
Department of Informatics and Mathematics
Chair of Distributed Information Systems

Doctoral Thesis

Efficient Exchange and
Processing of Semi-structured
Data in the Embedded Domain

Daniel Peintner

December 2014

Abstract

The Internet is a global system of interconnected computers and com-
puter networks where semi-structured data has been successfully applied
for exchanging information. In nowadays Internet the huge range of actors,
the large diversity of the associated device classes and domains, and the
enormous amount of resource-restricted controllers in this system created
new requirements and coined also a new term. Internet of Things (IoT), in
this regard, refers to identifiable objects (things) and their virtual represen-
tations in an Internet-like structure. The fundamental question the thesis
tries to answer is whether and how the same semi-structured data can be
also applied to the IoT and the embedded domain in spite of resource-limited
controllers.

In order to discuss this question properties and requirements of embed-
ded networks with regard to the IoT domain have been collected and evalu-
ated. Thereafter the omnipresent semi-structured data exchange format in
the Web, the Extensible Markup Language (XML), has been validated. The
result was a list of missing requirements such as a compact representation,
a representation that can be generated and consumed fast and also allows
a small footprint implementation. To address the compiled requirements a
binary representation of XML which nowadays is known as W3Cs Efficient
XML Interchange (EXI) format has been accomplished which simultane-
ously optimizes performance and the utilization of computational resources
and is designed to be compatible with XML. Moreover, in this work the for-
mat has been practically validated and tested. Addressing the needs of the
embedded domain one result of this analyzes were optimizations to constrain
runtime memory usage and to predict memory growth at runtime. A concept
introduced in this thesis is LazyDOM which reduces memory requirements
when processing and querying data. By means of a newly proposed code
generation technique processing of EXI on ultra-constrained device classes
has been enabled and resulting format modifications have been adopted by
the W3C standardization.

The research work described in this thesis on efficiently exchanging and
processing semi-structured data on constrained embedded devices has not
only triggered modifications in the W3C EXI format but even is already
adopted in domain specific application standards and implementations. The
above mentioned optimizations such as predictably limit the memory growth
at runtime have been contributed, discussed and evaluated by the W3C ex-
perts and become a core part of the EXI specification. Even more signif-
icantly from the IoT perspective these optimizations provide the basis for
the adoption of this technology in ISO and IEC standardization which is
the first time for automotive and power industry to use IoT in the control
plane. The implementation of EXI to conduct the evaluation as part of this
thesis has become the de-facto open source reference implementation of EXI
and became the basis of a number of other reference implementations such
as the OpenV2G project that provides the reference implementation of the
communication interface in ISO/IEC 15118.

In summary the conducted research work has evaluated the options to
adapt semi-structured data for the constrained embedded domain, proposed
modifications and evaluated those under realistic conditions. This made it
relevant for the technology as well as for application standardization despite
the short period of this work. As such the research can now be taken as
a basis for further challenges in the IoT field namely adopting concepts of
the Semantic Web and adapting those to stimulate the quickly expanding
eco-system of embedded devices.

Dedicated to my beloved family

Acknowledgements

I am deeply grateful to my advisors Prof. Dr. Harald Kosch and Dr. Jörg Heuer.
Both continuously supported me during the process of working on my doctoral thesis.
I would like to say thanks, not only for guiding and helping me through this journey,
but also for the personal support in various aspects. Thank you, without your help and
motivation this dissertation would not have been possible. I would also like to thank
Prof. Dr. Hermann Hellwagner for his willingness to peer-review this dissertation.

I thank all my colleagues at the Siemens AG research & development laboratory
that accompanied me with enjoyable and fruitful discussions. I would like to men-
tion Daniel Vogelheim, Richards Kuntschke, Thomas Kurz, Andreas Scholz, Francesc
Sanahuja, Joachim Laier, and Andreas Ziller. I really appreciate spending time with
you, chatting about various topics that frequently turned out to be beneficial for the
actual thesis work as well. My special thanks go to Sebastian Käbisch and Peter
Amon that supported the thesis writing with their technical and personal feedback
throughout the entire developing process. Moreover, Sebastian and Peter helped also
to iron out remaining issues to make the work consistent and harmonious.

Accompanying my research, I got the chance to be part of an international stan-
dardization working group that allowed me to get to know very inspiring people all
over the world. I really appreciated any experience I was able to make. Special thanks
go to Takuki Kamiya, Youenn Fablet, and John Schneider that helped me widen my
view with their expertise and general knowledge but also with their openness and
amity.

Last but not least, I am very thankful to my family, which supported and motivated
me over the last couple of years with long-lasting patience, love, and understanding.

vii

Contents

Contents i

List of Figures v

List of Tables vii

I Introduction 1

1 Motivation 3

2 Requirements of the Embedded Domain 5

3 Semi-structured Data in the Embedded Domain 7

4 Goal and Structure 9

II Overview of Semi-structured Data in the Embedded Do-
main 13

5 XML Technologies 15
5.1 XML Fundamentals . 16

5.1.1 XML and XML Schema . 16
5.1.2 XML Optimization Fields 19

5.2 XML Content Density . 20
5.3 XML Test Data Characteristics . 21

6 Binary XML 25
6.1 Related Work . 25

6.1.1 XMill . 27
6.1.2 WBXML . 28

i

ii CONTENTS

6.1.3 ASN.1 . 28
6.1.4 FastInfoset . 28
6.1.5 BiM . 29

6.2 Efficient XML Interchange (EXI) Format 30
6.2.1 Basic Concepts . 31
6.2.2 EXI Grammars . 33
6.2.3 EXI String Table . 38
6.2.4 Variable-length Unsigned Integer Coding 41
6.2.5 EXI Compression . 41
6.2.6 Summary . 43

6.3 EXI Metrics . 43
6.3.1 EXI Content Density . 43
6.3.2 EXI Efficiency . 45

6.4 Discussion . 45

IIIOptimization of XML Technologies 49

7 Efficient Feature-complete EXI Processor 51
7.1 Implementation Techniques . 52

7.1.1 Element Context Stack . 54
7.1.2 Qualified Name Context . 55
7.1.3 Grammars . 57
7.1.4 String Table . 58

7.2 Results and Discussion . 60
7.2.1 Compression . 61
7.2.2 Processing Efficiency . 65
7.2.3 Optimization Outlook . 69

8 Optimized Datatype Representation 71
8.1 Application Area . 72

8.1.1 Scalable Vector Graphics 74
8.1.2 Applying EXI to Rich Web Applications 75

8.2 Formal Grammar . 77
8.2.1 Chomsky Hierarchy . 78
8.2.2 Backus-Naur Form . 78
8.2.3 Parser Observations . 80
8.2.4 XML Schema and EXI Grammars 80

8.3 Concept of an Optimized Datatype Representation 81
8.3.1 Datatype Representation Generation 81
8.3.2 BNF Extraction Process . 82
8.3.3 BNF-based Datatype Representation Approach 85

CONTENTS iii

8.4 Results and Discussion . 86
8.4.1 Measurements and Evaluation 86
8.4.2 Entropy Coding . 87

9 EXI Grammar Representation 89
9.1 XML Schema Exchange . 89

9.1.1 Requirements . 90
9.1.2 XML Schema Knowledge Exchange for Binary XML 91
9.1.3 XML Schema Knowledge Exchange for EXI 92

9.2 Contents of XML Schema Exchange 92
9.2.1 Qualified Names . 92
9.2.2 EXI Grammars . 93
9.2.3 XML Schema Exchange Representation for EXI 99
9.2.4 Schema for Grammars . 99

9.3 Results and Discussion . 104
9.3.1 EXI Grammars Start-up Costs 104
9.3.2 Test Set . 107
9.3.3 Compression Measurements 108
9.3.4 Parsing Time Measurements 110
9.3.5 Summary . 112

10 Demand-tailored EXI Processor 113
10.1 EXI Grammar Transformations . 114

10.1.1 Properties of EXI Grammars 115
10.1.2 Mapping EXI Grammars to Finite State Machines 115
10.1.3 Mapping EXI Grammars to Source Code 116

10.2 Automatic EXI Processor Generation 119
10.2.1 Automatic Source Code Generation according to EXI Gram-

mars . 119
10.2.2 Application Programming Interface 120
10.2.3 EXI Decoder Generation 122
10.2.4 Automatic Databinding . 130

10.3 Results and Discussion . 131
10.3.1 Test Candidates . 131
10.3.2 Code Footprint Numbers 133
10.3.3 Parser Performance . 136
10.3.4 Usability Evaluation and Outlook 136

11 Memory-Sensitive XML Querying 139
11.1 Memory-Sensitive Model . 140

11.1.1 LazyDOM Concept . 140
11.1.2 LazyDOM Requirements . 141

iv CONTENTS

11.2 Technical Realization . 141
11.2.1 Indexing Mechanism . 142
11.2.2 LazyDOM Applicability . 143

11.3 Results and Discussion . 144
11.3.1 Test Data . 144
11.3.2 Query Set . 145
11.3.3 Performance Measurements 145
11.3.4 Design Guidelines . 148
11.3.5 Related Work . 149

IV Résumé 151

12 Contributions 153

13 Conclusions 157

V Appendices 159

Bibliography 161

List of Symbols and Abbreviations 169

Verbose Listings 173

List of Figures

4.1 Smart Grid and Smart Energy . 9

5.1 XML Content Density . 22

6.1 Processing steps when compressing XML 26
6.2 EXI Body stream for Listing 5.1 . 33
6.3 Built-in element grammar for SE(note) 34
6.4 Strict schema-informed grammar for StartElement(note) 35
6.5 Grammar Event Code Tree for grammar state StartTag1 in Figure 6.4 36
6.6 String Table - Entries in uri, prefix, and local-name Partitions 40
6.7 String Table - (Final) Entries in Value Partition 41
6.8 EXI Compression . 42

7.1 EXI Overview - Fully conforming EXI Processor 53
7.2 EXIficient ElementContext . 55
7.3 EXIficient QNameContext . 56
7.4 EXIficient Grammars . 58
7.5 String Table Implementation Details – Entries in Value Partition . . . 59
7.6 String Table Implementation Details – Optimized Value Partition . . . 60
7.7 EXI Compression . 61
7.8 EXI Compression - High XML Content Density 62
7.9 EXI Compression - Low XML Content Density - Large documents . . 63
7.10 EXI Compression - Low XML Content Density - Small documents . . 64
7.11 EXI Compression - Low XML Content Density - Tiny documents . . . 64
7.12 EXI Processing Time - Encoding . 66
7.13 EXI Processing Time - Decoding . 67
7.14 EXI Decoding - High XML Content Density 68
7.15 EXI Decoding - Low XML Content Density - Large documents 68
7.16 EXI Decoding - Low XML Content Density - Small documents 69
7.17 EXI Decoding - Low XML Content Density - Tiny documents 70

v

vi LIST OF FIGURES

8.1 Hierarchy of XML Schema Datatypes [67] 72
8.2 Example of an SVG path . 74
8.3 EXI Compression of SVG Data . 75
8.4 SVG Data Distribution for XML and EXI Representation 77
8.5 EXI Representation Idea . 82
8.6 SVG Data Distribution by means of the EXI-BNF-aware solution . . . 87

9.1 Schema-informed EXI grammars for notebook.xsd 93
9.2 Schema-informed EXI grammars for modified notebook.xsd 98
9.3 Schema for Grammars - Root element exiGrammar 100
9.4 Schema for Grammars - Element qnames 101
9.5 Schema for Grammars - Element qnameContext 102
9.6 Schema for Grammars - Element grammars 103
9.7 Schema for Grammars - Type Production 104
9.8 Compression Results for XML Schema Exchange Formats 109
9.9 Compression Results for XML Schema Exchange Formats with DE-

FLATE . 111
9.10 EXI Grammars Parsing Time . 112

10.1 EXI Grammar for SOAP element Envelope content model 114
10.2 Schema-informed EXI grammars for notebook.xsd 117
10.3 Schema-informed EXI grammars for notebook.xsd with grammar IDs . 120
10.4 XML/EXI Parser Performance . 137

11.1 Lazy Document Object Model containing loaded and not loaded elements140
11.2 XML Schema for index structure . 142
11.3 Memory consumption and query execution times 146

List of Tables

5.1 Test-groups classified by number of XML documents per cluster 24

6.1 EXI events . 32
6.2 Naive Event Code Assignment vs. EXI Event Code Assignment . . . 37
6.3 Fidelity options . 38
6.4 Requirements of binary XML formats 47

8.1 Built-in EXI datatype representations 73
8.2 EXI Datatype Efficiency Ratio for SVG Test Documents 76

9.1 Schema-informed EXI document grammars 94
9.2 Schema-informed EXI fragment grammars 95
9.3 Schema-informed EXI StartTagContent and ElementContent grammars 97

10.1 XML/EXI parser library size (in Bytes) 133
10.2 XML parser requirements (size in Bytes) 135
10.3 EXI parser requirements based on the used schema information (size

in Bytes) . 136
10.4 Number of EXI grammar states and events 136

11.1 XMark test documents . 144

vii

Part I

Introduction

1

Chapter 1

Motivation

The Internet is a global system of interconnected computers and computer net-
works that use standardized Internet protocols. In the past, typically powerful
servers have been delivering web content to clients such as desktop computers.
In recent years, the trend continued towards more devices, and especially new
device classes, which are becoming part of the overall Internet-based infrastruc-
ture. Also, more and more very diverse areas emerge to interact in one way or
the other. The term Internet of Things (IoT), presumably first coined by Kevin
Ashton [53] back in 1999, is often used to describe this phenomenon of the future
Internet of multiple diverse participants. The term was influenced by the work of
the Auto-ID Center at the Massachusetts Institute of Technology (MIT), which in
1999 started to design and propagate a cross-company RFID infrastructure [71].
A very similar notion was used by Neil Gershenfeld, also from the MIT Media Lab,
around the same time in his popular book "When Things Start to Think" [32].
In general, the term Internet of Things refers to identifiable objects (things) and
their virtual representations in an Internet-like structure.

The goal of the IoT attempt is that all devices are fully integrated across
all participants by offering a seamless communication. However, the information
that are to be exchanged and/or communicated show a high diversity because of
the large amount of domains and stakeholders, the relevant use cases, and the
large number of properties required to support the use cases. This leads to a long
list of desirable properties in which it is mandatory for the exchange format to be
processable on a wide variety of platforms (space efficient) and easy to consume
(processing efficient) [19, 18].

So far many domain specific interchange formats have been developed to make
it possible that small and restricted devices such as a microcontroller in a refrig-
erator can place an order on a web shopping platform. The emerging number of
diverse parties involved in exchanging information makes it necessary to elaborate

3

4 CHAPTER 1. MOTIVATION

a more device-friendly protocol to support various units varying from powerful
machines to very restricted devices in regard to processing power and memory
consumption.

Another example are smart houses and homes, or in an even broader range
smart grids, demanding an exchange format that is suitable for various device
classes. The ZigBee Smart Energy 2.0 specification [7], which is still under devel-
opment, defines an IP-based protocol to monitor, control, inform, and automate
the delivery and use of energy and water. Moreover, also the ISO/IEC 15118 in
the context of ISO TC22/SC3 [3, 4] under the keyword "Electrical and electronic
equipment" is working on standardizing the communication between electrical and
electronic equipment. As such, the DIN 70121 [2] standard provides a solid basis
for Battery Electric Vehicles (BEV) or Plug-in Hybrid Electric Vehicles (PHEV)
and the Electric Vehicle Supply Equipment (EVSE).

Summarizing all these ambitious efforts, it can be stated that there is need
for an Efficient Exchange and Processing of Semi-structured Data, in particular
in the Embedded Domain providing support for the most restrictive domains.

Chapter 2

Requirements of the
Embedded Domain

An embedded system is a computer system designed to perform one or a few
dedicated functions often with real-time computing constraints. It is usually
embedded as a part of a complete device (e.g., domestic refrigerator or other
home appliances). A general purpose computer, in turn, is designed to be flexible
and to meet a wide range of end-user needs.

A microcontroller (sometimes abbreviated μC, uC, or MCU) is a small com-
puter containing a processor, memory, and programmable input/output periph-
erals on a single integrated circuit. On the contrary, general-purpose micropro-
cessors need to add RAM, ROM, I/O ports, and timers externally to make them
functional. That said, the fixed amount of on-chip ROM, RAM, and number of
input/output ports makes microcontrollers ideal for many applications in which
cost per unit and packaging space are critical. However, there is the downside in
regard to versatility [54].

Very often the terms embedded processor and microcontroller are used inter-
changeably. Microcontrollers are used in automatically controlled products and
devices, such as automobile engine control systems, medical devices, remote con-
trols, office machines, appliances, cellular phones, TVs and cameras, toys, and
other embedded systems. Typically, each microcontroller runs one application
software only that is said to be burned into ROM [54].

Nowadays microcontrollers are cheap when bought in quantity. Further, ac-
cording to Semico Research Corporation1, more than 50% of all processors sold
in the world are 8-bit microcontrollers and microprocessors. However, there are
also 16-bit and 32-bit microcontrollers made by various chip makers. According

1Semico Website, http://www.semico.com/

5

http://www.semico.com/

6 CHAPTER 2. REQUIREMENTS OF THE EMBEDDED DOMAIN

to [54], there are a few relevant criteria for choosing the appropriate microcon-
troller depending on the requirements:

• Speed

• Packaging

• Cost per unit

• Power consumption

• Amount of RAM and ROM on chip

• The number of I/O pins and timers

• How easy to upgrade to higher performance or lower power-consumption
versions

The list gives a very good idea about the concerns and the fundamental prop-
erties. The less resources an application or software accounts for, the cheaper,
smaller, and less powerful a microcontroller can be built. Especially in regard to
economic efficiency it plays a major role to select the adequate embedded proces-
sor that fits the needs. That said, no more resources than actually needed should
be deployed given to the implication on cost and power consumption.

This is also the reason why most embedded systems are built using Assembly
or C language. Compilers produce hex files that are flushed to the ROM of a
microcontroller. Programming C is less time consuming, but has typically larger
hex file size compared to Assembly. However, the reasons for writing programs
in C are manifold. It is easier to write in C than Assembly and one can use code
available in libraries. Also, C code is more likely portable to other microcontrollers
with little or no modification [54].

Hence, it is evident that newly introduced data exchange protocols should
avoid demanding additional features in regard to processing and memory. This
provision is intended to prevent any impact on the required microcontroller. The
thesis will consider both aspects, memory and processing power (see Part III)
and the success of the developed exchange protocol will be judged according to
a specific application. That said, the ISO/IEC 15118 communication between
electrical and electronic equipment is meant to prove the practical relevance.

Chapter 3

Semi-structured Data in the
Embedded Domain

So far the reader has come to know a bit about microcontrollers that are placed
in various embedded domains taking part in the Internet of Things arena. Also,
it sounds very promising that everyone’s refrigerator at home places an order on
the preferred online shop. Thus, the refrigerator may for example ensure that
milk and butter is available for tomorrow’s breakfast. However, let us change the
point of view from the user perspective to the perspective of a provider of such a
system. What are the actual technical consequences1?

To ensure a common understanding in regard to data exchange or respectively
information exchange, the used terminology needs to be introduced first. The
term language is subsequently used to define the notion and vocabulary of a
given data exchange process while format stands for the actual representation of
such a language. That said, different languages may have different capabilities
and/or rules to express certain kind of information2.

In the past up to these days, the exchange format has been well defined and
mapped to the requirements whenever microcontrollers have been communicating
with other microcontrollers or dedicated servers. Doing so guaranteed that on
the one hand the microcontroller could be built small and cheap. On the other
hand the server knew how to speak to any other embedded device. Typically the
language was different depending on the actual device. That said, the controller
of the refrigerator connecting to the Internet used a different vocabulary than the

1We will not elaborate on social consequences.
2 One prominent example is HTML and XHTML that are main markup languages for

creating Web pages. The syntax is very similar but there a few differences. In general XHTML
syntax rules are far more rigorous than HTML. As such all elements and attribute names must
appear in lower case.

7

8 CHAPTER 3. SEMI-STRUCTURED DATA IN THE EMBEDDED DOMAIN

sensor within the refrigerator tracking the currently available products. The task
of the overall system is to combine all available information.

As one may imagine, building such a system is time-consuming and also very
costly. The complexity rapidly grows the more devices start participating in the
system. Replacing one device with another, that may imply a different repre-
sentation of the actual data, becomes a nightmare. Furthermore, combining or
merging one language with another might result in loosing information due to
various language-specific restrictions.

This led to the situation that many organizations and groups have been
starting to work on systems providing a single exchange language that can be
used throughout the entire process. Moreover, existing and already successfully
used concepts in nowadays web technologies such as the service-oriented architec-
ture (SOA) have been mapped to the embedded domain [75]. To make clear that
service-oriented architecture has been applied to microcontrollers and embedded
devices it was often referred to as uSOA, μSOA, or εSOA [74].

SOA generally provides well-defined functionalities or services. SOA also de-
fines how to integrate applications, and it can be seen as the continuation of
older concepts of distributed computing. In practice, SOAs are build using web
services standards (for example, SOAP3 [55]) that have gained broad industry ac-
ceptance. However, SOA can be implemented using any service-based technology.
The metadata to describe the characteristics of the services and also the data that
is exchanged makes use of XML. XML is currently the semi-structured markup
language.
Serge Abiteboul defined semi-structured data as follows: data that is neither
strictly typed (i.e., not table-oriented as in a relational model) nor is the struc-
ture as rigid and regular as in standard database systems. The structure exists,
is sometimes implicit and has to be extracted from the data [6].

This technical excursion to the world of nowadays microcontrollers and the
current shortcomings state very well why there is the desire of a single exchange
language. Chapter 5 will introduce XML as the chosen semi-structured data
exchange language and will also highlight the drawbacks of XML when being used
in the embedded domain. The generic term binary XML is generally used when
speaking about various compact representations of XML that reduce the verbosity
of XML documents and thereby also reduce the cost of parsing. However, in most
of the cases binary XML solutions are applicable to certain restricted domains
only. Due to restrictions of the afore mentioned formats, such as pre-shared
knowledge and XML schema accuracy (see Chapter 6), communications islands
have been built, frequently also with different binary XML formats in the overall
system [40].

3SOAP (Simple Object Access Protocol) is a protocol specification for exchanging structured
information for the implementation of Web Services in computer networks. It relies on the
Extensible Markup Language (XML).

Chapter 4

Goal and Structure

The goal of this doctoral thesis is to elaborate a single binary XML format that is
designed to be compatible with XML (at the XML Information Set level) and to
expand its use to the embedded domain. The seamless integration of such a format
into the existing XML stack is of huge importance. Additional improvements of
the format are first highlighted, then thoroughly analyzed, and last the field-
proven solution is presented (see Part III).

Smart grid is exemplarily taken as one example and is a form of electricity
network utilising digital technology (see Figure 4.1). The term smart grid usually
implies suppliers, energy storages and consumers exchanging energy (blue lines)
on the one hand and communicating (red lines) on the other hand.

Figure 4.1: Smart Grid and Smart Energy1

1Picture copyright to E-Energy, http://www.e-energy.de/

9

http://www.e-energy.de/

10 CHAPTER 4. GOAL AND STRUCTURE

So far, the power generation has been centralized. Large power plants have
been producing power and made it available to consumers. The last couple of
years, restructuring has been taking place. More and more decentralized parties
have been involved in the overall system. Home photovoltaic systems have been
widely used as well as small bio gas plants. The change between one-way inter-
action to two-way communications between suppliers and consumers demands an
efficient way to exchange information in a standardized and flexible way. The in-
formation itself in this connection is also highly heterogenous ranging from sensor
data to the extent of billing information. That said, the transparency between
the actual data and the associated costs for a costumer is also very crucial.

A funding programme of the Federal Ministry of Economics and Technol-
ogy (BMWi) in an interministerial partnership with the Federal Ministry for the
Environment, Nature Conservation, and Nuclear Safety (BMU) has been launched
to support relevant ambitions such as optimizing the energy supply system, en-
compassing everything from generation, and distribution right up to consumption.
Moreover, the project is chartered to ensure more effective utilization of the ex-
isting supply infrastructure, expand the use of renewable energy resources, and
reduce CO2 emissions2.

The project has identified many different parties involved in such a smart grid
communication that all demand to be equally supported. The variance extends
from different devices as well as very different uses cases and kind of information.
The extensive number of identified stakeholders asks for a standardized and single
exchange protocol and format fulfilling various assembled demands.

This thesis aims to analyze the heterogeneous data and devices that are in-
volved in such a scenario and tries to find the least common denominator to
achieve efficient data exchange. Further, the research activities are influenced by
technical problems that are to be solved before successfully applying the afore
mentioned single exchange format to the relevant domains, such as the embedded
domain.

One important aspect with regard to the embedded domain is the size of the
exchanged data which needs to be kept at the very minimum. Metrics are intro-
duced that describe the information that are to be exchanged primarily in terms
of ratio between structure and actual data. Based on these defined metrics it
is possible to predict the compression performance (percentage between original
representation and compressed representation). Moreover, the metrics also high-
light potential for further improvement. The research originated a theoretical
method to describe the content or in other words the actual data. The method
is used to realize an optimized datatype representation in a well-defined and also
automatable way.

Other aspects of the work relate to the grammar system that builds the ba-

2E-Energy - Smart Energy made in Germany, http://www.e-energy.de/en/

http://www.e-energy.de/en/

11

sis for the co-developed and established exchange format. The grammars are
analyzed and categorized according to their complexity. Proposals are given
how to apply the different grammars to various systems ranging from powerful
desktop/server machines down to highly restricted microcontroller-based archi-
tectures.

Yet another aspect of the thesis considers memory requirements and memory
constraints while processing semi-structured data. Many query processors today
work on an in-memory representation of the data. The in-memory representation
can become very large and may render traditional processing infeasible on embed-
ded and other resource-limited devices. Hence, a flexible concept is elaborated
and also applied to the specific use case of processing data, which as a whole
cannot be processed. The proposed mechanism allows sub-dividing the overall
message in smaller chunks so that it allows memory-sensitive processing such as
querying.

Besides the practical relevance of the thesis the research objectives and ques-
tions can be summarized as follows.

• Is it possible to determine a metric that categorizes semi-structured binary
data?

• How can such a metric be used to predict data compression and processing
time?

• How can the exchange format principles be algorithmically described?

• What is necessary to automatically map these principles (i.e., grammars)
to running code or respectively to a processor of this format?

• What novel characteristics of the format may be advantageous for the em-
bedded domain (e.g., runtime memory consumption)?

The approaches targeting the concrete compiled technologies and techniques
are to be defined in a well-defined manner so that the results can be used, re-used
and referenced in on-going scientific works or specifications.
Moreover, the research part of this work should establish a basis for researchers
to look into the research topics more closely and to relate new research topics
accordingly. The technology that has been analyzed is rather new and offers future
potential for developing new aspects. Hence, the result that will be compiled are
to be extendable, customizable, and algorithmically described to suffice future
work.

The doctoral thesis is structured as follows.
The initial chapters of Part I give an overview about the involved technical ar-
eas. This overview constitutes the framework of the thesis and also stresses its

12 CHAPTER 4. GOAL AND STRUCTURE

requirements and outcome. Furthermore, this leads to the definition of the term
embedded domain that simply speaking comprises small controllers. The set of
problems in the embedded domain regarding processing power and data exchange
is given and alludes the need for an overall efficient exchange format with minimal
requirements.
Part II introduces existing technologies meant to solve data exchange problems
in nowadays use-cases by taking into account also the previously introduced re-
stricted domain properties and the use of small microcontrollers. Measurements
and analyses stress existing problems of nowadays used technologies and put the
focus on a rather new technology that is subsequently introduced. As an active
working group member of the World Wide Web Consortium (W3C) consortium
and implementor of the de-facto reference implementation, I extensively helped
to develop this new format named Efficient XML Interchange (EXI).
Based on this new EXI technology, optimizations and developments are proposed
in Part III to make the format well applicable for the embedded domain. This
implies theoretical aspects but also actual implementations.
Validating the applicability of the proposed solutions in the embedded domain
and measuring their effectiveness conclude the work (see Part IV).

Part II

Overview of Semi-structured
Data in the Embedded Domain

13

Chapter 5

XML Technologies

In recent years the need for supporting semi-structured data exchange in het-
erogeneous application areas has been raised due to the tremendous increase in
communication devices. The solution to this problem has been XML [11] in most
of the cases. The Extensible Markup Language (XML)1 has been available for
many years since it was first published as a W3C Recommendation in February
1998.

The success story of XML can be briefly summarized as follows. The format
has been standardized by a well known and accepted consortium, the World Wide
Web Consortium (W3C2). It offers a flexible and language-independent format in
regard to application, platform, and programming language. It is meant to easily
integrate in heterogeneous environments and has been very successful in doing so.
XML is text-based, meaning that it is processable by machines and also readable
for humans. The self descriptive and verbose format — the unmistakable tags
— make it very easy to work with the data without actually knowing the exact
structure.

Around the XML language itself, a very impressive XML stack with support-
ing technologies and standardized application programming interfaces (APIs) has
been developed. Wide spread high quality libraries are available for XML schema
languages, XML transformations, and XML query languages.

This chapter will introduce XML concepts and techniques that are necessary to
understand XML applicability in the embedded domain. Moreover, XML metrics
and actual real world test data is introduced that makes it possible to evaluate
the applicability of different XML technologies.

1XML is extended from the Standard Generalized Markup Language (ISO 8879:1986 SGML)
2http://www.w3.org/

15

http://www.w3.org/

16 CHAPTER 5. XML TECHNOLOGIES

5.1 XML Fundamentals

5.1.1 XML and XML Schema

So far the XML markup language has been discussed without actually seeing a
good example. Readers may or may not have seen XML documents in practice or
used the XML language already. In either case, an actual example is very useful
when starting to discuss a given technology. Listing 5.1 introduces an intuitive
XML document that will be used throughout the work.

Listing 5.1: XML Notebook example

<?xml version="1.0" encoding="UTF-8"?>
<notebook date="2007-09-12">

<note date="2007-07-23" category="EXI">
<subject>EXI</subject>
<body>Do not forget it!</body>

</note>
<note date="2007-09-12">

<subject>shopping list</subject>
<body>milk, honey</body>

</note>
</notebook>

The simple XML document represents a notebook which in theory may con-
tain an arbitrary number of notes. The given example contains two notes, one
note about EXI, a technology we will read about later and another for a shopping
list. This XML snippet shows very impressively why XML is so successful. Even
without having further information about the kind of document, it is already pos-
sible to interpret the data and also to identify which information belongs to a given
context.

Another important topic is XML data processing and its usage. XML (error-)
handling or processing differs between well-formedness and validity.

XML Well-formedness

The XML specification defines an XML document as a text being well-formed, if
it satisfies a list of syntax rules provided in the specification. The list is fairly
lengthy [10]; some key points are:

• It contains only properly encoded legal Unicode characters.

• None of the special syntax characters such as "<" and "&" appear except
when performing their markup-delineation roles.

• The begin, end, and empty-element tags that delimit the elements are cor-
rectly nested, with none missing and none overlapping.

5.1. XML FUNDAMENTALS 17

• The element tags are case-sensitive; the beginning and end tags must match
exactly. Tag names cannot contain any of the following characters:

!"#$%&’()*+,/;<=>?@[\]^‘{|}~

nor a space character, and cannot start with -, ., or a numeric digit.

• There is a single "root" element that contains all the other elements.

XML Validity

In addition to being well-formed, an XML document can be valid. The validity
of a document can be checked by means of a schema language. There is more
than one schema language, also specified by different organizations and working
groups. As part of the XML specification there is the possibility to use Document
Type Definitions (DTD)3 that declare precisely which elements and references
may appear where in the document of the particular type, and what the elements’
contents and attributes are.

XML schema, published as a W3C recommendation in May 2001, is another
XML schema language that was designed to offer features that were not available
in XML’s native DTD such as namespace awareness and datatypes (ability to
define element and attribute content as containing values such as floats). Due
to these additional features, the fact that it was designed by the W3C, home of
XML, and due to its pervasiveness in the XML community we subsequently focus
on XML schema [76, 67] as the schema language.

XML processors are classified as validating or non-validating depending on
whether or not they check XML documents for validity. Although XML well-
formedness is sufficient for many use cases it may also cause issues in other envi-
ronments. Let us use the notebook XML example and add additional information
about who is the one the note is belonging to, in form of an attribute belongsTo.
In respect to well-formedness this does not break XML processing. In respect to
a given application that is only meant to display given information of a note, e.g.,
on your mobile phone, it may cause problems. In a best-case scenario, the ap-
plication just ignores the additional information. More probably, the application
refuses to display the information properly, given that it was neither meant nor
built to show an attribute belongsTo.

Listing 5.2 introduces one possible XML Schema Document (XSD) which de-
scribes the root element, its possible children, and contents datatypes.

In this XML schema document we have one global element notebook. Global
elements are elements that are immediate children of the schema element. Local
elements are elements nested within other elements or complex types. Only global

3XML uses a subset of SGML DTD

18 CHAPTER 5. XML TECHNOLOGIES

Listing 5.2: XML schema example for notebook XML
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
<xsd:element name="notebook">

<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">

<xsd:element name="note" type="Note"/>
</xsd:sequence>
<xsd:attribute ref="date"/>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="Note">

<xsd:sequence>
<xsd:element name="subject" type="xsd:string"/>
<xsd:element name="body" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute ref="date" use="required"/>
<xsd:attribute name="category" type="xsd:string"/>

</xsd:complexType>
<xsd:attribute name="date" type="xsd:date"/>

</xsd:schema>

elements can be the root element of a valid XML document4 and can be referenced
by other complex types. The element notebook may consist of an arbitrary num-
ber of note elements (specified by maxOccurs="unbounded") while containing at
least one note element (not present in the schema definition but implicit accord-
ing to the default value "1" for the schema attribute minOccurs). We further have
one global attribute date that is referenced from the anonymous complexType
describing the element notebook and also from the the complexType Note. The
attribute date is typed as XML schema datatype xsd:date while the remaining
elements and attributes are of the type xsd:string. The complexType Note is a
sequence of elements subject and body, requiring an attribute date and allowing
an attribute category.

The XML schema definition differs between complex and simple type defini-
tions. While complex type definitions may consist of sub-elements, a simple type
definition may only consist of a simple datatype.

The XML schema language, also known as XSD (XML Schema Definition),
provides a set of 19 primitive datatypes (anyURI, base64Binary, boolean, date,
dateTime, decimal, double, duration, float, hexBinary, gDay, gMonth, gMonth-
Day, gYear, gYearMonth, NOTATION, QName, string, and time). It allows new
data types to be constructed from these primitives by three mechanisms:

4For completeness it is worthwhile to note that there is one exception to this statement
when it comes to a non-global element that uses xsi:type to achieve XML validity.

5.1. XML FUNDAMENTALS 19

• restriction (reducing the set of permitted values)

• list (allowing a sequence of values)

• and union (allowing a choice of values from several types)

25 derived types are defined within the specification itself5, and further derived
types can be defined by users in their own schemas.

XML Drawbacks for Resource-limited Environments

XML drawbacks such as verbose data exchange and/or untyped textual data
are undesirable if not unacceptable for resource-constrained environments. These
properties make an exchange format such as XML hardly applicable for small
device classes. Resource-limited environments generally dispose of limited trans-
mission capabilities (bandwidth) and limited processing speed. Further, low costs
in regard to battery, hardware, transmission, and energy are crucial for the success
of such systems. These requirements led to develop new XML encoding formats.

5.1.2 XML Optimization Fields

Doubtlessly the success of XML has been enormous in areas where efficient data
exchange or processing is not crucial. Especially in resource-restricted environ-
ments, XML implies properties that are infeasible due to its text-based nature.

When dealing with data exchange formats, two important aspects are data
compression and processing time. Both aspects generally relate to typed data and
the verbosity or non-verbosity of a given format. XML’s flexibility and openness
comes along with undisputable verbosity. In addition, the text-based format
increases processing time. This not only applies to element or attribute tag names
but also to the actual data. A float data value represented as the string "12.5"
needs to be converted into an in-memory representation of a float, which is time
consuming. Generally speaking one could argue that XML was not designed for
performance-sensitive environments.

When it comes to efficient XML handling we differentiate between fast pro-
cessing of XML and a compact representation.

Processing Time

The term XML processing denotes reading and writing XML information. In
this context deserialization or sometimes also decoding is used for processing the
actual data. The opposite operation, serialization or encoding translates data
into a format that can be stored (e.g., in a file or a byte buffer).

5http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

http://www.w3.org/TR/xmlschema-2/#nameddest=built-in-datatypes

20 CHAPTER 5. XML TECHNOLOGIES

XML Screamer [42] is one technique that manages to optimize processing
time in a system in which customized high-performance XML parsers are pre-
pared using parser generation and compilation techniques. Parsing is integrated
with schema-based validation and deserialization, and the resulting validating
processors are usually significantly faster than traditional non-validating parsers.
Moreover, high performance is achieved by integration across layers of software
that are traditionally separate by avoiding unnecessary data copying and trans-
formation. Unfortunately, XML Screamer does not provide a solution for compact
representation.

Data Compression

Compact data representation is the other crucial aspect. General purpose com-
pression techniques that do not necessarily target XML documents per se are
providing a good solution for compressing data. The compression can be applied
to any document such as images, videos, or text-based formats as in the case of
XML. Nevertheless, in regard to processing, it makes the situation worse. The
requirements of processing compressed data is higher than processing plain XML
documents. Additionally to processing XML, the data needs to be packed on
encoder side and un-packed on decoder side.

Depending on the actual use case various optimization efforts (e.g., XML
Screamer and general purpose compression techniques) led to either good pro-
cessing performance or a compact data representation. However, more challeng-
ing application fields originated new formats taking into account both relevant
aspects. These formats share the common XML information set (expressivity in
regard to XML features) but give up intrinsic properties of XML, namely the
text-based nature and human-readability. These formats are usually summarized
by the term Binary XML. Chapter 6 introduces some aspects and various flavors
of binary XML formats.

5.2 XML Content Density

The XML community uses several metrics to describe properties and/or the com-
plexity of XML documents. Some metrics take into account the XML depth, in
other words the maximum level of nested XML elements to quantify structural
properties of XML documents. Others determine the complexity of XML doc-
uments based on syntactic and structural aspects [68]. And yet others consider
also available XML schema knowledge.

To facilitate comparisons between the work done in W3C working groups [81]
and the measurements presented in this thesis, the same metric is used. The met-

5.3. XML TEST DATA CHARACTERISTICS 21

ric in use is XML content density (the ratio between text and markup, abbreviated
CD). The CD is based on XML characters and is computed as follows:

1. Gather all character data information items that are the direct children of
an element information item.

2. Gather all the values of all the attribute information items.

3. Sum up the size in characters of the text data gathered in the previous two
steps.

4. The content density is the ratio of the sum in the previous step and the size
of the entire document in characters.

The following example explains the metric by means of an example XML
document.

Example 5.2.1 (Content Density Computation for XML document in List-
ing 5.1).

1. Data information items are "EXI", "Do not forget it!", "shopping list", and
"milk, honey": 44 characters.

2. Attribute information items are "2007-09-12", "2007-07-23", "EXI", and
"2007-09-12"): 33 characters.

3. In the previous two steps 77 characters have been gathered.

4. The size of the entire document in characters is 320.
CD = 77

320 = 24%

5.3 XML Test Data Characteristics

This section describes characteristics of the given test data, which subsequently
is used throughout the thesis to evaluate the performance of various XML tech-
nologies in regard to data compression and processing performance. The value
of measurements and comparisons highly depend on the test data that is used.
Hence, a good coverage of relevant test-cases and a valid and sensible methodology
to quantify the data is crucial.

The previously mentioned W3C activities in the binary XML area produced
a collection of more than 10000 XML documents of various application areas or
so called test groups. Each group out of the 20 test groups (e.g., WSDL, SVG)
consists of XML document instances matching the same vocabulary or related
applications. Because a smaller set is easier to manage for further analyses, the
W3C working group selected a representative sub-set of XML instances, taking

22 CHAPTER 5. XML TECHNOLOGIES

into account test data from all test groups and also considering test instances
with diverse content density6.

In summary, the documents in the test suite are characterized along two axes:
size in bytes and content density. These characteristics are largely independent of
each other, since content density is measured as a percentage. Figure 5.1 depicts
the result values for the selected 88 XML test documents. The test documents
range from 99 Bytes up to 70 MegaBytes. Moreover, the content density dis-
tributes from nearly 0%7 up to almost 100%. These numbers confirm once again
that we deal with a high variety of test documents with different XML flavor in
regard to size and content density.

The results in Figure 5.1 match with the measurements presented in [81]
besides some errors (the calculated content density was inaccurate for two test
groups) that have been detected and reported back to the working group. The
EXI working group acknowledged the issues by creating an errata page8.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 10 100 1000 10000 100000 1e+006 1e+007 1e+008

C
on

te
nt

 D
en

si
ty

Test-case size [Bytes]

AVCL
CBMS

Datastore
FixML
FpML
Gaml

Invoice
MAGE-ML

Miscellaneous
OpenOffice

Seismic
SVGTiny

XAL
Google

HepRep
EpicsArchiver

LocationSightings
JTLM

ASMTF
WSDL

High CD

Low CD Tiny Low CD Small Low CD Large

Figure 5.1: XML Content Density

Please note that given to the wide variety of test documents most detailed

6The test instances are available for download through the W3C measurement test frame-
work, see http://www.w3.org/XML/EXI/#TestingFramework

7The content density value of 0% originates from a test document out of the JTLM test
group which is composed of elements only without any character nor attribute information items

8Measurements note errata, http://www.w3.org/XML/EXI/wiki/MeasurementsNoteErrata

http://www.w3.org/XML/EXI/wiki/MeasurementsNoteErrata
http://www.w3.org/XML/EXI/#nameddest=#TestingFramework

5.3. XML TEST DATA CHARACTERISTICS 23

measurements throughout the thesis use four analysis groups or clusters to further
sub-divide the 88 XML test documents. The basis for comparing is the size in
bytes and the according XML content density. Figure 5.1 depicts these clusters
with dashed boxes.

Cluster #1: High XML Content Density (20 documents)

This cluster consists of documents having a content density higher than 38%.
Due to the high ratio of text (attribute information items and/or character data
information items) compared to XML markup, these documents behave similarly.

Cluster #2: Low XML Content Density - Large documents (24 documents)

This cluster consists of documents having a content density less than or equal to
38% and a size of more than 100 kilobytes.

Cluster #3: Low XML Content Density - Small documents (23 documents)

This cluster consists of documents having a content density less than or equal to
38% and a size between 1 and 100 (inclusive) kilobytes.

Cluster #4: Low XML Content Density - Tiny documents (21 documents)

This cluster consists of documents having a content density less than or equal to
38% and a size less than or equal to 1 kilobyte.

Note that documents from the same test group do not always belong to the
same cluster (e.g., the test group Datastore has test cases in all four clusters).
Table 5.1 reports how many test documents of a given test group falls into each
cluster.

An extensive description of each test group can be found in the measurements
note [81] published by the EXI working group.

24 CHAPTER 5. XML TECHNOLOGIES

Test Group High CD Low CD Low CD Low CD
Large Small Tiny

AVCL 2
CBMS 2 4
Datastore 2 1 2 1
FixML 5
FpML 5
GAML 5
Invoice 3 2
MAGE-ML 4
Misc 1 1
OpenOffice 2 2 1
Seismic 1
SVGTiny 3 1 1
XAL 1 2 1 1
Google 3 2
HepRep 5
EPICS 1
LocationSigthings 8
JTLM 3 2 1
ASMTF 5
WSDL 2

Table 5.1: Test-groups classified by number of XML documents per cluster

Chapter 6

Binary XML

So called Binary XML formats refer to any specification which define a compact
representation of XML and thereby reduce the verbosity of XML documents and
the cost of parsing. There are several competing formats, none in the past has
been widely adopted by a standards organization or accepted as the de facto
standard.

6.1 Related Work

The literature usually distinguishes between three possible approaches: general
purpose, XML-aware, and schema-aware techniques [40].

General Purpose Compression Techniques

General purpose compression techniques do not necessarily target XML docu-
ments. The compression can be applied to any document such as images, videos
or text-based formats as in the case of XML.

While software applications such as WinZip, WinRar, and 7-Zip are well
known, the actual compression file formats (e.g., zip, tar, bzip2) are less promi-
nent. The term gzip usually refers to the GNU Project’s implementation, "gzip"
standing for GNU zip. It is based on the DEFLATE [23] algorithm, which is a
combination of Lempel-Ziv (LZ77 [82]) and Huffman [38] coding.

The major advantage of such compression techniques, in regard to XML, is its
high availability and its wide adoption. On most of the platforms general purpose
compressors are available out of the box. Also, they are usually free software.

The problem of good compaction and the resulting smaller documents is that
this positive characteristic comes along with additional processing, meaning that
general purpose compression techniques not only compress data but also introduce

25

26 CHAPTER 6. BINARY XML

an additional processing step (see Figure 6.1). In the case of a general purpose
or sometimes also called traditional compression technique an in-memory XML
representation is first transformed to an XML document before it can be com-
pressed. XML-aware compressors are capable to directly stream XML through a
dedicated XML application programming interface (API).

Figure 6.1: Processing steps when compressing XML

XML-aware Compressors

XML-aware compressors take into account the nature of XML such as the knowl-
edge about XML elements, attributes, namespaces, and other XML constructs
such as processing instructions (e.g., <?xml version="1.0"?>) or comments (e.g.,
<!– This is a comment –>).

XMill and WBXML are two XML-aware compressors that will be discussed
shortly. This is because both technologies introduced concepts that had and still
have significant impact on other XML compressors.

Schema-aware Techniques

An even more satisfying approach is the use of XML schema knowledge. An XML
schema document describes the structure of an XML instance and also identifies
the types of given elements and attributes. This leads to the fact that the markup
of an XML instance can be represented very efficiently. The tag names are known
and can be pre-indexed and shared between sender and receiver and also the data
itself can be represented in a typed fashion (e.g., xsd:integer as integer).

This approach usually combines fast processing with high compaction of the
data. Many known schema-aware formats can only work with proper XML schema

6.1. RELATED WORK 27

knowledge. This means that without the corresponding schema information an
XML instance cannot be encoded.

In many cases it is very difficult to clearly characterise a binary XML for-
mat according to the three possible XML compression approaches. For example,
depending on the used format features and options, a binary XML format may
belong to XML-aware compressors or to a schema-aware technique.

Subsequently a selection of XML compressors is given. The selection is based
on the acceptance in important environments such as the telecommunication and
on technical concepts that are of interest in future sections of this work.

6.1.1 XMill

Hartmut Liefke and Dan Suciu published in the year 1999 a very interesting
approach about an efficient XML compressor called XMill. It is claimed that
the tool achieves about twice the compression ratio of gzip at roughly the same
speed [49].

The compressor, called XMill, incorporates and combines existing compres-
sors. The basic idea is to make use of technologies such as gzip with the knowledge
that such compression techniques work best for similar data.

The compressor applies three principles. First it separates XML structure from
XML data. The structure, consisting of XML tags and attributes, is compressed
separately from the actual XML data. The compressed structure stream essen-
tially consists of a sequence of string items representing element and attribute
tag names. Second the data items, element content and attribute values, are
grouped into containers. Each container is compressed separately. With reference
to the previously introduced XML document in Listing 5.1, all XML character
information items belonging to the element subject (i.e., "EXI" and "Shopping
List") form one container, while all attribute information items belonging to the
attribute date (i.e., "2007-09-12", "2007-07-23" and "2007-09-12") form a sec-
ond container. Third specialized compressors, so called semantic compressors,
are used for various containers. Hartmut Liefke and Dan Suciu state in their
work [49] that setting a user-definable compressor (e.g., gzip, bzip2) may increase
compression performance given that for example some data items are text while
other items are numbers.

The approach is working well to better utilize network bandwidth or for data
archiving, where the goal is to reduce space requirements. It is less useful when
also reducing processing time is important or data streaming is required. Moreover
it has been shown that XMill wins over existing compression technologies only if
the data set is large, typically over 20 KB [49]. Hence it is of limited use where
many small-sized XML messages are to be exchanged or processing time is crucial.

28 CHAPTER 6. BINARY XML

6.1.2 WBXML

WAP Binary XML (WBXML) [51] is a binary representation of XML to allow
XML documents to be transmitted in a compact manner over mobile networks. It
was developed by the WAP (Wireless Application Protocol) Forum, which later
was aggregated with other industry forums to the Open Mobile Alliance (OMA) as
a standards body, which develops open standards for the mobile phone industry.
Moreover it was submitted to the World Wide Web Consortium1.

WBXML is used by a number of mobile phones where it is for instance used
for transmitting address book and calendar data (SyncML).

The WBXML specification is is often referred to as a tokenization format with
a built-in state machine meaning that assigned identifiers are used for some sym-
bols or tokens. The strings that are tokenized in WBXML comprise namespace
URIs and prefixes, element and attribute names and also character and attribute
values. Tokens can be assigned either dynamically or statically. Dynamic as-
signments discover the tokens as they appear in the serialized documents and
are encoded much more efficiently after the first appearance. Static assignments
require that the tokens need to be known beforehand to communicating parties.
Moreover it is also possible to establish a session where the token assignment
persists from one message to the next message.

6.1.3 ASN.1

ASN.1 [59] is a ISO/IEC and ITU-T standard and constitutes a flexible nota-
tion that describes data structures for representing, encoding, transmitting, and
decoding data [62, 63]. It is a proven specification and widely used in the telecom-
munication and computer networking sector.

ASN.1 together with specific ASN.1 encoding rules facilitates the exchange of
structured data. The standard ASN.1 encoding rules include, among others, XML
Encoding Rules (XER), Basic Encoding Rules (BER) [60] and Packed Encoding
Rules (PER) [61]. PER encoding rules are meant to produce a compact transfer
syntax for data structures described in ASN.1. The XML Encoding Rules (XER),
in turn, attempt to bridge the gap between textual encoding of data structures
defined using ASN.1 notation and ASN.1 itself.

6.1.4 FastInfoset

The FastInfoset specification [69] is defined by both the telecommunication di-
vision of the ITU and the ISO standards bodies as an alternative to the XML
document format. FastInfoset aims to optimize both document size and process-
ing performance and mostly evolved out of the initiative at Sun Microsystems

1 http://www.w3.org/TR/wbxml/

http://www.w3.org/TR/wbxml/

6.1. RELATED WORK 29

identifying performance problems in existing implementations of Web Services
standards [70].

Similar to WBXML, FastInfoset is a tokenization format that supports dy-
namic tokenization but also permits static token assignment. In contrast to many
tokenization formats that are limited to a certain number of tokens, FastInfoset
uses an in theory indefinitely-increasing counter for their token values. Hence,
FastInfoset uses an encoding for integers that permits any integer to be repre-
sented. This representation is often referred to as variable-length integer encod-
ing2 that allows storing an integer in a variable number of bytes. Small integers
require smaller number of bits and every token persists until the end of the coding
process.

Interesting to note is that FastInfoset, often abbreviated to FI, is in fact
an application of ASN.1 and is formally specified using ASN.1 formalisms and
Encoding Control Notation (ECN) encoding rules [69].

6.1.5 BiM

BiM (Binary MPEG format for XML) is another international standard defining
a generic binary format for encoding XML documents. The binary MPEG for-
mat for XML relies on schema knowledge between encoder and decoder in order
to reach high compression efficiency while also providing flexibility in regard to
XML fragmentation. The XML standard supports logical documents composed
of possibly several entities but it may be desirable to process one or more of the
entities or parts of entities while having no interest, need, or ability to process
the entire document [80]. Such parts are referred to as XML fragments.

Moreover, BiM defines means to compile and transmit schema knowledge in-
formation to enable the decoding of compressed XML documents without a priori
schema knowledge at the receiving side [52, 36, 57, 77].

BiM is used for example as the standard binary format for XML encoding in
the following technical specifications:

• MPEG-4 Part 20 or MPEG-4 Lightweight Application Scene Representation
(LASeR) and Simple Aggregation Format (SAF)
ISO/IEC 14496-20 [5, 24]

• MPEG-7 Systems
ISO/IEC 15938-1 [52]

• MPEG-21 Binary Format
ISO/IEC 21000-16 [39]

2Usually we differentiate between two variable-length integer encoding techniques. One
possibility is to store the length of the value as prefix and the the other possibility is to use a
continuation bit in each byte that indicates whether another byte is following.

30 CHAPTER 6. BINARY XML

• TV-Anytime
ETSI TS 102 822 [25]

• Digital Video Broadcasting (DVB)
ETSI TS 102 323 [28], ETSI TS 102 539 [26], ETSI TS 102 471 [27]

6.2 Efficient XML Interchange (EXI) Format

Many binary XML technologies were developed and specified in the past to over-
come the problems and use cases that have been identified with regard to XML
in restricted environments.

Some of the evolving formats are general purpose compression techniques
(e.g., gzip), some XML-aware compressors (e.g, XMill, WBXML), others schema-
aware techniques (e.g., ASN.1, BiM), and yet others combinations of the men-
tioned solutions (e.g., FastInfoset). Nevertheless, none of the techniques has been
used or selected as the efficient exchange format for XML by the community. Each
has its right to exist in a rather limited application range only.

In the year 2004, the Word Wide Web consortium, home of XML, has tasked
the XML Binary Characterization (XBC) working group to collect the demands
for a single binary XML format. The outcome was a list of properties [18], use
cases [19], measurements methodologies [35], and a XML binary characteriza-
tion [33] guiding to a single format solving the problem where the overhead of
generating, parsing, transmitting, storing, or accessing XML-based data may be
deemed too great for a particular application. The conclusions of the XML Binary
Characterization working group can be summarized as follows [33]:

• Binary XML is needed.

• Binary XML is feasible.

• The W3C must produce Binary XML.

• Binary XML must integrate with XML3.

Based on these conclusions, 18 extensive use cases, and 38 different format
properties and considerations, the EXI working group was chartered in 2005, the
same year XBC was closed. The Efficient XML Interchange (EXI) working group
is part of the W3C XML Activity and followed the XBC work. The main objective
of the EXI working group was to develop a format that allows efficient interchange
of the XML Information Set. The goals of the working group were:

3Binary XML must integrate with the existing XML stack and not require changes to XML
itself [33].

6.2. EFFICIENT XML INTERCHANGE (EXI) FORMAT 31

1. Fulfill the design goals of XML4 with the following exceptions:

a) The interchange format must be compatible with the XML Information
Set [78, 79] instead of being "compatible with SGML" (XML goal 3).

b) For performance reasons, the format is not required to be "human-
legible and reasonably clear" (XML goal 6).

c) Terseness5 in efficient interchange is important (XML goal 10).

2. Address all requirements and use cases from the XML Binary Characteri-
zation Working Group.

3. Maintain the existing interoperability between XML applications, as well as
XML specifications.

4. Establish sufficient confidence in the proposed format, in particular establish
confidence that the performance gains are significant, and the potential for
disruption to existing processors is small.

The EXI working group started by considering existing solutions and evaluated
each in terms of implementability and performance. As a result of the measure-
ments [81], the working group selected Efficient XML6 to be the basis for the
proposed encoding specification to be prepared as a candidate W3C Recommen-
dation. Follow-up work has centered around integrating features from the other
considered solutions, particularly variations for both more efficient structural and
value encodings [81].

In the following the main EXI format specification [73] concepts and ideas are
discussed.

6.2.1 Basic Concepts

The EXI specification [73] describes the basic concepts as follows.

"EXI achieves broad generality, flexibility, and performance, by unifying con-
cepts from formal language theory and information theory into a single, rela-
tively simple algorithm. The algorithm uses a grammar to determine what is
likely to occur at any given point in an XML document and encodes the most
likely alternatives in fewer bits. The fully generalized algorithm works for any
language that can be described by a grammar (e.g., XML, Java, HTTP, etc.);
however, EXI is optimized specifically for XML languages."

4http://www.w3.org/TR/2004/REC-xml-20040204/#sec-origin-goals
5When creating XML element names, first_name is better than fname because it’s clearer

and more human readable. Keeping element names short should not sacrifice human-readability.
6http://www.agiledelta.com/w3c_binary_xml_proposal.html

http://www.agiledelta.com/w3c_binary_xml_proposal.html
http://www.w3.org/TR/2004/REC-xml-20040204/#nameddest=sec-origin-goals

32 CHAPTER 6. BINARY XML

EXI Event Type Grammar Notation Event Content

Start Document SD
End Document ED

Start Element
SE (qname)
SE (*) qname
SE (uri : *)

End Element EE

Attribute
AT (qname)
AT (*) qname, value
AT (uri : *)

Characters CH value
Namespace Declaration NS uri , prefix , local-element-ns
Comment CM text
Processing Instruction PI name, text
DOCTYPE DT name, public, system, text
Entity Reference ER name
Self Contained SC

Table 6.1: EXI events

In this context, an EXI stream is an EXI header followed by an EXI body.
The EXI body carries the content of an XML instance, while the EXI header
communicates the options used for encoding the EXI body.

EXI disposes of a set of EXI events that may occur in an EXI stream. Table 6.1
depicts all event types, their associated grammar notation, and the associated
event content, if any. At this point, the representation of the event content item
value is of interest. A value item represents attribute or character data and uses
a string representation if no schema information is available, or is represented by
its associated (schema) datatype if available7.

The concept of a qualified name is of interest for further understanding. A
qualified name, or sometimes also qname/QName, defines a valid identifier for
elements and attributes. QNames are formally described by the W3C8 as:

QName ::= PrefixedName | UnprefixedName

PrefixedName ::= Prefix ’:’ LocalPart

UnprefixedName ::= LocalPart

The Prefix is used as placeholder for the namespace URI and the LocalPart
as the local part of the qualified name. A local part can be an attribute name or
an element name.

7EXI settings may overwrite the default representation
8http://www.w3.org/TR/REC-xml-names/#NT-QName

http://www.w3.org/TR/REC-xml-names/#nameddest=NT-QName

6.2. EFFICIENT XML INTERCHANGE (EXI) FORMAT 33

The sequence of EXI events in Figure 6.2 can be easily mapped to the struc-
ture of the XML document shown in Listing 5.1. Every document begins with
a Start Document (SD) and ends with an End Document (ED). We additionally
have Start Element (SE) and the associated End Element (EE) events, Charac-
ters (CH) and Attribute (AT) events with the associated event content. Grey
buckets represent structure information and colored buckets are used for con-
tent information. The color is determined by the associated qname (e.g., date,
category, subject, body). [66]

Figure 6.2: EXI Body stream for Listing 5.1

6.2.2 EXI Grammars

EXI is a grammar-based format, meaning that its knowledge-based encoding uses
a set of grammars. Grammars describe what is most likely to occur at any given
point in an EXI stream. Some grammars are very generic and applicable to any
XML document, fragment, and element. These are called built-in XML gram-
mars. Other grammars are derived specifically from XML schema knowledge and
are therefore called schema-informed grammars.
The two kinds of grammars may be used in combination with each other and essen-
tially behave the same. The only difference is that built-in grammars may evolve
over time to adapt themselves to a given XML instance while schema-informed
grammars remain the same over time. Hence, schema-informed grammars can be
re-used for various XML instances.

In EXI terminology, an EXI grammar consists of a set of grammar productions.
A grammar production, in turn, consists of an in this context unique event (e.g.,
StartElement event) and may lead to another grammar. Given that XML is not
a regular language [66], a single grammar cannot be used to represent an entire
XML event stream. Instead, an EXI coder uses a stack of grammars, one for each
element content model (just like an XML schema validator might do).

34 CHAPTER 6. BINARY XML

Built-in XML Grammars

Figure 6.3 depicts a built-in element grammar. We differ between StartTag and
Element content grammars. The StartTag grammar deals with events that happen
right after an element starts, such as namespace declarations and/or attributes.
Once, for instance, character events or another start element appears, the current
state moves on to an Element content grammar. An Element grammar anticipates
less events and hence less options that lead to less bits to indicate an event
transition.
The figure also outlines the stack of grammars showing a layer for DocContent,
SE(notebook), and SE(note) grammars.

Figure 6.3: Built-in element grammar for SE(note)

Moreover, the figure also outlines the evolution of built-in grammars. At the
instantiation phase of a built-in element grammar a small set of very generic
grammar events are available (e.g., AT(*) standing for any attribute and SE(*)
for any start element). When processing an XML instance more knowledge from
a given XML instance is retrieved and also used for further processing. An actual
XML instance adds dedicated events for attributes, start elements, as well as for
end element events. For instance Listing 5.1 leads to the following learned events
for the element note:

• AT(date)

• AT(category)

• SE(subject)

• SE(body)

6.2. EFFICIENT XML INTERCHANGE (EXI) FORMAT 35

The reason for doing so is to better reflect the actual element for any subse-
quent appearance. A second or third element note re-uses the learned events and
hence does not require to code the actual local name or namespace URI over and
over again.

An EXI processor disposes of a set of global grammars that are matched and
re-used according to the associated qualified name (e.g., note).

Schema-informed Grammars

Schema-informed grammars, in contrast to built-in grammars, do not evolve over
time. Figure 6.4 illustrates a schema-informed grammar for the element note
which in turn is of complexType Note (see Listing 5.2). EXI requires to sort
attributes in lexicographical order9 which on the one hand results in less gram-
mar states and on the other hand improves data compression. Moreover, it is
assumed that XML schema expresses the rules to which an XML instance con-
forms. Hence there is no need for grammar evolution which makes it also possible
to build schema-informed grammars once for multiple encoding and decoding pro-
cesses. XML information that do respect XML schema information can still be
represented by schema-informed grammars but less efficient (for reasons of sim-
plicity the figure does not illustrate these grammar states and transitions).

Figure 6.4: Strict schema-informed grammar for StartElement(note)

9When in EXI it is stated that strings are sorted in lexicographical order, it is done so char-
acter by character, and the order among characters is determined by comparing their Unicode
code points. In the case of qnames sorted lexicographically means first by local-name, then by
uri. [73]

36 CHAPTER 6. BINARY XML

The thesis does not go into too much details about how schema information are
to be used to create schema-informed EXI grammars. The EXI specification [73]
explains the process in a very detailed manner. Nonetheless, we will come back
to grammars and how grammars are processed and used in an efficient manner
later in this thesis (see Chapters 9 and 10).

Grammar Event Codes

EXI processors represent a given event such as a start element or an attribute
by indicating the appropriate event serializing an event code first followed by the
according event content. Each event code is represented by a sequence of one,
two, or three parts that uniquely identifies an event (see event code 2.7.0 for CM
production in Figure 6.5).

Each grammar production in an EXI grammar is linked with a unique event
code in this given context that approximates the likelihood the associated pro-
duction rule will be matched in regard to other productions.

Figure 6.5: Grammar Event Code Tree for grammar state StartTag1 in Figure 6.4

An EXI event code tree is similar to a Huffman tree [38] in that shorter paths
are generally used for symbols that are considered more likely. However, event
code trees are much simpler. While a Huffman tree in regard to its depth is
usually unrestricted, an event code tree is shallow and contains at most three
parts, where each part is a non-negative integer.

Event codes in an EXI grammar are assigned to productions in such a way
that shorter event codes are used to represent productions that are more likely to
occur (i.e., AT(category) and AT(date)). Conversely, longer event codes are used
to represent productions that are less likely to occur. EXI grammars are designed

6.2. EFFICIENT XML INTERCHANGE (EXI) FORMAT 37

in a way that the average number of bits needed to represent each production or
respectively the according event code is less than that for a grammar in which more
likely and less likely productions are not distinguished. The following Table 6.2
illustrates this principle via a comparison between a naive event code assignment
example and the approach EXI uses for event code assignment.

Table 6.2: Naive Event Code Assignment vs. EXI Event Code Assignment

Event Indicator #bits Part Event Code #bits

AT(date) 0 4 One 0 2
AT(category) 1 1
EE 2 Two 2 0 2 + 3
AT(*) 3 2 1
NS 4 2 2
SC 5 2 3
SE(*) 6 2 4
CH 7 2 5
ER 8 2 6
CM 9 Three 2 7 0 2 + 3 + 1
PI 10 2 7 1

#distinct values 11 3 6 2

On the left side of the table, where productions are not separated according
to their probability, a 4-bit indicator code is needed to represent each entry. On
the right hand side of the table, on the other hand, code lengths vary from 2
bits to 6 bits since productions are grouped based on their likelihood to occur.
Assuming the content model for the element being encoded corresponds to the
sequence AT(category) and AT(date) (i.e., the element declares two attributes)
then the encoding of all the event codes will be 4 bits shorter using the second
table.

Figure 6.5 and Table 6.2 depict the initial schema-informed grammar state
"StartTag1" grammar event code tree with the full set of productions for the
element note. The EXI specification enables or disables the capacity for the
preservation of a certain type of information. One can configure the so called
EXI fidelity options (see Table 6.3) that may prune events that are not required
from the grammars, improving data compression and processing efficiency. Hence,
applications can use the preserve option to specify the set of fidelity options they
require. This may even lead to prune all brunches from part two and three
(e.g., EE, AT(*), NS, SC, SE(*), CH, ER, CM, and PI) so that grammar produc-
tions shrink to one part or respectively to one event code part only. This is the
case for the EXI option strict, using a strict interpretation of the schemas and
omitting preservation of fidelity options, such as comments, processing instruc-
tions, namespace prefixes and any deviant information from the schemas.

38 CHAPTER 6. BINARY XML

Table 6.3: Fidelity options

Fidelity option Default Value Effect

Preserve.comments false Productions of CM events
are pruned from grammars

Preserve.pis false Productions of PI events
are pruned from grammars

Preserve.dtd false Productions of DOCTYPE and ER events
are pruned from grammars

Preserve.prefixes false NS events are pruned from grammars
and namespace prefixes are not preserved

Preserve.lexicalValues false Lexical form of element and attribute values
is not preserved

6.2.3 EXI String Table

EXI uses a string table to assign "compact identifiers" to string values. String
values found in the string table are represented using the associated compact
identifier instead of representing the string "literally" again. Some content items
(see Table 6.1) are encoded using a string table:

• uris

• prefixes

• uri and local-name in qnames

• values

The string table is initially pre-populated with string values that are likely to
occur and is dynamically expanded to include additional strings while processing
an actual document.

The EXI string table is organized into partitions (see Figures 6.6 and 6.7),
namely uri, prefix, local-name, and value partition. One can see that an additional
string entry in the uri partition does not affect the value partition and vice-versa.
This allows the identification of each entry in a given partition with a short code.
Moreover, depending on the purpose of the partition, each partition is optimized
for frequent use of either compact identifiers or string literals. Uri and prefix
content items are expected to contain a relatively small number of entries, used
repeatedly throughout the document, and are optimized for the frequent use of
compact identifiers. Local names and all string value content items are optimized
for the frequent use of string literals.

Figure 6.6 exemplary illustrates the initially pre-populated entries when XML
schema information (i.e., notebook XML schema in Listing 5.2) is provided for the

6.2. EFFICIENT XML INTERCHANGE (EXI) FORMAT 39

uri, prefix, and local-name partitions. The uri partition is pre-populated with the
four default entries while the example schema targets the default empty string
namespace URI. The prefix partition is pre-populated with the default entries
according to the EXI specification [73]. Also, when an XML schema is provided
the local-name partitions are pre-populated with the local name of each attribute,
element, and type declared in the schema, sorted lexicographically and grouped
according to the namespace URI in use. Further local-name entries are appended
in the order they appear in the actual XML instance (no additional sorting is
applied).
Given that the example schema uses the default empty string namespace URI it
should be clear that the notebook sample assigns seven local-name entries, such as
Note and body, to the empty string (i.e., "") URI. Whenever local-name and/or
uri information items occur again, the compact identifier is used instead. For
example to indicate a local-name in the local-name partition of the empty string
a 3-bit compact identifier is used.

The overall value partition (see Figure 6.7) is initially empty and grows while
processing an XML instance. Attribute and Character content values of the type
String are assigned to this partition and it is possible to restrict the total number
of value items for memory restricted devices (see EXI option valuePartitionCapac-
ity and valueMaxLength10). The figure makes use of of the previously introduced
Notebook example (see Listing 5.1) and assume that all value items are repre-
sented as String, as it is the case with schema-less grammars.

Figure 6.7 illustrates that value content item strings can be indexed from two
different partitions, exactly one local value partition and a global value partition.
The global value partition shown on the right hand side has indices to all string
value content items. In our example we have six string entries (i.e., "2007-09-12",
"EXI", ...) with global indices ranging from 0 to 5. Hence a global value hit can
be represented with a 3-bit compact identifier. On the left hand side of Figure 6.7
we have four local value partitions grouped according to the associated qualified
name. For example to represent the compact identifier for the string "2007-09-
12" that also belongs to the qualified name date we use a 1-bit compact identifier
only. Hence, the reason for differentiating between global and local partition is
to signal hits in fewer bits.

We speak about string table hits in general if a string matches, while misses
signalize that a given string was not found in the table. Hence, a local value hit
indicates that the associates qualified names also corresponds with the current
qualified name (e.g., "Shopping List" belongs to the qualified name subject).
Any other hit refers to a global value hit.11

10http://www.w3.org/TR/exi-primer/#exiOptions
11This section describes EXI String Tables at a conceptual level. The exact bit representation

of table misses and identifiers is not presented, but is described in full in the EXI specifica-
tion [73].

http://www.w3.org/TR/exi-primer/#nameddest=exiOptions

40 CHAPTER 6. BINARY XML

Figure 6.6: String Table - Entries in uri, prefix, and local-name Partitions

6.2. EFFICIENT XML INTERCHANGE (EXI) FORMAT 41

Figure 6.7: String Table - (Final) Entries in Value Partition

6.2.4 Variable-length Unsigned Integer Coding

The Unsigned Integer datatype representation in EXI supports unsigned integer
numbers of theoretically arbitrary magnitude. It is represented as a sequence of
octets terminated by an octet with its most significant bit set to 0 (zero). The
value of the unsigned integer is stored in the least significant 7 bits of the octets
as a sequence of 7-bit sequences, with the least significant byte first [73]. For
example, the 8-bit sequence 00000010 is interpreted as the numeric value 2 in
decimal notation and the two 8-bit sequences 10000010 00000001 are interpreted
as the binary code 0000001 0000010 (removing the leading continuation bit) and
the numeric value 130 in decimal notation.

The capability of encoding theoretically arbitrarily large numbers on the one
hand and smaller numbers with fewer bits on the other hand is not new and
has been used in other binary XML formats already (e.g., Fast Infoset [69] and
BiM [52]). What makes it outstanding is the fact that EXI applies this concept
to different areas such as the string table and datatype representations.

6.2.5 EXI Compression

EXI can use additional computational resources to achieve higher compaction.
EXI compression combines knowledge of XML with a widely adopted, standard
compression algorithm to achieve higher compression ratios than would be achiev-
able by applying compression to the entire stream [73]. It multiplexes an EXI
stream of heterogeneous data elements into channels of more homogeneous data
elements that compress better together similar to the XMill compressors [49].

Figure 6.2 depicts an EXI Body Stream where no EXI compression is in use
while Figure 6.8 shows the complementing stream when EXI compression is used.
Moreover, byte-aligned data is more amenable to compression algorithms com-
pared to unaligned representations because most compression algorithms operate

42 CHAPTER 6. BINARY XML

Figure 6.8: EXI Compression

on series of bytes to identify redundancies in the octets12. Hence, whenever EXI
compression is used, event codes and content items of EXI events are encoded as
aligned bytes.

XML instances and respectively also EXI instances can be treated as a com-
bination of structure and content information. The content information can be
further divided in different sections according to the context (surrounding struc-
ture as indicated by a qname). EXI treats XML instances this way and uses these
implied partitions, referred to as channels, to provide blocked input to a standard
compression algorithm. This grouping of similar data increases compression effi-
ciency.

Moreover, EXI compression splits a sequence of EXI events into a number of
contiguous blocks of events. Events that belong to the same block are transformed
into lower entropy groups of similar values called channels, which are individually
well suited for standard compression algorithms. Figure 6.8 illustrates that events
inside each block are multiplexed into channels. The first channel of each block is
the structure channel. The remaining channels in each block are value channels.
The values of the Attribute (AT) and Character (CH) events are organized into
separate channels based on the qname of the associated attribute or element (in
a similar way as in XMill, see Section 6.1.1). To reduce compression overhead,
smaller channels are combined before compressing them, while larger channels are
compressed independently [73, 66].

Streaming EXI that makes use of EXI compression requires to buffer a block
before being able to actually encode/decode the data. The first channel of the
block is structural information such as elements and attributes while all other
channels are value channels containing attribute values and/or character informa-
tion items. The size of the block can be configured (see EXI option blockSize).

12Formats like BiM for instance do not provide the same performance when dealing with large
documents because a bit-aligned stream cannot be compressed as well as byte-aligned data.

6.3. EXI METRICS 43

6.2.6 Summary

Summarising, it can be said that the Efficient XML Interchange format and its
effectiveness is based on the following principles and techniques:

• Grammars describe what is most likely to occur at any given point when
processing data. Moreover, grammars may be optimized using XML schema
knowledge (schema-informed grammars) but do not depend on schema infor-
mation at all. That said, XML instances matching XML schema definitions
are represented more efficiently than XML instances that highly deviate
from the expected data. In contrary to other formats, such as BiM and
ASN.1, the XML instances do not need to match the XML schema to be
representable in EXI.

• Event codes identify likely events with shorter paths than events that are
considered less likely (similar to Huffmann tree but much simpler to com-
pute).

• Value string tables offer local (based on QName) and global value hits to
keep compact identifiers relatively small.

• Variable-length unsigned integer coding (used in structure and content value
coding) reduces representation size (as in FastInfoset and BiM).

• QName-based compression (similar to XMill) works very well mainly for
larger documents.

In general, most of the used techniques are not new. What is new and makes
the EXI format outstanding is the ability to combine all the techniques smoothly
into a single format. All principles nicely engage and do not stand by itself.

6.3 EXI Metrics

On the one hand, EXI metrics presented in the following subsections are intro-
duced to describe properties and/or the complexity of an EXI stream. On the
other hand, EXI metrics offer a tool to identify problem areas by illustrating why
EXI in some cases works not as well as expected. Hence, it discloses the reason
of a bad performance in regard to processing and/or compaction and highlights
room for improvement.

6.3.1 EXI Content Density

Similar to XML Content Density (see Section 5.2), the EXI Content Density
describes the proportion of EXI structure and the actual value content.

44 CHAPTER 6. BINARY XML

We differ between schema-informed and schema-less EXI Content Density de-
pending on whether XML schema knowledge is available and should be taken into
account. Different than probably expected, the special XML attributes xsi:type
and xsi:nil do not account for value content but for structure given that these
attributes among other things guide structure coding.

The EXI content density (see Equation (6.1)) bases upon channels as de-
scribed in the EXI specification and is computed as follows:

1. Gather all value data (in Bytes) that belongs to EXI value channels13 of the
Attribute (AT) and Character (CH) events (see EXI Values).

2. The content density is the ratio of the sum in the previous step and the size
of the entire EXI document in Bytes (see EXI Size).

EXI Content Density =
EXI Values
EXI Size

(6.1)

The following example explains the metric by means of the example EXI doc-
ument for Listing 5.1. For simplicity the EXI stream without schema information
is used. The complete encoding details with a step by step approach can be found
in the EXI Primer [66] document14.

Example 6.3.1 (Content Density Computation for EXI document in List-
ing 5.1).

1. Value data items are

• AT(date): "2007-09-12" as string

• AT(category): "EXI" as string

• AT(date): "2007-07-23" as string

• CH: "EXI" as global value hit string

• CH: "body" as string

• AT(date): "2007-09-12" as local value hit string

• CH: "Shopping List" as string

• CH: "milk, honey" as string

and account for 72 Bytes.

13http://www.w3.org/TR/exi/#ValueChannels
14http://www.w3.org/TR/exi-primer/#encoding

http://www.w3.org/TR/exi-primer/#nameddest=#encoding
http://www.w3.org/TR/exi/#nameddest=#ValueChannels

6.4. DISCUSSION 45

2. The size of the entire EXI document in Bytes is 124.
EXI CD = 72

124 = 59%

In comparison with the schema-informed EXI document that has an EXI Con-
tent Density of 56

61 = 92% the difference is huge. This discrepancy can be explained
by the fact that in the schema-informed case almost no structure information are
to be encoded given that these information are shared between encoder and de-
coder. Moreover, it also discloses that improvements, if any, are to take place for
the value channels.

6.3.2 EXI Efficiency

The EXI content density characterises the percentage of EXI values versus EXI
structure. The ratio between EXI and XML size illustrates how well EXI is
able to compress the XML instance overall. The missing link is how to detect
where EXI datatype representations and/or structure can be improved. The EXI
Datatype Efficiency (see Equation (6.2)) illustrates where improvements in regard
to datatypes and their representations are possible while the EXI Structural Effi-
ciency metric (see Equation (6.3)) illustrates improvements in regard to structural
coding (e.g., benefit of using XML schema knowledge).

EXI Datatype Efficiency = 1−
EXIsize

XMLsize
∙ EXI Content Density (6.2)

EXI Structural Efficiency = 1−
EXIsize

XMLsize
∙ (1− EXI Content Density) (6.3)

Both metrics highlight good performance if efficiency results get close to 1 (or
respectively to 100%). Chapter 8 uses these information to identify XML/EXI
test cases where an optimized datatype representation makes the most sense and
presents optimized datatype representations.

The following chapters will identify what a given EXI content density and the
according EXI Efficiency results reveal about EXI’s efficiency regarding compres-
sion and processing time.

6.4 Discussion

In this chapter we have on the one hand introduced many binary XML candidates
and on the other hand put the focus on a rather recent development, namely the

46 CHAPTER 6. BINARY XML

Efficient XML Interchange (EXI) format. Table 6.4 gives a summary of vari-
ous candidates, its properties, and why this leads to set the focus on the EXI
format and not on other formats. The selected criteria (e.g., data compression,
processing efficiency, and XML compatibility) are of huge importance for apply-
ing a format to the embedded domain but also for the acceptance in the XML
community. Actual performance measurements regarding data compression and
processing time will be presented later in this thesis when we take a closer look
at an implementation (see Chapter 7).

Compression in Table 6.4 is probably the most important criterion. When
working with XML the size of the XML document is a huge drawback. Further,
small and tiny documents are very common in the embedded domain. Hence,
gzipped XML does not meet the data compression requirement given that for
small XML documents a gzipped document becomes even larger. FastInfoset (FI)
also fails due to the focus on performance rather than compression.

Processing time and efficiency is another criteria that is missed by gzipped
XML given that an additional processing step (packing or unpacking) is added,
compared to XML.

All listed candidates allow a small code footprint implementation that is cru-
cial for restricted and very limited devices. Nevertheless just a few candidates can
deal with XML schema definitions and may make use of the given information
to provide typed data access. Further, supporting invalid XML instances accord-
ing to a given XML schema (deviant data) is also very important and allows a
binary XML format to smoothly integrate into the XML stack and its current
applications.

XML compatibility comprises all features that XML offers, meaning that the
full conformance to the XML Information set needs to be available. Many can-
didates miss this requirement, lacking XML’s built-in features such as names-
pace/prefix preservation, and support for processing instructions and comments.

The capability of streaming is important for device classes that may not be
able to hold all data in memory that needs to be sent, but instead produce the
data on-the-fly in a streaming fashion. Further, on the receiver side interpreting
data can be started before the entire stream has been received which speeds up
performance also.

Royalty-free is a non-technical aspect and refers to the right to use material
or intellectual property without the need to pay royalties. Any W3C Recommen-
dation is under a royalty-free patent license, allowing anyone to implement them.
BiM is the only candidate in Table 6.4 that does not meet this requirement.

EXI is the only candidate that meets all requested requirements. Hence, EXI
will be used as the binary XML format and optimizations will be developed in
embedded domain specific areas (see Part III).

6.4. DISCUSSION 47

XMLgzip FI ASN.1 BiM EXI
Compression 6= 6= X X X
Processing Efficiency 6= X X X X
Small Footprint X X X X X
Schema-informed (Typed) 6= X X X X
Schema Deviations X X 6= 6= X
XML Compatibility X X 6= 6= X
Streamability 6= X X X X

Royalty Free X X X 6= X

Table 6.4: Requirements of binary XML formats

EXI Application Range

The application of XML processing in the embedded domain ranges from powerful
desktop and server machines to very limited micro-controllers. It is crucial to have
a single and continuous data exchange format throughout the entire application.

XML, as also EXI, base upon the XML Information Set (XML Infoset), which
describes an abstract data model of an XML document. XML and EXI in turn are
specific serialization formats thereof. Hence, the expressiveness of both formats
is the same and no sub- nor super-setting is required when going from one format
to the other. Given EXI’s XML Compatibility, the exchange format smoothly
integrates into the existing XML stack and allows re-using existing techniques,
libraries, and tools.

In summary it can be said that EXI provides the possibility of efficiently
exchanging semi-structured data in the embedded domain. The data is serialized
differently, but due to XML Infoset no mapping nor any other data conversion is
required.

Part III

Optimization of XML
Technologies

49

Chapter 7

Efficient Feature-complete EXI
Processor

Chapter 6 introduces and analyzes several binary XML formats and recommends
EXI as the semi-structured data exchange format in regard to embedded domain
specific requirements. In this context, Section 6.2 introduces key features of the
EXI specification [73] and describes the format on a more theoretical basis.

This chapter in turn elaborates how an actual EXI processor may be realized
and illustrates efficient implementation concepts and techniques. The outcome of
this work identifies EXI concepts and highlights implementation strategies. More-
over, it offers appropriate solutions for desktop/server environments and identifies
factors relevant for the embedded domain. Several possible technical solutions are
sketched while at least one solution has been implemented. The overall outcome
is a software library, mainly meant to run on desktop environments, offering pow-
erful XML processing with the aid of EXI technology.

A feature-complete implementation is realized with the demand to provide
good processing performance in comparison to existing XML solutions. Never-
theless, the focus is to be feature-complete and does not take into account embed-
ded domain requirements such as being small in regard to code footprint. The
following chapters will make use of what has been learned to further optimize and
apply the techniques on more restricted device classes. Hence, Chapter 8 analyzes
data compression, Chapter 9 considers how to reduce code footprint, Chapter 10
will take a closer look on optimizing processing performance, and Chapter 11
considers memory-constrained querying.

The term "feature-complete processor" is generally understood as a flexible
and generic processor that is aimed to support the full set of format features (in
our case EXI features). Moreover, all possible combinations are meant to work

51

52 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

simultaneously which makes it possible to smoothly integrate in demanding and
mostly powerful environments.

EXIficient1 is the mentioned fully conforming EXI implementation devel-
oped as an open source project, implementing the W3C Efficient XML Inter-
change (EXI) format specification in the Java programming language. With the
support of Siemens Corporate Technology, it was possible to develop the first,
and so far only, open source EXI processor supporting the full set of EXI fea-
tures. Siemens’ application background, especially in the area of smart energy
profile [7] and vehicle-to-grid [3, 4] (a system in which electric vehicles communi-
cate with the power grid), was very beneficial for this work. Real world use cases
influenced the development and led to the proposed solutions.

The reasons for launching this project were manifold. First of all, it was and
still is very beneficial for the EXI working group, and the contribution as an ac-
tive EXI working group member, to provide actual test data and implementation
experience. Second, being able to provide actual test data and real measurements
to working group members and people in the outside world is far more convincing
than doing paper work only.
Beyond the proof of concept for various proposed extensions and technologies,
the W3C charter explicitly required at least two interoperable implementations2

before the EXI specification was able to move to the last W3C standardization
step, becoming a W3C recommendation. EXIficient is one of three implementa-
tions that successfully passes all EXI interoperability tests and is often qualified
as the de-facto standard implementation.

7.1 Implementation Techniques

XML (EXI) applications range from desktop/server applications to very restricted
devices such as embedded domain microcontrollers. Due to its flexibility and its
nature a fully conforming EXI processor also demands more resources. Hence, it
is more applicable to desktop and/or server machines than to microcontrollers.
In contrast, a dedicated EXI processor (see Chapter 10) is meant to work for a
given set of uses cases only, targets the embedded domain and runs on domain-
specific microcontrollers.

Figure 7.1 illustrate requirements and dependencies of an EXI processor such
as EXIficient. EXI is a grammar-based format. EXI grammars are the core
component of any EXI processor and guide both, the structure and the content
coding process. Grammars can be created while processing an actual XML in-
stance (built-in XML grammars) or are derived from schema knowledge. The
process of building schema-informed grammars usually requires a schema proces-

1http://exificient.sourceforge.net
2http://www.w3.org/XML/EXI/implementation-report

http://www.w3.org/XML/EXI/implementation-report
http://exificient.sourceforge.net

7.1. IMPLEMENTATION TECHNIQUES 53

Figure 7.1: EXI Overview - Fully conforming EXI Processor

sor. EXIficient for instance uses Xerces23, a fully conforming XML schema 1.0
processor in the Apache Xerces family. There are many other XML schema pro-
cessor candidates available in various programming languages such as Sun’s XML
Schema Object Model (XSOM) library in Java. The reason for selecting Xerces is
of course stability and high profile but also a feature that is called "whatCanGo-
Here". Xerces’ XSCMValidator offers a method called whatCanGoHere(...) that
reports all possible elements and/or attributes at any given point in time. This
is very beneficial given that it matches how EXI grammars work. At any point
in time when processing an EXI stream the possibilities of future events (such as
elements and attributes) differ and define the number of events and respectively
influence the actuals bits and bytes of the EXI stream.

The application programming interface (API) serves as an interface between
different software programs and facilitates their interaction, similar to the way
the user interface facilitates interaction between humans and computers.
EXIficient supports widely used XML APIs such as Simple API for XML (SAX [12]),
Document Object Model (DOM [56]), and Streaming API for XML (StAX [31])
that was meant to overcome some issues with the first two programming inter-
faces.

All so far mentioned APIs work on a textual basis. This means that data

3http://xerces.apache.org/xerces2-j/

http://xerces.apache.org/xerces2-j/

54 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

is passed and reported as a string value (e.g., "12.34") even if it is clear from
schema knowledge that we deal with a float value for example. For XML and
XML processors, this does not cause any issues given that an XML representation
is represented as a sequence of characters anyway. Feeding an EXI processor
with string values or requiring to report string values on decoder side demands
converting the internally used typed representation (e.g., float or integer) back
and forth from/to character representations. We will get back to this topic in
Chapter 10 when we discuss what makes EXI processors more efficient in regard
to processing cycles but also in regard to code footprint and memory consumption.

The EXI specification describes in a very detailed way how XML information
is to be transformed to EXI and vice versa. Nevertheless, how this is technically
realized is kept open to encourage people to come up with their best solution for
their uses cases and environments.

In the following sections implementation concepts and details of the EXI pro-
cessor EXIficient are discussed. Note, many techniques have been influenced by
the fact that EXIficient is fully-conforming and being realized in the Java pro-
gramming language. We will see more implementation approaches in the following
chapters (e.g., Chapter 10) that take into account other use cases and require-
ments.

7.1.1 Element Context Stack

The EXI processor EXIficient uses a stack for handling XML documents. A stack
entry for each element content model, when processing an EXI stream, is used.
This means that when traversing (processing) an element of the XML instance
tree a corresponding stack item per depth is allocated. Moreover, EXI allows
representing XML instances with a valid root element (i.e., EXI document) and
also XML instances that use any other XML element (i.e., EXI fragment4). Hence
we have one initial additional stack item telling whether we deal with an XML
document or XML fragment. At most XML tree depth+1 number of items are on
the stack. Such a stack item is composed of two information tuples, the associated
grammar and the qualified name of the given element (see Figure 7.2).

The stack of grammars is necessary to match XML event streams. Given that
XML is not a regular language, a single grammar cannot be used to represent an
entire XML event stream. The top grammar defines the current state and the
likelihood of certain attributes, elements, characters and other XML information
items. Every time we process a new start element a new grammar is pushed on
the stack while end element events pop the stack item again.

4XML fragment is a general term to refer to a part of an XML document, see http://www.
w3.org/TR/exi/#key-fragmentOption

http://www.w3.org/TR/exi/#nameddest=#key-fragmentOption
http://www.w3.org/TR/exi/#nameddest=#key-fragmentOption

7.1. IMPLEMENTATION TECHNIQUES 55

<<Java Class>>

ElementContext
com.siemens.ct.exi.core

ElementContext(QNameContext,Grammar)

getQNameAsString():String

Figure 7.2: EXIficient ElementContext

As mentioned the initial stack level always consists of either the Document or
Fragment grammar depending on whether we deal with an XML document or
fragment. When no schema information is available, all other grammars are
Built-in Element grammars. If schema information is available, we deal with
a combination of either schema-informed element grammars, type grammars, and
Built-in Element grammars.

The qualified name information item of the stack entry represents the qualified
name of the XML element. For the sake of processing performance, we introduced
the concept of a qualified name context.

7.1.2 Qualified Name Context

The overall concept of EXI are qualified names. In Section 6.2, we have explained
that string tables are linked to qualified names, as well as compression channels,
EXI grammars, global attributes, and elements.

In general, the implementation strategy to link grammars, string tables, and
compression channels to a given qualified name separately from each other seems
applicable. Another open source implementation, namely OpenEXI5, chose to
do so. This separation has the advantage that different technical concepts (e.g.,
string tables and compression channels) can be modified and revised in parallel.
Given that no interconnection exists, revising one technique does not affect the
other technique. The only commonality is the qualified name. Nevertheless, let’s
sketch an example EXI coding process of a string value that is also compressed
using EXI compression. First of all this means that for a given string value the
associated list of local value entries is retrieved (using the qualified name) to check
whether we can represent the value as a local value hit. Afterwards, the same
qualified name is used to retrieve the right compression channel (again using the
qualified name). This processing cycle shows that splitting qualified name relevant
concepts is a valid approach but it also seems to have certain shortcomings.

From the processing performance perspective, it seems more reasonable to
have a single context of each qualified name. From this unique context all referring
components are linked. Hence EXIficient uses this technique based on the concept
of a QNameContext.

5http://openexi.sourceforge.net/

http://openexi.sourceforge.net/

56 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

The QNameContext in Figure 7.3 first of all contains information about the
qualified name in the form of local-name and namespace URI string. Further,
it allows one to retrieve the actual namespace ID and local-name ID used in
the EXI stream. EXI encodes namespace URIs and local-names at most once
as string (e.g., "http://www.w3.org/2001/XMLSchema") and uses compact IDs
(e.g., 3) any other time. This improves compression on the one hand and pro-
cessing performance on the other hand. Moreover, due to IDs fast integer number
comparisons are possible instead of using slower string comparisons.

<<Java Class>>

QNameContext
com.siemens.ct.exi.context

QNameContext(int,int,QName,int)

getQName():QName

getDefaultQNameAsString():String

getQNameID():int

getLocalNameID():int

getLocalName():String

setGlobalStartElement(StartElement):void

getGlobalStartElement():StartElement

setGlobalAttribute(Attribute):void

getGlobalAttribute():Attribute

setTypeGrammar(SchemaInformedFirstStartTagGrammar):void

getTypeGrammar():SchemaInformedFirstStartTagGrammar

getSimpleTypeSubtypes():List<QNameContext>

setSimpleTypeSubtypes(List<QNameContext>):void

getNamespaceUriID():int

getNamespaceUri():String

compareTo(String):int

toString():String

equals(Object):boolean

hashCode():int

<<Java Interface>>

UriContext
com.siemens.ct.exi.context

getNamespaceUriID():int

getNamespaceUri():String

getNumberOfQNames():int

getNumberOfPrefixes():int

getPrefix(int):String

getPrefixID(String):int

getQNameContext(int):QNameContext

getQNameContext(String):QNameContext

<<Java Interface>>

SchemaInformedFirstStartTagGrammar
com.siemens.ct.exi.grammars.grammar

getTypeName():QName

setTypeName(QName):void

setTypeCastable(boolean):void

isTypeCastable():boolean

setNillable(boolean):void

isNillable():boolean

setTypeEmpty(SchemaInformedFirstStartTagGrammar):void

getTypeEmpty():SchemaInformedFirstStartTagGrammar

<<Java Class>>

Attribute
com.siemens.ct.exi.grammars.event

Attribute(QNameContext,QName,Datatype)

Attribute(QNameContext)

getQNameContext():QNameContext

getQName():QName

toString():String

hashCode():int

equals(Object):boolean

<<Java Class>>

StartElement
com.siemens.ct.exi.grammars.event

StartElement(QNameContext)

getQNameContext():QNameContext

getQName():QName

setRule(Grammar):void

getRule():Grammar

toString():String

hashCode():int

equals(Object):boolean

~typeGrammar 0..1

0..1

~grammarGlobalAttribute

0..1 0..1

~grammarGlobalElement

0..1

~simpleTypeSubtypes

0..*

Figure 7.3: EXIficient QNameContext

Figure 7.3 also depicts the relations of a qualified name context. First
of all, any QNameContext refers to the associated URI context (URIContext).
A URIContext may consist of multiple QNameContexts while a QNameContext
always belongs to exactly one URI. Further, we see an optional list of sim-
ple sub-types as a self-reference and a reference to a global type grammar

7.1. IMPLEMENTATION TECHNIQUES 57

(SchemaInformedFirstStartTagGrammar). The global type grammar is present if
the associated qualified name possesses a type grammar. When schema-informed
grammars are used, this is the case for all schema types (e.g., xsd:date and
xsd:int) and global types defined by a user.

Additionally, we see an optional reference to a global attribute (Attribute)
and/or a global element (StartElement) grammar. These information is provided
if the XML schema defines such a global attribute and/or element definition.

The qualified name context is a generic concept meaning that it is applicable
to schema-informed and schema-less grammars. EXI uses schema information to
pre-populate qualified names and assumes them to be shared knowledge between
encoder and decoder.
Qualified names stemming from XML schema (due to pre-population) are static
and can be shared over multiple coding processes.
Qualified names (and respectively QNameContexts) stemming from an XML in-
stance that either does not have appropriate schema information for this qualified
name or does not have schema information at all are different. The qualified name
context bases on a given XML instance and vanishes after processing this XML
document (i.e., it cannot be shared over multiple XML instances). By definition,
those qualified names do not have neither EXI simple subtypes nor global types.
Further, global attribute types are not available. A global element grammar based
on the evolving Built-in Element grammar is created for each qualified name that
does not have a global element grammar stemming from XML schema already.

7.1.3 Grammars

EXI Grammars represent a set of productions that are available at any given
point in time when processing an EXI stream. Each production in turn consists
of an event that leads to a grammar again (see Figure 7.4: getNextRule() in
Production Interface). Grammar productions may be composed of one, two, or
three event code parts, depending on the likelihood of the event production. The
more likely an event the less event code parts and the more compact the event
can be represented (see Grammar Event Codes in Section 6.2.2).

The targeted grammar may be the same grammar as the starting grammar.
In case of EndElement (EE) and EndDocument (ED) events, there is no following
grammar. In case of EndDocument, the stream has been successfully processed.

While processing EXI streams we have several grammars on the stack match-
ing the nesting XML elements and sub-elements. This means that each element
has a grammar counterpart. A StartElement (SE) event pushes a grammar or
respectively an ElementContext on the stack while EndElement (EE) events pop
the top grammar from the stack again.

In addition to events that do have data associated with it (e.g., StartDocu-
ment, EndDocument, StartElement, EndElement, Comments, Processing Instruc-

58 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

<<Java Interface>>

Event
com.siemens.ct.exi.grammars.event

getEventType():EventType

isEventType(EventType):boolean

<<Java Interface>>

DatatypeEvent
com.siemens.ct.exi.grammars.event

getValueType():QName

getDatatype():Datatype

<<Java Interface>>

Grammar
com.siemens.ct.exi.grammars.grammar

isSchemaInformed():boolean

getNumberOfEvents():int

hasSecondOrThirdLevel(FidelityOptions):boolean

get2ndLevelEventCode(EventType,FidelityOptions):int

get3rdLevelEventCode(EventType,FidelityOptions):int

get2ndLevelEvent(int,FidelityOptions):EventType

get3rdLevelEvent(int,FidelityOptions):EventType

get1stLevelEventCodeLength(FidelityOptions):int

get2ndLevelCharacteristics(FidelityOptions):int

get3rdLevelCharacteristics(FidelityOptions):int

addProduction(Event,Grammar):void

learnStartElement(StartElement):void

learnEndElement():void

learnAttribute(Attribute):void

learnCharacters():void

getElementContent():Grammar

getNumberOfDeclaredAttributes():int

getLeastAttributeEventCode():int

lookForEvent(EventType):Production

lookForStartElement(String,String):Production

lookForStartElementNS(String):Production

lookForAttribute(String,String):Production

lookForAttributeNS(String):Production

lookFor(int):Production

<<Java Interface>>

BuiltInGrammar
com.siemens.ct.exi.grammars.grammar

<<Java Interface>>

SchemaInformedGrammar
com.siemens.ct.exi.grammars.grammar

addTerminalProduction(Event):void

setLabel(String):void

getLabel():String

duplicate():SchemaInformedGrammar

<<Java Interface>>

Production
com.siemens.ct.exi.grammars.production

getEvent():Event

getNextRule():Grammar

getEventCode():int

Figure 7.4: EXIficient Grammars

tion, . . .) we also know events that deliver type information (e.g., Characters and
Attribute events, see Interface DatatypeEvents in Figure 7.4). Type information
is used to represent the data of attributes and characters more efficiently. With
the type information knowledge that "123" is an unsigned integer value, the data
can be represented with 1 Byte in EXI instead of using 3 Bytes for the actual
string characters.

7.1.4 String Table

String tables are used in memory-constrained areas allowing a compact represen-
tation of repeated string values. Re-occurring string values are represented using
an associated compact identifier rather than encoding the string literally again.
In EXI, when a string value is found in the string table (i.e., a string table hit)
the value is encoded using a compact identifier. Only if a string value is not found
in the associated table (i.e., a string table miss) the string is encoded as String
and a new compact identifier is introduced.

EXI uses string tables for the following four information items:

7.1. IMPLEMENTATION TECHNIQUES 59

• uri

• prefix

• local-name

• value

The following string table characteristics apply to value strings that belong
to attribute and character values only. Uri, prefix, and local-name string tables
work slightly different. However, value string tables use partitions based on the
context (qualified name) in which the string occurs. Let us re-use the string table
example that has been introduced in Chapter 6. For convenience, the figure (see
Figure 7.5) has been included a second time.

Figure 7.5: String Table Implementation Details – Entries in Value Partition

One approach to check whether a string value can be represented as a local-
value or a global value hit is to look up the given local value partition (according
to the qualified name) and global value partition just like the arrows in Figure 7.5
indicate. For example, check first the local-value partition and if not successful
afterwards the global value partition. This also means that on encoder side each
string may require two table look-ups, which can turn out to be very costly.

The nice property of EXI string tables is that according to the EXI specifica-
tion [73] a given string can be at most in one local-value partition. This leads to
another more optimized string table look-up approach that has been implemented
in EXIfcient. The idea is depicted in Figure 7.6. One needs to keep an overall list
of string values. Each string value points to the associated global value ID and
the associated local value ID. If the string has been found int the overall list it is
a hit, otherwise a miss. In the case of a hit, another check is required that tells
whether the qualified name is the same (local-value hit) or whether the qualified
name does not match (global-value hit). The local name check is done again using
IDs instead of comparing strings. This approach can reduce the number of string

60 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

table look-ups by half given that at most one string table look-up per string is
necessary.

Figure 7.6: String Table Implementation Details – Optimized Value Partition

We herewith conclude the technical description of the EXI processor EXIficient
by having introduced the most important concepts and optimization techniques
such as qualified names, grammars, and the string table. Subsequently perfor-
mance measurements in regard to data compression and processing are discussed.

7.2 Results and Discussion

This section presents the benefits of the EXI format compared to XML and
gzipped XML. Tests have been run over the EXI Working Group’s Measurement
Test Framework6, which contains 88 test documents from 20 test groups. The
test data ranges from 99 Bytes up to 70 MegaBytes in size. Moreover, we deal
with XML documents ranging from XML Content Density of nearly 0% up to
almost 100% (see more detailed test data description in Section 5.3).

EXIficient - Hard Facts and Dependencies

The version of EXIficient that has been used for the measurements is release 0.9.
The runnable JAR version of EXIficient (exificient.jar) has a size of about 340 kB.
The currently used schema processor Xerces2 in the version 2.11.0 demands two
additional JAR files with following code footprint:

• xercesImpl.jar (ca. 1350 kb)

• xml-apis.jar (ca. 216 kb)

6http://www.w3.org/XML/EXI/#TestingFramework

http://www.w3.org/XML/EXI/#nameddest=TestingFramework

7.2. RESULTS AND DISCUSSION 61

EXIficient is a Java library that runs with Java 1.5 and later versions. If no
schema information is to be processed, the library does not have any further de-
pendencies than the Java runtime environment itself. If XML schema information
is to be transformed, EXIficient requires Xerces’ schema processor.

7.2.1 Compression

The graph in Figure 7.7 shows EXI [EXIficient] and gzipped XML [XML.gzip]
sizes as percentage of the original XML document size [XML], sorted by best
compression result. Hence, a compression ratio of 50% means that the original
XML document has been compressed to half of its size.

0 %

20 %

40 %

60 %

80 %

100 %

120 %

 0 10 20 30 40 50 60 70 80 90

%
 o

f X
M

L
si

ze

Test cases sorted by EXIficient results from worst (left) to best (right)

XML
XML.gzip
EXIficient

Figure 7.7: EXI Compression

Figure 7.7 highlights that EXI is consistently smaller than gzipped XML re-
gardless of document size, document structure, or the availability of schema infor-
mation. In some cases, EXI is over 10 times smaller than gzipped data. In addi-
tion, EXI works well in cases where gzip has little effect or even makes documents
bigger7, such as high volume streams of small messages typical of geolocation,
financial exchange, and sensor applications. [81]

7Gzipping small XML documents (below ∼ 150 Bytes) can make the documents bigger due
to bookkeeping overhead.

62 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

The test data is also subdivided according to the XML Content density metric
introduced in Section 5.2 from high to low XML content density and from large
to tiny documents.

Compression - High Content Density

High content density implies a high percentage of value data and a low percentage
of XML structure. Figure 7.8 illustrates that EXI in many cases represents the
data efficiently (up to 5% of the original size) due to a good datatype represen-
tation or many string table hits for heavy character biased documents. In other
cases, we deal with value data that does not compress as well because we mainly
deal with large non-repeating collections of character data (CLOB). Except from
string tables EXI does not further analyze character data unless a restricted char-
acter set can be retrieved from XML schema patterns. The test cases with a large
amount of character data that do not compress well are reconsidered in Chap-
ter 8, where an optimized datatype representation is introduced and performance
benefits are shown in regard to compression performance but also in regard to
processing time. Nevertheless, even in the worst case EXI compresses XML doc-
uments to about 60% of the original size and is consistently smaller than gzipped
XML.

 0

 20

 40

 60

 80

 100

%
 o

f X
M

L
si

ze

Test cases (high content density)

XML
XML.gzip
EXIficient

Figure 7.8: EXI Compression - High XML Content Density

Compression - Low Content Density - Large Documents

In general, large documents can be relatively well compressed using gzip. Fig-
ure 7.9 confirms this statement. All large test documents are compressed to at

7.2. RESULTS AND DISCUSSION 63

most 20% of the original XML size. Nevertheless, in all cases EXI works even
better. In some cases EXI is up to 13 times smaller than the gzipped counter-
part. On average the compression performance of EXI is about 4% of the XML
document size and hereby by a factor of 2 smaller than gzipped XML.

 0

 20

 40

 60

 80

 100

%
 o

f X
M

L
si

ze

Test cases (low content density - large files)

XML
XML.gzip
EXIficient

Figure 7.9: EXI Compression - Low XML Content Density - Large documents

Compression - Low Content Density - Small Documents

Figure 7.10 confirms the statement that the smaller the XML documents the larger
the difference between EXI and gzipped XML becomes. The average compression
performance of EXI is about 9% of the XML document size while gzipped XML
accounts for 21%.

Compression - Low Content Density - Tiny Documents

Figure 7.11 approves that for tiny documents gzip does not work very well. In
many cases gzipped XML documents become larger than the actual XML doc-
ument itself due to the intrinsic bookkeeping overhead. EXI works consistently
well with an average compression performance of 20% of the XML document size.
Gzip on average accounts for 80% while at the same time adding processing cycles
to compress and de-compress the actual XML data.

Summing up, we can conclude that EXI works very well over a broad range
of XML test documents. In all test cases, EXI-compressed XML files turned out

64 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

 0

 20

 40

 60

 80

 100

%
 o

f X
M

L
si

ze

Test cases (low content density - small files)

XML
XML.gzip
EXIficient

Figure 7.10: EXI Compression - Low XML Content Density - Small documents

 0

 20

 40

 60

 80

 100

%
 o

f X
M

L
si

ze

Test cases (low content density - tiny files)

XML
XML.gzip
EXIficient

Figure 7.11: EXI Compression - Low XML Content Density - Tiny documents

7.2. RESULTS AND DISCUSSION 65

to be smaller than gzipped XML files. It stands out that especially for small and
tiny XML documents the difference in size becomes evident.

Given that compression size is just one aspect of a good binary XML format
we subsequently analyze the processing time of EXI compared to XML.

7.2.2 Processing Efficiency

The processing efficiency tests were run using the EXI Working Group’s frame-
work8 test data and test methodology on a Windows XP machine with an Intel
Core Duo T2300 / 1.66 GHz (mobile) Processor and 2.0 Gbytes of RAM.

The following graphs (see Figures 7.12 and 7.13) illustrate the encoding (i.e.,
serializing) and decoding (i.e., parsing) time of EXIficient and OpenEXI without
EXI compression for each test case as a percentage of XML JAXP9 time. So, for
example, a measurement of 50% means twice faster parsing, a measurement of
25% means four times faster parsing than parsing XML.

The measurements use the SAX API, meaning that all data needs to be re-
ported as characters even if the XML schema would indicate that a given value
is a float value or an integer number. This is done in order to show the benefit
of using EXI where previously XML has been used. XML values are characters
in all situations while EXI internally works with typed data for integers or float
values. Hence users can expect an additional performance speed-up when typed
APIs can be used instead of the traditional text-based APIs. The following chap-
ters will show numbers that highlight which speed-up can be expected with the
right programming interface.

In order to have a good comparison the measurements also include another
EXI implementation, namely OpenEXI version 0.0198.

The measurements show processing results running encoding and decoding on
the same machine. No network link has been used. A real world EXI application
is generally network-bound, meaning that the dominant factor is the speed of
the network link. Hence the data size that needs to be transmitted is of huge
interest. In our profiling, on purpose, we chose not to integrate any data-link
measurements. Depending on the use case, the link is very different (in regard
to bandwidth and load). A GPRS link or a heavily used Wi-Fi link is slowing
down data exchange. Hence the depicted processing measurements constitute the
worst case scenario. Processing time is assumed to be processing-bound instead
of network-bound. Moreover, the data exchange uses textual APIs such as SAX
instead of a data binding layer. This is done in order to show the least performance
speed-up one may expect by using EXI technology.

8The testing framework of the EXI working group is based on the Japex micro-benchmark
framework, see https://java.net/projects/japex.

9The Java API for XML Processing (JAXP) is Java’s built-in processing API and was
developed under the Java Community Process JSR 5 and JSR 63.

66 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

0 %

200 %

400 %

600 %

800 %

1000 %

1200 %

1400 %

1600 %

 0 10 20 30 40 50 60 70 80 90

%
 o

f X
M

L
tim

e

Test cases sorted by EXIficient results from worst (left) to best (right)

EXI encode time (without compression)

XML JAXP
OpenEXI
EXIficient

Figure 7.12: EXI Processing Time - Encoding

Figure 7.12 shows processing measurements for encoding. It is expected that
transforming data from an XML instance to EXI is not as fast as decoding the
data again. Given that XML data may deviate from XML schema information
demands parsing text to datatype representations before actually encoding values
properly. Further, in many cases the textual XML representation is very flexible
and accounts for most of the transformation time to represent EXI values properly
(e.g., the xsd:decimal values "1.23" and "1.230" are mapped to the same typed
EXI datatype representation).
This leads to the situation that on average both EXI implementations are slower
when serializing data than the XML counterpart. JAXP’s XML implementation
essentially writes the received characters of the SAX interface mostly as is to
the disk, without any further processing. Nevertheless in cases where EXIficient
manages to reduce the amount of data to be written significantly enough it also
manages to be faster than JAXP.

This situation very much improves for the decoder side. Figure 7.13 depicts
that the average decoding time of EXIficient was more than 3 times smaller than
the average decoding time of XML. The best case was over 35 times faster. More-
over, EXIficient is in most cases also faster than OpenEXI. A detailed analysis
according to the XML content density groups shows more details.

7.2. RESULTS AND DISCUSSION 67

0 %

100 %

200 %

300 %

400 %

500 %

600 %

700 %

800 %

 0 10 20 30 40 50 60 70 80 90

%
 o

f X
M

L
tim

e

Test cases sorted by EXIficient results from worst (left) to best (right)

EXI decode time (without compression)

XML JAXP
OpenEXI
EXIficient

Figure 7.13: EXI Processing Time - Decoding

Decoding Time - High Content Density

Figure 7.14 depicts that both EXI implementations do not perform well on high
content density data. One performance benefit of EXI processors over XML
processors is that almost no XML tags have to be written or read respectively.
Given that in the group of high content density the percentage of XML tags is
very small the performance gain is also less evident.

Further, XML processors such as JAXP have been highly optimized while EXI
is a relatively new techniques that will offer faster implementation using typed
APIs over the next years.

OpenEXI is on average even 19% slower than XML processing. EXIficient is
about 20% faster than XML. The best case of EXIficient is more than three times
faster than processing plain XML.

Decoding Time - Low Content Density - Large Documents

Figure 7.15 depicts that both EXI implementations are working roughly at the
same speed. On average OpenEXI decodes almost 3 times faster than JAXP while
EXIficient decodes almost 4 times faster.

The best three cases of EXIficient are performing 6, 15, and 36 times faster
than XML.

68 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

0 %

100 %

200 %

300 %

400 %

500 %

600 %

700 %

800 %
%

 o
f X

M
L

tim
e

Test cases (high content density)

EXI decode time (without compression)

XML JAXP
OpenEXI
EXIficient

Figure 7.14: EXI Decoding - High XML Content Density

0 %

50 %

100 %

150 %

200 %

250 %

%
 o

f X
M

L
tim

e

Test cases (low content density - large files)

EXI decode time (without compression)

XML JAXP
OpenEXI
EXIficient

Figure 7.15: EXI Decoding - Low XML Content Density - Large documents

7.2. RESULTS AND DISCUSSION 69

Decoding Time - Low Content Density - Small Documents

Figure 7.16 shows, in contrast to the previous figures, that EXIficient works sig-
nificantly faster for smaller documents than OpenEXI. OpenEXI is on average
about 114% of XML time while EXIficient manages to reach a value of 45%. This
makes a difference in speed of more than two.

0 %

50 %

100 %

150 %

200 %

250 %

300 %

350 %

400 %

450 %

500 %

%
 o

f X
M

L
tim

e

Test cases (low content density - small files)

EXI decode time (without compression)

XML JAXP
OpenEXI
EXIficient

Figure 7.16: EXI Decoding - Low XML Content Density - Small documents

Decoding Time - Low Content Density - Tiny Documents

Figure 7.17 demonstrates again that EXI processors seem to work reasonably well
on tiny documents. OpenEXI performs well compared to XML being just once
slower than XML. The average speed gain of OpenEXI is a factor of 2.1.

Nevertheless, EXIficient performs even better and beats XML in all test cases.
The speed-up ranges from 1.3 times faster than XML up to 6 times faster. This
makes on average a speed-up for EXIficient of about 4.2 times over XML.

7.2.3 Optimization Outlook

We will see in the next chapters that EXI processing performance can be im-
proved by using the right typed programming interface (API). Moreover, other
new techniques in combination with EXI can be very beneficial in regard to pro-
cessing time, compression ratio, small footprint, and memory usage. The focus
for further investigations was preset to the embedded domain where processing is
crucial and efficient data exchange is of huge importance.

70 CHAPTER 7. EFFICIENT FEATURE-COMPLETE EXI PROCESSOR

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

%
 o

f X
M

L
tim

e

Test cases (low content density - tiny files)

EXI decode time (without compression)

XML JAXP
OpenEXI
EXIficient

Figure 7.17: EXI Decoding - Low XML Content Density - Tiny documents

Chapter 8

Optimized Datatype
Representation

An EXI stream, more concrete the EXI Body stream that carries the actual
information, can be described as the combination of structural data (e.g., XML tag
names) and the XML values (e.g., "123") in form of XML character information
items1 and attribute information items2.

The EXI specification defines a set of datatype representations, called built-
in EXI datatype representations, that prescribe how value content items (e.g.,
attribute values or element characters) are to be represented. The format disposes
of eleven built-in datatypes (e.g., Binary, Boolean and Integer) and EXI processors
map XML schema built-in datatypes (see Figure 8.13) to exactly one default EXI
datatype representation (see Table 8.1). Hence, this default mapping defines how
content items are to be encoded.

The performance of the EXI default representations is usually sufficient. Com-
paction measurements presented in Section 7.2.1 confirm this statement. Never-
theless, in some cases an improved or also a different representation is required and
the EXI specification does provide means to fulfil these requirements. EXI offers
a feature called Datatype Representation Map [73]. A Datatype Representation
Map may provide alternate built-in EXI datatype representations or user-defined
datatype representations for any simple XML schema datatype.

This chapter presents one important use case where an alternate representa-
tion, different from the default EXI mapping, seems feasible. Moreover it intro-
duces a very flexible technique that shows how user-defined datatype representa-

1see http://www.w3.org/TR/xml-infoset/#infoitem.character [79]
2see http://www.w3.org/TR/xml-infoset/#infoitem.attribute [79]
3XML built-in datatypes, http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

71

http://www.w3.org/TR/xmlschema-2/#nameddest=built-in-datatypes
http://www.w3.org/TR/xml-infoset/#nameddest=#infoitem.attribute
http://www.w3.org/TR/xml-infoset/#nameddest=#infoitem.character

72 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

Figure 8.1: Hierarchy of XML Schema Datatypes [67]

tions can be automatically created. Emphasis is put on how such representations
can be exchanged in a standardized fashion based on a well-known and widely-
used notation technique.

8.1 Application Area

One field of application for EXI are Rich Internet Applications (RIAs) [65]. RIAs
are web applications that tend to have similar features and alike functionality of
traditional desktop applications. Traditional web applications are server centered,
meaning that most of the work and the actual processing is done on servers and
clients only display static content in the form of (X)HTML. To reduce server load,
avoid slow interactions, and accelerate user feedback, RIA applications nowadays
move processing from the server side to the clients. Client processing time is
therefore of tremendous interest [44].

8.1. APPLICATION AREA 73

Built-in EXI Datatype Representation XML Schema Datatypes

Binary
xsd:base64Binary
xsd:hexBinary

Boolean xsd:boolean

Date-Time

xsd:dateTime
xsd:time
xsd:date
xsd:gYearMonth
xsd:gYear
xsd:gMonthDay
xsd:gDay
xsd:gMonth

Decimal xsd:decimal

Float
xsd:float
xsd:double

String
xsd:string
xsd:anySimpleType
and all types derived by union

Integer xsd:integer

n-bit Unsigned Integer
Not associated with any datatype directly,
but used by Integer datatype representation
for some bounded integers

Unsigned Integer
Not associated with any datatype directly,
but used by Integer datatype representation
for unsigned integers

List
All types derived by list, including
xsd:NMTOKENS, xsd:IDREFS and
xsd:ENTITIES

QName
xsi:type attribute values when
Preserve.lexicalValues option value is false

Table 8.1: Built-in EXI datatype representations

74 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

In many concepts such as AJAX, XML is used as the data interchange for-
mat. Microsoft’s Silverlight4, SMIL (SVG) [30], and MPEG LASeR [5, 24] are
also XML-based formats. In nowadays web, data mashups combine data from
more than one source and their visualization is distributed to a variety of em-
bedded devices. Thus the focus lies on rich media applications for small and
restricted devices with limited bandwidth where the use of XML is desired, but
entails disadvantages or is simply infeasible. XML data is in general highly redun-
dant. The redundancy affects application efficiency through higher storage, data
transmission, and processing costs. EXI’s applicability to rich media applications
in general is of interest. SVG is chosen as a concrete example.

8.1.1 Scalable Vector Graphics

Scalable Vector Graphics (SVG) [30] is an XML specification and format descrip-
tion for two-dimensional vector graphics. Rich Internet Applications, multimedia
presentations such as SMIL, and application frameworks such as Silverlight are
built on top of it. SVGTiny or Mobile [14] are meant for less powerful devices
and provide a subset of SVG’s features.

SVG images and their behaviour are defined in XML text files. The SVG
specification [30] defines 14 important functional areas such as basic shapes, text,
and colors. One of the most important functional areas are paths.

SVG paths are compound shape outlines drawn with curved or straight lines
and can be filled in or outlined. The XML attribute d builds the main information
item of the element path. It expresses for example in a compact textual coding
(see Figure 8.2), that the virtual pen is initially moved to the coordinate pair
(X,Y) denoted by M5. L precedes a subsequent point to which a line should be
drawn. Z closes the path.

<path d="M 250 150 L 150 350 L 350
350 Z" />

(a) Textual SVG Path (b) Rendered SVG image

Figure 8.2: Example of an SVG path

SVG files tend to be verbose and hardly processable on constrained end de-
vices. Additional generic compression techniques such as gzip (known as "SVGZ")
are not suitable in restricted domains due to the increased need for computational
resources. In addition, if an SVG document is to be compressed as a whole,

4Website about Silverlight Architecture: www.silverlight.net
5Note: All of the commands can also be expressed with lowercase letters. Capital letters

means absolutely positioned, lower cases means relatively positioned.

8.1. APPLICATION AREA 75

progressive rendering is partly lost since the compressed document needs to be
de-compressed before being passed to an SVG viewer.

Moreover, SVG’s XML documents mostly consist of only a few clob attributes
and/or elements such as the path d attribute. The structure hereby is part of
the attribute content and not structured via XML itself. An SVG engine needs
to extract those tokens (e.g., coordinates) such as the ones shown in Figure 8.2
before rendering the graphic.

8.1.2 Applying EXI to Rich Web Applications

EXI is a compact representation for XML intended to simultaneously optimize
performance and the utilization of computational resources. Measurements to
confirm EXI’s applicability in the RIA domain, based on SVG test documents,
were elaborated. To facilitate reproducibility, the same SVG test set as by the
EXI working group (see [81, Section 4.1.2]) has been used.

0 %

20 %

40 %

60 %

80 %

100 %

File#1
architetto_francesco_ro_01.svg

File#2

duck_yellow_ii_kurt_cagl_.svg

File#3

tux_didier_fabert_01.svg

File#4
dinosauro_architetto_fra_01.svg

File#5

mermaid_kurt_cagle_.svg

%
 o

f X
M

L
si

ze

XML
EXI

Figure 8.3: EXI Compression of SVG Data

The test data consists of a collection of five SVG files ranging from 1 kB
up to 181 kB. Figure 8.3 depicts that for three out of five RIA test cases EXI’s
built-in datatype representation does not work as well as throughout various other
areas (see performance numbers in Section 7.2.1). Further the compression ratio
fluctuates from test case to test case. The compressed size compared to XML
ranges from about 41% up to almost no compression at all.

76 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

Test Case XML [Bytes]
EXI EXI Datatype

Compression Efficiency Ratio

File#1
18570 86.8% 14.2%

architetto_francesco_ro_01.svg

File#2
2173 41.1% 77.0%

duck_yellow_ii_kurt_cagl_.svg

File#3
896 41.0% 82.4%

tux_didier_fabert_01.svg

File#4
23229 79.6% 24.0%

dinosauro_architetto_fra_01.svg

File#5
181570 99.8% 0.3%

mermaid_kurt_cagle_.svg

Table 8.2: EXI Datatype Efficiency Ratio for SVG Test Documents

At the first glance the compression results are against expectation. What
surprises is that EXI in some cases cannot compress the documents at all. This
raises the question why this happens and what causes these problems. Section 6.3
introduced EXI metrics that turn out to be very beneficial for identifying the
issue. We subsequently focus on the EXI Datatype Efficiency ratio numbers
(Equation 6.2) that are shown in Table 8.2. It turns out that the compression and
the Datatype Efficiency Ratio is inversely correlated. The lower the percentage
of EXI Datatype Efficiency the less good the EXI compression. Hence this data
sustains the observation that the bad compression performance mostly relates to
how EXI represents the actual data or values.

When doing a more detailed analysis, some interesting observations can be
made that highlight why File #2 and #3 achieve much better compaction results
than the others. Figure 8.4 spreads the compaction results into structure, values
without the attribute d, d only, and insignificant XML whitespaces. The implica-
tion is that the attribute d is hardly compressible and in those cases where it takes
a very high percentage (Files #1, #4, #5), EXI compression efficiency suffers.

We conclude that EXI achieves very good results for highly structured XML
data while test cases with almost no structure (e.g., some SVG files) achieve
less good results. Moreover, we can also draw very informative conclusions from
measurements that have been co-published with the EXI working group in [81, 9].
EXI processing is generally very fast, especially the decoding process is many
times faster than conventional XML parsing. Moreover, another interesting point
arises from these measurements and shows that EXI has also a strong correlation
between EXI compression efficiency and processing time [9]. Hence, reducing the
size of the EXI stream also reduces processing time.

The grammar for path data d is given by a BNF (Backus Normal Form or
Backus-Naur Form), a notation technique for context-free grammars (see Listing 1

8.2. FORMAL GRAMMAR 77

25

50

75

100

X
M

L

E
X

I

X
M

L

E
X

I

X
M

L

E
X

I

X
M

L

E
X

I

X
M

L

E
X

I

%
 o

f X
M

L
si

ze

 File#1 File#2 File#3 File#4 File#5

Structure
Values-d
d
Whitespaces

Figure 8.4: SVG Data Distribution for XML and EXI Representation

in Appendix). The following sections create the basis for introducing the concept
of an optimized datatype representation for EXI values.

8.2 Formal Grammar

A formal grammar (sometimes simply called a grammar) is a set of formation
rules for strings in a formal language. The rules describe how to form strings
from the language’s alphabet that are valid according to the language’s syntax.
A grammar does not describe the meaning of the strings or what can be done
with them in whatever context.

A formal grammar is of the form G = (V, Σ, S, P) where V = Σ ∪ N is a
vocabulary consisting of a finite alphabet Σ and a set of nonterminals N . The
symbol S ∈ N is the start symbol and P is a set of production rules with a
left-hand and a right-hand side. On the left side of any rule must be at least one
nonterminal.

A formal grammar defines (or generates) a formal language, which is a (usu-
ally infinite) set of finite-length sequences of symbols (e.g., strings) that may be
constructed by applying production rules to another sequence of symbols, which
initially contains just the start symbol.

78 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

8.2.1 Chomsky Hierarchy

When Noam Chomsky first formalized generative grammars in 1956 [15], he clas-
sified them into types now known as the Chomsky hierarchy. The difference
between these types is that they have increasingly strict production rules and can
express fewer formal languages.

The Chomsky hierarchy consists of four levels and each level or type is deter-
mined by the form of the production rules in P [22, 37].
Type-0 grammars (unrestricted grammars) include all formal grammars.
Type-1 grammars (context-sensitive grammars) have rules of the form αAγ →
αβγ. A is a nonterminal while α, β and γ are terminals and nonterminals. The
string γ must be nonempty whereas α and β may be empty.
Type-2 grammars (context-free grammars) consist of production rules that are
restricted to exactly one nonterminal on the left side and arbitrary terminals and
nonterminals on the right side.
Type-3 grammars (regular grammars) further restrict their production rules to
a single terminal on the right-hand, possibly followed or preceded (but not both
in the same grammar) by a single nonterminal.

By definition Type-0, Type-1, Type-2, and Type-3 grammars define a strict
hierarchy of formal languages (e.g., Type-3 grammar is a special Type-2 gram-
mar etc.). EXI grammars and the Backus-Naur Form (BNF) are context-free
grammars. Regular expressions (abbreviated regex or regexp) are regular gram-
mars. In summary, it can be said that all previously mentioned grammars are
at least Type-2. Hence, hereinafter we deal with the expressive power of Type-2
grammars.

8.2.2 Backus-Naur Form

BNF (Backus Normal Form or Backus-Naur Form) is a notation technique [8] for
context-free grammars (Chomsky level Type-2), often used to describe the syntax
of languages used in computing.

BNF Example - Social Security Number

As an example, consider one possible BNF for the U.S. Social Security num-
ber (SSN)6.

Listing 8.1: BNF for Social Security Number

<SSN> ::= <area-number> ’-’ <group-number> ’-’ <serial-number>
<area-number> ::= <number>

6http://www.socialsecurity.gov/history/ssn/geocard.html

http://www.socialsecurity.gov/history/ssn/geocard.html

8.2. FORMAL GRAMMAR 79

<group-number> ::= <number>
<serial-number> ::= <number>
<number> ::= <digit> | <digit> <number>
<digit> ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

• The first set of three digits is called the Area Number.

• The second set of two digits is called the Group Number.

• The final set of four digits is the Serial Number.

A SSN is a nine-digit number issued to U.S. citizens, permanent residents,
and temporary (working) residents and has three parts separated by hyphens in
the format "AAA-GG-SSSS". The BNF in Listing 8.1 depicts a simple BNF not
dealing with the number of digits in the sense that for example the area number
is required to have exactly three digits.

BNF Variants

Many extensions and variants of the original BNF notation are used; generally
either for the sake of simplicity and succinctness or to adapt it to a specific
application. Some variants are exactly defined, including Extended Backus-Naur
Form (EBNF) [1] and Augmented Backus-Naur Form (ABNF) [21]. Common
features of many variants are the use of repetition operators such as * and +, or
the bracket "[]" notation to express optionality.

EBNF Example - xsd:date

Let us investigate a more sophisticated BNF, describing the xsd:date datatype
modeled after the calendar dates of ISO (International Organization for Stan-
dardization) 8601. Its value space is the set of Gregorian calendar dates and its
lexical space is the ISO 8601 extended format with an optional time zone7:

[-]CCYY-MM-DD[Z|(+|-)hh:mm]

Valid values include: 2001-10-26, 2001-10-26+02:00, 2001-10-26Z,
2001-10-26+00:00 or -2001-10-26 and a possible EBNF for this XML schema
datatype is the following Listing 8.2, which is used throughout this chapter to
illustrate the concept of an optimized datatype representation.

Listing 8.2: EBNF for xsd:date

xsdDate = year , ’-’ , month , ’-’ , day , [timezone];
year = [negative] , digit , {digit};

7To specify a time zone, you can either enter a date in UTC time by adding a "Z" behind
the date or you can specify an offset from the UTC time by adding a positive or negative time
behind the date.

80 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

month = digit , {digit};
day = digit , {digit};
timezone = ’Z’ | (’+’ | ’-’) , hour , ’:’ , minute;
hour = digit , {digit};
minute = digit , {digit};
negative = ’-’;
sign = ’+’ | ’-’;
digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’;

8.2.3 Parser Observations

The term parser or parsing is the process of analysing a string of symbols (e.g., the
date value 2001-10-26 into its components year, month, and day). An LL parser
is a top-down parser for a subset of context-free grammars known as the LL
grammars. The LL parser parses the input from left to right and constructs a
leftmost derivation. An LL parser is called an LL(k) parser if it uses k tokens of
lookahead when parsing a sentence.

In the interests of simplification and availability we focus on LL(1) parsers
in order to parse BNF grammars8. LL(1) parsers recognize languages that have
LL(1) grammars, which are a special case of context-free grammars. LL(1) parsers
cannot recognize all context-free languages. The LL(1) languages are exactly those
recognized by deterministic pushdown automata restricted to a single state [43].

Anyhow, in reality this issue usually is not critical. LL(1) grammars are
very popular given that grammars with a high value of k have traditionally been
considered difficult to parse.

The textual splitting of a string of symbols (e.g., 2001-10-26) requires several
steps and optimizations. The nonterminals year, month, day have to be identified
to describe an integral number instead of an arbitrary selection of digits. Obvious
and fixed terminals, such as the hyphens (e.g., between year and date), have been
pruned (see Listing 2 in appendix). Section 8.3 will investigate in full detail how
this can be done automatically.

8.2.4 XML Schema and EXI Grammars

XML schema as well as EXI grammars are grammars of Chomsky level Type-
2. Moreover, all productions in a normalized EXI grammar contain exactly one
terminal symbol and at most one non-terminal symbol on the right-hand side.
This is a restricted form of Greibach normal form [34, 73].

That said, a parser by means of the introduced xsd:date BNF transforms a
possible value 2001-10-26 to the following XML snippet.

8If the BNF is of an LL(k) grammar an LL(k) parser needs to be used or the according
conflicts have to be resolved that makes the BNF again an LL(1) grammar.

8.3. CONCEPT OF AN OPTIMIZED DATATYPE REPRESENTATION 81

<xsdDate>
<year>2001</year>
<month>10</month>
<day>26</day>

</xsdDate>

8.3 Concept of an Optimized Datatype Representation

In Rich Internet Application environments that use SVG as their representation
form, the attribute d sometimes accounts for almost 100% of the entire size (XML
as well as EXI, see Figure 8.4) and an optimized representation for this specific
information item is desired.

EXI usually leverages XML schema patterns (e.g., lowercase letters only) and
uses restricted character sets to represent the content more efficiently. In the case
of SVG paths, the attribute d is restricted by a Backus-Naur Form (BNF) (see [30,
8. Paths]) and is not expressed by XML schema characteristics. Hence, EXI
processors need to make use of the previously described feature Datatype Rep-
resentation Map and specific representations to encode information items more
efficiently.

8.3.1 Datatype Representation Generation

A first straightforward approach to develop a hand-optimized representation for
the information item d is maybe feasible, but surely not desirable. This manual
process of analysing the complex structure of a BNF and the associated overhead
may not be worthwhile. Moreover, two different developers may come up with
two different representation for the same BNF. Hence, a nonproprietary solution
that is specified and developed once and is flexible enough to satisfy future needs
is far more interesting and useful for the XML community.

The optimized datatype representation approach, or as we used to call it, the
"EXI-BNF" approach, basically leverages any available BNF or regular expres-
sion to optimize EXI datatype representation. The outcome is an user-defined
datatype representation that may extend our freely available EXI implementa-
tion (see Chapter 7). The actual work is done in two consecutive steps.

In the first step, a parser splits the path information string (e.g., M 250 150
L 150 350 L 350 350 Z) into its symbols and produces tokens for the according
path data commands such as moveto (M) and lineto (L). Secondly the extracted
information tokens of d are transformed to an XML document or respectively
to an XML fragment. Figure 8.5 depicts the idea of splitting the content and
restructuring the tokens XML-like. Coding of this XML fragment does not require
additional code since the same EXI library can be (re-)used for encoding and
decoding.

82 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

<path d="M 250 150 L 150 350 L
350 350 Z" />

(a) Original Path d

<path><d>
<M><x>250</x><y>150</y></M>
<L><x>150</x><y>350</y></L>
<L><x>350</x><y>350</y></L>
<Z />

</d></path>

(a) XML-like Path d

Figure 8.5: EXI Representation Idea

8.3.2 BNF Extraction Process

We differentiate between six different terms when analyzing an (E)BNF, namely
choice, option, group, repetition, terminal and nonTerminal. To ease XML schema
mapping we differentiate between a named nonTerminal and a anonymous non-
Terminal. A BNF builds subsequently a tree composed of these terms.

choice A choice represents a choice between multiple sub-terms (e.g., ’+’ |’-’).

option An option describes an optional portion (e.g., [negative]).

group A group term groups terms together (e.g., (’+’| ’-’)).

repetition A repetition depicts a repetitional part (e.g., {digit}).

terminal A terminal depicts the end of a term (e.g., ’0’).

nonTerminal A nonTerminal depicts that more terms are following (e.g., hour
in hour = digit , digit).

The process of mapping (E)BNF terms to to XML schema constructs is au-
tomatable and straightforward.

choice maps to an XML schema choice element (<xsd:choice>).

option makes use of the XML schema occurrence indicator (minOccurs="0").

group maps to an XML schema sequence element (<xsd:sequence>).

repetition makes use of the XML schema occurrence indicators (minOccurs="0"
and maxOccurs="unbounded").

terminal maps to a named XML schema element constrained by an XML schema
simple type.

8.3. CONCEPT OF AN OPTIMIZED DATATYPE REPRESENTATION 83

nonTerminal maps to a named element while an anonymous nonTerminal be-
comes an anonymous complex type.

For example, the results of the (E)BNF Listing 8.2 is the following list of
named nonTerminals which subsequently have additional sub-terms.

xsdDate = year , ’-’ , month , ’-’ , day , [timezone]

This BNF rule for xsdDate translated into a sequence of a nonTerminal year,
a terminal ’-’, a nonTerminal month, a terminal ’-’, a nonTerminal day and an
optional timezone indicated by minOccurs="0".

<xsd:element name="xsdDate">
<xsd:complexType>

<xs:sequence>
<!-- year = [negative] , digit , {digit} -->
<xsd:element ref="year"/>
<!-- ’-’ -->
<xsd:element name="terminal1">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="-"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<!-- month = digit , {digit} -->
<xsd:element ref="month"/>
<!-- ’-’ -->
<xsd:element name="terminal3">

<xsd:simpleType>
<xsd:restriction base="xs:string">

<xsd:enumeration value="-"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<!-- day = digit , {digit} -->
<xsd:element ref="day"/>
<!-- [timezone] -->
<xsd:sequence minOccurs="0">

<!-- timezone = ’Z’ | (’+’ | ’-’) , hour ,
’:’ , minute -->

<xs:element ref="timezone"/>
</xsd:sequence>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

84 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

Note that an EXI processor completely removes enumeration values with a
single enumerated value in XML schema. That said, terminal1 and terminal3
are not encoded in the stream given the fact that "-" is the only option. More-
over, when transcoding the EXI stream back to XML the terminal is reproduced
automatically again.

year = [negative] , digit , {digit}

The year concept could be transformed into a leading negative sign followed by
digits. The result is a signed number. We implemented a solution that either
detects such constructs or can be forced to do so by the special EBNF sequence
? ... ? as proposed by ISO/IEC 14977 [1] (e.g., ? REPRESENT_AS <datatype> ?).
The <datatype> part can be replaced by any known XML datatype such as
xsd:short or so.

<xsd:element name="year" type="xsd:short" />

The year concept can be re-used by referring to it as follows (see, for example,
xsdDate BNF rule).

<xsd:element ref="year"/>

month = day = hour = minute = digit , {digit}

In a similar fashion to year, month, date, hour, and minute can be handled.

<xsd:element name="month" type="xsd:unsignedByte" />
<xsd:element name="day" type="xsd:unsignedByte" />

<xsd:element name="hour" type="xsd:unsignedByte" />
<xsd:element name="minute" type="xsd:unsignedByte" />

timezone = ’Z’ | (’+’ | ’-’) , hour , ’:’ , minute

The xsd:date timezone part is more complex. It can either be "Z" representing
the zero-length duration timezone or an hour preceded by plus or minus and
followed by a semicolon and the minute portion.

<xsd:element name="timezone">
<xsd:complexType>

<xsd:sequence>
<!-- ’Z’ | (’+’ | ’-’) , hour , ’:’ , minute -->
<xsd:choice>

<!-- Anonymous = ’Z’ -->
<xsd:element name="Anon_0">

<xsd:complexType>
<xsd:sequence>

8.3. CONCEPT OF AN OPTIMIZED DATATYPE REPRESENTATION 85

<!-- ’Z’ -->
<xsd:element name="

terminal0">
...

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<!-- Anonymous = (’+’ | ’-’) , hour , ’:’

, minute -->
<xsd:element name="Anon_1">

<xsd:complexType>
<xsd:sequence>

<!-- ’+’ | ’-’ -->
<xsd:sequence>

...
</xsd:sequence>
<!-- hour = digit , {

digit} -->
<xsd:element ref="hour

"/>
<!-- ’:’ -->
<xsd:element name="

terminal2">
...

</xsd:element>
<!-- minute = digit ,

{digit} -->
<xsd:element ref="

minute"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

8.3.3 BNF-based Datatype Representation Approach

The following steps describe what needs to be done to use an (E)BNF for an
optimized datatype representation:

1. Use or write an appropriate (E)BNF if not already present.
The BNF describes the information items that are present and structures

86 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

the string representation. If desired specific encodings can be used indicated
by the BNF construct (? REPRESENT_AS <datatype> ?).

2. Use the sketched automatic generator that creates XML schema and respec-
tively EXI grammars. Further, it also provide a lexical scanner that splits
the string representation into its XML portions, e.g., transforms "2001-10-26"
into

<xsdDate>
<year>2001</year>
<month>10</month>
<day>26</day>

</xsdDate>

3. Any EXI processor that is able to support Datatype Representation Maps
can be set to use the previously generated EXI grammars for representing
the data provided by the lexical scanner. We have been selecting EXIficient
as the EXI implementation.

8.4 Results and Discussion

8.4.1 Measurements and Evaluation

With the presented Optimized Datatype Representation inspired by the SVG Path
d BNF, the EXI compression measurements with and without the optimization
have been re-done (see Figure 8.6).

The automatic generator has been fed with the SVG Path BNF (see Listing 1)
and produced as outcome the according XML schema (see complete Listing 3 in
Appendix). Each EXI processor can use this XML schema document to create
its EXI grammars as described by the EXI specification.

Figure 8.6 indicates that compared to XML, the EXI-BNF-aware solution
achieves an overall data reduction of about 50% for the SVG test cases. The test
documents that previously did not compress very well (see EXI File#1, #4, and
#5) are almost cut to half. Apparently the EXI-BNF-aware solution does not
have any effect on test documents that do not contain SVG Path d data at all
(see File#2 and #3).

The compression results are very convincing. Moreover, based on the stan-
dardized BNF format, interoperable data exchange between various EXI libraries
can be accomplished. This means that standardization bodies can refer to a given
BNF that has to be used for various EXI datatype representations and do not
need to define any further steps when applying EXI. In many cases, like also for
SVG, an appropriate BNF is already available.

8.4. RESULTS AND DISCUSSION 87

25

50

75

100

X
M

L

E
X

I

E
X

I-B
N

F

X

M
L

E
X

I

E
X

I-B
N

F

X

M
L

E
X

I

E
X

I-B
N

F

X

M
L

E
X

I

E
X

I-B
N

F

X

M
L

E
X

I

E
X

I-B
N

F

%
 o

f X
M

L
si

ze

 File#1 File#2 File#3 File#4 File#5

Structure
Values-d
d
Whitespaces

Figure 8.6: SVG Data Distribution by means of the EXI-BNF-aware solution

Further investigations in the SVG tool chain show that SVG engines such as
the widely used Batik9 viewer split information according to path types (e.g., arcs,
curves, lines) before rendering the information. Our developed representation is
able to deliver the information in the required separated form so that no additional
parsing is required anymore (e.g., coordinates are provided as separate x/y tuples
and not as the lexical string "250 150").

Summarizing, we can say that our automatable EXI-BNF extension, based on
regular expressions or BNFs, can be used to leverage EXIs compaction results.
Moreover, by considering SVG tool chains such as Batik an improved processing
efficiency can be expected. To do so, no manual tuning nor hand-optimized codec
development is needed.

8.4.2 Entropy Coding

In the telecommunication sector, entropy coding for efficient data exchange is
widely used. This means that a test data set and its frequency are taken into
account when creating an efficient datatype representation. Hence, further anal-
yses of sample data streams are done to tune data exchange. One example is

9http://xmlgraphics.apache.org/batik/

http://xmlgraphics.apache.org/batik/

88 CHAPTER 8. OPTIMIZED DATATYPE REPRESENTATION

LASeR [5, 24], the MPEG standard for rich media services. LASeR also uses a
binary XML encoding format (BiM) for compressing SVG documents and creates
specific codecs for given data values. These codecs are influenced by entropy.
This entropy estimation, or in the XML field the estimation of which item is the
most frequent one, offers benefits and drawbacks.

Thomas Kurz proved in his diploma thesis [44] that entropy estimation further
optimizes the EXI-BNF approach presented in this thesis. More likely events get
encoded with fewer bits while unlikely events get punished. Nevertheless, a good
entropy estimation demands good and relevant test documents to be available in
advance so that its entropy can be taken into account. Further, the capability of
automatically generating the alternate datatype representation is hardly possible
anymore. Moreover, exchanging the BNF between different parties is also not
sufficient given that different test-data sets create different datatype representa-
tions.

This leads to the advice that additionally using entropy coding techniques
in heterogenous environments demands carefulness. Entropy estimation has its
rights to exist, most likely in closed environments. On the contrary, solely using
the EXI-BNF concept presented in this chapter is flexible, permissively, automat-
able, and hence more feasible for heterogenous networks.

Chapter 9

EXI Grammar Representation

EXI grammars play a major role when processing EXI streams. We differentiate
between grammars that are built and expanded during runtime (schema-less gram-
mars) and grammars that are either shared or generated once (schema-informed
grammars). The latter type, schema-informed grammars, are based on XML
schema knowledge and EXI processors exchange a so called schemaId to identify
which set of schema documents has been used to encode XML, or respectively
EXI information.

As stated already in previous chapters, the EXI specification defines how XML
schema definitions are to be transformed so that EXI grammars can be built in an
interoperable way. Nonetheless, the EXI specification explicitly does not define
how or in which way an EXI processor is meant to exchange schema-informed
EXI grammars. The reason for doing so is mostly flexibility and applicability. A
proposed solution of the EXI working group may work for many use-cases but is
unlikely to fit all needs. Hence, it is up to each application or application field to
choose the right strategy.

This chapter will present a very flexible and efficient way to exchange schema-
informed EXI grammars targeting application fields that demand supporting
larger sets of XML schema files. Further, it focuses mainly on keeping the re-
quirements in regard to processing and amount of data exchange at the very
minimum. Moreover, the runtime requirements such as external library support
and the associated code footprint is of particular importance.

9.1 XML Schema Exchange

Due to the flexibility of the EXI format specification in regard to how to ex-
change XML schema knowledge, it is likely that different EXI solutions come up

89

90 CHAPTER 9. EXI GRAMMAR REPRESENTATION

with different strategies for exchanging XML schema information or respectively
schema-informed EXI grammars. The probably most obvious, very flexible, and
generic approach can be summarized as follows: an EXI processor generates EXI
grammars based on the exchanged schemaId itself. Hence, the given schemaId
is interpreted as an URI or any other resource identifier that is accessible to the
EXI processor. Consequently, the set of associated XML schema files are parsed
at runtime. Doing so requires that both ends, sender and receiver, dispose of the
same XML schema documents and are able to access them if required. As one
prominent example, EXIficient (see Chapter 7), the feature-complete EXI pro-
cessor, works exactly that way. Note, that if the EXI stream has been produced
without taking into account schema information there is no need for exchanging
schema-informed EXI grammars.

Another valid solution for targeting dedicated EXI services can be that the
EXI processor supports EXI grammars of one XML schema (or a restricted set of
schemas) only, which probably may be already pre-built into the processor. Chap-
ter 10 will further analyze this idea.

Both so far sketched solutions are valid and follow the EXI format specifica-
tion. Nevertheless, the use of these techniques is limited to a very restricted set
of use cases.

9.1.1 Requirements

Many application fields, and also some of our server-aimed use cases1, target
relatively powerful device classes, demanding the flexibility of being capable to
process a large set and a variety of XML schema files. Often required schema
information is not available at the receiving side. Instead the schema information
is to be exchanged on the fly. Moreover, the communication link between sender
and receiver is limited. This is probably the main reason for using a binary
XML format, such as EXI, in the first place. Hence one main requirement is
that the communication link does not get flooded with exchanging XML schema
information when the primary goal is to efficiently exchange XML messages.

Further, the EXI processor is required to be able to build EXI grammars at
runtime. Following the straight-forward approach of exchanging XML schema
files demands in addition to the EXI processor itself an XML schema processor
such as Xerces-J. Xerces-J accounts for more than 1500 kBytes executable code
while the runtime code for the EXI processor EXIficient is only about 370 kBytes.
Given that EXI is the desired technology and the XML schema parser is just the
required extra, this code footprint relation is not acceptable. Moreover, the code
footprint of the overall deployed software needs to be much smaller. Hence, the

1The server part of embedded domain applications (and the associated EXI processor) often
must be able to support a variety of different clients (or XML/EXI documents conforming
various XML schema documents).

9.1. XML SCHEMA EXCHANGE 91

main requirement is to make the XML schema parser library obsolete due to its
dominance in regard to code footprint.

Moreover, creating grammars from XML schema documents is time consuming
also and the time of creating EXI grammars is crucial. Until the appropriate
grammars are built, an EXI processor is not able to process the according EXI
stream.

Hence, the goal must be to efficiently exchange schema knowledge over a lim-
ited communication channel without introducing any extra burden such as exter-
nal libraries or spending a long time actually building the required EXI grammars.
The previously mentioned problems have been identified and summarizing it can
be concluded that the subsequently listed requirements are to be fulfilled for ef-
ficiently exchanging an arbitrary number of XML schema documents between
different parties:

• Efficiently exchange schema knowledge or respectively EXI grammars over
a limited communication link.

• Decrease time for using and/or switching to a given set of EXI grammars
on a deployed system.

• Eliminate runtime requirements for external libraries such as dependencies
on XML schema parser libraries (e.g., Xerces-J).

9.1.2 XML Schema Knowledge Exchange for Binary XML

Many schema-based binary XML formats (see Section 6.1) face the issue that
exchanging schema knowledge efficiently is of tremendous interest. The BiM [36]
format accommodated a standardized way that allows to encode XML schema
documents as BiM streams. BiM makes use of an XML schema that defines the
vocabulary of an XML schema document, the so-called XML schema for schema2.
The XML schema for schemas defines how an XML schema looks like using the
XML language itself.

Representing XML schema documents as binary XML encoded streams pro-
vides a solution for efficiently exchanging schema knowledge. Hence, XML schema
documents can be efficiently serialized using the binary XML format itself. How-
ever, it does not provide a solution for the other two raised problems. An XML
schema processor is still required for the deployed system, to be able to parse the
XML schema definitions. In addition, this grammar building process demands a
lot of time for generating the internal schema-informed structures.

The dependency on an XML schema parser is not unique to EXI. That said,
there have been efforts to remove this requirement for the BiM binary XML for-
mat also. For example, Ulrich Niedermeier elaborated in his dissertation [58] a

2XML schema for schema, see http://www.w3.org/2001/XMLSchema.xsd

http://www.w3.org/2001/XMLSchema.xsd

92 CHAPTER 9. EXI GRAMMAR REPRESENTATION

model he named Bytecode that represent XML schema information. Among other
things the so-called Bytecode represents automaton information relevant for BiM
processors as well as shared string entries. The different automaton states in
the Bytecode emulate XML schema datatypes, definitions, and relevant restric-
tions (for more details, see [58]). However, the Bytecode model is not described by
XML syntax. Hence, it is not representable with the binary XML format itself.
Instead it follows hand-crafted rules.

9.1.3 XML Schema Knowledge Exchange for EXI

As mentioned in the beginning of this chapter, XML schema information in EXI
streams is identified with a so called schemaId and its associated set of XML
schema documents. Since XML schema documents are XML documents itself, a
valid approach for EXI is to exchange schema documents as XML or more effi-
ciently as EXI-encoded counterparts (similar to the BiM binary XML format).
Nevertheless, doing so does not solve all identified requirements and a more ap-
propriate solution needs to be developed.

Before defining how such an exchange format may look like, it must be first
identified which XML schema rules are to be exchanged between different parties.
As revealed in previous chapters, not all XML schema facets and restrictions are
taken into account for building EXI grammars or do have an effect when building
EXI grammars. Hence first of all it needs to be identified which information
belongs to the required content of the exchange format.

9.2 Contents of XML Schema Exchange

The EXI format bases essentially on two pillars. First of all, XML tag names
of attributes and elements are expected to be known on both sides, encoder and
decoder side. Hence there is no need for exchanging those known qualified names
(URI and local-names) within an EXI stream again and again.

Second, EXI grammars and their associated productions describe what is likely
to occur at any given point in time when processing an EXI stream. We not
only differ between schema-informed and built-in grammars but more fine-grained
between different kinds of each (see Section 9.2.2).

9.2.1 Qualified Names

A qualified name, often referred to as a QName, defines an identifier for elements
and attributes. QNames are defined as a combination of namespace URI and a
local part of the QName. Often an XML prefix is used as a placeholder for the
namespace URI.

9.2. CONTENTS OF XML SCHEMA EXCHANGE 93

In EXI schema-informed qualified names result in pre-populated string table
entries. Hence each expected namespace URI and local-name gets pre-populated
in the EXI string tables. Further, qualified names may have of an associated global
element and/or attribute grammar, which in turn results in an EXI grammar.

9.2.2 EXI Grammars

We differ between various types of schema-informed EXI grammars. All grammar
types share the same structure or template, meaning that a grammar consists of
a set of productions. A production in turn is identified by an EXI event (e.g.,
StartElement, Attribute, Characters, EndElement) pointing to the next following
grammar.

Figure 9.1 depicts EXI grammars for the running notebook XML schema
example (see Listing 5.2 in Section 5.1.1). F states depict FirstStartTagCon-
tent grammars, S StartTagContent grammars, and E ElementContent grammars.
Double-circled states denote final states, respectively states that dispose of End-
Document (ED) or EndElement (EE) events.

Figure 9.1: Schema-informed EXI grammars for notebook.xsd

Each EXI grammar’s initial state is the Document grammar. There is only
one possible transition (SD ... StartDocument) that moves on to the DocContent
grammar. The XML schema for notebooks allows one root element only, namely
notebook. This is denoted by the DocContent grammar that apart from the pos-
sibility to represent any start element SE(*), has a SE(notebook) transition only.
Following a StartElement (SE) event means that first the according transition is
to be taken. In this specific example, the current state moves on from the state
DocContent to DocEnd. Moreover, any StartElement (SE) event pushes a new
stack item on the grammar stack with the appropriate grammar.
Elements in Figure 9.1 refers to all possible start element grammars. In this case

94 CHAPTER 9. EXI GRAMMAR REPRESENTATION

the SE(notebook) is pushed on the stack. On the contrary, EndElement (EE)
events pop one stack item again. The SE(notebook) grammar provides the event
sequence for an attribute date and requires at least on element note. SE(note) in
turn has of an optional attribute category followed by a required attribute date.
SE(note) is composed of an element subject followed by an element body. Both
elements, subject and body, are simple types denoted by the datatype string.

Schema-informed Document Grammars

The initial set of grammars when processing EXI are the document grammars
which essentially represent all possible global elements that can be used to start
an XML or respectively an EXI instance (see Table 9.1).
The notation that is subsequently used for grammars is as follows. On the left
hand side is the grammar name (e.g., Document) with a number of productions
indicated by a unique event (e.g., one production only with SD standing for start
document). Each production points to the next grammar (e.g., DocContent)
and has an event code associated to it (e.g., 0). An event code is represented
by a sequence of one, two, or three parts that uniquely identifies an event (see
Section 6.2.2). For example the Processing Instruction (PI) production of the
DocContent grammar has a sequence of three parts (n+1).1.1 in which n stands
for the number of global elements declared in the schema.

Table 9.1: Schema-informed EXI document grammars

Syntax Event Code

Document :
SD DocContent 0

DocContent :
SE (G0) DocEnd 0
SE (G1) DocEnd 1
... ...
SE (Gn−1) DocEnd n-1
SE (*) DocEnd n
DT DocContent (n+1).0
CM DocContent (n+1).1.0
PI DocContent (n+1).1.1

DocEnd :
ED 0
CM DocEnd 1
PI DocEnd 1.1

Note: The variable n in the grammar above
is the number of global elements G declared in the schema

9.2. CONTENTS OF XML SCHEMA EXCHANGE 95

In the case of schema-informed document grammars we differentiate between
Document, DocContent and DocEnd grammars. For example the Document
grammar has one production only. This single EXI event StartDocument (SD)
with the event code 0 (zero) leads to the next grammar, namely DocContent.
The DocContent grammar, has StartElement (SE) productions for all globally
available elements G. The variable n denotes the number of global elements. For
example let us assume having n==3 global elements. The associated event codes
for the global elements are represented by one event code part (0, 1, and 2) and
the event code for SE(*) is 3. Respectively the event code for processing instruc-
tions (PI) is 4.1.1 represented by three event code parts. In this specific example
the first event code part is encoded with 3 bits while the second and third event
code part require one bit each. Please consider Grammar Event Codes in Sec-
tion 6.2.2 for more details about event codes.
The DocEnd grammar provides the possibility to close an EXI Stream with the
last possible event, EndDocument (ED), that does not have anymore a following
grammar.

Schema-informed Fragment Grammars

Besides the possibility to represent valid XML documents with a single root, EXI
is also capable to encode streams that represent XML fragments. XML fragments
may have multiple root elements and/or represent sub-elements of a given XML
instance.

Table 9.2: Schema-informed EXI fragment grammars

Syntax Event Code

Fragment :
SD FragmentContent 0

FragmentContent :
SE (F0) FragmentContent 0
SE (F1) FragmentContent 1
... ...
SE (Fn−1) FragmentContent n-1
SE (*) FragmentContent n
ED n+1
CM FragmentContent (n+2).0
PI FragmentContent (n+2).1

Note: The variable n in the grammar above represents
the number of unique element names declared in

the schema. The variables F represent these qualified names.

Table 9.2 depicts two schema-informed fragment grammars, namely Fragment

96 CHAPTER 9. EXI GRAMMAR REPRESENTATION

and FragmentContent. The Fragment grammar is the starting point for each EXI
fragment while the FragmentContent grammar provides StartElement (SE) events
for all known elements. Hence, FragmentContent differs from the DocContent
grammar that only accounts for all global elements.

Schema-informed Element and Type Grammars

Element or type grammars describe what is likely to occur within a given schema-
informed element or type. We differ between FirstStartTagContent, StartTagCon-
tent, and ElementContent grammar.

In contrast to ElementContent grammars, both StartTagContent grammar
types may have attribute events. That said, attributes always belong to the start
of an element and respectively to a StartTagContent grammar. Further we dif-
ferentiate between the first and any other StartTagContent grammar. The First-
StartTagContent grammar is special in the sense that it is the only grammar that
accounts for namespace declaration (NS) and selfContained (SC)3 events. More-
over, it is also the only grammar where specific xsi:type or xsi:nil attribute
productions are available, depending on the actual XML schema document in use.

Once the grammar moves on to an ElementContent grammar it is not pos-
sible to represent attributes again. This matches with the XML behavior, once
characters or sub-elements are processed it is not possible to encounter attributes
in this element context again.

Table 9.3 shows a simplified version of one StartTagContent and one Ele-
mentContent grammar. In reality, there is one FirstStartTagContent grammar,
followed by zero to multiple StartTagContent grammars, followed by zero to mul-
tiple ElementContent grammars. Schema-informed events are pre-populated as
described by XML schema constraints. Moreover, depending on the used EXI
fidelity options some EXI events (e.g., comments (CM) or processing instructions
(PI)) may be also pruned. Pruning EXI events such as removing comments, if not
necessary or not desired, accounts for better compression and higher processing
speed.

XML Schema Particles and their Occurrences

In XML schema particles4 contribute to the definition of contents models (e.g., model
groups such as <sequence> and <choice>). An XML schema particle component
[76] has the following properties5:

3SelfContained elements in EXI may be read independently and can be indexed for random
access [73].

4XML schema particle component, see http://www.w3.org/TR/xmlschema11-1/
#cParticles

5http://www.w3.org/TR/xmlschema-1/#cParticles

http://www.w3.org/TR/xmlschema-1/#nameddest=cParticles
http://www.w3.org/TR/xmlschema11-1/#nameddest=#cParticles
http://www.w3.org/TR/xmlschema11-1/#nameddest=#cParticles

9.2. CONTENTS OF XML SCHEMA EXCHANGE 97

Table 9.3: Schema-informed EXI StartTagContent and ElementContent gram-
mars

Syntax Event Code

StartTagContent :
StartTagContent Event0 0
.. ...
StartTagContent Eventn−1 n-1
EE n.0
AT (*) StartTagContent n.1
NS StartTagContent n.2
SC Fragment n.3
SE (*) ElementContent n.4
CH ElementContent n.5
ER ElementContent n.6
CM ElementContent n.7.0
PI ElementContent n.7.1

ElementContent :
ElementContent Event0 0
.. ...
ElementContent Eventn−1 n-1
EE n
SE (*) ElementContent (n+1).0
CH ElementContent (n+1).1
ER ElementContent (n+1).2
CM ElementContent (n+1).3.0
PI ElementContent (n+1).3.1

Note: The variable n in the grammars above represents
the number of EXI events declared in the schema.

• minOccurs
A non-negative integer.

• maxOccurs
Either a non-negative integer or unbounded.

• term
One of a model group, a wildcard, or an element declaration.

When term is an element declaration, the number of such elements must be
less than or equal to any numeric specification of maxOccurs ; if maxOccurs is
unbounded, then there is no upper bound on the number of such children.

Figure 9.1 depicts a rather simple and straightforward example without any
XML schema particles appearing more often than once. The reason for introduc-

98 CHAPTER 9. EXI GRAMMAR REPRESENTATION

ing the concept of XML particles is that maxOccurs and minOccurs attributes in
an XML schema document do have a strong impact on how EXI grammars are
to be built. In order to highlight the effect, a sequence declaration in the XML
schema for notebook.xsd is slightly changed from

<xs:sequence maxOccurs="unbounded">
<xs:element name="note" type="Note"/>

</xs:sequence>

to

<xs:sequence maxOccurs="3">
<xs:element name="note" type="Note"/>

</xs:sequence>

As one may have noticed the attribute maxOccurs has changed the value from
"unbounded" to "3". The effect of this minor modification is larger than one
may expect. In respect to EXI grammars and the number of grammar states and
transitions, two additional grammar states in the SE(notebook) grammar have
been added and the state transitions have been slightly changed (see Figure 9.2
compared to Figure 9.1). As the reader may expect, changing the maxOccurs
value to "100" adds another 97 new grammar states.

Difference

Figure 9.2: Schema-informed EXI grammars for modified notebook.xsd

At the moment this excursion is completed by drawing the attention to the
fact that a large non-negative maxOccurs number compared to unbounded may
impact EXI grammars a lot. However, we will come back to this issue when
presenting some measurements and giving guidelines.

9.2. CONTENTS OF XML SCHEMA EXCHANGE 99

9.2.3 XML Schema Exchange Representation for EXI

As indicated, the proposed XML schema exchange approach focuses on a solution
that works without any XML schema processor. This allows one to ship EXI
processors without any XML schema parser library. Hence after removing the
XML schema processor capability, the only remaining code on a device is the
capability of processing EXI streams. We therefore narrow the solution space so
that it does not require the device to demand extra libraries. The solution that
subsequently is presented solely bases on EXI and pre-processed EXI grammars.

As pointed out in the introductory part, XML schema exchange representation
defined in an XML format is very sensible. This allows one to encode the informa-
tion very efficiently using EXI itself. In contrary to the binary XML format BiM,
which also uses this strategy, our proposed solution goes one step further and uses
a schema for grammars XML schema document to represent the data instead of
a schema for schema approach. Hence, we exchange the necessary information in
a pre-processed form so that EXI processors may use the grammars without any
external libraries and without spending power and processing time to build EXI
grammars from the given XML schema information.

Further, there are different possibilities how the knowledge can be exchanged.
One possibility is to send the information as part of the EXI stream in the EXI
header section. The knowledge can also be exchanged out of bound or in another
hand-shake protocol. The presented proposal does not restrict its use to a given
scenario nor does it force to be used in a given fashion. An application is free to
pick the appropriate process.

The gain is, as highlighted, nearly no additional code to be able to process
EXI grammars. The capability of parsing EXI is per se available and the only
requirement is a built-in grammar for the schema for grammars definitions. With
the capability of parsing schema for grammars definitions any XML schema or
respectively any EXI grammar can be parsed and exchanged. There is no need
for an additional schema parser library such as Xerces-J. Moreover these minimal
requirements are applicable to powerful devices but also to smaller device classes
with limited processing power.

9.2.4 Schema for Grammars

Before describing in full details the schema for grammars it seems reasonable to
summarize which kind of information EXI is using from the broad spectrum XML
schema is offering. Not all schema definitions or parameters lead to grammars
or change grammars respectively. Further, we need to keep in mind how EXI
grammars can be defined in XML so that an EXI processor can use the exchanged
information without the need of spending too much power and time transforming
them into internal structures.

100 CHAPTER 9. EXI GRAMMAR REPRESENTATION

In summary, it can be said that we differ between EXI grammars and qualified
names that need to be present in the exchange format for an EXI processor.
For further optimizations, it seems reasonable to provide a way to switch off
unlikely features that can be switched on again if required. Doing so helps to
make the representation even more concise. Consequently, the root element of
the schema for grammars depicted as exiGrammar (see Figure 9.3) has three sub-
elements, namely the optional featureDatatypeRepresentationMap followed by
the required qnames and grammars elements.

Figure 9.3: Schema for Grammars - Root element exiGrammar

Feature Datatype Representation Map

By default, each typed value in an EXI stream is represented using its default
built-in EXI datatype representation. However, EXI processors may provide
the capability to specify alternate built-in EXI datatype representations or user-
defined datatype representations for specific schema datatypes. This capability is
called a Datatype Representation Map [73].

Datatype Representation Map is an optional EXI feature for any conformant
EXI processor and is very unlikely to be useful in many application fields. Hence
the schema for grammars by default turns off the associated overhead.

That said, when the element featureDatatypeRepresentationMap is present
it is also required to transmit a list of simple sub-types of any given simple type.
In contrary, if the element featureDatatypeRepresentationMap is not present,
simple sub-types are not exchanged as part of the XML schema exchange format.
Simple sub-types are necessary to build a simple-type type hierarchy that in turn
is demanded by the EXI feature Datatype Representation Map.

QNames

Figure 9.4 depicts qnames in EXI, the overall collection of namespace URIs and
local-names. Therefore the element qnames contains an attribute that tells how
many namespace URIs (numberOfUris) and qnames (numberOfQNames) are pre-
populated due to the given XML schema information. Further, according to the
number of URI, we dispose of numberOfUris namespaceContext elements, which
in turn are identified by the actual URIs and the qnameContext. The reason why
the namespace URI string is represented as any element (see ##any in Figure 9.4)

9.2. CONTENTS OF XML SCHEMA EXCHANGE 101

may be surprising but becomes clear if one takes into account that EXI represents
element names very efficiently. Doing so the URI can be re-used very efficiently
for other qualified names. Also, for example the XML schema definitions are pre-
populated in any case6 with the URI strings "http://www.w3.org/XML/1998/namespace"
or "http://www.w3.org/2001/XMLSchema-instance" that are actually never re-
ally exchanged as lexical strings.

Figure 9.4: Schema for Grammars - Element qnames

QNameContext

The qnameContext (see Figure 9.5) has one required any element that identifies
the actual qualified name URI and local-name. In addition, it informs whether the
qualified name has a simple datatype (simpleDatatype) and a global type gram-
mar (globalTypeGrammarID) and/or a global element grammar (globalElementGrammarID).
Grammar IDs refer to EXI grammars that are available in the grammars element
section.

Further a globalAttributeTypeQnameID is given if the qualified name has a
global attribute and an optional list of simple sub-types is given if there are any
and the feature featureDatatypeRepresentationMap is turned on.

XML differs between simpleTypes and complexTypes. The difference between
those two kinds of types is that simple types are defined using a simple datatype
such as xs:integer or xs:float while complex types may be composed of other
elements, which again can be of a simple or complex type.

6http://www.w3.org/TR/exi/#initialUriValues

http://www.w3.org/TR/exi/#nameddest=#initialUriValues

102 CHAPTER 9. EXI GRAMMAR REPRESENTATION

Figure 9.5: Schema for Grammars - Element qnameContext

EXI does also know the concept of simple datatypes that have their pre-defined
representations. Nevertheless, in terms of grammars there is no difference between
simple and complex types. However EXI differentiates whether a type (simple or
complex) can be referenced or not. In XML terminology we speak about global
types and anonymous types.

Grammars

As Figure 9.6 highlights, EXI differentiates between eight different schema-
informed grammar types. According to a given schemaId we dispose of exactly
one document, docContent and docEnd grammar responsible to deal with EXI
documents. Further, we also have exactly one fragment and fragmentContent
grammar for dealing with EXI fragments. Further we have multiple
firstStartTagContent, startTagContent, and elementContent grammars.
The attributes numberOfFirstStartTagGrammars, numberOfStartTagGrammars,
and numberOfElementGrammars inform about the overall number of these gram-
mar types.

Each grammar type has a unique ID that can be referenced. Hence, in theory
it would not be necessary to sort the available eight grammar types in the way
it is done (e.g., document before docContent). Nevertheless from the perspective
of EXI event code lengths, it is very beneficial given that doing so reduces the
amount of bits for identifying a given grammar type.

All eight presented grammar types base on a list of EXI productions (see
Production in Figure 9.7). The firstStartTagContent grammar is different in
the sense that in addition to the default grammar types it provides the possibility
to define whether a schema-informed grammar is type-castable or nillable. An
element is type castable if the XML schema provides sub-types to the currently
used types (e.g., an element typed as xsd:integer is type castable given that
its type can be casted to xsd:short). Similarly an XML schema document tells

9.2. CONTENTS OF XML SCHEMA EXCHANGE 103

Figure 9.6: Schema for Grammars - Element grammars

whether an explicit null value can be assigned to the element with the attribute
nillable.

Schema for Grammars - Summary

The presented schema for grammars definitions are the ones needed for represent-
ing XML schema exchange knowledge for EXI. The complete schema for grammars
document listing can be found in the Appendix, Listing 4. The focus when defin-
ing the schema has been manifold. First the structure should match in-memory
data structures so that it is as easy as possible to create such grammar struc-
tures. Also, the used memory and performance has been in focus and therefore
many numberOf<XYZ> attributes are available to predict the number of entries be-
fore actually building in-memory structures. Moreover, the serialized EXI stream
for XML schema exchange must be very efficient. The next section will present
numbers that are about to validate these statements.

104 CHAPTER 9. EXI GRAMMAR REPRESENTATION

Figure 9.7: Schema for Grammars - Type Production

9.3 Results and Discussion

This section will illustrate the effectiveness of the previously proposed schema for
grammars solution. Comparisons to other solutions are given even if most of the
other test candidates do not fulfill the set of necessary requirements that have
been identified in Section 9.1.1.

9.3.1 EXI Grammars Start-up Costs

Due to the fact that the proposed schema for grammars solution does not have
any schema parser on the targeted device, an EXI implementation lacks also the
so called XML built-in datatypes7 that are omnipresent in any schema parser.

Built-in datatypes such as xs:integer or xs:float and the according gram-
mars build the basis for any datatype-aware processing. Hence this information
constitutes the start-up costs and is to be exchanged also. This means exchang-
ing an empty XML schema (see listing below), which in EXI terminology stands
for the availability of built-in XML schema types, has some unexpected overhead
associated to it.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

7http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

http://www.w3.org/TR/xmlschema-2/#nameddest=built-in-datatypes

9.3. RESULTS AND DISCUSSION 105

<!-- built-in XML schema types only -->
</xs:schema>

The start-up costs for an empty XML schema following the schema for gram-
mars rules is significant. The output for the qnames sections consists of the
46 built-in types. There are no global elements available. However, EXI pro-
cessors have a set of shared strings and a number of different string partitions
pre-populated already. The string table represents the initial entries when XML
schemas are used to inform the grammars8. With an empty schema in total we
account for 4 namespace URIs and 52 qualified name entries.

<exi:qnames numberOfUris="4" numberOfQNames="52">
<!-- URI ’’ -->
<exi:namespaceContext numberOfLocalNames="0">

...
</exi:namespaceContext>
<!-- URI ’http://www.w3.org/XML/1998/namespace’ -->
<exi:namespaceContext numberOfLocalNames="4">

...
</exi:namespaceContext>
<!-- URI ’http://www.w3.org/2001/XMLSchema-instance’ -->
<exi:namespaceContext numberOfLocalNames="2">

...
</exi:namespaceContext>
<!-- URI ’http://www.w3.org/2001/XMLSchema’ -->
<exi:namespaceContext numberOfLocalNames="46">

<xs:U/>
<!-- QNameID==6: {http://www.w3.org/2001/XMLSchema}ENTITIES

-->
<exi:qnameContext>

<xs:ENTITIES/>
<exi:simpleDatatype>

<exi:datatypeList>
<exi:datatypeBuiltInType>STRING</exi:

datatypeBuiltInType>
</exi:datatypeList>

</exi:simpleDatatype>
<exi:globalTypeGrammarID>5</exi:globalTypeGrammarID>

</exi:qnameContext>
<!-- QNameID==7: {http://www.w3.org/2001/XMLSchema}ENTITY -->
<exi:qnameContext>

<xs:ENTITY/>
<exi:simpleDatatype>

<exi:datatypeBuiltInType>STRING</exi:
datatypeBuiltInType>

</exi:simpleDatatype>

8http://www.w3.org/TR/exi/#initialStringValue

http://www.w3.org/TR/exi/#nameddest=initialStringValue

106 CHAPTER 9. EXI GRAMMAR REPRESENTATION

<exi:globalTypeGrammarID>6</exi:globalTypeGrammarID>
</exi:qnameContext>
...
<!-- QNameID==51: {http://www.w3.org/2001/XMLSchema}

unsignedShort -->
<exi:qnameContext>

<xs:unsignedShort/>
<exi:simpleDatatype>

<exi:datatypeBuiltInType>UNSIGNED_INTEGER</exi:
datatypeBuiltInType>

</exi:simpleDatatype>
<exi:globalTypeGrammarID>22</exi:globalTypeGrammarID>

</exi:qnameContext>
</exi:namespaceContext>

</exi:qnames>

The EXI grammars section is relatively simple, given that the only possible
start element is generic that can be casted later on to a given built-in type. Never-
theless, for each simple built-in type as well as for xsd:any a grammar is created.
Note that purely following the rules of the EXI specification may lead to duplicate
EXI grammars. This is for example the case for the EXI grammars of the global
type xsd:string and its subtype xsd:normalizedString. An additional opti-
mization step removes such duplicates before creating the schema for grammars
instance.

<exi:grammars numberOfFirstStartTagGrammars="20"
numberOfStartTagGrammars="0"
numberOfElementGrammars="3">
<!-- GrammarID == 0: Document[START_DOCUMENT] -->
<exi:document>

<exi:production>
<exi:startDocument/>
<exi:nextGrammarID>1</exi:nextGrammarID>

</exi:production>
</exi:document>
<!-- GrammarID == 1: DocContent[START_ELEMENT_GENERIC] -->
<exi:docContent>

<exi:production>
<exi:startElementGeneric/>
<exi:nextGrammarID>2</exi:nextGrammarID>

</exi:production>
</exi:docContent>
<!-- GrammarID == 2: DocEnd[END_DOCUMENT] -->
<exi:docEnd>

<exi:production>
<exi:endDocument/>

</exi:production>

9.3. RESULTS AND DISCUSSION 107

</exi:docEnd>
...
<!-- GrammarID == 27: Element[START_ELEMENT_GENERIC, END_ELEMENT,

CHARACTERS_GENERIC[STRING]] -->
<exi:elementContent>

<exi:production>
<exi:startElementGeneric/>
<exi:nextGrammarID>27</exi:nextGrammarID>

</exi:production>
<exi:production>

<exi:endElement/>
</exi:production>
<exi:production>

<exi:charactersGeneric/>
<exi:nextGrammarID>27</exi:nextGrammarID>

</exi:production>
</exi:elementContent>

</exi:grammars>

The EXI specification defines even more grammars than the ones that have
been shown in the listing (see Section 9.2.2). For example for each element gram-
mar a nillable element grammar is defined. This is different to the element gram-
mar in the sense that the nillable grammar does not have character or element
content events and is applied if an attribute xsi:nil="true" is used in an EXI
stream. For compression reason, this grammar is not exchanged. Instead it can
be reconstructed if needed by using the default grammar for a given element and
pruning irrelevant EXI events.

Subsequently the gains and the contribution of the proposed format are dis-
cussed and evaluated according to the given requirements: exchanged size, parsing
time, and code footprint.

9.3.2 Test Set

The test set has been explicitly selected to show the broad range and the effec-
tiveness of the proposed solution (in regard to size and complexity). To do so
XML schema documents from the public EXI working group testing framework9

were selected but also three prominent and relevant standardized XML schema
documents were further analyzed.

To take into account the start-up costs (see Section 9.3.1), also the Empty
XML schema document has been tested. Notebook as another test document is
our running example. It refers to a very simple XML schema document, which
essentially is meant to show the difference from an empty schema (start-up costs)
to a first real XML schema document. Datastore is one example that covers data-

9EXI Testing Framework: http://www.w3.org/XML/EXI/#TestingFramework

http://www.w3.org/XML/EXI/#nameddest=TestingFramework

108 CHAPTER 9. EXI GRAMMAR REPRESENTATION

oriented XML documents of the kind that appear when XML is used to store
information. The test case GAML covers data that is largely numeric and used
in scientific applications. Web services are well covered by the test case WSDL
that covers both, messages and other types of documents in the Web.

In order to consider real world use cases, two additional XML schema docu-
ments have been chosen. The test case V2G stands for the schema that is used
in the ISO/IEC 15118 standardization process to specify the so-called "Vehicle
2 Grid Comunication Interface", which has selected EXI as its exchange format.
SEP2 stands for Smart Energy Profile 2.0 and is being developed to create a
standard and interoperable protocol that connects smart energy devices in the
home to the Smart Grid10.

Moreover, MPEG-7 is a multimedia content description standard and was
standardized in ISO/IEC 15938. The multimedia description is associated with
the content itself and allows for example fast searching. MPEG-7 uses XML to
store this metadata and attaches timecodes in order to tag events.

9.3.3 Compression Measurements

One important aspect to compare the relevance of an XML schema exchange for-
mat is the amount of data that has to be exchanged. Hence this section compares
the different concepts in regard to size. XSD stands for the XML schema language
as defined by the W3C and written in plain-text XML. S4S stands for schema
for schemas and uses the schema for schemas definitions to apply EXI coding on
the XML schema documents. The Bytecode concept (see Section 9.1.2) might be
applicable to EXI. However it currently works with the binary XML format BiM
only. Finally, there is S4G representing the presented solution that also encodes
the XML schema knowledge with EXI but uses the schema for grammars defini-
tions. Neither the candidate XSD nor S4S meets the requested requirements as
requested in Section 9.1.1. Both demand an XML schema parser library to work.
Apart from S4G, Bytecode is the only candidate that removes any dependency on
an XML schema parser library.

Figure 9.8 depicts compression numbers. The test set is sorted according to
the plain-text XML schema document size. In the case of S4G and Bytecode it is
not possible to simply dismiss the start-up costs of an empty schema. An empty
schema accounts for 378 Bytes in the S4G representation while the original tex-
tual representation accounts for 111 Bytes and its EXI encoded S4S counterpart
accounts for only 3 Bytes. The need to dismiss built-in datatypes of an XML
schema parser has a strong negative effect. This is also strengthened by the can-
didate Bytecode that demands even more start-up costs (1867 Bytes). However,
already a very simple XML schema document like Notebook illustrates the com-

10http://www.zigbee.org/Standards/ZigBeeSmartEnergy/Version20Documents.aspx

http://www.zigbee.org/Standards/ZigBeeSmartEnergy/Version20Documents.aspx

9.3. RESULTS AND DISCUSSION 109

0 %

100 %

200 %

300 %

400 %

500 %

Empty Notebook Datastore GAML WSDL V2G SEP2 MPEG-7

%
 o

f X
S

D
 s

iz
e

XSD
S4S

Bytecode
S4G

[Bytes] XSD S4S Bytecode S4G

Empty 111 3 1 867 378
Notebook 648 101 2 060 501
Datastore 939 205 2 165 591
GAML 13 554 1 787 5 145 2 207
WSDL 18 010 3 255 5 009 2 531
V2G 64 192 13 484 20 523 14 004
SEP2 309 132 105 926 39 750 41 051

MPEG-7 347 625 49 577 77 270 198 987

Figure 9.8: Compression Results for XML Schema Exchange Formats

petitiveness of the S4G candidate in regard to plain-text XML schema documents
by reducing the amount of data that needs to be exchanged.

In general, it can be said that for small schema documents the overhead for the
built-in XML schema types is relevant. The more complex and larger the XML
schema documents become, the more effective the schema for grammars (S4G)
solution tends to be.

Looking into the measurements more closely shows why the SEP2 schema is
best suited to S4G and stresses that the XML schema uses restrictions that do
not affect EXI grammars. Those restrictions are exchanged in the XSD and S4S
format but do not change in any way how EXI grammars look like. One example
are facets such as <xs:maxInclusive value="281474976710655"/>. These and

110 CHAPTER 9. EXI GRAMMAR REPRESENTATION

other similar facets do not affect grammars and hence do not need to be trans-
ferred. In fact, this specific facet changes datatype representations and is hence
implicit according to the given EXI datatype.

In contrary, we can detect issues with the MPEG-7 test case. Again, looking
into the case more closely highlights the reason. The MPEG-7 schema uses XML
schema particles with occurrences such as maxOccurs="200" and maxOccurs="127".
In Section 9.2.2 we described the correlation of XML schema particle properties
and EXI grammars. Larger numbers for XML schema particle occurrences inflate
the number of EXI grammar states and productions. Hence, from the EXI per-
spective, setting maxOccurs to unbounded is much better suited and can be seen
as a schema design guideline for EXI.

Figure 9.9 depicts compression numbers, where an additional compression
step (DEFLATE [23]) is affordable. The overall compressed size is much smaller
and hence also the amount of data that needs to be exchanged is much smaller.
The difference between the formats mostly disappears in regard to size but the
trend remains the same as elaborated in Figure 9.8.

Comparing all compression measurements, the schema for schemas (S4S) so-
lution shows the best compression performance, except for the test case SEP2
and WSDL, where the proposed S4G solution is more compact and outperforms
all other formats. This means from the point of view of having the most effi-
cient representation on the wire S4S is a feasible choice. However, as stressed
already, it does not provide a solution for the demanded requirements given that
it fully depends on an XML schema parser. That said, the proposed schema for
grammars (S4G) solution offers the overall best approach fulfilling all demanded
requirements stated in Section 9.1.1.

9.3.4 Parsing Time Measurements

This section discusses the expected time differences between the two ways of
building EXI grammars. Figure 9.10 compares the speed of an XML schema
library (in our case Xerces-J) to first load an XML schema document and then
to build EXI grammars compared to S4G which directly reads the EXI stream
according to the schema for grammars definitions to build EXI grammars.

The speed benefit one gets from XSD to S4G highly depends on how much time
is spent actually loading the files compared to how much time is spent building
EXI grammars.

Figure 9.10 depicts processing performance numbers and highlights that even
in the worst case where most of the time is actually spent creating EXI grammars,
the time improvement of S4G compared to the baseline XSD is 23%. This means
that an EXI processor spends about a third less time waiting for EXI grammars
to be ready. However, the MPEG-7 performance highlights once again that given
to the particle occurrences, building EXI grammars dominates. The large SEP2

9.3. RESULTS AND DISCUSSION 111

0 %

100 %

200 %

300 %

400 %

500 %

Empty Notebook Datastore GAML WSDL V2G SEP2 MPEG-7

%
 o

f g
zi

pp
ed

 X
S

D
 s

iz
e

XSD.gzip
S4S+Compr

Bytecode+Compr
S4G+Compr

[Bytes] XSD.gzip S4S+Compr Bytecode+Compr S4G+Compr

Empty 252 5 1 320 295
Notebook 443 107 1 443 418
Datastore 488 162 1 482 475
GAML 1 860 1 050 3 260 1 444
WSDL 4 121 1 597 3 122 1 525
V2G 9 880 6 131 10 824 6 405
SEP2 41 180 34 780 22 053 12 952

MPEG-7 35 417 21 001 42 395 42 082

Figure 9.9: Compression Results for XML Schema Exchange Formats with DE-
FLATE

test case falls in the same category that most of the time is actually spent creating
internal structures and respectively EXI grammars. Hence the time is not the time
one format takes to be parsed but mostly the time that is necessary to create the
in-memory representations of EXI grammars.

The best performance boost is getting the V2G test case (about 21 times
faster) that is due to the fact that the test is composed of several distinct files
that XSD or respectively the XML schema parser needs to put together while the
S4G solution just deals with one single stream.

For small documents (e.g., Empty, Notebook, Datastore, GAML and WSDL)
the benefit is in the range of two to five times faster for S4G.

112 CHAPTER 9. EXI GRAMMAR REPRESENTATION

0 %

20 %

40 %

60 %

80 %

100 %

120 %

Empty Notebook Datastore GAML WSDL V2G SEP2 MPEG-7

%
 o

f X
S

D
 ti

m
e

XSD
S4G

Figure 9.10: EXI Grammars Parsing Time

9.3.5 Summary

Concluding we can say that the proposed schema for grammars (S4G) solution
offers what is requested. First of all the code footprint of the deployed system
can be reduced by the XML schema parser. In our case, when using Java with
Xerces-J and EXIficient, this yields a reduction of 1588 kBytes. Further the per-
formance in regard to processing time is much better when compared to parsing
an XML schema. An XML schema parser usually first builds an internal model
(e.g., XSModel in Xerces-J) which in turn is used to build EXI grammars. More-
over, the S4G solution easily integrates into existing EXI processors and makes
them independent of any XML schema parser library. That said, the schema for
grammars definition is language independent and is especially designed for fast
parsing while also taking into account runtime memory constraints.

Chapter 10

Demand-tailored EXI Processor

The previous Chapter 9 illustrates a very flexible and powerful way to exchange
XML schema knowledge required to process schema-informed EXI streams. The
presented schema for grammars (S4G) approach offers a way to inform an EXI
processor with any kind of schema knowledge. In many cases tough, EXI proces-
sors do not demand being capable to process any kind of data. This is especially
the case for highly restricted device classes. The messages, or respectively the
EXI streams that are exchanged, are usually limited to a few different sets of
messages. Moreover, only processing support for datatypes that are actually re-
quired for those kinds of messages shall be deployed on restricted devices. This
allows reducing code footprint and facilitates optimizations that may lead to in-
creased performance. Moreover, lowering the required processing power also re-
duces costs. Microcontrollers may be less powerful and the memory requirements
may be lowered also. These conditions encourage building a demand-tailored EXI
processor that fits the demanded needs. That said, no more features than actually
necessary should be deployed.

The following sections first sketch how a demand-tailored EXI processor may
look like. Doing so demands once again analyzing EXI grammars given that EXI
grammars build the basis of any EXI processor. Based on the outcome of this
research, relations between EXI grammars and EXI events are established that
hereinafter lead to how to build a demand-tailored EXI processor. In contrary to
what we have seen so far, source code will establish a dedicated EXI processor
for a given set of XML schema documents or respectively for a given set of EXI
grammars. Until now EXI processors have been examined that are guided by EXI
grammars to support schema-informed EXI grammars (e.g., the EXI processor
EXIficient). Finally, algorithms are shown that, based on a given set of XML
schema documents, build an EXI processor in an automatable way.

113

114 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

Figure 10.1: EXI Grammar for SOAP element Envelope content model

10.1 EXI Grammar Transformations

The EXI format is grammar-driven meaning that processing is based on regular
grammars derived from XML schema constraints. The EXI specification [73]
defines a predefined process how schema information is to be transformed to EXI
grammars.

Figure 10.1 shows exemplarily the grammar of the XML element content model
Envelope and respectively the EXI grammar for Envelope. The SOAP1 Envelope
element is the root element of a SOAP message and allows a nested element
Header and requires an element Body. Given that XML is not a regular language,
a single EXI grammar cannot be used to represent an entire XML document.
Instead, an EXI processor uses a stack of grammars, one for each element content
model. The underlying Document grammar stack item in turn describes root
elements that may occur in an EXI document.

In general, StartElement (SE) events specify the start of a new XML element
while also pushing a new grammar onto the grammar stack. EndElement (EE)
events on the other hand pop the current grammar from the stack again. Essen-
tially, EXI offers corresponding events for all XML Information Set items such as
characters and attributes.

Chapter 9 illustrated various ways to make a generic EXI processor aware of
a set of EXI grammars such as providing grammar knowledge on the basis of
XML schema documents or pre-parsed grammar files. Nevertheless, none of the
mentioned approaches is suitable for highly restricted devices. In addition, the
requirements of providing all possible functionalities, datatypes and EXI options

1W3C: SOAP Specifications, http://www.w3.org/TR/soap/

http://www.w3.org/TR/soap/

10.1. EXI GRAMMAR TRANSFORMATIONS 115

in each use case (even if not required) is not feasible in microcontroller domains.
Hence subsequently a solution, focusing on minimal code footprint and complex-
ity, is presented where the source code implicitly contains all required grammar
information without any external dependencies.

10.1.1 Properties of EXI Grammars

EXI grammars correspond to deterministic finite automata (DFA) where events
describe the transition from one grammar state to the next state. A transition is
to be considered implicit when there is only one possible next state (e.g., Element1
⇒ Element2 in Figure 10.1). For states where multiple transitions are possible
(e.g., StartTag provides transitions to Element1 and Element2), the EXI stream
indicates with a so called event code which path in the automaton has been chosen.
This event code is represented by an n-bit unsigned integer (n = dlog2me, where
m is the number of events).

The number of possible events is dictated by the available transitions on the
one hand and by the used EXI options on the other hand. In general, the EXI
default mode always accounts for one additional escape event that is meant to
indicate deviations. Such deviations from an XML schema document are accepted
and encoded using more generic events. Hence, a deviant XML information, or in
other words information not matching the underlying XML schema, can still be
represented as an EXI stream, although less efficient. The EXI format also has
a special mode called STRICT that implies strict interpretation of grammars (or
respectively XML schema) and thus only permits items and datatypes declared
in this context. This dedicated mode is used to achieve best compression num-
bers and decreased processing time by removing deviant information (i.e., escape
events) and usually unnecessary XML items such as comments. The EXI STRICT
mode is also beneficial in regard to processing time due to code simplicity. That
said, strict interpretation prunes additional transitions that have been added to
deal with deviant data.

It is very likely that most microcontrollers and other highly restricted de-
vice classes use strict interpretation of the developed exchange protocol. Hence
we subsequently focus on the EXI option STRICT. Nevertheless, all presented
mechanisms and algorithms are also applicable to the default EXI mode.

10.1.2 Mapping EXI Grammars to Finite State Machines

A finite state machine (FSM) is a model of behavior composed of a finite number
of states, transitions between those states, and actions. It is similar to a flow graph
where we can inspect the way in which the logic runs when certain conditions are
met.

116 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

When mapping EXI grammars to the concept of a finite state machine, EXI
grammar states represent the FSM states. A transition from one EXI grammar
state to the other is indicated by a so called EXI event. EXI has a restricted set
of EXI events such as StartDocument (SF), StartElement (SE), Attribute (AT),
Characters (CH) EndElement (EE), and EndDocument (ED). The complete list
of available EXI events can be retrieved from the official specification website2.

A so called event code triggers which transition has to be taken if more than
one transition is available. Hence an event code defines the transition condition
that is met. In the case of a single transition only, the event code is implicit and
no bit is written to (or read from) an EXI stream.

Despite from moving from one state to the other, most EXI events have an
action associated to it (e.g., an AT event stands for an attribute qualified name
and the attribute value). Additionally SE and EE events push and pop the current
EXI grammar onto or from a stack of grammars. The current grammar is always
the peak grammar of the grammar stack.

10.1.3 Mapping EXI Grammars to Source Code

As shortly alluded a generic EXI processor is hardly deployable on microcontroller-
based platforms. The code footprint is likely too large and many EXI options
account for additional processing and additional code footprint. Recalling the
requirements of an EXI processor, that is meant to be successfully deployed on
restricted devices, we have to fulfil additional requirements.

• Minimal code footprint.

• Minimal runtime requirements in regard to processing power and memory.

• Support for one (or a restricted) set of XML schema documents.

• Generally, support for one set of EXI options.

These requirements lead to a new way of realizing an EXI processor, different
to the ones that were discussed so far and targeting different device capabilities.
First of all EXI grammars are not built at runtime or shared in a pre-parsed
form. The EXI grammars need to be built-in instead, to achieve minimal code
footprint. This implies that such an EXI processor is not flexible in supporting
various exchange messages but mostly supports instances conforming a given set
of XML schema documents (or EXI grammars) only.

Suppose a restricted device such as an Internet-connected watch that is meant
to support the running notebook example showing notes on the screen that are
pushed to this device. That said, the set of EXI grammars that need to be sup-
ported are restricted. Figure 10.2 depicts once again the available set of EXI

2Available EXI events, http://www.w3.org/TR/exi/#eventTypes

http://www.w3.org/TR/exi/#nameddest=#eventTypes

10.1. EXI GRAMMAR TRANSFORMATIONS 117

Figure 10.2: Schema-informed EXI grammars for notebook.xsd

grammars. First, we have Document, DocContent amd DocEnd grammars. Fur-
ther, for each XML element (i.e., notebook, note, body, and subject) we have
another set of grammars, starting with first start tag grammars denoted by "F",
followed by start tag grammars denoted by "S", and element content grammars
denoted by "E". To put it briefly, each grammar type relates to different states
while processing an XML element. For example in the very beginning of an XML
element, the grammar state or respectively the FSM state accounts for attributes
(see "F" and "S") while after processing characters, attributes are not allowed
anymore (see "E"). Section 9.2.2 elaborates the differences between the different
kinds of grammar types in more details.

The grammars in this example are very simple and have in many states just
one transition and at most two possible choices (e.g., DocContent grammar).

A developer that is asked to develop a piece of code for parsing (i.e., de-
coding) EXI streams following the notebook example may likely come up with
source code that is similar to what is sketched in Listing 10.1. The method
decodeNBitUnsignedInteger(nbits) reads nbits bits from a given EXI stream.
Hence in the listing, it is used to report EXI event codes. The switch or if state-
ments allow moving from one grammar state to another grammar state. Further
we see auxiliary methods for decoding strings or date values (see decodeString(...)
and decodeDate(...)).

118 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

Listing 10.1: Restricted Pseudo EXI Source Code Decoder for notebook.xsd

1 /* Start with Document, SD transition implicit to DocContent */
2 if (decodeNBitUnsignedInteger(1) == 0) {
3 /* SE(notebook) */
4 switch (decodeNBitUnsignedInteger(1)) {
5 case 0:
6 /* AT(date) */
7 decodeDate();
8 /* no break */
9 case 1:
10 /* SE(note) */
11 switch (decodeNBitUnsignedInteger(1)) {
12 case 0:
13 /* AT(category) */
14 decodeString();
15 /* no break */
16 case 1:
17 /* AT(date) */
18 decodeDate();
19 /* SE(subject) */
20 decodeString();
21 /* SE(body) */
22 decodeString();
23 if(decodeNBitUnsignedInteger(1) == 0) {
24 /* error: only one note element supported */
25 }
26 }
27 break;
28 }
29 }

Consequently, Listing 10.1 provides a very rudimentary sample code that rep-
resent an EXI decoder with certain restrictions. That said, the pseudo code
supports only EXI streams that are valid to the given notebook.xsd XML schema
and are encoded with the default EXI options except that the EXI STRICT mode
is established (i.e., no deviations). Further the element notebook may contain ex-
actly one node element only.

The default EXI stream is bit-packed. Bit-packed means that one bit may
indicate one or the other grammar state transition. Moreover, having just one
possible transition (e.g., Document grammar) implicitly implies this single tran-
sition. This is why the pseudo source code directly moves on to the DocContent
grammar in the very beginning. The DocContent grammar has two transitions
and hence requires to read one bit (dlog22e = 1, see decodeNBitUnsignedInteger
on line 2). A returned event-code equal to 0 (zero) dictates that the first transi-
tion SE(notebook) is taken while an event-code equal 1 (one) would inform about
an unexpected element SE(*). In a similar fashion the SE(notebook) grammar is
decoded. The next bit informs whether an attribute AT(date) is available that
would also imply decoding the date value.

The presented code is limited to a certain set of messages but it also gives a
very good idea how simple an EXI processor (in this case the decoder) can be
built. However, the presented approach also shows some problems that may need
to be solved before being able to successfully create source code for more complex

10.2. AUTOMATIC EXI PROCESSOR GENERATION 119

EXI grammars. One main issue is the capability of moving from one grammar
state back to a previous one which was the reason that only one note element is
supported. This situation accounts for either duplicate code or a mean to establish
some kind of jump labels (see Listing 10.1 where in line 24 the program needs
to jump back to line 4). The first solution of duplicating code is only sensible
for very simple EXI grammars and practically impossible for occurrences that
are unbounded. Hence we focus on efficiently creating jump labels. Moreover,
the ideal case is that an EXI processor can be created with a given automatable
generation process following pre-defined steps and algorithms.

10.2 Automatic EXI Processor Generation

The previous section sketched the mechanism that can be used to produce a
program or library that decodes XML information represented as EXI stream.
Vice versa, XML information items can be marshalled to an EXI stream. For
doing so, three steps are involved. To support automatic generation of such EXI
processors the following steps need to be taken into account.

1. Analyze XML schema information: The widely adopted XML schema pro-
cessor Xerces-J is used to analyze XML schema documents. As a result, all
possible XML elements, attributes, and constraints in this specific schema
context are obtained.

2. Build EXI grammars according to schema constructs and datatypes:
The EXI specification [73] accurately describes the process of creating EXI
grammars from schema constructs. The efforts in the open source EXI
implementation EXIficient already prepared the technical ground for this
process.

3. Create source code according to EXI grammars: This is the novel step
that is subsequently explained in more detail.

10.2.1 Automatic Source Code Generation according to EXI Gram-
mars

The presented concepts do not focus on code generation for a specific programming
language. Instead, the use cases in mind are to support various programming
languages such as ANSI-C, C++, and Java. Some of our test beds run on Java
Micro Edition. Others base on Contiki, an open source operating system for
networked, memory-constrained systems with a particular focus on low-power
wireless devices. Yet others use nesC3.

3nesC (network embedded systems C) is a component-based, event-driven programming
language used to build applications for the TinyOS platform.

120 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

The extensive application use within various programming languages demands
that the presented mechanisms are flexible enough to produce source code in any
programming language. That said, the concepts ought to be generally applicable.

EXI grammars consist of a set of grammar states. Production rules define
relations among each state. A very effective way to identify grammar states is
to uniquely assign labels. For example the grammar state Document is labeled
with 0, DocContent with 1, DocEnd with 2, and the initial state F for the notebook
element with 3 et cetera. This process continues for all EXI grammar states.

Figure 10.3: Schema-informed EXI grammars for notebook.xsd with grammar
IDs

Figure 10.3 depicts exemplarily this process of labelling grammar states with
IDs (grammar IDs are depicted within angle brackets, e.g., [1]). This unique
IDs can be used in switch case statements as jump labels. We will shortly see an
example how this may look like.

However, first we also need to solve the second issue of the previously intro-
duced initial sample, namely structuring the source code into smaller and man-
ageable portions. This highly relates to the application programming interface.

10.2.2 Application Programming Interface

Traditionally, XML application programming interfaces (APIs) are either DOM-
based [56]—the entire document is read into memory as a tree structure—or event-
based push-APIs (e.g., SAX [12])—the application registers to receive events as
entities are encountered within the document. Both have advantages; the former
allows for random access to the document, the latter comes with a smaller memory
footprint and is typically much faster.

10.2. AUTOMATIC EXI PROCESSOR GENERATION 121

Pull APIs (e.g., StAX [31]) were designed as a median between these two
opposites. The entry point is a cursor that represents a point within the docu-
ment. The application moves the cursor forward—pulling the information from
the parser as it needs. Many microcontroller based use cases demand pull APIs
given that the memory is not sufficient to store all information. Moreover, the
limited application requires to be able to decide when being capable to receive
new data. Hence, a pull API is able to move on the cursor in the stream and
reports the according XML information such as elements, attribute, and character
data.

Listing 10.2: Typed API for EXI Decoder (Excerpt)
1
2 /**
3 * \brief Inspects EXI stream and decodes next EXI event.
4 */
5 int exiDecodeNextEvent(bitstream_t* stream,
6 exi_state_t* state, exi_event_t* nextEvent);
7
8
9 /**
10 * \brief Decodes StartDocument (SD) event
11 */
12 int exiDecodeStartDocument(bitstream_t* stream,
13 exi_state_t* state);
14
15 /**
16 * \brief Decodes EndDocument (ED) event
17 */
18 int exiDecodeEndDocument(bitstream_t* stream,
19 exi_state_t* state);
20
21 /**
22 * \brief Decodes StartElement (SE) event
23 */
24 int exiDecodeStartElement(bitstream_t* stream,
25 exi_state_t* state, uint16_t* qnameID);
26
27
28 /**
29 * \brief Decodes EndElement (EE) event
30 */
31 int exiDecodeEndElement(bitstream_t* stream,
32 exi_state_t* state, uint16_t* qnameID);
33
34
35 /**
36 * \brief Decodes Characters (CH) event.
37 */
38 int exiDecodeCharacters(bitstream_t* stream,
39 exi_state_t* state, exi_value_t* val);
40
41
42 /**
43 * \brief Decodes Attribute (AT) event.
44 */
45 int exiDecodeAttribute(bitstream_t* stream,
46 exi_state_t* state, uint16_t* qnameID, exi_value_t* val);

122 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

Listing 10.2 introduces the pull API in ANSI-C for parsing an EXI stream that
will be used in the following sections. Apart from setting up the EXI stream itself
and initializing the decoder the given interface provides a method for inspecting
the stream and reporting the next EXI event (see exiDecodeNextEvent(...)).
Based on the according EXI event that can be StartDocument (SD), EndDocu-
ment (ED), StartElement (SE), EndElement(EE), Characters (CH), or Attribute (AT),
the matching decode method needs to be called. For example, an EXI event
ATTRIBUTE implies calling exiDecodeAttribute(...) that in turn reports the
attribute qualified name and the attribute value.

Further, the general assumption of this error reporting API is that each
function call reports as return value success or failure. Any return value other
than zero (0) is interpreted as failure. The function parameter stream typed as
bitstream_t is the EXI input stream and the function parameter state typed
as exi_state_t implies the EXI processor state.

Subsequently, a procedure for each relevant API function is given first in the
form of an algorithm and second as ANSI-C source code. Note that the procedure
is flexible enough to produce code in any programming language. However, in our
case ANSI-C has been chosen.

10.2.3 EXI Decoder Generation

For simplicity, the main focus is to show how the algorithms for creating an EXI
parser works. The EXI parser (sometimes also called EXI decoder) process can
be applied in a very similar fashion to the encoder side as well.

EXI Decoder - Next Event

The algorithm that is used is rather simple and straight forward. We will also see
some optimization potential later. The concept is based on a list of EXI grammars
where the grammarID is the unique position of each grammar in the grammar
list (0...numberofgrammars − 1).

The source code creation process in Algorithm 1 walks over the grammar
list and prints output in a programming-language-dependent way. For each
grammarID a case statement is created so that an EXI processor, depending
on the current grammarID, can directly jump to the relevant portion of the code.
The if block starting on line 12 deals with grammars where a single transition is
available. Hence the transition is implicit and there is no need to decode any event-
code from the EXI stream. The else part starting on line 15 handles cases where
we have multiple possible transitions. According to the number of transitions
(see numberOfTransitions), the logarithm to base 2 is built, which defines the
number of bits that need to be read to decode the right EXI event-code. Also,
the number of transitions for each grammar state form another nested switch do

10.2. AUTOMATIC EXI PROCESSOR GENERATION 123

Algorithm 1 EXI Decoder Generation - Next Event algorithm
1: procedure NextEvent(grammarList) . Report the next EXI event
2: print ’int exiDecodeNextEvent(...) {’ . Function Definition
3: print ’int16_t grammarID = state->grammarStack[state->stackIndex];’
4: print ’state->eventCode = 0;’
5: print ’errn = 0;’
6: print ’switch (grammarID) {’
7: for i = 0 to sizeof (grammarList)− 1 do
8: print ’case ’ + i + ’:’
9: currGrammar ← grammarList[i]
10: transitionList← getTransitions(currGrammar)
11: numberOfTransitions ← sizeof (transitionList)
12: if numberOfTransitions = 1 then
13: event← getEvent(transitionList[0])
14: print ’*nextEvent = ’ + event + ’;’
15: else
16: nbits← log 2 numberOfTransitions
17: print ’errn = decodeNBitUnsignedInt..’ + nbits + ’, ..);’
18: print ’switch (state->eventCode) {’
19: for k = 0 to numberOfTransitions − 1 do
20: event← getEvent(transitionList[k])
21: print ’case ’ + k + ’:’
22: print ’*nextEvent = ’ + event + ’;’
23: print ’break;’ . Inner Break
24: end for
25: print ’}’
26: end if
27: print ’break;’ . Outer Break
28: end for
29: print ’}’
30: print ’return (errn);’
31: print ’}’ . End of Function
32: end procedure

deal with all available event transitions. Note that the logarithm computation is
done at compile time and not at runtime.

Listing 10.3 presents the output of the source code generation algorithm for
the ANSI-C programming language. The function exiDecodeNextEvent(...) is
called whenever an application wants to inspect the EXI stream to retrieve the
next EXI event. According to the current grammarID, the outer switch jumps to
the relevant case statement. For example grammarID set to 0 (zero) is the start
of the stream that deals with the Document grammar. The Document gram-
mar has exactly one possible transition, namely StartDocument (SD) which is
implicit. Once an application calls the exiDecodeStartDocument(...) func-

124 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

tion (not shown here) the current grammarID changes to 1 (one). Hence we deal
with the DocContent grammar. The DocContent grammar disposes of two pos-
sible transitions and depending on the decoded event-code the next EXI event is
reported. This process is similar for all other grammars (the grammarIDs range
from 0 ... 13).

Listing 10.3: EXI Decoder - Next Event
1 int exiDecodeNextEvent(bitstream_t* stream, exi_state_t* state,
2 exi_event_t* nextEvent) {
3 int16_t grammarID = state->grammarStack[state->stackIndex];
4 state->eventCode = 0;
5 errn = 0;
6
7 switch (grammarID) {
8 case 0:
9 /* Document[START_DOCUMENT] */
10 *nextEvent = EXI_EVENT_START_DOCUMENT;
11 break;
12 case 1:
13 /* DocContent[START_ELEMENT(notebook),

START_ELEMENT_GENERIC] */
14 errn = decodeNBitUnsignedInteger(stream, 1, &state->

eventCode);
15 switch (state->eventCode) {
16 case 0:
17 *nextEvent = EXI_EVENT_START_ELEMENT;
18 break;
19 case 1:
20 *nextEvent = EXI_EVENT_START_ELEMENT_GENERIC;
21 break;
22 }
23 break;
24 case 2:
25 /* DocEnd[END_DOCUMENT] */
26 *nextEvent = EXI_EVENT_END_DOCUMENT;
27 break;
28 case 3:
29 /* FirstStartTag[ATTRIBUTE[DATETIME](date), START_ELEMENT(

note)] */
30 errn = decodeNBitUnsignedInteger(stream, 1, &state->

eventCode);
31 switch (state->eventCode) {
32 case 0:
33 *nextEvent = EXI_EVENT_ATTRIBUTE;
34 break;
35 case 1:
36 *nextEvent = EXI_EVENT_START_ELEMENT;
37 break;
38 }
39 break;
40 case 4:
41 /* StartTag[START_ELEMENT(note)] */
42 case 8:
43 /* StartTag[START_ELEMENT(subject)] */
44 case 9:
45 /* Element[START_ELEMENT(body)] */
46 *nextEvent = EXI_EVENT_START_ELEMENT;
47 break;
48 case 5:
49 /* Element[START_ELEMENT(note), END_ELEMENT] */

10.2. AUTOMATIC EXI PROCESSOR GENERATION 125

50 errn = decodeNBitUnsignedInteger(stream, 1, &state->
eventCode);

51 switch (state->eventCode) {
52 case 0:
53 *nextEvent = EXI_EVENT_START_ELEMENT;
54 break;
55 case 1:
56 *nextEvent = EXI_EVENT_END_ELEMENT;
57 break;
58 }
59 break;
60 case 6:
61 /* FirstStartTag[ATTRIBUTE[STRING](category), ATTRIBUTE[

DATETIME](date)] */
62 errn = decodeNBitUnsignedInteger(stream, 1, &state->

eventCode);
63 switch (state->eventCode) {
64 case 0:
65 case 1:
66 *nextEvent = EXI_EVENT_ATTRIBUTE;
67 break;
68 }
69 break;
70 case 7:
71 /* StartTag[ATTRIBUTE[DATETIME](date)] */
72 *nextEvent = EXI_EVENT_ATTRIBUTE;
73 break;
74 case 10:
75 /* Element[END_ELEMENT] */
76 case 12:
77 /* Element[END_ELEMENT] */
78 *nextEvent = EXI_EVENT_END_ELEMENT;
79 break;
80 case 11:
81 /* First(xsi:type)StartTag[CHARACTERS[STRING]] */
82 case 13:
83 /* First(xsi:type)StartTag[CHARACTERS[STRING]] */
84 errn = decodeNBitUnsignedInteger(stream, 1, &state->

eventCode);
85 switch (state->eventCode) {
86 case 0:
87 *nextEvent = EXI_EVENT_CHARACTERS;
88 break;
89 case 1:
90 /* 2nd level events */
91 *nextEvent = EXI_EVENT_ATTRIBUTE_XSI_TYPE;
92 break;
93 }
94 break;
95
96 }
97
98 return (errn);
99 }

Line 40 and the following lines of Listing 10.3 show another interesting aspect
of optimizations. The case statements of #4, #8, and #9 share the same code
portion. Hence the code can be grouped together, which reduces code footprint
for larger grammar sets. The same applies to the case statements #10 and #12
as well as the case statements #11 and #13.
The algorithm that is used to detect shared code portion is very simple but
effective. The code portions are generated and indexed . In the case of outputting

126 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

the same functionality (e.g., twice an EndElement (EE) event) exactly the same
code portion is generated (character by character). Hence source code portions
can be combined with multiple cases if the source code portions compare equal
to previous appearances.

After initializing an EXI stream, the presented decode exiDecodeNextEvent(...)
method is used to move forward the pull-API cursor to the next event. In the
following subsections, an analog algorithm for other prominent EXI events (start
elements, characters, and attributes values) is given. According to each event
the dedicated method needs to be called (i.e., for EXI_EVENT_START_ELEMENT
exiDecodeStartElement(...) needs to be called).

EXI Decoder - Start Element

The next algorithm deals with start elements and analyzes the parsing side,
whereas the serializer can be constructed in a similar fashion.

Algorithm 2 for decoding start elements follows a similar approach to Algo-
rithm 1. It walks over all EXI grammars. However, it only generates code for EXI
events that relate to start elements. According to the given known start element
event and the correlation to the qualified name the URI and the local-name of the
specific event is given 4. Further, for each start element a new stack item is pushed
onto the grammar stack. The top of the stack depicts the current grammar and
its ID. EE (End Element) events pop the stack by one grammar again.

The generated code output in Listing 10.4 for the notebook.xsd schema creates
decoding methods for each known element, namely notebook, note, body, and
subject. Case statements are created for start elements only while other events
in this specific context are not of interest and therefore not taken into account.

4XML schema wildcards lead to grammar productions with absent URI and/or local-name
(see http://www.w3.org/TR/exi/#wildcardTerms) . EXI grammars, and respectively the algo-
rithm, provide dedicated productions which are not addressed in this section. For such start
element events, the according qualified local-name and/or URI need to be decoded also. Other
than that, the general processing remains the same.

http://www.w3.org/TR/exi/#nameddest=#wildcardTerms

10.2. AUTOMATIC EXI PROCESSOR GENERATION 127

Algorithm 2 EXI Decoder Generation - Start Element (SE) algorithm
1: procedure StartElement(grammarList) . Decode StartElement (SE)
2: print ’int exiDecodeStartElement(...) {’ . Function Definition
3: print ’int16_t grammarID = state->grammarStack[state->stackIndex];’
4: print ’errn = 0;’
5: print ’switch (grammarID) {’
6: for i = 0 to sizeof (grammarList)− 1 do
7: currGrammar ← grammarList[i]
8: transitionList← getTransitions(currGrammar)
9: numberOfTransitions ← sizeof (transitionList)
10: print ’switch(state->eventCode) {’
11: for k = 0 to numberOfTransitions − 1 do
12: event← getEvent(transitionList[k])
13: if event is START_ELEMENT then
14: print ’case ’ + k + ’:’
15: print ’errn = _exiDecodeStartElement(...);’
16: print ’break;’ . Inner Break
17: end if
18: end for
19: print ’}’
20: print ’break;’ . Outer Break
21: end for
22: print ’}’
23: print ’return (errn);’
24: print ’}’ . End of Function
25: end procedure

Listing 10.4: EXI Decoder - Start Element
1 int exiDecodeStartElement(bitstream_t* stream, exi_state_t* state,
2 uint16_t* qnameID) {
3 int16_t grammarID = state->grammarStack[state->stackIndex];
4 errn = 0;
5
6 switch (grammarID) {
7 case 1:
8 /* DocContent[START_ELEMENT(notebook),

START_ELEMENT_GENERIC] */
9 switch(state->eventCode) {
10 case 0:
11 errn = _exiDecodeStartElement(state, *qnameID = 5,

2, 3);
12 break;
13 }
14 break;
15 case 3:
16 /* FirstStartTag[ATTRIBUTE[DATETIME](date), START_ELEMENT(

note)] */
17 switch(state->eventCode) {
18 case 1:
19 errn = _exiDecodeStartElement(state, *qnameID = 4,

5, 6);
20 break;

128 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

21 }
22 break;
23 case 4:
24 /* StartTag[START_ELEMENT(note)] */
25 switch(state->eventCode) {
26 case 0:
27 errn = _exiDecodeStartElement(state, *qnameID = 4,

5, 6);
28 break;
29 }
30 break;
31 case 5:
32 /* Element[START_ELEMENT(note), END_ELEMENT] */
33 switch(state->eventCode) {
34 case 0:
35 errn = _exiDecodeStartElement(state, *qnameID = 4,

5, 6);
36 break;
37 }
38 break;
39 case 8:
40 /* StartTag[START_ELEMENT(subject)] */
41 switch(state->eventCode) {
42 case 0:
43 errn = _exiDecodeStartElement(state, *qnameID = 6,

9, 13);
44 break;
45 }
46 break;
47 case 9:
48 /* Element[START_ELEMENT(body)] */
49 switch(state->eventCode) {
50 case 0:
51 errn = _exiDecodeStartElement(state, *qnameID = 1,

10, 11);
52 break;
53 }
54 break;
55 }
56
57 return (errn);
58 }

EXI Decoder - Characters

The decoder call for characters in Listing 10.5 is comparable to what we haven seen
for start elements. The difference is that instead of providing decoding function-
alities for elements, decoding functionalities for characters are given. Figure 10.3
depicts that for our running sample schema we only account for two grammar
states where we expect EXI characters. The elements subject and body have
an EXI event Characters (CH) and both are typed as string. Again, this makes
it possible to apply the optimization of collapsing both grammar IDs (#11 and
#13) and respectively both code portions to one.

Listing 10.5: EXI Decoder - Characters
1 int exiDecodeCharacters(bitstream_t* stream, exi_state_t* state,
2 exi_value_t* val) {
3 int16_t moveOnID = 0;

10.2. AUTOMATIC EXI PROCESSOR GENERATION 129

4 errn = EXI_ERROR_UNEXPECTED_CHARACTERS;
5
6 switch (state->grammarStack[state->stackIndex]) {
7 case 11:
8 case 13:
9 /* STRING */
10 val->type = EXI_DATATYPE_STRING;
11 errn = decodeStringValue(stream, state, state->

elementStack[state->stackIndex], &val->str);
12 moveOnID = 12; /* move on ID */
13 break;
14 }
15 if (errn == 0) {
16 /* move on */
17 state->grammarStack[state->stackIndex] = moveOnID;
18 }
19
20 return (errn);
21 }

EXI Decoder - Attribute

Attribute decoding works again very similar. For each known attribute, an accord-
ing decoding function is established with the appropriate datatype. The known
qnameID or respectively the correlated qualified name URI and a local name are
also set.

Listing 10.6: EXI Decoder - Attribute
1 int exiDecodeAttribute(bitstream_t* stream, exi_state_t* state,
2 uint16_t* qnameID, exi_value_t* val) {
3 int16_t moveOnID = 0;
4 int16_t currentID = state->grammarStack[state->stackIndex];
5 errn = EXI_ERROR_UNEXPECTED_ATTRIBUTE;
6
7 switch (currentID) {
8 case 3:
9 /* FirstStartTag[ATTRIBUTE[DATETIME](date), START_ELEMENT(

note)] */
10 switch(state->eventCode) {
11 case 0:
12 *qnameID = 3;
13 val->type = EXI_DATATYPE_DATETIME;
14 errn = decodeDateTime(stream, EXI_DATETIME_DATE, &

val->datetime);
15 moveOnID = 4; /* move on ID */
16 break;
17 }
18 break;
19 case 6:
20 /* FirstStartTag[ATTRIBUTE[STRING](category), ATTRIBUTE[

DATETIME](date)] */
21 switch(state->eventCode) {
22 case 0:
23 *qnameID = 2;
24 val->type = EXI_DATATYPE_STRING;
25 errn = decodeStringValue(stream, state, *qnameID, &

val->str);
26 moveOnID = 7; /* move on ID */
27 break;
28 case 1:

130 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

29 *qnameID = 3;
30 val->type = EXI_DATATYPE_DATETIME;
31 errn = decodeDateTime(stream, EXI_DATETIME_DATE, &

val->datetime);
32 moveOnID = 8; /* move on ID */
33 break;
34 }
35 break;
36 case 7:
37 /* StartTag[ATTRIBUTE[DATETIME](date)] */
38 switch(state->eventCode) {
39 case 0:
40 *qnameID = 3;
41 val->type = EXI_DATATYPE_DATETIME;
42 errn = decodeDateTime(stream, EXI_DATETIME_DATE, &

val->datetime);
43 moveOnID = 8; /* move on ID */
44 break;
45 }
46 break;
47 }
48
49 if (errn == 0) {
50 /* move on */
51 state->grammarStack[state->stackIndex] = moveOnID;
52 }
53
54 return (errn);
55 }

In summary, it can be concluded that the presented decoding methods build
the entire EXI decoder for the given notebook.xsd XML schema document. The
outcome is minimal in regard to source code and code footprint and is also very
efficient in regard to processing.

10.2.4 Automatic Databinding

So far, most application programming interfaces working with XML have been
text-based. In the case of XML attributes or characters, values are reported as
strings and it was up to the application to convert textual data such as "123"
into its typed representation of an integer.

In Section 10.2.2, we introduced our typed API. Moreover, with the schema
knowledge we not only provide typed data in the first place but we also allow
automatic databinding. Under the term automatic databinding a mechanism is
understood that allows filling data containers such as C structs or Java/C++
classes automatically. In the context of EXI streams, the data itself is reported
type-aware and also reports the surrounding qualified name. Listing 10.7 depicts
an example XML fragment where an EXI decoder reports integer and float values.

Listing 10.7: XML fragment for typed values

<values>

10.3. RESULTS AND DISCUSSION 131

<intValue>123</intValue>
<floatValue>4.56</floatValue>

</values>

Having XML schema knowledge it is common to build data containers for
XML documents in any programming language (e.g., C struct in Listing 10.8).
This allows applications to access the data in the usual language-dependent form
rather than using XML APIs to retrieve the data from the XML itself. That said,
the afore mentioned automatic databinding implies filling the data containers so
that developers do not need to worry anymore about serializing or de-serializing
EXI. The developer needs to deal with programming language containers such as
C structs only. The EXI processing is up to the code generation step.

Listing 10.8: Databinding mapping for <values /> XML fragment
1 struct values {
2 int intValue;
3 float floatValue;
4 }

In collaboration with Sebastian Käbisch et al. [46] a real-world use case with
temperature and humidity sensors has been elaborated that serves for XML-based
Web service communication on microcontroller-based devices. In this use case we
proved the applicability of the proposed automatic databinding also with regard
to processing time (i.e., responsiveness).

10.3 Results and Discussion

To confirm the efficiency, in regard to code footprint and processing time, of the
presented algorithm for automatically generating EXI processors, a test bed was
set up.

10.3.1 Test Candidates

For the measurements, widely-used and well-known XML parsers written in C5

were taken into account. In the area of EXI processors there is no such variety.
However, one other relevant EXI processor has been analyzed that meets the
requirements for resource constrained environments.

Expat XML Parser

Expat6 is an XML parser library written in C. It is a stream-oriented parser in
which an application registers handlers for things the parser might find in the

5 Literature for microcontrollers such as [54] usually recommends using assembly and C.
6Expat website: http://expat.sourceforge.net/

http://expat.sourceforge.net/

132 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

XML document (like start tags). It is considered to be a very fast and low-
footprint XML parser library for small or embedded applications. The version
that has been tested is Expat 2.0.1.

Libxml2

Libxml27 is considered to be one of the widely used, mature, and extensive (sup-
port for SAX, DOM, and validation) XML parser libraries. It is the standard
XML library of GNU and written in the C programming language. Bindings to
other programming languages such as C++, C#, and Phyton are available. The
version that has been used is libxml2-2.7.8.

Please remind that other widely used XML parsers such as Xerces-C++8 have
not been taken into account given that the source code is written in C++ or other
programming languages that do not seem feasible for restricted devices.

EXIP

EXIP9 is a project started at EISLAB research group in the Department of Com-
puter Science, Electrical and Space Engineering, Luleå University of Technology.
It is part of research efforts to bring resource-constrained embedded devices, such
as wireless sensor nodes, closer to the enterprise business processes taking place
in processing, manufacturing, and communication industries [45].

The open source project is meant to provide a free and fully-featured open
source C language implementation of the EXI specification for resource-constrained
embedded devices. The version that has been used is 0.4.1.

EXIdizer

EXIdizer is the given name for the presented source code generator. EXIdizer
is able to produce a fully featured EXI processor for almost any kind of XML
schema10. The goal is to generate source code for a given XML schema document
only. Hence, according to the given XML schema documents, a demand-tailored
EXI processor is built that supports necessary EXI grammars and EXI datatypes
(according to the schema constructs) only.

7Libxml2 website: http://xmlsoft.org/
8Xerces-C++ website: http://xerces.apache.org/xerces-c/
9EXIP sourceforge website: http://exip.sourceforge.net/
10The datatype support of EXIdizer is limited to finite value spaces. For example the XML

schema datatype xs:integer has an infinite value space {...,-2,-1,0,1,2,...} and is mapped to
int64_t.

http://exip.sourceforge.net/
http://xerces.apache.org/xerces-c/
http://xmlsoft.org/

10.3. RESULTS AND DISCUSSION 133

10.3.2 Code Footprint Numbers

Compiler translate statements into CPU instructions. Declarations of static data
are translated into machine-specific data specifications. To create an executable,
the linker aggregates the instructions and the data into distinct segments. All
instructions go into one segment traditionally called text. In contrast to what
the name conveys, the segment contains no source code. The data segment is
arranged in two sub-segments. One is called data, for the initialized static data
and literal constants, and the other is called bss, for the uninitialized static data.

Table 10.1 lists the associated libraries that are necessary to actually build
an XML parser or respectively an EXI parser. As it turns out Libxml2 is very
demanding in regard to code footprint, especially compared to the XML candidate
Expat, which is about one-eighth in size. The EXI library for EXIP is also rather
big while the test candidate EXIdizer does not demand any external library. We
will see subsequently the code footprint for a sample application.

Table 10.1: XML/EXI parser library size (in Bytes)

Size Expat Libxml2 EXIP EXIdizer

text 126 882 981 317 316 509 -
data 3 072 4 096 58 692 -
bss 0 0 120 -

An XML parser implementation that uses either Expat or Libxml2 bases on
the referenced libraries and the provided interfaces (e.g., SAX). An implementa-
tion thereof can then be used for various XML documents. Also, since there is no
possibility to integrate XML schema support, the XML parser does not depend
on schema document instances. Use cases that demand mapping textual data to
typed representations need to build that capability on top of the XML parser.

The candidate EXIP and its EXI parser instance provide two mechanisms
to work, namely in a schema-less and in a schema-informed fashion. Similar to
the XML parsers, EXIP may work without schema information. Doing so all
data are typed as strings. However, in addition to this schema-less mode, it
also supports schema-informed processing. When the schema-enabled mode is set
the EXIP parser must be informed by XML schema information. The schema
information needs to be encoded with EXI since there is no support for neither
reading nor writing XML. This approach is similar to what has been presented in
the previous Chapter (see Section 9.1.2). Hence, EXIP requires an XML schema
processor that is built-in. This might explain the rather big library size listed
in Table 10.1. Despite its size, the EXIP project still does not claim to support
all XML schema constructs and/or facets. Moreover, converting XML schema
documents to EXI needs to be done with external tools that are able to create
EXI streams of any XML input document (e.g., EXIficient).

134 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

EXIdizer, as depicted in Table 10.1, does not depend on any library. Depend-
ing on the used EXI options and settings (e.g., available schema information and
EXI coding modes), the according EXI processor (parser and serializer) is gen-
erated. For example, if according to the schema documents there is no need to
support float values no float datatype support is provided. Doing so provides the
smallest possible processor with no external dependencies.

Parser Example Application

To be able to show the actual code footprint and processing numbers for an
application and to give a good comparison between the test candidates a very
simple use case will be considered. The test scenario (referred to as TestApp in
Table 10.2 and Table 10.3) is about counting the number of elements, attributes,
and character values within an XML document or respectively within an EXI
stream.

This very simple scenario is aimed to give an impression about the additional
demand in regard to source code for supporting this use-case. More complex use
cases such as parsing typed data are not accomplishable by all candidates. For
example XML parser candidates are not aware of any schema information. Hence
it is not feasible for an XML parser to convert the reported character sequences
to typed information such as integer numbers or decimal values. However, the
schema-informed EXIP processor and EXIdizer do provide type information al-
ready as built-in feature. Hence, integers are reported as integer values and not
as text as XML parsers would do.

For comparison reasons, the same set of XML schema documents as in the
previous Chapter (Section 9.3.2) has been selected. Starting from no-schema
information, also the running XML schema notebook.xsd has been chosen. Fur-
ther, Datastore and GAML schema documents were taken from the W3C work-
ing group directory11. Moreover, relevant microcontroller-based use cases such as
V2G (ISO/IEC 15118 [3]) and SEP2 [7] have been selected.

The subsequently mentioned footprint numbers have been acquired on a Win-
dows PC. Moreover, the test application has been compiled with GCC 4.6.2 with
the compile optimization flags -O3 and -Os set.

Table 10.2 shows numbers for the XML parser candidates, namely Expat
and Libxml2. The shared library size is listed once again beside the test parser
application (TestApp). The pure test application sizes between the two XML
candidates do not differ much. However, to be able to run the test XML parsing
Expat takes about 130 kBytes while Libxml2 accounts for almost 1 MByte.

Table 10.3 shows the numbers for the EXI parser candidates. In a similar
fashion, the table lists the size of the library and the test application. For the
test candidate EXIP, the test application remains the same for all different input

11EXI Measurement Test Framework, http://www.w3.org/XML/EXI/#TestingFramework

http://www.w3.org/XML/EXI/#nameddest=#TestingFramework

10.3. RESULTS AND DISCUSSION 135

Table 10.2: XML parser requirements (size in Bytes)

Expat Libxml2
Size Library TestApp Library TestApp

text 126 882 4 092 981 317 4 332
data 3 072 1 148 4 096 1 248
bss 0 128 0 128

documents. The difference for each instance document is the exified XML schema
document (see row XSD in Table 10.3) that needs to be passed to EXIP to allow
schema-informed processing. Hence, doing so allows EXIP to process schema-
informed EXI streams. For example, to process an EXI stream that has been
generated with the schema information (e.g., notebook.xsd), EXIP accounts for
the library, the test application, and the according notebook schema information.
The EXIP developers plan to support more possibilities to inform the processor
about the XML schema information. Currently EXIP supports only XML schema
definitions represented in EXI format (see EXIP User Guide12).

The candidate EXIdizer works slightly different. There is no shared library
or any other external data the EXI processor depends on. The EXI proces-
sor is purely built based upon the schema information. As a special case also
no schema information can be passed to the generation tool and it produces a
schema-less EXI processor (see column Schema-less in Table 10.3) that can be
used for arbitrary schema-less EXI streams. If schema-informed EXI streams are
to be processed the according processor is built. As example, to be able to pro-
cess schema-informed EXI streams that are encoded with notebook.xsd schema
information, the processor accounts for only about 25 kBytes. That said, the
actual size of the processor depends on the complexity of the given schema. The
more EXI grammar states and EXI events need to be processed the larger the
EXI processor becomes.

According to the given numbers in Table 10.3, we conclude that the test
candidate EXIdizer is in all cases the smallest EXI candidate in regard to code
footprint. For less complex schema documents the difference is large and becomes
smaller for very complex schema definitions. However, restricted devices do not
tend to be used for complex scenarios anyway.

Table 10.4 illustrates the number of EXI grammar states and the number
of EXI grammar events. It is easy to grasp that the complexity of the given
EXI grammar highly correlates with the code footprint size of the generated EXI
processor EXIdizer listed in Table 10.3.

12EXIP User Guide: http://exip.sourceforge.net/exip-user-guide.pdf

http://exip.sourceforge.net/exip-user-guide.pdf

136 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

Table 10.3: EXI parser requirements based on the used schema information (size
in Bytes)

EXIP
Size Library TestApp Notebook Datastore GAML V2G SEP2

text 316 509 6 372 - - - - -
data 58 692 1 440 - - - - -
bss 120 132 - - - - -
XSD 262 396 2 028 15 614 105 219

EXIdizer
Size Library Schema-less Notebook Datastore GAML V2G SEP2

text - 16 180 23 288 25 288 35 720 85 236 327 848
data - 1 540 1 784 1 808 1 912 3 384 4 376
bss - 600 784 784 844 1 556 2 080

Table 10.4: Number of EXI grammar states and events

of grammars # of events

Notebook 57 70
Datastore 57 84
GAML 125 238
V2G 440 1 095
SEP2 1 213 5 485

10.3.3 Parser Performance

The parser performance in regard to processing time has been also measured.
XML instances matching the given XML schema documents have been selected
and the processing time compared to all candidates has been analyzed. The time
in Figure 10.4 has been normalized according to the fastest processor. That said, it
turns out that EXIdizer’s processing time is the lowest in all cases. Moreover, the
API reports already typed data while XML parser candidates do report characters
that in an actual representation need to be further converted. The speed of
EXIdizer is about three times faster than EXIP in the best case. The XML
candidates are very similar in performance, while there is the trend of Expat
being slightly faster than Libxml2.

10.3.4 Usability Evaluation and Outlook

The proposed source code generation technique presented in this chapter highly
depends on the XML schema that describes the data exchange format. Nonethe-
less the generated code mostly has a footprint of a few kBytes only. Section 10.3.2
introduced some numbers of an example application.

10.3. RESULTS AND DISCUSSION 137

0 %

50 %

100 %

150 %

200 %

250 %

300 %

Notebook Datastore GAML V2G SEP

%
 o

f f
as

te
st

 p
ar

se
r

tim
e

Expat
Libxml2

EXIP
EXIdizer

Figure 10.4: XML/EXI Parser Performance

From the perspective of an implementor (i.e., sensor board implementor), the
proposed EXI solution does not implicate any burden. Implementations might
not even notice that information is transmitted in an efficient XML format. The
mode of operation while developing an application does not change. The only
difference is that instead of building own data container classes, the ones from
the generated code may be used (see Section 10.2.4). Yet another advantage over
existing solutions is the flexibility of the generated code approach. Compared
to hand-optimized data exchange formats, the adaptation to new circumstances,
with regard to revised data structures, is very flexible and requires minimal efforts
and costs. The generation process of a new EXI processor is fast and demands
no knowledge about the actual EXI coding itself.

Further, the concept has been already successfully applied to projects such as
OpenV2G13 that provides an open source implementation of the ISO/IEC 15118
specification. The source code for supporting EXI streams is automatically gen-
erated by the EXIdizer tool. The same process can be applied for other relevant
standards such as the Smart Energy Profile 2.0 (SEP2).

Moreover, Sebastian Käbisch presented in his thesis [47] an algorithm that
allows supporting the automata (i.e., EXI grammars) for the EXI binary XML
format while at the same time supporting another binary XML format, namely
BiM. The idea of having the possibility to provide support for various formats

13OpenV2G website, http://openv2g.sourceforge.net/

http://openv2g.sourceforge.net/

138 CHAPTER 10. DEMAND-TAILORED EXI PROCESSOR

with minimal overhead sounds very promising and may also help to even further
facilitate the use of the rather new EXI technology in areas where existing formats
are used today.

Further, optimization in regard to code footprint can be continued. One ex-
ample is where only the encoder or the decoder part is required. The code for the
relevant coding part needs to be deployed only. Moreover, often it is the case that
an encoder deals with certain elements and the decoder with other elements (e.g.,
web services use request and response messages to communicate). In such a situ-
ation, the code can be generated for given elements only (assuming this context
knowledge is available).

Chapter 11

Memory-Sensitive XML
Querying

Many XML tools and XML-based applications directly or indirectly rely on the
Document Object Model (DOM) [56]. This includes, for example, the XML
Path Language (XPath) [17] for specifying and evaluating path expressions on
XML document instances, XQuery, and XSLT processors, XML schema valida-
tors, XForms, and applications built on top of these tools.

Many XML-based processors today work on an in-memory representation
of the entire XML document instance, usually represented as a DOM. The in-
memory representation of a document can become very large—even larger than
the size of the corresponding textual XML file in the file system (about 400% of
the file size according to [50]). When the file contains a representation of the XML
data in the W3C’s Efficient XML Interchange (EXI) [73] format, the discrepancy
between file size and in-memory size of the DOM is even larger. Especially when
dealing with larger XML document instances, the potentially excessive memory
consumption constitutes a problem and may render traditional DOM processing
infeasible on embedded and other resource-limited devices such as cell phones and
digital cameras. Nevertheless, the flexibility and extensibility of XML makes using
XML and XPath desirable even on such limited devices. Consider, for example,
the use of SVG [30] for creating animated user interfaces on digital cameras. En-
abling such use cases requires a means for loading an XML instance into a DOM
and evaluating XPath expressions in the face of restricted memory capacities. In
this chapter, an approach for dynamically loading and unloading DOM elements
using EXI features is presented.

139

140 CHAPTER 11. MEMORY-SENSITIVE XML QUERYING

Figure 11.1: Lazy Document Object Model containing loaded and not loaded
elements

11.1 Memory-Sensitive Model

The introduction shortly mentioned the idea behind the memory-sensitive model
and highlights its simplicity but also its effectiveness in the sense of reducing mem-
ory consumption and decreasing processing time. In the following, the general
concept will be described and the requirements of the approach will be outlined.
Moreover, the technical realization is subsequently discussed also.

11.1.1 LazyDOM Concept

Lazy evaluation is a well-known technique in the area of programming languages.
Delaying a computation until its result is required can increase performance by
avoiding unnecessary calculations. A similar concept can be adopted to operate on
an in-memory model of an XML document. The Document Object Model (DOM)
is a W3C specification and can be seen as an in-memory representation of an XML
information set [78], providing at any time the full information of the actual XML
instance to navigate through or operate on.

An XML instance is generally transformed entirely into a DOM while multiple
interactions, such as look-up operations, may tackle only certain elements of the
XML tree. The possibility of working with such independent XML fragments
paves the way for efficient processing and saving runtime memory. Hence, at a
given time, only a fragment of the document is required. In the following, the
term LazyDOM is used for referring to a DOM that partially loads XML elements
and unloads elements that are not needed anymore.

Figure 11.1 depicts a fragmentation example of an XML document that repre-
sents an arbitrarily subdivided document. The root element site and its children

11.2. TECHNICAL REALIZATION 141

build the basic structure. The third XML level consists of ghost elements. Loaded
elements are present in memory while ghost elements indicate that there is no sub-
tree available in memory, unless it has been loaded on demand. Children of ghost
elements, labeled as not loaded elements, are parsed and built only if required and
can be unloaded later if necessary. This fragmentation can be done in a nested
fashion, meaning that a not loaded element may contain further ghost elements.

11.1.2 LazyDOM Requirements

From the practical point of view, the LazyDOM solution has to face certain re-
quirements to fulfill the described concept. A ghost element needs to be parsed
independently from the rest of the document. To do so, the basic document needs
to allow partial loading while also allowing random access on an XML element
basis.

In XML terms this means that an XML instance is only partially loaded into
a DOM and that currently unnecessary elements are skipped. Those skipped por-
tions of a document (ghost elements) need to be accessible and indexable without
any dependencies concerning previous data (e.g., XML namespace declarations).

The stated requirements could possibly be fulfilled using plain XML, but only
with a fair amount of work and complexity. Hence the EXI format is chosen, which
is identical with XML on the basis of the Information Set [79] and already offers
some of the required capabilities, not to mention other beneficial characteristics
of EXI such as fast processing and minimal runtime requirements.

11.2 Technical Realization

The EXI format uses a relatively simple grammar-driven approach, which achieves
very efficient encodings (EXI streams) for a broad range of use cases. Due to a
straightforward encoding algorithm and a small set of data types, EXI processors
can be implemented on devices with limited capacity. Besides other relevant
properties such as encodings with and even without schema information as well as
schema deviations or partial schemas, the EXI format offers a variety of additional
useful features. In this chapter, the focus is on an aspect called selfContained
element.

In EXI terms, a selfContained element is a portion of an XML information
set that may be read independently from the rest of the EXI document, meaning
that it offers random access on XML element level. The EXI specification itself
does not restrain the use of selfContained elements to a certain mechanism. An
application is free to make use of this capability in a convenient way. The Lazy-
DOM proposal uses this feature to realize the concept of a ghost element. Hence,
both terms, ghost elements and selfContained elements, are used as synonyms
throughout this elaboration.

142 CHAPTER 11. MEMORY-SENSITIVE XML QUERYING

11.2.1 Indexing Mechanism

Subsequently, a simple, yet powerful indexing mechanism is introduced. Based on
the previously introduced requirements (see Section 11.1.2), a LazyDOM indexing
solution needs to provide three information items:

• First of all, a selfContained element needs to be uniquely identifiable. The
mechanism which is proposed is inspired by XPath [17], a language for
selecting nodes in XML documents. Let us assume the following XPath
expression, composed of three XPath nodes:

/site[1]/people[1]/person[2]

This expression uniquely identifies the second person node of the first people
node of the first site node.

• Second, the byte offset (relative the EXI document) of a given selfContained
element is needed to randomly access the element.

• Third, the length of each selfContained element needs to be known to sup-
port skipping of such elements.

Figure 11.2 depicts the outcome of the indexing format expressed in XML
schema notation. Multiple indices are glued together to a set of indices, depicted
as scIndices.

Figure 11.2: XML Schema for index structure

A selfContained element index scIndex is composed of an XPath expression
xPathExpr and a selfContained element information set scElement. An XPath
expression in turn has one to many nodeName and nodeIndex tuples while the
selfContained element portion comprises the byte offset for random access and
the selfContained element length in bytes.

The index example in Listing 11.1 maps exemplarily the previously used
XPath expression to the byte offset 233 in an EXI document. This means that
one needs to skip 233 bytes from the start of the EXI stream before reaching
the relevant selfContained element person while the length of the selfContained
element is 81 bytes.

11.2. TECHNICAL REALIZATION 143

Listing 11.1: Index Example Document
<?xml version="1.0" encoding="UTF-8"?>
<scIndices>

<scIndex>
<xPathExpr>

<nodeName>site</nodeName>
<nodeIndex>1</nodeIndex>
<nodeName>people</nodeName>
<nodeIndex>1</nodeIndex>
<nodeName>person</nodeName>
<nodeIndex>2</nodeIndex>

</xPathExpr>
<scElement>

<offset>233</offset>
<length>81</length>

</scElement>
</scIndex>
<!-- more scIndex elements -->

</scIndices>

The use of XML technologies (e.g., XML schema) to describe the index has
the advantage of being able to use the EXI format to efficiently store the index in
an easily consumable way without introducing new requirements or technologies.
EXI uses local names to keep the overhead at a minimum. Instead of coding the
element name as a character sequence over and over again, EXI uses compact
identifiers that are already part of EXI string tables.

11.2.2 LazyDOM Applicability

As stated in the introduction, the goal is to offer the same functionality as any
other Document Object Model realization, with the benefit of having just the
relevant parts of an XML tree in memory.

Hence the proposed LazyDOM solution uses the described indexing mecha-
nism and initially forms a skeletal structure, meaning that the root element and
the entire substructure up to any indexed element is resolved and loaded into
memory (see Figure 11.1).

An XPath engine or any application using a DOM does not see any difference
to a conventional DOM implementation. A DOM node or element has to provide
capabilities for navigating the tree. Hence, each node has to provide a link to the
parent, the previous and the next sibling, as well as a complete list of child nodes.
That said, the LazyDOM solution must provide exactly the same functionality
required by the W3C DOM specification without any restrictions.

144 CHAPTER 11. MEMORY-SENSITIVE XML QUERYING

11.3 Results and Discussion

This section provides test results showing that the memory-sensitive approach
presented in this chapter works well for real test data. For comparison with other
projects, such as Projecting XML Documents [50], as well as for traceability,
test-data generated within the XMark Benchmark Project1 is used. XMark [72]
is an XML Benchmark Project which aims to provide a benchmark suite that
allows users and developers to gain insights into the characteristics of their XML
repositories. In addition, Java’s Management Extensions (JMX)2 is used, a Java
technology that supplies tools for managing and monitoring Java applications,
e.g., in terms of memory consumption.

11.3.1 Test Data

XMark provides a data generator that has been used to produce XML documents
with sizes varying from 1 to 116 MB (e.g., the document xmark-f-0-10.xml was
produced using the XMark factor 0.10, see Table 11.1).

Table 11.1: XMark test documents

TestCase \ kB XML EXI Idx (#)

xmark-f-0-01.xml 1 155 812 7 (498)

xmark-f-0-10.xml 11 597 8 076 72 (4931)

xmark-f-1-00.xml 115 775 79 133 731 (49256)

The comparison is split into two steps. First of all, EXI encoded streams are
produced, which constitute counterparts to the XMark generated textual XML
documents. Second, based on those generated XML/EXI documents, several
XPath queries are applied and tested.

Table 11.1 shows the different documents and their sizes on disk. EXI stands
for the EXI-encoded document with selfContained elements. We decided to in-
troduce selfContained elements for all elements appearing on the third XML tree
level. The last column Idx shows the overhead of the index structure by mention-
ing the size of the index and quoting the number of indices (#).

It should further be noted that the size of the index structure compared to
the documents itself is less than 1%. This seems like a reasonable overhead in
terms of storage and parsing requirements. Please note also that EXI documents
are usually about ten or more times smaller than semantically equivalent XML
documents (see EXI Evaluation [9]).

Due to the fact that the XMark generator produces instances with string
datatypes only and the XML structure is minimal compared to the actual content

1http://www.xml-benchmark.org/
2http://java.sun.com/products/JavaManagement/

http://java.sun.com/products/ JavaManagement/
http://www.xml-benchmark.org/

11.3. RESULTS AND DISCUSSION 145

data, the EXI format can not properly show its expected benefit. Nevertheless,
this chapter is not about showing EXI’s compression efficiency. Instead it focuses
on a small subset of EXI format features that facilitate building the LazyDOM
solution.

11.3.2 Query Set

To show the effectiveness of the LazyDOM approach, three XPath queries are
introduced. These serve as a basis for the subsequently presented measurements
regarding memory consumption and processing time.

Query Q1 /site/people/person[2]/name

describes a very precise request looking for a person’s name with a position
index.

Query Q2 /site/regions/∗
returns a node list of regions such as asia and europe.

Query Q3a //closed_auction[date =′ 04/16/2000′]
tackles essentially the entire document. The request is stated in such a
generic way (// is short for /descendant-or-self::node()) that an XPath en-
gine is required to traverse the entire XML tree and filter closed_auction’s
with a certain date.

Query Q3b /site/auctions/closed_auction[date =′ 04/16/2000′]
is semantically equivalent to Query Q3a according to the XMark schema.
The improvement is though that the request uses absolute paths to identify
the node. We will get back to the significant difference between Q3a and
Q3b further below.

11.3.3 Performance Measurements

The testbed is composed of a notebook running Windows XP with 1.66 GHz and
2 GB of RAM. We used the Java Virtual Machine 1.6 (with default options). From
the many possible XPath engines, the widely used and well established Jaxen3

engine has been selected.

Figure 11.3 shows a digest of the memory-consumption measurements and the
according processing times. The bar diagram presents the peak size in MB of the
Java heap during execution (e.g., the JVM option -Xmx128m sets the maximum
heap size to 128 MB) while the line diagram respectively shows query loading/ex-
ecution times in milliseconds.

3http://jaxen.codehaus.org/

http://jaxen.codehaus.org/

146 CHAPTER 11. MEMORY-SENSITIVE XML QUERYING

0

2

4

6

8

10

12

M
em

or
y

[M
B

]

0

200

400

600

800

1000

1200

1400

T
im

e
[m

se
c]

Memory [Query] 5,2 5,2 10,6 5,2 5,2 5,3 8,0 5,3 1,7 1,6 7,0 2,0

Memory [DOM] 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 1,0 1,0 1,0 1,0

Time [Query] 548 562 713 579 516 532 673 532 219 203 1297 437

Time [DOM] 469 469 469 469 438 438 438 438 125 125 125 125

Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b

XML EXI LazyDOM

(a) xmark-f-0-01.xml (ca. 1 MB of XML)

0

20

40

60

80

100

120

M
em

or
y

[M
B

]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e
[m

se
c]

Memory [Query] 46,5 47,3 113,1 47,2 42,1 42,9 68,5 42,1 3,3 3,2 56,9 8,0

Memory [DOM] 45,8 45,8 45,8 45,8 41,2 41,2 41,2 41,2 2,5 2,5 2,5 2,5

Time [Query] 1437 1405 3297 1500 2613 2597 3723 2674 312 281 8907 1937

Time [DOM] 1312 1312 1312 1312 2519 2519 2519 2519 203 203 203 203

Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b

XML EXI LazyDOM

(b) xmark-f-0-10.xml (ca. 12 MB of XML)

0

100

200

300

400

500

600

700

800

900

1000

M
em

or
y

[M
B

]

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

T
im

e
[m

se
c]

Memory [Query] 459,0 459,1 907,0 468,0 393,0 392,0 581,0 398,0 18,2 17,4 545,0 69,0

Memory [DOM] 457,0 457,0 457,0 457,0 391,0 391,0 391,0 391,0 16,9 16,9 16,9 16,9

Time [Query] 13075 12773 50465 13094 24045 23952 52313 24170 953 828 82704 12125

Time [DOM] 12672 12672 12672 12672 23858 23858 23858 23858 750 750 750 750

Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b

XML EXI LazyDOM

(c) xmark-f-1-00.xml (ca. 116 MB of XML)

Figure 11.3: Memory consumption and query execution times

11.3. RESULTS AND DISCUSSION 147

The set of queries (Q1, Q2, Q3a and Q3b) groups the three candidates, XML,
EXI, and LazyDOM. XML designates parsing and loading the DOM from a tex-
tual XML document. EXI in turn parses and loads an EXI document. The
LazyDOM, in contrary, parses an EXI document but only loads required portions
of the document into the DOM.

To demonstrate the difference between initially loading the XML information
set to a DOM and the additional overhead for processing queries, both mea-
surements were split. Figure 11.3 shows memory consumption (Memory) and
processing times (Time) for both, DOM loading only (DOM) and DOM loading
together with subsequent query execution (Query). Three XMark generated XML
test documents (a), (b), and (c) varying in size from 1 MB to 116 MB demonstrate
the applicability of the LazyDOM in diverse memory magnitudes.

Memory Consumption

Figure 11.3 illustrates that the memory consumption and processing times for
DOM loading is similar for XML and EXI. The reason for the slight difference
in memory size is due to the fact that the EXI format prunes insignificant white
spaces.

The proposed LazyDOM solution shows a huge memory benefit especially
for queries Q1, Q2, and Q3b, where only a portion of the entire document is of
interest. If we deal with inefficient XPath queries (e.g., Q3a //closed_auction
[date=’04/16/2000’]) the entire tree has to be visited. An approach has been
implemented that unloads selfContained elements that are no longer required if
memory becomes scarce. It keeps track of a list of least recently used selfContained
elements and removes the least recently used selfContained element each time an
additional element is to be loaded and the number of loaded elements has reached
a configurable number N (e.g., in the test cases N = 10). Nevertheless, the gain
compared to conventional engines is not as outstanding as expected (see query
Q3a in Figure 11.3). The reason is the implemented caching strategy of many
XPath engines. The less an XPath engine makes use of caches, the more memory
can be freed by Java’s garbage collector.

Processing Time

Loading the information set into a DOM shows advantages for the LazyDOM
given that initially only a small amount of data needs to be parsed. In the second
measurement step, query processing takes effect. The additional querying process
does not indicate any noteworthy processing time difference between the test
candidates XML and EXI. This matches the expectations given that there is no
difference between a DOM created from an XML or an EXI document.

In terms of processing efficiency, the LazyDOM shows improved runtime per-
formance for XPath expressions requiring the loading or unloading of no or only

148 CHAPTER 11. MEMORY-SENSITIVE XML QUERYING

few selfContained elements. When many load or unload operations take place,
e. g., because of heavily restricted memory availability, processing efficiency suf-
fers. However, evaluating the query will still succeed instead of failing with an
out-of-memory error.

The measurements show that the developed solution represents a well-behaved
DOM strategy, loading sub-elements of a document only when the actual need
occurs. In any case, the overhead is kept at a minimum. Furthermore, both
the granularity of indexed selfContained elements in EXI as well as the number
N of buffered selfContained elements are tunable. Hence, it offers a transparent
mechanism to reduce the overall memory consumption for devices with limited
resources as well as for powerful servers.

11.3.4 Design Guidelines

The LazyDOM offers a tunable means to potentially reduce the memory con-
sumption and at the same time improve the performance of DOM-based XML
processing. As with many optimization techniques, the amount of improvement
that can be achieved depends on the actual use case. The configuration of the
LazyDOM and the components interacting with it should be carefully tailored to
the demands of the actual application. In this section, some design guidelines are
described that illustrate how LazyDOM could and should be used in practice to
achieve best results.

LazyDOM: Where and When

It should be pointed out that there are use cases where LazyDOM might not
be the best choice. In an environment that is always able to load the entire
DOM into memory and that always accesses all or at least most of the data
in the DOM, dynamically loading the DOM has little or no benefit in terms of
memory consumption but can incur a performance penalty. Consider Query Q3a
in Figure 11.3 as an example. Since the query uses the XPath descendant-or-self
axis, all of the DOM is traversed during query evaluation. Thus, the savings in
memory consumption when using LazyDOM is limited compared to a traditional
DOM. But the processing time is increased due to the overhead of indexing and
dynamic loading.

However, if only parts of the DOM are actually needed, dynamically loading
only these parts will not only save memory but will also lead to faster DOM
loading since much less data needs to be loaded overall. This can be seen, for
example, from the performance results for Query Q3b in Figure 11.3. The query
avoids using the XPath descendant-or-self axis and directly queries only parts of
the DOM. Thus, memory consumption and processing time are heavily decreased.

11.3. RESULTS AND DISCUSSION 149

Furthermore, in an environment that is not able to always load the entire
DOM into memory due to memory restrictions, LazyDOM is enabling the use of
DOM-based XML processing in the first place. If, in this case, only parts of the
DOM are actually required by an application, the reduced memory consumption
is again combined with improved processing performance as described above. If
all or most of the data in the DOM is referenced by an application, processing
performance can be worse than loading the entire DOM into memory upfront
since repeated loading and unloading of selfContained elements will occur. Still,
since loading the entire DOM into memory is not possible in memory restricted
environments, LazyDOM enables the use of DOM-based XML processing at the
cost of potentially increased processing times.

Granularity of selfContained Elements

Amajor means of configuring the LazyDOM is the choice of granularity of selfCon-
tained elements. Identifying more and smaller selfContained elements—e.g., at
lower levels of the XML tree—allows more fine-grained control over memory con-
sumption since smaller parts of the DOM can be loaded and unloaded. On the
other hand, this approach increases indexing overhead and reduces EXI compres-
sion.

Choosing less and larger selfContained elements—e.g., at higher levels of the
XML tree—leads to less fine-grained control over memory consumption but re-
duces indexing overhead and improves EXI compression.

11.3.5 Related Work

Busatto et al. [13] presented a technique that represents the tree structure of an
XML document in an efficient way by exploiting the high regularity of XML docu-
ments. Repetitions of tree patterns are detected and removed. The used technique
is a generalization of the approach of sharing common subtrees, if a subtree has
occurred before it is represented by a pointer to its previous occurrence. This ap-
proach is orthogonal to LazyDOM. Combining both solutions, LazyDOM and the
efficient representation of the XML tree structure, would seem to reduce overall
memory consumption even further.

The approach of Kim et al. [41] relates to the previously presented technique
in the sense that large XML documents are partitioned into smaller XML trees.
When retrieval operations take place, in contrast, a unify operation is required to
unify split child nodes.

The way DOM-based applications, such as XPath, XQuery, or XSLT proces-
sors, interact with the DOM can have significant impacts on the improvements
that are achievable by combining these applications with LazyDOM. One exam-
ple to be mentioned here is the concept of schema-aware XPath processors (e.g.,

150 CHAPTER 11. MEMORY-SENSITIVE XML QUERYING

Paparizos et al. [64]). Considering Query Q3a in Section 11.3.2, a non-schema-
aware XPath processor has to traverse all of the DOM to answer the query. Thus,
the entire DOM tree needs to be loaded (and potentially unloaded) during the
process. Query Q3b uses schema knowledge to eliminate the descendant-or-self
axis in the XPath expression of Query Q3a to obtain the same result without
having to traverse all of the DOM.

Many efforts have been made to reduce the memory requirements of XQuery
and XPath processors. An approach for reducing the memory requirements has
been implemented in the Galax XQuery processor [50]. This approach is based on
an a priori analysis of the query to be evaluated. Only the parts of the document
needed to correctly and completely process the query are subsequently loaded into
an in-memory DOM. Depending on the query, this might require significantly less
memory than loading the entire document. However, the analysis process needs
to be repeated and the identified necessary parts of the XML document need to
be reloaded for each new query. In contrast, the LazyDOM can use the same
DOM for evaluating each XPath expression referencing the corresponding XML
document. Also, when dealing with queries that need most of or even the entire
document during processing, e. g., queries using the descendant-or-self axis on the
document root, the a priori analysis of the query yields little or no benefit since all
necessary parts of the document need to be loaded into memory as a whole. The
solution presented in this chapter allows to dynamically load and unload DOM
subtrees during XPath evaluation. Hence, even if the parts of the document
necessary for evaluating a certain XPath expression do not fit into memory as a
whole, it is still possible to correctly process the document within the available
memory boundaries.

Streaming Transformations for XML (STX) [16] allow the transformation of
large, theoretically infinite XML documents or XML data streams with bounded
memory requirements. STX processes the XML data in a streaming fashion. The
limitation of memory consumption during the processing of XPath expressions
results from a limitation of the allowed XPath expressions to a subset of XPath
that is suitable for streaming evaluation. Thus, the evaluation does not require
the buffering of a possibly infinitely large internal state. Compared to STX, the
presented approach is aimed at supporting the full functionality of any DOM-
based application.

Part IV

Résumé

151

Chapter 12

Contributions

At the time of writing, the co-developed Efficient XML Interchange (EXI) format
has been starting to be successfully applied in various domains. The ZigBee Smart
Energy Profile 2.0 specification [7] is one example. Another interesting area is the
Vehicle 2 Grid Communication Interface (V2G CI) specification, which is elabo-
rated and known under ISO/IEC 15118 [3, 4]. Both mentioned specifications make
use of the EXI technology and are facing similar issues such as runtime constraints
in regard to processing power and memory consumption. These issues have been
resolved, among other efforts, due to the proposed techniques presented in this
thesis. This provides evidence that it is possible to realize a demand-tailored EXI
processor (see Chapter 10) that leads to the de-facto standard implementation
of ISO/IEC 15118 known as OpenV2G1. Hence, very restricted devices can be
supported in regard to processing and also in regard to memory requirements.

The editing of the EXI Primer [66] is another important work to facilitate
EXI dissemination. The EXI recommendation tends to be extremely difficult to
read due to its complexity and its dependency on XML schema. On the contrary,
the suggested starting point for EXI readers, the Primer document, is much easier
to understand and oriented towards quickly understanding how the EXI format
can be used.

Moreover, the specification of the EXI Profile [29], which was elaborated in
collaboration with Youenn Fablet, is dedicated to device classes and use cases that
are not capable or allowed to require unpredictable memory growth at runtime.
Though EXI provides a number of format options that help to constrain runtime
memory usage, there are aspects of memory use that are left open in the EXI
format. These aspects are examined in the EXI Profile specification and the
outcome is in the progress of being published as a W3C recommendation. It is

1OpenV2G project website: http://openv2g.sourceforge.net/

153

http://openv2g.sourceforge.net/

154 CHAPTER 12. CONTRIBUTIONS

important to note that the EXI Profile document specifies rules to ensure that the
memory restrictions are respected while keeping compatibility with the EXI 1.0
specification [73, 29].

Also, personal effort as part of the W3C working group and as Canonical
EXI [48] editor provide intrinsic support for EXI in the area of XML security. Al-
though EXI supports traditional XML Signature by preserving XML information
such as comments and prefixes (see EXI Best Practices for XML Signature [20]),
this strategy is not suited for all environments and use cases. Hence, supporting
XML/EXI canonicalization and signature without going through plain-text XML
where nothing else but EXI is available is needed. Canonical EXI establishes
a method for determining whether two EXI documents are equivalent, for the
purposes of applications, while differing in physical representation.

My achievements presented in this thesis, both in theoretical and practical
regards, can be summarized as follows:

• Development of the de-facto reference implementation (see EXIficient in
Chapter 7) which in addition is the first and so far only open source imple-
mentation supporting all EXI features.

• Elaboration and validation of an optimized datatype representation based
on the well-defined and well-studied Backus-Naur Form (Chapter 8).

• Elaboration and analysis of an EXI grammar exchange format with minimal
runtime requirements but still being very efficient on the wire (Chapter 9).

• Formulation of a grammatically sound and automatable process for gener-
ating demand-tailored EXI processors (Chapter 10).

• Elaboration of a memory-sensitive in-memory representation to keep mem-
ory (RAM) requirements at the very minimum (Chapter 11).

• Editing of W3C specifications such as the EXI format [73], the EXI Primer [66],
the EXI Profile [29], and Canonical EXI [48]. Relevant publications on re-
lated topics.

The EXI work has been completed. However, whenever new application fields
appear, new requirements emerge that may demand further elaborations. Such
an example is the Extensible Messaging and Presence Protocol (XMPP). The
protocol was originally named Jabber and is used for publish&subscribe systems,
signalling for VoIP, video, file transfer, gaming, Internet of Things applications
such as the smart grid, and social networking services. Most of the requirements
in that area are provided by the EXI technology and the work that has been

155

evolved around the technology already. That said, a new requirement that is
currently being discussed is the aspect of XML schema or respectively EXI gram-
mar negotiation. XMPP is highly flexible in regard to extensions that are in
use and hence demands the same flexibility from the transport protocol. In this
connection, the goal is to identify which schema knowledge is usable and used to
represent the data. Moreover, also theoretically changing the set of information
while processing an EXI stream is considered to be useful. Moreover, flushing of
pending events in a streaming scenario is another use case. So far EXI pit-packed
mode may encounter pending bits2 that prohibit streaming in some rare cases due
to the missing possibility of flushing the stream. The possibility of introducing a
flushing mechanism is also analyzed.

Another interesting aspect that is often arising when data exchange in the Web
is discussed is how JSON data (a text-based human-readable data interchange
derived from the JavaScript scripting language) support in conjunction with EXI
can be improved.

Finally, it is worth to note that the elaborated EXI technology seems to head
towards a bright future and dissemination has been taking place in various areas.

2We speak about pending bits in EXI if the information does not fully fill up all bits of the
according byte. That said, unless the byte is not complete it cannot be sent.

Chapter 13

Conclusions

The Efficient XML Interchange (EXI) format has, since its publication as a W3C
Recommendation in March 2011, reached a very decent acceptance and dissemi-
nation in the XML community. Also, there has been a lot of interest and com-
mitment from other standardization bodies. For example, EXI has been officially
selected as the interchange format for the ISO/IEC 15118 [4] specification and
the DIN 70121 [2]. Further, the ZigBee Smart Energy Profile 2.0 Application
Protocol [7] is another specification where EXI is used. Yet another application is
the Extensible Messaging and Presence Protocol (XMPP) which is a communica-
tion protocol for message-oriented middleware based on XML, originally named
Jabber, also planning to include EXI support1.

Hence, efforts within the W3C community and also the interest from other
standardization bodies confirm on the one hand the effectiveness of the proposed
format. On the other hand, it shows the actual need for such an efficient ex-
change protocol that fits the real word requirements in the first place. It turns
out that the Efficient XML Interchange specification, its improvements, and the
manifold applications that have been elaborated in this thesis provide to the XML
community what they were expecting for such a long time.

Also in the area of available implementations, a lot has happened since the
beginning of the first efforts. Publicly available commercial implementations and
also freely available implementations in various programming languages (e.g.,
Java, C/C++, C# and .NET) have been constructed and deployed2. More than
that, also numerous internal implementations can be assumed just by following
the activities of relevant companies.

1Request on public EXI mailing list, http://lists.w3.org/Archives/Public/public-exi/
2013Mar/0000.html

2List of EXI implementations available at: http://www.w3.org/XML/EXI/#implementations

157

http://www.w3.org/XML/EXI/#nameddest=#implementations
http://lists.w3.org/Archives/Public/public-exi/2013Mar/0000.html
http://lists.w3.org/Archives/Public/public-exi/2013Mar/0000.html

158 CHAPTER 13. CONCLUSIONS

One example that shows the overall interest very well is the absolute number
of downloads since its first publication of the de-facto reference EXI processor
EXIficient, which reached almost ten thousand downloads in April 2014. More-
over, external tools around EXIficient have been built for teaching3 and other
purposes too. Personally speaking we do expect many interesting projects and
efforts to follow.

The EXI optimizations of this thesis that have been theoretically elaborated
in the first place and subsequently practically validated are also of huge impor-
tance. Some proposed solutions and techniques may even become standardized
in a future EXI version such as the datatype representation elaborated in Chap-
ter 8 or the grammar representation introduced in Chapter 9. Chapter 10 and
Chapter 11 are more heading towards how implementations can be built to work
with a minimum amount of memory and processing power and are already used in
real-world applications such as the Siemens charging spot for electrical vehicles.

3ExiProcessor is for example a command-line demonstration program that uses the EX-
Ificient library and allows encoding text XML files into binary EXI and vice-versa again,
http://sourceforge.net/p/exiprocessor/

http://sourceforge.net/p/exiprocessor/

Part V

Appendices

159

Bibliography

[1] ISO/IEC 14977:1996 Information Technology - Syntactic Metalanguage - Extended
BNF, 1996. [cited at p. 79, 84]

[2] Electromobility - Digital communication between a DC EV charging station and an
electric vehicle for control of DC charging in the Combined Charging System, 2012.
http://www.din.de. [cited at p. 4, 157]

[3] ISO 15118-1:2013 Road vehicles – Vehicle to grid communication interface – Part 1:
General information and use-case definition, 2013. [cited at p. 4, 52, 134, 153]

[4] ISO/FDIS 15118-2 Road vehicles – Vehicle to grid communication interface – Part 2:
Network and application protocol requirements, 2013. [cited at p. 4, 52, 153, 157]

[5] ISO/IEC 14496-20. Lightweight Application Scene Representation (LASeR) and
Simple Aggregation Format (SAF), December 2008. 2nd Edition. [cited at p. 29, 74,
88]

[6] Serge Abiteboul. Querying Semi-Structured Data. In Foto N. Afrati and Phokion G.
Kolaitis, editors, ICDT, volume 1186 of Lecture Notes in Computer Science, pages
1–18. Springer, 1997. [cited at p. 8]

[7] ZigBee Alliance and HomePlug Powerline Alliance liaison. Smart Energy
Profile 2.0 Application Protocol Specification. Draft, July 2012. 0.9
Standard, http://www.zigbee.org/Standards/ZigBeeSmartEnergy/Overview.aspx.
[cited at p. 4, 52, 134, 153, 157]

[8] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden,
and M. Woodger. ALGOL-like Languages, Volume 1. chapter Revised Report on
the Algorithmic Language ALGOL 60, pages 19–49. Birkhauser Boston Inc., Cam-
bridge, MA, USA, 1997. [cited at p. 78]

[9] Carine Bournez. Efficient XML interchange evaluation. W3C working draft,
W3C, April 2009. http://www.w3.org/TR/2009/WD-exi-evaluation-20090407.
[cited at p. 76, 144]

161

162 BIBLIOGRAPHY

[10] Tim Bray, Jean Paoli, Eve Maler, François Yergeau, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C recommenda-
tion, W3C, November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/.
[cited at p. 16]

[11] Tim Bray, François Yergeau, C. M. Sperberg-McQueen, Jean Paoli, and Eve Maler.
Extensible Markup Language (XML) 1.0 (Fourth Edition). Technical report, W3C,
August 2006. http://www.w3.org/TR/2006/REC-xml-20060816. [cited at p. 15]

[12] David Brownell and David Megginson. Simple API for XML (SAX). Version 2.0.2,
http://www.saxproject.org. [cited at p. 53, 120]

[13] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory rep-
resentation of XML documents. In 10th International Symposium, Database Pro-
gramming Languages, Trondheim, Norway, pages 199–216. Springer, August 2005.
[cited at p. 149]

[14] Tolga Capin. Mobile SVG Profiles: SVG Tiny and SVG Basic. W3C Recom-
mendation, W3C, January 2003. http://www.w3.org/TR/2003/REC-SVGMobile-
20030114/. [cited at p. 74]

[15] Noam Chomsky. Three Models for the Description of Language. IRE Transactions
on Information Theory IT-2, 2(3):113–124, September 1956. [cited at p. 78]

[16] Petr Cimprich, Oliver Becker, Christian Nentwich, Honza Jiroušek, Manos Batsis,
Paul Brown, and Michael Kay. Streaming Transformations for XML (STX) Version
1.0. http://stx.sourceforge.net/documents/spec-stx-20070427.html , 2007.
Working Draft. [cited at p. 150]

[17] James Clark and Steven DeRose. XML Path Language (XPath) Version 1.0. W3C
Recommendation, W3C, November 1999. http://www.w3.org/TR/1999/REC-
xpath-19991116. [cited at p. 139, 142]

[18] Mike Cokus and Santiago Pericas-Geertsen. XML Binary Characterization Prop-
erties. W3C Note, W3C, March 2005. http://www.w3.org/TR/2005/NOTE-xbc-
properties-20050331/. [cited at p. 3, 30]

[19] Mike Cokus and Santiago Pericas-Geertsen. XML Binary Characterization Use
Cases. W3C Note, W3C, March 2005. http://www.w3.org/TR/2005/NOTE-xbc-
use-cases-20050331/. [cited at p. 3, 30]

[20] Mike Cokus and Daniel Vogelheim. Efficient XML Interchange Best Practices. W3C
Working Draft, W3C, December 2007. http://www.w3.org/TR/2007/WD-exi-best-
practices-20071219/. [cited at p. 154]

[21] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF. RFC
4234 (Draft Standard), October 2005. Obsoleted by RFC 5234. [cited at p. 79]

[22] Peter J. Denning, Jack B. Jack Bonnell Dennis, and Joseph E. Qualitz. Ma-
chines, languages, and computation. Englewood Cliffs, N.J. Prentice-Hall, 1978.
[cited at p. 78]

http://stx.sourceforge.net/documents/spec-stx-20070427.html

BIBLIOGRAPHY 163

[23] Peter Deutsch. DEFLATE Compressed Data Format Specification version 1.3 (IETF
RFC RFC1951). An online version is available at http://www.ietf.org/rfc/
rfc1951.txt, May 1996. [cited at p. 25, 110]

[24] J. Dufourd, O. Avaro, and C. Concolato. LASeR: the MPEG Stan-
dard for Rich Media Services, 2010. Whitepaper, http://www.mpeg-
laser.org/documents/LASeRWhitePaper.pdf. [cited at p. 29, 74, 88]

[25] ETSI. Broadcast and On-line Services: Search, select, and rightful use of content on
personal storage systems ("TV-Anytime")—Part 2: Phase 1 - System description.
Technical Report ETSI TS 102 822-2, Union Européenne de Radio-Télévision, 2007.
[cited at p. 30]

[26] ETSI. Digital Video Broadcasting (DVB)—Carriage of Broadband Content Guide
(BCG) information over Internet Protocol (IP). Technical Report ETSI TS 102 539,
Union Européenne de Radio-Télévision, 2010. [cited at p. 30]

[27] ETSI. Digital Video Broadcasting (DVB)—IP Datacast over DVB-H: Electronic
Service Guide (ESG). Technical Report ETSI TS 102 471, Union Européenne de
Radio-Télévision, 2010. [cited at p. 30]

[28] ETSI. Digital Video Broadcasting (DVB)—Carriage and signalling of TV-Anytime
information in DVB transport streams. Technical Report ETSI TS 102 323, Union
Européenne de Radio-Télévision, 2012. [cited at p. 30]

[29] Youenn Fablet and Daniel Peintner. Efficient XML Interchange (EXI) Profile. W3C
working draft, W3C, July 2012. http://www.w3.org/TR/2012/WD-exi-profile-
20120731/. [cited at p. 153, 154]

[30] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable Vector Graph-
ics (SVG) 1.1 Specification. W3C recommendation, W3C, January 2003.
http://www.w3.org/TR/2003/REC-SVG11-20030114/. [cited at p. 74, 81, 139]

[31] Christopher Fry and Deva Sagar. JSR 173: Streaming API for XML (StAX).
Java Specification Request 173, Version 2.9, https://jcp.org/en/jsr/detail?id=173.
[cited at p. 53, 121]

[32] Neil Gershenfeld. When things start to think. Coronet Books Hodder & Stoughton,
1999. [cited at p. 3]

[33] Oliver Goldman and Dmitry Lenkov. XML Binary Characterization. W3C Note,
W3C, March 2005. http://www.w3.org/TR/2005/NOTE-xbc-characterization-
20050331/. [cited at p. 30]

[34] Sheila A. Greibach. A New Normal-Form Theorem for Context-Free Phrase Struc-
ture Grammars. J. ACM, 12:42–52, January 1965. [cited at p. 80]

[35] Peter Haggar and Stephen D. Williams. XML Binary Characteri-
zation Measurement Methodologies. W3C Note, W3C, March 2005.
http://www.w3.org/TR/2005/NOTE-xbc-measurement-20050331/. [cited at p. 30]

[36] J. Heuer, C. Thienot, and M. Wollborn. 2.3 MEPG-7 Binary Format. In
Thomas Sikora B. S. Manjunath, Philippe Salembier, editor, Introduction to MPEG-
7: Multimedia Content Description Interface. Wiley, 2002. [cited at p. 29, 91]

http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt

164 BIBLIOGRAPHY

[37] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Cambridge, 1979. [cited at p. 78]

[38] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the Institute of Radio Engineers, 40(9):1098–1101, September 1952.
[cited at p. 25, 36]

[39] ISO. Information technology Multimedia framework (MPEG-21)—Part 16: Binary
Format. ISO ISO/IEC 21000-16 ed1.0, International Organization for Standardiza-
tion, 2005. [cited at p. 29]

[40] Jaakko Kangasharju. XML Messaging for Mobile Devices. PhD thesis, University
of Helsinki, Faculty of Science, Department of Computer Science, 2008. [cited at p. 8,
25]

[41] Seung Min Kim, Suk I. Yoo, Eunji Hong, Tae Gwon Kim, and Il Kon Kim. A doc-
ument object modeling method to retrieve data from a very large XML document.
In ACM Symposium on Document Engineering, pages 59–68, 2007. [cited at p. 149]

[42] Margaret G. Kostoulas, Morris Matsa, Noah Mendelsohn, Eric Perkins, and Abra-
ham Heifets. XML screamer: An integrated approach to high performance XML
parsing, validation and deserialization. In 15th International World Wide Web Con-
ference, pages 93–102. ACM Press, 2006. [cited at p. 20]

[43] R. Kurki-Suonio. Notes on top-down languages. BIT Numerical Mathematics, 9:225–
238, 1969. 10.1007/BF01946814. [cited at p. 80]

[44] Thomas Kurz. Efficient XML Communication for Rich Internet Applications.
Diploma Thesis, University of Passau, Chair of Distributed Information Systems,
Germany, 9 2008. [cited at p. 72, 88]

[45] R. Kyusakov, J. Eliasson, and J. Delsing. Efficient structured data processing for web
service enabled shop floor devices. In IEEE International Symposium on Industrial
Electronics (ISIE), pages 1716 –1721, June 2011. [cited at p. 132]

[46] S. Käbisch, D. Peintner, J. Heuer, and H. Kosch. Efficient and Flexible XML-Based
Data-Exchange in Microcontroller-Based Sensor Actor Networks. In IEEE Advanced
Information Networking and Applications Workshops (WAINA), 24th International
Conference, pages 508 –513, April 2010. [cited at p. 131]

[47] Sebastian Käbisch. Generic Automaton Construction for Code Generation of Bi-
nary XML Codecs. Diploma Thesis, University of Passau, Chair of Distributed
Information Systems, Germany, 11 2008. [cited at p. 137]

[48] Sebastian Käbisch and Daniel Peintner. Canonical EXI. W3C Working Draft, W3C,
March 2013. http://www.w3.org/TR/canonical-exi/. [cited at p. 154]

[49] Hartmut Liefke and Dan Suciu. XMill: an Efficient Compressor for XML Data. In
SIGMOD Conference, pages 153–164. ACM, 1999. [cited at p. 27, 41]

[50] Amélie Marian and Jérôme Siméon. Projecting XML Documents. In Proceedings
of the 29th International Conference on Very Large Data Bases (VLDB) , pages
213–224, Berlin, Germany, September 2003. [cited at p. 139, 144, 150]

BIBLIOGRAPHY 165

[51] Bruce Martin and Bashar Jano. WAP Binary XML Content Format. W3C
Note, W3C, June 1999. http://www.w3.org/1999/06/NOTE-wbxml-19990624/.
[cited at p. 28]

[52] J. M. Martinez. MPEG-7 Overview. Technical report, 2004.
MPEG-7 Overview (version 10), ISO/IEC JTC1/SC29/WG11N6828,
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm. [cited at p. 29,

41]

[53] Friedemann Mattern and Christian Floerkemeier. From the Internet of Computers
to the Internet of Things. In Kai Sachs, Ilia Petrov, and Pablo Guerrero, editors,
From Active Data Management to Event-Based Systems and More , volume 6462 of
Lecture Notes in Computer Science, pages 242–259. Springer, 2010. [cited at p. 3]

[54] Muhammad Ali Mazidi, Janice Gillispie Mazidi, and Rolin D McKinlay. The 8051
microcontroller and embedded systems: using Assembly and C . Pearson/Prentice
Hall, 2006. [cited at p. 5, 6, 131]

[55] Noah Mendelsohn, Anish Karmarkar, Henrik Frystyk Nielsen, Jean-Jacques Moreau,
Marc Hadley, Martin Gudgin, and Yves Lafon. SOAP Version 1.2 Part 1: Mes-
saging Framework (Second Edition). W3C Recommendation, W3C, April 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. [cited at p. 8]

[56] Gavin Nicol, Mike Champion, Philippe Le Hégaret, Jonathan Robie, Lau-
ren Wood, Arnaud Le Hors, and Steve Byrne. Document Object Model
(DOM) Level 3 Core Specification. W3C Recommendation, W3C, April 2004.
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407. [cited at p. 53, 120,
139]

[57] U. Niedermeier, J. Heuer, A. Hutter, and W. Stechele. MPEG-7 Binary Format for
XML Data. In Proceedings of the Data Compression Conference, DCC ’02, pages
467–471, Washington, DC, USA, 2002. IEEE Computer Society. [cited at p. 29]

[58] Ulrich Niedermeier. Algorithmus und Softwarearchitektur für die binäre Codierung
von strukturierten Dokumenten. PhD thesis, 2004. [cited at p. 91, 92]

[59] Telecommunication Standardization Sector of ITU. X.680: Information technol-
ogy Abstract Syntax Notation One (ASN.1): Specification of basic notation. Rec-
ommendation, ITU-T, November 2008. http://www.itu.int/rec/T-REC-X.680/en.
[cited at p. 28]

[60] Telecommunication Standardization Sector of ITU. X.690 : Information technology -
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical En-
coding Rules (CER) and Distinguished Encoding Rules (DER). Recommendation,
ITU-T, November 2008. http://www.itu.int/rec/T-REC-X.690/en. [cited at p. 28]

[61] Telecommunication Standardization Sector of ITU. X.691 : Information technol-
ogy - ASN.1 encoding rules: Specification of Packed Encoding Rules (PER). Rec-
ommendation, ITU-T, November 2008. http://www.itu.int/rec/T-REC-X.691/en.
[cited at p. 28]

166 BIBLIOGRAPHY

[62] Telecommunication Standardization Sector of ITU. X.693 : Information technology
- ASN.1 encoding rules: XML Encoding Rules (XER). Recommendation, ITU-T,
November 2008. http://www.itu.int/rec/T-REC-X.693/en. [cited at p. 28]

[63] Telecommunication Standardization Sector of ITU. X.694 : Information technology
- ASN.1 encoding rules: Mapping W3C XML schema definitions into ASN.1. Rec-
ommendation, ITU-T, November 2008. http://www.itu.int/rec/T-REC-X.694/en.
[cited at p. 28]

[64] Stelios Paparizos, Jignesh M. Patel, and H. V. Jagadish. SIGOPT: Using Schema to
Optimize XML Query Processing. In International Conference on Data Engineering
(ICDE), pages 1456–1460, 2007. [cited at p. 150]

[65] Daniel Peintner, Harald Kosch, and Jörg Heuer. Efficient XML interchange for Rich
Internet Applications. In Proceedings of the 2009 IEEE international conference on
Multimedia and Expo, ICME’09, pages 149–152, Piscataway, NJ, USA, 2009. IEEE
Press. [cited at p. 72]

[66] Daniel Peintner and Santiago Pericas-Geertsen. Efficient XML Inter-
change (EXI) Primer. W3C Working Draft, W3C, December 2009.
http://www.w3.org/TR/2009/WD-exi-primer-20091208/. [cited at p. 33, 42, 44, 153,

154]

[67] David Peterson, Shudi (Sandy) Gao, Paul V. Biron, Ashok Malhotra, Henry S.
Thompson, Ashok Malhotra, and C. M. Sperberg-McQueen. W3C XML Schema
Definition Language (XSD) 1.1 Part 2: Datatypes. Last Call WD, W3C, December
2009. http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203/. [cited at p. vi,

17, 72]

[68] Mustafa H. Qureshi and M. H. Samadzadeh. Determining the Complexity of XML
Documents. International Conference on Information Technology: Coding and Com-
puting, 2:416–421, 2005. [cited at p. 20]

[69] P. Sandoz, A. Triglia, and S. Pericas-Geertsen. Fast Infoset. Technical re-
port, June 2004. http://java.sun.com/developer/technicalArticles/xml/fastinfoset/.
[cited at p. 28, 29, 41]

[70] Paul Sandoz, Santiago Pericas-Geertsen, Kohuske Kawaguchi, Marc Hadley,
and Eduardo Pelegri-Llopart. Fast Web Services. Technical report, Au-
gust 2003. http://java.sun.com/developer/technicalArticles/WebServices/fastWS/.
[cited at p. 29]

[71] Sanjay Sarma, David L. Brock, and Kevin Ashton. The Networked Physical World,
2000. TR MIT-AUTOID-WH-001, MIT Auto-ID Center. [cited at p. 3]

[72] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. XMark: A Benchmark for XML Data Management.
In VLDB, pages 974–985, 2002. [cited at p. 144]

[73] John Schneider, Takuki Kamiya, Daniel Peintner, and Rumen Kyusakov. Effi-
cient XML Interchange (EXI) Format 1.0 (Second Edition). W3C Recommen-
dation, W3C, February 2014. http://www.w3.org/TR/2014/REC-exi-20140211/.
[cited at p. 31, 35, 36, 39, 41, 42, 51, 59, 71, 80, 96, 100, 114, 119, 139, 154]

BIBLIOGRAPHY 167

[74] Andreas Scholz, Christian Buckl, Irina Gaponova, Stephan Sommer, Alois Knoll,
Alfons Kemper, Jörg Heuer, and Anton Schmitt. An Adaptive SOA for Embedded
Networks. INDIN ’09: 7th IEEE International Conference on Industrial Informatics,
2009. [cited at p. 8]

[75] Andreas Scholz, Stephan Sommer, Alfons Kemper, Alois Knoll, Christian Buckl,
Gerd Kainz, Jörg Heuer, and Anton Schmitt. Towards an adaptive execution of
applications in heterogeneous embedded networks. In Proceedings of the 2010 ICSE
Workshop on Software Engineering for Sensor Network Applications , pages 26–31.
ACM, 2010. [cited at p. 8]

[76] C. M. Sperberg-McQueen, Henry S. Thompson, Murray Maloney, Henry S. Thomp-
son, David Beech, Noah Mendelsohn, and Shudi (Sandy) Gao. W3C XML Schema
Definition Language (XSD) 1.1 Part 1: Structures. Last call WD, W3C, December
2009. http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/. [cited at p. 17,

96]

[77] C. Timmerer, H. Hellwagner, J. Heuer, C. Seyrat, and A. Hutter. BinaryXML
- A Comparison of Existing XML Compression Techniques. MPEG Contribu-
tion, Munich, Germany, 2004. ISO/IEC JTCI/SC29/WG11 MPEG2004/M10718.
[cited at p. 29]

[78] Richard Tobin and John Cowan. XML Information Set. First Edition of a Recom-
mendation, W3C, October 2001. http://www.w3.org/TR/2001/REC-xml-infoset-
20011024/. [cited at p. 31, 140]

[79] Richard Tobin and John Cowan. XML Information Set (Second Edition). W3C
Recommendation, W3C, February 2004. http://www.w3.org/TR/2004/REC-xml-
infoset-20040204. [cited at p. 31, 71, 141]

[80] Daniel Veillard and Paul Grosso. XML Fragment Interchange. Candidate Recom-
mendation, W3C, February 2001. http://www.w3.org/TR/2001/CR-xml-fragment-
20010212. [cited at p. 29]

[81] Stephen Williams, Greg White, Don Brutzman, and Jaakko Kangasharju. Effi-
cient XML Interchange Measurements Note. W3C Working Draft, W3C, July 2007.
http://www.w3.org/TR/2007/WD-exi-measurements-20070725/. [cited at p. 20, 22,

23, 31, 61, 75, 76]

[82] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337–343, 1977. [cited at p. 25]

List of Symbols
and Abbreviations

Abbreviation Description Definition

ABNF Augmented Backus-Naur Form page 79
API Application Programming Interface page 53
ASN.1 Abstract Syntax Notation One page 28
BEV Battery Electric Vehicles page 4
BiM Binary MPEG format for XML page 29
BMU Bundesministerium für Umwelt, Naturschutz und

Reaktorsicherheit
page 10

BMWi Bundesministerium für Wirtschaft und Technolo-
gie

page 10

EBNF Extended Backus-Naur Form page 79
EVSE Electric Vehicle Supply Equipment page 4
BNF Backus Normal Form or Backus-Naur Form page 81
CLOB Collection of character data page 62
DIN Deutsche Institut für Normung page 157
DOM Document Object Model page 53
DVB Digital Video Broadcasting page 30
EXI Efficient XML Interchange page 30
HTML HyperText Markup Language page 72
ITU International Telecommunication Union page 28
ISO International Organization for Standardization page 28
JAR Java ARchive, aggregates many files into one to

distribute Java applications or libraries
page 60

JSON JavaScript Object Notation page 155
LZ77 Kind of Ziv–Lempl algorithms page 25
MPEG Moving Picture Experts Group page 29
OMA Open Mobile Alliance page 28
PHEV Plug-in Hybrid Electric Vehicles page 4
RIA Rich Internet Application page 72
SAX Simple API for XML page 53

169

170 LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Description Definition

SOA Service-oriented Architecture page 8
SOAP Simple Object Access Protocol page 8
StAX Streaming API for XML page 53
STX Streaming Transformations for XML page 150
SyncML Synchronization Markup Language page 28
SVG Scalable Vector Graphics page 74
URI Uniform Resource Identifier page 92
VoIP Voice over IP page 154
WBXML WAP Binary XML page 28
WAP Wireless Application Protocol page 28
W3C World Wide Web Consortium page 15
XBC XML Binary Characterization, W3C Working

Group
page 30

XHTML Extensible HyperText Markup Language page 72
XMPP Extensible Messaging and Presence Protocol page 154
XPath XML Path Language page 139
XSLT Extensible Stylesheet Language Transformations page 139
XQuery XQuery is a query and functional programming

language that is designed to query collections of
XML data

page 139

Appendices

171

Verbose Listings

The following notation is used in the Backus-Naur Form (BNF) description of the grammar for
SVG path data4.

Listing 1: BNF for SVG paths
svg-path:

wsp* moveto-drawto-command-groups? wsp*
moveto-drawto-command-groups:

moveto-drawto-command-group
| moveto-drawto-command-group wsp* moveto-drawto-command-groups

moveto-drawto-command-group:
moveto wsp* drawto-commands?

drawto-commands:
drawto-command
| drawto-command wsp* drawto-commands

drawto-command:
closepath
| lineto
| horizontal-lineto
| vertical-lineto
| curveto
| smooth-curveto
| quadratic-bezier-curveto
| smooth-quadratic-bezier-curveto
| elliptical-arc

moveto:
("M" | "m") wsp* moveto-argument-sequence

moveto-argument-sequence:
coordinate-pair
| coordinate-pair comma-wsp? lineto-argument-sequence

closepath:
("Z" | "z")

lineto:
("L" | "l") wsp* lineto-argument-sequence

lineto-argument-sequence:
coordinate-pair
| coordinate-pair comma-wsp? lineto-argument-sequence

horizontal-lineto:
("H" | "h") wsp* horizontal-lineto-argument-sequence

horizontal-lineto-argument-sequence:

4http://www.w3.org/TR/SVG2/paths.html#PathDataBNF

173

http://www.w3.org/TR/SVG2/paths.html#nameddest=#PathDataBNF

174 VERBOSE LISTINGS

coordinate
| coordinate comma-wsp? horizontal-lineto-argument-sequence

vertical-lineto:
("V" | "v") wsp* vertical-lineto-argument-sequence

vertical-lineto-argument-sequence:
coordinate
| coordinate comma-wsp? vertical-lineto-argument-sequence

curveto:
("C" | "c") wsp* curveto-argument-sequence

curveto-argument-sequence:
curveto-argument
| curveto-argument comma-wsp? curveto-argument-sequence

curveto-argument:
coordinate-pair comma-wsp? coordinate-pair comma-wsp? coordinate-pair

smooth-curveto:
("S" | "s") wsp* smooth-curveto-argument-sequence

smooth-curveto-argument-sequence:
smooth-curveto-argument
| smooth-curveto-argument comma-wsp? smooth-curveto-argument-sequence

smooth-curveto-argument:
coordinate-pair comma-wsp? coordinate-pair

quadratic-bezier-curveto:
("Q" | "q") wsp* quadratic-bezier-curveto-argument-sequence

quadratic-bezier-curveto-argument-sequence:
quadratic-bezier-curveto-argument
| quadratic-bezier-curveto-argument comma-wsp?

quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument:

coordinate-pair comma-wsp? coordinate-pair
smooth-quadratic-bezier-curveto:

("T" | "t") wsp* smooth-quadratic-bezier-curveto-argument-sequence
smooth-quadratic-bezier-curveto-argument-sequence:

coordinate-pair
| coordinate-pair comma-wsp? smooth-quadratic-bezier-curveto-argument-sequence

elliptical-arc:
("A" | "a") wsp* elliptical-arc-argument-sequence

elliptical-arc-argument-sequence:
elliptical-arc-argument
| elliptical-arc-argument comma-wsp? elliptical-arc-argument-sequence

elliptical-arc-argument:
nonnegative-number comma-wsp? nonnegative-number comma-wsp?

number comma-wsp flag comma-wsp? flag comma-wsp? coordinate-pair
coordinate-pair:

coordinate comma-wsp? coordinate
coordinate:

number
nonnegative-number:

integer-constant
| floating-point-constant

number:
sign? integer-constant
| sign? floating-point-constant

flag:
"0" | "1"

comma-wsp:
(wsp+ comma? wsp*) | (comma wsp*)

comma:
","

integer-constant:

175

digit-sequence
floating-point-constant:

fractional-constant exponent?
| digit-sequence exponent

fractional-constant:
digit-sequence? "." digit-sequence
| digit-sequence "."

exponent:
("e" | "E") sign? digit-sequence

sign:
"+" | "-"

digit-sequence:
digit
| digit digit-sequence

digit:
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

wsp:
(#x20 | #x9 | #xD | #xA)

176 VERBOSE LISTINGS

The following XML schema document is generated by the automatic datatype representation
generator shown in Chapter 8 according to the BNF in Listing 8.2.

Listing 2: XML schema for xsd:date
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="xsdDate">
<xs:complexType>

<xs:sequence>
<!-- year = [negative] , digit , {digit} -->
<xs:element ref="year"/>
<!-- ’-’ -->
<!-- month = digit , {digit} -->
<xs:element ref="month"/>
<!-- ’-’ -->
<!-- day = digit , {digit} -->
<xs:element ref="day"/>
<!-- [timezone] -->
<xs:sequence minOccurs="0">

<!-- timezone = ’Z’ | (’+’ | ’-’) , hour , ’:’ , minute -->
<xs:element ref="timezone"/>

</xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="year" type="xs:short"/>
<xs:element name="month" type="xs:unsignedByte" />
<xs:element name="day" type="xs:unsignedByte" />
<xs:element name="timezone">

<xs:complexType>
<xs:sequence>

<!-- ’Z’ | (’+’ | ’-’) , hour , ’:’ , minute -->
<xs:choice>

<!-- Anonymous = ’Z’ -->
<xs:element name="Anon_0">

<xs:complexType>
<xs:sequence>

<!-- ’Z’ -->
<xs:element name="terminal0">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="Z"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<!-- Anonymous = (’+’ | ’-’) , hour , ’:’ , minute -->
<xs:element name="Anon_1">

<xs:complexType>
<xs:sequence>

<!-- ’+’ | ’-’ -->
<xs:sequence>

<!-- ’+’ | ’-’ -->
<xs:choice>

<!-- ’+’ -->
<xs:element name="terminal0">

<xs:simpleType>
<xs:restriction base="xs:string">

177

<xs:enumeration value="+"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

</xs:choice>
</xs:sequence>
<!-- hour = digit , {digit} -->
<xs:element ref="hour"/>
<!-- ’:’ -->
<!-- minute = digit , {digit} -->
<xs:element ref="minute"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="hour" type="xs:unsignedByte"> </xs:element>
<xs:element name="minute" type="xs:unsignedByte"> </xs:element>
<xs:element name="negative">

<xs:complexType>
<xs:sequence>

<!-- ’-’ -->
<xs:element name="terminal0">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="-"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="sign">

<xs:complexType>
<xs:sequence>

<!-- ’+’ | ’-’ -->
<xs:choice>

<!-- ’+’ -->
<xs:element name="terminal0">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="+"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<!-- ’-’ -->
<xs:element name="terminal1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="-"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

178 VERBOSE LISTINGS

</xs:schema>

179

The following XML schema document is also generated by the automatic datatype repre-
sentation generator shown in Chapter 8.

Listing 3: XML schema for SVGPath d Attribute
<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>
<!--
svgPath = [movetoDrawtoCommandGroups];
movetoDrawtoCommandGroups = movetoDrawtoCommandGroup , { {wsp} , {

movetoDrawtoCommandGroup} };
movetoDrawtoCommandGroup = moveto , { {wsp} , { drawtoCommands } };
drawtoCommands = drawtoCommand , { {wsp} , {drawtoCommand} };
drawtoCommand = closepath | lineto | horizontalLineto | verticalLineto | curveto |

smoothCurveto | quadraticBezierCurveto | smoothQuadraticBezierCurveto |
ellipticalArc;

moveto = (’M’ | ’m’) , {wsp} , coordinatePair, { {commaWsp} , {coordinatePair} };
closepath = (’Z’ | ’z’);
lineto = (’L’ | ’l’) , {wsp} , coordinatePair , { {commaWsp} , {coordinatePair} };
horizontalLineto = (’H’ | ’h’) , {wsp} , coordinate , { {commaWsp} , {coordinate} };
verticalLineto = (’V’ | ’v’) , {wsp} , coordinate , { {commaWsp} , {coordinate} };
curveto = (’C’ | ’c’) , {wsp} , coordinatePair , { {commaWsp} , {coordinatePair} };
smoothCurveto = (’S’ | ’s’) , {wsp} , coordinatePair , { {commaWsp} , {coordinatePair}

};
quadraticBezierCurveto = (’Q’ | ’q’) , {wsp} , coordinatePair , { {commaWsp} , {

coordinatePair} };
smoothQuadraticBezierCurveto = (’T’ | ’t’) , {wsp} , coordinatePair , { {commaWsp} , {

coordinatePair} };
ellipticalArc = (’A’ | ’a’) , {wsp} , ellipticalArcArgument , { {commaWsp} , {

ellipticalArcArgument} };
ellipticalArcArgument = nonnegativeNumber , { commaWsp } , nonnegativeNumber , {

commaWsp } , number , { commaWsp } , flag , { commaWsp } , flag , { commaWsp } ,
coordinatePair;

coordinatePair = coordinate , { commaWsp } , coordinate;
coordinate = number;
nonnegativeNumber = digitSequence , { ’.’ , [digitSequence] } , { [exponent] |

digitSequence , exponent };
number = [sign] , digitSequence , { (’.’ | exponent) , digitSequence };
flag = ’0’ | ’1’;
commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’;
comma = ’,’;
integerConstant = digitSequence;
floatingPointConstant = fractionalConstant , [exponent] | digitSequence , exponent;
fractionalConstant = [digitSequence] , ’.’ , [digitSequence];
exponent = (’e’ | ’E’), [sign] , digitSequence;
sign = ’+’ | ’-’;
digitSequence = digit , { digit };
digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’;
wsp = ’ ’ | ’ ’ | ’

’ | ’
’;
-->
<xs:element name=’svgPath’ >
<xs:complexType>
<xs:sequence>
<!-- [movetoDrawtoCommandGroups] -->
<xs:sequence minOccurs=’0’>
<!-- movetoDrawtoCommandGroups = movetoDrawtoCommandGroup , { {wsp} , {

movetoDrawtoCommandGroup} } -->

180 VERBOSE LISTINGS

<xs:element ref=’movetoDrawtoCommandGroups’ />
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’movetoDrawtoCommandGroups’ >
<xs:complexType>
<xs:sequence>
<!-- movetoDrawtoCommandGroup = moveto , { {wsp} , { drawtoCommands } } -->
<xs:element ref=’movetoDrawtoCommandGroup’ />
<!-- { {wsp} , {movetoDrawtoCommandGroup} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { movetoDrawtoCommandGroup } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- movetoDrawtoCommandGroup = moveto , { {wsp} , { drawtoCommands } } -->
<xs:element ref=’movetoDrawtoCommandGroup’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’movetoDrawtoCommandGroup’ >
<xs:complexType>
<xs:sequence>
<!-- moveto = (’M’ | ’m’) , {wsp} , coordinatePair, { {commaWsp} , {coordinatePair

} } -->
<xs:element ref=’moveto’ />
<!-- { {wsp} , { drawtoCommands } } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { drawtoCommands } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- drawtoCommands = drawtoCommand , { {wsp} , {drawtoCommand} } -->
<xs:element ref=’drawtoCommands’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’drawtoCommands’ >
<xs:complexType>
<xs:sequence>
<!-- drawtoCommand = closepath | lineto | horizontalLineto | verticalLineto |

curveto | smoothCurveto | quadraticBezierCurveto | smoothQuadraticBezierCurveto
| ellipticalArc -->

<xs:element ref=’drawtoCommand’ />
<!-- { {wsp} , {drawtoCommand} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >

181

<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { drawtoCommand } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- drawtoCommand = closepath | lineto | horizontalLineto | verticalLineto |

curveto | smoothCurveto | quadraticBezierCurveto | smoothQuadraticBezierCurveto
| ellipticalArc -->

<xs:element ref=’drawtoCommand’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’drawtoCommand’ >
<xs:complexType>
<xs:sequence>
<!-- closepath | lineto | horizontalLineto | verticalLineto | curveto |

smoothCurveto | quadraticBezierCurveto | smoothQuadraticBezierCurveto |
ellipticalArc -->

<xs:choice>
<!-- closepath = (’Z’ | ’z’) -->
<xs:element ref=’closepath’ />
<!-- lineto = (’L’ | ’l’) , {wsp} , coordinatePair , { {commaWsp} , {

coordinatePair} } -->
<xs:element ref=’lineto’ />
<!-- horizontalLineto = (’H’ | ’h’) , {wsp} , coordinate , { {commaWsp} , {

coordinate} } -->
<xs:element ref=’horizontalLineto’ />
<!-- verticalLineto = (’V’ | ’v’) , {wsp} , coordinate , { {commaWsp} , {

coordinate} } -->
<xs:element ref=’verticalLineto’ />
<!-- curveto = (’C’ | ’c’) , {wsp} , coordinatePair , { {commaWsp} , {

coordinatePair} } -->
<xs:element ref=’curveto’ />
<!-- smoothCurveto = (’S’ | ’s’) , {wsp} , coordinatePair , { {commaWsp} , {

coordinatePair} } -->
<xs:element ref=’smoothCurveto’ />
<!-- quadraticBezierCurveto = (’Q’ | ’q’) , {wsp} , coordinatePair , { {commaWsp}

, {coordinatePair} } -->
<xs:element ref=’quadraticBezierCurveto’ />
<!-- smoothQuadraticBezierCurveto = (’T’ | ’t’) , {wsp} , coordinatePair , { {

commaWsp} , {coordinatePair} } -->
<xs:element ref=’smoothQuadraticBezierCurveto’ />
<!-- ellipticalArc = (’A’ | ’a’) , {wsp} , ellipticalArcArgument , { {commaWsp} ,

{ellipticalArcArgument} } -->
<xs:element ref=’ellipticalArc’ />
</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’moveto’ >
<xs:complexType>
<xs:sequence>
<!-- ’M’ | ’m’ -->
<xs:sequence>

182 VERBOSE LISTINGS

<!-- ’M’ | ’m’ -->
<xs:choice>
<!-- ’M’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’M’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’m’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’m’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
<!-- { {commaWsp} , {coordinatePair} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { coordinatePair } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’closepath’ >
<xs:complexType>
<xs:sequence>
<!-- ’Z’ | ’z’ -->
<xs:sequence>
<!-- ’Z’ | ’z’ -->
<xs:choice>
<!-- ’Z’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’Z’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

183

</xs:element>
<!-- ’z’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’z’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’lineto’ >
<xs:complexType>
<xs:sequence>
<!-- ’L’ | ’l’ -->
<xs:sequence>
<!-- ’L’ | ’l’ -->
<xs:choice>
<!-- ’L’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’L’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’l’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’l’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
<!-- { {commaWsp} , {coordinatePair} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { coordinatePair } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />

184 VERBOSE LISTINGS

</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’horizontalLineto’ >
<xs:complexType>
<xs:sequence>
<!-- ’H’ | ’h’ -->
<xs:sequence>
<!-- ’H’ | ’h’ -->
<xs:choice>
<!-- ’H’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’H’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’h’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’h’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinate = number -->
<xs:element ref=’coordinate’ />
<!-- { {commaWsp} , {coordinate} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { coordinate } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinate = number -->
<xs:element ref=’coordinate’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’verticalLineto’ >
<xs:complexType>
<xs:sequence>
<!-- ’V’ | ’v’ -->

185

<xs:sequence>
<!-- ’V’ | ’v’ -->
<xs:choice>
<!-- ’V’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’V’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’v’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’v’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinate = number -->
<xs:element ref=’coordinate’ />
<!-- { {commaWsp} , {coordinate} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { coordinate } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinate = number -->
<xs:element ref=’coordinate’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’curveto’ >
<xs:complexType>
<xs:sequence>
<!-- ’C’ | ’c’ -->
<xs:sequence>
<!-- ’C’ | ’c’ -->
<xs:choice>
<!-- ’C’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’C’></xs:enumeration>

</xs:restriction>

186 VERBOSE LISTINGS

</xs:simpleType>
</xs:element>
<!-- ’c’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’c’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
<!-- { {commaWsp} , {coordinatePair} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { coordinatePair } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’smoothCurveto’ >
<xs:complexType>
<xs:sequence>
<!-- ’S’ | ’s’ -->
<xs:sequence>
<!-- ’S’ | ’s’ -->
<xs:choice>
<!-- ’S’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’S’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’s’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’s’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

187

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
<!-- { {commaWsp} , {coordinatePair} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { coordinatePair } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’quadraticBezierCurveto’ >
<xs:complexType>
<xs:sequence>
<!-- ’Q’ | ’q’ -->
<xs:sequence>
<!-- ’Q’ | ’q’ -->
<xs:choice>
<!-- ’Q’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’Q’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’q’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’q’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>

188 VERBOSE LISTINGS

<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
<!-- { {commaWsp} , {coordinatePair} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { coordinatePair } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’smoothQuadraticBezierCurveto’ >
<xs:complexType>
<xs:sequence>
<!-- ’T’ | ’t’ -->
<xs:sequence>
<!-- ’T’ | ’t’ -->
<xs:choice>
<!-- ’T’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’T’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’t’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’t’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
<!-- { {commaWsp} , {coordinatePair} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

189

</xs:sequence>
<!-- { coordinatePair } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />
</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’ellipticalArc’ >
<xs:complexType>
<xs:sequence>
<!-- ’A’ | ’a’ -->
<xs:sequence>
<!-- ’A’ | ’a’ -->
<xs:choice>
<!-- ’A’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’A’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’a’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’a’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- { wsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- wsp = ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- ellipticalArcArgument = nonnegativeNumber , { commaWsp } , nonnegativeNumber ,

{ commaWsp } , number , { commaWsp } , flag , { commaWsp } , flag , { commaWsp }
, coordinatePair -->

<xs:element ref=’ellipticalArcArgument’ />
<!-- { {commaWsp} , {ellipticalArcArgument} } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- { ellipticalArcArgument } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- ellipticalArcArgument = nonnegativeNumber , { commaWsp } , nonnegativeNumber ,

{ commaWsp } , number , { commaWsp } , flag , { commaWsp } , flag , { commaWsp }
, coordinatePair -->

<xs:element ref=’ellipticalArcArgument’ />

190 VERBOSE LISTINGS

</xs:sequence>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’ellipticalArcArgument’ >
<xs:complexType>
<xs:sequence>
<!-- nonnegativeNumber = digitSequence , { ’.’ , [digitSequence] } , { [exponent

] | digitSequence , exponent } -->
<xs:element ref=’nonnegativeNumber’ />
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- nonnegativeNumber = digitSequence , { ’.’ , [digitSequence] } , { [exponent

] | digitSequence , exponent } -->
<xs:element ref=’nonnegativeNumber’ />
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- number = [sign] , digitSequence , { (’.’ | exponent) , digitSequence } -->
<xs:element ref=’number’ />
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- flag = ’0’ | ’1’ -->
<xs:element ref=’flag’ />
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- flag = ’0’ | ’1’ -->
<xs:element ref=’flag’ />
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinatePair = coordinate , { commaWsp } , coordinate -->
<xs:element ref=’coordinatePair’ />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’coordinatePair’ >
<xs:complexType>
<xs:sequence>
<!-- coordinate = number -->

191

<xs:element ref=’coordinate’ />
<!-- { commaWsp } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- commaWsp = ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

</xs:sequence>
<!-- coordinate = number -->
<xs:element ref=’coordinate’ />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’coordinate’ type=’xs:float’ >
</xs:element>
<xs:element name=’nonnegativeNumber’ type=’xs:float’ >
</xs:element>
<xs:element name=’number’ >
<xs:complexType>
<xs:sequence>
<!-- [sign] -->
<xs:sequence minOccurs=’0’>
<!-- sign = ’+’ | ’-’ -->
<xs:element ref=’sign’ />
</xs:sequence>
<!-- digitSequence = digit , { digit } -->
<xs:element ref=’digitSequence’ />
<!-- { (’.’ | exponent) , digitSequence } -->
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded’ >
<!-- ’.’ | exponent -->
<xs:sequence>
<!-- ’.’ | exponent -->
<xs:choice>
<!-- Anonymous = ’.’ -->
<xs:element name=’Anon_0’ >
<xs:complexType>
<xs:sequence>

<!-- ’.’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’.’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<!-- Anonymous = exponent -->
<xs:element name=’Anon_1’ >
<xs:complexType>
<xs:sequence>

<!-- exponent = (’e’ | ’E’), [sign] , digitSequence -->
<xs:element ref=’exponent’ />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- digitSequence = digit , { digit } -->

192 VERBOSE LISTINGS

<xs:element ref=’digitSequence’ />
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’flag’ >
<xs:complexType>
<xs:sequence>
<!-- ’0’ | ’1’ -->
<xs:choice>
<!-- ’0’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’0’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’1’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’1’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’commaWsp’ >
<xs:complexType>
<xs:sequence>
<!-- ’,’ | ’ ’ | ’ ’ | ’

’ | ’
’ -->

<xs:choice>
<!-- ’,’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’,’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’ ’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’ ’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’ ’ -->
<xs:element name=’terminal2’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’	’></xs:enumeration>

</xs:restriction>

193

</xs:simpleType>
</xs:element>
<!-- ’

’ -->
<xs:element name=’terminal3’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’

’ -->
<xs:element name=’terminal4’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’
’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’comma’ >
<xs:complexType>
<xs:sequence>
<!-- ’,’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’,’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=’integerConstant’ >
<xs:complexType>
<xs:sequence>
<!-- digitSequence = digit , { digit } -->
<xs:element ref=’digitSequence’ />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’floatingPointConstant’ >
<xs:complexType>
<xs:sequence>
<!-- fractionalConstant , [exponent] | digitSequence , exponent -->
<xs:choice>
<!-- Anonymous = fractionalConstant , [exponent] -->
<xs:element name=’Anon_0’ >
<xs:complexType>
<xs:sequence>

<!-- fractionalConstant = [digitSequence] , ’.’ , [digitSequence] -->
<xs:element ref=’fractionalConstant’ />
<!-- [exponent] -->
<xs:sequence minOccurs=’0’>

194 VERBOSE LISTINGS

<!-- exponent = (’e’ | ’E’), [sign] , digitSequence -->
<xs:element ref=’exponent’ />
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<!-- Anonymous = digitSequence , exponent -->
<xs:element name=’Anon_1’ >
<xs:complexType>
<xs:sequence>

<!-- digitSequence = digit , { digit } -->
<xs:element ref=’digitSequence’ />
<!-- exponent = (’e’ | ’E’), [sign] , digitSequence -->
<xs:element ref=’exponent’ />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’fractionalConstant’ >
<xs:complexType>
<xs:sequence>
<!-- [digitSequence] -->
<xs:sequence minOccurs=’0’>
<!-- digitSequence = digit , { digit } -->
<xs:element ref=’digitSequence’ />
</xs:sequence>
<!-- ’.’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’.’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- [digitSequence] -->
<xs:sequence minOccurs=’0’>
<!-- digitSequence = digit , { digit } -->
<xs:element ref=’digitSequence’ />
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’exponent’ >
<xs:complexType>
<xs:sequence>
<!-- ’e’ | ’E’ -->
<xs:sequence>
<!-- ’e’ | ’E’ -->
<xs:choice>
<!-- ’e’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’e’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

195

</xs:element>
<!-- ’E’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’E’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>
</xs:sequence>
<!-- [sign] -->
<xs:sequence minOccurs=’0’>
<!-- sign = ’+’ | ’-’ -->
<xs:element ref=’sign’ />
</xs:sequence>
<!-- digitSequence = digit , { digit } -->
<xs:element ref=’digitSequence’ />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’sign’ >
<xs:complexType>
<xs:sequence>
<!-- ’+’ | ’-’ -->
<xs:choice>
<!-- ’+’ -->
<xs:element name=’terminal0’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’+’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
<!-- ’-’ -->
<xs:element name=’terminal1’>
<xs:simpleType>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’-’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=’digitSequence’ type=’xs:integer’ >
</xs:element>

</xs:schema>

196 VERBOSE LISTINGS

Listing 4: SchemaForGrammars.xsd

<xs:schema targetNamespace="http://www.ct.siemens.com/2012/SchemaForGrammars"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:exi="http://www.ct.siemens.com/2012/SchemaForGrammars" elementFormDefault="

qualified">

<!-- ** -->
<!-- Datatype -->
<!-- ** -->
<xs:complexType name="Datatype">

<xs:choice>
<xs:element name="datatypeBuiltInType" type="exi:builtInType"/>
<xs:element name="datatypeNBitUnsignedInteger" type="exi:

DatatypeNBitUnsignedInteger"/>
<xs:element name="datatypeDateTime" type="exi:dateTimeType"/>
<xs:element name="datatypeEnumeration" type="exi:DatatypeEnumeration"/>
<xs:element name="datatypeList" type="exi:Datatype"/>
<xs:element name="datatypeRestrictedCharSet" type="exi:

DatatypeRestrictedCharSet"/>
</xs:choice>

</xs:complexType>

<!-- ** -->
<!-- EXI built-in datatypes -->
<!-- ** -->
<xs:simpleType name="builtInType">

<xs:restriction base="xs:string">
<!-- Binary -->
<xs:enumeration value="BINARY_BASE64"/>
<xs:enumeration value="BINARY_HEX"/>
<!-- Boolean -->
<xs:enumeration value="BOOLEAN"/>
<xs:enumeration value="BOOLEAN_PATTERN"/>
<!-- Decimal -->
<xs:enumeration value="DECIMAL"/>
<!-- Float -->
<xs:enumeration value="FLOAT"/>
<!-- NBit-Unsigned Integer -->
<xs:enumeration value="NBIT_UNSIGNED_INTEGER"/>
<!-- Unsigned Integer -->
<xs:enumeration value="UNSIGNED_INTEGER"/>
<!-- (Signed) Integer -->
<xs:enumeration value="INTEGER"/>
<!-- Datetime -->
<xs:enumeration value="DATETIME"/>
<!-- String -->
<xs:enumeration value="STRING"/>
<!-- Enumeration -->
<xs:enumeration value="ENUMERATION"/>
<!-- List -->
<xs:enumeration value="LIST"/>
<!-- Restricted Character Set -->
<xs:enumeration value="RESTRICTED_CHARACTER_SET"/>
<!-- QName -->
<xs:enumeration value="QNAME"/>

</xs:restriction>
</xs:simpleType>

<!-- ** -->

197

<!-- N-Bit Unsigned Integer datatype -->
<!-- ** -->
<xs:complexType name="DatatypeNBitUnsignedInteger">

<xs:sequence>
<xs:element name="lowerBound" type="xs:integer"/>
<xs:element name="upperBound" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

<!-- ** -->
<!-- Date-Time datatype -->
<!-- ** -->
<xs:simpleType name="dateTimeType">

<xs:restriction base="xs:string">
<xs:enumeration value="gYear"/>
<xs:enumeration value="gYearMonth"/>
<xs:enumeration value="date"/>
<xs:enumeration value="dateTime"/>
<xs:enumeration value="gMonth"/>
<xs:enumeration value="gMonthDay"/>
<xs:enumeration value="gDay"/>
<xs:enumeration value="time"/>

</xs:restriction>
</xs:simpleType>

<!-- ** -->
<!-- Enumeration datatype -->
<!-- ** -->
<xs:complexType name="DatatypeEnumeration">

<xs:sequence>
<xs:element name="enumValuesBuiltInType" type="exi:builtInType"/>
<xs:element name="enumValues">

<xs:simpleType>
<xs:list itemType="xs:string"/>

</xs:simpleType>
</xs:element>

</xs:sequence>
</xs:complexType>

<!-- ** -->
<!-- Restricted Character Set datatype -->
<!-- ** -->
<xs:complexType name="DatatypeRestrictedCharSet">

<xs:sequence>
<xs:element name="codePoint" type="xs:unsignedInt" minOccurs="0" maxOccurs="

unbounded"/>
</xs:sequence>

</xs:complexType>

<!-- ** -->
<!-- GRAMMAR PRODUCTION -->
<!-- ** -->
<xs:complexType name="Production">

<xs:sequence>
<!-- ** -->
<!-- EXI Events -->
<!-- ** -->

198 VERBOSE LISTINGS

<xs:choice>
<xs:element name="startDocument"/>
<xs:element name="endDocument"/>
<xs:element name="startElement">

<xs:complexType>
<xs:sequence>

<!-- element qname -->
<xs:element name="startElementQNameID" type="xs:unsignedInt"/>
<!-- element rule -->
<xs:element name="startElementGrammarID" type="xs:unsignedInt"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="startElementGeneric"/>
<xs:element name="endElement"/>
<xs:element name="characters">

<xs:complexType>
<xs:sequence>

<!-- schema value-type qname -->
<xs:element name="charactersSchemaTypeQNameID" type="xs:

unsignedInt"/>
<!-- datatype -->
<xs:element name="charactersDatatype" type="exi:Datatype"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="charactersGeneric"/>
<xs:element name="attribute">

<xs:complexType>
<xs:sequence>

<!-- attribute qname -->
<xs:element name="attributeQNameID" type="xs:unsignedInt"/>
<!-- attribute schema value-type qname -->
<xs:element name="attributeSchemaTypeQNameID" type="xs:

unsignedInt"/>
<!-- datatype -->
<xs:element name="attributeDatatype" type="exi:Datatype"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="attributeGeneric"/>

</xs:choice>
<!-- No nextRule for ED and EE -->
<xs:element name="nextGrammarID" type="xs:unsignedInt" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

<!-- startTag grammars and element grammars -->
<xs:complexType name="Grammar">

<xs:sequence>
<xs:element name="production" type="exi:Production" minOccurs="0" maxOccurs="

unbounded"
/>

</xs:sequence>
</xs:complexType>

<!-- first startTag grammar -->
<xs:complexType name="FirstStartTagGrammar">

<xs:complexContent>

199

<xs:extension base="exi:Grammar">
<xs:attribute name="isTypeCastable" type="xs:boolean" use="required"/>
<xs:attribute name="isNillable" type="xs:boolean" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<!-- ** -->
<!-- EXI Grammar (root element) -->
<!-- ** -->
<xs:element name="exiGrammar">

<xs:complexType>
<xs:sequence>

<!-- ** -->
<!-- QNAMES -->
<!-- ** -->
<xs:element name="qnames">

<xs:complexType>
<xs:sequence>

<!-- NamespaceUri’s, prefixes and localNames (QName) -->
<xs:element name="namespaceContext" minOccurs="0" maxOccurs="

unbounded">
<xs:complexType>

<xs:sequence>
<!-- namespace URI-->
<xs:any processContents="skip"/>
<!-- prefix -->
<xs:element name="prefix" type="xs:string" minOccurs="

0"/>
<!-- QName Context -->
<xs:element name="qnameContext" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<!-- local-name -->
<xs:any processContents="skip"/>
<!-- global type (if any) -->
<xs:element name="globalTypeGrammarID"
type="xs:unsignedInt" minOccurs="0"/>
<!-- global element (if any) -->
<xs:element name="globalElementGrammarID"
type="xs:unsignedInt" minOccurs="0"/>
<!-- global attribute if any -->
<xs:sequence minOccurs="0">
<xs:element
name="globalAttributeSchemaTypeQNameID"
type="xs:unsignedInt"/>
<xs:element name="globalAttributeDatatype"
type="exi:Datatype"/>
</xs:sequence>
<!-- simple sub-types -->
<xs:element name="simpleSubTypeQNameIDs"
minOccurs="0">
<xs:simpleType>
<xs:list itemType="xs:unsignedInt"/>
</xs:simpleType>
</xs:element>

</xs:sequence>

200 VERBOSE LISTINGS

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="numberOfLocalNames" type="xs:

unsignedInt"
use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<!-- number of entries -->
<xs:attribute name="numberOfUris" type="xs:unsignedInt" use="

required"/>
<xs:attribute name="numberOfQNames" type="xs:unsignedInt" use="

required"/>
</xs:complexType>

</xs:element>

<!-- ** -->
<!-- GRAMMAR RULES -->
<!-- ** -->
<xs:element name="grammars">

<xs:complexType>
<xs:sequence>

<!-- document -->
<xs:element name="document" type="exi:Grammar"/>
<xs:element name="docContent" type="exi:Grammar"/>
<xs:element name="docEnd" type="exi:Grammar"/>
<!-- fragment -->
<xs:element name="fragment" type="exi:Grammar"/>
<xs:element name="fragmentContent" type="exi:Grammar"/>
<!-- first startTag content -->
<xs:element name="firstStartTagContent" type="exi:

FirstStartTagGrammar"
minOccurs="0" maxOccurs="unbounded"/>

<!-- startTag content -->
<xs:element name="startTagContent" type="exi:Grammar" minOccurs="

0"
maxOccurs="unbounded"/>

<!-- element content -->
<xs:element name="elementContent" type="exi:Grammar" minOccurs="0

"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="numberOfGrammars" type="xs:unsignedInt" use="

required"/>
</xs:complexType>

</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Requirements of the Embedded Domain
	Semi-structured Data in the Embedded Domain
	Goal and Structure

	Overview of Semi-structured Data in the Embedded Domain
	XML Technologies
	XML Fundamentals
	XML and XML Schema
	XML Optimization Fields

	XML Content Density
	XML Test Data Characteristics

	Binary XML
	Related Work
	XMill
	WBXML
	ASN.1
	FastInfoset
	BiM

	Efficient XML Interchange (EXI) Format
	Basic Concepts
	EXI Grammars
	EXI String Table
	Variable-length Unsigned Integer Coding
	EXI Compression
	Summary

	EXI Metrics
	EXI Content Density
	EXI Efficiency

	Discussion

	Optimization of XML Technologies
	Efficient Feature-complete EXI Processor
	Implementation Techniques
	Element Context Stack
	Qualified Name Context
	Grammars
	String Table

	Results and Discussion
	Compression
	Processing Efficiency
	Optimization Outlook

	Optimized Datatype Representation
	Application Area
	Scalable Vector Graphics
	Applying EXI to Rich Web Applications

	Formal Grammar
	Chomsky Hierarchy
	Backus-Naur Form
	Parser Observations
	XML Schema and EXI Grammars

	Concept of an Optimized Datatype Representation
	Datatype Representation Generation
	BNF Extraction Process
	BNF-based Datatype Representation Approach

	Results and Discussion
	Measurements and Evaluation
	Entropy Coding

	EXI Grammar Representation
	XML Schema Exchange
	Requirements
	XML Schema Knowledge Exchange for Binary XML
	XML Schema Knowledge Exchange for EXI

	Contents of XML Schema Exchange
	Qualified Names
	EXI Grammars
	XML Schema Exchange Representation for EXI
	Schema for Grammars

	Results and Discussion
	EXI Grammars Start-up Costs
	Test Set
	Compression Measurements
	Parsing Time Measurements
	Summary

	Demand-tailored EXI Processor
	EXI Grammar Transformations
	Properties of EXI Grammars
	Mapping EXI Grammars to Finite State Machines
	Mapping EXI Grammars to Source Code

	Automatic EXI Processor Generation
	Automatic Source Code Generation according to EXI Grammars
	Application Programming Interface
	EXI Decoder Generation
	Automatic Databinding

	Results and Discussion
	Test Candidates
	Code Footprint Numbers
	Parser Performance
	Usability Evaluation and Outlook

	Memory-Sensitive XML Querying
	Memory-Sensitive Model
	LazyDOM Concept
	LazyDOM Requirements

	Technical Realization
	Indexing Mechanism
	LazyDOM Applicability

	Results and Discussion
	Test Data
	Query Set
	Performance Measurements
	Design Guidelines
	Related Work

	 Résumé
	Contributions
	Conclusions

	Appendices
	Bibliography
	List of Symbols and Abbreviations
	Verbose Listings

