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Abstract

In this thesis, we investigates plane drawings of undirected and directed graphs on cylinder
surfaces. In the case of undirected graphs, the vertices are positioned on a line that is parallel
to the cylinder’s axis and the edge curves must not intersect this line. We show that a plane
drawing is possible if and only if the graph is a double-ended queue (deque) graph, i. e., the
vertices of the graph can be processed according to a linear order and the edges correspond to
items in the deque inserted and removed at their end vertices. A surprising consequence resulting
from these observations is that the deque characterizes planar graphs with a Hamiltonian path.
This result extends the known characterization of planar graphs with a Hamiltonian cycle by
two stacks. By these insights, we also obtain a new characterization of queue graphs and their
duals. We also consider the complexity of deciding whether a graph is a deque graph and
prove that it is NP-complete. By introducing a split operation, we obtain the splittable deque
and show that it characterizes planarity. For the proof, we devise an algorithm that uses the
splittable deque to test whether a rotation system is planar.

In the case of directed graphs, we study upward plane drawings where the edge curves follow
the direction of the cylinder’s axis (standing upward planarity; SUP) or they wind around the
axis (rolling upward planarity; RUP). We characterize RUP graphs by means of their duals and
show that RUP and SUP swap their roles when considering a graph and its dual. There is a
physical interpretation underlying this characterization: A SUP graph is to its RUP dual graph
as electric current passing through a conductor to the magnetic field surrounding the conductor.
Whereas testing whether a graph is RUP is NP-hard in general [Bra14], for directed graphs
without sources and sink, we develop a linear-time recognition algorithm that is based on our
dual graph characterization of RUP graphs.
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Chapter 1

Introduction

A graph consists of a finite set of entities, the vertices, and a binary relation on the entities, the
edges. A graph is undirected if the relation is symmetric. Otherwise, we have a digraph, i. e., a
directed graph, in which each edge points from its source to its target. As a general purpose-tool,
graphs have a wide range of applications, in both theoretical and practical scenarios.

(a) A plane
drawing.

(b) A dual
graph.

(c) The rolling 3D cylin-
der.

(d) A plane draw-
ing on the rolling 3D
cylinder.

(e) A linear cylindric plane drawing. (f) A rolling upward plane drawing.

Figure 1.1: Plane drawings on the Euclidean plane and the surface of a 3D cylinder.

A particularly interesting class of graphs are the planar graphs: A graph is called planar if it
has a plane drawing which maps the vertices to distinct points in the Euclidean plane and the
edges to simple Jordan arcs that connect the edges’ endpoints such that no two edge curves
share a point except for common endpoints. Fig. 1.1(a) shows an example of a plane drawing.
Planar graphs have been studied extensively in the past and still play an important role, for
instance, in the research field of graph drawing that deals with the graphical representation of
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4 Chapter 1. Introduction

graphs. With every plane drawing comes a dual graph which can be obtained by placing (face)
vertices into the regions that are bounded by the drawing and connecting two face vertices by
a (dual) edge if they are separated by an original edge (Fig. 1.1(b)).

In this thesis, we investigate plane drawings on the rolling cylinder (cf. Fig. 1.1(c)): Instead
of the Euclidean plane, the vertices and edges are drawn on the surface of a three-dimensional
cylinder whose axis (dotted) is parallel to the x-axis. An example is shown in Fig. 1.1(d), where
one edge winds around the cylinder (dotted). Every planar graph has a plane drawing on the
rolling cylinder and vice versa and, thus, plane cylinder drawings are no extension of planarity.
Still, cylinder drawings become interesting when we introduce restrictions of which we consider
two types:

I Linear Cylindric Drawings of Undirected Graphs
The vertices must be placed on a horizontal line parallel to the cylinder’s axis and no
edge curve must cross this line (Fig. 1.1(e)).

I Rolling Upward Plane Drawings of Digraphs
Each edge curve, from its source to its target, must wind around the cylinder’s axis in a
certain direction (Fig. 1.1(f)).

These two types of drawings correspond to the two parts of this thesis, which is organized as
follows: We give basic definitions that are relevant for all chapters in Sect. 1.1. In Chapter 2,
we introduce linear cylindric drawings (Fig. 1.1(e)) and investigate their relationship to graph
layouts in fundamental data structures as, for instance, the stack, the queue, and, in particular,
the double-ended queue (deque). It turns out that the structure of dual graphs obtained from
plane linear cylindric drawings is closely related to the working principle of the deque and the
queue. Moreover, we will characterize all planar graphs by using a slightly modified version of
the deque, the splittable deque. Rolling upward plane drawings (Fig. 1.1(f)) are the topic of
Chapter 3. We give a combinatorial characterization of digraphs that admit such a drawing by
means of their (directed) dual graphs. Based on this characterization, we develop an algorithm
that decides whether a digraph without sources and sinks admits a rolling upward plane drawing.
In Chapter 4, we bring Chapters 2 and 3 together.

1.1 Preliminaries

This section contains the basic definitions we use throughout the whole thesis. The definitions
are made along the line with standard text books about graph theory [Eve12] and graph
drawing [DBETT99, KW01].

First, we fix some notation. For two real numbers a < b, we denote by [a, b] := {x ∈
R | a ≤ x ≤ b} the closed interval and by (a, b) := {x ∈ R | a < x < b} the open interval
from a to b. The cardinality, i. e., number of elements, of a finite set A is denoted by |A|.
Pk(A) := {A ⊆ A | |A| = k} denotes the set of subsets of A with cardinality k where k ≤ |A|.
For any function f : A→ B and set A ⊆ A, we define by f [A] := {f (a)|a ∈ A} the image of
A under f . For a tuple a = (a1, a2, ... , ak), we define by f (a) := (f (a1), f (a2), ... , f (ak)) the
coordinate-wise application of f . For any sequence, a1, a2, a3, ... , ak we will use the shortened
notation a1, ... , ak whenever the index between two successive elements increases by one.
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1.1.1 Directed Graphs

A digraph or directed graph G is a tuple G = (V ,E) with a finite set V of vertices and a
set E of edges. The set of edges is a binary relation E ⊆ V × V consisting of directed edges
(u, v) ∈ E . For each edge e = (u, v) ∈ E , u and v are called endpoints of e, where u is
the source and v is the target of e. We call E+(v) := {e ∈ E | v is source of e} the set of
outgoing edges of v and E-(v) := {e ∈ E | v is target of e} the set of incoming edges of
v . The outdegree d+(v) of v is the cardinality of E+(v) and the indegree d-(v) of v is the
cardinality of E-(v). A vertex v with d-(v) = 0 is called source and if d+(v) = 0, v is called
sink.

A pair of vertices u, v ∈ V is said to be adjacent if they are connected by an edge, i. e.,
(u, v) ∈ E ∨ (v , u) ∈ E . Then, e is said to be incident to u and v . An edge (v , v) ∈ E is
called a directed loop and G is called simple digraph if it contains no directed loops.

A dipath p starting at vertex v0 and ending at vertex vk is a sequence p = (v0, e1, v1, e2, ... ,

ek , vk) of vertices and edges with ei = (vi−1, vi) ∈ E for all 1 ≤ i ≤ k , where k ≥ 0. If
k = 0, p stays at vertex v0. For convenience, we only list the vertices of a dipath and include
the edges only when necessary, e. g., in the context of multigraphs and duals as defined later.
As a shorthand, we write p = v0  vk to denote a dipath from vertex v0 to vertex vk . The
number k of edges involved in p is the length of p. Each vertex vi with 0 ≤ i ≤ k is said to be
visited by p or, simply, to be on p. Likewise, each edge ei (1 ≤ i ≤ k) is visited by p or, simply,
is on p. A dipath is called simple if vi 6= vj for all 0 ≤ i < j ≤ k . A dipath p = v0  vk is
called cycle if v0 = vk and it is called simple cycle if all vertices on p are distinct except for
v0 = vk . A digraph is called acyclic if it contains no cycles.

A simple dipath p is called Hamiltonian if each vertex v ∈ V is visited by p. A dipath p is
called Eulerian if each edge e ∈ E is visited exactly once by p. Analogously, a simple cycle is
called Hamiltonian if it visits each vertex and it is called Eulerian if it visits each edge exactly
once.

1.1.2 Undirected Graphs

In contrast to digraphs, the edges in an undirected graph or, simply, graph G = (V ,E) have
no designated direction. Each edge e ∈ E is an unordered pair {u, v} with u 6= v and,
thus, E ⊆ P2(V ). The definition of endpoints, adjacency, and incidence are defined for the
undirected case as for the directed case. The set of incident edges of a vertex v ∈ V is denoted
by E(v) and the cardinality of E(v) is the degree d(v) of v . The definitions of (simple) dipath
and (simple) cycles are adopted for the undirected case, where a dipath is called path and a
cycle is called circle, both possibly with the attributes of being simple, Hamiltonian, or Eulerian.
An undirected loop from v onto itself is a unary set {v} and a graph is called simple, if it
contains no undirected loops. We call a simple graph G = (V ,E) complete if there is an edge
between every pair of distinct vertices, i. e., E = P2(V ).

Given a digraph G = (V ,E), the underlying undirected graph G ′ = (V ,E ′) is obtained from
G be discarding the edge directions. More formally, E ′ = {{u, v} | u and v are adjacent in G}.
Note that two distinct edges (u, v), (v , u) ∈ E are mapped to a single undirected edge in G ′.

1.1.3 Multigraphs

From time to time, we need to model that two vertices are connected by more than one
edge and that a single vertex has more than one loop. In this case, we obtain a multigraph
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G = (V ,E , ε), which again can be directed or undirected. In either case, we have a set
of edges E = {e1, e2, ... , em} and a function ε : E → V × V for the directed case and a
function ε : E → P1(V ) ∪ P2(V ) for the undirected case. In both cases, ε maps an edge
to its endpoints, i. e., an (un-)ordered pair or a (un-)directed loop. All other aforementioned
definitions are adopted for multigraphs as well. Referring to an edge e of a multigraph by
using its endpoints {u, v} (or (u, v)) is ambiguous in general. Nevertheless, we use the latter
notation whenever it leads to a conciser description without causing confusion.

1.1.4 Isomorphism

Two graphs G = (V ,E) and G ′ = (V ′,E ′) are isomorphic if there is a bijection π : V → V ′
with {u, v} ∈ E if and only if {π(u),π(v)} ∈ E ′. Analogously, two digraphs G = (V ,E)

and G ′ = (V ′,E ′) are isomorphic if there is a bijection π : V → V ′ with (u, v) ∈ E if
and only if (π(u),π(v)) ∈ E ′, and two multigraphs G = (V ,E , ε) and G ′ = (V ′,E ′, ε′) are
isomorphic if there are bijections πV : V → V ′ and πE : E → E ′ such that for all e ∈ E
πV [ε(e)] = ε′(πE (e)) in the undirected case, and πV (ε(e)) = ε′(πE (e)) in the directed case.
Although, isomorphism is a weaker condition that equality, we will denote by G = G ′ that G is
isomorphic to G ′ unless stated otherwise.

1.1.5 Subgraphs

The following definitions equally apply to all previously defined types of graphs. We, therefore,
simply speak of “graphs” for now. For multigraphs we assume, with a slight abuse of notation,
that the mapping between the edges and its endpoints is equal for graph G and its subgraphs.

Given two graphs G = (V ,E) and G ′ = (V ′,E ′) with V ′ ⊆ V and E ′ ⊆ E , we say that
G ′ is a subgraph of G and G is a supergraph of G ′, denoted by G ′ ⊆ G . If V = V ′, then
G ′ is a spanning subgraph of G and G a spanning supergraph of G ′. For E ′ ⊆ E , the graph
GE ′ = (V ,E ′) is the subgraph induced by the edges E ′. The graph G \E ′ = (V ,E \E ′) is the
subgraph obtained by removing the edges E ′ (from G ). For U ⊆ V , the graph G ′ = (U,EU)

with EU = {e ∈ E | both endpoints of e are in U} is the subgraph induced by the vertices U.
Analogously, G \U = (V \U,E\U) is the subgraph obtained by removing the vertices U (from
G ) with E\U = {e ∈ E | neither endpoint of e is in U}.

1.1.6 Connectivity

There are two types of connectivity: In case of digraphs, we speak of strongly connected
components and, in the case of undirected graphs, we have connected, biconnected and
triconnected components.

Strongly Connected Components Let G = (V ,E) be a digraph. As a reminder, u  v
indicates the existence of a dipath from u to v , where u = v is possible. If u  v and v  w ,
then also u  w . Hence,  is a transitive and reflexive binary relation on V that defines
equivalence classes on V . We denote by σ(v) the equivalence class to which v ∈ V belongs,
i. e., σ(v) = {w ∈ V | v  w ∧ w  v}. Denote by V := {σ(v) ⊆ V | v ∈ V } the set of
equivalence classes. For any v ∈ V , the subgraph G ′ = (σ(v),E ′) of G induced by σ(v) is
called the strongly connected component or, simply, component of G . A component either
contains at least one edge or consists of a single vertex with no edge. In the latter case, we call
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the component trivial. Note that by this definition a component consisting of a single vertex
with a directed loop is not trivial.

Let G = (V,E) be the digraph, where the vertices are the components of a digraph G =

(V ,E). For each edge (u, v) ∈ E from one component σ(u) to another component σ(v),
there is a unique edge (σ(u),σ(v)) in E. Note that in this case, there is a dipath from all
vertices in σ(u) to all vertices in σ(v). G is a multigraph and called the digraph of strongly
connected components or simply component digraph. Note that G is acyclic.

If a digraph G itself is a strongly connected component, then G is called strongly connected.
Note that a strongly connected digraph has neither sources nor sinks. However, the converse is
not true as there are digraphs without sources and sinks that are not strongly connected.

Connected, Biconnected and Triconnected Components The following definitions apply
to undirected graphs and multigraphs, and they canonically extend to digraphs by considering
their underlying undirected graphs. A graph G is called (vertex-)connected if there is a path
between every pair of distinct vertices. Otherwise, G is called unconnected. If G contains no
or only one vertex, we define G to be connected. For a connected graph, a vertex v ∈ V is
called a cut vertex if G \ {v} is unconnected. A connected graph is called biconnected if it
has no cut vertex. If G is biconnected, a pair of distinct vertices u, v ∈ V is called split pair if
G \ {u, v} is unconnected. If G has no split pair, it is called triconnected.

The subgraph G ′ of a graph G is called connected component of G if G ′ is connected and
maximal with respect to ⊆, i. e., for any connected subgraph G ′′ ⊆ G , G ′ ⊆ G ′′ implies that
G ′′ = G ′. A biconnected subgraph which is maximal with respect to ⊆ is called block.

Let B = {B1, ... ,Bk} be the set of blocks of a connected graph G = (V ,E) and denote
by C the set of cut vertices of G . The block-cut tree TB = (B, C, EB) of G is a graph whose
vertices are the blocks and cut vertices. There is an edge {Bi , c} ∈ EB if block Bi = (Vi ,Ei)

contains c , i. e., c ∈ Vi . A block-cut tree is connected as G is connected and it does not
contain a circle, i. e., it is a tree.

1.1.7 Planar Graphs

The following definitions apply to all cases of directed/undirected graphs/multigraphs similarly,
where we apply the definitions to an undirected graph G = (V ,E).

Plane Drawings A drawing Γ of a graph G defines a representation of G in the Euclidean
plane. Γ is a function which maps vertices v ∈ V to points Γ(v) in R2, the vertex positions,
and each edge to an edge curve. An edge curve Γ(e) : [0, 1]→ R2 of an edge e = {u, v} is a
Jordan arc, i. e., a continuous, non-self-intersecting open curve, which connects the endpoints
of the edge with Γ(e)(0) = Γ(u) and Γ(e)(1) = Γ(v). Note that this definition of edge
curves also accounts for loops, where the Jordan arc is closed. Given a drawing, we identify
a vertex (edge) with its position (curve) whenever this ambiguity leads to no confusion. The
set Γ(e)[(0, 1)] is the inner part of the edge curve.

A drawing is called plane if the vertex positions are distinct, no inner parts of two edge
curves share a point, and no vertex lies on the inner part of an edge curve. More formally, we
have:

∀u, v ∈ V : u 6= v ⇒ Γ(v) 6= Γ(u) ,

Γ[V ] ∩
⋃
e∈E Γ(e)[(0, 1)] = ∅ ,

∀e, e ′ ∈ E : e 6= e ⇒ Γ(e)[(0, 1)] ∩ Γ(e)[(0, 1)] = ∅ .

(1.1)
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(b) A graph and its dual.
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(c) An embedded digraph and
its (directed) dual.

Figure 1.2: An embedded planar graph with its dual.

A graph admitting a plane drawing is called planar. A plane drawing of a graph is shown in
Fig. 1.2(a). The vertices are drawn as shaded circles, labeled with the name of the vertex, and
the edges are drawn as curved and straight lines.

Jordan’s Curve Theorem An important theorem, not only in the context of plane drawings,
is Jordan’s curve theorem [Jor87, pp. 587–594] which states that every Jordan curve C =

[0, 1]→ R2, i. e., a non-self-intersecting, continuous and closed (C(0) = C(1)) curve, divides R2

into two connected regions of which one, denoted by R, is bounded and the other, R = R2 \R,
is unbounded. “Connected” in this context means that R (R) cannot be represented as the
union of two or more disjoint non-empty open subsets of R2. Any continuous curve in R2

that has points in R as well as R inevitably also contains at least one point on C. We use the
following special case of Jordan’s curve theorem for plane drawings:

Proposition 1.1. Let Γ be a plane drawing of a graph G = (V ,E) and let C be a simple
circle in G . By following the edge curves on C , we obtain a Jordan curve C. Denote by R the
bounded region enclosed by C and by R = R2 \ R the unbounded region. Let e be an edge
that is not in C . Then, every inner part of the edge curve of e is either completely within R or
within R:

∀e ∈ E : Γ(e)[(0, 1)] ( R ∨ Γ(e)[(0, 1)] ( R .

In particular, no inner part of an edge curve has points in R and R as this would lead to a
crossing with C and a non-plane drawing.

For an example, consider the shaded region R in Fig. 1.2(a) which is enclosed by a simple
circle of the graph. The inner part of the edge curve of {1, 2} lies completely outside of R.

Rotation Systems and Embeddings A rotation system R assigns to each vertex v a cyclic
order of its incident edges E(v). A cyclic order on E(v) is a ternary relation R ⊆ E(V )3 that
is cyclic, asymmetric, transitive, and total [Hun16]. An element (e1, e2, e3) ∈ R means that

“on the way, starting at e1 and going to e3, one always passes e2”. Intuitively, a cyclic order
arranges elements on a cycle, which is in contrast to a total order that arranges the elements on
a dipath. In a rotation system of a vertex v , each edge e has an immediate successor Succv (e)
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and an immediate predecessor Predv (e). To conveniently define a rotation system of a vertex v ,
we define a total order e1, e2, ... , ed(v) on E(v) that is implicitly extended to a cyclic order by
defining Predv (e1) := ed(v) and Succv (ed(v)) = e1.

A plane drawing, as in Fig. 1.2(a), implies a rotation system. The rotation system at a
vertex v is the counterclockwise order in which the edges E(v) enter v in the plane drawing.
For instance, in Fig. 1.2(a), the rotation system at vertex 3 is {3, 5}, {3, 2}, {3, 4}, {3, 0}.
Note that each plane drawing uniquely implies a rotation system while not for every rotation
system there is a plane drawing that implies it. We call a rotation system R planar if there is a
plane drawing that implies R.

The following definitions apply to connected graphs. With some technical effort they can
be extended to unconnected graphs as well. However, as most of the results presented in this
thesis apply to connected graphs w. l. o. g., we assume that each graph in connected in the
following.

A drawing of a graph subdivides the Euclidean plane into plane regions each of which
is enclosed by a circle of the graph, e. g., in Fig. 1.2(a), the shaded region is bounded
by the circle 0, {0, 1}, 1, {1, 4}, 4, {4, 3}, 3, {3, 0}, 0 when traversing the region’s boundary
in clockwise direction. Such a circle defines a face, where the circle enclosing the un-
bounded region is called outer face. In Fig. 1.2(a), the outer face is enclosed by the cir-
cle 0, {0, 3}, 3, {3, 5}, 5, {5, 3}, 3, {3, 2}, 2, {2, 0}, 0. Note that moving vertex 5 into the
shaded region would result in a different set of faces.

We call two plane drawings of a graph G equivalent if they define the same set of faces.
Note that the outer face plays no special role in this definition. In particular, two plane drawings
may be equivalent even if they have different outer faces. The so obtained equivalence classes
on the set of plane drawings are called embeddings of G and a single embedding is denoted by
E . A planar rotation system defines an embedding and vice versa and, therefore, we identify
them in the following. From the rotation system as implied by the drawing in Fig. 1.2(a), we
obtain the shaded face by starting at vertex 0 with edge {0, 1} and then proceed to the other
vertices by following the successor edges according to the rotation system. For instance, after
following edge {0, 1} to vertex 1 we follow edge Succ1({0, 1}) = {1, 4} to get to vertex 4, and
so forth, until we return to vertex 0. Analogously, a planar rotation system can be obtained
from an embedding. By using the successor of an edge in the rotation system of each vertex,
we traverse the faces clockwise. Note that by this definition the outer face in Fig. 1.2(a) is
traversed clockwise, although it is traversed counterclockwise in the geometrical sense.

We say that two embeddings E and ER are equal up to inversion if the rotation system of
vertex v according to E , say e1, e2, ... , ed(v), is the reversed version of the rotation system of v
according to ER, i. e., ed(v), ed(v)−1, ... , e1. Intuitively, if Γ is a drawing which implies E , then
the drawing which is obtained by looking on Γ “from behind”, e. g., by turning the page and
holding it against the light, implies ER. An important result due to Whitney [Whi33] is that
the embedding of a triconnected and planar graph is unique up to inversion.

1.1.8 Dual Graphs

Let E be an embedding of a connected and planar graph G = (V ,E) and F be the set of faces.
Remember, a face is defined by a circle of G . A vertex v ∈ V is incident to a face f ∈ F if f
visits v , i. e., v is at a “corner” of f . Analogously, we say that an edge e ∈ E is incident to a
face f ∈ F , if f visits e, i. e., e lies at the boundary of f . Each edge is either incident to two
different faces f , g ∈ F or it is incident to a single face f ∈ F if f visits e twice. The dual
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graph G ∗ = (F ,E ∗) of the embedded primal graph G is a multigraph where the faces are the
vertices. For each primal edge e ∈ E that is incident to faces f , g ∈ F , there is exactly one dual
edge e∗ = {f , g} ∈ E ∗. Note that f = g is possible. The primal and dual graph can always be
simultaneously displayed in one drawing as shown in Fig. 1.2(b). The faces (rectangular shapes)
are placed within the corresponding plane regions and each primal edge crosses its dual. Such a
drawing of a dual graph implies a planar rotation system and an embedding of E∗ of G ∗, where
the rotation system of a face is obtained by traversing the face in counterclockwise order.

Assuming that G is connected, the faces of G ∗ correspond to the vertices of G . In fact,
the dual of G ∗ with embedding E∗ is isomorphic to G with embedding E . A terminological
problem arises when a phrase like “face of G ∗” is used as it may refer to a face f ∈ F or to a
face in the embedding of G ∗, which is in turn a vertex v ∈ V . To avoid this ambiguity, we
consistently refer to elements in F as “faces” and to elements in V as “vertices”.

Doubly-Connected Edge Lists For an efficient implementation, an embedding or a rotation
system is usually modelled by a doubly-connected edge list (DCEL) [dBCvKO08]. In this data
structure, each edge at a vertex has a pointer to its predecessor and its successor in the rotation
system. Moreover, in case of planar rotation systems, DCELs can be augmented by further
information to store faces and dual edges and, thereby, the dual graph, or the information to
which faces a vertex or an edge is incident. In this thesis, whenever we algorithmically deal with
rotation systems and embeddings, we assume a DCEL implementation and refer the reader to,
e. g., [dBCvKO08] for more information.

Cut and Cutset We use the following definitions and results at several occasions in the
thesis. Let G = (V ,E) be an embedded graph and G ∗ = (F ,E ∗) be its dual. A cut is a
partition of V into proper subsets VC ( V and V C := V \ VC . For instance, VC = {0, 1, 2}
and V C = {3, 4, 5} is a cut of the graph in Fig. 1.2(b). The set of all edges EC := {{u, v} ∈
E | u ∈ VC ∧ v ∈ V C} that connect vertices in VC with vertices in V C is called cut-set,
e. g., EC = {{0, 3}, {1, 4}, {2, 3}, {2, 4}} in Fig. 1.2(b). E ∗C denotes the duals of EC , e. g.,
E ∗C = {{c , e}, {b, c}, {d , e}, {b, d}}. Then, the edges E ∗C always form a simple circle in
G ∗ [Eve12, pp. 149]. Conversely, the primal edges of a cut-set in G ∗ form a simple circle in G .

Directed Duals Dual graphs are also defined for planar digraphs. Let G = (V ,E) be a
planar digraph with embedding E and faces F . The faces, which are circles, are defined on the
underlying undirected graph of G . Consider a face f ∈ F and an edge e = (u, v) incident to f .
When traversing f clockwise, edge e is either traversed in its direction from u to v , against its
direction from v to u, or in both directions if f visits e twice. We say that f is right of e if e
is traversed in its direction and f is left of e if e is traversed against its direction. The directed
dual G ∗ = (F ,E ∗) of an embedded primal digraph G consists of the faces F and of directed
dual edges E ∗ where the dual e∗ of a primal edge e is directed from the face left of e to the
face right of e. In case a face is both to the left and to the right of e, e∗ is a directed loop.

Fig. 1.2(c) shows the directed version of the graph from Fig. 1.2(b) along with its directed
dual. In a clockwise traversal of face c , primal edge (4, 1) is traversed against its direction and,
hence, face c is left of (4, 1). Analogously, face b is right of (4, 1). Therefore, the dual of
edge (4, 1) points from c to b. Intuitively, when “looking” into the direction of the primal edge,
its dual crosses the primal edge from the left to the right side. Note that for the loop from
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the outer face e onto itself in the rotation system of face e, the portion of the loop that is
outgoing is the predecessor of the loop’s incoming portion.

1.1.9 Cylinder Surfaces

In this thesis, we consider drawings of graphs on cylinder surfaces. We distinguish between two
cases: the standing and the rolling cylinder. In the three-dimensional space R3, the surface of
the standing cylinder is defined by the set of points:

C3
s = {(x , y , z) ∈ R3 | x2 + z2 = 1 ∧ −1 < y < 1} ,

where the coordinate system is defined according to the right-hand rule with the index finger
pointing upwards (see Fig. 1.3(a)). A point p = (x , y , z) ∈ C3

s is uniquely be defined by its
cylindrical coordinates (φ, y) [Haz87], where −π < φ < π is the azimuth, i. e., the acute angle
between the x-axis and the line from the origin to (x , 0, z) on the xz-plane (y = 0). See
Fig. 1.3(a) for an illustration. The azimuth is calculated by:

φ =

{
π
2 − arcsin x , if z ≥ 0 ,

−π
2 + arcsin x , if z < 0 .

Note that the azimuth“wraps”to −π when φ approaches π from below. In general, the azimuth
is in [0,π] if z ≥ 0 (Fig. 1.3(a)) and it is in (−π, 0) if z < 0 (Fig. 1.3(b)). Altogether, the
azimuth φ is in the half-open interval (−π,π]. When φ approaches 0, whether from above or
below, its limiting value is always 0, i. e., no “wrapping” occurs.

φ

p

y

(a) p = (φ, y), where
0 ≤ φ ≤ π.

φ

p

y

(b) p = (φ, y), where
−π < φ < 0.

Figure 1.3: Cylindrical coordinates.

The rolling cylinder is defined by:

C3
r = {(x , y , z) ∈ R3 | y2 + z2 = 1 ∧ −1 < x < 1} .
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It is obtained from the standing cylinder by swapping the x- with the y -coordinate which
effectively rotates the cylinder 90◦ around the z -axis. Similar to the standing cylinder, a point
in C3

r is uniquely determined by its x-coordinate and by its azimuth which is the acute angle φ
between the y -axis and the line from the origin to (0, y , z) on the yz-plane (x = 0).

Let C3 be the point set of either the standing or rolling cylinder. Similar to the plane,
a drawing Γ of a graph in C3 maps each vertex v ∈ V to its position Γ(v) ∈ C3 and each
edge e = {u, v} ∈ E to a continuous and injective, i. e., non-self-intersecting, function Γ(e) :

[0, 1]→ C3 with Γ(e)(0) = Γ(u) and Γ(e)(1) = Γ(v). A drawing Γ of a graph on a cylinder
surface is called plane if Eq. (1.1) holds. As defined in Sect. 1.1.7, a plane drawing of a graph
on a cylinder surface defines a planar rotation system and, thus, an embedding, and a dual
graph. Observe, in this case, we have no outer face as there is no unbounded region. Plane
drawings on C3

s and C3
r are shown in Figs. 1.4(a) and 1.4(d), respectively. Both figures show

3D projections of the respective cylinder surfaces and the drawings.
A disadvantage of this representation is that certain parts of the drawings — the ones

on the backside of the cylinders — are hidden. To circumvent this drawback, we use the
fundamental polygon which is a general principle to represent 2D surfaces of higher genus in
the plane [Mas67]. For cylinder surfaces, we use the most basic case. Let I = (−1, 1) ⊆ R2 be
the open unit interval and derive I◦ from I by “identifying” the boundaries −1 and 1 of I . In
order to rigorously define what “identifying” means, some mathematical and technical hurdles
have to be overcome. We refrain from these rigorous treatment the sake of conciseness and
refer the interested reader to [Mas67]. The fundamental polygon of the standing cylinder is
defined by Cs = I◦ × I . Cs can be drawn as a square of side length 2 (see Fig. 1.4(b)) in
which the arrows on the left and right sides indicate their identification. The top and bottom
sides, which do not belong to Cs , are drawn as dashed lines. Intuitively, when reaching either
the left or right side of Cs , a “wrapping” to the other side occurs. The x-coordinate of a
point (x , y) ∈ Cs corresponds to the azimuth on the standing cylinder. Any drawing in C3

s

can be mapped to a drawing in Cs by the transformation (φ, y) 7→ (φ/π, y), where (φ, y) are
cylindrical coordinates in C3

s . By the inverse transformation, we obtain a drawing in C3
s from

a drawing in Cs . Both transformations preserve planarity. From Fig. 1.4(a), we obtain the
fundamental polygon representation in Fig. 1.4(b).

The fundamental polygon of the rolling cylinder is defined by Cr = I×I◦. In this case, a point
in C3

r with cylindrical coordinates (x ,φ) is mapped to (x ,φ/π) ∈ Cr . For a point (x , y) ∈ Cr
the y -coordinate corresponds to the azimuth and, therefore, the bottom and top sides of square
are identified (see Fig. 1.4(e)). For the drawing in Fig. 1.4(d), we obtain the fundamental
polygon representation in Fig. 1.4(e).

The third type of representation we use in this thesis is the R2, which is a reinterpretation
of the cylindrical coordinates as polar coordinates in the plane. Let (φ, y) be the cylindrical
coordinates of a point in C3

s . As polar coordinates, we use φ as the azimuth and ε + y + 1 as
radius for some ε > 0. Thereby, any drawing on C3

s is mapped to a drawing on a ring in the
plane with inner radius ε and outer radius ε + 2. For Fig. 1.4(a), we obtain the drawing in
Fig. 1.4(c). Again, this mapping and its inverse preserve planarity. For the rolling cylinder, we
use a similar transformation, where the x-coordinate is mapped to ε + x + 1 for some ε > 0.
Fig. 1.4(f) shows the result for the drawing in Fig. 1.4(d).

Throughout this thesis, we will use all three types of representation, though, we will scale
their width and height to obtain comprehensible drawings. These transformations do not affect
the planarity of the drawings.
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(a) C3
s : 3D projec-

tion.
(b) C3

s : Fundamental-
polygon representa-
tion.

(c) C3
s : R2-representation.

(d) C3
r : 3D projec-

tion.
(e) C3

r : Fundamental-
polygon representa-
tion.

(f) C3
r : R2-representation.

Figure 1.4: The three types of representations of drawings on the standing and rolling cylinder.





Chapter 2

Deque Layouts and Linear Cylindric
Drawings

2.1 Introduction

The stack, the queue, and the deque (double-ended queue) are the most fundamental data
structures in computer science [Knu97, pp. 238–242]. They appear in almost any algorithm,
sometimes directly and sometimes in a disguised form. The stack and its last in, first out (LIFO)
principle (left side of Fig. 2.1) appear in situations involving recursion or nesting structures,
like arithmetic expressions. The dual of the stack is the queue (middle of Fig. 2.1) and its
working principle is first in, first out (FIFO). It finds its applications, for instance, when a
buffer is needed, such as when tasks arrive that have to be subsequently processed, or in data
streams. The deque generalizes and, at the same time, combines the stack and the queue:
It has two sides, head and tail, to insert and remove items (right side of Fig. 2.1). As such,
it can emulate two stacks (in a single data structure) and additionally allows “queue items”
inserted and removed at different sides. A real-world example which can be modelled by a
deque is a railway that passes a train station where trains can arrive from and depart to either
side [CDS07].

stack

queue deque

head tail

Figure 2.1: The stack, the queue, and the deque.

Although, these data structures are rather simple to use and implement — after all, a
typical assignment for undergraduate students in a programing course is to implement them —
their behavior and capabilities in various theoretical scenarios are far from trivial and the topic
of ongoing research. This research not only sheds new light on the data structures themselves
but also yields interesting insights to other mathematical objects, resulting in a two-way gain in

15
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knowledge. Here, we study graph layouts in the stack, the queue, and, especially, the deque
that characterize important classes of planar graphs. Even more, it turns out that planarity is
the key to understand these data structures and, vice versa, understanding these data structure
yields new insights to planarity.

2.1.1 Graph Layouts

In a graph layout, the vertices are processed according to a total order, which is called linear
layout. The edges correspond to data items that are inserted to and removed from a data
structure. Each edge is inserted at the end vertex that occurs first according to the linear layout
and is removed at its other end vertex. Alg. 2.1 shows the general procedure of a graph layout:
Starting with an empty data structure D, e. g., a stack, a queue, or a deque, the vertices are
processed in order of the linear layout. At each vertex v , each incident edge is removed from D
if it points to a predecessor of v in the linear layout and it is inserted if it points to a successor.
Whereas inserting an edge to D is always possible, removing it might not be possible and in
this case false in returned in Alg. 2.1. For instance, if D is a stack, the edge may not be
on top or, in case of a queue, an edge cannot be removed as another edge must be removed
before. A graph is a D-graph if it has a D-layout which is a linear layout such all edges can be
processed in D, i. e., Alg. 2.1 returns true.

Algorithm 2.1. A graph layout in a data structure D.

Input: a graph G = (V ,E), a linear layout, and a data structure D
Output: true if all edges can be processed in D; false otherwise

1 D ← empty data structure
2 foreach vertex v in order of the linear layout do
3 foreach edge e = {u, v} incident to v do
4 if v comes before u in linear layout then insert e to D
5 if u comes before v in linear layout then remove e from D or return false if not

possible

6 return true

2.1.1.1 Stack Graphs

Fig. 2.2(a) illustrates a (one-)stack layout. The vertices are placed on a horizontal line (dotted)
in order of the linear layout and the edges are drawn as arches above the horizontal line. We
ignore edge e4 (dashed) for the moment. Below, the content of the stack before and after
each vertex is shown. We start with an empty stack at vertex 1 and all edges incident to
vertex 1 are pushed onto the stack. The order of insertions is determined by the reversed order
of vertex 1’s neighbors according to the linear layout. At vertex 2, edge e1 is removed from
the top of the stack and e5 is inserted. By proceeding in this way, all edges can be processed
in the stack and, hence, the depicted graph is a stack graph. An important observation is
that all edges that were processed in the stack do not cross in the drawing. Now, suppose
that we introduce edge e4 that is inserted at vertex 2. After vertex 2, the stack’s content is
(e5, e4, e2, e3) (from top to bottom). Although, e5 can be removed at vertex 3, edge e2 cannot
be removed because e4, removed at 4, is on top of the stack. At the same time, e2 and e4 are



2.1. Introduction 17

crossing. This observation holds true in general: A graph admits a plane drawing of the type
shown in Fig. 2.2(a) if and only if it is a stack graph.

This observation already indicates that there is a relationship between graph layouts and
planarity. Bernhart and Kainen have shown that a graph is a stack graph if and only if it is
outerplanar [BK79]. A graph is called outerplanar if it has a plane drawing such that all vertices
are incident to the outer face. Indeed, all vertices in Fig. 2.2(a) are incident to the outer
face and the drawing is plane without e4. In fact, introducing edge e4 results in the complete
graph with four vertices K4 which is known to be not outerplanar. Bernhard and Kainen have
also characterized the two-stack graphs as the spanning subgraphs of planar graphs with a
Hamiltonian circle. In a two-stack layout, the set of edges is partitioned into two subsets such
that both induced subgraphs have a stack layout with the same linear layout. In our example,
edge e4 can be processed in a second stack without interfering with the other edges and, indeed,
the K4 is planar and contains a Hamiltonian circle. A more complex example of a two-stack
layout is shown in Fig. 2.2(b), where the edges above the horizontal line are processed in the
first stack and the edges below in the second stack. An interesting feature of Figs. 2.2(a)
and 2.2(b) is how they reflect the working principle of the stack: In the example in Fig. 2.2(a),
edge e3 is always at the bottom of the stack and, at the same time, all other edges are nested
within the e3. These nesting edge curves reflect the LIFO principle of the stack.

1 2 3 4
e1

e2

e3

e4
e5 e6

e1

e2

e3

e5

e2

e3

e6

e3

(a) An example of a stack layout.

1 2 3 4 5 6

(b) An example of a two-stack layout.

Figure 2.2: A one- and a two-stack layout.

Stack layouts are also known as book embeddings which have been studied first by At-
neosen [Atn68], Ollman [Oll73] and Kainen [Kai74]. The idea of a book embedding is to
place the vertices on the spine of a book, i. e., the dotted line in Fig. 2.2(a), and to draw
the edges plane on k pages for some k ≥ 1. This is equivalent to a k-stack layout, where
the graph is partitioned into k spanning subgraphs such that each subgraph has a stack
layout and all layouts use the same linear layout. Thus, a page in a k-page book embedding
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corresponds to a stack in a k-stack layout. The page number, also called book thickness,
of a graph G is the minimum k such that G has a k-page book embedding and it is equal
to the stack number, i. e., the minimum k such that G has a k-stack layout. For instance,
the page number of the graph in Fig. 2.2(a) without e4 is 1, whereas with e4 it is 2. The
study of book embeddings and stack layouts has produced a vast amount of publications,
e. g., [HLR92, BK79, DW05, HPT99a, HPT99b, BS84, Yan89, ENO97, Hea84, HI87, Mal94b,
Mal94a] among many others, and more recent publications show that book embeddings are
still a topic of active research [FFRV11, Miy06, BES13]. Practical applications of stack layouts
include VLSI design [CLR87], folding of RNA [GS99], and fault-tolerant processing [Ros83]. A
slightly dated and yet useful survey about book embeddings is [Bil92].

The relationship between stack layouts and planarity has been the topic of many research
papers. As mentioned before, the one-stack graphs are exactly the outerplanar graphs and the
two-stack graphs are the spanning subgraphs of planar graphs with a Hamiltonian circle [BK79].
Series-parallel graphs, which are also planar, have a layout in two stacks [CLR87]. As not
every maximal planar graph contains a Hamiltonian circle, there are planar graphs that need at
least three stacks. Bernhard and Kainen conjectured that the stack number of planar graphs
is unbounded [BK79]. This conjecture was refuted by Buss and Shor [BS84] by giving an
algorithm to compute a nine-stack layout for any planar graph. Heath improved this bound
to seven [Hea84] and, eventually, Yannakakis settled the case by showing that four pages
are sufficient and necessary [Yan86, Yan89]. However, as of today and to the best of our
knowledge, no planar graph that actually needs four stacks has been constructed explicitly and
the construction of such a graph was postponed by Yannakakis to a long version of [Yan86]
which has yet to appear. Genus g graphs have also been studied, where a graph is of genus
g if it can be embedded on a genus g surface or, equivalently, the surface of a sphere with
g handles [GT01b]. Heath and Istrail showed that the stack number of a genus g graph is in
O(g) [HI87], and conjectured that the stack number is in O(

√
g) which was proved by Malitz

in [Mal94a].
Deciding whether a graph is a one-stack graph can be done in linear time as it is equivalent

to testing outerplanarity [BK79, Wie87]. In contrast, the decision problem for two stacks is
NP-complete as deciding whether a maximal planar graph contains a Hamiltonian circle is
NP-complete [Chv85, Wig82]. Therefore, testing for a k-stack layout is also NP-complete.
For planar graphs, the proof in [Yan89] yields a linear-time algorithm by which a four-stack
layout can be obtained.

Whereas generally testing for a k-stack layout is NP-complete, special cases may be
tractable. Unfortunately, even finding the minimum number of stacks for a given fixed linear
layout is also NP-complete [DW04a]. For the cases of two or three stacks, efficient algorithms
exist by reducing the problem to the coloring problem of circle graphs [DW04a, Ung92]. The
complementary problem is to ask for a suitable linear layout for a given assignment of the edges
to k stacks, which can be solved in linear time [HN09].

Generalizations of book embeddings include k-stack subdivisions which are also called
topological book embeddings: A graph has a k-stack subdivision if its edges can be replaced
by paths such that the obtained graph has a k-stack layout. Atneosen has shown that every
graph has a three-stack subdivision [Atn68] and Dujmovic and Wood have shown that a graph
is planar if and only if has a two-stack subdivision [DW05].

Stack layouts have also been studied for acyclic digraphs by Heath et al. in [HPT99a,
HPT99b] where the linear layout must be a topological ordering of the digraph. The combination
of directed stack layouts and upward planarity has recently been studied by Frati et al. [FFRV11].
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2.1.1.2 Queue Graphs

Queue layouts have also received their fair share of attention [DBFP10, DW05, HLR92, HPT99a,
HPT99b, HR92, Pem92, Woo02], and they find their application in, for instance, 3D drawings
of graphs [Woo02, DW04b] and VLSI design [HR92]. Fig. 2.3(a) (without the dashed edge)
depicts a (one-)queue layout. Again, the vertices are placed on a horizontal line and the edges
are drawn as arches above. The content of the queue between the vertices is shown below the
horizontal line. For instance, at vertex 1 the edges {1, 3}, {1, 4}, and {1, 5} are inserted at
the head, i. e., the left side, of the queue in order of their endpoints such that they can be
removed at the tail of the queue at vertices 3, 4, and 5, respectively. An edge e properly nests
another edge e ′ if e and e ′ have no common endpoints and e must be inserted before e ′, and
e ′ must be removed before e. Such configurations are also called rainbows [HR92] and they are
not allowed in queue layouts. For instance, edge {1, 5} properly nests edge {2, 3} (dashed) in
Fig. 2.3(a). Note that {2, 3} can be inserted at vertex 2 but not removed at vertex 3 because
{1, 5}, which is removed at vertex 5, has to be removed from the queue before {2, 3} can be
removed. Representing a queue layout as in Fig. 2.3(a), naturally leads to many crossings,
also called twists [HR92]. In fact, a twist, as with edges {1, 4} and {2, 5}, reflects the FIFO
principle of the queue.

Still, queue graphs are planar which is one of the many fundamental results on queue layouts
proved by Heath and Rosenberg in [HR92] which, together with [HLR92], started the study of
queue layouts. In [HR92], Heath and Rosenberg have characterized the queue graphs as the
arched leveled-planar graphs that have a plane drawing in which the vertices are placed on
horizontal levels. Inter-level edges connect vertices between two adjacent levels and intra-level
edges, called arches, connect the leftmost vertex on a level to accessible vertices on the right
side of the same level. The arched leveled-plane drawing of the graph from Fig. 2.3(a) (without
the dashed edge) is shown in Fig. 2.3(b). Note that the linear layout in Fig. 2.3(a) is the order
of the vertices within the levels from left to right and, between the levels, from bottom to top
in Fig. 2.3(b).

Heath and Rosenberg have also shown in [HR92] that deciding whether a graph is a queue
graph is NP-complete. For a fixed linear layout, they devised an algorithm that computes
the minimum number of required queues in time O(|E | log |V |) for a graph G = (V ,E). In
addition, they found out that there are stack graphs that are no queue graphs and queue graphs
that are no stack graphs, thereby, the stack and the queue are not comparable in the context
of graph layouts. In addition, Heath and Rosenberg have shown that every queue graph is a
two-stack graph and every stack graph is a two-queue graph. They also investigated the queue
number, which is defined analogously to the stack number, for special graph classes, e. g., for
the complete graph Kn with n vertices it is

⌈
n
2

⌉
.

For planar graphs, Heath and Rosenberg conjecture in [HR92] that the queue number is
bounded by a constant. Pemmaraju, in contrast, conjectures in [Pem92] that certain planar
graphs, planar 3-trees, with n vertices have an unbounded queue number in O(log n). Dujmović
et al. disproved this by showing that graph classes with a bounded treewidth [RS84], e. g., planar
3-trees, have bounded queue number [DMW05]. More recently, Di Battista et al. have shown
that every planar graph with n vertices has a queue layout in O(log4 n) many queues [DBFP10].
The original conjecture of a bounded queue number for planar graphs in [HR92] is still open.
Queue subdivisions have also been studied, where every graph has a two-queue subdivision and
every planar graph has a one-queue subdivision [DW05].
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1 2 3 4 5 6 7

1, 5 1, 4 1, 3

2, 5 1, 5 1, 4 1, 3

3, 5 2, 5 1, 5 1, 4

4, 6 4, 5 3, 5 2, 5 1, 5

5, 7 4, 6

6, 7 5, 7

(a) A linear representation of a queue layout (without the dashed edge). The content of the queue is shown
below. The dashed edge is nested and destroys the queue layout.

1

2

3

1 2 3

4 5 6

7

(b) An arched leveled-plane drawing of
the queue graph in Fig. 2.3(a) (without
edge {2, 3}).

Figure 2.3: Examples of queue layouts.

2.1.1.3 Contributions of this Thesis

Tab. 2.1 shows an overview of the characterizations and the decision problems for stack,
two-stack, and queue layouts. In this thesis, we extend the study of graph layouts to the deque.
The deque generalizes the stack and the queue and, at the same time, combines them. As
suggested by the study of stack and queue layouts, there is a profound relationship between
planarity and graph layouts. For deque layouts, we introduce a novel type of drawing on the
surface of a rolling cylinder named linear cylindric drawing (Sect. 2.2.1). In these drawings, the
vertices are placed on a straight line that is parallel to the cylinder’s axis, the front line, and
the edge curves share no point with the front line except for their endpoints. An example of
such a drawing is shown in Fig. 2.5(b) on page 28. We call graphs permitting a plane linear
cylindric drawing linear cylindric planar. It turns out that the linear cylindric planar graphs
characterize the deque graphs (Sect. 2.2.3). In comparison to the previous study of stack and
queue layouts [BK79, HR92], we use a low-level approach based on the rotation system: The
rotation system obtained from a linear cylindric plane drawing defines the order in which the
edges are processed in a deque and vice versa.

With the help of linear cylindric drawings, we obtain another characterization of deque
graphs in Sect. 2.2.4. A graph is a deque graph if and only if it is the spanning subgraph
of a planar graph with a Hamiltonian path. This characterization is of special interest when
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Data Structure Characterization Decision Problem

stack outerplanar [BK79] linear time [BK79, Wie87]

queue arched leveled-planar [HR92] NP-complete [HR92]

two stacks
subgraph of planar graph with
Hamiltonian circle [BK79]

NP-complete [Chv85, Wig82]

Table 2.1: Overview: stack, two-stack, and queue graphs.

compared to two-stack graphs. By [BK79], we know that a graph is a two-stack graph if
and only if it is the spanning subgraph of a planar graph with a Hamiltonian circle. Also, a
deque can emulate two stacks (in a single data structure) and additionally allows for queue
edges. Hence, the ability to process queue edges in a deque in comparison to two stacks exactly
corresponds to the difference between Hamiltonian paths and circles in planar graphs. This
observation also leads to intriguing insights into the duals of planar graphs with a Hamiltonian
path (Sect. 2.2.4.2). In particular, we see how the dual reflects which edges use the “queue
mode” and sheds new light on the working principle of the deque as well as the queue. We also
consider the complexity of deciding whether a graph is a deque graph and give the (negative)
answer that it is NP-complete (Sect. 2.2.5) by showing that finding a Hamiltonian path in
a maximal planar graph is NP-complete. In Sect. 2.3, we see how linear cylindric drawings
help to concisely visualize layouts in deque-reducible data structures, i. e., data structures that
permit only a subset of the deque operations, and mixed layouts, e. g., stack-queue layouts.

Linear cylindric drawings are not only a neat tool to study deque layouts but also yield a
new characterization of queue graphs, which are the topic of Sect. 2.4. It turns out that the
FIFO principle of the queue is concisely displayed by linear cylindric drawings that can also be
used to decide whether a linear layout allows for a queue layout by simply checking for crossings
(Sect. 2.4.1). In addition, we will see in Sect. 2.4.3 that the duals of queue graphs exhibit a
very linear structure just as linear cylindric planar graphs themselves. This observation leads to
a novel characterization of queue graphs by means of their duals. In a nutshell, the duals of
(slightly modified) queue graphs are also queue graphs.

By Yannakakis [Yan86, Yan89], we know that every planar graph has a layout in four stacks.
In consequence, every planar graph has a layout in two deques; not a very satisfactory insight
as the queue mode of the deque is not exploited in such a layout. Further, there are non-planar
graphs that have a layout in three or four stacks, e. g., the complete graph with five vertices,
and, thus, four-stack layouts do not characterize planarity. However, neither do deque layouts as
there are maximal planar graphs that lack a Hamiltonian path [Hel07]. What is the additional
operation a deque must support in order to characterize planarity? In Sect. 2.5, we find the
answer to this question: The deque must support a split operation that divides it into smaller
deques. The modified deque is called splittable deque and we show that a graph is a splittable
deque graph if and only if it is planar.

For the proof, we devise an algorithm that uses the splittable deque to test whether a
rotation system is planar. The algorithm is a means to an end for the characterization of
planarity by the splittable deque, and there are other algorithms especially designed for solving
the same problem [DM03]. Nevertheless, the algorithm has the benefit that it operates on an
elementary data structure, i. e., a deque, which is simple in comparison to other ones used for
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general planarity testing [SH99]. At a first glance, it may seem that testing the planarity of a
rotation system is significantly simpler than general planarity testing. However, our algorithm
has to tackle issues that are ignored in the general case, namely, crossings between edges
incident to the same vertex.

In Sect. 2.6, we summarize this chapter, give further remarks, and discuss future work.

2.1.2 Other Approaches to Study Fundamental Data Structures

Before we start with linear cylindric drawings and deque layouts, we roam among two other
mathematical disciplines that shed new light on the power of fundamental data structures and
their differences. We start with permutation networks which are related to graph layouts.

2.1.2.1 Permutation Networks

In an exercise in [Knu97], Knuth asks the reader the following question: assume we are given a
switchyard network with an entry and an exit, and a train consisting of cars numbered from 1

to n in a certain order. Is it possible to shunt the cars within the switchyard such that the train
exits with the cars in ascending order? Two instances of the switchyard problem are shown in
Figs. 2.4(a) and 2.4(b). The switchyard problem is formalized as follows: a permutation network
is an acyclic digraph G = (V ,E) with exactly one source s, the entry of the switchyard, and
exactly one sink t, the exit of the switchyard, and all other vertices V \{s, t} are data structures,
e. g., stacks, queues, or deques. The permutation network belonging to Fig. 2.4(a) is displayed
in Fig. 2.4(c) and it consists of two parallel queues, and for Fig. 2.4(b), the permutation network
in Fig. 2.4(d) consists of two parallel stacks. Let π be a permutation of the numbers 1, ... , n,
which is the order in which the numbers arrive at s. Is it possible to process the numbers
in the data structures, following the edges in their direction, such that the numbers arrive in
order 1, ... , n at t? For Figs. 2.4(c) and 2.4(d), the answer is yes.

One of the reasons why we discuss permutation networks is their relationship with graph
layouts: Assume we are given a permutation network of k parallel stacks, queues, or deques,
e. g., two parallel queues or two parallel stacks as in Figs. 2.4(c) and 2.4(d), respectively. For a
given permutation π of the numbers from 1 to n, let Gπ = (Vπ,Eπ) be a graph with vertices Ii
and Oi for all 1 ≤ i ≤ n, where Ii and Oi are connected by an edge. π is sortable in k parallel
stacks, queues, or deques if and only if Gπ has a k-stack, queue, or deque layout, respectively,
where for the linear layout ≺, Ii ≺ Oi for all 1 ≤ i ≤ n, Ii ≺ Ij ⇔ i <π j , and Oi ≺ Oj ⇔ i < j
for all 1 ≤ i , j ≤ n. The relation <π is the order defined by π. By this transformation, each
number i in π becomes an edge which is inserted at vertex Ii and removed at vertex Oi . The
restriction on the order of the vertices Ii guarantees that the input permutation is π and the
restriction on the order of the vertices Oi guarantees that the edges are sorted in increasing
order. For Figs. 2.4(c) and 2.4(d), the corresponding two-queue and two-stack layouts are
shown in Figs. 2.4(e) and 2.4(f), respectively. Hence, the permutations are sortable in the
corresponding networks. By this transformation, graph layouts can be used to concisely display
how a permutation network processes the numbers. The transformation can also be adapted for
general permutation networks, where for each transfer of a number i from one data structure
to another we get a subdivision of the edge representing i .

Permutation networks haven been studied extensively in the past, e. g., [Knu97, Tar72b,
Pra73, Eve71, Bó02] among many others. The typical questions that arise with permutation
networks are: What permutations can be sorted in the network? Are there typical patterns
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1 3 4 5 2 6

(a) A switchyard with two parallel “queues”.

5 6 4 2 3 1

(b) A switchyard with two parallel “stacks”.

s
1,3,4,5,2,6

queue 1

queue 2

t
1,2,3,4,5,6

(c) The permutation network corresponding to
Fig. 2.4(a).

s
5,6,4,2,3,1

stack 1

stack 2

t
1,2,3,4,5,6

(d) The permutation network corresponding to
Fig. 2.4(b).

I1 O1 I3 I4 I5 I2 O2 O3 O4 O5 I6 O6

(e) The graph layout of the solution to Fig. 2.4(c).

I5 I6 I4 I2 I3 I1 O1 O2 O3 O4 O5 O6

(f) The graph layout of the solution to Fig. 2.4(d).

Figure 2.4: The switchyard problem.
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in permutations that cannot be sorted, i. e., so called forbidden patterns, and, if so, are there
finitely many of them? What is the number of permutations that can be sorted depending on
the length of the input permutation? How hard is it to decide whether a given permutation
can be sorted in the network? Answers to these questions shed new light on the used data
structures and their differences; and indirectly on graph layouts.

In [Knu97], Knuth has studied the network consisting of only one stack. There, a permutation
can be sorted if and only if it does not contain the pattern 2, 3, 1, i. e., there are no three numbers
i < j < k with j <π k <π i , where <π is the order according to the input permutation π.
The proof also yields an efficient algorithm to decide whether a permutation is stack-sortable.
Further, Knuth showed that the number of sortable permutations of length n is [Knu97]:

Cn =
1

n + 1

(
2n

n

)
, (2.1)

which are the Catalan numbers. Interestingly, the number of permutations sortable in two
parallel queues is also given by the Catalan numbers [Pra73]. Hence, a single stack and two
parallel queues are equally powerful with respect to the number of sortable permutations.
With respect to the permutations themselves, however, a stack and two parallel queues are
incomparable as 3, 2, 1 is not sortable in two parallel queues but in a stack.

Since Knuth [Knu97], certain classes of permutation networks, in particular, networks of
parallel stacks or queues, have been investigated. Tarjan [Tar72b] investigated the case of k
parallel queues and found the forbidden pattern k + 1, k , k − 1, ... , 2, 1. That is, a permutation
is sortable with k parallel queues if and only if its longest monotonically decreasing subsequence
has at most length k . Tarjan also studied k parallel stacks with the restriction that first all
numbers have to be completely inserted to the stacks and, afterwards, all numbers are removed
from the stacks. With this restriction, a permutation is sortable in k parallel stacks if and only
if it does not contain the pattern 1, 2, 3, 4, ... , k + 1 [Tar72b]. For instance, the permutation
in Fig. 2.4(d) is also sortable with this restriction.

Without this restriction, k parallel stacks are algorithmically much harder than k parallel
queues. By [Eve71], the decision problem whether a permutation is sortable in k parallel
queues is reducible to the problem of k-coloring a perfect graph [Gol04] which can be done
in polynomial time [EPL72]. The respective decision problem for k parallel stacks can be
reduced to the k-coloring problem of a circle graph, however, this time the coloring problem
is NP-complete for k ≥ 4 [Ung88]. For k = 1, k = 2, and k = 3 efficient algorithms are
given in [Knu97, RT84, Ung92], respectively, where [RT84] will be discussed in more detail in
Sect. 2.6.2. That k parallel stacks are more complicated than k queues is also reflected in the
fact that already for k = 2 there is an infinite number of forbidden patterns [Pra73].

Variants of a single deque are considered in [Pra73] and [Knu97]: Pratt gives the finitely
many forbidden patterns for the output-restricted (input-restricted) deque, where removals
(insertions) are allowed at only one side. For the (unrestricted) deque, Pratt [Pra73] also gives
a scheme for all forbidden patterns of which there infinitely many. The algorithm to decide
the sortability of a permutation in two parallel stacks from [RT84] can be adapted to decide
whether a permutation is sortable in a single deque.

Series compositions of stacks have also been investigated. Note that k queues in series can
only “sort” the permutation 1, ... , n and are, therefore, uninteresting. In stark contrast to this,
the case of k stacks in series is much harder as already for the case of k = 2 it is still open
whether the respective decision problem is NP-complete or efficiently solvable [Bó02].
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2.1.2.2 Automata and Formal Languages

Every computer science student sooner or later learns about finite automaton which characterize
the regular languages [HMU03]. More powerful language classes are obtained by equipping a
finite automaton with a data structure to store information: Adding a stack results in push-down
automata (PDAs) that characterize the context-free languages, and with an infinite tape we
get the famous Turing machine and the recursively enumerable languages. By comparing the
languages recognized by machines equipped with certain data structures, we can draw conclusions
about the power of the data structures themselves and their differences. Unfortunately, this
approach, when applied as suggested, gives only a very coarse-grained classification: Already
with two stacks, an automaton is as powerful as a Turing machine and the same holds when
equipped with a queue [Vol70, Ros93] and, thus, with a deque.

Things become interesting again when restrictions are put on the computation time:
Real-time automata equipped with a queue have been studied in [Vol70], where the queue
is called “Pufferspeicher” (buffer), and in [Bra80], where Post machines are considered. In
a real-time computation, an automaton reads a symbol from the input in each time step.
Vollmar [Vol70] showed that deterministic real-time queue automata are strictly less powerful
than their non-deterministic counterparts which parallels the situation for PDAs. Remember
that the language L = {ww r |w ∈ {0, 1}∗}, where w r is the reversed version of w , cannot be
recognized by a deterministic PDA but by a non-deterministic one which guesses the middle of
the word. The PDA uses the stack to match w with w r by exploiting the stack’s LIFO principle.
Interestingly, though not surprisingly, Vollmar showed that the language L = {ww |w ∈ {0, 1}∗}
cannot be recognized by a deterministic real-time queue automaton but by a non-deterministic
one, where w is matched with its second occurrence using the queue’s FIFO principle. Let
DQL be the class of languages accepted by a deterministic real-time queue automaton. Vollmar
classifies DQL into the Chomsky hierarchy: every regular language is in DQL and every language
in DQL is context-sensitive. With respect to context-free languages, DQL lies askew: there
are context-free languages that are not in DQL, and there are languages in DQL that are
context-sensitive but not context-free [Vol70]. Thus, with respect to the Chomsky-hierarchy, a
queue is incomparable to a stack.

Ayers considered real-time deque automata in [Aye85] which recognize a proper superset of
the context-free languages. Altogether, we have that a deque is strictly more powerful than
two stacks, which are strictly more powerful than a queue and a stack, and the latter of which
are incomparable. Note that the language L = {anbncn|n ≤ 0} is recognizable in real-time by
an automaton with two stacks.

Another possibility to compare different data structures is simulation: If an automaton
with one data structure D1 can simulate another automaton with a different data structure D2

with no time overhead or only a time overhead that is linear, then D1 is considered at least
as powerful as D2. Brandenburg commented on [Aye85] in [Bra87] and raised the question
whether there is a strict hierarchy between the languages accepted in real-time/linear time
by non-deterministic machines equipped with a queue, an output-restricted deque, a deque,
or a finite number of tapes. A deque is output-restricted if elements can only be removed
at one side. For the deterministic case, it turns out that a queue machine cannot simulate a
stack machine in linear and, thus, also real-time [Li88]. Further, two stacks are at least as
powerful as an output-restricted deque as the first can simulate the latter in linear time. For
insertions, each side of the deque is modeled by one stack, the head stack and the tail stack.
Assume that items can only be removed from the head of the deque. In case of a removal, the
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item is removed from the head stack if not empty. Otherwise, all elements of the tail stack
are removed and pushed onto the head stack. By this mechanism each item is inserted and
removed at most twice which results in a linear total running time.

Petersen [Pet01] compared two stacks with the deque and its variants. He showed that
deterministic machines with an output-restricted deque cannot simulate deterministic machines
with two stacks (or one deque) in real-time. He further points out that there are languages
accepted in real-time by a deterministic queue machine while there is no such deterministic
two-stack machine. Hence, two stacks are incomparable to a single queue or output-restricted
deque with respect to real-time computations. As shown by Rosenberg [Ros93], three stacks
suffice to deterministically simulate a deque machine in linear time. Whether two stacks can
simulate a deque, and two queues can simulate a stack, both deterministically and in linear
time, is still open. Interestingly, in the non-deterministic setting, two stacks are equivalent to a
deque using a linear-time simulation [Pet01].

Kosaraju considered a curious variant of the deque [Kos79]: The concatenable deque extends
the deque by allowing the concatenation of two deques. He shows that every machine equipped
with k concatenable deques can be real-time simulated by an O(k) deque machine. In the
context of graph layouts, we define the time-inverted variant of the concatenable deque in
Sect. 2.5: the splittable deque can be split into deques and we use it to characterize planarity.

Languages of machines equipped with a certain data structure can be characterized by
an archetype language that reflects the working principle of the data structure. The famous
Chomsky-Schützenberger theorem [CS63] states that a language L is context-free if and only if
it can be expressed as L = g(h−1(LDyck) ∩ LR) where g is a homomorphism, h−1 is an inverse
homomorphism, LDyck is the Dyck-language, i. e., the balanced strings of parentheses/brackets
on the alphabet {(, ), [, ]}, and LR is a regular language. From the perspective of this theorem,
the Dyck-language is the archetype of a context-free language and, thus, language-theoretically
characterizes the stack and LIFO principle. The queue or FIFO pendant of the Dyck-language,
denoted by LFIFO, is the set of words on {(, ), [, ]}, where no pair of parenthesis or brackets
nests another pair of brackets or parenthesis, respectively, e. g., “( [ ) ]”. Book and Brandenburg
proved a Chomsky-Schützenberger-like theorem for real-time queue automatons in [BB80]: A
language is a queue language if and only if it can be expressed as L = g(h−1(LFIFO) ∩ LR)

where g is a homomorphism, h−1 is an inverse homomorphism, and LR is a regular language.
Again, the FIFO principle of the queue is directly reflected in the characteristic queue language
LFIFO. To the best of our knowledge, no Chomsky-Schützerberger-like theorem for deque
languages has been published.

2.2 Deque Graphs and Linear Cylindric Drawings

For a graph G = (V ,E), we call a total order ≺ on the set of vertices V linear layout (of G ).
The reflexive closure of ≺ is denoted by �, i. e., u � v ⇔ u ≺ v ∨ u = v . A linear layout
imposes a direction on each edge {u, v} ∈ E such that {u, v} is directed from u to v if u ≺ v .
In the following, we identify each edge’s undirected with its directed version. If u ≺ v , then u
is said to be a predecessor of v or u precedes v . Conversely, v is a successor of u or v succeeds
u. If there is no vertex w with u ≺ w ≺ v , then u is the immediate predecessor of v and v the
immediate successor of u. The vertex with no predecessor is called first vertex and the vertex
with no successor is called last vertex.
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2.2.1 Linear Cylindric Drawings

A linear cylindric (LC) drawing is a drawing of a graph on the surface of the rolling cylinder
with certain properties. As defined in Sect. 1.1.9, C3

r ( R3 is the set of points of the rolling
cylinder’s surface. Each point p in C3

r is uniquely defined by its cylindrical coordinates consisting
of its x-coordinate and its azimuth φ. Let h = {(x ,φ) ∈ C3

r | φ = 0} be an open straight line
on the cylinder’s surfaces which is called the front line. In an LC drawing, the vertices are
placed on the front line; hence, the name linear cylindric. The edge curves share no points
with the front line except for their endpoints.

Definition 2.1. A drawing Γ on C3
r is called linear cylindric if all vertices lie on the front line:

∀v ∈ V : Γ(v) ∈ h ,

and no inner part of an edge curve shares a point with the front line:

∀e ∈ E : Γ(e)[(0, 1)] ∩ h = ∅ .

Every graph has an LC drawing by arbitrarily placing the vertices on distinct points on the
front line and connecting them by edge curves fulfilling the properties of Def. 2.1. However,
only certain graphs allow for a plane LC drawing.

Definition 2.2. An LC drawing Γ is called plane if Eq. (1.1) holds for Γ, i. e., Γ is plane. A
graph which has a plane LC drawing is called linear cylindric planar ( LC planar).

Consider the planar graph from Fig. 2.5(a) and its LC drawing in Fig. 2.5(b) as a 3D
projection. The vertices are labeled according to their positions on the front line from the left
to the right. The LC drawing is plane without edge (3, 8) (dashed). Fig. 2.5(c) shows the
fundamental polygon representation, where the front line coincides with the top and bottom of
the fundamental polygon. The labels of the vertices are shown above and below the fundamental
polygon. The R2-representation is shown in Fig. 2.5(d). As the edges that wind around the
cylinder consume much space, we opt for a more condensed and equivalent R2-representation
as shown in Fig. 2.5(e), where the inner part of the disc in Fig. 2.5(d) is symbolized by a black
dot. Every plane LC drawing has a plane R2-representation and we get:

Proposition 2.1. An LC planar graph is also planar.

Given a plane drawing of a graph, we are usually not interested in the exact positions of
the vertices or the curvatures of the edge curves but rather in a discrete description of the
drawing. In the case of plane drawings, this is the embedding. A discrete description of a plane
LC drawing Γ of a graph G = (V ,E) can be obtained by the following observations: First,
since the vertices are positioned on distinct points on the front line, the vertices’ x-coordinates
induce a linear layout ≺ on V , i. e., u ≺ v if xu < xv , where xu and xv are the x-coordinates
of u and v , respectively. Second, the edge curve of an edge e, which is incident to vertex v ,
enters v from either above or below the front line. This follows from the continuity of the edge
curves and from the fact that each edge curve shares only its endpoints with the front line.
Denote by φ(x) the azimuth of a point x ∈ C3

r . Assume that Γ(e)(0) = Γ(v). Then, we say
that e enters v from above the front line if:

∃t0 ∈ (0, 1) : ∀t ∈ (0, t0) : φ(Γ(e)(t)) > 0 . (2.2)
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(a) A planar graph.
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(c) Fundamental polygon representation of the LC
drawing of Fig. 2.5(b).
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(d) R2-representation of the
LC drawing in Fig. 2.5(b).
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(e) “Condensed” version of Fig. 2.5(d).

Figure 2.5: A graph and a possible LC drawing.
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If Γ(e)(1) = Γ(v), we get:

∃t0 ∈ (0, 1) : ∀t ∈ (t0, 1) : φ(Γ(e)(t)) > 0 . (2.3)

This means that the azimuth of e’s edge curve in the vicinity of v is positive and, hence, the
edge curve is above the front line. For instance, in Fig. 2.5(c), edge (2, 4) enters both of its
endpoints from above. We say that e enters v from below if Eq. (2.2) (resp. Eq. (2.3)) holds
with inverted relation sign. In Fig. 2.5(c), edge (3, 7) enters both of its endpoint from below.
We partition the set E(v) of edges incident to a vertex v into two sets E⊥(v) and E>(v) with:

E⊥(v) := {e ∈ E(v) | e enters v from above} ,

E>(v) := {e ∈ E(v) | e enters v from below} .

The superscripts are chosen to resemble the way an edge enters the vertex.
Assume we are given a plane LC drawing. From this drawing we obtain a planar rotation

system, i. e., the counterclockwise cyclic order of the edges around each vertex. We use this
rotation system to totally order the sets E⊥(v) and E>(v) for each vertex v . For this, consider
Fig. 2.6: For E⊥(v), we obtain the total order e⊥1 , ... , e⊥k (k ≥ 0) by following the rotation
system in clockwise order. Symmetrically, for E>(v), we obtain the total order e>1 , ... , e>`
(` ≥ 0) by following the rotation system in counterclockwise order. In order to indicate that
E⊥(v) and E>(v) are totally ordered, we denote them by tuples E⊥(v) = (e⊥1 , ... , e⊥k ) and
E>(v) = (e>1 , ... , e>` ). The reason why we define the order of E⊥(v) and E>(v) in this way
will become clear in Sect. 2.2.3 when study the relationship between LC drawings and deque
layouts. Note that by totally ordering the sets E⊥(v) and E>(v), we obtain a rotation system
of vertex v as shown in Fig. 2.6.

v

e⊥1

e>1

e⊥2

e>2

e⊥k−1

e>`−1

e⊥k

e>`

E⊥(v)

E>(v)

Figure 2.6: The rotation system at a vertex v defines total orders of the sets E⊥(v) and
E>(v).

Definition 2.3 (Linear Cylindric Rotation System (LC Rotation System)). We call the
tuple Λ = (≺,E⊥,E>) consisting of a linear layout and of totally ordered sets E⊥(v) and
E>(v) for all vertices v a linear cylindric rotation system ( LC rotation system).

Remember that in the case of planar graphs, a rotation system is called planar if there is a
plane drawing which implies the rotation system (cf. Sect. 1.1.7). For LC rotation systems, we
make an analogous definition.

Definition 2.4 (Planar LC Rotation System). We call an LC rotation system planar if there
is a plane LC drawing that implies the LC rotation system.



30 Chapter 2. Deque Layouts and Linear Cylindric Drawings

A planar rotation system defines an embedding consisting of vertices, edges and faces
(cf. Sect. 1.1.7). Note that a planar LC rotation system also defines a rotation system which is
planar in the usual sense and, hence, we obtain an embedding. We call this embedding linear
cylindric embedding (LC embedding).

2.2.2 Deque Layouts

In this section, we introduce layouts of graphs in the deque. Since the stack, two stacks, and
the queue are just special cases of the deque, all of the following definitions also apply to them
by using adequate restrictions.

2.2.2.1 The Deque Data Structure

A deque is a data structure that is usually implemented as a (doubly connected) list with the
possibility to insert and remove data items at the deque’s two sides, called head h and tail t
(see top of Fig. 2.7). In the case of graph layouts, these data items are the edges of a graph.
At each time instant, the current state of the deque is defined by its content C = (e1, ... , ek)

(k ≥ 0), where e1 is at the deque’s head and ek at its tail. For instance, C = (e1, e2, e3, e4, e5)

at the top of Fig. 2.7. If k = 0, the deque is empty which is denoted by the empty content
(). With a slight abuse of notation, we denote by e ∈ C that e appears in C. A content
C = (e1, e2, ... , ek) induces a total order �C on the edges in C with e1 �C e2 �C ...�C ek .
As long as no ambiguity concerning the content can arise, we drop the subscript C in �C , i. e.,
e1 � e2 � ...� ek . For example, in Fig. 2.7, e3 � e4 for all contents.

e1 e2 e3 e4 e5

h t

e3 e4

h t

C.removeAtHead(e1)
C.removeAtHead(e2)
C.removeAtTail(e5)

e3 e4e′2 e′5 e
′
6

h t

C.insertAtHead(e′2)
C.insertAtTail(e′5)
C.insertAtTail(e′6)

Figure 2.7: A deque in which edges are processed.

Let C = (e1, ... , ek) (k ≥ 1) be a non-empty content. With the deque, either edge e1
can be removed at the head or ek can be removed at the tail. For convenience, we adopt the
object-oriented point of view, where C is an object with methods to manipulate its content:
C.removeAtHead(e1) removes e1 at the head and C.removeAtTail(ek) removes ek at the
tail with resulting content (e2, ... , ek) and (e1, ... , ek−1), respectively. If k = 1, the resulting
content is empty. As return values, both methods return true if the removal is successful,
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i. e., the item was accessible at the corresponding side, or false otherwise. In the example
in Fig. 2.7, edges e1 and e2 are removed at the head in this order and, afterwards, edge e5 is
removed at the tail.

To insert edges, the deque provides the methods insertAtHead and insertAtTail.
Both have no return value since an insertion is always successful. As the names suggest,
C.insertAtHead(e) inserts e at the head and, hence, transforms a deque’s content C =

(e1, ... , ek) (k ≥ 0) to C = (e, e1, ... , ek). Likewise, C.insertAtTail(e) results in C =

(e1, ... , ek , e). Note that if C = () beforehand, we obtain C = (e) in both cases. For our
example in Fig. 2.7, edge e ′2 is inserted at the head, and edges e ′5 and e ′6 at the tail in this
order.

2.2.2.2 Graph Layouts in the Deque

Assume, we are given a linear layout of a graph. In a deque layout, the vertices can be seen as
processing units chained together in a processing pipeline in order of the given linear layout.
Each vertex v receives as input a deque with a certain content as produced by its immediate
predecessor; or an empty deque if v is the first vertex. All incoming edges (u, v), i. e., edges
from predecessors, are removed and all outgoing edges (v ,w), i. e., edges to successors, are
inserted. Afterwards, the resulting content is passed to the immediate successor of v . If v is
the last vertex, its output must be empty.

We further need to specify how the edges are processed at each vertex: At each vertex v ,
each of its incident edges is either processed at the head or the tail. This partitions the set of
v ’s incident edges into two sets E h(v) and E t(v). Each incoming edge e ∈ E h(v) (e ∈ E t(v))
is removed at the head (tail) and each outgoing edge e ∈ E h(v) (e ∈ E t(v)) is inserted at
the head (tail). Any edge e = (u, v) with e ∈ E h(u) ∧ e ∈ E h(v) or e ∈ E t(u) ∧ e ∈ E t(v)

is processed in the deque like in a stack and so we call e stack edge. Likewise, we call any
edge e = (u, v) with e ∈ E h(u) ∧ e ∈ E t(v) or e ∈ E t(u) ∧ e ∈ E h(v) queue edge.

We assume that both sets E h(v) and E t(v) are totally ordered, i. e., E h(v) = (eh1 , ... , ehk)

(k ≥ 0) and E t(v) = (et1 , ... , et` ) (` ≥ 0). Then, for any two edges ehi , ehj with 1 ≤ i < j ≤ k ,
edge ehi is processed before ehj at vertex v . For instance, if both ehi and ehj are to be removed
at v , then ehi is removed at the head before ehj is removed from the same side. Likewise, the
edges in E t(v) are processed in order.

Definition 2.5. We call a tuple Σ = (≺,E h,E t) consisting of a linear layout and of totally
ordered sets E h(v) and E t(v) for each vertex v a deque schedule.

Assuming that all edges can be processed in the deque, a deque schedule uniquely defines
the content of each input and output of all vertices: Let eh and et be two edges of which each
is either inserted or removed at vertex v such that eh ∈ E h(v) and et ∈ E t(v). For the output
of vertex v , it makes no difference whether eh is processed before et or the other way around.
The result is always the same as both are processed at different sides. As a canonical order, we
assume that all edges in E h(v) are processed before the edges in E t(v).

Alg. 2.2 shows IsDequeLayout which takes as input a graph and a deque schedule. Is-

DequeLayout starts with an empty deque C = () and processes the vertices in order of the linear
layout. For each vertex, IsDequeLayout calls ProcessVertex (Alg. 2.3). The parameters
are the current content C of the deque, the linear layout ≺, and the deque schedule E h(v)

and E t(v) of v . In ProcessVertex, at first all edges in E h(v) = (eh1 , ... , ehk) are processed
in order, followed by all edges in E t(v). Each edge whose other endpoint is a predecessor is
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removed and edges to successors are inserted. If all operations succeed, ProcessVertex returns
the resulting content of the deque. Otherwise, a removal failed and ProcessVertex returns
⊥, and IsDequeLayout returns false. If all edges can be processed, then IsDequeLayout

returns true.

Algorithm 2.2. IsDequeLayout

Input: graph G = (V ,E) and deque schedule Σ = (≺,E h,E t)

Output: true if deque schedule is a deque layout and false otherwise
1 C ← ()

2 foreach vi = v1, ... , vn in order of ≺ do
3 C ← ProcessVertex(C,≺,E h(vi),E t(vi))

4 if C = ⊥ then return false

5 return true

Algorithm 2.3. ProcessVertex

Input: deque with content C, linear layout ≺, and deque schedule E h(v) and E t(v) of
vertex v

Output: content of deque after processing the edges incident to v , or ⊥ if an edge could
not be removed

1 foreach ehi = {u, v} in E h(v) = (eh1 , ... , ehk) in order do
2 if u ≺ v then ehi is an incoming edge from a predecessor
3 if C.removeAtHead(ehi ) = false then return ⊥
4 else C.insertAtHead(ehi ), where ehi is an outgoing edge to a successor, i. e., v ≺ u
5 foreach etj = {u, v} in E t(v) = (et1 , ... , et` ) in order do

6 if u ≺ v then etj is an incoming edge from a predecessor

7 if C.removeAtTail(etj ) = false then return ⊥
8 else C.insertAtHead(etj ), where etj is an outgoing edge to a successor, i. e., v ≺ u
9 return C

Definition 2.6 (Deque Layout and Deque Graph). A deque schedule of a graph G is called
deque layout if all edges can be processed accordingly, i. e., IsDequeLayout in Alg. 2.2 returns
true. G is called deque graph if it has a deque layout.

Fig. 2.8 illustrates a deque layout of the K4, the complete graph with four vertices. The
vertices are placed on the dotted line in order of the linear layout. Each of the vertices is
connected to a shaded box which contains a snippet of pseudo-code that shows how the edges
are inserted and removed. The content of the deque is shown below the dotted line.

2.2.3 Linear Cylindric Planar Graphs and Deque Graphs

As already suggested in Sect. 2.1, there is a strong relationship between planarity and the ability
to layout a graph in a data structure. The aim of this section is to prove the following theorem:

Theorem 2.1. A graph is a deque graph if and only if it is linear cylindric planar.
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e1

e2

e3

e4
e5 e6

C.insertAtHead(e2)
C.insertAtHead(e1)
C.insertAtTail(e3)

e2e1 e3

C.removeAtHead(e1)
C.insertAtTail(e4)
C.insertAtTail(e5)

e2 e3 e4 e5

C.removeAtHead(e2)
C.removeAtTail(e5)
C.insertAtTail(e6)

e3 e4 e6

C.removeAtHead(e3)
C.removeAtHead(e4)
C.removeAtHead(e6)

Figure 2.8: A deque layout of the K4.

In order to combinatorially describe LC drawings, we have introduced LC rotation systems
which are tuples Λ = (≺,E⊥,E>) (Def. 2.3) consisting of a linear layout, i. e., the order of
vertices on the front line, and of totally ordered sets E⊥(v) for E>(v) for each vertex v . The
latter define a rotation system of the graph. In order to describe how edges are processed in
the deque, we have introduced deque schedules which are tuples Σ = (≺,E h,E t) (Def. 2.5)
also consisting of a linear layout, i. e., the order in which the vertices are processed, and of
totally ordered sets E h(v) for E t(v) for each vertex v , which define at which side and in which
order the edges are processed in the deque. Note that we use the same mathematical objects
for LC rotation systems and deque schedules. Even more, these two concepts are also equal
with respect to planarity and deque layouts:

Lemma 2.1. Let Σ be a deque schedule and Λ := Σ be the corresponding LC rotation system.
Σ is a deque layout if and only if Λ is planar.

Before we start proving Lem. 2.1, we explore the intuition behind the statement. Consider
Fig. 2.9 which shows a plane LC drawing. From the drawing, we obtain a planar LC rotation
system Λ = (≺,E⊥,E>). By Lem. 2.1, the corresponding deque schedule Σ = (≺,E h,E t) is
a deque layout. In Fig. 2.9, the operations corresponding to the deque layout are shown in the
shaded rectangles above and below the fundamental polygon, connected by dashed lines to the
respective vertices. The input contents Ci for each vertex i are:

C1 = () , C2 = ((1, 4), (1, 3)) ,

C3 = ((2, 4), (1, 4), (1, 3), (2, 3)) , C4 = ((3, 4), (2, 4), (1, 4), (3, 7), (3, 5)) ,

C5 = ((4, 7), (3, 7), (3, 5)) , C6 = ((5, 8), (4, 7), (3, 7), (5, 7)) ,

C7 = ((6, 7), (6, 8), (5, 8), (4, 7), (3, 7), (5, 7)) , C8 = ((6, 8), (5, 8)) ,

C9 = () ,

where C9 is the output of vertex 9. The correspondence between Λ and Σ implies that the
order in which the vertices are processed is equal to the order of the vertices on the front line
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of the LC drawing. Further, let e = (v ,w) be an edge with e ∈ E⊥(v), e. g., edge (2, 4) in
Fig. 2.9. In the deque layout, e ∈ E h(v) and, hence, e is inserted at the head of the deque.
Likewise, any edge in E>(v) is processed at the tail of the deque. In Fig. 2.9, the area that
corresponds to tail is shaded and any edge e that enters one of its endpoints v within the
shaded area is processed at v at the tail. Likewise, any edge that enters one of its endpoints
within the white region is processed at the head. In general, any stack edge, like (1, 3) and
(2, 4), enters both of its endpoints within either the shaded or the white area, whereas any
queue edge, like (1, 4) and (4, 7), changes sides. As for the order in which the edges need to
be inserted and removed, the LC rotation system obtained from Fig. 2.9 is of help: Consider
the rotation system of vertex 4 with E⊥(4) = ((3, 4), (2, 4), (1, 4), (4, 7)) which is the order
in which the edges are processed at the head of the deque.

C.insertAtTail(1, 4)
C.insertAtTail(1, 3)

C.insertAtHead(2, 4)
C.insertAtTail(2, 3)

C.insertAtHead(3, 4)
C.removeAtTail(2, 3)
C.removeAtTail(1, 3)
C.insertAtTail(3, 7)
C.insertAtTail(3, 5)

C.removeAtHead(3, 4)
C.removeAtHead(2, 4)
C.removeAtHead(1, 4)
C.insertAtHead(4, 7)

C.insertAtHead(5, 8)
C.removeAtTail(3, 5)
C.insertAtTail(5, 7)

C.insertAtHead(6, 8)
C.insertAtHead(6, 7)

C.removeAtHead(6, 7)
C.removeAtTail(5, 7)
C.removeAtTail(3, 7)
C.removeAtTail(4, 7)

C.removeAtHead(6, 8)
C.removeAtTail(5, 8)

1

1

2

2

3

3

4

4

5
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7
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8
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Figure 2.9: An LC embedding and its corresponding deque layout.

We readily obtain an observation from Fig. 2.9: At vertex 4, at first edges (3, 4), (2, 4),
and (1, 4) are removed at the head before edge (4, 7) is inserted at the head. This is true in
general. Suppose that two edges e and e ′ are processed at the head such that e is removed
and e ′ is inserted. Then inserting e ′ first would imply that e ′ � e, hence, making it impossible
to remove e at the head.

Proposition 2.2. In a deque layout, at each vertex v all edges in E h(v) (E t(v)) pointing to
predecessors are removed before the edges in E h(v) (E t(v)) pointing to successors are inserted.

Proposition 2.3. Let Σ = (≺,E h,E t) be a deque layout. For each vertex v , E h(v) =

(eh1 , ... , ehk) can be divided into two halves E h
Pred(v) = (eh1 , ... , ehi ) and E h

Succ(v) = (ehi+1, ... , ehk)

for some 0 ≤ i ≤ k such that all edges in E h
Pred(v) are removed at the head at v , and all edges

in E h
Succ(v) are inserted at the head at v . If i = 0, then E h

Pred(v) = ∅ and, if i = k , then
E h

Succ(v) = ∅. The same holds true for E t(v).
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The analogous observation for plane LC rotation systems is as follows: Consider again the
total order of edges in E⊥(4) = ((3, 4), (2, 4), (1, 4), (4, 7)) as shown in Fig. 2.9. There, all
edges to predecessors of 4, i. e., (3, 4), (2, 4), (1, 4), come before edge (4, 7), which points
to a successor of 4. If (4, 7) would be situated before any of the other edges in the rotation
system, we would obtain a situation as depicted in Fig. 2.10(a) or (b) and a crossing would be
inevitable.

Lemma 2.2. Let Λ = (≺,E⊥,E>) be a plane LC rotation system. For each vertex v , the
total order of the edges in E⊥(v) = (e⊥1 , ... , e⊥k ) can be divided into two halves E⊥Pred(v) =

(e⊥1 , ... , e⊥i ) and E⊥Succ(v) = (e⊥i+1, ... , e⊥k ) for some 0 ≤ i ≤ k such that all edges in E⊥Pred(v)

are incident to predecessors of v , and all edges in E⊥Succ(v) are incident to successors. If i = 0,
then E⊥Pred(v) = ∅ and, if i = k , then E⊥Succ(v) = ∅. The same holds true for E>(v).

Proof. For contradiction, suppose that there is a vertex v and edges e⊥i and e⊥j in E⊥(v) =

(e⊥1 , ... , e⊥k ) such that i < j and e⊥i is incident to a successor w of v and e⊥j is incident to a
predecessor u of v . The situation is depicted in Fig. 2.10(a). As the inner part of the edge curve
of e⊥j has no point in common with the front line, e⊥j and the front line enclose a region R

(shaded in Fig. 2.10(a)). Edge e⊥i enters v from above and also has no point in common with
the front line except for its endpoints. Hence, e⊥i leaves v within R. The other endpoint w of
e⊥i lies outside of R as if w would lie within, an inner point of e⊥j ’s edge curve would lie on

the front line. Consequently, the inner part of e⊥i ’s edge curve has points inside and outside of
R which inevitably leads to a crossing by Jordan’s curve theorem (Prop. 1.1); a contradiction
to the planarity of the LC rotation system. The proof for E>(v) is analogous.

Note that we assumed that e⊥j enters u from above which in general must not be the case.

However, even if e⊥j enters u from below, it encloses a region R together with the front line as
illustrated in Fig. 2.10(b) and the proof is analogous. �

e⊥j e⊥i

u v w

u v w

R

(a) If an edge e⊥j to a pre-
decessor of v comes after
an edge e⊥i to successor
in the rotation system, a
crossing is inevitable.

e⊥j e⊥i

u v w

u v w

R

(b) Same situation as in
Fig. 2.10(a) only that e⊥j
enters u from below.

v

v

e⊥1

e>1

e⊥i

e>j

e⊥i+1

e>j+1

e⊥k

e>`

E⊥(v)

E>(v)

(c) A planar LC rotation sys-
tem at a vertex is divided
(dashed line) into the edges to
predecessors and successors.

Figure 2.10: LC rotation systems of a vertex.

Fig. 2.10(c) shows how the rotation system in a planar LC rotation system is split according
to Lem. 2.2. We combine Prop. 2.3 and Lem. 2.2 as follows:
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Corollary 2.1. Let Σ = (≺,E h,E t) be a deque schedule with corresponding LC rotation
system Λ = (≺,E⊥,E>) := Σ. If Σ is a deque layout and Λ is planar, then, for each vertex v ,
E h(v) = E⊥(v) = (e1, ... , ek) can be split into two halves E h

Pred(v) = E⊥Pred(v) = (e1, ... , ei)

and E h
Succ(v) = E⊥Succ(v) = (ei+1, ... , ek) with 0 ≤ i ≤ k such that all e1, ... , ei are incident

to a predecessor of v and all ei+1, ... , ek are incident to a successor of v . This holds also true
for E t(v) = E>(v).

We are now able to prove Lem. 2.1 which states that a deque schedule is a deque layout
if and only if the corresponding LC rotation system is planar. The proof is a complete case
differentiation in which we show that two edges e and e ′ cross if and only if e cannot be
removed from the deque because e ′ is blocking its way or vice versa. The cases correspond
to the different sides at which the edges are inserted and removed in the deque layout and,
respectively, the sides from which the edges enter the front line.

Proof. [Lem. 2.1] Let Σ = (≺,E h,E t) be a deque schedule and Λ = (≺,E⊥,E>) := Σ be
the corresponding LC rotation system.
⇒: By assumption Σ is a deque layout and we have to show that Λ is planar. Assume for

contradiction that there are two distinct edges e = (u, v) and e ′ = (u′, v ′), with u ≺ v and
u′ ≺ v ′, for which a crossing is inevitable. W. l. o. g., we assume that according to the deque
schedule e is inserted to the deque before e ′. This implies that u � u′. If u = u′, then either
e, e ′ ∈ E h(u), e, e ′ ∈ E t(u), or e ∈ E h(u) and e ′ ∈ E t(u). In the first two cases, e comes
before e ′ in E h(u) and E t(u), and for the latter case remember that all edges in E h(u) are
processed before the ones in E t(u) (cf. Alg. 2.3).

If u ≺ v ≺ u′ ≺ v ′, then e and e ′ are never in the deque at the same time and, hence,
both are processed completely independently from each other. Likewise, in the LC drawing, a
crossing between e and e ′ is always avoidable since their endpoints lie on completely disjoint
intervals on the front line. If u ≺ v = u′ ≺ v ′, i. e., e and e ′ share v = u′ as common endpoint,
we can apply Cor. 2.1: If Σ is a deque layout, then the rotation system at v has the structure
as depicted in Fig. 2.10(c) and e and e ′ can be drawn without a crossing.

In the following, we assume that u � u′ ≺ v and distinguish five cases:

I Both e and e ′ are stack edges
If both edges are stack edges processed at different sides of the deque, then e enters
both its endpoints from, say, below, whereas e ′ enters its endpoints from above. Then,
a crossing between e and e ′ is always avoidable in an LC drawing. Hence, we assume
that e and e ′ are processed at the head; the reasoning is similar if they are inserted and
removed at the tail. Similar to the proof of Lem. 2.2, the edge curve of e and the front
line enclose a region R in an LC drawing. A crossing between e and e ′ is inevitable if
and only if one of the inner points of the edge curve of e ′ is within R while another inner
point is outside of R (cf. Prop. 1.1). This is the case if and only if one of the following
cases applies:

(i) u ≺ u′ ≺ v ≺ v ′ (cf. Fig. 2.11(a))

(ii) u = u′ ≺ v ≺ v ′ and e comes before e ′ in E⊥(u) (cf. Fig. 2.11(b))

(iii) u ≺ u′ ≺ v = v ′ and e comes before e ′ in E⊥(v)

By assumption, e is inserted at the head before e ′ and, thus, e ′ � e in the deque.
Moreover, in all cases, e must be removed from the head before e ′: For (i) and (ii), we
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have that v ≺ v ′ and for (iii) e comes before e ′ in E⊥(v). However, removing e is not
possible since e ′ is blocking its way; a contradiction to the assumption that Σ is a deque
layout.

u u′ v v ′

u u′ v v ′

t

h
e e′

(a) Both edges are stack edges
processed at the head.

u v v ′

u v v ′

t

h e e
′

(b) Both edges are stack
edges incident to u and
processed at the head.

Figure 2.11: Both edges are stack edges.

I Both e and e ′ are queue edges inserted at the same side
We assume that both e and e ′ are inserted at the head and removed at the tail. A
crossing is inevitable if and only if one of the following cases applies:

(i) u ≺ u′ ≺ v ′ ≺ v (cf. Fig. 2.12)

(ii) u = u′ ≺ v ′ ≺ v and e comes before e ′ in E⊥(u)

(iii) u ≺ u′ ≺ v ′ = v and e comes after e ′ in E>(v)

Since e is inserted at the head before e ′, we get e ′ � e in the deque. Note that in
(i), edge e ′ is properly nested in edge e which already suggests that this configuration
is incompatible with queue edges. In any of the cases, e ′ is removed before e: For (i)
and (ii), v ′ ≺ v and, for case (iii), e comes after e ′ in E>(v). However, e ′ cannot be
removed from the tail since e ′ � e; again a contradiction.

u u′ v ′ v

u u′ v ′ v

t

h e

e′

Figure 2.12: Both edges are queue edges inserted at the same side.

I Both e and e ′ are queue edges inserted at different sides
We assume that e is inserted at the head and e ′ at the tail. The situation we obtain is
depicted in Fig. 2.13. By assumption, u � u′ ≺ v , and since e ∈ E⊥(u) ∩ E>(v) and
e ′ ∈ E>(u′) ∩ E⊥(v ′), a crossing between e and e ′ is always inevitable. Also, in the
deque e � e ′, where e ′ is removed from the head and e from the tail which is never
possible regardless of when each of the edges is removed.
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u u′ v v ′

u u′ v v ′

t

h
e e′

Figure 2.13: Both edges are queue edges inserted at different sides.

I e is a stack and e ′ a queue edge
Let e be a stack edge inserted and removed at the head (cf. Fig. 2.14(a)). Edge e enters
both of its endpoints from above the front line and, thereby, encloses a region R. There
is a crossing between e and e ′ if and only if any inner point of the edge curve of e ′ is
within R since e ′ is a queue edge. For instance, in Fig. 2.14(a), u ≺ u′ ≺ v ′ ≺ v and u′

is inserted at the head and removed from the tail.

In general, e and e ′ cross if and only if one of the following conditions holds true:

(i) Edge e ′ enters u′ from above. Then, e ′ necessarily enters u′ within R as u′ ≺ v and
either u ≺ u′, or u = u′ and e comes before e ′ in E⊥(u). Further, e ′ is a queue
edge and so it enters v ′ from below the front line and, thus, e ′ leaves R which leads
to a crossing. In this case, we obtain e ′ � e for the deque, where e is removed
from the head and e ′ from the tail which is not possible and, thus, a contradiction.

(ii) Edge e ′ enters u′ from below and v ′ � v , where for v ′ = v edge e ′ comes before e
in E⊥(v) (cf. Fig. 2.14(b)). In this case, e ′ enters u′ outside of R and v ′ within,
which causes a crossing. In the deque, e � e ′ and e ′ is removed from the head
before e is removed which is not possible; again a contradiction.

u u′ v ′ v

u u′ v ′ v

t

h
e

e′

(a) e is a stack and e′ a queue
edge inserted at the head.

u u′ v ′ v

u u′ v ′ v

t

h
e

e′

(b) e is a stack and e′ a queue
edge inserted at the tail.

Figure 2.14: e is a stack and e ′ a queue edge.

I e is a queue and e ′ a stack edge
This is symmetric to the prior case where e is a stack and e ′ and queue edge, where the
roles of e and e ′, and of head and tail are swapped, and the linear layout is reversed
(Fig. 2.15). The proof is thus similar.

Altogether, we can conclude that Λ is a planar LC rotation system.
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u u′ v v ′

u u′ v v ′

t

h
e

e′

Figure 2.15: e is a queue and e ′ a stack edge.

⇐: In the following, we assume that Λ is a planar LC rotation system but, towards a
contradiction, Σ is no deque layout. As insertions to the deque never cause trouble, there must
be an edge which cannot be removed from the deque because another edge is blocking its way.
Let e = (u, v) and e ′ = (u′, v ′) with u ≺ v and u′ ≺ v ′ be two such edges. As before, we
assume w. l. o. g. that e is inserted to the deque before e ′. Further, by the very reasoning from
the “⇒”-direction, we can assume that u � u′ ≺ v . Again, we distinguish the same five cases
as before and, as the reasoning is very similar, we keep it brief here:

I Both e and e ′ are stack edges
We assume that both edges are inserted and removed at the head. As e is inserted before
e ′, we get e ′ � e. Removing e is not possible if and only if e is removed before e ′

and, thus, v � v ′, where for v = v ′ edge e comes before e ′ in E h(v). If v ≺ v ′, then
u � u′ ≺ v ≺ v ′ and we obtain the situation depicted in Fig. 2.11(a) and there is an
inevitable crossing between e and e ′. If v = v ′ and e comes before e ′ in E h(v), we also
obtain an inevitable crossing as shown in Fig. 2.11(b). Hence, Λ cannot be planar; a
contradiction.

I Both e and e ′ are queue edges inserted at the same side
If both edges are inserted at the head, then e ′ � e and we have no deque layout if
and only if e ′ has to be removed before e. Hence, u � u′ ≺ v ′ � v and we obtain
the situation in Fig. 2.12; again a contradiction to the planarity of Λ. The reasoning is
analogous if e and e ′ are inserted at the tail.

I Both e and e ′ are queue edges inserted at different sides
If e is inserted at the head and e ′ at the tail, we get e � e ′ and neither can be removed
regardless of when any of e and e ′ has to be removed. Also, in the LC drawing, e and e ′

always cross as shown in Fig. 2.13.

I e is a stack and e ′ a queue edge
We assume that e is inserted at the head and distinguish two cases: Either e ′ is inserted
at the head or at the tail. In the first case, e ′ � e and e neither can be removed from
the head nor e ′ from the tail. We obtain the situation in Fig. 2.14(a) and Λ cannot be
planar. If e ′ is inserted at the tail, then e � e ′. Now, removing e from the head is
always possible. However, removing e ′ before e is not possible. This is the case if and
only if v ′ ≺ v , or v ′ = v and e ′ comes before e in E h(v). For the LC drawing, we obtain
the situation in Fig. 2.14(b) and an inevitable crossing which implies that Λ cannot be
planar.
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I e is a queue and e ′ a stack edge
By swapping the role of e with e ′, and h with t, and reversing the linear layout, this case
is proved analogously to the previous case.

Altogether, we have obtained a contradiction in all cases and can conclude that Σ is a deque
layout. �

By Lem. 2.1, Thm. 2.1 follows. As every LC planar graph is planar (cf. Prop. 2.1), we get:

Corollary 2.2. All deque graphs are planar.

From the proof of Lem. 2.1, we can derive the following interesting interpretation of
crossings in LC drawings and invalid deque operations. A crossing between two edges e and e ′

is inevitable if and only if one of them cannot be removed from the deque because the other is
blocking its way. For instance, if e � e ′ then it is not possible to remove e ′ at the head before
e. Assume that e and e ′ are directly adjacent in the deque. Then, swapping their positions
such that e ′ � e, which is no valid deque operation, enables us to remove e ′ at the head.
This position swap has a neat graphical interpretation: Consider Fig. 2.16 which shows an LC
drawing that is not plane. Nevertheless, we canonically follow the deque layout: At vertex 1 we
insert (1, 4) and (1, 3) at the tail and obtain C2 = ((1, 4), (1, 3)) as input for 2. There is a
vertical line with label a between 1 and 2 in Fig. 2.16. By following this line from bottom to
top, we encounter all edges in C2 in order. This observation is always true if the edge curves
are x-monotone. By gradually moving this line from left to right, we obtain the content of
the deque at each time instant. Now, the interesting thing happens when the line reaches the
crossing: Consider the vertical line with label b just before the crossing of edges (3, 8) and
(4, 7). There, the content of the deque is C6 = ((5, 8), (4, 7), (3, 8), (3, 7), (5, 7)). At vertex 7,
edge (4, 7) cannot be removed at the tail as (3, 8) is blocking its way; note that in contrast
edges (5, 7) and (3, 7) can be removed. Swapping the positions of (4, 7) and (3, 8) in the
deque would resolve the issue, which is reflected by the crossing in the drawing: Edge (4, 7) is
below (3, 8) before the crossing, whereas afterwards their positions with respect to the vertical
ordering are swapped. Thus, an (invalid) swap operation in the deque implies a crossing of the
swapped edges and vice versa.
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a b

Figure 2.16: A inevitable crossing of two edges e and e ′ in an LC drawing corresponds to a
swap of e and e ′ in the deque.
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2.2.4 Deque Graphs and Hamiltonian Paths

In this section, we further study deque graphs by means of LC drawings. In particular, we will
see that deque graphs and LC planar graphs are subgraphs of planar graphs with a Hamiltonian
path. As it turns out, the converse is also true. This characterization further illustrates the
linear structure of deque graphs and LC planar graphs.

We start with a definition. First, remember that for a linear layout ≺ of a graph G =

(V ,E), a vertex w is the immediate successor of an another vertex v in ≺, if v ≺ w and
@v ′ ∈ V : v ≺ v ′ ≺ w .

Definition 2.7. For a linear layout ≺ of a graph G = (V ,E), the ≺-augmentation G≺ =

(V ,E≺) is a spanning supergraph of G that contains all edges of G and all edges between a
vertex and its immediate successor if not already existent in E , i. e.:

E≺ = E ∪ {{u, v} | u, v ∈ V ∧ v is the immediate successor of v in ≺} .

Proposition 2.4. The ≺-augmentation of a graph contains a Hamiltonian path.

≺-augmentations play an important role for deque layouts: Let Σ = (≺,E h,E t) be a deque
schedule of a graph G = (V ,E) and let G≺ = (V ,E≺) be the ≺-augmentation of G . The
≺-augmentation Σ≺ = (≺,E h

≺,E t
≺) of Σ is a deque schedule of G≺ which equals Σ for all

edges in E , whereas all edges in E≺ \ E are processed as follows: Let e = {v ,w} ∈ E≺ \ E be
an edge where w is the immediate successor of v . At vertex v , edge e is inserted at the head
after all edges in E h(v) have been processed, i. e., e is last in E h(v). At vertex w , edge e is
removed at the head of the deque before all edges in E h(w) are processed, i. e., e is first in
E h(w). In other words, e is a stack edge processed at the head. Note that E t

≺ = E t, i. e.,
E t stays unchanged when deriving the ≺-augmentation; we use the superscript for uniformity.
In fact, the choice of inserting and removing the edges in E≺ \ E at the head is arbitrary as
processing all or only some of them at the tail equally works. The important property is that
these edges are processed as stack edges. This canonical way of processing the edges in E≺ \E
as stack edges is always possible. In particular, we get:

Proposition 2.5. A deque schedule Σ = (≺,E h,E t) is a deque layout of a graph G if and
only if the ≺-augmentation of Σ is a deque layout of G≺.

By combining Propositions 2.4 and 2.5 and Thm. 2.1, we get:

Corollary 2.3. A graph G is a deque (LC planar) graph if and only if it is a spanning subgraph
of a graph G≺ which contains a Hamiltonian path and which is a deque (LC planar) graph.

Proof. ⇒: This follows from Propositions 2.4 and 2.5 and Thm. 2.1.
⇐: If G≺ is a deque (LC planar) graph, then so is any subgraph of G≺. In particular G is

a deque (LC planar) graph. �

It is important to note that a deque graph G cannot be arbitrarily augmented to a deque
graph with a Hamiltonian path because the Hamiltonian path must correspond to a linear
layout of G that belongs to a deque layout.

Fig. 2.17 shows the LC embedding of the ≺-augmentation of the graph in Fig. 2.5(c). All
newly introduced edges (dashed) are edges that enter their endpoints from above the front line
as in the deque layout they are stack edges processed at the head.
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Figure 2.17: ≺-augmentation of the LC embedding in Fig. 2.5(c).

Next, we generalize Cor. 2.3. First remember that a deque graph is also planar (see Cor. 2.2).
Thus, every deque graph is a spanning subgraph of a planar graph with a Hamiltonian path.
With the help of the following lemma, we can also prove the converse:

Lemma 2.3. A planar graph with a Hamiltonian path is a deque graph.

Proof. Let G = (V ,E) be an embedded graph with Hamiltonian path P = (v1, ... , vn). We
assume that n ≥ 2 as otherwise G consists of a single vertex which is always a deque graph. G
is embedded and, thus, endowed with a planar rotation system R. The idea of the proof is to
derive a planar LC rotation system ΛP = (≺,E⊥,E>) from G ’s rotation system with the help
of the Hamiltonian path. Remember that an LC rotation system induces a rotation system in
the usual sense, i. e., a cyclic ordering of the incident edges at each vertex (see Sect. 2.2.1).
We define ΛP such that it induces the same rotation system as R.

First, for the linear layout ≺, we choose the order of the vertices on P, i. e., vi ≺ vj if and
only if i < j for all 1 ≤ i , j ≤ n. Second, let vi be an inner vertex on P, i. e., 0 < i < n, and
let e1, ... , ep−1, ep, ep+1, ... , eq be the rotation system of vi according to R with 1 ≤ p < q,
where ep is the edge to the immediate successor vi+1 of vi and eq is the edge to the immediate
predecessor vi−1 of vi on the Hamiltonian path. Fig. 2.18(a) illustrates the rotation system of vi ,
where the edges ep and eq are drawn bold. The Hamiltonian path divides the rotation system of
vi into two halves, i. e., an upper and a lower half. We define E⊥(vi) = (eq, eq−1, ... , ep+1, ep)

and E>(vi) = (e1, e2, ... , ep−2, ep−1). Note the reverse order in E⊥(vi). The so obtained
LC rotation system is illustrated in Fig. 2.18(b). As only one edge from P is incident to
v1 and vn, their rotation system can be split at an arbitrary point. Here, we define the
LC rotation system of v1 (vn) such that all edges enter v1 (vn) from above. That is, let
e1, ... , ep be the rotation system of v1 according to R with p ≥ 1, where ep is the edge to
v2. Then, E⊥(v1) = (ep−1, ep−2, ... , e2, e1, ep) and E>(v1) is empty. Likewise, let e1, ... , eq
with q ≥ 1 be the rotation system of vn, where eq is the edge to vn−1. Then, we define
E⊥(vn) = (eq, eq−1, ... , e2, e1) and E>(vn) is empty.

In the following, we consider LC drawings of G that respect the constructed LC rotation
system ΛP = (≺,E⊥,E>), i. e., the vertices are placed on the front line according to ≺ and the
edge curves enter their endpoints according to E⊥ and E>. The crucial observation is that by
the way we constructed ΛP , the Hamiltonian path is “aligned” with the front line and planarity
ensures that no edge curve has as a point in common with the front line. In the remainder of
the proof, we show that there is a plane LC drawing of G that respects ΛP . For contradiction,
assume that every such LC drawing has at least one crossing. Among those drawings, let ΓP
be one with a minimum number of crossings and, thereby, any crossing in ΓP is inevitable.
Let e and e ′ be two crossing edges, where e = {vi , vj}. There is a circle C formed by the
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(a) Rotation system of an inner
vertex vi of a graph with a Hamil-
tonian path.
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(b) From the rotation system
in Fig. 2.18(a), we obtain an
LC rotation system of vi .

Figure 2.18: The rotation system of vertex vi of a graph with a Hamiltonian path defines an
LC rotation system of vi .

path vi  vj which is part of the Hamiltonian path and edge e. Circle C encloses a region R
such that at least one inner point of the edge curve of e ′ lies within R and one inner point lies
outside of R. Remember that G is endowed with a planar rotation system R and, hence, it
has a plane drawing Γ in R2 which implies R. By construction, the rotation system as induced
by the LC drawing ΓP is the same as R. Thus, circle C encloses a region R ′ in Γ such that at
least one inner point of the edge curve of e ′ must lie within R ′ and one inner point must lie
outside, which causes a crossing in Γ by Jordan’s curve theorem (Prop. 1.1). This contradicts
the planarity of Γ. Hence, there is no crossing in ΓP and so ΛP is a planar LC rotation system.

�

We arrive at the following characterization of deque graphs:

Theorem 2.2. A graph is a deque graph if and only if it is a spanning subgraph of a planar
graph with a Hamiltonian path.

Proof. ⇒: Follows from Corollaries 2.2 and 2.3.

⇐: Assume that G is a spanning subgraph of a planar graph G ′ with a Hamiltonian path.
By Lem. 2.3, G ′ is a deque graph and so must be G . �

We extract another neat observation from the proof of Lem. 2.3: From the planar rotation
system R of a graph G with a Hamiltonian path P, we obtain a planar LC rotation system ΛP =

(≺,E⊥,E>), where ≺ is the order of the vertices on P and E⊥ and E> are defined according
to the proof of Lem. 2.3 (see also Fig. 2.18). We generalize this idea: Let G be a graph
endowed with a (not necessarily planar) rotation system R and assume that G contains a
Hamiltonian path P. Let ΛP = (≺,E⊥,E>) be the LC rotation system obtained from R and
P as in the proof of Lem. 2.3. We say that ΛP is induced by P. Moreover, we obtain a deque
schedule ΣP := ΛP which we also call induced by P. By combining Lem. 2.3 and Thm. 2.1,
we get:
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Corollary 2.4. Let G be a graph endowed with a rotation system and assume that G contains
a Hamiltonian path P. Further, let ΛP and ΣP be the LC rotation system and deque schedule
induced by P, respectively. The following statements are equivalent:

(i) The rotation system of G is planar.

(ii) ΛP is a planar LC rotation system.

(iii) ΣP is a deque layout.

Remember that, by definition, a deque schedule is a deque layout if and only if IsDeque-
Layout in Alg. 2.2 returns true. Hence, from Cor. 2.4 we obtain a straightfoward algorithm
to test whether the rotation system of a graph with a Hamiltonian path is planar. All these
observations will be particularly useful when we study graph layouts of planar graphs in the
splittable deque in Sect. 2.5.2.

2.2.4.1 Comparing Two Stacks with a Single Deque

Before we turn our attention to other aspects of deque graphs, let us compare deque graphs
with two-stack graphs with the help of Thm. 2.2: A deque can emulate two stacks by allowing
only stack edges which implies that every two-stack graph is also a deque graph. In addition,
queue edges are allowed in the deque. However, these queue edges cannot“move independently”
of the stack edges as, for instance, no stack edge must be at the head when a queue edge is
inserted at the same side. Now, the question is: What is the additional power these queue
edges yield in comparison to two stacks? There is a short and a longer answer to this question.
The short answer is given by the following (informal) equation:

deque layout

two-stack layout
=

planar & Hamiltonian path

planar & Hamiltonian circle
.

A graph is a two-stack graph if and only if it is the spanning subgraph of a planar graph with
a Hamiltonian circle by [BK79]. We have found out that a graph is a deque graph if and
only if it is the spanning subgraph of a planar graph with a Hamiltonian path (Thm. 2.2). In
other words, the ability to process queue edges in addition to stack edges exactly corresponds
to the difference between Hamiltonian paths and Hamiltonian circles in planar graphs. This
observation, in turn, raises another question: How is this difference between Hamiltonian paths
and circles reflected in deque and two-stack layouts? The (longer) answer is given in the
following section.

2.2.4.2 Duals of Deque Graphs

Consider the maximal planar graph depicted in Fig. 2.19(a) which contains the Hamiltonian
circle 1, ... , 8, 1. The edges of the Hamiltonian circle are drawn bold. By [BK79], this graph
has a two-stack layout. In the following, we use the deque with no queue edges to emulate the
two stacks and construct the corresponding layout as follows: The Hamiltonian circle defines a
closed curve C that divides the plane into regions R and R ′ := R2 \R as shown in Fig. 2.19(b),
where R ′ is shaded. Now, the inner part of each edge not on the Hamiltonian circle either lies
completely within R or within R ′. The idea is to identify R with the head and R ′ with the tail
of the deque. The respective two-stack layout is shown in Fig. 2.19(c) as an LC drawing with
no queue edges, where the linear layout is obtained by splitting the Hamiltonian circle between
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vertices 1 and 8. For instance, edge (5, 7) lies within R and is, thus, a stack edge processed at
the head, whereas edge (1, 6) is in R ′ and processed at the tail. All edges on the Hamiltonian
path are stack edges processed at the head, which is, again, an arbitrary decision as they can
equally be processed as stack edges at the tail.
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(a) A plane draw-
ing of a graph with
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cle (edges drawn
bold).
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(c) In the two-stack layout, the edges in
the white region in Fig. 2.19(b) are stack
edges processed at the head and the ones
in the shaded regions are processed at the
tail.

Figure 2.19: A Hamiltonian circle in a plane drawing partitions the drawing into two regions,
each corresponding to a stack in the two-stack layout.

We can apply the same line of arguments to deque layouts, however, with an intriguing
twist. Fig. 2.20(a) shows the Goldner-Harary graph GGH [GH75] which is the smallest maximal
planar graph with no Hamiltonian circle. The edges drawn bold belong to the Hamiltonian
path 1, ... , 11. Therefore, GGH is no two-stack graph but a deque graph. To construct the
deque layout, we use the same idea as before, i. e., we divide the plane into two regions and
identify one region with the head and one region with the tail. For this, consider the (open)
curve defined by the Hamiltonian path in Fig. 2.20(b). We close the curve by proceeding on the
dual graph (see Sect. 1.1.8): First, we connect vertex 11 with face f to which 11 is incident.
The choice of face f is arbitrary as long as vertex 11 is incident to f . Then, we find a path in
the dual graph from face f to face g, where vertex 1 is incident to g, such that we never use
any dual edge of an edge on the Hamiltonian path. Finally, we connect g to 1 and close the
curve. Thereby, we obtain a closed and non-selfintersecting curve C that partitions the plane
into regions R and R ′ (shaded). For the deque layout, we identify R with the head and R ′

with the tail, and the linear layout is the order of the vertices on the Hamiltonian path. The
LC drawing corresponding to the deque layout is shown in Fig. 2.20(c). As with the two-stack
graph from before, we have edge curves whose inner parts are completely within either R or R ′.
For instance, the inner part of (1, 4) is in R and, indeed, is a stack edge processed at the head.
Also as before, the edges on the Hamiltonian path are stack edges processed at the head. An
interesting thing happens to the edges that cross C . For instance, edge (3, 10) starts within
R ′ and ends within R which means that it is inserted at the tail and removed at the head of
the deque. In general, all queue edges cross C and they are exactly the primals of the edges on
the path from f to g in the dual. For instance, in the LC drawing in Fig. 2.20(c), the path
from f to g in the dual is opposite of the front line and it is crossed by all queue edges as they

“change sides”. We summarize these observations by the following theorem:
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(c) In the deque layout, an edge e that enters its endpoint v
within the white area in Fig. 2.20(b) is processed at v at the head
of the deque; the shaded area corresponds to the tail. The edges
of the Hamiltonian path can all be processed as stack edges at
the head.

Figure 2.20: The endpoints of a Hamiltonian path in a plane drawing can be connected via a
path in the dual and the resulting circle partitions the drawing into two regions. One of these
region corresponds to the head and the other one corresponds to the tail of the deque.
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Theorem 2.3. Let G = (V ,E) be an embedded graph with Hamiltonian path P = (v1, ... , vn)

and EP be the edges on P. Let G ∗ = (F ,E ∗) be the dual of G and denote by E ∗P the dual
edges of EP . Further, let f1, f2 ∈ F be two faces such that v1 is incident to fp and vn is incident
to f1. Then, the following two statements hold true:

(i) There is a simple path Q∗ = f1  fp in G ∗ \ E ∗P .

(ii) Let E ∗Q be the set of edges traversed by Q∗ and let EQ be the primal edges of E ∗Q . G
has a deque layout Σ = (≺,E h,E t) such that ≺ is the order of the vertices on P, and
an edge e ∈ E is a queue edge if and only if e ∈ EQ .

Before we prove this theorem, recall the definition of cut and cut-set from Sect. 1.1.8: Let
G = (V ,E) be an embedded graph with dual G ∗ = (F ,E ∗). A cut partitions V into proper
subsets VC ( V and V C := V \VC and the set of edges EC := {{u, v} ∈ E | u ∈ VC∧v ∈ V C}
between VC and V C is the cut-set. Then, edges E ∗C form a simple circle in G ∗, where E ∗C
denotes the duals of EC .

Proof. (i): Suppose for contradiction that there is no path f1  fp in G ∗6P := G ∗ \ E ∗P , where
the subscript reminds us that G ∗6P contains no dual edges from the Hamiltonian path. Since the
dual G ∗ is connected, there is a path from f1 to any other face f in G ∗. In particular f1  fp in
G ∗. Hence, removing the dual edges of the Hamiltonian path disconnects f1 from fp. Denote
by FC the set of faces f for which there is a path f1  f in G ∗6P . By construction, f1 ∈ FC and

fp ∈ FC := F \ FC . Then, FC and FC is a cut with cut-set E ∗C ⊆ E ∗. Let e∗ = {f , g} be an
edge from E ∗C with f ∈ FC and g ∈ FC . Dual edge e∗ must be in E ∗P as otherwise there would
be a path from f1 to g. Hence, E ∗C ⊆ E ∗P and EC ⊆ EP , where EC are the primal edges of E ∗C .
As E ∗C is a cut-set, EC forms a circle in G . However, then the Hamiltonian path contains a
circle which is a contradiction. Therefore, there is a path from f1 to fp and also a simple path
from f1 to fp.

(ii): In his seminal paper [Tut63], Tutte has shown that an embedded graph G = (V ,E)

and its dual G = (F ,E ∗) can be drawn simultaneously such that each of G and G ∗ is drawn
plane, all faces are placed within the regions to which they correspond, and such that each
primal edge e crosses its dual e∗ exactly once. This is the drawing style of graphs and their
duals that we usually take for granted (cf. Fig. 1.2(b) on page 8). Let Γ be such a simultaneous
drawing of G and G ∗ in R2. The situation we obtain is sketched in Fig. 2.21(a). Denote by
Γ[P] the set of points in Γ of the simple curve defined by the Hamiltonian path P in G (drawn
bold in Fig. 2.21(a)). By (i), we know that there is a simple path Q∗ = f1  fp in G ∗ (shaded
line between f1 and fp). Γ[Q∗] denotes the set of points in Γ that belong to Q∗. Since Q∗

contains no edge of E ∗P , Γ[P] and Γ[Q∗] are two disjoint simple curves. We connect these two
curves as follows: Let Γ(v1) be the position of v1 and Γ(fp) be the position of fp. Since v1
is incident to fp, there is a continuous, simple, and open curve from v1 to fp that shares no
point with Γ except for its endpoints (dashed line between v1 and fp). Likewise, there is a
continuous, simple, and open curve from vn to f1 (dashed line between vn and f1). Putting all
things together, we obtain the simple and closed curve C that partitions R2 into regions R and
R ′ (shaded).

Let Λ = (≺,E⊥,E>) be the LC rotation system induced by the Hamiltonian path. Remem-
ber that the Hamiltonian path P splits the rotation system of each vertex v into the edges
that enter v from above and those that enter v from below. Also remember that the rotation
systems of v1 and vn can be split arbitrarily as only one edge of P is incident to each of them.
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(a) Connecting the endpoints of the
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(b) The rotation system of
v1 is split by the Hamiltonian
path and by the curve con-
necting v1 with f1.

Figure 2.21: Situation obtained in the proof of Thm. 2.3.

In the construction of C , we have connected v1 with fp by a curve which can be seen as an
edge curve. Together with the edge to vertex v2, the rotation system of v1 is split as shown in
Fig. 2.21(b), where the curve between v1 and fp is dashed. The edges that enter v1 within R
(R ′), enter v1 from above (below) in the LC rotation system Λ. Likewise, the rotation system
of vn is split. The so obtained LC rotation system is planar as shown in the proof of Lem. 2.3
and the corresponding deque schedule Σ = (≺,E h,E t) is a deque layout by Cor. 2.4.

Now, let e∗ be an edge on Q∗ and let e = {u, v} be its primal. By construction, the edge
curve of e crosses C exactly once, e. g., e1 in Fig. 2.21(a). This implies that e either enters u
within R and v within R ′ or vice versa. Hence, e enters u from above and v from below or vice
versa. In both cases, e is a queue edge in Σ. Further, let e be an edge such that the inner part
of its edge curve lies completely within R, e. g., edge e2. Then, e enters both its endpoints
from above and is, thus, a stack edge inserted at the head in Σ. Likewise, an edge that lies
within R ′ is a stack edge inserted at the tail in Σ. This proves (ii). �

In conclusion, the additional power a deque has in comparison to two stacks is to connect
the endpoints of the Hamiltonian path via the dual, which in turn produces queue edges. We
will use this insight in Sect. 2.4 and discuss its implications on queue graphs.

2.2.5 Deciding whether a Graph is a Deque Graph is NP-Complete

We now turn to computational complexity issues. How hard is it to decide whether a given
graph is a deque graph? The problem of deciding whether a maximal planar graph has a
Hamiltonian circle is NP-complete [Chv85, Wig82]. Consequently, the decision problem “Is a
given graph a two-stack graph?” is NP-complete. Also, deciding whether a graph is a queue
graph is NP-complete [HR92]. In contrast, deciding whether a graph permits a one-stack
layout can be done in linear time as it is equivalent to deciding whether the graph is outerplanar
[BK79, Wie87]. For the deque, the respective decision problem is also NP-complete. To show
this, we prove the NP-completeness of the following problem:

Theorem 2.4. The decision problem “Given a maximal planar graph, does it contain a Hamil-
tonian path?” is NP-complete.
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In [Wig82], Wigderson uses an elegant reduction from the NP-complete Hamiltonian circle
problem for triconnected, cubic planar graphs [GJ90] to prove that the same problem is also
NP-complete for maximal planar graphs. Our proof of Thm. 2.4 heavily relies on this reduction:
Given a triconnected, cubic planar graph G , we apply the reduction from [Wig82] to obtain
a maximal planar graph G ′. By [Wig82], G ′ contains a Hamiltonian circle if and only if G
does. In the reduction, the vertices of G are replaced by certain widgets. We locally modify
one of these widgets in G ′ to obtain another graph G ′′. Our construction is such that G ′′

definitely has no Hamiltonian circle, however, it has a Hamiltonian path if and only if G ′ has
a Hamiltonian circle. Before we delve into the technicalities of the proof, it should be noted
that we only introduce those widgets from [Wig82] that we need in our construction. For all
widgets and proofs of their properties, the reader is advised to consult [Wig82].

Proof. The widget of type A is the base building block of the construction in [Wig82] and it is
depicted in Fig. 2.22(a) at the top. Wigderson has shown that if a Hamiltonian circle enters
and leaves, i. e., traverses, a type-A widget A, then all vertices of A must be visited before
A can be left. He shows this by enumerating all possibilities of traversing a type-A widget,
where all possibilities use edge e∗ (bold in Fig. 2.22(a)); a fact which we will use later in our
construction. In the following, a type-A widget is symbolized by a shaded triangle with contains
a line (see bottom of Fig. 2.22(a)).

The type-B widget, also from [Wig82], shown in Fig. 2.22(b), is composed of two type-A
widgets A1 and A2. In A1, the vertices b1 and b3 are identified with the vertices a1 and a3 of
the type-A widget, respectively, and, in A2, the vertices b2 and b3 are identified with a1 and
a3, respectively. Wigderson has shown that a Hamiltonian circle traversing a type-B widget
must enter and leave at vertices b1 and b2 and, again, all vertices in A1 and A2 have to be
visited during this traversal. Hence, it is not possible to visit, for instance, b3 and then visit the
remaining vertices of the widget later. A type-B widget is symbolized by a shaded triangle,
where the corners symbolizing b1 and b2 are connected by an arc.

We additionally introduce type-C and -D widgets. A type-C widget is depicted in Fig. 2.22(c)
and it consists of three type-B widgets. A type-C widget C has the property that any Hamiltonian
path in a graph that contains C must have at least one of its end points in C , i. e., C cannot
be traversed completely: Suppose that a Hamiltonian path enters at c1, then it must visit all
vertices of B1 until it reaches center vertex c . Then either B2 or B3 have to be traversed
entirely. W. l. o. g. it traverses B2 and reaches c2. Still, the vertices of B3 have to be visited.
The only possibility (by the properties of type-A and -B widgets) of doing this is to reenter C
at c3 and to visit all vertices of B3 just before center vertex c is reached. At the vertex that is
adjacent to c , the Hamiltonian path ends. The same holds if the Hamiltonian path enters at
c2 or c3. A type-C widget is denoted by a triangle with a dot symbolizing the end point of a
Hamiltonian path.

Two type-C widgets and one type-B widget are arranged to a type-D widget (Fig. 2.22(d)).
We show that both ends of a Hamiltonian path must lie within a type-D widget. The relevant
parts of the widget are C1, C2, and B and the solid edges. We additionally need to introduce
the shaded, dashed edges to obtain a maximal planar graph, where all faces are triangles. This
triangulation step can be done arbitrarily as long as the “solid backbone” of the type-D widgets
stays as shown in Fig. 2.22(d). Let D be a type-D widget. A Hamiltonian path of a graph
containing D must have its one end in C1 and its other end in C2. The type-B widget B
ensures that any Hamiltonian path enters and leaves D at d1 and d2: Since any Hamiltonian
path has to end in C1 and C2, B has to be traversed by a Hamiltonian path, i. e., no endpoint
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Figure 2.22: Widgets needed for the NP-completeness reduction in Thm. 2.4.
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a1 a2

a3

D

Figure 2.23: Type-A widget with e∗ replaced by a type-D widget.

can lie within B. By the property of type-B widgets, the Hamiltonian path has to enter and
leave B at b1 and b2, and during the traversal d3 is visited. Hence, D cannot be entered or left
via vertex d3. The symbol for a type-D widget (bottom of Fig. 2.22(d)) is a shaded triangle
with two pins connected to d1 and d2 that indicate that a Hamiltonian path must have both
its endpoints within the widget.

Let G be a triconnected, cubic graph. The reduction in [Wig82] replaces each vertex of
G by a widget composed of three type-B widgets, where each consists of two type-A widgets.
Afterwards, edges are adequately introduced to obtain the maximal planar graph G ′. Let A
be an arbitrary type-A widget in G ′. We insert a type-D widget D into A as displayed in
Fig. 2.23: Edge e∗ is replaced by D where the endpoints of e∗ are the vertices d1 and d2 of D
and vertex d3 is connected to the central vertex of A. We denote the so obtained graph by G ′′.
Remember that e∗ is the edge that always has to be used when traversing a type-A widget.

Suppose that G contains a Hamiltonian circle. Then, by the construction in [Wig82], G ′

also contains a Hamiltonian circle. This Hamiltonian circle must use edge e∗ in the type-A
widget A of G ′. In G ′′ and the corresponding type-D widget (cf. Figs. 2.22(c) and 2.22(d)),
there is a path p that visits the vertices d2, c ′2, b2, b1, c ′1, and the vertex adjacent to the center
vertex of C2 in order such that p visits all vertices of C2 and B exactly once and ends within
C2. Similarly, there is a path p′ that visits d1, c1, c2, and the vertex adjacent to center vertex
of C1 in order such that p′ visits all vertices of C1 and ends within C1. In G ′′, we split the
Hamiltonian circle at e∗ and obtain a Hamiltonian path which ends in C1 and C2, and visits all
vertices of D exactly once.

Conversely, assume that G ′′ contains a Hamiltonian path. Then, by construction, the
Hamiltonian path must end in C1 and C2. Remember that the Hamiltonian path must leave
D at d1 and d2. Thus, there is a Hamiltonian path in G ′ with endpoints d1 and d2. By
adding edge e∗ to the Hamiltonian path we get a Hamiltonian circle. Altogether, G ′ contains a
Hamiltonian circle and so does G by [Wig82].

We can conclude that finding a Hamiltonian path in a maximal planar graph is NP-hard.
The problem is also in NP: First, we non-deterministically guess a permutation v1, ... , vn of
the vertices and check if vi and vi+1 are adjacent for all 1 ≤ i < n. �
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Theorem 2.5. The decision problem “Is a given graph a deque graph?” is NP-complete.

Proof. First, we non-deterministically guess a deque schedule Σ = (≺,E h,E t) for the given
graph G = (V ,E). This takes O(|V | + |E |) time steps. Then, we use IsDequeLayout in
Alg. 2.2, which runs in time O(|V |+ |E |), to test whether Σ is a deque layout. Hence, the
decision problem is in NP.

For the NP-hardness, let G = (V ,E) be a maximal planar graph. G is a deque graph if
and only if it contains a Hamiltonian path by Thm. 2.2. Thus, the decision problem “Does a
maximal planar graph contain a Hamiltonian path?” reduces to “Is a graph a deque graph?”,
which is then also NP-hard by Thm. 2.4. �

2.3 Linear Cylindric Drawings of Deque-Reducible Data Struc-
ture and Mixed Layouts

LC drawings also help to better understand graph layouts using data structures that support
only a limited set of the deque operations. We call a data structure deque-reducible if it
supports a“sensible”subset of the deque operations. “Sensible”means that at least one insertion
and one removal operation is possible. For instance, by disallowing queue edges, we obtain two
stacks (in a single data structure). Likewise, if only queue edges inserted at the head (tail) are
allowed, we obtain a queue. Forbidding that edges are inserted at the head (tail) leads to an
h-input-restricted (t-input-restricted) deque, and, analogously, forbidding edges removed at the
head (tail) leads to an h-output-restricted (t-output-restricted) deque.
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(a) An LC drawing of an h-
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(c) A (D1,D2,D3)-layout of the
K8, where D1 is a stack, D2 a
queue, and D3 h-input-restricted
deque.

Figure 2.24: LC drawings layouts in deque-reducible data structure and of mixed layouts.

For any deque-reducible data structure D, we call a deque schedule ΣD = (≺,E h,E t)

D-schedule if ΣD only uses the operations allowed by D. If ΣD is additionally a deque layout, it
is called D-layout, and a graph that has a D-layout is called D-graph. We generalize Lem. 2.1
to deque-reducible data structures:

Corollary 2.5. Let D be a deque-reducible data structure and ΣD be a D-schedule with
corresponding LC rotation system ΛD := ΣD. ΣD is a D-layout if and only if ΛD is planar.
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Fig. 2.24(a) shows a plane LC drawing that corresponds to an h-output-restricted deque
layout. There, no edge (u, v) enters v from above the front line as no edge is removed at
the head of the deque. Note that the LC drawing can be flipped horizontally and vertically
without destroying planarity. The first corresponds to reversing the linear layout, the latter to
swapping the roles of head and tail; and with both operations the rotation systems are inverted
(cf. Sect. 1.1.7). From this observation, we obtain:

Corollary 2.6. For any graph G , the following statements are equivalent:

(i) G is an h-input-restricted deque graph.

(ii) G is a t-input-restricted deque graph.

(iii) G is an h-output-restricted deque graph.

(iv) G is a t-output-restricted deque graph.

Suppose we are given a set D1, ... ,Dk of k ≥ 1 deque-reducible data structures and
a graph G = (V ,E). A partition of the edges E = E1 ∪̇ E2 ∪̇ ... ∪̇ Ek together with a
sequence Σi = (≺,E h

i ,E t
i ) for i = 1, ... , k , where Σi is a Di -schedule of G = (V ,Ei), is called

(D1, ... ,Dk)-layout or, generally, mixed layout, if each Σi is a Di -layout. In other words, G
is partitioned into k layers such that layer i allows for a Di -layout. Note that we assume the
same linear layout for all Σi .

Corollary 2.7. Let D1, ... ,Dk be k ≥ 1 deque-reducible data structures and let G = (V ,E)

be a graph. E = E1 ∪̇ ... ∪̇ Ek together with Σ1, ... , Σk is a (D1, ... ,Dk)-layout of G if and
only if each LC rotation system Λi := Σi is planar.

Hence, a graph has a (D1, ... ,Dk)-layout if and only if we can partition its edge set such
that each resulting subgraph has a plane LC drawing with the respective restrictions. We can
conveniently draw such a mixed layout by stacking the fundamental polygon representations of
the corresponding LC drawings on top of each other. Fig. 2.24(b) shows two plane LC drawings,
where the lower corresponds to a queue layout (D1) and the upper to a stack layout (D2). The
displayed graph is the complete graph K6 with six vertices, where each edge is either processed
in D1 or in D2. As this drawing is plane, we can conclude that the K6 has a stack-queue layout.
Another example is the (D1,D2,D3)-layout of the complete graph K8 with eight vertices in
Fig. 2.24(c), where D1 is a stack, D2 a queue and D3 an h-input-restricted deque.

2.4 Queue Graphs

In this section, we apply our findings from Sect. 2.2 to queue graphs. As discussed in Sect. 2.3,
the queue can be seen as a restricted deque, i. e., only queue edges inserted at a particular side,
say, the head are allowed.

Definition 2.8 (Queue Schedule, Layout and Graph). A deque schedule Σ = (≺,E h,E t)

is called queue schedule if for all edges e = (u, v):

e ∈ E h(u) ∧ e ∈ E t(v) .

We call a queue schedule queue layout if IsDequeLayout in Alg. 2.2 returns true, i. e., it is a
deque layout. A graph is called queue graph if it has a queue layout.
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All of the results in this section equally apply to the symmetric case of the queue where the
edges are inserted at the tail and removed at the head. Recall, a deque schedule is a deque
layout if and only if the corresponding LC rotation system is planar (Lem. 2.1). From this, we
obtain the following two results:

Corollary 2.8. A queue schedule Σ is a queue layout if and only if the corresponding LC
rotation system Λ := Σ is planar.

Corollary 2.9. A graph is a queue graph if and only if it has a plane LC drawing such that all
edges e = (u, v) enter u from above and v from the below the front line.

We start with a comparison of different ways to visualize queue layouts.

2.4.1 Linear Cylindric Drawings of Queue Graphs

Assume we are given a linear layout ≺ of a graph G = (V ,E) and we want to find out if G
has a queue layout according to ≺, i. e., there is a queue layout Σ = (≺,E h,E t) for some E h

and E t. Note that, given the linear layout, the order in which the edges must be inserted and
removed at each vertex v , i. e., the total orders of E h(v) and E t(v), is uniquely determined in
a queue layout. For instance, if e1 = (u, v1) and e2 = (u, v2) are inserted at u with v1 ≺ v2,
then e1 must be inserted before e2.

In the following, we consider the graph displayed in Fig. 2.25(a) where the vertices are
labeled according to the linear layout. To give away the answer, the linear layout allows for
a queue layout if we remove the dashed edge. However, this is not directly deducible from
Fig. 2.25(a). To see that the dashed edge is the culprit, we could, in principle, try to process
the edges in the queue and see if this works; a rather tedious and mechanical, not to say,
error-prone task. Or, we follow the spirit of this section and appropriately draw the graph to
see if the linear layout works for the queue layout.

Heath and Rosenberg have characterized queue graphs as the arched leveled-planar graphs
[HR92]. These graphs permit an arched leveled-plane drawing as the one shown in Fig. 2.25(b),
where we ignore the dashed edge for the moment. There, the vertices are placed on horizontal
levels, numbered from 1 to 3 in the example. The order of the vertices on each level and from
bottom to top is the linear layout. Edge curves are only allowed between adjacent levels, e. g.,
edge (1, 4), or between the leftmost vertex on a level and vertices to the right on the same
level, e. g., edge (4, 6). The latter edge curves are called arches. Note that all edges that
are drawn solid in Fig. 2.25(b) respect these rules. The dashed edge connects vertex 2 in the
middle of level 1 with vertex 3 which is rightmost on the same level and this is not allowed.
Though, introducing an invalid arch, an edge that overleaps a level, or an edge that causes a
crossing in an arched leveled-planar graph does not necessarily imply that the linear layout does
not allow for a queue layout. For instance, by redistributing the vertices among the levels, a
valid arched leveled-plane drawing is in principle still possible. This, however, is not directly
visible in Fig. 2.25(b).

A drawing where it is, at least in principle, directly possible to see whether an edge destroys
a queue layout is a linear drawing as shown in Fig. 2.25(c). As with LC drawings, the vertices
are placed on a horizontal line (dotted) in order of the linear layout and all edge curves enter
their endpoints from above this line. For a queue layout, no two edges must properly nest
as those cannot be processed in the queue. Generally, two edges e = (u, v) and e ′ = (u′, v ′)
properly nest if u ≺ u′ ≺ v ′ ≺ v . For instance, edge (2, 3) is properly nested in (1, 4) and, thus,
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Figure 2.25: Several ways of displaying the same queue graph.

(2, 3) destroys the queue layout. A linear drawing has the drawback of many edge crossings: In
general, two edges (u, v) and (u′, v ′) must cross if and only if u ≺ u′ ≺ v ≺ v ′, which is called
twist [HR92]. A twist reflects first in, first out principle of the queue and, thus, a linear drawing
of a queue layout intrinsically must contain many crossings. This makes it a cumbersome task
to find properly nesting edges that destroy the queue layout.

The spirit of this chapter is that the ability to layout a graph in a data structure corresponds
to planarity. By applying Cor. 2.8, we obtain the LC drawing in Fig. 2.25(d). Neither of the
solid edges cross and, consequently, these edges can be processed in the queue. In contrast,
the dashed edge (2, 3) crosses edges (1, 4) and (1, 5), and we have found our culprits. As two
edges cannot be processed in the queue if and only if they cross, we can conclude that removing
either edge (2, 3), or both edges (1, 4) and (1, 5) yields a plane LC drawing and, thus, a queue
layout. Note that this information is also not directly deducible from the arched leveled-plane
drawing in Fig. 2.25(b). An LC drawing, thus, concisely incorporates all information to decide
whether a linear layout allows for a queue layout.

2.4.2 Proper Leveled Planar Graphs and Bipartite Queue Graphs

In [AG11], we have studied the relationship of queue graphs with a close relative of arched
leveled-planar graphs, namely, the proper leveled-planar graphs. A graph is proper leveled-planar
if it has an arched leveled-plane drawing without arches. Hence, Heath and Rosenberg called the
arched leveled-planar graphs also “almost [proper] leveled-planar” [HR92]. Proper leveled-planar
graphs naturally arise and play an important role in graph drawing [DBN88, STT81]. An
example of a proper leveled-plane drawing is shown in Fig. 2.26(d).



56 Chapter 2. Deque Layouts and Linear Cylindric Drawings

C2
C1

C4

C5C3

(a) Arched leveled-plane drawing of a bi-
partite queue graph.

C2
C1

C4

C5C3

(b) Removing the arches yields a proper
leveled-plane drawing.

C1

C2 C3

C4 C5

(c) The connected
components.

1

2

3

4

5

6

C2

C1

C4

C5

C3

(d) Resulting proper leveled-plane draw-
ing.

Figure 2.26: Construction to obtain a proper leveled-plane drawing from an arched leveled-plane
drawing of a bipartite graph

A proper leveled-planar graph is always bipartite and, thereby, every proper leveled-planar
graph is a bipartite queue graph. In fact, the converse is also true as we have shown in [AG11].
The idea of the proof is as follows: Let G = (V ,E) be a bipartite, connected queue graph with
the arched leveled-plane drawing shown in Fig. 2.26(a). We assume that the arches are directed
away from the leftmost vertex. First, we remove all arches (Fig. 2.26(b)) which partitions G into
(connected) components C1, C2, C3, C4, and C5 (on shaded background). Each component is
drawn proper leveled-plane and we reuse these drawings in our construction. The idea is to
rearrange the relative positions of the components such that the arches point from one level to
an adjacent level. This, however, is only possible if there is no arch with both endpoints in
the same component. Note that such an arch, which connects two vertices on the same level,
would imply a circle of odd length in G which is a contradiction to G being bipartite. Next
we obtain a proper leveled-plane drawing of the component graph (Fig. 2.26(c)), where the
vertices are the components interconnected by the arches. In [AG11], we have shown that such
a drawing always exists and we use it to obtain the desired relative positions of the components:
We start with C1 and place its lowest vertex rightmost and on level 1 (cf. Fig. 2.26(d)). The
lowest vertices of C2 and C3 are positioned on level 2 in order and sufficiently wide apart from
C1 and from each other to ensure planarity. Then, the arches from C1 to C2 and C3 point
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from level 1 to 2 and cause no crossings. With the help of Fig. 2.26(c), we proceed in this
manner to obtain a proper leveled-plane drawing of G .

Proposition 2.6 ([AG11]). A graph is proper leveled-planar if and only if it is a bipartite
queue graph.

Heath and Rosenberg have also shown that deciding whether a graph is a proper leveled-
planar graph is NP-complete [HR92].

Proposition 2.7 ([AG11]). Deciding whether a graph is a queue graph is NP-complete even
for bipartite graphs.

2.4.3 Duals of Queue Graphs

In Sect. 2.2.4.2, we have studied the duals of ≺-augmented deque graphs, i. e., planar graphs
with a Hamiltonian path according to the linear layout ≺. We have found out that if we
connect the endpoints of the Hamiltonian path via its dual, we “cross” exactly the queue edges
(Thm. 2.3). By applying these ideas to queue graphs, it turns out that ≺-augmented queue
graphs are “selfdual”, i. e., their duals are also ≺-augmented queue graphs. In the following, we
use a slightly modified version of Def. 2.7.

Definition 2.9. Given a linear layout ≺ and a graph G = (V ,EQ), the exuberant ≺-
augmentation G≺ = (V ,EQ ∪̇ EP) of G is a multigraph that is obtained by introducing
edges EP with:

EP := {{u, v} | u, v ∈ V ∧ v is the immediate successor of u in ≺} .

Note that the edge set of G≺ is the disjoint union of EQ and EP , i. e., we introduce an edge
between a vertex and its immediate successor regardless of whether it is already in EQ . Hence,
in contrast to ≺-augmentations, the exuberant ≺-augmentation is a multigraph. Since we only
deal with exuberant ≺-augmentations in the following, we simply speak of ≺-augmentations
for convenience. Also for convenience and as we deal with queue graphs, we say that EP is the
Hamiltonian path and EQ are the queue edges of G≺. By Thm. 2.3, in a ≺-augmentation of a
deque graph, we can connect the endpoints of the resulting Hamiltonian path via the dual and,
thereby, cross exactly the queue edges. In a queue graph G = (V ,EQ), all edges are queue
edges, hence, in its ≺-augmentation, all edges EQ are crossed when connecting the endpoints
of the Hamiltonian path. We specialize Thm. 2.3 for queue graphs as follows.

Lemma 2.4. Let G = (V ,EQ) be a queue graph with queue layout Σ = (≺,E h,E t) and
≺-augmentation G≺ = (V ,EQ ∪̇ EP). Denote by v1 and vn the first and last vertex of the
Hamiltonian path EP , respectively. Then, G≺ has an embedding with dual G ∗≺ = (F≺,E ∗Q ∪̇E ∗P)

with the following properties: There exist faces f1, fp ∈ F≺, where vn is incident to f1 and v1 is
incident to fp, such that there is a simple path f1  fp in G ∗≺ \ E ∗P that contains all edges E ∗Q .

Proof. Let Σ≺ be the ≺-augmentation of Σ, i. e., Σ≺ is a deque schedule of G≺ that
equals Σ for all edges in EQ and all edges in EP are stack edges processed at the head. Let
Λ≺ = (≺,E⊥,E>) be the LC rotation system corresponding to Σ≺. By Lem. 2.1, we know
that Λ≺ is planar, hence, we obtain an embedding of G≺ with dual G ∗≺ = (F≺,E ∗Q ∪̇ E ∗P).
Further, G≺ contains a Hamiltonian path EP with first vertex v1 and last vertex vn. We apply
Thm. 2.3, where we choose f1 and fp such that all edges in EQ that are incident to v1 enter v1
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from above and all edges in EQ incident to vn enter vn from below. Hence, there is a simple
path Q∗ = f1  fp in G ∗≺ \ E ∗P that contains each edge in E ∗Q . �

Given a ≺-augmentation G≺ = (V ,EQ ∪̇ EP) of a queue graph, we say that an embedding
of G≺ is an augmented queue embedding (with Hamiltonian path EP and queue edges EQ) if it
fulfills the properties of Lem. 2.4. Note that we can construct an augmented queue embedding
by following the proof of Lem. 2.4.

Corollary 2.10. A graph G = (V ,EQ) is a queue graph if and only if it is a spanning subgraph
of a ≺-augmentation G≺ = (V ,EQ ∪̇ EP) such that G≺ has an augmented queue embedding.

Proof. ⇒: Follows from Lem. 2.4.
⇐: The augmented queue embedding of G≺ and the Hamiltonian path induce a deque

layout Σ≺ = (≺,E h,E t) where all edges in EP are stack and all edges in EQ are queue edges.
Removing all edges EP from G≺ yields G , which is then a queue graph. �

Figs. 2.27 and 2.28 show the augmented queue embedding of the ≺-augmentation G≺ =

(V ,EQ ∪̇EP) (solid) and its dual G ∗≺ = (F ,E ∗Q ∪̇E ∗P) (dashed) of the queue graph in Fig. 2.25(d)
on page 55 (without the dashed edge). Note that all edges of EP enter their endpoints from
above, whereas all edges in EQ change sides. Also observe that G≺ is a multigraph as it
contains the edge (6, 7) twice. Interestingly, the dual has the same structure as the primal:
The duals of EQ , denoted by E ∗Q , are a Hamiltonian path Q∗ = f1, ... , f10 in G ∗≺. Let ≺∗
be the linear layout of G ∗≺ in order of Q∗, e. g., fi ≺∗ fj ⇔ i < j for all 1 ≤ i , j ≤ 10 in
Figs. 2.27 and 2.28. The duals of EP , denoted by E ∗P , behave like queue edges: For instance,
the dual of (4, 5) ∈ EP is edge (f3, f8) which enters f3 from below and f8 from above. Thus,
the embedding of G ∗≺ is an augmented queue embedding with Hamiltonian path E ∗Q and queue
edges E ∗P . Put differently, Hamiltonian path edges and queue edges swap their roles when going
from the primal to the dual. In fact, this characterizes augmented queue embeddings:

Theorem 2.6. Let G = (V ,EQ ∪̇ EP) be an embedded graph such that EP is a Hamiltonian
path. Further, let G ∗ = (F ,E ∗Q ∪̇ E ∗P) be the dual of G . The following two statements are
equivalent:

(i) The embedding of G is an augmented queue embedding, where EP is the Hamiltonian
path and EQ are the queue edges.

(ii) The embedding of G ∗ is an augmented queue embedding, where E ∗Q is the Hamiltonian
path and E ∗P are the queue edges.

Proof. (i) ⇒ (ii): Let v1, ... , vn be the Hamiltonian path EP and ≺ be the respective linear
layout. As the embedding of G is an augmented queue embedding, there exist two faces f1 and
fp such that vn is incident to f1, v1 is incident to fp, and there is a simple path Q∗ = f1  fp
in G ∗ \ E ∗P that contains all edges E ∗Q (Lem. 2.4).

First, we show that Q∗ is a Hamiltonian path of G ∗. To every face f ∈ F there is at least
one edge of E ∗Q incident. For contradiction, suppose that this is not the case. Then, there
is a face f with incident edges E ∗f such that E ∗f ⊆ E ∗P . As the dual is connected, E ∗f 6= ∅.
E ∗f is a cut-set and, hence, the primal edges of E ∗f form a simple circle in G that consists of
Hamiltonian path edges, which is a contradiction. As Q∗ contains all edges in E ∗Q , it visits all
faces at least once. Further, Q∗ is also simple and, thus, a Hamiltonian path of G ∗ from f1 to
fp.
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Figure 2.28: Fundamental polygon representation of the augmented queue embedding and its
dual (dashed) of the queue graph in Fig. 2.25(d) (without the dashed edge).

Now, let Λ∗ = (≺∗,E ∗⊥,E ∗>) be the LC rotation system of G ∗ as induced by the
Hamiltonian path Q∗. As the rotation system of f1 and fp can be split at an arbitrary point,
we assume that all edges incident to f1 enter f1 from above and all edges incident to fp enter
fp from below. Let Σ∗ be the deque schedule that corresponds to Λ∗. Due to planarity and
Thm. 2.3, Λ∗ is planar and Σ∗ is a deque layout. What is left to show is that all edges in E ∗P
are queue edges in Σ∗ that are inserted at the head and removed at the tail.

As in the proof of Thm. 2.3, we assume that we are given a simultaneous drawing of G
and G ∗, i. e., each of G and G ∗ is drawn plane according to the given LC rotation systems, all
faces are placed within the regions to which they correspond, and such that each primal edge e
crosses its dual e∗ exactly once. Further, for every edge e ∈ EP ∪ EQ , we denote by l(e) and
r(e) the endpoints of e with v1 � l(e) ≺ r(e) � vn. That is, if e ∈ EP , then r(e) is the
immediate successor of l(e) on the Hamiltonian path EP , and if e ∈ EQ , then e is inserted at
l(e) and removed at r(e) in the queue layout of G . Analogously, for every edge e∗ ∈ E ∗P ∪ E ∗Q ,
l(e∗) and r(e∗) are the faces to which e is incident with f1 �∗ l(e∗) ≺∗ r(e∗) �∗ fp. By
definition, all edges incident to f1 enter f1 from above and, hence, are inserted at the head in
Σ∗. Likewise, all edges incident to fp are removed at the tail.

Let e∗ ∈ E ∗P be an edge such that f1 ≺∗ l(e∗) ≺∗ r(e∗) ≺∗ fp. In the remainder of the
proof, we show that e∗ enters l(e∗) from above and r(e∗) from below the Hamiltonian path E ∗Q .
The situation we obtain is sketched in Fig. 2.29, where again the dual edges are drawn dashed
for clarity. The strategy of the proof is as follows: Consider the shaded region in Fig. 2.29.
This region forms a “tube” in which e∗ must lie and it guarantees that e∗ enters its endpoints
from the correct sides. We start by defining the elements that form the border of the “tube”.

As l(e∗) ≺∗ r(e∗) there is an edge e∗1 ∈ E ∗Q on the Hamiltonian path of the dual such that
l(e∗) �∗ l(e∗1) ≺∗ r(e∗1) �∗ r(e∗). The primal of e∗1 is denoted by e1, where, by assumption,
e1 enters l(e1) from above and r(e1) from below. Note that e1 is a queue edge in G . For the
endpoints of e1, we show that:

v1 � l(e1) � l(e) ≺ r(e) � r(e1) � vn . (2.4)
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First, e1 crosses its dual e∗1 between l(e∗) and r(e∗) on the Hamiltonian path of G ∗ since
l(e∗) �∗ l(e∗1) ≺∗ r(e∗1) �∗ r(e∗). Second, e1 enters l(e1) from above and r(e1) from below
by assumption. Hence, if l(e) ≺ l(e1) or r(e1) ≺ r(e), then e1 would cross e∗ which is not
possible as e1 is not the primal of e∗. Note that this crossing exists independently of the sides
from which e∗ enters its endpoints.

e2

e1

e3
e∗

v1 vn

e

f1 fp

e∗3 e∗1 e∗2

x1 x2x3

R⊥

R>

Figure 2.29: Situation obtained in the proof of Thm. 2.6.

Further, as r(e∗) ≺∗ fp, there is an edge e∗2 ∈ E ∗Q such that r(e∗) �∗ l(e∗2) ≺∗ r(e∗2) �∗ fp.
For the endpoints of the primal e2 of e∗2 , we show that:

v1 � l(e2) � l(e1) , l(e2) ≺ r(e2) � l(e) . (2.5)

The edge curves of e1 and the edges on the Hamiltonian path between l(e1) and r(e1) enclose
a region R in the drawing, where, w. l. o. g., fp is situated within R. By definition, the endpoints
of e∗2 lie between r(e∗) and fp on the Hamiltonian path of the dual. Thus, the position of the
crossing of e2 with e∗2 is between r(e∗) and fp and, in particular, also between the crossing of
e∗1 with e1 and the position of fp. Also remember that vertex v1 is incident to fp. For these
reasons and due to the planarity of the drawing of G , the inner part of the edge curve of e2 lies
completely within R. Further, e2 enters l(e2) from above and r(e2) from below and, hence,
v1 � l(e2) � l(e1) and l(e2) ≺ r(e2) � r(e1). What is left to show is r(e2) � l(e). For this,
consider the crossing of e∗ with e. If l(e) ≺ r(e2), then e2 would cross e∗ which is not possible
as e∗ is not the dual of e2. Hence, Eq. (2.5) follows.

By symmetric arguments, there is an edge e∗3 ∈ E ∗Q such that f1 �∗ l(e∗3) ≺∗ r(e∗3) �∗ l(e∗),
where the primal e3 of e∗3 has the properties:

r(e) � l(e3) ≺ r(e3) , r(e1) � r(e3) � vn . (2.6)

Consider the bounded region R⊥ enclosed by the curve that consists of the following
elements of the drawing (shaded and above the front line in Fig. 2.29):

I The edge curves on the Hamiltonian path EP of G from l(e1) to l(e3), where l(e1) �
l(e) ≺ r(e) � l(e3) by Eqs. (2.4) and (2.6).
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I The part of the edge curve of e3 from l(e3) to the crossing of e3 with e∗3 . We denote
this crossing point by x3.

I The edge curves of the Hamiltonian path E ∗Q of G ∗ from x3 to the crossing point x1
between e1 and e∗1 .

I The part of the edge curve of e1 from x1 to l(e1), which closes the curve.

Additionally, we define the bounded region R> which is enclosed by the following elements of
the drawing (shaded and below the front line in Fig. 2.29):

I The edge curves on the Hamiltonian path EP of G from r(e2) to r(e1), where r(e2) �
l(e) ≺ r(e) � r(e1) by Eqs. (2.4) and (2.5).

I The part of the edge curve of e1 from r(e1) to the crossing point x1 of e1 with e∗1 .

I The edge curves of the Hamiltonian path E ∗Q of G ∗ from x1 to the crossing point x2 of
e2 with e∗2 .

I The part of the edge curve of e2 from x2 to r(e2), which closes the curve.

Note that due to the properties of e1, e2, and e3 both curves we have just constructed are
non-selfintersecting and, thus, R⊥ and R> are well defined.

After these prearrangements, we are finally ready to show that e∗ must enter l(e∗) from
above and r(e∗) from below. Remember, the idea of the construction is that the regions R⊥

and R> form a “tube” which forces the edge curve of e∗ to enter its endpoints from the correct
sides. First note that the crossing point of e with e∗ lies at the boundaries of both R⊥ and R>

as l(e1) � l(e) ≺ r(e) � l(e3) and r(e2) ≺ l(e) ≺ r(e) � r(e1), respectively. Also note that
l(e∗) is at the boundary of R⊥ and r(e∗) at the boundary of R>. Hence, all inner points of the
edge curve of e∗ are within R⊥ ∪ R> as otherwise e∗ cannot cross its primal e. Consequently,
e∗ enters l(e∗) from within R⊥ and, by the construction of R⊥, e∗ must enter l(e∗) from
above. Similarly, e∗ enters r(e∗) from within R> and, thus, from below. We can conclude that
e∗ is a queue edge in the deque schedule Σ∗ inserted at the head and removed at the tail.

For an edge e∗ with endpoint f1, an analogous reasoning shows that e∗ is removed at the
tail, and if e∗ has endpoint fp, it is inserted at the head.

(ii) ⇒ (i): The proof is equal to before with swapped roles of primal and dual. �

From Cor. 2.10 and Thm. 2.6, we obtain:

Corollary 2.11. For any graph G = (V ,EQ), the following statements are equivalent.

(i) G is a queue graph.

(ii) G is a spanning subgraph of an exuberant ≺-augmentation G≺ = (V ,EQ ∪̇EP) such that
G≺ has an augmented queue embedding with Hamiltonian path EP and queue edges EQ .

(iii) G is a spanning subgraph of an exuberant ≺-augmentation G≺ = (V ,EQ ∪̇ EP) where
G≺ has an embedding such that the embedding of its dual G ∗≺ = (F ,E ∗Q ∪̇ E ∗P) is an
augmented queue embedding with Hamiltonian path E ∗Q and queue edges E ∗P .



2.4. Queue Graphs 63

Suppose we are given a graph G = (V ,EQ ∪̇ EP) endowed with an augmented queue
embedding. By Thm. 2.6, we know that G ∗ = (F ,E ∗Q ∪̇E ∗P) is also endowed with an augmented
queue embedding with Hamiltonian path Q∗. Not only is Q∗ Hamiltonian, it is also Eulerian on
E ∗Q as each edge of E ∗Q is traversed exactly once. Now, suppose we remove an edge e ∈ EP from
G . In the dual G ∗, this is equivalent to contracting the dual edge e∗ of e, i. e., the endpoints of
e∗ are identified [Eve12, pp. 149]. In the obtained dual graph, Q∗ is not Hamiltonian anymore
as one face is visited twice. However, Q∗ is still Eulerian and it stays so after removing all
edges of EP from G . The obtained graph G \ EP is a queue graph and is endowed with a
planar LC rotation system that corresponds to a queue layout.

Corollary 2.12. If G is a queue graph with queue layout Σ such that G is embedded according
to the corresponding LC rotation system Λ := Σ, then G ∗ contains a Eulerian path.

The converse of Cor. 2.12 is not true for the following reasons: Deciding whether a bipartite
graph is a queue graph is NP-complete by Prop. 2.7, and so is deciding whether a bipartite
and planar graph is a queue graph. Hence, there is at least one planar bipartite graph G which
is no queue graph. As G is bipartite, the dual of any of its embeddings contains a Eulerian
cycle and, hence, a Eulerian path.

We wrap this section up with an interpretation of Thm. 2.6: Consider again the graph G =

(V ,EQ ∪̇ EP) and its augmented queue embedding in Fig. 2.28. In the corresponding queue
layout, only the edges in EQ are processed. Denote by Ci the input of vertex i and by C8 the
output of vertex 7. For the example, we obtain:

C1 = () , C2 = ((1, 5), (1, 4), (1, 3)) ,

C3 = ((2, 5), (1, 5), (1, 4), (1, 3)) , C4 = ((3, 5), (2, 5), (1, 5), (1, 4)) ,

C5 = ((4, 6), (4, 5), (3, 5), (2, 5), (1, 5)) , C6 = ((5, 7), (4, 6)) ,

C7 = ((6, 7), (5, 7)) , C8 = () ,

By Thm. 2.6, we know that the dual of every queue edge in the primal belongs to the Hamiltonian
path of the dual. For instance, the dual of (1, 4) connects f9 with f8, and the dual of (1, 5)

connects f8 with f7. Hence, edges (1, 4) and (1, 5) “frame” f8 in the embedding. Intriguingly,
edge (1, 4) and (1, 5) are also adjacent in the queue, e. g., in C2. We rewrite the contents of
the queue such that they incorporates the faces as follows:

C′1 = (f10) ,

C′2 = (f7, (1, 5), f8, (1, 4), f9, (1, 3), f10) ,

C′3 = (f6, (2, 5), f7, (1, 5), f8, (1, 4), f9, (1, 3), f10) ,

C′4 = (f5, (3, 5), f6, (2, 5), f7, (1, 5), f8, (1, 4), f9) ,

C′5 = (f3, (4, 6), f4, (4, 5), f5, (3, 5), f6, (2, 5), f7, (1, 5), f8) ,

C′6 = (f2, (5, 7), f3, (4, 6), f4) ,

C′7 = (f1, (6, 7), f2, (5, 7), f6) ,

C′8 = (f1) .



64 Chapter 2. Deque Layouts and Linear Cylindric Drawings

Now, every edge in the queue has two faces to both of its sides which are exactly the same as
in the embedding. We further modify the contents by removing all primal edges:

C∗1 = (f10) , C∗2 = (f7, f8, f9, f10) , C∗3 = (f6, f7, f8, f9, f10) ,

C∗4 = (f5, f6, f7, f8, f9) , C∗5 = (f3, f4, f5, f6, f7, f8) , C∗6 = (f2, f3, f4) ,

C∗7 = (f1, f2, f6) , C∗8 = (f1) .

Now, the data items in the queue are the faces. What we have now obtained is what we coin
dual queue layout, which is the dual variant of a queue layout. In a dual queue layout, instead
of the edges, the faces are processed and there is an edge between two faces if they are adjacent
in the queue. For the example, this works as follows: Initially, we start with face f10 in the
queue. Remember that in the primal, edges (1, 3), (1, 4), and (1, 5) are inserted at vertex 1

to obtain C2. In the dual queue layout, this means that we insert faces f9, f8, and f7 at the
head in order which yields C∗2 . Inserting (2, 5) in the primal corresponds to inserting f6 in the
dual. Removing edge (1, 3) at vertex 3, corresponds to removing face f10 at the tail in the
dual queue layout. Note that edge (1, 3) is at the boundary of faces f9 and f10 and now, in C∗4 ,
f9 is at the tail of the queue. We can proceed in this manner until we obtain the queue with
content C∗8 = (f1). Note that in contrast to (primal) queue layouts, we start and finish with
a queue that contains a single face. These faces are the left- and rightmost faces in an LC
embedding.

By using dual queue layouts, we can immediately conclude that the dual graph must contain
a Hamiltonian path: First, every pair of faces that is adjacent in the queue is connected by an
edge. Second, all faces are processed in the queue in a first in, first out manner which yields
the Hamiltonian path. In our outlook to possible future work, we generalize dual queue layouts
to dual deque layouts (Sect. 2.6.3).
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2.5 Characterizing Planarity by the Splittable Deque

Fig. 2.30 shows a maximal planar graph with no Hamiltonian path [Hel07] and, therefore, it is
no deque graph. This raises the following question: How can we extend the deque such that
it characterizes all planar graphs? In the following, we investigate this question and find a
remarkably simple answer: We need to split the deque into smaller deques. For this, we define
the splittable deque and prove the following:

Theorem 2.7. A graph is planar if and only if it is a splittable deque graph.

Remember, we only deal with connected graphs and Thm. 2.7 canonically extends to
unconnected graphs.

Figure 2.30: A maximal planar graph with no Hamiltonian path [Hel07].

The graph G = (V ,E) from Fig. 2.30 may contain no Hamiltonian path itself, however, it
contains an “almost-Hamiltonian” path p (drawn bold in Fig. 2.31(a)) that falls short of only
one vertex. Path p induces a subgraph Gp = (Vp,Ep), where Vp contains all vertices on p and
Ep are all edges from E for which both endpoints are on p. Gp is depicted in Fig. 2.31(b).
Path p is Hamiltonian in Gp and, hence, Gp is a deque graph by Thm. 2.2. In general, any path
in an embedded graph induces a deque graph. This insight is one idea behind the splittable
deque: As long as we follow a path, we can process all edges in the deque according to the
planar rotation system.

Consider Fig. 2.31(c), which again shows path p from vertex vs to ve1 (bold). Additionally,
at vertex vc , path p branches (dashed) to vertex ve2 which is not visited by p. Starting with an
empty deque at vertex vs , we process all edges in the deque, even the ones incident to ve2 , until
we branch at vc . This leads to the second idea behind the splittable deque: At such a branching
point, the deque is split into two pieces such that one piece contains all edges removed on the
path from vc to ve1 , and the other piece contains all edges removed at ve2 . Generally, we have
to allow any number of such branching points, and the structure underlying these paths and
branching points is a special kind of spanning tree, namely, a depth-first search tree.

2.5.1 Depth-First Search Trees

For a connected graph G = (V ,E), a depth-first search tree or DFS tree T = (V ,ET )

is a rooted, directed spanning tree of G obtained from a DFS traversal starting at a root
vertex r ∈ V [Eve12]. We assume that the tree edges ET are directed from the parent to its
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(a) An “almost-Hamiltonian”
path p in the graph from
Fig. 2.30.

(b) The subgraph as induced
by path p, which is a deque
graph by Thm. 2.2.

vc

vs

ve2 ve1

(c) All edges can be processed
in the deque along the path
starting at vs until a branch
(vc) is reached. There the
deque must be split.

Figure 2.31: A path in the planar graph from Fig. 2.30 induces a deque layout. At a branching
point, the deque must be split.

children. By u → v we denote that (u, v) ∈ ET , and by u
+→ v , we denote a dipath of tree

edges (at least one) from u to v . Vertex u is an ancestor of v and v is a descendant of u. By
u ∗→ v , we denote that u = v or u

+→ v . For convenience, we combine “→”, “
+→ ”, and “ ∗→” for

compound dipaths in T , e. g., p = r
+→ v → w ∗→ x is obtained from the successive traversal

of dipath r
+→ v with r 6= v , edge v → w , and dipath w ∗→ x . A vertex with no children is

called leaf. For a vertex v , we call the subgraph of T that is induced by v and all dipaths
to descendants of v the subtree of v . A dipath r ∗→ v from the root r to a leaf v is called
root-to-leaf dipath. T partitions E into tree edges ET and forward edges F . For each forward
edge {u, v} ∈ F , there is a dipath u

+→ v where u is an ancestor of v .

For our purposes, we use the DFS algorithm shown in Alg. 2.4 which computes a DFS
tree along with the DFS numbers [Eve12]. DFS uses the recursive procedure DFSVisit for the
DFS traversal. The DFS number D(v) is the time instant, starting with 1, when a vertex v
is encountered first by DFSVisit. D(v) is initialized to 0 for each vertex v (line 3) which
indicates that v has not been visisted by DFSVisit. Additionally, and for reasons that become
clear later, DFS computes D+(v) which is the next DFS number after all vertices in the subtree
of v have been visited (cf. line 14). The running time of Alg. 2.4 is in O(|V |+ |E |).

A topological sorting of a DFS tree T yields a linear layout ≺T . We call ≺T linear layout
induced by T . For instance, the DFS numbering D corresponds to a topological sorting of T
with u ≺T v if and only if D(u) < D(v).

Fig. 2.33(a) on page 71 shows a graph along with a possible DFS tree, where the tree edges
are drawn bold and vertex 1 is the root. The vertices are labeled with their DFS number. A
more convenient drawing of the graph and its DFS tree is shown in Fig. 2.33(c) on page 71.
There, the DFS tree is drawn hierarchically from top to bottom with the root at the top and
the leaves at the bottom.



2.5. Characterizing Planarity by the Splittable Deque 67

Algorithm 2.4. DFS

Input: graph G = (V ,E)

Output: DFS tree T = (V ,ET ) and DFS numbers D and D+

1 d ← 1

2 global d
3 foreach v ∈ V do D(v) ← 0 and D+(v) ← 0

4 r ← any vertex v ∈ V
5 ET , D, D+ ← DFSVisit(r , ∅,D,D+)

6 return T = (V ,ET ), D, D+

7 Procedure DFSVisit(v ,ET ,D,D+)

8 D(v) ← d
9 d ← d + 1

10 foreach w ∈ {w ∈ V | w is adjacent to v} do
11 if D(w) = 0 then w has not yet been visited
12 ET ← ET ∪ {(v ,w)}
13 ET , D, D+ ← DFSVisit(w ,ET ,D,D+)

14 D+(v) ← d
15 return ET , D, D+

2.5.2 Splittable Deque Layouts

Next, we introduce a split operation to the deque and, thereby, obtain the splittable deque as
an (abstract) data structure. We then define how a layout of a graph in a splittable deque
looks like.

2.5.2.1 The Splittable Deque Data Structure

The splittable deque (SD) supports all deque operations and additionally can be split. As with
the deque, the content of an SD is given by a tuple C = (e1, ... , ek), where e1 is at the head
and ek at the tail. Again, () denotes the empty content. Data items can be inserted and
removed at the head and the tail with the deque operations as defined in Sect. 2.2.2.1.

Given two SD contents C = (e1, ... , ek) and C′ = (e ′1, ... , e ′k ′) with k , k ′ ≥ 0, we denote
by C ◦ C′ the concatenation of C with C′, where C ◦ C′ := (e1, ... , ek , e ′1, ... , e ′k ′). Note that ◦
is associative. The split operation divides C into ` pieces C1, ... , C`. Each of Ci is again the
(possibly empty) content of an SD where:

C = C1 ◦ C2 ◦ ... ◦ C` .

Each of the obtained pieces supports all operations of the SD, i. e., items can be inserted and
removed, and it can be further split.

Defined as such, the SD is too powerful to characterize planarity as it allows (almost) direct
access to each element: Let C = (e1, ... , ei , ... , ek) with 1 < i < k . If we want to access ei ,
we split C into pieces C1 = (e1, ... , ei) and C2 = (ei+1, ... , ek) and remove ei at the tail of C1.
With the deque, we either have to remove all data items e1, ... , ei−1 at the head in order, or
ek , ek−1, ... , ei+1 at the tail in order, to gain access to ei . Thus, using the SD without any
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restrictions for graph layouts is of little interest as all edges can be removed at any time from
the SD by applying the appropriate split operation. This would allow any graph to have an SD
layout. In the next section, we see how a graph layout with the SD must be restricted in order
to be “interesting”, especially, in order to characterize planarity.

2.5.2.2 Graph Layouts in the Splittable Deque

Remember that in a deque schedule (Def. 2.5) the order in which the vertices are processed is
defined by a linear layout, which can be seen as a processing pipeline, i. e., if u is the immediate
predecessor of v , then the output of u is the input of v . For SD schedules, we generalize linear
layouts to tree layouts. A tree layout of a graph G = (V ,E) is a DFS tree T = (V ,ET ) of G .
Just like a linear layout, a tree layout can be seen as a processing pipeline in which a vertex v
can have multiple immediate successors, namely, its children in T . If v is a vertex with ` ≥ 1

children, then the input SD of vertex v with content Cv is split into ` pieces C1, ... , C`. For
instance in Fig. 2.32, v has three children w1, w2 and w3 and, hence, its input Cv = (e1, ... , e9)

is split into three pieces C1, C2, and C3. Recall that a deque schedule contains the mappings E h

and E t that define at which side and in which order the edges are processed at each vertex.
Moreover, E h(v) together with E t(v) induces an LC rotation system at vertex v and vice versa.
Using (general) rotation systems and tree layouts, we define SD schedules:

Definition 2.10 (SD Schedule). For a graph G = (V ,E), we call a tuple Ψ = (T ,R),
consisting of a tree layout T and a rotation system R of G , an SD schedule.

The symbol Ψ is chosen to resemble a branch in a tree layout where the SD is split.

e1 e2 e3 e3 e5 e6 e7 e8 e9

Cv

e3 e4 e5 e6

C2

e1 e2

C1

e7 e8 e9

C3

v

w2w1 w3

Figure 2.32: Vertex v has three children and its input Cv is split into three pieces C1, C2, C3

A high-level description of an SD layout is as follows: Let Cv be the content of the input
SD of a vertex v with ` ≥ 0 children.

1. Split Cv into to ` pieces. If v is a leaf, Cv is not split and is emptied in the next step.

2. Remove each edge incident to v and an ancestor of v from one of the pieces, and insert
each edge incident to a descendant of v to one of the pieces.

3. Pass each piece to a distinct child of v .

In detail, for a given SD schedule Ψ = (T ,R) with tree layout T = (V ,ET ) where r ∈ V is
the root, the SD layout works as follows. The input Cr = () of r is empty. Let Cv = (e1, ... , ek)

be the input of vertex v ∈ V . Further, let Rv = (e1, ... , ep) be the rotation system of Rv such
that, if v is not the root, then e1 = (u, v) is the edge from v ’s parent u to v , and if v is the
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root, then e1 is an edge from v to any child of v . Rv defined as such implies a total order on the
incident edges of v . We denote by e <Rv e

′ that e comes before e ′ in Rv . Let w1, · · · ,w` be
the children of v in T in order of Rv , i. e., (v ,w1) <Rv (v ,w2) <Rv ... <Rv (v ,w`). Assume
for now that v has at least one child. Cv is split into ` ≥ 1 pieces cw1 , ... , cw` (Step 1.), where
piece cwi is the SD that is transformed into the input Cwi of child wi after all edges incident to
v have been processed. We use a lower case letter for the piece cwi to distinguish it from the
input Cwi of wi .

Similar to deque layouts, an edge e = {v ,w} has to be removed at v if w is an ancestor
of v in T , and e has to be inserted if w is a descendant of v . Let wi be a child of v with
corresponding content cwi of the SD. Further, let E iv be the set of edges e = {v ,w} incident
to v with the following properties: Either, e ∈ cwi , i. e., e was inserted at an ancestor of v
and has to be removed from cwi at v , or there is a dipath wi

∗→ w , i. e., wi = w or w is a
descendant of wi . In the latter case, we say that e is removed in the subtree of wi . By using
the very same ideas as for deque layouts (Sect. 2.2.4), the rotation system of v defines how the
edges in E iv are processed. Let Riv be the rotation system obtained from Rv by removing all
edges not in E iv . Further, let p be the dipath r ∗→ v → wi in T . Dipath p divides Riv at v into
two regions from which we obtain an LC rotation system at v as shown in Fig. 2.18 on page 43.
Further, the LC rotation system at v defines a deque schedule E h

i (v) and E t
i (v) for all edges

in E iv . After processing all edges in E iv in cwi according to E h
i (v) and E t

i (v) (Step 2.), we
obtain the content Cwi which is the input of vertex wi (Step 3.). The same steps are carried
out for all other children of v . If v is a leaf, the SD is not split and must be emptied. Note
that if T is a (Hamiltonian) dipath, the SD is never split and the edges are processed as with a
deque schedule that is induced by the Hamiltonian dipath and the rotation system of G . In
particular, the SD behaves like a deque. Given a tree layout T of graph G , G is an SD graph if
all edges can be processed in the SD as described.

For an example, consider the graph in Fig. 2.33(a) whose rotation system can be obtained
from the drawing. The dashed edge is ignored for the moment. All tree edges are directed
from parent to children and drawn bold. We denote each tree edge by tv , where v is the child,
e. g., t2 is the tree edge 1→ 2. In Fig. 2.33(c), the tree layout as defined by the DFS tree is
displayed where the children are ordered from left to right according to the rotation system. In
fact, the rotation system in Fig. 2.33(c) is equal to the one obtained from Fig. 2.33(a). We
start with vertex 1 and an empty SD C1 = (). Until we reach the first vertex with more than
one child, e. g., 4, the SD behaves exactly like a deque. For instance, at vertex 1, the SD is

“split” into one piece c2 to which edges t2 and e1 are inserted. As defined in Sect. 2.2.4, the
rotation system of 1 is split such that all edges are inserted at the head in order, i. e., at first e1
and then t2 is inserted, and we obtain for the input of vertex 2 the content C2 = (t2, e1). At
vertex 2, C2 is again“split” into one piece c3, where t2 is removed at the head. In the following,
we assume that all edges that enter the respective dipath in T , e. g., 1

+→ 3, from the left
side, e. g., edge e2, are processed at the head, and all other edges, e. g., e3 and e4, at the tail.
Hence, we obtain C3 = (t3, e2, e1, e4, e3) as the input of vertex 3. Note that the tree edges are
processed as stack edges at the head.

We proceed in this manner until we reach vertex 4: The input SD of vertex 4 is C4 =

(t4, e5, e2, e1, e4, e3, e6) and the SD is split into three pieces c5 = (t4, e5, e2), c10 = (e1),
and c11 = (e4, e3, e6). Tree edge t4 is removed at the head of c5 and, as edge e4 enters the
dipath 1

+→ 11 from the left side, it is removed at the head of c11. The tree edges t5, t10, and
t11 are all inserted at the head of c5, c10, and c11, respectively. We obtain C5 = (t5, e5, e2),
C10 = (t10, e1), and C11 = (t11, e3, e6) as the inputs of vertices 5, 10, and 11, respectively.
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We process all edges in this way until the SDs must be emptied at the leaves. Note that,
in principle, C4 can also be split such that c10 = (e1, e4) and c11 = (e3, e6) and then e4 is
removed at the tail of c10. This ambiguity occurs at vertices with more than one child and
does not influence the property of allowing a layout in the SD.

2.5.3 Testing Planarity of a Rotation System by the Splittable Deque

IsSDLayout in Alg. 2.5 implements the procedure described in Sect. 2.5.2 to determine whether
an SD schedule is an SD layout. IsSDLayout is essentially a DFS traversal of a given tree
layout T = (V ,ET ). As input, it receives the current vertex v of the DFS, the input Cv of v ,
and the SD schedule Ψ = (T ,R). The return value of IsSDLayout is true, if all edges can
be processed in the SD, and false otherwise. The initial call is IsSDLayout(r , (), Ψ) where r
is the root of T .

Recall, we defined a deque schedule to be a deque layout if IsDequeLayout in Alg. 2.2
returns true (Def. 2.6). We use such an “algorithmic definition” for SD layouts as well:

Definition 2.11 (SD Layout). Let Ψ = (T ,R) be an SD schedule where r is the root of T .
Ψ = (T ,R) is an SD layout if IsSDLayout(r , (), Ψ) (Alg. 2.5) returns true.

A deque schedule is a deque layout if and only if the corresponding LC rotation system is
planar (Lem. 2.1). We prove the respective result for SD schedules:

Lemma 2.5. An SD schedule Ψ = (T ,R) is an SD layout if and only if R is planar.

For the proof of Lem. 2.5, we analyze IsSDLayout step by step and show that if one of
its recursive calls returns false, a crossing between two edges is inevitable. Conversely, if
IsSDLayout returns true, we can conclude that no edges cross and the rotation system is
planar. For the analysis of IsSDLayout, let v , Cv , and Ψ = (T ,R) be the current set of
parameters. IsSDLayout consists of three phases: Phase 1 splits the input SD Cv , phase 2
determines which edges incident to v have to be processed in which pieces, and phase 3
processes edges in the pieces and recursively calls IsSDLayout for all of v ’s children. We
assume for convenience that the DFS numbers D and D+ of T are globally accessible. In the
following, let ≺T be a linear layout as induced by T or, more precisely, by D (line 1). In this
section, we proof the correctness of IsSDLayout and postpone the analysis of its running time
to Sect. 2.5.4.

To actually insert and remove edges, IsSDLayout reuses ProcessVertex in Alg. 2.3 on
page 32. Remember that the SD behaves like a deque whenever the tree layout is a dipath: Let
p be a root-to-leaf dipath in T and denote by Gp the subgraph of G induced by p which inherits
G ’s rotation system. For instance, the subgraph Gp for the root-to-leaf dipath p = 1

+→ 13 in
Fig. 2.33(c) is shown in Fig. 2.33(b). Gp’s rotation system is planar if and only if it admits a
deque layout (Cor. 2.4). In IsSDLayout, all edges that lie on a common root-to-leaf dipath are
processed in the SD just like in a deque. This is already reflected in lines 2 to 6 in Alg. 2.5: If
v is a leaf, the deque schedule E h(v) and E t(v) as induced by the dipath p = r ∗→ v and v ’s
rotation system Rv is obtained and true is returned if and only if ProcessVertex empties Cv .

For the remainder of this section and the proofs, we assume a drawing of the given graph
that respects the given rotation system, and in which no pair of edges crosses more than once
and no edge crosses any of the tree edges. As the tree layout T itself contains no cycles, it is
always planar regardless of the rotation system. Moreover, all forward edges can be drawn such
that they cause no crossing with any tree edge. This is reflected as well in the SD where all
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(c) SD schedule of the graph in Fig. 2.33(a) along with the input
SD for some vertices.

Figure 2.33: A graph endowed with and its SD schedule. The SD schedule is an SD layout
without the dashed edge.
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Algorithm 2.5. IsSDLayout

Input: vertex v , content Cv of SD, SD schedule Ψ = (T ,R)

Output: true if R is planar; false otherwise
1 ≺T ← linear layout induced by D, i. e., u ≺T v ⇔ D(u) < D(v)

2 if v is leaf then
3 E h(v), E t(v) ← deque schedule of v induced by p = r ∗→ v and Rv
4 Cv ← ProcessVertex(Cv ,≺T ,E h(v),E t(v))

5 if Cv = () then return true

6 else return false

/* Phase 1 */

7 if v is root of T then
8 Rv = (e1, ... , ek) ← v ’s rotation system, where e1 is tree edge to any of v ’s children

9 else
10 Rv = (e1, ... , ek) ← v ’s rotation system, where e1 is the edge from parent of v

11 w1, ... ,w` ← children of v in order of Rv , i. e., w1 <Rv ... <Rv w`
12 cw1 , ... , cw` ← Split(Cv , v ,Rv , (w1, ... ,w`))

13 if return value of Split is ⊥ then return false

/* Phase 2 */

14 foreach wi ∈ {w1, ... ,w`} do
15 ρi←()

16 removed(i) ← false

17 S ← stack which contains 0

18 foreach e = e1, ... , ek do
19 wi ← child to which e is assigned, i. e., e ∈ cwi or e is removed in the subtree of wi
20 ρi .insertAtTail(e)

21 u ← endpoint of e distinct from v
22 if D(u) < D(v) then u is ancestor of v
23 t ← 0

24 else t ← i
25 if t ∈ S then
26 while S.top() 6= t do
27 t ′ ← S.pop()

28 removed(t ′) ← true

29 else if ¬removed(t) then S.push(t)

30 else return false

/* Phase 3 */

31 foreach wi = w1, ... ,w` do
32 E h

i (v), E t
i (v) ← deque schedule of v as induced by p = r ∗→ v → wi and ρi

33 Cwi ← ProcessVertex(cwi ,≺T ,E h
i (v),E t

i (v))

34 if Cwi = ⊥ then return false

35 else if ¬IsSDLayout(wi , Cwi , Ψ) then return false

36 return true
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tree edges can be processed canonically as stack edges at the head without interfering with
any forward edge: After splitting the SD, the tree edge from the parent can be removed at the
head of the first piece and, as the last step, each tree edge to child wi can be inserted at the
head of the piece for child wi .

Phase 1 In the first phase, IsSDLayout splits the SD. Let Rv = (e1, ... , ek) be the rotation
system of v according to lines 7 to 10. Further, let w1, ... ,w` be v ’s children in T in order
of Rv , i. e., (v ,w1) <Rv ... <Rv (v ,w`). In line 12 of IsSDLayout, the subroutine Split

(Alg. 2.6) is called. Split takes as input the content Cv of the SD, vertex v , v ’s rotation
system Rv and children w1, ... ,w`. Cv is split into pieces cw1 , ... , cw` such that, for all e ∈ cwi ,
e is either removed at v or in the subtree of wi . If successful, the pieces are returned and
otherwise the return value is ⊥.

Algorithm 2.6. Split

Input: content Cv , vertex v , rotation system Rv = (e1, ... , ek) and children w1, ... ,w`
Output: pieces cw1 , ... , cw` ; ⊥ if split is not possible

1 foreach wi = w1, ... ,w` do cwi ← ()

2 i ← 1; mv , mC ← −∞
3 foreach e = e1, ... , ek do
4 if e is the edge to child wi ′ of v then
5 i ← i ′
6 if Cv 6= () and Cv .head() is removed in subtree of wi then
7 mC ← max{i ,mC}
8 if i < mv then return ⊥
9 while Cv 6= () and ê = Cv .head() is removed in subtree of wi do

10 Cv .removeAtHead(ê) and cwi .insertAtTail(ê)

11 else if e ∈ Cv then
12 if Cv .removeAtHead(e) = true then cwi .insertAtTail(e)

13 else return ⊥
14 else e is inserted at v and removed in subtree of wi ′

15 mv← max{i ′,mv}
16 if i ′ < mC then return ⊥

17 if Cv 6= () then return ⊥
18 else return cw1 , ... , cw`

While computing the pieces, Split matches the content of Cv with the rotation system
of v to detect crossings of edges that belong to distinct pieces, and crossings of edges in Cv
that are not incident to v with edges that are inserted at v . Initially, an empty piece is created
for each child (line 1). Split subsequently extracts edges at the head of Cv and appends
them to the current piece cwi , starting with cw1 (line 2). To avoid confusion, we use the term

“extract” when Split removes an edge from Cv to distinguish it from“removing” an edge in the
SD layout as done in ProcessVertex. The edges incident to v are processed in order of Rv
(line 3). Let e be the edge of the current iteration. Three cases are distinguished: Either e
is an edge to a child wi ′ (line 4), e ∈ Cv which implies that e is incident to an ancestor of v
(line 11), or e is not in Cv which implies that e is incident to a descendant of v (line 14). The
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content Cv of v ’s input SD gets changed by Split. For clarity, we denote by Cv the unchanged
content of the input SD of v as passed to Split.

First, we see how Split tests whether there are crossing edges e and e ′ such that e 6∈ Cv
is incident to v and e ′ ∈ Cv is not incident to v , where e and e ′ are removed in different
subtrees of v . For this, Split maintains two variables mv and mC which are both initialized
to −∞ in line 2. In the loop in line 3, let ei be the current edge of the iteration. At the
start of each iteration, mv is the maximum so far encountered index of a child wmv such that
there is an edge ei ′ 6∈ Cv with i ′ < i which is incident to v and removed in the subtree of wmv .
Similarly, mC is the maximum so far encountered index of a child wmC such that there is an
edge ei ′ ∈ Cv with i ′ < i where ei ′ is removed in the subtree of wmC and ei ′ is not incident
to v . In case mv = −∞ or mC = −∞, the respective edge does not exist. The values of mC
and mv are updated in lines 7 and 15, respectively. Under certain circumstances (cf. lines 8
and 16), Split returns ⊥ when a crossing is inevitable.

Lemma 2.6. Split (Alg. 2.6) returns ⊥ in line 8 or line 16 if and only if there are crossing
edges e 6∈ Cv and e ′ ∈ Cv such that e is incident to v and e ′ is not incident to v , where e and
e ′ are removed at different subtrees of v .

Proof. First, suppose that Split returns ⊥ in line 8, where the current edge of the loop in
line 3 points to child wi of v . In this situation, there is an edge e = (u, x) at the head of Cv
which is removed in the subtree of child wi and, since i < mv , there is also an edge e ′ = (v , x ′)
which is inserted at v and removed in the subtree of child wmv . This situation is shown in
Fig. 2.34(a). Consider the region R (shaded) enclosed by the path p = v → wmv

+→ x ′ and the
edge curve of e ′. Since e ′ <Rv (v ,wi) <Rv (v ,wmv ) and u is an ancestor of v , edge e enters
u outside of R and enters x inside which leads to a crossing with e ′.

v wmvwi
R

u
e

x

e′

x ′

(a) Situation when
Split returns ⊥ in
line 8.

vwi ′ wmC

R

u

e

x

e′

x ′

(b) Situation when
Split returns ⊥ in
line 16.

Figure 2.34: Situations obtained in the proof of Lem. 2.6.

Conversely, if a crossing between e and e ′ is inevitable, then e must enter u outside of R
and enter x inside. Since u is an ancestor of v , this implies that e ′ <Rv (v ,wi) <Rv (v ,wmv )

as only in this case x lies within R. This implies that i < mv in line 8 and Split returns ⊥.
The reasoning for the case where Split returns ⊥ in line 16 is similar (Fig. 2.34(b)). Here,

let e ′ be the current edge of the iteration with e ′ = (v , x ′) and e 6∈ Cv , where e is removed in
the subtree of child wi ′ . There is an edge e = (u, x) such that u ∈ Cv and u is removed in the
subtree of child wmC with i ′ < mC . Again, there is a region R (shaded) enclosed by the path
p = v → wi ′

+→ x ′ and edge e ′ such that e enters u outside of R and x inside which causes
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a crossing. Conversely, if a crossing between e and e ′ is inevitable, then, similar to before,
i ′ < mC and Split returns ⊥ in line 16. �

Next, we discuss how Split finds out whether two edges in Cv which later end up in
different pieces cross. Assume that e points to child wi ′ (line 4), then cwi′ is the piece to be
considered next and i is set to i ′. In the loop in line 9, subsequently all edges ê at the head
of Cv which are removed in the subtree of wi are extracted from Cv and appended to cwi . If
e ∈ Cv (line 11), then e is appended to cwi if e is at the head of Cv . If this is not the case,
⊥ is returned. This also happens if Cv is not empty after all edges are processed (line 17).
Otherwise, the desired pieces are returned. Note that for all e ∈ cwi , e is either removed at v
or in the subtree of wi .

If Split returns ⊥ in lines 13 and 17, then there are at least two crossing edges in C,
which will end up in different pieces. For an example, consider edge e ′ in Fig. 2.33(c) (dashed).
Edge e1 is inserted at the head at vertex 1 and e ′ at the tail at vertex 2, i. e., e1 � e ′. Further,
in the rotation system of vertex 4, (4, 5) <R4 (4, 10). At vertex 4, the SD has to be split
such that e1 ∈ c10 and e ′ ∈ c5, which is not possible. In Split, edge (4, 5) comes before
edge (4, 10) in the loop in line 3. In the iteration of edge (4, 5), e ′ cannot be inserted to c5 as
e1 � e ′ and, therefore, edge e ′ is still in Cv in line 17 and ⊥ is returned.

Lemma 2.7. If Split (Alg. 2.6) cannot split Cv and returns ⊥ in line 13 or line 17, then there
are at least two crossing edges e, e ′ ∈ Cv which are removed in different subtrees of v .

Proof. We start with line 13: Edge e ∈ Cv , which is incident to v , has to be appended to
cwi but e is not at the head of Cv . Instead, e ′ 6= e is at the head with e ′ �Cv e.

Edge e ′ is either incident to v or not, where we assume the first for the moment. In the
rotation system of v , e <Rv e

′ as e is the edge of the current iteration. Since e ′ �Cv e, either
both are inserted at the head, where e is inserted before e ′, both are inserted at the tail, where
e ′ is inserted before e, or e ′ is inserted at the head and e at the tail. The first case is depicted
in Fig. 2.35(a) where e and e ′ are inserted at u and u′, respectively. Consider the bounded
region R (shaded) enclosed by the dipath p = u

+→ v and edge e. Note that both enter their
endpoints u and u′ from the left side as both edges are inserted at the head. As e is inserted
before e ′, either u is an ancestor of u′, or u = u′ and e <Ru e

′ <Ru ed , where Ru is the
rotation system of u and ed is the edge from u to its child on p. In any case, e ′ enters u′

within R. However, as e <Rv e
′, e ′ enters v outside of R which leads to a crossing with e.

The case where both e and e ′ are inserted at the tail is symmetric. Now, assume that e is
inserted at the tail and e ′ at the head (Fig. 2.35(b)). Again, dipath p = u

+→ v and e enclose
the bounded region R (shaded). As e is inserted at the tail and e ′ at the head, e ′ enters u
outside of R and, as e <Rv e

′, e ′ enters v within R which causes a crossing.
Next, we assume that e ′ is not incident to v . In this case, e ′ is removed at a vertex x ′ in

the subtree of a child wi ′ of v . Again, e and e ′ are inserted at u and u′, respectively. Two
cases have to be distinguished: Either e <Rv (v ,wi ′) or (v ,wi ′) <Rv e. First, we assume that
e <Rv (v ,wi ′). Remember that e ′ �Cv e. We make the same case differentiation as before:
either e is inserted at the head before e ′ (Fig. 2.35(c)), e ′ is inserted at the tail before e, or
e is inserted at the tail and e ′ at the head (Fig. 2.35(d)). As before, dipath p = u ∗→ v and
edge e enclose a bounded region R such that e ′ enters one of its endpoints within R and one
outside which leads to a crossing. Note that in this case R encloses the subtree of wi ′ .

Now, we assume that (v ,wi ′) <Rv e. Edge (v ,wi ′) comes before e in line 3 of Split.
Further, in the iteration of (v ,wi ′), the case in line 4 applies. In the loop in line 9, subsequently
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Figure 2.35: The situations obtained in the proof of Lem. 2.7, where the SD cannot be split
adequately and Split returns ⊥.

all edges at the head of Cv are extracted until there is an edge e ′′ = Cv .head() 6= e ′ with
no endpoint in the subtree of wi ′ . Therefore, e ′′ �Cv e ′ �Cv e. Moreover, in a subsequent
iteration, e ′′ is successfully extracted from Cv . If e ′′ is incident to v , then (v ,wi ′) <Rv e

′′.
Let u′′ be the vertex at which e ′′ is inserted. We obtain the cases depicted in Figs. 2.35(e)
and 2.35(f), where in both e ′′ and the dipath u′′

+→ v enclose a region R (shaded) such that
one endpoint of e ′ lies inside of R and the other one outside. Thus, e ′′ and e ′ cross. If e ′′

is not incident to v , then there is a child wi ′′ such that e ′′ is extracted from Cv in line 10
when (v ,wi ′′) is the current edge in line 3. We get that (v ,wi ′) <Rv (v ,wi ′′) and, remember,
e ′′ �Cv e ′. Then, the cases in Figs. 2.35(g) and 2.35(h) apply, where wi ′ and e ′ assume the
roles of wi and e, and wi ′′ and e ′′ assume the roles of wi ′ and e ′. Again, e ′′ and e ′ must cross.

For the remainder of the proof, suppose that Split returns ⊥ in line 17 and denote by e
the edge at the head of Cv at this time instant. Edge e cannot be incident to v as otherwise e
would either have been extracted from Cv in line 12 or ⊥ would have been returned in line 13.
Let u and x be the endpoints of e with dipath p = u

+→ v → wi ∗→ x . As e is still in Cv , e
could not be extracted and appended in line 10 when it was the turn of edge (v ,wi) in line 3.
For this iteration, let e ′ 6= e be the edge at the head of Cv when the loop in line 9 aborted.
We get e ′ �Cv e. If e ′ is incident to v , then (v ,wi) <Rv e

′. Similar to before, there is a
bounded region R enclosed by the dipath p = u

+→ v → wi ∗→ x and e such that e ′ enters
one of its endpoint within R and one outside of R which leads to a crossing. Finally, assume
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that e ′ is not incident to v . Edge e ′ is extracted from Cv and appended to the piece cwi′
belonging to child wi ′ in line 10. We assume that u′ and x ′ are the endpoints of e ′ with
dipath p = u′

+→ v → wi ′ ∗→ x ′. Note that wi 6= wi ′ as, by assumption, e ′ has not been
extracted when (v ,wi) was the current edge of the iteration. Hence, (v ,wi) <Rv (v ,wi ′) and
we obtain the cases as shown in Figs. 2.35(g) and 2.35(h). By the same line of arguments as
before, dipath p and edge e enclose a bounded region R such that e ′ enters one of its endpoints
within R and one outside of R. Again, e and e ′ must cross. �

Lemma 2.8. If Split returns pieces cw1 , ... , cw` , then no edges from distinct pieces cross.

Proof. Let e and e ′ be two forward edges with e ∈ cwi and e ′ ∈ cwi′ such that wi 6= wi ′ .
Further, let u and u′ be the endpoints of e and e ′, respectively, such that u and u′ are ancestors
of v . We prove the contrapositive and assume that a crossing between e and e ′ is inevitable.
There are three cases:

I Both e and e ′ are incident to v
Let R be the bounded region enclosed by the dipath p = u

+→ v and edge e. If a crossing
between e and e ′ is inevitable, then e ′ enters u within R and v outside of R, or vice versa.
This corresponds to the cases depicted in Figs. 2.35(a) and 2.35(b), and the version of
Fig. 2.35(a) where both e and e ′ enter u and u′ from the right side, respectively, and e ′

is inserted before e. In all cases, we obtain e ′ �Cv e and e <Rv e
′. Hence, when it is

the turn of e in line 3, e cannot be extracted from Cv in line 12 as e ′ �Cv e, and ⊥ is
returned.

I Exactly one of e or e ′ is incident to v
W. l. o. g., we assume that e is incident to v and e ′ is removed at vertex x ′ with
dipath p = u′

+→ v → wi ′ ∗→ x ′. As in the previous case, e together with p = u
+→ v

encloses the bounded region R. First, we assume that e <Rv (v ,wi ′). If a crossing
between e and e ′ is inevitable, then we obtain one of the situations in Figs. 2.35(c)
and 2.35(d), and the version of Fig. 2.35(c) where both e and e ′ enter u and u′ from
the right side, respectively, and e ′ is inserted before e. In all cases, e ′ �Cv e. When e is
the current edge in line 3, e cannot be extracted in line 12 as e ′ �Cv e and as e ′ can
only be extracted in a subsequent iteration. Hence, ⊥ is returned.

The case (v ,wi ′) <Rv e corresponds to Figs. 2.35(e) and 2.35(f), where e assume the
role of e ′′ in Figs. 2.35(e) and 2.35(f). For these cases, e �Cv e ′ and e ′ cannot be
extracted in line 10 when it is the turn of (v ,wi ′) in line 3. Hence, e ′ cannot be extracted
at all and ⊥ is returned at the latest in line 17.

I Neither e nor e ′ is incident to v
Then, e is removed in the subtree of wi and e ′ in the subtree of wi ′ . Similar to before, if
a crossing is inevitable, we obtain one of the situations in Figs. 2.35(g) and 2.35(h) or the
version of Fig. 2.35(h), where e and e ′ enter u and u′ from the right side, respectively,
and e ′ is inserted before e. Again, in all cases, e ′ �Cv e and (v ,wi) <Rv (v ,wi ′).
Edge e ′ can only be extracted from Cv in line 10 when (v ,wi ′) is the current edge in
line 3. The same holds for e and (v ,wi). When it is the turn of (v ,wi), then e cannot
be extracted from Cv as e ′ �Cv e. Later, when (v ,wi ′) is the edge of the iteration, e ′

may be extracted from Cv . However, after all edges are processed, e ∈ Cv in line 17 and,
hence, ⊥ is returned.

�
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Figure 2.36: Nesting and interlacing sectors.

Phase 2 In the second phase, IsSDLayout determines the edges that have to be processed
in each piece ci as obtained by Split and, en route, IsSDLayout tests whether edges incident
to v cross. Suppose that Split successfully returned pieces c1, ... , c`. Further, assume for
the moment that v has parent u in T . Then, Rv = (e1, ... , ek) is the rotation system of
v according to line 10 in Alg. 2.5 with e1 = (u, v). For any 0 ≤ i ≤ `, a sector R̃i is the
subsequence R̃i = (ep, ... , eq) (p ≤ q) of Rv where, for i ≥ 1, R̃i contains all edges e ∈ Rv
which are either incident to wi or a descendant of wi , and for i = 0, R̃0 contains all edges e ∈ Rv
which are incident to an ancestor of v . Remember, in contrast to a substring, the elements
in a sector, which is a subsequence of Rv , must not be directly consecutive in Rv . If v is
the root, then R̃0 is empty and e1 is the edge from v to w1 (line 8). In a planar rotation
system, the sectors of Rv properly nest or are disjoint. Fig. 2.36(a) illustrates this where
vertex v has five children corresponding to five subtrees. The sectors are shaded regions, where
R̃2 encloses R̃1, and R̃3 encloses R̃4 and R̃5, whereas R̃4 and R̃5 are disjoint. R̃0 plays
a special role as it encloses R̃1 and R̃2 (dark shaded) as well as R̃3, R̃4, and R̃5 (outer
face). Let R̃i = (ep, ... , eq) and R̃i ′ = (ep′ , ... , eq′) be two sectors. We say that R̃i and R̃i ′
interlace if there exist edges er ∈ R̃i and er ′ ∈ R̃i ′ with p < p′ < r < r ′ (see Fig. 2.36(b)) or
r < r ′ < q < q′.

Lemma 2.9. No pair of edges from distinct sectors cross if and only if no sectors interlace.

Proof. ⇒: Assume for contradiction that the rotation system of the graph is planar but the
sectors R̃i = (ep, ... , eq) and R̃i ′ = (ep′ , ... , eq′) interlace. Let er ∈ R̃i and er ′ ∈ R̃i ′ be edges
with p < p′ < r < r ′. The reasoning for the case r < r ′ < q < q′ is similar. For the moment,
we assume that both er and er ′ are forward edges and i , i ′ > 0, i. e., none of e or e ′ points to
an ancestor of v . The situation is illustrated in Fig. 2.36(b). There is a circle formed by v , ep,
er and a simple path between the endpoints of ep and er distinct from v . In the drawing of G ,
this circle encloses a region R (shaded) which contains the endpoints of ep′ and er ′ that are
distinct from v . As p < p′ < r < r ′, the edge curve of er ′ enters v outside of R and enters its
other endpoint inside which leads to a crossing; a contradiction. If er is a tree edge, then the
reasoning is similar with the only difference that R is enclosed by ep and dipath v

+→ u where
u is the endpoint of ep distinct from v . If i = 0, then R is enclosed by ep and dipath u

+→ v
where, again, u is the endpoint of ep distinct from v .
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⇐: If no sectors interlace, then all pairs of sectors R̃i = (ep, ... , eq), R̃i ′ = (ep′ , ... , eq′)

with p < p′, are either disjoint, i. e., p ≤ q < p′ ≤ q′, or nesting, i. e., p < p′ < q′ < q. In this
case, we can always avoid crossings between the edges belonging to distinct sectors of v . �

In the following, we call the subscript i of R̃i the index of R̃i . Remember that two sectors
do not interlace if they are either disjoint or nesting. IsSDLayout exploits this by processing
the indices of the sectors in a stack to test for interlacing sectors. The index i that is on top of
the stack is the currently “active” sector R̃i , where initially the stack contains index 0 (line 17).
Additionally, IsSDLayout maintains the boolean variable removed(i), initialized to false in
line 16, which stores if i has already been removed from the stack.

En route, IsSDLayout computes a partial rotation system ρi for each child wi (1 ≤ i ≤ `),
where ρi contains all edges incident to v that are later inserted to and removed from cwi . Equal
to sectors, a partial rotation system ρi is a subsequence of Rv which contains all edges e ∈ Rv
that are assigned to wi , i. e., either e ∈ cwi and, thus, e is removed at v from cwi , or e
is removed in the subtree of wi and, therefore, must be inserted to cwi . Note that for any
1 ≤ i ≤ ` the partial rotation system ρi may contain edges to ancestors of v whereas the
sector R̃i does not. Each ρi is initialized to () in line 15.

IsSDLayout subsequently processes all edges incident to v in order of v ’s rotation system
(line 18). In line 19, the child wi to which the current edge e is assigned, is determined and e
is appended to ρi . Next, the index of the currently “active” sector t that must be on top of the
stack is determined. Let u be the endpoint of e distinct from v . If u is an ancestor of v , then
t is set to 0 as e ∈ R̃0. Otherwise, t is set to i , i. e., e ∈ R̃i . If t ∈ S, all indices are removed
from S until t is on top. Note if t = 0, the stack is emptied except for 0. For all removed
indices i ′, removed(i ′) is set to true. If t /∈ S and removed(i ′) = false, t is pushed onto the
stack (line 29), and if i ′ has been previously removed, false is returned (line 30).

Lemma 2.10. IsSDLayout returns false in line 30 if and only if at least two sectors interlace.

Proof. ⇒: Assume that IsSDLayout returns false in line 30 and let i be the index of the
currently active sector. Hence, i 6∈ S and removed(i) = true. Index i had been removed
in a previous iteration when another index i ′ further below in the stack needed to be on
top. Let R̃i = (ep, ... , eq) and R̃i ′ = (ep′ , ... , eq′) be the sectors corresponding to i and i ′,
respectively. Index i ′ had been inserted to S before i and, thus, p′ < p. In the iteration when i
is removed from S, the edge of the iteration is er ′ ∈ R̃i ′ . Further, when IsSDLayout returns
false in line 30, the current edge of the iteration is er ∈ R̃i with r ′ < r . Altogether we get
p′ < p < r ′ < r and, hence, R̃i and R̃i ′ interlace.
⇐: Let R̃i = (ep, ... , eq) and R̃i ′ = (ep′ , ... , eq′) be interlacing sectors. Then, there

exist edges er ∈ R̃i and er ′ ∈ R̃i ′ with p < p′ < r < r ′ or r < r ′ < q < q′. We assume
p < p′ < r < r ′; the case r < r ′ < q < q′ is similar. As p < p′, i ′ is above i in S, after the
iteration in which ep′ is processed in line 18. When it is er ’s turn (or before), i ′ is removed from
S and removed(i ′) is set to true. Later, when er ′ is the current edge of the iteration, i ′ 6∈ S
and it must be reinserted. However, as removed(i ′) = true, false is returned in line 30. �

Phase 3 In the last phase, for each child w1, ... ,w`, IsSDLayout obtains the input content Cwi
for wi from cwi and recursively calls itself (lines 31 to 35). For each wi , let E h

i (v) and E t
i (v) be

the deque schedule of v as induced by the dipath r ∗→ v → wi and the partial rotation system
ρi (line 32). In line 33, ProcessVertex is called with cwi , the linear layout ≺T induced by T ,
and the deque schedule E h

i (v) and E t
i (v) as parameters to obtain the input Cwi of child wi . If
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the return value Cwi of ProcessVertex is ⊥, not all edges could be processed and the rotation
system is not planar by Cor. 2.4. Thus, false is returned in line 34. Otherwise, IsSDLayout
is called recursively with wi and input deque Cwi (line 35). If all calls of IsSDLayout return
true, the given SD schedule is an SD layout. We now prove Lem. 2.5.

Proof. [Lem. 2.5] ⇐: If IsSDLayout returns false, then either ProcessVertex has returned
⊥ (lines 4 and 33), Split has returned ⊥ (line 13), or there are interlacing sectors (line 30).
By Cor. 2.4 and Lemmas 2.6, 2.7 and 2.10, respectively, R is not planar.
⇒: We assume that IsSDLayout returns true and show that no pair of edges cross. Let

e = {u, x} and e ′ = {u′, x ′} be two distinct forward edges, where u and u′ are ancestors of x
and x ′, respectively. Remember that tree edges are never involved in a crossing by assumption.
We distinguish two cases: either there is a time instant, when e and e ′ are together in the SD,
or e and e ′ are never in the same SD.

We start with the first case. W. l. o. g., suppose that e ′ is inserted into the SD at vertex u′

such that e is already present in the SD. If e is removed from the SD at vertex u′, i. e., x = u′,
then there is a root-to-leaf dipath p which contains all endpoints of e and e ′. Thus, e and
e ′ are processed as in a deque layout induced by the dipath p and, e and e ′ do not cross by
Cor. 2.4. Otherwise, there is a child w of u′ with input Cw such that e, e ′ ∈ Cw . We further
distinguish two cases: In the first case, there is a vertex v with input Cv and e, e ′ ∈ Cv such
that v has at least two children wi and wi ′ and Cv is split into pieces cw1 , ... , cw` with e ∈ Cwi
and e ′ ∈ Cw ′i . By assumption, Split has successfully split Cv and e and e ′ do not cross by
applying Lem. 2.8. In the second case, e (e ′) is removed in ProcessVertex while e ′ (e) is
still in the SD. Then, there is a root-to-leaf dipath p such that all endpoints of e and e ′ are on
p, and e and e ′ are processed as in a deque layout. By Cor. 2.4, we conclude that e and e ′ do
not cross.

Next, suppose that e and e ′ are never in the same SD at any time instant. Again, there
are two cases: either e and e ′ have no common endpoint or they have a common endpoint v .
In the first case, one of the following three things can happen:

I There is a root-to-leaf dipath p with either p = r ∗→ u +→ x +→ u′ +→ x ′ ∗→ v` or
p = r ∗→ u′ +→ x ′ +→ u +→ x ∗→ v`, where r is the root and v` a leaf of the tree layout.

I There are two vertices w and w ′ such that all endpoints of e and e ′ are in the subtrees
of w and w ′, respectively, while the subtrees of w and w ′ are completely disjoint, i. e.,
they share no vertex.

I There is a vertex v such that e is inserted at an ancestor u of v and removed in the
subtree of child wi of v , i. e., u

+→ v → wi ∗→ x , and e ′ is inserted at v = u′ and removed
in the subtree of child wi ′ with wi 6= wi ′ , i. e., v → wi ′

+→ x ′.

In the first two cases, let R be the bounded region enclosed by u ∗→ x and edge e. In both
cases, all endpoints of e ′ lie outside of R and, thus, a crossing between e and e ′ is always
evitable. In the third case, e is an edge which is in Cv but not incident to v and e ′ is an edge
with e ′ 6∈ Cv which is incident to v , where e and e ′ are removed in different subtrees of v .
Here, Lem. 2.6 applies and Split guarantees that e and e ′ do not cross.

Finally, assume that e and e ′ are never in the same SD and have a common endpoint v .
As e and e ′ are never in an SD at the same time, e and e ′ must lie in different sectors of v :
Towards a contradiction, suppose that e and e ′ are in the same sector. If e, e ′ ∈ R̃0, then
both have been inserted at an ancestor of v and e, e ′ ∈ Cv ; a contradiction. Analogously, if
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e, e ′ ∈ R̃i for some i ≥ 1, then both are inserted to piece cwi for child wi of v and, thereby,
e, e ′ ∈ Cwi ; again, a contradiction. Hence, e and e ′ lie in different sectors of v . By assumption
these sectors do not interlace and e and e ′ do not cross by Lem. 2.10. �

IsSDLayout obeys the modus operandi of the SD as defined in Sect. 2.5.2. Therefore, a
graph G is an SD graph if and only if G has an SD layout. This holds true if and only if G is
planar and Thm. 2.7 follows.

Whenever IsSDLayout returns false, we can find the culprit edges: If one of the calls
of ProcessVertex returns ⊥, then an edge could not be removed from the deque since at
least one other edge is blocking its way, and these edges must cross. If the SD cannot be
split adequately (line 12), then we obtain one of the situations in Figs. 2.34 and 2.35 and
we identify the crossing edges as in the proofs of Lemmas 2.6 and 2.7. Last, if a previously
removed index i must be reinserted to S (line 30), there are interlacing sectors R̃i and R̃i ′ and
crossing edges e ∈ R̃i and e ′ ∈ R̃i ′ according to the proof of Lemmas 2.9 and 2.10.

2.5.4 Remarks on the Running Time of IsSDLayout

IsSDLayout is a means for proving the characterization of planarity by the SD. As such, we
have not lost a word on the running time of IsSDLayout. We make good for this now.

Let G = (V ,E) be a graph endowed with a rotation system R. We assume that |E | ≤
3|V | − 6 as otherwise G is not planar by Euler’s formula. Prior to calling IsSDLayout, DFS in
Alg. 2.4 is used to determine a tree layout T in time O(|V |). First, we show that the running
time of IsSDLayout is in O(|V |) if we ignore the running time of Split called in line 12.
Afterwards, we discuss the running time of Split.

Assume that IsSDLayout is called for vertex v and let Ev := E(v) be the set of v ’s incident
edges. Determining the deque schedule and processing all edges in case v is a leaf (lines 2 to 6)
runs in time O(|Ev |) as each edge in Ev is processed at most a constant amount of times. The
same running time applies in lines 7 to 10 and line 11 when “splitting”v ’s rotation system Rv
and ordering v ’s children according to Rv .

The loop starting in line 18 needs a more thorough investigation. In line 19, the child wi
to which e is assigned is determined. By introducing a pointer from each edge e to the SD
where it currently resides, we find out whether there is a piece cwi with e ∈ cwi in time O(1)

and, if so, we obtain wi . If e currently resides in no SD, then e is inserted at v and removed in
the subtree of some child wi . Let x be the vertex at which e is removed. We introduce some
preprocessing to DFS (Alg. 2.4): Edge e is encountered by DFS at vertex x . At this point, the
recursion step of DFS at vertex v has recursively called itself with parameter wi , where wi is
the child of v in whose subtree e is removed. By introducing a pointer from e to wi during the
DFS traversal, we can determine wi in time O(1) in line 19. Note that this also incorporates
the case where e is the tree edge from v to wi . Further, the index of each child of v is inserted
exactly once to S and removed at most once. Hence, the number of push and pop operations
on S is bounded by |Ev |. We can conclude that the running time of lines 18 to 30 is in O(|Ev |).

Let wi be the child of the current iteration in line 31 with partial rotation system ρi . Line 32
and ProcessVertex in line 33 both run in time O(|ρi |), where |ρi | is the number of edges in ρi .
Ignoring the recursive call of IsSDLayout for the moment, the running time of lines 31 to 35 is
in O(

∑`
i=1 |ρi |) ⊆ O(|Ev |). Altogether, the running time of IsSDLayout without Split and

the recursion is O(|Ev |) and, hence, the total running time of IsSDLayout is O(|E |) ⊆ O(|V |).
Unfortunately, Split in Alg. 2.6 increases the running time of IsSDLayout to O(|V |2):

First observe that the running time of Split is O(|Cv |+ |Ev |) as all edges in Ev are processed
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Figure 2.37: An example of a graph which leads to a quadratic running time of IsSDLayout.

in line 3 and all edges in Cv are extracted and inserted to the pieces of v ’s children. For
each natural number k ≥ 0, we construct a planar graph Gk with 2k + 1 vertices as shown
in Fig. 2.37. The tree layout consists of a dipath v1, v2, ... , vk+1, where vertex vk+1 has k
children vk+2, vk+3, ... , v2k+1. There are k forward edges and each forward edge connects
vertex vi with vertex v2k+2−i for all 1 ≤ i ≤ k . The rotation system is chosen according to
Fig. 2.37 and it is planar. Let Cvi be the input SD of vertex vi with 1 < i ≤ k . Cvi contains i−1

forward edges, which leads to a running time Θ(i) of Split. Thus, the running time of Split
for all vertices v1, ... , vk is in Θ(

∑k
i=1 i) = Θ(k2) ∈ O(|V |2). IsSDLayout has therefore a

running time of O(|V |2).

We can achieve a linear running time of IsSDLayout by using a slightly different approach
which we briefly sketch now. Every data node representing an edge realizes the SD data
structure by having pointers to its direct predecessor and successor in the SD. Hence, adding
or removing an edge takes O(1) time. We tweak our approach by performing the splits lazily
when an edge is to be extracted at the tail of the SD. For the case that the SD schedule is
actually an SD layout, we lift the precondition that the SD content Cv passed to IsSDLayout

consists exclusively of edges that are removed in the subtree of v . Instead, we only require that
these edges form a contiguous prefix of Cv . Before an edge is to be removed at the tail of
the SD in line 8 of ProcessVertex, it checks whether it has a successor in the SD. If this is
the case, the SD is split to the right of said edge. If multiple splits occur during a single run
of ProcessVertex, the SD schedule is rejected by returning ⊥. This modification does not
change the behavior of the algorithm: If the SD schedule is an SD layout, each split occurs
at the same location and only has been deferred. If the SD schedule is no SD layout, it may
be the case that an edge e is successfully extracted which would otherwise (in the unmodified
algorithm) have been in the middle of the SD. But then there are edges succeeding e in the
SD which now end up in the wrong piece such that this instance will surely be rejected.

2.5.5 Relating Splittable Deque Layouts to the de Fraysseix-Rosenstiehl Pla-
narity Criterion

The characterization of planarity by the SD is a close relative to the de Fraysseix-Rosenstiehl
planarity criterion or LR planarity criterion [dFR82, dFdMR06] as both are based on the DFS
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tree of a graph. A comprehensive treatment of the LR planarity criterion and the related
planarity test is [Bra09] from which we also borrow some terminology and definitions.

For completeness, we state the LR planarity criterion before we relate it to SD layouts. For
this, we need a batch of definitions. Let T = (V ,ET ) be a DFS tree of a graph G = (V ,E)

with forward edges F . What we call a forward edge in the context of SD layouts is called
backward edge in [dFR82, dFdMR06, Bra09]. For consistency with this section, we stick to the
term “forward edge”, however, adopt the orientation from the descendant to the ancestor from
[dFR82, dFdMR06, Bra09] as it allows for concise definitions. We denote by v ↪→ u a forward
edge e = {u, v} where u is the ancestor of v and we assume that e points from v to u. As an
example, we consider Fig. 2.33(c) on page 71 again without the dashed edge. Each forward
edge u ↪→ v defines a fundamental circle u

+→ v ↪→ u in G . Two distinct fundamental circles
are either disjoint, e. g., the ones of e8 and e9 in Fig. 2.33(c), or their intersection is a dipath
of tree edges, e. g., for e1 and e3, with 2

+→ 4. In the latter case, the last common tree edge
on this dipath is called fork, e. g., tree edge t4 = (3, 4) is the fork of e1 and e3. For any tree
edge u → v , its return edges are all forward edges x ↪→ w with w

+→ u → v ∗→ x . For instance,
the return edges of t4 = (3, 4) are e1, e2, e3, and e4. A forward edge is the single return edge
of itself. Let ≺T be linear layout induced by T , e. g., according to a DFS numbering. For any
forward edge e = v ↪→ u, low(e) := u is called low point of e. For any tree edge e ∈ ET the
low point low(e) of e is the minimum low point of e’s return edges with respect to the linear
layout ≺T , e. g., low(3, 4) = 1 and low(4, 11) = 2. Remember that all tree edges point from
the parents to their children and all forward edges from descendant to ancestor.

Definition 2.12 (LR Partition [dFR82, dFdMR06]). Let L ∪̇ R be a partition of F . (L,R)

is called left-right partition (LR partition) if for every fork (u, v) ∈ ET and all pairs of outgoing
edges e1, e2 of v , the following conditions hold:

(i) All return edges e ∈ F of e1 with low(e2) ≺T low(e) belong to L.

(ii) All return edges e ∈ F of e2 with low(e1) ≺T low(e) belong to R.

Proposition 2.8 ([dFR82, dFdMR06]). A graph is planar if and only if it has an LR partition.

The idea behind Def. 2.12 and Prop. 2.8 is that in an embedding all forward edges v ↪→ u
in L enter u from the left side of the dipath p = r ∗→ u +→ v , where r is the root of T .
Likewise, all forward edges v ↪→ u in R enter u from the right side. As an example, consider
fork t4 = (3, 4) and its outgoing edges t5 = (4, 5) and t11 = (4, 11) in Fig. 2.33(c). The
return edges of t5 are e2 and e5, and the return edges of t11 are e3 and e6. For the low
points, we get low(t5) = low(e2) = 2, low(e5) = 3, low(t11) = low(e3) = 2, and low(e6) = 3.
Edge e5 is a return edge of t5 with low(t11) ≺T low(e5), and e6 is a return edge of t11 with
low(t5) ≺T low(e6). Hence, (i) and (ii) of Def. 2.12 apply for e5 and e6, and in any LR
partition (L,R), e5 must be in L and e6 in R (or vice versa). Moreover, in Fig. 2.33(c), e5
enters 3 from the left and e6 enters 3 from the right side. Conversely, if both e5 and e6 would
enter 3 from the same side, a crossing between e5 and e6 with other edges, e. g., e2 and e3,
would be inevitable. An LR partition can directly be obtained from Fig. 2.33(c):

L = {e1, e2, e5, e8} , R = {e4, e3, e6, e7, e9} .

Note that e1 can alternatively also be in R.
Remember that in an SD layout, a forward edge e = v ↪→ u is inserted at the head (tail) if

and only if e enters u from the left (right) side.
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Definition 2.13. Assume that G is a planar graph and let T = (V ,ET ) be a tree layout of
G with forward edges F . By Thm. 2.7, G has an SD layout Ψ = (T ,R). Let Fh ∪̇ Ft be a
partition of the forward edges such that:

e ∈ Fh ⇔ e is inserted at the head in Ψ , e ∈ Ft ⇔ e is inserted at the tail in Ψ .

(Fh,Ft) is called ht partition induced by Ψ = (T ,RS).

We can relate the LR planarity criterion to SD layouts as follows:

Corollary 2.13. An ht partition (Fh,Ft) induced by an SD layout Ψ = (T ,R) of a graph G
is an LR partition of G and T .

Conversely, from an LR partition, we obtain at which sides the edges must be inserted.
The major differences between the LR planarity criterion and SD layouts are that the

latter directly characterize planar rotation systems and, hence, must also incorporate crossings
between edges that are incident to the same vertex. These types of crossings are neglected in
Def. 2.12 and Prop. 2.8 also because LR partitions are intended to be used for general planarity
testing (without a given rotation system). Also note that an LR partition defines the side at
which an edge is inserted to the SD but not at which side it is removed. Again, the reason is
that the LR planarity criterion does not characterize the planarity of rotation systems: As soon
as the side at which a forward edge e = v ↪→ u enters u is specified, i. e., it either belongs to L
or R, the side at which e enters v automatically follows or does simply make no difference for
planarity. This is not the case if the planarity of a rotation system has to be tested.

2.5.6 Testing Planarity by Switching Trains

We wrap this section up with a playful insight to planarity: Fig. 2.38(a) shows a graph G
endowed with a tree layout T . G and T can be transformed into a train switching problem
as shown in Fig. 2.38(b): The SD becomes a train (locomotive at top) that follows a railway
which is obtained from the tree layout. At each train station (the vertices), cars (the edges)
are appended and prepended to the train. At a junction, e. g., train station 3, the train is split
into parts and each part follows one of the branches. The aim of the game is to transport all
cars from their source train station to their destination train station using the modus operandi
of the SD. If this is possible, we say that the train switching problem is solvable.

Corollary 2.14. Let G be a graph with tree layout T . G is planar if and only if the train
switching problem obtained from G and T is solvable.

In other words, the train switching problem is equivalent to planarity testing. We have
presented this idea in [AGHV12].

Besides [AGHV12], we have also implemented the game Derail which was our contribution
to the graph drawing game contest at the graph drawing symposium in 2012 in Redmond,
Seattle, USA. For Derail, we have used the time-inverted variant of the SD, namely, the
mergeable deque (MD). An MD layout starts with empty MDs, i. e., trains, at the leaves and
follows the tree layout towards the root. Instead of splitting, the trains have to be merged at
junctions. Derail is available for download1 and screenshots are shown in Fig. 2.39. In Derail, a
level is generated from graph and a tree layout. If it is not possible to remove a car from either

1http://www.infosun.fim.uni-passau.de/br/games/derail.jar (last accessed 2013-12-02)

http://www.infosun.fim.uni-passau.de/br/games/derail.jar
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(b) Instance of the train switching
game obtained from Fig. 2.38(a).

Figure 2.38: A graph and a tree layout can be transformed into a train switching game.

side of a train, then Derail swaps the car’s position with its neighboring cars until it is at the
head or the tail (Fig. 2.39(d)). Each such swap results in a penalty score for the player. The
aim is to solve the game with as few swaps and as quickly as possible.

At this point it is worthwhile to point out a difference between the train switching problem
here and the switchyard problem as defined by Knuth [Knu97] and as discussed in Sect. 2.1.2.1
in the context of permutation networks. In our train switching problem, the deque models the
train whereas in the switchyard problem the used data structure, e. g., stack, queue, or deque,
models the train tracks in the switchyard.
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(a) Three cars have been inserted to the train
at station 10. The train waits for the signal to
depart (small icon to the right of the train).

(b) The train has departed from station 10. Fur-
ther upwards, it is merged with the train from
station 9.

(c) A more complex instance of the train switching
problem.

(d) The car with destination 3 has to be swapped
with its neighbors in order to remove it.

Figure 2.39: The computer game Derail implements the (time-inverted version of the) train
switching problem.
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2.6 Summary, Further Remarks, and Future Work

At the end of the first part, we take the opportunity to look back and see what we have achieved
and in which direction future research can go.

Data Structure Characterizations
Complexity of
Decision Problem

stack outerplanar [BK79]
linear time
[BK79, Wie87]

queue
I arched leveled-planar [HR92] NP-

complete [HR92]I spanning subgraphs of self-dual
exuberant ≺-augmentation (Cor. 2.11)

two stacks
subgraph of a planar graph with a Hamiltonian
circle [BK79]

NP-complete
[Chv85, Wig82]

deque
I linear cylindric planar (Thm. 2.1) NP-complete
I subgraph of a planar graph with a
Hamiltonian path (Thm. 2.2)

(Thm. 2.5)

splittable deque planar (Thm. 2.7) linear time [KW01]

Table 2.2: Updated overview.

We have extended the study of stack, queue and two-stack layouts to deque layouts and
splittable deque layouts. Tab. 2.2 shows an updated version of Tab. 2.1 on page 21, where the
new results are emphasized (bold). To study deque graphs, we have introduced linear cylindric
drawings and characterized the deque graphs as the linear cylindric planar graphs. For this, we
have used a low-level approach that relates the rotation system in a linear cylindric drawing to
the order in which the edges are processed in the deque. By this characterization, we have also
found out that the deque graphs are exactly the subgraphs of planar graphs with a Hamiltonian
path. Hence, the ability to process queue items in the deque corresponds to the difference
between Hamiltonian paths and circles in planar graphs. We have also studied the duals of
planar graphs with a Hamiltonian path. The queue edges are exactly those that are “crossed”
when we connected the endpoints of the Hamiltonian path. As for the complexity of deciding
whether a graph is a deque graph, we proved that it is NP-complete by showing that finding a
Hamiltonian path in a maximal planar graph is NP-complete. We have also seen that linear
cylindric drawings are not only useful to study deque graphs but also yield concise visualizations
of layouts in deque-reducible data structures and mixed layouts with multiple deque-reducible
data structures.

Our findings on deque layouts have interesting implications on queue layouts. First, we have
seen the benefits of linear cylindric drawings over other approaches to visualize queue layouts.
Second, our study of the duals of deque graphs paved the way for a novel characterization
of queue graphs: a graph is a queue graph if and only if it is the spanning subgraph of a
graph H which has an augmented queue embedding, and this holds true if and only if H∗ has
an augmented queue embedding. In other words, the duals of augmented queue graphs are
also augmented queue graphs and, thus, selfdual.
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As there are planar graphs lacking a Hamiltonian path, we asked the question how to extend
the deque in order to characterize planarity. We have found the answer by introducing a split
operation, and showed that a graph is planar if and only if it is a splittable deque graph. For
the proof, we devised an algorithm that uses the splittable deque to test the planarity of a
rotation system.

planar

planar & Hamiltonian path

planar &
Hamiltonian

circle

arched
leveled-planar

outerplanar

Figure 2.40: The classification of planar graphs by data structures, and the classification of
data structures by classes of planar graphs.

By extending graph layouts to the deque, we have not only gained new insights to the
working principle of the deque itself but also to two-stack and queue layouts, and to interesting
classes of planar graphs. It has turned out that the queue-mode of the deque is reflected in its
dual graph; a result with implications to queue graphs that, to the best of our knowledge, have
not been considered yet. Further, by introducing the splittable deque, we have closed the gap
between deque graphs and planar graphs. Our work, therefore, completes the “taxonomy of
planar graphs by fundamental data structures”and, vice versa, the“taxonomy of data structures
by classes of planar graphs” (see Fig. 2.40). We close this first part of the thesis with some
further remarks and give pointers to possible future work.

2.6.1 Further Considerations of Complexity Issues

In Sect. 2.2.5, we have seen that deciding whether a graph is a deque graph is NP-hard.
Therefore, deciding whether a graph has a layout in k deques is also NP-hard. Future research
can go into two directions: Either restricted and special cases are considered, or parameters
suitable for fixed-parameter algorithms are identified.
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2.6.1.1 Restricted Problems

Given a k ≥ 3 and a fixed linear layout, deciding whether a graph has a k-stack layout remains
NP-hard [DW04a]. The cases k = 1 and k = 2 are solvable in polynomial time [RT84]. For
the deque, we know:

Corollary 2.15. Given a graph G = (V ,E) and a linear layout ≺, deciding whether G has a
deque layout Σ = (≺,E h,E t) can be done in time O(|V |).

Proof. First, we reject if |E | > 3|V |−6, as G must be planar to have a deque layout. Then, we
compute the ≺-augmentation G≺ of G and run a planarity test that runs in time O(|V |) [KW01].
G is a deque graph if and only if G≺ is planar by Cor. 2.4. �

It should come to no surprises for k-deque layouts:

Open Problem 2.1. Prove the following: for a graph G = (V ,E), a linear layout ≺, and an
integer k ≥ 2, it is NP-hard to decide whether G has a k-deque layout with linear layout ≺.

The complementary problem is to ask for a suitable linear layout for a given assignment
of the edges to k deques. The corresponding problem for k stacks is known to be solvable in
linear time [HN09], which suggests that it might also be efficiently solvable for the deque.

Open Problem 2.2. Is there an efficient algorithm that, given an assignment of the edges to
k deques, computes a suitable linear layout?

Special graph classes can also be considered. As deque graphs are planar, the usual suspects
are outerplanar graphs and series-parallel graphs. However, the first are stack graphs [BK79]
and latter are two-stack graphs [CLR87] and, hence, both are deque graphs. Another candidate
is the class of planar 3-trees, also called Apollonian networks, which are obtained by starting
with a triangle and subsequently subdividing a triangle into three smaller triangles. An
example of a planar 3-tree is the Goldner-Harary graph in Fig. 2.20(a) on page 46 which
contains no Hamiltonian circle but a Hamiltonian path. Planar 3-trees are maximal planar
and deciding whether a planar 3-tree contains a Hamiltonian path can be done in polynomial
time [CR01, EGW01a, EGW01b]. Hence, deciding if a planar 3-tree is a deque graph can
also be done in polynomial time. The planar partial 3-trees are the subgraphs of planar
3-trees. Although, testing for a Hamiltonian path in a partial 3-tree also takes polynomial
time [CR01, EGW01a, EGW01b], to the best of our knowledge, deciding if a planar partial
3-tree is the subgraph of a planar graph with a Hamiltonian path has not yet been tackled.

Open Problem 2.3. Is there an efficient algorithm that tests whether a partial 3-tree is a
deque graph?

2.6.1.2 Fixed-Parameter Tractability

Another possibility to approach an NP-hard problem P is to consider its fixed-parameter
tractability (FPT) [Nie06, DF99]. The idea behind fixed-parameter tractability is to find a
certain parameter k , which is assumed to be small, and to consider the parametrized version of
the original NP-hard problem P. Let (I, k) be the input to the parametrized instance of P,
where I is an instance for the original problem P and k the parameter under consideration. P
is said to be fixed-parameter tractable (FPT) with parameter k if there is an algorithm that
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decides the problem in time O(f (k) · |I|p) for some p ∈ N, where |I| is the length of I. Note
that f (k) only depends on k and not on the length of the input. In particular, the running
time of an FPT algorithm can be exponential in the parameter k and it is polynomial in the
length of the input, e. g., O(2k · |I|). Intuitively, an FPT algorithm of an NP-hard problem

“extracts” the parameter k from the problem that causes the non-polynomial running time and
that is small in many application scenarios.

The canonical parameter in“Does a graph has a k-deque layout?” is k . However, as already
deciding whether a graph has a layout in one deque is NP-hard, the respective decision problem
is not FPT with parameter k (unless NP = P). For a given fixed linear layout, the respective
decision problem is also not FPT if the statement in Problem 2.1 holds true. Hence, we have
to look for other parameters.

Another promising candidate for a parameter is the treewidth: Let G = (V ,E) be a graph.
A tree decomposition [RS84] of G is a tree T , whose nodes B1, ... ,Bk are subsets of V , with
the following properties:

I
⋃k
i=1 Bi = V .

I If v ∈ Bi ∩ Bj , then v ∈ B` for all nodes B` on the simple path between Bi and Bj in T .

I If {u, v} ∈ E , then there is a node Bi with u, v ∈ Bi .

The width of a tree decomposition is (maxi=1,...,k |Bi |) − 1 and the treewidth of G is the
minimum width among all of G ’s tree decompositions. The treewidth of a graph is a measure
of how “tree-like” it is and, in fact, a tree has treewidth 1. Many NP-hard problems become
efficiently solvable for graph classes with a treewidth that is bounded by a constant [Nie06].
Note that the treewidth of deque graphs is not bounded as the grid graph2 of size n × n is a
planar graph with a Hamiltonian path and treewidth n.

The famous algorithm meta-theorem by Courcelle [Cou90] states that deciding a graph
property that is expressible in monadic second-order logic (MSOL) is FPT where the parameter
is the treewidth (plus the length of the MSOL formula). We wont go into the details of MSOL
but reuse known MSOL expressions as “black boxes”: Two of the characterizing properties of
deque graphs, namely, planarity [Cou00] and the existence of a Hamiltonian path [Kre12], are
expressible in MSOL and so is their conjunction. We, therefore, obtain:

Proposition 2.9. Deciding whether a graph G = (V ,E) is planar and contains a Hamiltonian
path can be done in O(f (k)· (|V |+ |E |)), where k is the treewidth of G and f is a function
that depends only on k .

For the special case of maximal planar graphs, we get:

Proposition 2.10. Deciding whether a maximal planar graph G = (V ,E) is a deque graph
can be done in O(f (k)· |V |), where k is the treewidth of G .

MSOL in its original form allows only for quantifications over the set of vertices and edges
but not over arbitrary sets or binary relations. In particular, it is not possible to express the third
characterizing property of deque graphs, that is, they are the subgraphs of planar graphs with
a Hamiltonian path. At least, Prop. 2.9 indicates that the treewidth is a promising parameter
for FPT algorithms in the context of deque graphs. Whether Courcelle’s theorem is the right
approach or a different ansatz must be used, is the topic of possible future work.

2A grid graph of size n × n contains n2 vertices arranged on a quadratic grid of width n and height n
interconnected by horizontal and vertical edges.
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Open Problem 2.4. Is there an FPT algorithm, with the treewidth as parameter, which decides
whether a graph is a deque graph? Are there other suitable parameters for FPT algorithms
that solve this problem?

Recently, Bannister et al. [BES13] have shown that the minimization of crossings in one-page
or two-page embeddings is FPT. As parameter, they use the cyclomatic number, which is the
difference between the number of edges of the graph and the number of edges of one of its
maximal spanning forests. Like the treewidth, the cyclomatic number can also be seen as an
indicator of how tree-like a graph is. Bannister et al. have shown that computing the minimum
number of crossings in one-page (two-page) embeddings can be done in time O(f (k) · |V |),
where k is the cyclomatic number and |V | is the number of vertices. As two-page embeddings
are close relatives to LC drawings, where additionally queue edges are allowed, it might be a
fruitful endeavour to adapt the approach from [BES13] to minimize the number of crossings in
LC drawings.

Open Problem 2.5. Can the approach from [BES13] be adapted for LC drawings?

2.6.2 Open Gauß Codes and Deque Layouts

Deque layouts have interesting implications on Gauß codes as studied by Rosenstiehl and Tarjan
in [RT84]. We discuss these implications only briefly here and the interested reader is referred
to [RT84] and [Cet13] for details.

Consider the closed and self-intersecting Jordan curve in Fig. 2.41(a). The crossing points
are numbered from 1 to 7. When we follow the curve, starting at the arrow, we encounter
each crossing point exactly twice until we return to the starting point. The crossing points in
the order of their appearance yields the sequence S = (1, 3, 5, 4, 2, 6, 7, 5, 4, 7, 3, 1, 6, 2). A
sequence S containing numbers from 1 to n where each number occurs exactly twice in S is
called closed Gauß code if there is a closed Jordan curve whose crossing points can be numbered
from 1 to n such that following the curve produces S (up to cyclic reordering and reversal).
Carl Friedrich Gauß himself studied such sequences, though of course not using the name“Gauß
code”, and asked for a characterization [Gau00, pp. 272 and 282–286]. Such a characterization
was given by Rosenstiehl in [Ros76] and, in collaboration with Tarjan, a recognition algorithm
was presented in [RT84] that runs in O(n), where n is the number of crossings.

The idea in [RT84] is to reduce the problem to a (special case) of a planarity test using the
following observations: Suppose we are given a closed curve as in Fig. 2.41(a). This curve can
be transformed step-by-step as shown in Fig. 2.42: Leftmost, a crossing is depicted which is
visited in order 1, 2, 3, 4. Such a crossing point can be transformed into a tangent point as
shown in the second figure from the left. Rosenstiehl and Tarjan have shown that every crossing
curve can be transformed into a tangent point curve. In Fig. 2.42, the tangent point is visited
in order, say, 1, 4, 3, 2. Next, the tangent point is replaced by a vertex and the curve segments
are replaced by directed edges, where the direction indicates from which sides the tangent point
is entered and to which sides it is left. The vertex is split into two vertices (white and dark)
which are connected by an undirected edge. The thereby obtained graph G for the crossing
curve in Fig. 2.41(a) is shown in Fig. 2.41(b): The directed edges, i. e., the former segments
of the closed curve in Fig. 2.41(a), form a Hamiltonian circle. Further, by construction, G is
planar. Hence, G has a two-stack layout which is shown in Fig. 2.41(c).

The method of Rosenstiehl and Tarjan uses these observations in order to find out whether
a given sequence S is a closed Gauß code. First, S is transformed into a graph G as described
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Figure 2.41: A closed Gauß code.
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Figure 2.42: A crossing point visited in order 1, 2, 3, 4 is transformed into a tangent point.
By replacing the tangent point by a vertex and by splitting this vertex into two vertices (white
and dark), we obtain a planar graph with a Hamiltonian circle for closed Gauß codes and a
Hamiltonian path for open Gauß codes.

above. Then, G contains a Hamiltonian circle which corresponds to a tangent point curve.
If the sequence is a closed Gauß code, then G must be planar. In order to test planarity,
they exploit the facts that G contains a Hamiltonian circle and that every vertex is of degree
three, i. e., two directed edges from the Hamiltonian path and one undirected edge. Thereby,
they reduce the planarity test to the problem of sorting a permutation in two parallel stacks
(cf. Sect. 2.1.2) for which they introduce a nifty data structure called pile of twin-stacks. They
show that if G is planar, then S is a closed Gauß code.

Now, suppose we are given an open Jordan curve as depicted in Fig. 2.43(a). From this
curve, we obtain the sequence S = (3, 1, 4, 2, 3, 1, 6, 5, 6, 2, 4, 5) by following the curve from
the endpoint to the right side to the endpoint to the left side. The so obtained sequence is
called open Gauß code. By using the same transformation steps as before, we obtain a tangent
point curve and the corresponding graph G as shown in Fig. 2.43(b), where s and t are the
vertices representing the start and end of the open curve. Again, G is planar and, this time,
the directed edges form a Hamiltonian path from s to t. By Thm. 2.2, the Hamiltonian path
induces a deque layout which is shown in Fig. 2.43(c).

In [Cet13], co-supervised by the author of this thesis, Cetto adapts the approach of Tarjan
in Rosenstiehl for open Gauß codes. Again, the input sequence is transformed into the graph
that represents the corresponding tangent point curve, where this time the graph contains a
Hamiltonian path. Testing the planarity of G is reduced to sorting a permutation in the deque
for which Rosenstiehl and Tarjan gave an adaptation of the pile of twin-stacks in [RT84].
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Figure 2.43: An open Gauß code.

Although, it may seem straightforward to adapt the approach for closed Gauß codes to open
Gauß codes, the quantity of theoretical obstacles that had to be tackled in [Cet13] is surprising.
For instance, for the closed case, all undirected edges in the graph G are stack edges in the
two-stack layout. In contrast, for open Gauß codes, a new algorithm had to be developed in
[Cet13] that determines whether an undirected edge in G is a stack or a queue edge. The thesis
also shows how deque layouts shed new light on Gauß codes and the topological structure of
open Jordan curves.

2.6.3 Dual Layouts

The study of the deque has shed new light on the structure of the duals of planar graphs
with a Hamiltonian path (Sect. 2.2.4 and Thm. 2.3) and the duals of queue graphs (Thm. 2.6
and Sect. 2.4.3). At the end of Sect. 2.4.3, we have hinted at how to make the dual graph more
explicit in graph layouts. Consider Fig. 2.44 which shows the LC embedding of an exuberant
≺-augmentation along with its dual. Remember that in an exuberant ≺-augmentation, the
(directed) edges between adjacent vertices of the linear layout are always introduced regardless
of whether they already exist in the original graph.

In the following, we process only the undirected edges in the deque layout and neglect the
directed edges on the Hamiltonian path. The deque has the following contents:

C1 = () , C2 = ((1, 4), (1, 3)) ,

C3 = ((2, 3), (2, 4), (1, 4), (1, 3), (2, 3)) , C4 = ((3, 4), (2, 4), (1, 4), (3, 7), (3, 5)) ,

C5 = ((4, 7), (3, 7), (3, 5)) , C6 = ((5, 8), (4, 7), (3, 7), (5, 7)) ,

C7 = ((6, 7), (6, 8), (5, 8), (4, 7), (3, 7), (5, 7)) , C8 = ((6, 8), (5, 8)) ,

C9 = () ,

where Ci is the input of vertex i and C9 is the output of vertex 8. Every edge lies between two
faces, e. g., (1, 4) between f q1 and f q2 . By inserting the faces into, for instance, C′4, we see how
this is reflected in the deque layout:

C′4 = (f h3 , (3, 4), f h1 , (2, 4), f q1 , (1, 4), f q2 , (3, 7), f t3 , (3, 5), f t4 ) .
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Figure 2.44: An LC embedding and its dual of an exuberant ≺-augmentation.

At vertex 4, edges (3, 4), (2, 4), (1, 4) are removed from C4 and so are the faces f h3 , f h1 , f q1 .
Then, edge (4, 7) is inserted, and with it face f q3 . We obtain C′5:

C′5 = (f q3 , (4, 7), f q2 , (3, 7), f t3 , (3, 5), f t4 ) .

The faces are processed in the deque just like the edges. Removing all edges and leaving only
the faces yields:

C∗1 = (f q1 ) , C∗2 = (f q1 , f q2 , f t1 ) , C∗3 = (f h2 , f h1 , f q1 , f q2 , f t1 , f t2 ) ,

C∗4 = (f h3 , f h1 , f q1 , f q2 , f t3 , f t4 ) , C∗5 = (f q3 , f q2 , f t3 , f t4 ) , C∗6 = (f q4 , f q3 , f q2 , f t3 , f t5 ) ,

C∗7 = (f h5 , f h4 , f q4 , f q3 , f q2 , f t3 , f t5 ) , C∗8 = (f h4 , f q4 , f q3 ) , C∗9 = (f q4 ) .

Note that all faces f qi for i = 1, 2, 3, 4 are processed as queue elements, all faces f hi (i = 1, ... , 5)
as stack elements at the head, and all faces f ti (i = 1, ... , 5) as stack elements at the tail. By
construction, there is a dual edge between two faces if there is a time instant at which both
are adjacent in the deque. From this, we immediately can deduce the structure of the dual:

I The faces f qi lie on a path as always two of them are adjacent in the deque.

I The faces f qi are the root of trees that contain the faces that are processed as stack
elements. For instance, f q2 is the root of the tree that contains f t1 , ... , f t5 .

In general, let D be a deque-reducible data structure. A dual D layout is obtained from a
D layout by inserting the corresponding faces between the edges in D and removing the edges
afterwards. There is an edge between two faces if and only if they are adjacent in D at some
time instant. The so obtained graph is called graph induced by the D layout. Depending on
D, these induced graphs have a certain structure that immediately follows from the operation
principle of D:

I The graph induced by a dual (two-)stack layout is a tree, which reflects the last in, first
out principle.
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I The graph induced by a dual queue layout is a path, which reflects the first in, first out
principle.

I The graph induced by a dual deque layout are trees whose roots are connected by a path.
The deque combines last in, first out with first in, first out.

The duals (without the outer face) of stack graphs, i. e., outerplanar graphs, are known to be
trees [SP83] and, yet, this observation follows directly from dual stack layouts.

Open Problem 2.6. Are dual layouts useful to obtain further insights to stack, queue, and
deque graphs, and to the working principles and differences of the stack, queue, and deque
data structures?

2.6.4 General Planarity Testing by the Splittable Deque

As byproduct of the SD characterization of planarity, we have obtained the SD-based algorithm
IsSDLayout (Alg. 2.5 on page 72) to test the planarity of a rotation system. This raises the
question for a general planarity testing algorithm that uses the SD. Remember that the order
in which the edges are inserted and removed, and how the SD is split is defined by the rotation
system. Conversely, if we can observe how the edges are processed and the SD is split in a
deque layout, we can deduce a planar rotation system. If one of the edges cannot be processed
in the SD, then the graph is not planar. Thus, in principle, planarity testing reduces to finding
an SD layout.

One of the main obstacles that has to be overcome in the implementation of an SD-based
planarity test is that the side at which an edge has to be inserted is unknown as no rotation
system is given. A similar problem was tackled in [RT84] by Rosenstiehl and Tarjan, who
presented an algorithm to test the sortability of a permutation in two parallel stacks. There,
each element can either be inserted to one or the other stack. Rosenstiehl and Tarjan proposed
the pile of twin-stacks for this problem, which implements a lazy approach: The decision of
where an edge has to be inserted is deferred to the moment when the element itself or an
element further below in the stack is removed. The pile of twin-stacks can also be adapted
to test for deque sortability [RT84]. Applying such an approach to the SD is surely a first
important step to an SD-based planarity testing algorithm.

Whether such a planarity test has any benefits, e. g., simplicity, over any of the other
numerous existing planarity tests, e. g., [LEC67, HT73, SH99], is unsure. The hope that such
an algorithm is simpler than existing approaches, may be shattered by the complexity of the
suggested “lazy SD”. Prototypical implementations indeed suggest that this is the case.

Open Problem 2.7. Is there a planarity testing algorithm based on the SD that has benefits,
e. g., simplicity, over existing planarity testing algorithms? If there is such an algorithm, can it
be adapted to extract the forbidden minors K3,3 and K5 if the input graph is not planar?





Chapter 3

Rolling Upward Planar Digraphs

3.1 Introduction

The de facto standard method for drawing hierarchies, i. e., acyclic digraphs, is the Sugiyama
framework [STT81]. The idea is to transform the edge direction into a geometrical direction,
thus, generating a “flow” in the diagram that displays the hierarchical dependencies between
the entities, that is, the vertices. An example of a drawing generated by Sugiyama’s framework
is shown in Fig. 3.3(a), where the vertices are placed on horizontal levels and edges that span
more than one level are subdivided by dummy vertices (dark dots). The hierarchy is displayed
from bottom to top and all edge curves are monotonically increasing in y -direction from the
source to the target. Such a drawing is called upward. One aesthetic criterion of graph drawings
is the number of crossings [STT81], indeed, empirical studies suggest that it is an important
one [Pur97]. In consequence, digraphs that allow a plane upward drawing are particularly
suitable for the Sugiyama framework. These digraphs are called upward planar, where UP
denotes the set of upward planar digraphs. An example of an upward planar digraph is shown
in Fig. 3.1(a), where we ignore the dashed edge for the moment.

(a) An UP di-
graph (without the
dashed edge).

(b) SUP digraph. (c) Fundamental polygon
representation.

Figure 3.1: An example of an UP digraph and a SUP digraph.

97
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(a) Rolling cylinder. (b) Fundamental
polygon.

(c) R2 representation.

Figure 3.2: Different representations of a RUP digraph.

(a) A hierarchical
drawing.

(b) A radial drawing. (c) A cyclic drawing [Bru10,
BBBF12].

Figure 3.3: Drawings generated by variants of Sugiyama’s framework.

Upward planar digraphs are not only interesting in the context of graph drawing but also
from a theoretical viewpoint. Whereas the plane, the surface of the cylinder, and the sphere
are equivalent with respect to (undirected) planarity, the situation is different for upward
planar digraphs: The digraph in Fig. 3.1(a) together with the dashed edge is not upward
planar [DBETT99, p. 171], although, it is still planar. Even more, on the surface of the standing
cylinder C3

s , the digraph with the dashed edge admits an upward plane drawing as shown in
Fig. 3.1(b). The respective fundamental polygon representation is shown in Fig. 3.1(c). In both
drawings, the dashed edge winds around the cylinder which is not possible in the plane. We say
a digraph is standing upward planar if it admits an upward plane drawing on the surface of the
standing cylinder. SUP denotes the set of standing upward planar digraphs. By the example
in Fig. 3.1, we can conclude that standing upward planarity is a proper extension of upward
planarity, i. e., UP ( SUP.

The main focus of this chapter is rolling upward planarity, which is, in turn, a proper
extension of standing upward planarity: A drawing on the surface of the rolling cylinder is
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upward if all edge curves wind around the cylinder’s axis in one direction. An example of
such a drawing is shown in Fig. 3.2(a). In contrast to UP and SUP, which contain only
acyclic digraphs, rolling upward planar digraphs may contain cycles. Whereas UP and SUP
digraphs have been studied extensively in the past (as we will see in Sect. 3.2), rolling upward
planarity has only recently been studied in depth in our classification scheme of upward
planarity [ABBG11] and in the extension of the Sugiyama framework to recurrent hierarchies
[Bru10, BBBF12, BBBL09, BBBH11]. Interestingly, Sugiyama et al. have already suggested
the study of recurrent hierarchies in [STT81]. In this chapter, we extend the study of upward
planarity to the rolling cylinder, thereby, introducing new tools and insights that are also useful
for a better understanding of SUP and other cases of upward planarity.

3.2 Classification of Upward Planarity

In [ABBG11], we have presented a classification scheme that encompasses and unifies many of
the generalizations of upward planarity. We adopt this classification scheme and the definitions
from [ABBG11] for our discussion of related work. Consider a differentiable two-dimensional
manifold S [MRA01, MT01], e. g., the surface of the standing cylinder, and let F : S→ R2 be a
vector field in S. F maps each point of S to a two-dimensional vector that defines the direction
an edge curve must“roughly”follow. More formally, let Γ be a drawing of a digraph G = (V ,E)

in S. We assume that each edge curve pe := Γ(e) : [0, 1]→ S for all e ∈ E is differentiable
except for countably many critical points Cr(e) ( [0, 1], e. g., bends. We also assume in the
following that every edge curve starts at the source and ends at the target of the edge, i. e.,
pe(0) = Γ(u) and pe(1) = Γ(v) with e = (u, v). The edge curve pe of e respects F if:

∀t ∈ [0, 1] \ Cr(e) : 〈p′e(t),F (pe(t))〉 > 0 ,

where p′e is the first order derivative of pe and 〈·, ·〉 is the dot product. This means that at all
differentiable points, the angle between the tangent vector of pe and the vector field is less
than π/2 (see Fig. 3.4). The edge curve of e is said to weakly respect F if:

∀t ∈ [0, 1] \ Cr(e) : 〈p′e(t),F (pe(t))〉 ≥ 0 .

In this case, the angle between the tangent vector and the vector field must not be greater than
π/2. In particular, edge curves are allowed to be perpendicular to the vector field. If all edges
(weakly) respect F we say that Γ is (weakly) upward with respect to S and F . If additionally Γ

is plane (cf. Sect. 1.1.7), then Γ is (weakly) upward plane with respect to S and F .
For consistency, we use the following generic terminology scheme: For a given surface S and

vector field F , a plane drawing that is upward with respect to S and F is called xUP drawing,
e. g., UP or SUP drawing. From an xUP drawing, we obtain an embedding which is called
xUP embedding and, likewise, a digraph which has an xUP embedding is called xUP digraph.
For instance, Fig. 3.1(b) shows a SUP drawing from which we obtain a SUP embedding and,
hence, the digraph is SUP. Finally, we slightly abuse the notation a bit more and let xUP
denote the set of all xUP digraphs.

It is important to keep in mind that in general an arbitrary embedding of a digraph is not
necessarily an xUP embedding. For instance, any embedding of a UP (SUP) digraph with a
vertex whose incoming edges are not consecutive in its rotation system cannot be UP (SUP).

In [ABBG11], we studied several surfaces and vector fields. As in Sect. 1.1.9, let I = (−1, 1)

be the unit interval and derive I◦ from I by identifying its boundaries. As surfaces we consider the
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u

v

pe(t)

p′e(t)
F (pe(t))

< π
2

Figure 3.4: In a (weak) upward drawing, the angle between the tangent of an edge curve and
the vector field must be less (not greater) than π/2.

fundamental polygon representations of the plane P = I × I , the standing cylinder Cs = I◦ × I ,
the rolling cylinder Cr = I × I◦, and the torus T = I◦ × I◦. The considered vector fields are
shown in Tab. 3.1, i. e., the homogeneous, the cyclic, the radial and the antiparallel field. In
the last row of the table, the vector fields are given as functions that assign each point of the
respective surface a two-dimensional vector. For instance, with the homogeneous field, all edge
curves must be monotonically increasing in y -direction and, with the radial field all edge curves
must tend away from the origin. Note that in the cyclic field each vector is orthogonal to the
respective vector in the radial field. Also note that the length of a vector can be neglected in
upward plane drawings as only the angle between an edge curve and the vector plays a role.

homogeneous cyclic radial antiparallel

(x , y) 7→ (0, 1) (x , y) 7→ (−y , x) (x , y) 7→ (x , y) (x , y) 7→ (0, sin(yπ))

Table 3.1: Vector fields.

3.2.1 Upward Planar Digraphs

In our classification scheme, the UP digraphs are upward planar in P endowed with the
homogeneous field. The weak case is of no interest as it coincides with the non-weak case.
UP digraphs have been studied extensively, e. g., in [BDBLM94, BDBMT98, DGL06, FFRV11,
GT01a, HL96, HL06, Pap95], and they have been characterized by [Kel87, DBT88] as the
spanning subgraphs of planar st-digraphs which are acyclic digraphs with a single source s and
a single sink t, and an edge from s to t. For instance, we can introduce the edge from the
source to the sink in Fig. 3.1(a) without violating planarity, assuming that the digraph does
not contain the dashed edge.

As the origins of upward planar digraphs lie in graph drawing, various drawing algorithms for
UP digraphs and interesting subclasses have been proposed: A plane straight-line drawing of an
UP digraph where the vertices are placed on an integer grid is always possible, though, it may
require exponential area [DBTT92]. Note that this is in sharp contrast to the undirected case
where every planar n-vertex graph admits a plane straight-line drawing with area consumption
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in O(n2) [dFPP90]. Exponential area for an upward drawing is needed even if the digraph
is outerplanar, the underlying undirected graph is bipartite, or for directed trees where the
rotation system is fixed [Fra07]. In case of st-digraphs with no transitive edges, a straight-line
drawing with O(n2) area consumption is possible [DBTT92]. The same area consumption can
also be achieved if bends are allowed [DBTT92] and for series-parallel digraphs [BCDB+92].
For an extensive survey, see [DBF13].

In order to construct a polyline drawing of a planar st-digraph, Di Battista and Tamassia
use the directed dual of embedded st-digraphs in [DBT88]. This is in so far interesting for
us as we will see that duals play an important role for rolling upward planar digraphs as well.
Di Battista and Tamassia show that the dual of an st-digraph is again an st-digraph, where
the dual of the edge from s to t is reversed. This result is only one of the many intriguing
properties of upward planar digraphs and their duals as we will see in Sect. 3.4.3.

As for the complexity, deciding whether a digraph is in UP is NP-hard as shown by Garg
and Tamassia [GT01a]. If, on the other hand, the digraph is an st-digraph, then an ordinary
(undirected) planarity test suffices to find out whether it is upward planar. Remember that every
UP digraph can be augmented to a planar st-digraph by introducing edges, which suggests
that the complexity lies in finding the right edges to introduce; an observation that we will
make also for other cases of upward planarity. The recognition problem is efficiently solvable
for digraphs with a fixed embedding [BDBLM94], outerplanar graphs [Pap95], single-source
digraphs [HL96], and if the underlying undirected graph is bipartite [DBLR90]. In the context
of the Sugiyama framework, testing whether a digraph is upward planar if the vertices and
dummy vertices are assigned fixed levels (see Fig. 3.3(a)) can be done in linear time [JL02].

Healy and Lynch [HL06] give two fixed-parameter tractable algorithms that decide whether
a digraph G = (V ,E) is upward planar. One runs in time O(2t · t!· |V |2), where t is number of
triconnected components, and the other runs in time O(|V |2 +k2 · (2k)!), where k = |E |− |V |.

3.2.2 Standing Upward Planar Digraphs

The SUP digraphs are upward planar in Cs endowed with the homogeneous field. For the
weak case, the set of digraphs is denoted by wSUP which is a proper superset of SUP as
the weak case allows horizontal cycles. SUP digraphs are characterized by acyclic dipoles
which are acyclic digraphs with a single source and a single sink, and the characterization
is similar to that of UP: a digraph is SUP if and only if it is the spanning subgraph of a
planar acyclic dipole [Han06, Has01, LMS06] (see Figs. 3.1(b) and 3.1(c)). Even more, any
embedding of an acyclic dipole is also SUP. Note the difference between the characterizations
of UP and SUP digraphs: the former must allow the edge from the source to the sink, which
prevents edges from winding around the cylinder. Hashemi and Rival also proved [HRK98] that
a digraph is SUP if and only if it has a triangulation with no saddle points, i. e., in the rotation
system of each vertex, all incoming and outgoing edges must be consecutive. Hashemi et
al. [HRK98, Has01, DH08] studied spherical digraphs which allow a plane drawing on the
surface of the sphere such that the edge curves are monotonically increasing from the south
to the north pole. In [ABBG11], we have shown that every SUP digraph is spherical and vice
versa. Further, Thomassen [Tho89] studied single-source, single-sink digraphs on the standing
cylinder, and Foldes et al. [FRU92] investigated ordered sets on the sphere and on the cylinder
as a truncated sphere.

SUP drawings and their curve-complexity are considered in [Bra14]: for a given SUP
drawing of an n-vertex SUP digraph, there is a polyline drawing on the standing cylinder with
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no edge windings, i. e., no edge fully winds around the cylinder, at most two bends per edge
and, all vertices and bends are placed on an integer grid of size O(n2). Note that “polyline”
in this context means that the edge segments, that is, the differentiable parts of an edge
curve are geodesics on the cylinder surface (or straight lines on the fundamental polygon).
Moreover, such a drawing can be constructed in time O(τn2), where τ is the time to compute
the intersection of an edge with a horizontal line through a vertex.

SUP digraphs also find their application in the context of circuit value problems (CVP)
[Weg05, Han06, LMS09]. The CVP asks to determine the result of a Boolean circuit for a
given assignment of input values, which is P-complete in general. CVP can be solved more
efficiently for monotone planar circuits endowed with a SUP embedding [Han06].

In [ABBG11], we have shown that SUP (wSUP) coincides with the set of digraphs that
are (weakly) upward planar with respect to P and the radial field. In these drawings, all edge
curves lead away from the origin (cf. Tab. 3.1). In the non-weak case, this type of drawing plays
an important role in the adaption of the Sugiyama framework for radial drawings [Bac07]. An
example of a radial drawing is shown in Fig. 3.3(b), where the levels are concentric circles instead
of horizontal lines. This type of drawing has its application in, for instance, the visualization of
social networks [BKW99].

As with UP, deciding whether a digraph is in SUP is NP-hard [HRK98]. In contrast,
deciding whether an acyclic dipole is SUP can be done efficiently as only planarity has to be
tested. This parallels the situation for UP and st-digraphs, and suggests that the complexity
of the SUP decision problem lies in the augmentation of the digraph to a planar acyclic dipole.
The SUP decision problem becomes efficiently solvable for acyclic, triconnected, single-source
digraphs [DH08]. In the context of radial drawings [Bac07], a linear-time decision algorithm
exists if the vertices and dummy vertices are assigned fixed levels [BBF05].

3.2.3 Rolling Upward Planar Digraphs

UP and SUP digraphs are all acyclic and are, hence, suitable for modelling hierarchical
structures. Sometimes, however, periodic or cyclic dependencies need to be modelled and
displayed for which rolling upward planar digraphs can be used. A plane drawing that is upward
with respect to the rolling cylinder Cr and the homogeneous field is called rolling upward plane
or RUP. Again, RUP also denotes the set of digraphs that have a RUP drawing. The weak
case is neglected as it coincides with RUP [Bra14].

In a RUP drawing, the edges wind around the axis of the cylinder in a certain direction and,
thus, cycles are possible. An example of a RUP drawing is shown in Figs. 3.2(a) and 3.2(b),
where the latter shows the fundamental polygon representation. RUP coincides with the set of
digraphs with an upward drawing in the plane endowed with the cyclic field [ABBG11]. There,
all edge curves wind around the origin in counterclockwise direction (Fig. 3.2(c)).

The relationship between RUP, UP and SUP is as follows [ABBG11, Bra14]:

UP ( SUP ( RUP ∩DAG ( RUP ,

where DAG is the set of acyclic digraphs. Hence, RUP is a proper extension of the other cases,
even if restricted to acyclic digraphs. Fig. 3.5 shows an example from [ABBG11] of an acyclic
RUP digraph that is not SUP. As for the decision problem, it should come as no surprise that
it is NP-hard in general [Bra14].

The curve complexity of RUP drawings was studied in [Bra14]: For every RUP drawing
of an n-vertex RUP digraph, there is a polyline drawing where each edge winds at most once
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Figure 3.5: An acyclic RUP digraph that is not SUP [ABBG11].

around the cylinder and has at most two bends, and all vertices and bends are placed on
integer coordinates. The area consumption of the drawing is in O(n3) and the drawing can be
computed in time O(τn3), where τ is the time to compute an intersection of an edge with a
horizontal line.

In [BBBF12], the Sugiyama framework has been extended to recurrent hierarchies and cyclic
drawings which are upward in the plane with the cyclic field. An example of such a drawing
is shown in Fig. 3.3(c), where the levels are half-lines extending from the origin. Similar to
the hierarchical and radial case, there is a linear-time algorithm to decide whether a strongly
connected digraph admits a plane cyclic drawing if the vertices and dummy vertices are assigned
fixed levels [BB08, BBBF12].

Cyclic drawings and, in the planar case, RUP digraphs have their application in the
visualization of periodic processes and dependencies. For instance, the chemical reactions in
biosciences often are cyclic, e. g., the fatty acid synthesis in Fig. 3.6(a). Representing whole
metabolism results involve many cyclic dependencies that have to be displayed as such. Another
application arises when displaying periodic processes such as schedules in public transportation,
e. g., plane, train, or bus schedules. Fig. 3.6(b) shows the daily schedule of trains operating
between Paris and Lyon in the 1880s [Tuf01], where the x-axis is the time line from 6 am to
6 am on the next day and the y -axis is the position between Paris (at the top) and Lyon (at
the bottom). A line in the drawing indicates the position of a train at a certain time instant. It
is hard to follow the position of a train from, say, 5 a. m. to 7 a. m. as the time line is cut.
Mounting the drawing on a cylinder as suggested by Tufte [Tuf01] or using a cyclic drawing
is a remedy to this problem. Variants of periodic scheduling problems are studied as periodic
event scheduling in [SU89] and as cyclic job-shop problems in [HLP02]. More applications of
cyclic drawings can be found in [Bru10].

3.2.4 Other Cases of Upward Planarity

Brandenburg has defined strict upward planarity, where edge curves must be upward in y - as well
as x-direction [Bra14]. Brandenburg showed that SUP = sSUP = sRUP = wSUP ∩DAG,
where sSUP and sRUP are the strict upward planar digraphs on the standing and rolling
cylinder, respectively. In other words, the standing and rolling cylinder are equivalent in the
strict case.

A feature that is common to all upward planar drawings of any type we have discussed is
that in the rotation system at each vertex all incoming edges are consecutive and so are all
outgoing edges. Bertolazzi et al. generalized this principle in [BDBD02] to define quasi-upward
plane drawings: A plane drawing is quasi-upward if it is “locally upward” at each vertex, i. e., in
a sufficiently small circular area of the plane that contains a vertex v , all incoming (outgoing)



104 Chapter 3. Rolling Upward Planar Digraphs

(a) Fatty acid synthesis [Mic93].

(b) Daily train schedule between Paris and Lyon in the 1880s [Tuf01].

Figure 3.6: Application examples of cyclic and rolling upward planar drawings.
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edges of v enter the horizontal line through v from below (above). Let QUP denote the set of
digraphs that have a quasi-upward plane drawing. Bertolazzi et al. also showed that a digraph
is QUP if and only if it has a planar bimodal rotation system, i. e., all incoming (outgoing)
edges are consecutive in the rotation system of each vertex. Quasi-upward planarity is a proper
extension of all cases of upward planarity we have discussed [Bra14].

Fig. 3.7 shows an overview from [Bra14] of the classes of upward planar digraphs we have
discussed so far. The prefix s indicates the strict case. Coinciding sets are placed within a lightly
shaded rectangle and there is an edge from class A to class B if A ( B. The contribution
of this thesis are characterizations and recognition algorithms for the classes within the dark
shaded rectangle (Sects. 3.4 to 3.6).

UP
wUP
sUP

SUP, sSUP
wSUP∩DAG

sRUP

RUP ∩ DAG
wRUP ∩ DAG

QUP ∩DAG

RUP, wRUP

wSUP

QUP

Figure 3.7: Relationship between different classes of upward planar digraphs [Bra14]. Coincid-
ing sets are placed within a lightly shaded rectangle and there is an edge from class A to class
B if A ( B.

Before we close our discussion of related work, it should also be mentioned that upwardness
was also defined and studied for the torus: Dolati et al. [Dol08, DHK08] studied upward toroidal
drawings on the lying and the standing torus embedded in the three-dimensional space where
all edge curves are monotonically increasing in y -direction. By applying our scheme, the former
are upward “planar” with respect to T and the antiparallel field, and the latter are upward

“planar” with respect to the surface of the torus T and the radial field [ABBG11]. Dolati et al.
also showed that every digraph that is upward toroidal on the lying torus is upward toroidal on
the standing torus but not vice versa.

3.3 Contributions of this Thesis

We extend the existing study of RUP digraphs by giving a combinatorial characterization and
an algorithm that decides whether a digraph without sources and sinks is RUP. Remember
that UP digraphs and SUP digraphs have been characterized as the subgraphs of planar
st-digraphs and acyclic dipoles, respectively. Such a characterization is not possible for RUP
digraphs as they may contain cycles. Nevertheless, it turns out that acyclic dipoles still play an
important role in the characterization RUP, though, in an indirect way. The idea behind the
characterization and, in fact, the whole chapter, is to study the directed duals of RUP digraphs
(see Sect. 1.1.8 for the definition of directed dual digraphs). A basic property of directed duals
is that the primal digraph is strongly connected if and only if its dual is acyclic, and the primal
is acyclic if and only if the dual is strongly connected (Lem. 3.2).

One of the key lemmas towards our characterization has a physical interpretation: Ampère’s
law from electromagnetism states that electric current

#–

I flowing through a conductor generates
a magnetic field

#–

B that winds around the conductor (see Fig. 3.8(a)). Now, consider Fig. 3.8(b),



106 Chapter 3. Rolling Upward Planar Digraphs

which shows an acyclic dipole with “connecters” s and t upward embedded on the standing
cylinder. An electric current“flowing”from s to t generates the dual digraph that winds around
the cylinder, i. e., the dual is RUP and strongly connected as the primal is acyclic. By proving
this in general in Sect. 3.4.3, we obtain a characterization of strongly connected RUP digraphs:
a strongly connected digraph is RUP if and only if it has an embedding such that its dual is
an acyclic dipole. To extend this characterization to closed digraphs, i. e., digraphs without
sources and sinks, we generalize acyclic dipoles to (general) dipoles, which allow for cycles.
For this, we introduce the compound digraph, which divides a digraph into its (non-trivial)
strongly connected components, the compounds, and in its acyclic components, the transits.
Based on the compound digraph, we define (general) dipoles and, following the idea behind
Ampère’s law, we show that a closed digraph is RUP if and only if it has an embedding such
that its dual is a (general) dipole. Finally, we arrive at a characterization of all RUP digraphs
by showing that each RUP digraph can be augmented to a closed RUP digraph.

+
−

#–

I

#–

B

(a) Ampère’s law: Electric
current flowing through
a conductor generates a
magnetic field that winds
around the conductor.

+
−

s

t

(b) Ampère’s law for dual graphs:
The primal digraph, an acyclic dipole,
with “connecters” s and t induces
the dual, a strongly connected RUP
digraph.

Figure 3.8: Ampère’s law.

Remember that deciding whether a digraph is SUP is NP-hard [HRK98]. In contrast,
deciding whether an acyclic dipole is SUP is possible in linear time as it only involves a planarity
test. The situation is equal for UP digraphs, which are the subgraphs of planar st-digraphs.
As already suggested before, this indicates that the complexity lies in the augmentation of
a digraph to an acyclic dipole or st-digraph. In Sect. 3.5, we will see that the situation is
similar for RUP digraphs, for which the general decision problem is also NP-hard. By our
RUP characterization, we know that every RUP digraph can be augmented to a closed RUP
digraph. In turn, for closed digraphs, we will derive a linear-time decision algorithm. This
algorithm consist of three parts: First, it tests the RUP-embeddability of each compound
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and transit of the compound digraph separately. Whereas testing a transit is essentially an
ordinary planarity test, we have to put more effort into compounds. For the latter, we derive
a characterization of RUP compounds by means of their block-cut trees and duals which
yields a decision algorithm (Sect. 3.5.2). Finally, we tackle the blocks in Sect. 3.5.3, i. e., the
biconnected components of the compounds, by using SPQR trees [DBT96]. For this, we extend
SPQR trees to incorporate edge directions, cycles, and, most importantly, duals.

In Sect. 3.6, we use dipoles and the compound digraph for a characterization of wSUP di-
graphs and their duals, i. e., weakly upward planar digraphs on the standing cylinder and their
duals. Finally, in Sect. 3.7, we conclude, make some further remarks, and give pointers to
future work.

3.4 Characterizing RUP Digraphs by their Duals

The aim of this section is to derive a characterization of RUP digraphs for which we use their
duals. Before we can do this, we need to introduce some novel concepts: the compound digraph,
introduced next, turns out to be a particularly useful tool. In the following, we only consider
connected digraphs as a digraph is RUP if and only if each of its connected components is RUP.
Remember, a digraph is RUP (SUP) if it has a RUP (SUP) embedding, and an embedding is
RUP (SUP) if there is a RUP (SUP) drawing that is upward plane on the rolling (standing)
cylinder endowed with the homogeneous field (Tab. 3.1). Also recall, an acyclic dipole is an
acyclic digraph with exactly one source and exactly one sink.

3.4.1 The Compound Digraph

The compound digraph can be seen as a high-level description of a given digraph by means
of non-trivial strongly connected and acyclic components. By the compound digraph, we
eventually generalize acyclic dipoles to dipoles.

Recall the definition of the component digraph as given in Sect. 1.1.6: In the component
digraph G = (V,E), the vertices are the (strongly connected) components and σ(v) denotes
the component to which vertex v belongs. For each edge (u, v) ∈ E with σ(u) 6= σ(v), there
is an edge (σ(u),σ(v)) ∈ E in the component digraph and, hence, the component digraph
is an acyclic multigraph. If G is embedded, we assume that G inherits the embedding. For
an example, consider the digraph shown in Fig. 3.9(a). Its component digraph is shown in
Fig. 3.9(b). A component is a compound, denoted by γ, if it contains at least one edge, i. e., it
either contains more than one vertex or a single vertex with a loop. In any case, a compound
always contains a cycle. In Fig. 3.9(a), the vertices belonging to a compound are drawn on a
shaded background. In the component digraph, the vertices belonging to a single compound are

“shrunk” to a single vertex. We display compounds by rounded rectangles, e. g., compounds γ1,
γ2, and γ3 in Fig. 3.9(b). For the sake of convenience, we identify γ with the component for
which it stands and call both compound. The set of all compounds is denoted by VC . Each
component σ(v) that is not a compound consists of a single vertex with no edges and is called
trivial component, e. g., v1, v2, s1, s2, and t in Fig. 3.9(b). A trivial component which is a
source (sink) in G is called source (sink) terminal and the set of all terminals is denoted by
T ⊆ V. We display terminals by diamond shapes that are white.

Based on the component digraph, we define the compound digraph G = (VC ∪T,E), whose
vertices are the compounds and terminals. Let u, v ∈ VC ∪ T be two vertices of the compound
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γ1

γ2
γ3

s1

v1 v2

t

s2

(a) A planar digraph whose
compounds are enclosed by
shaded rounded rectangles.

s1

γ1

γ2

v1

γ3

v2

t

s2

(b) The component digraph,
where the compounds are dis-
played as rounded rectangles
and the terminals by a dia-
mond shape.

γ1

γ2 γ3
s1

t

s2

(c) The compound digraph
where the transits are dis-
played by sinuous lines.

Figure 3.9: A digraph, its component digraph, and its compound digraph.

digraph. There is a transit (u, v) ∈ E if there is a dipath u  v in G which internally visits
only trivial components. For our example, the compound digraph is shown in Fig. 3.9(c), where
the transits are shown as sinuous lines. For instance, there is a transit between γ2 and γ3, as
there is a dipath γ2 → v1 → γ3 in the component digraph in Fig. 3.9(b). Note that in contrast
to the component digraph, G is simple. Also observe that the compound digraph is acyclic as
the component digraph is acyclic.

Each edge τ ∈ E corresponds to a set of dipaths in G. Hence, τ = (u, v) induces an acyclic
subgraph of G which contains exactly one source and one sink, i. e., it is an acyclic dipole. We
identify τ with its induced subgraph and call both transit. For example, the transit pointing
from γ2 to γ3 corresponds to the acyclic dipole consisting of compounds γ2 and γ3, and trivial
component v1 in Fig. 3.9(b). Based on these definitions, we are able to define (general) dipoles:

Definition 3.1 (Dipole). A digraph is a dipole if it has exactly one source s and one sink t
and its compound digraph is a dipath from s to t.

Intuitively, a dipole is a digraph with a very linear structure. In particular, the compounds
and transits are totally ordered in a dipole, an observation which we will use in the following.
Note that similar to the definition of st-digraphs [Kel87, DBT88], a dipole is not necessarily
planar. Also observe that Def. 3.1 is “backwards compatible” in the following sense: if an
acyclic digraph is a dipole, its compound digraph contains no compound and exactly one transit
from the single source to the single sink, hence, it is an acyclic dipole. From the compound
digraph in Fig. 3.9(c), we can conclude that the original digraph from Fig. 3.9(a) is not a
dipole. Removing compound γ1 and terminal s2 yields a dipole. The following characterization
of dipoles will be particularly useful:

Lemma 3.1. Let G = (V ,E) be a digraph with at least one source s and at least one sink t.
Then, G is a dipole if and only if the following conditions hold:

(i) For every vertex v ∈ V , there are dipaths s  v and v  t.

(ii) Every dipath s  t contains at least one vertex of each compound.

Proof. ⇒: We start with (ii). Since G is a dipole, its compound digraph G = (VC ∪ T,E) is a
dipath p = (v1, v2, ... , vk) with s = v1 and vk = t and (vi , vi+1) ∈ E for 1 ≤ i < k . There is
a transit (u, v) ∈ E if and only if there is a dipath u  v in the component digraph G which
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internally visits only trivial components. For contradiction, assume that the dipath s  t does
not visit all the compounds of G . Then, there is a transit (vi , vj) ∈ E with j 6= i + 1 and,
hence, the compound digraph is no dipath, which is a contradiction. Therefore, (ii) follows.

Let p = s  t be a dipath in G . Since p contains at least one vertex of each compound
and each compound is strongly connected, there are also dipaths s  v and v  t for each
vertex v in a compound. What is left to show is that there are also dipaths s  v̂ and v̂  t
for each trivial component v̂ 6= s, t. Assume for contradiction that there is no dipath s  v̂ .
Let v̂ be a trivial component and V̂ ⊆ V be the set of vertices u ∈ V̂ for which there is a
dipath u  v̂ . No vertex u′ of a compound can be in V̂ since, otherwise, there would be a
dipath s  u′ and, therefore, also a dipath s  v̂ . Hence, the subgraph induced by V̂ is an
acyclic subgraph of G which does not contain s . Therefore, there must be a source ŝ ∈ V̂ with
ŝ 6= s; a contradiction. By the same reasoning it can be shown that there is a dipath from
every vertex to the sink t and (i) follows.
⇐: Let s be a source and t be a sink of G . Since s  v and v  t for every v ∈ V by (i),

s is the single source and t the single sink of G . Let p be a dipath from s to t in G . By (ii),
dipath p contains at least one vertex from each compound. Whenever p leaves a compound γ
it does so by an edge e = (u, v) that belongs to a transit. In particular, p can never return to
γ as otherwise v would also belong to γ. Hence, in G, p corresponds to a dipath p = s  t
that is Hamiltonian, i. e., p visits s, t, and each compound exactly once. This and the fact
that G is acyclic implies that G is a dipath from s to t. �

3.4.2 Directed Duals and Dicuts

We introduce some further terminology and concepts related to (directed) duals and known
results about them. In the following, we deal only with digraphs and, hence, whenever we speak
of the dual we mean the directed dual. For the definition of duals along with an example, see
Sect. 1.1.8. Moreover, whenever a digraph G has a dual G ∗, we assume that both G and G ∗

are embedded. In particular, G is planar in this case.
Let G be a digraph with dual G ∗. The dual of G ∗ is (isomorphic to) G−1, where G−1

is the converse of G , i. e., all edge directions are inverted. Moreover, we have the following
statement:

Proposition 3.1. A digraph G is acyclic/strongly connected/an (acyclic) dipole/upward pla-
nar/ RUP/ wSUP if and only if the same holds for its converse G−1.

Fig. 3.10(a) shows a RUP drawing of a closed digraph, i. e., it contains neither sources nor
sinks. Its dual is shown in Fig. 3.10(b). Recall that a dual edge points from the face to the left
of the primal edge to the face on its right side when “looking” into the direction of the primal
edge. Consider face t, which is a sink in the dual. As t has no outgoing edges, it is rightmost
in the sense that t is not to the left of any primal edge. The boundary of t is a directed cycle,
which is at the right hand side of the fundamental polygon. In general, we call a cycle that
is the boundary of a sink in the dual rightmost. Note that in general, an embedded digraph
can have more than one rightmost cycle. Though, closed RUP-embedded digraphs always
have only one rightmost cycle as we will see. Remember that a vertex or an edge is incident
to a face, if it is part of the boundary of the face. We call a vertex or an edge of the primal
rightmost if it is incident to a sink of the dual. Analogously, we say that a cycle of the primal
is leftmost if it encloses a source of the dual, and a vertex or an edge of the primal is leftmost
if it is incident to a source of the dual.
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Let G = (V ,E) be a digraph and X be a proper and non-empty subset of V . The
tuple (X ,V \X ) is called dicut [BJC00] if for any x ∈ X and y ∈ V \X , (y , x) /∈ E , i. e., there
are no edges pointing from V \X to X . We call EX ⊆ E dicut-set if there is a dicut (X ,V \X )

such that EX = {(x , y) ∈ E | x ∈ X ∧ y ∈ V \ X}.

Proposition 3.2. A digraph is strongly connected if and only if it has no dicut.

Assume that G is embedded with dual G ∗ and let C be a simple cycle in G consisting
of edges e1, ... , ek . The set of dual edges E ∗C = {e∗1 , ... , e∗k}, where e∗i is the dual edge of
ei (1 ≤ i ≤ k), is a dicut-set [BJC00] with corresponding dicut (Fl ,Fr ), where Fr := F \ Fl .
The faces f ∈ Fl (f ∈ Fr ) are said to lie to the left (right) of C . For example, consider the
rightmost cycle in Figs. 3.10(a) and 3.10(b) which defines a dicut (F \ {t}, {t}) in the dual.
Although t lies geometrically to the right of the rightmost cycle in Fig. 3.10(b), this is only a
topological property that must not be interpreted geometrically in general. The converse holds
also true: Let (Fl ,Fr ) be a dicut of a dual graph G ∗ = (F ,E ∗) with dicut-set E ∗C , then the
primal edges EC of E ∗C constitute a simple cycle C in the primal G = (V ,E) [BJC00]. Using
dicuts, we prove the following lemma that we use thoroughly in the remainder of this section.

Lemma 3.2. An embedded digraph G is acyclic if and only if its dual G ∗ is strongly connected,
and an embedded digraph G is strongly connected if and only if its dual G ∗ is acyclic.

Proof. We only prove the first part, i. e., G is acyclic if and only if G ∗ is strongly connected.
The second part follows analogously.
⇒: Let G = (V ,E) be an embedded and acyclic digraph, and suppose for contradiction that

the dual G ∗ = (F ,E ∗) is not strongly connected. Then, by Prop. 3.2, G ∗ has a dicut (Fl ,Fr )

and, hence, G contains a cycle; a contradiction.
⇐: Suppose for contradiction that G has a cycle, then G ∗ contains a dicut and is not

strongly connected by Prop. 3.2; again a contradiction. �

3.4.3 RUP Digraphs and their Duals

We are now equipped with the right tools to study RUP digraphs and their duals. Ultimately,
we will arrive at the following characterization of RUP:

Theorem 3.1. A digraph G is RUP if and only if G is a spanning subgraph of a closed planar
digraph H whose dual is a dipole.

The theorem is proved by a series of lemmas which are also of interest in their own. In
the first part of this section, we deal with closed digraphs only and characterize closed RUP
digraphs. In the last part, we lift this restriction by showing that all RUP digraphs are spanning
subgraphs of closed RUP digraphs.

For our first observation, consider the RUP drawing of digraph G in Fig. 3.10(a), where all
vertices within a compound are drawn on a shaded background. The component digraph G of
G is displayed in Fig. 3.10(c) along with its compound digraph G below. Consider compound γ2

and its dual displayed in Fig. 3.11(a). As γ2 is strongly connected, its dual is acyclic. In other
words, a compound becomes a transit when going from the primal to the dual. The converse
is also true: Consider transit τ2, which is acyclic, and, thus, its dual is strongly connected as
shown in Fig. 3.11(b). Therefore, τ2 is becomes a compound of the dual. Also note that the
compound digraph G of G has the structure of an (undirected) path. Since compounds become
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s t

(a) The dual of com-
pound γ2 of G is a transit
of G∗.

γ

(b) The dual of transit τ2

of G is a compound of
G∗.

Figure 3.11: Transits and compounds swap their roles when going from primal to dual.

transits and transits become compounds when deriving G ∗ from G , the path-like structure of G
is also visible in the compound digraph of the dual which we denote by G∗ (cf. 3.10(d)). Also
note that all cycles in the RUP drawing have the same orientation, i. e., they all wind around
the cylinder in the same direction. Therefore, all transits of G ∗ point into the same direction.
The final observation we make is that G contains neither sources nor sinks and, thereby, at the
left and right border of G ’s RUP drawing is a leftmost and a rightmost cycle, respectively. In
the dual, the leftmost cycle encloses a source s and the rightmost cycle a sink t. In fact, s is
the single source and t the single sink of G ∗. All these observations together indicate that the
compound digraph of G ∗ is a dipath s  t (see Fig. 3.10(d)), i. e., G ∗ is a dipole. We prove
this in general.

Lemma 3.3. The dual G ∗ of a closed RUP-embedded digraph G is a dipole.

Proof. First, we have to argue that G ∗ = (F ,E ∗) contains at least one source and at least
one sink. Let f ∈ F be the “leftmost” face, i. e., the face that contains the border on the
left hand side of the cylinder. Face f ’s boundary consists of two parts: one part is the left
border of the cylinder and the other consists of edge curves of G ’s drawing. As G is closed, it
contains at least one cycle that winds exactly once around the cylinder [Bra14], i. e., the left
border of the cylinder is “separated” from the right border by the drawing. Hence, the part of
f ’s boundary that belongs to G ’s drawing winds exactly once around the cylinder. Let v be
any vertex incident to f . As G is closed and RUP-embedded, v has one incoming and one
outgoing edge that are both incident to f . Hence, f ’s boundary is a cycle and f is a source in
G ∗. By an analogous reasoning, there is also a sink in G ∗ that is the rightmost face.

Let s be a source and t be a sink in G ∗. We use Lem. 3.1 to show that G ∗ is a dipole. We
start with property (i), i. e., there are dipaths s  f and f  t in G ∗ for every face f ∈ F .
Let Fs be the set of faces reachable from s with Fs = {f ∈ F | s  f in G ∗}. Assume for
contradiction that Fs ( F . F is partitioned into Fs and F s = F \ Fs . By the definition of
Fs , any edge connecting a face in Fs with a face in F s must point from F s to Fs . In other
words, (F s ,Fs) is a dicut of G ∗. Let E ∗s be the corresponding dicut-set. The primal edges of
E ∗s , denoted by Es , form a cycle Ĉ in G . Further, denote by Cl the leftmost cycle in G that
encloses source s . Fig. 3.12(a) illustrates the situation, where the shaded area covers the faces
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Fs . Cycle Ĉ winds around the cylinder in the opposite direction of Cl , which contradicts our
assumption of a RUP embedding. Analogously, it can be shown that there is a dipath from
every face to sink t. This also implies that s is the single source and t the single sink of G ∗.

s

Fs F s

Cl Ĉ

(a) Two cycles with op-
posite orientations.

C ′

C∗

s t

R
G l

F r
F l

G r
R ′

(b) s and t are within region R.

Figure 3.12: Situation obtained in the proof of Lem. 3.3.

Let p∗ = s  t be a dipath in G ∗ from s to t, which must exist by the reasoning from
before. We now prove (ii), i. e., p∗ contains a face of each compound in G ∗. If G is strongly
connected, then G ∗ is acyclic and contains no compounds at all and we are done. Hence,
we assume that G ∗ contains at least one compound γ∗ which contains cycle C ∗. We show
that p∗ contains at least one face from C ∗ and, therefore, a face of γ∗. For contradiction,
suppose that p∗ contains no face of C ∗. Consider a plane drawing in R2 of G ∗ that respects
its embedding. In this drawing, C ∗ encloses a region R. If s and t are at opposite sides of C ∗,
e. g., s inside R and t outside, then path p∗ needs to cross an edge of C ∗ to connect s and t
by Jordan’s curve theorem (Prop. 1.1), contradicting planarity. Hence, either both s and t are
situated within R or both outside of R. First, we assume the former. The situation we obtain
in depicted in Fig. 3.12(b). In the primal G , C ∗ defines a dicut (V l,V r) with V r = V \ V l.
Let G r = (V r,E r) be the subgraph of G induced by V r. Depending on the orientation of C ∗,
G r lies either completely outside or inside of R. We assume that G r lies outside, where the
proof is analogous for the other case. In G r, each vertex has at least one outgoing edge as G is
closed and there is no edge that points from a vertex in V r to a vertex in V l. In other words,
G r contains no sink and, hence, it contains a cycle C ′, where C ′ encloses a region R ′ such that
R ( R ′ (Fig. 3.12(b)) or R ′ ( R. Remember that both s and t lie within R. Cycle C ′ defines
a dicut (F l,F r) in G ∗, where either s, t ∈ F l or s, t ∈ F r depending on the orientation of C ′

and on whether R ( R ′ or R ′ ( R. If s, t ∈ F l, there is no dipath from any face in F r to t,
and if s, t ∈ F r there is no dipath from s to any face in F l (see Fig. 3.12(b)); a contradiction
to (i). The case where both s and t are situated outside of R is analogous. Hence, p∗ contains
a vertex from C and, hence, a vertex from γ∗ and (ii) follows. �

Remember Fig. 3.8 on page page 106 which illustrates the relationship between Ampère’s
law from physics and Ampère’s for dual digraphs which states that the roles of SUP and RUP
swap when going from the primal to the dual. This relationship is expressed by the following
lemma.
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Lemma 3.4 (Ampère’s Law for Duals). The embedding of a strongly connected digraph is
RUP if and only if its dual is an acyclic dipole.

We need the following definition for the proof of Lem. 3.4. By rotation around the rolling
cylinder we mean the transformation:

T : I × I◦ → I × I◦ : (x , y) 7→ (x , (y + ∆ + 1) mod 2− 1) (3.1)

for some ∆ ∈ R, which also can be considered as a translation in y -direction by ∆. Note that
rotating a RUP drawing does neither affect its upwardness nor its implied embedding.

Proof. ⇒: Follows directly from Lemmas 3.2 and 3.3.
⇐: To show that G is RUP-embedded, we inductively construct a RUP drawing of G on

the fundamental polygon of the rolling cylinder such that the embedding of G is preserved. As
G ∗ is an acyclic dipole, we obtain a topological ordering f1, ... , fk (k ≤ 1) of the faces, where
f1 is the single source and fk is the single sink of G ∗. Let Gi (1 ≤ i ≤ k) be the embedded
subgraph of G induced by the faces f1, ... , fi , i. e., Gi contains exactly those edges and vertices
bounding the faces f1, ... , fi . Eventually, we obtain a RUP drawing of Gk = G .

The basic idea of the inductive proof is to add edges to Gi such that fi+1 is enclosed as
new face and fi+1 lies to the left of all newly added edges. To assure a plane drawing, the
x-coordinates of the newly added vertices are strictly greater than the x-coordinates of all
vertices in Gi . Let x1, ... , xk with xi ∈ I for 1 ≤ i ≤ k be a sequence of strictly increasing
x-coordinates, i. e., −1 < xi < xi+1 < 1 for all 1 ≤ i < k . As induction invariant, for each Gi ,
we obtain a RUP drawing Γi which respects the embedding of Gi and lies within [x1, xi ]× I◦.
Additionally, the dual G ∗i of each Gi is a planar, acyclic dipole. Especially, the right border of Γi
is a directed cycle and all faces f1, ... , fi are to the left of this cycle. Moreover, the construction
of the drawing is of a very special kind that assures that we can always introduce the next face
without causing a crossing.

For the base case, consider G1. Since f1 is a source in G ∗, G1 consists of a single cycle C
with d+(f1) many edges, where d+(f1) is the outdegree of f1. All vertices of C receive the
x-coordinate x1 and their y -coordinates are chosen according to the cyclic order as defined by
C , where the total order induced by the y -coordinates of the vertices implies the cyclic order as
defined by C . See Fig. 3.13(a) for an illustration. The drawing of G1 guarantees the induction
invariants. Especially, G ∗1 is an acyclic dipole with source f1 and a single sink to the right of C .

Now assume that 1 < i < k − 1. We obtain the situation depicted in Fig. 3.13(b). In the
embedding of G ∗i+1, all incoming edges are consecutive in the rotation system of fi+1 and so
are all outgoing edges. This follows from the fact that G ∗ is an embedded planar acyclic dipole
and, therefore, SUP-embedded which implies that its rotation system is bimodal [BDBD02].
Denote by e−1 , ... , e−p (dashed) and e+

1 , ... , e+
q (dotted) the primal edges of all incoming and

outgoing edges of fi+1, respectively, where the sequence of duals of e+
1 , ... , e+

q , e−p , e−p−1 ... , e−1
in order is the rotation system of fi+1. Note that fi+1 has at least one incoming edge as
otherwise it would be a source different from f1. Analogously, fi+1 has at least one outgoing
edge. Due to the topological ordering of the faces, all faces that have an outgoing edge to fi+1

are already present in the drawing of Gi . Additionally, all edges e−j are part of the rightmost

cycle Cr of Gi . For contradiction assume that is not the case. Then, there is an edge e−j
(1 ≤ j ≤ p) where the endpoints of its dual are both to the left of Cr . However, then either e−j
cannot be an edge bounding fi+1 or Γi does not respect the embedding of Gi ; a contradiction
to the induction hypothesis. Moreover, since Γi respects the rotation system of fi+1, the edges
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(b) Induction step.
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Figure 3.13: Inductive construction of a RUP drawing from its dual

e−1 , ... , e−p form a dipath p− = (v−1 , ... , v−p+1) in Gi , which is part of Cr . Let a ∈ I◦ and b ∈ I◦
be the y -coordinates of v−1 and v−p+1, respectively. Note that v−p+1 must lie “above”v−1 as p−

must be drawn upward. If a > b, we rotate the drawing around the cylinder by some value ∆

until a < b and, w. l. o. g., we assume that a < b. Accordingly, the edges e+
1 , ... , e+

q correspond
to a dipath p+ = (v+

1 , ... , v+
q+1) in Gi+1. Note that v+

1 = v−1 and v+
q+1 = v−p+1 since p+

and p− together bound face fi+1. We assign to each vertex v+
2 , ... , v+

q the x-coordinate xi+1.
As y -coordinate, we choose for every vertex v+

j a value y+
j such that for all 1 ≤ j < q the

inequality a < y+
j < y+

j+1 < b holds. Now, the edges of p+ can be drawn upward as straight
lines with a single bend at the first and the last edge of the dipath; see Figs. 3.13(b) and 3.13(c).
For the position of the bend in edges e+

1 and e+
q , we choose as y -coordinate some value in

the intervals (a, y+
2 ) and (y+

q , b), respectively, such that the straight lines from v−1 and v−p+1

to the bends cause no crossing with any edge from p−. This is always possible due to the
construction of the drawing. For the x-coordinate of the bends, we choose xi+1. In the case
that p+ consists of a single edge, this edge has two bends. The resulting drawing Γi+1 of Gi+1

is a RUP drawing respecting the embedding of G and it lies within [x1, xi+1] × I◦. In Γi+1

there is a newly formed cycle C ′r containing p+ on the right border of the drawing such that all
faces f1, ... , fi+1 lie to the left of C ′r , see Fig. 3.13(c).

In the drawing of Gk−1, face fk is already existent as it is the single face to the right of the
rightmost cycle in Gk−1. Hence, Gk−1 = Gk = G of which all are RUP-embedded. �

Since every embedded acyclic digraph is SUP-embedded [Has01], Lem. 3.4 implies:

Corollary 3.1. The dual of a strongly connected RUP-embedded digraph is SUP-embedded.

Consider again the component digraph G and the compound digraph G in Fig. 3.10(c)
of the RUP digraph G in Fig. 3.10(a). In the dual G ∗ of G , compounds and transits of G
swap their roles, i. e., compounds become transits and vice versa (cf. Fig. 3.10(d)). This is
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due to the fact that transits are acyclic and contain at least one edge and, hence, their duals
are compounds. Analogously, the duals of compounds are transits. By Lem. 3.4, this duality
between compounds and transits is even more profound. For this, consider compound γ2 in
Fig. 3.10(a). As the whole digraph is RUP-embedded, especially γ2 is RUP-embedded and,
thus, its dual, depicted in Fig. 3.11(a), is a SUP-embedded transit. For the transits, the
same holds but with swapped roles, i. e., the dual of a transit, which is SUP-embedded, is a
RUP-embedded compound. As an example, the dual of the transit τ2 in Fig. 3.10(a) is shown
in Fig. 3.11(b). The following lemma subsumes these observations.

Corollary 3.2. Let G be a closed RUP-embedded digraph and let G = (VC ,E) be its compound
digraph. Then, the following statements are true:

(i) The dual of each compound is a SUP-embedded transit.

(ii) The dual of each transit is a RUP-embedded compound.

Proof. (i): The compound of a RUP-embedded digraph is also RUP-embedded, by Cor. 3.1,
it is a SUP-embedded transit.

(ii): A transit of a digraph is an acyclic dipole. Since G is (RUP-)embedded, the transit is
also SUP-embedded [Has01]. Thereby, its dual is a RUP-embedded compound (Lem. 3.4). �

Note that the orientation of the cycles of a transit’s dual depends on the direction of the
transit in the primal. For instance, the dual of τ1 in Fig. 3.10(b) winds around the cylinder in
upward direction as τ1 points from γ2 to γ1, whereas the dual of τ3 winds around the cylinder

“downwards” as τ3 points from γ3 to γ4. In particular, the dual of a RUP-embedded digraph is
not necessarily RUP.

Let G∗ the compound digraph of the dual G ∗ of a closed RUP-embedded digraph G . We
denote the dual of a compound γ of G by γ∗, where γ∗ is a transit of G ∗. Likewise, we denote
the dual of a transit τ of G by τ∗, where τ∗ is a compound of G ∗. By Lem. 3.3, the dual of a
closed RUP-embedded digraph is a dipole. We now prove the converse.

Lemma 3.5. A closed digraph G is RUP-embedded if its dual G ∗ is a dipole.

The basic idea of the proof is as follows: Consider again the example in Fig. 3.10(a)
and the compound digraph G∗ of its dual G ∗ in Fig. 3.10(d). Since G ∗ is a dipole, G∗ is a
dipath p = (s, γ∗1, τ∗1 , γ∗2, τ∗2 , γ∗3, τ∗3 , γ∗4, t), where γ∗i is the dual of compound γi , and τ∗i is the
dual of transit τi . Each element on p corresponds to a subgraph in the primal G , i. e., for each
τ∗i there is a transit τi in G and for each γ∗j there is a compound γj in G . We construct a
RUP drawing of G by subsequently attaching the elements of p to each other. We start with
transit γ∗1 , which is an acyclic dipole, and obtain a RUP drawing of its primal γ1 which respects
the given embedding by Lem. 3.4. Then, we proceed with τ∗1 , a compound in G ∗, for which we
obtain a SUP drawing of its primal τ1 which also respects the given embedding. However, note
that this SUP drawing is upward only on the standing cylinder. In particular, rotating the SUP
drawing by 90 degrees to obtain a drawing on the rolling cylinder does not necessarily produce
a RUP drawing. Fortunately, we can transform the SUP drawing of τ1, while preserving its
embedding, such that it is also upward on the rolling cylinder. The so obtained drawing of τ1

is then attached to the rightmost cycle of γ1. Then, the RUP drawing of γ2 is attached to
the right side of τ1, and so forth until we reach t. Note that since all transits γ∗j point into

the same direction in G∗, i. e., from s to t, all cycles of the compounds in G have the same
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orientation in the obtained drawing which means that they all wind around the cylinder in the
same direction. Before we prove Lem. 3.5, we need to show that a SUP embedding is also a
RUP embedding.

Lemma 3.6. A SUP-embedded digraph is also RUP-embedded.

Proof. Let Γ be a SUP drawing of a digraph G = (V ,E) on the standing cylinder where all
edge curves are monotonically increasing in y -direction. We transform Γ such that it becomes
RUP and still implies the same embedding.

If we negate the x-coordinate of each point in Γ and swap the axes of the fundamental
polygon, we obtain a drawing Γ′ of G on the rolling cylinder where all edge curves are
monotonically increasing in x-direction.1 We assume that all edge curves are differentiable.
Otherwise, critical points must be excluded from the following reasoning. The idea is to shear
the drawing vertically such that the curves are increasing additionally in y -direction. Then,
we have a RUP drawing. In the following, we denote by x mod y the non-negative remainder
x − yb xy c of dividing a real x by a real y .

x

y

−1 0 1

−1

−2

−3

fe

(a) Function fe
which represents
edge e.

e

(b) Eq. (3.2) has been applied
to function fe to obtain the
edge curve of e on the rolling
cylinder.

Figure 3.14: Edge curve represented by the partial function fe : I × R : x 7→ 3(x − 1
2 ) with

dom(fe) = [−0.6, 0.6]

Edge curves are usually represented by continuous maps of the interval [0, 1] to points of
the surface (see Sect. 1.1.7). In the following, we take a different approach and use real-valued
partial functions as they allow for simpler mathematical treatment. As all edge curves are
monotonically increasing in x direction, no edge curve has multiple points with the same
x-coordinate. Thus, we can represent each curve of an edge e by a differentiable and partial
function fe from I to R, whose domain is a closed interval, which we denote by dom(fe). Then,
let the drawing of e be the point set

{(x , y) ∈ dom(fe)× I◦ : y = fe(x) mod 2− 1} , (3.2)

1Swapping the coordinates alone would alter the embedding as it reverses the cyclic order of incident edges.
Negation cancels this effect.
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At first glance, this definition may seem odd, but mapping the image of fe via this function
to y -coordinates on the rolling cylinder allows differentiable real-valued functions to represent
all curves increasing in x-direction, even if they wind multiple times around the cylinder. See
Fig. 3.14 for an example. Let a be the least gradient of all functions representing an edge of G :

a = min
e∈E

min
x∈dom(fe)

f ′e(x) .

If there are critical points, then choose a = mine∈E infx∈dom(fe) f
′
e(x). If f ′e > 0 for all edge

curves, all curves are increasing monotonically in y -direction and we are done. Otherwise,
assume for the remainder of the proof that there is at least one function fe with a non-positive
gradient at some point, i. e., a ≤ 0. We define a shearing transformation S by:

S : I × I◦ → I × I◦ : (x , y) 7→ (x , y + (1− a) · x) .

For simplicity, we omit the application of Eq. (3.2) to the y -coordinate. Denote by S [Γ′] the
image of Γ′ under S . Observe that S preserves the embedding of G , i. e., S [Γ′] is plane and
implies the same embedding as Γ′ and, especially, the same embedding as Γ. It remains to
show that S [Γ′] is a RUP drawing. Let fe represent an edge curve in Γ′. Then the function ge
representing the corresponding edge curve in the transformed drawing S [Γ′] is:

ge : dom(f )→ R : x 7→ fe(x) + (1− a) · x .

The derivation of ge is:

∀
x∈dom(f )

g′e(x) = f ′e(x) + 1− a > 0

since f ′e(x) ≥ a by the definition of a. Hence, all edge curves in S [Γ′] are monotonically
increasing in y -direction. Since S [Γ′] implies the same embedding as Γ′ and Γ, we can conclude
that the SUP embedding of G is also a RUP embedding. �

We can now proof Lem. 3.5.

Proof. [Lem. 3.5] Let G = (V ,E) be an embedded closed digraph with dual G ∗ = (F ,E ∗) and
assume that G ∗ is a dipole. If G consists of a single compound, then it is strongly connected.
Thus, G ∗ is an acyclic dipole, the embedding of G is a RUP embedding according to Lem. 3.4,
and we are done. In the following we assume that G contains at least two compounds.

Let s ∈ F and t ∈ F be the source and the sink of G ∗, respectively. We first show that
each cycle C in G separates the faces s and t, i. e., s lies to the left and t to the right of C
or vice versa. Cycle C defines a dicut (F l,F r) in G ∗. Since G ∗ is a dipole, there is a dipath
from s to any face f ∈ F and from f to t. Hence, s ∈ F l and t ∈ F r, and s is to the left-
and t to the right of C .

Let C1 and C2 be two cycles in G belonging to different compounds. We show that C1 and
C2 have the same orientation. As C1 and C2 belong to different compounds, they are vertex-
and edge-disjoint. In the dual, C1 and C2 define two dicuts (F l1 ,F r1 ) and (F l2 ,F r2 ), respectively,
with s ∈ F l1 ,F l2 and t ∈ F r1 ,F r2 . If C1 and C2 have opposite orientations, we obtain the same
situation as in the proof of Lem. 3.3 and as displayed in Fig. 3.12(a), where t is situated within
region F s . In particular, there would be no dipath from s to t in G ∗ which is a contradiction
due to Lem. 3.1.

By the reasoning in the previous paragraph, we can also conclude that the compounds of
G properly nest, i. e., there is a total order γ1, γ2, ... , γk of the compounds VC of G with the



3.4. Characterizing RUP Digraphs by their Duals 119

following properties: The region to the left of any cycle in compound γi (1 < i < k) contains
all vertices of compounds γ1, ... , γi−1, and the region to the right of any cycle in compound γi
contains all vertices of compounds γi+1, ... , γk . Compound γ1 is the leftmost compound in the
sense that no compound is to its left side and all other compounds are to its right side. In the
same sense, γk is the rightmost compound.

In the following, consider a drawing of G in the plane which respects the given embedding.
Fig. 3.15 shows the principle structure of such a drawing. The compounds are displayed as
shaded rings and the arrows on the rings’ borders indicate the direction of the compounds’
cycles. Face s is situated in the middle and lies left of all compounds γ1, ... , γk . Remember
that “left” must not be interpreted geometrically here but in the sense that s lies to the left of
each cycle in γ1, ... , γk . Face t is the outer face to the right of all compounds. Let γi and γj
be two compounds of G with 1 ≤ i < j ≤ k such that j − i > 1, i. e., in the ordering of the
compounds, there is at least one compound between γi and γj . We now show that there is no
transit between γi and γj , i. e., neither (γi , γj) ∈ E nor (γj , γi) ∈ E. Assume for contradiction
that a transit τ̂ = (γi , γj) ∈ E exists. If the transit points in the opposite direction, the
following reasoning proceeds analogously. There is a dipath p from a vertex in γi to a vertex in
γj which internally visits only trivial components. Further, there is at least one compound γ`
between γi and γj (i < ` < j). In other words, τ̂ must “overleap”γ`. Compound γ` contains
at least one cycle that encloses a region R such that γi is completely contained within R in
the drawing. As p internally only visits trivial components, p cannot have a vertex in common
with γ`. Moreover, p starts within region R and must reach a vertex of γj which is completely
situated outside of R. This inevitably leads to a crossing which contradicts planarity. For
instance, in Fig. 3.15, the transit τ̂ points from γ1 to γ3 and γ2 is situated between them,
which leads to a crossing.

Remember, that we assume that G is connected. Hence, there must be a transit between
adjacent compounds γi and γi+1, i. e., for all i with 1 ≤ i < k , either (γi , γi+1) ∈ E or
(γi+1, γi) ∈ E. In the following, let γ1, τ1, γ2, ... , τk−1, γk be the sequence of compounds and
transits in G such that τi is the transit connecting compounds γi and γi+1. Analogously, let
γ∗1, τ∗1 , γ∗2, ... , τ∗k−1, γ∗k be the sequence of compounds and transits in G ∗ in order of the dipath

from the source to the sink in G∗.
By Lem. 3.4, we know that each compound in G has a RUP embedding. Further, each

transit of G is an acyclic, planar dipole whose embedding is SUP and also RUP (Lem. 3.6).
We conclude the proof by showing that the RUP embeddings of the individual compounds and
transits can be merged into a single consistent RUP embedding of the whole digraph G . For
this, we construct a RUP drawing of G by subsequently processing the elements in the order
γ1, τ1, γ2, τ2, ... , γk . For an example, see Fig. 3.16. As scaling a drawing in x-direction does
not impair its upwardness in y -direction [ABBG11], we do not have to bother with the width
of the rolling cylinder.

We start with transit γ∗1 of G ∗, which is an acyclic dipole, and obtain a RUP embedding
of γ1 by Lem. 3.4 (see Fig. 3.16(b)). Let Γγ1 be a RUP drawing of γ1 according to its
RUP embedding. Denote by C r

1 the rightmost cycle of γ1. We proceed with τ∗1 , a compound
in G ∗. The primal τ1 is a transit and, thus, an acyclic dipole. The embedding of τ1 is SUP
by [Has01]. Denote by Γτ1 the SUP drawing of τ1. First assume that τ1 points from γ1 to
γ2. We shear Γτ1 as shown in the proof of Lem. 3.6 such that it becomes a RUP drawing and
place it to the right of Γγ1 . Remember that τ1 is not a subgraph of G but of its component
digraph: τ1 is an acyclic dipole, where the source sτ1 and sink tτ1 correspond to γ1 and γ2,
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γ1τ1γ2τ2γ3τ3

τ̂

γk
s

t

Figure 3.15: A transit which “overleaps” a compound causes a crossing.

respectively. All other vertices of τ1 are trivial components and, hence, they directly correspond
to vertices of G . The edges incident to sτ1 in τ1 correspond to edges in G which are incident
to vertices in γ1, more precisely vertices of C r

1 . Therefore, we remove sτ1 and all points of
its incident edge curves from Γτ1 within an axis-aligned, rectangular region R around sτ1 that
is chosen as follows (see Fig. 3.16(d)): R contains no points of Γτ1 besides those of sτ1 and
its incident edges, and its dimensions are such that all intersection points of R’s boundary
with Γτ1 are at the top side of the rectangle. Note such a rectangle exists as Γτ1 is upward in
y -direction. This results in edge curves starting in cutting points rather than in sτ1 , where all
cutting point have the same y -coordinate. We rotate Γτ1 around the rolling cylinder such that
the y -coordinate of the cutting points is greater than the y -coordinates of any of the vertices
in γ1. Let e = (u, v) be the edge in G corresponding to the edge in τ1 whose edge curve has
the cutting point with the smallest x-coordinate. Vertex u is part of C r

1 and v is a vertex in
τ1. Next we rotate the drawing of γ1 such that u is the topmost vertex, but has a smaller
y -coordinate than the cutting points. Since both the embedding of C r

1 implied by Γγ1 and
the embedding of τ1 implied by Γτ1 obey the initial planar embedding of G , the order of the
cutting points from right to left corresponds to the order of the vertices in C r

1 from bottom to
top. Hence, we can connect the vertices of C r

1 with edge curves increasing monotonically in
y -direction to the respective cutting points without introducing crossings.

The resulting drawing Γ′, see Fig. 3.16(e), forms the basis for the next step, where we
obtain, again as in Lem. 3.4, a RUP drawing Γγ2 of compound γ2 and place it to the right
of Γ′. In a similar way, we remove tτ1 from the drawing and reconnect the resulting cutting
points to the respective vertices in the leftmost cycle of γ2. If, contrary to our aforementioned
assumption, a transit is directed from right to left, we proceed similarly except that we switch
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(d) Γτ1 has been sheared to become a RUP drawing
and placed to the right of Γγ1 .

0

1

2

3

4

5

6

7

tτ1

(e) Intermediate result Γ′ after the drawings of γ1 and
τ1 have been merged.

Figure 3.16: Construction of a RUP drawing
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the roles of sτ1 and tτ1 and rotate the cutting points around tτ1 to the bottom rather than the
top. Analogously, we proceed with τ2, γ3, τ3, γ4, ... until we have processed all components,
resulting in a RUP drawing of G . �

Lemmas 3.3 and 3.5 both require that the digraph at hand contains neither sources nor
sinks. In the following lemma, we show that each RUP digraph can be augmented by edges
such that all sources and sinks vanish while still preserving RUP-embeddability.

Lemma 3.7. A RUP digraph is a spanning subgraph of a closed RUP digraph.

Before we prove this, we need a definition. For ε > 0 and an arbitrary metric d on a surface
S, the ε-environment of a point set P ⊆ S is the union of all open balls with radius ε around
points in P: ⋃

p∈P
{q ∈ S : d(p, q) < ε} . (3.3)

Proof. [Lem. 3.7] Consider an RUP drawing of a RUP digraph G . We iteratively add edges
until all vertices have both incoming and outgoing edges. Let t be a sink of G . Shoot a ray
from the position of t in upward direction and determine where it first meets some point p of
the drawing. If p belongs to a vertex v , we can introduce a geodesic edge, i. e., a straight line
on the fundamental polygon, from t to v . Note that v = t if no other vertex or edge has a
point with the x-coordinate of p such that the ray winds exactly once around the cylinder. If p
belongs to an edge (u, v), proceed as follows: the drawing of e = (u, v), i. e., the set of points
belonging to the edge curve of e, has an ε-environment which contains no other point of the
drawing except within the ε-environment of u and v . Thus, we can route a new edge (t, v)

in upward direction and without introducing crossings, which goes first from t towards p on
the ray, then runs alongside (u, v) such that it finally meets v . Analogously, we add incoming
edges to the sources of G . �

The proof of Thm. 3.1 is now complete. The only-if direction follows from Lemmas 3.3
and 3.7 and the if direction is a consequence of Lem. 3.5 and the fact that every subgraph of a
RUP digraph is a RUP digraph. We have now arrived at a characterization of RUP-digraphs
by means of their duals. In the next section, we use this characterization to derive a linear-time
algorithm that decides whether a closed digraph is RUP. Remember that in general deciding
whether a digraph is RUP is NP-complete [Bra14], which suggests that the complexity of the
decision problem lies in the augmentation of a digraph to a closed digraph without violating
RUP-embeddability. Note that in Lem. 3.7, we assume a RUP drawing of the digraph and,
hence, we can aptly augment it such that it becomes closed.
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3.5 Efficient Rolling Upward Planarity Testing of Closed Digraphs

The ultimate goal of this section is to prove the following theorem:

Theorem 3.2. There is an algorithm that computes a RUP embedding for a closed digraph G =

(V ,E) or returns ⊥ if G is not RUP. The running time is in O(|V |).

Instead of solving this problem all at once, our strategy is to further divide it into more
manageable chunks. Fig. 3.17 sketches how this is done: We start with a closed digraph and use
the compound digraph to separate it into its compounds and transits (Sect. 3.5.1). Whereas
for the transits we can use a slightly modified, and yet ordinary, planarity testing algorithm, we
need to put more effort into compounds. By using the block-cut tree, we divide each compound
into its blocks, i. e., its biconnected components (Sect. 3.5.2). Each block is then analyzed
separately using its SPQR tree, which describes how a block is composed of series and parallel
compositions, and triconnected components (Sect. 3.5.3).

closed digraph

compound
digraph

transit compound

block-cut tree

block

SPQR tree

parallel/series
composition

triconnected
digraph

Figure 3.17: Sketch of how the algorithm divides the problem into smaller problems.

All of the following sections are organized similarly: The first part gives a characterization of
RUP digraphs and develops tools using compound digraphs, block-cut trees, and SPQR trees,
respectively. These characterizations and tools heavily rely on the dual digraph characterization
derived in Sect. 3.4. As block-cut trees and SPQR trees in their original version incorporate no
information about dual graphs or edge directions, we need to adapt them adequately. We do
this in a general way that is not limited to RUP digraphs such that the developed ideas are
applicable in a wider range. Based on these ideas, we derive an algorithm in the second part of
each section that decides whether the input is RUP or not.

3.5.1 Closed Digraphs

We start with the top level of the algorithm (cf. Fig. 3.17): We are given a closed digraph
and separate it into its compounds and transits, and for each we test whether they have a
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RUP embedding with some special properties. These special properties, which we derive in
Sect. 3.5.1.1, ensure that we can assemble a RUP embedding of the whole digraph by“plugging”
all compounds and transits together as in the proof of Lem. 3.5. In Sect. 3.5.1.2, we devise the
respective algorithm that tests for these properties and assembles a RUP embedding for the
whole digraph or returns ⊥ if the digraph is not RUP. The algorithm given in Sect. 3.5.1.2
relies on the testing algorithm for compounds which is the topic of Sects. 3.5.2 and 3.5.3. We
assume that the given closed digraph is connected as a closed digraph is RUP if and only if all
of its connected components are RUP.

3.5.1.1 Transits and Compounds of Closed RUP Digraphs

γ1 γ2 γ3τ1 τ2

c1

c2

c3

c4
x2

x3

x1

w2

w3

w1

e1

e2

e3

e4

B1 B2

B3

B4

B5
B6

B7

B8

(a) A closed digraph consisting of three compounds and two
transits.

τ1

γ1

γ2

w1

w2

w3
x2

x3

x1

e1

e2
e3

e4

(b) Transit τ1 and its RUP em-
bedding.

γ1 γ2 γ3τ1 τ2

v1

v2

v3

v4

w2

w3

w1

x2

x3

x1
e4

e1

e2

e3

(c) RUP embedding of the closed digraph.

Figure 3.18: A closed RUP digraph.

We use the closed digraph G displayed in Fig. 3.18(a) as an illustrative example. Fig. 3.18(c)
shows G ’s RUP embedding along with its compound digraph. By Thm. 3.1, we know that
the dual G ∗ of G is a dipole. In particular, the compound digraph G∗ of the dual is a
dipath p = s, γ∗1, τ∗1 , γ∗2, τ∗2 , γ∗3, t, where s is the single source and t the single sink, and γ∗1,
γ∗2, γ∗3 are the transits and τ∗1 , τ∗2 are the compounds of G ∗. Remember that compounds and
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transits swap their roles when going from primal to dual. In the proof of Lem. 3.5, we use
dipath p to obtain a total order on the transits and compounds of both G and G ∗. By this
total order, we subsequently construct the RUP embedding of G from G ∗. In particular, the
path structure in G ∗ is carried over to G . Hence, a necessary condition for a closed digraph to
be RUP is for its compound digraph to be a path, i. e., the underlying undirected graph of the
G ’s compound digraph is a path.

Furthermore, the transits must be independent in the following sense: remember that a
transit, pointing from compound γ to another compound γ′, corresponds to the subgraph
consisting of all dipaths from γ to γ′ in the component digraph, where each dipath traverses
only trivial components.

Definition 3.2. Two transits are independent if they share no trivial components.

As an example of a digraph where the transits are not independent, consider Fig. 3.19(a):
The depicted digraph consists of r compounds to the left, r compounds to the right, and a
trivial component v in the middle. There is a dipath from each left compound to each right
compound, which all pass vertex v , and, hence, each transit contains v . Consequently, the
transits are not independent. In contrast, the transits of a closed RUP digraph are always
independent. Consider transit τ1 in Fig. 3.18(c) which points from γ1 to γ2 and, hence, all
vertices of τ1 lie in the region between the rightmost cycle of γ1 and the leftmost cycle of γ2.
Assume that there is another transit τ ′ which also starts at γ1 and shares at least one trivial
component with τ1 but ends at another compound γ′. Then, γ′ would also be situated between
γ1 and γ2. However, since γ′ contains at least once cycle that winds around the cylinder this
would lead to a crossing. All these observations are summarized in the following corollary.

v

(a) The digraph consists of r compounds
on the left, r compounds on the right side
and one trivial component r in the middle.

(b) The compound digraph has r 2 tran-
sits (straight lines) which all share the
vertex v .

Figure 3.19: A closed digraph in which the transits are not independent and which has a
compound digraph of quadratic size.

Corollary 3.3. Let G be a closed RUP digraph with compound digraph G. The underlying
undirected graph of G is a path and all transits are independent.

Proof. Assume that G is RUP-embedded. By Thm. 3.1, the dual digraph G ∗ is a dipole and its
compound digraph is a dipath p = s, γ∗1, τ∗1 , ... , τ∗k−1, γ∗k , t. In the proof of Lem. 3.5, we have

shown that the compound digraph G of G is the path γ1, τ1, ... , τk−1, γk . In particular, between
each pair of subsequent compounds γi , γi+1 (1 ≤ i < k) there is exactly one transit τi which is
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either directed from γi to γi+1 or vice versa. Conversely, each transit in the compound digraph
of G , connects a pair of subsequent compounds γi , γi+1. Furthermore, by the construction in
the proof of Lem. 3.5, all transits τi have no trivial components in common, i. e., the transits
are independent. �

The independence of the transits will be of particular importance for the (linear) running
time of the algorithm that we develop later.

By traversing the underlying undirected graph of G in either direction, we obtain a total
order on the compounds and transits as in the proofs of Lem. 3.5 and Cor. 3.3. In the following,
we assume this total order, e. g., γ1, τ1, γ2, τ2, γ3 in Fig. 3.18(c).

A compound may contain vertices which are adjacent to vertices in a neighboring transit.
For instance, the vertices v2, v3, and v4 of γ1 are adjacent to the vertices w1, w2, and w3

in transit τ1 (see Fig. 3.18(c)). Hence, in the RUP embedding, vertices v2, v3, and v4 must
lie on the rightmost cycle of γ1. More generally, all vertices of γi adjacent to vertices in τi
must be rightmost in γi . Recall that a vertex of a RUP-embedded compound is rightmost if
it is incident to the sink of the compound’s dual. Accordingly, all vertices of γi+1 which are
adjacent to τi must be leftmost in γi+1’s RUP embedding. We obtain the following corollary.

Corollary 3.4. Let G be a RUP-embedded, closed digraph and τi be a transit between
compounds γi and γi+1. All vertices of γi adjacent to vertices of τi are rightmost in γi and all
vertices in γi+1 adjacent to vertices in τi are leftmost in γi+1.

Proof. This follows again from the proof of Lem. 3.5: In the RUP embedding of a closed
digraph, there is a transit τi between each pair of subsequent compounds γi , γi+1. In the
proof of Lem. 3.5, τi is “attached” to the rightmost cycle of γi . Hence, due to planarity, all
vertices of γi adjacent to vertices in τi are rightmost in γi . Analogously, the vertices in γi+1

with neighbors in τi are leftmost. �

Let τi be a transit between compounds γi , γi+1 of a RUP-embedded closed digraph G .
Recall that we identify transit τi with its induced subgraph Gτi = (Vτi ,Eτi ) of the component
digraph, which is an acyclic dipole where γi is the source and γi+1 the sink or vice versa. For
instance, Fig. 3.18(b) shows τ1 where its source and sink are representing γ1 and γ2, respectively.
An acyclic dipole is SUP if and only if it is planar and, hence, since τi is an acyclic dipole
and planar, it is also SUP [Has01]. In Fig. 3.18(b), the transit is drawn “upward” from left to
right. By Lem. 3.6, we know that the SUP embedding of a digraph is also a RUP embedding.
Altogether, we obtain the following corollary:

Corollary 3.5. Any embedding of a transit is RUP .

Hence, only planarity has to be tested to find out whether a transit is RUP. Additionally,
each transit has to be “attachable” to its incident compounds. Remember that Cor. 3.4 ensures
that all vertices of a compound γi adjacent to vertices in a transit lie on the left- and rightmost
cycle of γi , respectively. These cycles imply a partial rotation system2 at the source and sink
of transit τi which the embedding of the transit has to respect. For instance, the rightmost
cycle C r

1 of γ1 consists of vertices v1, v2, v3, and v4 in this order. These vertices are connected
to w1, w2, and w3 in τ1 by edges e1, e2, e3, and e4. The embedding of τ1 must respect the
cyclic order of the edges induced by C r

1 , which is e4 ≺ {e1, e2} ≺ e3, where e ≺ e ′ means

2This definition of partial rotation system must not be confused with the definition of partial rotation system
as used in the context of the splittable deque in Sect. 2.5.3.
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that e precedes e ′. The order of e1 and e2 can be arbitrary as long as both succeed e4 and
precede e3. Note that the embedding of τ1 in Fig. 3.18(b) respects this partial rotation system.
Likewise, the leftmost cycle of γ2 partially induces a rotation system at the sink of τ1.

More generally, we obtain the situation sketched in Fig. 3.20(a). Let v1, ... , vr (r ≥ 1)
be the vertices of compound γi that have neighbors in τi . By Cor. 3.4, v1, ... , vr lie on the
rightmost cycle C r

i and we assume w. l. o. g. that v1, ... , vr is the (cyclic) order on C r
i . By

Ej , we denote the set of outgoing edges of vj pointing to vertices in τi . Let si be the source
in transit τi and assume that we are given a rotation system of si . From each Ej , we choose
an arbitrary edge ej with 1 ≤ j ≤ r and thereby obtain the sequence e1, ... , er . The rotation
system of si respects the partial rotation system induced by γi if e1 ≺ e2 ≺ ... ≺ er in si ’s
rotation system regardless of which edges we chose from E1, ... ,Er . In other words, in si ’s
rotation system the edges are ordered according to C r

i . Fig. 3.20(b) shows the partial rotation
system induced by C r

i in Fig. 3.20(a). All edges in Ei can be ordered arbitrarily, whereas the
edges of different sets Ei and Ej with 1 ≤ i < j ≤ r must obey the rotation system induced by
C r
i . In particular, edges between different sets cannot interlace as indicated by the dotted lines

in Fig. 3.20(b). Likewise, we can define a partial rotation system of the sink of τi as induced
by γi+1. We get the following necessary condition for RUP embeddings.

γi

v1
E1

v2
E2

v3
E3

C r
iC l

i

τi

(a) Compound γi (shaded) at-
tached to transit τi at its rightmost
cycle C r

i . The vertices v1, v2 and
v3 are connected to vertices in τi
via edge sets E1, E2 and E3, respec-
tively.

τisi

E1

E2

E3

(b) The partial rotation sys-
tem of transit τi induced by
cycle C r

i with E1 ≺ E2 ≺
E3.

Figure 3.20: Compound γi which is attached to transit τi via vertices v1, v2 and v3.

Corollary 3.6. Let G by a closed digraph with a RUP embedding and τi be the transit between
compounds γi and γi+1. The embedding of τi respects the partial rotation system induced by
γi and γi+1 at its source and sink.

Proof. We assume that τi points from γi to γi+1 where the proof for the opposite direction is
similar. By Cor. 3.3, the vertices of γi adjacent to vertices in τi lie on the rightmost cycle C r

i of
γi . Let G ′ be the subgraph of G that consists solely of cycle C r

i and transit τi . By subsequently
contracting the edges of C r

i , we ultimately obtain the source of τi and its rotation system. The
single step of such an edge contraction is carried out as follows: Let u and v be two vertices
on C r

i such that u is the immediate predecessor of v . In particular, there is an edge (u, v) that



128 Chapter 3. Rolling Upward Planar Digraphs

u
Eu

v
Ev

C r
i

τi

(a) Edge (u, v) is part of
the rightmost cycle of com-
pound γi .

w

Eu

Ev

τi

(b) After (u, v) is con-
tracted, u and v are merged
to vertex w .

Figure 3.21: Edge contraction of an edge (u, v) at the rightmost cycle of a compound.

lies on C r
i . First, we assume that u 6= v , i. e., (u, v) is no loop and C r

i consists of at least two
vertices. By the construction in the proof of Lem. 3.5, we obtain a situation as depicted in
Fig. 3.21(a). Denote by Eu and Ev the sets of outgoing edges of u and v to vertices in τi ,
respectively. The situation after contracting edge (u, v) is illustrated in Fig. 3.21(b), where
vertices u and v are merged to vertex w . In the rotation system of w , the rotation systems of
u and v are concatenated. In particular, the edges Eu and Ev do not interlace as indicated by
the dotted line. In this sense, the rotation system of w respects the rotation system induced by
γi . We subsequently contract all edges on C r

i until only a single vertex with a loop remains.
By removing this loop, we obtain a vertex that has the same rotation system as the source si
in τi . As all contraction steps respect the partial rotation system so does the rotation system
of si . The same edge contractions can be applied to the edges of the leftmost cycle C l

i+1 in
γi+1 to obtain sink ti and its rotation system. �

A partial rotation system is unique in the following sense: Assume that a compound γ
contains vertices V r that have neighbors in a transit τ . Further, τ lies right of γ in a
RUP embedding, i. e., the vertices V r must be rightmost in γ. Then, in any RUP embedding
of γ where the vertices in V r are rightmost, the cyclic order of the vertices in V r as obtained
from the rightmost cycle is always the same. The reason is that all simple cycles in γ that
contain the vertices in V r must wind around the cylinder in the same direction.

The conditions of Corollaries 3.3, 3.4 and 3.6 together yield a characterization.

Lemma 3.8. Let G be a closed digraph and G be its compound digraph. G is RUP if and only
if the underlying undirected graph of G is a path γ1, τ1, ... , τk−1, γk , all transits are independent,
and each compound and transit has a RUP embedding with the following properties:

(i) For each 1 ≤ i < k , all vertices of γi adjacent to vertices of τi are rightmost in γi and all
vertices in γi+1 adjacent to vertices in τi are leftmost in γi+1.

(ii) The embedding of each τi respects the partial rotation system induced by γi and γi+1 at
its source and sink.
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Proof. ⇒: Follows from Corollaries 3.3, 3.4 and 3.6.
⇐: From the RUP embeddings of the compounds and transits, we inductively con-

struct a RUP embedding of G . As the compound digraph G is a path, we have a total
order γ1, τ1, ... , τk−1, γk of the compounds and transits. We subsequently construct sub-
graphs Gi of G with 1 ≤ i ≤ k , where Gi consists of compounds γ1, ... , γi interconnected by
transits τ1, ... , τi−1. In the following, we will deal with graphs that either have sources and
sinks in their primals or duals. To avoid confusion, sources and sinks in the dual are denoted
with the superscript ∗ and in the primal there is no superscript.

First observe that each compound γi is endowed with a RUP embedding and, hence, its
dual γ∗i is an acyclic dipole with source s∗i and sink t∗i . In the inductive proof, we maintain the
following invariant: The dual G ∗i of digraph Gi is a dipole and, hence, Gi is RUP-embedded.
Further, the source of G ∗i is the source s∗1 of γ∗1 and the sink of G ∗i is the sink ti of γ∗i . The
base case follows directly as the embedding of G1 = γ1 is RUP and, hence, its dual γ∗1 is an
(acyclic) dipole with source s∗1 and sink t∗1 .

For the induction step, let graph Gi fulfill the induction invariant. We construct Gi+1 and
its embedding by “appending” transit τi and compound γi+1 to Gi . We assume that τi points
from γi to γi+1. The reasoning is similar if τi is oriented the other direction. Since the transits
are independent, they share no trivial components and can be processed independently. In
particular, when attaching transit τi to γi , and γi+1 to τi , no other transit τj with j 6= i needs
to be considered.

The situation before the merge in sketched in Fig. 3.22, where Gi and γi+1 are displayed by
shaded regions. The dual G ∗i of Gi is a dipole with source s∗1 and sink t∗i , where source s∗1 is
enclosed by the leftmost cycle C l

1 and t∗i by the rightmost cycle C r
i . Transit τi is an acyclic

dipole with source si and sink ti . Compound γi+1 is RUP-embedded and its dual γ∗i+1 is an
acyclic dipole with source s∗i+1 and sink t∗i+1. Source s∗i+1 is the face enclosed by γi+1’s leftmost
cycle C l

i+1 and t∗i+1 is enclosed by the rightmost cycle C r
i+1.

By the induction invariant, the sink of G ∗i is the sink of γ∗i and, by property (i), all vertices
in γi with neighbors in τi are rightmost in γi . Consequently, these vertices are also rightmost in
Gi , e. g., ur, vr, and wr in Fig. 3.22. We append τi to Gi as follows: Let vr be a vertex on
C r
i with outgoing edges Evr that have their other endpoints in τi . As the rotation system of
si respects the rotation system induced by γi (by (ii)), all edges in Evr are consecutive in the
rotation system of si . We adopt the rotation system of si for vr and obtain the situation as
shown in Fig. 3.23. Any other vertex wr on C r

i also adopts its portion of si ’s rotation system.
As the rotation system of si respects the cyclic order defined by C r

i , the resulting rotation
system is still planar. By (i), all vertices in γi+1 with neighbors in τi are leftmost, e. g., ul, vl,
and wl. Furthermore, the sink ti of τi respects the partial rotation system induced by γi+1.
By the same reasoning as before, we can thus attach γi+1 to τi and obtain a planar rotation
system (see again Fig. 3.23).

In fact, the rotation system is not only planar, but also the faces stay essentially the same.
Consider for instance, face f between edges Eur and Evr in the rotation system of si in Fig. 3.22.
As shown in Fig. 3.23, face f reappears, though this time also a part of C r

i is at f ’s boundary.
This observation will be useful in the remainder of the proof.

Denote by Gi+1 the graph we obtain by the merge process as described above. Since Gi+1

is endowed with a planar rotation system, we obtain the dual digraph G ∗i+1 = (Fi+1,E ∗i+1).
We show that G ∗i+1 is a dipole with source s∗1 and sink t∗i+1. Cycle C r

i defines a dicut in G ∗i+1

which partitions the set of faces Fi+1 into two subsets, i. e., the ones before the dicut and the
one beyond. Denote by FGi ( Fi+1 the partition that contains s∗1 . As the subscript suggests,
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FGi contains all faces of G ∗i where only t∗i is missing. Likewise C l
i+1 defines a dicut and we

denote by Fγi+1
the partition that contains t∗i+1. As before, Fγi+1

corresponds to the faces of
γ∗i+1 where s∗i+1 is missing. The remaining faces Fτi = Fi+1 \ (FGi ∪ Fγi+1

) are the faces of τ∗i .
At the bottom of Fig. 3.23, the braces indicate where the faces of the three sets are located.

We use Lem. 3.1 to prove that G ∗i+1 is indeed a dipole. We first show that there is a dipath
from s∗1 to each face and from each face to t∗i+1. By the induction hypothesis, we know that
G ∗i is a dipole and, thus, there is a dipath from s∗1 to each face in FGi . Let f be a face in Fτi
which has an incoming edge from the dicut as defined by cycle C r

i , e. g., face f in Fig. 3.23. In
G ∗i , there is a dipath from s∗1 to t∗i (see Fig. 3.22) and, therefore, in G ∗i+1, there is a dipath
from s∗1 to f . As the dual τ∗i of transit τi is strongly connected, there is a dipath from f to
every face g ∈ Fτi . Consequently, there is a dipath from s∗i to g.

Let g′ be any face in Fγi+1
. As γ∗i+1 is an acyclic dipole with source s∗i+1, there is a

dipath p′ = s∗i+1  g
′. Denote by e the first edge on this dipath which is part of the dicut

defined by C l
i+1, i. e., the primal of e is part of C l

i+1. As shown in Fig. 3.23, let f ′ be the face
in Fτi to which e is incident. Since f ′ ∈ Fτi , there is a dipath s∗1  f

′ by the reasoning from
before. Concatenating these dipaths results in the desired dipath s∗1  f

′  g′. Altogether,
G ∗i+1 contains a dipath from s∗1 to any face in Fi+1 = FGi ∪Fτi ∪Fγi+1

. By the same arguments,
there is also a dipath from any face in Fi+1 to t∗i+1.

What is left to show is that each dipath p = s∗1  t
∗
i+1 visits each of G ∗i+1’s compounds. Let

p be a simple dipath from s∗1 to t∗i+1. By the induction hypothesis, each dipath p′ = s∗i  t
∗
i

in G ∗i contains at least one face of each of G ∗i ’s compounds and so p also visits each compound
of G ∗i . During the merge, we have added the compound τ∗i to G ∗i+1. By the definition of FGi
and Fγi+1

and since p is simple, dipath p first traverses a dual edge e of C r
i and then a dual

edge e ′ of C l
i+1. Note that e and e ′ are distinct. Between traversing e and e ′, dipath p visits at

least one face f which is neither in FGi nor in Fγi+1
. Hence, f is in Fτi and, therefore, belongs

to compound τ∗i . Dipath p, therefore, visits all compounds of G ∗i+1.

We can conclude that G ∗i+1 is a dipole with source s∗1 and sink t∗i+1 and, hence, the induction
invariant is maintained. In particular, the dual of Gk = G is a dipole and, by Thm. 3.1, we
have constructed a RUP embedding for G . �
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Figure 3.22: Before merging Gi with transit τi and compound γi+1.

Note that the proof of Lem. 3.8 is constructive: If we can find RUP embeddings for the
compounds and transits fulfilling the properties as listed in Lem. 3.8, we can construct a
RUP embedding of the whole graph. We transform this construction into an algorithm in
Sect. 3.5.1.2. Moreover, this construction can be carried out in linear time.
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Figure 3.23: The graph Gi+1 obtained from merging Gi with τi and γi+1. Gi+1 fulfills the
induction invariants.

Corollary 3.7. Let G = (V ,E) be a closed digraph with compound digraph G whose underlying
undirected graph is a path γ1, τ1, ... , τk−1, γk and whose transits are independent. Given RUP
embeddings of the compounds and transits that fulfill properties (i) and (ii) of Lem. 3.8, a
RUP embedding of G can be constructed in time O(|V |+ |E |).

Proof. Let γi be a compound to which transit τi has to be attached as described in the proof of
Lem. 3.8. Let v be a rightmost vertex in γi which has neighbors in τi connected via edges Ev .
In transit τi , source si is endowed with a rotation system, where edges Ev are consecutive.
By removing all edges Ev from si and attaching them in the same order to v , we obtain the
rotation system of v . This can be done for each rightmost vertex in γi which has neighbors in
τi . All other vertices and edges of γi and τi stay untouched. Attaching γi+1 to τi proceeds
analogously. Also observe that the transits are independent and, thus, each trivial component,
i. e., all vertices of a transit other than its source and sink, is processed only once. Altogether,
each vertex and edge of G is processed at most O(1) times, which leads to an overall running
time of O(|V |+ |E |). �

3.5.1.2 The Algorithm for Closed Digraphs

From Lem. 3.8, we can derive an outline for a RUP testing algorithm for closed digraphs: First,
we have to check whether the underlying graph of the compound digraph is a path. Then,
we have to find RUP embeddings of the compounds and transits that fulfill the properties of
Lem. 3.8. Alg. 3.2 shows the routine TestClosedDigraph which follows this outline. Test-

ClosedDigraph takes a closed digraph G = (V ,E) as input and returns a RUP embedding
of G or ⊥ if G is not RUP. TestClosedDigraph calls the subroutines PlanarConstraint,
TestCompound, and ComputeCompoundDigraph.

The subroutine PlanarConstraint(G , E ′) takes as input a graph G = (V ,E) and a partial
rotation system E ′ as defined in Sect. 3.5.1.1. PlanarConstraint either returns an embedding
of the graph which respects E ′ or ⊥ if no such embedding exists. It can be implemented with
a running time in O(|V |) according to [GKM07]. The subroutine TestCompound(γ,V l,V r)

takes as input a compound γ = (Vγ ,Eγ) and two sets V l,V r ⊆ Vγ and returns a RUP
embedding of γ where all vertices in V l are left- and all vertices in V r are rightmost. If no such
embedding exists, TestCompound returns ⊥. For the moment, we take TestCompound as given
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and postpone its description to Sects. 3.5.2 and 3.5.3. We also assume that TestCompound
has a running time of O(|Vγ |) which indeed is the case as seen later.

The third subroutine is ComputeCompoundDigraph which computes the compound digraph
and the subgraph corresponding to each transit. Some care has to be taken here since in
general the compound digraph may have a size that is quadratic in the size of the original
digraph and this can lead to a quadratic running time. Consider again the digraph displayed in
Fig. 3.19(a) on page 125 which consists of r compounds to the left, r compounds to the right,
and one trivial component v , i. e., |V | = 2r + 1 and |E | = 2r . There is a dipath and, hence,
also a transit from each left compound to each right compound (cf. Fig. 3.19(b)). The number
of transits is therefore r2 which is quadratic in the size of the digraph. Note that the digraph
in Fig. 3.19(a) is even planar and, thus, neither planarity nor O(|V |) many edges guarantee a
compound digraph of linear size.

Fortunately, with RUP graphs we can circumvent this problem. The fact that in Fig. 3.19(a)
all transits share the trivial component v is to blame for the quadratic size of the compound
digraph. Remember that by Cor. 3.3 the transits of a RUP graph are independent, i. e., they
share no trivial components. In this case, the number of transits is bounded by the number of
edges in the original digraph.

Lemma 3.9. Let G = (V ,E) be a digraph with compound digraph G = (VC ∪ T,E). If all
transits are independent, then the number of transits is bounded by |E |.

Proof. Each edge e ∈ E either belongs to a compound or to a set of transits. We denote by
E ′ ⊆ E the set of edges belonging to transits. Let e be an edge in E ′ and let τ ∈ E be a
transit which contains e. Transit τ points from σu ∈ VC ∪T to σv ∈ VC ∪T, where each of σu
and σv is either a compound or a terminal. In the component digraph of G , e lies on a dipath
from σu to σv and this dipath contains only trivial components except for σu and σv . We show
that no other transit can contain e. For contradiction, assume that a transit τ̂ 6= τ contains e,
where τ̂ points from σ̂u ∈ VC ∪ T to σ̂v ∈ VC ∪ T. Since τ 6= τ̂ , e cannot be the direct edge
from σu to σv . Consequently, at least one of e’s endpoints is a trivial component σw . However,
transits τ and τ̂ then share σw , which is a contradiction to the independence of the transits.
Therefore, for each edge there is at most one transit that contains it and, hence, the number
of transits is bounded by |E ′| and, thus, also by |E |. �

ComputeCompoundDigraph uses Lem. 3.9 to achieve a running time of O(|V | + |E |) as
follows. While computing the compound digraph, it tests whether the transits are independent.
In this case, the compound digraph can be computed in time O(|V |+ |E |). If the transits are
not independent, ComputeCompoundDigraph aborts the computation in time, and returns ⊥.

Before we analyze ComputeCompoundDigraph in detail, we need an additional definition:
For each trivial component σv , let Pred(σv ) ⊆ (VC∪T) be the set of compounds/terminals σu ∈
VC ∪ T, for which there is a dipath σu  σv which visits only trivial components except for
its starting point. Likewise, Succ(σv ) ⊆ (VC ∪ T) contains all compounds and terminals for
which there is a dipath from σv internally visiting only trivial components. We call Pred(σv )

and Succ(σv ) the set of predecessors and successors of σv (in the component digraph),
respectively. By the proof of Lem. 3.9, we know that each edge e, which does not belong to
a compound, belongs to exactly one transit τ if the transits are independent. By using the
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definition of predecessors and successors, we characterize the independence of the transits:

Algorithm 3.1. ComputeCompoundDigraph

Input: digraph G = (V ,E)

Output: compound graph G = (VC ∪ T,E) with independent transits and
digraphs (Vτ ,Eτ ) as induced by each transit; or ⊥ if transits are not
independent

1 G = (V,E) ← ComputeComponentDigraph(G)

2 Initialize G = (VC ∪ T,E) with VC ,T,E = ∅
3 foreach σ ∈ V do
4 switch type of σ do
5 case compound: VC←VC ∪ {σ}
6 case terminal: T←T ∪ {σ}
7 case trivial component: Pred(σ) ← ⊥; Succ(σ) ← ⊥

8 σ1, ... ,σr ← TopSort(G)

9 foreach σ = σ1, ... ,σr do
10 if σ is compound or terminal then p ← σ
11 else p ← Pred(σ)

12 foreach σ′ with (σ,σ′) ∈ E and σ′ is a trivial component do
13 if Pred(σ′) = ⊥ then Pred(σ′) ← p
14 else if Pred(σ′) 6= p then return ⊥ by Cor. 3.8

15 foreach σ = Reverse(σ1, ... ,σr ) do
16 if σ is compound or terminal then s ← σ
17 else s ← Succ(σ)

18 foreach σ′ with (σ′,σ) ∈ E and σ′ is a trivial component do
19 if Succ(σ′) = ⊥ then Succ(σ′) ← s
20 else if Succ(σ′) 6= s then return ⊥ by Cor. 3.8

21 foreach σ ∈ V and σ is trivial do
22 τ ← (Pred(σ), Succ(σ))

23 if τ /∈ E then
24 E ← E ∪ {τ}
25 Vτ ← {Pred(σ), Succ(σ)}
26 Eτ ← ∅
27 Vτ ← Vτ ∪ {σ}
28 foreach (σu,σv ) ∈ E do
29 if σu is a trivial component then τ ← (Pred(σu), Succ(σu))

30 else if σv is a trivial component then τ ← (Pred(σv ), Succ(σv ))

31 else τ ← (σu,σv ) where each of σu and σv is a compound or terminal
32 Eτ ← Eτ ∪ {(σu,σv )}
33 return G, (Vτ ,Eτ )τ∈E

Corollary 3.8. The transits of a digraph are independent if and only if both Pred(σv ) and
Succ(σv ) are singletons for each trivial component σv , i. e., Pred(σv ) = {σu} and Succ(σv ) =

{σw}, where there is a transit τ from σu to σv that contains σv .
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Proof. ⇒: Assume that transit τ points from σu to σw in the compound digraph. In the proof
of Lem. 3.9, we argue that if one of e’s endpoints is a trivial component σv , then σv also
belongs to transit τ and only to this transit. Hence, Pred(σv ) = {σu} and Succ(σv ) = {σw}.
In particular, σv has exactly one predecessor and one successor.
⇐: If a trivial component σv has exactly one predecessor and successor, then only this

transit contains σv . Therefore, no two distinct transits can both contain σv . As this argument
holds for all trivial components, all transits must be independent. �

As soon as a trivial component has more than one predecessor or successor, the transits are
not independent and ComputeCompoundDigraph must return ⊥. Indeed, this check is at the
heart of ComputeCompoundDigraph, which we analyze now.

Lemma 3.10. For each digraph G = (V ,E), ComputeCompoundDigraph in Alg. 3.1 tests
whether the transits are independent. If this is the case, the compound digraph of G and all
subgraphs induced by the transits are returned. Otherwise, ⊥ is returned. The running time is
in O(|V |+ |E |).

Proof. The first step in line 1 is to compute the component digraph G = (V,E) which can be
done in time O(|V |+ |E |) by the algorithm of Tarjan [Tar72a]. The size of the component
digraph is bounded by the size of G , i. e., |V| ≤ |V | and |E| ≤ |E |.

In lines 2 to 7, the compound digraph G = (VC ∪ T,E) is initialized and for each
component σ ∈ V it is checked whether it is a compound, a terminal, or a trivial component.
Recall that a component is a compound if it contains at least one edge, which can be tested
in time O(1) (line 5). For each trivial component σ, two variables Pred(σ) and Succ(σ) are
maintained, which are both initially set to ⊥. Later in the algorithm, Pred(σ) and Succ(σ)

are set to the single predecessor and single successor of σ. The loop starting in line 2 has
O(V) ⊆ O(|V |) iterations where each iteration takes constant time.

The component digraph G is acyclic and, thus, has a topological ordering σ1, ... ,σr of the
components. To obtain the topological ordering, the routine TopSort is called in line 8 which
runs in time O(|V|+ |E|) ⊆ O(|V |+ |E |) [Knu97]. The loop starting in line 9 processes the
components in the order of the topological ordering. This order ensures that at σj ’s turn, all
components σi for which there is a dipath σi  σj in G have been processed before, i. e., i < j .

The idea of the loop is that the information about the predecessor of each trivial component
is propagated forward on each dipath: In line 10, the variable p is set to the predecessor which is
then propagated forward. If component σ is a compound or terminal, then σ is the starting point
of a transit and p is set to σ. Otherwise, σ is a trivial component and the predecessor Pred(σ)

of σ has to be propagated. For each trivial component σ′ with an edge pointing from σ to
σ′, its predecessor Pred(σ′) is set to p. If Pred(σ′) 6= ⊥ and Pred(σ′) 6= p, then σ′ has two
distinct predecessors and the transits are not independent by Cor. 3.8 (see lines 13 and 14). In
this case, ⊥ is returned. Note that after the loop starting in line 9 has finished, Pred(σ) 6= ⊥
for each trivial component σ. Also, each component and edge is processed at most once in
the loop and all other operations have a constant running time and, hence, the loop runs in
O(|V|+ |E|) ⊆ O(|V |+ |E |). The successor of each trivial component is determined likewise
in the loop starting in line 15. Only this time, the components are processed in the reversed
topological ordering and the successors are propagated backwards on the dipaths.

In the loop starting in line 21, the edges of the compound digraph, i. e., the transits, are
determined and the digraphs belonging to the transits are initialized. Each trivial component σ
belongs to the transit τ which points from Pred(σ) to Succ(σ) (line 22). If τ is not in E, it
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is inserted. Furthermore, the set of vertices Vτ is initialized to {Pred(σ), Succ(σ)} which are
the source and sink of the digraph corresponding to transit τ and the trivial component σ is
inserted to Vτ (line 27). The loop in line 21 is carried out O(|V|) ⊆ O(|V |) times and each
iteration takes O(1) time.

In the loop starting in line 28, the edges Eτ belonging to each transit τ are determined.
For each edge e ∈ E of the component digraph, the transit τ to which e belongs is determined
similar to the proof of Lem. 3.9: If one of e’s endpoint is a trivial component σ, then the
corresponding transit τ is (Pred(σ), Succ(σ)) (lines 29 and 30). Otherwise, e points from a
terminal or compound to another terminal or compound and, hence, e itself is the transit τ to
which e belongs (line 31). In any case, edge e is inserted into Eτ . The loop has O(|E|) ⊆ O(|E |)
iterations of which each has a constant running time.

Finally in line 33, the compound digraph of G and all digraphs (Vτ ,Eτ ) are returned. Since
each trivial component has exactly one predecessor and one successor, all transits are independent
by Cor. 3.8. By the analysis from before, each of the loops in ComputeCompoundDigraph runs
in O(|V |+ |E |) and so does the whole routine. �

Note that ComputeCompoundDigraph works for general digraphs with independent transits.
For closed digraph, it returns an empty set of terminals. We now analyze TestClosedDigraph.

Lemma 3.11. TestClosedDigraph (Alg. 3.2) returns a RUP embedding of a closed di-
graph G = (V ,E) or ⊥ if G is not RUP. Assuming that TestCompound has linear running
time, TestClosedDigraph runs in time O(|V |).

Proof. TestClosedDigraph starts with testing whether the input digraph is planar in line 1,
which can be done in time O(|V |) [KW01]. If the digraph is not planar, it is certainly
not RUP and ⊥ is returned. The subroutine ComputeCompoundDigraph is called in line 2
which takes O(|V |+ |E |) time by Lem. 3.10. If ComputeCompoundDigraph returns ⊥, then
transits are not independent and the whole digraph cannot be RUP by Cor. 3.3. Otherwise,
ComputeCompoundDigraph returns the compound digraph G = (VC ∪ T,E) and for each
transit τ its induced digraph (Vτ ,Eτ ). Note that since G is closed, it contains no terminals
and, hence, T = ∅. Furthermore, |VC | ∈ O(|V |) and E ∈ O(|E |) by Lem. 3.9. In line 6, Test-
ClosedDigraph tests whether the underlying undirected graph of G is a path in time O(|VC |+
|E|) ⊆ O(|V |+ |E |) and returns ⊥ if this is not the case (Cor. 3.3). Otherwise, traversing the
path in any direction yields the total order γ1, τ1, ... , τk−1, γk (line 7).

In the loop starting in line 8, property (i) of Lem. 3.8 is tested for each compound γi . In
lines 9 and 10, the sets V l and V r are obtained. Set V l contains all vertices in γi which have
neighbors in τi−1 if i > 1 and V l is empty if i = 0. Likewise, V r contains all vertices in γi with
neighbors in τi if i < k and V r is empty if i = k . More specifically, for each edge (u, v) in both
transits τi and τi−1, it is tested if either u or v is in γi to obtain V l and V r. Hence, the edges
of all transits are processed at most twice during all iterations. Thus, lines 9 and 10 contribute
O(|E |) to the overall running time of the loop. By Cor. 3.4, compound γi = (Vγi ,Eγi ) must
have a RUP embedding such that all vertices in V l are left- and all vertices in V r are rightmost
which is tested in line 11 by calling TestCompound. If TestCompound returns ⊥, G cannot be
RUP. Otherwise, the RUP embedding of γi is stored in Eγi . By assumption, the running time
of TestCompound is O(|Vγi |+ |Eγi |). Since the compounds are all disjoint, the overall running
time of the whole loop is O(|V |+ |E |).

The loop starting in line 13 tests for each transit τi if it has a RUP embedding fulfilling
property (ii) of Lem. 3.8: Let τi be the transit between compound γi and γi+1 with induced
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digraph (Vτi ,Eτi ). From the RUP embedding Eγi , we compute the dual digraph γ∗i of γi in
time O(|Vγi | + |Eγi |), which is an acyclic dipole. From the sink of γ∗i , we directly obtain
the rightmost cycle C r

i of γi in line 14. Likewise, we obtain the leftmost cycle C l
i+1 from

the dual of γi+1. These two cycles define a partial rotation system E ′τi for τi as described in
Sect. 3.5.1.1, where E ′τi is obtained by traversing C r

i and C l
i+1. Remember, this partial rotation

system is unique in the sense that the cyclic order of the vertices on C r
i and C l

i+1 that have
neighbors in τi is always the same regardless of which RUP embeddings are returned for γi and
γi+1 in line 11. PlanarConstraint tests whether an embedding of τi exists which respects
the partial rotation system E ′τi . The embedding is stored in Eτi . Recall that the embedding
returned by PlanarConstraint is also RUP by Cor. 3.5. If no embedding respecting E ′τi exists,
PlanarConstraint and also TestClosedDigraph return ⊥ (Cor. 3.6). The overall running
time of the loop starting in line 13 is O(|V |+ |E |) since each call of PlanarConstraint takes
O(|Vτi |+ |Eτi |) time steps and the transits are all independent.

As of now, we have obtained RUP embeddings of the compounds and transits that fulfill
the properties of Lem. 3.8. By Cor. 3.7, the RUP embedding of G can be constructed in time
O(|V |+ |E |) (line 19). Overall, each step of the algorithm takes O(|V |+ |E |). After line 1,
we can assume that G is planar and, hence, O(|V |+ |E |) = O(|V |), which leads to an overall
running time of O(|V |). �

Algorithm 3.2. TestClosedDigraph

Input: closed digraph G = (V ,E)

Output: RUP embedding of G or ⊥ if G is not RUP
1 if Planar(G) = false then return ⊥
2 if ComputeCompoundDigraph(G) 6= ⊥ then
3 G = (VC ,E) ← compound digraph of G
4 (Vτ ,Eτ )τ∈E ← digraphs induced by the transits

5 else return ⊥ by Cor. 3.3

6 if underlying undirected graph of G is no path then return ⊥ by Cor. 3.3

7 Traversal of path underlying G yields total order γ1, τ1, γ2, ... , τk−1, γk
8 foreach Compound γi ∈ VC do
9 V l ← vertices in γi adjacent to transit τi−1 if i > 1, else ∅

10 V r ← vertices in γi adjacent to transit τi if i < k , else ∅
11 Eγi ← TestCompound(γi ,V

l,V r)

12 if Eγi = ⊥ then return ⊥ by Cor. 3.4

13 foreach Transit τi ∈ E do
14 C r

i ← rightmost cycle of γi according to Eγi
15 C l

i+1 ← leftmost cycle of γi+1 according to Eγi+1

16 E ′τi ← partial rotation system at the source and sink according to C r
i and C l

i+1

17 Eτi ← PlanarConstraint((Vτi ,Eτi ), E ′τi )
18 if Eτi = ⊥ then return ⊥ by Cor. 3.6

19 E ← embedding of G obtained by assembling the embeddings of all compounds and
transits according to the proof of Lem. 3.5

20 return E
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3.5.2 Compounds

A compound is made up of blocks, i. e., biconnected components, that are connected by cut
vertices. A useful tool to investigate the blocks and their relationship is the block-cut tree
(see Sect. 1.1.6). Remember, the vertices of the block-cut tree TB = (B, C, EB) of a graph G
are the blocks Bi = (Vi ,Ei) ∈ B and the cut vertices C, and there is an edge between a
block Bi and a cut vertex c if Bi contains c , i. e., c ∈ Vi . We assume that a vertex v with
a directed loop is also a block and v is a cut vertex, i. e., removing v disconnected the loop
from the rest. We first establish some general properties of block-cut trees of planar graphs
and their duals. Although, the results are proved for undirected graphs they apply to digraphs,
i. e., their underlying undirected graphs, as well. In all of the following sections, we assume
that all graphs and digraphs a planar.

3.5.2.1 Cut Vertices and Cut Faces

A neat property of the block-cut tree of an embedded graph is that a cut vertex carries its
feature, namely that it separates the graph, over to faces to which it is incident. We call a cut
vertex of the dual graph cut face. Let c be a cut vertex of an embedded graph and B1, ... ,Bk
be all blocks that contain c . Further, let e and e ′ be two distinct edges incident to c such that
e and e ′ belong to two distinct blocks Bi and Bj and e is the immediate predecessor of e ′ in
c ’s rotation system. Between edges e and e ′ lies a face fc , which is defined by its clockwise
traversal according to the embedding. We say that fc lies between blocks Bi and Bj at cut
vertex c . Fig. 3.24(a) illustrates a block-cut tree, where the blocks are the shaded regions and
the cut vertices are displayed by the symbol ⊕. The blocks B1, B2, and B3 are attached to
each other by cut vertex c . Face fc , between e and e ′, is defined by the (non-simple) circle
in the graph which surrounds all blocks, i. e., fc is the outer face of the drawing. Note that
several cut vertices may be incident to fc , e. g., c and c ′ in Fig. 3.24(a). Conversely, not all
cut vertices must be incident to fc , e. g., cut vertex c ′′. It turns out that face fc is a cut face.

Lemma 3.12. Let c be a cut vertex of an embedded graph G . A face that lies between
blocks Bi and Bj at c is a cut face.

Proof. Fig. 3.24(b) illustrates the situation we obtain in the proof. Let Bi = (Vi ,Ei) and
Bj = (Vj ,Ej) be two distinct blocks which contain c and let fc be a face that lies between
Bi and Bj at c . First, we construct two simple circles Ci and Cj that enclose Bi and Bj ,
respectively, in the following way. Face fc corresponds to a non-simple circle Cfc in the graph
which visits c at least twice and may also contain other cut vertices. Consider Cfc as a sequence
of edges. Then the subsequence of edges in Cfc that are in Ei , i. e., edges that belong to Bi ,
form another circle Ci . In particular, this subsequence does not contain any “gaps” for the
following reasons: Whenever Cfc contains two subsequent edges e and e ′ such that e ∈ Ei and
e ′ /∈ Ei , a cut vertex c ′ is visited between e and e ′. Note that c ′ is not necessarily c . Eventually,
Cfc must return to c ′ and continues via another edge e ′′ ∈ Ei . Since circle Ci consists only
of edges in Ei , Ci traverses e ′′ directly after e without taking the “detour”. Note that before
Cfc traverses edge e ′′, it may revisit c ′ several times. Also observe that Ci is vertex-disjoint
since any vertex visited more than once would be a cut vertex of Bi . In contrast, circle Ci may
not be edge-disjoint if Bi consists of a single edge only. For the moment, we assume that Ci
is edge-disjoint and deal with the non-disjoint case later. Circle Cj is defined analogously for
block Bj and is also assumed to be edge-disjoint. The set of edges in Ci and Cj are disjoint
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since otherwise Bi and Bj would have at least two vertices in common and, thus, c would be
no cut vertex.

Recall the definition of cut and cut-set from Sect. 1.1.8. Both circles Ci and Cj define
cut-sets E ∗Ci ⊆ E

∗ and E ∗Cj ⊆ E
∗ of the dual graph G ∗ = (F ,E ∗), respectively, where the

edges in E ∗Ci (E ∗Cj ) are the duals of the edges in Ci (Cj ). All edges in E ∗Ci and E ∗Cj are incident

to face fc by construction. The cut-set E ∗Ci defines the cut FCi and F \ FCi , where w. l. o. g.
fc /∈ FCi . Intuitively, FCi contains all faces of Bi enclosed by Ci . Likewise, FCj and F \ FCj
is the cut according to cut-set E ∗Cj with fc /∈ FCj . For a face fi ∈ FCi , consider a simple

path p = fi  fc , which must exist since G ∗ is connected. As fi ∈ FCi and fc ∈ F \ FCi , p
contains exactly one edge from E ∗Ci , which is in fact the last edge before reaching fc . Since p
is simple and fc is incident to all edges E ∗Cj , p cannot contain an edge from E ∗Cj . Analogously,
all simple paths from any face fj ∈ FCj to fc contain exactly one edge from E ∗Cj and none from

E ∗Ci . Hence, there can be no face which is in both sets FCi and FCj , i. e., FCi ∩ FCj = ∅. In
particular, any simple path from a face fi ∈ FCi to a face fj ∈ FCj contains exactly one edge
from each of the sets E ∗Ci and E ∗Cj and, hence, the path also visits fc . Thus, removing face fc
from G ∗ disconnects FCi from FCj and, hence, fc is a cut face of G ∗.

The previous reasoning only works if Bi and Bj contain at least two edges and, hence, FCi
and FCj are not empty. If, for instance, Bi contains only one edge e, then fc lies to the left
and to the right of this face and therefore FCi = ∅. The dual of e is a loop from fc to itself.
Removing fc from G ∗ does not disconnect the faces in FCi from the faces in FCj since there
are no faces in FCi anyway; not to mention that FCj might also be empty. However, fc is still
a cut vertex in the following sense: In the dual, there is a loop from fc to itself which is the
single edge in Bi . In particular, any path in G ∗ which contains this loop must also visit fc . In
this sense, fc is still a cut face. �

e′ e
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c ′

c ′′
B2 B1
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(a) Several cut vertices (but not all, e. g.,
c ′′) are incident to cut face fc .

Ci Cj

c

fc

Bi Bj
fi fj

(b) Face fc is a cut face since every path
from a face fi within Ci to a face fj within Cj
contains fc .

Figure 3.24: The cut vertices are incident to cut faces.

From Lem. 3.12, we obtain the following corollary:

Corollary 3.9. The dual of an embedded and biconnected graph is also biconnected.

Proof. Let G be embedded and biconnected with dual G ∗. First note that G ∗ is always
connected. If G ∗ would not be biconnected, we could find a cut face fc . By Lem. 3.12 there is
a cut vertex in the dual of G ∗, which is (isomorphic to) G ; a contradiction as G is biconnected.

�
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By Cor. 3.9 we can conclude that the duals of the blocks of G are also blocks of the
dual graph G ∗. Moreover, these blocks in the dual graph are connected by cut faces. In the
following, we will see that the relationship between the block-cut tree of G and the block-cut
tree of G ∗ is even more profound.

Assume that we are given the block-cut tree TB = (B, C, EB) of a graph. In order to
“reassemble”G from TB , we use an operation called one-clique summation. The name “one-
clique sum” derives from the general operation of k-clique-sums: Let G1 and G2 be two graphs
of which each contains a complete subgraph (clique) with at least k vertices. Given two
cliques H1 ⊆ G1 and H2 ⊆ G2 with k vertices, the k-clique-sum of G1 and G2 is obtained by

“glueing”them together at H1 and H2, that is, each vertex in H1 is identified with a vertex in H2.
In case of the block-cut trees, we use the special case of k = 1 as follows. Let Bi = (Vi ,Ei)

and Bj = (Vj ,Ej) be two blocks that are incident to the same cut vertex c in TB , i. e., both
Bi and Bj contain c with Vi ∩ Vj = {c}. The one-clique sum Bi ⊕ Bj of Bi and Bj is the
union of Bi and Bj with Bi ,j = (Vi ∪ Vj ,Ei ∪ Ej). In other words, Bi and Bj are “glued”
together at c to obtain another subgraph of G . By applying the one-clique summation to graph
Bi ⊕Bj and another block Bj ′ = (Vj ′ ,Ej ′) with Vj ′ ∩ (Vi ∪Vj) = {c ′}, we obtain a third graph
subgraph Bi ⊕ Bj ⊕ Bj ′ of G , and so forth. In general, if G is connected, we can order the
blocks B1, ... ,Bk totally such that each block Bi with 1 < i ≤ k shares a cut vertex with at
least one block from B1, ... ,Bi−1. Such a total order, called block sequence, can be obtained
by a depth-first search traversal of the block-cut tree. Let B i = B i−1 ⊕ Bi with B1 = B1 and
Bk = G be a sequence of subgraphs of G obtained from subsequent one-clique summations of
G ’s blocks. We call this sequence block series as it is the (one-clique-)sum of the blocks.
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Figure 3.25: One-clique sum of two graphs G and G ′.

Since we are dealing with embedded graphs, we also need to incorporate the rotation
system during a one-clique summation. In general, let G = (V ,E) and G ′ = (V ′,E ′) be two
embedded graphs and c and c ′ bet two vertices in G and G ′, respectively. Note that this time
we do not identify c and c ′ with each other. Vertex c has the rotation system e1, ... , er in
G and c ′ the rotation system e ′1, ... , e ′r ′ in G ′, where r , r ′ ≥ 1. There is a face between each
pair of subsequent edges in a rotation system. If the degree of, for instance, c is one, then
there is a single face between e1 = er and itself. In a one-clique summation, we have to decide
at which faces we want to unite G and G ′. In the following, we choose w. l. o. g. the face fc
between er and e1 in G and the face fc ′ between e ′r ′ and e ′1 in G ′. The situation before the
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one-clique summation is depicted in Fig. 3.25(a). We call the result of merging G and G ′ at
vertices c and c ′ at faces fc and fc ′ the (c , fc)-(c ′, fc ′)-one-clique sum (of G and G ′) denoted
by G = G ⊕ G ′. G is shown in Fig. 3.25(b) where c and c ′ are replaced by the (cut) vertex c .
The rotation system of c is e1, ... , er , e

′
1, ... , e ′r ′ and, hence, the concatenation of the rotation

system of c , split between er and e1, and of c ′, split between e ′r ′ and e ′1. Note that the face
between edges er and e ′1 is equal to the face between e ′r ′ and e1. Also observe that the rotation
system of G is planar as the rotation systems of G and G ′ are planar.

Interestingly, a one-clique summation of two (primal) graphs is also reflected in their
duals: it turns out that the (c , fc)-(c ′, fc ′)-one-clique sum of G and G ′ corresponds to a
(fc , c)-(fc ′ , c

′)-one-clique sum of G ∗ and G ′∗. Remember that the faces of the dual graph,
where “faces” is used in the very sense of the word, are the vertices of the primal graph. To
distinguish the (primal) one-clique sum from the dual one-clique sum, we denote by G ∗ � G ′∗

the (fc , c)-(fc ′ , c)-one-clique sum of G ∗ and G ′∗. We obtain the following lemma:

Lemma 3.13 (De Morgan’s Law for One-Clique Sums). Let G = (V ,E) and G ′ = (V ,E)

be two embedded graphs with duals G ∗ = (F ,E ∗) and G ′∗ = (F ′,E ′∗), respectively. Further,
let c ∈ V and c ′ ∈ V be two vertices and fc ∈ F and fc ′ ∈ F ′ such that c is incident to fc
and c ′ is incident to fc ′ . The following equality holds:

(G ⊕ G ′)∗ = G ∗ � G ′∗,

where (G ⊕ G ′)∗ denotes the dual of the (c , fc)-(c ′, fc ′)-one-clique sum of G and G ′, and
G ∗ � G ′∗ the (fc , c)-(fc ′ , c

′)-one-clique sum of G ∗ and G ′∗.

We call Lem. 3.13 also De Morgan’s Law for One-Clique Sums. De Morgan’s law, from
Boolean algebra, states that for two Boolean variables x and y , the following equation holds:

(x ∧ y)c = xc ∨ y c , (3.4)

where xc is the negation of x . When replacing c by ∗, ∧ by ⊕, and ∨ by �, Eq. (3.4) resembles
the equation from Lem. 3.13. The strategy of the proof is to show that the dual obtained from
a one-clique summation of two primal graphs is equal to the one-clique sum of their duals. This
is illustrated by the following commutative diagram:

G ,G ′
∗→ G ∗,G ′∗

↓ ⊕ ↓ �
G ⊕ G ′ ∗→ G ∗ � G ′∗

For this, we investigate what happens to the dual graph during a one-clique summation in the
primal.

Proof. We start with the situation depicted in Fig. 3.26(a). The face between er and e1 is
face fc . In the rotation system of face fc the dual e∗r of edge er is the predecessor of the
dual e∗1 of e1. Between e∗1 and e∗r , the duals of the edges belonging to the circle indicated by
the dashed line to the left in Fig. 3.26(a) are incident to fc . As only e∗1 and e∗r are relevant in
the following, we neglect the other edges incident to fc . Let e∗r , ... , e∗1 be the rotation system
of fc . Note that vertex c lies between e∗1 and e∗r in the rotation system of fc . Likewise, in the
dual of G ′ we obtain face fc ′ with rotation system e ′∗r , ... , e ′∗1 and c ′ lies between e ′∗1 and e ′∗r ′ .
Consider Fig. 3.26(b) that depicts the situation after the one-clique summation of c and c ′ at
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Figure 3.26: One-clique sum of two graphs G and G ′, and their duals.

faces fc and fc ′ , respectively. For the sake of clarity, the graph is displayed on the fundamental
polygon of the rolling cylinder such that some dual edges can conveniently wind around the
cylinder. We obtain face fc with rotation system e∗r , ... , e∗1 , e ′∗r ′ , ... , e ′∗1 . The rotation system of
fc is the concatenation of the rotation system of fc , split between e∗1 and e∗r , and the rotation
system of fc ′ , split between e ′∗1 and e ′∗r ′ . Also, vertex c lies between edges e∗1 and e ′∗r ′ and
between e ′∗1 and e∗r . The duals G ∗ and G ′∗ stay essentially unchanged during the one-clique
summation. Only faces fc and fc ′ are replaced by face fc . Altogether, we have obtained the
(fc , c)-(fc ′ , c

′)-one-clique sum of G ∗ and G ′∗ in the dual graph G
∗

and, hence, the equality
holds. �

Remember that we can reassemble a connected graph G and its embedding by a sequence
of one-clique summations of its blocks by using the block series B i of G . For each 1 < i ≤ k ,
c in B i−1 and c ′ in Bi are merged at faces fc and fc ′ to obtain B i and c is a cut vertex of B i .
By De Morgan’s law for one-clique sums (Lem. 3.13), each one-clique summation in the primal
is also a one-clique summation in the dual. In the dual, faces fc and fc ′ are replaced by face fc
to which cut vertex c is incident. By construction, face fc lies between a block Bj in B i−1 and
block Bi with Bi 6= Bj and, hence, face fc is a cut face in B i by Lem. 3.12. Furthermore, the
dual of each block is biconnected (Cor. 3.9) and, hence, a block in B

∗
i . All these observations

together yield the following corollary:

Corollary 3.10. For each embedded and connected graph G with block series B i , we obtain
for the block series B

∗
i of the dual graph G ∗:

B
∗
i = B

∗
i−1 � B

∗
i ,

with B
∗
1 = B∗1 and B

∗
k = G ∗.

Let H be a subgraph of an embedded graph G and H∗ be the dual of H. In general, H∗ is
no subgraph of G ∗: Consider a triangle, i. e., the embedded complete graph with three vertices,
and the subgraph obtained by removing any of the three edges. The dual of the triangle consists
of two faces connected by three edges, whereas the dual of the subgraph consists of a single
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face with two loops. In particular, the dual of the subgraph is no subgraph of the dual. In the
case of blocks, however, we obtain the following corollary:

Corollary 3.11. The dual of a block Bi of an embedded graph G is a subgraph of G ∗.

Proof. The dual B∗i of Bi is a block of G ∗ by Cor. 3.10 and also a subgraph of G ∗. �

Remember, technically spoken, B∗i is isomorphic to a subgraph of G ∗.

This concludes our general observations about block-cut trees of embedded graphs and
their duals. These observations will be of great use in the following sections when we study the
block-cut trees of RUP compounds and their duals.

3.5.2.2 Block-Cut Trees of Acyclic Dipoles

In this section, we investigate the block-cut trees of acyclic dipoles. In turns out that the linear
structure of acyclic dipoles are reflected in their block-cut trees. First, note that each block of
an acyclic digraph is also acyclic and if each block is acyclic, then so is the whole digraph. The
latter follows from the fact the block-cut tree contains no circles.

Proposition 3.3. A digraph is acyclic if and only if each block is acyclic.

If a digraph is not only acyclic, but also a dipole, then its block-cut tree is a path. In fact,
we obtain a characterization of acyclic dipoles by means of their block-cut trees.

Lemma 3.14. An acyclic digraph is a dipole with source s and sink t if and only if the block-cut
tree is a path B1, c1,B2, ... ,Bk−1, ck−1,Bk , where each ci with 1 ≤ i < k is the cut vertex in
block Bi and Bi+1, and each block Bi is an acyclic dipole with source ci−1 and sink ci , where,
with a slight abuse of notation, c0 := s and ck := t.

In order to prove Lem. 3.14, we need further lemmas:

Lemma 3.15. In an acyclic dipole, neither its source nor its sink is a cut vertex.

Proof. Suppose for contradiction that s is a cut vertex. Then, there are at least two distinct
blocks Bi and Bj containing s . Removing s partitions the block-cut tree TB of G into at least

two subgraphs T iB and T jB where T iB contains Bi and T jB contains Bj , and none contains s.

Denote by G i and G j the union of all blocks in T iB and T jB , respectively. Note that G i and G j
are disjoint except for cut vertex s . By Prop. 3.3, both G i and G j are acyclic and, hence, each
contains at least one source, which is s, and one sink. Hence, G itself contains at least two
sinks contradicting the assumption that G is a dipole. By a similar reasoning, t cannot be a
cut vertex. �

Lemma 3.16. If G is an acyclic dipole and p a dipath from G ’s source to its sink, then the
following statements hold true:

(i) If p contains an edge of block Bi , then Bi contains at most two cut vertices and all cut
vertices of Bi are visited by p.

(ii) If p visits a cut vertex c , then c is in at most two blocks and p traverses at least one
edge of each block containing c .
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Proof. (i): Let p be a simple path from the source s to the sink t of G . Denote by B1, ... ,Bk
(k ≥ 1) the blocks in the order in which they are encountered by p, that is, p traverses an
edge of a block. Note that Bi 6= Bj for all 1 ≤ i < j ≤ k as otherwise p would not be simple.
Source s is in B1 and sink t is in Bk . First, suppose that k ≥ 2. For each 1 < i < k , dipath p
enters block Bi via a cut vertex ci−1 and leaves block Bi by another cut vertex ci 6= ci−1.
Towards a contradiction, suppose that Bi contains a third cut vertex c ′ with ci−1 6= c ′ and
ci 6= c ′. Cut vertex c ′ connects block Bi to another block B ′, where p does not contain an edge
of B ′. Further, as s is the single source and t the single sink, there is a dipath p′ = s  v  t,
where v is a vertex in B ′ distinct from c ′. Since ci−1, ci and c ′ are distinct cut vertices, and s
is in B1 and t in Bk , we obtain for dipath p′ = s  ci−1  c ′  v  c ′  ci  t and, thus,
G would contain a cycle which is a contradiction. Therefore, each Bi with 1 < i < k contains
exactly two cut vertices ci−1 and ci which are both visited by p. By a similar reasoning, B1

contains exactly one cut vertex (c1) by which p leaves B1, and Bk contains exactly one cut
vertex (ck−1) by which p enters Bk . Altogether, dipath p visits all cut vertices of the blocks
B1, ... ,Bk . If k = 1, i. e., s and t are both in B1, then, by the same argument as before, B1

does not contain any cut vertex and the statement is vacuously true.

(ii): The reasoning is similar to (i). As before, let B1, ... ,Bk (k ≥ 1) be the blocks in the
order in which they are visited by p. For contradiction, suppose that p visits a cut vertex ci
while leaving block Bi−1 and entering block Bi and there is a block B ′ that contains ci but p
does not contain an edge of B ′. In other words, there are at least three blocks that contain ci .
Let v be a vertex in B ′ that is distinct from ci . As before, there is a dipath p′ = s  v  t
which visits ci twice, i. e., p′ = s  ci  v  ci  t; a contradiction. �

Corollary 3.12. Let G be an acyclic dipole and p be a dipath from G ’s source to its sink.
Dipath p visits each cut vertex exactly once and contains an edge of each block.

Proof. If s = t, then G consists of a single vertex and the statement is vacuously true.
Otherwise, s 6= t and p contains at least one edge from a block Bi and, hence, p contains
all cut vertices in Bi by Lem. 3.16. The cut vertices of Bi are themselves connected to other
blocks and so forth. Since the underlying undirected digraph of G is connected, p visits each
cut vertex at least once and contains an edge of each block. As p is simple, it visits each cut
vertex at most once and, thus, exactly once. �

We can now prove Lem. 3.14:

Proof. [Lem. 3.14] ⇒: If G is biconnected, the block-cut tree consists only of G itself and the
statement is vacuously true. Otherwise, let G be an acyclic dipole with source s and sink t,
at least one cut vertex, and block-cut tree TB = (B, C, EB). Observe that the underlying
undirected graph of G is connected and so is TB .

By Lem. 3.16 we know that each block contains at most two cut vertices and each cut
vertex is in at most two blocks. Consequently, the degree of each cut vertex and block in TB of
G is at most two and, since TB is connected, it is a path B1, c1,B2, ... ,Bk−1, ck−1,Bk . As
any dipath s  t visits each cut vertex exactly once (Cor. 3.12) and as s and t are no cut
vertices (Lem. 3.15), s and t cannot be in the same block. For the same reasons, s must be in
B1 and t in Bk or vice versa. In the following, we assume w. l. o. g. that s ∈ B1 and t ∈ Bk .

What is left to show is that each block is a dipole. Let Bi be a block with 1 < i < k . Bi
is acyclic and, hence, contains at least one source and one sink. Also, Bi contains two cut
vertices of G , namely, ci−1 and ci . ci−1 is the single source and ci the single sink of Bi for
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the following reasons: Any vertex v with v 6= ci−1 and v 6= ci of Bi can neither be a source
nor a sink since otherwise G would be no dipole. Hence, either ci−1 is the source and ci the
sink or vice versa. Suppose that ci−1 is the sink. Then, ci−1 is the source in block Bi−1 since
otherwise ci−1 is a sink of G which is not possible due to Lem. 3.15. Since G is a dipole, there
is a dipath p = s  ci−1 with s in B1. Necessarily, p traverses an edge of Bi−1 to reach ci−1.
However, all edges in Bi−1 incident to ci−1 point away from ci−1; a contradiction. Thus, ci−1

is the source and ci the sink of Bi . By a similar reasoning, c0 := s is the source and c1 the
sink of B1 and, likewise, for Bk , ck−1 is the source and ck := t the sink.
⇐: First note that G is connected since its block-cut tree is connected. Each cut vertex ci

with 1 ≤ i < k is neither a source nor a sink in G since ci is a sink in Bi and source in Bi+1.
Since each block Bi is acyclic, G itself is acyclic by Prop. 3.3. Further, each block Bi is also a
dipole with source ci−1 and sink ck , where c0 = s is the single source and ck = t the single
sink of G . Hence, G is an acyclic dipole with source s and sink t. �

3.5.2.3 Characterizing RUP Compounds by their (Directed) Block-Cut Trees

In this section, we characterize the block-cut trees of RUP compounds. This characterization
is then used in Sect. 3.5.2.4 for an efficient testing algorithm. As in Sect. 3.5.1, we first derive
a series of necessary conditions for an embedding to be RUP and these conditions together
are also sufficient and, hence, yield a characterization. As a tool, we introduce the directed
block-cut tree in which the direction of the edges encode the embedding of each block to a
certain degree. It turns out that the compound at hand has a RUP embedding if and only
if its directed block-cut tree has a Eulerian dipath. In the following, we assume that if the
compound in endowed with a RUP embedding, then each block inherits this embedding.

Using Block Chains to Embed RUP Compounds A useful property of compounds is that
each of its blocks is a compound. Conversely, if each block is a compound, then the whole
digraph is. This follows from the fact that the blocks are connected to each other at common
cut vertices. We get the following proposition:

Proposition 3.4. A connected digraph is a compound if and only if each block is a compound.

Remember that the dual γ∗ of a RUP-embedded compound γ is an acyclic dipole by
Lem. 3.4. Hence, we can apply Lem. 3.14, i. e., the block-cut tree of γ∗ is a path and each
block is an acyclic dipole. Further, the blocks of γ∗ are connected to each other at their sources
and sinks. The blocks of γ∗ are the duals of the blocks of γ by Cor. 3.10, which also applies
for digraphs. All these observations together yield the following corollary:

Corollary 3.13. Let γ be an embedded compound with dual γ∗. The embedding of γ is RUP
if and only if the blocks of γ can be totally ordered from B1, ... ,Bk such that the block-cut
tree of γ∗ is a path B∗1 , fc1 ,B∗2 , ... ,B∗k−1, fck−1

,B∗k where all fci with 1 ≤ i < k are the cut
faces and each block B∗i is an acyclic dipole with source fci−1

and sink fci where fc0 is the
source of B∗1 and fck the sink of B∗k .

Since the block-cut tree of a RUP-embedded compound is a path, a traversal of this path
in any direction defines a total order of the blocks of the dual and, hence, also of the blocks of
the primal. This total order B1, ... ,Bk has the property that each pair Bi ,Bi+1 of subsequent
blocks shares a cut vertex since B∗i ,B∗i+1 share a cut face in the dual. This type of total order
plays an important role in the following and deserves its own name:
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Figure 3.27: RUP embedding of compound γ1 with its block-cut tree in the middle and its
directed block-cut tree (Def. 3.4) at the bottom.

Definition 3.3. A total order B1, ... ,Bk of the set of blocks of a digraph is called block chain
if and only if each pair Bi ,Bi+1 of subsequent blocks share a cut vertex.

In Sect. 3.5.2.1, we defined the block sequence of a connected digraph which is a total order
of the blocks B1, ... ,Bk such that Bi shares a cut vertex with at least one block of B1, ... ,Bi−1.
A block chain is a special kind of block sequence. However, not every block sequence is a block
chain and not every digraph has a block chain as we will see later. For the moment, we obtain:

Corollary 3.14. A RUP-embedded compound has a block chain and so has its dual.

In the following we assume that all blocks of a RUP-embedded compound are ordered
according to a block chain B1, ... ,Bk . As running example, we consider the compound γ1

in Fig. 3.18(a) on page 124 whose RUP embedding is displayed in Fig. 3.27. It consists of
blocks B1, ... ,B8 connected by cut vertices c1, ... , c4. Again, the cut vertices are displayed by
the symbol ⊕. A block chain of γ1 is B1,B2,B3,B4,B5,B6,B7,B8. Note that a single cut
vertex can be shared by more than two blocks, e. g., c1 by B1, B2, B3, and B4. Fig. 3.28 shows
the dual of γ1: At the top, the drawing of γ∗1 is laid upon the drawing of γ1 and all cut faces
are displayed by the symbol �. Immediately below the fundamental polygon, a more concise
drawing of γ∗1 is shown where, for illustration purposes, all multiple edges are replaced by a
single one and a more comprehensible embedding is chosen. At the bottom, the block-cut tree
of γ∗1 is shown, the cut faces are numbered from fc1 to fc7 . For convenience, the cut vertices of
all three drawings are aligned, i. e., fci has the same x-coordinate in all three drawings for all
1 ≤ i ≤ 7.

Consider blocks B4 and B5 (Fig. 3.27) and their duals B∗4 and B∗5 (Fig. 3.28). The sink of B∗4
is cut face fc4 , which is the source of B∗5 . In the primal digraph B4, face fc4 corresponds to the
rightmost cycle of B4’s embedding and, likewise, fc4 to the leftmost cycle of B5. Furthermore,
B4 is connected to block B5 by cut vertex c2. In order to attach B4 and B5 to each other,
their common cut vertex c2 must be rightmost in B4 and leftmost in the B5. In general, we
obtain that a cut vertex shared by two blocks must be leftmost in one block and rightmost in
the other block in any RUP embedding.
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Figure 3.28: Dual γ∗1 of compound γ1 on top. In the middle, a more concise drawing of γ∗1 is
shown, where all multiple edges are removed and a different embedding is used. At the bottom,
the block-cut tree of γ∗1 is shown.

Lemma 3.17. If Bi and Bj with 1 ≤ i < j ≤ k are two blocks of a RUP-embedded compound γ
which share cut vertex c , then c is rightmost in Bi and leftmost in Bj .

Proof. Denote by γ ⊆ γ the union of blocks Bi and Bj . γ is strongly connected (Prop. 3.4)
and inherits the RUP embedding of γ. The situation is illustrated in Fig. 3.29, where
Bi and Bj are displayed as shaded regions. We can apply Cor. 3.13: Consider the block-
cut tree T ∗B = (B∗, C∗, E∗B) of γ∗ which consists of blocks B∗ = {B∗i ,B∗j }, a single cut
face C∗ = {fc}, and edges E∗B = {{B∗i , fc}, {B∗j , fc}}. T ∗B is displayed at the bottom of
Fig. 3.29. Cut vertex c is incident to cut face fc , which in turn is the sink of B∗i and the source
of B∗j and, thus, c is rightmost in Bi and leftmost in Bj . �

c
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fc

B∗
i B∗

j

fc

Figure 3.29: Cut vertex c is shared between block Bi and Bj and cut face fc lies between
them. The block-cut tree of the dual digraph is shown at the bottom.
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Note that in the proof of Lem. 3.17, not necessarily i = j − 1 holds. For instance, block B1

and block B4 in Fig. 3.27 share cut vertex c1, which is rightmost in B1 and leftmost in B4. By
the contrapositive of Lem. 3.17, we get that if a cut vertex is neither left- nor rightmost in the
RUP embedding of a block, the embedding of the whole compound cannot be RUP. We call
a RUP embedding of a block Bi feasible if each of the block’s cut vertices is left- or rightmost,
or both. We obtain the following corollary from Lem. 3.17:

Corollary 3.15. In a RUP-embedded compound, the RUP embedding of each block is feasible.

By combining Cor. 3.13 with Lem. 3.17, we obtain the following lemma which is a major
leap towards our decision algorithm:

Lemma 3.18. A compound γ is RUP if and only if γ has a block chain B1, ... ,Bk with:

(i) Each block Bi has a feasible RUP embedding.

(ii) Let Bi and Bi+1 be two blocks which share cut vertex ci . In the RUP embedding of Bi ,
cut vertex ci is rightmost and, in the RUP embedding of Bi+1, ci is leftmost.

Proof. First note that in (ii), the cut vertex shared between Bi and Bi+1 is denoted by ci for
convenience. As ci may be shared between several blocks, ci = ci+1 is possible if cut vertex ci
is shared by blocks Bi , Bi+1, and Bi+2.
⇒: Since γ is endowed with a RUP embedding, so is each of its blocks. By Cor. 3.13, we

know that γ∗’s block-cut tree is a path from which we obtain the block chain B1, ... ,Bk . By
Lem. 3.17, the cut vertex shared between Bi and Bi+1 is rightmost in Bi and leftmost in Bi+1

and, hence, (i) and (ii) follow.
⇐: We construct a RUP embedding by attaching the blocks B1, ... ,Bk to one another at

their cut vertices and at the sources and sinks of the blocks’ duals. Each block Bi has a feasible
RUP embedding, where B∗i is its dual with source si and sink ti . Let B i be the block series of
γ in order of the block chain. That is, B i = B i−1 ⊕ Bi for all 1 < i ≤ k with B1 = B1 and
where B i = B i−1 ⊕Bi is the (ci−1, ti−1)-(ci−1, si)-one-clique sum of B i−1 and Bi , and ci−1 is
the cut vertex shared between B i−1 and Bi . For the dual B

∗
i of B i−1, we get by Cor. 3.10:

B
∗
i = (B i−1 ⊕ Bi)∗ = B

∗
i−1 � B

∗
i ,

where B
∗
i−1 � B

∗
i is the (ti−1, ci−1)-(si , ci−1)-one-clique sum of B

∗
i−1 and B∗i . The situation

before the one-clique summation is shown in Fig. 3.30(a) and the situation afterwards is
shown in Fig. 3.30(b). By this construction, we obtain for the block-cut tree of B

∗
k a

path B∗1 , fc1 ,B∗2 , f ∗c2
, ... , f ∗ck−1

,B∗k , where each cut face f ∗ci is the sink of B∗i and the source of
B∗i+1 for all 1 ≤ i < k . The source of B∗1 is s1 and the sink of B∗k is tk . Hence, all properties
of Cor. 3.13 are fulfilled and we can conclude that G is RUP-embedded. �

Lem. 3.18 breaks down the complexity of testing whether a compound is RUP into two
tasks: First, we have to find a block chain B1, ... ,Bk . Then, we need to find a feasible RUP
embedding for each block such that the cut vertex shared between Bi and Bi+1 is rightmost
in Bi and leftmost in Bi+1 for each 1 ≤ i < k . Also, the proof of Lem. 3.18 is constructive:
under the assumption that we already have obtained a block chain and a RUP embedding of
each block that fulfills the properties of Lem. 3.18, we can construct the RUP embedding of
the whole compound in time linear in the size of the compound by locally attaching the cut
vertices to each other.
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B i−1

ci−1
s1 ti−1

Bi

ci

ci−1
si

ti

(a) The situation before the (ci−1, ti−1)-(ci−1, si)-one-
clique summation of B i−1 and block Bi .

ci−1

B i−1

s1

Bi

ci
ti

fci

(b) The situation after the one-clique sum-
mation of B i−1 and block Bi .

Figure 3.30: Situation obtained in the proof of Lem. 3.18.

Caterpillars and Block-Cut Trees of RUP Compounds A necessary condition for a com-
pound to be RUP is that has a block chain. This raises the following general question: When
does a graph have a block chain? In particular, what is the structure of the block-cut tree of
these graphs? It turns out that the structure is a very special one, namely, that of a caterpillar:
A caterpillar, first studied by Harary and Schwenk [HS73], is a tree where the removal of all
leaves results in a path. A single vertex is also a caterpillar. We obtain the following lemma:

Lemma 3.19. A graph has a block chain if and only if its block-cut tree is a caterpillar.

Proof. Let TB = (B, C, EB) be the block-cut tree of a graph G . For both implications, we
assume that the graph and, hence, also TB are connected since otherwise neither the graph
has a block chain nor is TB a caterpillar. Remember, a graph is biconnected if and only if its
block-cut tree consists only of a single vertex, which is a caterpillar and the graph has a block
chain in this case. In following, we assume that the graph contains at least one cut vertex.

We use the following characterization of caterpillars: a tree is a caterpillar if and only if
there is a simple path that contains each vertex of degree two or more. The proof of this
characterization is as follows: After removing the leaves from the caterpillar, a path remains.
This path is simple in the original graph and contains all vertices of degree two or more.
Conversely, if a graph has a simple path that contains each vertex of degree two or more, all
other vertices have degree one and are leaves. After removing the leaves, the path remains.
⇒: The block chain is a total order on the blocks that corresponds to a path p =

(B1, c1,B2, ... , ck−1,Bk) (k > 1) in TB , where Bi and Bi+1 share cut vertex ci and, thus,
{Bi , ci} and {ci ,Bi+1} are edges of TB . Path p visits each block exactly once but may contain
a cut vertex several times. Note, as in the proof of Lem. 3.18, ci = ci+1 is possible. Some
of the blocks visited by p are leaves. Note that a cut vertex is never a leaf in a block-cut
tree. We obtain path p′ from p by skipping each leaf in p: Whenever p visits a leaf Bi , i. e.,
p = ... ci−1,Bi , ci , ... with ci−1 = ci , p

′ only visits ci = ci−1 and skips Bi .
We now show that p′ is simple. Since p contains each block exactly once, p′ visits each

block at most once. Now suppose for contradiction that p′ visits a cut vertex ci at least twice.
Let Bj be the block in p′ just after ci is visited for the first time and let Bj ′ be the block just
before returning to ci . The respective subsequence in p′ is a circle C = ci ,Bj , ... ,Bj ′ , ci , which
is not necessarily simple. We now show that Bj 6= Bj ′ . Neither Bj nor Bj ′ is a leaf and, thus,
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both are adjacent to cut vertices different from ci . In particular, since both Bj and Bj ′ are
visited exactly once, there are cut vertices c` and c`′ such that C = ci ,Bj , c`, ... , c`′ ,Bj ′ , ci .
Therefore, circle C leaves and enters ci via different blocks and does not contain ci in between.
Thus, the block-cut tree TB contains circles which is a contradiction. Altogether, path p′ is a
simple path that contains all vertices of degree two or more since we obtained p′ from p by
skipping only the leaves, and we conclude that TB is a caterpillar.
⇐: Let p be a simple path in TB that contains all vertices, i. e., blocks and cut vertices,

of degree two or more. Since p is simple, each block in p is visited exactly once. We can
subsequently extend p such that it also visits all leaves of TB . Note that a leaf in TB is always
a block which is adjacent to a cut vertex. Whenever p visits a cut vertex for the first time
that is adjacent to one or more leaves, we can take a “detour” to each of these leaves. The so
obtained path p′, which may not be simple, visits each block exactly once and, thus, induces a
total order B1, ... ,Bk on the set of blocks. Between each subsequent pair Bi ,Bi+1 of blocks,
p′ visits cut vertex ci and, thus, Bi and Bi+1 share ci . Consequently, B1, ... ,Bk is a block
chain of G . �

Corollary 3.16. If the block-cut tree of a graph is a caterpillar, then each block contains at
most two cut vertices.

Proof. First note that all leaves of the block-cut tree are blocks, which contain only one cut
vertex. Furthermore, all leaves are connected to cut vertices and, hence, removing the leaves
does not change the degree of all other blocks. After the removal of all leaves, we obtain a
path in which all blocks have degree at most two and, consequently, these blocks contain at
most two cut vertices. �

Corollary 3.17. The block-cut tree of a RUP compound is a caterpillar and each block contains
at most two cut vertices.

The block-cut tree of γ1 is shown directly beneath the fundamental polygon in Fig. 3.27
and it is indeed a caterpillar.

The path that remains after removing all leaves form a caterpillar is called spine. If the
block-cut tree is a caterpillar, we call the blocks on the spine spine blocks and all other blocks
leaf blocks. Further, traversing the spine of a caterpillar in any direction induces a total order
c1, ... , c` on the set of cut vertices, where ` is the number of cut vertices. We say that this
total order is induced by the caterpillar. In the following discussion, it makes no difference of
whether we traverse the spine in one or the other direction to obtain this total order. Note that
each spine block has degree two and is incident to two cut vertices cj and cj+1 with 1 ≤ j < `
in the block-cut tree.

Directed Block-Cut Trees of RUP Compounds By Cor. 3.17, the block-cut tree of a RUP
compound is a caterpillar and, in addition, Lem. 3.18 demands that each block has a feasible
RUP embedding with certain properties, i. e., the cut vertex between blocks Bi and Bi+1 must
be rightmost in Bi and leftmost in Bi+1. Using these properties, we equip the block-cut tree
with some additional attributes that store relevant information about the embedding of each
block. For this, we define the directed block-cut tree.

Definition 3.4 (Directed Block-Cut Tree). Let TB = (B, C, EB) be the block-cut tree of
a compound. If each block Bi is feasibly RUP-embedded and TB is a caterpillar, we define
the directed block-cut tree

#–T B = (B, C,
#–

EB) as follows. Let c1, ... , c` be the total order of
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the cut vertices as induced by the caterpillar. For each block Bi , we introduce directed edges
depending on the following cases:

I Bi is a spine block containing cut vertices cj and cj+1 with 1 ≤ j < `

There is an edge (cj ,Bi) ∈
#–

EB if and only if cj is leftmost in Bi , and there is an

edge (Bi , cj+1) ∈ #–

EB if and only if cj+1 is rightmost in Bi .

I Bi is a leaf block containing cut vertex cj
There is an edge (cj ,Bi) ∈

#–

EB if and only if cj is leftmost in Bi , and there is an

edge (Bi , cj) ∈
#–

EB if and only if cj is rightmost in Bi .

Note that Def. 3.4 assumes some preconditions before it can be applied: First, each block
must be feasibly RUP-embedded. In contrast, an (undirected) block-cut tree, does not presume
an embedding (of any kind). Second, the (undirected) block-cut tree must be a caterpillar
which induces a total order c1, ... , c` of the cut vertices. Only if these conditions are fulfilled,
we can derive the directed block-cut tree. Another subtlety of the directed block-cut tree is
that its definition heavily relies on the total order of the cut vertices. For a spine block Bi with
cut vertices cj and cj+1, there is an edge (cj ,Bi) if and only if cj is leftmost in Bi . Conversely,
there is never an edge pointing from Bi to cj , even if cj is rightmost in Bi . Analogously, there
can only be an edge from Bi to cj+1 but never in the opposite direction. Suppose that Bi
has a feasible RUP embedding, however, both cj and cj+1 are leftmost but not rightmost in
Bi . Then, there is an edge from cj to Bi but no edge between Bi and cj+1 as cj+1 is not
rightmost in Bi . That is, even if there is an edge between a block and a cut vertex in the
(undirected) block-cut tree, there may be no edge between those two in the directed version,
i. e., the directed block-cut tree might not be connected.

The directed block-cut tree of γ1 is shown at the bottom of Fig. 3.27. In the RUP
embedding of B4, c1 is leftmost, whereas is c2 rightmost. Hence in

#–T B , block B4 has an
incoming edge from c1 and an outgoing edge to c2. Also observe that there is neither an edge
from B5 to c2 nor an edge from c3 to B5 although both cut vertices are left- and rightmost
in B5. Note that

#–T B is technically no tree since it contains antiparallel edge pairs whenever
a cut vertex is both left- and rightmost in the same block, e. g., B2 or B3, or it may be
unconnected. However, its overall structure is still that of a tree and, hence, we stick to the
term. From Def. 3.4, we obtain:

Corollary 3.18. For each block Bi in a directed block-cut tree, the indegree and outdegree of
Bi is at most one, i. e., d-(Bi) ≤ 1 and d+(Bi) ≤ 1.

A neat property of the directed block-cut tree is as follows. Consider again Fig. 3.27. The
blocks B1, ... ,B8 of γ1 in that order already comprise a block chain that fulfills the properties
of Lem. 3.18. In the directed block-cut tree of γ1, we can trace a dipath p according to the
block chain, which is:

p = B1, c1,B2, c1,B3, c1,B4, c2,B5, c3,B6, c3,B7, c4,B8 .

Dipath p is Eulerian, i. e., it contains each edge exactly once. Also note that p is Hamiltonian
on the set of blocks as it visits each block exactly once. We obtain the following lemma:

Lemma 3.20. The directed block-cut tree of a RUP-embedded compound has a Eulerian
dipath.
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Proof. Let γ be a RUP-embedded compound with dual γ∗. If γ is biconnected, then it contains
not cut vertex and its directed block-cut tree consists of only a single vertex with no edges
and the statement is vacuously true. Otherwise, let B1, ... ,Bk (k > 1) be the block chain as
induced by γ∗ as in Cor. 3.13. The block-cut tree of γ is a caterpillar and each of its blocks
is feasibly RUP-embedded. Thus, we can apply Def. 3.4 to obtain the directed block-cut
tree

#–T B = (B, C,
#–

EB). Remember that each pair Bi ,Bi+1 of subsequent blocks share cut
vertex ci (1 ≤ i < k), where ci is rightmost in Bi and leftmost in Bi+1 by Lem. 3.18. Hence,
in

#–T B , there are edges (Bi , ci), (ci ,Bi+1) ∈ #–

EB . From the block chain, we obtain a dipath
p = B1, c1,B2, ... , ck−1,Bk in the directed block-cut tree that visits each block exactly once.

We show that p, or a slight modification of p, is Eulerian. We first investigate all blocks Bi
with 1 < i < k . Dipath p enters Bi via an incoming edge e and leaves Bi via an outgoing edge e ′.
By Cor. 3.18, these two edges are the only edges incident to Bi and, hence, d-(Bi) = d+(Bi).
Since Bi is visited exactly once, e and e ′ are traversed exactly once by p.

For B1 and Bk , we possibly need to extend dipath p at its ends. Note that
#–T B contains

edge (B1, c1); see also Fig. 3.27 where B1 has an outgoing to c1. If also (c1,B1) ∈ #–

EB ,
then we let p start at c1 instead of B1, i. e., p = c1,B1, c1,B2, ... , ck−1,Bk . Otherwise, we
leave p as it is and let it start at B1. Likewise, we know that (ck−1,Bk) ∈ #–

EB and if also
(Bk , ck−1) ∈ #–

EB , e. g., for B8 and c4, we let p end at ck−1 instead of Bk . Then, p also
traverses each incident edge of B1 and Bk exactly once. Since

#–T B contains only edges between
blocks and cut vertices, we can conclude that p is a Eulerian dipath. �

Now suppose the directed block-cut tree has a Eulerian dipath. By Cor. 3.18, each block
has at most one incoming and at most one outgoing edge. Hence, the Eulerian dipath visits
each block exactly once. This induces a total order on the set of blocks which is, in fact, the
block chain that fulfills the properties of Lem. 3.18. We get the converse of Lem. 3.20.

Lemma 3.21. Let γ be a compound whose block-cut tree is a caterpillar and whose blocks are
feasibly RUP-embedded. If the directed block-cut tree of γ contains a Eulerian dipath, γ is
RUP.

Proof. If γ is biconnected, it consists of only a single block that is (feasibly) RUP-embedded
and so is γ. Otherwise, γ contains at least one cut vertex. We use Lem. 3.18 for the proof.
By assumption, each block has a feasible RUP embedding and (i) follows immediately. Let
#–T B = (B, C,

#–

EB) be the directed block-cut tree of γ and denote by p the Eulerian dipath in
#–T B . Each block has in- and outdegree at most one in

#–T B and, hence, each block is visited
exactly once by p. Let B1, ... ,Bk be the (total) order in which the blocks are visited. For each
pair of subsequent blocks Bi ,Bi+1 with 1 ≤ i < k , the Eulerian dipath p visits a cut vertex ci
and, thus, (Bi , ci) ∈

#–

EB and (ci ,Bi+1) ∈ #–

EB . This implies that Bi and Bi+1 share a cut
vertex and, hence, B1, ... ,Bk is a block chain. Also, ci is rightmost in Bi and leftmost in Bi+1,
which implies (ii). �

In fact, from a Eulerian dipath in the directed block-cut tree we not only can conclude
that the compound at hand is RUP, we can also construct its RUP embedding: The Eulerian
dipath induces a block chain and we can assemble the RUP embeddings of the blocks by a
series of one-clique summations as in the proof of Lem. 3.18,.

Lemmas 3.20 and 3.21 together yield a characterization of RUP-embeddable compounds,
which will be most useful for the decision algorithm in Sect. 3.5.2.4. This characterization aptly
summarizes this section.



152 Chapter 3. Rolling Upward Planar Digraphs

Theorem 3.3. A compound is RUP-embeddable if and only if its block-cut tree is a caterpillar
and each of its blocks is feasibly RUP-embeddable such that the directed block-cut tree has a
Eulerian dipath.

3.5.2.4 The Algorithm for Compounds

In the RUP testing algorithm for closed digraphs in Sect. 3.5.1, we have assumed that we are
given a routine TestCompound, which takes as input a compound γ = (V ,E) and two sets
V l,V r ⊆ V . The output of this routine is a RUP embedding of γ such that all vertices in
V l are left- and all vertices in V r are rightmost. If no such embedding exists, TestCompound
returns ⊥. Before we delve into the algorithm which solves this problem, we need to adjust
Thm. 3.3 such that it incorporates the sets V l and V r.

Corollary 3.19. Let γ be a compound whose block-cut tree is a caterpillar and whose blocks
are feasibly RUP-embedded. Compound γ has a RUP embedding such that all vertices in V l

are left- and all vertices in V r are rightmost if and only if the directed block-cut tree has a
Eulerian dipath with the following properties: Denote by Bl and Br the first and last block
as visited by the Eulerian dipath, respectively. All vertices in V l are leftmost in Bl and all
vertices in V r are rightmost in Br.

Proof. If γ consists of only one block B, then B is the first and last block visited by the
Eulerian dipath and B is RUP-embedded where all vertices V l are left- and all vertices V r are
rightmost. In the following, we assume that γ contains at least one cut vertex.
⇒: By Cor. 3.13, the block-cut tree of γ∗ is a path B∗1 , fc1 , ... , fck−1

,B∗k . The source s1
of B∗1 is the source s of γ∗ and the sink tk of B∗k is the sink t of γ∗. Each vertex v ∈ V l is
leftmost in γ and, thus, incident to s . This implies that v is also incident to s1 and, therefore,
v is leftmost in B1. Analogously, the vertices in V r are rightmost in Bk . Further by Cor. 3.13,
we obtain a block chain B1, ... ,Bk and by the proof of Lem. 3.20, we can construct a Eulerian
dipath from this block chain which visits B1 first and Bk last. Thus, B1 = Bl and Bk = Br.
⇐: Let Bl = B1, ... ,Bk = Br be the block chain as induced by the Eulerian dipath, i. e.,

the order in which the blocks are visited by the Eulerian dipath. By this block chain, we can
construct a RUP embedding of γ according to the proof of Lem. 3.18 such that the block-cut
tree of the dual is a path (Bl)∗, ... , (Br)∗ as in Cor. 3.13. Again, the source of (Bl)∗ is the
source s of γ∗ and the sink of (Br)∗ is the sink t of γ∗. Hence, all vertices in V l are leftmost
and all vertices in V r are rightmost in the embedding of γ. �

Note that if, for instance, V l is empty, Cor. 3.19 also applies. In this case, no particular
block Bl must be the first in the block chain since no vertex must be leftmost. Likewise, if
V r is empty, no particular block must be the last. By Cor. 3.19, we immediately obtain the
following corollary.

Corollary 3.20. Let γ = (V ,E) be a RUP-embedded compound such that all vertices in
V l ⊆ V (V r ⊆ V ) are leftmost (rightmost). Furthermore, let TB and

#–T B be the block-cut
tree of γ and its directed version, respectively. There exist blocks Bl and Br with the following
properties:

(i) All vertices in V l (V r) are leftmost (rightmost) in Bl (Br).

(ii)
#–T B has a Eulerian dipath that visits Bl as first and Br as last block.
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(iii) Assume that γ contains at least one cut vertex. Both Bl and Br are leaf blocks which
contain cut vertices c1 and c`, respectively, where c1 and c` are the two ends of the spine
of TB . Note that c1 = c` is possible if γ contains only one cut vertex.

(iv) Bl contains all vertices in V l and Br contains all vertices in V r.

Proof. (i) and (ii) follow directly from Cor. 3.19. Since the Eulerian dipath visits Bl before any
other block, it must be a leaf block containing only cut vertex c1. Likewise, Br is a leaf block
containing only c`. Thus, (iii) follows. Since all vertices in V l are leftmost in Bl, it must also
contain all vertices in V l and the same holds for Br and V r, which implies (iv). �

Alg. 3.3 shows the routine TestCompound, which is our desired algorithm. Before we
prove the correctness of TestCompound, we give a high-level description of the algorithm’s
strategy: TestCompound first computes the block-cut tree TB of the compound and tests if
it is a caterpillar. If it is no caterpillar, γ is not RUP and ⊥ is returned. Otherwise, it calls
the subroutine ComputeDBCT&fRUPEmbeddings, which stands for “compute directed block-cut
tree and feasible RUP embeddings”. ComputeDBCT&fRUPEmbeddings has three tasks: It tests
for each block whether it has a feasible RUP embedding and based on these embeddings, it
derives the corresponding directed block-cut tree

#–T B , and guarantees that
#–T B has a Eulerian

dipath. If one of the blocks has no feasible RUP embedding such that
#–T B has a Eulerian

dipath, ComputeDBCT&fRUPEmbeddings returns ⊥. Back in TestCompound, traversing the
Eulerian dipath of

#–T B yields a block chain and, by iterating this block chain, the desired
RUP embedding is obtained by a series of one-clique summations.

Both TestCompound and ComputeDBCT&fRUPEmbeddings use TestBiconnected. For a
block Bi = (Vi ,Ei) and sets V l,V r ⊆ Vi , TestBiconnected returns a RUP embedding of
Bi in time O(|Vi |) such that all vertices in V l and V r are left- and rightmost, respectively. If
no such embedding exists, it returns ⊥. For the moment, we use TestBiconnected as a black
box as it is the topic of Sect. 3.5.3. We now prove that Alg. 3.3 really delivers what it promises:

Lemma 3.22. TestCompound in Alg. 3.3 returns a RUP embedding of a compound γ = (V ,E)

such that all vertices in V l ⊆ V are left- and all vertices in V r ⊆ V are rightmost or ⊥ if no
such embedding exists. Under the assumption that TestBiconnected has a linear running
time, TestCompound runs in time O(|V |).

Proof. The proof has two parts: In the first part, the correctness and running time of Test-
Compound as shown in Alg. 3.3 is analyzed. The second part is devoted to the analysis of the
subroutine ComputeDBCT&fRUPEmbeddings in Alg. 3.5.

TestCompound First, TestCompound calls ComputeBlockCutTree in line 1 to obtain the
block-cut tree TB = (B, C, EB). TB can be computed in time O(|V |+ |E |) by the algorithm
in [HT73]. If the block-cut tree consists only of a single block, i. e., γ is biconnected, Test-
Biconnected is called directly to test if a suitable RUP embedding of γ exists (line 2). The
running time for this step is O(|V |) by assumption. Otherwise, the algorithm tests whether the
block-cut tree TB is a caterpillar (line 3). The test removes all leaves from the block-cut tree
and tests if the remaining graph is a path, which takes O(|B|+ |C|+ |EB |) ⊆ O(|V |+ |E |)
running time. If TB is no caterpillar, then the compound cannot be RUP by Cor. 3.17 and ⊥ is
returned. In line 4, the spine of the caterpillar is traversed in any direction in O(|B|) ⊆ O(|V |)
many steps to obtain the total order c1, ... , c` of the cut vertices. Note that the spine can be
traversed in two direction yielding either the total order c1, ... , c` or its reversed version.
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Algorithm 3.3. TestCompound

Input: planar compound γ = (V ,E), V l,V r ⊆ V
Output: RUP embedding of γ such that all vertices in V l are leftmost and all vertices

in V r are rightmost; ⊥ is returned if no such embedding exists
1 TB = (B, C, EB) ← ComputeBlockCutTree (γ)

2 if B = {B1} then return TestBiconnected (B1,V l,V r)

3 if TB is no caterpillar then return ⊥
4 c1, ... , c` is the total order induced by the caterpillar TB
5 if FindBlock(TB , c1,V l) = ⊥ ∨ FindBlock(TB , c`,V

r) = ⊥ then
6 c1, ... , c` ← Reverse (c1, ... , c`)

7 if FindBlock(TB , c1,V l) = ⊥ ∨ FindBlock(TB , c`,V
r) = ⊥ then return ⊥

8 (Ei)i=1...k ,
#–T B , εstart, εend ← ComputeDBCT&fRUPEmbeddings(TB ,V l,V r, (c1, ... , c`))

9 if return value of ComputeDBCT&fRUPEmbeddings is ⊥ then return ⊥
10 if εstart is a block Bi = (Vi ,Ei) then
11 if V l ⊆ Vi then Bl ← Bi
12 else return ⊥
13 else Bl← FindBlock (TB , c1,V l)

14 if εstart is a block Bi = (Vi ,Ei) then
15 if V r ⊆ Vi then Br ← Bi
16 else return ⊥
17 else Br← FindBlock (TB , c`,V

r)

18 B1, ... ,Bk ← block chain induced by Eulerian dipath starting at εstart and ending at εend

with B1 = Bl and Bk = Br

19 B1← B1

20 foreach block Bi = B2, ... ,Bk do (see also proof of Lem. 3.18)
21 ci ← cut vertex shared between Bi−1 and Bi
22 ti−1 ← sink of B

∗
i−1 according to its embedding E i−1

23 si ← source of B∗i according to its embedding Ei
24 Compute the (ci , ti−1)-(ci , si)-one-clique sum of B i−1 and Bi :

25 B i ← B i−1 ⊕ Bi
26 E i ← embedding of B i

27 return embedding Ek of γ
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According to properties (ii) and (iii) of Cor. 3.20, there must exist blocks Bl and Br such
that Bl contains c1 and all vertices in V l, and Br contains c` and all vertices in V r. In lines 5
to 7, the subroutine FindBlock is called to find Bl and Br. If the search is not successful, the
total order of the cut vertices is reversed (see line 6) and the same test is executed again. If
the second test also fails, the compound cannot be RUP by Cor. 3.20 and ⊥ is returned.

FindBlock in Alg. 3.4 takes as input the block-cut tree TB , a cut vertex c , and a set of
vertices V ′. Note that c ∈ V ′ is possible. It returns a leaf block containing c and V ′ or ⊥
if no such leaf block exists. For each leaf block Bi = (Vi ,Ei) which contains c , FindBlock
initializes a counter K to |V ′| and decrements K by 1 for each vertex in Vi that is also in V ′.
If K reaches 0, all vertices in V ′ are in Vi , and Bi is returned. Otherwise, if K never reaches 0,
⊥ is returned. For each non-cut vertex, its membership to V ′ is tested at most once. For c its
membership to V ′ is tested at most |Bc | many times where Bc is the set of leaf blocks that
contain c . For Bc , we get |Bc | ∈ O(|V |) and, thus, the overall running time of FindBlock is
in O(|V |) and so is the running time of lines 5 to 7 in TestCompound. Note that for the case
V ′ = ∅, FindBlock simply returns a leaf block that contains c .

Algorithm 3.4. FindBlock

Input: block-cut tree TB = (B, C, EB), cut vertex c ∈ C, and set of vertices V ′

Output: leaf block containing c and V ′; ⊥ if no such block exists
1 foreach leaf block Bi = (Vi ,Ei) containing c do
2 K ← V ′
3 foreach v ∈ Vi do
4 if v ∈ V ′ then K ← K − 1

5 if K = 0 then return Bi

6 return ⊥

In line 8, the subroutine ComputeDBCT&fRUPEmbeddings is called which is analyzed in
detail later. For the moment is suffices to know that ComputeDBCT&fRUPEmbeddings takes as
input the block-cut tree TB , the sets V l and V r, and the total order of cut vertices c1, ... , c`.
It returns a feasible RUP embedding Ei for each block Bi , the respective directed block-
cut tree

#–T B = (B, C,
#–

EB), and the start εstart and end εend of the Eulerian dipath in
#–T B .

ComputeDBCT&fRUPEmbeddings also guarantees that in the RUP embedding of each leaf
block Bi = (Vi ,Ei), all vertices Vi ∩ V l and Vi ∩ V r are left- and rightmost, respectively.
In particular, all vertices V l (V r) are leftmost in the block that is visited first (last) by the
Eulerian dipath. If ComputeDBCT&fRUPEmbeddings either finds no suitable RUP embeddings
for the blocks or the directed block-cut tree has no Eulerian dipath, it returns ⊥. The start εstart

of the Eulerian dipath is either c1 or a block Bi which contains c1. In the latter case, c1 is
right- but not leftmost in Bi , i. e., (Bi , c1) ∈ #–

EB and (c1,B) /∈ #–

EB . Likewise, the end εend of
the Eulerian dipath is either c` or a block Bi in which c` is left- but not rightmost.

In lines 10 to 17, two blocks Bl and Br are determined that fulfill the properties as listed
in Cor. 3.20. If εstart is a block Bi , then it is the start of the Eulerian dipath and, hence, must
contain all vertices in V l. In this case, Bl is set to εstart. Otherwise if V l * Vi , ⊥ is returned.
If εstart is c1, then the Eulerian dipath starts at c1 and Bl is set to any block which contains
c1 and all vertices in V l by calling FindBlock. Note that Bl must exist by the tests in lines 5
to 7. Likewise, we obtain Br. The running time of lines 10 to 17 is O(|V |).
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In line 18, the Eulerian dipath from εstart to εend is traversed such that Bl is the first and
Br the last visited block. Similar to the proof of Lem. 3.20, the Eulerian dipath p is canonically
obtained as follows (see also Fig. 3.27): If εstart = Bl, p first goes to c1. Otherwise, if
εstart = c1, p first visits leaf block Bl. Then, p traverses all remaining leaf blocks containing c1
and proceeds to the spine block containing c1 and c2. At c2, p visits all leaf blocks containing
c2 and then proceeds to the next spine block, and so forth. When reaching c`, B

r must be the
last leaf block that is visited by p. If εend = Br, the Eulerian dipath ends at Br. Otherwise,
εend = c` and the Eulerian dipath visits Br before ending at c`. As in the proof of Lem. 3.21,
the block chain B1, ... ,Bk is obtained from the Eulerian dipath, where B1 = Bl and Bk = Br.
Altogether, line 18 takes O(|B|+ |C|+ |EB |) ⊆ O(|V |+ |E |) running time.

Finally in lines 20 to 26, the desired RUP embedding of γ is constructed as in the proof of
Lem. 3.18. Starting with the embedding of B1, the embeddings of the blocks B2, ... ,Bk are
subsequently merged by a series of one-clique summations. For each one-clique summation, the
faces at which the cut vertices are merged have to be obtained, i. e., for each block Bi = (Vi ,Ei)

its dual B∗i has to be computed which takes O(|Vi | + |Ei |) running time. The one-clique
summation itself merges the respective cut vertices and adapts the rotation systems. Altogether,
we obtain a running time of O(|V |+ |E |) for lines 20 to 26.

The so obtained embedding, denoted by Ek , fulfills all properties of Cor. 3.19. First and
foremost, Ek is indeed a RUP embedding by Lem. 3.21. Second, all vertices in V l are leftmost
and all vertices in V r are rightmost which follows from Cor. 3.19.

Under the assumption that TestBiconnected and ComputeDBCT&fRUPEmbeddings have
a linear running time, all steps of TestCompound have a running time of either O(|V |) or
O(|V |+ |E |). Consequently, the overall running time is O(|V |+ |E |) and, hence, O(|V |) since
γ is planar.

ComputeDBCT&fRUPEmbeddings ComputeDBCT&fRUPEmbeddings is shown in Alg. 3.5.
The directed block-cut tree

#–T B is derived by testing the feasible RUP-embeddability of each
block. The respective embedding of block Bi is stored in Ei .

#–T B = (B, C,
#–

EB) is initialized
with

#–

EB = ∅. Simultaneously, ComputeDBCT&fRUPEmbeddings stores the start εstart and the
end εend of the Eulerian dipath with initial values εstart = c1 and εend = c`. For reasons that
are described below, we also need a set Bdefer which is initialized to an empty set in line 3. The
loop starting in line 4 processes all blocks Bi = (Vi ,Ei) and for each two cases are distinguished:
either Bi is a leaf block or it is a spine block.

In the first case, Bi contains exactly one cut vertex cj . Let V l
i = Vi ∩V l and V r

i = Vi ∩V r

according to line 6. In line 7, TestBiconnected is called to test whether Bi has a RUP
embedding such all vertices in V l

i ∪{cj} are left- and all vertices in V r
i ∪{cj} are rightmost. In

particular, cj is both left- and rightmost. If Bi has such a RUP embedding, the antiparallel pair

of edges (Bi , cj) and (cj ,Bi) is introduced to
#–T B . Otherwise, Bi must either be the beginning

or the end of the Eulerian dipath for γ to be RUP. In case cj = c1 (line 10), TestBiconnected
is used to test whether Bi has a RUP embedding Estart

i in which c1 is rightmost. If this is
the case, Bi is a candidate for the beginning of the Eulerian dipath. Likewise, if cj = c`,
TestBiconnected is used to find a RUP embedding Eend

i of Bi where c` is leftmost and Bi is
a candidate for the end of the Eulerian dipath. If Bi does not contain c1 (c`) or does not have
the respective RUP embedding, Estart

i (Eend
i ) is set to ⊥. Note that if cj 6= c1 and cj 6= c`

both embeddings are set to ⊥. In line 14, four cases are distinguished: neither of Estart
i and

Eend
i is ⊥, exactly one is ⊥, or both are ⊥. The first case (line 15) occurs only if the compound
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Algorithm 3.5. ComputeDBCT&fRUPEmbeddings

Input: block-cut tree TB = (B, C, EB) of planar compound γ = (V ,E) which is a
caterpillar, total order c1, ... , c` of cut vertices, and V l,V r ⊆ V

Output: RUP embedding of each leaf block Bi = (Vi ,Ei) such that all vertices in
V l ∩ Vi (V r ∩ Vi) are leftmost (rightmost), feasible RUP embedding of each
spine block such that its cut vertices are left-/rightmost, directed block-cut
tree

#–T B which has a Eulerian dipath, and start εstart and end εend of Eulerian
dipath; or ⊥ if no such embeddings of the blocks exist

1 Initialize
#–T B = (B, C,

#–

EB) with
#–

EB = ∅
2 εstart ← c1; εend ← c`
3 Bdefer ← ∅
4 foreach block Bi = (Vi ,Ei) do
5 if Bi is a leaf block with cut vertex cj then
6 V l

i ← Vi ∩ V l; V r
i ← Vi ∩ V r

7 Ei ← TestBiconnected(Bi ,V
l
i ∪ {cj},V r

i ∪ {cj})
8 if Ei 6= ⊥ then

#–

EB ←
#–

EB ∪ {(cj ,Bi), (Bi , cj)}
9 else Bi has to be either the beginning or the end of the Eulerian dipath

10 if cj = c1 then Estart
i ← TestBiconnected(Bi ,V

l
i ,V r

i ∪ {cj})
11 else Estart

i ← ⊥
12 if cj = c` then Eend

i ← TestBiconnected(Bi ,V
l
i ∪ {cj}, (V r

i ))

13 else Eend
i ← ⊥

14 switch values of Estart
i and Eend

i do
15 case both are 6= ⊥: Bdefer ← Bdefer ∪ {Bi}
16 case Estart

i 6= ⊥ ∧ Eend
i = ⊥

17 if εstart = c1 then εstart ← Bi ;
#–

EB ←
#–

EB ∪ {(Bi , cj)}
18 else return ⊥
19 case Estart

i = ⊥ ∧ Eend
i 6= ⊥

20 if εend = c` then εend ← Bi ;
#–

EB ←
#–

EB ∪ {(cj ,Bi)}
21 else return ⊥:

22 case both are ⊥ return ⊥

23 else Bi is a spine block with cut vertices cj , cj+1

24 Ei ← TestBiconnected(Bi , {cj}, {cj+1})
25 if Ei 6= ⊥ then

#–

EB ←
#–

EB ∪ {(cj ,Bi), (Bj , cj+1)}
26 else return ⊥

27 while Bdefer 6= ∅ do
28 Bi ← remove one element from Bdefer

29 if εstart = c1 then εstart ← Bi ;
#–

EB ←
#–

EB ∪ {(Bi , cj)}; Ei ← Estart
i

30 else if εend = c` then εend ← Bi ;
#–

EB ←
#–

EB ∪ {(cj ,Bi)}; Ei ← Eend
i

31 else return ⊥

32 return RUP embeddings Ei for all blocks Bi ,
#–T B , εstart, εend
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contains exactly one cut vertex c1 = c` = cj . Then, the decision whether Bi is the beginning or
the end of the Eulerian dipath has to be deferred as there may be another block Bp with p 6= i
that must either be the beginning or the end of the Eulerian dipath. For this, we maintain the
set Bdefer into which Bi is inserted. In the second case (line 16), cj = c1 and Bi must be the
beginning of the Eulerian dipath as it only has a RUP embedding where cj is rightmost. If
there is no other block that already is the beginning of the Eulerian dipath (εstart = c1), εstart

is set to Bi and edge (Bi , cj) is introduced to
#–T B . Otherwise, ⊥ is returned as the compound

cannot be RUP (Cor. 3.20). Line 19 corresponds to the symmetric case with cj = c` and Bi
must be the end of the Eulerian dipath. If Bi has no suitable RUP embedding (line 22), ⊥
must be returned (Thm. 3.3).

In the second case, Bi is a spine block containing cut vertices cj and cj+1. In line 24,
TestBiconnected is called. If it succeeds, it returns a RUP embedding of Bi where cj is left-

and cj+1 is rightmost and edges (cj ,Bi) and (Bi , cj+1) are added to
#–T B . If TestBiconnected

returns ⊥, then (cj ,Bi) and (Bi , cj+1) cannot be introduced to the directed block-cut tree
which in turn cannot have a Eulerian dipath and ⊥ is returned.

Note that the sets V l and V r are irrelevant for a spine block: If a spine block contains
a vertex from, say, V l, this vertex must be a cut vertex since by lines 5 to 7 in Alg. 3.3 it is
already guaranteed that all vertices in V l are in a leaf block Bl. Denote by c this cut vertex
in Vi ∩ V l. The case c = cj is already covered by the test in line 24. Otherwise, c = cj+1. In
this case, cj+1 must be in leaf block Bl as well. However, Bl contains only cut vertex c1 and,
hence, c1 = cj+1, which is a contradiction since j + 1 > 1. The same reasoning applies for V r.

The loop starting in line 27, subsequently processes the blocks in Bdefer. Remember
that Bdefer contains the blocks that can be both the beginning and the end of the Eulerian
dipath and this can only happen if the compound has only one cut vertex c1 = c`. For each
block Bi ∈ Bdefer, ComputeDBCT&fRUPEmbeddings tests whether Bi can be the beginning
or the end of the Eulerian dipath, that is, εstart or εend still has its initial value of c1 or c`,
respectively. Bi is set to the “free position” and, if both are already occupied, ⊥ is returned.

After successfully processing all blocks, the directed block-cut tree has a Eulerian dipath
which starts at εstart and ends at εend. Each leaf block Bi is connected to its cut vertex
via an antiparallel pair of edges with the following two exceptions. If εstart is a block Bi ,
then (Bi , c1) ∈ #–

EB and the Eulerian dipath starts at Bi . Likewise, if εend is a block Bi ′ ,
(c`,Bi ′) ∈

#–

EB and Bi is the end of the Eulerian dipath. For the embedding Ei , the respective
embedding Estart

i or Eend
i is chosen. Furthermore, for each spine block containing cut vertices cj

and cj+1, (cj ,Bi) ∈
#–

EB and (Bi , cj+1) ∈ #–

EB .
The running time of ComputeDBCT&fRUPEmbeddings is O(|V | + |E |): For each block,

TestBiconnected is called at most three times. All other operations can be implemented
in linear time, e. g., adding edges to the directed block-cut tree. Under the assumption that
TestBiconnected runs in time O(|Vi |+ |Ei |) for each block Bi = (Vi ,Ei), the running time
of ComputeDBCT&fRUPEmbeddings is in O(|V |+ |E |). �

3.5.3 Biconnected Compounds

The last piece missing in our RUP testing algorithm deals with biconnected compounds and,
thus, we assume in the following that all graphs and digraphs are biconnected unless stated
otherwise. It turns out that this part of the algorithm is the most involved one. A neat tool to
study biconnected graphs are SPQR trees as introduced by Di Battista and Tamassia [DBT96].
In their original form, SPQR trees deal with undirected graphs and, in the case of embedded
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SPQR trees
Sect. 3.5.3.1

dual SPQR trees
Sect. 3.5.3.2

dSPQR trees of
acyclic digraphs
Sect. 3.5.3.3

dSPQR trees
of compounds
Sect. 3.5.3.5

dual dSPQR trees
of compounds
Sect. 3.5.3.6

(dual) dSPQR trees
of RUP compounds

Sect. 3.5.3.7

dSPQR trees of
acyclic dipoles
Sect. 3.5.3.4

algorithm
Sect. 3.5.3.8

Figure 3.31: Overview of Sect. 3.5.3.

graphs, with the primal graph only. Thus, before we can devise our algorithm, we need to
equip SPQR trees with capabilities to deal with digraphs and duals. In order to do this, we
introduce several notions of SPQR trees and combine them in various ways. To avoid getting
lost in this jungle of various notions of SPQR trees, we can consult Fig. 3.31, which shows a
chart with an overview of this section. We start with a primer on SPQR trees (Sect. 3.5.3.1).
Then, we introduce dual SPQR trees to study the SPQR trees of dual graphs (Sect. 3.5.3.2).
By introducing edge directions to SPQR trees, we obtain directed SPQR trees or dSPQR trees
for short. We do this in two steps: First, we consider acyclic digraphs (Sect. 3.5.3.3) and
characterize dSPQR trees of acyclic dipoles (Sect. 3.5.3.4). Afterwards, we define dSPQR trees
of compounds (Sect. 3.5.3.5). By combining dual SPQR trees with dSPQR trees of acyclic
digraphs and of compounds, we obtain dual dSPQR trees of compounds (Sect. 3.5.3.6) and
a characterization of biconnected RUP compounds by means of their (dual) dSPQR trees
(Sect. 3.5.3.7). In particular, we see how to decide whether or not a compound is RUP and,
if it is RUP, how to obtain a RUP embedding by using the compound’s dSPQR tree and its
dual. This leads to our algorithm in Sect. 3.5.3.8.

3.5.3.1 A Primer on SPQR Trees

We start with an introduction to SPQR trees as given by Di Battista and Tamassia [DBT96].
In a nutshell, SPQR trees are to split pairs and triconnected components what block-cut trees
are to cut vertices and blocks. Remember that a split pair is a pair of vertices whose removal
disconnects the graph and a graph is triconnected if it contains no split pair. The triconnected
components of a biconnected graph are interconnected via split pairs. Just like a block-cut
tree is a high-level description of the blocks and cut vertices, an SPQR tree describes the
interrelationship of the triconnected components and the split pairs.

Let G be a biconnected. As an example, we consider the graph displayed in Fig. 3.32(a)
and its SPQR tree in Fig. 3.33. The SPQR tree T of G is an unrooted tree and its vertices are
called nodes for which we use the symbol µ. A node is depicted by a rectangle in Fig. 3.33.
Associated with each node µ is a graph that is homeomorphic to a subgraph of G called the
skeleton skel(µ), which is displayed within the node’s rectangle. “Homeomorphic to a subgraph



160 Chapter 3. Rolling Upward Planar Digraphs

(a) Biconnected and embed-
ded graph.

(b) Dual of the graph in Fig. 3.32(a).

Figure 3.32: An embedded biconnected graph with its dual.

of G” means that the edges of a skeleton can be replaced by paths connecting their endpoints
to obtain a graph that is isomorphic to a subgraph of G . There are four different types of
nodes and each type has a different type of skeleton:

I An S node represents a series composition of split pairs and its skeleton is a circle of
length at least three, e. g., node µ4.

I A P node represents a parallel composition of a single split pair and its skeleton consists
of this pair connected by three or more multiple edges, e. g., node µ3.

I A Q node stands for a single edge e = {u, v} and its skeleton consists of u and v
connected by two parallel edges, e. g., node µ5. For reasons described later, we usually
neglect Q nodes.

I An R node corresponds to a triconnected component and its skeleton is a triconnected
graph with no multiple edges, i. e., it is simple. Nodes µ1 and µ2 are R nodes.

In its original definition, every edge of a skeleton, except for one of a Q node, is a virtual edge
(displayed by a bold line), e. g., edge {u, v} in node µ1. The pair u, v is a split pair of G and
the virtual edge {u, v} in µ1 represents the subgraph which is disconnected from node µ1 if u
and v are removed. In this sense, a virtual edge stands for a whole subgraph. In general, the
subgraph corresponding to a skeleton’s virtual edge in a node µ is referred to as the expansion
graph expgµ(e) of e in µ. The expansion graph expgµ1

({u, v}) is displayed in the box located
in the top left corner of Fig. 3.33 and it corresponds to the nodes µ2, µ3, and µ4. In fact,
we can reconstruct the subgraph expgµ1

(e) by adequately merging the nodes µ2, µ3, and µ4

as we will see later. For every virtual edge e in the skeleton of a node µ, there is another
node µ′ that refines the structure of skel(µ). This link is represented by an edge between µ
and µ′ in T (dashed line) and it connects two virtual edges whose endpoints are the same.
For instance, edge {u, v} in node µ1 is refined by node µ2. This relationship is symmetric as
node µ2 also contains the virtual edge between u and v which is refined by node µ1. As stated
before, all edges of a skeleton, except for a single edge in a Q node, are virtual. In particular,
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in Fig. 3.33, all non-bold edges are actually virtual edges refined by Q nodes, except for the
non-bold edge in the skeleton of node µ5, which is the only Q node displayed for illustration
purposes. For the sake of convenience, we represent edges of the graph directly in the skeletons
instead of attaching them to Q nodes via virtual edges and omit Q nodes in our representation
of SPQR trees unless stated otherwise.

R

µ1
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v

S

u

PR

Q

µ5

R

µ2
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v

P

µ3

u

S

µ4

u

P

v

R
v

S

v

P

S

expgµ1({u, v})
u

v

Figure 3.33: The SPQR tree of the embedded graph in Fig. 3.32(a) where only one Q node is
shown for illustration purposes.

SPQR trees are minimal in the sense that no two P nodes are adjacent as they can be
merged into a single P node. Likewise, no two S nodes are adjacent. In contrast, two R nodes
can be linked together if they share a split pair, e. g., nodes µ1 and µ2. The minimality also
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implies that the SPQR tree of a graph is unique. The following lemma from [DBT96] limits
the size of an SPQR tree with respect to the size of the original graph.

Proposition 3.5 ([DBT96]). The SPQR tree T of a biconnected graph G = (V ,E) has |E |
Q nodes and the total number of S , P , and R nodes is in O(|V |). The total number of edges
in all skeletons is in O(|E |).

Two-Clique Summation Let µ be a node and e = {u, v} be a virtual edge of µ’s skeleton
that is refined by another node µ′. The vertices u and v are part of both skeletons skel(µ) and
skel(µ′). Consider, for instance, virtual edge {u, v} in node µ1 and its refinement in node µ2 as
depicted in Fig. 3.34(a). We can merge the skeletons skel(µ1) and skel(µ2) at their common
vertices u and v by an operation called two-clique summation. The result of this operation
is shown in Fig. 3.34(b). In the two-clique sum of the skeletons of µ1 and µ2, denoted by
skel(µ1)⊗ skel(µ2), the vertices u and v are identified and the virtual edge {u, v} is removed
from both skeletons. Note that u, v is a split pair in skel(µ1)⊗ skel(µ2).

R

µ1

u

v

R

µ2

u

v

(a) Skeletons of µ1 and µ2 which share the
split pair u, v .

u

v

(b) The two clique
sum skel(µ1) ⊗
skel(µ2) of skel(µ1)

and skel(µ2).

Figure 3.34: Edge {u, v} in µ1 is refined by µ2 and their skeletons can be merged by a
two-clique summation.

The two-clique summation is similar to the one-clique summation we used for block-cut
trees in Sect. 3.5.2.1. Only this time, two two-cliques (two pairs of adjacent vertices) are
merged instead of two single vertices. Remember, by a block-cut tree we are able to reconstruct
the whole graph by a series of one-clique summations. The same is true for SPQR trees.
Given an SPQR tree of a graph G , its nodes can be totally ordered according to µ1, ... ,µk
such that each µi (1 < i ≤ k) refines exactly one virtual edge from one of the skeletons of
nodes µ1, ... ,µi−1, i. e., in the SPQR tree, node µi is connected to one of µ1, ... ,µi−1. We
call this order node sequence and it can be obtained by a depth-first traversal of the SPQR tree.
Based on this total order, we define a sequence of graphs G i with G i = G i−1 ⊗ skel(µi) for
1 < i ≤ k and G1 = skel(µ1), where G i−1 ⊗ skel(µi) is the two-clique sum of G i−1 and µi ’s
skeleton. Note that µi is a refinement of a virtual edge e = {u, v} in a skeleton of one of
µ1, ... ,µi−1 and, hence, u and v are in G i−1 and µi . Merging all nodes of the SPQR tree
results in G , i. e., G k = G . As with block series, we call the sequence G1, ... ,G k node series
of G and T .
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Two-clique summations can also be used to define the expansion graph of a virtual edge.
For this, consider again the virtual edge {u, v} in node µ1 in Fig. 3.32(a). The expansion
graph expgµ1

({u, v}) is the two-clique sum of the skeletons of nodes µ2, µ3, and µ4, where
virtual edge {u, v} in skel(µ2) is removed.

SPQR Trees of Planar Graphs SPQR trees have proven especially useful in the context of
planarity testing. If the underlying graph is planar, its SPQR tree can be used to maintain and
store all of its embeddings. Especially, a graph is planar if and only if each of the skeletons of
its SPQR tree is planar [DBT96]. Assume that we are given an SPQR tree of a planar graph.
The skeleton of an R node is triconnected and simple. Hence, its embedding is unique up to
inversion due to Whitney’s theorem [Whi33] (cf. Sect. 1.1.7). In the context of SPQR trees,
the inversion of an R node’s embedding is called a flip. The embedding of a P node’s skeleton
is uniquely defined by the rotation system of either of its two vertices: Let u and v be the
two vertices of a P node connected by the edges e1, ... , er ordered according to the rotation
system of u. Due to planarity, the rotation system of v is er , ... , e1, i. e., the inverted rotation
system of u. Exchanging the positions of two edges in the skeleton of a P node is called a
swap. Finally, the embedding of the skeleton of an S node, which is a circle, is always unique
as each vertex is of degree two.

u

v

e

eu,1eu,rG u′

v ′

e′

eu′r ′eu′1

G ′

(a) Before the two-clique summation.

u′′

v ′′

eu,1eu,r
eu′r ′eu′1

G ′′

(b) After the
two-clique
summation.

Figure 3.35: A two-clique summation.

Given an embedding of each skeleton, we can obtain an embedding of the whole graph by
two-clique summations according to a node series where we have to incorporate the skeletons’
embeddings. Suppose we are given two embedded graphs G and G ′ and let e = {u, v} and
e ′ = {u′, v ′} be two edges in G and G ′, respectively. The situation is shown in Fig. 3.35(a).
The rotation system of u is e, eu,1, ... , eu,r and the rotation system of u′ is e ′, eu′1, ... , eu′r ′ .
The rotation systems of v and v ′ are ignored for the moment. In the two clique-sum of G and
G ′, vertices u and u′ are identified and so are v and v ′, where the first pair is replaced by u′′ and
the latter by v ′′. The resulting graph is denoted by G ′′ = G ⊗G ′ and is called (e, e ′)-two-clique
sum (see Fig. 3.35(b)). The rotation systems of u and u′ are split at e and e ′, respectively, and
are then concatenated to obtain the rotation system for u′′ which is eu,1, ... , eu,r , eu′1, ... , eu′r ′ .
The rotation system of v ′′ is obtained analogously from the rotation systems of v and v ′.

Given two edges e = {u, v} and e ′ = {u′, v ′} for a two-clique summation, we can either
identify u with u′ and v with v ′, or u with v ′ and v with u′. However, in the following it is
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clear from the context which vertices are identified. Recall that with one-clique summations,
we needed to define at which faces the cut vertices are merged (see Sect. 3.5.2.1). In the case
of two-clique summations, the face is uniquely defined by the two involved edges e and e ′ and
their positions within the rotation system.

Given a node series of an SPQR tree and an embeddings for each skeleton, an embedding of
the whole graph can be obtained by subsequently applying two-clique-summations. For instance,
the embeddings of the skeletons in Fig. 3.33 result in the embedding shown in Fig. 3.32(a).
By applying swaps to P nodes and flips to R nodes beforehand, we can obtain any possible
embedding of a planar graph [DBT96]. Thereby, the SPQR tree implicitly stores all possible
embeddings. Note that we neglect the outer face here, i. e., the embedding is determined up to
the outer face. Conversely, an embedding of a biconnected graph G implies embeddings of all
skeletons in its SPQR tree, that is, exactly those embeddings of the skeletons which result in
the original embedding of the whole graph.

3.5.3.2 Dual SPQR Trees

In our studies of RUP graphs, dual graphs play an important role. In the following, we combine
SPQR trees with dual graphs to define dual SPQR trees. Let G be an embedded graph and let
T be its SPQR tree, where the skeletons of T are embedded according to G ’s embedding. From
the embedding of each skeleton skel(µ) we obtain its dual skel(µ)∗ called the dual skeleton.
Dual SPQR trees are defined as follows.

Definition 3.5 (Dual SPQR Tree). Given the SPQR tree T of a biconnected and embedded
graph, the dual SPQR tree T ∗ is defined as follows. For each node µ in T , T ∗ contains node µ∗,
which is called the dual node of µ, with the following properties:

I The skeleton skel(µ∗) of µ∗ is the dual skeleton skel(µ)∗ of µ.

I An edge e∗ of skel(µ∗) is virtual if its primal edge e∗ is virtual in µ.

I If the virtual edge e = {u, v} in node µ is refined by µ′ in T , then the dual of e in µ∗ is
refined by µ′∗ in T ∗.

I If the type of µ is X for X ∈ {S, P, Q, R} in T , then the type of µ∗ is X ∗ in T ∗.

The dual SPQR tree of the SPQR tree in Fig. 3.33 is shown in Fig. 3.36. Note that the
dual SPQR tree inherits the overall structure of the (primal) SPQR tree and the skeletons are
replaced by their duals. In particular, the dual SPQR tree adopts the links between the virtual
edges of the nodes.

In the remainder of this section, we show that the dual SPQR tree T ∗ of G is the SPQR tree
of the dual G ∗. The dual graph of our running example is shown in Fig. 3.32(b) on page 160
and its SPQR tree is indeed the one displayed in Fig. 3.36, where only the node types need
some adaptation. For instance, node µ3 in Fig. 3.33 is a P node and its dual µ∗3 in Fig. 3.36 is
an S node. In general, S and P nodes swap their roles when going from the primal to the dual.
In contrast, Q nodes stay unchanged and the same holds for R nodes. Recall that the skeleton
of an R node is a triconnected and simple graph. The dual of a triconnected and simple graph
is also triconnected due to [MT01, Thm. 2.6.7]. The dual is also simple since any multiple
edges in the dual would imply vertices of degree two in the primal, which would then not be
triconnected.
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Figure 3.36: Dual SPQR tree of the SPQR tree in Fig. 3.33.
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Proposition 3.6. The following relationship holds between the node types of SPQR trees and
dual SPQR trees:

P↔ S∗ , S↔ P∗ , Q↔ Q∗ , R↔ R∗ .

where X ↔ Y means that type X in the primal SPQR tree corresponds to type Y in the dual
SPQR tree.

In an SPQR tree, P and S nodes can never be adjacent to nodes of their own type. The
same is true for dual SPQR trees as P and S nodes swap their roles and R and Q nodes keep
their type. From these observations, we can conclude that a dual SPQR tree is again an
SPQR tree.

In Sect. 3.5.2.1, we have proved De Morgan’s law for one-clique sums, i. e., the dual of a
one-clique sum of two primal graphs is the one-clique sum of their duals (Lem. 3.13). Next, we
prove De Morgan’s law for two-clique sums. As in Sect. 3.5.2.1, we distinguish the two-clique
sum in the dual from the two-clique sum in the primal by using the binary operator �, i. e.,
G ∗ � G ′∗ is the (e∗, e ′∗)-two-clique sum of two duals G ∗ and G ′∗ at dual edges e∗ and e ′∗.

Lemma 3.23 (De Morgan’s Law for Two-Clique Sums). Let G = (V ,E) and G ′ = (V ′,E ′)
be two embedded and biconnected graphs with duals G ∗ = (F ,E ∗) and G ′∗ = (F ′,E ′∗),
respectively. Further, let e ∈ E and e ∈ E ′ be two edges with respective duals e∗ ∈ E ∗ and
e ′∗ ∈ E ′∗. We obtain the following equality:

(G ⊗ G ′)∗ = G ∗ � G ′∗ ,

where (G ⊗ G ′)∗ denotes the dual of the (e, e ′)-two-clique sum of G and G ′ and G ∗ � G ′∗

the (e∗, e ′∗)-two-clique sum of G ∗ and G ′∗.

As with De Morgan’s law for one-clique sums (Lem. 3.13), the strategy of the proof is to
show that the dual obtained from a two-clique summation of two primal graphs is equal to the
two-clique sum of their duals. This is illustrated by the following commutative diagram:

G ,G ′
∗→ G ∗,G ′∗

↓ ⊗ ↓ �
G ⊗ G ′ ∗→ G ∗ � G ′∗

In the proof, we investigate what happens to the dual graph during a (primal) two-clique
summation.

Proof. The two graphs G and G ′ are sketched in Fig. 3.37(a). The endpoints of e and e ′ are
u, v and u′, v ′, respectively. Let G ′′ = G ⊗ G ′ be the (e, e ′)-two-clique sum of G and G ′,
were u and u′ are identified and so are v and v ′. Graph G ′′ is sketched in Fig. 3.37(b), where
u and u′ are replaced by u′′, and v and v ′ by v ′′.

Let e, eu,1, ... , eu,r be the rotation system of u and let g be the face between edges e and
eu,1 and f be the face on the opposite side of e, i. e., the face between eu,r and e. Since f
lies opposite to g, they are connected in G ∗ by edge e∗ which is the dual of e. Note that
vertex v is also incident to f and g as v is connected to u by edge e. Moreover, f 6= g since
G is biconnected. The rotation system of v is e, ev ,1, ... , ev ,`.

Analogously in G ′, the rotation system of u′ is e ′, eu′1, ... , eu′r ′ , f
′ is the face between e ′

and eu′1, and g′ lies between eu′r ′ and e ′. The rotation system of v ′ is e ′, ev ′1, ... , ev ′`′ . As
before, f ′ and g′ are connected in G ′∗ by edge e ′∗ which is the dual of e ′.



3.5. Efficient Rolling Upward Planarity Testing of Closed Digraphs 167

u

v

e
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ev ,`ev ,1
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u′

v ′

e′eu′r′eu′1

ev′1ev′`′

f ′

g′

G ′

(a) Again, G and G ′ are merged at e and e′. This time
the duals of both graphs are additionally sketched.

u′′

v ′′

eu,1eu,r

ev ,`ev ,1

eu′r′eu′1

ev′1ev′`′

f ◦ f ′

g ◦ g′

G ′′

(b) The two-clique summation of
G and G ′ is also a two-clique-
summation of G∗ and G ′∗.

Figure 3.37: A (primal) two-clique summation corresponds to a two-clique sum in the dual.

By the definition of the two-clique sum (cf. Sect. 3.5.3.1), the rotation system of u′′

is obtained by splitting the rotation systems of u and u′ at e and e ′, respectively, and by
concatenating them. The rotation system of u′′ is thus eu,1, ... , eu,r , eu′1, ... , eu′r ′ . Between
edges eu,r and eu′1 lies the face f ◦ f ′ and between edges eu′r ′ and eu,1 lies the face g ◦ g′ (see
Fig. 3.37(b)). The names of these faces are chosen deliberately as it turns out that f and f ′ in
G ∗ and G ′∗ are merged to face f ◦ f ′ in G ′′∗ and the same holds for g, g′ and g ◦ g′.

The rotation system of face f is obtained by the counterclockwise traversal of its boundary
in G . The duals of the edges on this boundary are the incident edges of f in G ∗ in the cyclic
order as defined by the boundary. f ’s rotation system is thus e∗, e∗u,r , ... , e∗v ,1, where e∗ is the
dual of e, e∗u,r the dual of eu,r , and so forth. All edges between e∗u,r and e∗v ,1 are sketched in
Fig. 3.37(a) as shaded truncated lines around f , reaching into G . Likewise, the rotation system
of g is e∗, e∗v ,`, ... , e∗u,1, that of f ′ is e ′∗, e∗v ′`′ , ... , e∗u′1, and that of g′ is e ′∗, e∗u′r ′ , ... , e∗v ′1.

Consider now G ′′∗ and face f ◦ f ′ in Fig. 3.37(b): Its rotation system is obtained as before
and is e∗u,r , ... , e∗v ,1, e∗v ′`′ , ... , e∗u′1. Thus, it is the concatenation of the rotation systems of f
and f ′ split at e and e ′, respectively. The same holds for the rotation system of g ◦ g′ which is
obtained from the rotation systems of g and g′. Also, faces f and f ′ are replaced by face f ◦ f ′
and faces g and g′ are replaced by g ◦ g′. All other faces and rotation systems of the dual
graph stay untouched. In other words, G ′′∗ is the (e∗, e ′∗)-two-clique sum of G ∗ and G ′∗ and,
hence, the equality holds. �

We can reconstruct G and its embedding from its SPQR tree T by a sequence of two-clique
summations. The same technique can be applied to the dual SPQR tree T ∗ and the resulting
graph is indeed the dual graph G ∗. From Prop. 3.6 and De Morgan’s law for two-clique sums
(Lem. 3.23), we thus obtain the following theorem.3

3This result was discovered independently and simultaneously by [ABR13].
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Theorem 3.4. The dual SPQR tree of an embedded graph G is the SPQR tree of the dual G ∗.

Proof. By Prop. 3.6, we know T ∗ is an SPQR tree, where the roles of P and S nodes swap
when going from the primal to the dual. We now show that we can obtain the dual G ∗ from the
dual SPQR tree T ∗ by a sequence of two-clique summations of T ∗’s skeletons. Let G1, ... ,G k
be a node series of G and its SPQR tree T . Recall that the node series is defined as:

G i = G i−1 ⊗ skel(µi) ,

with G1 = skel(µ1) and G k = G . For the duals (G i)
∗ of the node series, denoted by G

∗
i , we

obtain:
G
∗
i = (G i−1 ⊗ skel(µi))∗ ,

and, by De Morgan’s law for two-clique sums (Lem. 3.23), we can rewrite this equation to:

G
∗
i = G

∗
i−1 � skel(µi)

∗ .

The graph skel(µi)
∗ is the dual skeleton of node µi and, by the definition of dual SPQR trees

(Def. 3.5), it is the skeleton of µ∗i in T ∗, i. e., skel(µi)
∗ = skel(µ∗i ). Inserting this equality

yields:
G
∗
i = G

∗
i−1 � skel(µ∗i ) ,

with G
∗
1 = skel(µ∗1) and G

∗
k = G ∗. Thus, T ∗ is the SPQR tree of G ∗. �

Denote by σ the function that transform a biconnected and embedded graph into its
SPQR tree. The following commutative diagram illustrates the relationship between embedded
graphs, SPQR trees and their duals:

G
∗→ G ∗

↓σ ↓σ

T ∗→ T ∗

3.5.3.3 dSPQR Trees of Acylic Digraphs

As we investigate (RUP) digraphs, we need to incorporate edge directions into SPQR trees.
We start off with the definition of directed SPQR trees, or simply dSPQR trees, of acyclic
digraphs. As an example, we consider the acyclic digraph displayed in Fig. 3.38 which is a
directed and acyclic version of the graph in Fig. 3.32(a). Sources and sinks are displayed by
diamond shapes and are white. In the following, we call an acyclic dipole with source u and
sink v a uv -digraph.

Definition 3.6 (dSPQR Trees of Acyclic Digraphs). Let G be a biconnected and acyclic
digraph and T be the SPQR tree of its underlying undirected graph. The dSPQR tree of G ,
denoted by

#–T , is obtained from T by directing and labeling the edges of the skeletons. The
non-virtual edges in the Q nodes inherit the direction as defined in G . For each virtual edge, we
define the expansion digraph in accordance to the expansion graph, where all edges are directed
as in G . For each virtual edge {u, v} of a node µ, we distinguish between the following cases:
If the expansion digraph expgµ({u, v}) . . .

I . . . is a uv -digraph (vu-digraph), then the virtual edge {u, v} is directed from u to v (v
to u) in µ.
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I . . . contains a source distinct from u and v , then the virtual edge {u, v} is a source edge
in µ, indicated by the label JI.

I . . . contains a sink distinct from u and v , then the virtual edge {u, v} is a sink edge in µ,
indicated by the label IJ.

By applying these substitutions in the skeleton skel(µ) of node µ, we obtain the directed
skeleton

#    –

skel(µ).

Since in the following, we are mostly dealing with digraphs and directed skeletons, we simply
speak of skeletons. If a virtual edge is a source edge, a sink edge, or both, we call it terminal
edge. Note that a virtual edge may be both a source and a sink edge. The dSPQR tree of the
digraph in Fig. 3.38 is shown in Fig. 3.39. The expansion digraph expgµ1

({u, v}), displayed at
the top left side of Fig. 3.39, contains a source distinct from u and v , and, hence, {u, v} is a
source edge in µ1. The order of the labels JI and IJ on an edge that is both a source and a
sink edge is arbitrary. The expansion digraph of a virtual edge e = {u, v} which is refined a
Q node is always a uv - or vu-digraph and, hence, e is directed, e. g., the virtual edge refined by
µ5. As before, we omit Q nodes and directly display edges and their directions, therefore, an
edge in a skeleton is either virtual and refined by an S, P, or R node, or it is non-virtual.

u

v

Figure 3.38: Directed acyclic version of the planar graph in Fig. 3.32(a). Sources and sinks
are displayed by diamond shapes.

If a virtual edge is directed, it cannot be a terminal edge by Def. 3.6. In turn, a terminal
edge cannot be directed. Also, there is no undirected virtual edge which is also no terminal
edge: Suppose that {u, v} is undirected and no terminal edge. Then its expansion digraph is
neither a uv - nor a vu-digraph and contains no other sources or sinks. Therefore, the expansion
digraph must contain a cycle contradicting the assumption that the original digraph is acyclic.

Proposition 3.7. A virtual edge in a dSPQR tree of an acyclic digraph is either directed or a
terminal edge.

Consider the virtual edge e = {u, v} in node µ2 in Fig. 3.39 which is refined by µ1. Node µ1

contains a source and a sink edge different from e. Hence, the expansion digraph expgµ2
({u, v})

contains a source and a sink different from u and v . Therefore, e must be a source and sink
edge in µ2. In general, we get the following property of transitivity of terminal edges.

Proposition 3.8 (Transitivity of Terminal Edges). Let µ be a node containing a virtual
edge e that is refined by node µ′. If any virtual edge e ′ 6= e in µ′ is a source (sink) edge, then
so is virtual edge e in µ.
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Figure 3.39: dSPQR tree of the planar and acyclic digraph in Fig. 3.38.
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A source edge e stands for “remote” source in the expansion digraph of e. Given a skeleton
of a node, we can replace the source and sink edges by auxiliary sources and sinks as displayed
in Fig. 3.40(a). Let µ be a node with directed skeleton

#    –

skel(µ). By replacing all terminal
edges in this manner and keeping the directed virtual edges as they are, we obtain the auxiliary
skeleton aux(

#    –

skel(µ)) from
#    –

skel(µ). The inverse operation, i. e., replacing the auxiliaries by the
respective terminal edges, is denoted by aux−1. Fig. 3.40(b) shows the skeletons of nodes µ1

and µ2 along with their auxiliaries. Vertex v is a sink in the whole digraph and also in the
auxiliary skeleton of node µ1. In contrast, in the auxiliary skeleton of µ2, v is no sink. The
reason is that each skeleton and its auxiliary always display only a local scope of the whole
digraph; an important fact we have to keep in mind. Auxiliary skeletons play an important role
in the following sections.

aux aux−1 aux aux−1 aux aux−1

(a) The auxiliaries of terminal edges.

u

v

skel(µ1)

u

v

aux(skel(µ1))

u

v

skel(µ2)

u

v

aux(skel(µ2))

(b) The skeletons of µ1 and µ2 along
with their auxiliary skeletons.

Figure 3.40: Auxiliary skeletons.

3.5.3.4 dSPQR Trees of Acyclic Dipoles

As acyclic dipoles play an important role for the duals of RUP compounds, we investigate their
dSPQR trees. It turns out that the property of being an acyclic dipole is visible in each node of
the dSPQR tree of an acyclic dipole. We start with a definition.

Definition 3.7. A node µ and its skeleton in a dSPQR tree of an acyclic digraph is called
acyclic dipole if and only if the auxiliary skeleton aux(

#    –

skel(µ)) is an acyclic dipole.

Consider the acyclic dipole in Fig. 3.41(a) and its dSPQR tree in Fig. 3.41(b). Note that
each node is an acyclic dipole. In fact, this holds true in general and we obtain the following
characterization of acyclic dipoles and their dSPQR trees.

Lemma 3.24. An acyclic digraph is a dipole if and only if each node of its dSPQR tree is an
acyclic dipole.
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(a) An acyclic dipole.

R

S

PR R

(b) The dSPQR tree of the acyclic dipole in Fig. 3.41(a)
in which each node is an acyclic dipole.

Figure 3.41: An acyclic dipole and its dSPQR tree.

Proof. ⇒: Let G be an acyclic dipole with dSPQR tree
#–T . First, we observe that replacing the

sink and source edges by their auxiliaries (Fig. 3.40(a)) in a node’s skeleton cannot introduce
any cycles. Thus, each auxiliary skeleton is acyclic as G is acyclic. In the following, we assume
for contradiction that there is a node µ in

#–T whose auxiliary skeleton contains at least two
sources u, u′. The proof proceeds analogously if aux(

#    –

skel(µ)) contains two or more sinks.

There are two cases: First, both u and u′ are vertices in
#    –

skel(µ), that is, neither u nor u′ is
a source as obtained from the auxiliary of a source edge. Second, exactly one of u and u′ is an
auxiliary source, i. e., obtained from a source edge. Note that not both can be auxiliary sources
as then G would contain two distinct sources.

First, assume that neither of u and u′ is an auxiliary source. Our first observation is that
at least one of u and u′ must be part of a split pair: If this is not the case, then no virtual
edge is incident to u and u′ and, hence, both u and u′ are sources in G which contradicts the
assumption that G is a dipole. Therefore, there is at least one virtual edge incident to u or
u′ and, thus, at least one of them is part of a split pair. Since u is a source in the auxiliary
skeleton, a virtual edge incident to u is either a sink edge or directed and pointing away from u.
The same holds for virtual edges incident to u′. Moreover, at least one virtual edge incident to
u and u′ must be a sink edge: Assume for contradiction that all these virtual edges are directed
away from u and u′. This implies that all expansion digraphs of these virtual edges are uv - and
u′v ′-digraphs, where v and v ′ are the other endpoints of the virtual edges. However, then u
and u′ are two sources in G as well, which is again a contradiction.

For the second case, assume that u′ is an auxiliary source and u is not. This implies that
there is a source s distinct from u′ in the expansion digraph expgµ(e ′) where e ′ is the source

edge that is replaced by the auxiliary source u′ in aux(
#    –

skel(µ)). Vertex u must be part of a split
pair as otherwise it would be a source in G distinct from s . As u is a source in the auxiliary, all
virtual edges incident to u are either sink edges or pointing away from u. Similar to before,
at least one of these virtual edge must be a sink edge as otherwise all directed virtual edges
incident to u would point away from u, and u would be a source distinct from s in G .

Regardless of which case applies, we assume w. l. o. g. that u is endpoint of a sink edge e
whose other endpoint is v . The relevant part of the dSPQR tree is sketched in Fig. 3.42(a).
The expansion digraph expgµ(e) of e in node µ contains the sink t of G with t 6= u and t 6= v .
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As t is the single sink of G , no other virtual edge of node µ can be a sink edge. In particular,
all (virtual) edges e ′ 6= e incident to u (u′) are directed away from u (u′).

µu

v

eu′

µ′
u

v

e

(a) Vertex u in node µ is endpoint of the
sink edge e, which is refined by µ′.

v

u

u′ t

p

p′

w

p̂′

p̂

expgµ′(e) expgµ(e)

(b) Expansion digraphs of e in µ and µ′:
There is a dipath from u′ to u via v (dashed)
and a dipath from u to t also via v (dotted).
Combining both dipaths results in a cycle.

Figure 3.42: Situation obtained in the proof of Lem. 3.24.

Let µ′ be the node which refines e in
#–T . Recall that µ′ also contains virtual edge e.

Let expgµ′(e) be the expansion digraph of e in µ′. Fig. 3.42(b) sketches both expansion
digraphs expgµ(e) and expgµ′(e). All virtual and non-virtual edges incident to u point away

from u in
#    –

skel(µ) and, hence, u is a source in expgµ′(e). For u′ there are two cases: If u′ is no
auxiliary source, then by the same reasoning as for u, u′ is a source in expgµ′(e). If u′ is an
auxiliary source, then expgµ′(e) contains a source s as expgµ(e ′) contains the same source s

where e ′ is the source edge in
#    –

skel(µ) that is replaced by the auxiliary source u′ in aux(
#    –

skel(µ)).
For the sake of simplicity, we identify s with u′ in this case in the following as the reasoning is
similar to the case where u′ is no auxiliary source.

The expansion digraph expgµ′(e) is acyclic and, thus, it must contain a sink. As expgµ(e)

contains the single sink t of G which is distinct from u and v , either u or v must be a sink
in expgµ′(e). Further, since u is a source, v must be the single sink of expgµ′(e). This also
implies that v and u′ are distinct as u′ is a source as well. Hence, expgµ′(e) contains the
source u′ distinct from u and v , and vertex u′ is the single source of G . This also implies that
u is no source of G .

Let p be a dipath in G from its source u′ to u (dashed in Fig. 3.42(b)). The dipath p must
exist since G contains only one source u′. Vertex u is a source in expgµ′(e) , therefore, dipath p
must leave expgµ′(e) to reach u. Dipath p can only leave expgµ′(e) by passing vertex v before
reaching u because u, v is a split pair. Hence, from p we obtain a dipath p′ from v to u in
expgµ(e). Let w be a vertex in expgµ′(e) such that there is a directed edge from u to w . Such
a vertex and edge must exist since expgµ′(e) is biconnected and at least contains vertices u, u′,
and v . Note that w = v is possible while w = u′ is not as u′ is a source. Let p̂ be a dipath in
G from u to t via w , i. e., p̂ = u → w  t (dotted in Fig. 3.42(b)). Again, this dipath must
exist since G contains only sink t. By the same reasoning as before, p̂ must contain vertex v .
Therefore, we obtain a dipath p̂′ from u to v . By combining both dipaths p′ = v  u and
p̂′ = u  v , we obtain a cycle in G which is a contradiction.
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⇐: Let G be an acyclic digraph with dSPQR tree
#–T . Further, let µ1, ... ,µk be a node

sequence of
#–T by which we obtain the node series G i with G i = G i−1 ⊗

#    –

skel(µi) for 1 < i ≤ k
and G1 =

#    –

skel(µ1). Recall that G i−1 ⊗
#    –

skel(µi) is the two-clique sum of G i−1 and µi ’s
skeleton. By adopting the definition of terminal and directed virtual edges, each digraph G i
with i < k contains at least one virtual edge which is either directed or a terminal edge. We
canonically apply the definition of the auxiliary skeleton to each graph G i to obtain the auxiliary
digraph aux(G i), where all virtual edges are replaced as shown in Fig. 3.40(a).

By mathematical induction, we show that each auxiliary digraph aux(G i) is an acyclic dipole
and, hence, aux(G k) = aux(G) = G is an acyclic dipole. The digraph aux(G1) = aux(

#    –

skel(µ1))

is an acyclic dipole by assumption. For the induction step, suppose that aux(G i) is an acyclic
dipole. There is a virtual edge e in G i that is refined by node µi+1 and e also appears in
#    –

skel(µi+1). For clarity, we distinguish e in G i from e in
#    –

skel(µi+1) and denote the first by e
and the latter by e ′.

In the following, we use a complete case differentiation to show that G i+1 = G i⊕
#    –

skel(µi+1)

is an acyclic dipole: Edge e can either be directed from u to v , vice versa, or e is a sink or a
source edge, or both. This makes 5 cases and, since the same 5 cases also apply to e ′, we get
25 cases altogether. Fortunately, some of these cases cannot occur. For instance, e and e ′

cannot be source edges at the same time: If e is a source edge, then
#    –

skel(µi+1) either contains a
source edge e ′′ distinct from e ′ or a source distinct from u and v . In particular, aux(

#    –

skel(µi+1))

contains a source s with s 6= u, v . However, e ′ is also a source edge in
#    –

skel(µi+1) and, therefore,
aux(

#    –

skel(µi+1)) contains two sources which is a contradiction to aux(
#    –

skel(µi+1)) being an
acyclic dipole. For the same reasons, e and e ′ cannot be sink edges at the same time. Note
that the reasoning from before also applies if both e and e ′ are source edges and any of them is
additionally a sink edge or vice versa. This reduces the amount of cases by 7 to a total number
of 18. Moreover, it is not possible that e is directed from u to v and e ′ from v to u, or vice
versa, as this would imply a cycle, and 16 cases remain.

The cases we investigate in the following are sketched in Fig. 3.43. All other cases not
explicitly depicted in Fig. 3.43 are symmetric in the sense that the roles of G i and

#    –

skel(µi+1)

swap or the orientation of the directed edge is reversed. In each diagram, the digraphs G i ,
#    –

skel(µi+1) and G i+1 are sketched. Again, terminals, i. e., sources and sinks, are displayed by a
diamond shape. Some edges have only one endpoint and are used to indicate the existence
of at least one incoming/outgoing edge to/from the corresponding vertex. For instance, in
Fig. 3.43(a) vertex v in G i has at least one incoming edge apart from e and u has at least one
additional outgoing edges. Observe that during the two-clique summation of G i and

#    –

skel(µi+1)

only vertices u and v are changed, whereas all other vertices stay unchanged. In order to
prove that aux(G i+1) is an acyclic dipole, we show that if u is a source, a sink, or none of
both in aux(G i) and aux(

#    –

skel(µi+1)) then u is a source, a sink, or none of both in aux(G i+1),
respectively. The same also holds for v .

I e and e ′ are directed — two cases (Fig. 3.43(a))
W. l. o. g., we assume that e = (u, v) and e ′ = (u, v). Due to transitivity (Prop. 3.8),
neither G i nor

#    –

skel(µi+1) contains any terminal edge. This implies that in aux(G i) and
aux(

#    –

skel(µi+1)) only u and v can be terminals. Since both e and e ′ are directed from
u to v , and aux(G i) and aux(

#    –

skel(µi+1)) are acyclic dipoles, u is a source and v a sink
in both digraphs. The same is then true for aux(G i+1) which is an acyclic dipole with
source u and sink v .
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(d) Virtual edge e is directed and e′ is a source
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(e) Virtual edge e is a sink but no source edge and
e′ a source but no sink edge.

Figure 3.43: Case differentiation as obtained in the second part of the proof of Lem. 3.24.
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I e is directed and e ′ is a source/no sink edge — four cases (Fig. 3.43(b))
Since e ′ is a source edge, there is one source s with s 6= u and s 6= v in aux(G i), either
represented by another source edge or by a vertex. Also, e ′ is no sink edge and, hence,
either u or v must be a sink in aux(G i). Again, we assume w. l. o. g. that e is directed
from u to v which implies that v is the sink. As aux(G i) is a dipole with source s , there
must be at least one incoming edge to u in aux(G i). In

#    –

skel(µi+1) source s is represented
by the source edge e ′. Further, since e is directed from u to v in G i , u has at least one
outgoing and v at least one incoming edge in aux(

#    –

skel(µi+1)). Consequently, v is the
single sink in aux(

#    –

skel(µi+1)). Putting all things together, we obtain aux(G i+1) where s
is the single source and v the single sink.

I e is directed and e ′ is a sink/no source edge — four cases (Fig. 3.43(c))
This case is symmetric to the previous case where e is directed and e ′ a source edge only
that this time u is the single source and there is a single sink t in G i .

I e is directed and e ′ is a source and a sink edge — four cases (Fig. 3.43(d))
Again, w. l. o. g. e points from u to v . As e ′ is a both a source and a sink edge, there
must be a source s and a sink t in aux(G i) distinct from u and v . This time neither
u nor v can be terminals of the auxiliaries of G i and

#    –

skel(µi+1). Since e = (u, v) and
G i is a dipole, u has at least one incoming edge and v at least one outgoing edge in
aux(G i). The direction of e also implies that u has at least one outgoing and v at least
one incoming edge in aux(

#    –

skel(µi+1)) distinct from the auxiliary of e ′. Hence, neither u
nor v is a terminal in aux(G i+1), which must then be an acyclic dipole with source s
and sink t.

I e is a sink/no source edge and e ′ a source/no sink edge — two cases (Fig. 3.43(e))
There is a source s in aux(G i) and a sink t in aux(

#    –

skel(µi+1)) both distinct from u and v .
In aux(G i), neither u nor v is a source and, hence, both must have at least one incoming
edge. Further, u and v are no sinks in aux(

#    –

skel(µi+1)) and both must have at least one
outgoing edge. Consequently, s is the single source and t the single sink in aux(G i+1).

In any case, aux(G i+1) is an acyclic dipole and, hence, G itself is an acyclic dipole. �

3.5.3.5 dSPQR Trees of Compounds

In this section, we combine dual SPQR trees (Sect. 3.5.3.2) with dSPQR trees of acyclic
digraphs (Sect. 3.5.3.3) to define dSPQR trees of compounds. We assume that the compound
at hand is embedded for reasons that will become clear later. From the previous sections, we
readily obtain a characterization of RUP compounds by means of dual SPQR and dSPQR trees.

Corollary 3.21. An embedding of a biconnected compound γ is RUP if and only if all nodes
of the dSPQR tree of γ∗ are acyclic dipoles.

Proof. Let γ be an embedded and biconnected compound. The dual SPQR tree T ∗ of the
underlying undirected graph of γ is the SPQR tree of the underlying undirected graph of γ∗

by Thm. 3.4. Since γ∗ is acyclic, we obtain from T ∗ the dSPQR tree of γ∗ by Def. 3.6. The
embedding of γ is RUP if and only if its dual γ∗ is an acyclic dipole by Lem. 3.4 which, in turn,
holds true if and only if each node of the dSPQR tree of γ∗ is an acyclic dipole (Lem. 3.24). �
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As an example consider the biconnected RUP compound in Fig. 3.44(a) whose dual is
depicted in Fig. 3.44(b). The labels l, r, and lr can be ignored for the moment. The
dSPQR tree of the compound’s dual is shown in Fig. 3.45 and all of its nodes are acyclic dipoles.

l

r

r

l

l

r

(a) The compound.

s t

(b) Its dual.

Figure 3.44: A biconnected, RUP-embedded compound and its dual.

Remember that a source (sink) edge in the dSPQR tree of an acyclic digraph stands
for a “remote” source (sink) in the respective expansion digraph. We use a similar idea for
dSPQR trees of compounds, where we introduce cyclic edges, which are the duals of terminal
edges and stand for remote left- and rightmost cycles.

Definition 3.8 (dSPQR Trees of Compounds). Let γ be an embedded and biconnected
compound and let T be the SPQR tree of its underlying undirected graph. The dSPQR tree of
γ is defined as follows: As with dSPQR trees of acyclic digraphs (Def. 3.6), the non-virtual
edges in the Q nodes are directed as their counterparts in γ. Let {u, v} be a virtual edge of a
node µ. If the expansion digraph expgµ({u, v}) . . .

I . . . is a uv -digraph (vu-digraph), then {u, v} is directed from u to v (v to u) in µ.

I . . . contains a leftmost cycle of γ, then the virtual edge {u, v} is a cyclic-L edge in µ,
indicated by the symbol �L.

I . . . contains a rightmost cycle of γ, then the virtual edge {u, v} is a cyclic-R edge in µ,
indicated by the symbol �R .

Observe, a virtual can be both cyclic-L and cyclic-R. We call a virtual edge cyclic if it is a
cyclic-L or a cyclic-R edge, or both. Note that the property of containing a left- or rightmost
cycle depends on the current embedding. This is also the reason why Def. 3.8 only works
for embedded compounds. Fig. 3.46 shows the dSPQR tree of the embedded compound in
Fig. 3.44(a). Consider the expansion digraph expgµ2

(e) of the cyclic-L edge e in µ2 which
is refined by µ1. expgµ2

(e) is essentially the skeleton of µ1 without the cyclic-R edge and
it contains a leftmost cycle of the compound in Fig. 3.44(a). Hence, the virtual edge in µ2

refined by µ1 is cyclic-L. Respectively, the expansion digraph of the cyclic-R edge in µ2, which
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Figure 3.45: dSPQR tree of the dual in Fig. 3.44(b).

is refined by µ3, contains a rightmost cycle of the compound. Note that for an edge to be
cyclic-L (cyclic-R), the respective expansion digraph must fully contain a leftmost (rightmost)
cycle of the compound. In particular, it must contain all vertices and edges that are incident to
a leftmost (rightmost) cycle.

Recall that terminal edges of dSPQR trees fulfill a transitivity property (Prop. 3.8). The
same holds for compounds: In Fig. 3.46, the virtual edge in µ2, refined by µ1, is cyclic-L and
its expansion digraph contains a leftmost cycle. Thus, also the expansion digraph of the virtual
edge in µ3, refined by µ2, contains a leftmost cycle and it is also cyclic-L.

Proposition 3.9 (Transitivity of Cyclic Edges). In a dSPQR tree of an embedded and
biconnected compound, let µ be a node containing a virtual edge e that is refined by node µ′.
If any virtual edge e ′ 6= e in µ is a cyclic-L (cyclic-R) edge, then so is virtual edge e in µ′.

As with the acyclic version of dSPQR trees, each virtual edge of a compound’s dSPQR tree
is either directed or cyclic.

Lemma 3.25. In the dSPQR tree of an embedded compound, each virtual edge is either
directed or cyclic.

Proof. Let γ be an embedded compound with dSPQR tree
#–T and let e = {u, v} be a virtual

edge in a node µ. As γ is strongly connected, the only vertices that can be terminals in the
expansion digraph expgµ(e) are u and v , where not both u and v can be a source (sink).
If u is a source and v a sink, then expgµ(e) is a uv -digraph and e is directed from u to v .
Accordingly, if v is a source and u a sink, expgµ(e) is a vu-digraph and e is directed from v to
u. Otherwise, at least one of u or v is no terminal and expgµ(e) contains a cycle C . Let µ∗ be



3.5. Efficient Rolling Upward Planarity Testing of Closed Digraphs 179

R

µ1

P

µ2

S

µ3

R

µ6

S

µ7

P

µ4

R

µ5

l

l

l

R

r

R

r

R

r

l

L

l

L

l

L

l

R

r

R

r

R

r

l

L

l

L

l

L

l R
r
R
r
R
r

r

r

r
L
l

L
l

L
l

l

LR

lr

LR

lr

LR

lr

l

LR

lr

LR

lr

LR

lr

l

LR

lr

LR

lr

LR

lr

Figure 3.46: dSPQR tree of the biconnected compound in Fig. 3.44(a).

the dual of µ in the dSPQR tree
#–T ∗ of the dual γ∗. In the expansion digraph expgµ∗(e

∗) of the
dual, cycle C defines a dicut, which partitions the set of faces of expgµ∗(e

∗) into subsets F l

and F r. At least one of F l or F r must contain a terminal as γ∗ is acyclic. Which of F l or F r

contains a terminal depends on the orientation of C . W. l. o. g. F l contains a terminal and so
does expgµ∗(e

∗). Hence, expgµ(e) contains a left- or rightmost cycle of the compound and e
is cyclic in µ. �

From the proof of Lem. 3.25, we also obtain the following, which will be of use later in our
algorithm:

Corollary 3.22. If the expansion digraph expgµ(e) of a virtual edge e in node µ contains a
cycle, then expgµ(e) also contains a left- or rightmost cycle, i. e., e is cyclic.

3.5.3.6 Dual dSPQR Trees of Compounds

As the proof of Lem. 3.25 suggests, there is a duality between dSPQR trees of compounds and
the dSPQR trees of their duals. For an example, consider the dSPQR tree of the embedded
compound in Fig. 3.47(a). There, µ1 contains a cyclic-R edge which is refined by µ2 which, in
turn, contains a directed virtual edge. Fig. 3.47(b) shows the dSPQR tree of the dual, where
in each skeleton the primal is shown semi-transparent behind the dual. All non-virtual edges
are directed as in the duals of digraphs. The same also applies to the directed virtual edges in
µ2 and µ∗2: The dual of the directed virtual edge in µ∗2 points from the face to the left of its
primal to the face on its right side. Moreover, the dual of the cyclic-R edge in µ1 is a sink edge
in µ∗1. We show that this duality holds true in general:
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Figure 3.47: The dSPQR tree of an embedded compound and of its dual.

Lemma 3.26. Let γ be an embedded compound with dSPQR tree
#–T which contains node µ.

In the dSPQR tree of γ∗, let µ∗ be the corresponding dual node of µ. Let e be an edge between
vertices u and v in

#    –

skel(µ) and, in
#    –

skel(µ∗), let e∗ be the respective dual edge. For e and e∗,
exactly one of the following two statements holds true:

(i) Edge e is directed.
Let f and g be the faces to the left and right of e, respectively. Edge e∗ is directed from
f to g in

#    –

skel(µ∗).

(ii) Edge e is cyclic-L (cyclic-R).
Edge e∗ is a source (sink) edge.

Before we prove this lemma, we recall some concepts from the theory of graph minors: In a
connected graph G , contracting an edge means identifying its vertices. If G is embedded, then
contracting an edge e corresponds to removing the corresponding dual e∗ from G ∗. Conversely,
deleting an edge from G corresponds to an edge contraction in G ∗. Consider a directed virtual
edge e in a dSPQR tree and its expansion digraph which is a uv -digraph that contains a
dipath p from u to v . Removing all edges in the expansion digraph that are not on p and,
afterwards, contracting all edges of p except for one yields e itself, i. e., e itself is a minor of its
expansion digraph. Using these observations, we prove Lem. 3.26.

Proof. [Lem. 3.26] If e is non-virtual, then e∗ is directed from the face to the left of e to the
face to the right of e by the definition of the duals of digraphs and (i) follows for non-virtual
edges. From now on, we assume that e is virtual. By Lem. 3.25, we know that e is either
directed or cyclic. Assume that f and g are the endpoints of e∗ in µ∗. If e is, say, cyclic-L,
then the expansion digraph expgµ(e) contains a leftmost cycle of the compound and, in the
dual, expgµ∗(e

∗) there is a source distinct from f and g and, therefore, e∗ is a source edge in
µ∗. Conversely, if e∗ is a source edge, there is a source in expgµ∗(e

∗) distinct from f and g.
Consequently, expgµ(e) contains a leftmost cycle of the compound and, hence, e is cyclic-L in
µ. The reasoning for cyclic-R edges and sink edges is analogous. Thus, statement (ii) follows.
The reasoning for statement (i) is as follows.

⇒: As e is directed, we know by Lem. 3.25 that it is not cyclic and, thus, e∗ is no terminal
edge. By Prop. 3.7, e∗ must also be directed. W. l. o. g., we assume that e = (u, v) and, thus,
expgµ(e) is an acyclic dipole with source u and sink v . Further, e∗ = (u∗, v∗), where u∗ is the
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source and v∗ is the sink of expgµ∗(e
∗). We have to show that e∗ is directed from f to g, i. e.,

u∗ = f and v∗ = g. First note that for every edge in expgµ(e) there is exactly one dual edge in
expgµ∗(e

∗). In expgµ(e), there is a dipath p = u  v . Let ê be any edge on p with respective

dual ê∗. Edge ê∗ points from a face f̂ to a face ĝ in expgµ∗(e
∗). In particular, f̂ is left and

ĝ is right of ê. As expgµ∗(e
∗) is a u∗v∗-digraph, there is a dipath p∗ = u∗  f̂ → ĝ  v∗.

By subsequently contracting and removing edges, we can transform expgµ(e) into a digraph
which consists solely of edge ê. Edge ê then corresponds to virtual edge e in the skeleton of µ.
For the dual expgµ∗(e

∗), we also obtain the single edge ê∗, which corresponds to the virtual
edge e∗ in the skeleton of µ∗. Hence, we can conclude that there is a dipath from f to g
in expgµ∗(e

∗) and, consequently, f = u∗ is the source and g = v∗ is the sink of expgµ∗(e
∗).

Then, virtual edge e∗ must point from f to g.
⇐: The reasoning is analogous to before only that the roles of primal and dual swap. �

We use Lem. 3.26 as a motivation to define dual dSPQR trees.

Definition 3.9. Let γ be an embedded compound with dSPQR tree
#–T . The dual dSPQR tree,

denoted by
#–T ∗, is obtained from

#–T by replacing the skeleton of each node µ by its directed
dual to obtain the dual node µ∗, where cyclic-L edges are replaced by source edges and cyclic-R
edges by sink edges.

By our latest findings (Lem. 3.26) and since the dual SPQR tree is the SPQR tree of the
dual (Thm. 3.4), we get the following theorem.

Theorem 3.5. The dual dSPQR tree of an embedded compound is the dSPQR tree of the
dual.

The dual dSPQR-tree of the dSPQR-tree in Fig. 3.46 is shown in Fig. 3.45. We can
give a commutative diagram that illustrates the relationship between embedded compounds,
dSPQR trees and their duals. Let σ be the function that maps a compound or acyclic digraph
to its dSPQR tree and let γ be an embedded compound.

γ
∗→ γ∗

↓σ ↓σ
#–T ∗→ #–T ∗

3.5.3.7 dSPQR Trees of RUP Compounds

With the help of dual dSPQR trees, we characterize RUP compounds by the embeddings of
the skeletons of its dSPQR tree. Remember that an acyclic digraph is an acyclic dipole if
and only if each of the skeletons of its dSPQR tree is an acyclic dipole by Lem. 3.24, and a
skeleton is an acyclic dipole if its auxiliary skeleton is an acyclic dipole. We obtain the following
characterization:

Corollary 3.23. An embedding of a compound is RUP if and only if each node of its dual
dSPQR tree is an acyclic dipole.

Proof. Let
#–T ∗ be the dual dSPQR tree of an embedded compound γ. The embedding of γ is

RUP if and only if γ∗ is acyclic dipole, if and only if each node in the dSPQR tree of γ∗ is
an acyclic dipole. Since the dSPQR-tree of γ∗ is the dual dSPQR tree of γ by Thm. 3.5, the
statement follows. �

This motivates the following definition:
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Definition 3.10. Let µ be a node of a dSPQR tree of an embedded compound. The embedding
of µ’s skeleton

#    –

skel(µ) is called RUP(-embedded) if its dual
#    –

skel(µ∗) is an acyclic dipole. In
this case, node µ is called RUP(-embedded).

Hence, an embedding of a compound is RUP if and only if each node of its dSPQR tree is
RUP; a result that we will refine in the following. Consider again the dSPQR tree shown in
Fig. 3.46, where all nodes are is indeed RUP-embedded as their duals in Fig. 3.45 are acyclic
dipoles.

By Cor. 3.23, we can bound the number of cyclic-L and cyclic-R edges in a node of the
dSPQR tree of a RUP-embedded compound:

Corollary 3.24. If a compound is RUP-embedded, then the skeleton of each node in its
dSPQR tree has at most one cyclic-L and at most one cyclic-R edge.

Proof. If a skeleton contains two or more cyclic-L edges, then its dual contains at least two
source edges and the dual cannot be an acyclic dipole. Therefore, the whole compound is not
RUP-embedded. The same reasoning applies to cyclic-R edges. �

Note that a cyclic-LR edge counts as a cyclic-L and a cyclic-R edge.

Auxiliary Skeletons of RUP Nodes For dSPQR trees of acyclic digraphs, we have introduced
auxiliary skeletons in which source and sink edges are replaced by actual sources and sinks.
We apply the same idea to dSPQR trees of compounds, that is, we replace cyclic edges by
actual cycles. Let µ be a node of the dSPQR tree of an embedded compound. The auxiliary
skeleton aux(

#    –

skel(µ)) is obtained from
#    –

skel(µ) by replacing each cyclic edge e = {u, v} by
one or two pairs of antiparallel edges as shown in Fig. 3.48. A cyclic-L edge is replaced by a
single pair of antiparallel edges which form an (auxiliary) L-cycle whose edges carry the label L.
Likewise, a cyclic-R edge is replaced by an (auxiliary) R-cycle with label R. A cyclic-LR edge is
replaced by both an L- and an R-cycle.

LL

L

L

aux aux−1

RR

R

R

aux aux−1

LRLR

L

L

R

R

aux aux−1

Figure 3.48: Replacements for cyclic edges in the auxiliary skeleton.

The idea is that, instead of directly finding the RUP embedding of a node’s skeleton, we
shift the problem to its auxiliary. For the auxiliary, we have to find a RUP embedding such that
each L-cycle is leftmost and each R-cycle is rightmost, that is, an L-cycle encloses a source and
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an R-cycle a sink in the dual. In turn, from the RUP embedding of the auxiliary, we obtain
a RUP embedding of the original skeleton by replacing the L- and R-cycles by their original
cyclic edges. The position of the original cyclic edge e = {u, v} in the rotation systems of its
endpoints is determined by the position of its auxiliary cycles in the rotation system of the
auxiliary skeleton. For this step to be well defined, we need to make sure that in the embedding
of the auxiliary skeleton the auxiliary edges of e are all consecutive in the rotation systems of u
and v . Then, the position of e in the rotation system is uniquely defined by the position of the

“bundle” of auxiliary edges in the auxiliary skeleton. This leads to the following definition:

Definition 3.11. Let
#    –

skel(µ) be the skeleton of a node µ in the dSPQR tree of an embedded
compound. An embedding of the auxiliary aux(

#    –

skel(µ)) is called feasible if it fulfills all of the
following properties:

(i) Every L-cycle is leftmost.

(ii) Every R-cycle is rightmost.

(iii) For any cyclic edge e = {u, v}, all of its auxiliary edges are consecutive in the rotation
systems of u and v .

We define the function aux−1 (cf. Fig. 3.48) which maps a feasibly embedded auxiliary
skeleton aux(

#    –

skel(µ)) to the respective embedded skeleton
#    –

skel(µ).
Remember, the idea is to obtain a RUP embedding of a node’s skeleton from a feasible

RUP embedding of its auxiliary. For an example, consider Fig. 3.49. In the bottom left corner,
the auxiliary skeleton of µ1 is feasibly RUP-embedded. In particular, its dual is an acyclic
dipole. By applying aux−1, we obtain an embedding of

#    –

skel(µ1) in the top left corner. The
dual of µ is shown in top right corner and its auxiliary aux(

#    –

skel(µ∗1)) is placed beneath. It is an

acyclic dipole and, thereby,
#    –

skel(µ1) is RUP-embedded. We prove this observation in general:

Lemma 3.27. Let µ be a node of the dSPQR tree of an embedded compound. If a feasible
embedding of an auxiliary skeleton aux(

#    –

skel(µ)) is RUP, then the embedding obtained by
applying aux−1 to aux(

#    –

skel(µ)) is RUP.

Proof. We show that if the dual aux(
#    –

skel(µ))∗ of the auxiliary is an acyclic dipole, then
so is

#    –

skel(µ∗). For the latter, we have to show that aux(
#    –

skel(µ∗)) is an acyclic dipole. Let
aux(

#    –

skel(µ)) be feasibly RUP-embedded. Its dual aux(
#    –

skel(µ))∗ is an acyclic dipole with
source s and sink t. First, suppose that there is a cyclic-L edge e = {u, v} in

#    –

skel(µ) which is
not cyclic-R. In aux(

#    –

skel(µ))∗, there is a dipath from s to every other face, where s has two
outgoing edges whose primals are the auxiliary edges of e (cf. Fig. 3.48). We assume that
the outgoing edges of s point to faces f and g. Applying aux−1 to aux(

#    –

skel(µ)) means that
first the two auxiliary edges of e are removed from aux(

#    –

skel(µ)). In the dual, this operations
corresponds to contracting the two auxiliary edges incident to s and, in particular, s is merged
with f and g to a new face h. Afterwards, a cyclic-L edge is introduced in the primal between u
and v to obtain

#    –

skel(µ) and, in the dual, we obtain
#    –

skel(µ∗), where h is split into two faces u∗

and v∗ with a source edge in between them. Since there is a dipath from s to any other face in
aux(

#    –

skel(µ))∗, there is a dipath from u∗ or v∗ to any other face in
#    –

skel(µ∗). In aux(
#    –

skel(µ∗)),
the source edge {u∗, v∗} is replaced by a source s ′ with edges (s ′, u∗) and (s ′, v∗) and, again,
there is a dipath from s ′ to any other face in aux(

#    –

skel(µ∗)). Therefore, s ′ is the single source
in aux(

#    –

skel(µ∗)).
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Figure 3.49: The primal and dual skeletons of µ1 with their auxiliary skeletons.
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If e is a cyclic-R, then aux(
#    –

skel(µ∗)) contains a single sink by the symmetric reasoning. In
case e is cyclic-LR, s is merged with four instead of two faces and one of these four faces is the
single source and one the single sink of aux(

#    –

skel(µ))∗ (see Fig. 3.48). The remaining reasoning
is similar only that the cyclic-LR edge is replaced by an edge that is both a source and a sink
edge. If µ contains no cyclic-L or cyclic-LR edge, then its dual contains a (non-auxiliary) single
source in both aux(

#    –

skel(µ))∗ and in aux(
#    –

skel(µ∗)). Similarly, if µ neither contains a cyclic-R or
cyclic-LR edge, there is a single sink in both. Altogether, we can conclude that aux(

#    –

skel(µ∗))

is an acyclic dipole and, thus, the embedding of
#    –

skel(µ) is RUP. �

For our running example in Fig. 3.44(a) and its dSPQR tree in Fig. 3.46, all respective
auxiliary skeletons are shown in Fig. 3.50, where the labels l, r, and lr can be ignored for
the moment. All auxiliary skeletons are feasibly RUP-embedded and, hence, their embeddings
obtained for the skeletons in Fig. 3.44(a) are RUP. From Lem. 3.27, we also obtain that in
this case the whole compound can be RUP-embedded:

R

µ1l

l
l
R

r

R

r

R

r

R

r

P

µ2l

L

l

L

l

L

l

L

l

R

r

R

r

R

r

R

r

S

µ3l

L

l

L

l

L
l
L
l

R

r

R

r

R
r

R
r

R

µ6

r

r

rL

l

L

l

L

l

L

l

S

µ7
l

L

lr

L

lr

L
lr
L
lr

R

lr

R

lr

R lrR lr

P

µ4

l

L
lr
L

lr

L
lr

L
lr

R
lr
R

lr

R
lr
R
lr

R

µ5

l

L
lr
L

lr

L lrL lr

R
lr

R
lr

R
lr

R
lr

Figure 3.50: Auxiliary skeletons with feasible RUP embeddings for all nodes of the example
in Fig. 3.46.

Corollary 3.25. Let γ be an embedded compound with dSPQR tree
#–T . If the auxiliary skeleton

of each node of
#–T has a feasible RUP embedding, then applying aux−1 to every auxiliary yields

a RUP embedding of each skeleton and, hence, a RUP embedding of γ.

The converse version of Cor. 3.25 the following:

Lemma 3.28. Let γ be an embedded compound with dSPQR tree
#–T . If the whole compound

is RUP-embedded and, thus, every node is RUP-embedded, then the auxiliary of each node’s
skeleton has a feasible RUP embedding.

The reasoning for Lem. 3.28 is the converse reasoning of Lem. 3.27 where we additionally
have to argue that the auxiliary indeed has a RUP embedding that is feasible. In particular,
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the auxiliary edges have to be consecutive in the rotation system. To show this, we need the
following lemma:

Lemma 3.29. Let µ be a node of the dSPQR tree of a RUP-embedded compound. If
#    –

skel(µ)

contains a cyclic-LR edge e, then
#    –

skel(µ) \ {e} is an acyclic dipole.

Proof. Let µ′ be the node which refines edge e in µ.
#    –

skel(µ) contains the cyclic-LR edge e
and, thus, all all other edges have to be directed since in a RUP-embedded compound a node
can contain at most one cyclic-L and at most one cyclic-R edge (Cor. 3.24). For contradiction,
suppose that

#    –

skel(µ) \ {e} contains a cycle or a cyclic edge. Then, virtual edge e in µ′ is
cyclic-L, cyclic-R, or cyclic-LR. Furthermore, by the assumption that e is cyclic-LR in µ, we can
distinguish the following cases which follow from the transitivity of cyclic edges (Prop. 3.9):

I
#    –

skel(µ′) \ {e} contains a cyclic-LR edge.

I
#    –

skel(µ′) \ {e} contains a cyclic-L (cyclic-R) edge and a rightmost (leftmost) cycle.

I
#    –

skel(µ′) \ {e} contains no cyclic edge and both a left- and a rightmost cycle.

In either case, however,
#    –

skel(µ′∗) cannot be an acyclic dipole as it either contains more than
one source or more than one sink which contradicts the assumption that the compound is
RUP-embedded. Hence,

#    –

skel(µ)\{e} is acyclic and, since the compound is strongly connected,
the endpoints of e must be the single source and single sink. �

Proof. [Lem. 3.28] The following reasoning the reversed version of the proof of Lem. 3.27,
where we additionally show that the RUP embedding of the auxiliary skeleton is feasible. Let
#    –

skel(µ) be the RUP-embedded skeleton of a node µ in the dSPQR tree of a RUP-embedded
compound. Consider the dual node µ∗ and its skeleton

#    –

skel(µ∗). We first tackle the case where
#    –

skel(µ) contains no cyclic-LR edge. Assume that
#    –

skel(µ∗) contains a source edge e∗ = {f , g}.
We have to show that if aux(

#    –

skel(µ∗)) contains a single source, then so does aux(
#    –

skel(µ))∗.
By assumption, aux(

#    –

skel(µ∗)) is an acyclic dipole with source s and sink t, and there is a
dipath s  h from s to every other face in aux(

#    –

skel(µ∗)). Hence, in
#    –

skel(µ∗) for every face h,
there is a dipath from f to h or from g to h. The primal of e∗ is a cyclic-L edge e = {u, v}
in

#    –

skel(µ). As shown in Fig. 3.48, e is replaced in aux(
#    –

skel(µ)) by an L-cycle, where the
antiparallel pair of edges inherits the position of e in rotation systems of u and v in

#    –

skel(µ) such
that the L-cycle is leftmost. In the dual

#    –

skel(µ∗), this operation corresponds to introducing
a source s with two outgoing edges to the faces f and g, and we thereby obtain the dual of
the auxiliary, i. e., aux(

#    –

skel(µ))∗. As there is a dipath from f or g in
#    –

skel(µ∗) to every other
face, there is dipath from s to every other face in aux(

#    –

skel(µ))∗. s is therefore the single
source in aux(

#    –

skel(µ))∗. Also note that the since the L-cycle is leftmost, the auxiliary edges
of e must be consecutive in the rotation systems of u and v as the L-cycle encloses s. If e
is a cyclic-R edge, the symmetric reasoning shows that aux(

#    –

skel(µ))∗ contains a single sink
and the auxiliary edges of e are consecutive. Also, as in the proof of Lem. 3.27, if

#    –

skel(µ)

neither contains a cyclic-L nor a cyclic-LR edge, then its dual contains a (non-auxiliary) single
source in both aux(

#    –

skel(µ))∗ and in aux(
#    –

skel(µ∗)). Similarly, if µ neither contains a cyclic-R or
cyclic-LR edge, there is a single sink in both. Altogether, if e is no LR-edge, we can conclude
that aux(

#    –

skel(µ))∗ has a feasible RUP embedding.
If e = {u, v} is a cyclic-LR edge, then

#    –

skel(µ) \ {e} is an acyclic dipole by Lem. 3.29,
where, w. l. o. g., u is the source and v the sink. The situation we obtain in shown to the left in
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Figure 3.51: If e is cyclic-LR, the remainder of the skeleton is an acyclic dipole.

Fig. 3.51, where the acyclic dipole is symbolized by the arrow in the shaded area. Remember,
#    –

skel(µ) is RUP-embedded and, especially, embedded. Therefore,
#    –

skel(µ) is an embedded
acyclic dipole with an edge that connects its source with its sink and, thus, its embedding is
UP, that is, upward planar in the plane [Kel87, DBT88]. In particular, we can introduce the L-
and R-cycle corresponding to the cyclic-LR edge e as depicted on the right side of Fig. 3.51,
where the L-cycle encloses a source and the R-cycle a sink in the dual. As there is no edge
from v to u in

#    –

skel(µ) \ {e}, all four auxiliary edges in aux(
#    –

skel(µ)) are consecutive. Thus, the
obtained embedding is feasible and RUP. �

In the following, we assume that if the skeletons of the nodes are RUP-embedded, then
the auxiliary of the skeletons are embedded according to the proof of Lem. 3.28. That is,
L-cycles are leftmost, R-cycles are rightmost, and for cyclic-LR edges we have the embedding
as shown in Fig. 3.51. We obtain the following theorem that wraps up all previous sections
about dSPQR trees and their duals, and paves the way for our testing algorithm.

Theorem 3.6. For any embedded and biconnected compound γ with dSPQR tree
#–T and dual

dSPQR tree
#–T ∗, the following statements are equivalent:

(i) The embedding of γ is RUP.

(ii) Each node of
#–T is RUP.

(iii) The auxiliary skeleton of each node of
#–T has a feasible RUP embedding.

(iv) The dual of γ is an acyclic dipole.

(v) Each node of γ’s dual dSPQR tree is an acyclic dipole, i. e., its auxiliary skeleton is an
acyclic dipole.

Proof. Follows from Lemmas 3.4 and 3.28 and Corollaries 3.21, 3.23 and 3.25. �

3.5.3.8 The Algorithm for Biconnected Compounds

During the last sections, we have forged the tools we now use to devise our testing algorithm.
As input, the algorithm receives a planar and biconnected compound γ = (V ,E), and two
sets V l,V r ⊆ V . The output is either a RUP embedding, where all vertices in V l and V r

are left- and rightmost, respectively, or ⊥ if no such embedding exists. We use the planar
compound in Fig. 3.52 as a running example, where vertices in V l are labeled with l and
vertices in V r with r.
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Figure 3.52: Example of a planar compound.

Fig. 3.53 shows a preliminary version of the dSPQR-tree, the pre-dSPQR tree, of the
compound in Fig. 3.52. The pre-dSPQR tree is equal to the dSPQR tree only that its cyclic
edges do not carry the labels L, R, or LR. Remember, the information that a cyclic edge is
cyclic-L or -R presumes that the compound is embedded (cf. Def. 3.8). However, as the task
of our algorithm is to find a RUP embedding, we do not know yet whether a virtual edge is
cyclic-L or cyclic-R. Instead, the virtual edges in Fig. 3.53 are either directed if the expansion
digraph is an acyclic dipole, or cyclic if the expansion digraph contains a cycle. Observe, these
attributes of virtual edges do not presume an embedding.

dSPQR Trees with Vertices that must be Left-/Rightmost Our first step in this section
is to adapt dSPQR trees to accommodate for vertices that must be left- and rightmost.
Let

#–T be the dSPQR tree of an embedded compound and let µ be one of
#–T ’s nodes with

skeleton
#    –

skel(µ) = (Vµ,Eµ). A vertex in v ∈ V l is either present explicitly in the skeleton
if v ∈ Vµ or implicitly whenever v belongs to the expansion digraph of one of the skeleton’s
virtual edges. For instance, node µ1 in Fig. 3.53, contains three vertices from V l, where one
belongs to a split pair and, thus, reappears in nodes µ2, µ3, µ4, µ5, and µ7. In contrast,
node µ6 does not explicitly contain any vertex from V l. However, the expansion digraph of
its virtual edge contains all vertices from V l, indicated by the label l. In general, we define
for each node µ two sets El(µ), Er(µ) ⊆ Eµ of virtual edges. A virtual edge e = {u, v} is in
El(µ) if and only if the expansion digraph expgµ(e) contains a vertex from V l distinct from u
and v . Likewise, e = {u, v} ∈ Er(µ) if and only if expgµ(e) \ {u, v} contains a vertex from
V r. In the following, all virtual edges in El(µ) and Er(µ) are labeled with l and r, respectively.
If a virtual edge is in both sets, its label is lr.

The virtual edge in µ7 is refined by µ2 which contains two cyclic virtual edges labeled with
l and r. Hence, the expansion digraph of the virtual edge in µ7 contains vertices from V l and
V r and, thus, is labeled with lr. Hence, as with terminal and cyclic edges, we also have a
property of transitivity here:

Proposition 3.10. In a dSPQR tree of an embedded compound, let µ be a node containing a
virtual edge e, with endpoints u and v , that is refined by node µ′ and let V l and V r be sets of
vertices that must lie left- and rightmost, respectively. For node µ, let El(µ) and Er(µ) be the
set of virtual edges that must lie left- and rightmost respectively. Likewise, we have El(µ′) and
Er(µ′) for node µ′. If µ contains any vertex in V l (V r) distinct from u and v or any virtual
edge e ′ 6= e with e ′ ∈ El(µ) (e ′ ∈ Er(µ)), then e ∈ El(µ′) (e ∈ Er(µ′)).
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Figure 3.53: Pre-dSPQR tree of the example in Fig. 3.52.

Remember, in the auxiliary of a skeleton
#    –

skel(µ), a cyclic-L or cyclic-R edge is replaced by
an antiparallel pair of edges, and a cyclic-LR edge by two pairs of antiparallel edges. In the
following, we will see how the feasible RUP embeddings of the auxiliary skeletons must look
like such that all vertices in V l and V r are left- and rightmost in the RUP embedding of the
whole compound. For an example, consider Fig. 3.54(a) which shows an R node µ2 which
contains vertex vl ∈ V l. The directed virtual edge is refined by S node µ1 which, in turn,
contains a cyclic-R edge which is in El(µ1). Note that the embedding of the whole compound,
as defined by the embeddings of the two skeletons, is RUP where vertex vl is leftmost. The
first observation we gain from this example is that a cyclic-R can contain the label l. For the
second observation, first remember that the idea of our algorithm is to find a RUP embedding
of the compound by finding feasible RUP embeddings of the auxiliary skeletons. Fig. 3.54(b)
shows the auxiliary skeletons where each is feasible RUP-embedded. Note that the auxiliary
R-cycle in µ1 is rightmost. The following conditions must hold in order for vl to be leftmost in
the whole RUP embedding. Vertex vl must be leftmost in aux(

#    –

skel(µ2)) and, at least one of
the two auxiliary edges of the R-cycle in µ1 must be leftmost in aux(

#    –

skel(µ1)). Note that if
none of the auxiliary edges of the R-cycle is leftmost, then there would be a leftmost cycle in µ1

that encloses vl in the whole RUP embedding such that vl cannot be leftmost. Intuitively, a
single leftmost auxiliary edge of an R-cycle guarantees that there there is a “gap” which ensures
that the vertices in V l are leftmost. The following lemma generalizes this observation. In the
following, we denote by aux(e) the set of edges by which e is replaced in the auxiliary skeleton.
That is, if e is a directed virtual edge, then aux(e) = {e}, and if e is cyclic, it contains either
one or two pairs of antiparallel edges depending on whether it is cyclic-L, cyclic-R, or cyclic-LR.
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Figure 3.54: An R node with vertex vl that must be leftmost and an S node which contains
a cyclic-R edge which is in El(µ1).

Lemma 3.30. The embedding of a biconnected compound γ = (V ,E) is RUP, where the
vertices in V l ⊆ V and V r ⊆ V are left- and rightmost, respectively, if and only if the auxiliary
skeleton aux(

#    –

skel(µ)) of each node µ of γ’s dSPQR tree is feasibly RUP-embedded with the
following properties:

(i) All vertices in V l (V r) that are also in aux(
#    –

skel(µ)) are leftmost (rightmost).

(ii) For each virtual edge e ∈ El(µ), at least one edge of aux(e) is leftmost.

(iii) For each virtual edge e ∈ Er(µ), at least one edge of aux(e) is rightmost.

Proof. By Thm. 3.6, we know that γ is RUP-embedded if and only if the skeletons of the
nodes are RUP-embedded and their auxiliary skeletons are feasibly RUP-embedded. Next, we
show that properties (i) to (iii) are also fulfilled.

⇐: Let µ1, ... ,µk be a node sequence of γ’s dSPQR tree
#–T which induces the node

series G1, ... ,G k with G i = G i−1 ⊗
#    –

skel(µi), G1 =
#    –

skel(µ1) and G k = γ. Note that any G i
with i < k has exactly one virtual edge e that is also in the skeleton of µi . We adopt the
definition of auxiliaries for G i , i. e., aux(G i) is the auxiliary of G i . Further, we assume that each
aux(G i) is endowed with a feasible RUP embedding as each auxiliary skeleton of µ1, ... ,µk
has a feasible RUP embedding. By mathematical induction, we show that all aux(G i) fulfill
properties (i) to (iii) and, ultimately, the embedding of aux(G i) = G i = γ, which has no virtual
edges, fulfills property (i).

By assumption, aux(G1) fulfills all properties and the base case follows. For the induction
step, aux(G i) and aux(

#    –

skel(µi+1)) fulfill all properties. As in the proof of Lem. 3.24 and for
clarity, we denote by e the virtual edge in G i that is refined by µi+1 and by e ′ the corresponding
virtual edge in

#    –

skel(µi+1). The digraph G i+1 = G i ⊗
#    –

skel(µi+1) is the (e, e ′)-two-clique sum
of G i and

#    –

skel(µi+1). By De Morgan’s Law for two-clique sums (Lem. 3.23), we get for the
dual G

∗
i+1 = G

∗
i �

#    –

skel(µi+1)∗ which is the (e∗, e ′∗)-two-clique sum of G
∗
i and

#    –

skel(µi+1)∗

(see Figs. 3.37(a) and 3.37(b) on page 167), where e∗ and e ′∗ are the duals of e and e ′,
respectively. Denote by f , g, and f ′, g′ the faces that are the endpoints of e∗ and e ′∗,
respectively. In G

∗
i+1, f and f ′ are replaced by a new face f ◦ f ′, and g and g′ by g ◦ g′. In

the proof of Lem. 3.24 (page 171), we have shown that an acyclic digraph is a dipole if and
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only if each of the nodes of its dSPQR tree is an acyclic dipole. Here, we import some of the
insights of the proof of Lem. 3.24, where in the following the dual nodes are the acyclic dipoles.
For illustration purposes, we use Fig. 3.55 which is the corresponding version of Fig. 3.43 on
page 175 used in the proof of Lem. 3.24 with the difference that all figures display the duals G

∗
i ,

#    –

skel(µi+1)∗, and G
∗
i+1, and e (e ′) is exchanged with e∗ (e ′∗), and the vertices are replaced by

the faces f , g, f ′, g′, f ◦ f ′, and g ◦ g′. From the proof of Lem. 3.24, we also obtain that
in aux(G

∗
i ) and aux(

#    –

skel(µi+1)∗) both f and f ′ are either a source, a sink, or none of both.
Further, if f and f ′ are a source, a sink, or none of both, then f ◦ f ′ is a source, a sink, or
none of both, respectively, in aux(G

∗
i+1). The same holds for g, g′ and g ◦ g′.
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Figure 3.55: Case differentiation as obtained in the second part of the proof of Lem. 3.30.
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We first show that G i+1 fulfills property (i). Let vl be a vertex in V l. If vl is in both G i
and

#    –

skel(µi+1), then vl is an endpoint of e and e ′. If f is the single source in aux(G
∗
i ), then

so is f ′ in aux(
#    –

skel(µi+1)∗) and f ◦ f ′ in aux(G
∗
i+1) (cf. Figs. 3.55(a) and 3.55(c)). As v is

leftmost in G i and
#    –

skel(µi+1), v is incident to f and f ′. Thus, v is also incident to f ◦ f ′ and,
thus, leftmost in G i+1. The same holds true if g is the single source in G

∗
i . Now suppose that

neither of f , g, f ′, and g′ is a source. In this case, either e∗ or e ′∗ is a source edge. W. l. o. g.,
assume that e ′∗ is the source edge (cf. Figs. 3.55(b), 3.55(d) and 3.55(e)) and, by Lem. 3.26,
e ′ is cyclic-L in

#    –

skel(µi+1). This also implies that e∗ is no source edge and e is not cyclic-L.
Consequently, there is a face h in G

∗
i distinct from f and g that is a source in aux(G

∗
i ) and vl

is incident to h. During the two-clique summation h stays unchanged and, hence, h is also in
G
∗
i+1 and vl is incident to h. Therefore, vl is leftmost in aux(G i+1).

Now, suppose that vl is only in one of G i and
#    –

skel(µi+1) and, thus, vl is no endpoint of
e and e ′. W. l. o. g., vl is in G i and, thereby, e ′ ∈ El(µi+1). By property (ii), at least one
auxiliary edge of aux(e ′) is leftmost in aux(

#    –

skel(µi+1)). Since the embedding of aux(
#    –

skel(µi+1))

is feasible, all edges in aux(e ′) are consecutive and consequently one of f ′ and g′ is a source in
aux(

#    –

skel(µi+1)∗). We assume that f ′ is the source; the reasoning if g′ is the source is similar.
As f ′ is a source, so are f in aux(G

∗
i ) and f ◦ f ′ in aux(G

∗
i+1). Since vl is leftmost in aux(G i),

vl is incident to f and also incident to f ◦ f ′. Therefore, vl is leftmost in aux(G i+1). The
proof is analogous for vertices in vr and, altogether, property (i) is fulfilled.

Next, we show that property (ii) is maintained. Note that during the two-clique summation,
e and e ′ are replaced and they are not part of G i+1. If, for instance, e ′ ∈ El(µi+1), then
property (ii) is vacuously true for G i+1. Now, suppose that there is a virtual edge el 6= e in
G i which must be leftmost, i. e., there is a node µj with 1 ≤ j ≤ i with el ∈ El(µj). Then,
at least one auxiliary edge in aux(el) is leftmost in aux(G

∗
i ). By transitivity (Prop. 3.10),

e ′ ∈ El(µi+1) and at least one of aux(e ′) is leftmost in aux(
#    –

skel(µi+1)∗). Hence, either f ′ or
g′ is a source in aux(

#    –

skel(µi+1)∗). Again, we assume that f ′ is the source and, hence, so are f
in aux(G

∗
i ) and f ◦ f ′ in aux(G

∗
i+1). Since at least one of aux(el) is leftmost, we can conclude

that el is incident to f and, therefore, also incident to f ◦ f ′. This implies that at least one
of aux(el) is leftmost in aux(G i+1). Property (iii) is maintained by the same reasons. This
concludes the inductive proof and, in particular, property (i) is fulfilled for the whole compound.

⇒: The following proof is the reversed version of the inductive proof from before. We
start with G k = γ and subsequently split the nodes’ skeletons off the compound, i. e., for each
1 ≤ i < k and G i+1 = G i ⊗

#    –

skel(µi+1), we show that if aux(G i+1) fulfills properties (i) to (iii),
then so do aux(G i) and aux(

#    –

skel(µi+1)). Especially, all auxiliary skeletons fulfill all properties.

By assumption, aux(G k) fulfills property (i) and, since it contains no virtual edges, it
vacuously also satisfies (ii) and (iii). For the induction step, assume that aux(G i+1) (1 ≤ i < k)
fulfills all properties and aux(G i+1) = G i ⊗

#    –

skel(µi+1). We adopt the definitions from the proof
of the “⇐”-direction, i. e., there is a virtual edge e in G i refined by

#    –

skel(µi+1) which contains
the corresponding edge e ′. Further, we have the dual edges e∗ and e ′∗ with endpoints f , g,
and f ′, g′, respectively, that are replaced in G i+1 by f ◦ f ′ and g ◦ g′. Again, by the case
differentiation in the proof of Lem. 3.24 (cf. Fig. 3.43 on page 175), if f ◦ f ′ is a source, a
sink, or none of both in aux(G

∗
i+1), then f in aux(G

∗
i ) and f ′ in aux(

#    –

skel(µi+1)∗) are both a
source, a sink, or none of both, respectively. The same holds for g ◦ g′, g, and g′.

By assumption, a vertex vl ∈ V l is leftmost in aux(G i+1). First, assume that vl is an
endpoint of e and e ′. If f ◦ f ′ is a source in aux(G i+1), then so are f and f ′. Since vl is
incident to f ◦ f ′, it is also incident to f and f ′ and, therefore, vl is leftmost in aux(G i) and
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aux(
#    –

skel(µi+1)∗). The reasoning is analogous if g ◦ g′ is the source. Now assume that vl is in
G i but not in

#    –

skel(µi+1) and, thus, e ′ ∈ El(µi+1). We distinguish three cases: In aux(G
∗
i+1),

either f ◦ f ′, g ◦ g′, or none of both is the source. If f ◦ f ′ is the source, then so are f and f ′.
Since vl is incident to f ◦ f ′, it is also incident to f in G i and, hence, also to the source in
aux(G

∗
i ), i. e., aux(G i) fulfills property (i). Furthermore, edge e ′ is incident to f ′ and, hence, at

least one of aux(e ′) is incident to the source of aux(
#    –

skel(µi+1)∗), i. e., aux(
#    –

skel(µi+1)) fulfills
property (ii). If g ◦ g′ is the source, the reasoning is similar.

Now, suppose that none of f ◦ f ′ and g ◦ g′ is the source . This implies that there is a
face h distinct from f ◦ f ′ and g ◦ g′ in G

∗
i+1 such that h is the source in aux(G

∗
i+1) and vl is

incident to h. Either h is in aux(G
∗
i ) or in aux(

#    –

skel(µi+1)∗). First, assume that h is in aux(G
∗
i )

(Figs. 3.55(b), 3.55(d) and 3.55(e)). Since h 6= f ◦ f ′ and h 6= g ◦ g′, face h stays unchanged
during the two-clique summation and it is also a source in aux(G

∗
i ) to which vl is incident

which implies property (i) for aux(G i). Further, the expansion digraph of e ′∗ contains h as
source and, by the definition of dSPQR trees, e ′∗ is a source edge. Duality implies that e ′ is
cyclic-L. In particular, all of aux(e ′) are leftmost in aux(

#    –

skel(µi+1)∗) and property (ii) follows.

Now assume that h is in aux(
#    –

skel(µi+1)∗). We obtain the situations as depicted in
Figs. 3.55(b), 3.55(d) and 3.55(e) where the roles of

#    –

skel(µi+1)∗ and G
∗
i are swapped. Fig. 3.56

shows the modified versions with swapped roles of
#    –

skel(µi+1)∗ and G
∗
i where Figs. 3.56(a),

3.56(b) and 3.56(c) correspond to Figs. 3.55(b), 3.55(d) and 3.55(e), respectively. Further, h
is the source in

#    –

skel(µi+1)∗. We now show that these cases violate the induction hypothesis.
By assumption, vertex vl is in G i but not in

#    –

skel(µi+1). Further, vl is incident to face h in
aux(G i+1) with h 6= f ◦ f ′ and h 6= g ◦ g′, and h is the single source in aux(G

∗
i+1). Face h

is in aux(
#    –

skel(µi+1)∗) but not in aux(G
∗
i ). However, as vl is not in

#    –

skel(µi+1) it cannot be
incident to h in

#    –

skel(µi+1) and, thus, vl is also not incident to h in G i+1. Hence, vl is not
leftmost in G i+1, which violates the induction hypothesis.

By the reasoning from before, property (ii) follows also for vertices vl ∈ V l in
#    –

skel(µi+1)

that are not in G i and property (iii) for vertices vr ∈ V r.

Finally, let el be an edge in El(µi+1). Here, two cases are distinguished: Either, el 6= e ′
or el = e ′, i. e., either el is in G i+1 or it is not. The case el = e ′ implies that e ′ ∈ El(µi+1)

which we have already discussed in the previous paragraphs for the case where there is a
vertex vl in G i but not in

#    –

skel(µi+1). Hence, the reasoning is similar. For the cases that violate
the induction hypothesis (Figs. 3.56(a) to 3.56(c)), note that e ′ ∈ El(µi+1) implies that there
is either a vertex vl ∈ V l in G i but not in

#    –

skel(µi+1) or an edge el ∈ El(G i) with el 6= e. In
both cases, a similar reasoning as before shows that the induction hypothesis is violated.

Suppose now that el 6= e ′. In this case, el is incident to a face h which is a source in
aux(G

∗
i+1). Since h 6= f ◦ f ′ and h 6= g ◦ g′, h is also the source in aux(

#    –

skel(µi+1)∗) and el is
incident to h. In particular, at least one auxiliary edge of aux(el) is incident to h and, therefore,
leftmost which implies (ii).

The proof is analogous for edges that must be leftmost in G i and for edges that must be
rightmost. Altogether, both aux(G i) and aux(

#    –

skel(µi+1)) fulfill all properties. �

We call a feasible RUP embedding of a node’s auxiliary skeleton LR-feasible if it fulfills the
properties of Lem. 3.30. From an LR-feasible RUP embedding of the auxiliary, we obtain the LR-
feasible embedding of the skeleton itself by applying aux−1. Hence, we have to find LR-feasible
RUP embeddings of the skeletons to obtain desired RUP embedding of the compound.
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Figure 3.56: Cases in Figs. 3.55(b), 3.55(d) and 3.55(e), where
#    –

skel(µ∗i+1) assumes the role

of G i and G
∗
i the role of

#    –

skel(µi+1).

The Algorithm Alg. 3.6 shows TestBiconnected which is the top-level routine of our
algorithm. In line 1, the SPQR tree of the underlying undirected graph of γ is computed in
time O(|V |+ |E |) by the algorithm in [GM01]. The remainder of the algorithm is divided into
two steps:

I Step 1 (lines 2 to 5): First, a preliminary version of the dSPQR tree is computed. The
pre-dSPQR tree T̃ is equal to the dSPQR tree only that it requires no embedding and the
cyclic edges do not carry the labels L, R, or LR. Further, for each node µ, the sets El(µ)

and Er(µ) are determined.

I Step 2 (lines 6 to 8): In the second step, the routine ComputeCompoundEmbedding

derives possible dSPQR trees from the pre-dSPQR tree and computes the respective
embeddings of the skeletons. If one of these dSPQR trees and skeleton embeddings lead
to a RUP embedding of γ, then this embedding is returned. Otherwise, ⊥ is the output.

Step 1: Computation of the Pre-dSPQR Tree and of El and Er Remember that in
a dSPQR tree (cf. Def. 3.8), a virtual edge is cyclic-L if its expansion digraph contains a
leftmost cycle, which implicitly assumes that the digraph is embedded. However, as the task of
TestBiconnected is to find an embedding, we cannot rely on such information. Fortunately,
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Algorithm 3.6. TestBiconnected

Input: planar compound γ = (V ,E) and sets V l,V r ⊆ V
Output: RUP embedding of γ where all vertices in V l are left- and all vertices in V r

are rightmost or ⊥ if no such embedding exists
1 T ← ComputeSPQRTree(γ)

2 begin Step 1: Computation of the Pre-dSPQR Tree and of El and Er

3 T̃ ← ComputePre-dSPQRTree(T )

4 if T̃ = ⊥ then return ⊥
5 El, Er ← ComputeLREdges(T ,V l,V r)

6 begin Step 2: Computation of the Embedding
7 global V l, V r, El, Er

8 return ComputeCompoundEmbedding(T̃ )

we can use the observation from Cor. 3.22: If the expansion digraph expgµ(e) of a virtual
edge e in node µ contains a cycle, then, given an embedding, expgµ(e) also contains a left-
or rightmost cycle. In case no embedding is given, we can at least conclude that e is cyclic.
By using this observation, we define that the pre-dSPQR tree of a compound is equal to the
compound’s dSPQR tree (Def. 3.8) only that all cyclic edges do not carry the labels L and R,
i. e., a virtual edge is cyclic if its expansion digraph contains a cycle. For our running example
in Fig. 3.52, the pre-dSPQR tree is shown in Fig. 3.53 on page 189. We denote by T̃ the
pre-dSPQR tree and for a node µ its skeleton is denoted by s̃kel(µ).

Alg. 3.7 shows the routine ComputePre-dSPQRTree which takes as input an SPQR tree
of a compound and returns the pre-dSPQR tree. Under certain circumstances, which are
discussed later, ComputePre-dSPQRTree returns ⊥ when a RUP embedding is not possible.
Before we analyze ComputePre-dSPQRTree in detail and prove its correctness, we need a few
observations. We first prove an extended version of transitivity for cyclic edges:

Lemma 3.31. Let e be a virtual edge in a node µ of a pre-dSPQR tree such that e is refined
by µ′. Virtual edge e is cyclic if and only if s̃kel(µ′) \ {e} contains a cyclic edge or a cycle of
directed, i. e., non-cyclic, edges only.

Proof. ⇒: Either Gµ′ := s̃kel(µ′) \ {e} contains a cyclic edge or not. In the first case, the
implication follows. Let us assume the second case where all virtual edges in Gµ′ are directed.
Since e is cyclic in µ, its expansion digraph expgµ(e) contains a simple cycle Cexpg. Let
C = v1, ... , v` (v1 = v` and ` > 1) be the sequence of vertices in Gµ′ as visited by cycle Cexpg

in order. We now show that C is a cycle in Gµ′ : Let vi , vi+1 be two consecutive vertices on
C with 1 ≤ i < `. If Cexpg traverses only a single edge ei between vi and vi+1 such that ei
is also in Gµ′ , then vi and vi+1 are also connected by ei in Gµ′ . Otherwise, Cexpg follows a
dipath p = vi  vi+1 in expgµ(e). In this case, there is a directed virtual edge e ′ from vi to
vi+1 in Gµ′ , where the expansion digraph expgµ′(e

′) contains p. Hence, C is a cycle in Gµ′ .

⇐: If µ′ contains a cyclic edge e ′ 6= e, then expgµ′(e
′) contains a cycle and, since

expgµ′(e
′) ( expgµ(e), we can conclude that e is cyclic in µ. Otherwise, let C = v1, ... , v`

(v1 = v` and ` > 1) be a cycle in Gµ′ := s̃kel(µ′) \ {e} that consists of directed edges only. We
construct a cycle Cexpg in expgµ(e) as follows: If the edge between vi and vi+1 is non-virtual,
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then expgµ(e) also contains this edge which is used in Cexpg. If the edge e ′ between vi and
vi+1 is virtual, then its expansion digraph expgµ′(e

′) is a uv -digraph with u = vi and v = vi+1.
Hence, there is a dipath p = vi  vi+1 in expgµ(e). Cexpg uses p to go from vi to vi+1. We
obtain a cycle Cexpg in expgµ(e) and can conclude that e is cyclic in µ. �

By Lem. 3.31, instead of testing whether the whole expansion digraph of a virtual edge
contains a cycle, we only need to consider the skeleton of the node that refines it. Compute-

Pre-dSPQRTree tests whether the skeleton contains a cyclic edge or, more complicated, a cycle
of directed edges. This problem is solvable in time linear in the number of vertices and edges of
the skeleton by using a depth-first search. However, it turns out that ComputePre-dSPQRTree
needs to solve this problem multiple times for each node µ, i. e., one time for each node
connected to µ in the SPQR tree.

Assume that µ is a node with virtual edges e1, ... , e`, where e1, ... , e` are refined by
µ1, ... ,µ`, respectively. Edge ei has to be cyclic in µi if s̃kel(µ) \ {ei} contains a cyclic edge or
a cycle of directed edges. In the worst case, all virtual edge of µ are directed and we need to
test for a cycle for all edges ei , which leads to a quadratic running time. For a linear running
time, we exploit properties of the skeletons of SPQR nodes and of RUP compounds. In the
case of an S node lacking cyclic edges, removing an arbitrary edge leaves a uv -digraph and,
hence, edge ei has to be directed. For a P node with vertices u and v , and no cyclic edges,
removing an edge e leaves an acyclic digraph if and only if e is either the single edge from u to
v or from v to u. For R nodes, the problem becomes more involved and we need to import
ideas from related concepts.

A problem which also deals with finding cycles in a digraph is the feedback arc set problem:
Given a digraph G = (V ,E), a set of edges F ( E is called feedback arc set (FAS) if its
removal leaves G acyclic. An FAS is called minimum if its cardinality is minimum among all
FASs. Finding an FAS of cardinality k ≥ 0 is one of Karp’s 21 NP-complete problems from
his seminal paper [Kar72]. For planar digraphs, there is a polynomial-, though not linear-, time
algorithm by Luccehsi and Younger [LY78] which uses the dual to find an FAS. There the idea
is to contract edges in the dual until it becomes strongly connected and, thereby, the primal
becomes acyclic. Since contracting a dual edge is equivalent to removing a primal edge, the
primals of the contracted dual edges constitute an FAS. We use the same idea in the following.

Suppose we are given the skeleton
#    –

skel(µ) of an R node µ where all virtual edges e1, ... , e`
are directed. If a minimum FAS F of

#    –

skel(µ) has cardinality at least two, then removing a
single edge from

#    –

skel(µ) always leaves a cycle. Hence, the respective virtual edges in the
neighboring nodes have to be cyclic. If |F| = 1 with F = {e}, removing e results in an acyclic
digraph. However, in general, there might be several FASs of cardinality one. Finding all FASs
of cardinality 1 takes time O(|E |· (|V |+ |E |)) by subsequently removing all edges and using
depth-first search to test for a cycle. Fortunately, in the case of R nodes and, even more general,
RUP-embedded compounds, we can do considerably better. Consider the RUP-embedded
compound sketched in Fig. 3.57(a): Its dual is an acyclic dipole with source s∗ and sink t∗.
In the following, we call a primal edge whose dual points from s∗ to t∗, an s∗t∗-edge. In
Fig. 3.57(a), e1 and e2 are s∗t∗-edges and we assume that the shaded regions do not contain
s∗t∗-edges. Removing any of e1 or e2 results in an acyclic digraph, i. e., we have two minimum
FASs F1 = {e1} and F2 = {e2}. In fact, if a compound is RUP-embedded and there is an
s∗t∗-edge e, then F = {e} is a minimum FAS. We now prove the following general result and
apply it to R nodes afterwards.
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e1

e2

s∗ t∗

e∗1

e∗2

(a) RUP-embedded
compound with two
FASs F1 = {e1} and
F2 = {e2}

R

(b) Skeleton of an R node
with no s∗t∗-edge. An FAS
has at least size two (three
in this example).

R

(c) Skeleton of an R node
with one s∗t∗-edge, which
then constitutes a unique
minimum FAS.

Figure 3.57: All minimum FASs of a RUP-embedded compounds have cardinality 1 if and
only if there is an s∗t∗-edge.

Lemma 3.32. Let γ = (V ,E) be a RUP-embedded compound and let γ∗ be the dual of γ
with source s∗ and sink t∗. Denote by F the set of minimum FASs of γ. Each minimum
FAS F ∈ F consists of a single s∗t∗-edge e if and only if there is at least one s∗t∗-edge.

Proof. ⇒: Since γ is strongly connected, F contains at least one FAS and, therefore, there is
at least one edge from s∗ to t∗.

⇐: Remember that removing an edge e from γ is equivalent to contracting the dual e∗

of e in γ∗. Hence, removing all edges of a set F ⊂ E from γ makes it acyclic if and only if
contracting all duals edges of F in γ∗ results in a strongly connected digraph.

If there is an edge e∗ from s∗ to t∗, contracting it is equivalent to identifying the source
with the sink of γ∗. Denote by γ∗ the resulting digraph and let f and g be two faces in γ∗.
Since γ∗ is an acyclic dipole, there are dipaths f  t∗ and s∗  g and, therefore, there is
a dipath f  g in γ∗. Thus, γ∗ is strongly connected and {e} is an FAS of γ which is also
minimum since γ is strongly connected. Further, contracting any e∗ that not points from s∗

to t∗ either leaves s∗ as a source or t∗ as a sink and, hence, results in a digraph that is not
strongly connected. Edge e∗, therefore, constitutes no FAS of γ. Altogether, F contains only
singletons, where each one consists of an s∗t∗-edge, and, conversely, all s∗t∗-edges are in a
singleton of F. �

If γ does not contain an s∗t∗-edge, any FAS of γ contains at least two edges, which follows
from the proof of Lem. 3.32:

Corollary 3.26. If a RUP-embedded compound does not contain an s∗t∗-edge, each FAS of γ
contains at least two edges.

If the dual does not contain multiple edges, then there is at most one edge from s∗ to t∗.
In this case, there is exactly one FAS. The skeletons of R nodes are triconnected and, therefore,
their duals contain no multiple edges.
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Corollary 3.27. Let
#    –

skel(µ) be a RUP-embedded skeleton of an R node where all virtual edges
are directed and let

#    –

skel(µ∗) be its dual with source s∗ and sink t∗. The set F = {e} is the
unique minimum FAS of γ if and only if e is an s∗t∗-edge. If there is no s∗t∗-edge, any FAS of
#    –

skel(µ) contains at least two edges.

For examples consider Figs. 3.57(b) and 3.57(c). Both show R nodes which contain two
directed virtual edges. The R node in Fig. 3.57(b) contains no s∗t∗-edge and, hence, its FAS
contains at least two edges; in fact, three in the example. Therefore, its two virtual edges are
cyclic in the nodes which refine them. In Fig. 3.57(c), there is a virtual edge e that is also
an s∗t∗-edge, which then constitutes the unique minimum FAS. Hence, the virtual edge e is
directed in the node which refines it.

We now analyze ComputePre-dSPQRTree.

Lemma 3.33. For an SPQR tree T of a biconnected compound γ = (V ,E), ComputePre-
dSPQRTree (Alg. 3.7) computes the pre-dSPQR tree. If ComputePre-dSPQRTree returns ⊥,
γ is not RUP. The running time is O(|V |).

Proof. The algorithm starts with a pre-dSPQR tree T̃ = T , which is initially equal to the
input SPQR tree (line 1), and subsequently adjusts each virtual edge, i. e., it becomes either
directed or cyclic. This is done in two sweeps: first, bottom-up, from the leaves to the inner
portion of the tree and then, top-down, backwards to the leaves. The whole algorithm heavily
relies on Lem. 3.31, i. e., instead of determining the whole expansion digraph of an edge, only
neighboring nodes are investigated to adjust an edge. First, an arbitrary node µr is chosen to
be the root of the pre-dSPQR tree and connections between nodes point from the children
to their parent (line 2). In line 3, a topological ordering µ1, ... ,µk of the nodes is obtained.
These two steps take O(|V |) time since the number of nodes is in O(|V |) by Prop. 3.5.

The first sweep is carried out in the loop from lines 4 to 8. The nodes µ1, ... ,µk−1 are
processed in order of the topological ordering. Let µ be the node of the current iteration with
skeleton s̃kel(µ) = (Vµ,Eµ). It contains a virtual edge e that is refined by µp which is the
parent of µ in the pre-dSPQR tree. The invariant of the iteration is that all virtual edges e ′ 6= e
in µ have already been adjusted. This is true if µ is a leaf since there are no other virtual
edges. Otherwise, we maintain the invariant by adjusting edge e in µp. Line 7 tests whether

s̃kel(µ) \ {e} contains a cyclic edge or a cycle. To test for a cycle, a depth-first search is used
that runs in time O(|Vµ|+ |Eµ|) ⊆ O(|Vµ|). If any of the conditions is true, edge e is set cyclic

in µp. Otherwise, s̃kel(µ) \ {e} is an acyclic dipole, where either of the endpoints of e is a
source and the other endpoint a sink, and e must be directed from the source to the sink in µp.
By Prop. 3.5, we know that the total sum of all edges of all skeletons is in O(|E |) ⊆ O(|V |)
and the number of nodes is in O(|V |). Hence, all operations in lines 4 to 8 have an overall
running time in O(|V |). Note that each iteration adjust the virtual edge e in the parent node,
whereas the virtual edge e in µ is not adjusted. This is the task of the second sweep.

In the second sweep, starting in line 9, the nodes are processed in reversed topological
ordering. Again, let µ be the node of the current iteration. If µ is a leaf, then µ has no children
and nothing has to be done. Otherwise, µ contains virtual edges e1, ... , e` with ` > 0 refined
by its children µ′1, ... ,µ′` of µ, respectively. Due to the first sweep, all edges e1, ... , e` are
adjusted in µ but not adjusted in nodes µ′1, ... ,µ′`. Three cases are distinguished: First, if two

or more edges of e1, ... , e` are cyclic (line 12), then, for all i (1 ≤ i ≤ `), digraph s̃kel(µ) \ {ei}
contains at least one cyclic edge. Hence, ei must be set cyclic for all children µ′i (line 13).
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Algorithm 3.7. ComputePre-dSPQRTree

Input: SPQR tree T
Output: pre-dSPQR tree T̃ or ⊥ if compound is not RUP

1 T̃ ← T
2 Choose an arbitrary root node µr in T̃ and direct all edges of T̃ towards the root

3 µ1, ... ,µk ← TopSort(T̃ )

4 foreach µ = µ1, ... ,µk−1 do
5 µp ← parent of µ in T
6 e ← virtual edge in µ refined by µp

7 if s̃kel(µ) \ {e} contains a cyclic edge or a cycle then set e cyclic in µp
8 else direct e in µp

9 foreach µ = Reverse(µ1, ... ,µk) do

10 µ′1, ... ,µ′` ← children of µ in T̃
11 e1, ... , e` ← virtual edges in µ refined by µ′1, ... ,µ′`, respectively
12 if µ contains more than one cyclic edge then
13 foreach ei ∈ {e1, ... , e`} do set ei cyclic in µ′i
14 else if µ contains exactly one cyclic edge ej then
15 foreach ei ∈ {e1, ... , e`} \ {ej} do set ei cyclic in µ′i
16 if s̃kel(µ) \ {ej} contains a cycle then set ej cyclic in µ′j
17 else direct e in µ′

18 else all e1, ... , e` are directed
19 switch type of µ do
20 case S-node
21 foreach ei ∈ {e1, ... , e`} do direct ei in µ′i

22 case P-node with vertices u and v
23 foreach ei ∈ {e1, ... , e`} do

24 if s̃kel(µ) \ {ei} contains a cycle then set ei cyclic in µ′i
25 else direct ei in µ′i

26 case R-node

27 s̃kel(µ∗) = (Fµ,E ∗µ) ← ComputeDual(s̃kel(µ))

28 if s̃kel(µ∗) is acyclic dipole with source s∗ and sink t∗ then
29 if e∗j = (s∗, t∗) ∈ E ∗µ then

30 direct ej in µ′j where ej be the primal of e∗j
31 foreach ei ∈ {e1, ... , e`} \ {ej} do set ei cyclic in µ′i
32 else minimum FAS of s̃kel(µ) contains more than one edge
33 foreach ei ∈ {e1, ... , e`} do set ei cyclic in µ′i

34 else return ⊥

35 return T̃
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Second, if µ contains exactly one cyclic edge ej (1 ≤ j ≤ `), all digraphs s̃kel(µ) \ {ei} with

i 6= j contain a cyclic edge, namely ej (line 15). For
#    –

skel(µ) \ {ej}, a depth-first search reveals
whether it contains a cycle (line 16) and the virtual edge of µ′j is adjusted accordingly. For all
these operations, the running time is O(|Vµ|+ |Eµ|) ⊆ O(|Vµ|).

In the third case, all virtual edges in s̃kel(µ) are directed (line 18). Depending on the type
of node µ, different operations are carried out: If µ is an S node, then removing any edge results
in a uv -digraph and, hence, the corresponding virtual edges are directed (line 21). In case of a
P node with vertices u and v , removing an edge e results in an acyclic digraph if and only if e
is the single edge from either u to v or from v to u. Hence, for each ei , we can decide in time
O(1) whether s̃kel(µ)\{ei} contains a cycle and adjust the corresponding virtual edges (line 24).

Finally, if µ is an R node (line 26), its skeleton s̃kel(µ) is triconnected and simple. Hence, its
embedding is unique (up to inversion). In line 27, ComputeDual is called which determines

the embedding and the dual s̃kel(µ)∗ of s̃kel(µ) in time O(|Vµ|), e. g., by an algorithm given

in [KW01]. As s̃kel(µ) contains no cyclic edges,
#    –

skel(µ) and the auxiliary aux(
#    –

skel(µ)) also

contain no cyclic edges. In particular, s̃kel(µ) is isomorphic to
#    –

skel(µ) and aux(
#    –

skel(µ)). If
s̃kel(µ)∗ is no acyclic dipole, then s̃kel(µ) is not RUP and, hence, aux(

#    –

skel(µ)) has no feasible
RUP embedding which implies that the whole compound is not RUP by Thm. 3.6. Then,
⊥ is returned in line 34. Otherwise, s̃kel(µ)∗ is an acyclic dipole with source s∗ and sink t∗.
Testing whether s̃kel(µ)∗ = (Fµ,E ∗µ) is an acyclic dipole takes time O(|Fµ|+ |E ∗µ |) ⊆ O(|Vµ|).
If there is an edge e∗j that points from s∗ to t∗, we know by Cor. 3.27 that F = {ej} is the

unique minimum FAS of the primal (line 29). In this case, s̃kel(µ) \ {ej} is acyclic (line 30)
and contains a cycle for all ei 6= ej (line 31). If there is no edge from s∗ to t∗, then all FASs of

s̃kel(µ) contain at least two edges and all virtual edges of µ’s children must be cyclic (line 33).
After all virtual edges are adjusted, the pre-dSPQR tree T̃ is returned in line 35. The overall

running time invested for a single node µ is in O(|Vµ|) and, hence, ComputePre-dSPQRTree
runs in time O(|V |). �

The result of ComputePre-dSPQRTree for our running example is shown in Fig. 3.53 on
page 189, where the labels l and r, and lr can be ignored for the moment. If µ2 is chosen to
be the root, a possible topological ordering for the first sweep could be

µ1,µ7,µ5,µ6,µ4,µ3 .

Since µ1 contains a cycle, the virtual edge on the left hand side of µ2 is set cyclic. Further,
the skeleton of µ7 without its virtual edge is an acyclic dipole and, hence, the corresponding
virtual edge in µ2 is directed. In the second sweep, the nodes are processed in reversed order
starting with node µ2. There, the virtual edge in µ1 is set cyclic since the virtual edge on the
right hand side of µ2 is cyclic. In our example, we do not have to compute the FAS of any
of the R nodes since all three contain a single cyclic edge. For examples, where all edges are
directed, and the minimum FAS contains at least two edges or a single edge, see Fig. 3.57(b)
or Fig. 3.57(c), respectively.

The second task of Step 1 of TestBiconnected in Alg. 3.6 is to determine the mappings El

and Er. As a reminder, El(µ) for a node µ contains all virtual edges e = {u, v} of µ’s skeleton
whose expansion digraph contains a vertex from V l \ {u, v}. The routine ComputeLREdges

in Alg. 3.8 computes El and Er. ComputeLREdges follows the same strategy as Compute-

Pre-dSPQRTree and, consequently, many of the arguments from the proof of Lem. 3.33 apply
equally; only that the analysis of ComputeLREdges is significantly simpler.
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Algorithm 3.8. ComputeLREdges

Input: SPQR tree T , subsets V l, V r of vertices
Output: El and Er

1 Choose an arbitrary root node µr in T and direct all edges of T towards the root
2 µ1, ... ,µk ← TopSort(T )

3 foreach node µ of T do El(µ) ← ∅; Er(µ) ← ∅
4 foreach µ = µ1, ... ,µk−1 do
5 µp ← parent of µ in T
6 e = {u, v} ← virtual edge in µ refined by µp
7 if El(µ) 6= ∅ ∨ skel(µ) contains vertex in V l \ {u, v} then El(µp) ← El(µp) ∪ {e}
8 if Er(µ) 6= ∅ ∨ skel(µ) contains vertex in V r \ {u, v} then Er(µp) ← Er(µp) ∪ {e}
9 foreach µ = Reverse(µ1, ... ,µk) do

10 µ′1, ... ,µ′` ← children of µ in T
11 foreach µ′ ∈ {µ′1, ... ,µ′`} do
12 e = {u, v} ← virtual edge in µ refined by µ′

13 if El(µ) \ {e} 6= ∅ ∨ skel(µ) contains vertex in V l \ {u, v} then
14 El(µ′) ← El(µ′) ∪ {e}
15 if Er(µ) \ {e} 6= ∅ ∨ skel(µ) contains vertex in V r \ {u, v} then
16 Er(µ′) ← Er(µ′) ∪ {e}

17 return El, Er

Lemma 3.34. For an SPQR tree T of a compound γ = (V ,E) and sets V l,V r ⊆ V ,
ComputeLREdges (Alg. 3.8) computes for each node the sets El(µ) and Er(µ) in time O(|V |).

Proof. As in ComputePre-dSPQRTree (cf. proof of Lem. 3.33), two sweeps are used. Again,
node µr is chosen to be the root of T to obtain a topological ordering µ1, ... ,µk of the nodes
(line 2). In the loop in lines 4 to 8, for node µ its unique parent node µp is determined which
refines edges e = {u, v}. If the set El(µ) is not empty or if the skeleton of µ contains a vertex
from V l other than u and v , then e must be in El(µp) (line 7). The same test occurs for
the vertices and edges that must be rightmost (line 8). In the second sweep, the nodes are
processed in reversed order. For each node µ, the same conditions as in lines 7 to 8 are checked
for all of µ’s virtual edges e1, ... , e`. The overall running time invested in each node µ is in
O(|Vµ|+ |Eµ|) ⊆ O(|Vµ|) and the overall running time of ComputeLREdges is O(|V |). �

The result of ComputeLREdges is shown in Fig. 3.53 on page 189, where for each node µi
(i ∈ {1, ... , 7}) the label l on a virtual edge e indicates that e ∈ El(µi). Likewise, the label r
indicates that e ∈ Er(µi).

Step 2: Computation of the Embedding Based on the pre-dSPQR tree, we compute a
RUP embedding or reject if this is not possible. This task involves two aspects: First, each of
the cyclic edges must be aligned, i. e., a cyclic edge becomes either a cyclic-L, a cyclic-R, or a
cyclic-LR edge. These alignments must preserve the transitivity of cyclic edges (cf. Prop. 3.9)
and, for a given alignment, an LR-feasible RUP embedding must exist. Finding such an
LR-feasible RUP embedding is the second aspect. To avoid bloated parameter lists, V l, V r,
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El, and Er are globally accessible. In the following, we assume that each skeleton contains at
most two cyclic edges as otherwise the compound is not RUP (Cor. 3.24).

Computation of Compatible Alignments Given the pre-dSPQR tree from the first
step, the second step of our algorithm is to compute possible alignments of the cyclic edges
and to obtain the corresponding LR-feasible embeddings. If a node µ contains two cyclic
edges e1 and e2, there are two possible alignments, i. e., either e1 is cyclic-L and e2 cyclic-R,
denoted by (L, R), or vice versa, i. e., (R, L). If µ contains only one cyclic edge e, there are
three possible alignments, namely, e can be cyclic-L, cyclic-R, or cyclic-LR, denoted by L, R,
or LR, respectively. In case µ contains no cyclic edge, we have a “null” alignment denoted
by �. An alignment of a node µ is denoted by σµ and it can take any value from the set
{(L, R), (R, L), L, R, LR,�}, depending on the number of cyclic edges in µ. For each possible

alignment σµ, we obtain the directed skeleton
#    –

skel(µ,σµ) from s̃kel(µ) by aligning the cyclic

edges according to σµ, where the second parameter in
#    –

skel(µ,σµ) indicates the used alignment.

Afterwards, we have to find out whether
#    –

skel(µ,σµ) can be LR-feasibly RUP-embedded. This
is the task of EmbedSkeleton which is discussed later. If the alignment σµ allows for an
LR-feasible RUP embedding, we call alignment σµ LR-feasible or simply feasible and obtain an

LR-feasible RUP embedding E(σµ) of
#    –

skel(µ,σµ).

For instance, node µ3 in Fig. 3.53 on page 189 contains two cyclic edges e1 = {v1, v3} and
e2 = {v2, v3}. Of the two alignments (L, R) and (R, L) only (L, R), i. e., e1 is cyclic-L and e2
cyclic-R, is feasible since virtual edge {v1, v3} must be left- and {v2, v3} must be rightmost
due to vertices in their expansion digraphs that must be left- and rightmost. Note that the
alignment (L, R) induces alignments in neighboring nodes, e. g., in µ2 the virtual edge on the
right hand side must be cyclic-R by transitivity and, thus, the one on the left hand side is
cyclic-L. Similarly, in µ4 the single cyclic edge must be cyclic-LR. Hence, choosing an alignment
in one node may restrict the number of possible alignments in adjacent nodes, an important
observation that we use to guarantee a linear running time.

Alg. 3.9 on page 205 shows ComputeCompoundEmbedding which implements the second
step of our algorithm. Before we analyze ComputeCompoundEmbedding in detail, we give a
high-level description: ComputeCompoundEmbedding starts with a node µ that contains the
maximum number of cyclic edges and, depending on this number, determines all possible
alignments of µ. From each alignment σµ, it derives the directed skeleton

#    –

skel(µ,σµ) where all
cyclic edges are aligned and calls EmbedSkeleton to determine whether the alignment is feasible.
EmbedSkeleton takes as input

#    –

skel(µ,σµ) and returns a respective LR-feasible RUP embedding
or ⊥ if no such embedding exists. Afterwards, ComputeCompoundEmbedding calls Compute-

Alignments which implements a depth-first search traversal on the pre-dSPQR tree starting with
µ. Whenever ComputeAlignments visits a node µ, the set of feasible alignments of the parent
node µp, according to the depth-first traversal, is provided. For each feasible alignment σµp
of µp, ComputeAlignments determines a set of alignments for µ that are “compatible” with
σµp . “Compatible” means that, for instance, the transitivity of cyclic edges is ensured. As with
ComputeCompoundEmbedding, for each candidate alignment σµ, ComputeAlignments derives

the directed skeleton
#    –

skel(µ,σµ) and calls EmbedSkeleton to determine whether the alignment
is feasible. In contrast to ComputeCompoundEmbedding, however, ComputeAlignments may
provide additional parameters to EmbedSkeleton. Let e be the virtual edge in µ that is refined
by µp. Assume that e is directed in µ and there is a feasible alignment σµp such that e is

cyclic-L in µp. Then, there must either be a cyclic-L edge in
#    –

skel(µ) that is distinct from e



3.5. Efficient Rolling Upward Planarity Testing of Closed Digraphs 203

or a leftmost cycle in
#    –

skel(µ) \ {e}. Assume the latter case and denote by σµ the respective

alignment of µ. In a feasible RUP embedding of
#    –

skel(µ,σµ), e must not be part of the leftmost
cycle as e is cyclic-L in µp and the expansion digraph expgµp(e), which does not contain e, must
contain a leftmost cycle. In particular, EmbedSkeleton must ensure that in the LR-feasible
embedding of

#    –

skel(µ,σµ), the directed virtual edge e is not leftmost. For this, EmbedSkeleton
additionally receives an embedding constraint C for e. An embedding constraint C takes a value
from {⊥, l, r, lr, lr, lr}. If l appears in C, then virtual edge e must not be leftmost as in
the example discussed before. Symmetrically, for r, e must not be rightmost. In contrast, if l
or r appears in C, then e has to be leftmost or rightmost, respectively, which are cases that are
discussed later. If C = ⊥, there is no constraint. EmbedSkeleton returns an LR-feasible RUP
embedding of

#    –

skel(µ,σµ) which adheres to the embedding constraint C. If no such embedding
exists, EmbedSkeleton returns ⊥. After determining which candidate alignment are feasible,
ComputeAlignments recursively calls itself for each children of µ and the depth-first traversal
continues.

µ1, R µ2, (L, R) µ3, (L, R)

µ4, LR

µ5, LR

µ6, L

µ7, LR

Figure 3.58: Graph of compatible alignments of the running example.

In order to store which alignments of a node are feasible and compatible to other alignments in
neighboring nodes, ComputeCompoundEmbedding and ComputeAlignments use a graph data
structure to store these relationships. Suppose that an alignment σµ induces an alignment σµ′

of an adjacent node such that both alignments are feasible. We say that σµ and σµ′ are
compatible and define the graph GΣ = (VΣ,EΣ) of compatible alignments. The vertices VΣ

are triples (µ,σµ, E(σµ)), each consisting of (a pointer to) µ, a feasible alignment σµ and the
corresponding LR-feasible embedding E(σµ). There is an undirected edge between two vertices
if the respective alignments are compatible. If GΣ contains a connected subgraph G ′Σ ⊆ GΣ

such that for each node there is exactly one vertex, we obtain a RUP embedding of the
whole compound by assembling the respective embeddings. For our running example, GΣ is
shown in Fig. 3.58, where the corresponding LR-feasible embeddings are shown in Fig. 3.46 on
page 179. Whereas in Fig. 3.58 there is only one feasible alignment for each node, in general
a node may have several feasible alignments. For instance, in Fig. 3.59, µ2 has two feasible
alignments (L, R) and (R, L). The alignment (L, R) induces the alignment R for µ1 and L for
µ3. The second alignment (R, L) of µ2, induces the alignment L for µ1 and R for µ3 (see lower
part of Fig. 3.59). Whereas µ3’s alignment is feasible, µ1’s alignment is not: if the cyclic edge
in µ1 is cyclic-L, the three vertices with the label l cannot be leftmost. GΣ is shown in the
middle of Fig. 3.59, where each vertex is connected to the respective embedded skeleton by a
dashed line. The upper connected component of GΣ contains a feasible alignment for each
node from which a RUP embedding of the whole compound can be derived.

With these preliminaries, we analyze ComputeCompoundEmbedding. For the proof, we
assume that for an aligned skeleton

#    –

skel(µ,σµ) with vertices Vµ and edges Eµ, EmbedSkeleton
runs in time O(|Vµ|+ |Eµ|).
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GΣ

R

µ1

l

l

l

R

P

µ2

L R

R

µ3

L

P

µ2

R L

R

µ3

R

µ1, R µ2, (L, R) µ3, L

µ2, (R, L) µ3, R

Figure 3.59: Example where each of µ2 and µ3 have two feasible alignments. However, only
one of each leads to a feasible RUP embedding.

Lemma 3.35. Given a pre-dSPQR tree, ComputeCompoundEmbedding (Alg. 3.9) returns a
RUP embedding of a compound γ = (V ,E), where all vertices in V l are left- and all vertices in
V r are rightmost. If no such embedding exists, ⊥ is returned. Assuming that EmbedSkeleton
(Alg. 3.12) runs in time O(|Vµ| + |Eµ|) for an aligned skeleton

#    –

skel(µ,σµ) = (Vµ,Eµ), the
running time of ComputeCompoundEmbedding is in O(|V |).

Proof. ComputeCompoundEmbedding uses EmbedSkeleton from Alg. 3.12 which is discussed
later and ComputeAlignments in Alg. 3.11. We start with the analysis of ComputeCompound-
Embedding and then proceed with ComputeAlignments.

ComputeCompoundEmbedding If there exists a node with more than two cyclic edges,
the compound cannot be RUP by Cor. 3.24 (line 1). Let µ be a node with the maximum
number of cyclic edges. The first step of ComputeCompoundEmbedding is to compute all
feasible alignments of µ. For this, three cases are distinguished (line 4): There are either
two, one, or no cyclic edges in µ. If µ contains two cyclic edges, there are two alignment
candidates (L, R) and (R, L) which are stored in the set Σµ (line 5). Likewise, for one cyclic
edge, Σµ = {L, R, LR} (line 6) and Σµ = {�} if µ contains no cyclic edge (line 7). For

each of these candidates σµ (line 8), the directed skeleton
#    –

skel(µ,σµ) is obtained from s̃kel(µ)

by aligning its cyclic edges according to σµ. Passing
#    –

skel(µ,σµ) to EmbedSkeleton reveals
whether σµ is feasible. If this is the case, a new vertex (µ,σµ, E(σµ)) is added to the graph GΣ.
Note that no embedding constraint C is passed to EmbedSkeleton and, hence, the respective
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Algorithm 3.9. ComputeCompoundEmbedding

Input: pre-dSPQR tree T̃ of compound γ
Output: RUP embedding of compound where all vertices in V l are left- and all vertices

in V r are rightmost or ⊥ if no such embedding exists
1 if ∃ node µ with > 2 cyclic edges then return ⊥ by Cor. 3.24

2 µ ← node in T̃ with maximum number of cyclic edges
3 GΣ = (VΣ,EΣ) ← initialize with empty set of vertices and edges

4 switch number of cyclic edges in s̃kel(µ) do
5 case two: Σµ ← {(L, R), (R, L)}
6 case one: Σµ ← {L, R, LR}
7 case none: Σµ ← {�}
8 foreach σµ ∈ Σµ do

9
#    –

skel(µ,σµ) ← s̃kel(µ), where cyclic edges are aligned according to σµ

10 E(σµ) ← EmbedSkeleton(
#    –

skel(µ,σµ),⊥,⊥)

11 if E(σµ) 6= ⊥ then VΣ ← VΣ ∪ {(µ,σµ, E(σµ))}

12 Make µ of root of T̃ and direct all edges to the children
13 foreach child µ′ of µ do GΣ ← ComputeAlignments(µ′,µ,GΣ)

14 foreach vertex (µ,σµ, E(σµ)) in GΣ that belongs to µ do
15 V ′Σ ← FindCompatibleAlignments(µ,GΣ, (µ,σµ, E(σµ)))

16 if V ′Σ 6= ⊥ then

17 µ1, ... ,µk ← node sequence of T̃
18 E1, ... , Ek ← embeddings of

#    –

skel(µ1), ... ,
#    –

skel(µk) as in V ′Σ
19 E ← assemble embeddings E1, ... , Ek
20 return E

21 return ⊥

Algorithm 3.10. FindCompatibleAlignments

Input: node µ, graph GΣ = (VΣ,EΣ) of compatible alignments,
vertex (µ,σµ, E(σµ)) ∈ VΣ that belongs to µ

Output: set of vertices V ′Σ ⊆ VΣ that induces a connected subgraph G ′Σ ⊆ GΣ which
contains exactly one alignment for each node in the subtree of µ; ⊥ if no such
subgraph of GΣ exists

1 µ1, ... ,µ` ← children of µ in the pre-dSPQR tree
2 V ′Σ ← {(µ,σµ, E(σµ))}
3 foreach µi = µ1, ... ,µ` do
4 V ′Σ,i ← ⊥
5 foreach (µi ,σµi , E(σµi )) ∈ VΣ with edge to (µ,σµ, E(σµ)) in GΣ do
6 V ′Σ,i ← FindCompatibleAlignments(µi ,GΣ, (µi ,σµi , E(σµi )))

7 if V ′Σ,i 6= ⊥ then break

8 if V ′Σ,i 6= ⊥ then V ′Σ ← V ′Σ ∪ V ′Σ,i

9 else return ⊥
10 return V ′Σ
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parameters are ⊥. EmbedSkeleton is called at most three times and its running time is in
O(|Vµ|+ |Eµ|) by assumption, where

#    –

skel(µ) = (Vµ,Eµ). Hence, the running time of lines 4
to 7 is in O(|Vµ|+ |Eµ|) ⊆ O(|V |).

In the following, we assume that µ is the root of T̃ and that all edges are directed from
the parent to its children. In the loop starting in line 13, ComputeAlignments is called for
each child µ′ of µ in T̃ . For each child µ′ and all nodes in the respective subtree, Compute-
Alignments computes the feasible alignments and updates GΣ accordingly. In the discussion
of ComputeAlignments that follows later, we prove that the overall running time of the loop
in line 13 is in O(|V |) and that GΣ contains at most five vertices for each node.

In Line 15, ComputeCompoundEmbedding calls FindCompatibleAlignments (Alg. 3.10).
FindCompatibleAlignments is a modified depth-first traversal on the pre-dSPQR tree and
its takes as input the current node µ of the traversal, the graph of compatible alignments GΣ =

(VΣ,EΣ) and a vertex (µ,σµ, E(σµ)) ∈ VΣ that belongs to µ. As output, it returns a
subset V ′Σ of VΣ that induces a connected subgraph of GΣ which contains exactly one feasible
alignment for each node in the subtree of µ. For each child µi of µ in the pre-dSPQR tree,
FindCompatibleAlignments recursively calls itself for each alignment that is compatible with
the alignment of µ, i. e., there is edge between the respective vertices of µ and µi in GΣ. If
any of these calls returns a subset V ′Σ,i , then these vertices of GΣ are added to V ′Σ which
initially only contains the feasible alignment and embedding of µ. If for one child all recursive
calls of FindCompatibleAlignments return ⊥, FindCompatibleAlignments also returns ⊥.
Otherwise, FindCompatibleAlignments returns the desired set V ′Σ.

ComputeCompoundEmbedding calls FindCompatibleAlignments for all vertices of GΣ

that belong to µ (line 15). As there are at most five vertices in GΣ for each node, which
we will prove later, the running time of FindCompatibleAlignments is linear in the number
of nodes and, hence, in O(|V |). If FindCompatibleAlignments always returns ⊥, then the
compound has not RUP embedding as there is no connected subgraph of GΣ that contains
exactly one feasible alignment for each node. Otherwise, FindCompatibleAlignments returns
a set V ′Σ. Based on this set, the RUP embedding of γ is determined in lines 17 to 20 as follows:

Let µ1, ... ,µk be a node sequence of T̃ and let E1, ... , Ek be the respective embeddings of
the skeletons according to V ′Σ. Each embedding is LR-feasible and RUP, i. e., it fulfills the
properties of Lem. 3.30, and assembling them by a series of two-clique summations yields the
RUP embedding of γ. These last steps are carried out in O(|V |). Hence, the overall running
time of ComputeCompoundEmbedding is O(|V |) assuming that all calls of ComputeAlignments
result in a linear running time, which we prove next.

ComputeAlignments Remember, ComputeAlignments (Alg. 3.11) implements a depth-
first traversal on the pre-dSPQR tree. As input, ComputeAlignments receives the current
node µ of the depth-first traversal, its parent node µp and the (current) graph of compatible
alignments GΣ = (VΣ,EΣ). ComputeAlignments extends GΣ to encompass µ and all nodes
in its subtree. In the following, e is the virtual edge in µ refined by its parent µp. For
each vertex of GΣ that belongs to µp, we obtain a feasible alignment σµp and the respective
embedding E(σµp) (line 2). As an invariant of the recursion, we assume that E(σµp) is an

LR-feasible RUP embedding of
#    –

skel(µp,σµp). We maintain this invariant for all vertices that
we introduce to GΣ for node µ.

The alignment σµp induces candidate alignments of µ. In order to determine these candidate
alignments, different cases are distinguished that depend on the cyclic edges in µ and µp (line 3).
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Algorithm 3.11. ComputeAlignments

Input: node µ, parent node µp of µ, graph GΣ = (VΣ,EΣ) of compatible alignments
Output: graph GΣ extended to µ and all nodes of µ’s subtree

1 e ← virtual edge in µ refined by µp
2 foreach (µp,σµp , E(σµp)) ∈ VΣ do

3 switch number of cyclic edges in s̃kel(µ) do
4 case two cyclic edges of which one is e and the other is e ′

5 σµ ← alignment according to Fig. 3.60
6 T ← {(σµ,⊥)}
7 case one cyclic edge e refined by µp
8 σµ ← alignment according to one of Figs. 3.61(a) to 3.61(f)
9 T ← {(σµ,⊥)}

10 case one cyclic edge e ′ not refined by µp
11 σµ, C ← alignment and embedding constraints according to Fig. 3.62(a)
12 T ← {(σµ, C)}
13 if e is cyclic-LR in µp then case of Fig. 3.62(b) applies
14 T ← T ∪ {(L, r), (R, l)}

15 case no cyclic edge, i. e., e is directed
16 switch e in µp do
17 case directed: T ← {(�,⊥)}
18 case L: T ← {(�, lr)}
19 case R: T ← {(�, lr)}
20 case LR: T ← {(�, lr)}

21 foreach (σµ, C) ∈ T do

22
#    –

skel(µ,σµ) ← s̃kel(µ), where cyclic edges (if any) are aligned according to σµ

23 E(σµ) ← EmbedSkeleton(
#    –

skel(µ,σµ), e, C)

24 if E(σµ) 6= ⊥ then
25 VΣ ← VΣ ∪ {(µ,σµ, E(σµ))}
26 EΣ ← EΣ ∪ {(µ,σµ, E(σµ)), (µp,σµp , E(σµp))}

27 foreach child µ′ of µ do
28 GΣ ← ComputeAlignments(µ′,µ,GΣ)

29 return GΣ
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For each case, we obtain one or more pairs (σµ, C) consisting of an alignment candidate σµ of
µ and of an embedding constraint C of e, where e is the virtual edge in µ that is refined by
µp. If e is not directed, then C is set to ⊥. Each of these pairs (σµ, C) is stored in the set T

and, later in the algorithm, EmbedSkeleton is called with σµ and C as parameters to find out
whether the alignment candidate is feasible. As the used alignment can be inferred from the
context in the following, we denote the skeleton of µ by

#    –

skel(µ) instead of
#    –

skel(µ,σµ).
In order to determine the candidate alignments of µ, ComputeAlignments distinguishes

between numerous cases. Instead of giving the case differentiation as pseudocode in Alg. 3.11,
we use the diagrams shown in Figs. 3.60 to 3.63. In each of the diagrams, e. g., Fig. 3.60,
node µp is sketched on top and node µ below. To determine which case applies, the alignment
of µp’s cyclic edges, the existence of leftmost cycles, rightmost cycles, or both (L-, R-, or
LR-cycles) in

#    –

skel(µp) \ {e}, and the number of cyclic edges in µ are taken into account. If
the case applies, we obtain an alignment or an embedding constraint of e in node µ as shown
at the bottom. A label a|b of a cyclic edge in µp means that it is either cyclic a or cyclic b for
a, b ∈ {L, R, LR}. Likewise, a label a|b within a cycle, e. g., in Fig. 3.61(a), means that there
is an a- or b-cycle for a, b ∈ {L, R, L&R} in

#    –

skel(µp) \ {e}, where L&R means that there is an
L- and an R-cycle. Depending on whether a or b applies, a cyclic edge of µ with label x |y is
aligned to x if case a applies in µp and it is aligned to y for case b. For instance, if edge e ′p is
a cyclic-R edge in µp in Fig. 3.60, then edge e becomes a cyclic-R edge in µ and e ′ a cyclic-L
edge in µ. If e is a directed virtual edge in µ, it is labeled with an embedding constraint. For
example, if e is cyclic-L in µp in Fig. 3.63(b), then e receives the embedding constraint lr.
The following cases are distinguished in ComputeAlignments:

I Two cyclic edges in µ (line 4)
First, we show that one of the two cyclic edges in µ is the virtual edge refined by µp,

namely, edge e. Let µ be the node in T̃ with the maximum number of cyclic edges, i. e.,
the node at which the depth-first search starts. In particular, µ 6= µ and µ contains two
cyclic edges since µ contains two cyclic edges. In T̃ , there is a dipath p = µ µp → µ
which corresponds to the current call hierarchy of the depth-first search. The second
node µ′ on p whose parent is µ, contains a cyclic edge e ′ that is refined by µ. Since
µ contains two cyclic edge, e ′ is cyclic in µ′. The same argument can be subsequently
applied to all nodes on p and, hence, also to µ. Thus, edge e is cyclic in µ.

Denote by e ′ the other cyclic edge of µ. Since e ′ is a cyclic edge different from e, we can
immediately conclude by transitivity (Prop. 3.9) that edge e is also cyclic in µp. Also, by
the arguments from before, µp contains a cyclic edge e ′p distinct from e. The case in
Fig. 3.60 applies. Depending on whether e ′p is cyclic-L or cyclic-R, e must also be aligned
to cyclic-L or cyclic-R in µ due to transitivity and e ′ receives the opposite alignment.

I Edge e is the single cyclic edge in µ (line 7)
Since e is cyclic in µ,

#    –

skel(µp) \ {e} either contains a cyclic edge or a cycle of directed
edges by Lem. 3.31. One of the cases in Figs. 3.61(a) to 3.61(f) applies. First, we assume
that e is directed in µp (Figs. 3.61(a) to 3.61(d)).

I If µp contains no cyclic edge, it contains a cycle of directed edges (Fig. 3.61(a)).
Since all edges in

#    –

skel(µp) are directed, the feasible alignment of µp is �. Hence,
#    –

skel(µp) is RUP-embedded with a leftmost and a rightmost cycle. Note that these
cycles are not necessarily disjoint. If e is part of only the leftmost cycle in

#    –

skel(µp),
i. e., skel(µp) \ {e} contains the rightmost cycle, the alignment of e in µ is R.
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µp

µ

L|RL|Re

R|LR|L

e′p

R|LR|L
e

L|RL|Re′

Figure 3.60: Two cyclic edges in µ: Edge e ′ in µ adopts the alignments of e in µp.

Symmetrically, if e is part of only the rightmost cycle, its alignment is L. Finally, if
e is neither part of

#    –

skel(µp)’s left- nor of its rightmost cycle, e becomes a cyclic-LR
edge. Note that e cannot be part of both the left- and the rightmost cycle in
#    –

skel(µp) as then
#    –

skel(µp) \ {e} would be acyclic and e would be not cyclic in µ.
Based on the RUP embedding of

#    –

skel(µp) = (Vµp ,Eµp) and its dual, these tests
are carried out in time O(|Vµp |+ |Eµp |).

I If µp contains two cyclic edges e ′p and e ′′p (cf. Fig. 3.61(b)), then either e ′p is cyclic-L
and e ′′p is cyclic-R or vice versa since the alignment of µp is feasible. In this case,
the alignment of e in µ is LR.

I If µp contains a single cyclic edge e ′p, we obtain the cases depicted in Figs. 3.61(c)
and 3.61(d). In case e ′p is cyclic-L (cyclic-R) and e is part of the rightmost (leftmost)

cycle in
#    –

skel(µp), e must be cyclic-L (cyclic-R) in µ (Fig. 3.61(c)). If e ′p is cyclic-LR

(Fig. 3.61(c)) or e is neither part of the left- nor of the rightmost cycle in
#    –

skel(µp)

(see Fig. 3.61(d)), then e becomes a cyclic-LR edge in µ. Again, testing if e is part
of the right- or leftmost cycle is done in O(|Vµp |+ |Eµp |).

Now we assume that e is cyclic in µp (Figs. 3.61(e) and 3.61(f)). Then, node µ must
contain an L- or R-cycle depending on the alignment of e in µp. Observe that at this
point we still have no embedding of

#    –

skel(µ), however, from the alignment of e in µp
we can infer how the embedding of

#    –

skel(µ) must look like. Also note that e cannot be
cyclic-LR in µp since e is cyclic in µ and, therefore,

#    –

skel(µp) \ {e} must either contain a
cyclic edge or a cycle of directed edges. If µp contains a cycle of directed edges, which is
either left- or rightmost and of which e is not part of, edge e is aligned to cyclic-L or
cyclic-R in µ accordingly (Fig. 3.61(e)). If µp contains a cyclic edge e ′p that is cyclic-R
or -L, then e is aligned according to e ′p (Fig. 3.61(f)).

I µ contains a single cyclic edge e ′ 6= e (line 10)
Since e ′ is the single cyclic edge in µ, e is directed in µ and cyclic in µp. This also implies
that µp contains no cyclic edge besides e. First assume that e is cyclic-L or -R in µp.
The case shown in Fig. 3.62(a) applies and e ′ adopts the alignment of e in µp. Suppose
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µp

µ

e

L|R|LRL|R|LR
e

L|R|L&R

(a) µp contains an L-
/R-/LR-cycle and e is
directed: e in µ is
aligned to L/R/LR.

µp

µ

e

LL

e′p
RR

e′′p

LRLR

e

(b) µp contains two
cyclic edges and e is
directed: e in µ is
aligned to LR.

µp

µ

e

L|R|LRL|R|LR

e′p

L|R|LRL|R|LR
e

(c) µp contains one
cyclic edge e′p and e is
directed in µp: e in µ
adopts the alignment
of e′p in µp.

µp

µ

e

L|RL|R

e′p

LRLR

e

R|L

(d) µp contains a
cyclic-L/-R edge, an R-
/L-cycle and e is di-
rected in µp. Edge e
in µ is aligned to LR.

µp

µ

L|RL|Re

R|LR|L
e

R|L

L|R

(e) µp contains a R-/L-
cycle and e is cyclic
in µp: Edge e in
µ is aligned to R/L

and contains an L-/R-
cycle.

µp

µ

L|RL|Re

R|LR|L

e′p

R|LR|L
e

L|R

(f) µp contains a cyclic
R-/L-cycle and e is
cyclic in µp: Edge e
in µ is aligned to R/L

and contains an L-/R-
cycle.

Figure 3.61: µ contains exactly one cyclic edge e that is refined by µp.
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that e is cyclic-L in µp. In the LR-feasible RUP embedding of
#    –

skel(µ), edge e must be
rightmost since otherwise expgµp(e) contains a rightmost cycle of which e is no part of
and, thus, e would be cyclic-LR in µp. Therefore, we obtain embedding constraint r for
e. Also note that in principal e must not be leftmost in the RUP embedding of

#    –

skel(µ).
However,

#    –

skel(µ) contains a cyclic-L edge and, therefore, e cannot be leftmost anyway.
Symmetrically, if e is cyclic-R, the embedding constraint is r. If e is cyclic-LR in µp, e

′

must be cyclic-LR in µ and no embedding constraint applies.

If e is cyclic-LR in µp, we obtain two additional alignment candidates (Fig. 3.62(b)):
For the first candidate, e ′ is cyclic-L and e must not be rightmost in

#    –

skel(µ) since e is
cyclic-LR in µp. In this case, we obtain the embedding constraint r for e. The second
candidate is the symmetric case, i. e., e ′ is cyclic-R and e must not be leftmost.

µp

µ

L|R|LRL|R|LRe

e

r|l|⊥

L|R|LRL|R|LR
e′

(a) Edge e′ is aligned
to the same value as e
in µp

µp

µ

LRLRe

e

r|l

L|RL|R
e′

(b) Edge e is cyclic-LR
in µp and e′ is aligned
to L and R.

Figure 3.62: µ contains exactly one cyclic edge e ′ that is not refined by µp.

I µ contains no cyclic edge (line 15)
In this case, e is directed in µ. If e is also directed in µp, then the skeletons of µ and
µp are both acyclic dipoles. In this case, the candidate alignment of µp is � with no
embedding constraint (Fig. 3.63(a)). Note that in this case, e in µp and e in µ are
antiparallel as the compound is strongly connected. If e is cyclic in µp, the candidate
alignment of µ is also � (Fig. 3.63(b)). Additionally, we get an embedding constraint: If
e is cyclic-L in µp, then expgµp(e) contains a leftmost cycle and, hence, e must not be

leftmost in
#    –

skel(µ)’s embedding and we get the embedding constraint l. Likewise, if e is
cyclic-R or cyclic-LR, the embedding constraint is l or lr, respectively.

For all of these cases, the running time is in O(|Vµ|+ |Eµ|+ |Vµp |+ |Eµp |). In the worst case T

contains three elements if µ contains a cyclic edge e ′ 6= e and e is cyclic-LR in µp (Figs. 3.62(a)
and 3.62(b)). Hence, the number of iterations in line 21 is at most three. Moreover, the
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µp

µ

e

e

(a) Neither µ nor µp
contains a cyclic edge.

µp

µ

L|R|LRL|R|LRe

e

lr|lr|lr

(b) No cyclic edge in
µ and e is cyclic in µp.

Figure 3.63: µ contains no cyclic edges.

number of iterations in line 2 is at most five as the number cµ of vertices in GΣ belonging to a
particular node µ is at most five: For µ, i. e., the root, we have already seen that cµ ≤ 3. For
all other nodes, we bound the number of possibilities for candidate alignments and embedding
constraints as determined in ComputeAlignments as follows. If µ contains two cyclic edges,
there are two possible alignment candidates and, hence, cµ ≤ 2. In case e is the single cyclic
edge in µ, there are at most three alignment candidates (cµ ≤ 3). If there is a single cyclic
edge e ′ 6= e, then e ′ can be cyclic-L, -R, or -LR with embedding constraints l, r, or ⊥ for e,
respectively, which makes three possibilities (Fig. 3.62(a)). Additionally, if e is cyclic in µp, we
obtain two further possibilities (Fig. 3.62(b)) which yields a total number of five and, hence,
cµ ≤ 5. Finally, if µ contains no cyclic edge, there is either only one candidate (Fig. 3.63(a))
or three (Fig. 3.63(b)), which yields cµ ≤ 3. Hence, the maximum number of candidate
alignments and embedding constraints is five and, thus, cµ ≤ 5 for all nodes. Therefore, the
number of vertices in GΣ belonging to a node µ is at most five in total and the number of
vertices in GΣ is linear in the number of nodes in the pre-dSPQR tree. Moreover, between the
vertices belonging to two nodes that are adjacent in the pre-dSPQR tree there are at most
25 edges in GΣ. Hence, the number of edges in GΣ is linear in the number of nodes in the
pre-dSPQR tree, and, thus, linear in the number of vertices in the compound.

For each alignment candidate σµ and embedding constraint C in T, the cyclic edges in

s̃kel(µ) are aligned to obtain
#    –

skel(µ,σµ) (line 22) and EmbedSkeleton is used to find out
whether the alignment is feasible (line 23). If this is the case we obtain E(σµ) as an LR-feasible
RUP embedding and (µ,σµ, E(σµ)) is inserted to GΣ as a new vertex. Additionally, the edge
between (µ,σµ, E(σµ)) and (µp,σµp , E(σµp)) is inserted as σµp and σµ are compatible.

Since the cardinality of T and the number of vertices in GΣ belonging to µp are bounded by
constants, and since EmbedSkeleton runs in O(|Vµ|+ |Eµ|), the steps in lines 21 to 26 run in
O(|Vµ|+ |Eµ|). In the loop in line 27, ComputeAlignments is called recursively for all of µ’s

children in T̃ . As the running time of ComputeAlignments is in O(|Vµ|+ |Eµ|+ |Vµp |+ |Eµp |)
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without the recursion, the overall running time of all recursion steps is in O(|V |) as the overall
size of all skeletons is in O(|E |) by Prop. 3.5.

�

Computation of LR-feasible RUP Embeddings ComputeCompoundEmbedding and
ComputeAlignments use EmbedSkeleton (cf. Alg. 3.12) which we discuss now. Recall,
as input parameters, EmbedSkeleton receives a skeleton

#    –

skel(µ) of a node µ and, if the virtual
edge e refined by its parent is directed, an embedding constraint C for e. EmbedSkeleton

finds an LR-feasible RUP embedding of
#    –

skel(µ) that adheres the embedding constraint for e,
if one is given, or it returns ⊥ if no such embedding exists.

µ

P

u

v

ρuv

ρvu

Figure 3.64: RUP embedding of a P node skeleton.

A high-level description of EmbedSkeleton is as follows: To find a RUP embedding of the
skeleton, EmbedSkeleton uses the auxiliary skeleton for which it tries to find a LR feasible
RUP embedding. The first step is to derive up to two embedding candidates (lines 6 to 25).
The method to derive such an embedding candidate depends on the type of the node: For a
P node with vertices u and v , EmbedSkeleton constructs an embedding as shown in Fig. 3.64
where all outgoing edges are consecutive in u and in v , and so are all incoming edges. Such
an embedding is RUP. In addition, EmbedSkeleton ensures that the L-cycle is leftmost, if
existent, and the R-cycle is rightmost, if existent, and that all the other embedding constraints
are fulfilled. The embedding of an S node is unique and so is the embedding of an R node up to
inversion, i. e., there are two embedding candidates. As the last step, EmbedSkeleton tests for
each embedding candidate whether it fulfills all properties to be an LR-feasible RUP embedding
(lines 26 to 33). If one such embedding is found, it is returned. Otherwise, ⊥ is returned.

As described before, EmbedSkeleton operates on the auxiliary of the input skeleton for
which it tries to find an LR-feasible RUP embedding. Remember that the embedding of an
auxiliary skeleton aux(

#    –

skel(µ)) is feasible if all auxiliary edges that belong to a cyclic edge are
consecutive in the rotation system and if all L-cycles are left- and all R-cycles are rightmost.
Further, a feasible embedding is LR-feasible if it fulfills the properties of Lem. 3.30, i. e., for each
edge el ∈ El(µ) and er ∈ El(µ) at least one of aux(el) must be leftmost and at least one
aux(er) must be rightmost. From an LR-feasible RUP embedding of aux(

#    –

skel(µ)), we obtain
an LR-feasible RUP embedding of the input skeleton

#    –

skel(µ) by applying the function aux−1

(cf. Fig. 3.48 on page 182).
EmbedSkeleton uses a slightly modified version of aux−1: First and foremost, Embed-

Skeleton ensures that each L-cycle is left- and each R-cycle is rightmost. Afterwards, it passes
the resulting embedding to aux−1 which returns ⊥ if the auxiliary edges that belong to a cyclic
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Algorithm 3.12. EmbedSkeleton

Input: directed skeleton
#    –

skel(µ) = (Vµ,Eµ), directed virtual edge e in µ, embedding
constraint C for e

Output: LR-feasible RUP embedding of
#    –

skel(µ), which adheres to the embedding
constraint of e; if no such embedding exists, ⊥ is returned

1 E l ← El(µ); E r ← Er(µ); V l ← V l ∩ Vµ; V r ← V r ∩ Vµ
2 l, (r) ← true if and only if e must not be leftmost (rightmost) according to C
3 if (l ∧ e ∈ E l) ∨ (r ∧ e ∈ E r) then return ⊥
4 if l appears in C then E l← E l ∪ {e}
5 if r appears in C then E r← E r ∪ {e}
6 if µ is P node with vertices u and v then
7 E l

uv , (E r
uv ) ← non-cyclic edges from u to v in E l (E r)

8 E∼uv ← non-cyclic edges from u to v not in E l
uv and E r

uv

9 ρuv←[]

10 if
#    –

skel(µ) contains cyclic-L or cyclic-LR edge el then
11 ρuv ← ρuv · [eluv ], where eluv is the auxiliary of el that points from u to v

12 ρuv ← ρuv ·E l
uv ·E∼uv ·E r

uv

13 if
#    –

skel(µ) contains cyclic-R or cyclic-LR edge er then
14 ρuv←ρuv · [eruv ], where eruv is the auxiliary of er that points from u to v

15 if (l∨ r)∧ e = (u, v) then position e such that the embedding constraint is fulfilled;
if not possible, return ⊥

16 ρvu ← analogous total order for all edges from v to u
17 Eaux ← embedding, where u’s rotation system is ρvu·←−ρuv and ρuv ·←−ρvu for v

18 Eaux ← {Eaux}
19 else µ is an S or R node

20 if µ is an S node then E ← set containing single unique embedding of
#    –

skel(µ)

21 else E← set containing unique embedding of
#    –

skel(µ) and its inversion

22 Eaux ← ∅
23 foreach E ∈ E do

24 Eaux ← embedding of aux(
#    –

skel(µ)) according to E , where each cyclic-L, cyclic-R,
and cyclic-LR edge is replaced by an L-, R , and L-/R-cycle, respectively

25 Eaux ← E ∪ {Eaux}

26 foreach Eaux ∈ Eaux
do

27 Embed aux(
#    –

skel(µ)) according to Eaux

28 aux(
#    –

skel(µ))∗ ← ComputeDual(aux(
#    –

skel(µ)))

29 if aux(
#    –

skel(µ))∗ is no acyclic dipole then continue
30 if ∃v ∈ V l not leftmost ∨ ∃v ∈ V r not rightmost then continue
31 if ∃e ∈ E l not leftmost ∨ ∃e ∈ E r not rightmost then continue
32 if (l ∧ e is leftmost) ∨ (r ∧ e is rightmost) then continue

33 return aux−1(aux(
#    –

skel(µ))

34 return ⊥
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edge e = {u, v} are not consecutive in the rotation systems of u and v . Otherwise, aux−1

returns the embedded skeleton by replacing the bundle of auxiliary edges by the original edge.
If there is a cyclic-L edge in the input skeleton, its auxiliary edges are always consecutive since
they are leftmost. Likewise, the auxiliaries of cyclic-R edges are consecutive. Suppose that
there is a cyclic-LR edge in the skeleton. In the auxiliary skeleton, this edge is replaced by an L-
and an R-cycle. Since EmbedSkeleton only ensures that the L-cycle is left- and the R-cycle is
rightmost, the corresponding auxiliary edges may not be consecutive in the rotation system of
the auxiliary. However, if this is the case, we can show that whole compound is not RUP. For
this, remember Lem. 3.29 which states that, in a RUP-embedded compound, for a node µ
with a cyclic-LR edge e, the remaining skeleton

#    –

skel(µ) \ {e} is an acyclic dipole. The proof of
Lem. 3.29 argues that if

#    –

skel(µ) \ {e} would contain a cycle, then the node µ′ which refines e
contains either too many L- or two many R-cycles and, hence, µ′ cannot be RUP-embedded
and so the whole compound is not RUP.

Corollary 3.28. Let µ be a node of the dSPQR tree of a compound. If µ contains a cyclic-LR
edge such that

#    –

skel(µ) \ {e} is no acyclic dipole, then the node that refines e cannot be
RUP-embedded. In this case, the whole compound is not RUP-embedded.

L

L

R

Rv

u

aux−1

LR
v

u

(a) For an LR-cycle, the remainder of the skeleton
is acyclic and, hence, all edges of the LR-cycle are
consecutive in the rotation system.

L

L

R

Rv

u

s t

h

(b) Situation ob-
tained in the proof of
Lem. 3.36.

Figure 3.65: In a node with a cyclic-LR, the remainder of the skeleton must be an acyclic
dipole if the compound is RUP.

Consider Fig. 3.65(a). On the left side, the RUP-embedded auxiliary skeleton of a node
with a cyclic-LR edge e = {u, v} is displayed. In order for the auxiliary edges to be consecutive
in the rotation system, there cannot be edges from v to u in the auxiliary skeleton. In other
words, the skeleton without e must be an acyclic dipole. We get the following lemma.

Lemma 3.36. Let µ be a node of the dSPQR tree of a compound such that µ contains a
cyclic-LR edge e. Assume that aux(

#    –

skel(µ)) is RUP-embedded, where the L-cycle is left- and
the R-cycle is rightmost.

#    –

skel(µ) \ {e} is an acyclic dipole if and only if all auxiliary edges
belonging to e are consecutive in the embedding of aux(

#    –

skel(µ)).

Proof. ⇒: Since the auxiliary edges of the L-cycle are leftmost, they are consecutive in the
rotation system and so are the edges of the R-cycle. Assume w. l. o. g. that u is the single
source and v the single sink of

#    –

skel(µ) \ {e} with e = {u, v}. In aux(
#    –

skel(µ)), v has exactly
two outgoing edges which are auxiliary edges of e and u has two incoming auxiliary edges.
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Moreover, since aux(
#    –

skel(µ)) is RUP-embedded, in the rotation systems of u and v all incoming
edges are consecutive and so are all outgoing edges. Hence, at u and v all auxiliary edges are
consecutive; see left hand side of Fig. 3.65(a).
⇐: Due to the RUP embedding of aux(

#    –

skel(µ)), all outgoing edges of u and v are
consecutive in their rotation systems, and so are all incoming edges. By assumption, also all
auxiliary edges aux(e) are consecutive in the rotation systems of u and v . Therefore, either
all incoming edges of u and all outgoing edges of v are in aux(e), or vice versa. W. l. o. g.,
we assume the former. Then, in aux(

#    –

skel(µ)) \ aux(e), u is a source as all incoming edges
have been removed from u. Analogously, v a sink. As the compound is strongly connected, no
vertex distinct from u and v is a terminal. Hence, aux(

#    –

skel(µ)) \ aux(e) contains the single
source u and the single sink v .

What is left to show is that aux(
#    –

skel(µ)) \ aux(e) is acyclic. The situation we obtain is
illustrated in Fig. 3.65(b). Remember, all incoming edges of u are from aux(e) and so are all
outgoing edges of v . Since these edges are consecutive in the rotation systems of u and v , the
incoming edges of u and the outgoing edges of v enclose a face h. By assumption, the dual
aux(

#    –

skel(µ))∗ of aux(
#    –

skel(µ)) is an acyclic dipole with source s and sink t. Remember, the
two pairs of antiparallel edges in aux(e) form the L- and the R-cycle and, hence, are incident
to s and t, respectively. Face h is adjacent to s and t as one of the incoming auxiliary edges
of u is incident to s and one is incident to t. We remove the two incoming auxiliary edges of u
from aux(

#    –

skel(µ)) to obtain the digraph Gaux. For the dual G ∗aux of Gaux, this corresponds to
contracting the duals of these edges which identifies the faces s, t and h. By this operation,
G ∗aux becomes strongly connected. Therefore, Gaux is acyclic and, as aux(

#    –

skel(µ)) \ aux(e) is a
subgraph of Gaux, aux(

#    –

skel(µ)) \ aux(e) is also acyclic. Altogether, aux(
#    –

skel(µ)) \ aux(e) is
an acyclic dipole with source u and sink v and so is

#    –

skel(µ) \ {e} �

By Lem. 3.36, we only have to make sure that an L-cycle is leftmost and an R-cycle
is rightmost. If in the resulting rotation system, the auxiliary edges of an LR-edge are not
consecutive, i. e., aux−1 returns ⊥, the whole compound cannot be RUP-embedded (at least if
e is cyclic-LR). We will use this fact in EmbedSkeleton which we analyze now.

Lemma 3.37. For a directed skeleton
#    –

skel(µ) = (Vµ,Eµ), EmbedSkeleton (Alg. 3.12) returns
an LR-feasible RUP embedding that adheres an embedding constraint C of a directed virtual
edge e in

#    –

skel(µ) (if one is given). If no such embedding exists, ⊥ is returned. The running
time is in O(|Vµ|+ ||Eµ|)

Proof. As guaranteed by ComputeCompoundEmbedding and ComputeAlignments, we assume
that all cyclic edges are aligned and

#    –

skel(µ) contains at most one cyclic-L and at most one
cyclic-R edge, or a single cyclic-LR edge. Let E l = El(µ), E r = Er(µ) and denote by V l

and V r the vertices in
#    –

skel(µ) that must be left- and rightmost, respectively (line 1). Further,
we introduce two Boolean variables l and r that are true if and only if l and r appear in C,
respectively (line 2). If e must not be left- or rightmost and, at the same time, e is in E l or E r,
respectively, we can immediately return ⊥ (line 3). In lines 4 to 5, e is inserted to E l and E r

if C contains the respective values. We distinguish between the cases that node µ is a P, an R,
or an S node. In all cases, EmbedSkeleton computes a set of up to two embedding candidates
of which one that is LR-feasible is returned. If no embedding candidate is LR-feasible, ⊥ is
returned.

First, let node µ be a P node with vertices u and v (line 6). A RUP embedding of the
P node’s auxiliary skeleton always has the structure as displayed in Fig. 3.64, i. e., all edges from
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u to v are consecutive in the rotation system and so are the edges from v to u. In the following,
we compute the list ρuv which defines a left-to-right order on the set of edges pointing from u
to v (see Fig. 3.64). We maintain three sets of non-cyclic edges: E l

uv contains all non-cyclic
edges from u to v that must be leftmost, and E r

uv contains all non-cyclic edges from v to u
that must be rightmost (line 7). All remaining non-cyclic edges from u to v are in E∼uv .

Before we analyze how EmbedSkeleton computes ρuv , it should be noted that during
the computation of ρuv in lines 6 to 18 some tests are not performed that, under certain
circumstances, would immediately imply that

#    –

skel(µ) has no LR-feasible RUP embedding. For
instance, it is not tested whether there is a cyclic-L edge and a non-cyclic edge in E l

uv , which
would imply that no LR-feasible RUP embedding exists. Instead, these tests are performed at
the end of EmbedSkeleton in lines 26 to 33.

We denote by (· ) the concatenation of two lists. If there is a cyclic-L or cyclic-LR edge el

in
#    –

skel(µ), the respective auxiliary edges must be the first in ρuv (line 10), where eluv denotes
the auxiliary edge of el that points from u to v . In line 12, the edges from the sets E l

uv , E∼uv ,
and E r

uv are append to ρuv in order. Hence, edges that must be leftmost are appended first and
edges that must be rightmost are appended last. Note that the order of the vertices within one
of these sets in ρuv is arbitrary. Finally, if there is a cyclic-R or cyclic-LR edge, the respective
auxiliary edge is last in ρuv . If e must be not leftmost and points from u to v , EmbedSkeleton
moves e to a position in ρuv such that it is not first. Likewise, if must not be rightmost and
e = (u, v), e is moved to a position such that it is not last. If this is not possible, for instance,
if e is the single edge from u to v , ⊥ is returned (line 15).

By the same method as described before, we obtain the list ρvu for all edges from v to u
(line 16). In line 17, the embedding of the auxiliary Eaux is obtained by defining ρvu·←−ρ uv as
the rotation system of u, where ←−ρ uv is the reversal of ρuv . Likewise, the rotation system of v
is ρuv ·←−ρ vu. The so obtained embedding is the embedding candidate in Eaux

. Note that by
construction, the embedding candidate is RUP such that an L-cyclic is leftmost and an R-cycle
is rightmost. Overall, computing this embedding takes time O(|Vµ|+ |Eµ|).

If µ is an S node, the embedding of
#    –

skel(µ) is unique and stored in E (line 20). For an
R node, the unique embedding and its inversion is also stored in E (line 21). Note that the
embedding of an R node and its inversion is computed in time O(|Vµ|) [KW01]. For each

embedding in E (line 23), we obtain an embedding Eaux of the auxiliary skeleton aux(
#    –

skel(µ))

by adopting the embedding E and by replacing each cyclic-L edge by a leftmost cycle, each
cyclic-R edge by a rightmost cycle, and a cyclic-LR edge by both. Remember, a cycle is leftmost
(rightmost) if it encloses a source (sink) in the dual. The so obtained embeddings are the
candidates in Eaux

. All of the aforementioned steps are carried out in O(|Vµ|).

Finally, EmbedSkeleton tests for each embedding candidate Eaux of the auxiliary whether
it is LR-feasible and RUP in lines 26 to 33. Note that by construction, an L-cycle is left-
and an R-cycle is rightmost in embedding Eaux. First, the dual skeleton aux(

#    –

skel(µ))∗ =

(Fµ,E ∗µ) is computed in time O(|Vµ| + |Eµ|). The dual must be an acyclic dipole which
takes O(|Fµ|+ |E ∗µ |) ⊆ O(|Vµ|+ |Eµ|) time to test. If it is an acyclic dipole, we obtain the
information whether all vertices V l are leftmost and all vertices V r are rightmost. Furthermore,
for each virtual edge e ∈ E l (e ∈ E r), at least one of aux(e) must be leftmost (rightmost)
according to Lem. 3.30. The last test ensures that if e must not be leftmost (rightmost), it is
indeed not leftmost (rightmost). If one of these tests fails, the candidate is rejected. Otherwise,
an LR-feasible RUP embedding of

#    –

skel(µ) is obtained by applying the function aux−1 to
aux(

#    –

skel(µ)) endowed with the embedding Eaux. Function aux−1 first ensures that all auxiliary
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edges belonging to a single cyclic edge are consecutive in the rotation system. If this is not
the case, aux−1 returns ⊥. Note that this can only happen if µ contains an LR-edge e ′ and
#    –

skel(µ) \ {e ′} is no acyclic dipole by Lem. 3.36. Consequently, e ′ is refined by another node µ′

which cannot be RUP by Cor. 3.28 and the whole compound cannot be RUP (at least with the
alignment as defined in

#    –

skel(µ)). Hence, EmbedSkeleton returns ⊥. Otherwise, the embedding
of

#    –

skel(µ) is obtained from aux−1 as shown in Fig. 3.48 on page 182. These last steps need a
running time of O(|Vµ|+ |Eµ|) and, hence, the overall running time of EmbedSkeleton is in
O(|Vµ|+ |Eµ|). �

This concludes the proof of Theorem 3.2.

3.6 wSUP Digraphs

In this section, we study wSUP digraphs. Remember that a digraph is SUP if it is embeddable
on the standing cylinder such that all edge curves are monotonically increasing in y -direction.
These digraphs are characterized as spanning subgraphs of planar, acyclic dipoles [Han06,
LMS06, Has01]. Here, we turn our attention to weak upward drawings: A digraph is wSUP
if it is embeddable on the standing cylinder such that all edge curves are non-decreasing in
y -direction. In particular, an edge curve may entirely or at least partially stay on the same
y -coordinate. An example of a wSUP-embedded digraph is shown in Fig. 3.66(a). In this
section, we derive a characterization of wSUP digraphs by means of their primals and duals.
For this we use compound digraphs (Sect. 3.4.1).

First, we investigate cycles in wSUP digraphs. Whereas SUP digraphs are always acyclic,
a wSUP digraph may have horizontal cycles (shaded regions in Fig. 3.66(a)). These cycles are
always (vertex-)disjoint.

Lemma 3.38. All cycles in a wSUP digraph are disjoint.

Proof. Let Γ be a wSUP drawing of a digraph G . For contradiction, suppose that G has two
non-disjoint cycles C1 and C2 with vertex v in common. Each of C1 and C2 wind around the
cylinder horizontally exactly once. All vertices in C1 have the same y -coordinate and so have all
vertices in C2. Since v is in both cycles, all vertices of C1 and C2 have the same y -coordinate
and, hence, there is an edge in C1 and an edge in C2 with common points in Γ which contradicts
planarity. Hence, C1 and C2 must be vertex-disjoint and, thus, also edge-disjoint. �

We call a cycle edge-simple if it contains no multiple edges.

Corollary 3.29. Each compound in a wSUP digraph is an edge-simple cycle.

To characterize wSUP digraphs, we use the same strategy as for RUP digraphs in Sect. 3.4.
Remember that for RUP digraphs, we first applied compound digraphs to closed digraphs and
their duals, and then showed that each RUP digraph is a spanning subgraph of a closed RUP
digraph. Here, we show that every wSUP digraph is a subgraph of a wSUP dipole. Note
that in contrast to RUP digraphs, the supergraph is not spanning for wSUP digraphs. For
instance, we can introduce new edges to the wSUP digraph in Fig. 3.66(a), which contains
multiple sources and sinks, until we obtain its wSUP supergraph in Fig. 3.66(c). For our proof,
we extend techniques for SUP digraphs from [Has01].

Lemma 3.39. A digraph is wSUP if and only if it is a subgraph of a wSUP dipole.
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(a) A wSUP-embedded di-
graph.
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γ3

(b) Component and compound digraph
of the digraph from Fig. 3.66(a).
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(c) The source s and the
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introduced to obtain a
wSUP digraph with ex-
actly one source and one
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(d) The component and com-
pound digraph, where the lat-
ter is a dipath from s to t and,
hence, the whole digraph is a
dipole.
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(e) The dual of the digraph
in Fig. 3.66(c) with its com-
pound digraph. The dual is
a RUP-embedded closed di-
graph, where the transits con-
sist of edges only.

Figure 3.66: A wSUP digraph and its augmentation to a wSUP dipole. Fig. 3.66(e) shows
the dual of the augmented digraph.
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Proof. ⇒: Let G be a wSUP-embedded digraph and let G and G be its component and
compound digraph, respectively. According to Cor. 3.29, all compounds in G are edge-simple
cycles. For our example, its component and compound digraph are shown in Fig. 3.66(b). The
compounds subdivide G into sections, i. e., the union of transits whose source is the lower
compound or whose sink is the upper compound or both. For instance, the section between γ2

and γ3 is the union of three transits. As G is planar, no edge can span multiple sections (see
also proof of Lem. 3.5). As a compound contains neither sources nor sinks, we focus on the
sections.

Let σ be an intermediate section, i. e., a section bounded by a lower compound γi and an
upper compound γi+1. As σ is acyclic and wSUP it is also SUP [Has01]. Hence, it is the
subgraph of a planar and acyclic dipole σ. Due to the construction of σ in [Has01], σ respects
the wSUP embedding of σ, i. e., removing all vertices and edges from σ to obtain σ yields the
original embedding of σ. Further, γi is the single source and γi+1 the single sink of σ. If σ is
extremal, i. e., it is the lowermost or the uppermost section (or both) and not bounded by a
compound on the lower or upper end, then a source or sink, respectively, is chosen according
to the construction given in [Has01]. Thereby, we obtain a planar, acyclic dipole for every
section. Now, we expand the compounds to horizontal cycles again by adjusting the embedding
accordingly: Let e1, ... , er be the rotation system of the source in a section and assume that
this source is a compound γi . Denote by Ci the cycle that is γi . If due to the construction from
before outgoing edges have been added to the source, these edges are attached to vertices of γi
such that the contraction of Ci results in the rotation system e1, ... , er of the source γi . This
construction assures planarity and does not introduce any new cycles. In the end, we obtain a
wSUP digraph with at most one source, situated in the lowermost section, and at most one
sink in the uppermost section. If there is no uppermost (lowermost) section, we add a vertex
and an edge from (to) one of the vertices of the uppermost (lowermost) compound. The so
obtained supergraph H of G is wSUP and contains exactly one source s and one sink t. Note
that H is not necessarily a spanning supergraph of G as we may have introduced a new source
or a new sink.

What is left to show is that H fulfills the properties of a dipole for which we use Lem. 3.1
on page 108. Since s is the single source and t the single sink, there is a dipath from s to
every vertex v and from v to t which implies (i) of Lem. 3.1. By planarity, each transit in H is
situated between two cycles, i. e., compounds. In other words, the compounds can be totally
ordered by γ1, ... , γk such that each transit either points from γi to γi+1 for 1 ≤ i < k , or
from s to γ1, or from γk to t. Thereby and by the fact that each compound winds around the
cylinder, a dipath from s to t contains a vertex from each compound. Hence, (ii) follows and
we can conclude that H is a dipole.
⇐: Any subgraph of a wSUP digraph is also wSUP. �

With the help of Lem. 3.39 and Cor. 3.29, we readily arrive at a characterization of wSUP.

Theorem 3.7. A digraph is wSUP if and only if it is a subgraph of a planar dipole whose
compounds are edge-simple cycles.

Proof. ⇒: Let G be a wSUP digraph. Then, the wSUP supergraph H constructed according
to Lem. 3.39 is a dipole and by Lem. 3.38 all cycles of H are disjoint.
⇐: Let H be an embedded dipole with edge-simple cycles only such that G is a subgraph

of H. Consider the component digraph H of H. As H is a dipole with source s and sink t,
its compound digraph is a dipath (s, τ1, γ1, ... , γk−1, τk , t) for k ≥ 0. This implies that the
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component digraph H itself is an acyclic dipole and, hence, its embedding is SUP. Thereby, we
obtain a SUP drawing ΓH of H. By assumption, each compound γi is an edge-simple cycle Ci .
In ΓH, we expand each of these cycles Ci according to the embedding of H such that the
vertices of Ci all have the same y -coordinate as γi in ΓH.

At this point it is important to make a subtle and yet crucial observation: In a wSUP
drawing, the edges of a cycle Ci either all point to the right side or to the left side. Expanding
any of the cycles such that it has the wrong orientation, can lead to crossings between edges
from the compound to the neighboring transit. Consider, for instance, the component digraph in
Fig. 3.67(a) that contains two compounds of which each is a cycle of three vertices. Fig. 3.67(b)
shows that expanding both cycles such that both point to the right leads to a plane drawing. In
contrast, if the edges of γ1 point to the left and the edges of γ2 point to the right, we inevitably
get a crossing as shown in Fig. 3.67(c). In our proof, we assure planarity by expanding the
compounds according to H’s embedding.

Further, the compound digraph of H is a path from s to t and, therefore, there is no transit
that “overleaps” a compound, i. e., each transit points from γi to γi+1, from s to γ1, or from
γk−1 to t. The obtained drawing of H is wSUP and, therefore, H and G are wSUP. �

t
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γ2

(a) Component digraph of an
embedded dipole.

t

s

u1 u2 u3

v1 v2 v3

(b) Both cycles point to the
right and the drawing is plane.
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u1 u2 u3

v1v2v3

(c) The cycle of γ1 points to
the left and the cycle of γ2

in opposite direction which in-
evitably leads to a crossing.

Figure 3.67: Expanding a cycle of a wSUP digraph such that it has the wrong orientation
can lead to crossings.

In Sect. 3.4, we have characterized RUP digraphs by means of their duals. We do the
same for wSUP digraphs. For the example in Fig. 3.66(c), consider its dual in Fig. 3.66(e). In
Sect. 3.4, we have proved that a closed digraph is RUP-embedded if and only if its dual is a
dipole (follows from Thm. 3.1). As every wSUP digraph is the subgraph of a wSUP dipole,
we obtain:

Corollary 3.30. A wSUP digraph is the subgraph of an embedded digraph whose dual is RUP.
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The converse is not true as the compounds in a wSUP digraph have a very particular and
simple structure which, in turn, implies a special structure of the transits of the dual. Let G be
a wSUP-embedded dipole. Then, each compound of G is an edge-simple cycle. In the dual G ∗,
an edge-simple cycle becomes a transit which is a “bundle” of parallel edges from its source to
its sink. In particular, each transit in G ∗ contains no face besides its source and sink. This
also implies that all faces belong to compounds of G ∗. Remember that a (strongly-connected
component) is called trivial if it contains no edges (Sect. 3.4.1). We arrive at the following
characterization of wSUP digraphs.

Theorem 3.8. A digraph is wSUP if and only if it is the subgraph of an embedded digraph H
such that H∗ is RUP-embedded and contains no trivial components.

Proof. ⇒: Let G be wSUP, then by Lem. 3.39 it is the subgraph of a wSUP-embedded
dipole H. Thm. 3.1 and Prop. 3.1 imply that H∗ is RUP.

If H is acyclic, then H∗ is strongly connected and, hence, H∗ has no trivial components.
Otherwise, let γ be a compound of H. γ is an edge-simple cycle and, hence, its dual is an
acyclic dipole with a single source and a single sink, and one or more edges in between them.
Cor. 3.2 and the proof of Lem. 3.5 assert that the dual of γ is a transit of H∗. Hence, each
face in H∗ belongs to a compound since the transits consist of edges only. In other words, H∗

contains no trivial components.

⇐: Suppose that G is a subgraph of an embedded dipole H whose dual H∗ is RUP-
embedded and which contains no trivial components. By Thm. 3.1, H is a dipole. Further,
each face in H∗ belongs to a compound and, thereby, none of the transits of H∗ contains a
face besides its source and sink. Hence, the primal of each transit of H∗ is an edge-simple cycle
in H and, consequently, all cycles in H are edge-simple. By Thm. 3.7, we can conclude that G
is wSUP. �

3.7 Summary, Further Remarks, and Future Work

At the end of this chapter, we take the opportunity to summarize, make further remarks, and
give possible directions for future work.

First, we have characterized RUP digraphs by means of their duals (Sect. 3.4.3). The key
insight, which paved the way to this characterization, is that a compound is RUP-embedded if
and only if its dual is an acyclic dipole (Lem. 3.4). We extended this result to closed RUP
digraphs by introducing the compound digraph and by generalizing acyclic dipoles to dipoles: a
closed digraph is RUP-embedded if and only if its dual is a dipole (Thm. 3.1). Finally, we have
obtained a characterization of all RUP digraphs by showing that a digraph is RUP if and only
if it is the spanning subgraph of a closed RUP digraph (Lem. 3.7). Compound digraphs and
the insights about the duals of RUP digraphs have also proven to be valuable for characterizing
wSUP digraphs and their duals (Sect. 3.6).

Tab. 3.2 gives an overview of known and new (bold font) characterizations of different
classes of upward planar digraphs (first column). “SC” abbreviates “strongly connected”. Each
digraph of one of the classes is the spanning subgraph of a characterizing planar supergraph
(second column), e. g., a digraph is SUP if and only if it is the spanning subgraph of a planar
acyclic dipole. The third column displays the principle structure of the supergraph by its
compound digraph, e. g., two terminals connected by a transit in case of an acyclic dipole.
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Primal Dual

Characterizing
Supergraph

Compound
Digraph

Structure
Compound

Digraph

UP

planar acyclic
dipole with
st-edge

[Kel87, DBT88]

SC & RUP
(Lem. 3.4)

SUP
planar acyclic
dipole [Has01]

SC & RUP
(Lem. 3.4)

wSUP

planar dipole,
edge-simple

cycles
(Thm. 3.7)

compounds are
edge-simple

cycles

closed & RUP
only edges in

transits
(Thm. 3.8)

no trivial
components

RUP

planar closed
digraphs, dual is

dipole
(Thm. 3.1)

dipole
(Thm. 3.1)

Table 3.2: Overview of the different classes of upward planar digraphs, their characterizing
supergraphs, compound digraphs, duals and compound digraphs of the duals.

The fourth column lists the properties of the dual of the characterizing supergraph and the
compound digraph of the dual is shown in the last column.

As testing whether a digraph is RUP is NP-hard in general [Bra14], we focused on closed
digraphs for which we developed a linear-time algorithm consisting of three parts (Sect. 3.5):
The first part considers compounds and transits (almost) separately, the second part deals
with compounds, and the last part with biconnected compounds. For each part, we used and
extended a high-level description, i. e., the compound digraph, the block-cut-tree, and the
SPQR tree. Tab. 3.3 shows an overview, where the first column lists the classes of digraphs,
corresponding to the input of the respective part of the algorithm, and the second column
shows the used high-level description. For each of part of the algorithm, we derived a RUP
characterization of the primal and dual by means of the respective high-level description. The
properties of the primal and dual are shown in the third and fourth column, respectively, where
characterizing properties are displayed in bold font, e. g., a compound is RUP if and only if its
directed block-cut tree contains a Eulerian dipath.

Most notably, we have extended SPQR trees to incorporate dual graphs by defining dual
SPQR trees in which the skeletons of the nodes are replaced by their duals. In this context,
one of our main results is that the dual SPQR tree is the SPQR tree of the dual (Thm. 3.4).
In order to deal with directed edges, we introduced dSPQR trees of acyclic digraphs and of
compounds, which we in turn combined with dual SPQR trees to obtain dual dSPQR trees. As
with dual SPQR trees, we have proved that the dual dSPQR tree is the dSPQR tree of the dual
(Thm. 3.5). By using these extensions, we have derived a neat characterization: a biconnected
compound is RUP-embedded if and only if each node of its dSPQR tree is RUP-embedded, if
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High-Level
Description

Primal Dual

closed
digraph

compound digraph path (Lem. 3.8) dipath (Thm. 3.1)

compound block-cut tree caterpillar (Cor. 3.17) path (Lem. 3.14)

directed block-cut
tree

contains Eulerian
dipath (Thm. 3.3)

biconnected
compound

(dual) dSPQR tree nodes are
RUP (Thm. 3.6)

nodes are acyclic
dipoles (Thm. 3.6)

Table 3.3: Used high-level description of the algorithm in Sect. 3.5 and their properties for
RUP digraphs and their duals.

and only if each node of its dual dSPQR tree is an acyclic dipole (Thm. 3.6). In particular, the
property of being RUP-embedded is visible in each node of the dSPQR tree and, conversely, if
each node is RUP then so is the whole compound. All these extensions are defined in general
in order to be applicable in a wider range, potentially encompassing other cases of upward
planarity.

At the beginning of this chapter, our goal was to extend the study of upward planarity
to rolling upward planarity. It is justified to claim that we have reached the first two major
milestones towards this goal: a characterization and a decision algorithm for closed digraphs.
On our way, the dual digraph has turned out to be a most helpful traveling companion and its
value is twofold: First, the study of duals has led to the first combinatorial characterization of
RUP and to new insights to SUP and wSUP (see Tab. 3.2). Second, this characterization is

“algorithmically effective”, that is, it can be turned into a decision algorithm. The latter aspect
justly raises the hope that the developed characterizations and algorithmic tools are useful in
an even wider range, in particular, in cases of upward planarity that allow for a characterization
by means of duals. In this sense, we close this chapter by discussing possible future research.

3.7.1 Minors of Non-RUP Compounds

A celebrated result by Robertson and Seymour is that a graph class that is closed under taking
minors is characterized by a set of finitely many forbidden minors [RS04]. That is, a graph is in
the respective class if and only if none of its minors is in the set of forbidden minors. Remember,
a graph G is a minor of another graph H if G can be obtained from H by contracting edges and
removing vertices and edges. For instance, the planar graphs are closed under taking minors
and, indeed, by Wagner’s theorem [Wag37], their forbidden minors are the complete graph K5

with five vertices and the complete bipartite graph K3,3 with three vertices in each partition.
Forbidden minors are in so far interesting as they are minimal archetypes of the graphs that not
fulfill a certain property, e. g., planarity. In the context of RUP, we can also ask for forbidden
minors, where we concentrate on compounds.

As all RUP compounds are planar, the K5 and the K3,3 are forbidden minors of RUP com-
pounds. Note that the K5 and the K3,3 are forbidden minors of the underlying undirected
graphs of RUP compounds. In the following, we will derive directed minors by using the same
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Figure 3.68: Contracting the dotted edges in the RUP compound results in a non-RUP com-
pound.

operations as with undirected graphs. For an example, consider the RUP compound on the
left side of Fig. 3.68. When we contract the dotted edges, we obtain the directed minor on the
right side which is also a compound. Since we only deal with directed minors in the following,
we omit the attribute “directed”. Also note that the minor on the right side of Fig. 3.68 is not
RUP as the loop cannot wind around the cylinder. Hence, RUP digraphs are not closed under
taking minors and we cannot apply the theorem of Robertson and Seymour.

Nevertheless, we can use our testing algorithm from Sects. 3.5.2 and 3.5.3 to derive minors
of non-RUP compounds. The idea is that whenever false is returned, we identify a non-
RUP minor that causes the algorithm to abort. We will also ensure that the non-RUP minor
is minimal in the sense that removing a vertex or an edge, or contracting an edge results in a
RUP digraph. For instance, if the block-cut tree of a compound is no caterpillar, TestCompound
returns false (line 3 in Alg. 3.3). A tree is no caterpillar if and only if it contains a graph
isomorphic to the one shown on the left side of Fig. 3.69(a) as subgraph [HS71]. In case
of a block-cut tree, we have a block B which shares three cut vertices c1, c2, and c3 with
three blocks B1, B2, and B3, respectively. If the block-cut tree of a compound γ contains
this configuration, we can remove all edges and vertices from γ such that we obtain another
compound γ′ whose block-cut tree looks as on the left side of Fig. 3.69(a). As B is strongly
connected, it contains a cycle through c1, c2, c3. Likewise, each of B1, B2, and B3, contains a
cycle through c1, c2, and c3, respectively. Removing all edges and vertices from γ′ that belong
not to these cycles and contracting the cycles afterwards such that they only contain c1, c2,
and c3, results in the compound γ′′ on the right side of Fig. 3.69(a). Note that each of c1, c2,
and c3 with the loop is a block. γ′′ is a minor of γ and not RUP as its block-cut tree is no
caterpillar.

There are RUP digraphs that contain γ′′ as minor. For instance, by contracting the dotted
edges in the compound on the left side of Fig. 3.68, we obtain the compound on the right
side which is isomorphic to γ′′ and is not RUP. Alas, this destroys any hope of finding a
characterizing set of forbidden RUP minors: if the compound is not RUP we may identify a
culpable minor but finding such a minor does not imply that the compound is not RUP.

Another situation in which a (biconnected) compound γ is not RUP is if one of the nodes
in its dSPQR tree contains more than two cyclic virtual edges (line 1 in ComputeCompound-

Embedding; Alg. 3.9). Assume that this is the case for an S node. The expansion digraph of
each of these cyclic virtual edges contains a cycle. Then, γ has a minor γ′ whose dSPQR tree
contains an S node whose skeleton consists of three cyclic virtual edges. Each of these cyclic
virtual edges is refined by a P node that contains an antiparallel pair of directed non-virtual
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B

c1

c2 c3

B1

B2 B3

c1

c2 c3

(a) Minor if the block-cut tree is no
caterpillar.

SP

(b) Minor if an S-node contains three
cyclic edges.

P

µ

SP

(c) Minor if a P-node contains three cyclic
edges.

R R

R

(d) Minors if an R-node contains three cyclic edges.

Figure 3.69: Minors of non-RUP compounds.

edges. On the left side of Fig. 3.69(b), the S node is displayed and only one of the P nodes is
shown as the other two are equal. The corresponding non-RUP compound is shown at the
right side of Fig. 3.69(b). Note, the minor is minimal in the sense that removing or contracting
any of the edges results in a RUP digraph.

Likewise, a P node can contain three or more cyclic virtual edges. In this case, we can find
a minor where the P node µ has exactly three cyclic virtual edges (see top of Fig. 3.69(c)) of
which each is refined by an S node. Each of these S nodes consists of a directed non-virtual edge
and two virtual edges of which one is refined by µ and the other one by a P node that contains
an antiparallel pair of directed non-virtual edges. All other virtual edges of µ are refined in the
same way. The directed edge in each S node must be oriented such that the whole digraph is
strongly connected. At the bottom of Fig. 3.69(c) the possible non-RUP compounds are shown
where the undirected edges must be directed such that the digraph is strongly connected.

If an R node contains three cyclic virtual edges, then we can derive a minor such that
the skeleton of the R node is a complete graph with four vertices with three cyclic virtual
edges and three directed non-virtual edges. Each of the virtual edges is refined by a P node
which contains an antiparallel pair of directed non-virtual edges. Fig. 3.69(d) illustrates the
three principle cases that can occur, where the P nodes are omitted: either all three virtual
edges are incident to one vertex (top left), they form a circle (top right), or a path (bottom).
The corresponding non-RUP compounds are shown to the right of each R node, where the
undirected edges can be directed arbitrarily as long as the digraph is strongly connected. Note
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that the non-RUP compound in the top right corner of Fig. 3.69(d) is not minimal as it has as
minor the digraph at the right side of Fig. 3.69(b).

By investigating the other cases where false is returned, we can derive further minors of
non-RUP digraphs and, thereby, better understand the structure of (non-)RUP compounds.

Open Problem 3.1. What are other minors of non-RUP compounds? Are there finitely many?

3.7.2 Upward Toroidal Digraphs

A digraph is upward toroidal or TUP if it has a crossing-free drawing that is upward on the
surface of the torus endowed with the homogeneous field (cf. Tab. 3.1 on page 100), i. e., all
edge curves are monotonically increasing in y -direction. An example of a closed TUP digraph
is shown in Fig. 3.70, where the corresponding compound digraph is shown beneath on the
standing cylinder. Similar to RUP, cycles can wind around in vertical direction. The digraph in
Fig. 3.70 is not RUP by Cor. 3.3 as the underlying undirected graph of its compound digraph
is a circle. Observe how the digraph winds around the torus in horizontal direction which is
reflected in the circular structure of its compound digraph. Assume now that we remove any of
the transits, e. g., transit τ4. Thereby, we obtain a closed digraph which is RUP and for which
our testing algorithm TestClosedDigraph in Sect. 3.5 returns a RUP embedding. By using
this observation, we can use TestClosedDigraph for a TUP test for closed digraphs: In a
nutshell, we remove a transit from the digraph if its compound digraph is a circle. Then, we
test if the remaining closed digraph is RUP and, if this the case, we test if we can reinsert
the transit into the RUP embedding to obtain a TUP embedding. In the following, we see
how this works in detail. For the correctness of the approach, we will make some assumptions
whose proofs we leave for future work.

τ4γ1 γ2 γ3 γ4τ1 τ2 τ3

Figure 3.70: Example of a TUP digraph.

Consider TUPTestClosedDigraph in Alg. 3.13. Let G be the closed input digraph. For
reasons discussed later, we assume that G is not strongly connected. If G is RUP, it
is certainly also TUP (line 1). Hence, we assume that G is not RUP. TUPTestClosed-

Digraph uses ComputeCompoundDigraph (Alg. 3.1) to compute the compound digraph G of
G . ComputeCompoundDigraph returns ⊥ if the transits are not independent. Further, if the
underlying undirected graph of G is no circle, ⊥ is returned (line 4). Note that as G is not
strongly connected, it contains at least one transit.
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Assumption 3.1. If G is TUP and not RUP, then the underlying undirected graph of its
compound digraph is a circle and all its transits are independent.

Let γ1, τ1, γ2, ... , τk−1, γk , τk , γ1 be the compounds and transits of the compound digraph
in order of a traversal of the circle. We obtain a closed digraph G̃ by removing all trivial
components in τk from G (line 6). TestClosedDigraph is used to test whether G̃ is RUP.

Assumption 3.2. If G is TUP, then G̃ is RUP.

Denote by EG̃ the RUP embedding of G̃ . Similar to TestClosedDigraph in Alg. 3.2, τk is
attached to the leftmost cycle C l and the rightmost cycle C r of G̃ . For this, a partial rotation
system E ′τk at the source and sink of τk is derived in line 11 (see Sect. 3.5.1.1 for details).
The routine PlanarConstraint from [GKM07] is used to test whether τk can be embedded
according to E ′τk .

Assumption 3.3. If G is TUP, then τk has an embedding that respects E ′τk .

Let Eτk be the embedding obtained from PlanarConstraint. By assembling EG̃ with the
embedding E ′τk , we obtain an embedding E on the torus which is upward.

Assumption 3.4. The embedding E returned in line 15 is a TUP embedding.

Note that TUPTestClosedDigraph uses TestClosedDigraph and its subroutines, and the
overall running time of TUPTestClosedDigraph is in O(|V |) (Thm. 3.2).

Open Problem 3.2. Prove Assumptions 3.1 to 3.4.

Algorithm 3.13. TUPTestClosedDigraph

Input: closed digraph G = (V ,E) which is not strongly connected
Output: TUP embedding; or ⊥ if G is not TUP

1 if TestClosedDigraph(G) 6= ⊥ then return RUP embedding of G

2 G ← ComputeCompoundDigraph(G)

3 if G = ⊥ then return ⊥
4 if underlying undirected graph of G is no circle then return ⊥
5 Compound digraph is circle γ1, τ1, γ2, ... , τk−1, γk , τk , γ1

6 G̃ ← G without trivial components in τk
7 EG̃ ← TestClosedDigraph(G̃)

8 if EG̃ = ⊥ then return ⊥
9 C l ← leftmost cycle of G̃ according to EG̃

10 C r ← rightmost cycle of G̃ according to EG̃
11 E ′τk ← partial rotation system at the source and sink of τk according to C l and C r

12 Eτk ← PlanarConstraint(Vτk ,Eτk , E ′τk )

13 if Eτk = ⊥ then return ⊥
14 E ← embedding of G obtained by assembling the embedding EG̃ of G̃ with the

embedding Eτk of τk
15 return E

Remember that we assume that the input digraph G is not strongly connected. If G is
strongly connected, then we obtain a single compound as compound digraph. Hence, the
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trick of removing a transit from G does not work as there is no transit. However, if we
could identify acyclic components within G , similar to transits, such that removing such a
component would result in a closed digraph that is RUP if G is TUP, then we could extend
TUPTestClosedDigraph to work for closed digraphs.

Open Problem 3.3. Which extensions to the definitions of compounds, transits, and the
compound digraph are needed to identify acyclic and non-trivial strongly connected components
in strongly connected digraphs? Based on these extensions, is it possible to extend TUPTest-

ClosedDigraph to work for closed digraphs?

3.7.3 Drawing RUP Digraphs

In Sect. 3.1, we have motivated the study of RUP by their usefulness in graph drawing, in
particular, when visualizing periodic processes or recurrent hierarchies [Bru10]. Computing a
RUP embedding, though, is only half the way to a concise drawing that exhibits the cyclic
structures of the RUP digraph.

Drawings of RUP digraphs have been investigated in [Bra14]: Given a RUP drawing of a
digraph, the drawing can be simplified such that its edge curves are polylines, i. e., geodesics on
the rolling cylinder, with at most two bends per edge and such that each edge winds at most
once fully around the cylinder. Further, the vertices and bends are placed on an integer grid of
cubic size. This simplification process is constructive and can be carried out in time O(τn3),
where n is the number of vertices and τ the time to compute the intersection of an edge
curve with a horizontal line. However, this method presumes that we are already given a RUP
drawing, leading to a chicken-and-egg situation.

The extension of the Sugiyama framework to recurrent hierarchies in [Bru10, BBBF12,
BBBL09, BBBH11] produces cyclic drawings which can be used to aptly display cycles
(see Fig. 3.3(c) on page 98 for an example) . The recurrent hierarchy algorithm adapts
the four phases of the classical Sugiyama framework [STT81], where phase 1, the removal
of cycles, is omitted. The other three phases are the positioning of the vertices on cyclic
levels, which are half-lines extending from the origin (see Fig. 3.3(c)), along with the introduc-
tion of dummy vertices (phase 2; [Bru10, BBBL09]), the minimization of crossings (phase 3;
[Bru10, BBBH11]), and the assignment of coordinates (phase 4; [Bru10, BBBF12]). The
result is a cyclic drawing with an area consumption that, in the worst case, is cubic in the
number of vertices. In its current form, the recurrent hierarchy algorithm ignores any given
embedding of the input digraph, which raises the question for a suitable adaption to incorporate
a RUP embedding. In particular, the positioning of the vertices on the cyclic levels (phase 2)
needs to respect the RUP embedding and the upward direction of the edges. Phase 3 can be
omitted due to planarity and phase 4 needs no adaption.

Open Problem 3.4. Is it possible to adapt phase 2 of the recurrent hierarchy approach from
[BBBL09] to incorporate a given RUP embedding?

For strongly connected RUP digraphs, the following approach could be viable: In the proof
of Lem. 3.4, we have shown how to construct a RUP drawing for a given strongly connected
RUP-embedded digraph. As the aim of the proof was to show that such a drawing exists, the
construction neither produces a“nice”drawing nor are the vertices placed on integer coordinates.
Nevertheless, such a drawing could be used as a starting point for the simplification process in
[Bra14]. Even more, from the construction in [Bra14], we obtain a leveling for the recurrent
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hierarchy approach as follows: In the drawing, we insert a horizontal line through each vertex
and, thereby, obtain the leveling and the dummy vertices, i. e., the points where the horizontal
line crosses an edge curve, and the order of the (dummy) vertices on each level. However, this
construction produces a level for each vertex and is cumbersome as a drawing is generated in
order to obtain another “nicer” drawing. Nevertheless, the idea itself could be the starting point
for a more stringent approach.

Open Problem 3.5. Can the construction from the proof of Lem. 3.4 be adapted to directly
obtain a leveling with few levels?

From a theoretical viewpoint, it is also interesting how large a RUP drawing might get. As
discussed before, an area consumption cubic in the number of vertices can always be achieved
if bends are allowed [Bra14]. The picture changes drastically if we forbid bends: there are
UP digraphs that require an exponential area when drawn straight-line and upward without
bends [DBTT92]. For the proof, Di Battista et al. construct a triconnected acyclic dipole with
n vertices and show that the minimal area consumption of a straight-line UP drawing is in
Ω(2n). Note that, in principle, this acyclic dipole may require asymptotically less area on the
rolling cylinder as it can wind around the cylinder multiple times to reduce area consumption.
Let G be the triconnected and acyclic dipole as constructed in [DBTT92] with source s and
sink t. We can insert G into a face of a triconnected and RUP-embedded compound γ as
shown in Fig. 3.71. Now, G cannot wind around the rolling cylinder as otherwise the leftmost
or rightmost cycle of γ would wind around the cylinder multiple times which is not possible due
to planarity. Hence, we have “trapped”G in a face that is homeomorphic to the plane and,
hence, its drawing must be UP, leading to an exponential area consumption.

t

s
G

Figure 3.71: A RUP-embedded compound into which an acyclic dipole is inserted that requires
exponential area when drawn straight-line.

3.7.4 Further Complexity Considerations

3.7.4.1 Other Digraph Classes

In Sect. 3.5, we have developed a rich set of tools to decide whether a closed digraph is
RUP. This raises the question whether these tools can be used for other classes of digraphs or
when additional information is given. For instance, deciding whether an embedding is UP is
efficiently solvable [BDBLM94] and so is the respective SUP decision problem for single-source
digraphs [DH08]. For RUP, we obtain the following corollary.

Corollary 3.31. Let G = (V ,E) be a closed and embedded digraph. Deciding whether the
embedding of G is RUP can be done in time O(|V |).
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Proof. By Lemmas 3.3 and 3.5, the embedding is RUP if and only if its dual is a dipole.
Remember, a digraph is a dipole if it has exactly one source s and exactly one sink t and the
compound digraph is a dipath s  t. From the embedding of G , the dual G ∗ = (F ,E ∗) is
obtained in O(|V |). Testing whether G ∗ contains only a single source s and a single sink t takes
O(|F |) ⊆ O(|V |) many time steps. ComputeCompoundDigraph in Alg. 3.1 is used to compute
the compound digraph G∗ of G ∗ in time O(|V |). If ComputeCompoundDigraph returns ⊥, the
transits of G ∗ are not independent. In this case, G and also its embedding are not RUP as the
underlying undirected graph of G∗ is no path (cf. proof of Cor. 3.3). Finally, testing whether
G∗ is a dipath s  t takes O(|V |) time steps. �

We leave the general case for future research.

Open Problem 3.6. Given an embedded digraph, is there an efficient algorithm to decide
whether the embedding is RUP?

Deciding whether a digraph is UP becomes efficiently solvable for certain classes of planar
digraphs, e. g., outerplanar digraphs [Pap95], which raises the hope that there are classes for
which testing RUP becomes efficiently solvable.

Open Problem 3.7. Are there classes of planar digraphs for which testing whether they are
RUP is solvable in polynomial time?

3.7.4.2 Fixed-Parameter Tractability

Fixed-parameter tractability has already been discussed in the context of deque layouts in
Sect. 2.6.1.2: Given the input to an (NP-hard) problem and a parameter k that depends on
the input, the problem is fixed-parameter tractable (FPT) if there is an algorithm that decides
the problem and has a running time in O(f (k) · np), where f (k) is a function that depends on
k , n is the length of the input and p is an integer constant. As deciding whether a digraph is
RUP is NP-hard in general [Bra14], we can ask for parameters that make the problem FPT.

For instance, the number of terminals, i. e., sources and sinks, is a possible choice for a
parameter k . By the proof of Lem. 3.7 we know that a digraph is RUP if and only if we can
introduce an edge from each sink to some other vertex and to each source from another vertex
such that the resulting closed digraph is RUP. Given a digraph with n vertices, we try out all kn

possibilities to obtain a closed digraph and for each we use TestClosedDigraph (Alg. 3.2) to
test whether it is RUP in time O(n). This leads to an overall running time of O(kn · n) and,
unfortunately, this is no FPT algorithm. Still, by applying the tools from Sects. 3.5.2 and 3.5.3,
the principle idea is still of interest. For instance, connecting a terminal to any vertex makes
no sense if this destroys planarity. If, however, a terminal is situated within the skeleton of an
R node, we can connect it to a vertex that is incident to a face to which the terminal is also
incident.

Open Problem 3.8. Is deciding whether a digraph G is RUP FPT if the number of terminals
in G is the parameter?

Deciding whether a digraph is UP is FPT, where the parameter is the number of triconnected
components or, alternatively, the difference between the number of edges and vertices in the
digraph [HL06].

Open Problem 3.9. Are there other parameters, e. g., the number of triconnected components,
that make the RUP decision problem FPT?
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3.7.5 Acyclic RUP Digraphs

It comes as no surprise that SUP is a proper subset of RUP as SUP digraphs are acyclic. But
even when restricted to acyclic digraphs, RUP is a proper extension of SUP [ABBG11, Bra14].
The example from [ABBG11] of an acyclic RUP digraph that is not SUP is shown in Fig. 3.5 on
page 103. Note that it is triconnected and, thus, its embedding is unique. The digraph cannot
be augmented to a planar acyclic dipole: attaching an outgoing edge to any of the two sinks
would either introduce a cycle or destroy planarity. Acyclic RUP digraphs lie between SUP and
RUP and combine the property of SUP digraphs to be acyclic with the ability to wind around
the rolling cylinder, which makes them an interesting class to study. Especially, separating
acyclic RUP digraphs from SUP digraphs may reveal new properties of RUP digraphs as well
as SUP digraphs. Possible questions that could be tackled are as follows:

Open Problem 3.10. How can acyclic RUP digraphs or their duals be characterized? Given
an acyclic RUP digraph, possibly with a RUP embedding, how hard is it to decide whether
the digraph is SUP?

Note that deciding whether an acyclic digraph is RUP is also NP-hard [Bra14].
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Chapter 4

Bringing Chapters 2 and 3 Together

Now that we have reached the end of the thesis, a question still remains: what is the relationship
between linear cylindric drawings from Chapter 2 and upward planarity on cylinder surfaces
discussed in Chapter 3? In this last chapter, we propose an answer to this question.
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(a) A deque digraph.
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(b) The digraph from
Fig. 4.1(a) on the fun-
damental polygon.
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(c) A linear toroidal
drawing.
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(d) A RUP
digraph with a
Hamiltonian cycle.

Figure 4.1: A deque digraph and a cyclic two-stack digraph.

Graph layouts can also be defined for digraphs where each edge is inserted to the data
structure at its source and removed at its target [HPT99a, HPT99b]. We call an acyclic
digraph G deque digraph if it has a directed deque layout Σ = (≺,E h,E t) where ≺ must be
a topological ordering of G . Analogously, we call an acyclic digraph linear cylindric planar if

235
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it has a linear cylindric plane drawing where the order of the vertices on the front line is a
topological ordering of G . By Thm. 2.1, we get:

Corollary 4.1. An acyclic digraph is a deque digraph if and only if it is linear cylindric planar.

An example of a deque digraph and its linear cylindric drawing on the standing cylinder
is shown in Fig. 4.1(a) where, this time, the front line (dotted) is vertical. Fig. 4.1(b) shows
the representation on the fundamental polygon. Note that the digraph contains a Hamiltonian
dipath. Similar to the undirected case, it is always possible to introduce directed edges to a
linear cylindric planar digraph to obtain a Hamiltonian dipath (cf. Thm. 2.2).

Corollary 4.2. An acyclic digraph is a deque digraph if and only if it is a spanning subgraph of
an acyclic planar digraph with a Hamiltonian dipath.

An acyclic digraph with a Hamiltonian dipath contains a single source and a single sink and
is, thus, an acyclic dipole.

Corollary 4.3. An acyclic digraph is a deque digraph if and only if it is the spanning subgraph
of a SUP digraph with a Hamiltonian dipath.

In particular, a linear cylindric planar digraph always has a linear cylindric plane drawing
that is SUP. We call the drawing and the digraph linear SUP .

Corollary 4.4. For an acyclic digraph G , the following statements are equivalent:

(i) G is a deque digraph.

(ii) G is linear SUP.

(iii) G is the subgraph of a SUP digraph with a Hamiltonian dipath.

Cor. 4.4 relates upward planarity with deque layouts and is our first step towards the goal
of this chapter.

The queue edges in a deque layout are the ones that wind around the cylinder. Such edges
are possible in SUP but not in UP. Similar to linear SUP drawings, we call a linear cylindric
drawing that is UP linear UP . A digraph that has a linear UP drawing is also called linear
UP. This leads to the following characterization of two-stack digraphs:

Corollary 4.5. For an acyclic digraph, the following statements are equivalent:

(i) G is a two-stack digraph.

(ii) G is linear UP.

(iii) G is the subgraph of a UP digraph with a Hamiltonian dipath.

Proof. (i)⇒ (ii): Let G be a two-stack digraph with directed two-stack layout Σ = (≺,E h,E t),
i. e., Σ is a directed deque layout with no queue edges. As in Sect. 2.2.4, we define the acyclic
≺-augmentation G≺ of G which contains the Hamiltonian dipath p = (v1, ... , vn) with vi ≺ vj
if and only if i < j for all 1 ≤ i , j ≤ n. The corresponding ≺-augmentation of Σ is Σ≺.
Remember that all edges on p are processed in Σ≺ as stack edges and, thus, Σ≺ is a two-stack
layout. We introduce the edge (v1, vn) to G≺, if not existent, to obtain the digraph G+

≺ and
extend Σ≺ to Σ+

≺ such that (v1, vn) is inserted at v1 before all other edges and removed at vn
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after all other edges. Since there are no queue edges in Σ≺, Σ+
≺ is also a two-stack layout. By

Cor. 4.4, G+
≺ has a linear SUP drawing which is also UP as G+

≺ contains the edge from the
single source v1 to the single sink vn.

(ii)⇒ (iii): Assume that G is linear UP where the order of the vertices on the front line
is v1, ... , vn. We introduce the edge (v1, vn) to G , if not existent, to obtain the digraph G+.
G+ is linear UP since G is linear UP. By applying Cor. 4.4, G+ is a spanning subgraph of a

SUP digraph G
+

with a Hamiltonian dipath. Since G
+

also contains the edge from v1, which

is the single source, to vn, which is the single sink, we can conclude that G
+

is UP.

(iii)⇒ (i): Let G+ be the spanning supergraph of G that is a planar acyclic dipole with
source s and sink t, and the edge from s to t. Similar to the proof of Cor. 2.4, G+ is linear
cylindric planar and, thus, a deque digraph. In the respective directed deque layout of G+,
we define that edge (s, t) is a stack edge which is inserted at s first and is removed at t last.
Thereby, no edge can be a queue edge, and G+ and G are two-stack digraphs. �

Remember, in the undirected case, a graph is a two-stack graph if and only if it is the spanning
subgraph of a planar graph with a Hamiltonian circle [BK79]. The deque is characterized by the
Hamiltonian path (Thm. 2.2). In the directed case, the difference between deque and two-stack
layouts corresponds to the difference between upward planarity on the standing cylinder and
the plane. Still, the characterizations of the undirected case “shine through”: Every two-stack
digraph is the spanning digraph of a UP digraph with a Hamiltonian dipath p and the edge
from the first vertex of p to the last vertex. In particular, the underlying undirected graph
contains a Hamiltonian circle.

The standing cylinder allows for queue edges, which raises the question what we obtain
for the rolling cylinder. For an answer, we generalize deque layouts to cyclic deque layouts:
Remember, in a deque layout, the input to the first vertex is empty and so is the output of
the last vertex. By loosening this restriction, we define cyclic deque layouts: instead of an
empty input, the first vertex receives a deque with content C0 as input and the last vertex
must produce C0 as output, where the elements in C0 are edges of the digraph. A cyclic
deque schedule Σ◦ = (≺,E h,E t, C0) is called cyclic deque layout if IsCyclicDequeLayout
in Alg. 4.1 returns true. As before, we assume that each directed edge must be inserted at
its source and must be removed at its target. Note that in comparison to IsDequeLayout in
Alg. 2.2, IsCyclicDequeLayout initializes C to C0 instead of the empty content, and returns
true only if the last vertex produces C0 as output. A digraph is a cyclic deque digraph if it has
a cyclic deque layout.

Algorithm 4.1. IsCyclicDequeLayout

Input: digraph G = (V ,E) and cyclic deque schedule Σ = (≺,E h,E t, C0)

Output: true if cyclic deque schedule is a cyclic deque layout and false otherwise
1 C ← C0

2 foreach vi = v1, ... , vn in order of ≺ do
3 C ← ProcessVertex(C,≺,E h(vi),E t(vi))

4 if C = ⊥ then return false

5 if C = C0 then return true

6 else return false
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Corollary 4.6. A digraph is a cyclic deque digraph if and only if it is a spanning subgraph of a
cyclic deque digraph with a Hamiltonian cycle.

Proof. ⇒: Let G be a cyclic deque digraph with cyclic deque layout Σ◦ = (≺,E h,E t, C0).
W. l. o. g., v1, ... , vn are the vertices ordered according to ≺. Similar to deque layouts, we
augment G and Σ◦ by introducing edges (vi , vi+1) for all 1 ≤ i < n such that all these
edges are processed as stack edges at the head of the deque (cf. Cor. 2.3). Additionally, we
introduce the edge (vn, v1) which is inserted at the head at vn after all other edges incident to
vn are processed. Likewise, (vn, v1) is removed at v1 before all other edges of v1 are processed.
Furthermore, we modify C0 by inserting (vn, v1) at its head. The so obtained digraph contains
a Hamiltonian cycle and the modified cyclic deque schedule is a cyclic deque layout.
⇐: A subgraph of a cyclic deque digraph is also a cyclic deque digraph. �

Just as we defined linear cylindric drawings for deque layouts, we define linear toric drawings
for cyclic deque layouts. Remember, the fundamental polygon of the torus is defined by
T = I◦× I◦, where I◦ is obtained from the unit interval I = (−1, 1) by identifying its boundaries.
The set of points h = {(x , y) ∈ T | x = 0} form a closed curve on T, where h is called front
circle. In a linear toric drawing, the vertices are placed on distinct points of h and the edge
curves must not share a point with h except for its endpoints. A linear toric drawing without
edge crossings is called linear toroidal and so is a digraph that admits a linear toroidal drawing.
An example of a linear toroidal drawing is shown in Fig. 4.1(c) where the front circle is dotted
and winds around the torus in vertical direction.

Claim 4.1. A digraph is a cyclic deque digraph if and only if it is linear toroidal.

The outline of the proof is as follows: By adopting the definition of linear cylindric rotation
systems (Def. 2.3), a linear toric drawing defines a linear toric rotation system which, in turn,
defines a cyclic deque schedule. The edges in C0 are the ones that“overleap”the region between
the last and the first vertex in the linear toric drawing, e. g., edges (6, 2), (7, 3), (7, 2), and
(8, 1) in Fig. 4.1(c). By a proof along the lines of the proof of Lem. 2.1, there are no edge
crossings in the linear toric rotation system if and only if the cyclic deque schedule is a cyclic
deque layout. Note that there are non-planar linear toroidal digraphs, for instance, the K5 with
an appropriate orientation of the edges.

Remember, every deque digraph is linear SUP (cf. Cor. 4.4). The edge curves of the linear
toric drawing in Fig. 4.1(c) are (rolling) upward and, thus, the drawing is TUP (toroidal upward
plane). In this case, we call the drawing and the digraph linear TUP .

Claim 4.2. For a digraph G , the following statements are equivalent:

(i) G is a cyclic deque digraph.

(ii) G is linear TUP.

(iii) G is the subgraph of a linear TUP digraph with a Hamiltonian cycle.

Linear cyclic deque layouts and TUP drawings combine the ability of queue edges to wind
around in horizontal direction, as in SUP, with the ability of edges in C0 to wind around in
vertical direction, as in RUP. Hence, the standing cylinder corresponds to the deque’s queue
mode whereas the rolling cylinder reflects the non-empty input C0. If we forbid queue edges, we
obtain cyclic two-stack digraphs with the following characterization by Cor. 4.6 and Claims 4.1
and 4.2:
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Claim 4.3. For a digraph G , the following statements are equivalent:

(i) G is a cyclic two-stack digraph.

(ii) G is linear RUP, i. e., G has a linear toric drawing that is RUP.

(iii) G is the subgraph of a linear RUP digraph with a Hamiltonian cycle.

For an example of a linear RUP drawing, see Fig. 4.1(d), where the digraph contains a
Hamiltonian cycle.

In the undirected case, we have used the following informal equation in Sect. 2.2.4 to
illustrate the difference between deque and two-stack layouts:

deque layout

two-stack layout
=

planar & Hamiltonian path

planar & Hamiltonian circle
.

In a similar manner, we summarize the results and claims of this chapter as follows:

directed deque layout

cyclic two-stack layout
=

linear SUP

linear RUP
=

SUP & Hamiltonian dipath

RUP & Hamiltonian cycle
.

Open Problem 4.1. Prove Claims 4.1 and 4.2.

Open Problem 4.2. Are there more relationships between graph layouts and upward planarity?
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acyclic digraph, 5
acyclic dipole (directed SPQR tree), 171
acyclic dipole (upward planarity), 101
algorithms

ComputeAlignments, 207
ComputeCompoundDigraph, 133
ComputeCompoundEmbedding, 205
ComputeDBCT&fRUPEmbeddings, 157
ComputeLREdges, 201
ComputePre-dSPQRTree, 199
DFS, 67
EmbedSkeleton, 214
FindCompatibleAlignments, 205
FindBlock, 155
IsCyclicDequeLayout, 237
IsDequeLayout, 32
IsSDLayout, 72
ProcessVertex, 32
TestBiconnected, 195
TestClosedDigraph, 136
TestCompound, 154
Split, 73
TUPTestClosedDigraph, 228

Ampère’s Law for Duals, 114
ancestor (depth-first search tree), 66
arched leveled-planar (queue graph), 54
arches (queue layout), 19, 54
≺-augmentation of a deque schedule (deque

layout), 41
≺-augmentation of a graph (deque layout),

41
augmented queue embedding (queue layout),

58
(auxiliary) L-cycle (directed SPQR tree), 182
(auxiliary) R-cycle (directed SPQR tree), 182
auxiliary sink (directed SPQR tree), 171

auxiliary skeleton (acyclic digraph) (directed
SPQR tree), 171

auxiliary skeleton (compound) (directed
SPQR tree), 182

auxiliary source (directed SPQR tree), 171

azimuth (cylinder), 11

biconnected undirected graph, 7

bimodal rotation system (upward planarity),
105

block (undirected graph), 7

block chain, 145

block sequence, 139

block series, 139

block-cut tree (undirected graph), 7

book embedding, 17

book thickness, 18

Catalan numbers, 24

caterpillar, 148

spine, 149

circle

→ definition, 5

Eulerian, 5

Hamiltonian, 5

simple, 5

closed digraph, 109

closed Gauß code (Gauß code), 91

compatible alignments (directed SPQR tree),
203

complete undirected graph, 5

component, see strongly connected compo-
nent

component digraph (digraph), 7

compound (digraph), 107

compound digraph (digraph), 107

253
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ComputeAlignments (algorithm), 207
ComputeCompoundDigraph (algorithm),

133
ComputeCompoundEmbedding (algorithm),

205
ComputeDBCT&fRUPEmbeddings (algo-

rithm), 157
ComputeLREdges (algorithm), 201
ComputePre-dSPQRTree (algorithm), 199
concatenation (splittable deque layout), 67
connected component undirected graph, 7
connected undirected graph, 7
content (deque), 30
context-free language, 25
cut (dual graph), 10
cut face (planar graph), 137
cut vertex (undirected graph), 7
cut-set (dual graph), 10
cycle

edge-simple, 218
Eulerian, 5
Hamiltonian, 5
simple, 5

cycle (digraph), 5
cyclic deque digraph (deque layout), 237
cyclic deque layout (deque layout), 237
cyclic deque schedule (deque layout), 237
cyclic drawings (upward planarity), 103
cyclic edge (directed SPQR tree), 177
cyclic order, 8
cyclic-L edge (directed SPQR tree), 177
cyclic-R edge (directed SPQR tree), 177
cyclomatic number, 91
cylinder

azimuth, 11
cylindrical coordinates, 11
drawing of a graph, 12
fundamental polygon, 12
plane drawing of a graph, 12
R2-representation, 12
rolling, 11
standing, 11

cylindrical coordinates (cylinder), 11

d-, see indegree
d+, see outdegree
DCEL, 10

De Morgan’s Law for One-Clique Sums, 140

De Morgan’s Law for Two-Clique Sums, 166

degree of a vertex, see undirected graph

depth-first search tree, 65

ancestor, 66

descendant, 66

DFS number, 66

forward edge, 66

leaf, 66

linear layout induced by DFS tree, 66

root-to-leaf dipath, 66

subtree of a vertex, 66

tree edge, 65

deque, 15, 30

content, 30

head, 15, 30

tail, 15, 30

deque digraph (deque layout), 235

deque graph (deque layout), 32

deque layout

≺-augmentation of a deque schedule, 41

≺-augmentation of a graph, 41

cyclic deque digraph, 237

cyclic deque layout, 237

cyclic deque schedule, 237

→ definition, 32

deque digraph, 235

deque graph, 32

deque schedule, 31

deque schedule induced by Hamiltonian
path, 43

deque-reducible, 52

directed deque layout, 235

exuberant ≺-augmentation of a graph,
57

input-restricted deque, 52

linear cylindric planar digraph, 235

output-restricted deque, 52

queue edge, 31

stack edge, 31

deque schedule (deque layout), 31

deque schedule induced by Hamiltonian path
(deque layout), 43

deque-reducible (deque layout), 52

Derail, 84

descendant (depth-first search tree), 66
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de Fraysseix-Rosenstiehl planarity criterion,
82

DFS (algorithm), 67
DFS number (depth-first search tree), 66
DFS traversal, 65
DFS tree, see depth-first search tree
dicut (digraph), 110
dicut-set (digraph), 110
digraph

acyclic, 5
biconnected, see undirected graph
block-cut tree, see undirected graph
closed, 109
component digraph, 7
compound, 107
compound digraph, 107
connected, see undirected graph
cycle, 5
→ definition, 5
dicut, 110
dicut-set, 110
digraph of strongly connected compo-

nents, 7
dipole, 108
dual graph, 10
forest, see undirected graph
indegree, 5
isomorphic digraphs, 6
outdegree, 5
simple, 5
sink, 5
source, 5
strongly connected, 7
strongly connected component, 6
terminal, 107
transit, 108
tree, see undirected graph
triconnected, see undirected graph
trivial component, 107
trivial strongly connected component, 7
underlying undirected graph, see undi-

rected graph
digraph of strongly connected components

(digraph), 7
dipath
→ definition, 5
Eulerian, 5

Hamiltonian, 5
length of, 5
simple, 5

dipole (digraph), 108
directed block-cut tree, 149
directed deque layout (deque layout), 235
directed dual graph, see planar graph
directed graph, see digraph
directed loop, 5
directed skeleton (directed SPQR tree), 169
directed SPQR tree

acyclic dipole, 171
(auxiliary) L-cycle, 182
(auxiliary) R-cycle, 182
auxiliary sink, 171
auxiliary skeleton (acyclic digraph), 171
auxiliary skeleton (compound), 182
auxiliary source, 171
compatible alignments, 203
cyclic edge, 177
cyclic-L edge, 177
cyclic-R edge, 177
directed skeleton, 169
dual dSPQR tree, 181
expansion digraph, 168
feasible alignment, 202
feasible embedding of an auxiliary skele-

ton, 183
LR-feasible RUP embedding of a skele-

ton, 193
LR-feasible RUP embedding of an aux-

iliary skeleton, 193
LR-feasible alignment, 202
of a compound, 177
of acyclic digraph, 168
pre-dSPQR tree, 194, 195
RUP(-embedded) node, 182
RUP(-embedded) skeleton, 182
RUP-embedded node, 182
sink edge, 169
source edge, 169
terminal edge, 169

dSPQR tree, 159
doubly-connected edge list, 10
drawing of a graph
→ definition, 7
edge curve, 7
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inner part of an edge curve, 7
Jordan arc, 7
plane, 7
upward, 97
vertex position, 7

drawing of a graph (cylinder), 12
dual dSPQR tree (directed SPQR tree), 181
dual edge (planar graph), 10
dual graph, see digraph

cut, 10
cut-set, 10

dual graph (planar graph), 10
dual layout

dual queue layout, 64
dual node (dual SPQR tree), 164
dual queue layout (dual layout), 64
dual skeleton (dual SPQR tree), 164
dual SPQR tree
→ definition, 164
dual node, 164
dual skeleton, 164

edge curve (drawing of a graph), 7
edge-simple cycle, 218
embedding (planar graph), 9
embedding constraint, 203
EmbedSkeleton (algorithm), 214
Euclidean plane, 7
Eulerian circle, 5
Eulerian cycle, 5
Eulerian dipath, 5
Eulerian path, 5
expansion digraph (directed SPQR tree), 168
expansion graph (SPQR tree), 160
exuberant ≺-augmentation of a graph (deque

layout), 57

face (planar graph), 9
FAS (feedback arc set), 196
feasible RUP embedding (of a block), 147
feasible alignment (directed SPQR tree), 202
feasible embedding of an auxiliary skeleton

(directed SPQR tree), 183
feedback arc set, 196

FAS, 196
feedback arc set problem, 196
minimum, 196

feedback arc set problem (feedback arc set),
196

field respecting edge curve (upward pla-
narity), 99

FIFO, see first-in-first-out
FindCompatibleAlignments (algorithm),

205
FindBlock (algorithm), 155
finite automata, 25
first in, first out, 15
fixed-parameter tractability, 89
fixed-parameter tractable, 231
flip (SPQR tree), 163
fork (LR planarity criterion), 83
forward edge (depth-first search tree), 66
FPT, see fixed-parameter tractability
front circle (linear toric), 238
front line (linear cylindric), 27
fundamental circle (LR planarity criterion),

83
fundamental polygon (cylinder), 12

Γ, see drawing of a graph
Gauß code

closed Gauß code, 91
open Gauß code, 92
pile of twin-stacks, 92
sequence, 91
tangent point, 91

graph
directed, see digraph
drawing of a, see drawing of a graph
planar, see planar graph
undirected, see undirected graph

Hamiltonian circle, 5
Hamiltonian cycle, 5
Hamiltonian dipath, 5
Hamiltonian path, 5
head (deque), 15, 30
hierarchy, see acyclic digraph

indegree (digraph), 5
independent transits, 125
induced subgraph, 6
inner part of an edge curve (drawing of a

graph), 7
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input-restricted deque (deque layout), 52

IsCyclicDequeLayout (algorithm), 237

IsDequeLayout (algorithm), 32

isomorphic digraphs (digraph), 6

isomorphic graphs (undirected graph), 6

isomorphic multigraphs (multigraph), 6

IsSDLayout (algorithm), 72

Jordan arc (drawing of a graph), 7

Jordan’s curve theorem, 8

last in, first out, 15

LC, see linear cylindric

LC drawing, see linear cylindric drawing

plane, 27

LC embedding, see linear cylindric embed-
ding

LC planar, see linear cylindric planar

LC rotation system (linear cylindric embed-
ding), 29

LC rotation system induced by a Hamiltonian
path (linear cylindric), 43

leaf (depth-first search tree), 66

leaf block, 149

left-right partition (LR planarity criterion),
83

leftmost cycle (planar graph), 109

leftmost vertex/edge (planar graph), 109

length of dipath, 5

LIFO, see last in, first out

linear SUP (linear cylindric), 236

linear TUP (linear toric), 238

linear UP (linear cylindric), 236

linear cylindric

→ definition, 27

front line, 27

LC rotation system induced by a Hamil-
tonian path, 43

linear SUP, 236

linear UP, 236

plane LC drawing, 27

linear cylindric embedding, 30

LC rotation system, 29

linear cylindric rotation system, 29

planar LC rotation system, 29

linear cylindric planar, 27

linear cylindric planar digraph (deque layout),
235

linear cylindric rotation system (linear cylin-
dric embedding), 29

linear drawing (queue layout), 54
linear layout, 16, 26
linear layout induced by DFS tree (depth-first

search tree), 66
linear toric

front circle, 238
linear TUP, 238
linear toric drawing, 238
linear toroidal digraph, 238
linear toroidal drawing, 238

linear toric drawing (linear toric), 238
linear toroidal digraph (linear toric), 238
linear toroidal drawing (linear toric), 238
loop

directed, 5
undirected, 5

LR partition (LR planarity criterion), 83
LR planarity criterion, 82

fork, 83
fundamental circle, 83
left-right partition, 83
LR partition, 83
return edges, 83

LR planarity criterion (planar graph), 83
LR-feasible RUP embedding of a skeleton

(directed SPQR tree), 193
LR-feasible RUP embedding of an auxiliary

skeleton (directed SPQR tree), 193
LR-feasible alignment (directed SPQR tree),

202

MD, see mergeable deque
mergeable deque (splittable deque layout),

84
minimum feedback arc set, 196
mixed layout, 53
monadic second-order logic, 90
MSOL, 90
multigraph
→ definition, 5
isomorphic multigraphs, 6

node (SPQR tree), 159
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node sequence (SPQR tree), 162
node series (SPQR tree), 162

of a compound (directed SPQR tree), 177
of acyclic digraph (directed SPQR tree), 168
one-clique sum, 139
open Gauß code (Gauß code), 92
outdegree (digraph), 5
outer face (planar graph), 9
outerplanar (planar graph), 17
output-restricted deque, 25
output-restricted deque (deque layout), 52

page number, 18
partial rotation system, 127
path
→ definition, 5
Eulerian, 5
Hamiltonian, 5
simple, 5

PDA, 25
permutation network, 22
pile of twin-stacks (Gauß code), 92
planar

linear cylindric, 27
planar graph

cut face, 137
→ definition, 8
directed dual graph, 10
dual edge, 10
dual graph, 10
embedding, 9
face, 9
leftmost cycle, 109
leftmost vertex/edge, 109
LR planarity criterion, 83
outer face, 9
outerplanar, 17
primal edge, 10
primal graph, 10
rightmost cycle, 109
rightmost vertex/edge, 109

planar LC rotation system (linear cylindric
embedding), 29

planar rotation system, 9
plane drawing of a graph, 7
plane drawing of a graph (cylinder), 12

plane LC drawing, 27
plane LC drawing (linear cylindric), 27
Post machine, 25
pre-dSPQR tree (directed SPQR tree), 194,

195
primal edge (planar graph), 10
primal graph (planar graph), 10
ProcessVertex (algorithm), 32
proper leveled-planar graphs, 55
push-down automaton, 25
P node (SPQR tree), 160

quasi-upward plane drawing (upward pla-
narity), 103

queue, 15
queue edge (deque layout), 31
queue graph

arched leveled-planar, 54
→ definition, 53

queue layout
arches, 19, 54
augmented queue embedding, 58
linear drawing, 54
queue layout, 53
queue schedule, 53
twist, 19, 55

queue layout (queue layout), 53
queue schedule (queue layout), 53
Q node (SPQR tree), 160

R2-representation (cylinder), 12
R, see rotation system
radial drawing (upward planarity), 102
real-time deque automaton, 25
recurrent hierarchies (upward planarity), 103
recursively enumerable language, 25
regular language, 25
return edges (LR planarity criterion), 83
rightmost cycle (planar graph), 109
rightmost vertex/edge (planar graph), 109
rolling cylinder, 11
rolling upward planar (upward planarity), 102
root-to-leaf dipath (depth-first search tree),

66
rotation system
→ definition, 8
planar, 9
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RUP (upward planarity), 102

RUP(-embedded) node (directed
SPQR tree), 182

RUP(-embedded) skeleton (directed
SPQR tree), 182

RUP-embedded node (directed SPQR tree),
182

TestBiconnected (algorithm), 195

TestClosedDigraph (algorithm), 136

TestCompound (algorithm), 154

R node (SPQR tree), 160

SD, see splittabe deque

SD graph, see splittable deque graph

sequence (Gauß code), 91

simple circle, 5

simple cycle, 5

simple digraph, 5

simple dipath, 5

simple path, 5

simple undirected graph, 5

sink (digraph), 5

sink edge (directed SPQR tree), 169

skeleton (SPQR tree), 159

source (digraph), 5

source edge (directed SPQR tree), 169

spanning subgraph, 6

spanning supergraph, 6

spherical digraph (upward planarity), 101

spine (caterpillar), 149

spine block, 149

Split (algorithm), 73

split operation (splittable deque layout), 67

split pair (undirected graph), 7

splittable deque (splittable deque layout), 67

splittable deque graph (splittable deque lay-
out), 69

splittable deque layout

concatenation, 67

→ definition, 70

mergeable deque, 84

split operation, 67

splittable deque, 67

splittable deque graph, 69

splittable deque schedule, 68

tree layout, 68

splittable deque schedule (splittable deque
layout), 68

SPQR tree, 159
expansion graph, 160
flip, 163
node, 159
node sequence, 162
node series, 162
P node, 160
Q node, 160
R node, 160
skeleton, 159
swap, 163
S node, 160
virtual edge, 160

st-digraphs (upward planarity), 100
stack, 15
stack edge (deque layout), 31
stack number, 18
stack subdivision of a graph, 18
standing cylinder, 11
standing upward planar digraph (upward pla-

narity), 98
strict upward planarity (upward planarity),

103
strongly connected (digraph), 7
strongly connected component (digraph), 6
subgraph
→ definition, 6
induced, 6
spanning, 6

subtree of a vertex (depth-first search tree),
66

SUP (upward planarity), 98
supergraph
→ definition, 6
spanning, 6

swap (SPQR tree), 163
S node (SPQR tree), 160

tail (deque), 15, 30
tangent point (Gauß code), 91
terminal (digraph), 107
terminal edge (directed SPQR tree), 169
topological book embedding, 18
train switching problem, 84
transit (digraph), 108
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tree (undirected graph), 7
tree decomposition, 90

treewidth, 90
width of a tree decomposition, 90

tree edge (depth-first search tree), 65
tree layout (splittable deque layout), 68
treewidth, 19
treewidth (tree decomposition), 90
triconnected undirected graph, 7
trivial component (digraph), 107
trivial strongly connected component (di-

graph), 7
TUP (upward planarity), 227
TUPTestClosedDigraph (algorithm), 228
Turing machine, 25
twist (queue layout), 19, 55
two-clique summation, 162

unconnected undirected graph, 7
underlying undirected graph, 5
undirected graph

biconnected, 7
block, 7
block-cut tree, 7
complete, 5
connected, 7
connected component, 7
cut vertex, 7
→ definition, 5
isomorphic graphs, 6
simple, 5
split pair, 7
tree, 7
triconnected, 7
unconnected, 7
underlying, 5

undirected loop, 5

UP (upward planarity), 97
upward drawing of a graph, 97
upward planar digraph (upward planarity), 97
upward planarity

acyclic dipole, 101
bimodal rotation system, 105
cyclic drawings, 103
field respecting edge curve, 99
quasi-upward plane drawing, 103
radial drawing, 102
recurrent hierarchies, 103, 229
rolling upward planar, 102
RUP, 102
spherical digraph, 101
st-digraphs, 100
standing upward planar digraph, 98
strict upward planarity, 103
SUP, 98
TUP, 227
UP, 97
upward planar digraph, 97
upward toroidal digraph, 227
weakly field respecting edge curve, 99
wSUP, 101, 218

upward toroidal digraph (upward planarity),
227

uv -digraph, 168

vertex position (drawing of a graph), 7
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