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Abstract

In the Web 2.0 era, platforms for sharing and collaboratively annotating images with

keywords, called tags, became very popular. Tags are a powerful means for organizing

and retrieving photos. However, manual tagging is time consuming. Recently, the sheer

amount of user-tagged photos available on the Web encouraged researchers to explore

new techniques for automatic image annotation. The idea is to annotate an unlabeled

image by propagating the labels of community photos that are visually similar to it.

Most recently, an ever increasing amount of community photos is also associated with

location information, i.e., geotagged. In this thesis, we aim at exploiting the location

context and propose an approach for automatically annotating geotagged photos. Our

objective is to address the main limitations of state-of-the-art approaches in terms of

the quality of the produced tags and the speed of the complete annotation process. To

achieve these goals, we, first, deal with the problem of collecting images with the as-

sociated metadata from online repositories. Accordingly, we introduce a strategy for

data crawling that takes advantage of location information and the social relationships

among the contributors of the photos. To improve the quality of the collected user-tags,

we present a method for resolving their ambiguity based on tag relatedness information.

In this respect, we propose an approach for representing tags as probability distributions

based on the algorithm of Laplacian score feature selection. Furthermore, we propose

a new metric for calculating the distance between tag probability distributions by ex-

tending Jensen-Shannon Divergence to account for statistical fluctuations. To efficiently

identify the visual neighbors, the thesis introduces two extensions to the state-of-the-art

image matching algorithm, known as Speeded Up Robust Features (SURF). To speed

up the matching, we present a solution for reducing the number of compared SURF

descriptors based on classification techniques, while the accuracy of SURF is improved

through an efficient method for iterative image matching. Furthermore, we propose a

statistical model for ranking the mined annotations according to their relevance to the

target image. This is achieved by combining multi-modal information in a statistical

framework based on Bayes’ rule. Finally, the effectiveness of each of mentioned contribu-

tions as well as the complete automatic annotation process are evaluated experimentally.

Keywords: Image Annotation, SURF, Tagging, Geotagging, Flickr, Folksonomy.





Résumé

La technologie Web 2.0 a donné lieu à un large éventail de plates-formes de partage

de photos. Il est désormais possible d’annoter des images de manière collaborative, au

moyen de mots-clés; ce qui permet une gestion et une recherche efficace de ces images.

Toutefois, l’annotation manuelle est laborieuse et chronophage. Au cours des dernières

années, le nombre grandissant de photos annotées accessibles sur le Web a permis

d’expérimenter de nouvelles méthodes d’annotation automatique d’images. L’idée est

d’identifier, dans le cas d’une photo non annotée, un ensemble d’images visuellement sim-

ilaires et, a fortiori, leurs mots-clés, fournis par la communauté. Il existe actuellement un

nombre considérable de photos associées à des informations de localisation, c’est-à-dire

géo-localisées. Nous exploiterons, dans le cadre de cette thèse, ces informations et pro-

poserons une nouvelle approche pour l’annotation automatique d’images géo-localisées.

Notre objectif est de répondre aux principales limites des approches de l’état de l’art,

particulièrement concernant la qualité des annotations produites ainsi que la rapidité

du processus d’annotation. Tout d’abord, nous présenterons une méthode de collecte de

données annotées à partir du Web, en se basant sur la localisation des photos et les liens

sociaux entre leurs auteurs. Par la suite, nous proposerons une nouvelle approche afin

de résoudre l’ambiguté propre aux tags d’utilisateurs, le tout afin d’assurer la qualité

des annotations. L’approche démontre l’efficacité de l’algorithme de recherche de car-

actéristiques discriminantes, dit de Laplace, dans le but d’améliorer la représentation de

l’annotation. En outre, une nouvelle mesure de distance entre mots-clés sera présentée,

qui étend la divergence de Jensen-Shannon en tenant compte des fluctuations statis-

tiques. Dans le but d’identifier efficacement les images visuellement proches, la thèse

étend sur deux point l’algorithme d’état de l’art en comparaison d’images, appelé SURF

(Speeded-Up Robust Features). Premièrement, nous présenterons une solution pour

filtrer les points-clés SURF les plus significatifs, au moyen de techniques de classifica-

tion, ce qui accélère l’exécution de l’algorithme. Deuxièmement, la précision du SURF

sera améliorée, grâce à une comparaison itérative des images. Nous proposerons une un

modèle statistique pour classer les annotations récupérées selon leur pertinence du point

de vue de l’image-cible. Ce modèle combine différents critères, il est centré sur la règle

de Bayes. Enfin, l’efficacité de l’approche d’annotation ainsi que celle des contributions

individuelles sera démontrée expérimentalement.

Mots-clés: Annotation d’images, SURF, Tagging, Code Géographique, Flickr, Folk-

sonomie.





Zusammenfassung

Seit der Einführung von Web 2.0 steigt die Popularität von Plattformen, auf denen Bilder

geteilt und durch die Gemeinschaft mit Schlagwörtern, sogenannten Tags, annotiert wer-

den. Mit Tags lassen sich Fotos leichter organisieren und auffinden. Manuelles Taggen ist

allerdings sehr zeitintensiv. Animiert von der schieren Menge an im Web zugänglichen,

von Usern getaggten Fotos, erforschen Wissenschaftler derzeit neue Techniken der au-

tomatischen Bildannotation. Dahinter steht die Idee, ein noch nicht beschriftetes Bild

auf der Grundlage visuell ähnlicher, bereits beschrifteter Community-Fotos zu annotieren.

Unlängst wurde eine immer größere Menge an Community-Fotos mit geographischen Ko-

ordinaten versehen (geottagged). Die Arbeit macht sich diesen geographischen Kontext

zunutze und präsentiert einen Ansatz zur automatischen Annotation geogetaggter Fo-

tos. Ziel ist es, die wesentlichen Grenzen der bisher bekannten Ansätze in Hinsicht

auf die Qualität der produzierten Tags und die Geschwindigkeit des gesamten Anno-

tationsprozesses aufzuzeigen. Um dieses Ziel zu erreichen, wurden zunächst Bilder mit

entsprechenden Metadaten aus den Online-Quellen gesammelt. Darauf basierend, wird

eine Strategie zur Datensammlung eingeführt, die sich sowohl der geographischen In-

formationen als auch der sozialen Verbindungen zwischen denjenigen, die die Fotos zur

Verfügung stellen, bedient. Um die Qualität der gesammelten User-Tags zu verbessern,

wird eine Methode zur Auflösung ihrer Ambiguität vorgestellt, die auf der Informa-

tion der Tag-Ähnlichkeiten basiert. In diesem Zusammenhang wird ein Ansatz zur

Darstellung von Tags als Wahrscheinlichkeitsverteilungen vorgeschlagen, der auf den

Algorithmus der sogenannten Laplacian Score (LS) aufbaut. Des Weiteren wird eine

Erweiterung der Jensen-Shannon-Divergence (JSD) vorgestellt, die statistische Fluktu-

ationen berücksichtigt. Zur effizienten Identifikation der visuellen Nachbarn werden in

der Arbeit zwei Erweiterungen des Speeded Up Robust Features (SURF)-Algorithmus

vorgestellt. Zur Beschleunigung des Abgleichs wird eine Lösung auf der Basis von Klas-

sifikationstechniken präsentiert, die die Anzahl der miteinander verglichenen SURF-

Deskriptoren minimiert, während die SURF-Genauigkeit durch eine effiziente Methode

des schrittweisen Bildabgleichs verbessert wird. Des Weiteren wird ein statistisches Mod-

ell basierend auf der Baye’schen Regel vorgeschlagen, um die erlangten Annotationen

entsprechend ihrer Relevanz in Bezug auf das Zielbild zu ranken. Schließlich wird die

Effizienz jedes einzelnen, erwähnten Beitrags experimentell evaluiert. Darüber hinaus

wird die Performanz des vorgeschlagenen automatischen Annotationsansatzes durch um-

fassende experimentelle Studien als Ganzes demonstriert.

Schlagwörter: Bildannotation, SURF, Tagging, Geokodierung, Flickr, Folksonomie.
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Chapter 1

Introduction

1.1 The Context

The Internet is a ubiquitous medium that facilitates communication among people. The

way we use the Internet is evolving. With the emergence of Web 2.0 [Graham, 2005,

O’Reilly, 2005], we entered an era in which every internet user became a prosumer, i.e.,

a consumer as well as a producer of Internet content. Another characteristic of today’s

Internet is the fact that it turned into a platform of services supporting different kinds

of social interactions. With over 1 billion users, Facebook [Facebook, 2014] is one of the

most successful examples of the social Web.

Photos represent one of the most common content types which are contributed and

shared among the users of the Internet. This can be explained according to the avail-

ability of digital photography devices which provide an easy and a cheap medium for

producing photos. At the same time, the bandwidth of the current Internet connections

allows fast upload of photos. There are also several social aspects that make photos that

popular. Photos are not only a documentary or reminders; they are also an emotional

journal. Moreover, photos are a rich type of content that ”is worth a thousand words”

[Brisbane, 1911], they capture our moods and feelings and provide a proof that we have

been there. Additionally, photos represent a subtle means of social communication.

People post their photos as a statement of positive affirmation regarding the way they

live, what they do and what they achieved.

Social networks and specialized photo sharing websites like Flickr [Flickr, 2014a] are

witnessing immense amounts of contributed images. To get an impression of the scale

of digital photographs shared on the Web, we gathered statistics about photos hosted

by Flickr over a period of eight years using the provided API [Flickr, 2014b]. Figure 1.1

3
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shows that the number of photos is increasing from month to month and from year to

year1. In 2013, Flickr announced that they reached 8 billion photos [Robertson, 2013].
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Figure 1.1: Number of photos uploaded monthly to Flickr in the period from 1/1/2005
until 1/9/2013. We obtained the numbers using Flickr API

With the explosively growing amounts of online photos, there is an indispensable need

for efficient solutions for photo management. Currently, image sharing websites allow

users to annotate their photos with keywords called tags (Figure 1.2). Users can also

collaborate with each other in an activity called social tagging in order to enhance the

quality of the provided tags. Tagging has become a pervasive component of the Web and

the aggregation of the tags has even got its own name: folksonomy [Vanderwal, 2010].

Tags help to bridge the gap between the digital representation and the semantic of the

photos. Consequently, better management and retrieval can be achieved. Thanks to

tagging, photos can be retrieved using keywords in the same manner as text documents.

Recently, community photos have seen an additional improvement through the tech-

nique of geotagging. Geotagging is the process of adding location information (i.e. the

longitude and the latitude) to photo metadata. Geotags can be automatically inserted

into the EXIF descriptor [Technical Standardization Committee on AV & IT Storage

Systems and Equipment, 2002] of the image through built-in GPS receivers of modern

cameras or smart phones. It is also possible to assign location information manually

using an interactive map as provided by Flickr (Figure 1.3). Geotags provide another

dimension for retrieving and organizing photos based on their location of capture. Cur-

rently, there are considerable amounts of geotagged photos shared on the Web. For

1Note that Flickr API only retrieves the number of photos which declared as public by their owners.
Therefore, the presented statistics may not conform to the numbers published by the authorities of Flickr
which also consider private photos.
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Figure 1.2: Sample photos from Flickr with the associated user-provided tags

instance, the rate of geotagged photos uploaded to Flickr shows an increasing trend over

the years (Figure 1.4). At the time of writing this thesis, we counted around 214 million

of publicly accessible geotagged photos hosted by Flickr.

Figure 1.3: Assigning location information to a photo taken in Damascus using
Flickr’s interactive map

In spite of the mentioned advantages of tagging and geotagging, managing the huge

amount of personal as well as community photos is still far from satisfactory. On one

hand, manual tagging remains a laborious task, thus, it is usually ignored. Furthermore,

user-tags are noisy (i.e. incorrect and incomplete) since they are created in a free-style

and uncontrolled manner. On the other hand, it is true that geotagging provides an

effortless and simultaneously efficient way for photo organization and retrieval. However,
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Figure 1.4: Number of geotagged photos uploaded monthly to Flickr in the period
from 1/1/2005 until 1/9/2013. We obtained the numbers using Flickr API

is limited to one organizational aspect only, i.e., the location. Hence, geotagging alone

cannot meet the diverse user needs for organizing and retrieving photos.

1.2 Automatic Image Annotation

To address the limitations of manual tagging, research on automatic image annotation

has received a considerable attention. Automatic image annotation aims at associating

unlabeled images with keywords that describe their contents. Early research on auto-

matic annotation techniques focused on using machine learning techniques. The idea

is to use a dataset of already labeled images in order to train models for predicting la-

bels for un-annotated images. However, creating good training datasets is a challenging

and time consuming task. Indeed, most available datasets are limited to images corre-

sponding to small set of predefined concepts. Therefore, the annotations generated by

such approaches are also limited and they cannot meet the diverse ways in which people

describe and search for images.

Most recently, the sheer amounts of user-tagged photos available on the Web encouraged

researchers to explore techniques for leveraging this important resource in the automatic

annotation process. The idea is to annotate an unlabeled image by propagating the la-

bels of community photos that are visually similar to the input image. For this purpose,

content-based image retrieval (CBIR) techniques are applied to identify the visual neigh-

bors of the input image. Consequently, the labels of the visual neighbors are analyzed
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and transferred to the un-annotated image. Due to the implied retrieval step, such ap-

proaches are described as search-based. Compared to traditional approaches, there is

no limitation on the annotations produced by search-based automatic image annotation

approaches. That is because the produced annotation are derived from user-supplied

tags which are diverse in nature.

1.3 The Challenges

For all its promising edge, search-based image annotation has to deal with several chal-

lenges. The first challenge is posed by community tags as a main resource from which

annotations (for unlabeled images) are extracted. User-tags are created in an uncon-

trolled and free-style manner, thus, they are inherently noisy. Humans use inconsistent

terms to describe the same thing or use the same term to express different meanings

[Furnas et al., 1987]. In other words, polysemy and homonymy – two fundamental

problems in information retrieval – are also present in user-provided tags.

Second, as mentioned before, identifying images similar to the un-annotated image is

a core component of the automatic annotation process. Accordingly, automatic image

annotation has also to deal with two main challenges of CBIR techniques, namely the

accuracy and the speed of the applied technique. Generally, the accuracy of CBIR is

ruled by the low level image representation that is used, i.e., image features. In turn,

the complexity of extracting image features, representing them as descriptor vectors and

comparing the descriptors are major factors that influence the retrieval speed. Therefore,

in order to ensure the efficiency of automatic image annotation, solutions for improving

the accuracy and boosting the performance of the applied CBIR process have to be

investigated.

Third, automatic image annotation has to address the issue of estimating the rele-

vance/importance between candidate annotations and the target image. Therefore, there

is a need for robust models that are able to combine different relevance clues to rank

candidate annotations.

1.4 The Solution

Due to the current technological developments, we expect that geotagged photos will

dominate the Web in the near future. Geotagging is developing into a fully automatic

task. On one hand, there is a rapid popularization of GPS-enabled digital cameras

which can generate location information automatically. On the other hand, research for
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Figure 1.5: The workflow of the proposed image annotation approach

automatically identifying the location of non-geotagged images is witnessing more and

more success.

Based on this assumption, this thesis proposes an approach for automatically annotating

geogtagged images. In contrast to current solutions, our approach leverages the ever

increasing location information as a valuable resource in the process of mining candidate

annotations for unlabeled images. In addition to addressing the mentioned challenges,

such as efficient identification of similar images and tag ranking, the thesis also deals with

the problem of collecting image data from online image sharing websites and indexing

them to enable efficient retrieval. Furthermore, the thesis aims at addressing the problem

of tag noisiness in order to improve the quality of the produced tag proposals.

The workflow of our automatic annotation approach is illustrated in Figure 1.5. The

annotation process is divided into two main phases: a data preparation phase and a

tag mining phase. In the data preparation phase, a location-based crawling strategy is

applied to collect image data from community photo websites. The collected images are

then indexed spatially based on the associated location information. Subsequently, the

user-provided tags are analyzed in order to extract relatedness information which will

be used later on to improve the quality of tag proposals. The tag mining phase receives

an unlabeled image, which is geotagged, as input, and produces tag proposals as output.

In the following, the individual processing steps of the proposed approach and the cor-

responding thesis contributions are described.
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1 Data Collection and Indexing

Annotations for a target image are mined from tags of community photos taken in the

same location. For this purpose, online sharing websites, such as Flickr or Panoramio

[Panoramio, 2014] have to be queried. This is facilitated through specialized APIs which

allow access to different kinds of metadata about the stored images. However, the time

required to obtain the data is high. In general, search-based automatic annotation ap-

proaches demand an intensive data traffic between the online service and the annotation

system which leads to a serious performance bottleneck. To address this problem, the

initial phase of the proposed annotation approach provides efficient methods for collect-

ing and indexing huge amounts of geotagged community photos. In order to annotate a

wide-range of images taken in different places around the world, we created and spatially

indexed a world-scale dataset of geotagged images with the associated metadata.

Thesis Contribution: The thesis proposes a strategy for crawling data from Flickr.

Our method benefits from the idea of small-world phenomenon [Milgram, 1967] and

exploits Flickr friendship’s graph to generate a representative dataset on a world-wide

scale. More specifically, the collected data cover the whole world and the density of the

photos for a given place reflect its popularity among photographers. To allow efficient

retrieval, we introduced a method to index the data spatially based on the quad-tree

data structure [Finkel and Bentley, 1974]. Using the proposed method, we were able to

create and index a dataset of more than 14 million images.

2 Tag Relatedness Analysis

The second step of the data preparation phase deals with the problem of ambiguous and

redundant user-tags. In general, resolving tag ambiguity is done by creating a context

for each tag based on its relatedness to other tags in a given folksonomy. Subsequently,

the context is used to assist the process of identifying the correct meaning of the tag.

Thesis Contribution: The thesis presents a novel tag relatedness approach for re-

solving tag ambiguity. Our solution uses statistical means to model tags as probability

distributions based on their co-occurrence patterns in folksonomies. We deal with two

main issues that influence the quality of tag relatedness measures. First, we analyze the

effect of tag representation on the quality of the tag relatedness metric. Accordingly,

we propose a feature selection approach based on the technique of Laplacian score [He

et al., 2005] and use the identified features to construct tag probability distributions.

Second, since the relatedness between two tags is determined according to the distance

between the corresponding probability distributions, the applied distance metric plays
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a crucial role in this regard. Accordingly, we propose a distance metric based on the

idea of Jensen-Shannon Divergence [Manning and Schütze, 1999]. The main advantage

of the new metric, called Adapted Jensen-Shannon Divergence (AJSD), is its ability to

deal with statistical fluctuations which are inherent in probability distributions gener-

ated from samples. Finally, we propose a simple technique for exploiting the extracted

relatedness information in order to improve the quality of the mined tag proposals.

3 Geographical Similarity

The first step of the tag mining process implies searching for images taken in the same

location as the input image. To achieve this, the geographical coordinates of the input

image are extracted and used to query the image dataset created in the first phase.

Thesis Contribution: here, we provide an efficient processing of geographic queries

based on the spatial index created in the first phase.

4 Visual Similarity

In this phase, the set of geographically similar images is investigated to determine images

depicting the same or similar scenes as the input image. To achieve this goal, a CBIR

technique for image matching is applied. The tags of the visual neighbors represent the

set of candidate annotations for the target image.

Thesis Contribution: Although image matching techniques have witnessed great im-

provement in the last few years, they are still computationally expensive. In this thesis,

we perform image matching based on an improved version of a state-of-the-art algorithm

called SURF [Bay et al., 2008]. In this respect, we propose a method based on classifica-

tion techniques aiming to speed up the matching by reducing the number of compared

SURF descriptors. Furthermore, we introduce an efficient algorithm for iterative image

matching in order to improve the matching accuracy.

5 Tag Ranking

In this final phase, the knowledge gained from the previous phases is fed into a tag

ranking algorithm. Tag proposals are then further refined using the information provided

by the phase of tag relatedness analysis.

Thesis Contribution: We propose a statistical model for tag ranking based on Bayes’

rule. The model exploits three main information resources to determine the importance
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of candidate tags. These include information about tag usage pattern, the similarity

between the target image and the visual neighbors as well as user consensus regarding

the importance of the tags. We provide different alternatives to quantify this information

and analyze their effect on the quality of the final annotations.

The proposed automatic annotation approach was evaluated experimentally. We con-

ducted several studies in order to assess the efficiency of each of the presented contribu-

tions on an individual basis as well as within the frame of the global automatic image

annotation approach. The quality of the produced annotations was evaluated based on

a ground truth obtained from the Flickr Getty Image Collection [Flickr, 2014c] which

contains images annotated by experts.

1.5 Structure of the Thesis

The rest of the thesis is structured as follows:

• Chapter 2 introduces a survey of research effort on automatic annotation and its

associated challenges.

• Chapter 3 describes an approach for crawling and indexing geotagged images

from community photos websites. This chapter is based on the works published in

[Mousselly Sergieh et al., 2014a,b].

• Chapter 4 presents an approach for mining tag relatedness information for re-

solving tag ambiguity. This chapter is based on the works published in [Mous-

selly Sergieh et al., 2013, 2014c].

• Chapter 5 presents an approach for accelerating the process of image matching

based on SURF features. This chapter is based on the work published in [Mous-

selly Sergieh et al., 2012a].

• Chapter 6 investigates improving the accuracy of SURF-based image matching

through an iterative approach. This chapter is based on the work published in

[Mousselly Sergieh et al., 2012b].

• Chapter 7 describes an approach for tag ranking by combining different contex-

tual clues in order to determine tag-to-image relevance. This chapter is based on

the work published in [Mousselly Sergieh et al., 2012b].

• Chapter 8 presents the results of the experiments which were conducted in order

to evaluate the performance of the proposed automatic annotation approach.
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• Chapter 9 concludes the contributions of the thesis and gives an outlook for

possible future work.



Chapter 2

Related Work

The aim of this chapter is to review state-of-the-art on automatic image annotation

with a special focus on search-based methods. Furthermore, we will review related

works around the automatic annotation approach. We will especially investigate research

efforts related to the creation of representative datasets, the resolution of tag ambiguity

as well as boosting the efficiency of image matching

2.1 Introduction

As discussed before, the aim of automatic image annotation (AIA) is to generate de-

scriptive keywords (tags) for unlabeled images without (or with only a little) human

interference (Figure 2.1).

 

Automatic Image 

Annotation (AIA) 

Italy,  

Venice,  

San Marco, 

cathedral, 

roofs,  

sea, 

buildings, 

… 

Unlabeled image 
Descriptive keywords (tags) 

Figure 2.1: The goal of automatic image annotation

By digging into the literature on AIA, we can observe two broad categories of ap-

proaches. Before the emergence of Web 2.0, most AIA approaches aimed to solve the

problem using machine learning techniques or statistical modeling. Researchers describe

approaches of this category as model-based [Li et al., 2009a, Wang et al., 2012], image

13
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categorization-based [Mensink et al., 2010a] or statistical modeling-based [Ballan et al.,

2013]. The second category of AIA attempts to tackle the problem by exploiting the

diverse contextual information and metadata of the huge amounts of images available

on the Web of today. In the literature, such methods are known as model-free [Li et al.,

2009a], tag propagation-based [Mensink et al., 2010a], data-driven [Ballan et al., 2013] or

search-based [Wang et al., 2012]. In the course of this thesis we refer to AIA approaches

of the first category as model-based AIA and we use the term search-based AIA to denote

approaches of the latter category.

Before we discuss the literature on AIA, we roughly describe the process of identifying

similar images based on visual contents. In fact, this process is an essential component

for the majority of AIA approaches. Next, we provide a brief description of model-based

approaches while search-based approaches are discussed in detail since the approach

of this thesis fall into this category. Finally, we explore works which are relevant to

particular processing phases of the AIA approach proposed in this thesis. Specifically,

we discuss works about crawling image data, resolving the ambiguity of user-supplied

tags and improving the performance of image matching.

2.2 Content-based Image Retrieval

The aim of content-based image retrieval (CBIR) is to enable image search based on

the visual contents (colors, shapes, etc.) [Smeulders et al., 2000]. Users have access to

different choices to conduct the search. In this thesis, we are interested in what is called

target search, a.k.a query-by-example paradigm [Cox et al., 2000], which retrieves images

that are visually similar to a given query image. Such a task is useful for applications like

search-based image annotation (refer to Section 2.4) which requires identifying duplicates

and images depicting the same objects or scenes as the query image.

Roughly speaking, CBIR systems perform target search as follows. Given a database of

images, low-level features are first extracted and represented as numerical vectors called

descriptors. Subsequently, in order to find images similar to a query image the same

features are extracted from the latter and the corresponding descriptors are compared

to those of the images within the database using a distance function.

Image Features

The type and the quality of the extracted features are crucial factors for CBIR systems

to succeed. Therefore, the question of identifying “good” image features has received a
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great deal of interest by the computer vision community. In general, two kinds of image

features can be recognized: global and local features.

Global features are generated on the basis of the entire image. Most color, texture and

shape descriptors fall into this category [Rui et al., 1999]. Global feature can be efficiently

computed and they provide a compact representation of image content. However, they

are sensitive to clutter and occlusion.

In recent years, local image features showed promising results for many applications

such as near-duplicates identification and object detection and tracking [Prasad, 2012].

Among the known algorithms for local features is the pioneering work SIFT (Scale-

Invariant Feature Transform) [Lowe, 2004] and its variations, such as PCA-SIFT [Ke

and Sukthankar, 2004] and SURF (Speeded-up Robust Features) [Bay et al., 2008].

Identifying similar images based on local features is a three-step process. First, a de-

tection algorithm is applied to identify distinctive regions in the image called keypoints

(or interest points). Thereby, common approaches for blob or edge detection can be

applied. In the next step, a feature descriptor is created for each keypoint based on

the characteristic of the surrounding image patch. Finally, the similarity between two

images is defined in terms of keypoint correspondences. Compared to global features,

local features have high retrieval accuracy, however, they require high computations.

Furthermore, in contrast to global features, where the similarity between two images

implies comparing only two image descriptors, image similarity based on local features

requires comparing large number of local descriptors.

Image Matching

As mentioned before, the final step of CBIR implies comparing (matching) image de-

scriptors in order to identify similar images. Generally, the matching process employs

the notion of distance between two descriptors which correspond to two points in high

dimensional space. Euclidean distance and Manhattan distance are among the most

used metrics.

To be able to scale to large collection of images, CBIR has to deal with the problem of

high dimensionality. Hence, several research efforts have been made to provide efficient

dimension reduction and indexing algorithms, in order to speed up the matching process

while preserving accuracy. A widely used indexing algorithm is the one proposed by

[Ferhatosmanoglu et al., 2001] which is based on K-means clustering. Currently, a state-

of-the-art solution is introduced with the technique of bag of visual words (BoW). This

technique is widely applied with local features. The idea is to consider each keypoint

descriptor as a visual word. After that, a clustering algorithm (e.g. K-means) is applied
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and the centers of the learned clusters are used as codewords. Next, the codewords are

combined in a codebook and each image is represented as a histogram over the words

of the codebook. Finally, the similarity between two images is determined based on the

distance between their histograms which can be computed using conventional metrics

like the cosine measure or the Euclidean distance.

2.3 Model-based Automatic Image Annotation

Model-based approaches for automatic image annotation are based on the idea of finding

a mapping between low-level image features and semantic concepts (e.g. sky, car, sea).

This is achieved by analyzing a set of already labeled images, called the training set, and

creating a corresponding prediction model. Model-based approaches can be classified

into two categories: probabilistic modeling methods and classification-based methods

[Liu et al., 2009].

AIA approaches, which apply probabilistic modeling, are generative models which aim

to learn the joint probability distribution between image features and keywords. A

widely cited work of this category is the machine translation (MT) model proposed

by [Duygulu et al., 2002]. MT uses a training dataset of labeled images to learn a

mapping between image regions (blobs) and a predefined set of keywords. In contrast

to TM, which assumes one to one relationship between image regions and keywords,

[Jeon et al., 2003] proposed the cross-media relevance model (CMRM) which learns the

joint probability distribution by considering many to many correlations between image

blobs and keywords. [Lavrenko et al., 2003] introduced an extension of CMRM, called

continuous-space relevance model (CRM), which is able to deal with highly dimensional

continuous features. [Feng et al., 2004] also built upon CMRM and proposed the multiple

Bernoulli relevance model (MBRM) which uses kernel density estimates to model the

images while the keywords are modeled using a multiple Bernoulli process.

Classification-based AIA approaches are discriminative statistical models which treat the

problem of automatic image annotation as a classification problem. For this purpose,

each keyword is considered as an independent class and a classifier is learned to predict

the right class(es) of test images. A widely used method to construct the classifier is the

technique of support vector machines (SVM) (e.g. [Chapelle et al., 1999, Cusano et al.,

2003]). For detailed discussion about model-based AIA approaches, we invite interested

readers to refer to [Wang et al., 2012, Datta et al., 2008, Zhang et al., 2012, Wang, 2011].
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Limitations of model-based AIA

A well-labeled training dataset is essential for model-based AIA approaches to succeed.

However, creating a training dataset is a laborious manual task. Therefore, available

datasets are usually limited to images labeled with a small number of predefined visual

concepts. Therefore, model-based approaches have low scalability. Indeed, to scale up,

the learning algorithm must be applied periodically every time new concepts or images

are added, which demands high computations. Furthermore, the accuracy of classifi-

cation models drops significantly when number of the to-be-learned concepts (classes)

increases [Deng et al., 2010].

With respect to the quality of the produced annotations, [Enser et al., 2005] defined

two main limitations. The first problem, named visibility limitation, arises since the

produced tags are usually limited to objects appearing in the image. Hence, some

conceptual material or abstract concepts (e.g. happiness, anguish) cannot be predicted

because they are non-visible in nature, i.e., there are no corresponding salient features

that can capture them. The second problem, called generic object limitation, indicates

that model-based AIA are usually limited to generic/perceptual vocabulary (e.g. ”sky”,

”beach”, ”horse”, etc.). Such vocabulary is not adequate since users aim to retrieve

images identified by specific or unique concepts, e.g., proper names.

2.4 Search-based Automatic Image Annotation

The ubiquity of photo sharing services motivated researchers to explore methods for

leveraging the highly available image metadata and the associated contextual informa-

tion in order to automatically annotate unlabeled images. The advantage of the new

research line, i.e., search-based AIA, is the fact that it is able to address the mentioned

limitations of model-based AIA approaches. First, search-based AIA do not require a

training dataset of already labeled images. Second, search-based AIA can resolve the

problems of visibility and generic object limitations since it leverages user tags, which

are diverse in nature, as a resource for annotating unlabeled image. Therefore, there is

no restriction on the characteristics of the produced tags.

In general, for an unlabeled photo, search-based AIA retrieves a set of similar images

from a large scale database of already labeled images, such as the web or specialized

photo sharing platforms, e.g., Flickr. Subsequently, tags/keywords of similar images

are analyzed and propagated to the target image. More specifically, to identify similar

images, a two-phase search process is applied:
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1. Semantic/Contextual Search: this phase aims at identifying a set of related

images based on metadata or contextual information associated with the target

image. In the early years, the metadata have been provided either manually in the

form of initial keywords, or in the case of web images, they were extracted from

the associated titles, surrounding texts, URLs, etc. Currently, additional kinds of

contextual information can be obtained, such as timestamps, location information

or the social context of the user who created the photo.

2. Search by Image Contents: the goal of this phase to refine the results of the

previous search phase to the subset of images which are visually similar to the

target image. To achieve this, content-based image retrieval (CBIR) techniques

are applied.

Note that although most search-based AIA approaches follow this two-phase process,

some approaches use only one of the mentioned search phases.

In the next step, the keywords/tags of the similar photos, i.e., the candidate annotations

are propagated to the target image. Thereby, a ranking mechanism is applied before the

final annotations are delivered. Generally, different kinds of relevance relationships are

combined to rank candidate annotations:

• Image-to-Image Relevance (IIR): this kind of relevance is usually defined

according to the visual similarity between two images as determined by the applied

CBIR algorithm.

• Word-to-Image Relevance (WIR): it refers to the conditional probability of

generating an image given a keyword/tag.

• Word-to-Word Relevance (WWR): it refers to the semantic similarity/relat-

edness between two keywords.

• Word Importance (WI): indicates how popular a keyword is. This can be

estimated using contextual information, such as the popularity of the word for a

given group of users or using specialized linguistic resources like a thesaurus or a

dictionary.

In the following the literature on search-based AIA is discussed in detail. We will

demonstrate how different works estimate each on the mentioned relevance scores and

how they combine them. We refer with target image to the photo which we want to

annotate automatically. The set of images obtained from database of labeled images

through a semantic/contextual search is called the set of semantic neighbors. Moreover,
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we refer to the subset of images which are visually similar to the target image as the

visual neighbors. A taxonomic representation of the works discussed in the following

sections is provided in Figure 2.2.

2.4.1 The World Wide Web as Annotation Resource

In the early years, search-based AIA aimed at leveraging the metadata associated with

Web photos, such as, URLs, captions, surrounding text, etc. to annotate unlabeled

images. There are two common observations that can be inferred from these works.

First, a large part of them assume that the target image is associated with initial key-

words. They are either manually provided or if the target is a Web image, then initial

keywords can be extracted from the associated metadata. Second, the majority of these

approaches adopt content-based image retrieval techniques based on global image fea-

tures (e.g. color histogram, color correlogram, texture, etc.).

AnnoSearch is one of the earliest systems of this category [Wang et al., 2006a]. It

assumes that the target image is associated with at least one keyword. The initial key-

words are used to query the Web for semantically similar images. After that, CBIR

is applied to identify the visual neighbors of the target image. For this purpose, 36-

bin color correlogram image feature is used and indexed using 32-dimension hash codes

[Huang et al., 1997]. In order to generate a list of candidate keywords, the authors apply

the search result clustering (SRC) algorithm proposed by [Zeng et al., 2004] to cluster

the visual neighbors based on the associated textual metadata. Subsequently, a name

is generated for each cluster and used as a candidate keyword. To rank the candidate

keywords, the authors propose two methods: the maximum cluster size criterion which

ranks a keyword (cluster name) according to the number of images found in the cor-

responding cluster. The second method, called average member image score criterion,

ranks a keyword based on the average visual distance between the images found in the

corresponding cluster and the target image.

[Li et al., 2006] extended AnnoSearch to address the problem of requiring initial keywords

to start the annotation process. For this purpose, they propose an algorithm, called

Multi-Index, for indexing high dimensional image features. Consequently, the semantic

search phase is suppressed and the CBIR process is directly applied to determine the

visual neighbors.

[Wang et al., 2006b] proposed the scalable search-based image annotation (SBIA) ap-

proach. Thereby, the visual neighbors are identified from web images by applying CBIR

based on 64-dimensional feature that combines color moments, auto-correlogram and
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color texture moments. Candidate keywords are extracted from the metadata of the vi-

sual neighbors and ranked by combining two scores: 1) image-to-image relevance (IIR)

between the target image and the visual neighbors. Here, the Euclidean distance be-

tween the corresponding feature descriptors is computed. And 2) a word-to-image rele-

vance (WIR) which determines the importance of a candidate annotation based on its

similarity to the keywords associated with the visual neighbors. For this purpose, two

strategies were proposed. Word prominence measure which indicates how distinctive a

keyword for a given image is. It is estimated according to the number of occurrences

of the keyword in the metadata of the associated web image. The second strategy is

the image frequency-inverse keyword frequency (IFIKF ) which is based on the TF-IDF

(term frequency-inverse document frequency) measure [Baeza Yates et al., 1999]. The

authors further improved their approach in [Wang et al., 2006c]. A main extension is a

new ranking procedure based on the techniques of Random Walk with Restarts (RWR).

First, a fully connected graph is constructed, in which each candidate keyword represents

a node. The edges are weighted according to the similarity between the connected nodes.

To that end, the authors introduce a measure for word-to-word relevance (WWR). For

two words, each of them is used to query a Web image searcher (e.g. Google Image

[Google, 2014]) and the number of returned results for each of them is counted. Next,

the co-occurrence of the two words is calculated by using both of them together to query

the search engine. Finally, the similarity between the two words is calculated by divid-

ing their co-occurrence count on that of the word of the minimum occurrence. After

generating all weights for the graph, the RWR algorithm is applied to determine the

final relevance scores.

The work of [Rui et al., 2007a] adopted the same measures of WWR and WIR pro-

posed by [Wang et al., 2006b,c] for ranking keywords extracted from the metadata of

Web images. However, they investigated using Dampster-Shafer theory [Shafer, 1976]

to combine WWR and WIR scores for ranking the final annotations. In their later work

[Rui et al., 2007b], the authors follow the same procedure as in AnnoSearch [Wang et al.,

2006a] to extend the initial keywords using the search result clustering algorithm (SRC)

[Zeng et al., 2004]. Their main contribution is a procedure for re-ranking the initial as

well as the extended keywords based on a bipartite graph reinforcement model (BGRM).

To achieve this, two disjoint graphs corresponding to the initial and the extended key-

words (which were acquired by SRC), respectively, are created. The two graphs are

then connected to build a bipartite graph. An edge is drawn between two nodes of the

two disjoint graphs based on their similarity. More specifically, an initial keyword x

(from the first graph) is linked to an extended keyword y (from the second graph) if y is

extracted from the search results of x or if x is similar to y. Similar words are identified

according to WordNet [Miller, 1995] and the Jiang & Conrath measure (JCN) [Jiang
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and Conrath, 1997]. Finally, a graph reinforcement learning algorithm is applied on the

generated bipartite graph to boost the ranks of the candidate annotations.

[Liu et al., 2007] proposed the dual cross-media relevance model (DCMRM) which as-

sumes that a predefined lexicon exists, from which candidate keywords can be extracted.

DCMRM aims at maximizing the joint probability distribution of images and words

based on the expectation over the words of the predefined lexicon. Specifically, DCMRM

assumes that the probability of observing a keyword w and the target image Iu is mu-

tually independent given a keyword v ∈ V from the predefined lexicon V as given in the

following formula:

w∗ = arg max
w⊂V

∑
v∈V

P (Iu|v)P (w|v)P (v) (2.1)

Where w∗ ∈ V is the word which best describes Iu, P (Iu|v) is the word-to-image rel-

evance, P (w|v) is the word-to-word relevance and P (v) is the importance of the word

v. The annotation procedure starts by assuming that the target image is associated

with initial keywords. Next, a two-phase search is applied to identify the set of visual

neighbors of the target image. To calculate WIR (i.e., the term P (Iu|v)), two scores

are combined: 1) the semantic similarity between the candidate keyword and the set

of keywords associated with the visual neighbors and 2) the similarity between the tar-

get image and the visual neighbors. To calculate the semantic similarity between two

words, the authors present a measure based on the idea of the Normalized Google Dis-

tance (NGD) [Cilibrasi and Vitanyi, 2007]. To compute P (w|v) and P (v) the two terms

are rewritten as P (w, v) = P (w|v).P (v) and the proposed NGD-based distance between

the two words is used as an estimator.

[Xia et al., 2008] also consider annotating Web images using initial keywords extracted

from the associated metadata. In contrast to the discussed works, the authors consider

using WordNet and the technique of latent semantic analysis (LSA) [Deerwester et al.,

1990] to improve the quality of the generated annotations. First, the initial keywords

are ranked using a combination of the standard TF-IDF weight and a score for word

visibility based on WordNet. Thereby, the visibility of a word is defined according to its

ability to describe the visual contents of the image. Next, additional candidate keywords

are obtained by applying latent semantic analysis (LSA) to determine synonyms for the

initial keywords. To rank candidate keywords, each of them is first used to obtain images

from the Web. Images of each result set are then clustered based on their visual features.

Finally, the originating keyword is given a score based on the average similarity between

the target image and the centers of the top matching visual clusters.
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[Mei et al., 2008] place a special emphasis on the semantic coherence between candidate

annotations. An example of semantically coherent words is the pair ”cat” and ”tiger”

while the word pair ”indoor” and ”sky” is not. Their annotation approach consists

of three steps: first, given a set of labeled images (the training set), semantic clusters

are built based on the semantic similarity of the associated keywords using WordNet.

In the next step, a semantic distance function (SDF) is learned for each cluster. The

rationale behind this is that the distance between image features should be adapted

according to the semantic of the corresponding group. Finally, a search-based approach

is used to annotate a new image. For this purpose, CBIR process is performed where

the similarity between the target image and an image of a certain semantic cluster is

determined according to the learned SDF. Next, similar images are ranked and their

annotations are propagated to the target image.

2.4.2 Community Photos as Annotation Resource

Compared to the World Wide Web, collaborative image sharing platforms (e.g. Flickr)

provide a structured resource in which users explicitly define the association between the

images and their textual description (tags, titles, etc.). Furthermore, the new platforms

provide rich contextual information about images, such as their locations, the users who

uploaded them and their social contexts. In what follows, we review works on AIA that

leverage community-tagged photos with the associated contextual information.

2.4.2.1 Classification-based Approaches

Works of this category use community labeled photos to create training dataset and

apply classification methods to predict labels for un-annotated images.

[Lindstaedt et al., 2008] presented Tagr - a system for tag recommendation using a

subset of Flickr images. Tagr deals with a predefined subset of concepts taken from the

”fruit & veg” pool on Flickr. It applies a model-based approach and train a multi-label

SVM classifier using the MPEG-7 Color Layout descriptor as a classification feature.

Another work which leverages Flickr for building a training dataset was proposed in

[Chen et al., 2008]. The authors create a training dataset for 62 predefined concept

using two crawling strategies: 1) a photo-level data collection strategy in which each

of the 62 concepts are used to retrieve photos from Flickr and 2) group-level strategy

which retrieves photos from Flickr groups that match the predefined concepts. In the

next phase, training datasets obtained by both data collection strategies are fused and

used to train an SVM classifier in which each concept correspond to a class. For each
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image 369 dimensional feature vector is created comprising color, texture, and edge

features. To automatically annotate a new image the classifier is used to predict the top

concepts. Next, the predicted concepts are used to retrieve the best matching Flickr

groups. Finally, candidate annotations are extracted from the most used tags of the top

groups.

2.4.2.2 Semi-automatic Approaches

A considerable body of works assumes that the target image is partially annotated and

aims at extending the initial annotations with tags extracted from community photos.

[Sigurbjörnsson and van Zwol, 2008] presented an approach for extending initial image

tags based on tag co-occurrence analysis. To this end, two measures for tag co-occurrence

were proposed: a symmetric measure based on Jaccard coefficient and an asymmetric

measure which normalizes the co-occurrence of a tag pair based the number of occur-

rences of one of them. Candidate tags are then re-ranked using a combination of two

scores: tag aggregation and tag promotion. Tag aggregation can be determined accord-

ing to either of two strategies. A vote strategy which determines the importance of

a tag based on the number of initial tags which extended it. The second strategy is

based on the sum of the co-occurrences of the candidate tag with each of the initial

tags. The promotion score attempts to consider the tagging behavior on Flickr to deter-

mine the importance of a tag. Accordingly, the authors define three measures: stability

and descriptiveness which penalize tags with low and high usage frequency, respectively,

and rank -promotion which weights a tag t extended by an initial tag u according to its

position in the list of the candidate tags extended by u.

[Anderson et al., 2008] adopted the co-occurrence model of [Sigurbjörnsson and van Zwol,

2008] as a language component in a system for automatic image annotation called Tagez.

Tagez also provides a vision component which is able to produce tags for unlabeled

images by applying a model-based AIA approach called ALPIR [Li and Wang, 2008]. To

annotate a new image, the two models are run to produce lists of candidate annotations.

Finally, Borda voting is used to combine the ranks produced by both models.

[Wu et al., 2009] introduced a model for tag recommendation which also exploits tag

co-occurrence. The proposed approach extends initial image tags using three kinds of co-

occurrence measures. The first measure adopts the tag co-occurrence of [Sigurbjörnsson

and van Zwol, 2008]. The second estimates the similarity between two tags based on the

correlation between their visual contents. For this purpose, the authors used the visual

language model (VLM) algorithm [Wu et al., 2007] to generate a visual representation for

each tag. Subsequently, the visual-content similarity of two tags is determined according
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to the distance between the corresponding VLMs. The final type of tag co-occurrence

determines the similarity between two tags with regard to the target image. This is

defined in terms of the distance between the VLM of target image and the VLM of

each of the tags. Finally, the three similarly scores are combined using the Rankboost

algorithm [Freund et al., 2003] to rank the candidate annotations.

[Li et al., 2009b, 2008] proposed a method for estimating tag relevance (i.e. word-to-

image relevance) based on neighbor voting. The goal is to rerank a set of initial tags

assigned to a target image. For this purpose, they adopt the same CBIR technique as

in [Li et al., 2006, Wang et al., 2006b] to identify a set of visual neighbors from Flickr.

Next, a relevance score is given for each tag according to the number of visual neighbors

which are annotated with it. To reduce the bias caused by a single user annotating

a large number of images with the same collection of tags, the visual neighbor set is

restricted to a single image per user. Furthermore, the authors introduced a prior for

each tag based on its frequency of occurrence in the complete image set.

A further technique for neighbor voting was proposed by [Makadia et al., 2010]. First,

CBIR process based on global image features is used to identify a ranked list of visual

neighbors for the target image. The target image is then annotated, by, first, propagating

the tags of the top visual neighbor, followed by the tags of the second top one, and so on.

The importance of a tag given a visual neighbor is determined based on its frequency in

the complete training set.

[Guillaumin et al., 2009, Verbeek et al., 2010] proposed an AIA, calledTagProp, which

also applies the neighbor voting technique. TagProp weights the votes of the visual

neighbors using distance-based or rank-based techniques. To compensate tag frequen-

cies, the authors propose a tag-specific sigmoid to boost the probability for tags with

low frequency and to lower the probability of very frequent tags. TagProp was extended

by [Mensink et al., 2010b] through a pseudo relevance feedback model to boost the ranks

of the visual neighbors.

2.4.2.3 AIA using Spatial and Temporal Contexts

The popularity of geotagged community photos inspired interesting applications, such

as event discovery [Yuan et al., 2008, Naaman et al., 2004] and automatic landmark

identification [Quack et al., 2008, Zheng et al., 2009, Kennedy and Naaman, 2008].

A notable work was presented by [Kennedy et al., 2007] to extract location-based rep-

resentative tags. For a given geographical area, related geotagged photos are obtained

from Flickr and clustered according to their geographical coordinates. The images are
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then clustered based on their visual-contents. Next, information about the geographical

as well as the visual clusters is used to identify representative tags for the correspond-

ing geographical area using a specialized TF-IDF measure. Furthermore, the authors

investigated identifying the semantic of the tags by automatically classifying them into

location or event tags. The mined tags are then used by the World Explore visualization

tool [Ahern et al., 2007].

Among the earliest works which exploit geotagged community photos for automatic

annotations is the LOCALE system proposed by [Naaman et al., 2003]. LOCALE relies

on proximity information to propagate the captions of already tagged photos to other

photos taken in the same location.

ZoneTag is a mobile phone application which uses location-based contextual informa-

tion to suggest tags for newly captured photos [Naaman and Nair, 2008]. For this

purposes, ZoneTag exploits several contextual clues to mine candidate tags. These in-

clude location-based tagging history of the user who took the photo, the location-based

tagging history of other users and Yahoo services for identifying point of interest (e.g.

restaurants, cafes) and possible events in the location of image capture. Finally, the

authors apply heuristics to score the candidate annotations according to the resources

from which they were extracted.

Another mobile phone application is presented in [Cheng et al., 2010]. The applica-

tion leverages information provided by the GPS and the compass sensors of the mobile

phone for the tag mining process. First, the boundaries of the geographical area cor-

responding to the target image are determined and divided into a grid of overlapping

cells. Next, images corresponding to each cell are obtained from Flickr and clustered

based on their visual contents. For this purpose, agglomerative clustering and the bag

of visual word (BoW) representation for image features are used. Next, representative

tags are extracted for each cluster by applying a TF-IDF-based measure. Thereby, the

term frequency for a tag associated with a given cluster corresponds to its number of

occurrences among the images in that cluster. The inverse document frequency corre-

sponds to the ratio of tag occurrence in the whole set of clusters. To annotate a new

image its visual neighbors are first determined. Next, GPS and compass information are

fused to determine the best matching cluster. Finally, representative tags of top clusters

are transferred to the target image.

MonuAnno is a system with a focus on automatically annotating landmark photos

[Popescu and Moëllic, 2009]. For this purpose, a dataset of 5,000 landmarks was created

by crawling geotagged photos with the associated user-tags from Flickr and Panoramio.

The photos in the dataset were indexed by applying the BoW (bag of visual words)
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technique on SIFT features. The annotation of new unlabeled images is performed us-

ing two-step K Nearest Neighbor (KNN) algorithm. First, photos of landmarks found

in the geographical neighborhood (up to 1 KM) of the target image are identified. Next,

candidate landmarks are determined based on the visual similarity between the target

image and the geographical neighbors. Finally, a verification procedure is applied to

eliminate false positives and the name of the top matching landmark is propagated to

the target image.

[Abbasi et al., 2009] proposed an approach for automatic image annotation by clustering

community geotagged photos based on the geographical location, the user-supplied tags,

and the visual contents. The annotation of an unlabeled image is done as follows: the top

matching cluster is determined based on the location of the target image and the same

visual features which are used to build the clusters. Consequently, tags of the matching

cluster are chosen as candidate annotations. Finally, the tags are ranked according to

the number of users which applied them.

An approach which is most relevant to this thesis is the SpiritTagger system proposed by

[Moxley et al., 2008]. The automatic annotation process of SpiritTagger consists of two

phases: a geographical mining phase, in which images taken in the spatial proximity of

the target image are obtained from Flickr. In the second phase, CBIR process is applied

to identify the visual neighbors of the target image out of the geographical neighbors.

Next, candidate tags are extracted from the annotations of the visual neighbors and

ranked by combining their local as well as global occurrences. Local occurrence of a

tag indicates its frequency in the collection of geographical neighbors, while the global

occurrence refer to its total occurrence in the complete set of Flickr images. Finally,

tags with higher local frequency are favored and proposed as annotations for the target

image.

Two additional works that follow a procedure similar to that of SpiritTagger [Moxley

et al., 2008] were proposed by [Silva and Martins, 2011] and [Mitran et al., 2013], re-

spectively. Both works focus, however, on investigating methods for combining different

kinds of tag relevance estimators. For instance, [Silva and Martins, 2011] explored su-

pervised (e.g. RankBoost) as well as rank aggregation methods (e.g. CombSUM and

CombMNZ [Shaw et al., 1994]) to combine relevance scores which are derived from tag

usage pattern, geospatial proximity, and image visual similarity.

In contrast to the presented works which ignore or implicitly use the temporal context,

some researches explicitly investigated the importance of temporal information for AIA.

[McParlane and Jose, 2013] proposed using tag temporal co-occurrence to improve the
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annotation generated by state-of-the-art AIA approaches. Thereby, the authors inves-

tigated integrating tag co-occurrences over different time-windows (i.e. hours, days,

months and years) in the annotation process.

2.4.2.4 AIA using Social Context

Currently, there is an increasing trend to exploit relational information, i.e., the social

context provided by photo-sharing websites to assist the process of automatic image an-

notation. In general the social context is used in a complementary process for extending

candidate annotation produced by a given AIA approach (e.g.[Denoyer and Gallinari,

2010, Sawant et al., 2010]).

In their early work, [Garg and Weber, 2008] proposed a method for providing immediate

tags proposals for the user annotating some photo based on the entered tags. The

suggestions are selected from tags: which 1) were used often by the user in the past, 2)

which the user often used with the initial tag (co-occur) to annotate his photos, and 3)

from tags of Flickr groups that correspond to user interest and co-occur frequently with

the initial tag.

Sawant et al. [Sawant et al., 2010] proposed a method for extending initial annotations

obtained by ALPIR image annotation system [Li and Wang, 2008]. In order to automat-

ically annotate the image of a given user, a set of initial annotations A is first produced

using ALPIR. Next, the set of tags Tsocial is built out of the annotations applied by

the users belonging to the social network of the initial user. Finally, a candidate tag

ti ∈ Tsocial is ranked based on its co-occurrence with the initial annotations, A.

[Rae et al., 2010] also considered extending initial image annotations. For each extended

tag four scores are calculated based on its co-occurrence with the initial tags. These

scores are derived based on four layers for social context: 1) the user personal context

which corresponds to user tagging history, 2) the social context of the user which consists

of tags used by all users found in the contact list of the initial user, 3) the social group

context which contains all tags used in groups to which the initial user belongs, and 4)

the collective context which contains tags corresponding to photos posted by all users.

The final tag ranks are then determined by combining the four calculated scores using

Borda voting.

To annotate unlabeled image, [Elahi et al., 2010] applied social network analysis to

identify the central user, which has high annotation activity, from the social network of

the uploader of the image. The idea is to identify images of the central user which were

taken in the same location as the input image. Next, the tags of the central users are

propagated to the input image.
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2.5 Related Work around Search-based Image Annotation

Based on the above review, we can identify three main aspects which influence the

quality of search-based image annotation approaches. The first aspect is concerned with

the repository of labeled images from which the semantic and visual neighbors of the

target image are retrieved. In order to enable annotating images of different natures,

the images in the repository have to be representative, i.e., they have to cover various

topics, locations, events, etc. Second, search-based AIA approaches deal with user-

tags as a main resource for candidate annotations. However, user-tags are noisy and

inherently ambiguous. To ensure the quality of the mined tags, there is an urgent need

to provide solutions for resolving tag ambiguity. Finally, CBIR is a core component for

the majority of automatic image annotation approaches. Therefore, a special emphasis

should be placed on the kind of used image features and the speed as well as the accuracy

of the applied CBIR process.

In the following, we discuss the state-of-the-art regarding the mentioned aspects.

2.5.1 Geo-based Photo Crawling

Collecting data from community contributed photos for the purpose of automatic image

annotation has been investigated in several works. The goal is to create a dataset of

user-labeled images which can be pre-processed and indexed to achieve efficient retrieval.

Since the approach of this thesis relies on the location context, we focus on methods

for data crawling from online photo sharing platforms based on location information

Currently, the significant amount of geotagged photos available online gave rise to a

number of strategies for location-based data crawling.

[Keßler et al., 2009] proposed an approach to crawl geotagged photos based on keyword

search. For this purpose, photo sharing services are first queried using keywords (e.g.

city names). Next, all geotagged images annotated with these keywords are retrieved.

The datasets presented in [Hays and Efros, 2008, Kalantidis et al., 2011, Tolias and

Avrithis, 2011, Hollenstein and Purves, 2013, Weyand et al., 2012] were created by

using the geographic query feature provided by Flickr API. The queries are built based

on the geographic boundaries of specific cities or urban centers. A first effort to build

world-scale photo dataset was introduced in [Quack et al., 2008]. Initially, the authors

divide the world map into a grid of overlapping tiles. After that, the boundaries of each

tile are used to query Flickr. [Crandall et al., 2009] also presented a data collection

strategy for creating a world-scale photo dataset from Flickr. The main focus of the

proposed method is to create a sample with a real spatial distribution. That means, the
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density of the photos collected from a given place should reflect the popularity of that

place among photographers. The crawling method starts by randomly selecting a photo

identifier from the pool of Flickr photo identifiers. Next, the uploader of that photo is

identified and the corresponding geotagged photos are downloaded with the associated

metadata. Additional photos are then acquired by traversing the friendship graph of the

initial user to identify new users and downloading the corresponding geotagged photos.

To obtain additional data, the complete process is repeated by selecting a new photo

identifier.

Recently, a number of photo datasets which provide location information (explicitly or

implicitly) have been made available for research purposes. For the Photo Annotation

and Retrieval Task, ImageCLEF initiative [ImageCLEF, 2014] provides a dataset based

on MIRFlickr [Huiskes and Lew, 2008]. It contains one million Flickr images with a

subset of 25,000 manually annotated photos. MIRFlickr provides different kinds of

metadata about the downloaded images, such as the EXIF files and the associated

user-tags. However, by investigating the EXIF descriptors, we found out that location

information is either missing or inaccurate for a large part of the photos in the dataset.

NUS-Wide is another dataset based on Flickr [Chua et al., 2009]. It consists of 269,648

images with the associated user-tags as well as six types of low-level image features.

Additionally, the dataset provide a ground-truth for 81 concepts. However, only a

small part of the photos in the dataset are geotagged (around 50,000). Additional

dataset of about one million photos was introduced in [Kalantidis et al., 2011]. The

data were crawled from Flickr and correspond to 22 European cities. The dataset was

extended in [Tolias and Avrithis, 2011] to 40 world cities with a total of about 2,23

million images. However, these datasets provide only the photos without the associated

metadata. The authors of [Weyand et al., 2012] provide a script for a dataset called

Paris500k. The dataset contains more than 500 thousands photos taken in the city of

Paris. A further dataset with a main focus on reverse geotagging is presented by the

MediaEval benchmarking initiative [MediaEval, 2014]. The dataset, named MediaEval

Placing Task 2013 Data Set contains around nine million geotagged images crawled from

Flickr [Hauff et al., 2013]. User tags are also provided, however, in their raw ”noisy”

form. Additionally, the authors did not give any information on the applied crawling

strategy and the spatial representativeness of the data.

2.5.2 Resolving Tag Ambiguity

Collaborative tagging as a common practice of Web 2.0 led to complex networks of users,

tags and resources which are currently known under the name folksonomy. The term

folksonomy is a portmanteau of the two words ”folk” and ”taxonomy” and it was first



Chapter 2. Related Work 31

introduced by [Vanderwal, 2010]. According to the degree of user collaboration, Van-

derwal classifies folksonomies into two main categories: broad and narrow folksonomies.

While in broad folksonomies, such as the bookmarking website del.icio.us [del.icio.us,

2014], multiple users annotate the same resources with a variety of terms, narrow folk-

sonomies show a lower degree of user interaction. Indeed, in narrow folksonomies the

tagging activity is mainly performed by the content creators. Image folksonomies like

Flickr belong to this category.

Tag Nosiness

Due the freedom and uncontrolled manner of tag creation, tags suffer from several intrin-

sic problems. [Mathes, 2004] defines two main problems of user-supplied tags: ambiguity

and lack of synonym control a.k.a redundancy [Gemmell et al., 2009]. We use the term

tag noisiness to encompass both problems.

Ambiguity arises when the same tag is used to indicate different meanings. [Weinberger

et al., 2008] defined different kinds of tag ambiguity:

• Word-sense ambiguity: in this case, the right sense of the word is determined

according to the context. For example, the word ”bank” can mean a financial

institution or a river bank.

• Language ambiguity: here, the word in one language can mean something dif-

ferent in another language. For example, the word ”Gift” means poison in German

and present in English.

• Temporal ambiguity: the exact meaning of a temporally ambiguous word is

determined according to a certain date or time period. For example, ”World Cup”

of 2006 or 2010.

• Geographic ambiguity: the meaning of the word is defined according to a given

geographical context. For example, ”Cambridge” is a city in the UK as well as in

Massachusetts, USA.

Tag redundancy emerges when different tags are used to describe the same thing. Here,

we can also recognize different types:

• Lexical variations: users tend to adopt different lexical styles to express the

same thing. The main cause of this problem is that most annotation systems

allow using single-word tags only. To overcome this limitation, multi-word tags
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are combined in different ways. For instance, a tag referring to the ”United States”

can be expressed using a hyphen ”united-states”, an underscore ”united states”,

or the camel case ”UnitedStates”.

• Different naming conventions: it is common that people use different naming

styles to refer to the same thing. For example, to annotate an image taken in New

York some people use ”New York” while other use the abbreviation ”NYC”.

• Vernacular geography: it is very common to use informal geographical vocab-

ulary to refer to geographical entities. For instance, to indicate a neighborhood, a

statue, a pub, a hill or an area, people might use terms which are not recorded be-

fore on maps or gazetteers. For example, the landmark building called ”Spinnaker

Tower” is known among the people of in Portsmouth as ”The Pregnant Pin”. An-

other example is the term ”city business center” which is expressed using different

local names. People in North America prefer the word ”downtown”, while ”city-

centre” is widely used in England and the abbreviation ”CBD” (Central Business

District) is most common in Australia.

• Multilingualism: refers to using different languages to denote the same thing,

e.g., ”tower” in English and ”Turm” in German.

Mining Tag Relatedness for Resolving Tag Ambiguity

In order to resolve tag ambiguity1, researches worked on techniques for identifying related

tags by analyzing their usage patterns. Generally, the focus of most solutions is to exploit

tag co-occurrence statistics and clustering techniques to identify groups of tags which

share similar semantics. Consequently, tag relatedness information is used to identify

the real meaning of individual tags.

Formally, a folksonomy F is defined as a tuple F = {T,U,R,A} [Hotho et al., 2006a]

where T is the set of tags contributed by a set of users U to annotate a set of resources

R. A co-occurrence of two tags t1, t2 ∈ T indicates that they are used by one or more

user to describe the same resource r ∈ R. This is captured by the assignment relation,

A ∈ U × T ×R.

With respect to the three dimensions of the folksonomy T , U and R, a tag can be

represented as a vector in one (or in combination) of three possible real vector spaces:

R|T |, R|U | and R|R|, respectively [Cattuto et al., 2008]. In the following we will refer

1Most researchers use the term ”tag ambiguity” to refer to tag ambiguity and tag redundancy at the
same time.
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to these real spaces as RT , RU and RR, respectively. In RT representation, called tag-

context, a tag t is defined as a vector v(t) ∈ RT with the entries corresponding to the

unique tags in the folksonomy. The value of an entry corresponding to another tag t′ ∈ T
is given by the number of resources that have been tagged with t and t′ at the same

time. The second kind of tag representation is called user-context. The entries of the

tag vector v(t) ∈ RU correspond to the unique users in the folksonomy. The value of an

entry related to a user u ∈ U indicates how often u has used t in his annotation activity.

The last kind of tag representation is the resource-context. The entries of the tag vector

v(t) ∈ RR correspond to the unique resources in the folksonomy. The value of an entry

related to a resource r ∈ R corresponds to the number of times in which t was used to

annotate r.

Approaches for tag relatedness use one or more of the presented tag contexts to identify

related tags (e.g. [Cattuto et al., 2008, Hotho et al., 2006b, Specia and Motta, 2007,

Begelman et al., 2006]). The choice of the context is usually determined according to

the type of the folksonomy, i.e., narrow or broad. In image folksonomies like Flickr,

where low user collaboration is observed, tag-context is widely used.

[Begelman et al., 2006] proposed a tag relatedness measure which is based on tag co-

occurrence counts (i.e. the tag-context). In that approach, the co-occurrence of each

tag pair is computed and a cut-off threshold is used to decide whether two tags are

related. This threshold is determined using the first and the second derivatives of the

tag co-occurrence curve. Finally, tag clusters are identified by organizing the tags in

a similarity matrix and applying spectral bisection clustering algorithm on it. [Specia

and Motta, 2007] also exploit the tag-context representation to identify groups of similar

tags. First, the tags are organized in a co-occurrence matrix with the columns and the

rows corresponding to the tags. The entries of the matrix represent the number of times

two tags were used together to annotate the same resource. Next, each tag is represented

by a co-occurrence vector and the similarity between two tags is calculated by applying

the cosine measure on the corresponding vectors. Finally, the tag similarity matrix is

fed into a clustering algorithm to identify groups of similar tags. In a similar manner,

[Gemmell et al., 2008a,b] apply clustering on the tag similarity matrix to identify groups

of related tags. However, to create the similarity matrix, the authors represent the tags

as vectors where the entries correspond to TF-IDF scores. Thereby, resources (e.g., im-

ages, web pages) are considered as documents while the tags are considered as terms.

Finally, agglomerative clustering is applied to identify groups of similar tags. [Simpson,

2008] investigated using graph techniques to identify groups of similar tags. For that

purpose, the author propose normalizing tag co-occurrences using Jaccard coefficient

and organizing the tags in a similarity graph. Subsequently, an iterative divisive clus-

tering algorithm is applied on the graph to identify clusters of related tags. Another



Chapter 2. Related Work 34

graph-based approach was introduced in [Papadopoulos et al., 2010]. Thereby tags are

organized in a weighted graph, in which the nodes correspond to tags while the edges are

weighted according to the structural similarity between the nodes. Consequently, the

similarity between two nodes is defined in the terms of their common neighbors. In line

with the tag disambiguation approach proposed in this thesis, [Weinberger et al., 2008]

investigated statistical techniques for identifying ambiguous tags. For this purpose, the

tags are first represented as probability distributions based on their co-occurrence with

the top frequent tags in the folksonomy. Subsequently, ambiguous tags are determined

according to the change in their probability distributions as a consequence of adding new

tags. To quantify this change a weighted version of Kullback-Leibler (KL) divergence

[Kullback and Leibler, 1951] is used.

2.5.3 Improving Image Matching

Applications for finding similar images have proven very successful since the introduction

of the groundbreaking SIFT algorithm in 2004 [Lowe, 2004]. To speed up the process of

identifying similar images, earlier works focused on providing efficient mechanisms for

indexing the huge number of produced keypoint descriptors. For instance, [Ke et al.,

2004] proposed using locality-sensitive hashing to index SIFT descriptors. Recently,

the Bag of Words (BoW) representation has seen much use since it provides a faster

matching [Nister and Stewenius, 2006, Philbin et al., 2007].

An additional step to speed up image matching is made by works that deal with the

problem of reducing the number of generated keypoints. [Foo and Sinha, 2007] proposed

a strategy for reducing the number of SIFT keypoints based on their contrast (intensity)

values. They showed that an efficient matching can be achieved by ranking the keypoints

according to their contrast values and selecting the top N. Another method for identifying

if a keypoint is useful for the matching was introduced by [Turcot and Lowe, 2009]. The

usefulness of a SIFT keypoint corresponding to a query image is determined through its

counterparts in other matching images. This is achieved by using RANSAC algorithm

to determine if the features are geometrically consistent. In more recent work on near-

duplicates, [Dong et al., 2012] showed that SIFT features with near-empty regions are a

major source of false positives. Accordingly, the authors propose restricting the process

of identifying near-duplicate images to the the subset of keypoint descriptors which

have rich internal structure. To achieve that, they apply entropy-based filtering on

SIFT features.

Another family of works investigated using visual attention and saliency maps [Itti et al.,

1998] to prune the number of keypoints generated by local features extraction algorithms.
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The idea is to apply visual attention algorithms to identify regions in the image, called

salient region, which most attract human’s attention. In order to reduce the number

of generated keypoints, the local feature extraction algorithm is then applied only on

the discovered salient regions (for more details refer to Chapter 5). [Pimenov, 2009]

used saliency maps based on Itti’s model [Itti et al., 1998] to identify salient SURF

keypoints. The calculated saliency values are also used to decide whether two keypoints

represent a match. In [López-Garćıa et al., 2011] the authors proposed another method

for generating a retina-optical saliency map by using local phase information of the input

data. The saliency maps were used to filter SIFT and SURF features for the purpose of

matching video sequences of a robot-navigation system. [Chen et al., 2011] also proposed

a method for generating saliency maps. In this work, phase Fourier transform is used

to construct the saliency map. To enable faster scene matching, SURF keypoints are

extracted only from the salient image regions.

2.6 Thesis Contributions Revisited

In this chapter we discussed research efforts on automatic image annotation which ex-

ploits already labeled images. We have shown how research efforts evolved from using

the World Wide Web in the early years to leveraging the rich contextual information

of the current photo sharing platforms. The work in this thesis also exploit community

photo to automatically annotate new images. Similar to other works [Moxley et al.,

2008, Silva and Martins, 2011, Mitran et al., 2013] our approach takes advantage of the

ever increasing number of geotagged photos as an additional contextual clue to assist

the tag mining process. However, in contrast to these approaches, we lay special focus

on the efficiency of the annotation process and the quality of the produced tags. More

specifically, the novelty of the work presented in this thesis is demonstrated through

solutions to the following main AIA challenges:

• Representativeness of the dataset form which candidate annotations

are extracted: compared to the discussed ad-hoc methods [Hays and Efros,

2008, Kalantidis et al., 2011, Tolias and Avrithis, 2011, Hollenstein and Purves,

2013, Weyand et al., 2012], we propose a data crawling strategy that ensures the

representativeness of the annotation resource. The representativeness is defined

in terms of the spatial distribution of the collected images and the quality of the

associated metadata. Additionally, we provide an efficient mechanism for fast

retrieval from the dataset based on location information.

• Resolving tag ambiguity using relatedness information: it can be observed

that the majority of works on tag disambiguation exploit tag co-occurrence counts



Chapter 2. Related Work 36

and apply a simple co-occurrences threshold [Begelman et al., 2006, Simpson, 2008]

or the cosine measure to identify similar tags [Specia and Motta, 2007, Gemmell

et al., 2008a,b]. We aim, in this thesis, to address two important aspects which

are less investigated in literature on tag relatedness. First, although we use the

same representation for tags as probability distributions as done in [Weinberger

et al., 2008], our method deals also with statistical fluctuations in the created

probability distributions and propose extension for the well-known Jensen-Shannon

Divergence. Second, to best of our knowledge, this work is the first to deal with the

problem of feature selection for building tag co-occurrence vectors. In this regard,

we propose a solution based on the method of Laplacian score for feature selection

[He et al., 2005] and demonstrate its efficiency in identifying related/similar tags.

• Improving the accuracy and the performance of CBIR based on SURF

image features: whilst other approaches are focused on improving the perfor-

mance of SIFT-based image matching [Foo and Sinha, 2007, Turcot and Lowe,

2009, Dong et al., 2012], our work is concerned with boosting the performance

of SURF [Bay et al., 2008]. SURF is faster to compute than SIFT and at the

same time it has comparable matching performance [Juan and Gwun, 2009]. Our

approach aim at identifying the subset of SURF keypoints which contribute most

to identifying similar images. Similar to [Lepetit and Fua, 2006, Ozuysal et al.,

2010] we also investigate classification techniques for keypoint characterization.

However, in contrast to those works where multi-label classification is used, we

deal with the problem as binary classification and investigate different features

for characterizing the keypoints. We also investigate the efficiency of our solution

by comparing it to other approaches which use visual attention (e.g. [Pimenov,

2009]).

• Combining contextual information for tag ranking: while other works focus

on investigating the effectiveness of location information on the produced rankings

[Moxley et al., 2008, Silva and Martins, 2011, Mitran et al., 2013], thanks to Bayes’

rule, our tag ranking model is scalable and can be easily extended to consider

further contextual information. We use our model to combine and to investigate

the effectiveness of different kinds of information (i.e., geographical, image-content,

user and tag usage information) on the quality of the automatically generated

annotations.
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Chapter 3

Geographical Crawling and

Indexing of Community Photos

This chapter deals with the problem of creating a representative dataset of geotagged

images. For this purpose, a strategy for crawling image data from Flickr based on

location information is introduced. Additionally, an approach for spatially indexing the

collected data using quad-tree data structure is described. Furthermore, a solution for

resolving lexical problems of user-tags is presented.

3.1 Introduction

As mentioned in the first chapter, the preparation phase of our automatic annotation

approach requires constructing a dataset of geotagged images with the associated meta-

data. In this thesis, we define global criteria to ensure the quality of geotagged image

datasets. First, the dataset must have a high spatial coverage in the sense that it should

contain images covering the whole world map. Second, the data should be spatially

representative, i.e., the density of the collected photos should vary according to the

popularity of the different places. Third, the dataset have to ensure the quality of the

provided image metadata. Basically, user-tags represent the main resource for high-level

descriptive image metadata. To allow a maximum advantage, the ambiguity of user-tags

has to be resolved before they can be used by further applications.

In the following sections, we describe our approach to build a dataset which fulfills the

mentioned criteria. First, our data crawling strategy is presented. Then, we introduce

a tag cleaning approach. Finally, a spatial data indexing strategy is presented.

39
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3.2 Geo-based Data Crawling

To fulfill the representativeness requirements, we followed a data crawling strategy based

on Flickr friendship’s graph and the principle of small-world [Milgram, 1967]. The

proposed method is inspired from [Crandall et al., 2009], however, instead of creating a

random sample of photo identifiers, we generated a sample of identifiers corresponding to

users residing in various places in the world. The decision to create such a sample can be

explained according to the small-world phenomena. By traversing the friendship’s graphs

of spatially well-distributed user set, the final set would converge to a collection of users

who have taken photos in every part of the world. Consequently, crawling geotagged

photos uploaded by those users will lead to a dataset with a spatial distribution that

approximates the real-world case. More specifically, a seed set of Flickr users is created

by randomly selecting users who are residing in different areas in the world. This set

is then extended as follows: first, the friendship’s graph of each user in the seed set is

obtained from Flickr. After that, breadth-first search is applied on each graph to gain

additional users. This process is applied recursively on the newly acquired users until

a certain number of unique users is reached. Finally, for each user, the corresponding

geotagged photos are crawled with the associated metadata.

During the crawling process we applied two filtering conditions on the downloaded pho-

tos. First, we used the metadata provided by Flickr to discard images with poor ge-

ographical accuracy1. Second, since many applications require photos of acceptable

resolution, photos with resolution below 320× 240 pixels were also removed.

Figure 3.1 shows a plot of the geographical coordinates of a sample of 300,000 photos

taken from our dataset. Each image is represented by a point in a two dimensional

space of longitude on the x-axis and the latitude on the y-axis. The graphic shows how

the coordinates of the crawled images can approximate the world map. Moreover, dark

areas indicate densely photographed places. This conforms to several studies on Flickr

(e.g. [Crandall et al., 2009]) which shows that certain places in Western Europe and the

United States are most popular among photographers.

A closer look on the spatial distribution of the crawled photos is given in Figure 3.2.(b).

Photos taken in Paris are represented according to their geographical coordinates in the

longitude-latitude space. Dense areas correspond to places which attract photographer

at most. Compared to the map of Paris shown in Figure 3.2.(a), we observe dense

1Flickr defines 16 different accuracy levels for the geographical coordinates of a geotagged image.
The highest level 16 indicates that the location is accurate at street-level, while the lowest value 1
corresponds to world-level. For our dataset, we set the minimum accuracy level for the downloaded
images to city-level (value 11).
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Figure 3.1: The geographical coordinates (latitude vs. longitude) of a sample of
300,000 images from our dataset

amounts of photos around touristic attractions, such as the city center, around Eiffel

Tower and along the Seine River.

 

 

(a) Paris city map with famous landmarks (b) Approximation of Paris city map using the geotags of images taken in 

Paris 
 

Figure 3.2: Photo density in the city of Paris according to our dataset

We also compared our dataset to the one presented in [Crandall et al., 2009] in terms

of the most photographed cities. The authors analyzed a collection of 35 million Flickr

photos and demonstrated how cities, such as New York, London, San Francisco and

Paris belong to the most photographed cities and in the provided order. The same was

observed in our dataset (Figure 3.3).

The final dataset contains a collection of 14.1 million photos with associated meta-

data. The photos were contributed by more than 200,000 users in the time period from
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Figure 3.3: The number of images per city according to our dataset

14/5/2000 until 01/04/2012. For each photo the following metadata data are provided:

the photo identifier, the identifier of Flickr’s user who uploaded the photo, the photo

title (if existing), the list of associated user-tags, the location information represented

by the longitude and latitude, the accuracy level of the location information as defined

by Flickr, the date of photo capture, the date when the photo was uploaded to Flickr’s

server, and the information needed to construct the photo URL [Flickr, 2014b].

3.3 Tag Cleaning

In order to reduce the noisiness of the collected user-tags, we applied simple and effective

tag cleaning procedures which mainly focus on addressing problems related to the lexical

variations of the tags (In Chapter 4 a more sophisticated approach for dealing with tag

ambiguity is presented).

Tag Filtering

Before dealing with lexical problems of user-tags, a filtering step is applied to remove

tags corresponding to stop words. For this purpose, we manually identified a list of stop

words. This includes non-descriptive tags, such as the words photo, picture and the like.

Another kind of stop words includes tags referring to technical terms, such as camera

types and camera settings (e.g. canon, longexposure, d40x). Furthermore, tags specific

to Flickr, e.g. flickr.com, platinumheartaward, etc. and other tags referring to dates,

web services or photo editing programs are also added to stop word list. Moreover, in
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a similar manner to other works on tag cleaning [Specia and Motta, 2007, Mika, 2007,

Cantador et al., 2008, Garćıa-Silva et al., 2008, Giannakidou et al., 2008], we apply an

additional refinement step which filters out tags with low frequency. Tags that are used

by a small number of users are usually noisy since they contain user-specific information.

Accordingly, we eliminated tags which were used by less than 5 users from the dataset.

The final dataset contains 415,369 unique tags with a total occurrence of 100,791,616

and an average of seven tags per photo.

Lexical Cleaning

User-tags suffer from problems, such as misspelling and lexical variations (refer to Section

2.5.2). The latter problem arises when users adopt different lexical forms to express the

same term. For example, different users may annotate photos taken in New York with

”newyork”, ”new-york” or ”new york”. To deal with such problems, we developed an

automatic approach based on the correction suggestions provided by Yahoo search engine

[Yahoo, 2014]. Each tag t is first used to query Yahoo. In the case where t is misspelled

or if it consists of combined words then Yahoo provides proposals for related search

terms (see Figure 3.4).

 

Suggestion List 

Figure 3.4: Search results for the term ”newyork” according to Yahoo search engine
with suggestions for related search terms

Indicate with S = {S1, ..., Sn} the set of all suggestions produced for a given query

word t. In turn, each suggestion Si ∈ S is a an ordered sequence of words denoted

as Si = (w1, ..., wk). Next, the set of unique words is obtained from the union of all

suggestion sequences, i.e., W = ∪iSi = {w1, ...wm}. After that, for each word wj ∈ W



Chapter 3. Geotagged Image Data Collection and Indexing 44

its number of occurrences, C(wj), over all suggestions sets is computed. Finally, the

set Corrt that contains the terms which will be used to correct the input word t is

determined as follows:

Corrt = {wj |wj ∈W ∧ C(wj) > θ} (3.1)

In Equation 3.1, θ is a lower bound for word occurrence and can be set experimentally.

By conducting several experiments, we recognized that reliable results can be achieved

by setting θ = 0.8 × |S|. That means, in order for a word to belong to the correction

set, it must appear at least in 80% of the suggestions Si ∈ S.

After the correction set has been acquired, a final correction term is created by identi-

fying the right order of the correction terms. To do that, we apply a simple technique

which determines the order of the words according to their order in the majority of the

suggestion sequences Si ∈ S. That is, for two words w1, w2 ∈ Corrt, if w1 occurs before

w2 in the majority of the suggestions, then w1 must proceed w2 in the final correction

term.

In Figure 3.4, for example, a correction set for the input tag newyork can be built out

of the most frequent words in the corresponding Yahoo suggestions. The means, the

correction set is given as: Corrnewyork = {new, york}. As the word new occurs before

the word york in all suggestions, the same order must be followed in the final correction

term, i.e., the term newyork have to be replaced with new term new york. Table 3.1

shows further examples of misspelled as well as tags consisting of multiple words which

have been corrected usign the described method.

Original Tag Corrected Tag

abandoned-building abandoned buildings

abrahamlincoln abraham lincoln

portlandmusic portland music

greatsanddunes nationalpark great sand dunes national park

sanpedrolalaguna san pedro la laguna

enviroment environment

freind friend

Table 3.1: Sample user-tags acquired from Flickr (first column) which have been
automatically corrected using the presented tag cleaning algorithm (second column)
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3.4 Indexing using Quad-tree

In Chapter 1, we have seen that the very first step of the tag mining phase is to search for

images taken in the same location as the input image. Doing this in a naive way requires

calculating the geographical distance based on the geographical coordinates of the input

image and those of each image in the dataset. This process is time consuming, especially

when the search space is huge, such as the one in our case. Therefore, we developed a

method which allows fast retrieval of the geographical neighbors by spatially indexing

the dataset using the quad-tree data structure [Finkel and Bentley, 1974, Samet, 1984].

Quad-tree is a hierarchical data structure which is based on the principle of recursive

decomposition. It is widely used for indexing two dimensional data such as geographical

coordinates [Samet, 1990, Gahegan, 1989]. For this purpose, data points are recursively

divided into four regions until a stopping condition is met. This condition is defined

in terms of the maximum allowed capacity of a single quad-tree region. When faced to

a large number of data points (e.g., our data set contains 14.1 million data points) a

direct application of the quad-tree algorithm become impractical. Indeed, indexing large

number of data points and by using a relatively low maximum capacity threshold leads

to immense memory requirements. This is due to the high recursion depth2. To address

this problem, we propose a method for distributing the computation of the quad-tree.

Initially, we divided the world map into tiles. A tile is created only if there are photos

in the dataset taken in the area specified by that tile. After that, tiles with a high photo

density are further divided into sub-tiles. This process is repeated as long as the number

of photos in the tile exceeds a predefined upper bound (Figure 3.5). In a next step, the

quad-tree algorithm is applied on each tile (Figure 3.6). The final index consists of the

coordinates of each tile and each quad-tree region. To allow flexible retrieval, the index

also keeps track of the neighborhood information of each quad-tree region. This can be

useful when a specific quad-tree region is sparse. In this case, additional data points

can be efficiently retrieved by extending the result set to data points of neighboring

quad-tree regions.

We applied the described approach on our dataset using initial 10 × 10 tiles. The tiles

are then shrinked according to the coordinates of the contained data points. Next,

tiles containing more than 300,000 photos were further divided. Figure 3.5 shows the

results of this phase. The produced tiles show an approximation of the world continents.

Additionally, we can see that tiles corresponding to areas of high photo density are

further divided into sub-tiles shown as smaller rectangles inside the corresponding tiles.

2On a machine with 8GB RAM and using Matlab, the maximum recursion limit of 500 was reached
with a relatively small set of 300,000 data points and a maximum capacity of 2,000 data points per
quad-tree region
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Figure 3.5: World map divided into tiles according to the photo density as given by
our dataset. Dense tiles are further divided into sub-tiles

For all tiles, we applied the quad-tree algorithm and set the maximum capacity for each

region to 800 photos. The corresponding quad-tree regions are shown in Figure 3.6.

Figure 3.6: Quad-tree regions for our dataset. The quad-tree algorithm is applied on
each tile separately to allow efficient computation

We collected statistics about the generated tiles and the corresponding quad-trees. In-

dexing the collection of 14.1 million geographical coordinates resulted in 215 tiles with

an average of 312 quad-tree region per tile. Each tile contains about 65,500 data points
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Figure 3.7: The number of photos per tile according to our dataset. The x-axis
correspond to the tile identifier and the y-axis gives the total number of photos per tile

(i.e., longitude-latitude pairs) on average, however, with a large standard deviation of

about 122,000. This is due to the sharp differences in the density of photos from place to

place. In fact, there are very few places in the world which are frequently photographed,

while quite a large number of places are even less photographed (Figure 3.7).

3.5 Qualitative Insight

To get an impression about the nature of our dataset, we provide a multifaceted visual-

ization of it using the image browsing tool Folkioneer [Mousselly Sergieh et al., 2014a].

Folkioneer applies agglomerative clustering using the CURE algorithm [Guha et al.,

1998] to spatially cluster the images according to their geographical coordinates. The

output of the clustering algorithm is a dendrogram of the complete set of data points

in the dataset. To build the geographical clusters, a cut-off threshold is applied on the

dendrogram. The clusters can also be built at different levels of geographical granularity

by using different cut-off thresholds.

Figure 3.8 shows a layout of geographical clusters corresponding to geotagged images

from our dataset. The clusters are shown in different colors (red, green, violet and

yellow) while the light brown color indicates that there is no images in the corresponding

area. For instance, compared to North Africa and Eastern Europe, we can see that

Western Europe has a larger number of clusters which indicates higher photo density.

By zooming in, a new cut-off threshold is applied on the dendrogram and the new clusters

are visualized on the map (Figure 3.9).
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Figure 3.8: Geographical clusters at zooming level 5

Figure 3.9: Geographical clusters by zooming in to level 6

In order to take a closer look on the images in the dataset, we used Folkioneer to retrieve

images corresponding to the area of Paris. Folkioneer applies a further clustering step

on the images of a given geographical cluster based on the visual similarity. Figure 3.10

shows sample visual clusters containing photos that are typical to the city of Paris, such

as Eiffel Tower and Arc de Triomphe. Finally, to get an insight into the collected user-

tags, we used Folkioneer to visualize tags which are used to annotate images taken in

Paris. The tags are represented in the form of a cloud of tag clouds. Figure 3.11 shows

the tags which are typical to images taken in Paris with similar/related tags represented

as single tag clouds and using a distinctive color.
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Figure 3.10: Sample images from our dataset which are located in Paris

Figure 3.11: Tags form our dataset corresponding to images taken in Paris

3.6 Summary

This chapter presented an approach for crawling and indexing geotagged images from

Flickr. The approach was used in order to create a dataset of 14.1 million images with

the corresponding metadata. The dataset is used by our image annotation approach

as a resource for generating tag proposals for new unlabeled geotagged images. The

spatial representativeness of the data was ensured through a crawling strategy based on

Flickr friendship’s graph and the principle of small-world. Additionally, we improved

the quality of the associated user-tags using a simple technique for tag cleaning which

exploits the feature of Yahoo search term suggestions. To allow efficient retrieval from

the dataset, a spatial index is created using an improved implementation of the quad-tree

algorithm.





Chapter 4

Mining Tag Relatedness for

Resolving Tag Ambiguity

This chapter discusses the effect of noisy user-tags on search-based automatic image

annotation and proposes an approach for identifying related tags in folksonomies as a

pre-step to resolve their ambiguity. The proposed tag relatedness approach aims at

addressing the problem of creating tag representation through an approach for feature

selection based on the Laplacian score method. Furthermore, it presents a new measure

for calculating the distance between tag probability distribution based on the well-known

Jensen-Shannon Divergence (JSD).

4.1 Introduction

As discussed in Chapter 2, tag noisiness represents a unique challenge for search-based

AIA approaches. [Gemmell et al., 2009] analyzed the impact of ambiguous and redun-

dant tags on approaches for tag recommendation in folksonomies. On one hand, noisy

tags can be misleading and may bother the users with unwanted recommendations. On

the other hand, noisy tags make it difficult to judge the quality of recommendation

systems. In general, the quality is evaluated according to the ability of the system

to predict tags in a holdout set. Accordingly, recommending noisy tags can result in

underestimating or overestimating the performance of the recommendation system.

For a better insight into the problem, assume that a given search-based AIA system is

used to annotate a photo taken in London as shown in Figure 4.1. Assume also that

the system has generated for the input image a ranked list of tags as illustrated in the

left-hand side of the figure. At first glance, the collection of the mined tags seems to

51
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Figure 4.1: Tag proposals for a photo of London Eye

fit the contents of the input image. However, it is also evident that the list contains

redundant tags. Tags like ”UK” and ”United Kingdom” refer to the same thing and

the same applies to ”clouds” and ”cloudscape”. Moreover, the tag ”eye” is ambiguous

and could be considered irrelevant by people who do not know about the famous Ferris

wheel, called London Eye. Furthermore, it is typical to limit the number of the proposed

tags to the best ranked ones, therefore, retaining redundant tags results in discarding

useful information. For example, the list of the top 10 tags (shown in italic in Figure

4.1) suffers from redundancy, e.g., the location tags ”United Kingdom”, ”England” and

”UK”. Additionally, limiting the number of proposed tags to the top 10 will make

relevant tags, such as ”Thames” and ”Ferris Wheel” disappear from the top tag list.

The presented example demonstrates the need for identifying ambiguous and redundant

tags in order to improve the performance of automatic image annotation. As we dis-

cussed in Chapter 2, resolving tag ambiguity have been considered by several research

efforts. The idea is to mine similarity or relatedness information among the tags and

use this information to identify their real meaning. For further explanation, refer to the

right-hand side of Figure 4.1. If relatedness information is available, redundant tags like

”UK” and ”United Kingdom” as well as synonyms like ”Eye” and ”Ferris Wheel” can

be determined. Consequently, we can use this information to improve the quality of tag

proposals by removing redundant tags (e.g. the tags ”UK”, ”Buildings”) and combining

other related ones (e.g. ”Thames” and ”River”).
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4.2 Tag Relatedness Approach

In Section 2.5.2, we presented different types of representation for tags, namely using the

user-context, the tag-context or the resource-context. In this thesis, we mainly deal with

folksonomies corresponding to community photos. Such folksonomies are narrow since

the provided tags are mainly contributed by the uploaders of the images and the level of

user interaction is low. Accordingly, the user-context representation has a limited value

regarding the identification of related tags. The same thing applies for the resource-

context. Indeed, there are two reasons which make it unsuitable for identifying related

tags in image folksonomies. First, in such folksonomies it is unlikely that the same

tag will be applied multiple times to describe the same photo. Second, in contrast to

textual resources, where further occurrences of the tags can be acquired by analyzing the

associated text, images do not have such textual context. As opposed to the discussed

representations, the tag-context provides rich information about the pattern of tag usage

in folksonomies. Hence, the tag relatedness approach proposed in this thesis is based on

the latter representation.

4.2.1 Approach Overview

The workflow of our tag relatedness approach is illustrated in Figure 4.2. We start from

a folksonomy represented as a bipartite graph of tags and resources as nodes (user in-

formation is not considered since we are only interested in the tag-context). The edges

indicate that a tag has been used to annotate a resource. In the tag-context represen-

tation (refer to Section 2.5.2) each tag is represented in terms of its co-occurrence with

other tags in the folksonomy. Since it is impractical to calculate the co-occurrences with

the complete set of unique tags in the folksonomy, we apply a feature selection algorithm

to identify a subset of important tags (features) and restrict the tag-context representa-

tion to those features. To compute the feature set, we adopt a feature selection approach

based on the Laplacian score (LS) method [He et al., 2005]. After that, for each unique

tag a probability distribution is created based on the co-occurrence of that tag with

the elements of the feature set. Finally, the relatedness between two tags is determined

according to the distance between their probability distributions. To calculate this dis-

tance, we propose a new metric, called Adapted Jensen-Shannon Divergence (AJSD).

As the name suggests, AJSD is based on the well-known Jensen-Shannon Divergence

(JSD) [Manning and Schütze, 1999], however, it is characterized by its ability to deal

with statistical fluctuations in the generated probability distributions.
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Figure 4.2: The workflow of the proposed tag relatedness approach

4.2.2 Feature Selection for Tag Relatedness

First, let us recall the notation of a folksonomy F = {T,U,R,A} where T is the tag

set, U the set of users, R is the set of resources and A ∈ U × T ×R is an assignment

relation. Identifying related tags in a folksonomy is an all-pairs-similarity-search problem

(APSS) [Bayardo et al., 2007] since each tag has to be compared to all other tags in the

folksonomy. Given the set of |T | tags and by considering that each tag is represented by

a d dimensional vector, the naive approach will compute the similarity between all tag

pairs inO(|T |2 · |d|) time. In the case of tag-context, we have d = |T |, thus, the algorithm

will have O(|T |3) complexity. For large folksonomies, performing such computations is

impractical. However, the computational cost can be reduced if the tags are represented

in reduced vector space, i.e, RF where F ⊂ T and |F| � |T |. Of course, in this case, the

challenge is to provide a feature selection approach which can maintain, if not improve,

the quality of the tag relatedness measure.

A simple approach to build the feature set F , is to select a subset of the most frequent

tags in the folksonomy (e.g. [Weinberger et al., 2008, Cattuto et al., 2008]). This

technique has some effectiveness, but the main issue is that the most frequent tags may
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have almost uniform co-occurrence patterns with most other tags in the folksonomy. In

this case, all tags would be considered related to each other. Hence, a more sophisticated

approach for identifying F is required.

Identifying discriminative features from data has been investigated thoroughly by re-

searchers, especially in the domains of pattern recognition and computer vision (for

surveys refer to [Guyon and Elisseeff, 2003, Molina et al., 2002]). For our particular

case, the feature selection process must be applied in an unsupervised way since we are

dealing with unlabeled data. For this purpose, we adopt the method of Laplacian score

feature selection (LS) proposed by [He et al., 2005] to identify the subset of ”important”

tags in the folksonomy. The Laplacian score (LS) technique for feature selection is based

on Laplacian Eigenmaps [Belkin and Niyogi, 2003] and Locality Preserving Projection

[He et al., 2005] techniques. These techniques allow the representation of a dataset,

whose data points are characterized by a high dimensionality, by means of a lower di-

mensional representation, implicitly based on a low dimensional sub manifold of the

whole space. These techniques postulate that such a manifold exist and that it can be

represented efficiently in terms of a small subset of dimensions (these will be the selected

features).

This schema fits the problem at hand: user-tags are the points of our dataset; they

are represented initially by high-dimensional vectors (the tag co-occurrence vectors).

The results of the application of the method described hereafter confirm ex-post the

soundness of the assumptions.

To compute the LS, the data points are first organized in a weighted undirected graph,

in which nodes correspond to data points and an edge is drawn between two nodes if

they are close to one another according to some predefined similarity measure (such as

the cosine measure). The edges are weighted proportionally to the similarity between

the connected data points. The Laplacian (matrix) L of such a graph is a square matrix

defined by the difference of the degree matrix D and the adjacency matrix S (see below)

of the graph. Intuitively, the Laplacian matrix is a discrete analog of the Laplacian

operator in multi-variable calculus and serves a similar purpose by measuring to what

extent a graph differs at one vertex from its values at nearby vertices. Thanks to such a

measure, one can define the Laplacian score for each individual vertex (the less it differs

from the neighbors the higher its score) and consequently choose those points who turn

out to have the highest scores as representative features.

Formally, the LS feature selection algorithm can be considered as a minimization problem

with the following objective function [He et al., 2005]:
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L(f) =

∑
ij(fi − fj)2Sij

V ar(f)
(4.1)

In Equation 4.1, fi and fj correspond to the values of the feature f at the data points

i and j respectively, while Sij is the similarity between them. V ar(f) is the variance of

the of feature f . The minimization of the objective function implies preferring features

of larger variances. This conforms to the intuition that features with higher variance

are expected to have more expressive power.

The feature selection algorithm and an estimation for the solution of the objective func-

tion are summarized in the following steps (more details can be found in [He et al.,

2005]):

1. For the set of n data points a k nearest neighbor (KNN) graph is constructed. In

that graph, an edge between two data points xi and xj is drawn if the points are

close to each other, i.e., if xi belongs to the set of k nearest neighbors of xj and

vice versa.

2. The edges between close nodes are weighted according to a similarity function. To

calculate the similarity, there are several options, such as the cosine (Equation 4.6)

or the Gaussian similarity which is defined as:

Sij = e−
‖xi−xj‖

2

2u (4.2)

where xi and xj are two data points and u is a free parameter that can be deter-

mined experimentally. Next, pairwise similarities of the data points are combined

in a similarity (adjacency) matrix S.

3. For a feature f , defined as a vector over the data points, let:

f̃ = f − fTD1
1TD1

1 (4.3)

where 1 = [1...1]T is the identity matrix and D = diag(S1) is the diagonal degree

matrix, in which each entry dii corresponds to the sum of the entries of the column

i in the similarity matrix S.

4. Let L = D − S be the Laplacian matrix of the similarity graph [Chung, 1997]. The

Laplacian score of the feature f is then computed as:

L(f) =
f̃TLf̃

f̃TDf̃
(4.4)
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5. The final feature set F contains those features with a Laplacian score greater than

a predefined threshold θ:

F = { f | L(f) > θ } (4.5)

In our case, the data points as well as the features correspond to the tags of the folkson-

omy. Each feature and each data point is represented by a vector using the tag-context

representation. If the complete set of data points and features are considered by the LS

method, then the representation of a data point and a feature corresponding to the same

tag is identical. That means for a feature f and a data point x corresponding to a tag t

they are represented as, x = f = v(t) ∈ RT , where v(t) is the tag-context representation

of the tag t. However, to reduce the time needed by the LS algorithm, it can also be

applied on a sample of the data points or only a subset of the tags are considered as

features. In both cases, the data points and the features corresponding to the same tag

will have varying tag-context representations. This is because they will be represented

using different dimensions (subsets of the tags in the folksonomy). Accordingly, by as-

suming that a subset of the tags Tk ⊂ T is used to represent the data points, then the

set of all data points, X, is given by:

X = {x|x = v(t) ∈ RTk ∧ t ∈ T}

The same applies to the set of all features F . Given that each feature is represented as

a vector over a subset of tags Tl ⊂ T , then:

F = {f |f = v(t) ∈ RTl ∧ t ∈ T}

Illustrative Example

To clarify how the Laplacian score algorithm can be applied to select important features

in a folksonomy, consider the tag co-occurrence matrix shown in Figure 4.3. The column

and the rows of the matrix correspond to the tags while the entries correspond to the

co-occurrence counts of the tag pairs as observed in the folksonomy. The co-occurrence

of a tag with itself is set to zero. In this example the tags ”France” and ”Paris” occur

most. Furthermore, both tags show uniform occurrence patterns with the other tags.

Data points as well as the feature can be derived directly from the rows and columns

of the co-occurrence matrix, respectively. For example the data point corresponding

to the tag ”France” is given by xFrance = (0, 30, 30, 30, 30, 30), while the feature vector

corresponding to the tag ”Tower” is given by fTower = (30, 20, 0, 20, 5, 5)T . In the next

step, we create a weighted nearest neighbor graph from the data points (step 1 and 2
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

France Paris Tower Eiffel Sky City

France 0 30 30 30 30 30

Paris 30 0 20 20 20 20

Tower 30 20 0 20 5 5

Eiffel 30 20 20 0 10 10

Sky 30 20 5 10 0 5

City 30 20 5 10 5 0



Figure 4.3: A sample tag co-occurrence matrix

of the algorithm). Due to the small number of data points, we use a complete graph

(instead of KNN graph) and chose the cosine similarity (Equation 4.6) to weight the

edges (Figure 4.4).

sim(t1, t2) = cosine(v(t1), v(t2)) =
v(t1).v(t2)

||v(t1)||.||v(t2)||
(4.6)

For instance, consider the two data points xFrance = (0, 30, 30, 30, 30, 30), xEifel =

(30, 20, 20, 0, 10, 10) corresponding to the tags ”France” and ”Eifel”, respectively. The

weight of the edge between the corresponding nodes is calculated as:

sim(xFrance, xEifel) =
0× 30 + 30× 20 + 30× 20 + 30× 0 + 30× 10 + 30× 10√

02 + 302 + 302 + 302 + 302 + 302
√

302 + 202 + 202 + 02 + 102 + 102
= 0.62
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Figure 4.4: Similarity graph for the data points corresponding to the rows of the
matrix shown in Figure 4.3. The nodes corresponds to the tags with the edges weighted

according to the cosine similarity
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Next, the nearest neighbor graph is mapped into a similarity matrix S. In the similarity

matrix, an entry Sij indicates the cosine similarity between the data points xi and xj

(Figure 4.5). From S we compute the diagonal matrix D. For instance, the entry (1, 1)

of D is calculated as follows:

D11 =
∑
i

Si1 = 0 + 0.72 + 0.53 + 0.62 + 0.47 + 0.47 = 2.81

Finally, the Laplacian of the graph, i.e., the matrix L, is calculated by subtracting the

similarity matrix from the diagonal matrix D. For example the entry (1, 6) of L is

calculated as:

L16 = D16 − S16 = 0− 0.47 = −47

S =



0 0.72 0.53 0.62 0.47 0.47

0.72 0 0.72 0.78 0.68 0.68

0.53 0.72 0 0.77 0.96 0.96

0.62 0.78 0.77 0 0.87 0.87

0.47 0.68 0.96 0.87 0 0.98

0.47 0.68 0.96 0.87 0.98 0


D =



2.81 0 0 0 0 0

0 3.58 0 0 0 0

0 0 3.93 0 0 0

0 0 0 3.91 0 0

0 0 0 0 3.97 0

0 0 0 0 0 3.97



L = D − S =



2.81 −0.72 −0.53 −0.62 −0.47 −0.47

−0.72 3.58 −0.72 −0.78 −0.68 −0.68

−0.53 −0.72 3.93 −0.77 −0.96 −0.96

−0.62 −0.78 −0.77 3.91 −0.87 −0.87

−0.47 −0.68 −0.96 −0.87 3.97 −0.98

−0.47 −0.68 −0.96 −0.87 −0.98 3.97


Figure 4.5: The similarity matrix S, the diagonal matrix D and the Laplacian matrix

L as generated from the nearest neighbor graph of Figure 4.4

Now, we have all information which enables us to calculate the Laplacian score for the

features (tags) of our example according to Equation 4.4. Table 4.1 shows the features

and the corresponding LS scores in increasing order of importance. As we can see, the

features ”City” and ”Sky” are considered more important by the LS algorithm than

”France” and ”Paris”. This is because, the tags ”Paris” and ”France” have uniform

co-occurrence patterns with all other tags. Consequently, their influence on identifying

groups of related data points is negligible or even biased.

It is important to mention that the presented example is not representative enough;

however, it gives an idea about the manner of how the Laplacian score algorithm can

be applied to discover important tags in folksonomies. Furthermore, it shows a main
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Feature Laplacian Score

fSky -0.07

fCity -0.07

fTower -0.09

fFrance -0.14

fEiffel -0.16

fParis -0.23

Table 4.1: The feature vectors ordered according to their importance (Laplacian
score) from most to least important

characteristic of the LS algorithm which is its ability to determine the importance of

the tags independently of their frequency of occurrence as well as to discover features of

uniform co-occurrence patterns and reducing their importance.

4.2.3 Tag Probability Distribution

In this processing phase, each tag in the folksonomy is given a representation in terms of

an empirical probability distribution. For this purpose, we quantify the co-occurrences

of a given tag with each of the elements of the feature set. Recall the notation of the

folksonomy F = {T,U,R,A} and let < : T → ℘(R) be a function from the set of tags

to the power set of the resource set, that maps a given tag to the set of resources which

are annotated with it. That means, for a tag t ∈ T we have:

<(t) = { r | r ∈ R ∧ ∃u ∈ U ∧ ∃(u, t, r) ∈ A } (4.7)

The measure of co-occurrence of two tags ti, tj ∈ T can be defined by the function C:

C(ti, tj) = |<(ti) ∩ <(tj)| (4.8)

Equation (4.8) means that the measure C(ti, tj) of co-occurrence of two tags corresponds

to the number of resources which are annotated by both of them.

To create an empirical probability distribution for a tag t, the co-occurrences of t with

each feature f ∈ F are counted so as to obtain a histogram in the variable f . Then,

by normalizing this histogram, with the total number of co-occurrences of t with the

elements of the set F , a vector representing the empirical co-occurrence probability

distribution P (f |t) for the tag t with the elements f ∈ F is obtained:

P (f |t) =
C(t, f)∑
f∈F C(t, f)

(4.9)
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where C is the tag-to-tag co-occurrence function given in equation (4.8). Each entry

f of the vector P ( f | t ) corresponds to the set of unique tags in the folksonomy which

have been designated as features in the previous phase – the feature tags – while the

value P ( f | t ) of each entry corresponds to the measure of normalized co-occurrence of

t with the feature tag associated with that entry. The empirical probability distribution

of the tag t over the complete set of features F can be denoted in short by P (F|t).
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Figure 4.6: Empirical probability distributions of two tags ”river” and ”thames”.
Each distribution consists of several histogram channels corresponding to the elements
of a feature set (x-axis). The value of a histogram channel is given by the normalized

tag co-occurrence

Figure 4.6 shows sample segments of the empirical probability distributions correspond-

ing to the tags ”river” and ”thames” which are found in an image folksonomy corre-

sponding to the city of London. The x-axis corresponds to the elements of the feature

set, which in this example consists of a subset of the most frequent tags in the folkson-

omy. For a given feature (e.g. ”london”) and a given tag (e.g. ”river”) the value of the

corresponding histogram channel (y-axis) corresponds to their normalized co-occurrence

as defined in Equation 4.9. Note, that the two tags ”thames” and ”river” show similar

co-occurrence patterns with the elements of the feature set.

4.2.4 Distance Measure

At this point of the procedure, in order to determine if two tags are related, the distance

between their corresponding empirical co-occurrence probability distributions must be

computed. The Jensen-Shannon Divergence (JSD) [Manning and Schütze, 1999] is a

widely used metrics which has shown to outperform other measures [Ljubešić et al.,
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2008]. It is based on Kullback-Leibler Divergence (KL) [Kullback and Leibler, 1951],

however, it is symmetric and has always a finite value.

Since the presented tag probability distributions are created from samples (ideally drawn

from the true distribution), and are necessarily affected by statistical fluctuations, we

propose an extension of the standard JSD measure, called Adapted Jensen-Shannon

Divergence (AJSD), based on a Maximum Likelihood (ML) estimate of the JSD which

both takes into account fluctuations and provides a measure of the statistical error of

the results.

Before introducing the new metric, we review the KL and JSD approaches to calculate

the distance between probability distribution. Let us consider two tags t1, t2 ∈ T and the

corresponding empirical co-occurrence probability distributions P (F | t1 ) and P (F | t2 )

over the feature set F = {f1, ..., fm}. We can simplify the notation by using P (F) ≡
P (F | t1 ) and Q(F) ≡ P (F | t2 ). Additionally, the values of P and Q at a specific

feature fk ∈ F , will hereafter be represented simply by P (fk) and Q(fk), respectively.

The most typical metrics for distance between two probability distributions is the

Kullback-Leiber divergence DKL, defined as follows:

DKL(P ||Q) =
∑
f∈F

P (f) log
P (f)

Q(f)
(4.10)

Notice that the expression DKL(P ||Q) is asymmetric in its arguments, i.e, in general

DKL(P ||Q) 6= DKL(Q||P ). This problem can be solved by adopting, as a definition of

divergence, a symmetrized version of the previous expression:

DSKL(P ||Q) =
1

2

∑
f∈F

P (f) log
P (f)

Q(f)
+
∑
f∈F

Q(f) log
Q(f)

P (f)

 (4.11)

However, KL divergence become infinite as soon as either P or Q vanish in one point of

the support set, due to the denominators in the logarithm arguments of the two terms.

This problem can be fixed by using the Jensen-Shannon Divergence (JSD), which is

given by the following equation:

DJS(P ||Q) =
1

2

∑
f∈F

(
P (f) log

2P (f)

P (f) +Q(f)
+Q(f) log

2Q(f)

P (f) +Q(f)

)
(4.12)

JSD differs from the SKL divergence of equation (4.11) in that the denominator of

the logarithm’s argument consists now of the arithmetic average P (f)+Q(f)
2 of the two

probabilities P (f) and Q(f).
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Adapted Jensen-Shannon Divergence (AJSD)

If, as in our case, the probabilities P and Q are not available, we have an estimate of them

through a finite sample represented in the form of a histogram for P and a histogram for

Q. In this case the divergence computed on the histograms is a random variable. This

variable, under appropriate assumptions, can be used to compute an estimate of the

divergence between P and Q using error propagation under ML approach, as illustrated

hereafter.

For P and Q consider that the channels at a point (feature) f of the corresponding

histograms are characterized by the number of co-occurrences with f , denoted as kf and

hf respectively. We define the following measured frequencies where:

xf ≡ kf/n yf ≡ hf/m (4.13)

Here, n =
∑

f kf and m =
∑

f hf are the sum of counts for the first and second

histogram, respectively.
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Figure 4.7: Two histogram channels corresponding to the feature f ∈ F taken from
the empirical probability distributions P and Q receptively. Each histogram channel is

considered as a normally distributed random variable

When the number of co-occurrences is high enough (large n and m), the quantities xf

and yf can be considered to have normal distributions around the true probabilities

P (f) and Q(f), respectively (Figure 4.7). Consequently, the measured JSD, denoted as

d, can be considered as a stochastic variable defined as a function of the two normal
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variables xf and yf . By substituting xf and yf in Equation 4.12 we get:

d =
1

2

∑
f∈F

(
xf log

2xf
xf + yf

+ yf log
2yf

xf + yf

)
(4.14)

The value of this expression does not correspond, in general, to the ML estimate of JSD

since the variances of the terms in the sum are unequal. In order to find the maximum

likelihood estimate d̂ of the divergence, we need to proceed through error propagation

as in the following steps:

1. Thanks to the normality condition stated above, the ML estimate of P (f) corre-

sponds to xf = kf/n with the variance given in a first approximation by σ2
xf

=

kf/n
2. Similarly, the ML estimate of Q(f) is yf = hf/m with the variance given

by σ2
yf

= hf/m
2.

2. We represent the individual addendum term in the sum expression of Equation

4.14 as a random variable zf :

zf ≡ xf log
2xf

xf + yf
+ yf log

2yf
xf + yf

(4.15)

If the two variables xf and yf are independent, the variance propagation at the

first order is given by:

σ2(zf ) '
(
∂zf
∂xf

)2

σ2(xf ) +

(
∂zf
∂yf

)2

σ2(yf ) (4.16)

' log2 2xf
xf + yf

σ2(xf ) + log2 2yf
xf + yf

σ2(yf ) (4.17)

The variance σ2(zf ) can be easily calculated by substituting the quantities of step

1 in the equation (4.17).

3. Define the (statistical) precision wf (to be used later as a weight) as: wf ∼ 1
σ2(zf )

.

Then, the maximum likelihood estimate of the quantity d of equation (4.14) is

given by the following weighted sum:

d̂ =

∑
f wfzf∑
f wf

≡ DAJS(P ||Q) (4.18)

With the variance given by:

σ2(d̂) =
1∑
f wf

(4.19)
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We use d̂ as Adapted Jensen-Shannon Divergence (AJSD). Note that due to the statis-

tical fluctuations in the samples, AJSD gives, in general, values greater than zero even

when two samples are taken from the same distribution, i.e., even when the true diver-

gence is zero. However, by weighting the terms according to their (statistical) precision,

the scores produced by AJSD are expected to provide better estimate of the divergence

than JSD does (refer to Section 4.3).

4.3 Evaluation

4.3.1 Dataset

In order to evaluate the performance of the proposed tag relatedness approach, we

performed several experiments on a folksonomy extracted from Flickr. The folksonomy

corresponds to images taken in the area of London. To avoid bulk tagging, we restricted

the dataset to one image per user. The final dataset contains around 54,000 images with

4,776 unique tags occurring more than 10 times and a total of 544,000 tag assignments.

4.3.2 Qualitative Insight

For each of the 4,776 unique tags in the dataset, we identified its most related tags.

Table 4.2 shows sample tags (first column) with the corresponding related tags ordered

according to their degree of relatedness from left to right. The related tags are obtained

by the cosine (COS), JSD and AJSD measures, respectively, and by using the top 1000

Laplacian features (more details in the next section). First, one can notice the overlap

among the groups of related tags corresponding to the same initial tag. This can be

explained because the compared approaches are based on the same tag representation,

namely the tag-context. Second, we have recognized that, in general, the groups of

related tags which are identified by AJSD have a higher cardinality than their counter-

parts which are identified using JSD and the cosine approaches (e.g. the tags ”Car” and

”Garden” in Table 4.2). That is because AJSD generates non-zero similarity even the

two tags have different empirical probability distributions.

To investigate the effect of feature selection, we applied the Laplacian score method on

the dataset to identify the most important tags. To generate the tag similarity graph,

we set the number of nearest neighbors to 10 and used the Gaussian similarity function

(Equation 4.2) with u = 0.5.

Figure 4.8 shows a plot of the top tags according to the calculated LS scores against

their frequencies, i.e., their total occurrences in the folksonomy. Additionally, the plot
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Initial Tag Method Related Tags

Airport

COS Heathrow, KLM, duty, check, airports, runway

JSD Heathrow, runway, African, international, ramp

AJSD Heathrow, ramp, departures, president, restaurants

Car

COS automobile, Citroen, driving, rolls, pit, wreck

JSD cars, classic, motor, Sunday, Ford, Mini, BMW, driv-

ing

AJSD cars, classic, Sunday, Ford, Mini, BMW, driving,

Caterham, pit

Garden

COS Covent, jardin, ING

JSD flower, gardens, rose, Covent, jardin

AJSD flower, gardens, Covent, jardin, pots, Nicholson, rocks

Thames

COS path, Kingston, river, mud, embankment, Sunbury,

shore

JSD river, path, Kingston, riverside, Greenwich, ship, em-

bankment

AJSD river, water, riverside, path, Kingston, Greenwich, em-

bankment

Music

COS musician, bands, records, fighting, acoustic

JSD concert, rock, stage, festival, pop, jazz, song, records

AJSD concert, rock, festival, stage, pop, jazz, Simon, song

Olympics

COS triathlon, men’s

JSD Olympic, men’s, arena, venue, women’s, athlete

AJSD Olympic, men’s, center, athlete, women’s, venue,

game, triathlon

Table 4.2: Sample tags with the corresponding most related tags

illustrates the most frequent tags in the folksonomy (italic). According to LS, the impor-

tance of a tag is determined according to its locality preserving power (refer to Section

4.2.2) which is independent from the frequency. For example a tag like ”potter”, which

is much less frequent than the tag ”england”, has a higher Laplacian score, thus, it is

considered as more important. In fact, since the folksonomy contains images taken in

London, it is very likely that most images will be tagged with the word ”england” disre-

garding their contents. Consequently, the tag ”england” is expected to have a uniform

co-occurrence with all other tags in the folksonomy. Therefore, it is less discriminative,

i.e., it has a lower LS than a more specific tag like ”potter”, which is expected to have

non-uniform co-occurrence patterns.
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Figure 4.8: Tag importance according to LS algorithm vs. tag frequency

4.3.3 Semantic Grounding using WordNet

To provide a quantitative evaluation, we performed additional experiments using Word-

Net [Miller, 1995]. WordNet has been used by several works as a tool for semantically

grounding tag relatedness measures [Cattuto et al., 2008, Srinivas et al., 2010, Markines

et al., 2009]. The goal is to assess how a given tag relatedness measure approximates

a reference measure. For our study, we used the Jinag & Conrath (JCN) measure as a

reference since it showed a high correlation with human judgment [Jiang and Conrath,

1997]. Since the similarity score of JCN takes a value in the range [0,∞), we applied the

transformation proposed by [Li, 2005] to convert the similarity into a distance measure

in the range [0, 1] according to the following function:

f(x) =


1 x ≤ 0.06

0.6− 0.4 sin(25π
2 x+ 3

4π) 0.06 < x < 0.1

0.6− 0.6 sin[π2 (1− 1
3.471x+0.653)] x ≥ 0.1

(4.20)

where f is non-increasing function and x refers to the JCN similarity between two words.

The goal of the evaluation is to assess the effectiveness of the proposed distance mea-

sure AJSD and the to investigate the effect of the Laplacian score feature selection on

identifying related tags. For this purpose, we created a gold standard by identifying

the most similar tag pairs from our dataset using WordNet and the JCN measure. Af-

ter that, the relatedness between the tag pairs of the gold standard is calculated using

different configurations: 1) our proposed distance measure AJSD, 2) the standard JSD
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measure and 3) an approach based on the cosine of the tag co-occurrence vectors, de-

noted as COS. More specifically, the COS approach defines the relatedness between two

tags t1, t2 based on the cosine distance between their corresponding tag-context vectors,

i.e., 1 − cosine(v(t1), v(t2)). Furthermore, we also examined the performance of these

distance measures by using 1) feature selection based on the most frequent tags in the

folksonomy (FRQ) and 2) features selection using the top Laplacian features (LS). The

configurations of the investigated tag relatedness approaches are summarized in Table

4.3.

NR Distance Features

1 AJSD FRQ

2 AJSD LS

3 JSD FRQ

4 JSD LS

5 COS FRQ

6 COS LS

Table 4.3: Configurations of the evaluated tag relatedness approaches

The performance of a tag relatedness approach is evaluated according to the average

JCN distance (Equation 4.20) over the set of most similar tag pairs identified by that

approach. Furthermore, to deal with possible differences in the distributional properties

of the investigated measures, we followed the same method as in Markines et al. [2009].

Thereby, the performance of a tag relatedness approach is evaluated based on the cor-

relation between the rankings it produces and that of a reference measure. Specifically,

we used Kendall τ -correlation coefficient to verify how the ranking (of the most similar

tag pairs) generated by a tag relatedness approach correlate with the reference ranking

according to the JCN measure.

For each of the six configurations, we calculated the number of unique tag pairs which

are most related. On average each method produced 4,100 unique tag pairs. The average

percentage of tag pairs with both tags having corresponding entries in WordNet amounts

to 40%.

Effectiveness of Feature Selection

In order to investigate the effect of distance measure, we identified the top 1,000, 2,000

and 3,000 features according to the frequency (FRQ) as well as the LS feature selection

methods. We used the top features to build a probability distribution for each tag in the
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test folksonomy and applied each of the three distance measure AJSD, JSD and COS

to identify the most similar tag pairs.

Figures 4.9(a), 4.9(c) and 4.9(e) show the average JCN distance over the sets of most

similar pairs as identified by AJSD, JSD and COS, respectively. In general, LS out-

performs FRQ disregarding the applied distance measure. That is because LS feature

selection results in a smaller average JCN distance under the three applied distance

measures and with varying number of features. One exception is the case where the

COS method is used with the top 2,000 LS feature. Thereby, FRQ feature selection

performs slightly better.

With regards to Kendall τ -correlation, the same conclusion can be made. When LS

feature selections is applied, the rankings of most similar tag pairs, which are generated

by the three distance measures, have higher correlation with their rankings according to

the reference measure JCN. (Figures 4.9(b), 4.9(d) and 4.9(f)).

Although it seems that LS outperforms FRQ feature selection, it is important to note

that the difference in the performance between the two methods and according to both

evaluation measures is relatively small. However, in contrast to the FRQ method, LS

has the potential to generate even better results by tuning its parameters, such as the

selected similarity measure and the size of the nearest neighbor graph (refer to Section

4.2.2).

Effectiveness of Distance Measures

We compared the performance of AJSD, JSD and COS using the the top 1,000 FRQ as

well as LS features. Figure 4.10 shows that the proposed AJSD measure have a positive

effect of on identifying similar tags. Indeed, AJSD outperforms the two adversary meth-

ods JSD and COS with respect to the average JCN distance (Figure 4.10(a)) and rank

correlation (Figure 4.10(b)). This observation holds for both feature selection methods,

i.e., FRQ and LS. The second performing measure is JSD, which in turn outperforms

the COS measure.

4.3.4 Evaluation using Large Scale Co-occurrence Statistics

Although WordNet provides a well-established ground truth, it is unable to cover the

diversity of user tags. As mentioned before, only 40% of the tag pairs, which were

identified by the investigated tag relatedness approaches, have corresponding entries in

WordNet. This is because WordNet is limited to the English language and it does not

consider entities like abbreviations, proper names or terms in colloquial language. Few
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Figure 4.9: Comparison between FRQ an LS feature selection methods

examples of related tag pairs which could not be identified by WordNet are shown in

Table 4.4.

To deal with the limitations of WordNet, we evaluated the relatedness between the pairs

based on their distributional co-occurrence in a large-scale corpus. For this purpose, we

used DISCO (DIstributionally related words using CO-occurrence) measure of semantic

relatedness [Kolb, 2008]. We configured the system to use Wikipedia [Wikipedia, 2014]
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Figure 4.10: Comparison between tag relatedness distance measures

Similar Tag Pairs Description

Hadid Zaha Iraqi-British architect

Bradley Wiggins English professional road and track racing cyclist

Aer Lingus Irish airline

Boeing Airbus Aircraft manufactures

Bianco Nero Italian for white and black

Warner Bros American producer of film, TV, and music entertainment.

Olympische Spelen Dutch for Olympics

Verenigd Koninkrijk Dutch for United Kingdom

Anish Kapoor Indian sculptor

Psittacula Krameri Gregarious tropical Afro-Asian parakeet species

Table 4.4: Similar tag pairs which are identified by the proposed tag relatedness
approach. The listed tags do not have corresponding entries in WordNet. Tag pairs
shown in italic are identified as related by DISCO. The description of each tag pair

were obtained from Wikipedia

as a corpus. The advantage of Wikipedia is that it offers a much wider vocabulary than

WordNet, e.g., it is more likely to find Wikipedia articles containing proper names.

With respect to the similarity measure, it has been shown that DISCO similarity cor-

relate with JCN similarity by a coefficient of 0.38 [Kolb, 2008], however, this value is

not high enough to replace human judgment. For example, consider the two word pairs

”humour, humor” and ”colour, color”, the similarity between the words of each pair
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is almost 1 according to WordNet and the JCN measure. However, DISCO produces

two different similarity values for both pairs. According to DISCO the similarity be-

tween ”humour” and ”humor” amounts to 0.65 while the similarity between ”colour”

and ”color” is 0.81. The example shows that it is not practical to apply the same eval-

uation measures (i.e., the average similarity and Kendall τ -correlation) as we did with

WordNet. Still, DISCO can be used as a reference to evaluate the relatedness between

two words. Therefore, instead of grounding the performance on the real similarity val-

ues, we use the number of tag pairs falling in certain similarity range as an indicator for

the quality of the tag relatedness approach.
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Figure 4.11: Histograms of the number of tag pairs identified by each of the distance
measures AJSD, JSD and COS using the top 1,000 LS Features. Each channel of the
histogram corresponds to the number of tag pairs in a predefined range of DISCO

similarity

To this end, we determined three types of ranges for DISCO similarity corresponding

to low, middle and high distributional co-correlation between words. Consequently, for

each tag pair generated by a tag relatedness approach, we count the number of tag pairs

with a DISCO similarity falling into each of the three defined similarity ranges.

Figure 4.11 shows the results of applying the distance measures AJSD, JSD and COS

using the top 1,000 LS features. It can be seen, that disregarding the similarity range

the COS method produces the smallest number of similar tag pairs. We can also observe

that AJSD produce the highest number of tag pairs for all three similarity ranges. This

gives an additional clue on the advantage of AJSD over the adversary measures.
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4.4 Resolving Tag Ambiguity

In this section, we want to demonstrate how tag relatedness information combined with

semantic resources can be used to resolve tag noisiness in the context of automatic image

annotation. Figure 4.12 illustrates the procedure which we apply. First, tag relatedness

information are extracted from the folksonomy using the approach described previously.

After that, most related tag pairs are determined based on the distance between them

according to the applied tag relatedness approach. Next, the type of the semantic

relationship between the two tags is identified (more details below). The tag pairs are

then stored in a database with the corresponding semantic relationship. Furthermore, we

define two actions to disambiguate the tag pair: tag removal and tag combination. The

tag removal action is used to remove redundant tags as in the case of lexical variation

and synonym tags. For example, for tag pairs like ”color” and ”colour” or ”flower” and

”rose” only one of the two tags is kept. The tag combination action assumes that the

tags are semantically related according to a relationship different from lexical variation

or synonymy. Therefore, it is likely that a more specific term will emerge when the two

tags are combined. For example, combining the two related tags ”Eiffel” and ”Tower”

results in identifying the name of the landmark ”Eiffel Tower”.

To refine tag proposals generated by an AIA approach, we first build tag pairs from the

proposal list. Next, each tag pair is used to query the database of semantically similar

tag pairs. Finally, the tag pair is replaced by the result of the corresponding action.
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Figure 4.12: Workflow of the proposed tag proposals disambiguation procedure
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Semantic Relationship Identification

The presented tag relatedness approach determines related tags without specifying the

kind of the semantic relationship between them. In the context of automatic image

annotation, further information are needed to refine the list of generated tag proposals.

For this purpose, we developed a simple approach to identify the type of semantic

relationships between related tag pairs. Thereby, we deal with three kinds of semantic

relationships: lexical variation, synonymy and correlation.

To determine whether two tags are lexical variation of each others (e.g., ”olympics” and

”olympic”), we apply a lexical similarity measure based on the widely used algorithm

of edit distance or Levenstein distance (Lev) [Marzal and Vidal, 1993]. Edit distance,

is defined as the minimum number of elementary edits (e.g., insert, delete, replace)

which are required to transform one string into another. We use a variant of the the

edit distance called normalized edit distance (NED) [Marzal and Vidal, 1993] which is

calculated by normalizing the edit distance between two words by the length of the

longest word.

NED(w1, w2) =
Lev(w1, w2)

max(Len(w1), Len(w2))
(4.21)

where w1 and w2 are two words and Lev is a function that computes the edit distance

between two words based on Levenstein proposal and Len is a function that returns

the number of characters (length) in a word. Words with NED less than a predefined

threshold θ will be classified as a lexical variation of each other. In our experiments

good estimations of the lexical variation were provided by θ = 0.35.

To determine whether two tags are synonyms, the taxonomic shortest-path length be-

tween the two tags in WordNet is calculated. In WordNet a path length of one cor-

responds to direct synonyms. Sample word pairs with path length of one are (”cab”,

”taxi”), (”dawn”, ”morning”) and (”stadium”, ”arena”) .

For both synonyms and lexical variation tags, we apply the tag removal action. That

means, the two tags are reduced to only one of them. Thereby, we keep the tag which

occurs most in the folksonomy. In the case where the two tags are neither lexical variation

nor synonyms, we check the distance between them according to the WordNet-JCN

measure. For tag pairs that do not have corresponding entries in WordNet, we calculate

their DISCO distance [Kolb, 2008]. If the distance between the two tags according to

either or both measure (i.e. JCN and DISCO) is below a predefined threshold, they are

considered to be correlated. As mentioned before, correlated words can be combined

to obtain more specific terms. To identify such terms, we use the tag pair to query
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Wikipedia for articles which contains both words in their titles. If a corresponding

article was found, we use the title of that article to replace the tag pair. Otherwise, the

tag pair is kept unchanged.

Table 4.5 shows sample of related tag pairs which were identified by applying AJSD

measure and LS feature selection on the folksonomy presented in Section 4.3.1. The

semantic relationships between the pairs are identified according to the above described

procedure. We can see, in addition to determining redundant tags the described method

helps to identify named entities such as persons, e.g., ”Edwin Lutyens” and landmark

names, e.g., ”Big Ben”.

Related Tag Pairs Semantic Final Term

”hamstead” ”hampstead” lexical variation ”hampstead”*

”apartment” ”apartments” lexical variation ”apartment”*

”archaeology” ”archeology” lexical variation ”archaeology”*

”burn” ”glow” synonymy ”burn”*

”overcast” ”cloud” synonymy ”cloud”*

”dawn” ”sunrise” synonymy ”dawn”*

”fall” ”autumn” synonymy ”autumn”*

”metro” ”tube” synonymy ”metro”*

”stadium” ”arena” synonymy ”arena”*

”tube” ”underground” synonymy ”underground”*

”san” ”francisco” correlation ”San Francisco”**

”chapel” ”abney” correlation ”Abney Park Chapel”**

”battersea” ”power” correlation ”Battersea Power Station”**

”ben” ”big” correlation ”Big Ben”**

”camden” ”town” correlation ”Camden Town”**

”wharf” ”canary” correlation ”Canary Wharf”**

”airport” ”heathrow” correlation ”London Heathrow Airport”**

”city” ”london” correlation ”City of London”**

”edwin” ”lutyens” correlation ”Edwin Lutyens”**

* Tags with higher occurrence in the folksonomy than there related counterparts

** entries corresponding to titles of Wikipedia articles

Table 4.5: Sample of tag pairs extracted from the folksonomy presented in Section
4.3.1 with the corresponding semantic relationships and their disambiguation terms

Note that, the presented procedure can be extended to deal with triples or even clusters

of related tags. However, investigating such options is out of the scope of this thesis.
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In Chapter 8 we will demonstrate experimentally the effectiveness of the presented tag

relatedness approach and the presented tag disambiguation procedure on improving the

performance of search-based AIA.

4.5 Summary

In this chapter, we demonstrated the effect of noisy tags on the performance of search-

based AIA. Furthermore, we introduced an approach for tag relatedness based on Lapla-

cian feature selection and a novel distance measure based on Jensen-Shannon Divergence.

The effectiveness of our approach has been demonstrated experimentally using a folk-

sonomy extracted from Flickr. The evaluation is performed using WordNet as a ground

truth. An additional evaluation metric is also presented based on the distributional

similarity of words according to Wikipedia and the DISCO semantic similarity measure.

We also introduced a procedure for refining tag proposals generated by AIA by using

the extracted tag relatedness information.



Part III

Improving SURF-based Image

Matching
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Chapter 5

Classification-based Keypoint

Pruning

This chapter deals with the challenge of efficiently matching huge number of images

based on the local image feature SURF. To accelerate the matching process, an ap-

proach for reducing the number of compared feature descriptors is presented. The ap-

proach explores the problem of keypoint characterization and propose a solution using

classification techniques.

5.1 Introduction

As presented in Chapter 1, the fourth phase of our automatic annotation approach

requires identifying the set of visual neighbors of the image which we want to annotate.

To achieve this, we decided to perform image matching based on the SURF method [Bay

et al., 2008]. SURF is characterized by its fast computation and a matching performance

compared to that of SIFT [Lowe, 2004]. Furthermore, the standard SURF descriptor is

half as small (64 dimensions) as that of SIFT. Still, in the case of our AIA approach

identifying the visual neighbors implies comparing huge number of SURF descriptors.

To address this problem, we propose an approach for accelerating SURF-based image

matching based on machine learning techniques. The goal is to construct a binary

classifier which is able to identify, for each image, the subset of keypoints that are

important for the matching. Subsequently, unimportant keypoints can be excluded

from the matching process. As a result, the matching can be done more efficiently by

comparing much smaller subsets of keypoint descriptors.

79
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The motivation for our approach is based on two observations. First, applications that

employ CBIR techniques - such as most search-based AIA approaches – perform image

matching by following two types of processing phases: an offline phase, in which image

features are extracted and stored, and an online phase, in which a search is initiated

to discover the visual neighbors of a given input image. This is done by comparing the

feature descriptors of the input image with those of the images stored in the database.

Hence, reducing the number of compared feature descriptors is a key requirement for

boosting the performance of the online phase. Second, it can be observed that a consider-

able part of the keypoints discovered by algorithms for local feature detection (including

SURF) contributes a little to identifying similar images [Turcot and Lowe, 2009]. Addi-

tionally, in most cases, it is enough to have a small amount of keypoint correspondences

to decide whether two images are similar or not. For instance, it has been shown in [Ke

et al., 2004, Jones et al., 2010] that a small number of five keypoint correspondences

provides a strong clue that the associated images are similar. Please refer to the images

shown in Figure 5.1 for more explanation on the latter observation.

 

 

 

Figure 5.1: Two images depicting the same scene from different perspectives. Key-
point correspondences between the two images are connected using dotted lines

The two images illustrate the same scene from different perspectives. By matching the

two images using the SURF algorithm, only 10 keypoint correspondences were identified.

This number is quite small compared the total of 1602 and 1300 keypoints extracted

from the left and the right image, respectively. In the naive case, identifying the common

keypoints requires performing 1602 × 1300 comparisons among 64-dimensional feature

vectors.

Based on the above discussion, the performance of the matching phase can be improved

if we are able to identify a subset of ”significant” keypoints and restrict the matching

accordingly to the corresponding feature descriptors. The literature refers to this process
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as keypoint pruning and it has been the topic of several research studies (refer to Section

2.5.3). Before we present our solution in this regard, we briefly introduce a state-of-the-

art method for keypoint pruning based on visual attention and saliency maps. The

presented method will serve as a basis to investigate the effectiveness of our approach.

5.2 Keypoint Pruning using Visual Attention Models

Visual attention is a research field which aims at simulating the way in which humans

perceive photos. In general, humans analyze a visual scene by selecting specific areas in

the image, called salient regions, that seem most relevant to them. Then, finer/higher-

level activities, such as object recognition are conducted on the salient regions only. An

early computational model for simulating this process was introduced in a widely cited

paper of [Itti et al., 1998]. The proposed visual attention model aims at identifying

regions in images which correspond to human perception of saliency. The processing

stages of this model are illustrated in Figure 5.2. First, for a given image simple color,

intensity and orientation features are extracted using the center-surround technique.

After that, for each feature a map is created. Finally, feature maps are fused in a

saliency map which topographically codes conspicuous locations in the input image.

Figure 5.2: The model of saliency-based visual attention according to [Itti et al.,
1998]

As discussed in Section 2.5.3, saliency maps have been successfully used to perform

keypoint pruning [Pimenov, 2009, López-Garćıa et al., 2011, Chen et al., 2011]. The

assumption of such approaches is that the importance of a keypoint can be determined

according to its location in the image. That is, keypoints which fall in salient regions
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would have more importance than those lying in non-salient regions. Subsequently, the

number of keypoints can be reduced by only considering those which belong to the

salient image regions. Consequently, image matching can be performed more efficiently

by comparing smaller subsets of feature descriptors which correspond to the keypoints of

the salient regions. This process is illustrated in Figure 5.3. A saliency map is generated

for the input image shown in Figure 5.3.a. Usually, saliency maps are represented by

a gray-scale version of the input image. Bright pixels (values near 1) represents salient

areas in the image, while dark ones (values near 0) are of low saliency (Figure 5.3.b).

In Figure 5.3.c the complete set of keypoints as discovered by SURF are shown, while

Figure 5.3.d illustrates the results of reducing the keypoints to those which correspond

to salient areas (brightness values above 0.4).

   

 

a) Input image 

 

b) Saliency map c) Original keypoints d) Keypoints found in salient 

regions 

    
    

    
 

Figure 5.3: Keypoint pruning using saliency maps. a) The input image, b) the
corresponding saliency map, c) the image with the identified SURF keypoints (without
keypoint pruning), d) the image with the subset of SURF keypoints corresponding to

salient regions

Note that by using this approach the ratio of detected keypoints differs according to the

nature of the image, i.e., the size of the salient regions. Furthermore, this number can

also be controlled by using different values for the saliency threshold. In the example

above, 1,300 keypoints were detected from the input image with a subset of 499 keypoints

corresponding to salient areas (about 38% of the original set).

5.3 Keypoint Pruning as Classification Problem

Our solution for keypoint pruning is based on building a classifier which is able to identify

two categories of keypoints. Significant keypoints which represent a crucial indicator for

image similarity, and, insignificant keypoints, which are usually noisy, i.e., they have low

or even biased impact on identifying visually similar images. By categorizing keypoints
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in this manner, the matching performance can be significantly improved by limiting the

matching to the set of significant keypoint descriptors.

To explain how such a classifier can be constructed, suppose we have an input image

I with the set of the associated SURF keypoints KP . Each keypoint kp ∈ KP can be

then described by a set of features F extracted from a patch of width w centered on the

keypoint, denoted as QFw(kp). Additionally, assume that there exists a perfect labeling

function, Y , that assigns a label for each keypoint based on the associated feature patch

as given below:

Y (QFw(kp)) ∈ L;L = {−1, 1} (5.1)

The value -1 corresponds to the insignificant class and 1 to the significant one. In

practice, Y cannot be directly derived, however, an estimation of it Ŷ can be learned by

applying classification techniques. The quality of the classifier is estimated by its ability

to predict the correct classes for test keypoints. Accordingly, a best performance can

be achieved if the classifier is able to predict the right classes for test keypoints with a

very low error rate ε. In other words, the probability that the class predicted for a given

keypoint kp ∈ KP differs from the true one is low:

P (Y (QFw(kp)) 6= Ŷ (QFw(kp))) < ε (5.2)

To build the classifier Ŷ , a training dataset with labeled instances has to be created.

A training instance corresponding to a keypoint can be defined as tuple (x, y,QFw , L) in

which (x, y) are the coordinates of the keypoint in the corresponding image, QFw is the

characterizing feature patch and L is the class of the keypoint. This set can then be

used to train the classifier. Subsequently, the learned model can be used to determine

the usefulness of a test keypoint kp′ for the matching. To achieve this, the same set

of features which were used in the training process are extracted from a patch QFw

centered on kp′ and passed to the classifier. Finally, kp′ is considered by the matching

if Ŷ (QFw(kp′)) = 1, otherwise, it is excluded from the matching.

In the following sections the process of building the keypoint classifier and the associated

challenges are discussed in detail.

5.3.1 Training Dataset

We created a training dataset from a collection of 1,100 groups of images taken from

the Object Recognition Benchmark dataset [Nister and Stewenius, 2006]. Each group

consists of four images that are visually similar, i.e., depicting the same objects, but
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taken from different perspectives and under different illumination conditions (Figure

5.4). The dataset was used to provide training instances, i.e., a collection of labeled

keypoints. For this purpose, an image was selected randomly from each group and

matched with the other three images in the same group using the SURF algorithm. A

keypoint was labeled as significant if it has a correspondence in each one of the other

three images. Otherwise, the keypoint is assigned the label insignificant.

 

 

 

    

    

    

    

    
    

Figure 5.4: A sample of image groups, which were used to create the training dataset.
The image groups were taken from the Object Recognition dataset [Nister and Stewe-

nius, 2006]

Diversity of the Training Set

While building the training dataset, selecting keypoint instances from the adjacent ar-

eas in the image can lead to redundancy. This is due to possible overlap among the

corresponding keypoint patches. Training the classifier with redundant instances may

lead to bias in the produced model. To deal with problem, we apply a distance based

filtering on the training instances. More specifically, for two training instances extracted

from the same image and having the same label, the two instances must be spatially far

enough from each other. To achieve this, the pairwise Euclidean distance between the

coordinates of the keypoint instances is calculated. Next, an instance is discarded from

the training dataset if there is already an instance which is close to it in the training

dataset, i.e., the distance between the two instances is less than a threshold d. In our
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experiments, we followed the recommendation of [Calonder et al., 2008] and used d = 5

pixels.

Dealing with Imbalance

Labeling keypoints using the above described approach leads to an imbalanced training

dataset, in which the number of insignificant instances greatly exceeds the number of sig-

nificant ones. In our training dataset less than 5% of the training instances were labeled

as significant. In general, using an imbalanced training dataset leads to a poor classifi-

cation performance [Provost, 2000] because the classifier tends to assign all instances to

the majority class (in our case the insignificant class).

To address this problem, we applied a sampling approach on the obtained training

dataset. We investigated different sampling configurations and realized that random

sampling without replacement [Cochran, 2007] is most convenient in our case. In contrast

to other sampling methods, such as SMOTE [Chawla et al., 2002], sampling without

replacement ensures that the classifier is trained using real instances. While in SMOTE

for example, the training dataset can again suffer from high redundancy according to

replicating instances from the minority class to achieve the balance.

It is also important to note that a main drawback of sampling without replacement is

that it can lead to a sharp reduction in the size of the training dataset. Using this

approach, the maximum number of training instances is as twice as the number of

instances in the minority class. Therefore, it is important to make sure that there are

enough instances of the minority class in the training dataset before applying this kind

of sampling. Otherwise, the learned model will be highly biased due to the small size of

the training dataset.

5.3.2 Classification Features

The training instances must be described according to discriminative features before they

can be fed into the learning phase. The quality of the features has a direct influence

on the performance of the classifier. For this purpose, we investigated different kinds

of image features extracted from squared patches centered on the keypoints. The set of

features that we investigated includes the SURF descriptor itself, as well as other color

and texture features, which we describe below.

SURF Descriptor: SURF descriptor has 64 dimensions and is generated by calculating

Haar wavelet responses in 4× 4 oriented square sub-regions centered on the keypoint

[Bay et al., 2008]. We used the SURF descriptor to characterize the keypoints and
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extended it with four additional attributes: 1) keypoint strength which represents the

intensity of the corresponding blob. Here, positive values indicate dark blobs while

negative values indicate light ones, 2) the Gaussian scale [Lindeberg, 1994] at which the

keypoint was discovered, 3) the trace of the Gaussian matrix which was used to discover

the keypoint blob and 4) the orientation of the keypoint. The final feature vector has

68 components.

Reduced SURF Descriptor: we applied attribute selection on the generated SURF

descriptor to identify the most important classification attributes. For this purpose, we

used the RELIEF-F [Liu and Motoda, 2007] method for feature selection. RELIEF-F is

an effective feature selection algorithms which starts by selecting instances at random

from the training set and determining their nearest neighbors. Subsequently, feature

weights are adjusted, so that higher weights are given to features that discriminate each

instance from its neighbors which belong to different classes. The algorithm identified

48 distinctive attributes of the SURF descriptor. We coined the new feature as Reduced

SURF and used it to train a keypoint classifier.

Color Histogram: color histogram is a global image feature which represents the color

distribution of an image (or a region of it) [Swain and Ballard, 1991, Jain and Vailaya,

1996]. It is calculated by defining a number of ranges (bins) for each color component

according to a given color space. After that, the number of pixels falling in each bin is

determined. We used the RGB color space and for each of the three color channels we

used 8 bins. The final histogram consists of 83 = 512 bins in total.

Color and Edge Directivity Descriptor (CEDD): this feature combines both color

and texture features in one histogram [Chatzichristofis and Boutalis, 2008a]. It allows

fast image retrieval since it is limited to 54 bytes per image. CEDD is created by splitting

the image in a predefined number of blocks and calculating the color histogram of each

block in the HSV color space. A 24-bins histogram of five different colors is generated for

every block. After that, five filters are used to extract the texture information related to

the edges present in the image. The extracted edges are classified in vertical, horizontal,

45-degree diagonal, 135-degree diagonal and non-directional edges. The final descriptor

consists of 144 bins.

Fuzzy Color and Texture Histogram (FCTH): similar to CEDD, the FCTH feature

combines color and texture information in one quantized histogram [Chatzichristofis and

Boutalis, 2008b]. First, a 10-bins histogram is extracted for 10 colors in the HSV color

space. These colors are preselected based on the positions of the vertical edges in each

channel. The histogram is extended to 24 bins by separating each color in 3 hues: dark

color, color and light color. Then, Haar Wavelet transform is applied on the luminance
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component Y of YIQ color space. Finally, the extracted texture information is used to

enrich the feature resulting in feature histogram of 192 bins.

Joint Composite Descriptor (JCD): the idea of JCD is based on the fact that

the color information of FCTH and CEDD are extracted from the same fuzzy system.

Accordingly, JCD combines the texture area of the two features [Chatzichristofis et al.,

2009]. JCD is built from 7 texture areas with each area made up of 24 sub regions

corresponding to color areas. The feature histogram consists of 168 bins.

5.3.3 Classification Using Random Forest

After the training dataset was constructed, we built for each keypoint in the training

set a feature descriptor based on each of the feature presented in the previous section.

Next, for every single feature we trained a Random Forest classifier.

Random Forest (RF) [Breiman, 2001] is a state-of-the-art machine learning method that

belongs to ensemble learning algorithms. The prediction of Random Forest is obtained

by aggregating the predictions of several other tree classifiers [Rokach, 2010]. The ef-

fectiveness of Random Forest can be compared to that of other powerful classifiers,

such as support vector machines (SVMs) [Cortes and Vapnik, 1995, Muller et al., 2001].

Moreover, Random Forest avoids overfitting the training data and generates an unbi-

ased estimate of the generalization error. Briefly, a Random Forest classifier works as

follows. A ”forest” is built from a collection of n tree classifiers. Each tree is built

from bootstrapped sample of the training data. In contrast to traditional classification

trees [Rokach and Maimon, 2005], in which the best split for a tree is selected from all

provided predictors, the trees in Random Forest are grown by choosing the best split

predictor out of a random selection of m predictors. The leaves of each classification

tree contain the posterior distribution of the classes.

Formally, let T = {Ti}ni=1 denote the set of trees in the forest and Ni = {Ni,j}kij=1 the

set of leaf nodes of the ith tree where ki is the number of the corresponding leaf nodes.

Furthermore, let C be the set of available classes. Now, a leaf node Ni,j contains the

distribution of the classes at that node, denoted as PNi,j (C). To predict the class of a

new feature vector v, it is dropped over each tree in the forest until it reaches a leaf

node Ni,v in each tree. The final class C ∈ C of the feature vector v is determined by a

majority voting of the n trees and is given by the following conditional probability:

P (C|v) = argmax
C∈C

1

n

n∑
i=1

PNi,v(C)
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Random Forest classifiers have further interesting characteristics. It provides a robust

generalization error estimate called out-of-bag (OOB) error. During the training phase

and while building the trees about one third of the training sample is left out. This sub-

sample contains what is called the out-of-bag (OOB) instances and is used for testing

the corresponding tree classifier. The proportion of misclassified OOB instances indi-

cates the classification error of the corresponding tree. By averaging the OOB errors

over the whole set of tree classifiers, a generalization error for the Random Forest clas-

sifier is obtained. Consequently, there is no need for a further cross-validation phase to

quantify the quality of a Random Forest classifier. Furthermore, Random Forest is easy

to configure. Compared to the complicated setting of SVM classifiers, Random Forest

have only two parameters. The number of trees n and the number of predictors m from

which a split for the tree is randomly selected.

5.4 Experimental Evaluation

In the following sections, the proposed keypoint pruning approach is evaluated from

different perspectives. As mentioned before, for each of the presented features, a Random

Forest keypoint classifier was constructed. In the following experiments, we first show

the classification accuracy of each of the trained Random Forest classifiers. Next, the

performance of image matching using our keypoint pruning approach is evaluated and

compared to another method which applies visual attention models. Finally, a runtime

analysis is provided.

5.4.1 Classification Performance

We built a training dataset consisting of about 10,000 keypoint instances distributed

uniformly on the significant and insignificant classes. Each keypoint was characterized

by each of the features presented in Section 5.3.2. The features were extracted from

squared patches centered on the keypoints. The width of the patch has a great effect on

the classification results. Too small patches make the extracted features miss information

about the corresponding keypoints while too large ones might overlap. To address this

problem, we identified the size of the patch dynamically using the approach described

in [Bay et al., 2008]. Accordingly, we set the width of the patch to 6 times the scale σ

at which the keypoint has been discovered using SURF detector.

For each individual feature, we trained a Random Forest classifier using 100 trees. Ad-

ditionally, we followed the recommendation of Weka data mining framework [Hall et al.,

2009] and set the number of randomly selected features to log2 (m), where m is the
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number of feature attributes. The accuracy of the classifiers was evaluated according

to the OOB error rate. The results shows that the classifier which was trained using

the Reduced SURF feature provides the smallest OOB rate of about 24%. The other

classifiers which were trained by each of the remaining features (SURF, CH, CEDD,

FCTH, and JCD) separately provided a comparable OOB values around 36%.

5.4.2 Effectiveness of Keypoint Pruning

Before discussing the evaluation results, we introduce issues related to using classification

as well as saliency maps for keypoint pruning.

Keypoint Classification Considerations

For a given keypoint (described by a feature patch), the classifier tells with which prob-

ability the keypoint belongs to each class. Consequently, a keypoint is assigned to the

class with the highest probability (in binary classification this corresponds to the class

with a probability higher than 50%). However, due to the classification errors, the clas-

sifiers cannot provide perfect predictions. Therefore, the probability value at which a

decision is made to assign a certain class to a keypoint is crucial for the matching perfor-

mance. To understand this, let us assume that the classifier predicts that a great part of

the keypoints of an image belongs with a probability of 50.1% to the insignificant class.

This means that most of the keypoints will be discarded from the matching although

the classifier is not quite sure about the membership of the keypoints (only for 50.1%).

To address this problem, the matching performance is evaluated under different decision

thresholds. Hereby, a keypoint is assigned to a certain class if the classifier predicts that

the keypoint belongs to that class with a probability higher than a predefined threshold.

Otherwise, the keypoint is considered to belong to the other class.

Saliency Map Considerations

A saliency map is a matrix which contains for each pixel in the image a corresponding

saliency value falling in the range [0,1]. A saliency value of 1 indicates that the corre-

sponding pixel is very conspicuous while a value of 0 indicates inconspicuous pixel. In

turn, saliency map-based keypoint pruning decides whether a keypoint descriptor will

be considered by the matching based on the corresponding saliency value. Accordingly,

the saliency value (threshold) at which a keypoint is considered significant has a direct

effect on the number of pruned keypoints, thus, it affects the matching performance.
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Results

The effectiveness of the proposed approach for keypoint pruning is evaluated according

the achieved image matching performance. The results of our method are compared to

three other matching approaches:

1. A baseline method, called ”Random”, that applies a random keypoint pruning

according to a predefined threshold before matching the corresponding images.

2. A conventional matching approach, called ”Full” matching, which does not apply

keypoint pruning.

3. A matching approach, denoted as SM, which applies keypoint pruning according

to visual attention and saliency maps.

The accuracy of the matching is measured in terms of precision and recall. To evaluate

the matching precision, we used a subset of the Object Recognition Dataset [Nister and

Stewenius, 2006] and created two non-overlapping groups of images: the query and the

document groups which contain 100 and 200 images, respectively. We matched every

image from the query group to every image in the document group according to each of

the above described methods as well as according to our classification based approach.

During the matching, two images were considered similar if they shared at least four

keypoints. We calculated the precision for each query image and took the average. The

results showed that a high precision of 99% is achieved by all approaches. This leads

us to the conclusion that the matching precision has a negligible effect on assessing the

effectiveness of image matching that applies keypoint pruning (the precision maintains

a constant value under different approaches). In contrast, the matching recall as well

as the keypoint reduction ratio (after a pruning method is applied) are crucial factors

in judging the quality of the matching. On one hand, the matching recall indicates the

ability of the matching algorithm to retrieve images relevant to a given input image.

On the other hand, the keypoint reduction ratio gives a clue on the extent to which the

matching can be made faster.

The matching recall and the ratio of reduced keypoints were evaluated using a test set

consisting of 200 groups (different from the training set) of images taken from the Object

Recognition dataset. From each group an image was randomly selected and matched to

the other three images in the same group. In the case of classification-based keypoint

pruning, the matching recall as well as the ratio of reduced keypoint were calculated

using different decision thresholds on the significant class. For saliency maps different

values for the saliency threshold were investigated.
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Figure 5.5: Recall of different keypoint pruning approaches as a function of the
applied decision/saliency thresholds. The test dataset includes 200 groups from the

Object Recognition dataset [Nister and Stewenius, 2006]

Figure 5.5 shows that for the different classification approaches, the matching recall

increases to reach that of the full matching with a decreasing prediction thresholds. A

lower prediction threshold means that more keypoints will be used by the matching and

therefore a higher recall can be achieved. The same applies for the saliency threshold1.

That means, with a smaller saliency threshold less keypoints are pruned, so a higher

recall can be achieved. With respect to ratio of reduced keypoints, with increasing

decision/saliency thresholds, more keypoints are pruned, thus, higher keypoint reduction

ratios are obtained.

To get a better insight into the relation between the matching recall and the ratio of

reduced keypoints, Figure 5.6 shows the plot of the recall, relative to the recall of full

keypoint matching (method 2), versus the ratio of reduced keypoints2. First, it can be

observed that, in general, our approach (using different classification features) as well as

the SM approach for keypoint pruning evidently outperform the random approach. At

a very low keypoint reduction ratio of 5% the random keypoint reduction causes a drop

in the matching recall of more than 30%. With respect to the best performing approach,

Figure 5.6 demonstrates that pruning the keypoints using a classifier trained with the

Reduced SURF feature performs best followed by a classifier trained with the standard

SURF descriptor. Both approaches provide a high keypoint reduction ratio of more

than 40% while at the same time the corresponding drop in the recall stays below 5%.

1Since the decision and the saliency threshold values fall in the same range, the two thresholds were
shown on the same axis

2For better visibility only a subset of the investigated keypoint classifiers is shown.
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Compared to classification approaches using SURF and Reduced SURF, the competitor

method SM results in a higher drop in the recall, and that is even if a small keypoint

reduction ratio is used. In fact, the performance of SM can be compared to that of

our approach where the features FCTH, CEDD or JCD are used to train the keypoint

classifier. In that case, all theses approach show close performance. For instance, they

can reduce the amount of compared keypoints to more than 30% with a drop in the recall

below 10%. Finally, the classifier which is trained with the color histogram feature (CH)

showed the poorest performance.
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Figure 5.6: The drop in the matching recall (relative to the recall achieved by a full
matching) as a function of the keypoint reduction ratio achieved by different keypoint
pruning methods. The results are obtained from 200 groups of the Object Recognition

dataset

5.4.3 Runtime Evaluation

Performing image matching while applying our classification-based approach for key-

point pruning consist of four steps:

1. Detecting keypoints in each image.

2. Describing the keypoints by features extracted from a patch centered on the key-

points.

3. Filtering the keypoint based on their predicted labels.

4. Matching a reduced set of the keypoints.
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Similarly, image matching that applies visual attention-based keypoint pruning applies

the following procedure:

1. Generating the saliency map for the input images.

2. Detecting keypoints in salient regions.

3. Filtering the keypoint according to their saliency values.

4. Matching a reduced set of the keypoints.

For many applications, the first three steps of both approaches can be performed offline.

For example, in CBIR systems, these steps can be executed as background processes

before inserting a new image into the database. On the contrary, the matching step

must be done online.

The benefit of keypoint pruning on reducing the matching runtime can be estimated

analytically as follows. Suppose that we have two images I and J . Let N and M be the

numbers of keypoints extracted from I and J , respectively. For a matching algorithm

such as the Linear Nearest Neighbor (LNN) [Knuth, 1998], finding correspondences be-

tween I and J implies calculating the pairwise distances between the keypoint descriptors

of both images. Refer with C to the matching cost. C can be estimated in terms of the

total number of compared keypoint descriptors. According to the LNN approach, this

cost is given by:

C = N ×M (5.3)

Now, suppose that the average keypoint reduction ratio of a keypoint pruning approach

is α. Then the matching cost after applying the pruning C ′ can be estimated as:

C ′ = (1− α)N × (1− α)M (5.4)

Consequently, the order in which the matching with keypoint pruning is faster than the

full matching is calculated as:

Runtime Ratio =
C

C ′
=

1

(1− α)2
(5.5)

Experimentally, we evaluated the runtime requirements of each of the presented ap-

proaches using a ground truth dataset created from a personal collection of images with

image resolution up to 3264× 1840 pixels and about 1 MB per image on average. This

dataset was selected for two reasons. First, it enables us to investigate runtime re-

quirements with a ”realistic” dataset, which is not specifically designed for a particular
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retrieval task. Second, this dataset allows us to determine how our keypoint pruning ap-

proach generalizes to image datasets unrelated to the one that was used in the training.

The dataset contains 27 groups and each group has seven images on average. Images

in the same group depict the same scene from different perspectives, at different scales

and under different illumination conditions (Figure 5.7).

   

   

   

   
 

Figure 5.7: A sample of the image groups of our manually created dataset. The
images have a high resolution (3264×1840 pixels) and an average volume of 1 MB

For each image in the collection, we extracted and pruned the keypoints using our

approach as well as saliency maps. Table 5.1 summarizes the runtime taken by each of

the pre-matching processing steps averaged on all images in the dataset. The test was

curried out using a computer with Intel(R) CORE i5 and 8GB RAM.

Task Average Runtime (sec)

Keypoint Extraction 4.14

SM Generation and Filtering 2.07

SURF Prediction and Filtering 3.95

CEDD Prediction and Filtering 5.89

FCTH Prediction and Filtering 5.75

JCD Prediction and Filtering 6.03

Table 5.1: Average runtime of the pre-matching (offline) phases

Furthermore, we evaluated the matching accuracy as well as the runtime ratio (Equation

5.5) on the new dataset. Similar to the process followed in the last section, we randomly

selected an image from each group and matched it to the other images in the same group.

Figure 5.8 shows the trade-off between the drop in the recall and the percentage of the
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Figure 5.8: The drop in the matching recall (relative to the recall achieved by a
full matching) as a function of the keypoint reduction ratio achieved by different key-
point pruning methods. The results are obtained using a manually created test dataset

(Figure 5.7)

reduced keypoints achieved by our approach and the SM method. We performed the

test by using eight different configurations of our approach (in Figure 5.8 the numbers

on the right of the classification features correspond to the used prediction thresholds).

Furthermore, we compared our approach to saliency map keypoint pruning with saliency

thresholds values of 0.2 and 0.3 (denoted as SM-0.2 and SM-0.3 in Figure 5.8). First, it

can be observed that for the new dataset, the trade-off between the keypoint reduction

ratio and the drop in the matching recall is in accordance with the results obtained from

using a subset of the Object Recognition dataset (Figure 5.6). Similarly, at keypoint

reduction ratio in the range [30%, 40%] the drop in the recall does not exceed 10%

disregarding the applied pruning method. Furthermore, the results show the superiority

of the Reduced SURF and the SURF features. For example, Reduced SURF-0.4 (i.e.,

a classifier trained with the Reduced SURF feature and using a threshold of 0.4 as a

decision threshold) achieved a keypoint reduction ratio of more than 45% with a drop of

only 3% in the matching recall. Moreover, the results emphasize again that our approach

outperforms the saliency map approach. For instance, the configurations SM-0.3 and

SURF-0.5 (shown in italic in Figure 5.6) both select less than 50% of the keypoints for

the matching. However, the saliency map approach (SM-0.3) results in twice as much

drop in the recall as in the case of our approach (SURF-0.5).

In the same experiment, we also reported the actual matching runtime and averaged it

according to the total number of the performed image matching operations. This is done

using full matching as well as matching with keypoint pruning. The actual as well as
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Figure 5.9: Comparison between the theoretical and the actual (practical) runtime
ratio under different keypoint pruning configurations. The advantage of image matching
using keypoint pruning is measured by how much it is faster than the full matching.
The x-axis corresponds to the analyzed keypoint configurations. The y-axis represents
the ratio between the runtime (the theoretical as well as the practical one) required by
keypoint pruning-based image matching and that which is required by the full matching

the theoretical runtime ratio (Equation 5.5) for each method is reported in Figure 5.9.

The graph shows the advantage of keypoint pruning on reducing the matching runtime.

In general, all investigated approaches can speed up the matching by at least two times

compared to the full matching. Indeed, the improvement in the runtime is directly

proportional to the ratio of reduced keypoints. For instance, by considering the actual

runtime time ratio, the method ”Red. SURF-0.5” is around 30 times as faster as the full

matching. Figure 5.9 also shows that in all cases the actual runtime ratio is higher than

the theoretical one. This can be justified according to the Laplacian sign check which

is performed while matching SURF descriptors [Bay et al., 2008]. The SURF algorithm

avoids comparing two descriptors when they have different signs, so that faster matching

can be achieved. The theoretical analysis, however, assume that all descriptors will be

compared disregarding their signs.

5.5 Summary

In this chapter, we presented a classification-based approach for characterizing SURF

keypoints. The ultimate goal is improve SURF-based image matching by reducing the

number of compared SURF descriptors to the subset of descriptors corresponding to

most salient keypoints. For this purpose, we investigated different image features for

characterizing SURF keypoints. Furthermore, we compared the performance of our
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method to another approach for keypoint pruning based on saliency maps and visual

attention. The results show that our approach outperforms the adversary and is able to

provide high keypoint reduction ratio with a slight drop in the matching recall. Further-

more, the evaluation shows that the execution time of image matching can be efficiently

improved using the presented approach.





Chapter 6

SURF-based Iterative Image

Matching

In this chapter, an approach for improving the accuracy of SURF-based image matching

is presented. This approach aims at improving the matching recall by iteratively apply-

ing the matching process. To reduce the computation complexity, an efficient method

for image clustering is presented.

6.1 Introduction

In the previous chapter, we explained the main limitation of image matching using local

features due comparing huge amounts of keypoint descriptors. In this chapter, we deal

with issues related to SURF and its capacity to discover similar images with various

distortions in the matched images. In fact, SURF shows a poor ability to discover simi-

larities between images when they are distorted, due to extreme rotation or illumination

changes. In the terms of information retrieval this leads to a low recall. To get better

insight into this problem, consider the example shown in Figure 6.1. In this figure, we

are using SURF to find similar images for an input photo, Figure 6.1(a), (church Notre

Dame de Paris) in a given collection of images. SURF succeeded to find a match for the

input image as shown in Figure 6.1(b). However, due to high distortions, SURF could

not discover that the other two images shown in Figures 6.1 (c)-(d) are also similar to

the input image. Such scenarios are typical to SURF-based image matching and they

represent a serious disadvantage for our image annotation approach. As mentioned in

Chapter 1, tags of the visual neighbors represent the candidate annotations, from which

tag proposals are mined. Consequently, if the associated images cannot be discovered,

99
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the corresponding tags will be excluded from the mining process. Hence, the quality of

the automatic image annotation approach can be negatively affected.

 

 

 

(a) Input Image 

(b) Match of the input image 

(c) Match of the match (I) 

(d) Match of the match (II) 

Similarity was NOT discovered by SURF 

Similarity was discovered by SURF 

Figure 6.1: Example: image matching using SURF

In the next sections, we present our proposal for dealing with this problem through an

iterative matching approach. First, a detailed description of our solution is given. After

that, the efficiency of the proposed approach is evaluated experimentally.

6.2 Iterative Image Matching

Our method for improving the matching recall is based on iterative application of the

matching algorithm. Thereby, images found in an initial matching step are used as

input for further matching phases. The idea can be directly inferred from the example

of Figure 6.1. To obtain the missed visual neighbors, we can use those which has been

already identified (e.g. Figure 6.1 (b)) to query the image collection to determine further

possible matching images. The result of this step can then be added to the list of visual

neighbors. This process can be repeated as long as further similar images are discovered.

Obviously, this iterative process implies additional computations. To address this chal-

lenge, we propose a solution which applies a clustering strategy to reduce the number

of images, which are used as input for the next matching phases. First, let us consider

the following representation, in which the results of the iterative matching approach are

modeled using a tree data structure (Figure 6.2(a)). The root of the tree corresponds to

the input image (e.g. the one we want to automatically annotate). Images that are visu-

ally similar to the input image are connected to it via edges. Next, each of the identified

visual neighbors is used to initiate a further matching phase. The new visual neighbors
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Figure 6.2: (a) A tree representation for a collection of images which are similar to a
given input image (the root). The images are obtained through an iterative application
of the image matching algorithm on each image at each level of the tree. (b) To
reduce the computation cost, images at each level in the tree are first clustered and a
representative image of each cluster is used to identify further possible matching images

are then connected to the initiating image. Thereby, each image that already has a

match is excluded from the search space. Under the assumption that visual similarity

is transitive and by applying the described matching process several times, we obtain a

tree data structure which represents the relationships between initial input image (the

root of the tree) and the complete set of visual neighbors.

This naive approach of building the tree implies intensive computation. To improve

the performance, imagine that for each tree level starting form the first one (the first

level corresponds to the direct visual neighbors of the input image), we can efficiently

determine clusters of similar images (Figure 6.2(b)). Consequently, a better performance

can be achieved if a representative image of each cluster is used to initiate the next

matching phase, instead of using the whole collection of images at that level.

To cluster the images of a given tree level, we exploit the similarity information between

those images and their common father node. Let L = {L1, ..., Ln} be the set of images

at a given level of the tree with the common father indicated as Iin. To identify clusters

of similar images inside L, the elements of L have to be matched to each other. To

reduce the computation, we take advantage of the already calculated pairwise similarities

between the father node Iin and the elements of L. Accordingly, two images L1, L2 ∈ L
are considered similar if the father node Iin shares the same or overlapping sets of

keypoints with each of them.

Formally, we define KP a function that returns for a given image I the set of keypoints

kpi which have been extracted from it using the SURF algorithm:

KP (I) = {kp1, ..., kpn} (6.1)
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Additionally, for two keypoints kpi ∈ KP (I) and kpj ∈ KP (J) extracted from the

images I and J , respectively, we use the equal sign to indicate that they are a ”corre-

spondence”. Furthermore, we define CKP , a function which gives for two images I and

J the set of keypoints of I that have correspondences in the set of keypoints of J :

CKP (I, J) = {kpi|kpi ∈ KP (I) ∧ ∃kpj ∈ KP (J) ∧ kpi = kpj} (6.2)

Now, the similarity between the two images L1, L2 ∈ L can be determined in terms of

the similarity to the father node Iin as follows:

sim(L1, L2|Iin) = |CKP (Iin, L1) ∩ CKP (Iin, L2)| (6.3)

The presented similarity calculation approach has a lower complexity than the stan-

dard approach. In the standard approach, keypoints descriptors of both images have

to be compared to each other. Suppose that, on average, n keypoints can be extracted

from each image (according to the size of the image n can be estimated in hundreds to

thousands of keypoints). Subsequently, the complexity of finding common keypoint cor-

respondence between two images is given by O(n2). Concerning our approach (Equation

6.3), the cost of determining the similarity between two images is reduced to finding the

intersection between two subsets of keypoints of the common father node. In practice,

the average cardinality of those subsets, m, is much smaller than the average number of

the keypoints extracted from each image, i.e., m � n. Accordingly, the complexity of

our approach in worst case is O(m2), which is lower than the complexity of the standard

approach discussed above, i.e., O(m2)� O(n2) since m� n.

Finally, after the pairwise similarities between the elements of L have been calculated,

the produced similarity matrix can be fed into a clustering algorithm to build the clusters.

In contrast to the naive approach, the time needed by the clustering represents a further

computational cost for our method. However, our experiments show (see next Section)

that the impact of the clustering on the runtime is low.

6.3 Experimental Evaluation

6.3.1 Dataset

To evaluate the recall of image matching under the iterative approach, a ground truth

dataset is required. We built a dataset of groups of similar images based on manual

search using Google Image Search [Google, 2014], Flickr and a subset of the European
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Cities 50K dataset [Avrithis et al., 2010]. Each group of the dataset contains images

depicting the same scene; however, they are taken from different perspective and under

different levels of illumination. Additionally, the image groups cover different categories,

such as outdoor, indoor, buildings, etc. (Figure 6.3). The final dataset consists of 69

image groups, and each group 70 images on average.

    
    

   
 

    

    
 

Figure 6.3: A sample from the image dataset which we used to evaluate the iterative
image matching approach. Each row corresponds to a subset of visually similar images

6.3.2 Evaluation Methodology

Our goal is to investigate the effect of the proposed iterative image matching on the

matching recall. Additionally, we want to evaluate the runtime performance when the

introduced image clustering is integrated into the matching process with that of the

naive approach, which does not apply clustering.

To achieve this, the similarity between two images has to be defined. As discussed be-

fore, this is done based on the number of keypoint correspondences between the matched

images. In the literature, it has been shown that a threshold of five keypoint correspon-

dences is adequate to consider that two images are similar [Ke et al., 2004, Jones et al.,

2010]). We also investigated the same problem and analyzed the effect of different

threshold values on the matching precision. For this purpose, we took an image from

each of the 69 groups of the dataset and matched it to a collection of 2,000 dissimilar

images. We then evaluated the rate of false positives at different thresholds of keypoint

correspondences. The results showed that a value of four common keypoints led to 100%

precision (similar to the results presented in Section 5.4.2 of the previous chapter). We

used this value as a similarity threshold and applied the following procedure to evaluate

the matching recall. For each group of the dataset, an image is selected randomly and
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matched with the remaining images of the same group. Consequently, the recall is de-

fined by the percentage of the identified similar images. Finally, the average matching

recall is calculated over the complete collection of image groups in the test dataset.

6.3.3 Results

We compared our approach which applies image clustering according to the proposal

described in the last section to the naive method which considers all images found by a

previous matching iteration as input for further matching phases. We used the standard

agglomerative clustering approach [Kaufman and Rousseeuw, 1990] to cluster the images

at each level of the tree. Agglomerative clustering is convenient in this case since there

is no need to fix the number of the clusters. After building the clusters, a representative

image is selected randomly from each cluster and is used to initiate a further image

matching phase.
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Figure 6.4: The average recall achieved by the naive as well as the clustering-based
approaches at different matching iterations

Figure 6.4 shows the average matching recall for zero (corresponds to a single matching

without iterations) to four iterations. It can be seen, that the iterative approach results

in significant recall improvement with an increasing number of iterations. Furthermore,

the experiments show that for 76% of the image groups, three iterations were enough to

achieve the maximum recall. However, the clustering based approach shows slight drop

in the average recall compared to the naive approach.
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Figure 6.5: Clustering-based vs. naive iterative matching: Average matching runtime
required by each approach at different matching iterations

With respect to the required runtime1, Figure 6.5 shows that the clustering results in

significant performance gain. Iterative image matching using clustering requires in gen-

eral less time than the naive method. Furthermore, with increasing number of iteration,

the difference in the performance between the two methods becomes more evident. For

instance, by applying four iterations the matching with clustering is three times faster

than the naive approach.

Finally, it is important to note that the utility of the clustering is dependent on the

number of image at each level of the tree (Figure 6.2(a)). With a small number of

images, the clustering might lead to additional overhead which makes it less efficient

than the naive approach. In this case a hybrid approach can be more suitable. This

can be achieved by setting a lower bound on the number of images required to trigger

the clustering; otherwise the naive approach is applied. Furthermore, the choice of the

clustering algorithm might also affect the performance of the iterative approach, thus,

it deserves further investigation.

6.4 Summary

In this chapter, a method for improving the recall of image matching based on SURF is

introduced. The method extends the traditional matching through additional matching

phases. To reduce the computational overhead, an approach for image clustering is

proposed. The efficiency of the presented method was experimentally evaluated. The

1The experiments were performed on machine with Intel Core i5 CPU with 4x processor, 2,40 GHz
and 8 GB RAM and
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results show that our method leads to a significant improvement in the matching recall.

Furthermore, the evaluation demonstrates that the proposed image clustering approach

outperforms the naive approach in terms of the required runtime.
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Chapter 7

Probabilistic Model for Tag

Ranking

This chapter features a probabilistic model for tag ranking based on Bayes’ rule. The

model combines data from different modalities, i.e., image contents, tags and user in-

formation to rank tag proposals according to their relevance to the to-be-annotated

image.

7.1 Introduction

As we have seen in Chapter 2, ranking candidate annotations according to their relevance

to the target image is an essential component for the majority of AIA approaches.

Indeed, the applied ranking method is a crucial factor to judge the quality of AIA

solutions. This thesis addresses the problem of tag ranking by proposing a statistical

model for combining the information extracted by the previous phases of the proposed

annotation approach (refer to Section 1.4). The model grounds on Bayes’ rule [Gelman

et al., 2003] and provides a scalable framework for combining information extracted from

different modalities to score candidate annotations.

7.2 Problem Statement

For sake of clarity, a simplified version of our automatic annotation approach with a

focus on the tag ranking phase is illustrated in Figure 7.1. Let Iin be a geotagged

image, which we want to annotate using our approach. First, a repository of community

tagged images is queried to identify the geographical neighbors Igeo = {I1, I2, ..., Im}
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Figure 7.1: A simplified model showing the input for the tag ranking phase of our
image annotation approach

of the target image Iin. We indicate with Tgeo = {t1, t2, ..., tn} a lexicon from which

the tags of the geographical neighbors were selected. By ignoring user interaction, a

simplified folksonomy can be obtained based on the sets Igeo and Tgeo. The folksonomy

can be represented as a bipartite graph G(V,E) with two vertex classes. The first class

corresponds to the geographical neighbors, Igeo, while the other one corresponds to the

associated tags, Tgeo, such that V = Igeo ∪ Tgeo. An edge eij ∈ E indicates that the tag

ti ∈ Tgeo was used to annotate the image Ij ∈ Igeo (Figure 7.2.(a)).

Now, the problem of mining tag proposals for the input image Iin can be formulated by

means of the folksonomy graph. For this purpose, we extend the graph by an additional

vertex corresponding to the input image. Subsequently, tag proposals for the input image

can be provided, if we are able to infer a kind of virtual edges between the vertex of the

input image and the tag vertices. The virtual edges cannot be derived directly, however,

the subset of geographical neighbors which are visually similar to the input image (visual

neighbors), denoted as Ivis can be used to establish the connection (Figure 7.2.(b)). In

the optimal case, the input image Iin can be indirectly connected to a tag ti ∈ Tgeo if

there is an image Ij ∈ Igeo annotated with ti and at the time visually identical to Iin,

i.e., Ij is a replica of Iin. However, this assumption is too strict and to loosen it, we

assume that Iin can be linked to ti if the two images Iin and Ij are visually similar.

Finally, to determine the degree to which ti suits Iin, a ranking system that combines

and quantifies information along the paths between the two nodes is required. In the

next section, we describe our proposal in this regard.
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Figure 7.2: (a) A Graph representation of a folksonomy corresponding to annotated
images found in the geographical proximity of an input image Iin. (b) The graph
extended by an additional vertex corresponding to the input image. The dashed edges
connecting the input image to the geographically close images correspond to the visual

similarity

7.3 Pseudo-generative Statistical Model

We frame the tag ranking problem within a probabilistic model based on Bayes’ rule

(a.k.a. Total Probability Law) [Gelman et al., 2003]. Generally, Bayes’ rule is used in

settings, where from a generative model linking some causes to some effects, one wants

to get the probability of the effects given a cause. In general, the causes are supplied

with a priori probabilities. The generative model is typically represented by means of a

tree, where the leaves correspond to the effects (or by means of a more compact graph

where the effects can be shared among different causes). Complying with this paradigm,

we can identify, for sake of convenience, the input image Iin with the root of the tree,

and the tags of the geographical neighbors with the leaves. The geographical neighbors

play the role of intermediate nodes, ”caused” by the root and ”causing” the leaves.

Within this pseudo-generative model the input image Iin can be thought of to ”yield”

each of the geographical neighbors Ij ∈ Igeo with a probability P (Ij |Iin). In turn, each

image Ij ∈ Igeo can be thought of to ”yield” the tags ti ∈ Tgeo with probability P (ti|Ij).
This model in a compact version is shown in the graph of Figure 7.3.

Assume that the values of the conditional probabilities P (Ij |Iin) and P (ti|Ij) are avail-

able. We can then define the strength of the relationship between the input image Iin

and a candidate tag ti to be equal to the conditional probability P (ti|Iin). This latter

probability, can be calculated by applying Bayes’ rule as given by the following formula:
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Figure 7.3: A Bayesian model for tag ranking: Iin represents the input image,
Ij ∈ Igeo are the geographical neighbors and ti ∈ Tgeo is the set of the associated tags

P (ti|Iin) =
m∑
j=1

P (Iin)P (Ij |Iin)P (ti|Ij) (7.1)

P (Iin) is the prior distribution of an image and it is uniform and identical for all the

images, thus, it can be eliminated from Equation 7.1, so the final tag ranking model is

defined as:

P (ti|Iin) ≈
m∑
j=1

P (Ij |Iin)P (ti|Ij) (7.2)

In Equation 7.1, the value of P (ti|Iin) corresponds to the sum over all the paths leading

from the input image (the root of the tree) to the tags ti ∈ T (the leaf nodes). Thereby,

the probability of an individual path is computed by chain product of the corresponding

probabilities along that path (refer to Figure 7.3).

Note that, by construction, only tags that are reachable from the input image are con-

sidered as candidate tags. The probabilities P (ti|Iin) of the candidate tags provide a

natural ordering of the importance/relevance of the tags to the input image.

Discussion

The assumption of the availability of the values of the conditional probabilities P (Ij |Iin)

and P (ti|Ij) needs further consideration. Although it is a strong assumption, it can be

easily relaxed. Strictly speaking, neither the generative process from the input image

Iin to the images in Igeo nor the generative model from the elements of Igeo to the tags

Tgeo are known or defined precisely. Hence, the above conditional probabilities cannot

be known exactly. However, we are not interested in the probability values per se. We
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are rather interested in using those values as indicators for ranking the candidate tags

according to their relevance to the input image. Therefore, even quantities proportional

to (or simply monotonically dependent on) those probabilities will suite the task since

they will not change the ordering. Furthermore, if the probability gaps between pairs of

images relevant to an input image, denoted as P (Ij |Iin) − P (Ik|Iin) with Ij , Ik ∈ Igeo,
are wide enough, then even slightly distorting functions or indicators correlated with the

P (.|Iin) – a proxy of P (Ij |Iin), can suite the task. In a similar way, the proxy for P (ti|Ij),
denoted as P (.|Ij), can be used in place of the actual probability if the probability gaps

between pairs of candidate tags, denoted as P (ti|Ij)−P (tl|Ij) with ti, tl ∈ Tgeo, are also

wide enough.

For these reasons, even if the conditional probabilities P (Ij |Iin) and P (ti|Ij) are not

directly available to us, we will adopt the above described ranking procedure. The

proxy values for P (Ij |Iin) will be defined based on the visual similarity between the two

images, i.e., the image-to-image relevance (IIR). While the proxies for P (ti|Ij) will be

given by a measure for word-to-image relevance (WIR). The next sections describe in

detail our procedure for determining these quantities.

7.3.1 Estimating Image-to-Image Relevance: P (Ij|Iin)

The term P (Ij |Iin) represents the probability that the input image Iin generates the

geographical neighbor Ij . In this thesis, we build our estimation based on the visual

similarity between the two images. Suppose there is a function Sim which computes the

visual similarity between two images. Consequently, a proxy of the probability P (Ij |Iin)

can be obtained by normalizing the visual similarity between Ij and Iin according to the

total similarity between Iin and its geographical neighbors Igeo as follows:

P (Ij |Iin) =
Sim(Ij , Iin)∑m
k=1 Sim(Ik, Iin)

(7.3)

In our approach, the similarity function Sim is defined in terms of the number of SURF

keypoints correspondences between the two images.

Note that P (Ij |Iin) can be estimated by using or combining further information, such

as, temporal information or the geographical distance between the locations of capture

of the two images (e.g [Moxley et al., 2008]). However, thanks to advances in computer

vision, available algorithms provide robust means for identifying similar images. As we

have seen in the last two chapters, SURF is able to identify images which depict similar

scenes with high accuracy. Accordingly, a good estimate for P (Ij |Iin) can be achieved

when only the visual similarity between the two images is considered.
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7.3.2 Estimating Word-to-Image Relevance: P (ti|Ij)

According to Bayes’ rule, the term P (ti|Ij) refers to the probability of generating the

tag ti based on the image Ij . In the context of our image annotation approach, this can

be interpreted as the degree of relevance/importance between each tag of our simplified

folksonomy (Figure 7.2) and the associated images. In what follows, we present two

methods for deriving a proxy value for P (ti|Ij).

Weighted Voting

A first derivation for a proxy value for this probability can be directly inferred from the

model shown in Figure 7.3. If Ij is annotated with ti (i.e., they are connected in the

corresponding folksonomy graph), then by a simple application of frequentist statistics,

the proxy for P (ti|Ii) can be given as:

P (ti|Ij)weighted voting =
1

|{tk|tk annotates Ij}|
(7.4)

In Equation 7.4 the descriptive power (relevance) of ti to the image Ij is defined as the

inverse of the total number of tags annotating Ij . Accordingly, all tags annotating Ij

are given a uniform importance which is inversely proportional to the total number of

tags.

The name ”weighted voting” for this measure can be explained if we consider for a

given tag ti the sum of importance values
m∑
j=1

P (ti|Ij). The sum can be interpreted as

a weighted voting since for a single image Ij the value P (ti|Ij) can be considered as a

vote given by Ij about the importance of ti. Consequently, the global importance of

the tag is represented by the sum of all votes contributed by the complete set of images

Ij ∈ Igoe.

TF-IDF-based Approach

Another way to measure tag importance can be derived based on the idea of TF-IDF

(Term Frequency-Inverse Document Frequency) [Baeza Yates et al., 1999]. In a similar

manner to the proposal of [Naaman et al., 2007], our method exploits the geographical

context as well as visual similarity information. In general, the same tag is used only

once to annotate a given image. Therefore, one to one correspondence between an image

and a document results in the same term frequency for all tags. To address this problem,

we define a document as the subset of the visual neighbors Ivis ⊆ Igeo (refer to Figure
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7.1). Subsequently, the term frequency of a tag t corresponds to the cardinality of the

subset Itvis ⊆ Ivis which contains images annotated with t. Finally, the term frequency

(TF) of t is given according to Equation 7.5:

TF (t) =
|Itvis|
|Ivis|

(7.5)

To calculate the inverse document frequency (IDF) for t, we follow the traditional ap-

proach, i.e., each image I ∈ Igeo is considered as a document. Let Itgeo ⊆ Igeo indicates

the subset of geographical neighbors which are annotated with t. Consequently, the IDF

of t can be calculated as follows:

IDF (t) = log(
|Igeo|
|Itgeo|

) (7.6)

To make the value of the TF-IDF corresponds to a probability, it must be normalized in

the range [0,1]. Since the value of the TF is already in that range, we need to normalize

the value of the IDF. To achieve this, we identify the minimum and the maximum IDF

values, which are denoted as min(IDF ) and max(IDF ) respectively, for all candidate

tags and apply a linear transformation as given below:

IDFnorm(ti) =
IDF (ti)−min(IDF )

max(IDF )−min(IDF )
(7.7)

Finally, the TF-IDF value is used as a proxy for the term P (ti|Ij):

P (ti|Ij)TF-IDF = TF (ti).IDFnorm(ti) (7.8)

Note that according to the presented TF-IDF approach, the importance of a tag is

independent of the individual images Ij ∈ Igeo. Indeed, the TF-IDF value of a tag is

determined globally for the folksonomy based on the input image and the sets Igeo and

Ivis.

Integrating User Influence

The popularity of tags among the users, who contributed them, can directly affect their

importance as candidates annotations. For example, tags which are used by few users

are usually too specific or could be misspelled. Hence, they should be discarded or, at

least, given a low importance.
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Here, we followed the common way to quantify tag popularity, however, we did that by

exploiting location information. In other words, we determine a reputation score for each

tag according to its popularity among users who used it to annotate images taken in a

certain place. Let Ugeo be the set of users who produced the set Igeo of images in a given

geographical location. Additionally, assume that the set U tgeo ⊆ Ugeo consists of the users

who used the tag t in their annotation task. Accordingly, the popularity (reputation) of

the tag t, referred to as R(t), can be determined according to the proportion of unique

users who used it, as given below:

R(t) =
|U tgeo|
|Ugeo|

(7.9)

Finally, the introduced methods for calculating tag importance can be further refined

by scaling tag importance values according to the popularity of the corresponding tags

as given in the following formula:

P (ti|Ij) = P (ti|Ij)weighted voting/TF-IDF ×R(ti) (7.10)

7.4 Summary

In this chapter an approach for tag ranking is proposed. For this purpose, a statistical

model based on Bayes’ rule is introduced and solutions for estimating its components are

provided. The model processes information about image similarity and tag importance

to classify user tags according to their relevance to the input image. The proposed tag

ranking approach serves as a framework for combining the input of the other phases of

the automatic image annotation approach proposed in this thesis. In the next chapter,

the effectiveness of the proposed tag ranking model within the frame of the whole AIA

approach of this thesis is evaluated experimentally.



Chapter 8

Experimental Evaluation

In this chapter the effectiveness of the AIA approach proposed in this thesis is demon-

strated. For this purpose, several experimental studies are curried out to evaluate the

performance of our approach under different settings. Furthermore, the performance of

our approach is compared to other baseline methods.

8.1 Setup and Evaluation Procedure

To demonstrate the effectiveness of the proposed AIA approach, we conducted several

experimental studies. For this purpose, we used the dataset presented in Chapter 3

as a resource for mining annotations for test images. For each image in the dataset,

we extracted SURF features and applied the keypoint pruning approach presented in

Chapter 5 to speed up the process of identifying the visual neighbors. Furthermore,

for test images which have less than 10 visual neighbors, we applied the iterative image

matching approach introduced in Chapter 6 to extend the visual neighbor list.

To investigate different configurations as well as to compare the performance of different

AIA methods a ground truth is needed. We created a ground truth from the Getty

Image Flickr Collection[Flickr, 2014c]. Images in this group are taken and annotated

by professionals. That means, the majority of the provided tags are relevant to image

content and the rate of noisy tags is also low.

We selected a subset of 152 images from the ground truth. The images in this test

set were taken in different areas of the world. The test images were then annotated

using different configurations of our approach as well as according to other baseline

methods. For each test image the top 10 tag predictions were collected and compared
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to the original annotations as specified in the ground truth. Subsequently, the results

were quantified according to the evaluation metrics presented in the next section.

8.2 Evaluation Metrics

To quantify the results of AIA approaches, we use standard information retrieval mea-

sures. For each test image, the top k tags are determined and the following measures are

applied: precision at k (P@k), recall at k (P@k) and the reciprocal rank at k (RR@k).

Let Sk be the set of top k tag predictions, G is the set of ground truth tags and r the

rank of the first relevant tag among the top k predicted ones, then:

• Precision at k (P@k): is the percentage of correctly predicted tags out of the k

ones.

P@k =
|Sk ∩G|

k
(8.1)

• Recall at k (R@k): is the fraction of ground truth tags that are correctly pre-

dicted.

R@k =
|Sk ∩G|
|G|

(8.2)

• Reciprocal Rank at k (RR@K): corresponds to the inverse of the rank of the

first relevant tag in the top k predicted ones. The lower the rank of the first

relevant tag the higher the reciprocal rank:

RR@k =

{
1/r r 6= 0

0 Otherwise
(8.3)

For each test image, the above three measures are calculated at k ∈ {1, ..., 10} and

averaged over all test images. Subsequently, two AIA approaches can be compared

according to the average precision (AP@k), the average recall (AR@k) and the average

(mean) reciprocal rank (MRR@k) at different sizes k of the top predicted tags.

8.3 Compared AIA Models

In the following, we will investigate the impact of different factors on the effectiveness

of the AIA approach presented in this thesis. Furthermore, the performance of our

approach is compared to that of two baseline methods for location-based AIA.
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The compared AIA methods assume that the test images are geotagged. They all start

by identifying the geographical neighbors of the test image. Thereby, the geographical

neighbors correspond to the images found in the same quad-tree region as the test image

(refer to Section 3.4).

Baseline: Geographical Neighbor Voting (BL (geo-voting))

In this method, tag proposals for an unlabeled test image are obtained from the set

of most frequent tags which are applied on its geographical neighbors. This method

corresponds to geographical neighbor voting. Thereby, each geographical neighbor votes

for a candidate tag if it is annotated with it. Accordingly, the tag ranking function is

given as:

rankGeo-Voting(t|Iin) =
∑

Ii∈Igeo

vote(t, Ii) (8.4)

where t is a candidate tag, Iin is the test image, Igeo is the set of geographical neighbors

of the test image and vote(i, Ii) is the voting function which is defined as:

vote(t, Ii) =

{
1 If Ii is annotated with t

0 Otherwies
(8.5)

Baseline: Geographical TF-IDF (BL (TF-IDF))

Similar to the previous baseline, the one presented here also leverages the annotations

of the geographical neighbors to determine candidate tags. However, it uses different

ranking function based on the TF-IDF approach. Given a candidate tag t, the term

frequency TF (t) is computed based on its occurrences in the annotations of the geo-

graphical neighbors (i.e., images found in the same quad-tree region). To calculate the

inverse document frequency, IDF (t), we retrieve the neighboring quad-tree regions and

consider each of them as a document. Correspondingly, the IDF (t) is given by the in-

verse of the number of quad-tree regions in which t has been used. Finally, the candidate

tags are scored according to the following formula:

rankTF-IDFGeo
(t|Iin) = TF (t)× IDF (t) (8.6)

8.4 Results Discussion

In the following sections the evaluation results are presented and discussed.
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8.4.1 Thesis Approach (TA) vs. Baseline (BL) Methods

First, we want to compare the performance of the tag ranking approach introduced in

Chapter 7 to that of the presented baseline methods. For this purpose, we annotated

each of the 152 test images using two configurations of our approach. In the first method,

TA (TF-IDF), candidate tags are ranked according to the probabilistic model presented

in Chapter 7 and using the TF-IDF-based word-to-image relevance (WIR) measure.

While in the second method, TA (weighted voting), the weighted voting measure for

WIR is used (refer to Section 7.3.2). The test images were also annotated using the

presented baselines, BL (TF-IDF) and BL (geo-voting).

The average recall and the average precision achieved by each method are illustrated in

Figure 8.1(a) and 8.1(b), respectively. It can be seen that in general our approach TA

(TF-IDF) outperforms the adversary methods in terms of precision and recall. In par-

ticular, the average precision of TA (TF-IDF) for the first top tag (k = 1) is remarkably

high compared to the other methods. With respect to the weighted voting approach, i.e.,

TA (weighted voting), its performance becomes close to that of TA (TF-IDF) from the

fifths predicted tag on. With respect to the baseline approaches they show comparable

precision and recall values.

A further investigation of the performance of the compared methods is provided through

the mean reciprocal rank (MRR). We calculated the MRR for each method and for the

top 10 predicted tags, denoted as MRR@10. Again, according to MRR the superiority

of TA (TF-IDF) method is evident. For TA (TF-IDF) to provide a correct prediction, it

needs to propose a maximum of 2 tags (1/MRR@10 = 1/0.59 = 1.69) on average while

TA (weighted voting) requires 3 tags. The baseline methods have to propose around 6

tags on average to get a correct tag.

Figure 8.2 shows a sample of the annotated images with corresponding ground truth

tags. In contrast to our approach, the baseline method produces the same annotations

to images taken in the same location disregarding their visual contents. For instance

consider the photos (2) and (3), the collection of suggested tags are identical even though

the two images are not. However, the presented baseline methods are useful in the case

where no visual neighbors for the input image can be identified. In fact, the presented

baseline methods can identify generic tags (e.g., location names or tags like ”travel”,

”tourism”, etc.) which could fit any image taken in that specific location. With regard

to our approach, the figure shows that it succeeds to identify more specific tags which are

related not only to the context but also to the content of the annotated image. In some

cases, the tags provided by our approach are even more specific than those provided by

the ground truth. For example, for the image number (6) our approach produces for
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Figure 8.1: The performance of our AIA approach against the baseline models

the landmark ”Hawa Mahal” in India tags which refer to other names of the landmark

like ”palace of winds” and ”pink palace” which are not included in the ground truth.

Finally, Figure 8.2 shows the diversity of produced tags as a direct result of leveraging

community tags in the mining process.
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Annotated 

Image 

   

 (1) (2) (3) 

Ground truth 

arch, built structure, capital cities, city, 

column, illuminated, incidental people, 

Lisbon, motion, night, outdoors, place of 

interest, square, sky, Praca do Comercio,  

Belgium, bell tower, Bruges bell tower, 

building exterior, city, cold, dawn, dusk, fog, 

frozen, ice, illuminated, landscape, night, sky, 

lighting equipment, no people, tree, reflection 

bare tree, Belgium, built structure, day, 

moored, nautical vessel, no people, outdoors, 

reflection, storm cloud, town, townscape, 

travel destinations, west Flanders 

TA (TF-IDF) 
night, arch, Lisbon, Portugal, light, city, 

triunfal, triumph, people, street 

night, canal, Belgium, Belfort, Flanders, belfry, 

Belgica, Belfort tower, boats, tree 

clouds, Belgium, autostitch, dereien, 

medieval architecture, cel, tormenta, nubes, 

nuvols, storm 

BL (Geo-Voting) 
Lisboa, Portugal, liston, street, Lisbona, 

Europe, Lissabon, city, ilustrarportugal, 

Portogallo 

Bruges, Belgium, Europe, Belgique, canal, 

Flanders, architecture, travel, Belgio, night 

Bruges, Belgium, Belgique, Europe, canal, 

Flanders, architecture, night, travel, Belgio 

Annotated 

Image 

   

 (4) (5) (6) 

Ground truth 
capital cities, door, glass, military, people, 

red, square, state of the Vatican city, Swiss 

Guard, Vatican city, yellow 

circle, diminishing perspective, electric light, 

empty, indoors, no people, pedestrian walkway, 

subway 

beehive, building exterior, clear sky, day, 

facade, Hinduism, history, India, Indian 

culture, window, low angle view, no people, 

outdoors, palace, sunlight, sunny, tourism 

TA (TF-IDF) 
Rome, Roma, Italia, Italy, Vatican, St. peters, 

soldado, Guardia Suiza, Garde Suisse, suisses 

ubahn, Marienplatz, underground, subway, 

orange, München, Munich, metro, tunnel, 

station 

Palace of winds, Hawa Mahal, Rajasthan, 

architecture, pink city, India, Jaipur, 

pink palace, palace of the breeze 

BL (Geo-Voting) 
Rome, Italy, Roma, Vatican, Vaticano, Italia, 

San Pietro, basilica, Vatican city, church 

Munich, Germany, München, Bavaria, Bayern 

Deutschland, Marienplatz, , munchen, monaco, 

Viktualienmarkt 

India, Jaipur, Rajasthan, palace, Hawa Mahal, 

travel, city, city palace, architecture, Asia 

 

Figure 8.2: Sample of the annotated test images with the ground tags and the top
tags which were predicted according to our approach TA (TF-IDF) and the baseline

method BL (geo-voting)

8.4.2 Effectiveness of Tag Refinement

The effect of the tag refinement approach presented in Chapter 4 is evaluated by ex-

tracting tag relatedness information from an image folksonomy corresponding to the

city of London. Next, the relatedness information is used to disambiguate user-tags

as described in Section 4.4. We selected subset of 59 images taken in London from

the ground truth (Figure 8.4). Each test image was annotated using our approach TA

(TF-IDF) and an extension thereof which applies tag refinement (TR). We refer to the

latter methods with TA+TR (TF-IDF). TA+TR (TF-IDF) applies tag refinement on

the the tags which are produced by TA (TF-IDF). Thereby, some of the top k tags can

be removed (e.g. redundant tags) or combined. Consequently, the tag proposal list is

extended by new tag proposals to reach a size of k.
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(c) MRR for the ten top tags (k=10)

Figure 8.3: The performance of the proposed AIA with tag refinement

Figure 8.3 shows that applying tag refinement have a positive effect on improving the per-

formance of the proposed automatic image annotation approach. Refining tag proposals

increase the average recall, precision and the mean reciprocal rank of the annotation

approach.

In fact, this effect is less evident in this experiment than it might be in reality. This can

be justified according to the nature of the ground truth. By investigating Getty tags,
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Annotated 

Image 

   

 (1) (2) (3) 

Ground truth 

arch, bridge, british culture, building exterior, 

capital cities, clock tower, cloud, connection, 

day, incidental people, outdoors, place of 

interest, railings, reflection, sea, sky, tourism, 

transportation, travel destinations, UK 

bascule bridge, bridge, British culture, built 

structure, capital cities, city, connection, dusk, 

international landmark, no people, outdoors, 

river Thames, sky, sunset, suspension bridge, 

transportation, travel destinations, UK 

British culture, building exterior, capital 

cities, city, cloud, dusk, history, Hyde park - 

London, memories, no people, outdoors, 

place of interest, rain, reflection, sky, spire, 

square, sunset, travel destinations, UK, wet 

TA (TF-IDF) 

Big Ben, London, Thames, Westminster, 

England, parliament, houses of parliament, 

river, bridge, sunset 

tower, bridge, London, England, Thames, river, 

Londres, United Kingdom, blue, Europe 

Albert, London, England, memorial,  

Hyde Park, Kensington gardens,  

United Kingdom, Kensington, Europe,  

clouds 

TA +TR  

(TF-IDF) 

Big Ben, England London, City of London, 

Westminster North (UK parliament 

constituency), houses of parliament,   

River Thames, sunset, clouds, 

Westminster Bridge, buildings 

Tower Bridge, England London,   

River Thames, Londres, United Kingdom, 

blue, Europe, landmark, lights, road 

Albert Memorial, England London,  

Hyde Park, Bedford park,  

Kensington gardens, United Kingdom,  

Great Britain, Prince Albert, Europe, clouds 

 

Figure 8.4: Sample of test images which were annotated using the approach: TA (TF-
IDF) without tag refinement, compared to the same approach under tag refinement:
TA+TR(TF-IDF). Tag proposals in bold correspond to refined tags and those in italic

results from extending the annotation list to reach k = 10

we have noticed that even the provided tags are created by experts, they sometimes

suffer from redundancy or some descriptive tags are absent. Furthermore, some of

landmark names are not indicated directly. For instance, consider the second photo of

Figure 8.4. In that photo the landmark ”Tower Bridge” appears, however, the ground

truth does not contain the name of the landmark, instead only the tag ”Bridge” is

provided. Accordingly, an AIA approach which proposes the tag ”Bridge” will have

better performance than another approach which proposes the tag ”Tower Bridge”.

The same holds for the third photo where the name of the memorial called ”Albert

Memorial” is not indicated.

8.5 Summary

In this chapter, the performance of the automatic annotation approach presented in

this thesis is evaluated. We investigated different configurations of the tag ranking

approach presented in the previous chapter and compared the quality of the produced

tag proposals to that of two baseline methods for location-based image annotation.

The results confirm that our approach outperforms baseline methods. Furthermore,

we investigated the effect of the tag refinement approach proposed in Chapter 4 and

demonstrated its positive effect on the mined tags.



Chapter 9

Conclusion and Future Work

In this chapter, we will draw together the main conclusions of the work presented in this

thesis. We also present potential areas for future work.

9.1 Summary of Research

This thesis addressed the problem of automatic image annotation by following the search-

based paradigm and leveraging community photos. It investigated the importance of

incorporating location information in the annotation process and presented solutions for

boosting the performance and the quality of the produced annotations. More specifi-

cally, the thesis proposed a complete framework for automatic image annotation which

is built on efficiency and quality considerations. On the one hand, a special focus was

given to the computational efficiency of the annotation process. In particular, the thesis

considered the problem of data collection and spatial indexing. Furthermore, it suc-

ceeded in improving the accuracy and reducing the time required by the phase of visual

neighbor’s identification. On the other hand, the thesis put a special emphasis on the

quality of the mined tag proposals. In this respect, the thesis introduced a novel solution

for identifying related tags in folksonomies and successfully incorporated the extracted

information in a tag refinement phase. Finally, the thesis presented a scalable model for

combining multi-modal information for boosting the ranks of the predicted tags. Below,

the specific contributions and findings of the thesis are summarized.

9.1.1 Two-Phase Automatic Image Annotation Approach

In Chapter 1, we described the workflow of our automatic image annotation approach.

We divided the annotation process into two phases. A data preparation phase, which
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is concerned with issues related to collecting and pre-processing data from community

photos and a tag mining phase, which describes the actual annotation process. This

separation is useful since the data preparation phase is computationally intensive. It re-

quires querying photo sharing websites, which is inherently a slow process. Furthermore,

the process of cleaning and extracting tag relatedness information from the collected data

demands high computations. Therefore, we decided to collect and pre-process the data

in an offline phase to reduce the computations needed by the actual tag mining process.

9.1.2 Geo-based Data Crawling and Indexing

The thesis presented in Chapter 3 a data crawling strategy for collecting photos and

the associated metadata from Flickr using location information. The presented method

succeeded in gathering more than 14 million images on a world-wide scale. Thereby, a

special attention has been given to representativeness aspects. In particular, our dataset

covers the main photographed places in the world and the density of the photos for a

given place reflects its real popularity among photographers. Furthermore, we presented

a method for indexing the collected data spatially to enable efficient retrieval. For this

purpose, we adapted the quad-tree algorithm to deal with huge amounts of data.

9.1.3 Resolving Tag Ambiguity

Tags of already annotated community photos represent the main resource for mining

annotations for unlabeled images. However, as we mentioned before, user-supplied tags

are noisy in terms of syntax and semantic. To address this problem, we presented in

Chapter 3 a simple technique to deal with lexical variations of user tags by using the

search engine Yahoo. Although simple, the presented solution is effective. However, it

is important to mention that there is a restriction on the number of queries which can

be submitted to Yahoo per hour. Hence, only a limited number of tags can be cleaned

per day. To handle more sophisticated problems, we presented in Chapter 4 a novel

approach for mining tag relatedness information as main step to resolve their ambiguity.

We experimentally demonstrated the advantage of building tag representation based

on their co-occurrence with the features of the highest Laplacian scores. In fact, our

method showed to outperform the standard method of representing tags based on their

co-occurrence with most frequent tags in the folksonomy. Furthermore, we investigated

the effect of the selected distance measure on identifying related tags. In this respect, we

proposed an extension of Jensen-Shannon Divergence which considers sampling errors.

The new measure AJSD is promising and it outperforms the standards JSD as well as

the cosine measure.
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In summary, two main conclusions with regard to tag relatedness approach can be drawn.

First, representing tags as probability distributions is more effective than using mere

co-occurrence vectors. Second, measures of statistical divergence (e.g. AJSD, JSD)

outperform the cosine similarity. However, it is important to note the proposed distance

measure AJSD implies more complex computations than JSD and the cosine measure.

Furthermore, the Laplacian score algorithm needs more investigation to determine the

optimal parameter values. Nevertheless, promising results have been achieved by using

the default settings of the Laplacian score method combined with the AJSD measure.

The thesis also presented a method for refining tag proposals based on tag relatedness

information. We experimentally demonstrated the positive effect of the proposed method

on improving tag proposals. Although, the proposed method is simple, it showed to be

successful to predict more relevant tag proposals than in the case where no tag refinement

is applied.

9.1.4 Improving SURF-based Image Matching

Image matching is the most computationally expensive component of the automatic

annotation process. In Chapter 5, the thesis presented an approach for boosting the

performance of SURF-based image matching using a method for keypoint pruning. The

proposed approach reduces the number of compared SURF descriptors significantly.

Consequently, our image matching approach is notably faster than the standard method.

We believe that the proposed method can be further improved by considering and com-

bining additional features for keypoint characterization. Furthermore, the thesis pre-

sented a method to improve the recall of SURF-based image matching by an iterative

application of the matching process. To reduce the computation required by each new

matching phase, we presented a method for image clustering based on the keypoints

which they share with a common similar image. Our approach succeeded in increasing

SURF-based matching recall by discovering additional images which are similar to a

given query image. Furthermore, the proposed image clustering method demonstrated

significant reduction in the required runtime compared to a baseline approach. Finally,

it is important to mention that there is a trade-off between the matching speed and the

matching recall. Therefore, to obtain the most benefit, it is recommended to use the

proposed iterative matching approach in settings where the number of visual neighbors

identified by a direct matching is reasonably small.
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9.1.5 Tag Ranking

The thesis proposed a probabilistic framework for tag ranking based on Bayes’ rule in

Chapter 7. The presented model combines visual, geographical, and tag usage infor-

mation in order to rank candidate annotations. In Chapter 8, we demonstrated the

effectiveness of this approach experimentally. The results showed that the proposed

ranking model outperforms baseline methods for location-based AIA and can be easily

extended to consider further contextual clues.

9.2 Future Work

With respect to extracting tag relatedness information, most approaches are focused

on exploiting tag co-occurrence between the subset of most frequent tags in the con-

sidered folksonomy. However, we have shown in this thesis that this might be not the

best solution (Laplacian score feature selection provided better results). Therefore, the

topic of unsupervised feature selection for creating tag representation deserves further

investigation. In particular, the performance of Laplacian score algorithm can be fur-

ther improved by investigating non-standard similarity measures for building the nearest

neighbor graph. In fact, we expect that incorporating the proposed AJSD measure might

increase the effectiveness of the LS algorithm. With respect to the problem of refining

tag proposals, the solution presented in this thesis showed to be effective. A possible

future work could be to extend the presented idea to triples or clusters of related tags.

Several works considered the problem of tag disambiguation (e.g. [Garcia et al., 2009]);

however, fewer efforts were made to address the problem of enriching tag proposals. In

fact, works on tag enrichment use a simple method to establish links between tags and

semantic entities. The idea is to create a context (group of tags) for each tag (the one we

want to enrich) based on other tags which co-occur with it. Subsequently, the context

is used to query a semantic resource (e.g. DBPedia [Bizer et al., 2009]), to retrieve

a suitable semantic entity. In that process, a more attention should be given to the

manner, in which the context is created. For instance, creating the context based on

tag co-occurrences only might lead to semantically inconsistent contexts (e.g. a context

which contains two contradictory tags like ”outdoor” and ”sky”).

CBIR algorithms are witnessing more and more success; however, existing algorithms are

still impractical for applications, such as AIA where a real-time response is expected. To

further improve this process, the approach of keypoint pruning presented in this thesis

can be combined with indexing techniques like the BoW (the Bag of Visual Words)

approach.
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There is still no standard benchmark for evaluating and comparing the performance

of AIA approaches which exploits location information. Most works follow an ad-hoc

method to demonstrate their efficiency. In this thesis, we attempted to use annotations

from Getty Flickr Collection which are provided by experts as a ground truth. However,

by investigating the ground truth we recognized that provided annotations are incom-

plete. Therefore, to push research on automatic image annotation there is a need for a

complete benchmark. Furthermore, more focus should be given to the measures which

are used to evaluate and compare different AIA approaches. In most cases, the effec-

tiveness of an AIA approach is evaluated by comparing its mined annotations to that of

the ground truth using exact string matching. However, this might not be fair enough.

To address this problem, new evaluation measures that incorporate information on the

semantic similarity between the mined and the reference annotations are needed. In this

regard, semantic resources or even tag relatedness information, which can be extracted

according to the approach presented in this thesis, can be integrated in the evaluation

process.

The contributions of this thesis can also be advantageous for other research activities.

Most recently, there is an increasing interest in automatically identifying the location of

non-geotagged multimedia entities (i.e. images and videos) in a process called reverse

geotagging [Kalogerakis et al., 2009, Trevisiol et al., 2013]. We can support this research

activity since the dataset presented in this thesis provides rich information that can be

used to train models for predicting the location of non geotagged images. Furthermore,

since several works exploits user-provided tags as an important feature in the location

mining process, our tag relatedness approach can be used to discover more discrimina-

tive textual features by identifying noisy tags and resolving their ambiguity.

Other research efforts considered the problem of automatically generating travel blogs

by utilizing contextual information such as location, time, social networks, etc. (e.g.

[Cemerlang et al., 2006, Li and Hua, 2010]). The presented automatic image anno-

tations approach can assist such applications by automatically providing rich textual

descriptions for images taken in a specific location. This information can be fed into a

summarization or a story generation engine to produce automatic report of personal ex-

periences. Moreover, the work presented in this thesis provides a solid basis for touristic

recommendation systems. Location information can be analyzed to identify the most

popular touristic places and touristic routes. Furthermore, the provided textual infor-

mation combined with efficient methods for identifying representative images can be

used to assist a process like tourist guide generation (e.g. [Kori et al., 2006, Lu et al.,

2010]).
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