology that has the potential to change the perspectives and ap-
plications of computing in general. A wide range of applications are enabled: from faster algorithmic solu-
tions of classically still difficult problems to theoretically more secure communication protocols. A quantum
computer uses the quantum mechanical effects of particles or particle-like systems, and a major similarity be-
tween quantum and classical computers consists of both being abstracted as information processing machines.
Whereas a classical computer operates on classical digital information, the quantum computer processes quan-
tum information, which shares similarities with analog signals. One of the central differences between the
two types of information is that classical information is more fault-tolerant when compared to its quantum
counterpart.

Faults are the result of the quantum systems being interfered by external noise, but during the last decades
quantum error correction codes (QECC) were proposed as methods to reduce the effect of noise. Reliable
quantum circuits are the result of designing circuits that operate directly on encoded quantum information,
but the circuit’s reliability is also increased by supplemental redundancies, such as sub-circuit repetitions.

Reliable quantum circuits have not been widely used, and one of the major obstacles is their vast associated
resource overhead, but recent quantum computing architectures show promising scalabilities. Consequently
the number of particles used for computing can be more easily increased, and that the classical control hard-
ware (inherent for quantum computation) is also more reliable. Reliable quantum circuits haev been inves-
tigated for almost as long as general quantum computing, but their limited adoption (until recently) has not
generated enough interest into their systematic design.

The continuously increasing practical relevance of reliability motivates the present thesis to investigate
some of the first answers to questions related to the background and the methods forming a reliable quantum
circuit design stack.

The specifics of quantum circuits are analysed from two perspectives: their probabilistic behaviour and
their topological properties when a particular class of QECCs are used. The quantum phenomena, such as
entanglement and superposition, are the computational resources used for designing quantum circuits. The
discrete nature of classical information is missing for quantum information. An arbitrary quantum system
can be in an infinite number of states, which are linear combinations of an exponential number of basis states.
Any nontrivial linear combination of more than one basis states is called a state superposition. The effect
of superpositions becomes evident when the state of the system is inferred (measured), as measurements are
probabilistic with respect to their output: a nontrivial state superposition will collapse to one of the compo-
nent basis states, and the measurement result is known exactly only after the measurement. A quantum system
is, in general, composed from identical subsystems, meaning that a quantum computer (the complete system)
operates on multiple similar particles (subsystems). Entanglement expresses the impossibility of separating
the state of the subsystems from the state of the complete system: the nontrivial interactions between the sub-
systems result into a single indivisible state. Entanglement is an additional source of probabilistic behaviour:
by measuring the state of a subsystem, the states of the unmeasured subsystems will probabilistically collapse
to states from a well defined set of possible states. Superposition and entanglement are the building blocks of
quantum information teleportation protocols, which in turn are used in state-of-the-art fault-tolerant quan-
tum computing architectures. Information teleportation implies that the state of a subsystem is moved to a
second subsystem without copying any information during the process.

The probabilistic approach towards the design of quantum circuits is initiated by the extension of classical
test and diagnosis methods. Quantum circuits are modelled similarly to classical circuits by defining gate-lists,
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and missing quantum gates are modelled by the single missing gate fault. The probabilistic approaches to-
wards quantum circuits are facilitated by comparing these to stochastic circuits, which are a particular type of
classical digital circuits. Stochastic circuits can be considered an emulation of analogue computing using digital
components. A first proposed design method, based on the direct comparison, is the simulation of quantum
circuits using stochastic circuits by mapping each quantum gate to a stochastic computing sub-circuit. The
resulting stochastic circuit is compiled and simulated on FPGAs. The obtained results are encouraging and
illustrate the capabilities of the proposed simulation technique. However, the exponential number of possible
quantum basis states was translated into an exponential number of stochastic computing elements.

A second contribution of the thesis is the proposal of test and diagnosis methods for both stochastic and
quantum circuits. Existing verification (tomographic) methods of quantum circuits were targeting the recon-
struction of the gate-lists. The repeated execution of the quantum circuit was followed by different but spe-
cific measurement at the circuit outputs. The similarities between stochastic and quantum circuits motivated
the proposal of test and diagnosis methods that use a restricted set of measurement types, which minimise the
number of circuit executions. The obtained simulation results show that the proposed validation methods
improve the feasibility of quantum circuit tomography for small and medium size circuits.

A third contribution of the thesis is the algorithmic formalisation of a problem encountered in teleportation-
based quantum computing architectures. The teleportation results are probabilistic and require corrections
represented as quantum gates from a particular set. However, there are known commutation properties of
these gates with the gates used in the circuit. The corrections are not applied as dynamic gate insertions (dur-
ing the circuit’s execution) into the gate-lists, but their effect is tracked through the circuit, and the corrections
are applied only at circuit outputs. The simulation results show that the algorithmic solution is applicable for
very large quantum circuits.

Topological quantum computing (TQC) is based on a class of fault-tolerant quantum circuits that use the
surface code as the underlying QECC. Quantum information is encoded in lattice-like structures and error
protection is enabled by the topological properties of the lattice. The 3D structure of the lattice allows TQC
computations to be visualised similarly to knot diagrams. Logical information is abstracted as strands and
strand interactions (braids) represent logical quantum gates. Therefore, TQC circuits are abstracted using a
geometrical description, which allows circuit input-output transformations (correlations) to be represented as
geometric sub-structures.

TQC design methods were not investigated prior to this work, and the thesis introduces the topological
computational model by first analysing the necessary concepts. The proposed TQC design stack follows a
top-down approach: an arbitrary quantum circuit is decomposed into the TQC supported gate set; the re-
sulting circuit is mapped to a lattice of appropriate dimensions; relevant resulting topological properties are
extracted and expressed using graphs and Boolean formulas. Both circuit representations are novel and appli-
cable to TQC circuit synthesis and validation. Moreover, the Boolean formalism is broadened into a formal
mechanism for proving circuit correctness.

The thesis introduces TQC circuit synthesis, which is based on a novel logical gate geometric description,
whose formal correctness is demonstrated. Two synthesis methods are designed, and both use a general planar
representation of the circuit. Initial simulation results demonstrate the practicality and performance of the
methods.

An additional group of proposed design methods solves the problem of automatic correlation construc-
tion. The methods use validity criteria which were introduced and analysed beforehand in the thesis. Input-
output correlations existing in the circuit are inferred using both the graph and the Boolean representation.

The thesis extends the TQC state-of-the-art by recognising the importance of correlations in the validation
process: correlation construction is used as a sub-routine for TQC circuit validation. The presented cross-layer
validation procedure is useful when investigating both the QECC and the circuit, while a second proposed
method is QECC-independent. Both methods are scalable and applicable even to very large circuits.

The thesis completes with the analysis of TQC circuit identities, where the developed Boolean formalism
is used. The proofs of former known circuit identities were either missing or complex, and the presented ap-
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proach reduces the length of the proofs and represents a first step towards standardising them. A new identity
is developed and detailed during the process of illustrating the known circuit identities.

Reliable quantum circuits are a necessity for quantum computing to become reality, and specialised de-
sign methods are required to support the quest for scalable quantum computers. This thesis used a twofold
approach towards this target: firstly by focusing on the probabilistic behaviour of quantum circuits, and sec-
ondly by considering the requirements of a promising quantum computing architecture, namely TQC. Both
approaches resulted in a set of design methods enabling the investigation of reliable quantum circuits.

The thesis contributes with the proposal of a new quantum simulation technique, novel and practical
test and diagnosis methods for general quantum circuits, the proposal of the TQC design stack and the set of
design methods that form the stack. The mapping, synthesis and validation of TQC circuits were developed
and evaluated based on a novel and promising formalism that enabled checking circuit correctness.

Future work will focus on improving the understanding of TQC circuit identities as it is hoped that these
are the key for circuit compaction and optimisation. Improvements to the stochastic circuit simulation tech-
nique have the potential of spawning new insights about quantum circuits in general.



vi



Contents

INTRODUCTION 3
1 Reliable quantumcircuits . . . .. . ... oL oo Lo oL 5
2 Designflow . ... ... . L o 6
1.3 Problemstatement . . .. ... ... ... ... 8
4 Outline . . ... . . . e 9
BACKGROUND I
21 Quantum bits, gatesand circuits . . . . ... o000 Lo 11
2.1 Postulates of quantum mechanics . . . . .. ... 11
2.2 Quantumcircuits . . . ... L. L 18
2.3 Gateteleportation. . . . . ... oL Lo 22
2.1.4  Stabiliser formalism . . . . .. ... ... oL 25
2.5 Graphstates. . . .. ... Lo L oo 27
2.2 Measurement-based quantum computing . . . . ... 30
2.3 Fault-tolerant quantum computing . . . . . ... ... Lo 0L 34
2310  Pureandmixedstates . . . . ... .. ... ... ... 34
232  Quantumchannels . . . .. ... Lo Lo 36
2.3.3  Quantum error-correction . . . . . ... e 37
2.3.4  Faulttolerantdesign . . . . . ..o oL oL 44
23.5 Thesurfacecode . . . ... ... ... ... ... .. ...... 47
ProBaBILISTIC CIRCUITS 55
3.1 Simulation of quantum circuits using stochastic computing . . . . . . . .. 56
3.1.1 Mapping of quantum circuits to stochastic circuits . . . . . . . . . 59
3.2 COSLMEasures . . . . . . . v i i e e e e 60
3..3  Arbitrary quantumgates . . .. ... ... 62
3.1.4  Particular quantumgates . . . . ... ... 62
3.5  Simulationresults . . . . ... L oL 65
3.6 Conclusion . . . . . ... 69
3.2 Verification of probabilistic circuits . . . . . ... Lo 69
320 Quantum state tomography . . . ... ... 69

vii



3.2.2  Faultmodels . ... ... ... ... ... .. ... ... ... 71

3.2.3  Distancemeasures . . . . . . . ... ... 72
3.2.4  Tomographic testing and diagnosis . . . . . ... ... ... ... 73
3.2.5  Binary tomographictests . . . ... ..o L oo 75
3.2.6  Slicing and modifiers of quantum circuits . . . . . ... L. L 76
3.2.7  Simulationresules . . . . ... ..o L Lo L 78
32.8 Conclusion . . ... ... ... ... . e 8s
33 Paulitracking . . .. ... Lo Lo o 8s
331 The quantum gate corrections . . . . . ... ... .. ... ... 86
3.3.2  Paulitrackingalgorithm . . . .. ... ... ... o000 87
3.3.3  Simulationresults . . . . ... L oL 88
33.4 Conclusion . . .. ... ... ... 89
3.4 Summary ... ... 90
TororoGicaL QUANTUM COMPUTING 95
4.1 DPreliminaryanalysis . . . .. ... ... ... .o 0 Lo L 96
411 ThesurfacecodeinMBQC . . . . . ... ... L 96
412 Thelattice. . . . . .. ... ... .o 99
413  Logical initialisation and measurement . . . . . .. ... ... .. 100
414 Logicalstabilisers . . . ... .. ... ... .. .. 0 00 101
4.5  Correlationsurfaces . . . . . . .. .. ... .. 103
416 TheCNOTgate . .......... ... ............. 105
417 TQC circuit geometric description . . . . .. ... 107
418  Designof TQCcircuits . . . ... ... ... .. .. ... .. .. 109
4.9  Circuitspecification . . . . . .. ... ... L L. 110
4.2 Validity of correlationsurfaces . . . . . ... ... L oL 12
4.3 Graph representation of TQCcircuits . . . . . ... ... ... .. .. .. 118
431  Properties . . . . ..o 19
432 Relationtostabilisers . . . . ... ... ... ... ........ 121
4.4 Boolean representation of TQCcircuits . . . . . . .. .. ... ... ... 122
4.41  Typesofvariables . . . .. ... ... .. o000 123
4.42 Formingtheclauses . . . . . ... ... ... .. 00 124
4.4.3  Complete Boolean expressions . . . . . ... ... ... 124
4.5 Construction of correlationsurfaces . . . . . . . . ... .. ... ..... 124
450 Mappingof TQCocircuits . . . . . .. ... ... ... 125
452 Computingtubes . . . ... ... L oL 126
4.53 Computingsheets . . . . . ... ... o L L L L 127
4.5.4 Complexity . . . .. ... L 131
4.5.5  COITECTNESS . . v v v v v v e e e e e e e e e e e e e e 132
4.5.6  Graph-based construction . . . . ... . Lo 135
4.5.7  Boolean-expression-based construction . . . . .. ... ... L. 136

viii



4.6 Summary . ...

s TororoGIcAL CIRCUIT EQUIVALENCE

s TheB-notation . . . . . . . . . . .. e
§.LI Junctions . . . ... L
s.2  Bmotationasagraph . . . ... ... o 0 oL
s..3  Variables . . . ... ...
sz TQCcircuitidentities . . . . . . ... ... Lo Lo
s21  Theno-braid . ... ... ... ... ... .. ... .. ... ..
s2.2  Double-braiding . .. ... ... .. . o oo
523 Ringrotation . . . .. ... .. ... ... ... L.
s2.4 Tworings . . . .. .. ...
s.2.5  TheRaussendorf-ring . . . . ... ... .. oL
s2.6  Bridging. ... ... ... .. oo
s27  Splitdng . . ...
5.2.8  TheRaussendorf-cage . .. ... ... .. ... .. .. .. ...
s.2.90 Conclusion . . . ... ... ..
5.3 Synthesisof TQCucircuits . . . . ... ... ... ... .. .. ...
531  The CNOT gateinTQC . . . ... ... ... ... .......
s.3.2  Synthesisalgorithms . . . .. ... ... .o 0 000
533  Results . .. ... . ..
s3.4 Conclusion . . .. ... ... .. ...
s.4 Validation of TQC Circuits . . . . . . . ... ... ...
s.4.1  Symbolicvalidation . . . . ... ... oo Lo Lo
s.4.2  Cross-layervalidation . . . . ... .. .. .o o L0
s.43 Results . . . ...
s.4.4 Conclusion . . .. ... ... ...
S5 Summary ...

6 CONCLUSION

61 Critique . . ... ...

6.2 Futurework . . . . . ..

6.3 SUMMAIY . . . . oo vttt e e e
REFERENCES

141
142
145
145

150
150
151
152
153
154






Introduction

THE DISCOVERY OF QUANTUM MECHANICS introduced new perspectives about real-

ity, which at the beginning were difficult to accept. The major obstacles constituted the
counter-intuitive effects possible to be described by the new theory, but the predictions of
quantum mechanics were supported by numerous experiments. This led to new questions,
and the most celebrated was formulated by Feynman™**, asking if it would be possible to
simulate quantum mechanical effects using a quantum computer.

The first quantum algorithm was formulated by Deutsch P**"7* and this development
lead to a quick discovery of further algorithms and ways to use the quantum circuit formal-
ism B¢ "9 for solving computational problems. One of the turning points was the discovery
of Shor’s algorithm, which showed that quantum computers enable fast integer factorisa-
tion. The efforts of building a quantum computer were thus increased leading to a new set
of scientific questions being asked. What are feasible quantum computing architectures,
and are there ways to compensate the environmental action (noise) on the computation by
performing error checking and correction?

Decoherence is the loss of the quantum mechanical properties of a system due to the ef-
fect of quantum noise. An architecture describes the computing system by specifying its
parts and relations, and a key concept in the architectural design is the decoherence time:
the time for which the computer remains quantum-mechanically coherent. The feasibility
of an architecture is dictated by the length of the longest possible quantum computation
given by the ratio between the decoherence time and the time it takes to perform elementary
computations (e.g. gates).

In a quantum computer, as in a classical analogue computer, small errors accumulate



over time and eventually add up to large errors, and it is difficult to find methods that can
prevent or correct such small errors™™®. The solution was to fight entanglement with en-
tanglement. In short, quantum entanglement means that multiple quantum systems are
linked together in a way such their state is indivisible. The major source of errors during a
computation is generated by the computing system being entangled with its environment,
such that the system becomes susceptible to external influence and decoheres. Environmen-
tal interactions are reduced by including redundancies into the system, where homogeneous
subsystems are entangled such that the resulting system has the same properties as its con-
stituents. The first quantum error checking and correcting (QECC) protocols were exten-
sions of classical error correction methods like the Hamming code ©0t9Pr<98DMNThhe jnj-
tial developments sparked the interest for QECCs, and multiple classes of such codes were
formulated. The most popular and practical classes were proposed by Kitaev’™** and use
topological properties to encode and protect information.

The theoretical results gathered through the investigation of QECCs raised the attraction
of quantum computing once more, and possible hardware architectures where proposed,
for example in”"™* "2 The evolution of quantum architectures can be compared to the be-
ginnings of the digital computer: various proof-of-concept experimental setups were pre-
sented, but few were shown to be sufficiently scalable to support quantum computing in
the near future. A key aspect that will enable the adoption of any given architecture is its
support for scalable quantum error correction methods "9,

Technological scalability and elasticity are two complementary notions. The search for
scalable quantum systems stems from the aparent empirical utility witnessed this age by
the increased computing and information storage capabilities (see Moore’s Law *“"). Scal-
ability is, in general, associated to the positive effect of increase, but elasticity would be a
more fitting criterion for future quantum computers. Elasticity is one of the main concepts
that allowed the definition of present cloud services, like distributed virtual networks PRdMro
An elastic technology has a utility margin that is not strongly fluctuating in the long term,
and such a technology responds better when confronted with oscillating demand. When
discussing scalable quantum computing the accent will fall on the capability of handling
both small and large computational problems, whose solutions require either a small or
large amount of error-correction.

Quantum computing attracted the attention of computer engineers that translated the
concept of reversible computation into the field of classical Boolean circuits by using ini-
tial developments by Toffoli™*%*. Logical reversibility, first formulated by Landauer FHA9S
refers to the property of a computation being reversed, meaning that the input of an algo-
rithm can be easily backtracked starting from the output. Classical reversible computation
offered again a new set of questions to be answered. What circuit design methods are mean-
ingful in the reversible context? How are reversible circuits tested and diagnosed? What cost
measures are meaningful when optimising reversible circuits?

This work proposes efficient design methods that reduce the complexity of practical is-



sues in reliable quantum circuits. The methods are formulated in a period where the future
of quantum computing is uncertain. The reasons range from the usefulness of quantum
computing, intersect socio-economic aspects, and include the skeptisism towards disruptive
technologies™™. The engineering feasibility of quantum architectures is also questioned.
As a result, the design methods have to be architecture-agnostic to some extent, and the in-
sights gained during their development should have a consequence outside their initial field.

.1 RELIABLE QUANTUM CIRCUITS

The quantum circuit formalism, developed after the publication of Deutsch’s algorithm P,

is a representation similar to classical circuit diagrams. The term quantum circuit is not
unanimously accepted, and, for example, Deutsch disagrees with it and insists that it should
be called quantum computational network because the word “circuit” implies a closed

path*. However, this work will refer to quantum circuits, which is a term universally adopted
in the computer engineering community. Quantum circuits are understood as a quantum
analog of classical circuits, consisting of quantum gates and quantum bits (qubits). A quan-
tum circuit is the abstraction of a quantum computation executed on a quantum system,
and various implementations of a quantum computer are abstracting qubits using the spin
of elementary particles (e.g. photons).

The reliability of a quantum circuit is generally analysed in an architecture independent
manner, by assuming qubit error rates or other modeled parameters that negatively influ-
ence the circuit’s execution. In general, system reliability was extensively investigated, and
according to the taxonomy from ****# reliability is an attribute that refers to the continuity
of correct service. For quantum computers reliability is a result of efficient fault-tolerance,
where, according to the same taxonomy, a fault is the adjudged or hypothesised cause of an
error (service deviation). For the purpose of this work, the term “service” will be understood
as computation.

Reliable quantum circuits are the result of active and effective fault-tolerance (avoid ser-
vice failures in the presence of faults*"*°#). Throughout this work Preskill’s laws of fault-
tolerant computation™*® are used: 1) do not use the same qubit twice; 2) copy the errors,
not the data; 3) verify before encoding; 4) repeat operations; s) use the right error correct-
ing code. The first law introduces the redundancies necessary to reduce the propagation of
errors, while the second law sets the focus on the errors and not on the encoded informa-
tion. Ideally, quantum gates should directly operate on encoded data. The third and fourth
law say that each computational step should be checked for correctness, and that repeating
a step reduces the associated probability of failure. Finally, the fifth law requires the wise
choice of the error-correcting method: some codes may be suited for a given application,
while others may not. For example, codes with large resource overheads and good perfor-
mance may not be useful for large non-critical portions of a computation.

*“http://www.daviddeutsch.org.uk/2012/07/they-arent-quantum-circuits/



Reliable quantum circuits are the starting point for scalable quantum computing, and
according to DiVincenzo® °°, there are five requirements for the implementation of (scal-
able) quantum computation: 1) a scalable physical system with well characterised qubits; 2)
the ability to initialise the state of the qubits to a simple fiducial state; 3) long relevant de-
coherence times, much longer than the gate operation time; 4) a universal set of quantum
gates; 5) a qubit-specific measurement capability. Well-characterised qubits are represented
by quantum systems whose physical parameters are accurately known. The second require-
ment arises from the straightforward computing requirement that registers should be ini-
tialized to a known value before the start of computationD+°°. The second reason for this
requirement is the first law of fault-tolerance, which requires a continuous supply of qubits.
Decoherence times characterise the dynamics of a qubit in contact with its environment,
and the third criterion ensures that computations are faster than the negative environmental
influence. The fourth criterion asks for a quantum computer to support arbitrary quan-
tum computations using a discrete set of gates, similarly to how NAND gates are used for
expressing all Boolean functions. The final criterion states that it is possible to reliably mea-
sure the output of a computation.

This work is motivated by the reduced size of the apparatus regarding the automatic de-
sign of reliable quantum circuits. Design automation is being considered by the reversible
computing commmunity* > which investigates Boolean circuits composed of gates from
the quantum context, but not supporting quantum specific phenomena. The methods are
not capturing the complete complexity of quantum computations, and are not suited for
general quantum circuits. On the other hand, in the physics community the pragmatic as-
pects of design automation have not been considered until recently.

Quantum circuit design methods were initially proposed as extensions of the methods
used in classical circuit design. However, the properties of quantum mechanical systems are
not intuitive and do not have classical counterparts, such that their exploitation is difficult.
Hence, the extended classical methods do not always deliver the results hoped for. Never-
theless, first specialised methods were formulated from both a top-down and a bottom-up
perspective. The top-down approach starts from the quantum algorithm analysis and tries
to define appropriate quantum architectures, whereas the bottom-up approach considers
technologically feasible quantum architectures and maps the algorithmic formulation to
such architectures. The design of reliable quantum circuits is often architecture-specific or
algorithm-specific, and a unified methodology similar to the one existing for classical circuits
was not formulated.

1. DESIGN FLOW
The explosive growth of VLSI (very large scale integration, the process of integrating large

numbers of transistors on a single chip) was enabled by both the continuous shrinking of
transistor sizes, but also by the refinement and better understanding of the necessary design

6



methods. The number of transistors that can be physically implemented on a chip grows
faster than the ability to design the chips (a phenomenon known as the design gap) V"™, and
computer engineers and scientists are still not able to fully exploit the technical state of the
art. The ability to verify the correctness of the designed circuits is also negatively affected
(verification gap)"™°. The situation in the far more mature VLSI domain is not yet a reality
for quantum circuits, but it is useful to conceive methods required in a probable future.

The frame of reference in this work is the circuit specification, which will be used to guide
the decisions taken to propose the design methods. The relation between the specification
of a circuit and a particular instance of the implemented specification can be noted by look-
ing at the design flow of circuits.

Circuit design is a process that starts from a specification and ends at various concrete
implementations™*™°*, and in between a series of steps is performed and reiterated when
needed. Although different, the implementations are expected to be correct, and a ma-

jor difference between implementations consists in the associated costs. For reversible and
quantum circuits some examples are the number of qubits (wires), the number of gates and
the nearest neighbour cost, which denotes the effort needed to make an arbitrary circuit
consist only of gates operating on neighbouring qubits"”*°. The choice of a particular im-
plementation depends on the cost metric mix that fits the requirements.

The design process consists of two components "’ “%: the topology of the circuit (refers
to the gate elements and the connections between them), and the gate set from which the
circuit has to be constructed. Some gate sets supported by an architecture could be very
difficult to implement in another, and the gate set is a factor influencing the choice of the

architecture.

The different implementations need to be tested for correctness, and design verification
is the reverse process of design: it starts with an implementation and confirms that the im-
plementation meets its specification ™. The whole framework of testing the implementa-
tion correctness hypothesis requires that design verification makes a prediction that can be
checked by observation (circuit is working indeed). For the observation to function some

auxiliary assumptions are needed, but these introduce idealisations Sobgg

Throughout this work the main idealisation is that the verification procedures are im-
plemented correctly in software. Therefore, there are two types of errrors that could occur
during verification: implementation errors and soffware bugs, but only the ones in the imple-
mentation are sought after.

Inso8

There is a distinction to be made between verification and validation. According to ™,
validation is the technique of evaluating a product during or at the end of a project to en-
sure it complies with the specification ™, while verification assures that the product sat-
isfies certain imposed conditions. Considering circuit implementations as products, it is

entirely possible that an implementation passes verification but fails validation.

Returning to the design flow, the first step is the synthesis of a circuit, where the spec-
ification (or a higher level description of the requirements) is transformed into an initial



circuit implementation. Afterwards, the circuit is optimised with regard to the targeted cost
measures, but optimisation (manual or automatic) could introduce errors in the output im-
plementation. A successful verification and debug phase is followed by an optional circuit
optimisation phase, which requires a supplemental verification and debugging phase ™.
Finally, the circuit is either re-synthesised or simply declared as the final result of the design
process.

There are two options for performing verification: by simulation or by formal methods.
Formal verification investigates a design property which is part of the specification, and the
checking is performed by abstracting the circuit behaviour using a canonical representa-
tion. This is a complex task, for there may exist unanticipated dependencies between design
details and the implementationDﬂg’g. However, a canonical representation will have the char-
acteristic property that two functions are equivalent if their respective representations are
isomorphic™™*.

Verification by simulation is often targeted at the hardware layer of the specification
by inspecting design properties that can be inferred from the circuit execution. During
simulation-based verification an implementation under test is checked for the existing re-
lations between the inputs and the outputs. For classical Boolean circuits, it is similar to
(partial) truth table inspection. Nevertheless, a complete verification by simulation is not
computationally feasible for non-trivial instances: there is an exponential number of input
stimuli (test vectors) required to exhaustively simulate the entire design™"°®. In spite of this
fact, simulations can be a successful tool.

The increased design complexity (see design gap) reduces the applicability of simulation-
based verification but also increases the difficulty of formal verification. As a result, a spec-
trum of intermediary semi-formal verification methods was proposed ®%. A first option
is conventional simulation. This can be extended to include the analysis of coverage, which
is a measure that describes the degree to which the design has been verified. Smart simu-
lation would generate test vectors (offline or online) based on a coverage metric test vec-
tor generation. Another option is wide simulation®9® by symbolically representing large
sets of states in relatively few simulations (e.g. binary decision diagrams). Wide simula-
tion (also called symbolic simulation) would use logical expressions which have operators
on higher-level data types in order to abstract away datapath elements. Finally, prioritised
model checking”!% explores state space partitions through heuristics that try to find errors
early in search.

1.3 PROBLEM STATEMENT

Design methods for error-corrected quantum computing architectures have not been until
recently extensively investigated, and the problems of circuit validation, circuit equivalence
and circuit synthesis have been proposed only in a formalism similar to the classical circuit

(network of gates). The efforts of the research community have focused on circuit depth re-



duction algorithms or reduction of the required number of qubits (the quantum equivalent
of classical bits) VP™°. Moreover, in the quantum circuit formalism, error correcting meth-
ods are embedded into the computation as subcircuits, but another paradigm of reliable
quantum computing was proposed by considering topological properties of particle interac-
tions. The unreliability of quantum states and gates in the presence of environmental noise
was shown to be reduced if particle-like structures called anyo;’zsc"l"6 are used. A topological
quantum computer would operate differently from a classical one. The model abstracts par-
ticle paths through strings, and the calculations are based on braided strings. The resulting
braid pattern dictates the implemented computation. In this computational model the knot
theory‘t“d"w4 finds additional applications.

The solutions proposed in this thesis result from a twofold methodology. A first path
of investigation states the problem in the context of probabilistic computing methods.

The observed probabilistic behaviour of quantum circuits motivates the quest for alter-
nate quantum circuit simulation techniques. Furthermore, existing reversible circuit design
methods have been formulated from the computer engineering perspective, and it is inter-
esting to transcend the scientific domains barrier and to ask which circuit fault models and
verification techniques are applicable, and can be specialised for probabilistic circuits, in
general, and for quantum circuits, in particular. The interdisciplinary approach results in a
novel quantum circuit verification technique that significantly extends the one of classical
circuits, as well as a new quantum circuit simulation method.

The second path of investigation in this thesis treats the design method problematic of
topological quantum circuits. The proposed solutions were constructed starting from the
topological error correcting codes, a simulated model inspired by anyonic interactions,
which still have to be experimentally demonstrated. Moreover, this work is the first to in-
troduce a formalisation of topological circuit equivalence from the perspective of computer
engineering. The solution is based on a notation, which is simultaneously used to lay the
foundations of topological circuit synthesis and verification.

1.4 OUTLINE

The thesis is structured as follows. The second chapter introduces the necessary background.
The quantum circuit representation is paralleled by the quantum graph-states, which lay

the foundations of the briefly presented measurement based quantum computing model.
The importance of error correction is acknowledged by describing its central notions, and
finally the chapter presents an example of a topological error correcting code.

The third chapter is focused on placing quantum circuits into the probabilistic circuits
frame. Furthermore, stochastic circuits operating with probabilities Gaio9 are presented as an
alternative to classical circuits. The analogy is extended to include quantum circuits. The
probabilistic perspective is used for verification purposes after presuming a practical and
applicable quantum gate fault model. The first presented design method is a simulation



framework of quantum circuits using stochastic computing. Afterwards, the simulation-
based validation of probabilistic circuits is introduced by starting from a set of simplified
assumptions. The verification method is extended during the second step, and quantum
specific phenomena are included into the fault model. The results indicate an improved
verification that has a reduced computational complexity.

Chapter 4 introduces the subject of topological quantum computing, where a three-
dimensional topological code is used in a measurement based computing model. The chap-
ter solves the problem of mapping an abstract computational description on hardware el-
ements that are still architecturaly agnostic. The findings are theoretical on their own and
will be used as foundations of the constructive procedures described in the following chap-
ter. The design methods in this chapter are examined through simulations, and their cor-
rectness is formally shown.

The fifth chapter investigates the properties of computations mapped to the topologi-
cal code. The properties are extracted into the original notation, developed in the previous
chapter, that enables a formal verification of the circuits. Equivalence checking, validation
and synthesis of the topological circuits use the notation, too. The low computational com-
plexity, mirrored in the simulation results, indicate the practicality of the approaches.

Chapter 6 concludes the present work and offers perspectives on future research.
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Background

QUANTUM COMPUTATION AND QUANTUM INFORMATION are the study of the infor-
mation processing tasks that can be accomplished using quantum mechanical systems™N".
Quantum computation is an application of quantum mechanics, where the evolution of a
quantum system is described by a quantum algorithm. This observation is supported by the
authors of V'°, where they express their hope that quantum computing will be used as an
introduction to quantum mechanics because “quantum computation and quantum infor-
mation offer an excellent conceptual laboratory for understanding the basic concepts and
unique aspects of quantum mechanics”.

2.1 QUANTUM BITS, GATES AND CIRCUITS

The quantum computing paradigm will be gradually presented and, where possible, analo-
gies to classical computing will be made. For example the classical bit, the classical gates and
the classical circuits have quantum analogon counterparts. Quantum circuits consist of
quantum gates operating on quantum bits (qubits). Although physical systems able to rep-
resent quantum information are called qubits, in general the term will denote the mathe-

matical object, as this is the case in the present chapter™¥°.

2..I POSTULATES OF QUANTUM MECHANICS

The foundations of quantum mechanics are postulated, and the postulates are useful for
introducing quantum computing using physical quantum systems.
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STATE SPACE

Associated to any isolated physical system is a complex vector space with inner product
known as the state space. The system is completely described by its szate vector, which is a
unit vector in the system’s state spaceNC“’.

The simplest quantum mechanical system is the qubit, having a two-dimensional state
space, and the state vector describing a qubit is, in general, denoted by |¢). The qubit is the
quantum analog of the classical bit, but while a bit is either 0 or 1, the state of a qubitisasa
linear combination of the |0) and |1) states. The |0) and |1) states are called computational
basis states.

The normalisation condition, that |1)) be a unit vector, (1[1)) = 1is for a qubit equiv-
alentto [a]* + |b]* = 1;asaresult, the state is written as in Equation 2.2. The bra-ket
notation is used as the standard quantum mechanical notation, and the properties of the
notation are summarized in Table 2.1.

) =al0) +2[1);  10)=(1,007%  [1)=(0,1)" (21)
) = e”(cosg 0) + € sing 1)), withf, ¢,y € R (2.2)

The phase of a state is either global () or relative (¢).
The vector space C? can be spanned by the set of vectors {|0) , |1) }, but other spanning
sets also exist. For example {|+) , |—) } are used to express [¢)).

0,0
V2 V2
|_> ) |+> = (17 1)T; |_> = (1’ _1)T

+)

a+b a—2b
= +)+
%) 7 +) 7
In general, the parameters 6, ¢, y allow one to visualise the state of a qubit on the Bloch
sphere (see Figure 2.1a), and the complex numbers 4, b are called amplirudes of the states.

The main difference to classical bits is that qubits can be in a superposition of states. This

is enabled by the states being linear combinations of the basis vectors, meaning that for a
given basis vector set, more then one amplitude is different from zero. For example the state

|—) is a superposition of |0) (amplitude 1/v/2) and |1) (amplitude —1/+/2).

EvoruTtiOoN

The evolution of a closed quantum system is described by a unitary transformation. The
state of the system at time 7, is related to the state of the system 7, by a unitary operation U
which depends only on time #; and 7N, Quantum evolution is reversible and this prop-
erty is captured by the unitarity property. Thus, the system’s state at time #, can be reversed
to the one of time #; by the unitary operation U,

W) =Ul)  |v)=U¥)
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Notation | Description

*

Z Complex conjugate of the complex number z
|1) Column vector, also known as ket
(Y| Row vector dual to [¢))
() | Inner product between the vectors |¢) 1))
|¢) @ [¢) | Tensor product of |p) [1))
|¢) [1)) | Abbreviated notation for tensor product of |¢) |t))
A Complex conjugate of the matrix .4
A" Transpose of the .4 matrix
A Hermitian conjugate of adjoint of the matrix 4, 4" = (A")*
(9| A4|v) | Inner product between |¢) and A |¢))

Table 2.1: Summary of the bra-ket notation NC10

The linearity of quantum mechanics NCro implies that the state transformations are ex-

pressed as unitary square complex matrices, which results in U, U =1 Any unitary matrix
is a valid quantum gate, but for practical reasons only some are used often, and the most fre-
quent matrices are the Pauli matrices 7, X, Y, Z, for which X = X, y=1,Z2= 27 and

Y =iXZ
10 0 1
0 —i 1 0
(1) - (08)

The X-gate is called bir flip gate and its action is similar to a classical bit flip, by trans-
forming the |0) into |1), and vice versa. The Z-gate is called the phase flip gate. The effect
of these gates is visualised as rotations on the Bloch sphere (see Figure 2.1b and 2.1c), and
the consecutive application of two X/ Z gates to a state will result in the output state being
unchanged.

X(al0) +b]1)) = a|l) + &|0)
Z(a|0) +b1)) = a|0) — &|1)
XXy = XX'|¢) = ZZ|y) = ZZ [¢) = |¢)

The exponentiation of the Pauli matrices results in the rotational gates Ry, R,, R, param-
eterised by the angle of the rotation™“*°. Hence, the bit flip is a rotation by 7 around the
X-axis, implying that X = R,(), and the phase -flip is a rotation by 7 around the Z-axis,

13



1 1 11 11

(a) (b) () (d)

Figure 2.1: The Bloch sphere, in which the Z axis is the vertical axis with |0) at the north of the sphere and |1) at the

south, while the X and Y axis form the equator: a) An arbitrary quantum state represented on the sphere; b) The bit flip

operator implemented as a rotation around the X axis; c) The phase flip is a rotation around the Z axis; d) The effect of
the Hadamard gate applied to the input |+ ) is a series of rotations that result in |0).

such that Z = R, ().

R(0) = e/ = cosZ[—isin-X=| ‘oz, ~ 03
2 2 —ising  cosg
Ry(Q) — 072 _— os ] —isin-Y = 69362 51n02
2 2 sing  COS g5
j 0 0 02
= z/2 _ o, .. 0
R(0)=e = cos 2[ Zsin 2Z = { 0 o/

In general, an arbitrary 2 X 2 unitary matrix U may be written as a product of rota-
NG where 7 and m are two orthogonal real unit vectors in three dimensions (see
Equation 2.3).

tions

U = & Ry(B)Ru(7)Ro(0) (23)

The Hadamard gate, the Pand the T gate are commonly used in the context of quantum

algorithms.
1 1 1 0
_ 1 _
H_ﬂ<1—1>P (0i>

(1 0 I
Tzes(oe—iZ)Rx(Z)_Ti(_i 1>

The Hadamard gate is usually used to construct state superpositions by taking input
states in a computational basis. Being a single-qubit gate, a Bloch sphere representation is
possible, too (see Figure 2.1d). The Hadamard gate is also its own inverse (HH = 1), and in
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general, the following relations hold:

H[0) = |+), H|1) = |-)

H = Ry(m/2)R,(7/2)Re(7/2)
T = ™8R, (m/4)
P=R,(7/2), TT=P, PP=2Z

The commutation properties between gates can be expressed by the commutator and
the anti-commutator. If [4, B] = AB — BA = 0, then A and B commute, otherwise if
{4,B} = AB+ BA = 0, then A, Banti-commute. For example, the Pauli gates X, Z
anti-commute, {X, Z} = 0, and their commutator is [X, Z] = —2:Y. It should be noted
that some gates neither commute nor anti-commute.

commutator :  [A, B] = AB— BA
anti-commutator :  {A, B} = AB+ BA

MEASUREMENT

Quantum measurements are described by a collection {4, } of measurement operators
(Hermitian complex matrices), for which 4% = M. These act on the state space of the
system being measured N“'°: if the state of the quantum system is 1)) immediatly before
measurement, the probability of the result 7 is given by Equation 2.4 and the state |)’) of
the system after the measurement is expressed by Equation 2.5. The output has collapsed to
the result 7, and the measured state is not the initial state before measurement.

plm) = (46| M My [10) (2.4)
) = ——Ln ) (25)
V1 M, )

For example, a measurement of a single qubit in the computational basis is described by
the set My, M of measurement operators, where M, = |0) (0| and A4, = |1) (1]. For
astate [¢)) = (a,b)7, the probabilities associated to outputs |0) and |1) are p(|0)) and
p(]1)), while the state after the 44y measurement will be |0) with an associated amplitude
a/|a|. More specifically, by measuring |+) in the Z-basis, the measured state will be either

10) (p(10) = 0.5) or [1) (p(|0) = 0.5).

p(0) = (Y| MMy [b) = (| My 1) = |a?
p(1) = (| M2y ) = (] My [¢) = |b]?

4] 4]
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A computational basis measurement, performed by the operators {|0) (0], |1) (1]}, is
also called a Z-measurement. An X-basis measurement is performed by using the operators
{|4) (+], =) ([}, such that the resulting state will be either |+) or |—).

A rotated measurement is performed in a basis different from the computational one,
meaning that the Bloch sphere axis, along which the state is measured, results after rotat-
ing one of the main axis (X, Y, Z-axis). For example, X-basis measurement is achieved by
first applying a Hadamard gate to the state, and then measuring in the Z-basis. In general,
rotated measurements are either directly performed in the rotated basis, or the state to be
measured is first rotated and then measured in the Z-basis.

The probability of a measurement result is not affected by the global phase ¢ of the
state, and from an observational point of view two states [1)1) , [1)2) that differ only by the
global phase are equal ™.

0 : 0
o)t = cos 3 (0] + ¢ sin§ (1]

(0l = i)' = ¢ (cos & (0] + ¢ sin 5 (1)
(0l € 2 M ) = (1] M M 1)

TENSOR PRODUCT

The state space of a composite physical system is the tensor product of the state spaces of
the component physical systems. Moreover, if the systems are numbered 1 through 7, and
system number 7 is prepared in the state [¢);), then the joint state of the total system isN":

[91) @ [th2) @ ... @ [1n)

For example, the state of a two qubit system, where the first qubit is in the state |1) and
the second qubit is |0), will be [1) |0) = |10). The tensor product postulate allows the
definition of multiqubit gates. The simplest case extends the definition of a single-qubit
gate U'to be applied to a two-qubit system, but to affect only one of the qubits.

(I19) @ (Uld)) = (U2 U)[ve)

The state of a multiqubit system is changed by applying a sequence of gates. For exam-
ple, the sequence X, H applied to input state |0) will result in |—). Quantum gates can be
applied in parallel on different qubits, if instead of applying a sequence of gates, the gates
are applied simultaneously. This should not be confused with guantum parallelism which is
the application of a single gate to a superposition of states.

Applygate Uy = (Ur [t1)) [tha) - [thn) = [001) [ha) - . - [90n)

Applygate Uy @ |)) (Uz[th)) ... [thn) = [¥01) [h3) . [¥n)

Applygate U, = [i1) [th) ... (Up [¥n)) = [1) [tb3) - [9))
Parallel application : (U1 ® Up ® ... ® U,) [1%2. .. 1Yy)
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One of the most used multiqubit gates is CNOT (controlled-NOT). The gate has two
inputs, known as control and targer qubit, and, being a two-qubit gate, is defined asa 4 x 4
matrix. The CNOT conditions a bit flip of the target qubit on the control qubit being in
the |1) state. For example, the |10) is transformed into |11) if the first qubit is the control
and the second is the target. The CPHASE is similar to CNOT in the sense that it has a con-
trol and a target qubit, but it conditions a phase flip on the target if the control is |1). The
CPHASE is control/target symmetric, as it transforms only the |11) state (Z|0) = |0)).

1000 100 0
0100 010 0
CNOT=| o o o 1 CPHASE=| o o 1 o
0010 000 —1

CNOT : [00) — |00),]01) — [01), |10} — [11),|11) — |10)
CPHASE : |00) — [00),[01) — [01),  [10) — |10),[11) — —|11)

The above state transformations illustrate that CNOT is a generalisation of classical XOR
because [¢)) [¢) — |1} |¢ @ ). Furthermore, CNOT and CHPASE are their own inverse,
meaning that CNOT' = CNOT and CPHASE = CPHASE'. A state is left unchanged if
CNOT or CPHASE are applied twice.

Entanglement is a quantum specific phenomenon and it is modelled by the tensor prod-
uct postulate. States that are a tensor product of other states are called separable states, but
a state that cannot be expressed as a tensor product is an entangled state. The Bell states are
often used as examples of such states.

5 100)+11) ~]00) — J11)
00 — \/i 10 — \/i
g 000 oy —10)

V2 SN
Entangled states are the result of applying entangling gates, like CNOT.

1 CNOT

\/5(|00> +[10)) — Buo

Similarly to how classical Boolean circuits are entirely constructed by using logic gates
from the set { AND, OR, NOT}, arbitrary quantum computations can be formulated from
a reduced set of quantum gates. Universality can be achieved by using a universal gate set.
One such set consists of CNOT (for its entangling action) and all the single qubit arbitrary
gates™“"°. However, there is a continuum of single qubit gates, while a reduced set of gates
would be of a higher practical relevance.

100) 22 |+0) =
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The definition of a reduced gate set is based on the the Solovay-Kitaev (SK) theorem "N°S,

which is a central result in quantum computation. The theorem shows that, roughly speak-
ing, if a set of single-qubit quantum gates generates a dense subset of all quantum gates, that
set is guaranteed to rapidly generate the set of unitary matrices of size 2 and determinant

1. Itis possible to obtain good approximations to any desired gate using relatively short se-
quences of gates from the given generating set”™°.

Very often the { H, Z, X, T, CNOT} set is used to express arbitrary quantum computa-
tions by any desired accuracy of approximation. The Hadamard will construct superposi-
tions, the 7"gate is used for Z-axis rotations like P = 77, and the R.(7/2) rotational gate
is implemented by the sequential application of HTTH = HPH. This reduced gate set has
also the advantage that there are known methods to implement it fault-tolerantly.

Another widely used set of gates is the Clifford group that consists of the CNOT gate, the
Pauli gates X, ¥, Z and the single qubit Hadamard gate and the P gate. The missing 7 gate
from the set renders the Clifford group as not universal.

2.1.2  QUANTUM CIRCUITS

It is possible to visualise a quantum circuit as a series of gates acting on the qubits that are
abstracted as wires. The wires do not have a direct physical representation, but are associ-
ated to a temporal axis. The inputs are on the left of the diagram, the outputs on the right,
and in each time step a quantum gate is applied to a qubit’s state abstracted by the wire.

It is standard to assume the inputs being initialised in the computational basis |0), and, if
otherwise, this will be indicated. Qubits, aiding during the construction of a circuit’s func-
tionality (are similar to temporary variables in programs), are called ancilla.

The control qubit is identified by a black dot for the controlled-gates, and a vertical line
connects the control to the target. Due to being similar with the classical XOR gate, the tar-
get of CNOT will be marked with @, but for CPHASE the target is also marked by a black
dot. This notation results from the fact that the basis state transformation of the CPHASE
is independent of which qubsit is target or control. For a two qubsit system, |, ) (control
qubit) and |%> (target qubit), CPHAS%> = CPHASE ‘%%>' Measurements in the
computational basis are represented by while indicates a qubit measurement in
the basis B.

In contrast to classical circuits, no FANOUT is allowed in quantum circuits, as gates are
reversible matrices. Furthermore, a FANOUT would allow information to be copied, which

is impossible for quantum information, as stated by the no-cloning theorem™°. If a unitary
transformation COPY exists, and is able to copy at least two states 1)) and |¢) over a quan-
tum register that is initialised into |s), the unitary gate COPY will preserve the inner prod-
uct. Moreover, because the states are normalised, the inner product will equal its square. It
follows that either the states are equal ((¢/|¢) = 1) or orthogonal ((¢)|¢) = 0) but not

arbitrary.
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Figure 2.2: Quantum circuits: a) The Bell states are constructed by using the inputs |00), |01), |10) and |11); b) A
|0) , |1) copying circuit; c) Swapping the states of two qubits using 3 CNOTS; d) The Toffoli gate.

COPY ) |s) = [¥)[¥)
COPY|¢)|s) = [9)[¢)
Wlo) = ((¥]8))
(Wlg) = 0= 1Y) =|¢)
(Ylg) = 1—|¢),|¢) areorthogonal

The orthogonality constraint reduces heavily the generality of such a COPY gate. The di-
rect implication is that, such a mechanism can only exist, for example, for |0) and |1) states
(see Figure 2.2b), but the circuit will not copy the |+) state.

Although copying information is impossible, it is possible to swap quantum states. Com-
pared to classical communication networks, where practically moving information between
destination and source is performed by copying the information from the source and delet-
ing it afterwards, in the quantum regime information is directly moved through swapping.
Two completely arbitrary states can be swapped by the application of a CNOT sequence, as
illustrated in Figure 2.2c.

V) [¢) = oo ]00) + o1 [01) + 1o [10) + g1 |11)
cNoT1 o [00) + avgr [01) + vy [11) + gy |10)
CNoT2, ao [00) + o1 [11) + a9 [01) + 1y |10)
CNOTS, a0 [00) + w01 [10) + a0 |01) 4 e [11)

REVERSIBLE COMPUTING

The interest in classical reversible computing was initially motivated by Landauer’s princi-
ple, which states that the erasure of information is dissipating energy™“*°. Not erasing in-
formation equates to not allowing FANINSs in the circuits, and this is the case for quantum
circuits, which, due to the linearity of quantum computing, have an equal number of input
and output qubits.
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The practical impact of heat dissipation in classical circuits, which is a problem that hard-
ware designers try to reduce, increased the relevance of the reversibility discussion. The ini-
tial hope was that computers might become more energy-efficient if classical computations
would be reversible. Most gates are not reversible, and classical computation can only be re-
versed if these gates are reinterpreted as linear transformations. For example it is not possible
to infer the inputs 2 and b after the application of an AND gate that resulted in the output
¢, AND(a,b) = c. The same observation holds for OR, XOR and, in general, for all the
two input and one output gates. The NOT gate is however reversible as it’s output is the
negation of the input, and no information is erased.

A possible solution for reversing classical computations is to express the circuits using
the Toffoli gate (see Figure 2.2d). The gate is a double controlled gate, has three qubits as
inputs and two of them control the bit flip of the third qubit. Its action is expressed as the
function toffoli(a,b,c)=(a,b,cD ab). By using Toffoli gates, arbitrary classical circuits can be
completely constructed in a reversible manner. For example, the classical NAND gate is
implemented as roffoli(a, b,1) = (a,b,1 @ ab) = (a, b, ~(ab)), and the FANOUT is
roffoli(1,4,0) = (1,4,0 ® a) = (1,4,0 & a). As classical universality can be achieved by
using exclusively NANDs and FANOUTTS, it results that classical circuits can be transformed
into reversible ones, as classical gates are functions of NANDs. The NAND constructions
of AND, NOT and the OR gates are:

AND(a,b) = NAND(NAND(a,b), NAND(a, b))
OR(4,b) = NAND(NAND(a,a), NAND(b, b))
NOT(a) = NAND(a,a)

A different approach towards a formulation of classical reversibility starts from the quan-
tum computing paradigm. In general, restricting a quantum copying gate only to orthogo-
nal states is equivalent to reducing the representational power of quantum states. An arbi-
trary quantum state is described by 2” complex amplitudes associated to computational ba-
sis states, whereas the orthogonal states, used in reversible computations, are representable
by classical binary strings. Hence, classically simulating a copying gate does not introduce
an exponential overhead. Such a reduced gate limits the computational power of a quan-
tum circuit into one of a classical circuit. Maintaining the reversibility aspect of quantum
computing, but considering only the copying of binary orthogonal states leads to reversible
classical computing. Reversible circuits do not provide features of quantum circuits such as
entanglement and state superposition.

INFORMATION TELEPORTATION

Quantum information (qubit states) cannot be copied, but there are ways to move informa-

tion from one qubit to another through quantum state teleportationBBC+93 (see Figure 2..3).
The teleportation circuit is defined over three qubits. The state |¢)) = « |0) + 5 |1) (up-

per qubit) will be teleported using a Bell state (lower qubits) constructed using the circuit

20



Figure 2.3: Teleportation circuits. The qubits indicated by the accolades are initialised into the B state: a) Circuit for
teleporting a qubit NC10. 1) Circuit for the remote CNOT*P%,

X-measurement Z-measurement State Correction
o o) al0) 4+ 811) I
o I al0) —B|1) Z
1 o all) + 510) X
I I al|ly — /310) XZ

Table 2.2: Teleportation of the state & [0) + 3 |1) is probabilistic and the measurement results dictate the necessary
corrections of the output state

from Figure 2.2a. The entangled pair of qubits will be shared between two communica-
tion parties (.4 and B received each a qubit from the Bell pair), and .4 would like to send
) to B. Measuring the qubit’s state would destroy the state, such that another method for
moving the state is necessary. It would be possible for .4 to entangle |¢/) with its Bell-pair-
qubit (the CNOT in the circuit). The resulting three-qubit state is entangled, implying that
|2) is in a way already shared between 4 and B. If .4 measures its two qubits in the X and
in the Z-basis, the resulting state of Bs qubit will be X™ Z |¢)), where m1 and m2 indi-
cate the measurement results. Note that the X-basis measurement is an application of the
Hadamard gate followed by a Z-measurement.

The X™ Z™ correction is a direct result of the measurements being probabilistic. There
is 2 25% probability that |¢)) is correctly teleported, and Table 2.2 contains the measurement
outcomes, the resulting output states and the necessary corrections. The final state of Bis
corrected depending on the X/Z-measurement results. The correction mechanism is illus-
trated in circuit diagrams by double vertical lines connecting the measurements to the X/Z
gates.

After A performs the two measurements the corrections are communicated to B using
classical means, as the measurement results are classical bits. This type of teleportation is
consistent with the LOCC (local operations and classical communication) paradigm. While
the state |¢)) is not communicated to B instantly, perfect quantum teleportation cannot

21



X ) ——2) ) -2 [0) —p—

[ I
0) — 9) ) — ) @

(a) (b) |t>

VAR
U

(c)

Figure 2.4: Circuits for teleporting the state of a source qubit to a neighbouring destination qubit, and a circuit for
performing a CNOT between neighbouring qubits.

be faster than the speed of light. Furthermore, in a LOCC scenario the CNOT cannot be
applied in a direct fashion between two qubits that are geographically separated, and for this
reason 4 and B have to share a previously constructed Bell pair. The remote CNOT circuit
presented in Figure 2.3 contains the control (4 side) and target (B side) qubits including the
Bell pair that enables the CNOT function.

Teleportation between two neighbouring qubits can be performed in the absence of the
LOCC restriction (see Figure 2.4). In this situation, information is teleported after initial-
ising the destination qubit to either |0) or |+), entangling the source with the destination
qubit using a CNOT, and finally measuring the source qubit into the X- or Z-basis. Neither
these circuits perform a perfect teleportation and the measurement results have to be inter-
preted such that corrections are applied on the circuit outputs. The action of these circuits is
equivalent to the execution of a state swap (see Figure 2.2¢), and the circuits are refered to in

the literature as swapping circuits NCro

2.1.3 GATE TELEPORTATION

Information teleportation is a linear transformation of the destination qubit, such that

its state is exactly the state of the source qubit. At the same time quantum gates are linear
transformations, and information teleportation can be extended into gate teleportation.
The direct result consists of teleported versions of the quantum gates from the discrete set
{P, T, H, CNOT}, where the Pauli gates could be implemented using the teleported T"and
P gates, because P = 12,7 = P°, X = HZH. The Hadamard H gate is the application
of three consecutive rotational gates: R,(7/2) followed by R,.(7/2) and an R,(7/2) again,
where P = R,(7/2).

The following derivation of rotational gates using teleportation circuits resembles the
approach presented in ZLCo°  Gate teleportation circuits, based on the similarities to the in-
formation teleportation circuits, consist of an entagling gate (CNOT), an ancilla qubit and
the measurement of one the qubits. Constructing the gate teleportation requires to estab-
lish the following parameters: 1) the initial state of the ancilla; 2) which qubit will be control
or target of the CNOT; 3) the basis of the final measurement; 4) the necessary corrections.

The initial state of the ancilla is inferred after taking into consideration that gate telepor-
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tation acts as a black box that outputs an R, or R, rotated instance of an input state. It is
known that R, commutes with the target of CNOT, and R, commutes with the CNOT
control. Hence, in the R, gate teleportation (see Figure 2.4b) the qubit corresponding to
output (un-measured) will control the CNOT, and in the R, gate teleportation (see Fig-

ure 2.4a) the output qubit will be targeted by the CNOT.

R,(§)CNOT, = CNOT,R,(6)
R.(0)CNOT, = CNOT,R(6)

The above observation enables the comparison of the gate teleporation circuits to the
ones from Figure 2.4. The circuit in 2.4a is the structure of the teleported R, while 2.4b
represents the structure of the teleported R,. The only aspect that remains to be established
is the states of the circuit ancillae. These states are inferred based on the above commutation
properties, and it follows that the ancillae will be R, |0) and R, |+).

In particular, a special kind of states called magic states is used for gate teleportations
the major property of magic state being that there are know mechanisms for using them
fault-tolerantly ™™, Magic states are used in the definition of a quantum computational
model, in which the only required elementary operations are: 1) Clifford gates; 2) the initial-
isation into |0) and magic states; and 3) measurements in the computational basis. Two of

BKos
5

the most common magic states are | ¥) and | 4).

(10) +i[1)) = P|+) = Rl(7/2) |0)

G-

n =
1

) = 2(I()>+€"”/4|1>)=T|+>

S

The teleported R,.(7/2) (R2 = R.(/2)) uses | V), the teleported P (R? = R,(7/2)) uses
the |¥) state, too, and for the T'(R} = R,(m/4)) the | 4) state is employed. Having derived
the circuits for the gate teleportations, the corrections necessary at the circuit outputs of
each of the three circuits have to be inferred.

Computing the corrections starts from the ones included in the information teleporta-
tion circuits; and the commutation properties between the Pauli corrections and the rota-
tional gates are used. For example, in the teleported R, case the commutation between Z
(see Figure 2.4a) and R, is necessary.

For R, there are two possibilities to perform a 7/2 rotation around the X-axis (depend-
ing on the direction of the rotation). Either the R? gate or its conjugate (— /2 rotation)
is implemented. The only difference between these options consists in the set of required
corrections. The R, (—/2) rotation commutes with the target of the CNOT, and trans-
forms the |0) state into | Y). Therefore, if the X-measurement result is |+), no correction is
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Figure 2.5: Achieving the effect of the rotational gates by using the magic states |A> s | Y> and corresponding teleporta-
tion circuits: a) The construction of the teleported 7T gate; b) The construction of the teleported P gate.

required. For the |—) measurement result, after commuting the initial Z-correction to the
right of R2', the final correction (up to global multiplicative factors) will be ZX.

measurement result |—) : R3Z = ZR? = (XZ)R*'; ~+ XZ correction

The implementation of the teleported R2 resembles the one of the conjugate gate. For the
previous implementation the |+) measurement result signaled no correction as the output
state was rotated by 7 /2. For the current implementation the rotation should be 7 /2, and
a correction by R (m) = Xis necessary. The |—) result indicates a Z correction, seen as the
result of left-commuting the R2' through the initial correction XZ.

measurement result [+) : R X = R%; ~» X correction
measurement result |—) : R(XZ) = (XR2)(XZ) = R2Z; ~ Z correction

The teleported 7 gate is based on the circuit from Figure 2.4b. After measuring the |0)
state the output of the circuit is correct and corresponds to 7|1)). Measuring |1) will indi-
cate a necessary correction. The information teleportation circuit contained an X correc-
tion, such that the final correction is computed after left-commuting 7" with X.

measurement result |1) : 7XP = XT, because PT" = T}~ PX correction

The PX correction from the 7 gate implies that there should be a teleported implemen-
tation of the P gate. This is indeed possible if instead of | A4) the |¥) stateis used (|¥) =
P|+)). The corrections of the teleported P gate are computed by noting that XP = P'X,
and it follows that this implementation necessitates an XZ correction signaled by the mea-
surement outcome |1).

(10 01\ _(0 1Y\ _ =(0 %\ _ 4
™ = (oeii)(l 0)_(ei1 0)_6 (1 0 )‘XT

Gate teleportation circuits allow the application of remote gates, and CNOT can be also
applied remotely. This version of CNOT is enabled by the single bit teleportations (see
Figure 2.4¢) and is useful in nearest-neighbour quantum computing architectures. In such

|

architectures the remote application of quantum gates is restricted, due to technological
factors, only on qubits that are physically neighbouring.
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Gate ‘ e1 v ‘ e U
I 1 10) 1 1)
X |1 |1
Y 1 DT -1 (=17
Z 1 10) -1 |

Table 2.3: The eigenvalues and the eigenvectors of the Pauli gates

2.1.4 STABILISER FORMALISM

The exponential difficulty of describing the evolution of a quantum system originates from
the fact that, by incrementing the number of qubits operated on, the dimension of the state-
space is doubled. Nevertheless, the eigenvalue properties of the Pauli gate set can be used to
improve the representational overhead of a specific class of circuits. The Pauli gates have &1
eigenvalues, and the key idea is to represent quantum states as 1 eigenvectors. The eigenval-
ues and the eigenvectors of the Pauli gates are enumerated in Table 2.3.

The Pauli gates form a group under multiplication, and for a single qubit it consists of
all the Pauli gates with multiplicative factors =1 and +4. The Pauli group for 7 qubits G,
consists of the z-fold tensor products of the Pauli matrices from G;. The standard stabiliser
notation is to drop the tensor product symbol when referring to the product of matrices:
for example, XZ will be read X ® Z.

Gy = {&I il £X, X, LY, LY, +Z, +iZ}

For a subgroup ST C G, (—I ¢ ST) called the stabiliser, the states that are stabilised by
ST are 1 eigenvectors of the stabilisers s € S7. The state | 1) is the 1-eigenvector of —Z, and
ST) = {—Z} C G stabilises |1). Another example is the Bell state Byy which is stabilised
by STQ = {XlXQ,leQ}, where X1X2 |B00> = |BO[)> and leg |Boo> = |BOO>- The group
ST'is generated by a set of size that equals the number of qubits, and the order of the com-
plete group is exponential in the size of the generating set. The generator set may contain
also trivial identity stabilisers of the form 1 . . . Z,. A stabiliser generating set containing ¢
non-trivial stabilisers will stabilise 274 statesN“™°.

For the previous examples, the ST sets presented were actually the generators of the S7-
group. It can be noticed that (X712, )(X,25) is a stabiliser of | Byy), too, and the neutral
element of matrix multiplication is generated by (X; X2)? = (/;12). The generators of the
stabiliser subgroup represent particular states in a very compact manner. Furthermore, the
stabiliser formalism is the basis for introducing error-correction mechanisms for quantum
information.

The normaliser N(G,) of G, is defined as the set of gates that transforms elements of G,
into elements of G,~“*°. The normaliser is usally called the Clifford group. The definition of
this group is based on the observation that if the state [1)) is stabilised by s, then the applica-
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Gate  Input Output Gate Input  Output
X; 1 X 1 X 2 X 1 X 1 ZQ

X X X X

CNOT Z Z CPHASE Z Z
Z9 YAVD) Zo X129

X Z X X

H Z X X Z -Z

Z Z X -X

P X Y z Z Z

Table 2.4: Transformations of the elements of the Pauli group under conjugation by gates from its normaliser NC10,

tion of the gate Uis computed according to Equation 2.6.

sl)y = ¥),seST
Ulp) = Usly) = (UsUYU )

Under conjugation the gates from { CNOT, H, P} C N(G,) transforms; € G, into
5, € G, and the gates generate the normaliser of G,“*°. Table 2.4 enumerates the stabiliser
transformation for the gates that are used throughout this work.

Not all the quantum gates are in the normaliser. For example, the 7 gate transforms the
stabiliser X into a superposition of stabilisers. This shows that it is not a normaliser gate.
Representing a circuit with 7"gates (or any other non-stabiliser gates) using the stabiliser
formalism requires doubling the set of stabilisers each time a 7is encountered (see Equa-
tion 2.6). Hence, the application of T gates results in an exponential increase of the ob-
served state space. Due to this overhead, the stabiliser formalism cannot be used to represent
universal quantum computations and their quantum states. The representable states still
contain superposition and entanglement (due to A/ and CNOT).

X+7Y
TZT" =7 Txrt = 21 (2.6)

V2

The stabiliser formalism can be used to efficiently simulate quantum circuits consisting
of the { CNOT, H, P} gates by representing the stabilisers as a table (tablean®“°*). These
gates are called Clifford gates. The result is known as the Gottesman-Knill theorem *“°4,
and an application of the theorem is the CHP circuit simulator % that uses tables contain-
ing (27 + 1)-bit long rows for representing the stabilisers (X and Z) together with the phase
(positive or negative) of the associated state. During simulation the state stabilisers are con-
stantly updated after each application of a gate by applying the transformation properties
from Table 2.4.

State initialisation and the application of gates using the stabiliser formalism are direct
applications of the stabilisers’ transformations under conjugation by the gate matrix. The
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formalism supports state measurements, too, and the commutation properties of the Pauli
gates are used (see Figure 2.6). A stabiliser 7 to be measured either commutes with all the
generators s € ST, or it anti-commutes with one of the generators. If 7 anti-commutes with
more then one generators s, 53 . . . 5, then it can be shown that replacing s, by 5251, . . ., 5,
by 35,51 leaves only s5; anti-commuting with mNCe,

If m anti-commutes with one generator, then the measurement output will be random,
with the probabilities p(m) = p(—m) = 0.5N“°. For example, measuring the Z stabiliser
of an X-stabilised qubit is equivalent, in the quantum circuit formalism, to performing a Z-
measurement of the |+) state, which results in either |0) (stabilised by Z) or |1) (stabilised
by —Z). In the table representing the stabilisers, the row containing s; will be updated to
reflect +m.

If m commutes with all the generators s, then it is a member of the stabiliser set (m € ST)
because m |p) = (sm) |¢)) = m(s|¢)). The measurement result will be deterministic,
and the phase of the result is indicated by the multiplication of the phases associated to the
generators.

The computational complexity of stabiliser circuit simulation using the CHP is O(n?).
The application of a stabiliser gate is linear in the number of stabilisers that have to be up-
dated, but measurement is more complex. After checking if 7 anti-commutes with at least
one stabiliser, the table is updated using a method similar to Gaussian elimination. An
improvement proposed by Aaronson®“*# reduces the update complexity from O(»?) to

Figure 2.6: The transformations of the stabiliser table for the circuit from Figure 2.2a. If the circuit contains an X-

measurement on the first qubit and an Z-measurement on the second qubit, the last three tables illustrate the stabilisers

after measurement. a) The initial stabilisers corresponding to the input |OO> state; b) The Hadamard on the first qubit

transforms Zinto X; ¢) The CNOT having the control on the first qubit and the target on the second qubit transforms

XI - XXandIZ — ZZ;d)The Zmeasurement will result in Z and the phase is indicated by 0; e) The measurement

result —Z s indicated by the phase value 1. f) The stabiliser /Zis generated by (ZI)(ZZ) = IZ,and a Z-measurement
result of the second qubit is stabilised by —Z.

2.1.5 GRAPH STATES

Graphs are useful for representations of stabiliser states™ *°* and were used for introduc-
ing novel paradigms of quantum computing*****. Graphs were also used for an even more
efficient simulation of stabiliser circuits***°. The measurement operation in the CHP sim-
ulator had a complexity of O(7?), whereas the graph representation of stabiliser states en-
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ables the reduction of the measurement complexity to O(nlog(n)), for stabiliser circuits of
n qubits.

Graph states abstract qubits as vertices and the interactions between them as edges. Each
vertex has an associated J"OP (vertex operators), the key idea being that any stabiliser state is
transformed into a graph state by applying a tensor product of local Clifford operations (as
in LOCC, the CNOT gate is not included) that are saved in the VOPs.

According to**°®, an n-qubit graph state |G) is a quantum state associated with an undi-
rected graph G = (V, E), whose | V'] = n vertices correspond to the 7 qubits, while the
edges E describe quantum correlations, in the sense that |G) is the unique state satisfying
the 7 eigenvalue equations

KY |G =1G),acV
with K& = X, X) 2,

benbgh,

where the neighbourhood of 4, ngbh, := {b|{a, b} € E}, is the set of vertices adjacent to 4.

(a) (b) (c) (d)

Figure 2.7: Graphs states (VOPs are not indicated): a) A graph state consisting of 5 qubits arranged as a star; b) The
resulting graph after measuring qubit 3 in the Z-basis; c) The resulting graph after measuring qubit 3 in the Y-basis; d)
The resulting graph after measuring qubit 3 in the X-basis.

A graph state |G,,) on 7 qubit is constructed by initialising it into the |G,) = |+...+)
state and applying CPHASE on all pairs of neighbouring qubits (see Figure 2.8). The sta-
biliser tables (phase bits are neglected, and empty cells stand for 7) from Figure 2.8 illustrate
the construction of the graph state from Figure 2.7a. The deletion of graph edges is per-
formed by re-applying the CPHASE gate between two qubits already connected by an edge.
For example, if the graph vertices were initialised into |0), then their ¥OPs would contain
H for the beginning. Transforming |0) — |+) would result in the application of H to each
VOP, leaving them VOP = {I}.

GraphSim is a stabiliser circuit simulator based on the graph representation of stabiliser
states“®°¢ and its key advantage over the table simulation technique is the way measure-
ments are performed. The implementation of the simulator will not be detailed, but it is
important to mention the rules how the edges and the ’OPs are updated. The discussion
refers to the corrections that depend on the measurement result » € {0, 1}. Measuring in
one of the basis m € {X, ¥, Z} will result in one of the eigenvalues of 7 being returned (see

Table 2.3) which are of the form (—1)".
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1 2 3 4 5 1 2 3 4 s 1 2 3 4 5 1 2 3 4 5
X X @ Z X @ Z X @ Z
X X X Z X Z
X z X Z Z X Z Z X 7 Z
X X X Z X
X X X z X

(a) (b) () (d)

Figure 2.8: Construction of the graph-state from Figure 2.7a. a) The five qubits are initialiased into the |+> state; b)
Qubit 3 is entangled to qubit 1 using the CPHASE gate; c) CPHASE between qubits 3 and 2; d) The final stabiliser table
after entangling qubit 3 to the qubits ngbbs = {1,2,4, 5}.

Every element C € VOPis a Clifford gate (normaliser of G,), and, in general, perform-
ing a computational basis measurement is equivalent to measuring in one of the { X, ¥, Z}
basis. The element C transforms the measurement basis into the same or another measure-
ment basis, due to the conjugation properties of the Pauli gates. Measurement transforma-
tions and how measurement results are complemented were derived in"F°4.

The deletion ™ of qubits and edges is performed by Z-measurements, and the mea-
surement result is random (see for example the measurement of qubit 3 in Figure 2.8). In
the following the symmetric set difference /A will be used to update the set of edges, where
AAB = (AU B) \ (AN B). A measurement of the ¥ observable requires the complemen-
tation of the graph edges and J"OPs set according to:

E = EA{(b,c)|b,c € ngbh,}
G = GR,(1/2)W, forb € ngbh, U {a}
C, € VOPy, 1 in the paranthesis is applied for » = 1

e X-measurement is more complex, as it requires more edge operations an up-
The X- t pl treq dg t d yor
ates . The measurement result »is random, too.

dates”8°. Th t result dom, t

E = EN{(c,d)|c € nbghy,d € nbgh,}
A{{(c,d)|c,d € nbgh, N nbgh,}}
A{(b,d)|d & nbgh, \ {b}}
(CY, forc=a
C.R,(7/2)W, for c = b, T in the paranthesis is applied for » = 1
ngbh, \ ngbhy, \ {6}, forr =10

C.Z, forc e
ore {ngb/ob \ ngbh, \ {a}, forr=1

| C;, otherwise

The following examples illustrate how measurements affect a graph-state. The result of
measuring qubit 3 from Figure 2.7a in the Z-basis is illustrated in Figure 2.7b. Measuring
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the central vertex in the Y-basis generates a new graph which is the complement of the initial
one™*°4 ‘and the updated /’OPs will contain the P Clifford gate (see Figure 2.7c). Should

a second vertex of this graph be measured in the Y-basis, the measurement would results
into an X-basis measurement as PYP' = R,(m/2)YR,(7/2)" = X. Finally, the X-basis
measurement of qubit 3 is illustrated in Figure 2.7d, where qubit s (in the previous update
rules this referred as qubit b) was considered the neighbour of qubit 3.

2.2 MEASUREMENT-BASED QUANTUM COMPUTING

Teleportation based techniques for computing were introduced before a measurement based
quantum computing (MBQC) was formulated. MBQC takes the concepts of teleportation
and measurement further and the major characteristic of this paradigm is the constructive
usage of measurements. This contrasts to the assumption that measurements are destructive
and collapse the state of a quantum system into one of the two eigenstates of the measured

observable (e.g., |0) or |1) for Z).

Restricting the possible operations only to qubit measurements is possible if the mea-
sured quantum state is prepared beforehand in a particular manner where the entang]e-
ment necessary for the computation is embedded into the input state. The temporal order
and the type of the single qubit measurements applied to the composite input state defines
the measurement pattern. For example, the measurement pattern { X3, X7, Xo} applied
on the three-qubsit state |4, 4,4, ) implies that first qubit ¢, is X-measured, followed by X-
measurements of the qubits ¢, and g,. The construction of the ‘417243> state is explained
after the applications of MBQC are enumerated.

The MBQC paradigm allows the existence of specialised entanglement-centres (similar to
computing centres) that prepare large lattices of entangled qubits, and a client would receive
a prepared cluster-state, which he only has to measure in order to perform computations.
An MBQC computation would also support a computation scenario that is similar to cloud
computing: a client sends to the entanglement-centre the measurement-patterns, and after
the computation is finished the client receives its output. It is possible to perform this kind
of cloud-like computation blindly, meaning that the entanglement-centre will not know
what it computes BFKo9BKB T2 From 3 theoretical perspective the relevance of the property is
mirrored in perfectly secure computations performed on untrusted remote platforms.

MBQC will be introduced as an application of graph states, by using the structure of
cluster states, which are states represented as planar graphs having the vertices arranged into
squares (see Figure 2.9a). The relation between MBQC and teleportation-based compu-
tational schemes™“*° has been investigated in “"N»*t°4J7%5_The following introduction to
MBQC starts from the construction of rotational gates using teleportation-based circuits
operating on graph-states.
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(a) (b) (d)

control

control

Figure 2.9: Elementsof MBQC:a)A3 X 3 graphstateillustrative of the lattice structure used for computing; b) The

most common single-qubit MBQC gates RBBOS can be implemented using a linear graph consisting of 5 qubits, where the

input state is at the left, and the output is at the right. The measurement order is from left to right, and the measurement

angles in the equator plane of the Bloch sphere are indicated on the individual qubits. In their top-down order the pre-

sented implementations are an arbitrary rotation, an Rz(n), a Pgate and a Hadamard gate; c) The CNOT gate RBBO3. 4y A
second possible implementation of the CNOT gate.

— Ro)| RO
R

Figure 2.10: The CPHASE gate implemented by two Hadamard gates surrounding the target of a CNOT.
(I® H.)CNOT(I® H;) = CPHASE, and the R, rotational gates commute with the control of the CNOT.

MBQC GATEs

Arbitrary rotational gates around the X and Z axis are building blocks of unitary gates (see
Equation 2..3) enabling the universality of MBQC. The CNOT gate is not directly sup-
ported, as the measurements are performed on single qubits. However, the structure of the
underlying cluster state can be used by noting that a CPHASE gate between two qubits is
formed by a CNOT surrounded by two Hadamard gates (see Figure 2.10).

MBQC MEASUREMENT PATTERNS

The Z-measurement of a graph state vertex removes the vertex and its incident edges, and
as a result, in the MBQC model, measurements are performed in the so-called equator of
the Bloch sphere (the plane defined by the X and Y axis). The general measurement basis

is B(¢) = { |0)’£|l> , |0)—\;;>|1) }, where the angle ¢ is chosen such that arbitrary rotated

measurements can be implemented.

A quantum computation expressed as a quantum circuit is directly mapped to an MBQC
computation by translating each quantum gate into a pattern of measurements applied to
the cluster states similar to the one from Figure 2.9a. Unnecessary cluster qubits (not re-
quired for the computation) are removed by Z-measurements****. In Figures 2.9b and 2.9¢
the measurement patterns for some of the most common gates are presented. The measure-
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Figure 2.11: Derivation of the MBQC Hadamard gate construction using CPHASE circuit identities.

ment diagrams are based on the observation from Equation 2.7 where X-rotations are for-
mulated using the Hadamard gate and Z-rotations. Equation 2.3 will be rewritten as Equa-
tion 2.8 for three measurement angles v, 3, 7y, and Equation 2.9 will express the unitary U.

Rx<¢) = HRZ(¢)H (2'7)
U = R(0)HR.()HR.() 8)
U = H(HR,(a))(HR,(5))(HR.(7)) (2.9)

There are two possible constructions for a Hadamard gate. The leftmost circuit from
Figure 2.11 represents the state |t/) which is transformed by a Hadamard gate, but by using
a teleportation (ancilla state initialised into |0), CNOT and X-measurement) the circuit can
be redrawn. Using the CPHASE identities from Figure 2.10, the third circuit will consist of
the ancilla state initialised into the |+) state, and a CPHASE is used instead of the CNOT.

The X-measurement is probabilistic, and the output will be equivalent to the Z" H |¢)),
where 7 indicates the measurement result. This observation is also supported by the VOP
update rules of measuring in the X-basis one qubit of a 2-vertex cluster state.

[v) [+) = «|00) +4|01) + b[10) + b|11)
CPHASE — 4]00) + 2|01) + 5[10) — &]11)
M, — al|+0) +a|+1) + b|+0) — b|+1) = |+) (a|+) + &|—))
M, — al=0)+a|-1) = b]|=0) + b|+1) = |=) (a|+) — b))
The second Hadamard construction (see Figure 2.12) is performed by the rotations H =
R (—m/2)R,(—7/2)R.(—7/2), and is represented by the measurement pattern consist-
ing of an X-measurement followed by three consecutive Y-measurements (see the bottom
measurement pattern in Figure 2.9b). A Hadamard gate in front of a Z-measurement can
be understood as an X-flipped Y-rotation R,(7)R,(7/2), similarly to how a measurement

in the Y-basis is the equivalent of P! = R,(—/2)-rotated X-measurement. The final state
|4} is (up to the required Pauli corrections) the transformation:

') = (HP'H)P'(HP'H)
= R(—7/2)Ry(—7/2)Re(~7/2) = H

The measurement pattern for the phase gate Pis based on teleportation circuits, too, and
it is easy to verify that the implemented state transformation is (HH) P'( HH) which s cor-
rect up to a Pauli Z-correction. Without considering the Z-correction, the measurement
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Figure 2.12: Derivation of the MBQC Hadamard gate construction using single-bit teleportation circuits.
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Figure 2.13: Construction of an MBQC CNOT gate starting from the entangling CPHASE gate by using circuit identities

and single-bit teleportation circuits.

pattern { X, X, ¥, X} (see the third measurement pattern in Figure 2.9b) implements the
P = (HP'H)P'(H) state transformation’™*. After using Equation 2.8, the P gate con-
struction is generalised into arbitrary Z-rotations (the second measurement pattern from
Figure 2.9b). Furthermore, arbitrary rotations are performed by the first(top-most) mea-
surement pattern from Figure 2.9b.

The constructions of the CNOT gate using various measurement patterns were pre-
sented, for example, in***** and **°4, but in the following the gate derivation starts from the
CPH ASE gate by using teleportation circuit identities which, for simplicity, do not contain
the correction gates (see Figures 2.13 and 2.9d). The CPHASE is rewritten asa CNOT and
two Hadamard gates enclosing the target, implying that the simulated target qubit (lower
wire) requires a Hadamard transformation before it is operated on (see the first Hadamard
gate construction), and requires to be transformed back by a Hadamard gate after CNOT.
The teleportation circuit from Figure 2.4b is used to extend the initial circuit, and the re-
sult after converting CNOTs to CPHASE: is the third circuit from Figure 2.13. The final
diagram includes two H gates on the upper qubits, as these result from decomposing the
CPHASEs. The simulated control qubit (top wire) should also be Hadamard transformed
before and after the CNOT.
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2.3 FAULT-TOLERANT QUANTUM COMPUTING

Quantum information processing using qubits, quantum circuits and the MBQC compu-
tational model were assumed to exist and function in an isolated environment (excepting
initialisation and measurement). However, it is impossible to perfectly isolate a system in
reality, and unwantend interactions with other systems can perturb its functionality. For ex-
ample, the effect of cosmic rays as sources of soft-errors in classical computer memories was
recognised in”"7%, and it was predicted that even aggressive shielding of the memories would
result in a non-zero probability of faults and errors. The existing interactions between two
systems (e.g. universe and memory chip) is considered a source of inreraction fanlts, which
after activation result into errors, and can furthermore imply the failure ***°4 of one of the
systems. Classical fault-tolerant computer design techniques include the use of error detec-
tion and correction methods combined with the construction of redundancyAVi67, and these
key aspects are also used for building fault-tolerant quantum computers.

2.3.1 PURE AND MIXED STATES

The inherent vulnerability to errors (expressed as probability of errors) is best captured in
the context of fault-tolerance by the guantum operator tormalism, which is motivated by
the distinction between between pure and mixed states. The change of perspective from
closed to open quantum systems is motivated by their evolution: open systems can start
from a pure state and end into a mixed state. The result of a quantum computation is grad-
ualy destroyed. A state is pure if its amplitudes (entries of the state vector) are exactly de-
termined, whereas a state is mixed if it represents a set of possible (pure) states that have an
associated probability. In order to express the mixture, the density operator is defined as the
linear sum of the inner products of the pure states ¢); and their associated probabilities p..

p = Doplvd

The criterion to decide if a state is mixed or pure is given by the trace of the squared den-
sity operator (matrix). For pure states #7(p?) = 1, whereas for mixed states t7(p?) < 1.
The diagonal entries of the matrix correspond to the squared amplitudes of the orthonor-
mal states (e.g. computational basis states) that span the state vector, and the probability of
measuring the observable A4 is given by p(m) = t(pMy). Since the pure states are unit-
vectors, it follows that ) . (pA4;) = 1.

Mixed states cannot be represented by unit-vectors, and the density operator of a mixed
state is the weighted sum (> iD= 1) of the constituent pure states density operators pj, im-
plying that the probability of observable A4 is the weighted sum of individual probabilities.
Furthermore, the exponentiation of the density operator representing a mixed state (Opix)
is the sum of the pure density matrices, weighted by the squares of probabilities Py because
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p? < p, it follows that for mixed states #7(p2;,) < 155

pmix = ijpfure
j

pm) =3 el ay)
j

e = YR
]

The most general quantum operation formulated using the operator-sum representation
is presented in Equation 2.10, where the operator set { £ } contains the operation elements
(called Kraus operators) of the operation™“*°, which satisfy the completeness relation (Equa-

tion 2.11).
p— Y EpE] (2.10)

Z E,TEk =17 (2.11)

Quantum information processing can be expressed using density operators instead of
state vectors, and the postulates can be reformulated accordingly™“°. A quantum system
is completely described by its density operator p, whereas the evolution of a closed system
is an unitary transformation U, that takes p as input and outputs p’ = UpU'. Quantum
measurements are a collection of measurement operators A4, (previously observables). The
probability of measurement outcome m is p(m) = tr(M M,,p), the state after the mea-

. il . .
surement is M, and the measurement operators satisfy the completeness equation
tr( My M p)
S MM, =1
A system could be in the state p; = 1 [0) (0] + £ |1) (1| = 17, which is a mixture of

|0) and |1) with probability one half. The same density operator would result if the same
system was prepared with equal probability in the |[+) and |—) states. As a result, it is wrong
to conclude that two equal density operators correspond to equal states.

Mixed states have Bloch sphere visualisation, too; by extending the representation to a
Bloch ball, pure states are points on the surface of the ball, and mixed states are points inside
the ball. The difference between pure and mixed states is more obvious when the states are
transformed by an unitary. For example, applying 2a Hadamard to |+), the amplitudes of
the basis states interfere, resulting in A|+) = |0). On the contrary, for p; an incoherent

mixture of two states , the Hadamard transformation H(p;)H = H(31)H = }Ileaves the

— 2
state unchanged °°. On the Bloch ball, the evolution of a pure state into a mixed state is

visualised as moving points from the surface towards the inner of the ball.
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2.3.2 QUANTUM CHANNELS

The analog of classical communication channels are the quantum channels. The effect of
quantum channels on input states is expressed by quantum operations, which are formu-
lated as operator-sums. The quantum channels are models of quantum state transforma-
tions in time under quantum noise FreodaNCio,

The analogy to classical communication channels can start from the symmetric bit flip
channel. For a classical bit, which undergoes a bit flip with probability e, its state can be rep-
resented by a vector of probabilities p = (p,, p, ), for p,, being the probability of 0, and p,
the probability of 1. The probabilistic transition (¢ = Ep) of the bit is formulated using the
linear transformation (E), where g = (g,, g,) represents the output probabilities.

()=o) ()

Quantum channels are acting like unitaries, lineary transforming an input state into an
output state, but the basis states amplitudes affected. For example, given the probability p of
a bit flip on the state |0), the final state is |/} = ((1 — p)Z + pX) |0), resulting in the mixed

state pr = (1 — ) |0) (0] +p |1) (1].
BIF FLIP AND PHASE FLIP CHANNELS

either flip the computational basis states of a quantum state, or flip the sign of the relative

phase.
mps =7 (o 1) (1)
w5 1) (o 5 )

DEPOLARISING CHANNELS

represent a process in which the density matrix is replaced by a completely mixed state with
probability 1/2, and left unchanged with probability 1/2. The Kraus operators of such a
channel are the set D, where the probability of a bit flip, phase flip, or both are equal if an
error occurs.

D = {\/1 — 3p/41,\/5X/2,\/pZ/2,\/PY/2}

AMPLITUDE-DAMPING CHANNELS

transform the |1) state into |0), corresponding to the physical process of losing a quantum
of energy to environment, or leave |0) unchanged (if a quantum of energy was not lost),
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but reduce the amplitude of the |1) state, as if the probability of |0) was higher than the
probability of |1).

(o =) (0 )

PHASE-DAMPING CHANNELS

destroy the |0) and reduce the amplitude of the |1) state, or leave |0) unchanged but reduce
the amplitude of |1) similarly to amplitude-damping channels. For this sort of channels the
operators can be recombined into /gl and /1 — gZ (g = (1+ /1 — p) /2), relating them
to the phase flips.

(3 i) (s 5)

2.3.3 QUANTUM ERROR-CORRECTION

Quantum error-correcting codes (QECC) are one of the major factors enabling the discus-
sion of large-scale quantum computers. The optimistic perspective, that such computing
systems are possible to construct, is based on the observation that quantum state errors can
be discretised, although these seem to form a continuum. It was shown, independent of the
assumed quantum channel that error correction could be adapted to fit the chosen noise
modelN*. If a QECC code corrected errors for a particular channel (e.g. bit flip), the same
code could be adapted to correct errors for another single-qubit channel (e.g. amplitude
damping).

Errors are not ultimately represented only by unitary operators; it is possible to express
them using the operator-sum, where the error operations { £;} are normalised according to
the completeness relation. For a single qubit, each £; is a square complex matrix represent-
ing a linear combination of the Pauli matrices.

Ei = €i0[+ €i1X—|— L’iQZ + €i2Y

Performing an X, Z or ¥ measurement on the state affected by E; will collapse the state
to one of the four states [¢), X [1)), Z |1)) or Y |1)), and the recovery is performed by apply-
ing the inverse of the corresponding Pauli gates, resulting in the final state |1)). Therefore,
quantum errors can be discretised and quantum error correcting codes are required to pro-
tect only against bit (modelled as X gate applications) and phase errors (modelled as Z gate
applications).
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Figure 2.14: The three circuits are used for: a) Measuring an arbitrary unitary U; b) Measuring the X-operator; c)
Measuring the Z-operator.

PARITY CHECKERS

In general, the direct measurement of a qubit leaves the output state changed, but it pos-
sible to perform the measurement of a unitary operator ¥“°. This measurement has the
advantage of leaving the quantum state in a known eigenstate of the operator. The affected
state is measured remotely, and the procedure is similar to the remote application of gates.
The measurement result is stored on an ancilla, while the measured qubit will be available
for future computations. The measurement result indicates the effect of the transformation
on the output state, and this effect is used to determine if a state is erroneous: the ancilla
state indicates the error syndrome of the output qubit. At the same time, this kind of re-
mote measurement is used to initialise an unknown state into one with a known stabiliser.

Parity checkers are circuits which perform the same measurement on a set of qubits and
output the measurement results parity. The phase parity of a single qubit is an illustrative
example, and the computation is reduced to inferring the sign of the relative phase of the
state [¢) = |%). The result s either |[+) or |—). For this the following approach is available:
1) use an ancilla qubit initialised into |0); 2) apply an H gate to |1)); 3) perform a CNOT gate
controlled by |1)) targetting the ancilla; 4) transform back |¢)) with another H; 5) perform
Z-measurement on the ancilla. The measurement of the ancilla will be |1) if [¢)) = |—),
and |0) otherwise. But |+£) are the eigenvectors of X, and, after the transformation rules
from Figure 2.10 are used, the circuit from Figure 2.14 is obtained. The measurement of an
arbitrary unitary Hermitian operator Uis a generalisation of the previous example.

A first application of parity checkers is in the context of error detection. The concept is
similar to classical bit parities, the only difference being that for quantum states two types
of parities are possible: bit and phase parities (the sign of the relative phases is considered).
The circuits act similarly to majority voters, and the existence of a possible bit or phase flip
error is concluded based on the syndrome (measurement result). For example, the bit parity
of |010) is odd (|1)), and the phase parity of |— — +) is even (]0)).

Due to their functionality, the parity checker circuits force a state potentially affected by
the error operator E; to decide if the state is erroneous. This will be shown in the following
section for a simple example, after the repetition code is introduced. A bit parity checking
circuit will measure the Z operators of the investigated qubits, whereas a phase parity circuit
will measure X operators.

Bit parity checking circuits can be represented as the measurement pattern of specific
graph-states. Measuring the parity of 7 qubits is possible in a star-shaped graph with 7 sides
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and a central qubit representing the ancilla that will store the measurement result. The cen-
tral qubit in the graph structure will be X-measured (see the CPHASE transformation). For
the graph from Figure 2.7a having the stabiliser table from Table 2.8, the measurement of
qubit 3 will result in the Z-parity of the qubits 1,2,4,5 (qubit 3 is stabilised by X352, 72,2, Z5).
This observation is also consistent with the ”OP update rules of X-measurements.

The applications of parity circuits can be extended beyond the measurement of opera-
tors. It is possible to use them as circuits that apply transformations on an arbitrary state. In
particular, the circuits are useful for the general stabilisation of states by the unitary U.

After the measurement of U, the state |)) is left into an eigenstate of U, and this is equiv-
alent to projectively measuring the state |¢)) to one of the eigenstates of U. For example, the
Bell pair By stabilised by the { X1 X5, Z,Z, } stabilisers can be obtained starting from the
|00) state. The state |00) is already an eigenvector of the Z; Z; operator, and the measure-
ment of the operator will leave the state unchanged. Measuring the X; X5 operator will leave
|00) stabilised by X; X5, and the final state is a simultaneous eigenstate of the two stabilis-
ers (up to a single phase correction). Parity circuits will be used further in this work to set a
multiqubit state into an eigenstate of the multiqubit unitary U.

REPETITION CODE

The classical repetition code was used as the first QECC to protect against bit flips™“*°. The
repetition code is not a full QECC, due to its structure which cannot protect against both
bit and phase flips. Encoding is performed by entangling the state |t/) with two ancillae
(see Section 2.1.2) initialised into |0). For |0) the resulting codeword is |0;) = |000) and
for |1) the codeword is |1;) = |111). The repetition code can protect against a single bit
flip, and detection of errors is performed by majority voting. However, error correction and
detection works as long as the individual bit flip probability is p < 1/2.

Errors are detected by performing syndrome diagnosis, and the value of the syndrome
indicates the required correction. The two bits of information required for the syndrome
are obtained by performing two parity measurements: Z;Zy and Z»Z3. During error de-
tection the results of the measurements are compared. If Z; Z, returns 0, it means that the
Z-parity of the qubits 1 and 2 is even: they both are either 1-eigenstates of Z (|0)), or both
—1-eigenstates (|1)), and otherwise the bits are opposite and a flip must have happened.
The same applies when the qubits 2 and 3 are measured. The error syndrome is established
after comparing the parities of the two measurements. After detecting the fliped qubit, its
state is corrected by applying an X-gate. In Figure 2.15a, the codeword of the encoded state
|2)) is affected by an error E, and after the syndrome was computed using the two parity
checkers, the output state is corrected by C (from Table 2.15b).

The repetition code is useful for the protection against phase flips, too. If a state is pro-
tected by the repetition code against bit flips, then the Hadamard linear transformation of
the codeword will protect against phase flips. Applying a Hadamard gate to a computa-
tional basis state will encode the phase of the input state into the basis states of output, and
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Figure 2.15: The repetition code: a) The encoder of the circuit, followed by the error £, the syndrome measurement and
the controlled correction C; b) The four possible syndrome measurement bits, the corresponding projected output state
and the necessary corrections.

instead of protecting against bit flips, the code protects against phase flips. The logical com-
putational basis states are transformed, too, into |0;) = |+ + +) and |1;) = |- — —), and
the necessary syndrome measurements will be X7 X5 and X, X3 (see Table 2.15b, where Z, Z,
and Z,Z; are transformed according to Table 2.6).

A possible phase flip Z, for f € {0, 1}, affecting the relative phase of the state [t)) results
into the multiplication of (—1)/ to 4. The Hadamard transformation of |¢/) transforms
Z into X7, thus the resulting state will be (2 — 4) [0 @ /) + (2 + b) |1 @ f}, where @ is
the classical Boolean XOR operation. A bit flip affecting the Hadamard transformed state
results, for f= 1, into the erroneous state (a2 — b) |1) + (a+ b) |0).

[¥) = al0) +6[1) = —=((a+8)[0) + (a = 6)[1))

=
V2
Z|p) = al|0) = b[1) — %((ﬂ— b)10) + (a+ ) [1))

Z ) =al0) + (-1)Yb]1) — )@’%((4 —0)[0) +(a+5)[1))

THRESHOLD THEOREM AND CODE CONCATENATION

Practical error-corrected quantum computation is enabled by the threshold theorem which
states that a quantum circuit containing p(7) gates may be simulated with probability of er-
ror at most ¢ using O(poly(log p(n)/e)p(n)) gates on hardware whose components fail with
probability at most p, provided p is below some constant threshold, and given reasonable as-
sumptions about the noise in the underlying hardware . This means that it is possible to
make an error-corrected logical quantum computation to perform arbitrarily close to correct
(error-free computation) with an overhead that is polylogarithmic in the length of the initial
computation.
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Figure 2.16: The 9-qubit Shor code: a) The encoding circuit; b) The stabilisers of the 9 qubits.

The effect of any QECC is that a supplemental abstraction layer is introduced on top of
the non-QECC quantum circuits: logical quantum circuits consist of logical gates applied to
logical qubirs, which are defined over sets of physical (unencoded) qubits. The difference be-
tween a physical and a logical circuit element is that the physical one is not error-corrected,
and the logical one is typically composed of multiple physical qubits (e.g. 3 in the case of the
repetition code).

The threshold theorem is a direct result of code concatenation, where a QECC layer is
encoded again into a second QECC layer, and the procedure is repetead for an arbitrary
number of times. Re-encoding existing codewords with the same or different code will, in
theory, reduce the error probability e. For example the Shor code is a concatenated code,
where the repetition code is used in a first layer against phase errors, and in a second layer
against bit errors. The construction of concatenated codes reduces the error rates associated
with the topmost logical layer double exponentially, while the number of required qubits
increases slower if the error-rate at the lowest layer is below a certain threshold (threshold
condition) "™, such that logical circuits do not generate an exponential resource consump-
tion in terms of physical qubits (lowest layer, unencoded).

SHOR CODE

The first QECC that could be used to detect and correct an arbitrary single error was pre-
sented by Shor, and is based on the repetition codes. During a first step, the |1)) state is en-
coded against phase flips, and in a second step, each of the three resulting qubits is again
encoded against bit flips.

For the Shor code, due to its structure, where |4) is encoded as (]000) & [111))2+/2, the
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codewords are:

(]000) 4 |111))(|000) + |111))(|000) + |111))

22
(|000) — |111))(|000) — |111))(]000) — |111))

22

Errors are detected by checking for bit flips in each tuple of three qubits, and for phase
flips in each pair of 3-qubit tuples. The procedure is very similar to how the repetition code
was used for error checking and correction. For the encoding circuit from Figure 2.16a, con-
sidering the qubits numbered from the top, Table 2.16b contains the necessary error detec-
tion measurements. Checking for phase flips (in any of the qubits encoded against bit flips)
is performed by measuring (X7 X5X53) (X X5 X). Measuring any operator from the table,

1) =

for example Z, Z,, will leave the encoded state into an eigenstate of the measured operator.
It can be concluded that the operators used for syndrome computation are the codeword
stabilisers of the Shor code.

In general, a QECC that uses # qubits to encode k£ qubits with Hamming distance 4 is
written as [[7, k, d]] (double square brackets denote quantum codes). The Hamming dis-
tance is the number of positions at which two codewords are different. The repetition code
has distance 3, and there are three opposite phase signs between the codewords 0; and 1; of
the Shor code; as a result, the Shor code isa [[9, 1, 3]] code, and the number of errors that it
cancorrectist = (d—1)/2=(3—-1)/2 = 1.

STABILISER CODES

After the discovery of the Shor code, it was observed that a special class of QECCs can be
constructed from classical error correcting codes. The quantum extended classical [7, 4, 3]
Hamming code (7 bits used to encode 4 classical bits) is used to protect against both bit and
phase flips, if the generator matrix of the code is transformed into a stabiliser table. The
classical Hamming code is linear, meaning that its codewords are linear combinations of the
generator matrix rows. In the quantum domain, if each 1 in the generator matrix is replaced
by a Z and each 0 by an 7, the obtained stabilisers can be used to check the bit parities of the
codewords, similarly to how one would proceed to check if a classical codeword was in the
generators of the Hamming code. For the same Hamming generator matrix, replacing each
of the 1 entries with X and Os with / will result in a QECC that corrects phase errors.

The previous two constructions use 7 qubits to encode 1 qubit with a distance-3 code,
and the resulting quantum code is a [[7, 1, 3]] stabiliser code.

In general, stabiliser codes are constructed as CSS codes (named after Calderbank, Shor
and Steane), by using two different classical codes C, C; for the bit and phase protection.
The previous 7-qubit code is the first CSS code presented, although it uses the same classical
Hamming code (C; = C; are given by the generator matrix of Table 2.5). For general CSS
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Table 2.5: a) The left part of the table represents the generator matrix of the classic [7, 4, 3] code. b) Replacing the
1s and the Os in the matrix results in the stabilisers of the bit flip protection code; c) The stabilisers of the phase flip
protection code. Tables b) and c) are the generators of the [[7, 1, 3]] code words.

codes, the construction condition is that C'2L C (i, where C'2L (dual code) denotes the code-
words orthogonal to the ones from C,. The Hamming code is self-dual. If C; is a classical
[n, k1, d1] code and Cy is a [, ko, da] code, then the corresponding quantum code will be a
[, k1 + k2 — n, min(dy, d3)]] code“**?. Error correction is performed by measuring the
Z-generators of the C; code and the X-generators of the C; code. All the codewords have to
satisfy the parity checks of the C; code, and at the same time the codewords will be superpo-
sitions. Simoultaneously, the X generators of the C'2L code add a word to the state, and the
codewords of the CSS code are of the form:

Z lu+ w) , wherew € C;

weC%

The generators of a stabiliser code form a group S C G, (G, is the Pauli group on 7
qubits), and all the #-qubit states (codewords) that are stabilised by a generatorg € ST
are 1-eigenstates of the unitary g (¢ |t ,) = [1)1,,)). A stabiliser QECC using 7 qubits to
encode £ qubits has # — k generators, and the codespace is of size 2k Every stabiliser of a
state splits the Hilbert space into two equal subspaces (1 and —1 eigenspaces). In general,
for an n-qubit circuit the corresponding Hilbert space has a dimension of 2", but the n — &
generators reduce the number of possible states useful as codewords. Similarly to stabiliser
circuits, the normaliser N(S7) of the code ST is defined as the set containing all the £ € G,
which commute with the generators ¢F |¢) = Eg|¢) = E|1)).

Logical operators acting on codewords, O € N(ST) \ ST, transform a codeword into
another valid codeword (1-eigenstate). If one wishes to define two logical operators as X;
and Z,, then these will be required to anticommute: X;Z;, = —Z,X;. Defining X; and Z; au-
tomatically results in the definition of ¥; = X,Z;, while the logical identity operator ; is the
tensor of 7 on all qubits. The logical Pauli operators will span the logical space of the code-
word. This observation will be used again in this chapter when logical operators based on
other QECCs are defined. For the 7-qubit code, the logical operators are commuting any-
way with the generators ¢ € S, and, for example, the logical X'is X; = X7 Xy X5X4 X5 X5 X7,
and the Iogical Zis Zl = leZZ3Z4Z5ZGZ7~

For stabiliser codes, the number of correctable errors is given by their distance (simi-
lar to classical Hamming distance), which is the minimum weight of the elements from
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N(ST) \ ST. The weight of a tensor product is the number of terms not equal to identity
(e.g. weight(X11,Z3) = 2)N°.

Furthermore, detectable errorsare £ € G, \ N(ST), and after detecting an error the
code needs to correct it. Two errors E,, Ej, acting on two different codewords [,) , [1s)
should result in orthogonal logical states (the theory of stabiliser codes allows 7 as a possible
error): (1,] ELE, |1,) = 0. This observation implies that correctable errors need to be dis-
tinguished first. For an arbitrary stabiliser code, all the errors that are not in the normaliser
of the code are distinguishable and correctable.

From a practical perspective, the errors £ are detected by measuring the generators of the
code (¢£ [¢) = —Eg|y) = —E|1)), and using the measurement results for computing
error syndromes. Error E affects a state, if, after measuring the generator ¢ (in Figure 2.14,
replacing U with g) the result will be |1). A complete syndrome is computed by measuring
all the generators of the code. For example, for the repetition code, considering the genera-
tors {2125, Z5Z3} and a state affected by £ = X, the measurement of the generators will
indicate qubit 2 if the measurement results is |1) |1).

2.3.4 FAULT-TOLERANT DESIGN

Quantum computations can be protected against errors using QECCs, and the key idea be-
hind fault-tolerant designs is to directly work on encoded information without decoding it
(see Chapter 1). There are three elements in the execution of a circuit that need to be pro-
tected against faults: initialisations, application of gates and measurements. In the previous
section the construction of logical states (logical qubits) was introduced, and in the follow-
ing the fault-tolerant construction of the three other elements is presented.

The main issue to address in the design of fault-tolerant computations is the propagation
of errors, which is an effect of gates acting on more than a single qubit. If the universal gate
set {CNOT, H, P, T} is implemented in a fault-tolerant manner, then the gate that can
propagate errors is the CNOT. For example (see Table 2.4), a bit flip on the control qubit is
transformed into two bit flips, one on the control and another on the target qubit. At the
same time, a phase flip of the target is transformed into phase flips on both the control and
the target.

Due to the propagation of both bit and phase flips, the CNOT will receive a special atten-
tion. The CNOT is an important gate as it is used in state initialisation circuits, where the
remote measurement of an operator is equivalent to initialising the remote qubit into a log-
ical state (see Figure 2.14). Moreover, CNOT is used for correcting erroneous encoded states
(see Figure 2.3). Finally, CNOT is also used as an entangling gate in quantum circuits.

A fault-tolerant element is one where errors are not propagated beyond control. The main
criterion in the design of fault-tolerant circuit elements is, according toN“>P"5 for a single
error in the input logical qubits to cause at most one error in each logical output qubit, if
the used code has distance 3. The criteria indicates that errors are allowed to propagate, but
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Figure 2.17: The effect of error cascading is illustrated using two logical qubits encoded on three qubits (e.g. repetition
code): a) The X error on the control is cascaded to all three qubits of the logical target; b) The X error on the control
propagates to a single qubit of the logical target qubit.

within limits. Using a distance-3 code, every logical qubit is error-protected and at most one
error is corrected, and at most one error is tolerated.

Errors propagated beyond the capabilities of the QECC cannot be corrected anymore.
For example, an error propagation that violates the criteria is error cascading as presented in
Figure 2.17, where for two logical qubits (consisting of 3 physical qubits) it is assumed that
the two circuits perform the same computation. The first circuit propagates three bit flips to
the second codeword, while the other circuit propagates only one bit flip. Whereas, for the
first circuit the three flips cannot be corrected, for the second circuit, it is possible to correct
the codewords.

FAULT-TOLERANT GATES

are used in fault-tolerant circuits. Such gate constructions are QECC specific, and in the fol-
lowing the classical example is maintained by deriving fault-tolerant gates for the 7-qubit
code (see Table 2.5). The code is a stabiliser code, and the logical operators corresponding to
the Pauli gates are generated by the gate set { #, P, CNOT} N, and the first gate construc-
tions are those for the normaliser operations. From the perspective of a logical layer, it will
be required to implement a logical Hadamard gate, a logical phase gate, and a logical CNOT
gate.

Fault-tolerant quantum gates are easily constructed if transversality is used, which guaran-
tees that a single failure anywhere in the encoded gate introduces at most one error per code-
word. This will force the error probabilities not to grow out of the control of the QECCN“*.
The transversal logical gate G; is the construction where G is applied on all the physical
qubits of the codewords. For example, the bitwise application of the A gate will transform a
logical qubit stabilised by X; into a logical qubit stabilised by Z;:

HXH = (HXH).. . (H:X:H)=2.. 2

For the 7-qubit code, the Hadamard, the CNOT and the P gates are implementable in a
transversal manner (see Figure 2.18), but for an arbitrary QECC this is not always possible.
For the codes presented in this work the 7 gate will lack such a construction.

Error-corrected universal quantum computation is based on the fault-tolerant construc-
tions of the Clifford gates and a fault-tolerant implementation of the 7"gate. The solution
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Figure 2.18: Transversal implementations of the H, P and CNOT gates.

for the fault-tolerant 7 gate is achieved using the teleportation circuits from Figure 2.5 (the
contained CNOT is transversal).

The main issue with using magic states for the construction of fault-tolerant rotational
gates is that the states themselves may be affected by errors. The initialisation of a qubit into
a magic state needs separate attention for a fault-tolerant design of gates. It was discovered
that these states can be distilled using encoding/decoding circuits™™ >N Distillation is
performed by taking multiple instances of magic states, applying a quantum circuit on the
states, and outputing a single magic state that has a lower probability of error. For exam-
ple, the distillation circuit of the | ¥) state is the decoder of the [[7, 4, 3]] QECC™™_ This
procedure is somehow similar to code concatenation, where a supplemental code (the distil-
lation procedure) is used to lower the error-probability associated to a given codeword. As
with concatenation, the distillation procedure can be repeated infinitely, constanly reducing
the error-probability.

FAULT-TOLERANT INITIALISATION AND MEASUREMENTS

are based on the parity checker circuits. The previously considered circuits contained a sin-
gle ancilla qubit initialised into |0), which controlled the application of the operators on the
codewords, and, as illustrated in Figure 2.17, this is not a fault-tolerant construction.

Fault-tolerance is achieved by protecting the initialisation of the qubits against errors,
reducing the propagation of errors, and finally, by reducing the error probability associated
with the measurements. The circuit in Figure 2.19 depicts the following approach.

The ancilla qubit used for storing the eigenvalue of the measured operator U was pre-
pared in the circuit from Figure 2.14 into the |0) state, which was immediately transformed
by a Hadamard gate resulting into the superposition |+). In order to protect the ancilla
initialisation, the repetition code will be used and the number of ancillae is increased. Ac-
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Figure 2.19: Schematic procedure for fault-tolerant measurementof U = Uj Uy U3, which is performed on encoded

data™N¢1°, Although not depicted, the Verify step is repeated three times. The complete circuit is repeated three times,
too. Three repetitions of a circuit element with error-probability p followed majority voting between the outputs reduce
the probability of error top2.

cordingly, the encoded state will have to be the superposition [0...0) + |1...1), and this
is constructed by applying a Hadamard on the first ancilla, followed by subsequent CNOTs
arranged such that errors will not cascade. At this stage the possible errors stem from the ini-
tialisation of the ancillae. After employing an additional parity checking circuit, the encoded
state can be validated, and, if necessary, corrected. Even the parity checking could be faulty
with probability p, and the step is repeated three times (majority voting) effectively reducing
the error probability to pg.

The fault-tolerant measurement of the operator can at this point be performed. Due to
the structure of the encoded ancilla state, the application of U will be controlled by each of
the ancillae. Again the choice is motivated in order to reduce error propagation.

After the measurement, the encoded ancilla will have to be decoded using the reversed en-
coding circuit. Errors in the encoded information could affect the last measurement, and the
complete circuit will have to be executed three times. The error probability is exponentially
reduced again, after choosing the correct result through majority voting.

2.3.5 THE SURFACE CODE

The class of stabiliser codes contains also the surface code. The code was first introduced by
Kitaev as the roric code™*3, where the error-correction procedures were imagined as being
defined over a lattice with periodic boundaries. For a lattice with open boundaries, the sur-
face code is the planarised version of the toric code.

The high threshold of the surface code made it very atractive for large-scale quantum
computation (see threshold theorem) and an ideal starting point for extending the MBQC
computational model by error-correction. In the following descriptions the basics of the
surface code are based on PMMCi2.Kito3

The lattice used by the surface code is rectangular and represents qubits arranged ac-
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Figure 2.20: Elements of the surface code: a) Physical qubits organised as a two-dimensional lattice; b) A vertex sta-

biliser; c) A face stabiliser; d) The measure- X qubits are interspersed between the data qubits; e) The measure-Z qubits

occuppy the remaining positions of the lattice; f) A stabiliser chain; g) A contractable loop constructed by multiplying

two face stabilisers; or a non-contractable loop, if the corresponding measurement qubits from the grey area are not
enforced.

cording to a strict pattern, which is indicative of nearest neighbour interactions (see Fig-
ure 2.20a). Itis not assumed that the lattice is represented by a graph-state (at least not in the
2D version of the code).

The surface code is a stabiliser code, and the stabilisers of the physical qubits are of the
form of vertex stars and face boundaries, where a vertex (also called site) is the cross arrange-
ment of qubits, and a face (also called plaquette) is the rectangular arrangement of qubits.

A visual representation of the stabilisers is offered in Figures 2.20b and 2.20c. Each pair of
code stabilisers commutes since the number of common edges between a vertex star and a
face boundary is either o or 2.

A = ® X;, for s a vertex

jEstar(s)

B = ® Z;, for na face

jE€boundary(u)

The central property of the code is that it is a local check code™**. Every stabiliser involves
abounded number of qubits (at most 4), and each qubit is involved in a bounded num-
ber of stabilisers (at most 4). There is no limit on the number of single physical qubit cor-
rectable errors, and more errors are corrected by using more physical qubits for logical qubit
encoding.

The qubits used for computing the paritites are called measurement qubits, and the mea-
sured qubits are called dara gubits. Measurement qubits have a two-fold function. Firstly,
measurement qubits are used to initialise the data qubits into given eigenstates of the code
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stabilisers, effectively generating the underlying stabilised state. The circuits for measuring
the A4} and B; operators are presented in Figure 2.21. The circuits are parity checking cir-
cuits, and the measurement qubits are called measure-X and measure-Z qubits™™. The
data qubits are assumed to be initialised into |0) before being stabilised by the application of
the parity checkers. An advantage of the parity circuits used in the surface code is that their
depth is constant, which results in a reduction of the error checking overhead.

DATA AND MEASUREMENT QUBITS

The Figures 2.20d and 2.20e show the structure of the parity checkers when included in

the lattice of qubits from Figure 2.20a. The black vertices represent measure-X qubits, and
the grey rectangles represent measure-Z qubits. The edges connecting the parity checking
qubits and the data qubits should not be interpreted as CPHASE entanglement bonds, but
only indicators of the neigbourhood that is checked.

Each data qubit is coupled to two measure-Z and two measure-X qubits, while each mea-
surement qubit is coupled to four data qubits™™™. A phase flip on the physical qubit «
will be detected by its two neighbouring measure-X qubits, and a bit flip will be detected by
the two measure-Z qubits. The states protected by the surface code will be eigenstates of the
complete set of face and vertex stabilisers.

The toric code, as initially proposed in i3

, supports the definition of only 2 logical qubits.
In general, in a square lattice of & X k faces there are n = 26> qubits arranged on the edges of
the faces and m = 2k* — 2 independent stabiliser generators. Following the observation for
([, k, d]] stabiliser codes (see Section 2.3.3), there are 2" % = 2™ generators of the subgroup

S C G,, meaning that for the toric code 2"~ = 2k — 22 srabilisers exist.

CONTRACTABLE LOOPS AND CHAINS

The structure of the local code stabilisers (vertex and face) implies that the normaliser of the
surface (toric) code will contain stabilisers of the form X,, and Z,, which commute with all
the code stabilisers. Commuting stabilisers can be constructed by either multiplying face

or edge stabilisers, and the results are so-called loops (see Figure 2.20g and 2.20f). The chain
stabiliser from Figure 2.20f is the result of multiplying vertex stabilisers, and a loop could be
constructed if the local stabilisers associated to the missing measure-X qubits (at the dotted
crossings) were multiplied.

X, = ®X] Z, = ®Z] for j physical qubit
j j

A contractable loop is a tensor product of local code stabilisers, and contraction is just the
observation that the stabiliser is separable into multiple local stabilisers. Such larger lattice
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stabilisers are in the stabilising set of the code, thus not being possible to use them for en-
coding information. As it results, for a torus (or a two-dimensional lattice of qubits), only
two X,;s and Z,s are non-contractable loops, meaning that these belong to the set difference
N(ST) \ ST.

These are the stabilisers around the holes of the torus, or, in the case of the surface, the
stabilisers connecting the edges of the two-dimensional lattice¥**™M2_The four stabilis-
ers, X, X2,Z) and Z2, are the only members from the normaliser not in the stabiliser set.
Each X, anticommutes with the Z,s, and these are used to encode the zwo logical qubits.

Four logical stabilisers would restrict the applicability of the code: arbitrary quantum
computations require more than two logical qubits. Additional logical stabilisers represent
additional degrees of freedom, and these are introduced by reducing the number of code
stabilisers.

Using the surface code information is encoded and operated on by constantly repeating
the application of selected sets of measurement qubits. Initially, when all all the measure-
X and the measure-Z qubits are used, only the four logical operators mentioned before are
existing. However, it is possible to dynamically modify (increase or reduce) the sets of used

measurement qubits, and thus the number of applied lattice stabilisers.

Removing a lattice stabiliser is called in the literature performing/creating a defect ™.

The resulting loop-stabiliser around the defect is similar to the one from Figure 2.20g; the
difference being that, in the figure, the corresponding measurement qubits were not used
for the loop. After not enforcing the associated local qubit stabilisers, the 6 qubits on the
boundary of the defect (the grey area) will form at this point a non-contractable loop: the
loop is not separable into face or vertex stabilisers.

Removing a not neighbouring pair of vertex stabilisers introduces two X, rings con-
nected by a chain Z, (see Figure 2.20f), and removing a not neighbouring pair of face sta-
bilisers introduces two Z,, rings connected by a chain X,,. For the purpose of this section it
suffices to introduce the logical qubits supported by the surface code. The qubits are of two
types: primal and dual.

A primal qubit has its Xf operator defined as the pair of X, rings, and its Zf operator is
a Z, chain. A dual qubit will have its X¥ operator defined as an X,, chain and the Z{ as the
pair of Z, rings. In contrast to previously discussed stabiliser codes, the surface code encode
information by relaxing the stabiliser conditions on the physical qubits, whereas stabiliser
codes employ classical encoding circuits.

The surface code supports an arbitrary number of logical qubits, given that enough phys-
ical qubits are available. The distance of the surface code is dictated by the minimal weight
of the normalisers. Removing a single code stabiliser, the minimal weight will be di;in = 4.

The construction of non-contractable loops represented the basis of the logical encod-
ing. Non-contractability is also the key to error-correction. Correction is possible for error-
operators E that are not members of the codespace. The detected and corrected errors, given
a sufficient code distance, are the ones that have a similar structure to the logical operators:
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Figure 2.21: The parity checkers of the surface code: a) the measure — Z circuit; b) the measure — X circuit.

non-contractable rings or chains. The error-syndromes are computed using the measure-
ment qubits, and the error correction methods is based on pairing the error locations (af-
fected data qubits). The ends of a non-trivial (non-contractable) chain operators are con-
structed, and the corrections are applied on the path connecting the locations. For the Fig-
ure 2.20f it can be considered that an error occured at each ends of the depicted chain. After
pairing the error locations, the path connecting the qubits is the non-trivial chain consid-
ered as the operator E. Correction is performed by applying single-qubit corrections on the
data qubits along £. A much more detailed presentation of the error detection and correc-

tion technique is presented in ™M,

THE LogicaL CNOT GATE

The fault-tolerant gate constructions for the stabiliser codes started by the implementa-
tion of the normaliser operations, but due to the code structure, the surface code supports
only the CNOT gate. The logical operators of same-type logical qubits (primal-primal,
dual-dual) commute, and there is no possibility of interaction between them. However,
the ring operators of primal qubits anticommute with the ring operators of the dual qubits
(Xt Z¢ = —Z¢X?), and the same applies to the chains (Z X{ = —X7.7)). This aspect is used
to construct a primal-dual CNOT gate.

The logical CNOT gate is performed by braiding the defect of one of the qubits around
the defect of the other logical qubit. Surface braiding implies moving a defect (from a start
position) around the other defect back to the initial start position. Moving, for example,

a primal defect in any direction is possible by disabling a neighbouring measure-X qubit
(enlarging the defect, see Figure 2.22b), and afterwards enforcing the previously disabled
measurement qubit (reducing the defect, see Figure 2.22¢) ™",

After the movement of a dual defect (measure — Z defect), two possibilities can arise:

e its chain operator is X¢ and by braiding it around a primal defect, the resulting loop

cannot be contracted (due to the primal defect); as a result, the logical X stabiliser of
the dual qubit was transferred to the primal qubit (see Figure 2.22f).
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e the chain operator of the primal qubit is Zf , but, after the braiding, this logical sta-
biliser can neither be contracted this time due to the dual defect (see Figure 2.221).

As a consequence of this phenomenon, the primal-dual logical CNOT is constructed by
braiding a primal and a dual logical qubit: the dual qubit is interpreted as the logical control
qubit (X7 — XX) and the primal qubit represents the logical target (IZ — ZZ). Braiding
two primal qubits will result in the logical identity: their logical stabilisers commute. The
same applies for braiding dual logical qubits: a logical identity results.

It would seem, that it is not possible to perform a logical CNOT between logical qubits
of the same type, but it is possible to extend the primal-dual CNOT, and to obtain a primal-
primal logical CNOT gate by using the remote CNOT circuit from Figure 2.3. In that cir-

it is possible to construct a dual-dual logical CNOT, too.

SHORT LOGICAL QUBITS

The surface code does not support the direct construction of the Hadamard, phase, and T’
gates. The gates are constructed at the logical layer by using the magic states and the circuits
from Figure 2.5. Once a logical 7} gate and a logical R.;(7/2) gate are implemented, the
other gates are composed from them.

The data qubits were initialised into |0), but in order to achieve computational univer-
sality at the logical layer, the data qubits are required to be initialised into at least two other
states: |A) or |Y). The process of initialising data qubits into the two rotated states is called
injection, and the introduction of the magic states into the code is done by the shorr logical
gubits™MC,

The short logical qubits are pairs of defects, where two vertex stabilisers are not enforced.
The procedure is equivalent to not using two neighbouring measurement qubits. The data
qubit at the boundary of the two defects will be Z-rotated, such that its resulting state is ei-
ther | A4) or |Y). Afterwards the defects will be separated, such that the chain and the ring
operators are well defined, and the logical |4)) and |Y}) exist in the logical layer (see Fig-
ure 2.22kl).

Once the injected states are encoded the logical R, and R, rotational teleportation-based
gates can be applied in order to construct all the other Clifford and non-Clifford gates. This
enables universal quantum computation using the surface code.

52



Figure 2.22:
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Braiding and short qubit construction: a) A primal defect pair (white) and a dual defect pair (grey), where the

blue chain indicates the Xd; b) Extending one of the dual defects by disabling three corresponding measurement qubits;

c) Moving the dual defect around one of the primal defects extends also the distance between the chain endpoints; d) Af-

ter finishing the dual defect movement the logical X;j seems to be consisting of a ring and a chain that start on the same
defect; e),f) After considering the effect (tensor multiplication) of the face stabiliser that includes the four black qubits,
the previous structure is separated into a non-contractable loop (around the primal defect) and a non-contractable chain

(between the dual defects), illustrating thus the logical stabiliser transfer; g)h)i) Performing the same movement of the

dual defect the Zf (red chain) of the primal logical qubit is transferred as a ring on the dual defect (the black data qubits

correspond to vertex stabilisers); k) The black data qubit will be used for state injection, therefore two neighbouring de-
fects are constructed, the lattice stabilisation procedure stops and the black qubit is rotated using R,; ) The stabilisation
of the lattice is continued, and the defects are enlarged and separated for improved error protection.
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Probabilistic Circuits

PROBABILISTIC EFFECTS existing in classical or quantum circuits can be exploited for per-
forming computations by transforming randomness into a computational primitive simi-
larly to how entanglement works as a primitive for MBQC. The initial work in "™ intro-
duced the field of system reliability in the presence of faults, having its starting point at reli-
able neural networks. The threshold neurons were used to express Boolean logic functions,
and through multiplexing and majority voting the influence of randomly faulty neurons
was reduced. The aspects presented in that work opened new opportunities which initiated
the study of stochastic computing .

The construction of stochastic circuits starts from the key idea that bit flips should have
a minor effect on the overall computation; thus, the effect of the error is mitigated by in-
creasing the number of bits required for the representation of the numbers. The bit flip
rate could be arbitrarily high, and an infinitely scalable architecture is required. Classical
arithmetic logical units have a fixed maximum number of bits that can be operated on, and
this reduces the scalability of the architectures. As a result, the stochastic computational
paradigm based on classical gates is used.

Reliability, formulated based on the effects of random faults, was also used as the build-
ing block of fault-tolerant quantum circuits which include information teleportation sub-
circuits. The teleportations are based on the measurement of entangled states, and the out-
put states require the application of correctional gates from the Pauli group G; (see Sec-
tion 2.1.4). For example, the measurement result |1) inside the fault-tolerant P gate signals
the XZ correction of the output, while |0) indicates a correct output state.

Furthermore, quantum circuits are inherently probabilistic due to the quantum specific
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effects like state superposition and entanglement. For example, the result of measuring a
state superposition is directly related to the probability amplitudes of the basis states. The
probability of observing the output 7 is p(m) = |a|* = aa* (see Section 2.1), where  is the
amplitude of state . If the measurement is not performed in a basis equal to the output
state, the results will depend on the angle between the output state and the measurement
basis.

For the purpose of this chapter Definition 1is used to express a class of circuits that in-
cludes diverse representatives like fault-tolerant quantum circuits implemented using tele-
portations, arbitrary quantum circuits whose outputs are measured in a basis different from
the output state, and stochastic circuits as alternatives to classical circuits.

Definition 1. A probabilistic circuit C computes a mapping F : I — O, where each input
i € Iis mapped to an outputj € O with probability p(i, /) and 3 7 p(i. /) = 1.

The analysis of the probabilistic circuits will initially consider the details of simulating
quantum circuits on a stochastic computer. Quantum circuits are difficult to simulate due
to exponential number of state amplitudes to keep track of and update during the compu-
tation, but the similarities between quantum and stochastic circuits will indicate possible
improvements of the simulation.

Although not inherently resilient, quantum circuits can be constructed in a fault-tolerant
manner by embedding QECCs, and the propagation of errors through the circuits is re-
duced by the fault-tolerant gates. Reducing the rate of possible qubit errors does not com-
pletely adress the effect of missing gate faults. Until recently this aspect has not been inves-
tigated, and quantum circuits will be analysed from the perspective of their probabilistic
nature.

The final section of this chapter will present an algorithmic solution of the probabilistic
Pauli correction mechanism necessary in the context of fault-tolerant quantum computing.
Although the mechanisms were previously known, the effects of the corrections were not al-
gorithmically captured before. The algorithm will complement the future tool kit required
for the design of probabilistic/quantum circuits.

3.1 SIMULATION OF QUANTUM CIRCUITS USING STOCHASTIC COMPUTING

Stochastic computing is a form of approximate computingGaiGg, and the main attraction is
that complex arithmetic operations can be implemented by classical gates. Stochastic circuits
(SC) encode a real number as the signal probability of a bit sequence (the probability of a 1
appearing in any clock cycle), and process such sequences (called stochastic numbers) (SN)
on-the-fly by means of simple logic circuits.

There are multiple possible representations of probabilities on SNs %, and the two
most used will be detailed. In their basic unipolar representation SNs approximate numbers

from the real interval [0, 1]. For a unipolar SN, the probability associated to itis p = m/n,
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where 7 is the number of 1s from an #-bit long bitstream. SNs using the bipolar represen-
tation are associated to real values from the interval » € [—1, 1], and the probability of a
bit in the stream being oneis p = (7 + 1)/2. For example, the unipolar values 0, 0.5 and 1
correspond to the bipolar values —1, 0 and +1, respectively.

With a fixed SN length 7, only 7 + 1 distinct numbers of the form 72/7 are represented
exactly because the SN representation is highly redundant in that a given 7/7 can be repre-
sented in C; different ways. For example, 0111, 1011, 1101 and 1110 are the four ways of
representing in the unipolar value p = 3/4 when n = 4; the same value p is represented in
1820 different ways with z = 16.

Two important circuits are used to convert numbers between ordinary binary form N
and stochastic form p = N/2*. These are needed to interface binary and stochastic circuits.
The (pseudo-) random number generator in Figure 3.1is typically implemented by a linear
feedback shift register (LFSR) W&,

Performing arithmetic operations using the SN is reduced to the way probabilities of
the ones in bitstreams are affected by classical gate operations. For the unipolar represen-
tation, the multiplication of p, and p,, is equivalent to having a two-input gate that out-
puts a bit with value one only if two bits from the SNs p, and p,, are one at the same time.
This is the AND gate (see Figure 3.1). Squaring a value is not as easy as multiplying the same
SNs with itself: due to the functionality of the AND gate, the multiplication result will be
AND(p,,p,) = p,- One possibility is to delay p, into the SN p/ by placing a D-type flip-
flop before one of the AND gate inputs. This uncorrelates the otherwise identical SNs and
the multiplication result will be AND(p,, p|) = p,p, = p-

Therearen — m(p' = (n — m)/n = 1 — p) bits of one in the bitstream representing
the application of a NOT gate to p, and the outputis p’ = 1 — p. After combining an AND
and a NOT gate, the NAND of two unipolar SNs computes 1 — p, p,. Another often used
gate is OR, which calculates an approximate sum of two unipolar SNs. The result of OR
is seen either after expressing the gate by NAND:, or if one considers the truth table of the
OR function.

OR(a,b) = NAND(NAND(p,,p,); NAND(p,,p,))
= 1-( _P1)(1 _P2) =Pt Py PPy
A scaled addition between two unipolar SN is implemented using a 2-input 1-output
multiplexer (MUX, see Figure 3.3a), where the select bitstream s represents the 0.5 value and

ensures that the sum is in the probability range [0, 1]. The scaling factor is supplied by an
independent SN representing a purely random bitstream.

MUX(p,, p,) = OR(AND(p,,s5), AND(p,, NOT(5)))

MUX(py,p,) = spy + (L = 5)p, — (1 = 5)sp,p,
(1 =3)s= 0= MUX(p,,p,) = sp, + (1 = 5)p,
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Figure 3.1: Unipolar SC computing elements "“""13: (a) Multiplier; (b) Scaled adder; (c) Binary-to-stochastic converter;
(d) Stochastic-to-binary converter.

For bipolar SN the arithmetic operations are implemented using different gates. The
NOT gate will be used to change the sign of the probability associated to the bipolar SN
(x — —x), which is observed after considering the linear transformation between SN value
and the probability of ones in the bitstream.

x=2p—1;2 =20R(p) —1=2(1—p)—1
x+x =04 =—x

The multiplication between two bipolar SN is performed using the XNOR gate. Its
action can be easily observed, if for two probabilities p, and p.,, the gate initially operates on
unipolar SNs, and considering that unipolar values are transformed into bipolar ones by the
function 2p — 1.

XNOR(p,,p,) = OR(AND(NOT(p,), NOT(p,)), AND(p,,p,))

= (L=p)A =p,) +ppy + (1= p)p)((1 = py)p,)
= (2P1 - 1)(2]’2 - 1)

Using similar considerations, it is shown that MUX still serves as a scaled adder for two
bipolar SN, and that there is no possibility to implement an approximate addition (like OR
for unipolar SNs).

Having enumerated the most common mathematical operations, it should be noted that
their results have a high precision as long as the SN lengths are sufficient. The SN length
is chosen to control the trade-off between precision (longer sequences) and performance
(shorter sequences). In general, stochastic circuits are suitable for resource-intensive appli-
cations, that process real numbers, and do not require perfect accuracy. Extremely resource-
efficient stochastic implementations of primitive arithmetic operations and several impor-
tant functions were introduced in early work %3%, but general synthesis flows for mapping a
specification to a stochastic circuit have only appeared recently @R AR

SC has several drawbacks, including long computing times, and inaccuracies due to bit-
stream correlation (e.g. the example of squaring SNs), the scaling of computations to the
unit interval, lack of general design methodologies, and few successfully implemented ap-
plications. The central engineering aspect that requires special attention when using SC is
achieving the necessary precision of computation.

A feature of SC that has not been extensively used is progressive precision (PP), which
refers to the fact that (random) subsequences of a bitstream representing p have values that
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Figure 3.2: SC edge detection showing progressive precision: (a) Input image; (b-d) Output image after 4, 32 and 256
cyclesAH12,

approximate p. The randomness of SN representation means that some subsequences ap-
proximate p very poorly. As more clock pulses are applied to the stochastic number gener-
ator of Figure 3.1, the output bitstream’s approximation to the target value p tends to get
better. In general, each additional bit of probability approximation precision requires dou-
bling the length of the SN, leading to an exponential overhead. To achieve the 8-bit preci-
sion, needed for many image-processing applications, the SNs requires length of 7 = 256.
Nevertheless, PP implies that, for suitable applications, an SC computation step could be
halted after i < 7 cycles if the result at time 7 had sufficient precision. PP is in most situa-
tions difficult to manage (at least for the bipolar representation). The precision is negatively
influenced by the scaling introduced after each MUX-addition, and an additional negative
factor is the degree of correlation existing between SN.

In spite of the disadvantages, some very promising new applications for SC have emerged
recently, notably decoding LDPC codes™*“" and real-time image processing™"". System-
atic approaches to SC design have also recently appearedAH“. There are applications of SC,
as it can be fast in practice: (1) the basic clock cycle needed for key operations like add and
multiply is very short; (2) SC tasks can often be parallelised efficiently using VLS (3) the PP
property can sometimes be an advantage.

Simulating quantum circuits on a stochastic computer involves the mapping of the quan-
tum circuit formalism to stochastic computing elements. An appropriate mapping will have
to result in minimal hardware requirements associated to the mapped circuit, as well as suit-
able SN lengths for the necessary precision. The later aspect will be investigated from the PP
viewpoint.

3.1.I MAPPING OF QUANTUM CIRCUITS TO STOCHASTIC CIRCUITS

The probabilistic nature of SC coupled with their PP property will be used to analyse the
simulation of quantum circuits using stochastic circuits. The simulation will be performed
by implementing the multiplication of matrices (the quantum gates) with complex vec-
tors (the quantum states). Generally, both the matrices and the vectors will be composed
of complex numbers, and the easiest representation is to use a pair of SN for each complex
entry. The complex number n = 7, + in; is associated to (7,, 7;), where the SN 7, rep-
resents the real part, and #; is the SN of the imaginary part. The evolution of an arbitrary
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quantum state, described by the multiplication with an unitary matrix, is computed using
Equation 3.1, and each complex sum will be represented by the corresponding pair of SNs
(Equation 3.2).

o x oy 4| |ax+ by
Uly) = [z z‘] [19] - Lzz—i— bt] (1)
s =ax+ by = 5, + s;i (3-2)

For any quantum state, the square of the amplitudes will add to 1, and for the one qubit
state (a, b)” the sum is written using real and imaginary parts:

ad* +bb* = (a2 + &)+ (b} + b)) = 1

In a quantum circuit, after the application of gate U, the probabilities associated to each
computational basis state will be less than 1; furthermore U'is unitary, and the rows form an
orthonormal basis:

(ax+ by)(ax+ by)" < 1
a oyt = () + (P ) =1

All pairs (n,, n;) representing the numbers 4, b, x,y € Chave —1 < n,,n; < 1,such
that multiplying any such two SN of the pairs will result in values of the interval [—1, 1].
The multiplication result of two complex numbers (e.g. 2 and x) shows that the simulation
of quantum circuits is possible by using bipolar SN, and that there is no need for scaled
additions. However, there are no known methods to implement a generalised non-scaled
addition for bipolar SNs, and the multiplexer is still used as an adder.

ax = (55,5) = rare®e® = rpeOats) (33)
S = apx, — apx; = rarxcos(0, + 6,)
s = ax, + ax; = rresin(0, + 0,)

7o 4+ rp=lands”+7 =1~ —-1<s5<land —1<5<1

3..2 COST MEASURES

The state of the quantum circuit needs to be explicitily represented, and simulating quan-
tum circuits using SC exposes an exponential increase of the necessary hardware resources.
For example, |101) will be the vector (0, 0,0, 0,0, 1,0,0)”, where each amplitude is a pair
of SNs. During the simulation the complete state vector is constantly updated. However,
all the amplitudes (complex numbers) could be computed in parallel, transforming the sim-
ulation into a massively parallel computation. For this reason, the total number of gates
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Figure 3.3: a) The multiplexer (MUX) implemented using three gates (two ANDs and one OR); b) A MUX-tree consisting
of two layers used for adding four numbers.

N of a stochastic circuit is an expression of the overall hardware resources needed for the
simulation (total number of gates N), and its longest path L is an indicator of the required
execution time.

Updating the amplitudes of the state vector requires only multiplications (XNOR) and
additions (MUX) as illustrated in Equation 3.2. With respect to the arithmetic of real num-
bers, the gate count and the path length parameters of MUX and XNOR will be used (see
Figure 3.3a). For the required bipolar representation the realisation cost of the NOT gate is
not considered. Stochastic additions through multiplexers introduce an unwanted scaling of
the results, and the scaling factor S will have to be examined.

e N, = 3and N,, = 1 represent the total number of gates required by the MUX and
the XNOR;

e [, = 2and L,, = 1 represent the contribution of a MUX and an XNOR to the
longest path.

Due to the structure of the input state vectors and of the matrices there will always be an
even number of SN to be added for the computation of the output state. Furthermore, be-
cause of the scaled sums, the addition of more than two SNs requires multiple multiplexers
to be arranged into a tree structure. Each layer of SN adders from the MUX-tree computes
a set of partial sums, which are added into a shorter sequence of partial sums at the follow-
ing layer (see Figure 3.3b). The partial sums after each tree-layer are scaled by 0.5, and after
n levels of addition the scaling will be § = 0.5". For example, the addition of four numbers
a, b, ¢, d computed by 3 multiplexers introduces a scaling of § = 0.25. Adding 2" (» > 1)
real numbers using the tree structured addition requires (2" — 1) N, gates, and the length

of the path is increased by log(2") L, gates.

s = MUX(MUX(a,b,0.5), MUX(c,d,0.5),0.5)
s = 025(a+b+c+d)

For the multiplication of more than two SN, the multipliers are chained instead of being
arranged as a tree. For example, the multiplication of 4, b, ¢ is performed by XNOR(a, XNOR(b, c)).
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Multiplying  (n > 1) SNs introduces #N,, gates and increases the length of the longest
path by nL,, gates.

From an arbitrary bra-ket representation the state vector has to be computed as a tensor
product, and a supplemental scaling is introduced at the beginning of the simulation. The
scaling factor depends on the number of qubits the circuit operates on.

3.1.3 ARBITRARY QUANTUM GATES

In an arbitrary quantum circuit on ¢ qubits, applying the general single-qubit gate U on the
k-th qubit is equivalent to applying thegate [y ® ... ® [r_1 @ U® 11 ® ... ® [,_1 onall
qubits. Similarly, applying the gates U and V' simultaneously on the qubits &£ and 7 results in
applying a tensor product containing 7, Uand ¥ gates. In the following, the tensor product
I®1®...® lis considered a single g-qubit gate, although it is the trivial identity operator.
An arbitrary ¢g-qubit gate will be represented by 2(27 x 27) SNis.

The simulated state vector consists of 27 complex numbers, thus 2971 SN, and the vector
is updated by computing matrix vector multiplications. A direct implementation of matrix
multiplication is generic in that it allows a mapping of any quantum circuit to SC simply
by defining enough SNs to represent the state, and then translating each quantum gate into
stochastic multipliers and adders that perform matrix multiplication.

An input state vector is multiplied with each row of the matrix, where each vector entry is
multiplied with the corresponding row entry. The multiplication of two complex numbers
requires two multiplications and additions (see Equation 3.3) for each part of the result. A
multiplication requires 2(2N,, + N,) gates. After multiplying the state vector with a matrix
row, there are two sets of partial sums, one for the real part and another for the imaginary
part. Each partial sums addition is performed by a tree of depth log(27) = g, which intro-
duces again (2971 — 1) N, gates into the simulation. As a result, the matrix multiplication of
a an arbitrary gate will introduce N gates.

Ng(q) =21 2771 (2N, + N,) + 2(2771 — 1)N, ]

The real and imaginary parts of the output state vector are computed in parallel, and for

the tree-shaped adder of depth ¢ the length of the longest path is:
Ls(q) = (L + L) + gL,
Figures 3.4 and 3.5 illustrate the stochastic circuits used for the matrix multiplication and
for computing an inner product.
3..4 PARTICULAR QUANTUM GATES

While a direct transformation of quantum gates is expensive, many quantum circuits of in-
terest contain relatively simple quantum gates (Pauli or CNOT), for which efficient stochas-
tic implementations exist.
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Figure 3.4: The stochastic circuit for matrix multiplication is the same circuit used for the application of a quantum gate
to a state vector. In this figure the matrix represents a single-qubit gate.

Particular quantum gates, commonly used in quantum circuits, have the potential, when
mapped to SC, to require less classical gates and not to influence the longest path. Pauli
gates (X, Y, Z, I), CNOT gate and P gate, when applied to a general state vector perform a
permutation of the state vector amplitudes. These gates are not required to be implemented
by matrix-vector multiplication. The matrices of the 7, X, ¥, Z and CNOT gates contain
on each line only a single non-zero entry, and an arbitrary tensor product of these gates will
result in a matrix with a single non-zero element on each row.

Applying one of these gates in the context of QC simulation using SC requires only
NOT gates (for changing the sign of the represented values) and permutations of SN.
For example, simulating the application of the Z gate on a one-qubit state vector |¢p) =
(a, b)T will transform the pair of SN (&,, 4;) into (—b,, —b;), which is implemented by
(NOT(b,), NOT(b;)).

The matrix of the CNOT gate represents a permutation, too, where the amplitude asso-
ciated to the |10) (a1¢) state is permuted with the amplitude of |11) (411). The CNOT gate
is practically simulated by re-routing the affected SNs. For example, for a two-qubit input
state vector with the SN pairs 219 = (4105, 410;) and 411 = (a11,, 411:), the output state
vector will contain the SN pairs 4}y = (a11,, @11;) and 4}y = (@105, 410)-

The P gate is implemented similarly to the CNOT gate and the Pauli gates. Due to its
matrix representation, the multiplication of an amplitude « by the complex number 7 is
implemented 2i = (4,,4;)i = (NOT(a;), a,), where the first position in the SN pair is
reserved for the real part, and the second position for the imaginary part.

As a conclusion, the total number of classic gates is not influenced by these particular
quantum gates; the longest path and the scaling of the state vector entries remain unchanged.
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Figure 3.5: The stochastic circuit for computing an inner product between two complex vectors of length 2.

THE HADAMARD GATE

The tensor product between a Hadamard gate and a Pauli gate or CNOT results in a square
matrix with each line containing exactly two non-zero entries. In general, the tensor product
of h Hadamard gates will contain 2” non-zero entries.

The parallel application of » Hadamard gates in ¢-qubit circuits requires 24(2(2” — 1))
necessary additions for the SC simulation. The longest path is increased by Ly (h) = L,
gates, and the resulting scaling of the state vector SNsis Sy(h) = Vo b, Although each
addition introduces a scaling of 1/2, by omiting the 1/+/2 factor of the Hadamard matrix
the resulting scaling is reduced to 1/+/2.

ROTATIONAL GATES

The last gate from the universal quantum gate set analysed throughout this work is the 7"
gate, the 7/4 Z-rotation. Rotational gates of this type are extensively used in quantum cir-
cuits and have the matrix from Equation 3.4, where » > 2. The matrix representation of
the tensor product contains a single complex entry, and, using Euler’s formula, the entry is
expressed as: a pair of SNs.

R) = ((1) exp (?ﬂ/ 2’)) =

PAIE N (cos(%), sin(%))

Both the cos and sin functions take values in the [—1, 1] interval that is representable by
bipolar SNs. Multiplying a state vector representing g qubits with rotational gates (between
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1 and g in parallel) requires a maximum of 29 complex number multiplications, which adds
atmost Ncg = 29N, gates to the total number of gates, and the longest path increases by
Lcegr = Lg(g) gates. The introduced scaling does not depend on the number parallel gates,

such that Sz = %

SIMULATION OPTIMISATIONS

The synthesis of stochastic circuits simulating quantum computations consists of multiple
steps: 1) generation of the matrix-vector multiplication circuits; 2) reduction of the number
of trivial SN additions and multiplications; 3) introduction of RNGs to generate the param-
eter SNs from inputs and matrices.

Ensuring that the computation is precise requires the assesment of the randomness re-
quirements. In general, each input SNs will have its own associated random number gener-
ator (RNG): for the input-state SN, and for the matrix entries. The RNGs will ensure that
the SN have desirable randomness characteristics (are uncorrelated). The high hardware
cost of introducing a large set of RNGs is not negligible, and a first optimisation is to use a
single 7-bit LFSR to generate 7 independent SNs. This reduces the number of RNGs by a
factor of n.

Implementing the simulation as a matrix multiplication requires an exponential amount
of classical gates in general, although the Pauli gates and the CNOT are trivial to be simu-
lated. The difficult gates are the arbitrary gates, and, when using the reduced universal gate
set, the Hadamard and the rotational gates. In conclusion, the difficulty of simulating quan-
tum computations is dictated by the number of Hadamard and 7 gates that appear in the
Solovay-Kitaev decomposition of an arbitrary unitary gate®™°.

The number of gates (2N) and the length of the longest path (L) presented previously
have to be understood as worst case costs, which can be reduced in certain situations. The
results of parallel gate tensor products contain a high number of entries from the set {0, £1, £¢}.
Multiplication by these values is trivial, and no RNGs, as well as no multipliers, are required
to generate the SNs. As a result, matrix multiplications are performed similarly to how Pauli
gates were simulated. Futhermore, the O-entries in the tensor product matrices reduce the
number of needed stochastic streams and multipliers.

3..§ SIMULATION RESULTS

The simulation of quantum circuits using SC is applied to two types of circuits: stabiliser
(GHZn) and non-stabiliser (CR7). The Greenberger-Horne-Zeilinger (GHZ#) circuits™“*
are constructing highly-entangled states (similar to graph-states) of 7 qubits (see Figure 3.7¢).
The circuits consist of 7 gates: a single Hadamard gate on the first qubit and a sequence of
n—1 CNOTs controlled by the first qubit and targeting each of the other qubits. The small-
est GHZ circuits is for » = 2, an this is illustrated as a stochastic circuit in Figure 3.6.
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Figure 3.6: The GHZ2 circuit implemented as a stochastic circuit. The application of the Hadamard, after redundant
multiplications were removed, is ilustrated in the first part of the circuit. The entangling subcircuit, shown in the second
part, consists of CNOT gates implemented as SN reroutes.

The non-stabiliser circuits were synthetically constructed for the simulations, by apply-
ing the Hadamard gate in parallel on the 7 qubits, followed by a sequence of controlled-
rotations of gate G; finally, a second round of parallel Hadamard gates is applied on all the
qubits except the first (see Figure 3.7b).

The effect of using PP is illustrated for the software simulation of quantum circuits using
SC. The results were obtained for the circuit from Figure 3.7a. The circuit operates on two
qubits, and the state vector consists of 2° SN (a pair for each amplitude). For the input
|10) the diagrams from Figure 3.15 and 3.16 illustrate the evolution of the SN values with the
continuous increase (32 bits per step) of the bitstream length. The first diagram shows the
SN values for bistreams of length between 32, 32000], while the last diagram contains the
values for streams of length [3.197 x 107,3.2 x 107]. The diagrams are discrete, as can be
seen in Figure 3.14.

The expected values obtained after simulating the circuit using QuIDDPro ™" are ex-
pressed as the SN pairs ((1/v/2,0), (—1/4/2,0), (0,0), (0, 0)). However, the stochastic
circuit simulation introduces a scaling of 277 due to the construction of the state vector and
the sequence of Hadamard applications. The SN values read at the output approximate
0.00552 (see Figure 3.16).

A second round of simulations was executed on an FPGA"™ . The target quantum
circuit was automatically mapped to a stochastic version in VHDL (a hardware description
language). The VHDL description was synthesised and transferred to an FPGA. Further
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Figure 3.7: Circuits used for simulation: a) Example used for illustrating PP; b) The CRz circuit for » = 3 qubitsfor G =
((1,0), (0, exp(m/8))); c) The GHZx circuit for n = 3.

infrastructure, such as SN generators of stochastic numbers (32-bit LFSRs used as RNGs to
generate 32 independent random bitstreams) and counters to convert SNs back to binary,
were also synthesized. The Altera DE2-115 FPGA development board and its associated soft-
ware were used as the development platform, and the FPGA-PC communication was con-

trolled by the Nios II processor, which required several custom-designed communication
blocks XPHS,

The experimental results are used to compare the resources necessary for both classical
and stochastic computing to simulate a quantum circuit. Table 3.1 compares the equivalent
number of transistors between classical and stochastic implementations of the benchmarked
quantum circuits. The classical implementations were assumed to consist of 16-bit adders
and multipliers (1,072 and 7360 transistors, respectively) as well as 32-bit adders and mul-
tipliers (2,442 and 29,440 transistors, respectively). The transistor counts for adders and

multipliers were computed in "#©% and“"**, respectively.

The transistor counts of the full implementations of the quantum circuits GHZn and
CRn are shown in the second and third columns of Table 3.1. The number of transistors for
the stochastic implementations are reported in column 4, while the number of transistors
required for the RNGs is given in column 5. Each RNG was estimated to have 408 transis-
tors. The final two columns of the table show the ratio of the transistor counts for the 16-bit
and 32-bit classical implementations, and those of the stochastic implementation. For exam-
ple, the cost of the 16-bit classical implementation of GHZ3 is 1,246,240, whereas the cost
of its stochastic realization is 1,600 + 408 = 2,008, implying an improvement factor of 621x.
The resource requirements grow exponentially with the number of qubits both for the sta-
biliser (GHZ) and non-stabiliser (CR) circuits. Moreover, the stochastic implementation of
a circuit is around four orders of magnitude more compact than its classical counterpart.

Table 3.2 shows the average error obtained during the simulations for different SN lengths.
The trends observed earlier for GHZ3 apply to the other circuits, too. Very close to exact
resolution is achieved for 224 long SN, and a very small deviation is observed for length 216,
However, the circuits are small, and the major obstacle of a succesful simulation is the preci-
sion loss introduced by the MUX-addition.
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Classical Stochastic Improvement

16-bit 32-bit Gates | RNGs | 16-bit | 32-bit

GHZ3 1,246,240 4,866,720 1,600 408 621 | 2,424

GHZ4 6,398,112 25,119,392 8,000 816 726 | 2,849

GHZs 32,187,008 126,855,808 39,168 1,224 797 | 3,141

GHZ6 157,010,176 620,472,576 | 186,880 | 2,040 831 | 3,284

GHZ7 | 744,857,600 | 2,949,160,960 | 872,448 | 3,672 8s0 | 3,366

CR2 589,669 2,281,129 770 816 372 | 1,438

CR3 2,881,188 11,125,908 3,816 1,632 529 | 2,042

CR4 13,208,876 51,077,596 | 17,400 6,120 562 | 2,172

CRs 59,366,048 230,137,248 | 77,120 | 22,032 599 | 2,321

Table 3.1: Transistor counts of circuits used in the experiments
Circuit Stochastic number length 7 Optimal
28 212 216 218 224 length

GHZ3 | 0.03662 | 0.013337 | 0.00359 | 0.00II | 0.00019 28
GHZ4 | 0.05078 | 0.01550 | 0.00283 | 0.00155 | 0.00020 212
GHZs | 0.05029 | 0.01242 | 0.00366 | 0.00175 | 0.000I4 216
GHZ6 | 0.04943 | 0.01309 | 0.00293 | 0.00159 | 0.00020 224
CR2 0.03925 | 0.00762 | 0.00328 | 0.00135 | 0.000I5 212
CR3 0.05176 | 0.01076 | 0.00354 | 0.00188 | 0.00032 214
CR4 0.04774 | 0.01481 | 0.00384 | 0.00203 | 0.00020 218
CRs 0.04241 | 0.0126 | 0.00324 | 0.00I52 | 0.000I7 223
CR6 0.06257 | 0.01233 | 0.00325 | 0.00148 | 0.00017 224

Table 3.2: Errors for different SN lengths
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3..6 CONCLUSION

Simulating quantum circuits is known to be challenging. Approaching this problem by
mapping QC to SCis performed in a straightforward procedure, and the initial results show
that the amount of hardware required to implement the simulation by SC is orders of mag-
nitude less than a classical realisation. However, the main limitation of this approach is that
very long run-times are needed to achieve adequate precision. Progressive precision has a
great potential in raising the applicability of SC, but more ingenious models of simulating
QC need investigation for maintaining a low precision degradation.

3.2 VERIFICATION OF PROBABILISTIC CIRCUITS

Quantum circuits were introduced as probabilistic, and were linked to their stochastic coun-
terparts which are resilient in the presence of faults affecting the SNs. The negative impact
of qubit or SN errors was reduced by introducing redundancies in the circuits, either by
incorporating QECC:s or by extending the lenght of the SNs. To a high degree these protec-
tions are useful, but there are fault models that demand different approaches. The situation
of missing gate faults is well investigated for classical Boolean circuits**°°, and a common
solution is circuit verification. Verifying a circuit implies detecting if a particular circuit in-
stance is conforming to the modelled circuit specification.

The verification task can be translated into the area of probabilistic circuits, as the method
for checking that a stochastic/quantum circuit adheres to its specification. The verification
of stochastic circuits was introduced in """, and for quantum circuits some previous work
involved quantum states and quantum processes (computations) tomography, which were
formulated starting from the density matrix representation . Their major disadvantage
is the high computational complexity. The complexity relies on the probabilistic measure-
ments, but equally, on the high dimensionality of the Hilbert space associated to compu-
tation. In the following, some options for solving the verification of quantum circuits are
presented. The testing and diagnosis of probabilistic circuits was jointly presented in"A™",

and extended for quantum circuits in """,

3.2.1 QUANTUM STATE TOMOGRAPHY

One of the first problems encountered when assesing quantum circuits is the difficulty of
knowing the output state given that the only observable output consists of measurement re-
sults. The method of deducing the state of quantum system is state tomography, whose goal
is to reconstruct the density matrix of an ensemble of particles through a series of measure-
ments 2K,

The density matrix is used to express general pure and mixed quantum states. One of its
properties is that, for an arbitrary density matrix p, the probability of measuring the state

|2)) is given by the trace of multiplication between the outerproduct [t) (1| and p. This
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procedure is the building-block of tomography approaches.
p(v)) = o(l¥) (¥]p)

Quantum process tomography is concerned with characterising the operation of quantum
processes, and the procedure is exponentially difficult compared to state tomography ™5,
In this section only the tomography of states will be shortly introduced. In general, tomo-
graphic approaches are based on the concept of N-experiments. Tomographic approaches
were initially applied to particles (e.g. photons), but when discussing about quantum cir-
cuits, the repeated execution of a circuit is similar to the repeated emission of photons from
a photon source. All photons from the same source have identical quantum properties, and
an ensemble of # photons should be understood as the output of an z-qubit circuit.

Definition 2. An N-experiment(C, i) consists of repeating for N times the execution of a
probabilistic circuit Cunder the input i € Jand measuring after each execution the outputs
of the circuit. The number Nis the length of the experiment.

Tomography is a probabilistic method, and in practice a quantum state cannot be ap-
proximated perfectly because the experiments would require an infinite length to yield the
exact probabilities of observing the measured states. This is similar to stochastic computing
(see Section 3.1) and its progressive precission property. However, in the following it will be
assumed that after a sufficiently long experiment, the probabilities are inferred with a suffi-
ciently high precision.

SINGLE QUBIT TOMOGRAPHY

The state of an arbitrary single qubit is spanned in the density matrix formalism by the four
Pauli matrices and four real parameters S;, where 69 = 7,01 = X,y = Yand d3 = Z, and
So (corresponding to 7) will always equal 1475,

P = %Z&'Csi

Any single-qubit quantum state is specified by three independent parameters associated
to three lineary independent matrices. The measurements necessary to determine the S; pa-
rameters correspond to the states |¢;), where [¢1) = |+), |#2) = 1/+/2]0) + i|1) and
|¢;) = |0). Thus, the measurements in the X, Y'and Z basis will be used for inferring S;.
The order of measurements is not relevant: tomography works similarly to how a point is
located in a 3D space, the only difference being that in a 3D space a point is located on the
Bloch sphere (for pure states). The first measurement isolates the unknown state to a plane
perpendicular to the measurement basis. Further measurements isolate the state to intersec-
tions of non-parallel planes, which, for the second and third measurements, correspond to a
line and finally a point /%,
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MULTI-QUBIT TOMOGRAPHY

For a single qubit the number of parameters required to construct the density matrix is four.
For a multi-qubit system the density matrix is expressed according to Equation 3.5, and there
is an exponential number of parameters (4” — 1) to estimate, while S ¢, ¢ is always zero. For
example, for two qubits, 15 independent parametes have to be estimated.

3
1
p = on Z Sitin,in0iy @0y Q... Q 0y, (3.5)

i17i27~-~in:0

In particular, there are some situations where a large number of parameters is zero (e.g.
un-entangled/separable states). The density matrix of the state |00) is decomposed into a
sum of only four §; parameters, for instance.

1 1
poo = 5(["‘2)@5(1"‘2)

1
= JURI+I8Z+ZRI+Z32)

3.2.2 FAULT MODELS

The reversibility of quantum circuits was used by "™°# for formulating the initial prob-
lem statement of testing reversible circuits. Quantum circuits were considered consisting of
k-CNOT gates (CNOTs with & controls) and the employed fault models were the single-
stuck-at and multiple-stuck-at, which are very similar to the ones used in classical circuit
testing®*°°. For this reason the approach did not capture the complete complexity of the
quantum gate fault mechanism. A more recent overview considered fault model presented
in®*"°, and it includes faults of the following type: modelled by Pauli matrices, initialisa-
tion faults, lost phase faults, measurement faults and forced gate faults.

Probabilistic circuits containing 7 gates will be specified as a gatelist (a list of gates, and
the connections existing between gates). More specifically, the gatelist of an arbitrary quan-
tum circuit is the sequence CL = {Gy, Gy, ..., G,}, where G; represents a gate. In gen-
eral, a fault is defined by a model that mimics physical defect mechanisms or typical designer
errors, and the fault models that seem most adequate from an engineering perspective are
those from "1 which include:

o Single Missing-Gate Fault (SMGF), where the gate G; is missing from CL;

o Repeated-Gate Fault (RGF): the gate G; is applied 7 times. Thus, if #is even, then
RGFs are equivalent to SMGFs, and if #is odd, the fault is redundant;

e Multiple Missing-Gate Fault (MMGF), where multiple gates G; are missing from CL.
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Assuming the SMGF model, a probabilistic circuit C'is transformed to a different prob-
abilistic circuit Crby a fault f € F, where the faultlist F = {f,f,,..., f| F|} is the set of
possible faults. Each possible missing gate from the circuit Cj is the source of a faulty circuit,
and |F| = n.

The circuit Cj is used to denote the fault-free circuit, while Crindicates a faulty circuit
where the fault fis present. The faulty circuit is modelled by removing the gate correspond-
ing to f € Ftrom the fault-free circuit Cp, and Crhas the same input and output space as the
correct version Cp. In the case of quantum circuits, the faulty circuit Cyis the gate sequence
Cr=1{Go, G, ..., Gr1,Gppa, - - -, Gu

The fault-free Cj and the faulty probabilistic circuits C, besides being modelled by gatelists,
are represented by the probability distributions obtained at their outputs in the presence of
a specified input. The probability distributions Cj(7), for the input i € 7, can be computed
by software simulation. For quantum circuits, a software circuit simulator is, for example,
QuIDDPro ""°°. The obtained probability distributions represent the diagonal elements
of the density matrix of the output state. A quantum circuit C on 7 qubits, considering
only the |[/] = |O| = 2" inputs in the computational basis, will generate 2” long proba-
bility distributions C(i) = (p(7,1),p(,2), ..., p(i,|O])), and thus 22" probabilities that
relate input states to output states. In testing terms p(7, ) is the probability of measuring 7 at
outputs of C when the test vector 7 is applied.

3.2.3 DISTANCE MEASURES

Two probability distributions obtained from two separate probabilistic circuits are com-
pared by computing the distance between them. Some of the most used distances are the
Euclidean, L, (trace distance) and fidelity, which are presented for the two probability dis-
tributions z and &:

Euclidean: dist(a, b), = Z(ﬂi — b;)?

Trace: dist(a, b), Z |a; — bi

Fidelity: dist(a, b Z \/ a;b;

Distance measures are useful, for example, for comparing the probability distribution of
faulty circuits Crto the output of Cy. The approximation of a quantum state is compared
to the ideal (expected) quantum state by using similar distance measures where the fidelity

AJKos,

of two quantum states is a measure of state overlap NCe For two quantum states p; and

p2 the trace distance and the fidelity are defined as:
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Quantum trace: dist(py, p2)! = §tr(p1 — p2)

2
Quantum fidelity: dist(p1, ,02)? = (z‘r( \/Epg\/ﬁ)>

3.2.4 TOMOGRAPHIC TESTING AND DIAGNOSIS

This section focuses on determining by a tomographic approach if a circuit under test (CUT)
C operates correctly or not. Tomographic testing is the problem of detecting gate faults into
circuits (“is the circuit correct?”), while romographic diagnosis identifies with a high prob-
ability the existing fault (“if the circuit is faulty, which particular fault affected it?”). The
assumed gate fault model is SMGF. In the following sections the investigated states are as-
sumed to be pure, and the density matrix will be replaced by the state vector representation.

At first, a parallel analysis between stochastic circuits and quantum circuits is conducted
based on their probabilistic behaviour (see Definition 1). Quantum mechanics can be thought
of as extension of classical statistics dealing with entities called probability amplitudes that
behave like probabilities, but are complex rather than real numbers**°4. Stochastic circuits
do not support state superpositions, and, during the analysis, the input and the output
states of the quantum circuits are considerd being in the computational basis (stabilised
by Z) and measured in the same basis. This restriction does not affect the generality of the
analysis, since measurements in an arbitrary basis are constructed by the application of rota-
tional gates followed by Z measurements (see Section 2.1).

Classifying the CUT C as faulty or fault-free cannot be performed by investigating its
gatelist, as the circuit is a black box, and the only obtainable information is the output o €
O corresponding to the input i € 1. Testing and diagnosing the CUT C against a complete
set of modelled fault-free and faulty circuits (represented by probability distributions) starts
from the key assumption that only the tomograms (see Definition 3) of N-experiments (see
Definition 2) are available to decide whether or not Cis faulty.

For quantum circuits, the experimental approach is similar to quantum state tomogra-
phy, but instead of choosing a large set of measurement-basis to perform the experiments,
these are performed only in the computational basis. Arbitrary rotated measurements in-
crease the complexity of the circuit and of the hardware experimental apparatus required
for the circuit execution. Such measurements are difficult to perform, while restricting the
discussion only to Z-measurements will penalise the methods in terms of precision, but will
increase the feasibility of testing and diagnosis.

Definition 3. A romogram T(C, i, N) = (t1,12, .. ., o)) of the circuit Cunder input i € [is
a probability distribution obtained after executing the N-experiment(C, i), such that ; = %
where 7; is the number of times the output j € O was observed during the experiment.
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A tomogram T(C, i, N) is not necessarily deterministic; as a result repeating the N-experiment
k times may yield up to k different probability distributions. In contrast, if the CUT Cis
non-probabilistic (and fault-free), each application of the test vector 7 will produce the same
output value C(), and the tomogram 7(C, 7, N) will have 1 in the #-th position and o else-
where.

In the following, the probability distribution Cj(7) denotes the modelled (ideal) outputs
of the circuits ;0 < j < nafter using 7 € 7as an input, while a tomogram indicates the
results obtained for the CUT C after running an N-experiment having 7 as an input.

For example, for the probabilistic circuit CUT Cwith O = {01, 02, 03, 04} and the ref-
erence or good probability distribution Cy(2) = (py, pos p5.2,) = (0,0.5,0.25,0.25)
for some input vector 7, the 7(C, 7, 5) of a s-experiment may yield the four possible output
values 01, 02, 03 and o4, for a total of 0, 3, 1 and 1 times, respectively. By Definition 3:

1(C,i,5) = (t1, 82,13, 24) = (0/5,3/5,1/5,1/5) = (0,0.6,0.2,0.2)

Definition 4. The true-positive probability 7P is the probability that a tomogram produced
by an instance of Cyis classified as produced by Cy. The false-positive probability FPis the
probability that a tomogram produced by an instance of Cj is classified as produced by Cy.
The true-negative probability 7N is the probability that a tomogram produced by Cj is
classified as produced by Cj. The false-negative probability /N is the probability that a to-
mogram produced by Cris classified as produced by Cj.

Tomographic approaches are prone to both false positives (identifying a correct circuit
as erroneous) and false negatives (identifying an erroneous circuit as correct). Intuitively,
the probability of misclassifications is reduced if the length of the experiments is increased,
but repeating experiments is costly, and it is of interest to know which experiment length is
required in order to achieve a given confidence in a tomogram, i.e., to ensure that the prob-
ability of a misclassification does not exceed a certain pre-defined limit. The verification
methods for probabilistic circuits are presented in the following.

TOMOGRAPHIC TESTING

uses a tomogram 7(C, 7, N), and its |F| 4 1 distance measures D = {dy, d1,d>, ..., djr}
with respect to the probability distributions of the correct circuit Cjy and the faulty circuits
Cy, Gy, ..., G are calculated. The minimal distance min(D) will indicate the closest prob-
ability distribution to the tomogram 7. Detection is finalised by comparing if min(D) = d,
and, if this is the case, the circuit C'is fault-free, otherwise C'is faulty.

TOMOGRAPHIC DIAGNOSIS
has its equivalent for conventional circuits in the diagnosis of manufacturing defects®*°,

and (post-silicon) debugging where design errors are targeted **°°. Tomographic diagnosis
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starts from the approaches used in the classic context, where a ranked list of candidate faults
is constructed ®*°°. In general, a diagnostic method is considered efficient if the fault, which
is present in the CUT C, is at the top of a ranked list.

Definition 5. The rank rank(f) of a fault fis the position of fin the list of faults sorted by
the distance between the tomogram of the faulty circuit Crand the fault-free circuit Cy. For
two errors f; and f, with d(Cp, Cy) < d(Cp, Cy), then rank(f;) < rank(f,). The minimal

rankis 1.

Designers are interested in correcting the first reported error and the concept of erorr
rank is taken into consideration. If eliminating the first ranked error fails, the designer will
consider the second ranked error, and so on, until the actual error is repaired. The position
of the error in the ranked list corresponds to the effort spent by the designer trying to cor-
rect false positives. The ranked diagnostic list is easy to construct for a given tomogram: the
faults are sorted according to their distance to the tomogram, meaning that the set of dis-
tances D, computed during testing, will be ordered.

3.2.5 BINARY TOMOGRAPHIC TESTS

The detection of faulty circuits is a binary classification problem, where a set of test vectors
(circuit inputs # € 1) is used to obtain the tomograms following the N-experiments. The
use of binary tests allows the construction (generation) of zest sets, (subsets of /) that allow a
designer to prove with a given probability that an instance of a circuit is faulty or not. The
use of test sets can be extended to the task of diagnosis, too, by using these to show that a
circuit does not contain the specific fault f € Fwith a given probability.

The test and diagnosis approaches of the previous section are augmented by including
the binary decision tests (BTT) (see Definition 6). For probabilistic circuits 4/l the distances
between a tomogram and the modelled probability distributions were computed, and no
tractable proof was offered of the circuit being faulty or not. The use of BT'Ts, acting as
pairwise comparisons between a tomogram and the modelled probability distributions, will
be used as a mechanism of proof.

Definition 6. A binary tomographic test BTT(C, f; ) for a circuit Cagainst the error fis the
procedure by which the tomogram 7, obtained after an N-experiment(C, i), is compared to
the modelled probability distributions Cy(£): CH(z) and the circuit is classified as fault-free if
dist(Co(2), T) < dist(CHr), T), otherwise C'is faulty with fault f.

A BTT is based on an N-experiment and the obtained tomograms are specific for the
used input i. Constructing a set of BT'Ts (see Algorithm 1) allows inferring a set of inputs
that should be used for minimum-length N-experiments to correctly classify a CUT Cas
faulty or not. The probability threshold 7 (see Definition 7) is used as the minimum proba-
bility of correct classification. The returned set of BT'Ts is computed based on the modelled
probability distributions, and the BT Ts will be used on actual instances of the CUT C. As a
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result, after applying the resulting set of BT'Ts to C, a tomogram produced by Cywill be cor-
rectly identified as produced by Crwith at least probability 7. Intuitively, when any of the
computed BT T is applied, a circuit having fault fwill be identified as faulty with probability
7 or higher.

Definition 7. The detection threshold 7 is the minimum true-positive (TP) probability of
classifying a circuit Cby the BTT(C, f; £) as an instance of C.

The task of tomographic diagnosis is to identify the fault responsible for a failure with
high confidence. A major difference to testing is that, when at least one BTT classifies the
circuit as faulty (i.e., having a fault f), the circuit is regarded faulty and testing stops. For di-
agnosis the fault-type is relevant, and additional tests have to be applied to identify whether
the fault present is for a different fault.

Adaptive diagnosis (Algorithm 2) attempts to prove for each modelled fault that it is
not present. The diagnosis procedure operates directly on the circuit instance CUT C, and
faults, for which their existence cannot be disproven, are considered candidates (suspects)
and held in a set of suspects SUSP.

3.2.6 SLICING AND MODIFIERS OF QUANTUM CIRCUITS

The exclusive use of BT Ts is not sufficient to improve the applicability of tomographic test-
ing/diagnosis to quantum circuits, since specifics of quantum circuits are not included in
the analysis. The methods have to be extended from the initial probabilistic circuit formu-
lation, and to concentrate, for example, on faults affecting the relative phase of the output
quantum state. Such faults could not have been detected by the Z-measurements at the out-
puts of the CUT C during an N-experiment. A solution similar to detecting phase-flip er-
rors is required where circuits for measuring the Z-operator of the quantum state were used
(see Section 2.3.3).

A more in-depth presentation of tomographic testing and adaptive diagnosis for quan-
tum circuits, as illustrated by Algorithms 1 and 2, is based on the concepts of slicing and
circuit modifiers.

CIRCUIT SLICES

A first extension of tomographic testing is the use of quantum subcircuits (slices). These
are sequences of gate applications. Slicing is used during the test and diagnosis as a means
to implement the methods in a divide-and-conquer algorithmic manner. The subcircuit
C ={G,...,G,}isasubsequence of gates from of C, and for

C={Gy,G1,...,G1,C,Gpi1, ..., Gy}

the gate sequences B = {Gy, Gy, ..., G_1}and E = {G,11, . .., G,} are quantum gates,

too (see the tensor product postulate of quantum mechanics in Section 2.1). Assuming the
uantum circuits C an as unitary matrices, then C' = .

quant ts Cand C tary matrices, then C' = BfCE'
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Figure 3.8: The left- and right-modifiers surrounding the circuit C.

The classical control compulsory for quantum systems motivates the slicing mechanism.
For instance, trapped-ion quantum computers require a laser system to apply pulses of well-
defined wavelength and duration to ions suspended in a specific EM field configuration¥“*°.
Here, the classical computer controls such laser parameters as pulse frequency, direction and
duration. Quantum gate operations are not represented by physical gates or wires like in
the usual (classical) sense, and slicing is, as a result, feasible in a majority of quantum com-
puting architectures. Slicing a circuit would be performed by not executing the commands
corresponding to the sliced-out gates.

The detection of faults in a quantum circuit is performed by excluding the fault-free sub-
circuits (the unitaries B and E are sliced). This would indicate that the circuit black box as-
sumption is violated: on the contrary, it is extended because the gates are now considered
black boxes, and the time intervals between the gate applications by the classical control unit
are presumed equal.

LEFT/RIGHT MODIFIERS

The second extension of tomographic testing considers that quantum circuits (and slices)
consist of gates from the universal gate set { CNOT, H, P, T}. The detection and diagnosis
of missing gates is enhanced by using the left/right modifiers (LRM). The modifiers are sim-
ilar to rotational gates, appended at the input (left) and output (right) of a quantum circuit.
The lef-modifier consists of the parallel application of Hadamard and 7 gates ((7H)®”) on
all the # qubits before any gate of the circuit/slice is applied. The righr-modifier consists of
the parallel application of Hadamard gates (H®”) after the last gate of the circuit/slice (see
Figure 3.8).

For tomographic testing/diagnosis the used inputs were in the computational basis, and
while the Hadamard gate transforms the Z-stabilised input into an X-stabilised output, the
P and the T gate keep the Z-stabilised states unchanged (see Table 2.4). The N-experiments
are based on Z-measurements and a missing 2 or 7 gate will not be observed in the tomo-
grams.

The illustration of slicing proceeds from slices of minimal size, containing a single gate
from the set { P, T}. For the missing gate in the slice, Equation 3.6 is the output stabiliser
of output, as the LRM circuit surrounding an empty slice is H77H, where [ is the identity
gate. The output of an LRM circuit surrounding a minimal slice where the P gate is not
missing is illustrated in Equation 3.7. The stabiliser is the result of bit flipping (applying X)
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Algorithm 1 Algorithm BT Tgen for fault detection

Require: Circuit under test Con g qubits; fault list F = {f,,f,, ...}
Require: Detection threshold 73 Test vector set I = {7y, 7, . . .}, with |/ = 21
r Select i € Jwhich detects most faults by B7T with (or without) LRA.
2 Let % be the set of detected faults.
3: Determine the minimal length of the N-experiments of the BTTs such that 7P > 7 for
each fe F*.
for all Undetected faults £, € F\ F do
Let G be the gate associated with fault £,
C, C, are slices obtained after slicing at the middle of the C gate sequence
Recursively apply BT Tgen to C}, C,
end for
return Set of BT'Ts such that if they all result in classification as correct, the circuit can
be considered correct with at least probability 7.

e 2N v ok

the stabiliser of the empty slice. The LRM circuit of a slice containing a single 7"gate will be
HTTH = HPH. The output stabiliser is presented in Equation 3.8, which is again different
from the stabiliser of the empty slice.

The LRM technique differentiates between a faulty minimal and a correct slice. This is
useful observation as SMGFs (from the universal gate set) are always detectable when this
technique is used in conjuction with slicing. Comparing the LRMs to state tomography,
the modifiers are a supplemental measurement basis, which will increase the detection and
diagnosis rates of even larger slices.

H T
Z — X — .6
X+Y|[Pl Y+Z 4w Y+X X(Z
Zﬁ>)(1>L tZ B Tt (Z+7) (3.7)
2 V2 V2 V2
X+Y|T
ZiXL%Yi—Y (3.8)

3.2.7 SIMULATION RESULTS

The results presented herein are based on simulations and will show the properties of tomo-
graphic testing/diagnosis. The tomograms for a given circuit (fault-free or faulty) are com-
puted using a Monte Carlo simulation. The modelled probability distributions for a given
input i € I (computed using "™"°?) are used to generate the tomograms. For the probability
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Algorithm 2 Algorithm BT Tdiag for fault diagnosis

Require: Circuit under test C (fault-free or faulty);
Require: Circuit model Cp; fault candidates FF = {f,.f,, .. .};
Require: Allowed test vectors 17 = {iy, i2, . . . }; Mpax

I

- H H
S g kX 8 B E O

2 2 YN vk ow R

SUSP <— FF // Set of candidate faults (suspects)
foralli € [Tand f€ FFdo
Determine M,y such that BTT(Cy, f; t) has TP > 7 with (or without) LRM
Record fwith M, M.y in set F
end for
forall f€ FFdo
Perform BTT to obtain tomogram 7 of C
if dist(Co(z), T) < dist(CH(t), T) then
SUSP « SUSP\ {f}
end if

: end for
. if [SUSP| # 0// there are still suspect faults then

C}, C, are slices obtained after slicing at the middle of the C gate sequence
Recursively apply BT Tdiag to C}, C, with FF = SUSPand C = C| or C = C,

. end if
. return Fault fsuch that Cequals Cy with fault £

distribution C(7) = (py, ...

,p,,)> where 7 is the length of the output of the probabilis-

tic/quantum circuit, the tomogram 7'is computed by simulating an N-experiment:

of false positives and negatives among A N-experiments indicates the confidence placed in
the accuracy of the tomogram. For instance, the 3qubit circuit of Figure 3.9b is affected by a
single missing gate, and the fault list consists of a single missing-gate fault (SMGF). Apply-
ing the input vector |000) to both the correct and the faulty circuit results in the probabiliy
distributions out, and out,, respectively. The number of false positives and negatives among
M = 100, 000 tomograms constructed using various lengths of the N-experiments, and

e A (pseudo-)random integer between 1 and 7 is drawn according to the distribution

C(i);

e Theentry t; of T'is computed as the number of times j is obtained and divided by N.

The distances between the tomograms and the probability distributions are computed
using the Euclidean distance. For tomographic testing of probabilistic circuits the fraction

different input vector are shown in Table 3.3.

ont, = (0.286,0.002,0.210,0.001,0.210,0.001, 0.287,0.002)
out,, = (0.167,0.122,0.122,0.089,0.122,0.089,0.167,0.122)
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Figure 3.9: The 3qubit circuit: a) The fault-free circuit; b) A single gate (the lowest Hadamard gate) is missing from the
initial circuit.
N Nr. false positives Nr. false negatives
[000) | [001) | [100) [ [111) | [000y | [001) [ [100) | [111)
5 1,316 | 1,219 | 1,280 L,2II | 20,224 | 20,307 | 20,099 | 20,085
10 42 43 48 50 | 10,697 | 10,729 | 10,747 | 10,587
Is I 3 I 2| 5053 | 5560 | 5,748 | 5,622
20 I o o 1| 2,777 2,743 2,827 2,722
100 o o] o] o I o 1 2,
1,000 o o] o o o o o o

Table 3.3: Misclassification results for the circuit from Figure 3.9 using various input vectors.

Several interesting conclusions arise from this first experiment. Firstly, increasing the
length of the experiments improves the accuracy of classification: both false positive and
negative rate fall significantly by rising . Secondly, the choice of the used input vectors
has no significant influence on the results, due the two Hadamard gates at beginning of the
circuit that create equal superpositions. For inputs in the computational basis state, the su-
perpositions are independent of the input vector (except for their relative phase).

Figure 3.10 shows, for several quantum circuits and various measurement counts N,
the misclassification rate, i.e., the share of tomograms obtained from the correct circuits
that have been classified as erroneous among 10,000 tomograms. The circuits used include
3qubit, three circuits provided with the QuIDDPro software package, and the s- and 12-
qubit quantum Fourier transform/addition (qftadd) subcircuits from the implementation
of Shor’s algorithm as presented in"™”"°4. The inputs used were |0 . . . 0), except for the gf-
tadd circuits, where |0 . .. 01) was applied.

The probabilistic approach towards tomography of probabilistic circuits has some inher-
ent limitations, and the concept of undetectable faults is introduced. A fault fwith dist(C, Cr) <
0.0001 is hard to detect for a given input vector and excluded from the considerations of the
true/false positive/negative rates. The numbers of qubits, single missing-gate faults, and
detectable faults in the circuits are found in the headings of Table 3.4. The results in Fig-
ure 3.10 show that the classification accuracy is relatively poor for short experiments, while
for N = 1,000 or more the classification is almost perfect for the small circuits.
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Figure 3.10: Correct quantum circuits misclassified as erroneous.

The evaluation of the tomographic diagnosis of probabilistic circuits is based on cir-
cuit simulations, too. Without the possibility of slicing and LRMs, the diagnostic rank of
non-redundant faults was computed for the circuits from Table 3.4. The length of the N-
experiments is selected from the set {5, 10, 20, 50, 100, 1000}. Starting from this set the
minimum and maximum ranks are reported, along with the mean ;1 and the standard devi-
ation 0. The rank improves with increasing accuracy of the tomograms, achieving the best
resolution at N = 100 and 1, 000 for some of the circuits. The diagnosis of the 12-qubit gf-
tadd circuit, where the state vector contains 22 probabilities, requires lengthy experiments.
Approximating the probabilities for a large circuit is exponentially more difficult than for
small circuits like the 3qubit (2° probabilities).

The simulation results of the BT T set generation are presented in Table 3.5 and Table 3.6.
The simulations were executed using binary decision tests, slicing and the left-right modi-
fiers.

The circuits used during these simulations include: the qeccy circuit, which is the imple-
mentation of the 9-qubit QECC, the simplegrovers circuit, an implementation of Grover’s
algorithm™“*°, and chpro, which is a randomly generated stabiliser circuit containing 100
gates (CNOT, Hadamard or P, with equal probability).

The first three columns show the circuit’s name, and the numbers of qubits and gates;
the latter is also the number of SMGFs. Results are reported for three values of the detec-
tion threshold, quoted in column 7. The number of BT Ts (which equals the number of
slices), the total number of measurements, the test time (number of applied gate operations)
and the number of undetected faults are given in the next columns. The maximum num-
ber of possible vectors is used for all circuits, except geccg and chpro for which 32 random
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Table 3.4: Diagnostic rank statistics.

Circuit 3qubit Circuit simplegrovers
N (3 qub., 6 faults, 4 non-red.) (3 qub., 9 faults, 4 non-red.)
Min | Max | Meanp | SD§ | Min | Max | Meanp | SD 6
5 I 2 1.0696 | 0.2544 I 3 1.0123 0.1147
10 I 2 1.0196 | 0.1386 I 3 1.002I | 0.0469
20 I 2 1.0021 | 0.0458 1 2 L.00OI | 0.007I
50 I I I o I I I o
100 1 I 1 o I I 1 o
1,000 | I I I o I I I o
Circuit gftadds Circuit gftaddrz
N (5 qub., 27 faults, 16 non-red.) (12 qub., 143 faults, 112 non-red.)
Min | Max | Meanp | SDO | Min | Max | Meanp | SD§
5 I 9 13405 | 0.7573 I 108 | 14.2492 | 19.3405
10 I 7 L16ss | 0.5130 I 103 13.2732 | 18.6559
20 I 5 L1262 | 0.5104 I 103 12.1130 | 17.7040
50 I 5 L1165 0.5102 I 103 1.2052 | 16.7547
100 I 5 1.1178 0.5187 I 103 10.5137 | 16.0932
L,00O | I 5 L1229 | 0.5362 I 103 9.9614 | 15.3526
Circuit steaneX Circuit steaneZ
N (12 qub, 95 faults, 41 non-red.) (13 qub., 105 faults, 42 non-red.)
Min | Max | Meanp | SDO | Min | Max | Meanp | SD ¢
5 I41 | 1.2327 | 0.5447 I 22 | 1.2263 | 0.6652
10 I 5 1.I739 | 0.4454 I 7 1.1828 0.5307
15 1 3 L1529 | 0.4271 I 5 11659 0.5015
20 I 3 L1428 | 0.4243 I 4 L1336 | 0.4579
100 I 3 1.138 0.4078 I 4 L1215 0.4415
1,000 I 3 L.II41 0.3709 I 4 1.0318 0.2138
Table 3.5: BTT detection results for circuits without the LRM technique.
Circuit Nr. Nr. 7 | BTTs | Nr. | Test | Undet.
qubits | gates meas. | time | faults
3qubit 3 6 .99 2 50 260 I
simplegrovers 3 9 .99 2 40 280 o
qftadds 5 24 | .99 I 10 240 19
gecco 9 60 .99 8 8o 1,770 19
chpro 10 100 | .95 2o | 2,870 11
999 | 150 | 4,200 11
.999 9 210 | 6,860 3
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Table 3.6: BTT detection results for circuits with the LRM technique.

Circuit Nr. Nr. | 7 | BTTs | Nr. | Test | Undet.
qubits | gates meas. | time | faults
3qubit 3 6 | .99 2 50 260 I
simplegrovers3 3 9 .99 2 40 280 o
qftadds 5 24 | .99 4 160 390 7
gecco 9 60 | .99 7 600 | 2,960 8
chpro 10 100 | .99 15 390 | 6,610 3
18 —
with LRM ——
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o 12
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Figure 3.11: Diagnostic results for circuits 3qubit and gftadd5.

test vectors are employed. No metric of actual test cost is provided because the metric de-
pends on the implementation technology. For example, trapped-ion quantum computers
tend to require more effort to set up a measurement than to actually perform gate opera-
tions. For such technologies, the number of measurements is the appropriate metric. Some
optical technologies have little overhead for measurements; here the sum of all the gate op-
erations during tomographic testing (column zest rime) defines the test effort. Results for
three values of 7 are shown for circuit chpro. The impact is small, and even smaller for the
other circuits, and therefore is not reported here. Table 3.6 contains the same information
for the scenario when LRM is used. The number of undetected faults becomes considerably
smaller, at the expense of additional test cost.

The main difference between adaptive diagnosis of quantum circuits and tomographic
diagnosis of probabilistic circuits is that the adaptive approach tries to reduce the set of
suspect faults, whereas the probabilistic method ranks the list of suspect faults. Figures 3.11
and 3.12 show the adaptive diagnosis results for non-randomly generated circuits. BT Tdiag
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Figure 3.12: Diagnostic results for simplegrover3 and chp10.

was evaluated for g-gate circuits, by performing ¢ experiments using all ¢ possible circuits
with an SMGF. Both figures are histograms, where for each circuit the frequency (the verti-
cal axis) of the SUSP sizes (horizontal axis) is represented. The algorithm returned the set of
suspect gates SUSP. In all cases, the actual missing gate was included in SUSP.

Two histograms are reported per circuit: the black columns show the distribution of the
size of SUSP among the g experiments when the LRM technique is not employed, whereas
the red-shaped columns represent the distribution when LRM is used. For instance, circuit
3qubit has 6 faults (the parallel application of R; and R, were considered a single gate); as
a result, 6 experiments were performed. Without LRM, three of the experiments resulted
in a suspect gate set size of 3, and another three yielded a SUSP size of 4. With LRM, one
experiment resulted in a perfect resolution ([SUSP| = 1), and five experiments yielded
SUSP size of 2. High-resolution diagnosis is indeed possible when the LRM technique is
employed.

Random circuits with different numbers of qubits and gates (CNOT, Hadamard, P and

T, with equal probability) are used to complement the results. Algorithms BT Tgen and

BT Tdiag were applied to the circuits. Figure 3.13 summarizes the detection rate, the number
of slices tested, and the test time required by BT Tgen, and the suspect set sizes SUSP ob-

tained by BT'Tdiag. The minimal, average and maximum SUSP sizes are represented by the
error bar. The test and diagnosis quality (i.e., the detection rate and the SUSP size) are con-
sistently good when LRM is used. The number of slices and the test time grow significantly
with the number of gates, but scale up slowly with the number of qubits. Test time is more

affected by this increase if the LRM technique is used.
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Figure 3.13: Detection and diagnosis results for randomly generated circuits.

3.2.8 CONCLUSION

Testing and diagnosis of probabilistic circuits was introduced starting from a tomographic
approach similar to quantum state tomography. The main difference is that the presented
methods reduced the types of available measurements at the output of the circuit, and used
the Euclidean distance. For error correcting circuits the methods deliver good results, and
treating quantum circuits as idealised probabilistic circuits offered also some insights about
possible improvements like slicing and LRM. Albeit, the testing and diagnosis methods
were augmented after considering the effects of relative phase and of correct subcircuits.
The methods proved their efficiency when applied to circuits consisting from the standard
universal gate set. The presented methods do not reconstruct a density matrix, and herein
lies the difference compared to classical state tomography.

The exponential increase of the verified circuit’s state space is still the major obstacle for
verification approaches of this type. Whereas state-of-the-art circuits operate on a relatively
small number of qubits, future circuits, which will also have to be fault-tolerant, will easily
have orders of magnitude many more qubits. Future work will focus on reducing the nega-
tive impact of the exponential state space increase.

3.3 PAULI TRACKING

The fault-tolerant implementation of the universal quantum gate set presented in Sec-
tion 2.3.3 consists entirely from CNOTs and measurements. The measurement of state su-
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perpositions (internal to the circuit) renders these circuits as probabilistic: a correction is
required or not depending on the measurement result.

Initially, the need for corrections would indicate that these need to be directly applied in
the form of gates, i. e. the circuits are dynamically modified to include the correctional gates.
However, for quantum circuits expressed entirely from the universal gate set, the commuta-
tion relations between Pauli and non-Pauli gates are well-known (see Table 3.7). The advan-
tage is that the corrections are t7acked through the circuit.

Definition 8. Pauli tracking is the operation by which a classical record of each teleportation
result is constructed and later results of the computation are reinterpreted. ">+

3.3.1 THE QUANTUM GATE CORRECTIONS

The software-based Pauli tracking replaces the need to perform active quantum corrections.
The theoretical possibility is known in the quantum information community (referred to as
working in the Pauli frame), but no details on a general algorithm necessary to perform the
tracking have been previously presented.

In the following the tracking method will be detailed starting from the universal gate set
of fault-tolerant gates. The fault-tolerant R, and R, gates presented in Section 2.3.3 were
constructed similarly to teleportation circuits by using an ancilla initialised into one of the
states | A4) and |¥): the ancilla was entangled to the single-qubit input state that was to be
rotated. CNOT gates do not employ teleportations and require no corrections, but their ef-
fect is to propagate the corrections from inputs to outputs according to the stabiliser trans-
formations from Table 2.4. The corrections for each of the most commonly used single-
qubit quantum gates are summarised in Table 3.7.

THE R.(7/2) GATE

The X-measurement in circuit of Figure 2.4a yields either |[+) or |—). If the measurement
result is |+), then the desired rotation R,.(7/2) will be correct. If the measurement result

is |—), the applied rotation will be R,(—7/2). The negative rotation is easily compensated
by performing another rotation by angle 7, namely applying R.(7) = X. Consequently,
quantum teleportation must be followed by executing the X-correction if the measurement
resultis |—).

THE P GATE

The two possible Z-measurement results from Figure 2.sb are |0) and |1). The state |0)
indicates a correct teleportation, and a |1) is an indicator for the state [¢r) = ay[0) —
iy |1), where the input state was |¢) = g |0) + 1 |1). In order to obtain the correct
state, a Z-correction followed by the X operation is applied, as it can be easily verified that

(V) = XZ[y) = a0 [0) + o [1) = Re(7/2) |9).
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Table 3.7: Correction status tracking ) for rotational gates.

THE T GATE

is implemented in two stages (see Figure 2.sa). The first teleporation maps state |4) to an
intermediate state, which is afterwards given to the teleportation-based R, (7/2) gate from
Figure 2.sb. The following three measurement outcomes have to be distinguished:

1. If the first measurement results in |0), no correction will be required, and the inter-
mediate state is already the correct result.

2. If the first measurement results in |1), the output will be used as input fora P =
R,(7/2) correctional rotation. If the second measurement returns |1), no further
corrections will be necessary and [)) = g [0) + ™/ 4ay |1) = R,(7/4) |¢).

3. If the first measurement returns |1) and the second measurement yields |0), then an
XZ correction will be required. The P = R,(7/2) correction will produce the state
[vp) = iag |0) + ¢4y |0). Then, as seen above, the XZ correction leads to

) = XZ |Yp) = ag |0) + €™/ 4y [1) = Ry(m/4) |¢).

3.3.2 PAULI TRACKING ALGORITHM

This section offers a detailed description of the algorithm for performing tracking by con-
sidering circuits consisting of CNOT gates and the three types of rotational gates. The
measurements inside the teleportation sub-circuits are still performed during the compu-
tation; however, their outcomes are stored in a variable rather than used for immediate
correction. For each rotational gate g, the variable &; holds the result of the measurement.
Note that b; € {|+),|—)}if g isa R(m/2) gate, b; € {[0),[1)}ifg isa R (m/2) gate,
b; € {]00),|01),]10),[11)} if g is a R,(7/4) gate, where pairs of values refer to the out-

comes of two consecutive measurements.
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Algorithm 3 represents the tracking method that calculates, for a given combination of
b; values, the vector of equivalent output correction staruses S = (s, ..., s,). For qubit &,

s assumes one of four values that indicate the required corrections: 7 (no correction), X
(X-correction), Z (Z-correction), and XZ (both X- and Z-correction). The values in S are
calculated such that running a teleportation-based quantum computation, without applying
corrections after the gates but to the obtained output state, is equivalent to teleportation-
based quantum computing with immediate correction.

Sis calculated by propagating (z7acking) the correction status (s1, . . . , 5,) through the cir-
cuit. The calculation is applied affer the teleportation-based quantum computation took
place and the measurement results &; associated with all rotational gates ¢; are available. Each
s is initialised to 7 (no correction). Consequently, the gates are considered in their regu-
larorderg,, ..., g . If g is a rotational gate on qubit £, its &; will be consulted to decide
whether a correction is needed or not and the s, is updated (the correction status is propaga-
ted). The propagated correction status appears at the inputs of subsequent gates and must
be taken into account when calculating the correction status at the output of those gates.
The correction status tracking function X formalises the propagation.

There are two versions of A: one for CNOT gates and for rotational gates (Table 3.7).
The CNOT propagates corrections, and let c and 7 be the control and the target qubit of the
CNOT gate, and 5" and 5" be the correction statuses at the inputs of these qubits, respec-
tively. As a result, A(s", si*) produces a pair of correction statuses (s2*%, s2*) at the outputs
of the CNOT gates according to Equations 3.9 and 3.10. The s ® Zand s @ X flip the status
of the respective correctionins,e.g. XZDZ =X, X © Z = XZ.

Sout _ 5jcn lf J‘i‘n € {]7 X} ( )

¢ T 1Moz if she{z Xz} 39
s if e {I2Z}

out __ t ¢ )

S { SSeX if e {X Xz} (310)

The correctness proof of the algorithm is based on the derivation of the Ry, R, rotational
gate corrections, which inluded the commutativity of gates from the Pauli group """+,

3.3.3 SIMULATION RESULTS

The implementation of the Pauli tracking algorithm was simulated using quantum circuits
that are contructing specific states used in the context of TQC (see Section 4). The circuits
consist of W x H x D unit-cells (see Figure 4.1c). As a result, the circuits operate on Qub
qubits, and consist of CZ gates. The results in Table 3.8 are indicative of quantum circuit
sizes necessary for practical quantum computing to become reality. However, Pauli tracking
is fast and all calculations are performed within a few seconds for all cases.

The expected number of corrections without Pauli tracking is 0.5 X 725 40.75 X my ~ m,
where 75 is the number of R¥(7/2) and P gates (requiring a correction with probability
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Algorithm 3 Pauli tracking

Require: 7-qubit circuit with 7 gates
&4, € {CNOT, R.(7/2), R,(7/2), Re(m /4)}
Require: measurement results &; for every rotational gate g,
Ensure: Equivalent output correction status S = (s1, . . ., $,)
LS =Sy ==, =1
2: fori:=1tomdo
if g isa CNOT gate with control/target qubits ¢/ then

3:
4: (567 St) = A(-‘m St);
s elseif g is a rotational gate on qubit & then
6: Sp = T(Sk, bi);
7: end if
8: end for
9: return § = (s1,...,5,);
\\ H D Qub CZ RT
1000 100 IO 6334110 18778110  0.221

1000 200 10 12637210 37485210  0.440
1000 300 10 18940310 56192310  0.655
I000 400 10 25243410 74899410  0.881
1000 500 10 31546510 93606510  1.104
1000 600 10 37849610 112313610 1.415
I000 700 IO 44152710 131020710  1.754
1000 800 10 50455810 149727810 2.171
1000 900 10 56758910 168434910  2.520
1000 1000 10 63062010 187142010 2.884

Table 3.8: Run-times R 7 (in seconds) of the Pauli tracking algorithm for circuits with Qub qubits and CZ quantum gates.

0.5) and 7, is the number of 7 gates which may require one or two corrections with the ex-
pected number of corrections equal to 0.75. Corrections have to be performed on each out-
put k with 5, # I, and the expected number of corrections with Pauli tracking is bounded
by n (XZ is a single correction). As most relevant circuits have far more gates than qubits,
Pauli tracking substantially reduces the overall effort for corrections.

3.3.4 CONCLUSION

Fault-tolerant quantum gate constructions are probabilistic due to the used teleportation
mechanisms; as a result, the class of fault-tolerant circuits is compatible with Definition 1.
The probabilistic effects in these circuits reveal the need for Pauli tracking, and a first track-
ing algorithm was presented. This result fills an important gap in the classical control soft-
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ware needed for large-scale quantum computation. Pauli tracking is instrumental for both
error correction and teleportation based protocols; the algorithm is easily adjustable to in-
corporate the required tracking for a specific implementation of QECC. Future work will be
focused on adapting this algorithm to popular error correction techniques such as topologi-
cal codes ™MMCIRHGO7 wwhich require more teleportation operations.

3.4 SUMMARY

The analysis of probabilistic circuits started from a general definition that included quan-
tum and stochastic circuits. The similarities between the circuits do not transcend the prob-
abilistic behaviour, for quantum circuits are extremely precise but fragile and require fault-
tolerant mechanisms. On the other hand, stochastic circuits are fault-tolerant by design, but
reaching a high degree of precision requires exponentialy long bitstreams to operate on.

The progressive precision property of stochastic circuits was used to mitigate the com-
plexity of simulating quantum circuits, and initial results were encouraging. The potential
of PP was shown in conjunction with the direct mapping of the quantum circuit formalism
on an FPGA. Although the runtime complexity of simulating quantum circuits was trans-
lated into the hardware resource requirements, the potential of this approach lies in the very
flexible nature of the FPGAs and the fast clock times. Future work will be directed towards
improving the mapping of quantum operations using stochastic computing elements, a
more strategic optimisation of the hardware resources and the possibility of using stochas-
tic number correlations to partialy emulate entanglement. Quantum correlations existing
between entangled particles are different from classical correlations existing in stochastic
circuits™“°, and the last task could open new perspectives on the complexity of quantum
circuits simulation.

The computer engineering aspect of testing and diagnosing missing gate faults in prob-
abilistic circuits was the starting point of specialised quantum circuit diagnosis. Having in-
troduced the tomography of probabilistic circuits, the initial method of applying inputs and
measuring the outputs was extended by more advanced techniques including slicing and
left/right modifiers. Existing quantum circuit tomography methods are computationally
very expensive due to the exponential number of parameters that have to be inferred. To-
mography is also more complex with respect to the required experimental apparatus as the
hardware needs to support almost arbitrary measurement basis. The probabilistic method
presented in this chapter offered adequate results when applied to arbitrary quantum cir-
cuits, and good results for stabiliser circuits which are commonly used in QECCs.

Using the definition of probabilistic circuits to include fault-tolerant circuits based on
teleportation techniques completed the analysis from this chapter. Teleportation of in-
formation has become a central construct in the quantum computing architectures like
MBQC. Although the output of such circuits is probabilistic, the correct result can easily
be computed by tracking the required corrections though the circuit.
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Figure 3.14: Progressive precision results for the circuit from Figure 3.7a for SN length between [32, 4096] with
increments of 32 bits.

On the whole, probabilistic circuits lay at the foundation of emerging technologies, and
future work will consider a holistic perspective of such circuits with respect to their theoreti-
cal and practical utility.
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Figure 3.15: Progressive precision results for the circuit from Figure 3.7a for SN length between [32, 32000].
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Topological Quantum Computing

TororoGicaL QUANTUM COMPUTATION (TQQC)F e HG7 has emerged as a promising
quantum computing model, being able to support large scale quantum information pro-
cessing. The model incorporates the surface error correction code (see Section 2.3.5) and has
been shown to be compatible with a large number of physical systemsDFSﬂ’S’JV METE While
experimental technology is not yet of sufficient size to implement the full TQC model,
there have been demonstrations of small scale systems and further expansion to a fully scal-
able quantum computer is envisioned.

Automatic design methods for TQC circuits were not investigated prior to this work as
the field of topological quantum computation is still in its infancy. Although the details of
the model were presented in self-contained works ™", there were no hints about how
TQC specific problems could be solved in an algorithmic way. The TQC architectural con-
siderations ™" were formulated more from a physics perspective, and not from a Com-
puter Engineering one.

This work will present the first algorithms for the synthesis and validation of TQC cir-
cuits. After a short introduction to TQC, the concept of correlation surface is investigated,
and starting from it the properties of TQC circuits are introduced. The results of the cor-
relation surface analysis will yield the validation and synthesis procedures presented in the
following chapter.
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4.1 PRELIMINARY ANALYSIS

The TQC computational model is an application of the surface code (Section 2.3.5), which
relies on the measurement-based quantum computing paradigm (Section 2.2) and supports
the minimum set of gates that achieve universality of quantum computation (Section 2.1).
The introduction of this section will offer all the necessary details to motivate the decisions
taken during the construction of the automatic design algorithms.

Similarly to the surface code, TQC is based on constructing defects by removing physical
qubits from a lattice. The main difference is that the lattice structure is not two-dimensional
but three-dimensional because the surface code array is mapped to a cluster-state (graph-
state) visualised in 3D. The defect traces through the lattice (similar to the ones indicated in
Figures 2.22c and 2.22h), generated by the encoding of logical qubits, can be abstracted by a
geometric description. The error-correction capabilities (distance of the code) are directly re-
lated to the size of the defects, but, without affecting the generality of the discussion, defects
of minimal size will be considered.

4.1.1 THE SURFACE CODE IN MBQC

The transition from the two-dimensional surface code to its three-dimensional counter-
part, which is applied in an MBQC setting, will be explained in this section. In order to use
a measurement-based computational scheme which is error-corrected, the complete func-
tionality of the surface code has to be compatible with the ”initialise and entangle first, per-
form only measurements afterwards” method. Such an approach is not possible for the two-
dimensional code due to the 2D lattice structure and the functionality of the measurement
qubits, which is incompatible with MBQC: each measure-X or measure-Z qubit (see Sec-
tion 2.3.5) would have to be repeatedly initialised, entangled to its neighbouring data qubits,
and measured in order to enforce the local stabilisers and enable the error-correction.

A further problem is that MBQC is based on graph states (cluster-states), where each
qubit is stabilised by X Q) Z,, # indicating the neighbouring qubits to which the qubit was
entangled using CPHASE (see Section 2.1.5). The cluster-qubits are initialised before en-
tanglement into the |[+) state. For the measurement of the X- and Z-syndromes, the parity
circuits used in the surface code contain CNOT gates, which is not a valid option when con-
structing the cluster-state.

The manipulation of the underlying cluster-state will have to be compatible to operating
on graph-states. The surface code support for primal qubits (primals) and dual qubits (du-
als) will have to be adapted. Defects supporting the dual qubits were constructed in the sur-
face code by not enforcing the action of measure-X qubits from the 2D-lattice, thus effec-
tively removing these qubits. Dual qubits were constructed by removing measure-Z qubits.
A measurement will effectively remove a qubit from the lattice without changing its remain-
ing structure (see Section 2..1.5), and defects in graph-states (qubit deletion) are constructed
by Z-measurements. In TQC, both types of defects will be constructed only by removing
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X Z X X | X X | X X
Z X Z|Z X Z|Z X Z|2 Z
Z X Z X X
(a) (b) (c) (d)

Table 4.1: The effect of parity checkers revisited. The tables (a) and (b) represent the stabilisers before the X-basis

measurement, and tables (c) and (d) illustrate the measurement result. The /s are not included in the tables. a) The initial

stabiliser table; b) The transformed stabiliser table after multiplying the first stabiliser with the last one; c) The Z part

of the last stabiliser is anti-commuting with the X measurement basis, and thus, after the measurement, the complete
stabiliser is replaced by /X 7; d) The stabiliser table after multiplying ZXZ with 1.X1.

cluster-qubits by such measurements, and not by stopping the function of measurement
qubits.

The equivalent of the two-dimensional code is the 3D one investigated in*"°¢. It was
found that a three-dimensional cluster state is natively similar to the two-dimensional sur-
face code, and the third dimension is just a readaptation of the surface code temporal oper-
ation. During the functioning of the surface code the third dimension is temporal in data
storage, and is given by the fixed order of how the measure-qubits are applied (stabilising
the neighbouring data qubits). For the 3D cluster-state, the previous temporal dimension is
translated into a spatial dimension ®°S.

The action of cluster-qubits is illustrated using the measurement qubits of the planar
surface code. The measure-Z qubits are directly mapped to cluster-qubits, due to the sta-
biliser expression at each cluster-qubit. Measuring a lattice qubit in the X-basis returns the
eigenvalue of the Z-stabilisers of the neighbouring qubits. For example, in a cluster of three
qubits, the X-measurement of the middle qubit will have the identical effect to the appli-
cation of a parity checking circuit (see Table 4.1 where the individual eigenvalues associated
with each stabiliser were left out).

For the surface code, each measurement qubit was entangled to 4 data qubits, and an
hypothetical cluster state that contains only data and measure-Z qubits will look similar to
the one from Figure 4.1a.

The transformation of the measure-X mechanism starts from the following observa-
tion: by knowing the Z-parity of a qubit set, its Z-parity is related to an X-parity if the
initial qubit states are transformed by Hadamard gates. In TQC this transformation is

implemented by state-teleportations using cluster-states (see the implementation of the
Hadamard gate in MBQC).

In the two-dimensional surface code the parities were computed for rings of data qubits
surrounding the measure-X qubits. In TQC the eigenvalue of a ring of X-stabilisers is in-
ferred by the measurement of a Z-stabiliser ring (first step) that is further transformed by
Hadamards through teleportation given the underlying lattice structure (second step).

There is no structural difference between the mapped measure-X and measure-Z con-
tructs, as both will be cluster qubits having 4 neighbouring qubits. Therefore, the spatial di-
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Figure 4.1: Elements of the three-dimensional surface code: a) Hypothetical lattice of data and measure-Z qubits;

b) Shifting the previous lattice in both directions by one unit resembles the star arrangement of data qubits around

measure-X qubits in the two-dimensional surface code; ¢) The TQC cluster state unit-cell; d) Stacking 8 primal unit-cells
results in a dual unit-cell formed at the middle of the structure.

mension in the 3D cluster is factually interpreted locally as the mechanism of using cluster-
qubits from the point of time 7 to simulate measure-X qubits that are required at point of
time #;.

In a two-dimensional lattice supporting only “simulated measure-X” qubits, the struc-
ture from Figure 4.1b occurs. As a result, the 3D lattice supporting the cluster-state is con-
structed from two types of layers that are structurally similar two-dimensional lattices en-
tangled according to the pattern from Figure 4.1c. The resulting cluster-state is a graph-state
having each vertex-qubit v stabilised by X, ®?:1 Z;, where 7 indicates the 4 qubits entan-
gled to v.

In order to maintain the notation from ™M>*6°7 3 layer containing simulated measure-
X qubits will be called primal, and a dual layer will contain measure-Z qubits. At a later
point it will be seen that the measurement qubits are in fact not of two types. However, the
mapping of the measurement qubits discussed above shows that the mechanisms required
by the 2D surface code are present by default in a 3D cluster. In the following, the cluster
stabilisers will be used instead of referring to parity checkers.

The entanglement-relations between the layers introduce supplemental edges in the lat-
tice, and by stacking three layers of consecutive different types (e.g. primal-dual-primal) the
result will contain a highly regular element, the unir-cell (see Figure 4.1c) having 6 isomor-
phic faces. Each X-measurement will read the eigenvalues of the Z-stabilisers of the neigh-
bouring qubits, and for a single unit-cell, the X-measurement of all the 6 qubits located in
the middle of the faces will indicate even parity: the edge-qubits are referenced twice accord-
ing to the cell structure.

The layered construction of the lattice results into two self-similar interlaced sub-lattices:
the primal and the dual lattice. The construction is exemplified by the effect of stacking 8
primal unit-cells like in Figure 4.1d: a dual unit-cell is formed in the middle (marked grey in
the figure). The two lattices are used for encoding two types of logical qubits.

Similarly to the planar surface code, logical qubits are encoded by constructing defects
using Z-measurements of lattice qubits. In TQC logical qubits are defined using pairs of
defects. Primal logical qubits are represented by pairs of primal defects constructed by Z-
measuring primal face-qubits of primal unit-cells. Dual logical qubits are formed after re-
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moving dual face-qubits of dual unit-cells.

Another similarity with the surface code is the supported universal gate set: the CNOT
gate is natively constructed in a fault-tolerant manner, and the rotational gates R, and R,
are constructed using the injection of the | 4) and |Y) (see Section 2.1.2), where high fi-
delities of the injected states are achieved through state distillation (see Section 2.3.4). The
MBQC rotational gates were implemented using rotated measurements, meaning that,
besides the X/ Z-measurements, rotated measurements of individual cluster qubits were
supported, too. However, in order to reduce the requirements placed on TQC, only X/Z-
measurements were chosen in the original model 7.

One of the differences to the surface code is that TQC error-correction will concentrate
only on Z errors (phase flips), as these are detected by the X-basis measurements. A Z-error
on a qubit is equivalent to an X-measurement error of the same qubit. A phase flip will
change the sign of the eigenvalue returned by an X-measurement, because ZX7 = —X.
This is equivalent to an error-prone measurement that indicates the opposite eigenvalue
instead of the correct one (e.g. —1 instead of 1).

The CPHASE gate transforms a two-qubit input stabilised by X7 into XZ, and an input
stabilised by ZX into an output stabilised by ZX. Bit-flip (X) errors on individual cluster
qubits are equivalent to single or multiple phase flips on the neighbouring qubits. The 3D
structure of the TQC lattice renders the concepts of measure-Z and measure-X qubits from
the surface code as superfluous. Consequently, the error-correction considers only Z-errors
existing on the cluster qubits placed in the middle of the unit-cell faces (face-qubits). The
correction is not investigated in this work and ™MM»RHGo7FGo9 coneain further details.

4.1.2 THE LATTICE

The 3D-lattice resulting after mapping the surface code to MBQC is a graph-state: the
qubits are initialised into the |+) state, and are entangled using the CPHASE gate, such
that each qubit is stabilised by X Q) Z, where 7 indicates its neighbouring qubits. The en-
tanglement pattern is constructed in 3D for n = 4, and the resulting lattice is abstracted as
the stacking of unir-cells along all the three dimensions (width, beight and depth). The 3D
fashion of the lattice indicates that lattice qubits have an an associated coordinate.

A general unit-cell has 27 (3 X 3 X 3) vertex positions, 18 of which are occupied by physical
qubits, denoted by grey and black circles in Figure 4.1c. Neighbouring cells share a face, and
a lattice with mc,, X mc, X mc; unit-cells has a total of (2mc, +2) X (2mc, + 2) X (2mc,+2)
positions. The set of coordinates associated to the lattice physical qubits will be denoted by
TQCC.

Each unit-cell from the lattice is adressed by the center coordinate of the cell. All unoc-
cupied lattice-coordinates represent cell centres, and the set of cell centre coordinates will
be denoted by CEL. The physical qubits at the faces of such a cell (six black circles in Fig-
ure 4.1¢) are face-qubits denoted by Fy,, 4.+, and the qubits at the sides (12 grey circles in Fig-
ure 4.1¢) are side-qubits denoted by S, ¢ r. The set 2 is the set of measure-X qubits used to
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Figure 4.2: Initialisation patterns where the black qubits represent face-qubits used for the definition of defects and the
blue qubit is an injection. The parities of the green qubit structures are inferred after measuring the red qubits in the
X-basis: a) Two green rings; b) A green chain; c) The injected state is also measured in the X-basis.

define primal defects, while F is the set of measure-Z qubits used for dual defect construc-
tion.

The set of all qubits of a cellis Cyp ch et = Frwvch,er U Sew,ch,er- The primal lattice (with
corresponding (7, ¥ §) contains all the cells having odd coordinates, and the dual lattice
(with corresponding C¢, F*, §%) contains all the cells having even coordinates. A coordinate
is even or odd if all its components are even or odd. The set 7QCC = F UF is the complete
set of lattice qubits.

4.1.3 LOGICAL INITIALISATION AND MEASUREMENT

Logical qubits (primal or dual) are defined by pairs of defects generated through the lattice
by removing qubits from the corresponding set of face-qubits (# or F*). The initialisation
and measurement of logical qubits is performed by considering the X-measurement results
of qubits arranged into specific measurement patterns. Only the initialisation and measure-
ments of the primal qubits are presented, as the extension to dual qubits is straightforward.
Both initialisation and measurement procedures solve the problem of inferring the eigen-
value associated to a logical stabiliser, and the logical measurement of logical qubits is per-
formed using measurement patterns identical to initialisation. The TQC logical measure-
ment is implemented using exactly the same measurement patterns from logical initialisa-
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tion, but attached in reversed temporal order to the defect configurations.

Initialising a logical qubit into a known X; or Z; eigenstate is equivalent to inferring the
eigenvalue of a ring or chain of Z stabilised cluster qubits. Removing a cluster qubit (face-
qubit) by a Z-measurement results in the parity of the 5 other face-qubits of the unit-cell
indicating the eigenvalue of a Z-stabiliser ring. As illustrated in Figure 4.2a the ring sur-
rrounding the created defect consists entirely of side-qubits, while the other side-qubits of
the unit-cell cancel out when considering the lattice stabiliser generated by the 5 face-qubits.

A logical qubit, defined by a pair of defects, is initialised by computing eigenvalues d; and
ds of the two corresponding defect rings (denoted by Z; and Z,) containing, for example, 4
qubits. The X; stabiliser of a primal qubit is X; = (—1)%42Z, Z, (see Figure 4.2a).

The initialisation of a defect pair into a known eigenvalue of Z;, represented as a chain of
Z-stabilised cluster qubits, is performed by reducing the number of neighbouring cluster
qubits between the two defects: construct a third defect between the two existing defects.

It can be noted that s, the X-parity of the first correlation chain, indicates the eigenvalue of
the Z-chain from the logical stabiliser (see Figure 4.2b). For a primal qubit, the logical Z;
stabiliser is defined as (—1)°Z,, where Z, represents the set of qubits arranged as a chain.

State injection is used as a means to initalise logical qubits into one of the two rotated
states | 4) = T'|+)and |Y) = P|+), which are needed for achieving universality. Dur-
ing the construction of the cluster state, the 2 and the 7 gates can be commuted with the
CPHASE gate, representing a rotation about 7 around the Z-axis. The two possible injected
states are after the commutation P|+) = |¥)and T'|+) = |A), and there is no need for
rotated measurements. Logical rotational gates are implemented by encoding injection states
into the cluster as logical ancillae qubits, and then applying exactly the teleported rotational
gate circuits from Section 2.1.3. An injected state is encoded by measuring the physical qubit
existing in |4) or |Y) into the X-basis, and constructing from that qubit two defects of op-

posite direction ™7, The construction ensures that the physical qubit state is encoded into
| A4)) or |7) (see Figure 4.2¢).

The X; and Z,; of encoded injected states is computated similarly to normal defect ini-
tialisation, except that the X-measurement result (previously the Z-measurement) of the
injected qubit (previously a normal cluster-qubit) is used for calculating the eigenvalues of
the loop and chain stabilisers.

4.1.4 LOGICAL STABILISERS

The surface code is defined starting from the observation that logical qubits are constructed

correctly as long as their logical stabilisers, X; and Z;, are anticommuting. Similarly, the log-

ical stabilisers used in TQC will have to be anticommuting, thus enabling the operations

on the logical qubits. TQC primal qubits are defined by constructing two primal defects

through the TQC lattice, whereas dual logical qubits are defined by a pair of dual defects.
As logical qubits are encoded into the TQC lattice, the X-measurement of each layer re-

sembles the process of teleporting qubit states in the un-encoded MBQC scheme: each state
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Figure 4.3: Elements of the logical stabilisers are exemplified using a reduced cluster-state. The red qubits mark the

loops and chains of cluster qubits used for the definition of the logical stabilisers, while the green qubits mark the cluster

qubits used for correlating the rings and loops throught the cluster: a) The grey qubits belong to a dual layer, the white

ones to a primal layer, and the black qubit is marked for Z-measurement; b) After measuring the black qubit, the X-parity

of the green qubits will indicate the eigenvalue of the ring of red qubits surrounding the black qubit; c) Assuming that a

second defect is constructed, and a second black qubit would exist, the parity of the X-measurement of the green qubit
chain will indicate the eigenvalue of the red qubit chain.

is teleported (including an inherent Hadamard transformation at each step) to its neigh-
bouring entangled qubits, whereas in TQC information is teleported to the following layer
along the temporal direction. For example, the data qubits of a primal layer are teleported
during a first step to a dual layer, afterwards to the next primal layer, again to a primal layer
etc.

For a primal defect (see Figure 4.3a), the eigenvalue of a ring-stabiliser R = Z,2,72475
surrounding the defect boundary (see Figure 4.3b) is correlated to the individual X-parity of
the teleported data qubits in the dual layer, which is the ring R’ of X-stabilisers. The follow-
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ing relation occurs if the 3D lattice contains only a primal and a dual layer.

R = (X721ZsZ3)(X9Z2 211 Zs)(X12252112Z13) (X10 2421325
= (X7 XoX10X12)R

If the lattice consists of more than two layers, and the defect is constructed again in the
following primal layers, then each two rings of Z-stabilisers are always correlated by rings of
X-stabilisers existing in the dual layers.

The 2D surface code used chains of Z-stabilised qubits to construct logical stabilisers,
and this definition is maintained in the case of TQC. The definition of a logical stabiliser,
encoded by the Z-parity of a qubit chain, can start from C = Z,0Z;42,5 existing in dual
layer (see Figure 4.3¢). It can be noticed that Cis expressed using a chain similar to C' =
Xy X17Xq9.

C = (XuZi10Zi6)(X17Z16Z18214) (X19Z18215)
= (Xy4X17X19)C

Again, if the lattice consists of more than two layers, and the defect is continued in the
following primal layers, then each chain of Z-stabilisers from the dual layer is correlated to a
chain of X-stabilisers existing in the primal layer.

For primal qubits, the logical X stabiliser is represented by a ring of Z-stabilised side-
qubits, and Z; is a Z-chain connecting the face-qubits of the unit-cells where the primal de-
fects were defined (see Figure 4.3¢). For dual logical qubits the interpretation is reversed, X;
is a Z-chain, while Z; is related to the Z-rings.

The anticommutation property of X; and Z; is checked by noting that the multiplica-
tion of X; by R’ is still a valid stabiliser of the primal defect, and R" and Z; share a common
qubit (numbered 4). At the same time both stabiliser expressions refer to qubit 10: the first
time X-stabilised, and the second time Z-stabilised. The anticommutation is illustrated by
X10Z10 = —Z10X10:

X7, = (X\R)Z, = —Z(R'X))

4.1.5 CORRELATION SURFACES

The quantum-correlations resulting after qubit measurements can be used for tracking

the functionality of a circuit® " °°, This is also the case in TQC. The X; stabiliser of a pri-
mal defect is a ring of Z-stabilised qubits, which is correlated through a ring of X-stabilised
qubits (e.g. R) to the next primal layer. The Z; stabiliser, defined between a pair of defects,
is correlated between dual layers by chains of X-stabilised qubits (e.g. C').

Definition 9. A correlation surface is an X-stabiliser defined over the cluster qubits that con-
nect the logical stabilisers of the circuit inputs to the logical stabilisers of the circuit outputs,

such that information is propagated correctly during the circuit operationFG°9.
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Figure 4.4: The two types of correlation surfaces: a) Tubes are formed by rings surrounding the defects; b) Sheets are
formed by chains connecting the defects.

There are two types of correlation surfaces, named after the geometric shapes they re-
semble: sheets and tubes (see Figure 4.4). A tube is constructed from correlation-rings, and
a sheet is constructed from correlation-chains. For a primal qubit the logical X; will be cor-
related by two tubes, and the logical Z; by a sheet, whereas for a dual qubit, tubes will corre-
late Z; and the sheet will correlate X].

Throughout the chapter, when refering to correlation surfaces, the measurement and
initialisation patterns of logical qubits, consisting of X-measurements of cluster-qubits, will
be considered belonging of the surface. This choice is motivated by the possibility of using
the cumulative X-parity of the surface for the following analysis.

For example, it is possible to show that the stabiliser of a defect in a layer is correlated to
another defect in a layer of the same type. Let the example consider an input and an output
cap.

The input cap used for X; initialisation of primal qubits is a stabiliser of the form /C =
(& Zﬁg)s,,) (@ X;), where rare side-qubits forming the ring-stabiliser, and 7 indicates the
face-qubits next to the defect. The number (0) indicates that the Z of a qubit from the pri-
mal layer O is referred to. Each correlation ring existing in a dual layer has a stabiliser of the
form RY = (® Zﬁie_si) R XN (R Zﬁzrs,{)) for  odd numbers expressing the dual layers.
The output cap is OC = (@ Z'+V)(® X,), where i + 1 is an even number indicating

the output cluster qubits belonging to the defect and o indexes the face-qubits next to the
defect.

n

rusE = @K = (@) A%)(@) A0 (R X

i=0

The result of multiplying all the correlation-rings will be denoted TUBE, which consists
of an X-stabiliser of the cluster and the Z-stabilisers rings surrounding the input and output

defects. Multiplying (/C)(TUBE)(OC) results in an X-stabiliser of the cluster.
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Figure 4.5: The effect of braids in the cluster: a) The green channel marks the path of a defect (e.g. primal) through the

cluster, and the blue cluster qubits correspond to the chain of the sheet spanned between the two parallel sides of the

defect; b) The oversized blue qubit is a face-qubit from the opposite space (e.g. dual), and, by removing it, a new (dual)

defect is introduced; c) The blue qubit chain cannot be formed anymore because of the Z-measured qubit, but around
the dual defect a ring results, indicated by black qubits, corresponding to the tube correlation surface.

41.6 THE CNOT GATE

The surface code supports the CNOT gate by braiding defects of opposite type: in TQC
the logical CNOT between primal and dual qubits is implemented by braiding of defects,
too. The construction of the CNOT starts from the MBQC observation that the relation
between the quantum-correlations expresses the functionality of a circuit® %9, Translated
into TQC, this implies showing correlation surface interactions: how tubes interact with
sheets.

Figure 4.5 shows a lattice, where a primal defect (horizontal) is braided with a dual de-
fect (vertical). In the same figure, the construction of the dual defect effectively removes a
qubit required from a chain used in the definition of the primal qubit’s sheet. One of the
chains is interrupted, and, as a result, the sheet cannot be constructed. The construction of
the primal defects will also remove a qubit required for the dual sheet. A correlation sur-
face can still be constructed if only the tubes are connected to the sheets, thus relating ring-
correlations to chain-correlations.

Proposition 1. Connecting a tube of a primal qubit to a sheet of a dual qubit is equivalent to
a stabiliser transformation.

A primal qubit with input correlated by a tube is initialised into Xj, and a sheet corre-
sponding to the dual qubit signals an X; initialisation. Connecting the tube to the sheet
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Figure 4.6: TQC logical gates: a) The CNOT between primal qubits. The white defect ring represents the dual qubit

initialised into |+> and measured in the X-basis. The primal light grey qubit (control in) is measured in the Z-basis while

the dark grey qubit (control out) is initialised into |O> The black pair of defects represents the primal target qubit. b) The
logical R, is based on the injection point marked red; c) The logical R, gate.

implies that a larger correlation is constructed, where the inputs of the primal and of the
dual qubit are stabilised by the two-qubit stabiliser XX. The sheet of the dual reaches its
output, whereas the tube of the primal input szops on the sheet and the primal output is not
assumed to be stabilised. Therefore, the outputs are stabilised by X, and the stabiliser trans-
formation is XX — IX. There is a second possibility, where the inputs are stabilised by

IX (the tube of the primal belongs to the output and not to the input) and the outputs are
stabilised by XX, resulting in the X — XX transformation.

At the same time, connecting a tube of a dual qubit (corresponding to Z;) to a sheet of a
primal qubit (corresponding to Z;) equals the transformation IZ — ZZ(or ZZ — 1Z).
Connections between tubes belonging to the same logical qubit will represent X — IX
(dual qubits) and ZI — ZI (primal qubits), where / indicates that the sheet could not be
constructed due to the interrupted chain cluster stabilisers.

The sheet-tube connection scenario together with the stabiliser transformations of the
CNOT gate (see Section 2.1.4) indicate that a logical CNOT between two logical qubits of
opposite type is possible if the dual qubit is considered the control, and the primal qubit
is the target (see Section 2.3.5). Furthermore, a CNOT between qubits of the same type is
constructed by using three primal qubits and a single dual qubit and implementing in TQC
the circuit identity from Figure 2.3. The resulting defect configuration is depicted in Fig-
ure 4.6a. Considering the teleportation circuits from Section 2.1.2, the same-type CNOT
is formulated as: teleport the control (light grey primal) on the ancilla qubit (white dual),
perform the dual-primal CNOT, teleport the control (this time on the dual) back to a new
ancilla (dark grey primal).

MEASUREMENT BYPRODUCTS

Quantum state teleportation is central to the TQC paradigm. The X-measurement of a
cluster qubit is random, and thus the teleportation of its state has a 50% probability of suc-
cess. When unsuccessful the end result requires to be corrected. In TQC the cluster qubits
are measured only in the X-basis and the procedure is exactly the one from Figure 2.4a. Af-
ter teleporting the state |1)), the final state |¢)’) requires a correction if the measurement out-

106



put was |—). The measurement result |+ indicates a correct teleportation, and |¢) = [¢').

In the context of MBQC and TQGC, it was recognised that, in order to correct the final
state, the quatum-correlationsBBD+°9 existing between the physical qubit measurements
should be used. The procedure is conceptually similar to how Pauli tracking from Sec-
tion 3.3 works.

Logical teleportations take place at the logical layer, and a separate kind of logical Pauli
tracking is required for TQC when operating on logical qubits and stabilisers: logical sta-
bilisers are interpreted based on the set of individual measurement byproducts of the corre-
lation surface cluster qubits. TQC rotational gates use, for example, logical teleportations,
and logical byproducts are generated by the logical measurements used in the gate construc-
tions.

The relation between logical stabiliser at the input of a circuit and the output stabilisers
is established by computing the X-parity of the cluster qubits forming correlation surfaces.
Assuming the /C, TUBE and OC stabilisers from the previous section, let A; be the eigen-
value associated with the measurement of /C, and ), the eigenvalue returned after measur-
ing OC. The parity of TUBE is computed as \; = \;\,. For this reason, by assuming that )
indicates a necessary correction and X! is the correct value, then A\, = A,.

For example, when a logical qubit is initialised into |0;), the used measurement pattern
could indicate the \; = —1 eigenvalue instead of \{ = 1, meaning that the logical qubit
is actually |1;) instead of |0;). After executing the TQC circuit, the logical measurement
the output could return the eigenvalue A\, = 1 indicating that the outputis [0;). As the
parity of the tube correlation surface (excluding the initialisation and measurement caps)
connecting input and outputis A\, = —1, the correct eigenvalue at the outputis \{ = —1,
while XA, = XS, As a result, the output has to be interpreted as |1;).

4.1.7  TQC CIRCUIT GEOMETRIC DESCRIPTION

Quantum computations expressed as quantum circuits (quantum networks) can be for-
mulated as TQC circuits using the logical CNOT and the 7"and P single logical qubit gates.
The rotational gates are teleportation-based implementations containing injected states (see
Section 2.1.3). The geometry of a CNOT between qubits of the same type is presented in
Figure 4.6a, and Figures 4.6b and 4.6c¢ illustrate TQC sub-circuits of the 7"and P gates.

The 3D geometry of the lattice and its decomposition into unit-cells of two types indi-
cates that a complete geometrical specification of a TQC circuit contains the coordinates of
the defect endpoints (cell coordinates from CEL), the coordinates of the injection-points
(physical qubit coordinates) and the coordinates of the input/output-points (physical qubit
coordinates). The coordinate sets /O, for the inputs, and ], for injections, are associated to
physical cluster qubit coordinates.

The major difference between injection- and input/ouput-points is that, whereas an in-
jection state is fully specified (either | 4) or |Y)), the input/outputs are variable with regard
to the logical stabiliser one wishes to initialise a logical qubit into. The set of injection states
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Figure 4.7: The Y-state distillation circuit requires seven Pgates, each usinga |Y), and outputs a | ) with a lower
error-probability.

is restricted to the previous two (TQC universality is achieved through them), but any state
of the form |0) + 7|1) for » € C can be used"¢*. A TQC circuit processes the inputs spec-
ified by the user, whereas injection points are internal to the computation and are used for
the construction of teleported gate applications.

The difference between the two possible defect input/output patterns is just a segment
(see Figure 4.16a). The geometry is configurable at these points, as either a defect is con-
structed between the defect endpoints, or not. From a TQC circuit perspective, the in-
put/output points are similar to the input/output pins of classical circuits.

The transformation of a quantum network to a TQC circuit is exemplified for the |¥)-
state distillation circuit ™" %7 from Figure 4.7, which is transformed into the circuit from
Figure 4.8a. The primal qubits are colored white, and the dark grey qubits are the duals nec-
essary for the CNOTs. The CNOT controls are recognisable by measurement geometry of
the control-in and the initialisation geometry of the control-out qubits. The P gates are im-
plemented as R,(7/2) and require an |Y) injection state ancilla, represented by the colored
pyramid structures. The tip of the pyramids indicates the physical injected cluster qubit and
the gradual size of the pyramid basis indicates the gradual construction of the defects (sim-
ilar to how short logical qubits were constructed in the surface code). At the right of the
circuit the primal ancillae qubits are measured in the Xj-basis.

The volume of a TQC circuit or its primitives is the number of required unit-cells in the
lattice supporting the geometry. For example the logical CNOT gate has volume 12 *¢7FP2,
and the circuit from Figure 4.8a has volume 272, while another version of this circuit pre-
sented in """ has the volume of 192.

TQC computations are represented by topological properties of the geometries, and
TQC circuits with equivalent topologies are computationally equivalent. The braiding re-
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Figure 4.8: The TQC circuits for Y-state distillation: a) The straightforward translation of the quantum network from
Figure 4.7; b) The compact version of the same circuit.

lation between the defects is one of the topological properties, as each braid is a CNOT rep-
resentation. This is, for example, the case for the circuits in Figures 4.8a and 4.8b, where the
same computation is expressed using topologically equivalent geometries. Being an MBQC
derivation, the function of a TQC circuit is also determined by the type and the measure-
ment order of the injection points.

TQC circuit compaction, as presented in™™, is an option for reducing the volume of the
required lattice. The method tries to reroute the defects, such that the unused lattice volume
between them is minimised. An example of compactifying the |Y)-state distillation circuit
to an equivalent volume of 18 is shown in Figure 4.8b"™". Note that the CNOT gates were
clearly visible in the initial circuit, but this is not the case in the compact circuit, although
the computation is the same. Compactification changes the geometry but not the computa-

tion (topology).

4.1.8 DEsiGN oF TQC cIrcUITS

The design of TQC circuits is formulated starting from a design stack as illustrated in Fig-
ure 4.9, which consists of several abstraction levels that differ from the ones used in classical
circuit design. A given high level quantum algorithm is first decomposed into a quantum
circuit, which does not include any QECC protocols. There are multiple possible QECCs
to chose from, and each protection will lead to circuits having different number of qubits
and/or depth. In TQC, each qubit identified in the circuit is logically encoded using the
surface code. Operating with logical qubits requires referring to the physical gubits of the
underlying lattice.

In general, QECCs restrict the types of operations supported on logical data, forcing an
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Figure 4.9: The TQC design stack.

arbitrary quantum circuit to be decomposed into gates from a discrete universal quantum
gate set. Once these decompositions are complete, the resulting TQC circuit can be opti-
mised with respect to the physical resources (e.g. equivalent volume). Afterwards the opti-
mised circuit is translated to physical operations (e.g. measurement commands) sent to the
hardware.

The lowest layer in the TQC design stack is the hardware layer, which is responsible only
for producing a generic 3D lattice of qubits. The quantum hardware is controlled by a clas-
sical component (computer). As a result, programming in the TQC model is separated from
the basic functionality of the quantum hardware.

In conclusion, designing TQC circuits is a layered approach, and the automated design
methods presented in this work enable the transitions between the stack layers. Circuit syn-
thesis transforms a quantum network into a geometric description, circuit mapping gener-
ates a 3D lattice based on the geometry, while circuit verification is used for checking that a
TQC circuit specification is supported by the geometrical description.

4.1.9 CIRCUIT SPECIFICATION

TQC circuits are specified starting from their geometric description and the 7O/ I] sets (see
Section 4.1.7). The circuit specification includes the measurements temporal order required
for the correct execution of the computation.

The construction of a TQC circuit starts with the construction of the lattice, which is a
graph-state resulting after using CPHASE to entangle qubits initialised into the |+) state.
Hence, the lattice construction procedure is a stabiliser circuit: both the qubit states and the
action of the entangling gates are representable in the stabiliser formalism. The measure-
ments of the lattice qubits are either in the Z-basis (defects), X-basis (teleportation, parities)
or in a rotated basis (injection points, rotational gates).
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out (R) 20) 3(Y) 4(G) s(B) oI 7(V)
X X X X
X X X X
X X X X
z 7z zZ Z
X X X X
z 7z Z Z
z z z z
z z z z

Table 4.2: The state stabilisers computed by the circuit from Figure 4.7 before the P gates are applied "°*2. The qubits
numbered from 1 to 7 correspond to the quantum wires counted downwards. The initials in the parantheses refer to the
colors associated to the injection points.

The non-stabiliser behaviour results from the rotated measurements, as the order of the
X/ Z measurements does not dictate the performed computation: these transform stabiliser
states (graphs) into stabiliser states (graphs with modified topology). The process of lattice
initialisation followed by the non-rotated measurements is equivalent to the preparation of
a cluster state to be used in an MBQC setting. The actual computation is performed by the
rotated measurements, and their temporal ordering is comparable to the temporal ordering
of the non-stabiliser gates from the initial quantum network.

At the error-corrected layer, the application of rotational gates (rotated measurements)
is extended into fault-tolerant gate applications, where circuits from Figure 2.5 replace non-
fault tolerant gate instances. During this construction, ancillae initialised into | A4) or |¥) are
introduced, and the number of circuit qubits is increased. However, two additional subcir-
cuits are required to support the fault-tolerant 7" gate.

The T gate application may require a P gate correction (see Section 3.3), and the gate sub-
circuit should contain some mechanisms to support the dynamic application of it. Other-
wise, during the circuit’s execution the P gate will have to be dynamically inserted into the
gatelist (see Section 3.2.2). The dynamic modification of the TQC computation’s geome-
try shows that insertion is not feasible. In """
source and selective destination teleportations (see Figure 4.10).

the solution is offered in the form of selective

Representing a TQC circuit as a fault-tolerant construct is a straightforward approach.
For example, the 7 gate implementation is presented in Figure 4.11. A first conclusion of this
construct is that error-corrected (logical) circuits can be implemented in three steps: firstly,
the qubits are initialised into one of the states {|0) , |1) , | 4) , |Y) }; secondly, a network of
CNOTs is applied which includes the computational part and the correction mechanisms
(selective teleportations); and thirdly, the logical qubits are measured. As logic qubits could
be measured in a rotated basis, the measurement order of the logical qubits includes the
measurement order of lattice injection points (e.g. Figure 4.7).

The specification of a circuit follows from the above observation: the logical stabilisers
that exist right before logical measurement of injection points can be used to fully specify a

III



1) ——(X5(2),
| |
@@, ) 12néY)

+) 0)

<
an)
D
_N_|
%
N
&),

=
~
Py
©
A

D

[
o

|+)

(a) (b)

Figure 4.10: a) Selective destination teleportation: the first group of measurements will teleport \lﬁ) on the third qubit,

while the second group of measurement will teleport the state to the fourth qubit; b) Selective source teleportation: the

first group of measurements will select Wl) for teleportation on the third qubit, while the second measurement group
will teleport |1po ) 22,
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Figure 4.11: The fault-tolerant implementation of the 7 gate including the probable P correction. The circuit contains
selective destination and selective destination teleportations, and the fault-tolerant P gate implementation.

circuit. These stabilisers result from the input stabilisers being transformed by the network

of CNOT gates. For the circuit from Figure 4.7, the stabilisers before the application of

the logical rotated measurements (application of the P gate followed by X-measurement)

is presented in Table 4.2. In order to include also the injected qubits (if the P gate had been

applied fault-tolerantly), the stabiliser table of the specification would have been larger.
The specification of a TQC circuit includes a logical stabiliser table that represents the

circuit state after the CNOT part was executed and before any of the measurements are per-

formed. The specification is formulated as the tuple QCS = {ST, 10, I], M}, where ST is

the stabiliser table, and A7 is the ordered set of measurements of the injection points.

4.2 VALIDITY OF CORRELATION SURFACES
The design of TQC circuits requires a better understanding of correlation surfaces and their
properties. The key property to be investigated in this section is the validity of correlation

surfaces. The following analysis is based on the introduction provided in*%*?, and is further
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Figure 4.12: Possible junction configurations: a) An open defect structure, where both pairs of defects are not connected;
b) An open defect structure, where one pair of defects is not connected; c) A closed defect structure.

augmented by case discussions, definitions and illustrations of the lattice.

There are two TQC-specific constructs that can influence the validity of correlation sur-
faces: the braids between defects of opposite type and defect junctions (e.g. see Figure 4.12),
which are an example of non-linear topology. Thus, braids and junctions will be the key
elements used when analysing the validity of surfaces. Defects containing junctions will be
refered to as defect structures, and the distinction between open and closed defects (struc-
tures) will also play a role: an open defect (structure) has endpoints, whereas a closed defect
(structure) contains no endpoints.

The existence of two self-similar structures in the lattice (the primal and the dual lat-
tice) is the support for defining tubes and sheets in both spaces (primal/dual tubes and pri-
mal/dual sheets).

Definition 10. A surface is primal (or dual) if it resides in the primal (or dual) space.

This distinction made by Definition 10 avoids ambiguities when discussing primal/dual
logical qubits and their associated correlation surfaces. When discussing the validity of indi-
vidual tubes, sheets or combined constructs consisting of both, it will be assumed that the
surfaces belong to the same space. As mentioned previously, each physical cluster qubit is
stabilised by X Q) Z,,, where 7 indicates the neighbouring entangled qubits, and each corre-
lation surface S is a stabiliser defined over a set of cluster qubits Q(S) C TQCC.

Definition 11. A valid correlation surface is an X-stabiliser of the underlying physical cluster
FGoog

qubits

The analysis of valid correlation surfaces will proceed from Definition 11, which im-
plies that all valid geometrical constructs representing correlation surfaces can be enumer-
ated, due to the restricted 3D-geometry supported by the cluster. For the construction of
a surface, the set of cluster qubits has to be chosen such that the stabiliser § = ) X;, for
i € Q(S) C TQCCis valid according to the previous definition.

Surfaces were defined using rings or chains of X-stabilisers, and surface validity will be
analysed also from their X-measurement parities perspective. Measuring all the non-defect
qubits in the X-basis implies that the results of surface-qubit measurements will be one of
the two eigenvalues (1 or —1) corresponding to one of the cluster qubit states |+) or |—).

Proposition 2. The parity of a correlation surface is the parity of the X-measurement results
of the qubits forming the surface.
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For a surface S defined over the physical cluster qubit set Q(S), the function mpar
Q(S) — {—1,1} is computed as the product of the resulting measurement eigenval-
ues mpar(S) = [ cois) Mx(q). I mpar(S) = —1, then the surface has odd parity, and

mpar(S) = 1 indicates an even parity.

Proposition 3. A valid correlation surface has even parity in the absence of cluster qubit
errors.

The measurement of a surface-qubit computes the Z parity of its neighbouring entangled
cluster-qubits, and each cluster unit-cell will have even parity when completely X-measured.
For a cluster cell having 6 face-qubits (each face-qubit with 4 neighbouring edge-qubits),
there are 12 side-qubits, and the cell-parity contains twice the eigenvaluesz, € /4. For
simplicity, consider a single unit-cell cluster where each edge-qubit has two neighboring
face-qubits. In an arbitrary cluster, an edge-qubit has either 2 or 4 neighbouring face-qubits.

mpar(cell) = H Mx(q) = H Hz"f H =1 (4.1)

q€Q(cell) =1 e=1

An informal visual representation of correlation surfaces (including the initialisations and
measurements) is possible by considering these deformations of a unit-cell: tubes are visu-
alised as extended cells, and sheets are planarised cells (having their boundary on defects).
Generally, the implication of Proposition 3 is that, although a surface S can have either even
or odd parity, only an even parity surface is valid.

A short reinspection of Definition 11 from the perspective of even parity indicates that,
if the function par for a surface S is not always even, then the surface stabiliser will be of the
form (Q) 4€0(s X,)(&), Z.). The Z, stabilisers belong to cluster qubits that are left #ncan-
celled (e.g. Flgure 4.5a), while the cluster qubits indicated by the Z, stabilisers do not belong

to Q(S).

par: Q(S) — TQCC\ 9(S), for Q(S) C TQCCand S correlation surface (4.2)

The function paris introduced (Equation 4.2), and it returns the set of qubits from
TQCC for which the Z, do not cancel. These cluster qubits are indicated by the muldi-
plication result of the stabilisers associated to qubits from Q(S). For even parity (when
mpar = 1) the function will return the empty set (). When referring to two surfaces (S, 7)
having the same parity, the equality between the outputs of the par-function will be referred

to (par(S) = par(T)).

JuncTIONS

The analysis of geometric structures is initiated for the validity criteria of unbraided defects.
An arbitrary defect structure (unless it is a closed defect) has at least two endpoints, and each
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Figure 4.13: Forming sheets at junctions. The yellow channel marks the defects constructed through a cluster. The

grey qubits indicate parts of sheet chains starting from the defects, and the green qubits indicate that if a sheet splits

the junction, then the resulting cluster stabiliser would be invalid. Physical qubits are locally stabilised by XZ,,g;,, and

the multiplication of three grey qubit stabilisers will result in the Z of the green qubits being uncancelled. According to
Definition 11 this is not allowed.

defect-junction introduces a supplemental endpoint. In conclusion, for any defect contain-
ing j junctions along its path there are ar most e = 2 + 2 X j endpoints, where every junction
introduces three supplemental endpoints. In order to comply with its definition (see Defi-
nition 11 and Equation 4.2), a tube must reach all the e endpoints of the defect. Thus, when
starting to construct a tube from any endpoint, the tube is always being splir at a junction
and the construction proceeds towards the remaining endpoints.

Valid sheets expose a different behaviour around junctions: a sheet must have all its bound-
aries on defects (see Figure 4.4 and Definition 11). As a result, valid sheets are defined only
for closed defect structures. In contrast to tubes, a single sheet cannot be split along a junc-
tion (see Figure 4.13), because the parity of the sheet will not be even (par-function will re-
turn # ()). Aslong as closed defect structures are joined at junctions (maximum number of
junction endpoints is not reached), junctions are the support of multiple sheets.

Braips

Braids introduce the possibility to connect tubes and sheets, and the four valid construc-
tions are enumerated in Figure 4.14. A sheet (e.g. S) will interact with two separate tubes
at a braiding-point (e.g. 4, b), and, considering that there are no other braids defined at this
sheet, let par(S) = par(a) = par(b). The four even parity surface constructions, for exam-
ple par(Sa) = (), represent all possible valid surfaces.

The construction of an even-parity sheet involved in more than two braids requires sep-
arate attention. Let S be a sheet involved into 7 braids, and par(S) = |J_, par(s;) be the
set of all the physical qubits involved in the parity of S. For each braid par(s;) indicates the
set of physical qubits resulting at intersection between a sheet and the defect (e.g. the black
qubits in Figure 4.5¢). Around each braid there are defined two tubes 4; and &;, and it fol-
lows that par(b;) = par(a;) = par(s;). For constructing an even parity sheet S, each 5; will
have to be cancelled by either 4; or b;.
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Figure 4.14: Fragment of a cluster illustrating a sheet (red qubits) and a tube (green qubits) after an apparent braid.

Following the discussion from Figure 4.13, there are four possibilities to construct valid correlation surfaces: a) Both the

sheet and the tube are not constructed; b) The upper part of the tube together with the sheet is connected; c) The lower
tube is considered together with the sheet; d) The complete tube is considered.

It is impossible to construct an even-parity sheet that is connected to both tubes around
a braid. The corollary follows: if two tubes are connected at a braiding-point, the involved
sheet cannot be constructed.

FURTHER SURFACE OPERATIONS

the construction of valid surfaces in the presence of junctions of braids was presented in
the previous section. At the same time, surfaces are cluster stabilisers which are modified
through surface addition even in the absence of junctions or braids.

Definition 12. The addition of two surfaces S; and Ss is the result of multiplying the two
corresponding stabilisers.

S = Sit+8=(QRX)R)X) = Q) Xy, fori € Q(S1).j € OS2)  (43)
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(a) (b)

Figure 4.15: Tube extrusion examples. The red qubits indicate the tube surrounding a defect. The black qubits indicate

cluster qubits that would be measured if the defects were extended. The green qubits correspond to the extruded

surface without measuring the black qubits. a) A single tube is extended; b) Two tubes are added without constructing

adefect. If the black qubits were Z-measured, the previous two defects would be bridged. No assumption is made if
bridging is correctly applied or not.

The correlation surface sum S, will be defined over the set of qubits Q(S,), which is the
symmetric set difference A of Q(S;) and Q(S2), as the individual X stabilisers of qubits
from the set union will cancel out (XX = ).

O(S,) = Q(8$1)AQ(82) = Q(81) UQ(S:) \ (Q$1) N O(S))

Defects enforce the existence of surfaces, meaning that for a given defect a valid surface has
to exist. Any X-stabiliser of the lattice is a valid tube, and trivial surfaces can be constructed
in the absence of defects. For example, for a single unit cell cluster, the trivial surface con-
tains all the 6 face-qubits. Furthermore, a two unit cell cluster contains 11 cell faces, where
10 of these are not shared between the cells, and the largest trivial surface contains the corre-
sponding 10 face-qubits.

Surfaces can be arbitrarily deformed without changing their topology making tubes and
the sheets not unique in an arbitrary defect structure. The deformations are the result of
using surface addition, where a trivial surface is added to the initial surface. Considering
trivial tubes, the basic surface deformation operation is tube extrusion in the absence of
defects (see Figure 4.15a).

Disjoint surfaces can be connected through surface addition, and of interest are the sheet-
to-sheet and the tube-to-tube cases. Connecting disjoint surfaces is performed by arbitrary
tubes that do not have any defect support (see Figure 4.15b). This situation is orthogonal
to when sheets are connected by braiding. While in the pure-addition case the sheets are
considered separately, in the braiding-case this is impossible. Similarly, disjoint tubes are
connected by adding a third tube-surface without a defect support. Again, the tubes are
independent and there is no junction between them.

A particular case of the tube-to-tube connection is bridging, where two disjoint tubes are
connected through a third tube with defect support. As a result, a junction is introduced.
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This surface operation was presented in P2, and can be performed between any two defect
P % % y

structures, where at least one of them supports a sheet (closed defect structure). After bridg-
ing a closed with an open defect structure, the resulting defect structure will be open. Al-
though not obvious, the resulting defect structure includes the support for the same sheets
as the initial two structures™".

Surface addition in the absence of defects is the equivalent operation (at the logical layer)
to multiplying the generators from a stabiliser table (see the example in Table 4.1¢,d, where
(ZXZ)(IXI) = ZIZ). Without applying any gate, the stabilisers are left unchanged, and by
multiplication only another set of generators of the stabiliser group is computed. Therefore,
in the search of valid surfaces, only those with a defect support are relevant, as junctions
and braids between defects imply the application of logical quantum gates. The following
sections of this chapter will concentrate only on this situation.

4.3 GRAPH REPRESENTATION OF TQC CIRCUITS

The geometrical description of a TQC circuit can be represented by graphs, which serve as
a foundation for automatic TQC design methods. The properties of arbitrary defect struc-
tures containing braids, junctions and bridged geometries (resulting after bridging) will be
more easily investigated from a graph perspective.

A TQC circuit will be represented by the set of two graphs TQ(® = {G,, G;}, where G,
(Ga) describes the geometry existing in the primal (dual) space. The dual graph will be de-
noted as the graph of opposite type to the primal graph, and vice versa (e.g. G, is the opposite
of graph G,;).

For a given circuit the graph G, € TQC, r € {p, d} is defined as the tuple G, = (V}, E;),
where V; is the set of nodes (vertices) and E; is the set of undirected edges defined as pairs
(n1,m2) X (ng,m1) € V; X V;. The set of nodes V; abstracts the cluster coordinates of defect
endpoints, junction points, injection points, input/output points and braiding points.

The set of nodes /O, C V3,10, C IO abstracts the injection and input/output points
from the original circuit, where JO is part of the circuit specification and is the set of both
injection and input/output points. The set corresponding to the injection-points is I/, C
10;. The set of edges E; abstracts the defect-segments connecting all the points mentioned
before.

A graphical example for a graph abstracting defects is offered in Figure 4.16a, where the
defect geometries for initialisation and measurement are illustrated as subgraphs. Figure 4.16b
illustrates an example of a primal-primal CNOT graph. The blue nodes are the input/output
nodes from the set /O;, the white nodes correspond to geometric junction points, and the
red and green nodes to braiding nodes. The figure contains both graphs existing in TQC
geometry (primal and dual) and grey edges indicate the dual graph, while red nodes corre-
spond to braids of the primal edges with sheets spanned by dual geometric rings.

The graphs are initially constructed without the braiding-nodes, which require a separate
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Figure 4.16: Elements of the graph representation: a) The initialisation/measurement geometries are abstracted through
graph nodes and edges; b) The primal-primal CNOT circuit represented as a graph.

calculation step explained in Section 4.5. The next algorithms assume that this step has been
performed and correct braiding-nodes are part of the graphs.

The lattice coordinates of the nodes V; \ 1O, are related to cells from the set CEL (see Sec-
tion 4.1.2). There is a function coord between these nodes and CEL: the function coord(k)
yields the three (w/ /1) lattice coordinates of the cell corresponding to k. The inverse func-
tion coord ! returns the node at the specified lattice coordinates.

4.3.1 PROPERTIES

Surfaces play a central role in the functionality of a circuit, and graph-representations of
TQC circuit geometries are used for the analysis of correlation surface support. Surfaces of
both types (tubes and sheets) are enforced by the presence of defects, which are abstracted
through graph-edges. The construction of valid tubes results in the defects being abstracted
as tree-shaped subgraphs. On the other hand, valid sheets are bounded by closed defect
structures, and this implies that the analysis of sheets will be based on the investigation of
subgraph-cycles.

After traversing G,, the set C/MP(G,) of all connected components is computed. A con-
nected component is a subgraph for which all the nodes are connected through edges. In
addition, for each component m € CMP(G,), the set CY(m) of graph-cycles is the possible
support for logical qubits by 7.

Let the set of graph-cycles be CY(G;) = U, ,ccam(a,
G, and is described by ¢ = (V, E), V; C V3, E; C E,.

) CY(m). Each cycle is a subgraph of

BRAIDING-NODES

Braids are particularly important for the discussion as the braiding-nodes of a primal graph
are a reference to the sheets supported by the graph-cycles from the dual graph, and vice
versa. For example, the cycle cd € CY(G,) in the primal graph G, is used for spanning the
sheet sheer(cd), and is abstracted through braiding-nodes in the dual graph G,.

The computation of the braiding-nodes from G, starts with the sheet-finding procedure
from Section 4.5.3: for the cycles cd € CY(G,), the correlation-surfaces sheer(cd) are com-
puted. The braiding-nodes abstract the intersections between the defects from the geometri-
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cal description of G, with the computed sheets for G,. The intersections can be computed,
for both the defects and the sheets are sets of lattice qubits.

The set of braiding-nodes is a subset of the graph-nodes, B, C V; where B, N 10, = 0.
The relation between braiding-nodes from Gy and sheets from the graph G, is the follow-

ing:

Veycdec C G, G € TQCG € {p,d}
b braiding point on sheet(c)
be B ,B CV whereGy € TQCG, t# 7

A graph G, will contain input-nodes with exactly two incident edges, junction-nodes
with at least three incident edges, and braiding-nodes. The braiding-nodes will influence
the construction of surfaces. Initially, for any braiding-node there are two incident edges,
one abstracting each tube interacting with the sheet. However, connecting two tubes at a
braiding-point renders the involved sheet as impossible to construct, but multiple braiding-
nodes can point to a common sheet. As a result, connecting both tubes at a braiding-node
implies, for consistency reasons, that the same construction has to be made at each related
braiding-node. It is reasonable to assume that related braiding-nodes are connected in the
graph, thus increasing the number of incident edges. Edges connecting related braiding-
nodes are called relation-edges.

NUMBER OF TUBES

For a given graph component 7, there are at most (4 — 1) valid tubes, where & is the num-
ber of braiding-nodes in the component. When & = 1, it is not possible to construct two
valid tubes at the same time. This would conflict with the validity criteria enumerated in
Section 4.2..

NUMBER OF SHEETS

The number of sheets supported by a geometrical description is a function of the number
of connected components | CAP(G,)| in the graph, and the number of graph-cycles each
component m € CMP(G,) contains.

It is challenging to determine the number of sheets supported by defect structures con-
structed by bridging. Finding out the number of supported sheets is performed by search-
ing all the cycles in the component. However, surface addition between two supported
sheets can result in another supported sheet, as it was the case when geometric defect junc-
tions were discussed. The minimum and maximum number of sheets in a component will
be investigated in the following.

The maximum number is computed by considering 7 separate rings (one cycle): there are
2" possible combinations of the sheets being constructed or not, as each cycle will support
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Figure 4.17: The number of cycles in a closed defect structure is equivalent to the number of supported sheets. The

figure enumerates all the possible valid sheets for defect structures resulting after: a) Bridging 2 rings; b) Bridging 3
single rings.

a sheet. After bridging the 7 rings together, the resulting defect structure will still have to
support the 2” separate sheet constructions. However, the number of cycles in the resulting
structure will be greater than 7.

The computation of the minimum number of cycles starts from the same 7 rings, but
this time visualised as aligned on the horizontal. After bridging the first two rings m, my €
CMP(G,) (where |CY(my)| = |CY(ms2)| = 1 cycles), the result will be a single compo-
nent 7?2 for which CY(m?) > 3. Bridging m? again with the third ring m3, containing
|CY(m3)| = 1 cycles, will result in 72 having CY(m?)| > 6 (see Figure 4.17). By induction,
it follows that after bridging 7 rings, the resulting component 7 will have |CY(m)| >
n(n+1)/2.

The set of sheets supported by CY () together with the sheet-addition operation forms
a group having a generating set of size at least /| CY(m?)|. The sheets generator set is fur-
ther used instead of the complete set. The reduced number of defect-sheet intersections to
be computed leads to less braiding-nodes in the opposite graph Gy (r # ). All the sup-
ported sheets can still be determined, and the generality of the graph-representation is not

affected.

4.3.% RELATION TO STABILISERS

Correlation surfaces, according to Definition 9, connect inputs with outputs, and this prop-
erty is translated to the graph-representation of circuits. The functionality of a TQC circuit
is expressed as transformations of input stabilisers into output stabilisers (the stabiliser table
ST from Section 4.1.9). The inputs and outputs of a circuit are abstracted as the /O, set of
graph-nodes.

The stabilisers are mappings of correlation surfaces derived from the circuit graph, but
stabiliser transformations from the table $7 can be represented as graphs, too. The deriva-
tion of correlation surfaces started from the relation between defects (graph-edges) and
tubes, and continued with the relation between closed defect structures (graph-cycles) and
sheets.
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Figure 4.18: A graph representing a possible (but incorrect) CNOT implementation. The nodes {1, 2} are for the inputs,
and {3, 4} for the outputs.

For everynode b € IO, there will be two associated edges that support the possible
tubes, and the interpretation of tubes depends on the type of the geometry (and graph):
X-correlation for primal defects, and Z-correlation for the duals. For associating stabilisers
with correlations the spec function will indicate, based on the type of graph, what kind of
correlation is required for a given logical stabiliser: a tube in the primal or dual space, or a
sheet in the primal or dual space.

spec : 10, x {X, Z} — {tube,, tubey, sheet,, sheety}

The stabiliser transformations described in the S7 have to be first interpreted in terms of
correlation surfaces. For the classical CNOT example, a TQC circuit implementing it will
have to support the /X — IX transformation (control is the first qubit, target the second
one), which equates to transforming spec(X) = tube, at target input into spec(X) = tube, at
target output, if the target qubit is in the primal space.

The graph contains two edges starting from an input-node associated to the circuit’s in-
put, and care has to be taken such that the graph supports the tube-transformation along
both paths that start from the input. This is required due to the manner how logical qubits
are initialised to stabilisers whose correlations are expressed as pairs of tubes: the measure-
ment/initialisation pattern is a pair of caps.

The discussion is illustrated by Figure 4.18 in which the graph is assumed to represent a
CNOT. The IXy — IX, transformation is interpreted as the correlation surface connecting
only the input-nodes 2, 4. Only two possible paths can be constructed from node 2: {2, 4}
(the lower path in the graph) and {2, 5, 1, 3}, and there is no other way to connect 2 and
4. The input-tubes cannot be completely transformed into output-tubes, and, thus, the
assumption that this circuit implements a CNOT is wrong. The {2, 5, 1, 3} path represents
the X1.Xo — X34 stabiliser transformation. The latter transformation is not specific for a

CNOT.

Proposition 4. In a valid geometric description graph, a tube-correlation surface is sup-
ported ift for any input node, which is required to support tubes according to S7; there are
at least two paths leading to the ouput nodes that have to support tubes according to S7.

4.4 BOOLEAN REPRESENTATION OF TQC CIRCUITS

Valid correlation surfaces will be represented based on the analysis from the previous sec-
tion. A first approach uses Boolean expressions formulated in conjunctive normal form
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(CNF), which is a conjunction (A) of clauses, where each clause is disjunction (V) of liter-
als. A literal is either a positive variable (e.g. x), or a negated variable (e.g. —x). A unit clause
contains a single literal.

The CNF Boolean expression f = (x V y) A (—x V —y) contains two clauses (the two
expressions in the parantheses), where x and y are the variables. For the previous expression f
is true, for example, after assigning x = t7ue and y = false. In general, Boolean expressions
formed in CNF are used for determining a variable assignment such that the expression eval-
uates to t7ue. This problem is known as SAT (Boolean satisfiability) and is an NP-complete
problem. There are, however, situations in which the problem is easily solved for particular
types of CNFs. Some examples will be offered in this work.

Boolean expressions are constructed by choosing the necessary variables for the liter-
als. For each surface type there will be a corresponding variable type: tube-variables and
sheet-variables. The variables used for the literals are inferred starting from the TQ(® set
of graphs, after having computed the set of components CMP(G,), G, € TQGE.

The result of mapping the TQ(® circuit-graph to Boolean expressions will be the set
TQC®* = {E,, E;}, where E, is the Boolean expression for the geometries in the primal
space, and E; for the dual space.

4.41 TYPES OF VARIABLES

The Boolean variables are computed using graph-based searches on each component m €
CMP(G,). Both variable types will represent subgraphs: the tube-variables abstracting trees
of the graphs, and the sheet-variables abstracting cycles of the graphs. The naming of the
variables will be standardised: capital letters for sheet-variables and small letters for tubes.

Tube-variables are selected by traversing 7 and building trees having their braiding-nodes
as leaves. Tubes have to reach all the endpoints of an associated defect structure, and the
tree structure arises as an effect of the junction-nodes in the graph (see Section 4.2). Braids
introduce a supplemental relation between tubes and sheets, and the traversal ends when a
braiding-node is found. In a component containing & braiding-nodes there are & possible
tubes (see Section 4.3.1) and each one has a tube-variable assigned.

The introduction of sheet-variables is supported by the braiding-nodes existing in z, as
each braiding-node from m C G, is a direct reference to a cycle from the opposite graph
CY(Gy) (see Section 4.2). For a component 7 with b braiding-nodes, there will be at most
b distinct sheets, as some of the braiding-nodes could represent the same sheet. Thus, af-
ter CY(Gy) was computed, each cycle has a corresponding sheet-variable. To the braiding-
nodes, that result on the sheet, the variable of the sheet is assigned.

Following the distinction made between the braiding- and the input-nodes of a graph G,,
a similar distinction is made between the variables: input and non-input variables.

Definition 13. An input variable (tube or sheet) represents a subgraph of G, that contains at
least one node from 70,
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4.4.2 FORMING THE CLAUSES

The mapping of TQ(® graphs to CNF Boolean expressions continues with the introduction
of the clauses which describe the valid combinations of tubes and sheets. These are gener-
ated starting from the braiding-nodes of G; € TQ.

A variable of the Boolean formula will be z7ze if its associated tube or sheet is present
(enabled) and false if it is absent (disabled). For example, if the sheet § is enabled, either the
tube z or the tube & will be connected to S. Otherwise (S is disabled, represented using the
literal —=S), either both 2 and & are connected resulting in the tube 2 A b, or both # and b are
disabled, which is expressed as =S A =4 A =b. The Boolean expression B(S, 4, b) abstracting
a braiding-node models the four valid possible surface constructions:

B(S,2,0) = (SANa=ANb)V (SA—aNb)V (=SANaANb)V (=SA—aN—b)  (4.4)
=(8VaVv-b)ANSV-aVb)AN(=SV-aV-ab)A(=SVaVvb) (45)
=S (adb) (4.6)

4.4.3 COMPLETE BOOLEAN EXPRESSIONS

The expression E; is constructed for a graph G, containing the set B; of braiding-nodes, by
forming the conjunction of all the braiding-node-clauses for € B;:

E, = g B(S,a,b), where S sheet-literal and 4, b tube-literal (4.7)
If G; contains no braids, then £, = #rue. The Boolean expression E, (for the primal

graph G,) and the Boolean expression (£ for the dual graph G;) could be combined to

a single Boolean expression. A correlation surface cannot be constructed such that it is
spanned in both the primal and the dual space and the two expressions are defined over dis-
tinct sets of variables.

4.5 CONSTRUCTION OF CORRELATION SURFACES

Constructing a valid correlation surface is equivalent to searching for a valid (always-even-
parity) surface, and both the graph-representation 7Q(® and the Boolean representation
TQC can be used in the process. The correlation surface construction problem is formu-
lated as the question: “Given a subset /O* of the input/output nodes /O, and a stabiliser
transformation between the circuit’s inputs and outputs, is there a valid a correlation surface
accordingly?”.

The question is answered by having a second look at the definitions of a correlation sur-
face (connects inputs to ouputs), of their validity (even-parity) and the relation between
stabiliser transformations and the graph-representation (when starting with tubes from an
input-node, two paths should lead to the output-node, Proposition 4). A valid correlation
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surface can be visualised, using the graph-representation of a TQC circuit, as a subgraph of
one of the graphs from TQC®. The subgraph has the shape of a tree: an arbitrary tube sur-
face is a tree, while sheets are abstracted as supplemental nodes introducing tube-branches.
The set of all the leaves equals the set of the nodes JO°. For example, in the right panel of
Figure 4.18, the constructed correlation surface has /JO° = {1, 2, 3} as leaves.

A correlation surface cannot be determined at the same time by tubes or sheets of oppo-
site types (see Definition 10). The stucture of the underlying cluster restricts a valid surface
to contain primal and dual tubes (or primal and dual sheets) and the right type of the sur-
face is computed by the spec-function (see Section 4.3.2), and the corresponding G, or E; is
chosen.

A primal correlation surface, implying the use of G, or Ej, contains primal tubes deter-
mined by primal defects and primal sheets spanned by dual defects. At the same time, a dual
surface (G, E4) implies the search of a correlation surface consisting of dual tubes spanned
by dual defects and dual sheets spanned between primal defects.

The goal of TQC circuit mapping is to extract from a geometry the necessary informa-
tion for the (classical) control software of a quantum computer (see Figure 4.9). The infor-
mation includes the measurement basis of the individual lattice qubits, and the set of lattice
qubits that form correlation surfaces of logical qubits. The measurement outcomes of the
correlation surface-qubits are necessary for calculating the corrections to the encoded data
(Pauli tracking at the logical layer), as information is propagated through more complicated
topological structures. The surfaces are not specified within the TQC circuit, and the map-
ping procedure must derive them from the geometric structure, and map them to actual sets
of lattice qubits.

Graphs enable an algorithmic formalisation of the solution, and the mapping approach
will be detailed from the perspective of the graph-representation. The presented mapping
algorithms will operate on TQ(®, but an arbitrary component 2 is further considered as
input, as each graph G, is the union of its components CMP(G,).

4.5.1  MarprING OF TQC CIRCUITS

The mapping starts by taking each component m € CMP(G,) and constructing a set M.

Moy = (8, D)y, Ly O Jons X3 Z,)

Within A4,, (the mapped ), ¢ stands for the type of the component (primal or dual),
and D}, includes all defect-internal physical qubits (i.e., those to be measured in the Z basis).
I, and O, are physical qubits that define inputs and outputs, respectively. The sets X}, and
Z,, include all physical qubits that are part of the X and Z correlation surface, respectively.
Finally, /,, is the set of injection points.

The ultimate outcome of the mapping is the set M, which contains tuples A4,, for all the
components 7 from TQC®. The physical qubits from the A4, sets are from the TQCC'set
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(the set of all lattice qubits, see Section 4.1.2). Therefore, qubits are addressed using their
3D-coordinates

The M, tuple refers to the correlation surfaces as X and Z, although, until now, the sur-
faces were referred to as tubes and sheets. However, as mentioned in Section 4.1.4, the Z
correlation surface is a sheet for a primal logical qubit and a tube for a dual logical qubit.
The X correlation surface is a tube for a primal logical qubit and a sheet for a dual logical
qubit. Following the discussion from Section 4.1.2, where the tubes and the sheets were de-
fined using face and side-qubits, the mapping procedure identifies the physical qubits for
each correlation surface (X4 C F and Z7¢ C §). For convenience, two functions are
introduced. The function sheet : M — TQCC returns Z2, for primal logical qubits and X,
for dual logical qubits. The function tube : M — TQCCreturns the corresponding tube
similarly to sheer.

Cycles were recognised as the support of sheets and the construction of the sets from 44,
proceeds by traversing the cycles from the set CY(m). The cycles are used for the construc-
tion of the tubes, too, although this is not necessary and the graph-edges could have been
used. This decision was taken in order to keep the construction mechanisms similarly. It is
assumed thata cycle ¢ € CY(m) is defined by the set of nodes V5 and the edges E}. Further-
more, the cycles will be considered directed, in order to ease their processing, and the func-
tion ngh"(k), k € Vi, n € Z indicates the n-th neighbour of vertex  in the direction of the
traversal. The direction of the cycles determines the direction in which the geometrical seg-
ments are traversed, and the function dir : £, — {tw, £h, £r} yields the lattice-direction
of the segment represented by the given edge.

Two more functions will be used during the mapping. The function

type : V — {input, output, inject, junction}

returns the type of a geometry point that was translated into a graph-node. The type is used
after physical qubits associated with the segment have been calculated in order to decide
which set from A4, they belong to. Based on the node type, the function sez takes A4, as
input and returns the corresponding coordinate set of physical qubits. For example, physical
qubits for the injection-points zzject will be added to the set /;,, while the qubits associated
to edges containing input-nodes will be added to 7,

4.5.2 COMPUTING TUBES

For computing all the qubit sets except the ones for the sheets, the component 7z is used
as input to Algorithm 4. After selecting a random starting node from a cycle, the lattice-
direction d associated with each edge of the graph is computed. For each cell ¢c of a seg-
ment, [, is its complete set of physical face-qubits (see Section 4.1.2), and two face-qubits
along the segment are defect-internal and added to D, (Line 8). The remaining four unit
cell qubits form a ring, and are part of the tube correlation surface. The qubits form the
set T that is then added to rube(q_ ) . Coordinates of input/outputs/injection points are
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Algorithm 4 Finding Defects and Tube Surfaces

Require: M,, = (,D,I,0,]. X, Z)
Require: the component m € CMP(G,)
i forallc € CY(m) do
2 start <—random k € 1}

3 ck < start

4 repeat

5 d <« dir((ck, ngh(ck)))

6: b < coord(ck); e < coord(ngh(ck));

7: forall cc € (b, ¢) along d do

8: D, < {plp = cc+ lalongd,p € F,.}

o: T, « E.\ D,
10: if rype(ck) = type(ngh(ck)) = junction then
I tube(M,,) < tube(M,,) U T,

12: end if

13: set(q_, defect) < set(q,, defect) U D,
14: end for

1s: if rype(ck) # junction then
16: set( My, type(ck)) < set( My, type(ck)) U {b}
17: end if

18: ck < ngh(ck)
19:  until start = ck
20: end for

a1 return g,

added afterwards to the corresponding sets. The coordinates of the defect qubits are added
at Line 13.

4.5.3 COMPUTING SHEETS

The sheet surfaces for a TQC graph-component are found by a procedure that iteratively
reduces the cycles of the component until it consists of just two vertices. Although a com-
ponent will generally consist of more than one cycle, the following discussion assumes that
M,, will contain a single sheet, generated by a single cycle. The cycles (supporting sheets)
of a component form a group under surface addition (see Section 4.3.1), and it is correct to
assume that only one of the sheets is required for a certain construction. The procedure is
repeated for each cycle existing in the component.

Sheet-finding will start from the observation that a component-cycle will have an even
number of nodes corresponding to corners in the geometry, because only 90° angles be-
tween the segments are possible.
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Algorithm 5 Finding Complete Sheet Surfaces

Require: SUBS

Require: M,, = (1, D, 1,0, X, Z);m € CMPG,
i sheet(M,,) < ()
2: forallss € SUBS do

32 88Q < {ql|coord(q) € bbox(ss) N S’}

4 sheet(M,y,) < sheet(M,,) ASSQ

S

6

. end for
. return o

Mapping a component-cycle to a sheet is a constructive approach, where the complete
sheet is found piecewiese: one sub-sheet in each iteration. A sub-sheet contains physical
qubits bounded by a rectangle in either the wh, wt or hr plane of the lattice (expressed in 3D
coordinates). Two points are necessary to specify a sub-sheet: (ss', 55%); ss* € CEL, where ss'
define the diagonal coordinates of the rectangle and have a single equal coordinate index (e.g

((0,0,0), (2,2,0))).

SUB-SHEETS

computed by Algorithm 6 are disjoint sets of lattice qubits, and the union of all the found
sub-sheets is the complete sheet. The algorithm takes a cycle of a component as an input,
and transforms the cycle by eliminating or moving nodes, while sub-sheets are calculated.
The transformations do not modify the geometry of the computation, and are simply used
during the calculation. The cycle-operations reduce, reshape, insert are of a hybrid nature,
operating on graphs but requiring the geometric description for their functionality. Node-
insertion using #nsert is not directly applied by the algorithm, and the number of nodes is
modified only during the reduce operation, or after the reshape operations was applied. The
insert(a, x, b) function will insert the node x between 2 and b.

Algorithm 6 is used to compute the SUBS set of sub-sheets for each cycle, and will re-
move vertices by continuously traversing it (Lines 2—26), until only 2 vertices are left (Line 2).
Algorithm s takes each SUBS set and constructs the sheer(M,,) C TQCC. For the sub-sheet
(sst, 55) the set SSQ contains the coordinates of the physical qubits returned by the func-
tion bbox, = Xicfwp|min(ss}), max(ss?)] N TQCC. For geometries having a defect
cross-section larger than a cluster-cell the set union operations on Lines 11 and 23 are to be
interpreted as AA{a} = (A \ {a}) U (({a} \ A4) N {a}), meaning that if element  existed
in the set A it would be removed, otherwise it would be included.

Similarly to the previous algorithm, some utility functions are necessary. The function
mirr © K — K mirr(a) = coord " (coord(ngh™"(a)) + coord(ngh(a)) — coord(a))
returns the node z mirrored at the line through its predecessor and successor in the cycle,
while function ¢lst : K* — K; clst(a, b, ¢) returns either b or ¢ depending which is closer to
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Algorithm 6 Finding Sub-Sheet Surfaces

Require: ¢ = (V}, E}) € CY(m), m € CMP(G,)
: SUBS + ()
2: while [V| > 2do

3:

10:
o
12:
13:
14:
15:
16:
17:
18:
19:
20:
21
22:
23:
24:
25:

2 2 YN v ok

start <— random k €
ck < start
compact <— false
a < ngh' (ck); b < ngh®(ck))
repeat
if dir((ck, a)) = —dir((b, ngh(b))) then
compact <— true
reduce(a, b)
SUBS < SUBS U (ngh(ck), a) U (ngh(ck), b)
else
if dir((ck,a)) = £dir((a, b)) then
remove(a)
compact <— true
else
ck < a
end if
end if
until starr = ck
if compact = false then
reshape(start, ngh(start), ngh’ (start))
SUBS < SUBS U (start, ngh’ (start))
start <— ngh(start)
end if

26: end while
27: return SUBS

vertex 4.

After implementing the sheet-finding algorithm, it is possible to illustrate its output. Fig-
ure 4.24 shows a complete sheet composed of sub-sheets, and Figure 4.19 depicts the pro-

gressive calculation of sub-sheets.

THE REDUCE OPERATION

Algorithm 6 modifies the graph by applying the reduce operation. The path is reduced if,
for 3 consecutive edges, the first and the second edge represent opposite associated directions
into the lattice (Line 10). For example, this is the case for the edges (B, C), (C, D), (D, E),
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where (B, C) and (D, E) have opposite directions in Figure 4.20).
The reduce(a, b); a,b € V operation is defined as the sequential application of:

Rm = {a, b};

ng = ngh” " (a); m, = ngh' (b); Ng = {na, ny}
vred = Lelst(a, mirr(b), n,), clst(b, mirr(a), ny)}
Vi = V"™ \ Ng;

Vig = Ngn v'e;

remove(v); forall v € Rm

insert(ng, v;, my); for all v; € V74

ins)

);
remove(v,); for all v, € VZZI;

The operation is illustrated by applying it to the nodes Cand D in Figure 4.20. The sets
R, Ng, V™* are constructed.

Rm = {Cr D}ng: {B’ E}
yred = {clst(C, mirr(D), B), clst( D, mirr(C), E)}

Because mirr(C) = Eand mirr(D) = B,theset V" = {B, E} isequal to Ngand
yed = pred — (). After the nodes from Rm are removed, no further nodes are inserted or
removed, for the corresponding sets are empty. However, for the example in Figure 4.20,
this is not the case as the number of deleted and inserted nodes is one (| V74| = |V7%| = 1),

ins
thus effectively removing one node (B) and inserting another one (C).

THE RESHAPE OPERATION

Reducing the graph may require to use an equivalent geometrical description. Thus, nodes
are not removed or deleted, but moved (|V;| remains constant). The reshape(a, b, c); a, b, c €
V; operation is the sequential application of:

remove(b); insert(a, mirr(b), c);

In the context of the Algorithm 6, the function is called if, during a complete cycle traver-
sal, the reduce operations cannot be applied. For the example of Figure 4.20, where the op-
eration reshape(B, C, D) is called, the resulting cycle will be obtained by removing C and
inserting C' = mirr(C). Applying reshape for a second time at the same position would
undo the initial application. As a result, reduce(B, C', D) is the inverse of reduce(B, C, D)
and the start pivot (Line 3), used for checking if a traversal completed (Line 20), needs to be
updated (Line 24).
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Figure 4.19: The example illustrates the application of Algorithm 6 for the graph

{4,....,]},{(A4,B),(B,C),...(J], A)}). For example, starting from the vertex start = A, the first possible
operation is reduce( E, F) and afirst sub-sheetisfound SUBS = {(E, G)}. Inaddition co-linear nodes C, D, G, H
will resultin remoue(D) and rem()vc‘(G) being applied. The cycle is traversed until the szart is reached again, and the
first traversal completes. After the second traversal, neither redzce nor remove were applied. The re;lmpc‘(A, B, C)

is applied, and a second sub-sheet is found SUBS = {(A4, C), (E, G)}. Finally, the last two sub-sheets are inferred
leadingtoSUBS = {(A4,1),(C, 1), (A, C),(E, G)}. The complete sheet is found by combining all the sub-sheets

according to Algorithm 5.

NUMBER OF NODES DURING PROCESSING

In a geometry where only 90° angles are allowed, any closed geometric contour will con-
tain an even number of segments, and the number of nodes of a cycle-graph will be initially
even. Moreover, the number of nodes remains even during the execution of the algorithm.
Operation reduce eliminates exactly two vertices from the graph (set Rm), while the sets of
further added and deleted vertices (V7% and V74, respectively) are always of the same size.
Operation reshape does not add or delete vertices. However, three consecutive vertices may
represent a straight line after a reshape operation, in which case they are replaced by two
vertices (Line 14). A further vertex elimination will follow, keeping the overall number of

vertices even.

4.5.4 COMPLEXITY

The complexity of the mapping algorithms is analysed in the following. The tube-mapping
algorithm requires a single cycle traversal, while the computation of the coordinates is straight-
forward (see the illustration presented in Figure 4.4). For an arbitrary graph component

m € CMP(G,), the runtime complexity is linear in the number of nodes that represent the
geometry.

For the runtime complexity analysis of the sheet mapping procedure, a worst-case geom-
etry can be defined. Such a geometry, when mapped to the lattice, will have to necesitate a
maximum number of reshape applications in order to be able to compute the corresponding
sub-sheets. When searching for a worst-case geometry it should be considered that Algo-
rithm 6 randomly selects a node from the cycle (Line 1), and that the node is used as a pivor
for the reshape. These assumptions imply that, even after a sequence of reshape operations,
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Figure 4.20: Graph-operations: a) Applying Veduce( C, D) results in the number of nodes being decreased by 2,

because C, D are removed. After the operation, because A, B, E, Fcorrespond to co-linear lattice coordinates,

remove(B); remove( E) can be further applied, and the number of nodes again decreased by 2. b) The reduce(C, D) is

applied. The mirrored vertices /” = {C', D'} are computed, with coord(D') = coord(B),thus V" = {C, B}. The

vertices from V] = {C, B}\ {B,E} = {C} will be inserted, and the vertices from 7, = { B}will be deleted. c) The
effect of the re.cbape(B, C, D) operation is that vertex Cis replaced by vertex C.

there is no possibility to find a sub-sheet and to reduce the number of vertices. Hence, a fur-
ther reshape is necessary.

For a cycle with |V¥| nodes, the maximum number of cycle traversals is O(|V%|?) for the
case that after each traversal a reshape operation is required. The number of consecutive
reshape operations is bounded by |V;| — 3. The worst-case situation arises when |V;| — 3
vertices are arranged in a pattern similar to the one in Figure 4.21a, where the red node in-
dicates the pivot and the cycle is traversed clockwise. All other nodes are not represented.
After a first traversal of the cycle, the reduce operation was not applied, and a reshape fol-
lowed by two corresponding remove operations will transform the cycle similarly to the one
from Figure 4.21b. Until the steps-like geometry is not fully reshaped, the reduce operation
cannot be applied. However, after each reshape, co-linear vertices are removed, thus reduc-
ing |V;|. For each reshape the complete cycle has to be traversed, and, overall, the complexity
of the sheet-finding procedure is bounded by O(|V;|?).

While the mapping algorithm scales polynomially with the number of the cycles, no
claims can be made regarding the length of the cycles in a TQC circuit, as the size of the cy-
cle is essentially related to the number of 90° angles. It is still unknown how large the set of
cycles is for a complete and practical TQC quantum computation (e.g. Shor’s algorithm for
a large number of bits).

4.5.5 CORRECTNESS

The correctness of the mapping algorithms implies verifying their termination, and the fact
that the correct physical qubit coordinates are computed.

Algorithm 4 terminates after a single traversal of the cycle. The correctness of the coordi-
nates is shown by comparing the output of the algorithm with the definition of defect qubit
coordinates (per unit-cell, two face-qubits) and tube qubit coordinates (per unit-cell, four
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Figure 4.21: The worst-case situation when applying the reshape operation.

face-qubits). The direction d (Line s) is associated with the green line in Figure 4.4, where
b and e are the CEL coordinates of the edge vertices (for example, considering that the two
cells from the lower defect are & and ¢). This implies that by selecting the two neighbouring
coordinates (Line 8), the coordinates of the green marked qubits (the defect set D) are com-
puted. The remaining 4 qubits (Line 9) that do not belong to D are the light blue marked
qubits, which are associated with the f#be correlation surface that surrounds the defect re-
gion.

The termination of the sheet-finding algorithm (Algorithm s) is shown by starting from
the fact that the geometric description is mapped into a 3D representation, where only 6
segment directions are possible (see the discussion of the reshape and reduce operations). A
geometrically described defect configuration of a logical qubit (in the absence of any possi-
bility to apply reduce or remove) will have an even number of edges in its associated cycle.
Considering the worst-case geometries (see Figure 4.21a), it follows that after each traversal,
either reshape or reduce (followed by remove) can be applied. The number of maximum
consecutive reshapes is bounded by | V5|, but the number of nodes is continuously reduced,
and the termination of the algorithm is guaranteed.

The correctness of the coordinates computed from the sub-sheets is shown by comparing
Lines 3 and 4 of Algorithm s with Figure 4.4. For a cycle ¢ of type #, the set of all possible
side-qubits (see Figure 4.1c for a single cell) is §’. For the two defects from Figure 4.4, the
instruction on Line 3 will return the coordinates of both the orange and the blue marked
qubits from Figure 4.4, which intersected with S will return only the blue qubits. These
blue qubits are the ones necessary for the computation of a sub-sheet. If two sub-sheets
computed by Algorithm 6 overlap, then the intersection set is not part of the set of qubits
defining the complete sheet (Line 4).

A valid correlation surface is an even-parity surface (see Proposition 3), and sheets are de-
fined using side-qubits from a unit-cell (the set S$'in Section 4.1.2). In the following it will
be shown that the reduce and reshape operations are not affecting the validity of a corre-
lation surface that is constructed. Both operations are based on the geometric description
and are used to compute a complete correlation surface by deforming the sheet boundaries.
The reshape operation changes the directions of the affected geometric segments, while the
reduce operation removes segments.

A formal proof of the operation correctness is based entirely on surface additions. The
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Figure 4.22: A cluster fragment to illustrate the correctness of the sub-sheet finding routine.

stabilisers are Hermitian matrices, and multiplying a stabiliser by itself results in the identity.
The deformation of a correlation surface consists, in general, of two consequtive stabiliser
multiplications $; = ((SHEET)R)M, where R is the cluster stabiliser to be removed, and
M s the cluster stabiliser to be added: Q(SHEET) N Q(M) = 0, and Q(R) C Q(SHEET).

The operations used in Algorithm 6 are particular types of deformations. For a given
cluster stabiliser SHEET where Q(SHEET) C TQCC, the reduce operation is the sta-
biliser multiplication Sy = (SHEET)R. Asaresult, Q(S3) N Q(R) = Pand Q(S2) C
Q(SHEET). The reshape operation, considering a sub-sheet 7, is either the multiplication
S = (SHEET)RwhenR = T,Q(T) C Q(SHEET),orS; = (SHEET)M when
R =M, Q(T) C Q(SHEET).

The following example illustrates the previous discussion. The modification of a sheet
boundary is illustrated in Figure 4.22. After changing the direction of the segment, the
boundary 4, B, C € SHEET is transformed into 4, D, E € SHEET ;SHEET =
SHEET U {D, E}, where the previous A stabiliser is defined over the qubits D, E. In terms
of sub-sheets, the sub-sheet (B, E) is added after the change of defect direction. The dashed
line in the figure indicates the direction of one defect involved in generating the sheet sur-
face SHEET.

Without affecting the generality of the example, it can be assumed that the nodes A4, B, C
mark the only qubits of SHEET. The lattice neighbourhood of these qubits (nodes) will
contain only 3 qubits (one was removed for the defect bounding the sheet): the qubit A4 will
be entangled to the same qubit to which B is entangled, and Cwill be entangled to another
qubit to which B is entangled. The neighbouring lattice qubits of the nodes are assumed to
exist on the edges (4, B) and (B, C), and the parity of the sheet is par(SHEET) = ().

After deforming the defect structure, on the new boundary of the defect the qubits marked
by the nodes { D, E} are interpreted as a sub-sheet SSHEET. Not being rectangular it does
not exactly correspond to the definition of one. However, the parity par(SSHEET) =
{U, V'} is computed, because the face-qubit ¥ is entangled to both E, D, and its Z-stabiliser
is cancelled during the parity set computation. After moving the defect boundary, the
qubits B, C € SHEET are entangled to Urespectively ¥, and the sheet parity is par(SHEET) =
{U, V}. As aresult, the fact that the set par(SHEET + SSHEET) = () is empty indi-
cates that the possibility of an even-parity surface construction. Hence, the resulting sheet
SHEET is correct.

According to the definition of sub-sheets even-parity is maintained during their construc-
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tion, and the direct conclusion is that changing the direction of defects does not affect the
correctness of the infered sheets.

4.5.6 GRAPH-BASED CONSTRUCTION

Correlation surfaces can be constructed starting from 7Q( if the graph-edges are consid-
ered abstractions of possible tube-surfaces and the graph-braiding-nodes as abstraction of
possible sheet-surfaces. For the given /0, the sought correlation surface will be a tree having
the leaves as the set of nodes V" C V; of G, r € {p, d}.

Mapping the 7O° set to V™" is directly accomplished for the /O° points where spec indi-
cates tubes,: the associated node from /O, is added to V. For the points at which spec re-
turns sheet;, appropiate braiding-nodes from B; have to be selected, as each brading-node is
related to a sheet (cycle) from the opposite space (graph). Let /O° C I0O° be the set of inputs
that are required to exist on sheets.

When the opposite graph Gy was constructed, for determining braiding-nodes, at each
graph-component only the generator-sheets were employed, in order to reduce the number
of intersections with defects. The selection of the correct braiding-nodes to be included into
V7 is detailed starting from the properties of the cycles. Initially, the graphs are considered
without braiding-nodes.

In an arbitrary graph, there will be cycles containing nodes from 7O and cycles that run
entirely over junction-nodes. For nodes from /O, the edges of the cycles represent tube cor-
relations between pairs of nodes, and for nodes from /O, the spanned sheet could be part
of the final correlation surface. The selection of the appropiate braiding-nodes from B; to
include into /" is a combinatorial problem: a reduced set of generator-sheets represents all
the possible sheet-constructions supported by a graph-component.

The IO’ set of inputs has to be firstly partioned by finding which graph-components con-
tain the associated input-nodes, as it is already known which nodes exist in each component.
For a component m € CMP(G,) containing the set of input-nodes C/O(m) C IO, each
cycle ¢ € CY(m) contains the inputs from the set CIO(c), such that CIO(m) = |J CIO(c).
A cycle not running over input-nodes will have C/O(c) = 0.

For IO’ the set of components {1, m2, . . .} is computed such that /O* = | J CIO(m;),
and the next step is to find out if the 7; component supports a cycle ¢s such that CIO(cs) =
CIO(m;). For each component 7;, the solution consists of the cycle combination resulting
in the inputs C/O(c¢s). Combining cycles is a constructive approach, and the same approach
was used to compute the minimum number of cycles in a component (Section 4.2). After
combining two cycles ¢1, ¢2, the result ¢3 is defined over CIO(c3) = CIO(c1)ACIO(c2) (in-
puts existing on common edges will cancel out, as the common edges disappear). The con-
struction of a correlation surface is unsuccessful, if for any of the components ;, the search
for a specified cycle returned no result. Otherwise, the set of generator-cycles is returned and
is further used.
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(b)

Figure 4.23: The primal and the dual graph corresponding to the primal-primal CNOT circuit. The edges abstracting the

primal defects are braided with the same dual sheet, requiring the red braiding-nodes to be connected by dashed edges

corresponding to relation-edges. In the dual graph, green braiding-nodes correspond to different dual sheets and are not
related.

Having computed all the cycles supporting the sought-after sheets, the corresponding
braiding-nodes can finally be appended to /*"*, and the search of a correlation surface can
proceed. A straightforward method of searching for the surface subgraph is to use a depth-
first-search algorithm, but the depth-search will have to differentiate between junction-
nodes and braiding-nodes. Whereas at junction-nodes all the incident edges have to be tra-
versed, at related braiding-nodes either both normal edges and none of the relation-edges
are traversed, or one normal edge and all the relation-edges. This is necessary for complying
with the validity criteria from Section 4.2.

The construction algorithm can either output a tree according to V", which implies that
a valid correlation surface was constructed, or signal the construction failure by returning
an empty output. The resulted correlation surface will contain tubes for each normal edge
in the tree, junctions at each non-leaf-node, and sheets indicated by the braiding-nodes that
were traversed along the relation-edges.

4.5.7 BOOLEAN-EXPRESSION-BASED CONSTRUCTION

The Boolean expressions of the circuits were formed in CNF, and usually a valid assignment
of such formulas can be computed by SAT solvers. Each B-clause (see Section 4.4) contains
only XORs of three variables, where one of the variables is negated and the other two are
not. Thus, the B(S, 4, b) can be reformulated as =S & 24 ® b & 1 = 0, and a valid vari-
able assignment of the Boolean expressions will have to result into false, and not true. Each
B-clause represents a linear equation, and the A conjunctions are the means by which the
equations are bundled into a linear equation system over GF(2). Hence, computing a valid
variable assignment is equivalent to solving a linear equations system by Gaussian elimina-
tion or other polynomial-time algorithms.

As a conclusion, the construction problem is XORS.AT and belongs to the complexity
class P. Solving this problem is not difficult, and from a practical perspective, a linear sys-
tems solver can be employed to solve the system. The solution space of the system is an
affine subspace of the Boolean field of size 2" (7 variables), making the problem a member
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of the complexity class # P (the class of counting problems associated to decision prob-
lems™™°?), implying that the number of solutions can be computed before trying to solve
the equations.

The graph-based approach was equivalent to a SAT based solution and was not optimal.
The construction algorithm performed the subgraph-search by computing all the combina-
tions and selecting the one offering the required support for a valid correlation surface.

From a Boolean perspective, searching for a subgraph is equivalent to asking which edges
from a graph should be enabled (true), and which should be disabled (false). Graph-nodes
having exclusively disabled incident edges will be discarded. The relation-edges are not re-
quired for this construction method, as the conjunction of braiding-clauses is an equivalent
approach: related braiding-clauses refer to the same sheet-literals.

The construction of a correlation surface according to /O and the specified stabiliser
transformation requires the same initial steps as the graph-based method. The major differ-
ence is that a solver will be used to replace the subgraph-search algorithm.

After determining if the surface should be in the primal or in the dual space, the match-
ing expression £, from TQC"’ is selected. The truth-value of the expressions is evaluated by
searching for variable assignments for which £, = #rue, and, if a solution exists, the solver
will indicate the valid assignment.

Although two different Boolean variables generally represent two different correlations
supported by the geometrical description, there are situations when the surfaces (irrespec-
tive of their type, tube or sheet) connect the same cluster-locations (in Section 4.2 referred to

as sets of qubits stabilised by Z).

Definition 14. Two non-input variables x, y are correlation equivalent if the associated sur-
faces are incomplete (not valid) and have the same parity, par(x) = par(y) # 0 (see Sec-
tion 4.2).

The correlation equivalence (different from logical equivalence) was restricted to non-
input variables, as the parity at the TQC circuit inputs/outputs depends on the used logical
qubit initialisation/measurement. Of course, any input-variable is equivalent to itself, but
the same is true for the non-input variables. Two surfaces S and T having equal parity sets
(par(S) = par(T)) are by Definition 14 correlation equivalent (S = 7)) and any of the two
can be considered during the process of constructing a valid surface.

The expression E; represents all the supported surface constructions, where each solution
is a surface having always-even-parity. A specific solution can be computed by iterating over
the Boolean variable assignments of £;, and selecting the one containging only the variables
from V" being true.

Another possibility of constructing a specific correlation surface is to iterate over the so-
lutions of a constrained expression ;. This is achieved by appending unit clauses of the
form (/) to E,, and each clause corresponds to a variable associated to the nodes from V™.
For example, for an arbitrary circuit containing the input-variables S and 4, the constraint
expression will be E, = E; A (S) A (4). The supplemental clauses reduce the search space for
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the possible assignments satisfying the existing braiding-clauses from £;. The unit clauses
are propagated to all the other clauses from E,""°. The clauses that contain the literal /are
removed from E; (x V true = true), and from the remaining clauses the literal =/is removed
(x V false = x). By solving the Boolean linear equations from £ only a reduced set of sur-
faces will be inferred, e.g. where the sheet S and the tube  exist.

4.6 SUMMARY

Topological quantum computation is one of the most probable technologies to be used

in future quantum computers, and this chapter developed, presented and analysed some
design methods of TQC circuits. This chapter shortly introduced the topological quan-
tum computing concepts required for a more extended analysis of the correlation surfaces
existing in the circuits. Being a measurement-based computing paradigm, the surfaces repre-
sent in TQC the quantum correlations formed by using teleportation as a means to process
information. The visual aspect of TQC circuits, which was captured by the geometric de-
scription, generated a new approach of representing the circuits as graphs. The graphs were
extended to the Boolean representation of the circuits.

It can be concluded that the geometric, graph and Boolean representation of TQC cir-
cuits fulfil the same task, but each of these has both advantages and disadvantages. Except-
ing the visualisation purposes, the graph representation was instrumental in allowing the
computation of correlation surfaces as qubit subsets from the underlying cluster state. The
Boolean representation of the circuits allowed the formalisation of the correlation surface
construction problem, which had an unknown difficulty. Its mapping to XORSAT compu-
tational problems enables the design and the construction of efficient algorithms that fit in
the TQC design stack.

The circuit representations used in this chapter were motivated by the correlation surface
construction problem. The same representations will be translated in the next chapter as the
mechanisms underlying automatic synthesis and validation of TQC circuits.
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Figure 4.24: Example of mapping the primal-primal CNOT circuit: a) The network of gates; b) The geometrical descrip-

tion where the numbered defect structures correspond to the qubits from the gate network; c) All the possible tubes; d)

All the possible sheets; e) The iterative construction the sheet corresponding to qubit 3 (the ancilla initialised in |—|—> and
measured in X) using Algorithm 6.
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Topological Circuit Equivalence

THE BRAIDING RELATION IS CENTRAL in the construction of valid correlation surfaces,
and leads to a definition of canonical Boolean representation of TQC circuits. Similarly to
the construction of surfaces, the canonical representation consists of two expressions: one
for the primal and another one for the dual circuit elements. The approaches presented in
this chapter are motivated by the Boolean expressions representing the geometrical descrip-
tions, and circuit equivalence checking methods incorporate operations on the represented
correlation surfaces. A formalised representation of surface operations is useful for illus-
trating circuit identities and, in an extended form, for algorithms performing correct circuit
compaction.

This chapter will focus on TQC circuit identities from the perspective of the specific
canonical representation. The canonical TQC circuit representation using the B-notation is
defined as the expressions containing only conjuctions of braiding-relations called B-clauses
(see Equation 4.7). For brevity, the A operand will be ommited from the expressions: thus,
ab should be interpreted as 2 A b.

The direct mapping between the braiding relation and the geometric representation al-
lows one to easily draw a TQC circuit starting from a canonical representation and, vice
versa, to construct an expression using the computation’s geometry. Transformations of
the representation will keep this advantage in place. In the following, the B-notation and
its properties are introduced starting from the braiding-relation and the properties of the
underlying Boolean expressions. The developed B-notation will be also used in this chapter
for introducing TQC circuit synthesis. In addition, the chapter will use insights gained after
inspecting the notation to formulate TQC circuit validation methods.
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5.1 THE B-NOTATION

The initial form of the braiding-relation stemmed from four possible constructions between
the tubes and the sheet at the braiding-point (see Equation 4.4), which was rewritten as an
equivalence relation between the existence of the sheet S and the exclusive existence of the
tubes zand b: B(S,4,b) = S <> (a @ b). In other words, if both tubes are enabled or
disabled at the same time, then Sis disabled B(S, 2,b) = =S ® a @ b.

The Boolean expression of a TQC circuit, due to its CNF form, is similar to a chain of
Boolean equivalences between variables: the solution of a braiding-relation will imply the
solution of the next braiding-relation, and so on. By manipulating the form of a canonical
TQC circuit representation, the underlying represented geometry is (indirectly) manipu-
lated: the same quantum computation can be described by different but equivalent geome-
tries. The properties of the B-notation used for transforming the Boolean expressions of a
circuit will lead to TQC circuit automated task solutions like verification and compactifica-
tion.

The direct mapping between geometry and Boolean formula has to be easily traced and
it is useful to present properties that are intuitive from the geometric perspective. However,
the following properties hold for arbitrary Boolean variables, meaning that, although the
notation refers to sheet- and tube-variables, the variable-types are not enforced for the prop-
erties to hold.

The construction of a correlation surface was formulated in the previous chapter by a
system of linear equations, where each equation was a B-clause. The simplest algorithm for
solving such systems is the Gaussian elimination that relies on the addition of equations.
The following presented properties can be understood as local steps of the Gaussian elimina-
tion, where localiry refers to an associated place from the geometry.

First of all, as the logical XOR operation () is commutative, it is possible to permute
the parameters of the B-notation. Moreover, for any two Boolean variables 2, b, a <+ b =
—a® b= a® —b,and as a result:

B(S,a,b) = B(a,S,b) = B(b,a,S) = ... (s.1)
In general, for any three equivalent Boolean variables the syllogism 5.3 holds:

(aeb)(bc) = (ae )b+ o) (5-2)
(acb)(bc) = (ae0) (5-3)

The transitivity of the Boolean equivalence will be used to compactify TQC circuits or
validate the correctness of surface construction, and replacing a variable, as in Equation s.2,
is the direct result of applying the transitivity property of the logical equivalence. Remov-
ing a variable, like in Equation 5.3, is the logical implication of using the transitive role of
variable 4. It is possible to remove variables that occur in two brading-relations to obtain a
shorter and satisfiability-equivalent formula, provided that such variables do not occur in
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other clauses. In the following sections the logical implication — is used whenever a variable
is removed due to its transitive role.

For general Boolean formulas, any variable can be removed, but for TQC circuits ex-
pressed using the B-notation attention has to be paid: input variables should not be re-
moved, because these are required for the construction of correlation surfaces according
to the circuit specification.

The B-notation is extended using Equations 5.2 and 5.3. Two braids that differ in a single
variable (e.g. 2 and b) are logically equivalent (« <+ &), and replaced (e.g. by ):

B(S,a,x)B(S,b,x) = (-S®a®x)(~SHbDx)
= (ma® (SPx)(-bd (SPx))
(ma® (S®x)) (b (SBx))(a< b)
= B(S,2,x)B(S,b,x)(a > b)
= B(S,ab,x)B(S,ab,x) = B(S,ab, x)
- B(Svy’ x) (5-4)

The XOR of two of the B-notation parameters through an arbitrary variable results in:

B(S,2,b) = ("S®aDbdxDx)
(SO (a®x) D (b x))
= B(S,a®x,bdx) (5-5)

Furthermore, the notation supports the situation when two braids differ in two variables.
Eeach braiding-relation is a Boolean equivalence, and it follows thatx <> (7' @ &), such
thatx = x(7T @ b),. The variable x conld be removed without changing the validity of
the formula (Equation 5.6). The final form (Equation s5.7) of the property is achieved after
removing x. The removal is performed using the property from Equation s.s if the canonic
expression contains x <> (7@ b) as the only condition regarding the existence of x.

B(S,a4,x)B(T,b,x) = B(S,a,x)(x<> (T D b))
= B(S,a,x(T® b)) (5.6)
— B(S,4,T®b)=B(S®T,a,b) (5.7)

LOGICAL AND CORRELATION EQUIVALENCE

Two Boolean expressions are logically equivalent if they have the same set of satisfying as-
signments over the common variables ™. For TQC circuits mapped to Boolean expres-
sions, the logical equivalence is compared to the previously introduced correlation equiva-
lence.

The variables do not need to be different and it is possible to consider formulas with the
same variable present multiple times in a B-relation (for B(4, b,c) a # b # ). However,
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Figure 5.1: The diagrams of this kind are sketched without making any assumptions about the types of the defects. The

blue and green defects are of opposite types, and the colors are not associated to a specific type (primal or dual). The red

markings in the diagrams are used only to illustrate the existence of braids. a) Example of a invalid braid; b) The tubes at a
braiding-point can be switched, and the corresponding B-clause remains unchanged.

this will detach the meaning of the B-relation from the braiding interpretation of sheets and
tubes:

B(a,a,b) = (ma®a® b) — —b (5.8)
B(a,b,c® a) = B0, b,c) =b<+ ¢ (5.9)

Equation 5.8 represents, for example, the situation from Figure s.1a, where the braid on
sheet S involving the tube x is an ”invalid“ braid, for the same tube variable would be deter-
mined by a single braiding-node. This implies that, independent of the truth-value of x, the
sheet S cannot be constructed, as B(S, x, x) = =, thus § = false. The geometric construc-
tion is valid in the context of TQC circuits; however, it cannot be considered a braid.

The logical equivalence between two variables (Equation 5.9) can be used, from a practi-
cal point of view, together with Equation 5.5 as a second proof of Equation s.4.

B(a,b,c)B(a,b,d) = B(a,b,d)B(b,c,b® d);(replace awith b & d)
= B(a,b,d)B(D,c,d) 2 B(a,b,d)(c > d) = B(a, b, cd)

The braiding-relation was defined to mimic the way valid correlation surfaces are locally
constructed, and in that context the concept of correlation equivalence (the = operation)
was mentioned. The equivalence of correlation surfaces will be transformed in this section
into logical equivalence (the <+ Boolean operation). For this, let «, &, ¢ be three variables of
an arbitrary type. Assuming that par(a) = par(b)par(c), it follows that 2 = be, but b = ac,
¢ = acand abc = (). These observations are based on the fact that each surface (represented
by the corresponding variable) is constructed using the two other surfaces (e.g. instead of
a the two surfaces b and ¢ can be used), and the surface resulting after combining the three
individual surfaces has always even parity (the set par(abc) = (). After combining the three
individual surfaces, the result is expressed as ab—c @ a—bc ® —abc ® —a—b—c = B(a, b, ¢).
Moreover, if ¢ is always set to false, then a = b — a <+ b, which is expressed as B(, b, 0).

For the above reasons, in general, the x = | V; relation (the union par(x) = par(|J, V3)
of multiple surfaces V;) will be formulated using the B-notation by introducing the tempo-
rary variables G;. These variables represent the linear combination of individual correlation
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surfaces from the TQC circuit (e.g. sheets formed at junctions).
B(x, V[), G())B(G(), Vl, GQ) e B(Gi_g, Vn—l, Vn) fOI‘ Gi = Vi+1Vi+2 (S.IO)

This section was showed that correlation equivalence between variables of arbitrary types
can be expressed using the B-notation. B-clauses will not always be interpreted as represent-
ing braids where two tubes interact with a sheet.

5.1.1 JUNCTIONS

The relations existing between sheets formed at junctions is supported by the B-notation,
too. In a bridged geometry the number of cycles existing in the associated graph equals the
number of sheets supported by the geometry. The geometry in Figure 4.12 is the support

of three sheets (S, R, T), where par(S) = par(R)par(T),and S = RT. Hence, any sheet

is expressed using the two other sheets. The correlation equivalence is formulated as logical
equivalence by B(S,R, T) = (-S® R@ T) = S <> (R® T). This property of three sheets
at ajunction is helpful for showing that in a geometric description the sheets belong to the
same bridged geometry.

5.1.2  B-NOTATION AS A GRAPH

The CNF form of the Boolean expression representing a geometric description implied that
the B-notation is a canonical representation for TQC circuits. Constructing a valid corre-
lation surface (solving the CNF formed expression) requires searching for a variable assign-
ment using each B-clause as a condition that drives the search towards the final variable val-
ues. From the perspective of Boolean implications, the way & and ¢ are related depends on
the value of 4, and these relations can be visualised using structures similar to implication
graphs 7>, In an implicaton graph, the literals are represented as nodes and directed edges
indicate the Boolean implications between the variables. A variable assignment is found by

Tar72

tracking through the paths existing in the implication graphs.

A B-clause is a graph-cycle containig three nodes (a 3-cycle), and a graph representing the
complete canonical representation is constructed by appending further 3-cycles at the nodes
that are shared between the clauses. A simple 3-cycle is presented in Figure 5.2a. The graph-
nodes can have one of three possible values {always — true, always — false, true — false}.
Searching for a variable assignment requires to associate values to the graph-nodes such that
the conditions existing in the 3-cycles are fulfilled. The true — false case is when a variable
can have any Boolean value, and this is the usual situation for a variable. The always — false
is used when the relation B(4, b, 0) exists, and, expressed as B(4, b, ¢) B(c, 0, 0) , results into
¢ = false and the node representing the variable ¢ will be always — false. The always — true
value of a node models exactly the linear equations construction of correlation surfaces,
where the search-constraints were appended as supplemental unit clauses containing the
corresponding input variable as a positive literal (see Section 4.5.7).
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The graph-edges represent Boolean equivalences between the variables associated to the
nodes, and for this reason the condition imposed by a 3-cycle on the values of the nodes can
be compared to a parity checker (2 <+ bcresults in B(a, b, ¢)). If one assigns Boolean values
to all the nodes, in each 3-cycle only two or zero nodes will be allowed to be r7#e. Another
analogy for this behaviour is that it emulates the valid assignments of a the B-clause, where
either one variable is false or all three are false.

For visualisation purposes, and to simplify the way identities are presented, in the follow-
ing sections the graph-representation and the B-notation will be used alternately.

5.1.3 VARIABLES

The previous discussion focused on the properties of the notation, showing that the nota-
tion works like a layer on the vast number of logical implications existing due to the braid-
ing relation. The graph representation was directly based on the underlying Boolean impli-
cations existing between the variables. Although variables were extensively used throughout
the previous sections, it was not entirely mentioned how these are introduced or removed.
From a Boolean perspective, the following observations will be straightforward, but in or-
der to maintain the analogies to circuit geometries, the effects of the transformations will be

detailed.

INTRODUCING VARIABLES

The braiding-relations were introduced to represent correlation surfaces and the variables
were defined based on the graph-representation of the TQC geometric description. Vari-
ables will be introduced in the B-notation for performing operations on the abstracted
TQC circuit, and in general the variables express a transitivity of the surface construction.
A first option for introducing a variable is to use the logical equivalence between an existing
variable 2 and the new variable x, resulting in the B-clause B(4, x, 0). When expressing the
correlation equivalence between more than 3 variables, the temporary variables used (see G;
in Equation s.10) were also introduced for achieving transitivity between the clauses.
Introducing variables can result in the construction of junctions, too. The § @ T'in Equa-
tion 5.7 corresponds to a third variable, e.g. R, thus B(R, S, T) is formed. If the introduced
variable will represent a sheet, then a junction is formed having the two previous sheets as
components. The variable R is the linear combination of S and 7, and its introduction ex-
presses the possible correlation equivalence existing between S and 7' (see Figure 5.2b).

REMOVING CLAUSES AND VARIABLES

In the preceding example, variables were removed starting from their transitive role. The
notation is based on the conjuction of B-clauses and by removing variables the correspond-
ing clauses could be disregarded, too. In terms of the graph representation, the removal is
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(a)

Figure 5.2: The graph representation of the B-notation: a) A B-clause is represented as three nodes connected by three

edges (top left), and there are four possibilities to represent the Boolean equivalences, where a single edge (dashed)

exists between the three nodes; b) Introducing the variable R using B(R, S, T) generates another 3-cycle in the graph
already representing B(S, 4, x) and B(T, x, b).

the inverse of operation of the one from Figure 5.2b, where variable R was introduced to ex-
press S @ 7. The removal of transitive variables will be analysed through two scenarios of
tubes and sheet interactions around braiding-points.

a b
~00+- B>
X
(a) (b)

Figure 5.3: Correlation surface transitivities: a) Tube transitivity, where the tube x is existing between the sheets §

and 7, and a correlation surface, that includes « but not 4, is valid either if it is connected directly to S or to 7 by x; b)

Sheet transitivity, where the linear combination of the sheets S and 7'(S7) is correlation equivalent to the tube x, and a
correlation surface, that includes both zand 4, is valid if it is connected to either ST or to x.

The tube transitivity (see Figure s.3a) scenario takes place when a tube-variable is transi-
tive between two sheets, similar to when in a circuit’s geometry two braids share the same
tube (see Equation 5.6). The scenario is accompanied by the strong assumption x = 87,
stating that the tube x is correlation equivalent with the sheets S and 7, which implies the
existence of B(S, T, x). Itis also possible not to assume the x = ST equivalence, and this
will be later used for illustrating TQC circuit identities.

The sheet transitivity (see Figure 5.3b) scenario occurs when a sheet has a transitive role
between two other sheets, similar to the sheet constructions at junctions. At a junction, only
two out of three sheets need to be considered, because the third one is the linear combina-
tion of the other two. The third sheet-variable could be removed from the expression, while
the same conclusion was drawn to reduce the number of cycles considered from a bridged-
geometry (see Section 4.3.1).

A reconsideration of Equation 5.6 in conjunction with the two previous scenarios indi-
cates that Equation 5.7 can be rewritten as a single B-clause. In Equation 5.6 it was consid-
ered that x could be removed if only a single braiding-relation contains x. The circumstances
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will be detailed in the following paragraphs.

The removal of x can be executed in two ways. The first option, according to tube-transitivity,
is to introduce the clause B(S, T’ x), which will result into B(4, S, 0) and B(4, T, 0): the
outer tubes are logically equivalent to the neighbouring sheet. From the perspective of TQC
circuits, the tube x acts like a sheet, for it conditions the separate existence of 2 and & by
B(x,a,b). Asaresult, S and T are disregarded due to their equivalence to the 4 respectively &
tube, and the tube x is 7eplaced with a new sheet-variable®.

B(S,a,x)B(T,x,b)B(S, T, x)
= B(S,a4,x)B(T,x,b)B(S, T,x)B(b,S,0)
= B(Sb,a,x)B(T,x,8b)B(4, T, 0)
= B(Sb,Ta, x)B(Ta,x,Sb) — B(x,a,b)

The second option uses a direct approach by introducing the sheet-variable R that joins
S, T'into a junction (sheet-transitivity): the clause B(R, S, T) is appended. The tube-transitivity
used another supplemental clause which was interpreted as “the variable x represents the op-
tion of choosing between S and 77, and the final step was to replace x with a sheet-variable.

But this time, referring to Equation s.10, the variables x, S and 7 have a transitive role, and
act as temporary variables being not present into other B-clauses. The variables fulfill a
purely transitive role and the final form of Equation 5.6 is B(R, 4, b).

Introducing and removing variables is visualised using 3-cycles for the B-notation. For
this particular example, Figure s.2b illustrates how three 3-cycles (the initial three clauses)
can be abstracted to a single 3-cycle representing B(R, 4, b). If one splits a B-clause into three
sub-clauses, the inverse operation will be performed, and three variables automatically intro-
duced. For the previous example these would be §, 7'and x.

Removing variables is comparable to the transitive reduction of a directed graph#<"7,
which is a often used procedure during the pre-processing of CNF formulas that are submit-
ted to a SAT solver. Although the graphs of the B-notation are undirected, for this compar-
ison the edges can be decomposed into directed ones (see Figure s.4a). The transitive closure
of a graph G is defined as the smallest subgraph G’ of G, such that there is a path from ver-
tex # to vertex vin G, whenever there is a path from # to v in G*“Y7>. Through transitive
reduction of a graph, its closure can be computed, and for DAGs (directed acyclic graphs)
the transitive closure is unique, while graphs containing cycles do not have a unique clo-
sure*SY72, The graph from Figure 5.4 is cyclic, and the two possible closures are illustrated in
Figure 5.4b and Figure s.4c.

A graph where no transitive reductions are possible is its own transitive closure, and such
graphs are sought during the correlation surface construction process (e.g. when variables
are removed). A correlation surface, defined as the path connecting nodes from the B-graph,
is based on the transitive relations from graphs abstracting a circuit’s geometry. For exam-

*In the following, underlined parts of the expressions are used to indicate transformations.
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Figure 5.4: The transitive closure of the 3-cycle: a) An undirected 3-cycle is transformed into a directed graph; b) A first

possible transitive reduction of the directed 3-cycle; c) The second possible transitive reduction; d,e,f) A 3-cycle where

two undirected edges were transformed into pairs of directed edges, and the transitive closures are equivalent to the
graphs from b) and c); g,h,i) The transitive closure of the graphs equals the graphs themselves.

ple, the directed 3-cycle from Figure 5.4f results if the construction of the tube z implies the
construction of sheet S, which in turn implies the construction of tube &.

The transitive closure of a 3-cycle having two undirected edges that were decomposed
into four directed edges (see Figures 5.4d,e,f) is equivalent to the transitive closures of the
graphs from Figure s.4b,c. It results, that 3-cycles with two undirected edges are not valid
surface constructions: a single undirected edge is required. Nevertheless, the graphs from
Figures 5.4g,h,i are their own transitive closures, meaning that no further transitive reduc-
tions are possible, and no additional node transitivities exist.

Operations in the B-notation are visualised using graphs formed of 3-cycles, where in
each 3-cycle only one undirected edge exists, and that edge corresponds to the Boolean im-
plication between the variables represented as nodes. The properties of the B-notation, like
Equation 5.7, are thus expressing the operations such that the resulting graphs are not re-
ducible. Introducing variables increases the transitivity (number of paths) of the graph-
representation, whereas variable removal reduces the transitivity.

For the B-notation graphs there will be more than one possible transitive reduction,
meaning that a certain correlation surface could be constructed in different ways. This ob-
servation is supported by the unrestricted construction of correlation surfaces. The method
presented in the previous chapter did not focus on the number of graph-nodes (for the
graph-representation of a TQC circuit) or on the number of variables (for the Boolean rep-
resentation).
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5.2 TQC CIRCUIT IDENTITIES

The TQC computational paradigm was introduced as a model of computing in an error-
corrected manner, where the cluster state is used as a computational resource, which is ex-
pected to be efficiently used. As a result, circuit identities that reduced the required dimen-
sions of the cluster state were investigated in the literature. The identities allowed the trans-
formation of the geometric descriptions without affecting the implemented computation.
The initial identities were introduced by Raussendorf in* %7 and had been the only ones
known until the bridging-rule (see Section 4.2) was enunciated. None of these identities
were proven in a compact formal manner. The Raussendorf identities were mentioned as
being correct after listing all the correlation surfaces supported by the geometries supposed
to be equivalent, while the proof of the bridging-rule was textually presented.

This section uses the B-notation, its graph representation and the geometric descriptions
to present proofs of circuit identities in a compact way. A constructive approach is em-
ployed, by starting from basic identities which gradually serve to illustrate more complex
ones. In order to reduce the length of some of the proofs at certain times, only the geometric
description will be referred to.

5.2.1 THE NO-BRAID

The first circuit identity, the no-braid illustrated in Figure s.5a, is similar to an axiom, and
showing its correctness is not possible through the B-notation. However, this identity can
be understood as a practical example for removing variables and clauses.

Some of the B-notation properties were deduced for arbitrary types of variables that ap-
peared in the B-clauses, and for those properties no assumptions were made about how
many times a variable appeared in a circuit’s Boolean expression. The target of the circuit
identity is to show that there are situations when the simplification of geometries is done
by discarding trivial braids. A pattern for recognising such braids is the following: if a tube-
variable appears in a single B-clause, locally the geometry is similar to the one depicted in
Figure 5.5a where the tube x is involved in two braids on the same surface. The correspond-
ing clauses can be removed.

The proof proceeds without recursing to the introduction of variables, but in order to
show that the corresponding B(S, 4, x) can be removed, the definition of surface parities (see
Definition 2 and Proposition 3) are necessary.

Let P(x) C TQCCDbe the subset of cluster qubits involved in the parity par(x). But
P(x) is also a subset of P(S), thuslet P(S') = P(S) \ P(x) resulting in par(S') = par(Sx).
Furthermore, P(x) = P(a) N P(S), thus P(S) U P(a) = P(S') U P(a) results in par(Sa) =
par(S'a). The reason for introducing §' is to decouple the definition of sheet S from from
the tubes 2 and x. The sheet S is a deformation of sheet S by the tube x (see Section 4.2), and
it follows that par(—Sax) = par(ax) and par(—S—a—x) = par(—a—x). As mentioned in
Section 4.2 by Definition 14, the equality of the parities leads to the equivalence of surfaces,
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Figure 5.5: a) The no-braid circuit identity can be redrawn as a single tube that intersects a ring-sheet, and this construc-
tion can be repeated; b) The double-braiding identity, where the tube x can redrawn behind the green defect, and it does
not affect the existing braiding relations.

and, as a result:

B(S,x,a) = (SANaA—-x)V(SA—aAx)V(=2SA—aA—-x)V(-SAaAx)
(SANa)V (S AN=a)V(maN—x)V(aAx)
=8V (a4 x) (5.10)

The logical disjunction V from Equation 5.1 indicates that the existence of sheet §' is in-
dependent of the two tubes 2 and x. This statement is equivalent to the braid being trivial.
Although a defect interacts with a sheet, the correlation surfaces at the braiding-point, due
to their equivalence, are constructed as if the braid did not exist.

The logical equivalence 2 <+ & shows in the no-braid scenario the equivalence between
the expressions B(S, 4, x) B(S, b, x) and B(S, ab, x). The last expression corresponds to the
geometric description from the middle of Figure s.5a. As no-braids are trivial circuit con-
structions, it is possible to introduce an arbitrary number of no-braids into a geometric de-
scription without changing the performed computation, and a potential construction is
presented on the right side of Figure s.5a.

5.2.2 [DOUBLE-BRAIDING

One of the first circuit identities presented in®°7 (see Figure 5.5b) is the double mon-

odromy rule, which states that a defect braided twice around an opposite-type defect is
equivalent to the 7o-braid case. Each braid represents a CNOT between the qubits cand ¢,
and by using the quantum circuit formalism, this is easily proven by showing that CNOT(c, r)
CNOT(c¢,t) = I® I(CNOT = CNOT'). However, the identity will be proven using the
B-notation.
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Figure 5.6: Introducing double braids starts with the introduction of no-braids, and continues with the applicaiton of the
operation from Figure 5.1b.

Itis possible to draw the initial geometry similarly to the no-braid from Figure s.5a after
using the property from Figure 5.1b and the double-braiding expression is

E, = B(S,a,x)B(S,x,b) = B(S,x,4)B(S, x, b) (similar to Equation s.4)

The expression E, implies B(4, b,0), meaning that 2 <+ b, and after replacing ab = yin
Equation 5.4, the final expression, E, = B(S, x, y), has an identical form to Equation s.11.
The tube-variable x is not used in any other braid-expressions, and, as a result, the initial two
braids can be disregarded.

Double braids can be removed from the geometry, but these can also be introduced using
the B-notation. For this example, the tube 2z will have to be double-braided with the sheet S,
such that S will be involved in two B-clauses. For this, assume that 4 is defined between the
sheets Pand Q such that the local canonical expression is B(P, ®, 2) B(Q, 4, ®) (e is used for
variables that are not of interest during this example). The supplemental variables x and &
are introduced using the no-braid relation, and the variable equivalence between 2 and & is
used in order to construct the final geometry. The derivation of the geometric description
accompanying the Boolean expressions is presented in Figure s.6.

B(P,e,4)B(Q,a,8) — B(P,,a)B(Q,a,)B(T,a,x)(Figures.6b)
— B(P,e,4)B(Q,a,0)B(T,a,x)B(T,x,b) (Figure 5.6¢)
= B(P,e,4)B(Q,a,)B(T,a,x)B(T,x,b)B(a, b,0) (Figure 5.6d)
B(P,e,4)B(Q,b,®)B(T,a,x)B(T, x, b) (Figure s.6¢)

5.2.3 RING ROTATION

In order to show the no-braid relation, the Boolean formalism had to be supplemented with
the concept of the surface parities. The proof of circuit identities uses another TQC specific
behaviour: the construction of tube pairs in the presence of sheets. The outcome wil be
that, as long as a sheet is involved in only two braids and the tubes corresponding to the ring
are not involved in other braiding relations, the ring can be rotated (see Figure s5.7a).

The key idea is to show that the sheet acts like an intermediary between the tubes and has
a transitive role (sheet transitivity). For the left-hand circuit, E; is the canonical representa-

tion of the two braids, while the rotated ring generates EZ, and both expressions imply the

152



a  _© e'eee

A

b @b @ ©
(a) (b)

Figure 5.7: a) The ring rotation circuit identity; b) The graph representation of the rule.

Figure 5.8: a) The rotate ring circuit identity; b) The two rings circuit identity.

same relation between the tube-variables. The rotated ring introduces two supplemental
braids in the dual space (expression £3), but the affected sheets (P, Q) are logically equiva-
lent.

E! = B(S1,4,b) NB(S1,c,d) — B(a,b,c® d)
E2 = B(Sy,4,¢) AB(Sy,b,d) — B(a,b,c® d)
E5 = B(P,r,t) ANB(Q,rt) = BPQ,rt) — (P Q)

In the previous expressions, the sheets S} and S are not logically or correlation equiv-
alent as they were previously described. From the tubes point of view the sheets result in
the same tube pairs being constructed. Figure 5.7b illustrates the ring rotation using the
graph-representation of the B-notation. The central graph-node S represents the function

a® b® ¢ @ d, while the same function is supported by the central node if the 3-cycles were
modified according to the rotated braiding-pattern.

5.2.4 T'WO RINGS

A further circuit identity involves the presence of two consecutive rings surrounding the
same pair of defects. There are two possibilities to show that only one of the rings is in fact
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non-trivial, while the other one can be removed. Applying the ring rotation identity on
both rings, the geometry from Figure 5.8a is redrawn similar to Figure 5.8b , and, after a sec-
ond rotation of the opposite type ring, the geometry will be identical to the right side in
Figure 5.8b. The proof will show that the sheet Q can be disregarded, thus decoupling the
ring from the geometry and highlighting the braids related to Q as trivial.

The B(Q, a, b)-relation is appended to the initial canonical expression E, that involves Q.
This is possible because of b is correlation equivalent to § (a6 = Q). Using Equation 5.4
it follows that £, <> B(SQ,4,b) and S <+ Q. The sheet @ is logically equivalent to S and
can be disregarded. A further implication of E, is that § <+ 7, which is consistent with the
rotation of a single ring. Q is absorbed by S, the associated ring disappears, and the geometry
(after applying a ring rotation again) will contain a single ring.

E, = B(S,a,0)B(Q,a,c)B(Q,b,d)B(T,c,d)B(Q,a,b)
= B(SQ.4,b)B (SQ,ﬂ ¢)B(SQ. b, d)B(T, ¢, d)

= B(SQﬂ b)B(T,c,d)(a <+ d)(b < )

—  B(SQ, ad, bc)B(T, ad, bc)

An equivalent approach to showing the identity is to start from the simplified assump-
tion that both S and T are involved in only one braid (for multiple braids the procedure is
the same). The geometry will resemble the one in Figure 5.3a. After using Equation 5.5 and
introducing the variable R to represent ST (R is the linear combination of the sheets S and
T, R = ST), the final form of the expression is shortened. Because =R <> (S > T), the
three B-clauses in the parantheses will indicate the no-braid situation, such that if one is in-
terested in a circuit that connects the tubes 2 and 4, then the final form of the expression will
be correct. The graph-representation of these equations is presented in Figure 5.2b, where
the 3-cycle at the top represents the new variable R.

E, = B(S,2,x)B(T,x,b) = B(S,4,x)B(T,x,b)B(S® T,a,b)
= B(R,a,b)(B(R,S,T)B(S,a,x)B(T,x,b)) — B(R,a,b)

5.2.s THE RAUSSENDORE-RING

This circuit identity **“°7 shows that a ring, representing a logical qubit measurement, can
be removed from the geometric description, as long as the ring is surrounding a single pair of
opposite-type-defects, and is not braided with other defects. Assuming that the ring is dual,
it will define a primal surface S, and a dual tube 7. The tube 7is not braided with any other
surfaces and it will not appear in the canonical expression of the dual space. Hence, only the
removal of the sheet S will have to be motivated.

The behaviour of the sheet has to mimic the two geometric caps appended for measuring
the pair of tubes in Figure 4.16a. The sheet is associated to a logical measurement, which im-
plies that either the tubes 4, c are connected to S (i.e. 2 <+ ¢) or the tubes b, d are connected
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Figure 5.9: The Raussendorf-ring rule. The horizontal segments at the end of the green defects imply that the logical
qubit is logically measured similarly to the measurement patternin Figure 4.16a.

(c) (d)

Figure 5.10: The circuit bridge identity: a) A sketch of the identity; b) For two separate rings that are braided with the

sheets Aj . ...A,and By . .. B, respectively, two separator sheets S and T are introduced along the bridge; c) The

B-notation graph before searching for a correlation surface construction; d) The construction of a valid tube 4 can
either stop in the separator S, or be connected with a ring of all the bj tubes, if none of the BJ- sheets are considered.

(i.e. & <> d). Inboth cases, B(S, 4, ¢)S(S, b, d)(a, ¢, 0) leads to (S, 0, 0). This is a situation
identical to the no-braid case.

Asaresult, having§ = false and » not considered, the initial ring from the geometric
description is removed (if the circuit specification considered it a logical measurement). The
conclusion is that, in general, single rings cannot be removed if their interpretation as circuit
elements is not known. The logical equivalence between tubes is enforced iff the rings are
always interpreted as logical measurements.

5.2.6 BRIDGING

The structure of closed defects arises in bridged-geometries (see Figure s.10a), and it was
mentioned in Section 4.3.1 that only a reduced set of cycles in the structure is required for
correlation surface construction. The relationships existing in bridged-geometries between
their tubes and sheets is formally introduced in this section.

For the beginning, let zwo completely unbraided (disjoint) closed geometric structures
exist in the geometric description of a TQC circuit. Each of the two geometries may be
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braided with another geometries of the circuit, and not even by transitivity are the disjoint
structures interacting. For a circuit containing ¢ geometric structures, let the birdging and
braiding interactions be signaled by the function inter : {1...n}* — {true, false},i,j < n.
Two interacting components 7,  are signaled by inter(r, t) = true; otherwise inter(r, t) =
false. The inter function is transitive inter(i, j) = inter(i, k)inter(k, ;). In an arbitrary geom-
etry, for two un-bridged un-braided components », : interact(r, t) = false.

From the computational point of view, the underlying cluster, where the geometries were
mapped, supports two separate computations (one by each geometric structure). For simpli-
fication purposes, each of the previous two geometries is considered a ring. After bridging
these two geometries, the result will be a bridged-geometry: inter(r, r) = true, where r = t
(bridging results in a single structure) and the circuit will consist of ¢ — 1 geometric struc-
tures.

The effect of bridging on the two independent sheets is investigated. Each of the two
rings supported a sheet, and the resulting bridged-geometry supports three individual sheets:
one for each ring, and a sheet as the linear combination of the other two. This is the exact
situation to when sheets were constructed at junctions (see Section 4.3.1). From the sheet-
perspective, the resulting computation still supports the previous two disjoint computa-
tions, but also a combined computation (a maybe unwanted effect). Accordingly, initially
there were two separate computations being executed, but, even though the bridged geom-
etry creates an impression of a single supported computation, the two computations are
actually performed, too.

The effect on the construction of tubes remains to be investigated. In order to ensure
that the two geometries are still disjoint, two separator sheets (S and 7') are introduced, as
in Figure s.1ob. The separators will ensure that, if the hypothetical tube « has to be con-
structed, then the separator § = true, and if b has to constructed, then 7" = rrue. Even it a
and & have to be constructed simultaneously (although the computations are disjoint); the
separator sheets will keep the computations disjoint (the tube x connecting the two sheets is
not of interest). This scenario is different from the two rings circuit identity: in that one the
tubes # and b were considered belonging to the same computation, and variable replacement
simplified the circuit.

The triviality of the separators is shown by placing them into no-braid scenarios. For the
geometries indiced by 7and ¢ let 4; denote the tubes constructed using 7, and 4; the tubes
from . The parity of a closed defect structure is always even, and, as a resul, all the tubes
associated with the given defect structure need to be connected. For example, for the -th
structure with 7 tubes 4;, the relation 4; <> 4,1 fori € [0, n) with a9 = true has to hold.
The E; and E, expressions express the relation between the tubes of the 7, #-geometries and
the complete set of sheets that are braided with these geometries. The Boolean expressions
represented as graphs will additionally contain the separator sheets S, 7'and the tube x be-
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Figure 5.11: The splitting rule takes a sheet and splits it into multiple sheets connected by tubes forming junctions.
tween the separators (see Figure s.10d).
n
m
E, = ié\[) B(Ai> ai, ﬂi+1)7 E = /\j:O B(Bj, bp bj+1)

Let Sa—x denote the construction that guards against 2 being wrongly connected to the
tubes from the second geometry, thus making sure that is possible to consider the compu-
tations separately. If =Sax is considered, the no-braid relation arises if x <+ by, and, asa
result, all the sheets will not be enabled: B;,_y <+ Bj, By = false. The direct result is that
the separator § is not needed. A similar approach shows that the separator 7"becomes trivial,
too.

5.2.7 SPLITTING

bz and its

The circuit identity resulting through bridging tube-variables was described in
inverse operation, unbridging, is a direct result of separating geometries. There exists the
possibility to splir closed geometric structures, where it is unknown if that structure was
previously bridged or intended for performing two or a single computation. Unbridging
assumes that bridging was performed in a previous step, whereas splitting does not require
this assumption.

In the following it will be shown how a geometric structure is split, as long as the result-
ing disjunct closed defect structures (e.g. 7, £) are still interacting with each other (in the ter-
minology of last section, inter(r,t) = true). If the interaction is not performed through
tubes (the geometries are not bridged), it can be achieved through braids. An example of
such a circuit identity is presented in Figure s.11.

Let the geometric description contain a single ring that is braided with 7 other sheets 4,
that could be enabled in any possible configuration. The target of the discussed circuit iden-
tity is to show that a ring can be split into two separate rings, which interact through an
independent junction. Without affecting the generality, let 7z = 3 (see expression £7). In
order to construct the junction, the variables x, S, T"are introduced, accompanied by their
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B-clauses:

Ey = B(Ay,a,b)B(A,a,c)B(As, b, c) (Figure s.11a)
E2 = ElB<S, b, X)B(T, C, x)B(AQ, S, T)

A correlation surface involving, for example, only the tube « could be required to be sup-
ported, and it is unsure if 2 may be allowed to be directly connected to x, and a separator
sheet Q will be introduced. The sheet Q ensures that the tube-surface 4 is still supported
by the new geometry. A no-braid situation appears, due to surface equivalence, Q = xST'
(par(xQST) is always even), where xST acts similar to the trivial tube from Figure s.sa. The
situation is eliminated by disabling the sheet Q. Hence, as Q = false and B(Q, 0, 0), it s
implied that (4, x, 0) and x = ST, thus E; is formed.

E; = E3B(Q,a,x) (Figure s.ub)

E4 = EgB(Q, 0, 0) = EgB(d, X, O)B<A0, a, Z?)B(Al, a, C)
Es = B(Ay,a,b)B(A,x,¢)B(S,a,b)B(T,x,c)B(As, S, T) (Figure s.11¢)

The result from Equation E5 can be interpreted as the way of constructing, for example,
the correlation surface ApaA, by using the transitivity of the sheet ST, where 4y = ST
represents the third sheet supported at the junction B(A4», S, T) (see Figure 5.3b. From the
perspective of x from £, whenever it is #7ue, the sheets S and T are either both enabled or
not at the same time, which leads to x <> —.4,.

AvaAd, = Aya(SxT) A (Equation Ey, Figure s.11b)
~ Apa(ST)xA, (Equation Es, Figure s.11c)

As a conclusion, the two bridged rings can be unbridged, and the initial sheet is thus split
into separate sheets. Nonetheless, the sheets are not computationally disjunct: the newly
introduced junction offers the required transitivity to construct all the previously supported
surfaces.

5.2.8 THE RAUSSENDORF-CAGE

The cage rule, named after its effect on the geometric description, was the central TQC cir-
cuit identity defined in*"“°7. The rule transforms a set of braids into a set of bridged-rings
around defects. Before presenting the proof of the identity, the example from Figure s.12 is
useful to sketch how equivalent circuits are constructed. The initial circuit contains tubes
that are extended outside the ring, in*"“*7 called legs. The circuit identity will be shown in
two parts: initially without the legs, and afterwards the legs will be connected to a single ge-
ometric structure. Without affecting the generality, the same geometric descriptions from
Figure s.12 is used: three braids on a sheet that are generated by a ring with legs.
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Figure 5.13: The decoupling of the legs from two tubes is illustrated using the geometric description. After inserting
two no-braids with the variables x, y, the geometry is rearranged such that the leg from z is moved to b, and then the
resulting pair of legs is unbridged by introducing the variable z.

The junction- and cage-construction part are shown using circuit-identities introduced
in the previous sections. Figure s.12 illustrates the steps of the proof using the geometric
description. The ring is split into multiple sub-rings that interact through junctions, each
resulting ring is rotated, and then the rings are bridged.

For the second part of the circuit identity, the legs will be moved around the ring. This
is possible by introducing supplemental tube-variables. Connecting the legs 2 and & is ex-
pressed using the B-notation, by introducing twice a no-braid situation: B(S, 4, x) B(S, x, y).
The equivalence 2 <+ yimplies that the geometric representation of the final expression
resembles the situation where the leg 2 has moved to &.

B(S,a,b) = B(S,a,b)B(S,a,x)B(S,x,y) (Figure 5.13b)
= B(S,a,b)B(S,a,x)(x,b,0)B(S,x, y) (Figure s.13c)
= B(S,4,b)B(S,b,y)B(S, x,y) (Figure s.13d)
= B(S,a,b)B(S, b, y) after removing the no-braid (Figure s.13¢)

Having moved all the legs onto a common one, e.g. b, the resulting geometric structure
can be separated from the ring, by introducing the variable z <+ & (see Figure s.13f). Un-
bridging is enabled for the new defect (yz) consists of tube-variables equivalent to the initial
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tubes 4, b with legs. The procedure presented in Figure .13 performs the decoupling of the
legs zand y from the initial tubes z and &.

5.2.9 CONCLUSION

The existing TQC circuit identities could be proven using the B-notation. The properties of
the notation were used to reformulate the transitive relations existing between the clauses of
the Boolean expressions, and this approach was similar to the transitive reduction of graphs.
The initial circuit identities existing in the TQC literature have not been derived in a
constructive manner, and the previous attempts at showing their correctness have been
based on exhaustive enumerations of the supporting correlation surfaces. Using the B-
notation, some simple identities were used to construct more complex ones, and a proof
of the Raussendorf-cage rule was offered. In the process of illustrating the identities a new
circuit identity was discovered, namely the splitting of surfaces. It is not known if splitting,
bridging and the Raussendorf identity are the only possible circuit identities, but for the
time being they represent the basis of the following TQC design algorithms.

5.3 SYNTHESIS OF TQC CIRCUITS

Circuit synthesis is the process of expressing a high-level description in form of a circuit that
consists of basic elements (logic gates). Automating this process by means of algorithms

is necessary in order to streamline the circuit design phase. In the context of TQC, circuit
synthesis refers to the automatic generation of geometric descriptions using the quantum
circuit formalism as an input. The work presented in this section was partialy described
in"PN"* and consists of investigations of TQC circuit synthesis.

Universal quantum computations are in general performed using a reduced and discrete
set of quantum gates, whose direct application is compatible with the underlying encoding.
The TQC computational model is defined using CNOT as the two-qubit entangling gate,
and single-qubit gates are applied via teleportations to a data qubit by utilising an ancilla
prepared in either the |4) or |¥) state. The geometric description abstracts qubits initialised
into these states as injection points, and these belong to one of the sets /O, of the graph-
representation (see Section 4.1.7).

The problem statement is different from the synthesis problem in the field of reversible
circuits (Boolean circuits consisting of CNOT gates and other bijective gates). Reversible
circuit synthesis " MHORPHMO4SMBGAJO6WD9 ¢akeg either a high-level description or a gatelist of
a circuit as input, and calculates an (optimised) gatelist with an equivalent functionality. In
contrast, the presented algorithms generate a geometrical description, and no agressive op-

PFi3,FDi12

timisations of the geometry are performed, although such operations could improve

the physical hardware requirements necessary for TQC.
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Figure 5.14: Equivalent representations of a CNOT in TQC.

5.31 THE CNOT GaTE IN TQC

CNOT gates are built in the TQC model by braiding defects of opposite type, and by def-
inition the dual defect is the control and the primal defect is the target. However, it is pos-
sible to construct a CNOT between defects of the same type by using four braids and three
logical qubits (pairs of defects), and this mechanism is illustrated in Figure 4.6a. Synthe-
sising TQC circuits, where the CNOT is an operation between qubits of the same type, is
a more straightforward approach, and equivalent representations of the gate will be inves-
tigated. TQC circuits are large networks of CNOT gates applied on a large set of qubits
initialised into a discrete set of quantum states (see Section 4.1.9). As a consequence, the
realisation of CNOTs is a key aspect during the synthesis.

There are four equivalent geometrical descriptions of the CNOT gate. By using the
Raussendorf-cage circuit identity, the initial description (Figure 4.6a) can be transformed
into the second one (see Figure s.14a). The third representation is illustrated in Figure s.15.
The validity of the fourth representation, not completely demonstrated in """, is formally
proven in this section using the properties of the B-notation from Section s.1. This is shown
by starting from the braid-CNOT, where the dual ring is split (a junction is created), and the
two resulting dual rings are rotated.

There are three possible combinations of how the two dual rings encircle the defect pairs
joined at the junction (see Figures s.14b,c,d). The configurations are equivalent if imple-
menting a CNOT, and, if any configuration of the three is bridged, the result will be the
cage-CNOT. However, for the proof, the two rings will not be joined into a cage.

The validity of the braid CNOT was already shown in Section 4.1.6. In the following, it
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is shown that a CNOT can also be constructed using a junction and a single ring. In Fig-
ure 5.14b, the upper pair of defects represents the control qubit, whereas the lower pair the
target qubit. This is expressed by the B-notation:

B(S, 2,2)B(S, b, x)B(T, c,2) B(T, d, x)

The number of rings will be reduced after investigating the correlations supported by
the geometry. An implementation of the CNOT stabiliser table requires constructing the
X, I, — X.X,and I.X, — IX, correlation surfaces. Surfaces associated to the entries
ZJd, — ZJ1,1.Z, — Z.Zareadirect result of sheet constructions at junction (sheets
represent Z-correlations in the primal space).

The correlation transfer from both tubes associated to qubit defects has to be assured (see
Proposition 4), and the X/ — XX surface construction (tubes represent X-correlations in
the primal space) requires that (a® &)(c® d)(2® ). The reformulated canonical expression

is:
BS®T,adc,0)BS®T,b®d,0)B(S,a,2)B(T,d,x)

The relation (2 ® ¢) <> (S @ T) includes a contradiction of the 2 <+ crelation that
was conditioned on the construction of the tubes: therefore (2 <+ ¢) <+ (S <> T). This
result indicates that in order to construct X7 — XX, the sheets S and T have to be logically
equivalent (either both are enabled, or both are disabled). This behaviour is consistent with
the valid surfaces constructed after visually inspecting the geometry: azc and bSz7T4d.

The construction of X — X is similar, as it is conditioned by (x & y)(z ® y) = y & xz.
The B(a® b, x®z,0) will result to 2 <+ b because of the xz condition, and B(c® d, x B z,0)
will result to ¢ <+ d; thus B(S, ab, xz) B(T, cd, xz) results in B(S & T, ab & cd,0) = B(S &
7,0,0) = S <+ T. Once more, the logical equivalence between the sheets is consistent with
the surface constructions: y and xS7%.

The S <+ T'relation indicates that the two rings can be reduced to a single one placed
according to the geometry of the ring-CNOT. That particular ring is the linear combina-
tion of the previous two, and for implementing the CNOT gate in TQC no other relations
between rings surrounding the junction are required.

The geometric properties of the ring-CNOT recommend it for being used in the TQC
circuit synthesis method presented in this section. The procedure is applicable to other
CNOT versions with minimal modifications.

5.3.2 SYNTHESIS ALGORITHMS

The synthesis of TQC circuits will be automated, and an important criteria when evaluating
the output is the area of the synthesised field. The two algorithms presented and evaluated
in this section receive the set of gates G as input, and output a field of CNOTs. The algo-
rithms were designed starting from the assumption that the geometrical description of the
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Figure 5.15: Compact topological representations of the identity gates and of the CNOT. Each encoded qubit is a pair of
defects which always maintain a fixed separation from all other defects (except at junction points). This maintains the
error correction strength of the code. The defect ring that encircles the CNOT is implicit in the 2D representation.

output is planar and will be consumed from the left to the right by the TQC hardware. The
first gate will be the left-most in the field, which is generated on a per-gate basis. The com-
putational complexity of the algorithms is linear in the number of gates.

THE r1ELD oF CNOTs

The algorithms use eight primitives (see Figure s.15) to implement the CNOT and identity
gates. Both the 3D realisation and the two-dimensional representation of the primitives

are shown in the figure. The six primitives from Figure s.15a,b perform the identity oper-
ation on one qubit, and the primitive in Figure s.15¢ keeps two qubits unchanged (repre-
sented by horizontal and vertical pairs of defects). Although the two pairs of defects appear
to touch each other in the two-dimensional representation, in 3D these pass underneath
each other. From a 3D perspective, the CNOT (Figure s.15d) has a discontinuous qubit rep-
resented as the target which is physically connected to the control. In two dimensions, the
control qubit is vertical and the target qubit is horizontal. The ring that encircles the junc-
tion within the CNOT is implicit within the 2D representation.

There is a direct mapping from the two-dimensional representation to a 3D geometrical
description, and assuming that for a computation the gates are placed on the same layer,
then the compact two-dimensional representation is adequate for representing arbitrary
circuits.

In the following multi-targer CNOTs are used, and such gates defined as the gate (¢, 7o, . . .

tk)

having control ¢ and targeting the qubits #, . . ., 7 can be decomposed into a series of CNOTs:

(¢,19) ... (c, t). The field of CNOTs is a matrix-like regular structure having the following
properties:

e the target qubits of each gate are located on the rows;
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Figure 5.16: A circuit and two possibilities to construct the corresponding fields

e the control qubit of each gate is located on the columns.

In 3D the planes supporting the qubits are parallel (see Figure 5.15) and this geometrical
property motivates the qubit arrangement.

The area of the field depends on the width (number of columns) and the height (number
of rows), which in turn are influenced by characteristics of the quantum computation, such
as number of gate and qubits. Throughout the following sections a distinction between
cluster (a 3D structure with fixed depth) and two-dimensional field will be made. The clus-
ter volume is linearly related to the field area, and for analysing the efficiency of the synthesis
the field area will be referred.

Two alternative two-dimensional fields implementing the 4-qubit, 3-CNOT circuit from
Figure 5.16a are shown in Figure 5.16b and s5.16¢. Note that ¢7; is a multi-target CNOT (it
has two targets) and is represented by two single-target CNOT5. The ¢y operation is imple-
mented on the second column of the field: qubit g, is transformed into a control for qubit
g, Finally, cn3 is implemented on the third column. Positions not occupied by CNOTs im-
plement identities. The areais 3 x 3 = 9. The field in Figure 5.16c implements the same
computation in a less efficient way using 12 identity gates, and has an area of 8 X 6 = 48.

The equivalent volume (see Section 4.1.7) of the ring-CNOT is 16. Hence, each two-
dimensional cell in the CNOT field (the intersection of a row and a column) requires in 3D
the volume of a ring-CNOT. For example the field of area 48 occupies an equivalent volume
of 48 x 16.

In the following algorithm the control and targets functions are used for inferring the
qubits that act as controls or targets of the CNOT synthesised at a given timestep.

UNBOUNDED SYNTHESIS

Algorithm 7 constructs the field on a per-gate basis, and inserts qubits involved in the com-
putation as they are needed. If a target qubit does not exist in the circuit created so far, it
will be inserted on a row, and if a control qubit is needed, it will be inserted directly on a col-
umn. Also, if for a given gate that is currently synthesised, an existing target qubit is used as
a control, then the qubit will be moved to the next free column. An existing control qubit
needed as a target will be first moved to the next free row, and then to the next free column.
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Algorithm 7 Unbounded: Moving the control downwards

r: Inidalise an empty field

2: Start with no qubits inserted in the field

3: forall CNOT ¢z € Gdo

forall g € rargets(cn) U {control(cn)} do

4:
s: if 4 does not exist in the field then

6 insert a row/column for g4

7 else

8 move qubit g to the next free row
9 end if

10:  end for

. moveall g € targers(cn) U {control(cn)} to the next free column

r:  move control(cn) to the next free row using it as control for targers(cn)
13: end for

Algorithm 8 Bounded: Weaving of qubits

. Compute |Q| from G

Initialise a field with | Q| + 2 rows

Place each qubit g, € Q on therow i + 1

forall CNOT ¢z € Gdo
Select the target qubit control(cn)
Transform control(cn) into a control qubit
Continue control(cn) while using it as a control for zargets(cn): a) downwards to row
|Q| + 1;b) to the right one column; ¢) upwards to row 0; d) to the right one column;
e) downwards to row control(cn) + 1.

8:  Transform control(cn) back into a target qubit

9: end for

L}

N v Row

The fields generated by Algorithm 7 typically have the main diagonal occupied, leading
to a suboptimal area utilisation. With regard to the field area, the worst-case scenario oc-
curs when the control of each gate was the control of the previous gate, and the number of
targets equals the maximum number of qubits: A} = | G|* x (9] — 1) x |9

BOUNDED SYNTHESIS

A second algorithm bounds the number of rows, and leads to a more efficient and pre-
dictable placement of gates. The set of gates G is analysed before the synthesis and the num-
ber of qubits | Q| involved in the quantum computation is extracted.

When control(cn) is transformed into a control and back into a target, the control qubit
is moved from a row to a column and back, and, as a result, the output of Algorithm 8 re-
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Figure 5.17: A sample circuit used for the bounded and the unbounded synthesis.

sembles a fabric of qubits. The transformations are equivalent to the movements of a qubit
inside a TQC cluster (see Figure 5.15), and all the possible targets are affected due to the con-
trol qubit movement pattern.

The algorithm requires two bzxffer rows (the highest and the lowest) to allow the control
qubit to change its direction from upwards to downwards, and/or the other way around.
While a complete movement of the control qubit occxpies three columns of the field, the
worst-case area of the output field will be 45 = 3 x (|Q| + 2) x |G|. However, the area of
the output field is improved by incorporating additional heuristics into the algorithm. For
example, information extracted from the set of targeted qubits could be used for the control
qubit movement. If, for a given CNOT ¢, all the target qubits are placed above the control
qubit (V¢ € G, control(cn) > 1), then the control will be only moved upwards in the field.
The downwards movement is triggered when all the targets are placed below the control
(Vz € G, control(cn) < ¢).

5.3.3 RESULTS

The presented algorithms were implemented, and using Figure 5.18 and Figure 5.19 the typi-
cal output fields generated by each algorithm can be visually compared. The quantum com-
putation for which the fields were synthesised is depicted in Figure s.17: it is applied on 7
qubits, and consists of 1o CNOTs targeting maximum 4 qubits.

For the evaluation of the algorithms, randomly generated circuits consisting entirely of
CNOTs were used. The simulation results are presented in Table s.1. The simulations were
parametrised for 10, 100, 1,000 and 10,000 gates operating on 10, 100 and 1,000 qubits. The
column AT contains the value of the maximum size of rargers(cn) per randomly gener-
ated CNOT, and the columns Columns and Rows contain the average number of rows and
columns obtained by the algorithms after executing them 100 times for each combination
of simulation parameters. Algorithm 8 always generates a field with |G| + 2 rows, therefore
column Rows has been omitted from the table. It can be observed that the 44T parameter
is directly influencing the average number of columns and rows obtained through Algo-
rithm 7, but the results of Algorithm 8 are not as strongly affected.

The Red column contains the reduction obtained when utilising the bounded synthesis
instead of the unbounded algorithms. The unbounded algorithm can also perform better

166



|a}) 14})

4

g5
)
|d
)
A

3
1

~4 1

Iy

|ag)

la9)
|a3)

__Lli lag)

|ag) |a3)

Figure 5.18: Output field of the unbounded synthesis.

Figure 5.19: Output field of the bounded synthesis.

than the bounded algorithm (an example is shown in Figs. 5.16b and 5.16¢). The simulation
results contain such a situation: circuits with 100 qubits and 10 CNOTs having a maximum
of 20 targets (see the highlighted entry in Table s.1). In general, unbounded synthesis tends
to perform better for circuits with less gates and less targets per CNOT.

Overall, the average area of the fields synthesised by the unbounded algorithm is larger
compared to the average field area obtained with the bounded synthesis. This effect is par-
ticularly significant for large circuits like the ones consisting of 10, 000 CNOTs.

The layout of the output fields is used as a criteria for comparing the algorithms. There
may be situations when a synthesised computation will be repeatedly used as a subroutine
of a larger computation. All input and output qubits are placed on the same row, and the
bounded algorithm will deliver better results, thus enabling a more convenient way of con-
necting subroutines.

There are situations, too, when the unbounded algorithm performs better then the bounded:
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for small circuits with a reduced maximum number of targets per CNOT. An example is of-
fered in Figure 5.16. Nevertheless, the deterministic functionality of the algorithms is an
advantage, and the area of the output field can be computed beforehand.

5.3.4 CONCLUSION

A first automatic synthesis method of TQC circuits was proposed and its implementation
was evaluated. Two deterministic synthesis algorithms were presented, and their perfor-
mance was analysed by comparing the areas of the output circuits. Both algorithms used

a novel geometric reprentation of the topological CNOT gate, and the correctness of the
gate has been proven using the original formalism developed in the previous sections of this
work.

The synthesis methods were based on the observation that TQC circuits consist of three
parts: an initialisation part where both circuit inputs and injection points are set up, a sec-
ond part consisting of a CNOT gate network, and a part where all the logical qubits are
measured. The representation allowed the abstraction of the CNOT subcircuit using a two-
dimensional field of topological CNOT gate representations. Future work will focus on
investigating the feasibility of stacking the two-dimensional field in 3D.

5.4 VALIDATION OF TQC CIrRCcUITS

The primary goal of TQC circuit synthesis was to enable an automated procedure that not
only performs the required translation from a quantum circuit to a TQC circuit, but also
optimises the volume of these structures to ultimately reduce the physical resources needed
by the hardware. An example of an optimised circuit was presented in Figures 4.8a and
4.8b.

Validation of synthesised circuits is a necessity, because the synthesis software may be
buggy or use incorrect compaction rules. Optimised circuits often bare little resemblance
to their original geometric description, and need to be validated, too. Moreover, manually
performed circuit compaction destroys any validation results and a new validation round is
needed.

An automated validation method is required, as large topological circuits are complex ob-
jects, where the gatelist is difficult to be extracted and unfeasible to verify manually. In this
section arbitrary geometric descriptions representing TQC circuits are considered for valida-
tion. The structures are not presumed to be synthesised by the algorithm from Section s.3.1
and, hence, the geometries are not only 2D arrangements of CNOT gates. The methods
described in this section were partialy presented by the author in "PN"4®,

TQC circuits are specified using their geometric description and the stabiliser table that
should be supported. The geometric description references the set O (see Section 4.1.9),
and the injection points set /. The validation of a TQC circuit will start from a circuit spec-

ification QCS = {S8T, 1O, I], M}, where ST is a stabiliser table and A7 is the ordered set of
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logical qubit measurements. Given an implementation QC, which is also mapped to a tu-
ple {ST', 10, I], M'}, the validation procedure establishes the circuit equivalence of both
descriptions (QC = QCS).

Logical qubits can contain injection points anywhere along the geometric structure, and
the target of validation is to check that, before the injection point will be measured, ev-
ery logical qubit is correctly stabilised. Otherwise the result of the rotated measurement
will be faulty, and the whole quantum computation is compromised. Assuming that the
number of injection points and their order of measurement is not changed, as it will di-
rectly affect the computation being performed, this question is reduced to the equivalence
checking of the stabiliser circuit parts (ST = ST’), which has been previously investigated
i WGMDo9,AGo4

However, checking the equivalence of a TQC geometric description against the specifica-
tion QCS is more challenging because the geometrical description of a TQC circuit would
have to be translated to a stabiliser table. However, no such method is currently known. In
the following, different validation approaches are outlined, which check if a given stabiliser
table (specification) is supported by a circuit’s geometry (implementation).

There are at least two possible validation scenarios. The symbolic validation is a method
where each stabiliser entry from ST is constructed using the Boolean-expression-based ap-
proach (see Section 4.5.7). The cross-layer validation is a simulation based procedure of a
cluster where the geometric description of the TQC circuit was mapped. The cross-layer
scenario necessitates the construction of correlation surfaces, which also yields information
used for inspecting the measurement-correlations existing between the correlation surface

qubits.

5-4.1 SYMBOLIC VALIDATION

The geometry of a TQC circuit is the support of various TQC computations. Recognising
a computation based on the geometry requires supplemental information, like the 7O set
of inputs, or the location of the injection points. For example, the geometry of the braid-
CNOT (Figure 4.6a) is the same to the one used to encode using the repetition code. How-
ever, the difference between the braid-CNOT and the encoding circuit is the set of inputs
and outputs. The CNOT has two inputs and two outputs, while the encoder assumes three
inputs (the unencoded qubit and two ancillae) and three outputs (the encoded qubit).

For validation, the first criteria is to check that the geometry contains an equivalent set of
injection points as specified by QCS. The second validation step is to check the construction
of correlation surfaces representing the stabiliser transformations as enumerated in 7. A
geometry is valid according to ST'if it supports all the entries from the stabiliser table. The
symbolic validation method (Algorithm 9) is the algorithmic description of the approach
sketched previously.

The algorithm receives a geometric description and a specification as inputs, and tries
to construct a valid correlation surface for each stabiliser entry from S7. The validation is
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Algorithm 9 Symbolic validation

Require: Circuit 7QC as a geometrical description and the specification QCS
r for all Stabiliser s from ST of QCS do
Compute for s the correlation surface CORS

4

32 if s = () then

4 return 7QCis NOT valid according to QCS
5 end if

6: end for

7: return 7QCis valid according to QCS

successful (Line 7) if all the entries were constructed, otherwise the geometry is not valid
(Line 4).

5-4.2 CROSS-LAYER VALIDATION

The equivalence of a geometric description against a specification QCS is checked by map-
ping the logical qubits to a cluster state and simulating the cluster. This a two step pro-
cedure. First, the geometrical description is mapped to an unmeasured cluster (see Sec-

tion 4.5). In the second step, for every entry of the stabiliser table S7 from the specification,
the topological computation in the cluster is simulated using a (stabiliser) quantum circuit
simulator. Note that the simulated geometry is largely given by the shapes of the logical
qubits which are independent from the processed ST entry. The ST entries determine only
the initialisation and measurement parts of the logical qubits (see Figure 4.16a).

The cross-validation, expressed as Algorithm 10, starts by mapping the geometry to a clus-
ter (Lines 1, 2). The set 7QCC's specified as a finite set of associated coordinates of physical
qubits, that are marked for measurement in the X- or Z-basis and initialisation into |+),
| A) or |Y). The 3D-coordinates correspond to the lattice geometry presented in Figure 4.4.

TQCC = {(x,9,2)| x,7,z € N, meas(x,y,z) € {X, Z},init(x, y,z) € STATES}
STATES = {|+),]4),|1)}

The mapping of defect geometries to the 3D lattice takes an initial cluster 7QCC, where
no measurements were marked, and updates it: Z-basis measurements for defect-internal
physical qubits, and X-basis measurements for all others. Injection points (physical qubits
initialised into | A4) or | Y)) are measured in the X-basis.

In the absence of errors (which is assumed during the validation of circuit functionality)'
the topology of the 3D-cluster guarantees that the measurement parity of all the unit-cell
face-qubits is even (see Section 4.2). The existence of the logical stabiliser support is proven

TThe cluster measurement outputs of this method can be used to investigate the effécts of physical qubit
errors and their effect on the correlation surfaces.
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by computing the parity of a correlation surface, as even parity indicates that the stabiliser is
correctly constructed using physical-cluster qubits.

During the validation injection points do not need to be explicitly considered, and with-
out affecting the correctness of the method, these are initialised into the |+) state. By re-
interpreting the injection points, the 7QCC set is transformed into the 7QC C" set from
Line 2:

TQCCt = {(x,7,2)|x, 3,z € N, meas(x, y,2) € {X, Z}, init(x, y,2) € {|+)}}

Similarly to classical circuits where input and output pins are used for the inputs and out-
puts of the circuit, P, C TQCCis a set of lattice coordinates of the physical qubits used for
initialising the logical qubits. The same applies for physical qubits used for logical measure-
ment. These are used to read the information from the TQC circuit; their coordinates are
contained in the set Py, C TQCC representing the output pins. The physical qubits from
both sets are marked for either X- or Z-basis measurement, in order to respect the defect ge-
ometries from Figure 4.16a (Line 3). Cluster injection points are elements of P,,,. Circuit
simulation is performed for each logical stabiliser specified in ST, and the P;, and P, sets
will be constructed accordingly. A mapped cluster supports a logical stabiliser if the correla-
tion surface that connects the corresponding input and output pins has even parity (Lines
19, 23).

In order to check the existence of all the logical stabilisers specified in ST, the validation
method checks each entry in the table sequentially (Lines 4 — 23), similarly to the valida-
tion by construction. Depending on the logical stabiliser to be checked, the injection point
coordinate will be marked in TQCC™ (Line 7) with either an X-basis measurement (if the
logical qubit should be stabilised by logical-X) or with a Z-measurement (if the logical qubit
should be stabilised by logical-Z).

The support of a logical stabiliser is checked twofold: first by construction and then by
simulations of the cluster. Each simulation involves multiple steps. The first step is to com-
pute the correlation surface of the investigated stabiliser using the approach described in
Section 4.5 (Line 8). A correlation surface connects the input to the output pins only for
the logical qubits referenced by the stabiliser. In the second step all the physical qubits are
measured according to their information from 7QC C". In athird step, the existence of the
stabiliser is determined based on the parity of the correlation surface (Lines 10 — 18). The
error-correction is neglected, as it does not manifest itself in the validation of the specifica-
tion QC = {ST, IJ, M.

The measurements performed during the second step are done in an arbitrary order, and
a layered approach is adopted: one of the three dimensions of the cluster is defined to be
the temporal axis. In a cluster of size m x 7 X t, the memory requirements are reduced
by instead simulating a physical lattice of £ — 1 layer pairs with m X n x 2 qubits of the
cluster dynamically. Each layer pair (Line 13) consists of two cross-sections of the cluster (e.g.
Figure 4.1a). Layer 7 contains all physical qubits with #-coordinate equal to i.
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Algorithm 10 Cross-level Validation

Require: Circuit 7QC as a geometrical description and the specification QCS
. Compute 7QCC starting from the geometry of 7QC
2: Compute 7QCC* from TQCC by marking injection points as |+) initialised

32 Compute PP, C TQC’C’+
4: for all stabiliser s from ST of QCS do

5:

SIMTQC « TQCC*

6:  for all Logical qubit ¢ stabilised by s do
7 Mark in SIMTQC at coord € P, PL,, the geometric patterns for initialisation and
measurement of ¢ according to s
8: Compute for s the correlation surface CORS
9: end for
100 parity < 1
u:  Construct layer [y of SIMTQC
r:  forall Layer /; of SIMTQC, i > 0 do
13: Construct /; and Entangle with /;_;
14: for all Cluster qubits cgin /;_1, cqg € CORS do
150 ev <— measure ¢g in X-basis
16: parity = parity X ev
17: end for
18:  end for
19: ifpm"ity = —1 then
20! return 7QCis NOT valid according to QCS
ar: endif
22: end for

23:

return 7QC s valid according to QCS

In the i-th simulationrun (i = 0,...,7# — 1),layersiand i + 1 are considered. The

first simulation run considers only qubits from layers 1 and 2 with all connections between
these layers. However, X and Z measurements are only performed on qubits with the #-
coordinate 1. In the second simulation run, the qubits from the second layer, which retain
their states from the first simulation run, are entangled with (hitherto unconsidered) qubits
from layer 3 (initialised to |+)) according to the unit-cell structure that is used throughout
the complete 72 X 7 X tcluster. Only second-layer qubits are measured, which influences
the entangled third-layer qubits. This process is continued until the qubits of the final layer

t are measured.
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Figure 5.20: Simulation times after choosing different temporal axes.

5.4.3 REsSULTS

The practicality of the validation procedures is dictated by the size of the stabiliser table S7°
and the construction of each correlation surface. Checking a complete stabiliser truth table
ST will require between 1 and |S7] surfaces to be constructed.

CROSS-LAYER VALIDATION

To evaluate the performance and the scalability of the cross-layer validation procedure the
quantum circuit simulator CHP*%°* was integrated for the cluster simulation step. TQC
circuits consisting of logical CNOT gates acting on logical qubits were considered. Their
sizes are expressed as an equivalent volume™", a quantity that measures the volume of a
topological structure compared to a set of independent regularly stacked logical CNOT
gates. The results indicate that TQC circuits are feasible to simulate, and thus to validate.
Average simulation times for one pair of layers in such circuits are reported in Figure s.21.
For example, the number of physical qubits required to be simultaneously simulated for the
circuit having the equivalent volume of three CNOT gates was 1,462, and this number was
84,052 for the equivalent volume of 243 CNOT gates. The results suggest that even large
and complex topological quantum circuits can be cross-validated in reasonable time.

The selection of one of the three axes in the cluster as the temporal axis is arbitrary, which
provides an additional degree of freedom for the validation. The complete computation is
confined to a 3D volume where the three edges may have different lengths. Selecting a short
edge as the temporal axis will result in relatively small number of relatively large simula-
tion instances, while selecting a long edge will require more simulations with less qubits per
simulation. Note that the simulated functionality is identical for both options. Figure s.20
compares the run times for these possibilities. The simulation is orders of magnitude faster
when the longest edge is selected, and this is not surprising as the measurement of stabilisers
is of quadratic complexity in the number of qubits. Considering less qubits per simulation
instance outweighs the higher number of simulation runs.
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Figure 5.21: Average simulation times for pairs of layers.

SYMBOLIC VALIDATION

This validation method was prototypically implemented using Java and sat4j™*" ™ as a

backend SAT-solver, and for visualisation purposes jreality was chosen WGB oo A SAT solver
was preferred (although the problem is XORSAT) because some solvers include optimised
mechanisms for reducing the CNF formula and for solving XORSAT. A further reason is
that the solvers allow extensions of the B-notation that transform the validation problem
into a pure SAT instance. The target of the simulations was to verify the correctness of the
approach and not its performance. The scalability and speed of validation were secondary as
sat4j is a Java implementation.

For example, the results of validating the Y-state distillation circuit are presented in Fig-
ure 5.22. The successful construction of each entry from the stabiliser Table 4.2 indicates the
correctness of the circuit (see Line 7 in Algorithm 9). Following the discussion from Sec-
tion 4.3.2 concluded in Proposition 4, there may be multiple valid surface constructions.
Therefore, the result figures contain, when possible, two equivalent correlation surfaces (e.g.
Figure 5.23).

In Figure s5.22 the yellow segments represent the primal defects, and the blue segments the
dual defects. The grey dots on the segments illustrate the injection points named {R, O, ¥
, G, B, V, I} together with the output point oxr. The thick green segments represent tubes
and the red rectangles sheets resulting after constructing a correlation surface. The text in
the parantheses after the name of the injection points (e.g. Y(S) or ox#(T) ) indicate thata
particular point should be included on a Tube or Sheet. For each entry in the stabiliser table
of the circuit the figure contains two possible constructions of the correlation surfaces, ex-
cept for the top right panel which represents the sheet containing the points {R, O, V, G}.

The failed validation of an incorrect circuit is signaled by the impossibility of construct-
ing at least one of the correlation surfaces from the stabiliser specification. For example, a
faulty ring-CNOT could have the dual ring missing and the circuit will be similar to the one
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from Figure 4.18. The correlation surface connecting the input target to the output target,
corresponding to the stabiliser transformation X — X, cannot be constructed, and the
circuit is not a valid CNOT (see Line 4 in Algorithm 9).

Figure out R O Y G B I V
Figures.23 X X X X
Figure 5.24 X X X X
Figure 5.25 X X X X
Figures26 Z Z Z Z
Figure 5.27 X X X X
Figure 5.28 Z Z 7 Z
Figure 5.29 Z Z 7 Z
Figure 5.30 Z 7 Z Z

Figure 5.22: The geometry and stabilizer table for the Y-state distillation circuit.

5.4.4 CONCLUSION

This section focused on both the simulation-based (cross-layer) and the symbolic verifica-
tion of TQC circuits. The validation procedures compared an instance of TQC circuit with
the circuit specification. The same observation from Section s.3.1 was used: an arbitrary
TQC circuit can be decomposed into fault-tolerant primitives where the resulting circuit
contains a layer of injection points, a large network of CNOT gates, and an adaptive mea-
surement layer. This observation led to the circuit specification to reference the stabiliser
table of the CNOT subcircuit. Moreover, due to the difficulty of translating a circuit’s geo-
metric description into a stabiliser circuit, the verification problem was mapped to the prob-
lem of constructing correlation surfaces.
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Table 5.1: Unbounded and Bounded Synthesis Results

Unbounded Synthesis

Bounded Synthesis

QI [GIMT Rows Cols  Area| Cols Area Red
10 0 2 18 13 2.7¢+02 7 1.9€+02| 1.42€+00
10 10 5 33 19 6.2e+02 18 2.1e4+02| 2.95¢+00
10 10 9 57 30 L.7¢+03 19 2.2e+02|7.73€+00
10 100 2 222, 160 3.6e+04| 159 1.9¢+03| 1.89e+01
10 100 5 381 238 9.0e+04 171 2.1e+03| 4.29¢€+01
10 100 9 589 341 2.0€+05| 179 2.2€+03| 9.09¢+0I
10 LOOO 2 2,292 1,645 3.8e+06| 1,587 1.9e+04|2.00e+02
10 L,0OO 3§ 3,832 2,413 9.3e+06| 1,710 2.1e+04| 4.43e+02
I0 LOOO 9 5,887 3,440 2.0e+07| 1,786 2.1e+04| 9.52€+02
10 10,000 2| 22,780 16,389 3.7e¢+08| 15,832 1.9e+05| 1.95€+03
10 10,000  § 38,512 24,254 9.3¢+08| 17,102 2.1e+05| 4.43e+03
10 10,000 9| 59,140 34,567 2.0e+09| 17,855 2.1e+05| 9.52€+03
100 I0 20 88 20 1.8e+03 20 2.0€+03| 9.00€-01I
100 10 50 234 77 1.8e+04 20 2.1e+03| 8.57€+00
100 10 99 473 194 9.2+04 20 2.1e+03| 4.38e+o01
I00  I00 20 L,IO4 561 6.2e+05| 188 2.0€+04| 3.10e+01
100 100 30 2,559 1,284 3.3e+06| 194 2.0e+04| 1.65e+02
100 I00 99 5,067 2,535 1.3e+07| 196 2.0e+04| 6.50e+02
100 L,00O 20 11,391 6,154 7.0e+07| 1,868 1.9¢+05| 3.68¢e+02
100 1,000 50| 26,425 13,666 3.6e+08| 1,930 1.9e+05| 1.89¢+03
100 1,000 99| 50,928 25,916 1.3e+09| 1,959 2.0e+05| 6.50€+03
100 10,000 20| 114,003 61,960 7.1e+09(18,676 1.9€+06/| 3.74¢+03
100 10,000 50| 264,204 137,056 3.6e+10|19,294 2.0e+06| 1.80e+04
100 10,000 99| 509,695 259,799 L3e+II| 19,577 2.0e+06|6.50e+04
1,000 10 200 806 88 7.1e+04 21 2.1e+04| 3.38e+00
1,000 10 500 2,183 629 1.4e+06 21 2.1e+04| 6.67¢e+01
1,000 10 999 4,541 1,778 8.1e+06 21 2.1e+04/| 3.86¢e+02
LLOOO  I00 200 9,781 4,450 4.4e+07| 198 2.0e+05| 2.20e+02
,OOO 100 00| 24,787 11,947 3.0e+08| 200 2.0e+05| 1.50e+03
LLOOO  I00 999 $§0,039 24,572 L.2€+09| 200 2.0e+05|6.00€+03
1,000 1,000 200| 100,963 50,491 §.Ie+09| 1,976 2.0e+06| 2.55¢+03
1,000 1,000 500| 249,009 124,959 3.1e+I0| 1,990 2.0e+06| 1.55¢+04
LLOOO 1,000 999 499,209 249,607 L3e+II| 1,994 2.0e+06|6.50e+04
1,000 10,000 200| 1,015,910  §12,465 §.2e+11|19,756 2.0e+07|2.60e+04
1,000 10,000 500| 2,514,665 1,261,836 3.2e+12|19,886 2.0e+07| 1.60e+05
1,000 10,000 999| 5,001,083 2,505,044 1.3€+13|19,936 2.0e+07| 6.50e+05
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Figure 5.23: The correlation surface X,,; Xy Xz X].

177



Figure 5.24: The correlation surface X Xy X3 X7~



Figure 5.25: The correlation surface Xo Xy X1 X}

179



Figure 5.26: The correlation surface Z,,;ZrZoZy.
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Figure 5.27: The correlation surface Xg Xp X; X
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Figure 5.28: The correlation surface ZpZyZgZp.
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Figure 5.29: The correlation surface ZrZyZgZ;.
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Figure 5.30: The correlation surface ZrZpZgZy.

This section showed that the complexity of the validation methods is linear in the size of
the stabiliser table, and the complexity of each correlation surface construction is polyno-
mial. Note that only the stabiliser part of the circuit is considered, and the procedures do
not imply that a quantum circuit is simulated in polynomial time, but that some of its prop-
erties are easily checked. Furthermore, the decomposition of a TQC circuit shows that there
is an exponential number of measurement configurations.

Future work will investigate the automatic translation of arbitrary geometric descriptions
into the quantum circuit formalism. The first steps towards this goal will focus on the auto-
matic extraction of circuit properties from geometric descriptions.

5.5 SUMMARY

The previous chapter introduced TQC and an extensive analysis of correlation surfaces al-
lowed the Boolean representation to be formulated. This chapter augmented those concepts
and introduced the B-notation to formalise the relationships between the elements of cor-
relation surfaces. Its properties were investigated and illustrated from both a Boolean and a
graph perspective, and this allowed the introduction of a systematic approach towards the
validation of circuit identities.

Some simple circuit identities used as the basis of more complex identities supported, for
the first time, a better formulation of inherent TQC circuit aspects. Existing circuit iden-
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tities were proven using the B-notation, and the splitting of sheets was also introduced for
the first time. This was subsequently employed to show that the Raussendorf cage circuit
identity is structurally equivalent to splitting and tube rotations.

The chapter contributed to the TQC state of the art by introducing TQC circuit syn-
thesis and formalising the validation procedure using correlation surfaces. The correctness
of the synthesis method was shown using the introduced formalism. The presented results
consist of simulation results and their visualisation, which allow an intuitive inspection.

Future work will concentrate on building an algebra of circuit identities to be used for
complex automatic compaction and verification. This will enable large scale integration of
TQC circuits and could illustrate the existence of practical quantum circuit design methods.
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Conclusion

RELIABLE QUANTUM CIRCUITS ARE BUILDING BLOCKS of scalable quantum computers.
The advent of quantum computing and the refinement of both quantum computing archi-
tectures and quantum error correcting codes motivated the investigation of novel automatic
design methods devised specifically for reliable circuits. The presented results aggregate the
findings of analysing quantum circuits from two perspectives: their probabilistic behaviour
and their topological properties.

The applied design flow is similar to the one of classical circuits, and the main difference
lies in the challenges posed by quantum circuits. Starting from circuit specification and end-
ing at implementation, the synthesis, optimisation, verification and validation steps can be
executed in a loop that feedbacks information from one step to a previous one. The target
of the complete process is to have circuits that are cost efficient and correct. Thus, the cen-
tral concept in the thesis’ methodology was the circuit specification, which was defined, for
the probabilistic approach, as a list of gates from an universal gate set, while for the topo-
logical approach the specification was similar to a truth table. The circuit specification was
the point of reference by which a circuit under test was considered correct or not. Faults ex-
isting in the circuits were either missing gates from the gatelist specifications or topological
operations that could have resulted in the truth table being negatively affected.

The first part of the thesis defined probabilistic circuits as a computational model where
inputs are associated to outputs by some probability. The probabilities are either equal
among all the outputs, as in the case of teleportation based fault-tolerant quantum circuit
implementations, or distributed according to some properties of the circuit’s state before
measurement. The later situation is the case for stochastic and generic quantum circuits.
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The similarity between stochastic and quantum circuits relies in the output probabilities be-
ing approximated by repeated executions of the same circuit. For the first time, this similar-
ity was used for formulating the simulation of quantum circuits using stochastic computing
and for introducing new testing and diagnosis methods of quantum circuits.

The approximate simulation of quantum circuits increased the applicability of stochastic
computing, and showed the practicality of the proof-of-principle mechanism. Compared to
classical circuits used for the simulation, it was possible to reduce the stochastic circuit’s gate
count by a constant factor. However, the gate count is dominated by the exponential over-
head originating from the high dimensionality of a quantum computation’s Hilbert space.
The results indicated that future work will focus on more compact state representations
that can be easily mapped to stochastic computing elements.

Quantum state and process tomography were replaced in this work by tomographic test-
ing and diagnosis of quantum circuits. Tomography attempts to reconstruct a quantum
state starting from the approximated output probabilities. The measurement of an un-
known quantum state determines the observable output, and quantum computations are
reversible until the outputs are read out. Due to the resemblences between a quantum cir-
cuit and a black box, tomography is the process of inferring the contents of the box. Once
more, the high dimensionality of the Hilbert space is the source of the exponential com-
putational complexity required by the tomographic approaches. The proposed validation
methods circumvent this issue after assuming that the quantum circuit is expressed from
a discrete set of quantum gates (the left-right modifier technique), and that the circuit ex-
pressed as a black box can be broken into multiple sub-boxes (the slicing mechanism). The
practicality of the methods is illustrated by the simulation results, but the curse of dimen-
stonaliry is still limiting the applicability of the methods for very large scale quantum com-
putations.

The second part of the work presented the first systematic approaches towards the vali-
dation of topological quantum circuits. The topological properties of a circuit refer to in-
variants of a circuit’s geometric description when mapped to a particular type of quantum
error correcting codes. At first sight, the underlying code enables a straightforward repre-
sentation of the computations, but the geometry becomes difficult to be interpreted when
non-trivially deformed. Previous work recognised the need to reduce the implementation
cost of a topological circuit by minimising the geometric description volume. However, no
solutions have been known for an automatically correct circuit compactification, and no
algorithmic formalism has existed for the validation of already compactified circuits.

The proposed methodology was introduced stepwise. First the geometric description
was mapped to a set of architecture agnostic hardware commands. During this step, spe-
cific properties of the geometry were computed, being used in a second step to represent the
circuit’s geometry by an original notation. The notation enables a semi-formal verification
method (see Section 1.2) based on a canonical representation abstracting the circuit layout.
As the notation captures the state transformations performed by the circuit, this allows solv-
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ing circuit validation by enumerating supported transformations. The direct effect was a
method with a reduced computational complexity. A further use of the introduced nota-
tion was to prove the correctness of geometric description derivations. Finally, a cross-layer
validation procedure was developed. The method has the advantage that it supports check-
ing the properties of the underlying QECC.

6.1 CRITIQUE

Large scale quantum computing will be of industrial practicality when the number and rel-
evance of applications outweigh the long term engineering challenges. There are almost no
borders between the domains that generate the engineering challenges fo quantum comput-
ing, and a comprehensive understanding of a majority of the aspects connected to this field
of research is necessary. This work resulted in an interdisciplinary approach.

The topic of reliable quantum circuits has still not been exhaustively explored, and there
may be future developments that will change the directions of current research. There
are opinions that question the correctness of the theoretical assumptions underlying the
fault-tolerance in quantum computingLB”’Ah”, and indicate that it could well happen that a
large quantum computer will have practical capabilities equivalent to a classical analog ma-
chine®™, Moreover, there has also been argued that not all the properties of the topological
codes can be achieved. The opposite position towards reliable quantum computing is more
optimistic, and includes the view that, if a quantum computer were ever built, there would
be a high probability to be a topological one™>?.

This thesis tries to stay equidistant between the optimistic and pessimistic viewpoints,
and the presented methods show that there are interesting research problems to be an-
swered, even if quantum computing would be seriously flawed. The perspective that com-
putations can be performed by braids is intriguing as it is a more visual abstraction com-
pared to Boolean functions. It has the potential to also generate completely new computing
architectures. There are therefore chances of extending the verification of topological quan-
tum circuits to the abstract computations with knots.

The initial enthusiasm for quantum computing was reduced for a period because of the
technical difficulties encountered, and the community started considering the problem of
guantum simulation ™", A quantum simulator (not to be confused with quantum cir-
cuit simulation software) would be a machine (hardware) that could imitate any quantum
system "** CZz,
However, a simulator would be a more specialised device, used for investigating current
problems that are difficult to investigate using a classical computer. Instead of focusing on
the complete description of the simulated system (computation), only some properties are
analysed, and a quantum simulator would not be as exact as a quantum computer ““. A

, and such a device would be as difficult to build as a quantum computer

quantum simulator is expected to be more robust against imperfections than a quantum
computer ““*. The use of QECC would not be necessary, and if the arguments against error
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correction were valid, a simulator would be an uncorrected quantum computer. The pro-
posed design methods, especially the ones related to probabilistic circuits, would therefore
be valid for the situation of simulators.

6.2 FUTURE WORK

A number of open problems has to be solved for quantum computing to become a reality,
and many of the problems are related to the design of reliable quantum circuits. For com-
putations described using the quantum circuit formalism, it would be advantageous to have
a canonical representation of fault-tolerant elements. Such a representation will have to be
flexible in the sense that new insights regarding fault-tolerance should be easy to introduce.
The representation would be similar to the canonical form of stabiliser circuits established
in*¢°4, where the circuit consists of and 1-round sequence of Hadamard, Phase and CNOT
gates (H-C-P-C-P-C-H-P-C-P-C). Furthermore, the representation has to be architecture-
agnostic in order to be relevant on the long-term, and must support only the CNOT gate
and a reduced set of input/output initialisations/measurements in a comparable manner to
how TQC is defined. The practicality of techniques operating on a canonical representation
would consist in the standardisation of verification and possibly in the better understand-
ing of circuit optimality. Future work will look into a more complete understanding of the
TQC circuit geometry and possible circuit identities.

A more extensive comparison between analog computing (with its alike digital stochastic
counterpart) and quantum computing is a further topic of future work. The resemblances
as well as the differences between analog and quantum computation are to indicate some of
the limits of quantum circuit simulation and verification. It is not expected that some kind
of exponential reduction of complexity can be achieved by novel data structures or meth-
ods, but even linear speed-ups may make certain algorithms practical for relevant circuit
instances. Also, comparing the stochastic simulation of quantum circuits with the proposed
techniques of quantum simulation could spark a new interdisciplinary effort between com-
puter engineers and physicists.

6.3 SUMMARY

The present thesis focused on offering solutions to existing problems of quantum circuit de-
sign, and it is hoped that the proposed methods are useful as a future work basis. Synthesis,
optimisation and verification of quantum circuits, in general, and of reliable circuits, in par-
ticular, is a vast subject, but the thesis offered a systematic perspective of these topics. The
work demonstrated that verification is feasible for specific classes of general circuits, while
for topological circuits efficient synthesis and verification were facilitated by an original no-
tation abstracting circuit properties.
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