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Abstract

Embedded networks are fundamental infrastructures of many different kinds
of domains, such as home or industrial automation, the automotive industry,
and future smart grids. Yet they can be very heterogeneous, containing wired
and wireless nodes with different kinds of resources and service capabilities,
such as sensing, acting, and processing. Driven by new opportunities and
business models, embedded networks will play an ever more important role
in the future, interconnecting more and more devices, even from other net-
work domains. Realizing applications for such types of networks, however,
is a highly challenging task, since various aspects have to be considered, in-
cluding communication between a diverse assortment of resource-constrained
nodes, such as microcontrollers, as well as flexible node infrastructure. Ser-
vice Oriented Architecture (SOA) with Web services would perfectly meet
these unique characteristics of embedded networks and ease the development
of applications. Standardized Web services, however, are based on plain-text
XML, which is not suitable for microcontroller-based devices with their very
limited resources due to XML’s verbosity, its memory and bandwidth usage,
as well as its associated significant processing overhead.

This thesis presents methods and strategies for realizing efficient XML-
based Web service communication in embedded networks by means of binary
XML using Efficient XML Interchange (EXI) format. We present a code gen-
eration approach to create optimized and dedicated service applications in
resource-constrained embedded networks. In so doing, we demonstrate how
EXI grammar can be optimally constructed and applied to the Web service
and service requester context. In addition, so as to realize an optimized ser-
vice interaction in embedded networks, we design and develop an optimized
filter-enabled service data dissemination that takes into account the indi-
vidual resource capabilities of the nodes and the connection quality within
embedded networks. We show different approaches for efficiently evaluat-
ing binary XML data and applying it to resource constrained devices, such
as microcontrollers. Furthermore, we will present the effectful placement of
binary XML filters in embedded networks with the aim of reducing both,
the computational load of constrained nodes and the network traffic. Dis-
similar evaluation results of Vehicle-to-Grid (V2G) applications prove the
efficiency of our approach as compared to existing solutions and they also
prove the seamless and successful applicability of SOA-based technologies in
the microcontroller-based environment.
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Chapter 1

Introduction

In recent years, embedded networks (a.k.a. sensor actuator networks) have
increasingly become the topic of academic research and have had a growing
impact on different applications and business areas, such as home/building
and industry automation, the automotive industry, healthcare, and enter-
tainment. In modern homes and buildings, embedded networks are typically
used to control and manage mechanical and electric systems such as heat-
ing, air-conditioning, and lighting. Driven by ongoing research and stan-
dardizations in the domains of energy savings, smart grids, and comfortable
home/office environments, these automation systems will be extended to new
applications, which will consider more and more interconnected, heteroge-
neous devices, including those of other domains (e.g., refrigerators, washing
machines, inverters, smartphones, etc.). The basic idea involves setting up
an intelligent infrastructure of devices and services that provide accessible
data to create additional values. One context is optimized energy usage in
households; for example, an energy consumer such as a washing machine ad-
justs the washing time in terms of the energy price requested, e.g., from the
Internet, or in terms of energy availability provided locally by solar energy
plants and in relation to the weather forecast.

A similar perspective on intelligent infrastructure is true for the automo-
tive industry: today’s vehicles contain up to 80 networked and embedded
control units, e.g., for driver assistance and hazard identification. In the
near future, the intelligence of these networks will be optimized even more
by introducing the possibility to have a car interact with vehicles close by
in order to warn drivers of obstacles, such as accidents, and to avoid traf-
fic congestion. In addition, electric vehicles will interact with local power
infrastructure via power supply equipment and smart grid as well as with
different stakeholders such as energy traders and clearing houses. A recharg-
ing process can be aligned with the predetermined time when the vehicle is
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Figure 1.1:  Growing microcontroller market history and forecast.

Source: IC Insights [Insights, 2013]

required again, locally available (green) energy, and energy price. Users will
be able to interact via a smartphone with their electric vehicles to request,
for instance, the state of charge or to adjusting the required vehicle time that
in turn may affect a rescheduling of the charging process.

These scenarios point toward a new communication paradigm in the fu-
ture of the embedded domain. Traditional single and isolated embedded
solutions which can be found in today’s home automation or in the au-
tomotive industry, for example, are opening up to their environments and
interacting with other embedded networks consisting of heterogeneous de-
vices from other domains. More and more devices will become connected
to each other, and together they will create new synergies and applications
with new and different types of stakeholders. A major shift will also occur
in the hardware used in the embedded domain: typical field devices, which
are traditionally represented by sensors and actuators (a.k.a. actors), are
becoming smart through the usage of programmable microcontrollers, which
are able to run dedicated small applications and come with communication
facilities allowing them to interact directly with other network nodes and
even other field devices. Microcontroller platforms are low-powered, small
computer systems that typically contain a small amount of ROM and RAM,
CPU with a low clock rate, and communication interface with limited band-
width. Ongoing reductions in price, low-energy consumption, and flexible
use further the adaptation of such hardware systems in embedded networks.
A study (see Figure 1.1) from IC Insights supports this assertion. It charts
the historical trend and forecasts the total number of microcontrollers sold
(in US Dollars and total number of units) and their average selling prices
(ASPs) per unit [Insights, 2013]. A comparison of the years 2010 and 2017
reveals that units expected to be sold will have almost doubled whereas the



ASP per microcontroller will be approximately 40% less.

Given the growing impact of embedded networks, questions arise as to
how to increase interoperability in terms of communication protocols to re-
alize the cross-domain applications described above. Traditionally, proto-
col converter-based gateways have always been used between domains or
company-specific networks, which process a set or subset of disjointed proto-
cols (e.g., BACnet [ISO, 2003] and DALI [IEC, 2007]). However, the protocol
mapping functionality of gateways is too costly in terms of installation and
maintenance, and applications incur a processing overhead if gateways are
used between networks or domains. Common end-to-end protocols would
overcome gateways and would ease the development of applications for en-
gineers, since they would not have to face multiple domain-specific proto-
cols. Established IT technologies, such as the ones applied within the very
successful Internet, provide a very interesting approach for increasing in-
teroperability. IT technologies consist of well-known open standards and
documentations, have a rich set of programming libraries and tools for devel-
opment and managing, and, in general, enjoy high acceptance by developers.
Currently, standardization consortiums such as the IETF and W3C are work-
ing on solutions to render established, seamless I'T technologies feasible for
the embedded domain. In recent years, approaches such as IETF 6LoW-
PAN [Bormann and Mulligan, 2009] were successfully developed to make
IP feasible for constrained devices such as microcontrollers. This enables a
seamless and an end-to-end IP connectivity to and from IT-based environ-
ments such as the Internet. In addition, it also creates the opportunity of
adapting other well-known IT technologies above the network layer, such as
UDP and TCP.

These new perspectives and possibilities for creating cross-domain appli-
cations, as described at the beginning, the increasing number of interactive,
heterogeneous devices associated with this development, and the ongoing
trend to adopt IT technologies for direct communication with embedded de-
vices, including even microcontrollers, will change the architecture of tradi-
tionally hierarchic- and centrally-based embedded domains, such as described
in [Scholz, 2011] for the automation systems. There will be embedded net-
works consisting of programmable nodes with varying kinds of hardware re-
sources including memory, communication media, bandwidth, and processing
capabilities, and the applications will be executed in a distributed way. Be-
fore we consider the challenges involved in developing of applications in more
detail, we are going to introduce our definition of embedded networks, which
takes into account the device resources mentioned above. Furthermore, we
will associate the embedded network components with exemplary embedded
hardware.



1.1. Embedded Network Definition
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Figure 1.2: (a) Sample embedded network in an abstract representation based
on Defination 1.1; (b) ARM Cortex-M3 with an IEEE 802.15.4 compliant
transceiver (blue blank)

1.1 Embedded Network Definition

Embedded networks can consist of different kinds of hardware nodes that
have varying kinds of computational capabilities, ranging from powerful PCs,
to smartphones and routers, to small constrained devices that contain a
microcontroller with very constrained resources. Relatedly, we can classify
nodes that have particular resources available and have particular physical
connections to neighboring nodes. In this context we define an embedded
network as follows:

Definition 1.1 (Embedded Network)

An embedded network is defined by an undirected graph N, = (V, E, w, ¢, p).
V' describes the set of vertexes or nodes in which each node represents a phys-
ical device. Set E describes the set of edges or physical relations provided
by an underlying communication medium between two nodes. Such a rela-
tionship is described by the weight function w with w : £ — Ry . The
class of a node device is characterized by the device class function ¢ with
c¢:V — Nyp. An indicator of whether a device node is processable is given
by the processable function p : V' — {0, 1}.

In this thesis we are not going to distinguish between the terms network
and graph. In an abstract manner Figure 1.2(a) shows a sample embed-

4



1.1. Embedded Network Definition

ded network with 5 nodes, including their physical relations to each other.
Definition 1.1 enables us to define a set of different kinds of device classes,
which is used (or expected) in the network by the ¢ function. Hence, in this
thesis, we assign the highest number to nodes with the most constrained
resources in terms of amount of memory and processing capability. Fig-
ure 1.2(b) shows a sample microcontroller-based platform from STMicro-
electronics’ that embeds an ARM Cortex-M3 and the popular low-power
wireless IEEE 802.15.4 [IEEE, 2011] compliant transceiver. There exist dif-
ferent kind of Cortex-M3 configurations. In this example and as a microcon-
troller used as a reference platform in this thesis, we used a configuration
that has 256 kBytes of programmable ROM, 16 kBytes of data RAM, up to
24 MHz of clock rate, and a wireless communication bandwidth of 250 kBit /s
(2.4GHz IEEE 802.15.4). To clarify our class assignment principle based on
our embedded network definition, we will now assume that we are using three
different types of hardware classes in the network shown in Figure 1.2(a): vy,
vy, and vz use an ARM Cortex-M3 each, v, uses a hardware system with
a resource complexity found in home network routers, and wvs represents
a consumer PC. Thus, we would assign node vs the class complexity of 1
(¢(vs) = 1), node vy the complexity of 2 (c(vy) = 2), and the nodes vy, vy,
and vs the class value of 3 (c¢(v1) = c(va) = c(v3) = 3).

The weight function w abstracts the connection quality between two
nodes that have a physical connection; this can be a wireless one, such
as the low-power variants IEEE 802.15.4 and Bluetooth, or a wired one,
such as Power Line Communication (PLC) or bus-based connections (e.g.,
RS-485 [TTA/EIA, 1998]). The connection quality can represent, e.g., the
quality of the physical link, package loss ratio, current delay, or bandwidth.
A combination of these would also be possible. We will assign a number that
approximates the value of 1 to a superior connection quality. In contrast,
a bad connection quality approaches the value of 0. An embedded network
that only consists of microcontroller-based nodes for sensing purposes (e.g.,
temperature /humidity measurement or fire detection) and that only uses
wireless connections, via the IEEE 802.15.4, for example, is typically called a
Wireless Sensor Network (WSN). Typically, use cases of WSNs also have to
take into account the limited energy resources since sensor nodes are battery
powered [Dargie and Poellabauer, 2010].

The boolean function p will provide us with feedback if an embedded node
has resources available for a potential additional application. This indicator
does not only reflect the memory available, it can also associate the current
processing load. We will assign the value 1 to nodes if they are able to

Thttp://www.st.com
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install a potential application. A value of 0 will signal that no resources are
available.

1.2 Application Development based on SOA
with Web Services

The development, for example, of cross-domain applications in embedded
networks will remain a highly complex task for developers in the future.
They have to take into account a decentralized infrastructure consisting of
heterogeneous devices that combine diverse resource capabilities, including
hard boundaries from microcontrollers, for example, and different communi-
cation media with varying kinds of physical connection qualities to neighbor-
ing nodes.

In the I'T domain, it has been proven that the Service-oriented Architecture
(SOA) paradigm is a very suitable design principle for increasing interoper-
ability in a heterogeneous system landscape. SOA would perfectly meet the
unique characteristics of embedded networks, which mainly see everything as
a service. In particular, we can project this concept onto the embedded do-
main for nodes providing services such as sensing, acting, and/or processing
capabilities. These kinds of services can be requested or subscribed to by a
service requester or client, respectively. Thus, an application in an embedded
network would consist of a set of interacting services and clients hosted on
distributed nodes.

When it comes to the technical realization of the SOA approach, Web ser-
vices, which are standardized by the World Wide Web Consortium (W3C),
are the most prominent and well established solution. Web services provide
a rich set of application-relevant facets, including event-driven interaction,
overlay routing, and security. As a fundamental concept, Web services clearly
differentiate between the open interface used for interacting and using a ser-
vice’s functionality, and the application logic behind it all. This eases the
development of applications, since developers only have to deal with the
platform-independent interface for integration. Web services and their con-
ventional implementations, however, are typically limited to powerful devices;
constrained embedded devices such as microcontrollers (e.g., ARM Cortex-
M3) are mostly out of their scope. This is explained by the fact that Web
services operate on plain-text XML, which is a very verbose and redundant
format. Processing XML to retrieve the actual data consumes a great deal of
memory and processing time. Furthermore, data values are represented in an
untyped manner, and additional datatype conversations have to be performed
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for a subsequent processing of the values in the application. Transmitting
service-based XML data would also negatively affect the bandwidth, increase
network traffic, and reduce throughput in constrained embedded networks.
All these drawbacks explain why standardized Web services have not yet
been adopted for the embedded domain.

In this thesis, we will focus on this issue and wrestle with the challenge
of bringing the SOA paradigm with standardized Web service technologies
into the embedded environment, even when constrained devices, such as
the ARMCortex-M3 with an IEEE 802.15.4-compliant transceiver presented
above, are used. We will also concentrate on realizing event-based and filter-
enabled Web service interactions and investigate how service data can be
efficiently disseminated in constrained embedded networks. This optimizes
the usage of resources in embedded networks due to the reduction of both
computational load on nodes and network traffic and harmonizes the service
interaction in embedded networks.

1.3 Contributions and Chapter Outline

This thesis presents methods and strategies for developing and realizing op-
timized Web service communication in embedded networks. Our approaches
are scalable to resource-constrained embedded networks that consist of micro-
controllers with limited memory, processing, and bandwidth. We focus on a
model-based approach to develop an application based on standardized Web
services as defined by the W3C. Furthermore, by using our pre-knowledge of
the service requesters, we are going to design and adapt an optimized filter-
enabled service data dissemination within applications to ensure efficient re-
source usage of embedded networks. For this kind of notification mechanism,
we take into account the different kinds of device classes, the connection qual-
ity, and the processability of the nodes based on Definition 1.1 into account.
Dissimilar evaluation results of future Vehicle-to-Grid (V2G) applications
prove the efficiency of our approach as compared to existing solutions, and
they prove the seamless and successful applicability of SOA technologies in
the microcontroller-based environment. As a reference point in terms of em-
bedded hardware we are using the ARM Cortex M3, which was presented in
the previous subsection and is shown in Figure 1.2(b).
The chapter outline and detailed contributions are as follows:

Chapter 2 presents the concept of the SOA paradigm in more detail. This
chapter focuses on introducing standardized Web services - the well-known
technical implementation of SOA - and underlying W3C technologies and
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protocols such as XML, XSD, WSDL, and SOAP. These technologies will
form the basis of this thesis. Discussions and examples will show, however,
that a direct adaptation of Web service protocols is not feasible for con-
strained embedded devices.

Chapter 3 introduces our optimized and scalable Web service code gener-
ation tool. Before explaining the model-based generation workflow in detail,
we discuss the abstractions of XML data, followed by the XML Information
Set (XML Infoset) and the possibility of efficiently encoding it in a binary
XML representation by means of EXI. EXI is a grammar-driven approach
and we will show how EXI can be optimized for our code generation pur-
poses. Sample Web service instances, as taken from the V2G domain, for
example, provide proof for our concept and its applicability in constrained
embedded networks.

Chapter 4 describes concepts and approaches for filtering binary XML
data to achieve efficient service communication within applications in em-
bedded networks. We will present two mechanisms for evaluating binary
XML data by relevance through given XPath expressions. We introduce Ba-
sicEXIFiltering that runs on top of an EXI grammar. Then, we introduce
the OptimizedEXIFiltering that involves XPath expression within an EXI
grammar. Lastly, we consider a number of XPath queries to evaluate both
approaches.

Chapter 5 addresses the issue of efficient filter-enabled service data dis-
semination in constrained embedded networks. We will discuss the challenge
involved in finding an optimized filter placement that takes the resources of
embedded networks into account, such as connection quality, device class,
and processability. A cost function will be derived to evaluate a service data
dissemination variant based on the current resource status of an embed-
ded network and participating Web service actors. The core of the chapter
is devoted to our filter-enabled dissemination algorithm, which provides a
resource-aware dissemination tree with dedicated nodes for pre- and post-
filtering. Finally, in a simulated environment we will evaluate our filter-
enabled dissemination approach by considering varying network and resource
constellations.

Chapter 6 shares some of our experiences obtained from projects and ac-
tive participation in the V2G standardization, the ISO/TEC 15118, which
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decided to adopt efficient Web service-based message interaction for the em-
bedded charging environment prompted by our developed approaches in this
thesis.

Chapter 7 concludes this thesis and provides an overview of ongoing and
future work.
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Chapter 2

SOA-based Communication in
Embedded Networks

2.1 Introduction

When it comes to the development of applications for embedded networks,
special characteristics such as heterogeneity and resource restrictions of em-
bedded nodes have to be taken into account. A very suitable design pat-
tern for developing applications in a distributed environment is the SOA
paradigm, which revolves around the idea of the orchestration of and com-
munication with services, independent of the underlying hardware system.

This chapter gives an introduction about the SOA with its communi-
cation principle (Section 2.2) and discusses its significance for the embed-
ded domain (Section 2.2.2). Web services are the very well-known tech-
nical implementation of SOA. An overview is given in Section 2.3. Ba-
sic techniques particularly used in standardized Web services include the
markup language XML (Section 2.3.2) and its schema definition language
XML Schema (Section 2.3.3). Section 2.3.4 introduces the Web Service De-
scription Language (WSDL) protocol, which defines the interface of a Web
service for interacting with a client. The last protocol presented in the con-
text of Web services is SOAP, which is used as a message framework format
to transport data between the Web service and a client (Section 2.3.5). Some
of the examples provided in this chapter will be fundamental to later chap-
ters, which will refer back to them. Section 2.4 will sketch the previously
introduced technologies in the embedded environment and will explain their
impact there. Section 2.5 on related works will provide an overview of SOA
and Web service activities that also focus on the embedded domain.
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2.2 Service-oriented Architecture

2.2.1 Definition and Properties

In the recent years, Service-oriented Architecture or SOA has become a very
popular acronym. Definitions and descriptions vary depending on the liter-
ature used. This is due to the different points of view brought to the topic
by enterprise architects, business executives, project managers, quality as-
surance engineers, and software developers [Lublinsky, 2007]. In this thesis
our definition of SOA is based on the architecture design principle provided
by the W3C [Haas and Brown, 2004]:

SOA is a set of components which can be invoked, and whose
interface descriptions can be published and discovered.

The term ’component’ is characterized by the W3C as a software object,
meant to interact with other components, encapsulating certain functionality
or a set of functionalities. We will associate the term ’component’ with the
term ’service’ which is typically found in similar SOA definitions, e.g. of
the Organization for the Advancement of Structured Information Standards
(OASIS) [Brown and Hamilton, 2006] or in literature such as [Melzer, 2007]
or [Rosen et al., 2008].

SOA does not provide a particular technology, but instead it provides an
abstract concept of a software architecture for the publication, discovery, and
usage of services. The user of a service is typically called client or service
requester. Both terms will be used in this thesis. Below, we will explain the
major properties that form the SOA paradigm. A similar overview can be
found in [Melzer, 2007], among others.

loose coupling: One of the main abstraction properties of the Service-
oriented Architecture is the loose coupling of individual services. On demand,
applications can dynamically discover and use a particular service. More
precisely, such dynamic service binding is processed at run-time and one is
unaware at compile-time of the services that are bound [Melzer, 2007]. In
practice, however, such scenarios are not left to chance by the application,
and typically a developer defines a set of services or service domains that can
be trusted and really provides the expected functionality.

reusability: In a SOA environment, an application is based on a number

of services, and the services serve individual functions. An application is
designed by chaining or orchestration of these services that reflect the desired
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functionality. Based on the reusability principle of SOA, a service may be
participate in one ore more individual applications.

registry: The instance where all services can be registered/published is
called registry (or directory). The registry is used to search for individual
functions of a service that are required for a client or an application.

standards: Once the desired functionality of a service has been discovered,
the next step invovles the binding and usage of this function within the
application. However, such straight harmonization is only possible if there is
a clearly defined interface that is based on well-known standards. In general,
the fundamental idea of the SOA paradigm can only be a success if the
mechanism of providing, searching, and using of the service is based on open
requirements that each SOA-based participant can follow and understand.
Proprietary solutions inhibit the dynamic and loose coupling of services and
would mean a return to inflexible and expensive gateway solutions.

development separation: The SOA paradigm clearly distinguishes be-
tween an interface for service/client interaction and the actual implementa-
tion behind. Based on this concept, applications may interact with a number
of services that are based on different programming languages, operating sys-
tems, and hardware platforms. A developer only has to deal with a service’s
standardized interface and does not have to invest time and money on its
specific implementation.

Depending on the literature used, additional characteristics such as secu-
rity and semantic can exist [Melzer, 2007]. These topics, however, are not in
the scope of this thesis; we will only concentrate on the fundamental prop-
erties of SOA discussed in this subsection. The next subsection will explain
how the SOA design principle is applied to an embedded environment.

2.2.2 SOA in Embedded Environment

Based on the properties of SOA presented above, we are going to discuss the
influence of this design paradigm if applied to embedded networks.

As the name SOA suggests, service is the main part of the architecture. In
the embedded context, the functional capabilities of a service can be based
on hardware units, such as sensors and actuators, or on data processing
functionality [Scholz, 2011], e.g., comparing values against a threshold or
scale conversion. Hence, an application in an embedded network is based on
multiple services that are bound to an underlying physical hardware, such
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Registry

51 S,..5,
(%] V2
Class: ¢(v1) Class:c(va)
Proce:p(vi) Proce:p(v2)
Client Service Provider

Figure 2.1: Basic SOA model in an embedded context: 1) Service descriptions
of node vy are published to the registry. 2) The registry instance supports
identification of particular service functionalities which are required by client
v1. 3) Based on the service description discovered, v; is able to use and
interact with the desired service.

as sensors or actuators, and/or on services which could run independently of
the hardware used and might also be located beyond the embedded networks,
such as in the Internet [Scholz, 2011]. Participating embedded nodes can run
several different kinds of services, with some but not necessarily all bound to
the underlying physical hardware.

The process of how an orchestration based on the SOA principle can be
applied is discussed with the help of abstract embedded network shown in
Figure 2.1. A node vy provides one or more services (S,). So as to make
the services public on an embedded network, it will provide and register
the interface description of the services at the registry. Please note that it
is up to the node and use case as to which services are provided publically.
There may be services which are only intended to be available locally and not
publically. The registry instance itself can be an actively participating node
in the embedded network and is able to gather service description any time,
or it can be an instance node that is only online when it has to configure
new applications in the network, for example. The latter variant is based
on the concept of having a configuration phase (registry is online) and a
run time phase (registry is offline). This way, the registry can be seen as
a configuration computer that manages and sets up the application in the
embedded network.

A client such as v; which is interested (or requires) a particular service,
can fall back to the registry instance to identify the desired service func-
tionality. Lets assume one of the services which is provided by vy meets the
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requested interface by v;. Based on the knowledge of the interface service
description and the location where the service is hosted the client can start
to interact or request the desired information. Thereby, the interaction can
be performed in different kind of ways such as request/response or one way
interaction.

2.3 SOA with Standardized Web Services

SOA is not a particular technology; instead, it describes an abstract de-
sign concept for developing software applications in a distributed environ-
ment. Web service is one of the mostprominent implementations of the SOA
paradigm. This section introduces this technology and discusses its usage in
detail.

2.3.1 Definition and Overview

As with SOA, there are several different approaches when it comes to defin-
ing Web services; any interpretation depends on the context of where it is
applied [Melzer, 2007]. Whenever we invoke Web services in this thesis, we
are referring to the definition that is provided by the W3C. Its definition
is [Haas and Brown, 2004]:

A Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network. It has an
interface described in a machine-processable format (specifically
WSDL). Other systems interact with the Web service in a man-
ner prescribed by its description using SOAP-messages, typically
conveyed using HT'TP with an XML serialization in conjunction
with other Web-related standards.

W3C describes a Web service as a technology that enables a machine-
to-machine interaction over a network. For realizing applications using the
Web service approach, different protocols are proposed: as service inter-
face description that declares the served functionality and data model, the
WSDL [Christensen et al., 2001] as standardized by the W3C shall be used.
As communication framework for the interaction between two nodes in a net-
work, the standardized W3C SOAP protocol [Lafon and Mitra, 2007] shall
be applied.

Before we go into more detail on the WSDL and SOAP protocols, we will
introduce the well-known markup language format, the eXtensible Markup
Language (XML), and its schema language, the XML Schema Definition
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(XSD), both of which form the basis of the Web services protocols in terms
of interface description and for the Web service communication.

2.3.2 XML

The eXtensible Markup Language (XML) is a markup language and was stan-
dardized by the W3C in 2008 [Bray et al., 2008]. XML is a very popularly
data format that is human-readable as well as machine-readable. It is applied
in many application domains, including to describe user interfaces and graph-
ics (e.g., Scalable Vector Graphics (SVG) [Ferraiolo et al., 2003], Extensible
Application Markup Language (XAML)!, and Android XML?) or office con-
tent (e.g., Office Open XML [ECMA, 2006] and OpenDocument [ISO, 2006]).
Furthermore, XML has been adopted for many communication applications
and standards when it comes to exchanging data between computer systems
(e.g., Google AdWords® and Smart Energy Profile 2.0 (SEP 2.0)[ZigBee,
2013]). Thereby, the usage of XML for data interaction is typically defined
in a Web service context.

Specifications of this markup language define different kinds of rules used
for encoding documents or messages, respectively, in a XML manner. List-
ing 2.1 shows a simple XML document that carries temperature information.
An XML document is in plain-text format and is mainly structured into two
parts: the first part is called prolog or XML declaration and appears in the
first line of each XML document. It contains information relevant to an XML
preprocessor, namely the XML version used and character set of encoding in
the document. The sample document in Listing 2.1 would tell a preproces-
sor that it is XML-structured using version 1.0 and that it uses the UTF-8
character style.

The second part is called a root element or document element. It builds
the actually XML structure and embeds the actual data. Here, the root ele-
ment is represented by the <Temperature> start tag, its content, and by the
< /Temperature> end tag. The content can once more be an element (also
called nested element), simple text, or a mixture of both. In the example,
there is a nested element <value> used, which in turns contains a text value
'24.5’. Elements can also have attributes. An attribute can be seen within
the <Temperature> element, with the attribute name scale and the value
"Celsius’.

Thttp://msdn.microsoft.com
2http://developer.android.com
3adwords.google.com

- 16 -



2.3. SOA with Standardized Web Services

<Temperature scale="Celsius">
<value>24.5</value>
</Temperature>

An XML document can only be processed and parsed properly if the con-
tent is well-formed [Bray et al., 2008]. Such a document is well formed if,
e.g., it only has one root element, each element has an end tag, and attribute
values are quoted. The example in Listing 2.1 meets the demands and hence,
it is well formed.

XML processors or parsers are used to gather information from an XML
document. Mainly, two established variants exist: Document Object Model
(DOM) [DOM, 1998] and Simple API for XML (SAX) [Megginson, 2000].
A DOM parser builds a tree data structure from an XML document. The
tree structure can be accessed randomly or traversed in a way that extracts
the needed data at the particular tree node/element position. For realizing
this, the complete DOM tree has to be kept into the (runtime) memory. In
contrast, the SAX parser is an event-based parser and does not require the
complete XML document to be part of memory. It parses the XML doc-
ument into a series of events. More precisely, each XML construct has a
corresponding SAX event: startDocument, endDocument, startElement, en-
dElement, and characters. Attribute-based information is typically provided
within the startElement event. The SAX parser invokes (or pushes) the call-
back functions including the related events that occur while going over the
XML document.

Besides the two known approaches of DOM and SAX, the Java pro-
gramming language community (including, e.g., BEA Systems, Oracle, and
Sun Microsystems) designed an alternative parsing approach, which is re-
garded as a median between DOM and SAX, called Streaming API for
XML (StAX) [Benson, 2004]. StAX is a pull-based parser that uses a cursor
that represents a particular position in an input XML document. The ap-
plication triggers the cursor to determine the next content of the document.
To identify the XML construct, different event types are used which are re-
lated to SAX events discussed above. Thereby, information of attributes are
decoupled and represented by a separate event attribute.

In this thesis, we always refer to StAX when we talk about an XML-
related parser. StAX gives us the flexibility to trigger each event separately,
which enables intermedia proceedings and less memory usage.
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2.3.3 Schema Definition by XSD

When using XML for data exchange, applications typically expect to pro-
cess only XML messages that have certain elements and attributes used in a
particular way. For example, an embedded device that only processes tem-
perature messages structured as shown in Listing 2.1 would fail to retrieve
the desired information if there is a derivation of data location, naming,
and /or value typing. Schema languages can be used to provide an interface
definition for which kind of XML data can be processed and understood.

The W3C XML specification comes with its own schema language de-
scription, called Document Type Definition (DTD) [Bray et al., 2008]. The
rules provided enable the deceleration of the XML structure, such as the or-
der and nesting of elements. Even though DTD is widespread and applied in
many different markup standards such as the W3C XML Signature [Bartel
et al., 2008], DTD has a very limited definition rule with no flexibility for
extensions and data type variations [Meinel and Sack, 2003]. Data types are
mainly restricted to a string-based type. Furthermore, DTD is not defined
in XML style, which engendered efforts to study a new syntax.

Based on DTD’s drawbacks, the W3C developed a new schema language,
called XML Schema Definition (XSD). XSD’s main strength is its support
of basic type definitions, which are also called simple types: boolean, byte,
short, int, float, string, etc.. In addition, restrictions can be assigned to sim-
ple types, such as a particular range of value intervals or default values listed
by enumerations. Aside from simple type declarations, the XSD specification
provides the opportunity to define complex data types, also called complex
type. A complex type provides the rules to define the order of elements and
occurrences as well as the presence of attributes within an element start tag
of XML instances. In other words, complex types model the structure of
XML.

To get a better understanding of how an XML Schema is used, Listing 2.2
shows an example that would provide the structure and datatype declarations
of the temperature XML instance that is shown in Listing 2.1. Each XSD
document begins with the root element <xs:schema>. Typically, the schema
root element contains at least one attribute definition: The fragment

zmins:zs="http://www.w3.0rg/2001/XMLSchema”

references that all elements and data types used in the schema come from
the “http://www.w3.org/2001/XMLSchema” namespace. The association is
done by the usage of the prefix zs. Other attributes are typically target-
Namespace and default namespace definitions, which indicate that each ele-
ment and attribute are defined by a particular schema context. For the sake

- 18 -



2.3. SOA with Standardized Web Services

<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema">
<xs:element name="Temperature">
<xs:complexType>
<Xs:sequence>
<xs:element name="value" type="xs:float" />
</xs:sequence>
<xs:attribute name="scale" type="tempScaleType" />
</xs:complexType>
</xs:element>

<xs:simpleType name="tempScaleType">
<xs:restriction base="xs:string">
<xs:enumeration value="Celsius" />
<xs:enumeration value="Fahrenheit" />
</xs:restriction>

</xs:simpleType>

</xs:schema>

of clarity and simplification, it is not part of our usage here.

Declarations which are nested as children of the schema root element
are defined and visible as global. In our case, we employ two global defi-
nitions, namely a global element Temperature and a simple type tempScale-
Type. Global declarations can be reused by referencing them from other parts
within the schema and/or from other XSD files. Consequently, a change in
this global definition would automatically affect parts that refer to the global
definition. In contrast, locally defined elements, attributes, or types are only
present at the level where they are defined.

Considering the Temperature element declaration, it can be seen that
element is defined as an anonymous complex type which contains other el-
ements/attributes declarations (value and scale). The sequence group defi-
nition declares that the sub-elements must appear in a defined order. Since
only one element is defined in our example, this requirement has no effect. In
general, there are two further group definitions, namely choice (only one child
element can occur) and all (child elements can appear in any order). The
selection of the group is based on the desired restrictions or flexibility of parts
within the XML instances. Please note that attributes are never included
within the group definition (as can be seen at the scale attribute declaration).
The XML Schema only provides the mechanism to define attributes but it
does not provide any order guidelines. Thus, an XML parser can provide the
defined attributes in any arbitrary order, which would nonetheless always be
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valid.

Elements and groups in a complex declaration can define their own num-
ber of occurrences using minOccurs and maxQOccurs attributes: minOccurs
defines the minimum and maxOccurs the maximum number of times an ele-
ment can occur. The default value for minOccurs and maxOccurs is 1. This
value is also assumed when both attributes are not explicitly used within the
element declaration. Thus, the value element has to occur exactly one time
within the temperature element.

If an element or group is assigned minOccurs="0" (also called optional
declaration), then this element or group with its nested sub-structure can
be skipped in an XML instance. In contrast, an unlimited number of oc-
currences of an element or group is defined by maxOccurs="unbounded”. In
order to define an upper bound, a fixed maximum number can be assigned.
Again, attributes are excluded from this occurrence definition. XSD only
provides the opportunity to declare an attribute as required or not. By de-
fault, attributes are always optional. In order to make an attribute as a
mandatory part, the use attribute can be declared and set to be required
within the attribute tag. For instance, so as to define the scale attribute as
required, the definition has to be changed to

<xs:attribute name="value” use="required” type="tempScaleType”/ >

As we mentioned earlier, the strength of XSD is its broad support of
basic type definitions. In our example, we are able to declare the wvalue
element directly as a float type to represent type aware temperature values.
In addition, we can make some restrictions on the base type, for instance
that the scale attribute shall only take the following values: Celsius and
Fahrenheit. The globally defined tempScale Type simple type shows how this
restriction on the string base type can be realized. There, the desired values
are simply declared as enumeration within the restriction declaration. XML
instances are only able to assign these two values. Otherwise, the instance is
not valid within the context of the underlying XML Schema.

Before we end this section, we should mention that XML Schema spec-
ification provides a huge set of further declaration rules for refining XML
instances in terms of structure and type intervals. In this section we intro-
duced the most commonly used XSD declaration constructs, which also align
with all XSD examples in this thesis. As a guideline, in this thesis we use
upper-case characters for all elements that are type complex. Elements em-
ploying lower-case characters are typed simple. For additional reading about
XML Schema and all of its opportunities, we recommend the W3C specifica-
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tion [XML Schema, 2001] as well as related literature such as [van der Vlist,
2002).

2.3.4 Web Service Description Language

The Web Service Description Language (WSDL) is a W3C standard that
defines a service interface on an abstract model in XML format [Christensen
et al., 2001]. Currently, there two versions exist, namely 1.1 and 2.0 [Chin-
nici et al., 2007]. Even though WSDL 2.0 is the latest version, it is not as
widespread and has not been as widely adopted in real systems as the 1.1
version [Melzer, 2007]. Hence, we always refer to version 1.1 in this thesis.
WSDL itself provides a broad flexibility for defining a Web service. In this
section, we will follow the Web service profile guideline as provided by the
OASIS Web Services-Interoperability Organization (WS-I) [Chumbley et al.,
2010]. The WS-I organizes the crowded space of interoperability specifi-
cations by providing guidelines on how to implement services that comply
with standards and how to use combinations of Web service specifications to
achieve interoperability [Nezhad et al., 2006]. Well-known development tools
for Web services such as Apache Axis [Perera et al., 2006] or gSOAP [van
Engelen and Gallivan, 2002] usually claims to comply with the WS-I profile.

Typically, a Web service serves different kinds of operations or Remote
Procedure Calls (RPC) respectively. To define what the Web service offers,
several main components are used in the WSDL definition shown in List-
ing 2.3.

<definitions>

<types>
<!-- XSD definition of the messages -—>
</types>

<message>
<!-- abstract definition of the transported data -—>
</message>

<portType>

<l-- 1list the operations and which messages are
involved —-—>

</portType>

<binding>
<l-- defines the data format and protocol -->
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</binding>

</definitions>

An WSDL distinguishes between abstract and concrete definitions. An
abstraction enables the opportunity of reusability?. This is the case for the
type and message component, which defines the data being exchanged, and
the port type, which provides one or more operation definitions. The concrete
definitions instruct the protocol and data format, which is set in the binding
container.

Below we will explain each component in detail. As an illustration, we are
going to develop a simple Web service that shall run on an embedded device
and shall serve information such as temperature, humidity, and generic status
information (e.g., low battery, error, etc). Information about temperature
and humidity shall be provided in two ways: an instance (the client) that
is interested in this information can request it by remote procedure call, or
subscribe to it. In subscription variant, the service only sends the information
when there is any change, for example, in the humidity value. Assuming the
service uses the C programming language for implementation, the RPC may
have the following signature:

e float temperature(uint8-t subscribe);

o wint8_t humidity(uint8-t subscribe);

For subscription, a client needed to have sent at least one request message
with the information of subscription (subscribe=1). To aviod clutter, we will
not always show the full definition for each component. However, Listing A.1
in Annex A provides the full WSDL document that serves as the reference
point for almost all further examples in the thesis.

types: This first element embeds schema declarations for the data used by
the Web service. Thereby, the WSDL uses the standardized XSD syntax
(see Subsection 2.3.3) to very precisely define the data model. In Listing 2.4
you can see the 5 root element definitions of our desired (get)Temperature,
(get) Humidity, and status. Particular type declarations are defined below
and follow the design principle presented in Section 2.3.3.

message: Message declarations provide service data, including the actual
message, being exchanged between the Web service and the client. Thus,

4This is comparable to the global element and type definition in XML Schema (see the
previous subsection)
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<xs:schema targetNamespace="embedded:device:data" <!-- ... -=-> >

<!-- Request and response root definition -->
<xs:element name="getTemperature" type="GetType" />
<xs:element name="Temperature" type="TemperatureType" />
<xs:element name="getHumidity" type="GetType" />
<xs:element name="Humidity" type="HumidityType" />

<!-- Generic device information for the SOAP Header-->
<xs:element name="status" type="statusType" />

<!-- Complex and simple types ——>
<xs:complexType name="GetType">
<xs:sequence>
<xs:element name="subscribe" type="xs:boolean" />
</xs:sequence>
</xs:complexType>

<xs:complexType name="HumidityType">
<xs:sequence>
<xs:element name="value" type="xs:byte" />
</xs:sequence>
<xs:attribute name="scale" type="humScaleType"
use="required" />
</xs:complexType>

<xs:complexType name="TemperatureType">
<!-- ... (see Listing A.1) -—>

<xs:simpleType name="humScaleType">
<xs:restriction base="xs:string">
<xs:enumeration value="Absolute" />
<xs:enumeration value="Relative" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="statusType">
<xs:restriction base="xs:string">
<xs:enumeration value="Standby" />
<xs:enumeration value="0K" />
<xs:enumeration value="Error" />
</xs:restriction>
</xs:simpleType>
</xs:schema>
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<!-- Header definations -—>
<message name="SOAPHeader">
<part name="header" element="edd:status"/>

</message>
<!-- Body definitions -->
<!-- getTemperature message ——>

<message name="GetTemperatureMsg">
<part name="parameters" element="edd:GetTemperature"/>
</message>

<!-- Temperature message -->
<message name="TemperatureMsg">
<part name="parameters" element="edd:Temperature"/>

</message>

<!-- getHumidity message -->
<l-— ... ==

<!-- Humidity message -—>
<l-- ... -

there may be one or multiple message definitions in the WSDL, depending
on how many operations (e.g., temperature and humidity) are provided.

We define four kinds of messages (see Listing 2.5): two that reflect the
request messages (get Temperature and getHumidity) and two that reflect the
result message (Temperature and Humidity). Each message contains a part
element definition. This is comparable to the parameter of a function call.
Since a function can also take more than one parameter, the message element
can consist of more than one part. The part parameter type is associated
with a concrete type defined in the type component above.

portType: This component defines the relation of operations and decides
which messages are involved. It also provides the mechanism for declaring
what kind of message pattern variant is used. In general, different design
patterns are possible: request-response (the Web service receives a request
message from a client and will return a response message), one-way (only a
message is received by the Web service), solicit-response (the Web service
sends a request message to the client and waits for a response message), no-
tification (the Web service only sends a (notification) message to the client).

Listing 2.6 shows two portType definitions: embeddedDevice ReqResInter-
face and embeddedDevice EventingInterface. The first portType mentioned
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<!-- Port defination for request/response -->
<portType name="embeddedDeviceRegResInterface">

<!-- Access Operation -->
<operation name="Temperature'">
<input message="edws:getTemperatureMsg"/>
<output message="edws:TemperatureMsg"/>
</operation>

<!-- Humidity Operation -->

<operation name="Humidity">
<input message="edws:getHumidityMsg"/>
<output message="edws:HumidityMsg"/>

</operation>

</portType>

<!-- Port defination for eventing -->

<portType name="embeddedDeviceEventingInterface">
<l== ... ==

declares the involved messages of our two operations ( Temperature and Hu-
midity) in request-response style. The second portType defines the opera-
tions in notification style. This will come into play when clients subscribe to
temperature or humidity data events. The Web service will independently
send a one-way message to the client subscribers.

binding: This last component defines the format of the message and the pro-
tocol that shall be used for interactions between the Web service and a client.
The WSDL standard does not specify details for such a binding [Christensen
et al., 2001]. The WSDL 1.2 Bindings specification [Moreau and Schlim-
mer, 2003] offers different kinds of bindings for SOAP [Gudgin et al., 2003],
HTTP [Fielding et al., 1999], and MIME [Freed and Borenstein, 1996], how-
ever, these are options, not requirements. In this thesis, we are going to
concentrate on the SOAP-based binding, which is one of the most used vari-
ants in real applications and frequently referenced in the literature on Web
service. The next subsection introduces the SOAP framework in detail.
Listing 2.7 shows usage of the SOAP binding as applied to our opera-
tions defined above. The binding element provides a name identifier and a
type attribute, which references the portType defined above. By using the
soap:binding element, the SOAP binding is enabled. This way, we can set the
style RPC or document as well as the application transport protocol to be
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<binding name="embeddedDeviceWSReqRes"
type="edws:embeddedDeviceReqResInterface">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<!-- Temperature operation -—>
<operation name="Temperature">
<input>
<soap:body use="literal"/>
</input>
<output>

<soap:header message="edws:S0APHeader"
part="header" use="literal"/>
<soap:body use="literal"/>

</output>
</operation>
<!-- Humidity operation -->
<operation name="Humidity">
<l—= ... ==
</binding>

<binding name="embeddedDeviceWSEventing"
type="edws:embeddedDeviceEventingInterface">
<l—= ... ==
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used when the SOAP is transmitted®. In our case, we selected the document
style and the HTTP namespace to transport SOAP via HTTP since this
is typically WS-I compliant. The soap:operation declares the binding of a
operation and the soapAction attribute defines that the SOAPAction within
the HTTP header can be used to identifying the service or the operation re-
spectively. Finally, the soap:body and the soap:header elements indicate to
which part of the SOAP framework (based on Envelope, Header, and Body;
also see Section 2.3.5) the data is transported. In our case, the generic status
information element will be only be transported within the SOAP Header of
response messages. Meanwhile, all other data is embedded within the body
part. The use attribute provides the data encoding, which is selected by the
WS-I compliant literal here.

As mentioned at the beginning of this section, WSDL makes available
many facets and variants for defining Web services. As with the XML Schema
introduction, we have limited the declarations to those the thesis proposes.
Additional information can be found in [Christensen et al., 2001}, [Chumbley
et al., 2010], and [Melzer, 2007].

2.3.5 SOAP

SOAP is a message format for exchanging data and executing RPCs, among
others, on a Web services. This XML-based protocol is a standard of W3C
and its latest version is 1.2 [Lafon and Mitra, 2007]. Originally, SOAP stood
for Simple Object Access Protocol, however, this acronym was dropped in
Version 1.2 of the standard. This is due to the fact that SOAP is not only
suitable for accessing objects but also for exchanging, e.g., text documents.

SOAP has a very simple message framework: the root element is called
Envelope and within this element an optional Header and mandatory Body
elements are nested. The Header is typically used to transport generic in-
formation. This information can be categorized as nice to have but may be
ignored. In contrast, information transported within the Header is essential
to some use cases, e.g., for accessing purpose (e.g, with WS-Policy [Hondo
et al., 2007]), trusting (e.g., with XML Signature [Eastlake et al., 2002]), or
addressing (e.g., with WS-Addressing [Gudgin et al., 2007]).

The Body contains the actual payload. Typically, the embedded data
are related to a RPC interaction. That means it is either request-based or
response-based content. Based on our WSDL definition presented in the

5The style variants used do not indicate which programming model is used; instead
they only pretend how to build a SOAP message based on the defined WSDL bind-
ing. See http://www.ibm.com/developerworks/webservices/library /ws-whichwsdl/ for a
realted discussion.
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previous section, Listing 2.9 shows an example in which the temperature
information is requested by transporting the getTemperature element and its
subscribe parameter.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:es="embedded:device:data">
<SOAP-ENV:Body>
<es:getTemperature>
<es:subscribe>false</es:subscribe>
</es:getTemperature>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In general, in the context of RPCs the first element within the Body ele-
ment of a request message always signals to the Web service interpreter which
operating method is intends to call. For example, in the case of the getTem-
perature element the temperature method is called as well as the subscribe
parameter with the value false is passed. Please note that this relationship
is defined in the portType component of a WSDL definition (see portType
in Listing 2.6) as well as the corresponding data model is declared by the
message and type component respectively (see Listing 2.4).

The corresponding response message contains the result of the RPC by
embedding this information as a child element within the Body element.
Listing 2.9 shows an example response message to the temperature request.
This time, it also uses the Header element to provide the status information
about the embedded device node (=’LowBattery’).

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.o0rg/2003/05/soap-envelope"
xmlns:es="embedded:device:data">
<SOAP-ENV:Header>
<es:status>LowBattery<es:status/>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<es:Temperature scale="Celsius">
<es:value>21.1</es:value>
</es:Temperature>
</SOAP-ENV:Body>
</S0AP-ENV:Envelope>

In the case of a client subscription to humidity information, Listing 2.10
shows such a sample notification message. Please note that in the subscrip-
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tion context, the notification message is not embedded within the header
element.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:es="embedded:device:data">
<SOAP-ENV:Body>
<es:Humidity es:scale="Relative">
<es:value>64</es:value>
</es:Humidity>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Typically, SOAP is used in combination with or via the Hypertext Trans-
fer Protocol (HTTP) [Fielding et al., 1997]; however, it is not restricted to it.
SOAP is an independent transfer protocol to enable adaptation for different
kinds of distributed applications and networks, especially if HI'TP cannot
be applied due to resource reasons, among others.

2.4 Web Services Technologies in Embedded
Environments

To discuss the impact of Web service technologies in the embedded domain
we will first directly project them onto the (embedded) SOA model intro-
duced in Figure 2.1. In Figure 2.2, once again we find v; representing a
service user (the client), the Web service provider vq, and the registry. To
provide one or more services installed on vy to the network, we use interface
descriptions based on WSDLs, which are made known to the registry. Ser-
vice requesters such as v, are able to obtain a suitable Web service via the
registry. Thereby, the WSDL is provided that contains the detailed informa-
tion about the functions sets (RPCs), data models, and where the service is
located in the network. Based on this background, v; can then interact with
the desired Web service running on v, using the SOAP message protocol.
This technology projection is, however, not really possible in the embed-
ded domain. Specifically, constrained embedded devices are not able to keep
a service description such as a WSDL in their memory or to process SOAP
messages efficiently. This is due to the fact that WSDL and SOAP are XML
based technologies, which are used in plain-text manner and claim a lot of
memory. E.g., the WSDL that we defined in this thesis is approximately
7 kBytes. We would waste too much memory for the interface description
alone if we were to keep this information on a microcontroller such as the

- 99 -



2.4. Web Services Technologies in Embedded Environments

Registry
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Figure 2.2: Standardized Web services technologies projected to the SOA
model with embedded nodes (compare Figure 2.1).

ARM Cortex-M3, especially in relation to the required OS and actual pro-
gramming logic. An alternative would involve outsourcing the service de-
scription to a more powerful instance node. An embedded node, such as v,
may only provide information such as a URL where the registry can find
the WSDL description of the service. Such discussions, however, are out-
side of the scope of this thesis. Please see related PhD work [Scholz, 2011]
that addresses this issue and also introduces an alternative compact service
description, the embedded service description language (eSDL).

In this thesis, we are going to focus more on the processing and inter-
pretation of the XML-based data that comes into play through interactions
between clients and services such as between node v; and vo. SOAP messages
like the ones presented in Section 2.3.5 also pose a challenge to constrained
microcontrollers such as the ARM Cortex-M3 for several reasons: Let us con-
sider the SOAP response message seen in Listing 2.9. A client that mainly
requires the value of the temperature element has to parse previous elements,
including FEnvelope, Header, and status in the message. After identifying the
value element, the value itself has to be extracted (21.1); this, however, is
also represented in a text/string format. For internal usage of the actually
float-based value (e.g., comparing them against a threshold), we have to in-
vest the processing overhead and convert the string value to float on the
embedded node. In general, the parsing process is not only about identifying
the element name that is desired, but structure and namespaces also have to
be considered within the message context. E.g., Listing 2.9 and Listing 2.10
each provide a value element; however, they do so in different kinds of physi-
cal contexts (onc in the temperature and the other in the humidity context).
XML parsing/processor tools taking this into account, however, come with
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the corresponding memory usage which is not feasible for constrained micro-
controllers [Peintner, 2014].

The size of SOAP-based messages is also an issue in constrained embed-
ded networks in terms of bandwidth and throughput. Plain-text XML are
very verbose and redundant, as can be seen, e.g., in Listing 2.9. The advan-
tage of having human readability results in high network traffic and increased
transmission time. Wireless low power communication or power line com-
munication carries the risk of high package loss. This, in turn, may result in
resubmissions, which, however, would additionally stress node resources. In
general, the risk of losing a package increases with message size, since mes-
sages, which do not fit in one package, have to be parted in several packages.
E.g., let us assume we have a wireless embedded network that uses IP-based
communication with 6LoWPAN via IEEE 802.15.4. 6LoWPAN provides 108
bytes of payload (depending on compression settings) and the size of List-
ing 2.9 is 364 bytes. Consequently, 4 packages have to be used to transmit
these messages. It would be desirable to use only one package, which, how-
ever, should consist of all the equivalent information in Listing 2.9.

After considering the existing development tools for Web service imple-
mentation, we have to face the issue that relevant approaches are not suitable
for constrained embedded devices. The choice of development tools is already
restricted by the fact that we only use C as a typical programming language
for microcontroller devices. Identifying such frameworks that also meet the
proper XML passing process as mentioned above, we can relate, e.g., to
Apache Axis2/CS and gSOAP7 [van Engelen and Gallivan, 2002]. Both are
based on the stub (for the client side implementation) and skeleton (for the
Web service side implementation) principles that are generated on a given
WSDL. The files that are generated are used by developers to embed them
in their applications. Based on the individual generation principle, only the
functions (the RPCs) and its functions signature as defined within the WSDL
are provided to the developers. This simplifies development and increases the
adaptation of setting up Web service functionality. Although there is a code
generation part that only provides the specific interfaces to the application,
nested processes typical fall back on different kinds of generic libraries such
as generic XML parser or databinder. For example., Axis2/C works with
the standard GNU LibXML2® library, which is, however, very demanding in
terms of memory [Peintner, 2014]. gSOAP comes with its own generic XML
databinder mechanism and claims to have a memory footprint of under 150

Shttp://axis.apache.org/axis2/c/core/
Thttp://www.cs.fsu.edu/“engelen /soap.html
8http:/ /xmlsoft.org/downloads.html
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kBytes for same application scenarios. Applying our (small) Web service
example definition as introduced in this chapter requires around 180 kBytes
of memory as is. Consequently, a richer Web service in terms of RPC and
data model would increase memory usage and would overwhelm constrained

embedded devices®.

2.5 Related Work

In this section, we will concentrate on related works that respond to SOA and
Web service approaches that also relate to embedded topics. We will start
by discussing different SOA projects in this domain. Then, we will present a
Web service profile that is specified for devices, the Devices Profile for Web
Services (DPWS). Finally, we will discuss an alternative to the SOAP-based
Web services that is based on the Representational State Transfer (REST)
approach.

2.5.1 SOA approaches for Embedded Networks

A number of projects address the SOA paradigm for the embedded domain,
including OASiS [Kushwaha et al., 2007], SIRENA [Jammes and Smit, 2005],
SOCRADES [De Souza et al., 2008], and eSOA [Sommer et al., 2009, Scholz
et al., 2009, Scholz, 2011]. OASIiS provides a programming framework to
realize service-oriented applications. As an SOA implementation, however,
OASIS do not invest in the usage of standardized Web service communication
techniques. Instead, it uses a (proprietary) byte-sequence message structure
for service interaction. For communication with a standardized Web service
that is located, for example, in the Internet, an inefficient and expensive
gateway solution [Amundson et al., 2006] is used, which is also not in our
interest (see Chapter 1).

In contrast, the SIRENA project developed a framework which is based
on standardized Web services with a set of Web service extensions that are
listed in the Devices Profile for Web Services (DPWS) specification (see
Section 2.5.2). SIRENA proved the SOA concept for different application
domains, such as home and industry automation, telecommunication, and
automotive. These demonstrators, however, consider more powerful embed-
ded devices, which are able to run the developed DPWS stack with gSOAP.
Thus, this approach is not applicable to our constrained microcontroller plat-

9The evaluation part of Chapter 3, in which we tested a more complex service applica-
tion, will introduce further numbers of gSOAP.
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forms with limited memory, processing, and bandwidth that we consider in
this thesis.

The SOCRADES projects are based on the concept of SIRENA, but
consider additional topics such as device life cycle and framework for device
supervision. However, the SOCRADES infrastructure also proposes to be
DPWS-enabled and considers more powerful device classes, such as the Sun
Microsystem’s (now Oracle) Sun SPOT!Y (4MB of flash, 512kBytes of RAM,
180MHz). Again, the DPWS-based messages that are used in plain-text
manner would be not feasible to our considered microcontrollers.

A SOA approach for embedded networks that focus on constrained mi-
crocontrollers is the eSOA project. The eSOA platform combines 3 differ-
ent design principles, which include SOA, model driven development, and a
stream-based execution model [Scholz, 2011]. Features such as the service
orchestration by application patterns or the optimization mechanism of best
service position in constrained embedded networks ease the development of
applications. In this thesis, we follow the eSOA interpretation of services and
application: an application is interpreted as a set of data providers (sensors),
data processors (application logic), and data consumers (actuators) [Scholz
et al., 2009]. Services within the embedded network (also called eService)
use compact XML-based messages'! for payload transportation. The data
context or the specific RPC is identified in the transport protocol by as-
signing a numerical ID. This approach has similarities to REST-based Web
services that use always use the HTTP Post method (see Section 2.5.3). In
this thesis, however, we will consider standardized SOAP-based Web services
independently of the underlying transport protocol. SOAP is able and can
be used platform independent to transport the operation context (the RPC)
within the body along with either the parameter or result data. Our work,
however, can be regarded as a supplement to the eSOA project that may
use SOAP Web service capabilities for SOA-based application development
in constrained embedded networks.

2.5.2 Devices Profile for Web Services

Originally, the Devices Profile for Web Services (DPWS) was a proposed
standard from Microsoft for the usage of Web services on embedded devices.
In 2008, DPWS was submitted for standardization to OASIS and the latest
standardized version is 1.1 [Driscoll and Mensch, 2009]. The profile com-
bines existing specifications associated with Web services!?. Thereby, the

Ohttp: / /www.sunspotworld.com/
More details about the message representation are given in Section 3.5.2
12In the litereature, such Web service specification are quite often labeled with WS-*.
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Web service specifications are selected in that scope that they enable se-
cure messaging, dynamic discovery, description, and eventing [Driscoll and
Mensch, 2009]. Thus, this includes WS-Addressing [Gudgin et al., 2007],
WS-Discovery [Kemp and Modi, 2009], WS-Eventing [Malhotra et al., 2009],
WS-MetadataExchange [Davis et al., 2011], and security related specifica-
tions such as WS-Policy [Vedamuthu et al., 2007]. DPWS pretend some
requirements which parts of the specification must at least be implemented
to enable interoperability between DPWS-based Web services and clients.
Microsoft integrated DPWS into Windows Vista to control peripheral equip-
ment.

Despite the defined profile being announced to be applicable in the em-
bedded context, we believe this to be impossible when considering micro-
controllers with very low memory, limited bandwidth capability, and re-
stricted processing ability. E.g., Web service specifications such as WS-
MetadataExchange may generate inflated SOAP messages that would in-
crease network traffic within constrained embedded networks. This also leads
to a complex parsing on the constrained embedded devices, which consumes a
lot of processing time, memory, and reduces throughput. Motivated by these
drawbacks, there is research being done on topics to make DPWS applicable
on constrained devices, for example by defining a new device type with re-
strictions on the DPWS usages [Moritz et al., 2009] or defining a new message
format in a tag length value (TLV) manner [Moritz et al., 2010]. At the time
of writing, however, there is no known technical DPWS approach that meets
all of our conditions such as the realizing efficient processing, producing, and
transmission of XML-based messages within resource constrained embedded
networks (also see Section 3.5.2).

2.5.3 REST-based Web services with HTTP and CoAP

Using the combination of WSDL and SOAP, Web services are also called
SOAP-based or standardized Web services. REST-based Web services pro-
vide an interesting alternative.

REST stands for Representational State Transfer and was introduced by
Roy Thomas Fielding in his PhD thesis [Fielding, 2000]. REST is not a pro-
tocol such as SOAP, but rather an architectural style. REST provides a set of
architectural constraints that, when applied as a whole, emphasizes scalability
of component interactions, generality of interfaces, independent deployment
of components, and intermediary components to reduce interaction latency,
enforce security, and encapsulate legacy systems [Fielding, 2000]. Applica-
tions that rely on the principle of REST are also called RESTful.

A RESTful Web service manages a set of resources (the information of
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which is provided) each of which shall be accessible via a Uniform Resource
Locator (URL). The HTTP provides four basic methods for the four most
common operations that can be applied on the resources [Richardson and
Ruby, 2007):

GET': Retrieve a representation of a resource
PUT: Create a new or modify an existing resource
POST: Create subordinate resources of an existing resource

DELETE: Delete an existing resource
Listing 2.11 shows an example REST call using the GET method to

request the temperature ressource of a device with the id 10.

GET /device/10/Temperature?subscribe=false HTTP/1.1
Host: embeddedNetwork.com

Unlike SOAP, which comes with a strict, predefined XML message frame-
work (see sample Listing 2.8), only a URL is used and transmitted to the
server. Besides addressing information of the requested resource, a list of
parameters can be added by stating this with the ’?’ character. In our
example, we send the subscribe parameter which is assigned with the value
false. Additional parameters may be added by separating them with the "&’
character.

An example response of the Web service is shown in Listing 2.12.

HTTP/1.1 200 OK
Last-Modified: Tue, 22 Feb 2013 10:18:20 GMT
Content-Type: text/zml

<Temperature scale="Celsius">
<value>24.5</value>
</Temperature>

The prolog contains some HTTP information, for example whether the re-
quest was a success (OK), how up-to date the resource is (Last-Modified), and
which format the payload with the requested information is used (Content-
Type). In general, REST is independent of the data format. Besides XML,
JavaScript Object Notation (JSON) [Crockford, 2006], HTML, or simple text

content are common alternatives.
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In recent years, REST has become very popular. This is justified by the
simplicity of requesting resources (only using a URL) and the close relation
of the WWW. Resources can be addressed as URL, similar to links on Web
pages. Responses can contain new links to other resources, which can be
followed by the client.

Despite the simplicity of the REST concept, a direct adaptation into con-
strained embedded networks in an efficient manner is not possible. This is
due to the HT'TP used in plain-text manner. Similar to plain-text XML, mi-
crocontrollers have to parse characters to identify, e.g., the HT'TP methods,
and they have to do the processing overhead such as type conversion (e.g.,
parameter subscribe in the GET method in Listing 2.11). In the 6LoOWPAN
context, a HTTP header such as the response message would usally require
a package of its own, before the actual payload information even starts.

To overcome this issue the Constrained RESTful environments (CoRE)
working group from the Internet Engineering Task Force (IETF) is cur-
rently developing an alternative HT'TP protocol which is specialized for the
constrained embedded environment: the Constrained Application Protocol
(CoAP) [Shelby et al., 2013]. CoAP relies on HTTP and makes use of the
GET, PUT, POST, and DELETE methods by reflecting them in a compact
number representation that can be easily parsed. E.g., the GET method
is assigned with the CoAP Method Code 1. In addition, CoAP also offers
features such as built-in discovery, multicast support, asynchronous message
exchanges, and an UDP [Postel, 1980] binding with optional reliability sup-
port [Shelby et al., 2013].

The CoAP sounds very promising, since all the features are developed in
the context of constrained embedded devices, which we also focus on in this
thesis. At time of writing, CoAP was in draft status. In this thesis, we are
concentrating on established, standardized SOAP Web services with XML-
based messaging, which are independent of underlying application transfer
protocols such as HT'TP or CoAP. Furthermore, to support interoperability
and ease application development, we prefer the decision of using only one
data format in constrained embedded networks.

13

2.6 Summary

In this chapter, we presented the idea of the SOA paradigm, introduced the
standardized Web service technology, which is the well-known technological
implementation of SOA, and projected them onto the embedded context.

Bhttp:/ /tools.ietf.org/wg/core/
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One of the key advantages is the separation of the (public) Web service in-
terface and the actual (private) logic implementation behind it. The interface
is defined in a standardized way by using WSDL and the interaction to and
from a Web service instance is realized via the SOAP message protocol. De-
velopers only have to concentrate on this open standards and not on the
individual implementation behind it (which may be proprietary specific).

Primarily, Web services were mainly introduced to overcome the inter-
operability issue in the Internet and put aside aspects of performance and
resources. To a certain degree, Web services can be applied to the embed-
ded environment; however, if microcontrollers come into the play, which we
see participating more and more in the future of embedded networks, then
XML-based protocols in plain-text manner are not really applicable because
of their memory and bandwidth usage as well as processing overhead.

So as to keep all the advantages of the SOA paradigm with Web services,
such as interoperability, reusability and flexibility, but also the broad support
of development tools, it would be desirable to find a Web service development
approach that is also scalable to microcontrollers and does not disregard W3C
standardization requirements.
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Chapter 3

Efficient and Scalable
Web Service Generator

Using standardized Web service technologies would ease the realization of
applications in embedded networks. Web services adaptation, however, did
not reach the embedded environment. This is due to the fact that Web ser-
vice protocols such as SOAP are primarily built on plain-text XML syntax.
Consequently, constrained embedded devices such as the ARM Cortex M3
would be overtaxed when it comes to handling XML information in terms of
memory and processing. In addition, an high-frequency message interaction
would harm the network traffic as well as delay the execution of service ap-
plications in microcontroller-based embedded networks.

In this chapter, we are going to present a technique for optimized source
code generation that enables the development of XML-based and standard-
ized Web services that is also applicable in the constrained embedded domain.
The goal is to provide a model-driven approach to set up SOA-based appli-
cations within Web services with the support of the usual communication
pattern concepts, such as request / response and eventing between nodes
(Figure 3.1). In addition, Web services instances that are generated shall
fulfill the following requirements:

o Compact messaging: Message interactions between nodes should con-
sist solely of compact information that leads to the usage of low message
packages to decrease the risk of resubmissions (reliability) and would
supports low network traffic.

o Minimal code footprint and RAM usage: The compiled source code
of the generated Web service shall consist only of that functionality
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Req. / Res., Eventing

U1

Class: ¢(v1)
Proce:p(v1)

(%)

Class:c(v2)
Proce:p(v2)

Figure 3.1: Web service-based interaction concepts (request/response and
eventing) between two nodes in an embedded environment.

and use of memory which is really required to reflect the modeled Web
service.

o FEfficient processing: To realize a high node responsibility and through-
put, Web service messages shall be processed and interpreted in a direct
way without any processing overheads.

o Compatibility: Web service instances shall be based on the standard-
ized W3C Web services protocols (see Section 2.3). This simplifies the
integration and reuse of existing Web service applications and avoids
the usage of expensive implementation of gateways for protocol map-

pings.

The first subsection of this chapter will address and discuss the abstrac-
tion of XML-based documents by means of XML Infoset (Section 3.1). Sec-
tion 3.2 introduces the EXI format as an encoding format of the XML Infoset,
which is a fundamental component of our Web service generator presented
in detail in Section 3.3. As proof of concept of our innovated approach, we
will present evaluation results from the V2G domain (Section 3.4). Before
offering concluding observations, we will discuss related works in Section 3.5.

3.1 XML Information Set

Typically, a well-formed XML document or message use plain-text syntax
based on start and end tags to structure the data (see Section 2.3.2). How-
ever, this representation is only one method of encoding in the context of
the XML Information Set (XML Infoset). The XML Infoset is a W3C
specification [Cowan and Tobin, 2004] that formalizes an XML document
as an abstract data model by a set of information items. An XML docu-
ment’s information set can consist of eleven different items: Document In-
formation, Element Information, Attribute Information, Processing Instruc-
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tion Information, Unexpanded Entity Reference Information, Character In-
formation, Comment Information, Document Type Declaration Information,
Unparsed Entity Information, Notation Information, and Namespace Infor-
mation. This way, the Document Information Item is always present in
each XML’s information set. Each information item contains a subset of
additional properties. For example, the element information item contains,
among others, namespace name, local name, attribute, children, and parent
as properties to provide an element’s namespace and local name information,
the used attributes, which nested children it contains (which may be another
list of element information items), and its superior element.

The information set of the XML document shown in Listing 2.1 would
consist of the following items and properties:

e A document information item with a child[ren] Temperature

e An element information item with the local part Temperature, an at-
tribute scale, and a child[ren| value

An attribute information item with the local part scale and the (nor-
malized) value Celsius

An element information item with the local part value

Character information items for the character data (24.5).

Closing items such as end tags or end documents do not exist in the XML
Infoset representation. Structure information is given by the properties, such
as children or parent in the information items. In conclusion, we are able to
define and structure XML-based information in the same manner as we do
with the start and end meta tag syntax that uses plain-text characters.

In the thesis, we consider the XML in the abstract manner in terms of
XML Infoset. The plain-text representation will be seen as an opportunity
to physically represent XML and will be noted as plain-text XML. An alter-
native and relativly new encoding variant of the XML Infoset is introduced
in the next subsection.

3.2 Efficient XML Interchange

3.2.1 Overview and Motivation

Since the beginning of the XML format, there have been attempts to fit
the plain-text data representation into a more compact and simple process-
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able format. This was motivated by the aspect that XML documents have
a tendency to be redundant and verbose, especially in terms of data ratio
transported and the meta tags structuring the actual value data. Conse-
quently, if XML is used as a transportation format, there is an increase in
network traffic and a parsing overhead to retrieve the actual information out
of the XML instance. This has also been the main reason that prevented
adoption of XML as a viable transportation format in the embedded domain
in the past.

A simple approach involves applying ZIP-based compression algorithms
such as DEFLATE (combination of the LZ77 algorithm and Huffman cod-
ing) [Deutsch, 1996] to the plain-text XML messages. ZIP can have very
good compression results [Bournez, 2009a] and would positively affect net-
work traffic; however, we would increase the processing of XML messages on
the device side. This is due to the fact that we are not able to work on the
ZIP level to gather information from messages, since XML structure infor-
mation gets lost when encoding with ZIP. Hence, we have to unzip before we
are able to determine the data of the XML message. This additional process-
ing overhead does not benefit of memory usage and computational processing.

In the context of XML compression, ZIP is characterized as a structure-
less compression method since it does not take structure rules of XML into
account. A prominent variant which provides a structure-based coding is Bi-
nary Format for Metadata (BiM). The BiM format was originally designed
for being used in conjunction with the MPEG-7 metadata format of the
Moving Picture Experts Group (MPEG), which is used to represent audiovi-
sual content [Avaro and Salembier, 2001, BiM, 2005]. BiM turned out to be
very generic, since it is able to handle most XML-structured data, provided
the data is valid to an underlying XML Schema [Sutter et al., 2005]. BiM
achieves compression ratios comparable to ZIP [Niedermeier et al., 2002]. On
top of that, BiM supports direct parsing on the bit stream level without prior
decoding into plain-text XML. This is based on the fact that even in encoded
binary format the structure of an XML document is still represented.

Even if binary XML with BiM made it possible to process XML-based
messages quite efficiently and to achieve a small compression size as well, it
did not become very established in the XML domain. There are many rea-
sons for this, mostly involving expensive licensing issues and missing coding
flexibility, such as schema-less or schema-deviated coding. Such flexibility

may be required by some applications, such as customer extensions on pro-
tocols that can be found in the ISO/IEC 15118 [ISO, 2010].

The W3C, the inventor and standardizer of XML, faced this issue and
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created a working group called XML Binary Characterization (XBC) [Gold-
man and Lenkov, 2005] to analyze the condition of a binary XML format
that should also harmonize with the standardized XML format as well as
with the XML Infoset. The outcome was the start of the W3C Efficient
XML Interchange (EXI) format, which gained recommendation status at the
time of writing this thesis (the beginning of 2011) [Schneider and Kamiya,
2011]. The W3C introduces EXI as follows:

The Efficient XML Interchange (EXI) format is a very compact,
high performance XML representation that was designed to work
well for a broad range of applications. It simultaneously im-
proves performance and significantly reduces bandwidth require-
ments without compromising efficient use of other resources such
as battery life, code size, processing power, and memory.

The EXI group faced the facts about the disadvantages of plain XML
mentioned above and developed a new representation for XML-based data,
namely XML in an efficient binary representation with more flexibility than
former formats. The different coding mechanism of EXI, discussed below,
explains this flexibility.

3.2.2 Coding Mechanism

In general, EXI is a grammar-driven approach that achieves very efficient
encodings for a broad range of use cases [Peintner et al., 2009, Bournez,
2009a]. Different coding rudiments exist, which depend on the usage of the
binary XML format. The most important cases are listed and explained
below:

schema-less Using this mode, there is no schema knowledge required of the
XML-based data. EXI uses a specified grammar set to encode and decode the
data. Element names and namespace URIs as well as the values of attributes
and elements will be transmitted once. Internal string- and value-tables track
all identifiers and values that occur. If an identifier or value occurs again, a
number ID is encoded that is associated to a table entry.

This mode is recommended if no XML Schema knowledge is present or
if a very frequent change is expected within data model. Even if there is a
compression improvement, using schema-less coding is not recommended for
the embedded environment. This is justified by the fact that there is still a
high ratio of string as well as non-typed data representation in the stream
that leads to processing overhead. Furthermore, this mechanism cannot be
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limited in terms of memory usage since the grammar is extended at runtime
whenever a new and unknown XML-based structure is present.

default, schema-informed This mode requires schema information of the
data model used in the application. Based on this schema knowledge, EXI
transforms all information included into equivalent EXI grammars. For a
coding process, this grammar will be used and processed. This mode also
enables features that allow encoding and decoding of information not defined
by the underlying XML Schema. EXI is calling this case schema deviation
coding and falls back to the basic grammar set also used in the schema-less
mode.

This mode is recommended when the core data is known in an application
and the underlying XML schema definition is present. In addition, this mode
possesses the required flexibility to send arbitrary and non-schema defined
data at any point. All core data will be encoded in an efficient way. Schema-
deviated data will be signalized in an EXI stream and the data itself will be
encoded based on the same mechanism as the schema-less variant.

strict, schema-informed In this mode, schema information is required
of the underlying data model. Similar to the default mode, schema-informed
mode, EXI grammars are created based on the given XML Schema. However,
the mechanism for schema derivation is not permitted. XML-based messages
which deviate the underlying XML schema, cannot be encoded into EXI
representation.

This mode is especially recommended if the used data is known and fixed.
Compared to the variants of schema-less and default mode, schema-informed,
the strict, schema-informed mode produces the best encoding and processing
results. This is based on the fact that no additional signalization, such
as is there a schema deviation or a new identifier (e.g., attribute/element
names), has to be encoded into the binary stream. Consequently, this mode
is proposed for embedded devices with very restricted resources. Therefore,
we will concentrate on this coding mechanism in this thesis. In the next
section we will explain how to construct such a grammar for encoding and
decoding XML-based data.

3.2.3 The EXI Grammar G

The EXI format uses a grammar-driven approach. Let us first define what we
understand by an EXI grammar in the context of the W3C EXI specification
and as used in this thesis:

- 44 -



3.2. Efficient XML Interchange

Definition 3.1 (EXI Grammar G)

An EXI Grammar is a set of deterministic finite automata (DFA) where
each automaton represents a complex type and its content (attributes, ele-
ments, and their occurrences) of a given XML schema. Each DFA contains
one start state and one end state, which reflect the beginning and the end,
respectively, of a complex type. The transition-state construct represents
the sequential order of elements and/or the alphabetical order of attributes
within a complex type. Optional definitions (e.g., choice, minOccurs = 0,
etc.) are reflected by multi transitions and assigned an event code (EV).

In other words, G is based on regular grammar (the DFAs) derived from
schema constraints such as element order and its occurrences. This is true,
since schema rules are declared in a deterministic way. Declarations that
would lead to ambiguous variants are not permitted and would lead to XML
Schema validation errors. The EXI specification defines a predefined pro-
cess of how schema information is to be transformed into DFA representa-
tions [Schneider and Kamiya, 2011]. In general, such a transformation step is
justified by the aspect automatons are much simpler to process than (redun-
dant) XML Schema information. In conclusion, the EXI grammar contains
the same information as the XML Schema (including datatypes); however, it
simplifies the concept of the XML structure by providing only those oppor-
tunities that logically occur next in the structure.

Figure 3.2 shows an example of what such an EXI grammar can look like
for our temperature XML Schema which was provided in Listing 2.2. As can
be seen, the grammar G is based on two DFAs: the Root and Temperature
grammar. The Root grammar (a.k.a. document grammar) is a fixed prede-
fined grammar that occurs in each EXI grammar representation of arbitrary
XML Schemas. It contains all entry points of all root elements in the schema
plus an entry point for a generic element. We will not focus on the possibility
of accepting a generic element as root element here, since this is comparable
to schema-less coding (see subsection 3.2.2), which is not within the scope
of this thesis. For our schema case, we only define one root element, namely
the Temperature one. Thus, the start state of the root grammar will contains
two transitions: one that leads to the defined Temperature element state and
one that leads to the generic element state which is indicated only by the
dashed arrow here.

In general, the grammar indicates states distinguished by multiple tran-
sitions through an n-bit unsigned integer event code. Since EXI features the
characteristics of entropy coding [Shannon and Weaver, 1949], the number
of bits (= n) to represent the event codes of a state with m transitions is
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Figure 3.2: EXI grammar G of the temperature XML Schema shown in
Listing 2.2.

determined by
n = [logam]| (3.1)

The number of the event code itself depends on the alphabetical order of the
element/attribute name that is indicated by the transitions. In this thesis,
we will use the label EV for event codes that also directly shows the n-bit
representation. E.g., FV(01) is a valid event code for a state that has three
or four transitions. A state that only has a single transition will be labeled
with EV (—).

Coming back to the EXI grammar example in Figure 3.2, the two tran-
sitions from the start state in the root grammar are assigned with event
code EV(0) for the Temperature transition and EV(1) for the generic ele-
ment transition (the generic element will always be seen as the item last or-
dered [Schneider and Kamiya, 2011]). Since the Temperature state is typed
as complex (see Listing 2.2), it refers to the Temperature grammar, which
represents the content of the type. Now, let us take a look at the details:
The (local) complex type defines an optional attribute scale and a mandatory
element value. Thus, we are once again given the choice of whether to embed
the attribute scale within the Temperature element or not. Transforming
this into the EXI DFA grammar representation, there are two transitions
from the start state, with one (EV(0)) leading to the attribute state scale
and the other leading directly to the value state (E'V(1)). As this example
also shows, the mandatory value element cannot be skipped in any way since
the successor transition of the scale state is a single transition to the value
state. If all information is transformed logically into corresponding states
and transitions, the DFA will be closed by the end state as it is the last state
that can be visited in the grammar.

After we have seen the idea of how an EXI grammar is constructed based
on a given XML Schema, we will explain how such a grammar can be used
to encode and decode XML-based messages. Before doing this, though, we
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will introduce the EXI IDs.

3.2.4 The EXI IDs

The advantage of binary XML is the smaller and more compact message size
when compared to plain-text XML [Bournez, 2009b]. This is achieved by
avoiding transporting the string-based element and attribute names as well
as the corresponding namespaces. Based on the event codes and the EXI
grammar, the corresponding element or attribute can be identified. In order
to interact efficiently with the EXI encoder (e.g., which element/attribute
shall be encoded) and decoder (e.g., which element/attribute is present in
the stream) EXI provides a compact and unique ID identifier of all named
declarations in an XML Schema such as elements, attributes, complex and
simple types (Local-Name Partitions). The EXI standard assigns IDs based
on the alphabetical order of the names used in the XML Schemas. As an
example, Table 3.1 shows the ID assignments for the XSD example presented
in Listing 2.2.

ID Local Name
0 Temperature
1 scale
2 tempScaleType
3 value

Table 3.1: EXI ID assignment of local names based on the XSD shown in
Listing 2.2.

ID URI Name

0 77 (empty string)

1 http://www.w3.org/XML/1998 /namespace

2 http://www.w3.org/2001/XMLSchema-instance

Table 3.2: EXI ID assigment of URIs (initial entries)

The local name ID set, such as shown in Table 3.1, is always considered
in a particular namespace context. Thus, a second ID is used for an effi-
cient representation of the namespaces used (Uri Partition) in the schema.
In that way, the first three IDs are reserved for the empty string and the
default namespaces of the Namespace and XML Schema Instance (see Ta-
ble 3.2). Additional namespaces will be mapped starting with the 4th entry
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in the URI table. From there, the alphabetical order will be considered again.

Based on the EXI IDs, we are able to associate elements and attributes
of an XML message in a very efficient manner. E.g., the content of the XML
message that is shown in Listing 2.1 can be associated with a local name
and URI ID tuple such as (0, 0) for the Temperature element, (1,0) for the
scale attribute, and (3,0) for the value element. Note: since no namespace
is assigned in this example, the namespace URI ID will always be 0 for the
empty string entry. Through using such ID combinations, implementations
avoid the overhead of the inefficient string comparison of element/attribute
names and namespaces. This becomes especially apparent when name and
namespaces are relatively long.

3.2.5 XML-based Coding

EXT uses a set of DFAs to encode or decode XML-based data. The data
itself can be represented in different ways. Typically, we have plain-text
XML representation. Alternatively, the XML-based information can be rep-
resented by a DOM or as the data structure of a programming language (e.g.
Java Architecture for XML Binding (JAXB) [Fialli and Vajjhala, 2005]).
The latter provides the benefit of having and working on typed-based data.
Overhead processing of type casts can be avoided and we are able to retrieve
the data directly from the EXI stream. We will further investigate this topic
later in this chapter when discussing the generation of data structures for a
programming language (Section 3.3.3).

The following example explains how the temperature-based XML message
seen in Listing 2.1 is encoded to the binary XML representation with EXI.
The XML Schema definition was used (see Listing 2.2) to determine the
EXI grammar G seen in Figure 3.2. We will start with the root element
Temperature and apply this to the start state in the root grammar. At this
point, we have to check which transition leads to the Temperature. This
is fulfilled by the transition labeled with EV(0). The encoder would write
the bit 0’ to the EXI stream to signalize the decision which transition is
to be followed and which state is to be visited next. Since the Temperature
state is a complexType we know that it has a grammar representation of
its own, and hence, we will continue with the start state in the Temperature
grammar. There, we have to make another choice and we have to check what
information is present in the XML message at this decision point. The scale
attribute is used and consequently, we follow the transition with the event
code EV(0). This bit is also written into the EXI stream. Since the scale
attribute is typed simple (as string/enumeration) the encoder would write
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the enumeration value 0 to the EXI stream. The single successor transition
leads to the wvalue state, where we now have to encode the value element.
Please note that no event code information has to be written to the stream
for this transition. Again, the encoder would encode the value to the stream
since the value is a simple type (float). In that particular case, EXI would
part the float value to a mantissa and exponent representation, each of which
are encoded as integer values. EXI supports integers of arbitrary magnitude,
however, they are represented as a sequence of octets terminated by an octet
with its most significant bit set to 0 [Schneider and Kamiya, 2011]. In other
words, only this number of bytes is used to represent the desired value.

To complete our example, we run into the end state of the Temperature
grammar and the encoder would continues with the root grammar. As can be
seen, there is only a single transition left after the Temperature state, which
also leads to the end state of this grammar, which here means the end of the
encoding process. The outcome is summarized by the complete bit stream:

EXI_Stream := 10000000 00001111 01010000 00011000 00000000

The green bits represent the event codes, the red ones the scale value,
and the blue ones the float value. As a prologue within the EXI stream,
the first byte is assigned the mandatory and default EXI header value. The
actual data is encoded starting with the second byte block. This example of
a stream also shows that EXI is a bit-based coder that uses each and every
possible bit within a byte. If there are free bits left in a byte block and no
further information needs to be encoded, the byte will be padded with zeros.
This case can be seen in the last byte of the stream.

Compared to the 112 bytes of plain-text in Listing 2.1, this XMIL-based
representation is much more compact, only needing 5 bytes. All text-based
and redundant tag information has been removed and the logical XML struc-
ture is represented by the two 1-bit event codes. Furthermore, the data values
(Celsius and 24.5) are type-aware encoded and not string-based represented
as was done in Listing 2.1.

In general, the compression ratio depends on the the XML Schema and
instances provided. There are use cases in which EXI representation is said to
be over 100 times smaller than XML [Bournez, 2009b]. Works that provide
approaches to further increase compression rates for some particular data
types, such as multimedia content, also exist [Peintner et al., 2009]. In this
thesis, we will present compression size of sample service messages that can
be reached by applying the standard W3C EXI specification [Schneider and
Kamiya, 2011].

~ 49 -



3.3. Web Service Generation Workflow

The decoding process works in an almost similar way. The EXI stream is
applied on G as input and the event codes in the stream navigates through
the automata. The start state in the root grammar would read the first bit in
the stream to decide which of the two possibilities has to be traversed. Since
0 signals the Temperature state, the Temperature tag can be initialized. In
the Temperature grammar we would read the next bit at the start state to
decide whether the scale attribute is present or not. Since this appearance
is provided in our case, attribute information can be embedded within the
Temperature with the decoded scale value (Celsius). Based on the grammar
structure no event code has to be read to signal the value element after the
scale state. Consequently, the value element tag can be initialized and its
float value (24.5) can be decoded subsequently. Based on the end states,
which are passed as the final steps, the end tags can be set and the outcome
would be equivalent to Listing 2.1.

In the implementation context, it makes sense to distinguish grammar G
between G gy for encoding purpose and Gpge for decoding purpose even
though both contain the identical DFA structure. This is justified by the fact
that a grammar which is only used for encoding purpose should only keep the
functions for encoding event codes and data types, for example. Vice versa,
environments that only need the mechanism for decoding the EXI stream,
Gppc should solely serve the corresponding decoding functionality. We will
focus more on this kind of grammar specialization in the next subsection.

3.3 Web Service Generation Workflow

The automatized workflow of our proposed Web Service generator for embed-
ded devices with constrained resources, such as microcontrollers, is mainly
divided into three phases:

I: Based on a given service description Sp, the service concept is analyzed
and schema information is generated that describes all possible messages
that can be understood by the service.

IT: EXI grammar is generated and optimized.

[TI: Source codes are generated which contain the EXI Processor, RPC
skeletons, message dispatcher, and the service stubs for the client.

Figure 3.3 provides an abstract overview of each step. The next subsection
will narrate the details of each workflow phase. For a good step-by-step

understanding we will apply the Web service example that was introduced
and defined by the WSDL in Section 2.3.4.
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3.3. Web Service Generation Workflow

3.3.1 Phase I: Schema Generation

This first step involves taking a service description Sp, such as a WSDL, as
input. Reading the Sp, the content will be then analyzed in terms of which
service procedure calls (RPCs) are served, which corresponding message pat-
terns are used, and which particular data are exchanged within the service
messages. Table 3.3 shows the result of this analyze step when the WSDL
that was introduced in Section 2.3.4 is applied.

. Req Message Req Data g R S R
Operation Res Message Res Data Cl” | CI"™ | Se” | Se
GetTemperature subscribe X - - X
Temperatur
Temperature status, scale, value | - X X -
- GetHumidity subscribe X - - X
Humidity Humidity status, scale, value | - X X -

Table 3.3: Content analysis of the input WSDL

The table shows which operations are served by the Web service and which
request and response messages are involved. The data column shows which
data elements and attributes are used within the corresponding message.
The last four columns show the sending and receiving rolls of a client and
the Web service. A marked entry in CI° points our which messages and data
are involved when the client sends a message to the Web service. Entries
in C1% highlight which messages and data a client can receive in particular.
The same kind of information is also provided for the service side, namely
by Se? for the sending and Se® for the receiving context.

The motivation underlying such an analysis table is quick identification
of which kind of data is involved in general. E.g., it can be identified that
the client will only embed the subscribe element in messages that are sent
(C1% ) and received (Sef?) by the Web service.

The next fundamental preparatory step in this phase involves the gener-
ation of an XML Schema X SDgsgrvice mse that defines all possible XML-
based messages with which the service can interact. For WSDL with SOAP
binding, the generated X SDgsgrvice mse Will inherit the standardized En-
velope, Header and the Body elements of the SOAP namespace (labeled
XSDsoap). Furthermore, the particular service data that is defined in Sp
is referenced and declared in the XSDggrpvice msc.

Figure 3.4 shows the outcome of our sample WSDL. As can be seen,
the SOAP framework, Envelope, Header, and Body make up the message
framework. The Header embeds the status element and the Body refers to
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Figure 3.4: Generated X SDsgrvice msc that includes the SOAP message
structure and embeds the device information (Temperature, Humidity, etc.)

the request and response-based Temperature and Humaidity elements with
their data type definition.

To formalize this process for SOAP messages, one can say that
XSDSE’RVICE,MSG is a specialization of XSDSOAP or

XSDsgrvicemse € XSDgoap

Thus, all instances that can be built by XSDgsgrvice mse are valid
for XSDgoap and of course for XSDsgrvice msa. More precisely: Let
I(XSDgsoap) be the set of all instances based on X.SDgpap and let
I(XSDsgrvice.msc) be the set of all instances based on X SDgsgprvicemsc-
For all message instances isgrvice mse € [(XSDsgrvice msa) 1S

isgrvice.msc € 1(XSDgsoap) and valid for X SDggrvicr mse and
XSDgoap. With other words

iservice.msc € L(XSDsgrvicemse) N I(XSDsoap)

The generation of the X SDgsgrvicemse will concludes this first working
phase and the next phase will commence.
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3.3.2 Phase II: EXI Grammar Generation and Context-
based Optimization

Based on the XSDgsgrvice msa generated in the first phase, the EXI gram-
mar GG based on Definition 3.1 is generated. To do so, we are following the
predefined process of the EXI specification [Schneider and Kamiya, 2011]
on how the schema information is to be transformed into the corresponding
grammar representation (see also section 3.2.3).

Figure 3.5 shows the result of the transformation process. Mainly, 6 DFAs
are constructed:

Root: This basic DFA always enables access to all existing root elements
in the XML schema. In X SDgsgrvice msq multiple root elements are
accessible, namely Envelope, Temperature, GetTemperature, Humid-
ity, and GetHumidity. In a SOAP context it is clear that we will
always follow the Enwvelope root element. For reasons of clarity, we
will only show this transition; all other root elements are indicated by
dotted arrows. Since 5 root elements are defined, a unique event code
- a digit with 3 bits - will be assigned to each transition. Based on
alphabetical order, the Envelope transition is assigned the bits 000.

Envelope: The DFA Envelope reflects the SOAP framework with an
optional Header and mandatory Body element. If a transition with
the event code 1 is followed from the start state, the Header element is
present. Otherwise, transitions with an event code 0 omit the Header.

Header: This grammar presents the Header’s content, which is only
the simple typed status element. Due to its uniqueness, no event code
is needed here.

Body: Based on the input WSDL, we know that there are several
kinds of messages with which a client and the Web service interact. The
Body grammar reflects the message context by addressing each of these
messages as their own transitions from the start state. For example, the
request message GetTemperature is assigned with the event code 01
transition. Meanwhile, the response message Temperature is reflected
by the 11 transition.

Temperature: The attribute scale is defined as optional; consequently,
the Temperature DFA provides the transition depending on whether
scale is present (transition with event code 0) or not (transition with
event code 1 to the value state).
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Figure 3.5: EXI grammar representation of the example X SDsgrvice msa

Humadity: Unlike the Temperature definition, the scale attribute is
mandatory. Hence, no event code is required in this DFA.

Get: This last DFA reflects the Get complex type that consists of one
element: subscribe. Since this element is also mandatory, no event code
has to be used for this automaton.

As discussed in Section 3.2.5, it is useful, in terms of implementation,
to distinguish grammar G between Ggyc for encoding and Gpge for de-
coding purposes. At this point, we could say that our process is complete.
Grammars Ggne and Gpgee applied to each side - client and service - would
successfully encode and decode all kind of messages defined in the context
of Web service description. However, such implementation incurs grammar
overheads on each side. The following aspects explain this:

1. XML Schema descriptions such as the standardized X .SDgoap include
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many other global element declarations besides the Envelope declara-
tion. From the point of view of modeling, this has some benefits in
terms of reusability and avoiding redundancies of elements. In con-
trast, EXI has to take all of this into account when it comes to the EXI
grammar building process. A Web Service, however, would never send
a Header element without without the SOAP FEnvelop construct, for
example.

In the case of our specified XSDsgrvice msq above, a number of
global elements addressable from the root are also defined (e.g., Get-
Temperature and Temperature). The Root grammar which can be seen
in Figure 3.5 sketches this aspect in the EXI grammar representation
by the multiple transitions from the start state. To set up a valid Web
service message, transition beyond the Envelope with event code 000
would never occur for encoding as well as for decoding. Event code pat-
terns beyond this event code would not be seen as valid and messages
would be rejected.

2. Considering the client side and service side separately, we would al-
ways discover the following aspect: A client sends only request-based
messages to a service and receives only response-based messages from a
service. That means EXI only encodes request-based messages and de-
codes only response-based messages. Thus, there is no need to provide
the full mechanisms for encoding response-based messages or decoding
request-based messages. This holds true for the service side as well:
Services only receive request-based messages and send response-based
messages. Supporting encoding of request-based messages and decod-
ing of response-based massages is obsolete as well.

Considering the example above, where we have a Web service that
serves temperature and humidity information, only request messages
such as GetTemperature and GetHumidity are decoded. Meanwhile,
Temperature- and Humidity-based messages are encoded. Consequently;,
there is no need to provide a grammar for the Web service which en-
codes request message such as GetTemperature or decodes response
messages such as Temperature. In turn, the client side needs this gram-
mar structure to encode all request messages and to decode all response
messages. Instead, there is no need to include the encoding grammar
for response messages such as Humidity or the decoding mechanism for
request messages such as GetHumidity.

Based on these two findings, we are optimizing the EXI Grammars Ggy¢e
and Gpgc for the Web service and client-side usage. We also call this step
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context-based optimization due to prior knowledge of the generic message
framework and message handling on the client / service side. The result is a
smaller encoding and decoding grammar set for the client side and for the ser-
vice side: Georrent_enc, Gerient.pec, Gservice enc, and Gsgrvice pDEC-
In other words this grammar includes all states and transitions that are rele-
vant to the client and service for encoding and decoding. Unnecessary states
and transitions were removed. Event codes that are defined in Ggyc and
Gpec are kept in the remaining fragment parts of the smaller grammar set.
Doing so guarantees that encoding and decoding of service-based messages
provides the same result as Ggye and Gprc would.
To formalize this process, one can say

GENC = GCLIENT,ENC U GSERVICE,ENC

and
Gpec = Gerient.pec U GservicE DEC

Let us consider an instance igpg mse of a request message in terms of
ireo msc € I(XSDsgrvicemsa)- iR msc can be encoded by Gorrpnr_ene
or Gpye to an EXI representation i554 - To decode ix5 ygq the gram-
mar of GDEC or GSERVICE,DEC can be used. CODVGI‘SGly, a iRES,MSG that
is a response message in terms of igps ps¢ € [(XSDsgprvice.msa) can be
encoded by Gservice enc or Gene to an EXI representation ing(éfMSG. To
decode iE8L | oo the grammar of Gpre or Gorrent_pre can be applied. For
reasons of symmetry, it is also valid that

GC’LIENT,ENC = GSERVICE,DEC’

and
Gorient.pec = GSErvIcE.ENC

In other words, you will find the same DFA structure of Gorrpnt Enve in
Gservice.pec since the information that is encoded on the client side is also
decoded on the service side. Similarly, it is true that the same DFA structure
of Gerrent_pec can be found in Gsgryvice envc. Response messages encoded
by the Web service also have to be decoded on the client side. Thus, the same
DFA structure must be present.

To identify which messages and data are required for each side, especially
which data information is needed for purposes of request or response, we are
using the content analysis table that was generated in Phase I. For instance,
Table 3.3 provides the answer in column C[° as to which messages and data,
need to be encoded on the client side based on our ongoing example: GetTem-
perature, GetHumidity and subscribe. Consequently, grammar Georrpnt ENC
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only contains these DFAs with those particular states and transitions needed
to encode the EXI stream for the SOAP message that embeds the GetTem-
perature or GetHumidity requests. Based on the symmetry above, which
is also underlined by Table 3.3 in columns Sef' to CI® we would get the
same context-based optimization for Gsgrviceprec. Figure 3.6(a) shows
the optimization for both grammars: Gorrpnt eve and Gsgrvice pec. All
transitions and states that do not lead to GetTemperature or GetHumidity
are removed. Furthermore, we limited the selection of the transitions of the
root elements/states in the Root grammar to one. It must be noted that
all event codes on the transitions are the same as were used in origin G.
The compatibility requirement justifies this, since an instance shall have an
identical EXI representation with Gorrenvr_eve as with Ggye and thus, we
are able to decode analogously with Gsgrvice.pec or Gpec.

Figure 3.6(b) shows context-based optimization for Gorrpnr prc and
Gservice.enc based on the columns CI and Se® of the WSDL analysis
table. Here, the reduction is applied to multiple root elements in the Root
grammar, the Body transition from start state in the Envelope grammar
(all response messages contain the status value), the request elements (Get-
Temperature and GetHumidity) in the Body grammar, and its Get grammar
representation. All DFA contain the structures to encode and decode the
non-skippable status value within the Header as well as the Temperature
and Humidity information.

The technique of how we determine the states and transitions that are
to be retained and the ones that are to be removed is not explained in this
chapter. We are coming back to this issue when we are introducing the fil-
tering mechanism in the next chapter.
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Figure 3.6: Context-based grammar optimization of Ggyc and Gpgc for the
client and Web service side.
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Before completing this workflow and moving on to the next phase, we
are going to determine all EXI IDs of the local names and namespaces (see
Section 3.2.4) defined in the XSDsgrvicemse (Table 3.4). Typically, EXI
would also provide the ID representations of the simple and type names.
Since these IDs do not affect our next step, we will skip over these unique
numbers and only provide the IDs of the elements and attributes.

# || EXI ID Local Name - Namespace

1 (0,4)  GetHumidity - embedded:device:data

2 (1,4)  GetTemperature - embedded:device:data

3 | (3,4) Humidity - embedded:device:data

4 | (5,4) Temperature - embedded:device:data

5 | (8,4) scale - embedded:device:data

6 | (9,4) status - embedded:device:data

7 || (11,4) subscribe - embedded:device:data

8 || (13,4) value - embedded:device:data

9 | (0,5) Body - http://www.w3.org/2003/05/soap-envelope
10 || (1,5) Envelope - http://www.w3.0rg/2003/05/soap-envelope
11| (2,5) Header - http://www.w3.0rg/2003/05/soap-envelope

Table 3.4: EXI ID tuple (local name ID and namespace ID) of the sample
XSDsgrvice msa shown in Figure 3.4. IDs of the type declarations are not
listed.

3.3.3 Phase III: Source Code Generation

This phase produces the Web service source code, which can be used by
developers for their applications on the server and/or client side. We support
the code in C, C++, and Java. Below, we are going to present sample listings
of the code generation step in the C programming language; this is also the
preferred language for the constrained embedded domain.

Data structure: Based on the XML Schema generated in phase [ (the
XSDsgrvice.msa), data structures are generated that map the identical hi-
erarchy structure and equivalent type representation as defined in the schema.
More precisely, complex types are represented as structs (C) or classes (C++
and Java) and simple types as primitives datatypes such as char, int, and
float. E.g., an element that is typed as an unsigned short in an XSD docu-
ment would be mapped to uint16_t datatype of the C programming language.
Listing 3.1 shows the data structure concept as a snippet based on our
temperature/humidity X SDgsgprvice msc example above.

- 00 -



3.3. Web Service Generation Workflow

struct EXIDocumentType

{
struct EnvelopeType Envelope;

};

struct EnvelopeType

{
struct HeaderTypex Header;
struct BodyType Body;

+;
struct HeaderType
{
enum statusType status;
+;
enum statusType
{
0K, LowBattery, ERROR
+;

struct BodyType
{

struct TemperatureType* Temperature;

The EXIDocumentType structure will be generated as a basis structure
for any kind of schema input. In general, this structure is used to map the
root elements in the schema. However, in the Web service context we already
know that only one root element is used (see Section 3.3.2). In the case of
a SOAP binding it would be the Envelope element. Consequently, the EFXI-
DocumentType struct consists of this single entry. As we know, the Envelope
element itself is defined as a local complex type within the X.SDsgrvice msa
and hence, its definition with its content is transformed into the Envelope Type
struct. Since the Header element is defined as optional, the Header variable
is defined as pointer. Generally, selections by option or choice declarations
of elements or attributes are transformed to pointers. Information always
transported in each message, such as the Body element /variable, is defined
statically. The data structure generator also takes into account defined re-
strictions on simple types. E.g., the status takes the string as a basis type.
However, the Web service only accepts 3 status values (OK, LowBattery, and
FERROR), which are predetermined as restrictions by using enumerations in
the schema definition (see Listing 2.4). Consequently, we map this enumera-
tion to a C enum construct which contains only these valid values (see enum
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status Type) and avoid character representation in the programming language.

EXI Processor: To obtain the facility to process EXI data, the code of
the EXI Processor is generated. The EXI Processor is a dedicated proces-
sor that is only able to process XML-based data that can be instantiated
by the XML Schema generated in phase I. More precisely, the code only
provides the mechanism required to encode and decode the EXI stream in
the corresponding client and service contexts. This is done by applying the
optimized and context-based EXI grammar of Phase II. Thus, the code
generated for the client side only uses this mechanism to encode request
messages and to decode response messages (Goiientpye A Golientp e ). Cor-
respondingly, the server side gets the code for decoding request messages and
encoding response messages (Gservicepye MNA Gserviceppe)- As interface the
EXI Processor provides a StAX-like interface (see Section 2.3.2) to encode or
decode XML-based events (startDocument, startElement, etc.). A detailed
description of how such an EXI Processor is efficiently generated in terms of
memory footprint and processing speed which, however, includes all required
EXT functionality, is given in the PhD thesis of Daniel Peintner [Peintner,
2014].

Databinder: The databinder component that is generated contains the
mechanism to serialize the data structure to the EXI stream representation
and, conversely, to deserialize the binary XML stream to the corresponding
data structure. It uses the StAX interfaces of the EXI Processor to ob-
tain a valid XML-based stream or to read the values into the structure at
runtime. To realize this, the corresponding StAX events and corresponding
functions are generated in appropriate order, and only those are generated
which are really required at this particular point. E.g., two complex typed
based elements (Header and Body) are embedded in the Envelope element.
Consequently, at this point and in the encoding context, we have to check
first of all whether the Header is present. If so, the StAX start element event
will be called passing the Header EXI ID (=(2,5); see Table 3.4). Otherwise,
the body element is signalized (=(0,5)). It is continued recursively with en-
coding the content of Header or Body, respectively, and finally closed the
Envelope complex type by the StAX end element event function. Listing 3.2
clarifies this process as a code snippet.

RPC Skeleton: The operations defined in the service description Sp are
transformed into skeleton methods which developers later will have to fill in
with the corresponding logic to react on the request data provided. In gen-
eral, the RPC skeletons are only generated for the service side and the RPC
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void serialize_Envelope(struct EnvelopeType* Envelope)
{
if (Envelope->Header!=NULL)
{
encodeEXIStartElement (2,5);
serialize_Header (Envelope->Header) ;

}

else

{
encodeEXIStartElement (0,5);
serialize_Body (& (Envelope->Body)) ;

}

encodeEXIEndElement () ;

}

function listed carries a signature that also corresponds to service description
SD.

Listing 3.3 shows the header C file generated, which contains all opera-
tions (Temperature and Humidity). The param variables contain the data of
the request message. The result variable contains the information which is
sent back to the service requester. In cases for which additional information
is required, such as what is carried within the Header part, this struct is also
provided as a parameter in the skeleton functions.

void Temperature(struct HeaderType header, struct getTemperatureType
param,struct TemperatureType result);

void Humidity(struct HeaderType header, struct getHumidityType param,
struct HumidityType result);

Dispatcher: The dispatcher method generated builds the core of the Web
service and is only used on the server side. The dispatcher takes the XML-
based EXI stream and, using the databinder mechanism, starts to deserialize
the stream. After all required data has been parsed the corresponding RPC
with the received parameters is invoked. The return parameters provided
are serialized as EXI streams once again. Summing up, the complete service
message is interpreted and constructed automatically at runtime.

Listing 3.4 sketches the idea of the Web service dispatcher and shows
the interaction of the different code fragments generated: Firstly the passed
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void dispatcher(uint8_t* inStream, uint8_t* outStream)
{
struct EnvelopeType Envelope;
deserialize_EXIStream(inStream, &Envelope);

if (Envelope.Body.getTemperature!=NULL)
{
Temperature (Envelope.Header, &Envelope.Body.getTemperature, &
Envelope.Body.Temperature) ;
X
else if (Envelope.Body.getHumidity!=NULL)
{
Humidity (Envelope.Header, &Envelope.Body.getHumidity, &Envelope.Body
.Humidity) ;
X
serialize_Envelope(outStream, &Envelope);

}

byte stream inStream (dispatched from the transportation stack), which rep-
resents the request message, is decoded (deserialize_ EXIStream) and mapped
to an Envelope data structure instance Envelope. After that, it is determined
which RPC has to be called: in case of the initialization of the GetTem-
perature field within the Envelope data structure, the generated Tempera-
ture method (by prior implementation) with the corresponding parameters
is called to determine the temperature information (scale and value). Since
the Header structure is also passed, the device status can be set within the
Temperature function. As a final step, the response EXI stream is prepared
by passing the Envelope data structure to the serializing method (serial-
ize_Envelope).

Notifier and EventReader: The Notifier enables the developer to set up
event messages for one or more clients. Compared to the dispatcher, the
notifier gets along without request messages and thus, it only provides the
mechanism for serialization. On the opposite side, the FventReader enables
the client to interpret an event message of a Web service. In that case, only
the interfaces for deserialization are realized.

Service Stubs: The client is able to either call remote methods (the RPCs)
or request data from the Web service by using the service stubs generated.
The request with its data is encoded as an EXI message stream, transported
to the service, accepts the response message and provides it in a data struc-
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ture. Since the service stubs work almost like the service dispatcher (in
reverse sequence), a code snippet is not shown here. In general, the signa-
tures of the service stubs are equivalent to the RPC skeletons. Thus, our
example would work with the functions seen in Listing 3.3.

3.3.4 Workflow Conclusion

Based on a defined service description, which can be designed by well-known
modeling tools, the generator produces a source code containing the mecha-
nism to process and interpret XML-based messages. Developers do not need
to investigate request/response mechanisms or efficient message representa-
tions and their processing by means of EXI. The same interfaces and concepts
are provided that are typically used for Web service and hence, the adapta-
tion into existing or involving new applications is straightforward. Based on
our optimized code generation approach, the code footprint of the Web ser-
vices are very small and feasible for many kinds of microcontroller platforms
such as the ARM Cortex-M3. E.g., the code footprint of our temperature /hu-
midity Web service compiled with the Contiki OS [Dunkels et al., 2004] is
approximately 50 kBytes ( 10 kBytes for the Web service itself and 40 kBytes
for the OS). In addition, our Web service generator approach avoids the dis-
advantage of Web service solutions that are based on plain-text XML, which
negatively affect network traffic and message processing, especially in con-
strained environments. E.g., the messages size of the temperature/humidity
Web service example generated ranges from 2 bytes (request messages) to
a maximum of about 10 bytes (response messages). Working with EXI, we
remain compatible with XML at the XML Information Set [Cowan and To-
bin, 2004] level, rather than at the XML syntax level [Schneider and Kamiya,
2011]. If it is desired to get the plain-text XML representation, e.g. for de-
bugging reasons, the EXI stream can simply be decoded into the plain-text
XML syntax by utilizing generic EXI processor libraries and providing the
XML schema that underlies the XML-based messages.

Our approach is also suitable for participating in existing applications
which (partially) use Web service or client-side implementation that pro-
cess plain XML messages. To realize this, an intermediate translator that
can transform plain-text XML into an EXI representation and vice versa
has to be involved in communications on the application level. Figure 3.7
shows a concept for such an intermediate translator, as applied on a separate
node (v3). Node vy is a member of the constrained embedded network and
serves an EXI-based Web service with different RPCs. A client v3 from the
Internet requests the Web service of v3 by using messages in plain-text XML
such as SOAP. Node v, has a bridge functionality that has access to both
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networks. If this node receives a request message from a client addressed to
v1, the message is transformed into the EXI representation. In the same man-
ner, the corresponding response message is transformed back to plain XML
and forwarded to vs. All these transformations are only valid, if the corre-
sponding EXI grammar is present which is also used at v;. This is realized by
the knowledge of the corresponding service message XSD X SDsgrvice msa
extracted of a service description Sp such as a WSDL (see Phase I) or by
a direct representation of the EXI grammar without the prior grammar con-
struction process [Peintner, 2014].
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3.3.5 Implementation

The implementation of our efficient and scalable XML-based Web service
generator is written in the Java programming language. The structure of our
implementation is synchronized to the three phases of the workflow presented
here:

I To read a service description Sp we developed an interface that has
to be implemented for a desired description format to retrieve essen-
tial information such as which RPCs are served and which messages
and data are involved. For the WSDL implementation, we used the
JDOM [Hunter, 2001] library to parse the XML-based content. The in-
formation determined is then used to build up our analysis table and to
construct the X SDgsgrvicr msc file. To build such a valid XSD we also
use the JDOM library. To get an abstraction of the X SDgsgrvice msc
we use the XML Schema API provided by the Xerces library [Apache,
2010].

IT To construct the EXI grammar and to determine the EXI IDs of all
local names and namespaces involved in the XSDsgrvice msa wWe
use the de-facto reference implementation of EXI and is called EXI-
ficient [Peintner, 2012]. Our approach extended the implementation
with the context-based grammar optimization to later provide the in-
dividual automata fragments for the Web service and client side.

IIT At this point, we provide the developer the opportunity to generate the
code in the C, C++, or Java programming language. Dependent on
the service description Sp, we only generate the required code compo-
nents reflecting the service. E.g., if a Sp only defines eventing interac-
tions, only the notifier, databinder, and the EXIProcessor containing
the mechanism for that purpose are generated. Our code generator
technique uses the facilities of the Eclipse Modeling Framework (EMF).
In the case of the EXIProcessor we use the efficient solution that comes
from the EXIdizer, which was developed in [Peintner, 2014]. By using
this, we only have to pass our context-optimized EXI grammar for
the server and client side that restricts the type-based encoding and
decoding mechanism .

Service instances generated by us were successfully tested on microcon-
troller platforms such as the Contiki OS [Dunkels et al., 2004] and Java Micro
Edition Connected Limited Device Configuration (CLDC) 1.1 [Oracle, 2009]
environment [Kébisch et al., 2010a, Kébisch et al., 2011].
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3.4 Evaluation

In Section 3.3.4, we already presented some results from our temperature/hu-
midity Web service example in terms of message size and memory footprint.
In this section we are going to evaluate the applicability of our service genera-
tor approach for a more complex Web service definition and consider message
and memory size used as well as performance. Our main focus is the usage of
a generated code in the embedded domain as compared with other known so-
lutions. Therefore, we are going to analyze the performance of our EXI-based
and a plain-text XML-based service implementation. For the plain-text vari-
ant we are using the well-known gSOAP tool kit (see Section 2.4). As a
dataset reference we are using the latest XML-based message specification
draft of ISO/IEC 15118 Vehicle-to-Grid Communication Interface (V2G CI)
which will shortly introduced here.

3.4.1 The Vehicle-to-Grid Dataset

The ISO/IEC 15118 V2G working group [ISO/IEC, 2012] specifies an XML-
based service communication between an FElectrical Vehicle (EV) and an
FElectric Vehicle Supply Equipment (EVSE) for a charging process. At the
time of writing and setting up the evaluation, the V2G standard was in Draft
International Standard (DIS) status. The ISO/IEC 15118 covers AC-based
and DC-based charging. Several data information, such as power param-
eters, status, and metering information, has to be exchanged. The V2G
message structure is used in a similar way as SOAP: the Header element
carries generic information such as sessionID and notifications, and a Body
element that transports the actual message content. Below, we will con-
sider which message patterns are required for a DC-related charging. Every
message is requested by the EV (client side), while the EVSE (service side)
responds. Those messages are: SessionSetup, ServiceDiscovery, ServicePay-
mentSelection, ChargeParameterDiscovery, PowerDelivery, ChargingStatus,
CurrentDemand, CableCheck, WeldingDetection, SessionStop, and Contrac-
tAuthentication. Besides these messages listed here, further message patterns
are defined, which, e.g., correspond to topics such as value added services
(VAS) and security. Since these messages are not directly related to a DC
charging process, they will not be considered in the following evaluation.
Overall, about 100 different elements are exchanged between EV and
EVSE to realize a proper charging process. Thus, there is a need to realize
such a communication in a very efficient way, since constrained device units
are used in particular on the EV side as well as on the EVSE side. Chap-
ter 6 will further discuss this aspect and provide further details on the V2G
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protocol.

3.4.2 Message Size

Figure 3.8 shows the size (in bytes) of the request and response instances
of the DC V2G messages for plain-text XML and binary XML format with
EXI. The EXI service generated sends messages which are on average around
75 times smaller than the equivalent XML messages. This is one of the key
strength of EXI that leads to less network traffic. Furthermore, the oppor-
tunity arises to pack a complete message into one data package provided by
a network protocol. E.g., the IPv6 over Low power Wireless Personal Area
Networks (6LoWPAN) [Bormann and Mulligan, 2009] protocol provides, de-
pending on configuration, only a payload size of between 53 (without header
compression) and 108 bytes (with header compression). If this is the case,
plain-text XML messages have to be distributed in several packages. In
wireless sensor networks the risk of losing data packages is usually signifi-
cant, especially when the number of hop-count is high [Liang et al., 2010].
Then, the likelihood of distorted messages increases proportionally to the
number of packages used for transmitting a single message. Even if a reliable
data transport is used such as TCP, the increased risk of distorted messages
leads to an increase of resubmission efforts.
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Figure 3.8: V2G request and response messages

3.4.3 Code and Memory Footprint

The code footprint is an important requirement for successfully creating an
XML-based service implementation on constrained systems such as micro-
controllers. For evaluating the code footprint we compiled the V2G client
and service for two different platforms: the aforementioned ARM Cortex-M3
microcontroller (see Section 1.1) with the Contiki OS, and, as reference, for a
standard x86 computer system running Linux. Table 3.5 shows the resulting
size of the footprint if it is compiled with the gce with the optimization flag.
The table also shows the size of the EXI Web service implementation that
does not use the context-bases optimization and operates the full DFA set
on each side (EXI WS Full). In addition, as an equivalent plain-text XML
Web service variant, we took the gSOAP implementation into account.

It can be seen that the EXI-based Web services are up to 3.5 times smaller
in code size than the gSOAP implementations. Furthermore, we are also able
to run the code on the ARM Cortex-M3 boards. The size provided here is
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the complete image uploaded on the microcontroller. Even if these images
contain the Contiki OS with the 6LoWPAN stack (affects around 38kB of
flash) and EXI WS V2G implementation, there is still enough space for
further program logic. Due to size, gSOAP is completely out of scope on this
evaluation board.

Platform EXI WS EXI WS Full gSOAP
Client \ Server | Client \ Server | Client \ Server
ARM M3 / contiki | 114" 110* 142* 137* - -
x86 / linux 175 177 197 229 607 601

Table 3.5: Code footprint (in kBytes). *Includes the Contiki OS with 6LoW-
PAN stack.

Table 3.6 shows the static RAM usage of the three Web service variants.
The results of gSOAP look promising. However, gSOAP allocates mem-
ory at runtime, which leads to non-deterministic behavior and estimation
in terms of maximum memory usage. In system-critical environments, like
the automotive sector, this is not a reasonable implementation. In contrast,
worst-case memory usage of the EXI Web services is represented in the table,
since our implementations works on static memory allocation.

Platform EXI WS EXI WS Full gSOAP
Client | Server | Client | Server | Client | Server

ARM M3 / contiki | 11.7* 11.8* 11.7* 11.8* - -
x86 / linux 11.7 11.8 11.7 11.8 8.0 12.0

Table 3.6: Static RAM usage (in kBytes). *Includes the Contiki OS with
6LoWPAN stack.

As with ROM usage, the Web service generated by our approach leaves
enough memory for the actually programming logic.

3.4.4 Processing Speed

To evaluate the performance of the V2G EXI service generated, for compar-
ison, we also used the service implementation based on the gSOAP tool kit.
In general, gSOAP is known for generating fast Web services in C and C++
with very low code footprint. As a hardware reference for the performance
test we used a more powerful embedded board that comes with an ARMv5
processor that is able to run an embedded Linux distribution
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Figure 3.9: Request / Response measurement (roundtrip time)

This board was connected to a consumer PC by an Ethernet Lan cable.
To create the same conditions, we used a service description based on WSDL
that describes the V2G service and its messages. In addition, we dropped
the usage of HT'TP and sent the message directly via IP/TCP.

Figure 3.9 shows the result of the request-response time measurement.
Each message pattern was sent 100 times: we determined the average time
by using the V2G EXI service and gSOAP implementation. As a reference
measurement, we determined the average time of a 100 time ping count
between the two boards. It can be seen that EXI service performs almost up
to 2.5 times faster than the plain XML variant with gSOAP. These numbers
show that our Web service approach is profitable for the direct operation
of the binary XML level without the need for any type conversion. The
plaintext XML approach and its processing overhead is not only affected in
the application layer; e.g., the IP/TCP layer has to divide the messages into
several packages, which is additionally time consuming. This tends to be
reinforced when packages get lost during transmission.
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3.4.5 Evaluation Summary

The evaluation in this chapter shows that the usage of XML-based Web
services is feasible in a very efficient manner in the embedded domain with
constrained devices such as microcontrollers. EXI enables fast processing
of service messages compared to the plain-text XML variant and reduces
network traffic immensely. Even in complex services such as V2G, the code
footprints are very small for a client and server side implementation.

3.5 Related Work

Before we conclude this chapter, we are going to discuss related works in
terms of binary XML and Web service focused on embedded devices.

3.5.1 Binary XML

In the context of XML compression, we already introduced two former coder
alternatives to EXI earlier in this chapter; these can be distinguished between
structure-less or generic (e.g. ZIP) and structure-based compression (e.g.
BiM) (see Section 3.2.1). We also want to mention two other important
variants which are also often associated with each other in the context of
binary XML, namely Abstract Syntax Notation One (ASN.1) as a schema-
informed variant and Fast Infoset as a variant able to encode schema-less.
Abstract Syntax Notation One (ASN.1) is standardized by the Interna-
tional Organization for Standardization (ISO), International Electrotechnical
Commission (IEC), and International Telecommunication Union (ITU) [ITU,
2002]. This standard provides language to describe data types in an ab-
stract manner, which can then be applied to different encoding rules to
represent the data on bit-level. In the case of the ASN.1 Basic Encoding
Rules (BER) [International Telecommunication Union, 2002al, the data is
encoded by starting with a type identifier, followed by a length description,
and then the actual data value, (a.k.a. type-length-value (TLV) transfor-
mation). Meanwhile, ASN.1 Packed Encoding Rules (PER) [International
Telecommunication Union, 2002b] provide a much more compact and binary
encoding with a set of data type support. For XML, ASN.1 provides two
kinds of encoding rules: The ASN.1 XML Encoding Rules (XER) [Inter-
national Telecommunication Union, 2001] standardizes conversion between
ASN.1 and XML, and the Mappings from XML schemas to ASN.1 [Interna-
tional Telecommunication Union, 2004] defines a mapping from XML Schema
declarations to the ASN.1 notation. The latter sounds very promising, since
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having the ASN.1 notation present enables us to use, e.g., the PER mecha-
nism to bring the XML-based data in binary representation. These mapping
rules to the ASN.1 notation are more or less comparable to the rules govern-
ing EXI grammar construction of an XML Schema. However, the rich set
of declaration varieties provided by XML Schema, such as data type restric-
tions, are not fully covered or possible by ASN.1. In general, ASN.1 PEV
provides good compression results [Scholz, 2011] but there are also cases in
which it led to the same or larger document size as the plain-text XML doc-
ument [Bournez, 2009b]. To provide full flexibility to developers in terms of
data modeling in their Web services and to avoid the side effects as presented
in [Bournez, 2009b], ASN.1 encoding rules are not suitable solutions for use
in standardized Web services.

The Fast Infoset (FI) [ITU, 2005] is also a standard of ITU that relies on
the syntax notation of ASN.1 and provides an alternative encoding format
for the XML Infoset (see Section 3.2.2). Basically, a vocabulary table is used
to index strings like element/attribute names. When first occurring in the
document, the full name or value is present in the FI stream. Redundant
elements/attributes and values are represented by the vocabulary table in-
dex. Consequently, names and values only appear once. Highly redundant
XML messages in terms of element/attribute names and values will achieve
a better compression ratio than messages that contain unique information
at any point. As an alternative, the FI standard describes the possibility of
providing references in the FI header to pre-calculated tables. This avoids
the construction overhead of the vocabulary tables at runtime and would
further reduce the binary stream since only indices numbers are exclusively
used.

In general, the basic philosophy of FI is comparable to EXI schema-less
coding (see Section 3.2.2). However, not taking the structure knowledge into
account, which is provided by an underlying XML Schema, leads to worse
compression results when compared to EXI [Scholz, 2011] and would have
negative effects in terms of network traffic and type conversion overheads.

3.5.2 Web Services for Embedded Devices

A large number of Web service toolkits are available for different program-
ming languages and platforms. Based on the existing implementations and
available research we can distinguish between highly configurable solutions
that are targeting more (multi-core) powerful systems such as Apache Axis [Per-
era et al., 2006] for C/C++ and Java, and those for embedded environments
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which we will mainly discuss in this section.

A prominent generation toolkit is gSOAP [van Engelen and Gallivan,
2002], which was also used in our evaluation. A few gSOAP-based code
generation techniques for Web services for embedded devices can be found
in [van Engelen, 2004]. Based on our evaluation, however, constrained de-
vice classes such as the ARM Cortex-M3 microcontroller cannot deal with
the code footprint of gSOAP or even additional libraries such as proposed
in [van Engelen, 2004]. In addition, using plain-text XML would harm net-
work traffic and would increase the risk of package loss, especially when it
comes to usage in constrained embedded networks with wireless low-power
communication.

In [Lerche et al., 2011] a Web Service prototype implementation is pre-
sented that reflects a subset of DPWS (see Section 2.5.2) and is called uD-
PWS. The number presented are very promising: 10kBytes of RAM and
3kBytes of RAM compiled for a TT MSP430 microcontroller. However, this
solution is also based on the usage of plain-text XML, which has to handle
message sizes of about 700 Bytes, for instance. This negatively affects the
efficient usage of 6LoWPAN in terms of message fragmentation, as discussed
in Section 3.4.2, and processing and transmitting time, which was also no-
ticed in [Lerche et al., 2011]. In addition, it is unclear whether there is a
generic solution beyond DPWS and toolkit support for code generation of
arbitrary Web Services similar to our approach presented in this chapter.

A model-driven approach is used by the eSOA project (see Section 2.5.1)
for generating the eServices which are deployed in embedded network. In ad-
dition, to overcome the drawbacks of plain-text XML, eServices use binary
XML with EXI as a data exchange format. This data, however, is fairly sim-
ple, using only a flat structure consisting of one data item (e.g., one sensor
value) in the most cases. Information such as data context is not modeled
within the XML-based data. This information is retrieved in the transport
protocol beforehand. In our approach, we consider the standardized Web
service with SOAP, which is able to provide data/operation context within
the messages. Thus, our dispatcher generated operates on binary XML to
identify the message context and is independent of any underlying trans-
portation protocols used. Furthermore, we do not make any restrictions on
XML service data modeling (excepting min/maxQOccurs properties, nested
element declarations, choice grouping, etc.) and we are able to efficiently
handle relatively complex data structures such as the V2G data set. This
is realized, among other things, by our investigation of context-based EXI
grammar optimization, which leads to a reduction of code size and thus re-
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quires less memory usage on microcontrollers.

Concepts for realizing small REST-based Web Services come with the
Constrained Application Protocol (CoAP) [Shelby et al., 2013] by the IETF
(also see Section 2.5.3). In general, REST is limited to HTTP, which has
drawbacks in terms of processing, memory consumption, and bandwidth us-
age. CoAP is a binary alternative that uses the methods of HTTP and
provides a mapping between CoAP and HTTP. Using CoAP to realize REST-
based Web services with binary XML as a data exchange format would be
an efficient prospect for the restricted embedded environment. However, at
the time of writing this thesis, there is a lack concerning an automatized
generation tool that takes a service description such as WSDL or WADL and
generates REST-based Web services based on CoAP.

3.6 Summary

In this chapter we presented an innovative approach for generating a source
code for developing XMIL-based Web services for small embedded devices
with constrained resources. The generator enables the seamless adoption
and usage of wide-spread, standardized Web service protocols in embedded
networks to realize SOA-based applications. Based on previous knowledge
that comes with the service descriptions provided, optimized EXI grammar
sets were determined for the service and client contexts. This resulted in
a more compact source code, which only contains the particular service and
client side functionality needed for creating and interpreting service messages.
Using this Web service generator eases the development of applications for
the embedded domain and simplifies the integration of Web services into
other networks. Evaluation results based on the ISO/IEC 15118 V2G dataset
proved the efficiency by demonstrating a very low code footprint and high
performance.
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Chapter 4

Filter-Enabled Service
Communication

4.1 Introduction

By using XML-based communication, as initiated by standardized Web ser-
vices, it is possible to create interoperable service communication between
heterogeneous systems. Our approach, presented in the previous chapter,
shows that this communication philosophy with its standardized interface
description and message framework for interaction can be adopted for the
domain of constrained embedded networks. It eases the development of ap-
plications for embedded networks and does not require investigations into
any internal implementation behind a given Web service.

Similar to distributed systems, a high number of installed applications
and frequent data interaction negatively influence network resources. This
holds especially true for the domain of embedded networks, which consist of
microcontrollers with low processing, memory, and bandwidth capabilities.
Figure 4.1(a) shows an example of an embedded network consisting of 8
nodes, which are represented by 3 different device classes (see Section 1.1).
A service provider has been installed at node 1, which frequently samples
data (e.g., in every millisecond) and transmits it separately, independent of
message content, to each of the three client subscribers (nodes 3, 4, and 7).
A number of very constrained class 3 devices (e.g., node 6 and 8) are involved
in this delivery process (shown as arrows) in terms of routing; in addition, a
relatively bad connection link is used, such as the one between nodes 6 and 7,
which may reflect a delay or a non-stable physical link. In turn, the latter
aspect may result in resubmissions of messages which would, among other
things, reduce application responsiveness and affect the network resources
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Figure 4.1: Service data dissemination example: Nodes 3, 4, and 7 subscribe
to service data (value) of node 1.

negatively.

A more sophisticated approach would involve using pre-knowledge of
client conditions on the service data requested and to provide data only
to those clients that fulfill these conditions. Such conditions could be the
presence of particular data or particular value ranges that have to be met.
In Figure 4.1(a), there are some conditions given at the client nodes for the
value element that is provided by the service provider. Actually, the ser-
vice data (value = 20.4) currently provided by node 1 is only relevant to
node 4 since this node is interested in values which are smaller than 21.0.
To avoid transmitting to and processing of this message at client nodes 3
and 7, it would be desirable to install a filter-mechanism at the service data
origin node to evaluate relevance for all clients. Figure 4.1(b) depicts this
filter mechanism, which is denoted as G at node 1. Service data is only
transmitted to node 4. Such an approach reduces network traffic and avoids
unnecessary message processing by other service requesters (e.g., node 3 and
7) as well as the intermedia routing nodes (e.g., node 6).

In this chapter we are going to present efficient approaches for construct-
ing filter-enabled subscribe mechanisms in constrained embedded networks
with service-based communication using binary XML with EXI. The filter
mechanisms are constructed by using the well-known XML Path Language
(XPath) [XPath2.0, 2007], which is provided by the service requesters to ad-
dress the data interests and conditions (e.g., value ranges). The client nodes
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in Figure 4.1(b) show sample XPath expressions based on our scenario. Our
approaches can be implemented within Web services to realize similar func-
tionality such as WS-Eventing [Malhotra et al., 2009] or beyond such as for
dedicated publish/subscribe brokers. In Section 4.2, we introduce briefly the
XPath query language and explain in which form we are using it in this
thesis. In subsequent sections, we present our filtering approaches starting
with BasicEXIFiltering (Section 4.3) and followed by Optimized EXIFiltering
(Section 4.4). In Section 4.5, we present performance results of our solutions,
as compared to YFilter [Diao and Franklin, 2003] as a representative of a fil-
tering method based on plain-text XML. Furthermore, a demo setup of an
embedded network will provide data on memory usage by these approaches.
We conclude with a 'related works’ section (Section 4.6) and a summary
(Section 4.7).

4.2 Querying with XPath Expressions

In the beginning of XML, a significant query technique was standardized
by the W3C that enables extracting particular information from or testing
the relevance of XML instances: the XML Path Language (XPath) [Clark
and DeRose, 1999]. XPath became a basis for emerging W3C standards
such as XSL Transformations (XSLT) [XSLT1.0, 1999], XML Pointer Lan-
guage (XPointer) [Grosso et al., 2003], XQuery [Clark and DeRose, 1999], or
XForms [Boyer, 2007]. XPath 2.0 [XPath2.0, 2007] is the current version of
the query language and provides additional functionality as well as language
concepts compared to the 1.0 version. At the time of writing, the W3C is
working on the next generation of XPath, namely XPath 3.0 [Robie et al.,
2011]. Tt will have additional features, such as support of a richer set of
data types. Below, we only concentrate on the basic functionality of XPath
already extant in version 1.0.

An XPath expression addresses parts of an XML document. Thereby, the
XML document is seen as a tree structure: The nodes represent elements,
attributes, text, namespace, processing-instruction, comment, or document
nodes. The root of the tree is always represented by the root element. The
formal notation of an XPath expression is based on one or more location
steps. Each step follows the rule

axis :: node — test|predicate]

and is separated by the sign ’/’, which is also called as a forward slash.
The azis defines the navigation step relative to the current node. The follow-
ing axes are possible: ancestor, ancestor-or-self, attribute, child, descendant,

- 81 -



4.3. Basic Binary XML Filtering

’ Full expression ‘ Abbreviated ‘

attribute:: @
child::
descendant-or-self //
self::
parent::

Table 4.1: Abbreviated syntax for XPath expressions

descendant-or-self, following, following-sibling, namespace, parent, preceding,
preceding-sibling, and self. The node-test identifies one or more nodes within
the axis. This can directly address the name (with namespace) of a node or
select all kinds of nodes by using the wildcard sign . Alternatively, func-
tions can be used to select specific nodes, e.g., text nodes with text() and
comment nodes with comment(). Zero ore more predicates enable a refine-
ment of the node set selected. Predicates are nested in the squared brackets
and can access a high number of different math operators (comparison, logi-
cal, and numerical) as well as functions such as string-based functions (e.g.,
substring() and string-length()) or node-set-based functions (e.g., count() and
name()).

Based on the rich facets of XPath, in this thesis we limited the XPath
query examples to expressions able to be represented by the abbreviated
syntax shown in Table 4.1. Furthermore, we will limit the operators of the
predicates to the comparison functions (" <’,’ >’ and ' =) and those are ap-
plied only once to any attributes and/or text value nodes addressed. Nested
XPath expressions that can be defined within predicates will also not be con-
sidered here. If used, the descendant-or-self axis will only be applied in the
first location step of an XPath expression. All of our approaches, however,
can be extended to support such features.

4.3 Basic Binary XML Filtering

This first approach is based on the idea of working on the top of a given EXI
grammar and using StAX events (see section 2.3.2) which are sequentially
triggered during an EXI decoding process. To evaluate an input message for
cases in which one or more provided queries match, we relied on the idea
of the string matching algorithm given by the the Knuth-Morris-Pratt algo-
rithm [Knuth et al., 1977]. We will start by introducing the idea behind this
algorithm and will build the bridge to XML-based data structure as well as
to XPath expressions. For an efficient evaluation in a binary XML environ-
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ment, we will introduce a possibility for transforming XPath expressions into
a more processable format in Section 4.3.2. The subsequent subsection will
present our BasicEXIFilter algorithm for evaluating binary XML messages
based on relevance to a set of XPath queries.

4.3.1 Knuth-Morris-Pratt Algorithm, XML, and XPath

The Knuth-Morris-Pratt algorithm is known as a fast pattern matching in
strings whose complexity is linear with O(n) [Knuth et al., 1977]. Here,
n denotes the length of the string on which the test pattern is applied.

Compared to other string-matching algorithms, such as the naive pattern-
matching algorithm [Cormen et al., 2009], the Knuth-Morris-Pratt algorithm
avoids testing useless shifts of the pattern that would logically fail due to
knowledge of the characters scanned. The position shifts are based on a
predetermined 7 function for a given pattern. In the literature, this func-
tion is typically called the prefiz function (sometimes also known as failure
function). Now let us define what is understand to be the prefiz as well as
its complementary suffiz in the context of string pattern matching [Cormen
et al., 2009]:

Definition 4.1 (Prefix and Suffix)

A string p is a prefix of string s, if s = px for some string x. A string p is a
suffix of string s, if s = xp for some string x. The empty string € is both a
prefix and a suffix of every string.

Prefix examples of the pattern abcabd’ would be ’ab’ and ’abc’. Strings
’abd’” and 'bd’ would be valid suffix examples. The prefix function 7 function
for a pattern encapsulates knowledge about how the pattern matches against
shifts of itself [Cormen et al., 2009]. Let us consider a matching example
where the 6th character (T'[5]) of the test string "abcabcabda’ has a mismatch
with the pattern above with the last character position P[5]:

P: abcabd
T: abcabcabda

It can be seen that the first five text characters (index compare position
j = 4) from the text shift position m = 0 match the pattern: PJ0..j] =
Tim..(m + j)]. Taking these successful matches into account the shifts will
be performed in a way that would not result in a mismatch again. Doing
one or two shifts would be invalid since the first characters would not match.
However, doing three shifts to the right we would be more successful and the
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first three pattern characters match with three text characters. Hence, we
know that P[0..5] is a suffix of T'0..(m+7)], and therefore, we are looking for
the longest proper prefix P[0..i] of P[0..5] that is also a suffix of T[0..(m+ j)]
for some i < j. The difference (j — 7) is added to m to determine the new
shift:

m=m+ (i)

Mapping the formalization for the example above, it can be seen that the
pattern P[0..4]="abcab’ is a suffix of T'[0..(0 + 4)] = 7[0..4]="abcab’. The
longest proper prefix of P[0..4]="abcab’ is P[0..1]="ab’, this is also the suffix
of T'[0..4]="abcab’. Thus, the overall shift for the pattern as related to the
input text is determined by m = 0+ (4 — 1) = 3 which in this case leads to
a string pattern match:

P: abcabd
T: abcabcabda

The prefix function 7 provides the longest proper prefix for the current
match progress given by index j. The following definition gives a formal
description of this function [Cormen et al., 2009]:

Definition 4.2 (Prefix Function )
Given a pattern P[0..n], the prefix function for the pattern P is the function
7:4{0,1,..,n} = {-1,0,..,n — 2} so that

7[j] = max{i : i < j A P[0..7] is suffix of P[0..5]}

Algorithm 4.1 determines such a prefix function 7 for a given pattern
P [Cormen et al., 2009]. The algorithm iterates each character (line 4),
except the first one, of the (reference) pattern P[j] and checks whether there
is a mismatch (line 5) or a match (line 8) with the character of the (aligned)
pattern P[i + 1]. If there is a match, the current pattern match progress
variable ¢ (note, i = —1 does not refer to a current match) is saved in 7
(lines 9 and 11). In other words, i represents the longest proper prefix for
the (sub-)pattern P[0..j] that was tested. If there is a mismatch, the test
pattern will be realigned in reverse until a match occurs again (lines 5-7). If
no match can be found in that step, then —1 is deposited.

Applying pattern ’abcabd’ to the algorithm, we discover the following:
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Algorithm 4.1 DeterminePre fixzFunction(P)

Input: Pattern P
Output: =

1: n < |P| -1

2: W[O] — —1;

3 14— —1;

4: for j < 1ton do

5. while i > 0 and P[i + 1] # P[j] do
6: i < mli];
7. end while
8: if P[i+ 1] == PJ[j]| then
9: 141+ 1;
10:  end if
11: 7wlj] « 1
12: end for
Position j [ 0 | 1 31415
P a b|d
7[0] = —1
m[l] = -1
2] = -1
7[3] =0 a
4] =1 a|b
7[b] = —1

That means that the longest prefixes, which are also suffixes, can only be
found for sub-patterns P[0..3] and P[0..4]. Putting everything together, we
can present the Knuth-Morris-Pratt algorithm (see Algorithm 4.2) [Cormen
et al., 2009].

As can be seen, the KM PStringM atcher does not differ much from the
DeterminePre fiz Function algorithm: before the text is scanned, the prefix
function 7 is determined (line 3). Each character in 7" (line 5) will be checked
as to whether there is a match (line 9) or a mismatch (line 6) with P. In
the case of a mismatch, it will be determined how many shifts of P have to
be done, which is determined by prefix function 7 (line 7). The pattern P
is found in 7" when the last index position ¢ has been reached (line 12). We
will not discuss correctness and complexity here; however, this analysis can
be found in [Cormen et al., 2009].

Now let us explain how the idea of a string matching algorithm, such
as the Knuth-Morris-Pratt algorithm, can help us evaluate whether there is
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Algorithm 4.2 KM PStringMatcher(T, P)

Input: Text T and searched pattern P
Output: True, if pattern P found in 7', otherwise false.
A ‘T| —1;
[+ |P|—1;
7 <— DeterminePrefixFunction(P);
14 —1;
for j + 0 ton do
while i > 0 and P[i + 1] # T[j] do
i« mli;
end while
if P[i 4+ 1] == T[j] then
141+ 1;
end if
if : == [ then
return true;
14:  end if
15: end for
16: return false;

e e e
P> el

a match of an XPath query applied on an XML message or not: first, let
us assume that there is an XPath query //Header/status. In other words,
we are interested in the status element that strictly follows the Header path,
arbitrary located in the message as parent node. Now let us consider an XML
message (see Listing 2.9) that starts with <Envelope><Header><status>

LowBattery</status>... . To apply the Knuth-Morris-Pratt algorithm, the
XPath query will be seen as the input pattern; however, the separator ’/’
has been removed from within the XPath expression, so that only the names
of node elements remain. Similarly, the input XML message is seen as a
sequence of element and attribute names with their values. Start and end tags
are removed. As can be easily observed, applying the Knuth-Morris-Pratt
algorithm with the following input would lead to a successful match when
shifting the pattern to the right (word by word or character by character):

P: Header status
T: Envelope Header status LowBattery ...

If using StAX! as XML parser, each startElement event encountered
causes a comparison of the current entry node of the XPath expression.

1 As alternative to StAX, SAX events can be used in a similar manner [Grust and
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An endFElement event, which exit the current tree level in the XML mes-
sage structure, would result in a decrement of the comparable position of the
XPath node entry. Consequently, a query match is only observed if the last
XPath node is observed and matches the corresponding message content. As
we know, XPath has a rich set of facets, such as wildcards, descendent-or-
self, and predicates for filter refinements (based on attributes and/or value
nodes). The next subsection addresses special cases of XPath expressions
and in general, how can we transform XPath expression in a more efficient
representation. The requirements defined there will support us in realizing an
XML-based filter mechanism based on the philosophy of the Knuth-Morris-
Pratt algorithm applicable in the embedded domain.

4.3.2 XPath Normaliziation

To apply XML-based documents and queries to an evaluation mechanism
that follows string-matching techniques, we require a conversation that allows
content comparison but neglects syntax rules such as start and end tags. This
way, structure information has to still be taken into account so that we can
guarantee to match the original purpose of either the XML-based document
or XPath expression.

First of all, we consider the XML-based representation using binary XML
format with EXI. In Section 3.2 we presented the EXI mechanism that gen-
erates EXI grammars based on a given XML schema. Furthermore, to avoid
the processing overhead resulting from string comparisons of elements and
namespace names, we use unique qualified identifiers, such as the EXI IDs,
which are based on integer numbers (see Section 3.2.4). We benefit from
these IDs and an XML-based document becomes a sequence of number
pairs in the first consideration. For example, the XML fragment <SOAP-
ENV:Envelope><SOAP-ENV:Header> <es:status>LowBattery< /es:status>

. is transformed into (1, 5) (2, 5) (9, 4) 'LowBattery’ ... (see Table 3.4).
It should be noted that these numbers are unique to the underlying XML
schema. Thus, transformation back into a plain-text XML representation is
only possible if the associated XML schema is known.

We pursue a similar strategy for XPath expressions. This means that for
an XPath query such as /Envelope/Header [ status we transform each node
name in the query into the unique EXI identification numbers: (1, 5)/(2,
5)/(9, 4). Removing the separator, we simply have: (1, 5) (2, 5) (9, 4).
The tuple pairs consisting of EXI IDs for the local name and namespace are
already a compact representations as compared to the plain-text representa-

Teubner, 2002]
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tion. Since we know, that these IDs are unique in an XML schema context,
we are able to further reduce this representation and map the double number
to a single number representation. This process is quite simple since we can
use the entry number of the ID table as a unique representation. For example,
the Envelope with the namespace hittp://www.wS3.org/2003/05/soap-envelope
has the EXI ID pair (1,5) and has the entry position 10 in Table 3.4. Since
such a entry number can be uniquely computed and associated (EXI sorts
IDs by namespace and local name), we can use the table entry ID to represent
the XPath expression. Thus, pairs (1, 5) (2, 5) (9, 4) can also be represented
as 10 11 6. The same strategy can also be applied to XML messages. In-
stead of EXI ID pairs, the table entry ID can be used for a more compact
and efficient processable representation of binary XML content.

Typically, an XPath expression also may consist of different facets such
as wildcards, descendant-or-self, and predicates conditions (see Section 4.2).
Each facet will now be considered and its conversation rule for the normal-
ization representation is provided. The examples shown are based on ID
Table 3.4.

Wildcard

Wildcards in XPath expressions can be used to select unknown XML ele-
ments. Since this expression can map multiple elements at the same time,
a single EXI ID representation is not possible. Based on this fact, we will
transform each wildcard in the XPath expression into a number with the
value —1. E.g., the XPath query /* /% /Temperature/value is transformed
into -1 -1 4 8. Thus, the value —1 does not represent a particular element
and namespace; however, it signals the acceptance of an arbitrary element
at this location level.

Descendant-or-self

The descendant-or-self expression selects all descendants (children, grand-
children, etc.) of the current node and the current node itself. To use this
expression in an absolute location of an XPath expression, we will employ the
identifier with the value —2 in the normaliziation. E.g., the query //status
will be represented as -2 6.

Predicate

Predicates are used to refine the selected node set within the expressions. If
a predicate is used in an XPath expression, we will signal this with the value
—3. The subsequent EXI ID number addresses the element or attribute being
evaluated at this point. The operator will also be represented by a number,
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starting with —10 and moving downwards: —10 signalizes '=’, —11 signalizes
‘<’ and —12 refers to '>’. If desired, we can expand the set of operators
very easily. Since we know the data model’s underlying XML schema, the
comparison value will be represented type aware.

For example, the XPath query //Temperature[scale =" Celsius']/value
is transformed into -2 4 -3 5 -10 "Celsius’ 8.

All put together, we can formalize a normalized XPath query as follows.

Definition 4.3 (Normalized XPath Qurey Q")

A @QV[0..n] pattern is normalized when seamless order is observed as the
original XPath expression and the transformed Q¥ reflect one or more of the
equivalent ID numbers: (table) entry ID (dependent on the underlying XML
Schema), wildcard (-1), descendant-or-self ID (-2), predicate (-3), operations
(-10 for '="-11 for '<’,-12 for ’>’), and the predicate test value.

The XPathNormalizer Algorithm 4.3 as a pseudo code provides us with
the normalized representation Q% of a given XPath query @ and the under-
lying XML schema X .SD that defines the data structure requested.

The algorithm is straightforward. Please note that the input XPath ex-
pression is separated by the separator '/’ and it is seen as an array of elemen-
t/attribute names with predicate instructions (see the previous subsection).
Thus, an descendant-or-self axis will be signalize by an empty array entry by
@ which will then signalized by -2 in Q" (lines 6-7). For an expression with a
predicate, we are following the predicate pattern node Name[predicate Node-
Name OP value] and are assigning the identifier in the Q* vector (lines 8-19).
For predicates that test element values with the XPath function text(), the
getPredicate Node Name function (see line 11) would return the ID of the cur-
rent node level. The ID entry function I DEntry (e.g., lines 9 and 11) serves
the entry ID of the EXI ID table that has been uniquely constructed by EXI
rules based on the given XSD.
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Algorithm 4.3 X PathNormalizer(Q, XSD)

Input: XPath expression () as array seperated by ’/° and an
XML schema XSD.
Output: Normalized XPath expression QY
Ln«+|Q|—1;
2: 14 0;
3: for j <~ 0 ton do

4: if Q[j] =="* then

5: QVNi + +] + —1;

6: else if Q[j] ==" and j # 0 then

7: QN[i + +] + —2;

8: else if Qj].containsCharacter(’[') then

9: QNi + +] < IDEntry(Q[j].getNodeName(), X SD);
10: QNI + 4] + =3;

11: QN[i + +] < IDEntry(Q[j].get PredicateNode Name(), X SD);
12: if Q[j].containsCharacter('=") then

13: QNi + +] + —10;

14: else if Qlj|.containsCharacter('<’) then

15: QNli + +] + —11;

16: else if Q[j].containsCharacter('>") then

17: QN[ + +] + —12;

18: end if

19: QNi + +] + Qlj].extractCompareV alue();

20: else

21: QV[i + +] + IDEntry(Q[j], XSD);

22:  end if

23: end for

24: return Q;
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4.3.3 The BasicEXIFilter Algorithm

In this section we present the basic EXI filter mechanism for efficiently eval-
uating one or more XPath queries. The philosophy is based on the Knuth-
Morris-Pratt algorithm; however, we modified and optimized the mechanism
for the binary XML context. Furthermore, we will take advantage of the
prefix function 7 (see Definition 4.2) to avoid unnecessary checks during
evaluation, and hence speed up the process of finding a query match. The
prefix function is determined on a normalized XPath query QY (see Def-
inition 4.3) that will be similarly processed as a text pattern. The main
difference to the Knuth- Morris-Pratt string matching algorithm is the usage
of StAX events, based on EXI grammars, to parse the input EXI message.
Algorithm 4.4 presents the BasicEXIFilter mechanism as a pseudo code
that takes a binary XML message MFX! and a number of XPath queries
Q = {Q1,Q2,...Q,}. The outcome is a set R with R C @ that identifies
queries with successful matches in MEX!,

The first two major steps involve bringing each XPath query into nor-
malized representation (line 1) and to determine the prefix function for each
query (line 2). After pre-processing, we can run the evaluation. In general,
the XPath evaluation process is simple: based on the StAX events that are
identified by reading the EXI stream, we keep track of the current step i
of each given XPath query. If a startElement event (lines 7-18) matches
the next step of one or more of the queries, the current step index of all
XPath queries affected is incremented (lines 14-15). If there is a mismatch,
the mechanism falls back to the last step in the corresponding query that
matches the entry IDs and tests once more if a match was found (lines 11-
12). If the last location step of an XPath expression is reached, which signals
a complete query match, we remove this query from the active working query
set @ (lines 17-18).

The endElement StAX event (lines 21-23) causes a decrement of the cur-
rent node / tree level [ (line 22). In general, the tree level [ indicator provides
the current structure depth of the current input message relative to the root
node/element. Thus, a startElement event would increment the level depth
(see line 8). Within the endElement event, each query is checked as to
whether the level [ has dropped the relative location step of each query. The
function checkDecrement() checks this case (line 23) and if found to be true,
the location step of the query will be decremented by checkDecrement().

The processing steps within the attribute (lines 24-27) and character
(lines 28-30) events are almost identical. Both get their meaning when pred-
icates are used within the XPath expressions. The value embedded in the
EXI stream is gathered by the getValue() (line 25 and 29). For the attribute
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event, we will also identify the entry EXI ID value of this attribute (line 26).
This is not required for the character event, since we are still on the element
level most recently discovered ,where its ID is still present. For each query
we also call the PredicateTest() procedure, which is explained below.

The evaluation process continues until each XPath query matches the
messages, or until the endDocument event is encountered, which means that
at least one query in ) has a mismatch. The result set R returned carries
all queries that match the input EXI message M X!,

The PredicateTest checks whether the given query Q% has a predicate
at the corresponding location step and whether the node addressed (element
text node or attribute) matches the current entry id (line 2). Lines 3-8 will
determine which comparison operation (’=’, ’<’, and '>’) is used and test
the value within the query against value v from the stream. If the test was
positive the index i of the query will be increased by 4 (skip the predicate
definition) to check the next location step in the query (lines 10-11). If
the last location step is reached, the query will be registered as a match by
removing from active query set @) (lines 13-14).

The complexity is determined very quickly: For each StAX event (except
the start Document and endDocument events) each query in QY is checked
for a local ID match or predicate fulfillment. Let us assume that n is the
total number of StAX events which occur during the parsing process of an
input EXI stream. Since we do not take any action for the startDocument
and endDocument events, the total number will be n — 2. Furthermore, for
each event all queries in Q" will be checked locally. Thereby, the number of
queries in Q% is given by m. Consequently, the complexity is given by O((n—
2)m) = O(nm). Thus, the complexity of the BasicEXIFiltering mechanism
is influenced by the number of StAX events encountered by the input EXI
message stream and the number of quires that have to be evaluated. If only
one query is given, the complexity determined matches the complexity of
Knuth-Morris-Pratt algorithm (see Section 4.3.1).
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Algorithm 4.4 BasicEXIFilter(MPX! {Q1,Qo,...Q,})

Input: EXI message MEX! and a set of queries Q + {Q1, Qs,...Q,}
Output: Subset R C () that match MEX!

1:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

Apply each query in @ to X PathNormalizer() to get normalized XPath
representation QY « {QV, Q¥,..QN}

. Apply each query in QY to DeterminePrefizFunction() to get the pre-

fix functions my, ma, ..., T,
Assign for each query in @ an index i initialized with i; + —1, iy + —
1, .4, -1
[+ 0;id <+ 0; v+ 0; R+ Q;
while (event < nextEvent()) # END_DOCUMENT or Q # () do
switch (event)
case START ELEMENT:
l+—1+1
id < entryl D();
for j <~ 1ton and Q; € Q do
while i; > 0 and Q) [0] == —2 and (Q'[i; + 1] # id or Q}[i; +
1] # —1) do
iy = mlis);
end while
if QN[i; +1] ==id or QY[ij + 1] == —1 then
ij < ’ij +1;
end if
if i; == |Q)| then

case END ELEMENT:
[+ 1—1,;
For each Q; € @ call checkDecrement(l,i;)
case ATTRIBUTE:
v« getValue();
id < entryl D();
For each Q; € @ call PredicateTest(id, v, Qj-v,ij, Q,Qj)
case CHARACTER:
v < getValue();
For each Q; € @ call PredicateTest(id, v, Q;V, i;,Q,Q;)
end switch
end while
R+ R\ Q;

return R;
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Algorithm 4.5 PredicateTest(id,v, QY ,i,Q, q)

Input: Entry ID id, value in the steam v, normalized query QV, current
index variable i of QV, current query set @, and the current checked

query ¢
1: b< false;
2: if QN[i + 1] == —3 and QV[i + 2] == id then
3. if QN[i+ 3] == —10 and QV[i + 4] == v then
4: b < true;
5. else if QV[i + 3] == —11 and QV[i + 4] < v then
6: b < true;
7. else if QN[i + 3] == —12 and Q" [i + 4] > v then
8: b < true;
9: end if
10:  if b == true then
11: 14— 1+ 4;
12:  end if
13 if i == |Q] then
14: Q< Q\g
15:  end if
16: end if
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4.3.4 Example

We will conclude this subsection by presenting an example that applies the
BasicE X I Filter algorithm presented above to three XPath queries. The
underlying data model used is defined in Figure 3.4. The binary XML mes-
sage instance tested here, which corresponds to the plain-text XML variant
shown in Listing 2.9, follows the EXI grammar shown in Figure 3.5. The
sample queries are defined as follows:

e ()1 = /Envelope/ * [status
o () = //Temperature[Qscale ="Celsius’| Jvalue[text() < 22.4]

o Q3 = //status[text() = Error’]

The first step is to normalize the XPath queries in compliance with Def-
inition 4.3. To do so, we are applying the X PathNormalizer algorithm
algorithm, which returns the following output:

¢« Q¥ =10-16
o QY =-24-35-10 'Celsius’ 8 -3 8 -11 '22.4’
. Qé\f =-26-36-10 'Error’

For each QV, the prefix function is determined. However, it quickly
becomes apparent that there are no longest prefixes that are also suffixes of
the query expressions. Hence, each entry of m; and my will be assigned the
value —1.

The following table provides the processing steps for each query in the
order of the EXI events that occur during the decoding process. Column
one provides the EXI streams, the next row presents the EXI events that are
encountered, and the last three columns provide the current location step ¢
(match progress) of the normalized queries Q7, QY and Q. Once a match
has been discovered (i == |Q"| — 1), we stop evaluating the corresponding
query. A mismatch will also be registered whenever the requested elements
/ attributes are not present in the EXI stream (i # |QV| — 1).

As can be seen, i is incremented of a query if a startElement provides the
requested entry ID number at the corresponding position in the normalized
query. Please note that the wildcard signalization (-1) functions as a universal
ID and matches each ID provided at its particular position. In the case of
the descendant-or-self expression (-2), an incrementation is applied at first
occurrence. Furthermore, this will affect the next processing steps, which
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EXT Stream StAX Event Step i1 | Step 75 | Step i3

START_DOCUMENT -1

I
—_

|
—_

000 START_ELEMENT = 10 0

[a)
(@)

1 START_ELEMENT = 11 1

START_ELEMENT = 6 2

"LowBattery’ | CHARACTER = 'LowBattery’ -

END_ELEMENT -

END_ELEMENT -

START_ELEMENT =- 9 -

11 START_ELEMENT = 4 -

0 ’Celsius’ ATTRIBUTE = 5 / ’Celsius’ -

U= OO OO O

START_ELEMENT = 8 -

21.1 CHARACTER = "21.1 - 10

END_ELEMENT - -

END_ELEMENT - -

END_ELEMENT - -

END_ELEMENT - -

e e e I e e I Y S Y (S (ST (TS TS S TS N

END_DOCUMENT - -

are similar to the Knuth-Morris-Pratt algorithm previously introduced and
discussed. If there is a local mismatch, we resort to the prefix function 7 to
determine which entry of the normalized query is to be checked again. Thus,
the successful local match of ()3 starts when the temperature element (ID
entry=6) occurs.

Predicates are evaluated when the StAX character and attributes event
occurs. If a predicate has been evaluated successfully, ¢ will be increased
by 4. This is justified by the fact that at this particular point the algorithm
checks whether there is a predicate defined in the query (=-3), whether the
requested attribute or element ID is present in the stream, and whether
the operation check (—10, —11, and —12) is true as compared to the value
requested in the predicate.

Based on the given EXI stream, queries ); and (), are successfully eval-
uated. (@3 failed because the predicate evaluation missed the comparison
condition, since it is "Error’#’LowBattery’. The case of Q3 shows that a mis-
match can only be identified once the end of the stream has been reached and
the endDocument event has been triggered. An early mismatch registration
is not possible, even though we left the status element level in the parsing
process and a status element cannot occur in the stream again. This is due
to the fact that the comparison is done on the top of the EXI grammar and
there is a nescience as to which kinds of startElement events may be encoun-
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tered next. Thus, query ()3 will be kept for the duration of the evaluation
since there may yet be events which match the XPath expression.

This negative aspect is underlined by this worst case scenario: let us
assume that we are going to evaluate an XML-based message that carries
humidity information as shown in Listing 2.10.

EXT Stream StAX Event Step i1 | Step iy | Step i3
START_DOCUMENT -1 -1 -1
000 START_ELEMENT=- 10 0 0 0
0 START_ELEMENT=- 9 0 0 0
START _ELEMENT= 3 0 0 0
‘Relativ’ | ATTRIBUTE=- 5 / 'Relativ’ 0 0 0
START ELEMENT= 8 0 0 0
64’ CHARACTER= 64’ 0 0 0
END_ELEMENT 0 0 0
END_ELEMENT 0 0 0
END_ELEMENT 0 0 0
END_ELEMENT 0 0 0
END_DOCUMENT 0 0 0

In this case, the step values of i1, 79, and i3 would only be incremented
once, namely to zero after the startDocument event. All other events en-
countered would never reach the step number to identify a match, unless
the endDocument event occurs, which would signal that there is a total mis-
match. The question arises whether we can avoid these types of scenarios
and whether we can immediately evaluate a mismatch whenever a partial test
is registered negatively and there is no (logical) chance of finding a further
match. The Optimized EXIFiltering mechanism will take this into account
and will be presented in Section 4.4.

4.3.5 Conclusion

The processing steps of the BasicEXIFiltering approach presented here to
evaluate a set of given queries can be summarized as follows:

1. Read the predetermined number (provided by the underlying EXI gram-
mar) of bits of the input EXI stream message.

2. The StAX events encountered (e.g., startElement, attribute, etc.) are
used to evaluate predicates or the local entry ID of the queries for a
local match.
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This mechanism is repeated until the last bit of the EXI stream is read
(endDocument event is triggered) or until all possible queries have been
checked for a match. Due to the separation of the determining the StAX
event based on the EXI grammar and the subsequent query evaluations leads
to the calling that BasicEXIFiltering works on the top of the EXI grammar.

This separation approach, however, has two disadvantages: this mecha-
nism keeps queries on track even if it becomes logically impossible to find a
successful match based on the input EXI stream message currently provided.
Such a case was described in subsection 4.3.4. A mismatch can only be iden-
tified at the end of the parsing process. This scenario also shows that areas
in the EXI grammars might be traversed that would never affect any further
queries. Consequently, an improvement in terms of prompt evaluation is de-
sirable for cases that involve particular grammar fragments that definitely
won’t match any one of the given queries.

The another disadvantage involves checking all active queries (no match
was found so far) for some StAX events, such as attributes and characters,
even if no or only a small subset of predicates are defined as refinement in
some queries. This leads to an unnecessary processing overhead for a number
of cases, which takes no any advantages of a partial match or mismatch
decisions.

4.4 Optimized Binary XML Filtering

The BasicEXIFiltering approach is a filtering mechanism for binary XML
that works on top of an EXI grammar. In this section, we present the
Optimized EXIFiltering approach that maps all given XPath queries within
the EXI grammar and enables evaluation on the fly. More precisely, we
evaluate the queries during the same step at which EXI decoding happens.
This avoids the separation of the EXI grammar and the actual evaluation, as
found in BasicEXIFiltering; instead, all evaluation processes are harmonized
within the EXI grammar. This sophisticated grammar will also be called
EXI filter grammar. Below, the processing steps are explained for how such
a filter grammar is determined. We will start by explaining how the so-called
accepting states and predicate states are determined. These distinct states
are then used to construct the filter grammar.

4.4.1 Determining Accepting and Predicate States

To map all given queries in an EXI grammar, we need an analytical step
to mark particular states that indirectly represent the given XPath query
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expressions. In this context, we have to identify the so called Accepting
States (AS) and Predicate States (PS) in the EXI Grammar. First, lets us
define AS and PS:

Definition 4.4 (Accepting States (AS) and Predicate States (PS))
Let G be an EXI grammar and () an XPath expression. An accepting
states (AS) of G is a distinct state that represents the element or attribute
addressed in ). If ) contains at least one predicate refinement, a predicate
state (PS) of G would also be a distinct state for which a predicate evaluation
has to be performed as indicated by the corresponding location step in Q.

It should be noted that a state in G may be designated as AS and PS at
the same time. In particular, this is the case whenever the node requested
is refined with a predicate on the underlying type value. It should further
be noted that an XPath expression may have more than one AS and PS.
This effect occurs when multi identical elements and/or attributes are used;
however, these are located in different sub-structures.

To understand how AS and PS of a given EXI grammar can be identified,
we will consider the same queries given in Section 4.3.4 and the EXI grammar
G provided in Figure 3.5. Let us start with the first query, which has the
expression

()1 = /Envelope/ * /status

(21 has no predicate defined and hence, we only have to identify the AS
state that requests the status element, for which the Header (one element
which would be logical for the wildcard in the schema context) and Envelope
as ancestor nodes. Finding the AS for (), is quite straightforward because the
expression itself provides an almost direct navigation through G. Figure 4.2
explains this aspect by following the blue state and path of transitions: con-
sidering the first expression entry, we have to follow the transition that leads
to the Envelope state from the start state within the Root sub-grammar. We
enter the next sub-grammar, namely the Fnvelope, and read the next child
node of @1, which is the * wildcard expression. From that start state we
have to follow the transitions that leads to the Header and to the Body state.
This is justified by the fact, at that point the expression accept any node and
thus we have to follow each transition possible from the start state in the
Envelope grammar. First, let us follow the Body state and its grammar rep-
resentation respectively. Since the next and final node in @) is the status
element addressed, we remain stuck within the Body grammar since there is
no transition that leads to the corresponding status state. We will stop here

- 99 -



4.4. Optimized Binary XML Filtering

N
N S S G

Setl Grammax

=N G

Gay=o U

PS=sa
Neader Gy 20raraax s

Neade:
N l A=SVEGQNN
C =

TROON. Ghirararaax

Figure 4.2: Navigation and search path for finding the AS for the query ex-
pression )1 = /Envelope/ * /status based on the EXI grammar G provided
in Figure 3.5.

and go to the next grammar, namely the Header, which can also be accessed
from the start state in the Fnvelope grammar. There we will find the status
state requested and we will mark this distinct state as AS.

Now let us consider a more complex XPath expression, which also contains
predicate refinements (see the example in Section 4.3.4):

e ()2 = //Temperature[Qscale ="Celsius’| Jvalue[text() < 22.4]

e (3 = //status|text() = Error’]

Both queries start from the root node with the descendant-or-self axis
expressions. More precisely, ()5 selects all Temperature nodes that are in the
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node set of the root descendants (and the root self). Similarly, Q5 selects
all status elements that are in the node set of the root descendants (and the
root self). In other words, we have to to find both all Temperature states
and status states in grammar G. Since there is no pre-knowledge of which
exact paths should be taken to reach all desired states, a brute force search
by Depth-first search (DFS) or Breadth-first Search (BFS) has to be applied.
Starting from the start state in the root grammar, all transitions are traversed
to check if their subsequent states represent the desired node. If this is not
the case, all transitions of that state are recursively traversed and so on. A
search path terminates if either the desired node has been found or if the end
state of the root grammar has been visited. Since we are using finite EXI
grammar G, such a search will be finite and the worst case search complexity
would be O(|S| + |T'|) where S represent all states and 7" all transitions of
G.

Going back to our queries () and ()3 it can be quickly becomes appar-
ent that the desired nodes selected by the descendant-or-self expression are
represented by the state Temperature in the Body grammar and the status
in the Header grammar. At this point, we only continue from these states to
find the AS and PS. Let us focus on ()5 first. The Temperature node selection
contains a predicate with the condition that the attribute scale shall be Cel-
sius. Thus, we will mark the scale state within the Temperature grammar
(called by the Temperature state) as PS with the corresponding condition
(see Figure 4.3). The next entry of the XPath expression is the value node
requested. It also has a refinement based on a predicate, namely that the
value content shall be smaller than 22.4. As we noted for the PS of the scale
attribute, we will also mark this state as PS with its condition. Since the
value state is also the state requested in @)y, this state will additionally be
designated as AS. ()3 is straightforward then. The status state in the header
grammar is marked as PS with the Error condition. Based on @)y, this state
is already an AS, and since Q3 requests the same node, the AS set will be
extended by ()3 to identify the query in case of a match.

Figure 4.3 shows all found AS and PS that were found based on queries
@1, Q2, and @3 in the grammar G:

AS:  — status state in Gyeqqer because of ()1 and @3

— wvalue state in Gremperature because of Qo

PS:  — status state in Gyeqder because of (3
— scalue state in Gremperature because of Qo

— value state in G'remperature Decause of Qo
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Figure 4.3: All accepting and predicate states in G based on @)1, ()2, and (J3.

Before we conclude this processing, we will present the generic algo-
rithm DetermineASPS which determines all AS and PS of a given EXI
grammar G and XPath queries (see Algorithm 4.6). For a simple process-
ing of the XPath expression, we are going to transform each query into its
normalized representation, based on Definition 4.3, by applying the XPath-
Normalizer algorithm (see Algorithm 4.3) in line 1. Beginning with the start
state s" of the root grammar (line 2), we take each normalized query ap-
plied to grammar G to search for AS and PS (lines 3-6). We implemented the
strategy of DFS, which is realized by calling CheckASPS (Algorithm 4.7).
This sub-routine checks whether the current state s passed is PS (lines 4-6)
and/or an AS (lines 8-10). An AS is only possible, if the last index in the
normalized query has been reached or if the last node in the expression has a
predicate refinement. A PS is found when the corresponding predicate signal-
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Algorithm 4.6 DetermineASPS(G, Q)

Input: EXI grammar G and a set of queries Q) < {Q1, Qa,...Qn}
Output: EXI grammar G457 with distinguished accepting and predicate
states
1: Apply each query in @ to X PathNormalizer() to get normalized XPath

representation QY <+ {QV, QY ,...QY}
Let s the start state of the root grammar of G
for each ¢ € QY do
1+ 0;
CheckASPS(s™% q,1);
end for
return G457,

ization is present in the query expression (= —2) and the ID of the current
state matches. Otherwise, we take each transition and check its successor
state to determine which should be visited next (lines 12-21). This selection
is performed if the next location step entry match (either an ID match or
a wildcard match). For a descendant-or-self axis in a query expression, we
will follow each transition and visit each state until the node addressed has
been found. For a state which reflects a complex type we continue the search
for AS and PS in the sub-grammar (lines 14-18). When we have found at
least one AS in the sub-grammar, we will mark the state ¢.s by the function
markQueryRelevance() to show which query Q" has called the sub-grammar.
This is an important process when it comes to multiple queries that might
address the same sub-grammar, but differ in either precursor nodes or states.
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Algorithm 4.7 CheckASPS(s, QN ,1i)

Input: Current state s, normalized query Q¥, and location step i
Output: True, if pattern P found in 7', otherwise false.

1:

— = e
AR > el S

14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:

Let T <+ {1&17 to,...t,} the transitions of s to all possible successor
states t1.s,12.5,...1,.5
J
b+ false;
if —2 == Q"[j] and ID* == Q"[j + 1] then
PS + PSUs;
Je i+
end if
if (|QN|==1)or (|QV] —4==1iand —2 == Q"[i + 1]) then
AS + AS Us;
b < true;

. end if
: for each t € T do

if (=3 == Q"[i] and t.ID == QN[i + 1]) or (t.ID == Q"]i]) or
(=1 == Q"]i]) then
if t.s is complexType-based state then
Let s* the start state of the sub-grammar in G that represents
t.s
b < CheckASPS(s%*,QN,j +1);
if b==true then
markQueryRelevance(t.s, QN);
end if
end if
b < CheckASPS(t.s,QN,j+1);
end if
end for
return b;
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4.4.2 Determining Filter Grammar G

After determining the states involved in the EXI Grammar for each query,
the actual filter grammar G is built. Before we explain this next step, let
us first define the filter grammar Gpg:

Definition 4.5 (Filter Grammar Gr)

Let G = (S5,T) be an EXI grammar and @ a set of XPath query expressions.
The filter grammar Gr = (Sp,TF) is a subset of G (Sp C S and Tr C T)
that only contains those states and transitions deemed necessary to evaluate
each query in Q.

In other words, a filter grammar G has removed all states and transitions
that would only be used for decoding messages, and thus would never address
any given query. To create a filter grammar Gr which can be used for
evaluation, we propose that the following steps have to be performed:

I Find all routes from each AS in G to the start state of the root grammar.

IT Remove all states and transitions that would skip a PS , which, however,
is requested by a query, within the routes discovered.

III Delete all transitions and states which are not part of one of the routes
found. All AS will be end states as long as no successor AS has been
found at this point.

Below, we present and discuss each step in detail.

Step 1

Based on the previous section, in step one we are taking the discovered
AS as our starting point to find all routes to the start state of the root
grammar. The reverse approach simplifies the route search since all possible
directions sooner or later lead to the root (state). Figure 4.4 shows the result
of all routes from the two AS (status and value) to the start state of the root
grammar based on our sample EXI grammar. In general, we have to take
into account two special cases during this processing step:

o If the start state of a grammar level has been reached, identify all
relevant states which are able to call this start state and continue the
search from there.
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e If a new state that belongs to a possible route has been added and if
this state is represented by its own sub-grammar (complex type-based
state), all states and transition of this sub-grammar are also members
of the route.

The first point clarifies cases in which multiple states in a grammar can
call the same sub-grammar. However, at this point, we are only interested
in states which are logically relevant to a given XPath expression. There are
different strategies for identifying relevant states. One variant applies the
XPath expression backwards to the current route and the states and transi-
tions involved are marked for the corresponding query relevance. However,
this causes processing overhead and can be avoided if we collect all relevant
states when we determine all AS and PS. Algorithm 4.6 determines these
relevant states and marks them already.

The second point highlights the importance of involving the sub-grammars
of all states that are complexType-based and are members of a route. This
special case can also be found in Figure 4.4 |, which takes the complete Header
grammar into account when the routes from value AS are discovered. The
motivation for doing so is based on a valid decoding of sub-elements of mes-
sages that are still in the context of a given XPath expression even if an
evaluation during the current decoding process is not yet possible. Consider
our query example )o. This query addresses the value element nested within
the Temperature element with predicates. Thus, to evaluate this query it does
not matter whether a message embeds at the beginning the Header element
or not. The crucial part starts at the beginning of the Temperature state
and until then any information can occur beforehand. To take these vary-
ing pre-opportunities into account, we have to keep all sub-grammars in the
routes that are necessary for decoding message fragments until the actual
evaluation starts.

Step 1II

This processing step enables early evaluation of queries that are refined by
predicates. In general, a message can only be successfully evaluated if the
requested nodes in the XPath expression occur in that order and if the evalu-
ation of the predicates is true. The routes discovered in step I will guarantee
the order. However, these routes may also contain variants that would skip
required predicate evaluations. Such a scenario is given in Figure 4.4 at the
Temperature grammar level. Starting from the AS value, the route can either
be taken to the PS scale and then to the start state of this grammar level
or directly to the start state. The latter variant, however, would skip the PS
that is a fundamental demand of (5. At this point, it would be desirable to
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Figure 4.4: Route to the start state of the root grammar from the two
marked AS (status and value)

avoid such shortcuts to evaluate early on if a message does not embed the
scale attribute value. Consequently, this shortcut transition is removed from
the route. Hence, only messages containing the scale attribute within the
Temperature element can be decoded.

This processing step is only valid as long as another query is not involved
in this route which would accept such a shortcut. E.g., a new XPath expres-
sion /Envelope/Body/Temperature/valueltext() < 24.7] accepts messages
that may or may not use the scale attribute. Based on this query, we have to
retain the transition between the start state and the AS wvalue, even though
Q> only accepts messages with the scale attribute. In order to still make
valid evaluations at runtime, we are introducing the Predicate Table, which
registers all successful and unsuccessful predicate evaluations. This table will
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be explained in section 4.4.4.

Step 111

This final step now creates the desired filter grammar G g, which can be
used to evaluate any input messages for a match of one or more queries. All
transitions and states that are not part of the routes discovered based on
steps I and II will be deleted. Figure 4.5 shows the result of the elimination
process that leads to the filter grammar Gr. It also highlights the effect of
the absence of queries that do not request likely information. For example,
there was no query addressing humidity information and hence all states
and transitions that represent this information were removed. This also
holds true for get-based messages (get Temperature and getHumidity). It can
also be seen that all end states that are not part of one of the routes were
eliminated. We will reassign the end states to all AS in G as long as the
states have no logical possible successor AS. The AS walue is such a case. In
contrast, AS status cannot be marked as an end state since AS value can be
still decoded. During the decoding process of a message, an AS which is also
an end state in a Gy signals that other queries can no longer evaluated at
this point.

Corresponding to the number of states and transitions are used for G it
can be said that the following relation will always be valid:

|Gr| <G|

Thereby, the absolute value (|..|) provides the total number of states and
transition used by the corresponding grammar. This equation is valid because
G is a subset of G (see Definition 4.5) and may maximally contain all states
and transitions when there is a demand of one or more XPath queries which
covers the whole information spectrum of all possible messages. A filter
grammar can also be empty: |Gp| = 0. E.g., this is the case if not a single
query is present or if all queries address nodes that are not valid in terms of
the underlying XML schema that represents all message structure variants.
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Figure 4.5: Filter Grammar G g

4.4.3 The OptimizedEXIFilter Algorithm

The optimized EXI Filter algorithm (see Algorithm 4.8) brings together all
aspects presented above and provides an EXI filter grammar G that can
be used to evaluate a service message of relevance. The input takes a given
EXI grammar and a set of queries using XPath expressions. The first ma-
jor step involves identifying the AS and PS in G (line 2). To do this, the
DetermineASPS algorithm is called (see Section 4.4.1 and Algorithm 4.6).
Next, relevant states and transitions necessary to reach each AS and PS are
determined (lines 3-14). This corresponds to the described steps I and II
as presented in Section 4.4.2. We start by identifying all states and tran-
sitions of each AS (line 3). The route ToRootStartState function determines
all possible transitions (Tx) and states (Sg) that can be visited to reach AS
(line 4). After this process, we will identify all states and transitions that are
able to skip a mandatory predicate evaluation (lines 7-8). The function skip-
pablePart searches all possible states (Sg) and transitions (Tg) that could
from an alternative route without visiting PS. This function also takes into
account contradictions with other queries and selects only those states and
transitions not required by other queries or for reaching an AS. All valid
skippable states in Sk and transitions in Tk are removed from Sr and Tg
respectively (line 13). As a final step, we are removing all leftover states and
transitions in G495 that do not at least reach one AS (lines 14-15). This
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Algorithm 4.8 FilterGrammar(G, Q)

Input: EXI grammar G = (S,T) and a set of queries @ + {Q1,Q,...Qx}
Output: EXI filter grammar Gp = (S, TF)
c Sp < 0; Tp < 0; S+ 0; Tr < 0; Sp + 0; Tp < 0;
. GASPS < DetermineASPS(G, Q);
: for each AS in G475 do
{Sgr,Tr} + routeToRootStartState(GA5FS | AS);
{SR,TR} < {SR,TR} U {SR,TR};
end for
for ecach PS in G4 do
if isSkippable(PS, {Sg,Tr}) then
{Sp,Tp} < skippablePart(PS,{Sr,Tr});
{SD,TD} — {SD,TD} U {SD, TD};
end if
: end for
{Sr. Tr} < {Sr, Tr}\{Sp, Tp};
T+ TN TR,
: return Gp;

© o g Wy

= = e = e e

leads to our filter grammar G which is returned (line 16).

4.4.4 Example

In this section we will apply some XML-based messages to the constructed
filter grammar G which can be seen in Figure 4.5 to demonstrate the effec-
tiveness of the evaluation process. Let us start with the temperature-based
message which can be seen in Listing 2.9. The following table provides the
processing steps in the context of the input EXI stream (column 1) and states
that will be affected in G (column 2). If a state is an AS and/or PS, column
3 provides the queries which are responsible for the distinct state. Columns
4 and 5 present the Predicate Table mentioned above (see processing step
IT in Section 4.5). This table evaluates the logical terms used within the
predicates of the query. Terms t; and t; belong to () with the condition
that

t1 := scale == "Celsius’

ty = value <’ 22.4'
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and term t3 belongs to ()3 with the condition that
t3 := status == "Error’

If multiple predicates are used in a query (at different node axis), the
predicate table will evaluate the predicate conditions by logical conjunction
(see column 4). Consequently, a query with a predicate may only be valid if
all terms are true.

EXI Stream State AS / PS ty Aty t3
Start G,eor -/- (false A false) | false
000 Envelope -/ - (false A false) | false
Start G gnuelope -/- (false A false) | false
1 Header -/- (false A false) | false
Start G geader -/ - (false A false) | false
"OK’ status {Q1,Q3} / {Qs3} | (false A false) | false
End G geader -/- (false A false) | false
Body -/- (false A false) | false
Start G'goay -/ - (false A false) | false
11 Temperature -/ - (false A false) | false
Start Gremperature -/- (false A false) | false
1 "Celsius’ scale -/ {Q2} ( true A false) | false
211 value {Q2} / {Q2} ( true A true) | false

| Result= {Q1, Q2}

To evaluate the input message, we begin at the start state of the root
grammar as per usual. All terms will be initialized by the value false. Af-
terwards, we start to read the EXI stream to decide which transition to
traverse next. Since only a single transition is left at this state in G, only
the signalization for the Enwvelope element is valid. The stream can fulfill
this first test and hence, the Envelope with its grammar representation will
be entered. There, we will decide whether to visit the Header or the Body
state. Based on the EXI stream (= 1), we follow the transition to the Header
and enter its grammar level. There, the status state is encountered, which
is marked as AS (by query @)1 and Q3) and PS (by query @3). The first suc-
cessful match can be evaluated at this point since Q1 requested that element.
However, a mismatch can also be evaluated due to the predicate condition
of (Y3. This will fail because term t3 expects an 'Error’ status value, which,
however, is ’'OK’. The parsing and evaluation process is not yet finished and
we continue by leaving the Header grammar. Next, we enter the Body state
and its grammar representation respectively. There, we have to test whether
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the EXI stream signalizes (= 11) the Temperature element since only this
transition remains. This test is successful and we continue on to visit the
Temperature grammar. Here, we are going to evaluate the presence of the
optional scale attribute. This test is also successful and we are now going
to visit the PS, where we have to evaluate the given predicate term t; based
on Q2. As can be seen, the outcome is true since the EXI stream contains
this particular scale value. Subsequently, we are going to visit the final state,
namely the value state, which is marked as AS as well as PS based on ()s.
To evaluate, whether this EXI message matches this query we have to check
the term to for correctness. The temperature value can fulfill the condition
and the logical conjunction is true. The evaluation process terminates here
since an AS that is also an end state has been reached. As a result set
will we would get {Q1, @2} as a successful match based on the input stream
provided.

Now let us apply a different message to G that only embeds the Humidity
information (see Listing 2.10).

EXI Stream State AS / PS th Aty t3
Start G -/ - (false A false) | false
000 Envelope -/ - (false A false) | false
Start G'envelope -/ - (false A false) | false
0 Body -/ - (false A false) | false
Start G poay -/ - (false A false) | false
10 - -/ - (false A false) | false
| Result= {} |

As can be seen, we are starting in the same manner as before since the
first two bits are identical. The paths begin to diverge in the Envelop gram-
mar; there we skip the Header state and directly enter the Body state with
its grammar representation. At this point, it becomes clear that ()7 and Q)3
can no longer be fulfilled. Being at the start state in the Body grammar, we
are going to read the next EXI stream fragment which signalize 10. However,
there is no relevant transition that can be traversed and hence, we are termi-
nating here since we do not have any decoding rules anymore. Furthermore,
it is also signalized that not a single query is requesting humidity-based in-
formation. The evaluation of this message would return an empty result set
and it is remarkable that this can be determined after only reading 6 bits
of the EXI stream. Other use cases may requires much less bits to decide
for non relevance such as with two bits reading as we presented in [Kébisch
et al., 2012].
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In contrast to the BasicE X I Filtering we do not have to parse the entire
input message to decide that no query match was found. In addition, we avoid
the processing overhead of checking all queries for a local match whenever
a startElement or attribute event occurs. The Optimized EX I Filtering
avoids representing queries in an additional data structure as the BasicEXI-
Filtering does. All queries are represented within the (reduced) EXI grammar

G including AS and/or PS.

4.4.5 Filter Code Generation

Based on the filter Grammar G that contains the predicate evaluation func-
tionality and the accepting state, we are able to use a generic EXI interpreter
such as EXIficient? for evaluating an EXI message. However, such a solution
is not a suitable one for constrained embedded devices due to their highly
restricted memory and processing capacities.

Therefore, we are able to extend our code generation tool as presented in
section 3.3 for filtering purpose:

I The analysis of XML schema information provides all possible XML
elements, attributes, and constraints in a specific schema context.

II (a) Based on domain-specific functionalities and datatypes the EXI
grammar set (G) for decoding purpose is generated.

(b) For each query, determine AS and PS of G (see Section 4.4.1)

(¢) Build G by removing all states and transitions which do not lead
to a AS or PS (see Section 4.4.2)

IIT Based on Gz the source code for the EXI Processor is generated, which
involves only the decoding mechanism and the evaluation implementa-
tions requested.

Mainly, step IT and IIT are modified. Step II integrates the mechanism
as described in previous subsections. Step III only generates the code for
decoding EXI stream messages and the evaluation methods. Not generating
the code for encoding the EXI stream is explained by the simple fact that we
only want to filter EXI streams to identify whether the information requested
is present or not.

2http:/ /exificient.sourceforge.net/
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4.5 Experimental Evaluation

In this section we are going to evaluate the applicability and effectiveness of
the binary XML filtering approaches presented above. Our evaluation consid-
ers two aspects. First, the performance of the approaches is tested in general
by applying different sets of queries. To estimate how these approaches per-
form in comparison to an existing XML-based filtering mechanism, YFilter
[Diao and Franklin, 2003] is involved in this test. This selecting is justified by
the fact that YFilter is both a very prominent and an automaton-based ap-
proach in the domain of efficient plain-text XML document filtering [Sadoghi
et al., 2011]. The idea and the functionality of YFilter will be discussed in
the related work section (Section 4.6).

The second aspect involves analyzing results in terms of code footprint
and RAM usage when the binary XML filtering approaches are applied to
the embedded environment. To do so, we set up a demo embedded network
based on microcontrollers that simulates a charging scenario based on the
ISO/IEC 15118 message protocol.

4.5.1 Implementation

Both binary XML filtering approaches, BasicEXIFiltering and OptimizedEX-
[Filtering, are implemented using Java programming language and utilize the
open source W3C EXI de-facto reference implementation®. For the described
code-generation mechanism described in section 4.4.5 we modified our exist-
ing implementation to realize the filtering functionality described above in a
code-generated way. Thus far, the generator produces source code in the C
and Java programming languages, which can be used by platforms such as
Contiki* and Java Micro Edition CLDC 1.1, respectively.

4.5.2 Performance

To evaluate the performance of both approaches, we also looked at the per-
formance results of YFilter® as implemented for the same data set. The
XML-based documents used in the evaluation process are based on the dif-
ferent ISO/TEC 15118 charging message patterns presented in Section 3.4.1.
Hence, the sample message instances range in size from 700 to 3000 bytes
in plain-text format. The binary XML representations range in size from 10

3http://exificient.sourceforge.net/

4Contiki is an operating system for memory-efficient networked embedded systems and
wireless sensor networks (http://www.sics.se/contiki/)

Shttp://yfilter.cs.umass.edu/
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bytes up to 30 bytes. Since we are unable to process plain XML on small
embedded devices such as microcontrollers, and especially not the YFilter al-
gorithm, these performance experiments were conducted on an Intel Core 2
Duo with 2.10GHz and 3GB RAM.

For all filter variants, resulting measurements do not include time spent
setting up the filter itself. The filter system is determined only once, when
a new XPath set is presented. For purposes of fair comparison, the parsing
time of the XML-based documents is always included in the resulting mea-
surements for BasicEXIFiltering, Optimized EXIFiltering, and YFilter. This
is based on the fact that our presented approaches do not pre-process the
binary XML message stream; in addition, they evaluate XPath queries at
the same time as parsing the binary XML stream (filter-on-the-fly). Only
for purposes of comparison did we also integrate the performance results of
YFilter that do not take into account the parsing and indexing of the input
XML message. In other words, the numbers only show the performance of
the YFilter Non-deterministic Finite Automaton (NFA).

In general, the average time for 1000 rounds is determined for each query
set. In each round, a random request or response message is selected and
applied to the filter mechanism. The XPath sets are based on queries with
different kinds of requests. In the context of this thesis, the number of XPath
query sets executed is relatively small and oriented more toward usage in the
embedded domain.

Figure 4.6 shows the results in milliseconds of our performance exper-
iments for 8 different XPath query sets. Considering the first query sets,
both binary XML filtering approaches always performs much better than the
YFilter implementation. For 5 queries the BasicEXIFiltering approach is 30
times faster and the Optimized EXIFiltering approach is 40 times faster. This
highlights the benefit of operating directly within the binary XML document
without having to transform it into a plain-text representation. Furthermore,
we are able to evaluate the XPath queries right during the decoding process.
YFilter separates this process (XML document parsing and XPath evalua-
tion by the NFA constructed) which leads to slower performances. Even if
we only consider the NFA processing of YFilter, our Optimized EXIFiltering
is still 3-4 times faster.

BasicEXIFiltering’s performance decreases as the number of XPath queries
increases. This is due to the fact that all queries are checked as to whether
the current step index can be incremented or not for each start element or
attribute StAX event that occurs during the decoding process. This pro-
cessing overhead becomes dominant and leads to lower performance as the
query set is getting larger. At about > 320 queries the BasicEXIFiltering
starts to perform more slowly than YFilter. Compared to YFilter NFA only,
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Figure 4.6: Filtering performance results of binary XML filter variants (Ba-
sicEXIFiltering and Optimized EXIFiltering) and plain-text filter variants
(YFilter with and without NFA)

BasicEXIFiltering’s performance would be slower than YFilter NFA after
only processing 20 queries.

When contrasting Optimized EXIFiltering with the YFilter and YFilter
NFA, it becomes apparent that all perform almost constantly within their
time levels, even as the number of queries increases. This is explained by two
facts: all XPath queries are represented as automata, and if there are dupli-
cated queries (these occurrences arise if the number of query sets increases)
do not affect the size of automata and thus automata processing. Only the
query registration for the predicate evaluation and the accepting state is re-
quired. The other fact is that the data message model of ISO/IEC 15118 is
structured to meet the demands of embedded resources. In other words, each
message pattern has an almost similar depth in terms of the XML message
structure; hence, the complexity of the XPath queries is similar.

- 116 -



4.5.  Fxperimental Evaluation

Figure 4.7: Demo embedded network

4.5.3 Demo Network

To evaluate the applicability of these binary XML filtering approaches in the
embedded domain, we set up a small embedded network with four wireless,
battery-powered evaluation boards from STMicroelectronics, which contains
the ARM Cortex-M3 microcontroller presented in the introductory section.
Our demo network and its topology can be seen in Figure 4.7.

Each node is running the Contiki OS and communication is based on IPv6
over Low power Wireless Personal Area Networks (6LOWPAN) [Montenegro
et al., 2007]. Node 1 provides (in 1 seconds intervals) V2G-based messages
that are defined by the ISO/IEC 15118 (see Subsection 3.4.1)). For this
test, messages with embedded values are randomized. Node 3 and 4 are
subscribers of node 1. We set up three different kinds of query scenarios.
The first scenario consists of only two XPath expressions, the second one
of four, and the last one of three kinds of XPath expressions. This way,
every odd query is relevant to client node 3 and every even query is relevant
to node 4. In Annex B, we are listing all queries used in these different
scenarios.

Based on the XML Schema definition of the V2G data set and the XPath
queries provided, we created our binary XML filter mechanisms (BasicEX-
[Filtering and Optimized EXIFiltering) with the code generation variant.
These filter mechanisms run in network node 2. Node 2 receives the V2G
message from node 1, evaluates the content using the filter, and only forwards
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the message to the corresponding node (3 and/or 4) if there is a match.

The demo was successfully executed. At runtime we used a laptop con-
nected to node 1 to monitor the device messages and their values sent to
node 2. If there was a match, a LED showed that event. A LED also
switched on for nodes 3 and 4 if they received a message that was requested.

Table 4.2 provides an overview of the memory usage (ROM and static
RAM) by the filtering setup on node 2 when BasicEXIFiltering or Opti-
mized EXIFiltering implementation was used. Please note that all numbers
once again include the Contiki OS with the 6LoWPAN communication stack
(see Section 3.4.3). It is evident that the memory size of Optimized EXIFil-
tering is much smaller than that of the BasicEXIFiltering approach, inde-
pendent of the query set scenario. This is due to the fact that the BasicEX-
[Filtering operates on top of the full EXI decoder grammar, even when only
a small query set is considered. Meanwhile, Optimized EXIFiltering oper-
ates directly within the grammar, and states and transitions not required to
evaluate the XPath queries are removed. Consequently, the ROM exhibits a
smaller size since the code generated does not contain extra grammar infor-
mation.

For the BasicEXIFiltering variant, besides the predicate data structure,
an extra data structure is required that represents all normalized XPath
queries with a tracking position as well as type-aware parameters used for
evaluating the predicates. Such a complex data structure is not required
for the Optimized EXIFiltering variant since the filter grammar is already a
representation of all XPath queries. Only type-aware parameters have to be
set up at the predicate states (if there are some) and the simple boolean-
based predicate table has to be incorporated into the RAM. Thus, RAM
usage is better as compared to BasicEXIFiltering. Since only two XPath
queries were used, the difference is relatively small. It will increase, however,
when more XPath queries are taken into account.

BasicEXTIFiltering | OptimizedEXIFiltering
Q| || ROM \ RAM ROM ‘ RAM
2 || 70600 10260 58508 10244
4 || 70728 10292 60016 10251
8 || 71072 10356 61328 10275

Table 4.2: Memory usage (in bytes) of different filter scenarios (2 XPath
queries, 4 XPath queries, and 8 XPath queries) compiled for the ARM
Cortex-M3 microcontroller.

- 118 -



4.6. Related Work

4.6 Related Work

Efficient filtering, processing, and dissemination of data has been an area
of active research for many years. For research in the domain of resource
constrained embedded networks, see works such as TinyDB [Madden et al.,
2005], Cougar [Yao and Gehrke, 2002], and for query processing on XML
templates objects (XTOs) [Hoeller et al., 2008]. These solutions are mainly
focused on sensor networks. Thereby, TinyDB operates in a distributed man-
ner and each sensor node serves a query processor. The Cougar architec-
ture supports in-network computations by the usage of query optimizers on
sensor gateways and query proxies on the nodes. Both, however, focus on
relational data and data requests are based on SQL-relevant queries. Fur-
thermore, these solutions are narrowed for sensor networks, which will al-
ways transmit relevant data to one dedicated root node. In contrast, we
consider embedded networks based on sensor, actor, and processing units
that follow SOA-based communication with Web services using XML-based
data. This enables direct communication within embedded networks; based
on our filtering approach, we are able to transmit relevant data to more
than one destination node (the clients). Querying XML data is considered
in [Hoeller et al., 2008] based on the XML data binding technique called
XML templates objects (XTOs). The compressed representation of XTOs
and the represented rewriting of XML queries can be compared to our pre-
sented normalization mechanism of XPath queries. However, our approach
has a complete compact representation of XPath queries that also takes into
account the descendant-or-self axis, wildcard, and predicate expressions in-
cluding operations for efficient evaluation. This also includes a standardized
mechanism of unique ID assignments for evaluation that is provided by the
EXI standard. Furthermore, we are able to evaluate XML-based instances
of relevance directly on the EXI stream and do not need another processable
representation of XML contents such as it is the case with XTOs.

Beyond the domain of embedded networks, there are well-known filter
mechanisms that come with publish-subscribe systems, such as Gryphon [Ba-
navar et al., 1999] and SIENA [Carzaniga et al., 2001]. Neither focuses on
XML-based data filtering, however. Consequently, below, we will concen-
trate on related works that use filtering mechanisms based on XML. This in-
cludes approaches such as XFilter [Altinel and Franklin, 2000}, XTrie [Chan
et al., 2002|, YFilter [Diao et al., 2003, Diao and Franklin, 2003], and Lazy
DFA [Green et al., 2003, Green et al., 2004]. Since XFilter, YFilter, and Lazy
DFA use an automata approach, we will explain these solutions in further
detail to understand how they differ from our approaches presented in this
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Envelope Header status
Q1 :

% * Temperature value
Qs

Figure 4.8: Example of XFilter NFAs

chapter.

The XFilter [Altinel and Franklin, 2000] belongs to the first XML filtering
algorithm utilizing a NFA approach. The idea is to build a separate NFA for
each XPath query which is simultaneously executed during processing of the
input XML document. A query match is reached when an accepting state
is reached. Figure 4.8 shows such a set of NFAs based on the following 3
XPath queries

= /Envelope/Header | status
= /Envelope/ [ status

Qs = / = | x /Temperature/value

Query ()1 addresses the path of element nodes which have to occur for
requesting the status node element. This linear path is sequentially mapped
onto the transitions that can be seen in the first NFA. A descendant-or-
self expression in an XPath query, as can be seen in (), is represented as

7 loop initiated by e-transition to a new state. Generally, "*’ denotes
any element at the particular node or state, respectively. E.g., Q)3 accepts
any first 2 elements; however, at the beginning of the third location step the
Temperature node and its child node value are accepted.

When a document arrives at the XFilter engine, it is run through an XML
parser based on a SAX (see Section 2.3.2) interface which then drives the
process of checking one or more queries. Let us assume that the XML message
instance shown in Listing 2.9 is present. When the SAX parser encounters
the startDocument event, states 0, 4, and 8 will be accessed. In the case of
startElement event of Envelope is encountered by the XML parser, states 1
and 5 as well as 9 is accessed du to the any element condition. This process
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©= Do

Figure 4.9: Example of a YFilter NFA engine

continues until an accepting state has been reached; then, the corresponding
query matches the XML message. An endFElement event causes backtracking
in the NFAs. More precisely, the precursor state in the automata path is
visited again. If the endDocument event is encountered, only those queries
are seen as matches that reach corresponding accepting states during the
parsing process of the input XML message. Otherwise, there are one or
more mismatches.

It quickly becomes apparent that the more queries are present the higher
the number of NFAs. Thus, the worst-case scenario during the execution pro-
cess would involve a SAX event triggering state transitions for each NFA [Sil-
vasti, 2011]. Similar to the BasicEXIFiltering approach presented in this
chapter, as long as there are active XPath queries (no match was found thus
far) all of them will be checked for a local match. In contrast, however, we
operate on binary XML with an efficient EXI automata representation and
the evaluation is performed on top of the EXI automata. Instead of com-
paring string-based element and attribute names (which would provide the
XFilter SAX interface) we are able to use ID numbers for comparison as well
as type-aware predicate evaluation.

A new filter approach based on NFAs was presented in [Diao et al., 2003,
Diao and Franklin, 2003]: the YFilter. YFilter is a successor of XFilter.
It revolves around the idea of building only one NFA for all given XPath
queries. Thereby, YFilter uses a mechanism that exploits commonalities
among path queries by merging the common prefixes of the paths so that
they are processed once at most [Diao and Franklin, 2003]. Figure 4.9 shows
a sample YFilter NFA based on the same queries that were applied to the
XFilter variant.

Queries (1 and ()5 address the same node element status; they only differ
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in the second location step expression. In general, the YFilter construction
algorithm builds shared transitions for as long as there is no difference in the
location step between all given XPath queries. Thus, ); and () share the
Envelope transition. Since the first location step of (3 addresses all possible
elements, it requires its own e-transition. As can be seen, the same NFA
fragments ("*’, ’//’, etc.) are used here as were used for the XFilter NFAs.

Like XFilter, the YFilter evaluator is based on SAX events encountered
by an input XML message. E.g., a startDocument event would enter state 0.
Typically, efficient implementations use a stack which always pushes the
states currently visited onto the stack. For the message shown in Listing 2.9
the startElement Envelope would causes traversal of the transitions labeled
Envelope and *. Thus, states 1 and 6 would be pushed onto the stack, and
so on and so forth.

Based on the idea of identifying paths shared by the input XPath queries,
the YFilter NFA returns a relatively small number of machine states that can
be more efficiently processed than XFilter [Diao et al., 2003|. Having XPath
queries represented by only one automata is comparable to our Optimized EX-
[Filtering approach. However, the YFilter (as well as the XFilter) approach
separates the processes of parsing of the input message and executing the
query NFA for evaluation (based on the SAX events encountered). Our Op-
timized EXIFilering approach evaluates at the time of parsing; thus, we can
immanently decide whether the message is relevant to one or more queries.

XFilter and YFilter are based on a NFA approach. An XML filter pro-
cessor based on a Deterministic Finite Automaton (DFA) approach was pre-
sented in [Green et al., 2003, Green et al., 2004] and is called Lazy DFA.
The main idea is to create NFAs for each XPath expression (similar to XFil-
ter). These NFAs are transformed into a single NFA (similar to YFilter).
Finally, based on this NFA, the DFA will be constructed. Thereby, the DFA
is constructed lazily which means that states and transitions are determined
from the corresponding NFA at runtime. A new entry in the transition ta-
ble or a new state is computed only when the input XML message requires
the DFA to follow that transition or to enter that state [Green et al., 2004].
In general, the concept of using a DFA to filter messages is comparable to
our approach, which uses EXI DFAs. However, applying Lazy DFA to our
constrained embedded network environment is not possible because the dy-
namic constructing of the DFA at runtime requires heavy memory usage and
processing overhead [Chen and Wong, 2004]. Aside from handling plain-text
XML data, these aspects are not compatible with constrained embedded
devices.

- 122 -



4.7. Summary and Comparison

H BasicEXTFi. ‘ Optimized EXTFi. ‘ YFilter

Filter grammar no top-down button-up
construction

Grammar-based no yes yes
evaluation

XSD informed yes yes no
Validation of yes yes no
XPath expressions

Early runtime eval- no yes no
uation

Evaluation and de- no yes no
coding in one step

Query  extensions yes no yes
at runtime

Table 4.3: Comparision between BasicEXIFiltering, OptimizedEXIFiltering,
and YFilter

4.7 Summary and Comparison

In this section we presented resource-efficient approaches that enable us to
filter binary XML-based messages. The mechanism can be applied to embed-
ded networks and supports reduction of network traffic; it also avoids pro-
cessing overheads of messages that are not relevant to particular embedded
nodes. We presented two approaches: BasicEXIFiltering and OptimizedEX-
IFiltering. The BasicEXIFiltering operates on top of an EXI grammar and
evaluates normalized XPath queries by means of binary XML. This enables
fast local match identification as well as type-aware predicate evaluation.
Optimized EXIFiltering presents a more sophisticated approach; it maps all
XPath expressions within an EXI grammar. This enables evaluation at time
of parsing. This speeds up evaluation time and reduces memory usage since
the full EXI grammar does not have to be present at runtime. To the best
of our knowledge, we are the first that propose such kind of approaches for
binary XML filtering based on the EXI format that is also applicable in
microcontroller domain.

We will conclude this chapter by comparing our approaches to the well-
known YFilter that was used in our evaluation. The comparison is consol-
idated in Table 4.3. The BasicEXIFiltering approach does not construct a
filter grammar for the XPath query evaluation. Instead, the evaluation is
done on the top of the EXI grammar by using the StAX event sequences.
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In contrast, the OptimizedEXIFiltering constructs a filter grammar based
on a complete EXI grammar. This automata grammar is reduced by re-
moving transitions and states (top-down). Only those fragments that reflect
all given XPath expressions remain. YFilter starts from scratch to construct
the automata grammar and always extends it by new XPath queries (button-
up). Our approaches use the XSD knowledge of the underlying service data.
This has the advantage of type-aware predicate evaluation and this enables
a (pre-)validation of XPath queries. The validation of a given XPath ex-
pression in a particular messaging context can be accomplished through a
successful XPath normalization (BasicEXIFiltering) or through successfully
transforming the XPath expression within the corresponding EXI grammar
(Optimized EXIFiltering). In the case of nonsuccess, the XPath is not appli-
cable to any of the messages that the XML Schema can instantiate. Thus, at
runtime, this XPath query will never find a match. OptimizedEXIFiltering
provides an exclusive mechanism for an early runtime evaluation by inter-
rupting the decoding of a sample message when no or further queries can be
evaluated successfully (see the example in Section 4.4.4). This is mainly pos-
sible because the evaluation is performed during the same step as decoding,
and based on the filter grammar constructed, it can be identified whether
any accepting states can be reached or not. Given the pruning of the under-
lying EXI grammar to a filter grammar, new XPath queries for evaluation
can generally not simply be integrated at runtime. This is due to the fact
that automata fragments may be missing which the new query might want to
address. BasicEXIFiltering provides more flexibility; it would only require
a new structure instance that represents the new XPath expression. Due to
its button-up approach, YFilter would also simply extend the current filter
automata.
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Chapter 5

Advanced Filter-Enabled
Service Data Dissemination

5.1 Introduction

A filter-enabled subscribe mechanism in embedded networks reduces network
traffic and unnecessary message processing at the client nodes. It optimizes
data interaction between the service provider and service requester in terms
of data novelty and supports an efficient execution of applications in em-
bedded networks at runtime. In the previous chapter, we introduced the
functionality to create an efficient filter mechanism for binary XML data
based on a number of service requesters by providing XPath expressions that
address the desired service data occurrences and/or data value conditions.
An immediate evaluation at the node of service data origin would prevent
dissemination of data when it does not fall within the scope of one or more
service requesters.

In the context of constrained embedded networks, however, a desired early
evaluation at the node origin can sometimes not be realized. Two aspects
support this observation: First of all, the current capabilities of resources,
especially when it comes to memory, are not sufficient enough for installing
an additional filter application. Secondly, vendors of embedded nodes do not
offer such installation opportunities. Figure 5.1(a) depicts such a scenario.
Nodes 3, 4, and 7 request service data from node 1. To take into account
these particular client demands - the persistent queries - a corresponding
filter mechanism cannot be placed at node 1 due to the absence of processing
resources (p(v1) = 0). To avoid the returning to the situation discussed
in Figure 4.1(a), we propose an alternative filter placement in the network
which evaluates the data for relevance for one or more clients. Figure 5.1(b)
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shows the effect of the placement of filter Gr_g34 7 on node 5. The service
running on node 1 is set up to always transmit new data events to node
5. Node 5 evaluates the received data content by using Gp_i347y if it is
relevant for node 3, node 4 and/or node 7. If values range between 20.5
and 21.0 node 5 will forward the data twice via node 8, once for node 4 and
once for node 7. To improve network traffic, a sophisticated approach would
include forwarding such a service data constellation to node 8 only once,
while node 8 disseminates the service data, based on relevance, to the final
destination nodes. Doing so, a sub-filter Gp—g4 7y is placed at node 8 only
reflects the condition of node 4 and 7. In addition, filter G is updated to
forward the data to node 8 only once. Figure 5.1(c) depicts this approach.

Depending on the application executing the determined data dissemina-
tion path, at runtime this may affect any involved network connections as
well as the resource’s nodes at runtime. For instance, if node 1 sends a ser-
vice data message very frequently (e.g., 10kHz) and the content is relevant
for each client node, this would affect, for example, the bandwidth within the
determined and reserved dissemination paths. For scenarios putting such de-
mands on resources, we simply reduced the connection quality by % for each
involved connection link along the route as an example (shown in brackets
in Figure 5.1(b) and 5.1(c)). In addition, to illustrate the possible impact of
filter installations, in node 8 with a class 3 property that runs now a (sub-
)ilter, the p function is set to 0 to signal that there are no further resources
for future application installations. However, we take this into account to re-
duce the overall processing load and to reduce the network traffic. The result
can be seen in Figure 5.1(d), which reflects the current resource capability
and is the basis for the next possible application set up in the network.

In this chapter we introduce an approach for organizing a filter-based
service data dissemination in constrained embedded networks that takes net-
work resources into account such as device classes, device processability, as
well as the connection quality between nodes. The goal is to share relevant
service data using binary XML as long as possible through using filters and
sub-filters. This reduces both network traffic and overall node processing.
Partially, this leads to content-based routing on application level based on
binary XML content. In Section 5.2 we begin to formalize the problem of
an optimized filter-enabled dissemination path and introduce our cost model.
Section 5.3 introduces our filter-enabled dissemination algorithm that takes a
new application constellation and provides a dissemination path that involves
dedicated filter nodes. An execution example is given in Section 5.4 and
improvements and extensions of our approach are discussed in Section 5.5.
Finally, Section 5.6 shows some evaluation results that demonstrate the ben-
efits of our filter-enabled and shared service data dissemination approach.
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Figure 5.1: Optimized service data dissemination example
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5.2 Problem Statement and Formalization

5.2.1 Notations and Definitions

In this section we are formalizing the stated optimization problem. As our
foundation we are using the definition of an embedded network (see Defini-
tion 1.1) as presented in Section 1.1: Neyp = (V, E,w,¢,p). Let us assume
that we are going to install a new application with one or more service sub-
scribers (clients) of a Web service within Ne,,;. Clients are denoted by the set
C with C C V and the service by v with vy, C V. D = v, U C describes the
combination of these emphasized nodes. A service data dissemination path
from vy to all client subscribers in C' is comparable to a spanning tree [Prim,
R. C., 1957, Cormen et al., 2009]. We will call a subnetwork of N, a tree
T when each node is connected and has no cycles in the subnetwork. For our
purposes, we define a tree network as follows:

Definition 5.1 (Tree Network N7 )
A tree (embedded) network of a given embedded network N, = (V, E, w, ¢, p)

is a connected and cycle free subnetwork N1 . = (VI ET w” c,p’) where
is

1. VI CV,

2. ET C E, and

3. for each (v;,v;) € ET is w” (v;,v;) < w(v;,v;) and for each v € V7T is
P’ (v) < p(v).

Property 3 points to the possible impacts for when a connection and a
device node are members of a spanning subnetwork in terms of connection
quality and processability. The connection quality w’ takes the maximum
value of w. Similarly, the discrete processability values of p” are the same of
p or if they differ, the result is always p” = 0. We will discuss the influence of
both of these functions in more detail in the next subsection. The function ¢
is seen as static and serves always the same result as in N2 . This is justified
by the fact that the device class of each node is considered as a constant over
the time of a configured embedded network.

In each determined tree N , we dedicate a particular node as a root node.
We then consider its successor paths or branches as service data dissemination
direction. As discussed in the introduction to this chapter, we are using
filters and sub-filters in an embedded network to enable a shared service data
dissemination. Bellow, we introduce and define a pre-filter and a post-filter.
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Definition 5.2 (Pre-Filter und Post-Filter)

Let @ be a set of queries of service data requesters. A filter grammar G is

called a pre-filter if it reflects all queries in ). We will call a filter grammar
"= a post-filter when it reflects a subset of Q.

A node that runs a pre-filter is denoted as v,,. and a node which runs a
post-filter is denoted as vp,s;. Before we close this subsection, let us introduce
and define a cost network:

Definition 5.3 (Cost Network N¢)
The cost network of a given embedded network N, = (V, E,w,c,p) is a
complete network N¢ = (V, E¢, g) where each connection (v;,v;) € E° is

represented by the lowest cost value gy, ,, from v; to v; in Ny, We call a
N = (SNV, E°, f) a connected induced sub-cost-network for which S C V.

N¢ will support us later for finding a suitable dissemination path that
takes into account connection quality as well as device properties.

5.2.2 Cost Function

A newly installed application in an embedded network would typically lead
to additional network traffic and processing costs. To keep this overhead
as small as possible, we filter to determine all relevant data and share this
data as long as possible on a determined dissemination path that avoids
constrained device class nodes and uses connections with relatively good
quality. Consequently, we have two metrics which have to be considered:
device class and connection quality. Let us first consider the device class
component.

To determine the class appearance of a determined tree-based path re-

flected by a subnetwork NI . we can use

Z c(vy) | (5.1)

’UZ'EVT

A path with a relatively high ratio of low device classes leads to smaller
values compared to a path consisting of higher device classes. Thus, we are
interested in lower values that reflect the absence of constrained embedded
devices. Within this metric we will also consider the processability for a
successful placement of a pre/post-filter service. Nodes with this capability
will be preferred and the Function 5.1 will be extended to
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> (elw) =" () (5.2)

’UZ'EVT

This leads to the goal to have cost values which approximate the value
of 0. However, in the case of equal device class characterization of each node
in an embedded network we are not able to avoid routes with a relatively high
number of hop count. To clarify, let us assume that we have an embedded
network constellation as depicted in Figure 5.2 and it is ¢(vy) = c(vg) =
c(v3) = 1 and p(vy) = p(ve) = p(vsz) = 1. A route from v; to v3 can be taken
either directly or via node v,. However, based on the Function 5.2 we are
unable to decide which path variant is the best since it is

Yo (elw)=p @)= Y (e(w) —p"(w)

v;€{v1,v3} v;€{v1,v2,03}

It seems reasonable to use the direct connection to avoid any overheads in the
network. So as to take such a decision, we are here introducing a hop-noise
factor that is added to each device class value:

> (e(v) +1=p"(v2)) | (5.3)

UZ‘GVT

Consequently, based on this factor it will always be

Yo (clw)F1=p ) < Y (elv) +1-p"(w)

vi€{v1,v3} vi€{v1,v2,03}

for arbitrary class ¢ and processability p constellations.

At this point, we are able to select a route in terms of device classes
with processability and hop count. Now let us consider connection quality
component, which we also have to take into account to achieve optimized
service data dissemination.

In general, the function w describes the connection quality between two
nodes. Depending on use cases and focus, the value can reflect the band-
width, latency, packet loss likelihood, and/or physical link quality. Similar
to the device’s class function above, it is our desire to find a route in which
each w pair approximates the value of 0. Thus, to estimate the connection

quality of a route given by E7 of a NI . we will use the function
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U2
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Figure 5.2: Embedded network with 3 nodes
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with w” (v;,v;) > 0 (a connection exists) for all (v;,v;) € ET.
Putting it all together, we can define our cost function f for a given N7
which spanning nodes in D:

F(NGw) = Y (e(v) +1—=p"(w)

UiEVT

+(1 — a) . Z —wT(;, Uj)

(vi,vj)GET

(5.5)

Here, o € [0, 1] is a weight factor that enables us to set up a more domi-
nant part in the cost function: the device class (o > 0.5 ) or the connection
quality (a < 0.5). In this thesis, if not stated otherwise, we will always as-
sume that a = 0.5. We will abbreviate the cost function and use fr as cost
of a determined tree T of Nepp and f,, »; as cost of a determined route from
node v; to v; in Nepyp.

Using f we are able to formalize our optimization problem to find a

subgraph NZ . of N, for a filter-enabled service data dissemination:

Minimize fr (5.6)
subject to

Z p'(v) >1

’UiEVT
The inequality constraint specifies the occurrence of at least one process-

able node within N7 , that can be used to set up a pre-filter.
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5.2.3 Complexity

To identify the complexity of the optimization problem we will discuss special
constellations of N.,,;, in terms of number of service requesters, processing
nodes, device classes, and connection quality, which all have a major impact
on both the optimization problem and complexity.

Firstly, let us assume there is a N, = (V, E, w, ¢, p) in which each node
has endless resource capability (Vv; € V' is p(v;) = 1). In the case of a D
with cardinality |D| = 2 (one service vy and one client v.) we encounter the
well-known shortest path problem (by using our metrics) with a complex-
ity of O(|V|log|V'| + |E|) [Cormen et al., 2009]. Based on the precondition
of N.., we are able to place a filter at the node of v, which leads to a
desired pre-evaluation of relevance for v.. In the case of |[D| = |V| (a ser-
vice node distributes service data to each node in N,;) we result in the
minimum spanning tree problem [Cormen et al., 2009] with a complexity of
O(|Vig|V|+ |E]) to determine N2 ,. We are able to place a pre-filter at the
service origin’s node and a post-filter at each branch node to share the data
in an optimized way.

Now let us consider an embedded network N, = (V,E,w,c,p) that
contains only one single device class variant (Yv; € V is ¢(v;) = 1). In
such a constellation, we can focus on determining a valuable data dissemi-
nation route based on connection quality. In such a case, the device class
part within the cost function f can be disabled by a = 0 and would lead
to the single metric Function 5.4, which can then be used to determine the
cost of an instance NZ . of N,,;. Let D be the set of service provider and
service requesters with the condition 2 < |D| < |V| and again, assume that
each node has endless resource capability (Vv; € V' is p(v;) = 1), then this
leads to the Steiner Tree Problem [Promel and Steger, 2002] for finding a
subgraph N7? . spanning the terminal nodes in D. The Steiner Tree Problem
is well-known as NP-complete and it is covered in Karp’s 21 NP-complete
problems [Karp, 1974]. The proof is typically shown by reduction of the
3SAT problem [Promel and Steger, 2002].

Consequently, for any constellation in N,,,;, and for an arbitrary set D
with 2 < |D| < |V| we are not able to find an optimized solution in polyno-
mial time. In the next section we are going to present a heuristic approach
based on greedy algorithms [Cormen et al., 2009] that approximate an opti-

mized NI . for a filter-enabled service data dissemination.
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5.3 Filter-enabled Dissemination Algorithm

Based on the complexity discussed previously, we are interested in devel-
oping an efficient heuristic algorithm to find good approximate solutions of
arbitrary N, with different service and client constellations in Ng,,,. We
are now going to describe our filter-enabled service data dissemination algo-
rithm, the Filter EnabledDissemination algorithm (see Algorithm 5.1), for
installing a new application with a service provider and a number of service
requesters, which takes into account the current resources of the embedded
network.

Algorithm 5.1 Filter EnabledDissemination(Nemp, vs, C, Q, XSD, «)

Input: N, = (V, E,c,w,p), a service provider v, set of service requesters
C = {vey, .., Ve, }, set of queries @ related to client’s conditions, data
model represented as XML schema X SD, and an a as metric weighting
factor.

Output: Tree network NI . with a set F' of dedicated selected nodes with

its filter grammars (pre- and post-filters).

Gr + 0; ER « 0;

Gr « FilterGrammar(G,Q);

{Vpre, B} < Closest PreFilter Node(Nepp, vs, C, Gr, a);

NI .« DisseminationTree( Nemp, Upre, C, );

F « PostFilter Placement(NZ . Q, vpre, Gr, X SD);

extendTreeByPreRoute(VT ET V, ER);

return {N’ F}

As input, the algorithm takes an embedded network N, a dedicated
service provider node vs, a set of service requesters (the clients) C' and their
corresponding queries (), the underlying data model of the service provider
described in an XML schema X SD, and the metric weighting factor a (see
Section 5.2.2). Its outcome is a subnetwork N, eTmb of N, that represent the
dissemination tree/path from v to all clients in C' and a set F' that consists
of the selected nodes with pre- and post-filter properties. Essentially, the
processing steps of the algorithm can be divided into three parts:

1. After determining the filter grammar G by the FilterGrammar (see
Algorithm 4.8) in line 2, a suitable pre-filter node is searched. Doing
this, the Closest PreFilter Node algorithm (line 3) is called which will
be explained in further detail in Section 5.3.1.

2. Starting with the determined pre-filter node v,,. we discover an op-

timized dissemination tree N? .. The DisseminationTree algorithm
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(line 4) will be called to gather such a tree. A detailed explanation will
be provided in Subsection 5.3.2.

3. Based on N7 , suitable nodes are selected for the post-filter functional-
ity to share service data as long as possible. The PostFilter Placement
algorithm (line 5) realizes this and provides the routing information for
all filter grammars. Section 5.3.3 features a detailed explanation of this

algorithm.

Before the Fuilter EnabledDissemination algorithm terminates, we ex-
tend NI , by the involved nodes and connection (given by EF) that leads

emb
from vy to vy (line 6).

5.3.1 Closest Pre-Filter Node Algorithm

One of our most important goals is to evaluate the data as soon as possible,
starting at the source origin. An early evaluation based on a filter grammar
Gr has the advantage of avoiding the distribution of service data that would
never affect any client requesters. Considering that case, it is desireable to
determine one processing node v,,. that is able to run the filter grammar Gr
as well as that results in overall positive data dissemination. More precisely,
we are not only considering the quality of the path to a processable node
Upre in terms of connection and device class, but also the quality from vy,
to all service subscribers. Figure 5.3 clarifies this point: Nodes 4 and 5 are
service client subscribers of node 2. Let us assume that a pre-filter grammar
G is able to run on the processable nodes 1, 3, and 4. Applying our cost
function f, for the path from 2 to 1 we would achieve a cost value of

far = 5 ((c@)+1=p(2)) +(c(1) +1=p(1))) + (1 - %) ~w(2,1)

= L (BHI-0) @11 g
5

| LN

I
W o

For the path from 2 to 3 the cost value is fo3 := 3,66 and for the path
from 2 to 4 the cost value is fo4 :=5,66. Thus, it would be logical to select
node 1 as the appropriate pre-filter node v,,.. Based on the topology of the
example embedded network, however, relevant data for the clients always has
to be routed via the service data origin which is node 2. So as to estimate
the overhead for such scenario, we determine the accumulated costs from a
candidate node for a pre-filter installation to all client subscribers multiplied
by the cost from the service data origin. In the case of node 1, the result
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Class: 3
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Figure 5.3: Embedded network with three processing nodes (1, 3, and 4)

would be for f14 = 7,16, for f15 = 7,66, and hence (f14+ fi5)- fo1 = 54, 39.
Considering node 3 as a pre-filter candidate, we get (fs4 + f35) - foz =
(3+3,5)-3,66 = 23,83. Finally, in the case of node 4, we get (fya+ f15)  foa =
(3+5,5)-5,66 = 48,16. Based on this findings, we are going to select node 3
as a propertied candidate on which to place the pre-filter grammar Gp.

The ClosestFilterNode Algorithm (see Algorithm 5.2) takes all aspects
discussed above into account. It takes an embedded network N,,,;, the ded-
icated source node vy, the set of client subscribers represented by C, and a
predetermined filter grammar G constructed on the clients request (filter)
conditions. The outcome is the propertied pre-filter node v,.. In line 2,
the algorithm checks whether the source node v, is already a suitable pro-
cessing node for Gp. The function isProcessable tests if there are enough
resources for applying G on v,. Is this test is successful, then the algorithm
will terminate here, since the most suitable place for a pre-filter is at source
origin, as we mentioned above. If the test is negative, we then have to find
a suitable processing node that is close by. Doing so, we determine the path
and cost for each candidate v that is processable from vy (lines 5-6) as well
as the overall cost to the service requester in C' (lines 7-9). The current best
node will be updated in v, (lines 11-13). In order to determine the cost val-
ues in term of device class and connection quality (DCCQ) and the involved
edges E7 that lead to an optimized v,,. we then apply the Best DCCQ Route
algorithm (see Algorithm 5.3).

The Best DC'C'Q Route algorithm follows the basic concept of the Dijkstra
algorithm [Dijkstra, 1959, Cormen et al., 2009]. As input, the algorithm takes
an embedded network V., with a start node v;, a destination node v;, and
an « as a metric weighting factor. It returns a set of the best DCC(Q) route by
describing it as a subset of edges ET and the cost. The first investigation of
the Best DC'C'Q) Route is the initialization of the working parameters of set @),
successor vector s, and the current DCCQ vector d (lines 1-3). At runtime,
s will provide the latest best route from any visited nodes to v;. Similarly,
d provides the latest DCC(Q information for each visited node from source
node v;. Within the loop (line 4), each time a node u is determined that
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Algorithm 5.2 ClosestPreFilter Node(Nemp, vs, C, GF, @)

Input: N, = (V, E,c,w,p), a service provider vs, set of service requester
C ={ve, ..., Ve, }, G filter grammar based on clients conditions, and an
a as metric weighting factor.
Output: Pre-filter node v,,. and route ET from v, to Upre
1: k4 00; g+ 0; 1+ 0; m 4+ 0; vppe < 0; ET 0
2: if isProcessable(vs, Gr) then
3: Upre € Us;

4: else {v, is not a processing node}

5. for all v € V\vg and isProcessable(v, Gr) do
6: {ET, g} < BestDCCQRoute(Nepp, Vs, v, @0);
7: for all c € C' do

8: {0,m} «+ BestDCCQRoute(Nemp, v, ¢, Q);
9: l+—1l+g-m;

10: end for

11: if £ > [ then

12: VUpre < U;

13: k <+

14: end if

15:  end for

16: end if

17: return {v,.., 7}

has the best DCCQ route from v; so far (line 5). This node is used to
check its direct neighboring nodes and to calculate how the DC'CQ value
will be affected when the route is continued to u’s neighbors (lines 6-8). If
the evaluation is positive, meaning that there is a better DCCQ cost value
from v; via u to a u’s neighbor v, the current DCCQ) vector d will be updated
with the new cost value (line 9). Furthermore, we memorize the new (better)
route node by updating the successor vector s with this new information (line
10). Since each u that is determined in line 5 is removed from the working
node set @ (line 13), the loop will be terminated after |V| rounds. After
completing the loop, the successor vector s will contain the route with the
best DCCQ) value from the source node v; to the client node v;. Based on
the constellation in s, the set E7 will finally be constructed ( starting from
s[vg]) and return with the DCCQ cost value (lines 14-15).
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Algorithm 5.3 Best DCCQ Route(Nepp, vs, Vg, @)

Input: Embedded network N, = (V, E, c,w,p), start node v,, destina-
tion node vy, and a metric weighting factor «
Output: Best device class and connection quality route £7 and the cost
Q<+ V;m<+0;
2: Let s the successor node vector; init with s[v] - —1 for all v € V
Let d the current DCCQ vector from vg; init with d[vs] <— 0 and d[v] < oo
for all v € V\v,

@

4: while Q # () do

5. Let be u the node where Yv € @ is d[u] < d[v]

6: for all v € V with w(u,v) >0 do

nme s (e(v) + ou) + 2 — (p(v) + plw))) + G2
8: if d[v] > (d[u] + m) then

9: d[v] < d[u] +m;

10: slv] <= u;

11: end if

12:  end for

13: Q<+ Q\u;

14: end while
15: ET «+ construct Route(s,vy);
16: return {E7T d[vg]}

5.3.2 Dissemination Tree

At this point we have determined the most suitable pre-filter node v,,.. Rel-
evant service data shall be delivered from v,,. to the service subscribers in
a resource-optimized manner. More precisely, the data shall be routed via
high quality connections, avoid very constrained embedded devices, and be
shared for as long as possible if there are multi client destinations. The latter
can be fulfilled when one or more post-filters can be placed that retain the
information of the final client destination nodes or the next post-filter nodes.
Consequently, it is desireable to find a dissemination tree from v,,. to all
clients in C' that takes into account the device class and connection qual-
ity metrics as well as the current processability of the potential post-filter
placement.

Below we present the DisseminationTree algorithm (see Algorithm 5.4)
which constructs such a dissemination tree. More precisely, it will construct
an NI . from N,,; that spans the involved nodes, namely @ with Q =
Upre U C. Our algorithm is based on the concept of the Kou-Markowsky-
Berman (KMB) algorithm [Kou et al., 1981] which is a well-known heuristic

- 137 -



5.8. Filter-enabled Dissemination Algorithm

for the Steiner Tree problem.

First, we are setting up an induced sub-cost-network N¢ = (Q, E¢, g)
(see Definition 5.3) in lines 4-9. Thereby, we consider and construct each
node combination (u,v) with u,v € @, determine its best DCCQ route from
u to v (line 6) based on the input network N, (see Algorithm 5.3), and
assign the cost value m to the cost value function ¢ (line 8) as well as mem-
orize the route E7 in E¥ (line 9). The next major step in the algorithm is
the determination of the best DCCQ tree ET by the BestDCCQTree al-
gorithm (see Algorithm 5.5) of the cost network N¢ (line 12). Doing this,
BestDCCQTree will follow the idea of the prim algorithm [Prim, R. C.,
1957, Cormen et al., 2009] and will be explained below.

The best DCCQ tree represented by E7 may contain connections which
do not exist in the original input E of N,,,. Those types of connections
will be identified and replaced by the best DCCQ route (lines 14-16). Based
on the cost network construction process above, the best DCCQ route is
already present in the set £ between u and v with u,v € Q. The function
replace ByBest DCCQRoute (line 16) takes a connection (u,v) which is not
member of E and replaces it in E7 with the best DCCQ route that is kept in
E®. The node set VT will be updated in this procedure with the intermedia
nodes that are involved in the best DCCQ route. At this stage we have a
NI . that is a sub network of N.,,;, however, it does not necessarily have the
tree property for our service data dissemination. This time, the best DCCQ
tree is determined based on the current status of NI , and its connection set
ET is updated (line 19). As mention above, the Best DCCQTree algorithm
is based on the minimizing spanning tree concept and will return a tree
that spans all nodes in the current V7. However, we are interested in a
tree which only spans the nodes that are members of () since we want to
deliver the service data to the corresponding service requesters only. Thus,
the final step in the DisseminationTree algorithm is removal of all node
leaves v ¢ @ and their branches to get the desired spanning tree (lines 20-
21). The function removeLeaf AndBranch takes a node that is a leaf of the
current £ and identifies the branch involved in E7 that routes to v. E7T
and V7 will be updated by removing this branch and leaf.

The BestDCCQTree algorithm takes an embedded network N, or a
cost network N¢, a start node vy, and a metric weighting value a. The
outcome will be a spanning tree £ that spans all nodes in a given V. The
procedure is similar to the Prim algorithm [Prim, R. C., 1957, Cormen et al.,
2009] which, however, applies our cost function and involves the different
kinds of network constellations. As with the BestDCCQ Route algorithm
(see Algorithm 5.3) we employ two working vectors: s which registers the
successor node, and d, the DCCQ vector that holds the current DCCQ cost
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value to a particular node from and within the latest constructed tree in s
(lines 2-3). In each round, we determine the current smallest DCCQ node
v within the working set () (line 5) and check all its directly connected
neighbors if the current DCCQ cost value m (determined in line 8 or 10)
from u to v is lower compared with the one that is kept in d (line 12). If so,
we will update the cost value in d and memorize v as a successor node of u
(lines 13-14). Please note that m is determined based on the given network.
In the case of a cost network N¢ we already have the cost value given by
the function g for each connection (line 10). In contrast, a given Ne,,; does
not include this information and it has to be calculated based on our cost
metric (line 8). After checking all nodes in @ we then finally construct the
ET based on the function constructTree that takes the successor vector s
(line 19).
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Algorithm 5.4 DisseminationTree(Nemp, Vpre, C, )

Input: Embedded network N, = (V. E, ¢, w, p), pre-filter node v, set of

client nodes C, and a metric weighting factor «

Output: A tree NT +— (VT,ET, c,w, p) which spanning v,,. U C
1: Q<+ vy UC, m<—0 EC<—® VT<—® ET «— (; E% « 0;
2: Let g a cost value function with g : @ x @) — Rx; init with g(u,v) < oo

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

for each v, u € @ pair
(@, E%g);
for all v € ) do
for all u € Q\v and {u,v} ¢ E¢ do
{ET,m} + BestDCCQRoute(Nepp, v, u, av);
E¢ «+ EC¢ U{v,u};
g(v,u) < m;
ES < ESUET;
end for
end for
ET < BestDCCQTree({0, N}, vpre, a);
VT« Q;
for all (v,u) € ET do
if (v,u) ¢ FE then
replaceByBestDCCQRoute((v,u), E°, ET, VT);
end if
end for

ET < BestDCCQTree({NL .. 0}, vpre, @);

for all v € VT\Q and isLeaf(v) do
removeLeafAndBranch( v, ET, VT);

end for

return NZ

emb?
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Algorithm 5.5 BestDCCQTree({ Nemy, NC}, vs, @)

Input: Either embedded network N, = (V,E,c,w,p) or a cost net-
work N¢ = (V, EY, g), start node v,, a metric weighting factor «
Output: Best device class and connection quality tree ET
1: Q<+ V;m<+ 0; EC < 0;
2: Let s the successor node vector; init with s[v] - —1 for all v € V
3: Let d the DCCQ vector; init with d[vs] < 0 and d[v] < oo for all
v e Vg
4: while Q # () do

5. Let be u the node where Yv € @ is d[u] < d[v]
6: for all v € @ and w(u,v) > 0 or g(u,v) > 0 do
7: if N # () then

s mea (o) + o) + 2 — (p(v) + plw)) + L=,
9: else

10: m < g(v,u);

11: end if

12: if d[v] > m then

13: d[v] < m;

14: slv]  w;

15: end if

16:  end for

170 Q<+ Q\u;

18: end while
19: ET < constructTree(s);
20: return E7;
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5.3.3 Post-Filter Placement

In this part in our service data dissemination approach, we are trying to find
suitable and processable nodes in N7 . that enables us to a shared service
data delivery from v, to all or to some particular service subscribers as
long as possible. In order to realize this, we will place one or more post-
filters that evaluate the relevance for same tree branches and provide node
destinations for either the client nodes or the next post-filter nodes. Explain-
ing this in more detail, let us look at an example: Let us assume that we
have an N! , given as depicted in Figure 5.4 that was constructed by the
DisseminationTree algorithm. Furthermore, based on the data model given

in Figure 3.4 the service subscriber queries are
e Node 4: Q1 = //Humidity
Q2 = //status|text() =" Low Battery']
e Node 7: Q3 = //Temperature/value
e Node 8: Q4 = //Temperature /value(text() < 21.0]
e Node 9: Q5 = //Temperature /value[text() > 20.5] .

Upre (n0de 1) already runs pre-filter G that evaluates whether queries
are of relevance or not. If all client queries are relevant (message contains
status value ‘LowBattery’ and temperature value 20.7), it is desired that the
data be sent only once from v,,. to all client nodes. This should also be
the case if only a subset of queries match (e.g., the message contains the
status value 'OK’ and the temperature value of 20.0). For realizing a shared
delivery we will place post-filters at node 3 (G’%) as well as node 6 (G%.).
More precisely, node 3 has multi successor branches, one of which leads to
client node 4 and the other to client nodes 7, 8, and 9. At this point, we
are no longer able to share the service data for all clients. Consequently, we
have to use a post-filter to decide along which branch we are going to forward
the service data. If queries Q1 and/or ) match, then the service data will
be forwarded to node 4, and/or if one of the queries Q3, @4, or Q5 match,
then the data will be forwarded on along the branch that leads to client
nodes 7, 8, and 9. So as to forward the service data in the latter scenario
only once, node 6 will provide the next post-filter. However, it only contains
evaluation constructions of queries ()3, @4, or ()5 since node 4 can no longer
be reached at this point. Based on the received data and data content, node
6 will forward the message to the corresponding client nodes as final step.
Summing up, the pre-filter and the post-filter contain the following routing
information:
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Figure 5.4: NI . that spans v,.. (node 1) and service subscribers (nodes 4,
7,8, and 9). An optimized service data dissemination is realized by placing

post-filters at node 3 and 6.

e G (at node 1): forwards service data to node 3 when at least one of
the queries @1, @2, @3, (4, or Q5 matches.

e G, (at node 3): forwards service data to node 4 when @); or ()2 match
and/or to node 6 when @3, Q4, or Q)5 match.

e G, (at node 6): forwards service data to node 7 (for any cases), to
node 8 when )4 matches, and/or to node 9 when ()5 matches.

As the examples shows the best position for post-filters are nodes that
have multiple successor branches, powerful device classes, and are processable
to run a filter mechanism. However, if processability is missing, for example,
then we have to find alternative nodes nearby to keep the shared data prop-
erty. The PostFilter Placement algorithm (see Algorithm 5.6) take sall this
aspects into account and tries to find the best places for post-filters in N |
to enable a shared service data delivery.

As input it takes a tree network NI . the client’s queries @, the deter-
mined pre-filter node v,,. with its filter grammar G'r, and the underlying
data model X.SD. The outcome is a tuple set F' that contains the dedicated
filter nodes with the corresponding filter grammar. The algorithm starts to
determine all nodes that have multi successor branches in the tree (line 2).
Next, we start to consider each branch node in B separately. Thereby, in
each round, we select the node in B that is closest (in terms of hop-count)
to the root node (the pre-filter node v,,¢) in the tree (line 5). One of the
most important aspects for placing a post-filter mechanism is the process-
ability of a selected branch node. Doing this, it is first and foremost deter-
mined which kind of queries can be addressed from v (line 7). For instances,
consider the example above (Figure 5.4): Node 3 would address all client
queries (Q1,..,Qs) and hence, the function reachableClientQueries would
return these queries. However, node 6 will only address queries (03, ()4, and
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5. Thus, reachableClientQueries would return only these queries. In gen-
eral, it always will be R C (). Based on R, we will construct a filter grammar
G’ (line 8). If, after investigation, it turns out that G’ cannot be deployed
because of leak of resources (line 9), we will try to find another processable
node which is on the path to the root (lines 10-12). After finding a v we will
test if this node has not yet been registered for a post-filter placement. If so,
we will continue to select another branch node (lines 14-15) and check it for
processability.

In the case of a suitable v, the algorithm will continue to collect this
corresponding node with its filter grammar G’ in F' and will register v in P
as a processed node (lines 18-19).

The last major step in this algorithm is determining the routing informa-
tion that has to be assigned to the filter mechanism. At this point, we also
consider pre-filter node vy, with its filter grammar G (line 21). For each
tuple in F', we determine the post-filter occurring first with the successor
branches of v (lines 22-23). The nodes determined in N will be associated
with the filter grammar G, identified by the underlying queries ) (lines
24-25). In other words, each query that is represented in G’ will be assigned
the delivery destination information to which the service data has to be for-
warded next. In cases where there is no next post-filter node (N = (), the
queries in G’ will forward the service data to the final client destinations.
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Algorithm 5.6 PostFilter Placement(N2 , Q. vpre, Gr, XSD)

Input: Embedded network NI . = (VT ET c,w,p) which has a tree char-

emb —

acteristics, a set () of client’s queries, the dedicated pre-filter node vy,
with its filter grammar G, and the data model as XML schema definition

XSD.

Output: A set F' that consist of a tuple of dedicated post-filter nodes with
its filter grammars.

NN NN~~~ P B B B B &= &
R i e B L A ol > el

N N NN
% TS &

2O

P+ 0; R+ 0; Gy < 0; F « 0;
B «+ nodesWithMultiSuccesor Branches(ET);
B < B\Upye;
while B # ) do
v < closestNodeToRoot(B, Uy );
B + B\v;
R < reachableClientQueries(v, Q);
Gy < FilterGrammar(XSD, R);
if isProcessable(v, G'») == false then
v < get Ancestor(v);
while isProcessable(v, G%) # true and isRoot(v) # true do
v <— getAncestor(v);
end while
if v € P then
continue;
end if
end if
F«+ FU{v,G%};
P+ PUuv;
: end while
0 F < {vpre, GF} U F;

: for all {v,G%} € F do

N < nextPostFiltersInBranches(v);
if N # () then

associateQueries(G, Q, N);
end if

: end for
: return F;
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5.4 Example

We will now consider the embedded network N, = (V, E,c,w,p) which is
shown in Figure 5.1(a). Node 1 is a service provider based on the data model
presented in Figure 3.4. Nodes 3, 4, and 7 are the service requesters with
the following conditions:

e Node 3: @y = //Humidity
Q2 = //statustext() = OK']
e Node 4: Q3 = //Temperature /value(text() < 21.0]

e Node 7: Q4 = //Temperature /value[text() > 20.5] .

Figure 5.5 shows the filter grammar G based on this query after apply-
ing the FilterGrammar algorithm (see Algorithm 4.8) that was presented
in chapter 4.4. Since the service requester node does not provide us with the
opportunity to set up an filter mechanism for clients’ subscription requests,
we have to find an alternative node for placing a pre-filter mechanism. In
order to do so, we have to identify any processable nodes within the net-
work that have enough resources to run Ggp. We use the variable r.,, with
Tewr € [0,100] to represent the current resources of each node in the network.
0 means no resources and 100 means that full resources are available. Ta-
ble 5.1 shows the nodes that are processable in Figure 5.1(a) as well as their
current resources capability.

Node v 71w p(v) p(v,50)

3 30 1 0
4 45 1 0
3 70 1 1
8 95 1 1

Table 5.1: Ressources capability of nodes in Figure 5.1(a)

In our example we will apply the following processability test function
(comparable to the isProcessable procedure applied in Algorithm 5.2 and 5.6)
for each node

Tecur

maz{0, |2 — T2 Teur > 0
PV, Treq) = {0.1 I (5.7)
0 s Teur = 0
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Figure 5.5: Pre-filter grammar

Please note that Function 5.7 can also be adjusted individually for each
node class, however, for the sake of simplicity we will not take this into
account here. Let us assume that G has a resource load of 50. Applying
this to p for each current processable node in N,,,;, produces the outcome
that is shown in the last column of Table 5.1.

Thus, the ClosestPreFilter Node (see Algorithm 5.2) will test two can-
didates: nodes 5 and 8. Starting with service node 1, it will determine the
costs fi5 and fig. Each cost will be multiplied by the sum of cost to the
client nodes 3, 4, and 7. The result is as follows

o fis - (fsg+ foat fsr) =2,5-(2+3+4)=225
o fig-(fsg+ faat fsr)=4-(3,5+2+3)=34

Consequently, the outcome of algorithm ClosestPreFilter Node shows
that node 5 is the best pre-filter node.

The next step involves determining a dissemination tree that spans node 5
and client nodes 3, 4, and 7. In order to do so, we will call the Dissemination-
Tree (see Algorithm 5.4). There, the first step includes constructing a cost
network N¢ based on these nodes. Figure 5.6(a) shows the outcome. Next,
we will determine the best cost tree in this complete connected network by
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Figure 5.6: DisseminationTree algorithm

using the subroutine Best DCCQTree. The blue route marked within Fig-
ure 5.6(a) shows the result. All connections of this tree that do not exist in
the origin network N, will be replaced with the best DCCQ route. E.g.,
the tree provides a direct connection from node 4 to node 7; this, however,
did not exist in N,,;,. The best route from 4 to 7 in N, is via node 8.
Thus, this route will be used and it replaces the direct connection from 4
to 7 in the tree. The replacement process results in a subnetwork of N,
which does not contain any cycles (see Figure 5.6(b)). At this point, the
DisseminationT'ree algorithm has no further impact on the network seen in
Figure 5.6(b) due to two aspects: First of all, the subnetwork already has the
desired tree characteristics and applying subroutine Best DCCQTree again
would lead to the same result. Secondly, all leaves involve those nodes which
were desired to be spanned. Thus, we don’t have to remove any leaves and
branches.

The last major processing step in our dissemination algorithm involves
determining suitable post-filter nodes to enable a high ratio of shared service
data from service provider to service requesters. Starting with (root) node 5,
the PostFilter Placement (see Algorithm 5.6) will first select all nodes that
contain multi successor branches. Nodes 5 and 8 are candidates. Since node
5 already is a dedicated pre-filter node, we will not consider it further and
instead check node 8 directly for processability of a post-filter grammar. The
post-filter grammar is constructed based on the queries that can be reached
from node 8. This is true for the queries ()3 and Q)4. Figure 5.7 shows
the post-filter as based on these queries. If we assume that this post-filter
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Figure 5.7: Post-filter grammar

request has a resource capability of 30, then our processability Function 5.7
above would return p(8,30) = 1 based on current resource capabilities given
in Table 5.1. Hence, node 8 would be selected as a post-filter node. Before
the PostF'ilter Placement algorithm is terminated, we are going to update
the network’s defined filters in terms of routing information. Node 5 is set
up with the pre-filter G that is shown in Figure 5.5. There it contains the
associated information )7 and () relates to node 3, Q)3 relates to node 4,
and query ()4 to node 7. Based on the post-filter to be placed on node 8,
service data that matches queries (3 and ()4 shall be forwarded to node 8,
which then will send the data only once. Thus, G is updated with this
information. In summary, we obtain the following routing information:

e G (at node 5): forwards service data to node 3 when queries @); and/or
()2 match; forwards service data to node 8 when queries Q3 and/or Q4
match.

e (% (at node 8): forwards service data to node 4 when @3 matches;
forwards service data to node 7 when ()4 matches

Finally, we have achieved service data dissemination as shown in Fig-
ure 5.1(d). All new service data is sent to node 5 for evaluation. Relevant
service data is forwarded to client node 3 and/or to the next (post-) filter
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node 8. Depending on its relevance, node 8 forwards this data to client nodes
4 and/or 7.

5.5 Extensions and Optimizations

The dissemination approach introduced in this chapter provides a number of
opportunities for extension and optimization which we will be discuss below.

Cost Penalties and Path Sharing Awards: Our selected cost function
is mainly based on the metrics of device classes with processability and con-
nection quality. A weighting factor («) in our cost function f can be used
to adjust the focus on node property (device class and processing ability) or
on connection quality. An exponential weighting or penalty factor applied
to the device classes or connection quality value would additionally punish
very constrained device classes or bad connection qualities.

A high number of processable nodes in a determined dissemination tree
indirectly results in a high ratio of shared connections of service data mes-
sages. It is also possible to take this aspect into account for f. In this way,
a dissemination tree is rewarded when it consists of a high number of shared
connections.

Complexity The complexity of our dissemination approach is mainly dom-
inated by the finding a suitable pre-filter node. Let us assume that in an given
embedded network N, each node, except for the node of service provider v,
is processable and has enough resource capability to run a pre-filter gram-
mar. In addition, each node in N,,,; is a service requester of node v,. In
our approach we would consider |V| — 1 nodes and would determine the best
DCCQ route to all other nodes. More precisely, we end up with a complexity
of O((IV|=1)(|V [log|V |+ E])) = O(|V?3|log|V|+|V||E]). So as to avoid such
a scenario we can select a pre-defined value k that restrict the observation
number of processable nodes. A variant is to consider each branch of v, and
its nodes until the branch depth k is reached. All nodes beyond k are not
considered anymore.

Complexity can also be improved if the intermediary DCCQ result of the
ClosestPreFilter Node is taken to the DisseminationTree algorithm. This
is especially true for constructing the cost network, where we can fall back
to this intermediary result and do not have to determine it again.

Direct Delivery Our service data dissemination approach tries to evaluate
as soon as possible whether service data is relevant (for the clients in the
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embedded network) at the pre-filter node. In the case of a multi query
match of different client nodes we attempt to share service data for as long
as possible by the usage of post-filters. However, if there are only disjunct
queries or if there is no overlap in value constraints in the pre- and post-
filters, service data can be delivered directly without being forwarded to the
next post-filter.

5.6 Evaluation

So as to organize service data dissemination of each new applied application
and to estimate its influence in terms of traffic and device capacity usage of
real embedded networks we wrote an embedded network simulator. The sim-
ulator provide us with the opportunity to load particular network topologies
and characteristics as well as service provider and the service subscribers with
its queries. Another alternative is to setup randomized embedded networks
by providing different kinds of generation parameters: number of nodes,
number of different kind of device classes, and the ratio of device classes and
connection quality. Based on such a network, we are able to set up new
applications by selecting particular nodes, which operate a service with the
provided service description, and the client nodes that subscribe service data
with the predefined conditions on the service data. We can then run our
dissemination algorithm for each new installed application.

In order to test the effectiveness of the approach presented in this chapter,
we randomly generated two kinds of embedded networks. The first network
has a complexity of 50 nodes with three device classes, the second one consists
of 100 nodes with four device classes. An overview of the different network
setups with their different ratios can be found in Table 5.2. Both network se-
tups are initially feature a balanced ratio of processable and non-processable
nodes. The first scenario comes with three different device classes. Their ra-
tio consists of 5 times device classes 1, 10 times device classes 2, and 35 times
device classes 3. The second scenario uses four classes with a ratio of 10 times
device classes 1, 10 times device classes 2, 20 times device classes 3, and
60 times device classes 4. Initially, for both network scenarios, we uniformly
distributed the connection quality weighting values with numbers between
0.8 and 1.

For each network we sequentially installed five different kinds of applica-
tions. In general, an application is based on a service provider and different
kind of service requester (the clients). The distance (in terms of hop count)
and client distribution to the service provider node is increased with each new
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|[V| Processable #Classes Ratio App/#Clients
50 25:25 3 51035 1/2, 2/3, 3/4, 4/5, 5/6
100 50:50 1 10:10:20:60 1/4, 2/6, 3/8, 4/10, 5/12

Table 5.2: Network configurations for evaluation

installed application. For the first network, we start with the first applica-
tion, which has two clients; subsequently, the second has 3 clients, the third
has 4 clients, there are 5 clients in the fourth application, and finally the fifth
application has 6 different service requesters. The second network scenario
with |V| = 100, we double the number of clients for each application, which
can be seen in the last column of Table 5.2. For each installed application
we evaluated the service data dissemination for two variants: Filter-enabled
dissemination (abbreviated with FD) represents our filter-enabled dissem-
ination approach and the separate and direct dissemination (abbreviated
with DD) reflects the direct, non-filtered service data delivery which, how-
ever, takes into account the device class and connection quality. In both
cases, we always consider the worst case scenario for dissemination delivery.
In other words, each generated service data matches at least one query of
the clients and hence, the data has to be delivered to each registered client
in this application. For each determined dissemination path variant of an
application (both for FD and DD) we decremented the weighting connection
quality by the value of 0,1. This simply reflects the additional connection
load in terms of, among other factors, delay or bandwidth. In the context
of FD, we set each dedicated filter (pre- and post-filter) node along the path
to be non-processable so as to simulate the impact of the additional filter
mechanisms in the network.

Figure 5.8 shows the evaluation result for network scenario |V| = 50.
Figure 5.8(a) depicts the result for each application in terms of device class
occurrences (Cl1=Class 1 nodes, C12=Class 2 nodes, and Cl3=Class 3 nodes)
in the dissemination path of our approach (FD Optimized) as compared to
the simple approach, wherein each service data is delivered separately (DD
Simple). In other words, we count the occurrence of the device classes in the
determined dissemination path (tree) that reflects the worst case scenario
when a service message is relevant for all service requesters in the network. As
can be seen in for all cases, our approach, as presented in this thesis, results
in a lower usage of class occurrences as compared to the simple service data
distribution variant. This becomes especially apparent the more complex the
application is. Furthermore, the occurrences also show that our determined
dissemination paths always consist of the desirable, relatively small number
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Figure 5.8: Embedded network with |V| = 50: (a) Count of used classes in
the dissemination path and number of used post-filters for each application.
(b) Number of links of the dissemination path and average value of connection

quality.

of constrained nodes (class 3). For instance, in a worst case distribution
scenario for application five, our dissemination approach uses the device class
1 sixteen times, class 2 ten times, and the most constrained device class 3
eight times. In total, 34 nodes are involved in the dissemination process. In
contrast, a simple dissemination would lead to a device class ratio of class 1
thirty-five times, class 2 twenty-four times, and class 3 twenty times.
total, this involves 79 nodes. Consequently, our approach results in a better
resource usage of the nodes in the embedded networks since less total nodes
are involved in the dissemination tree; the number of constrained nodes (class

3) is kept as small as possible.

In

The evaluation results in Figure 5.8(a) also shows the number of used
post-filter nodes in the application. Consequently, the more complex the
application the number of post-filter rises. E.g., four post-filters are used in

application 5.

Figure 5.8(b) show the evaluation result in terms of the number of connec-
tion links used and average connection quality. As can be seen, the number
of connections used in a dissemination process is smaller for our approach
as compared to the simple variant. The graphic also shows the ratio of the
shared connections of the optimized variant in each application. We deter-
mined the number based on whether each connection between two nodes can
reach a pre-filter or a post-filter node. If so, the number of shared connections
is incremented (Shared FD). The presented numbers shows the effectiveness
of our approach, since for each application we determine a dissemination tree
that consist of a high ratio of shared connections. Figure 5.8(b) also shows
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Figure 5.9: Embedded network with |V| = 100

the average connection quality for each application and its dissemination
based on both our approach and the simple variant. As can be observed, the
simple dissemination variant loses the average connection quality faster than
our approach. This is explained by the fact that the simple variant involves
a lot more connection links and causes potential more network traffic. The
more applications are installed in the network, the greater the impact on
connection quality will be.

The Figure 5.9 confirms our previous findings; however, now the network
scenario consists of 100 nodes, 4 device classes, and a double ratio of service
requesters. Subfigure 5.9(a) shows the almost equal distribution of device
classes in each application even if there is a high ratio of constrained class 4
devices (60%). In contrast, many outliers can be seen in the simple variant.

Subfigure 5.9(b) shows the connection ratio and the average connection
quality. Due to an increased number of service requesters, the number of used
routes increases in the simple variant. Consequently, the average connection
quality has a higher impact than that of our optimized dissemination.

5.7 Related Work

To the best of our knowledge, we are the first to propose a filter-enabled dis-
semination mechanism based on binary XML with EXI and for constrained
embedded networks. Basically, the concept of data sharing is not a new topic
and investigations have especially focused on the domain of Data Stream
Management Systems (DSMS). The same is true for the content-based rout-
ing in networks. In the following subsections, we will provide related works
that focus on these two topics.
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5.7.1 Data Stream Management Systems

Finding a suitable pre-filter node outside of the service data origin node and
the position of post-filters in a dissemination tree opens the opportunity to
share relevant service data with a number of service subscribers. This leads to
a reduction of resources used within embedded network in terms of network
traffic as well as processing overhead. Similar topics are addressed by and
can be found in Data Stream Management Systems (DSMS). Data Stream
Management Systems (DSMS) complement the traditional Database Man-
agement Systems (DBMSs) [Kemper and Eickler, 2011]. Typically, a DBMS
handles persistent and random accessible data and executes volatile queries.
Meanwhile, in DSMS persistent queries are executed over volatile and se-
quential data. Examples of DSMSs includes Aurora [Abadi et al., 2003],
Borealis [Abadi et al., 2005], TelegraphCQ [Chandrasekaran et al., 2003],
and StreamGlobe [Kuntschke et al., 2005]. The main focus of such systems is
on the efficient processing of potentially infinite data streams against a set of
continuous queries. In contrast to publish/subscribe systems such as XFil-
ter [Altinel and Franklin, 2000], YFilter [Diao and Franklin, 2003], or our
highly efficient binary XML filtering mechanisms introduced in Chapter 4,
continuous queries in DSMSs can be far more complex than simple filter
subscriptions. Some researches develops new query languages such as Win-
dowedXQuery (WXQuery) [Kuntschke, 2008] to extend query operations. In
the domain of constrained embedded networks, however, we presume the
presence of relatively simple data models and have found that XPath expres-
sions are sufficient to address data interests and simple constraints by pred-
icates. Other important topics in distributed DSMSs such as StreamGlobe
and Borealis revolve around network-aware stream processing and operator
placement. These are also issues relevant to constrained embedded networks
and, similarly, we took them into account for our approach by positioning
the pre-filter and, if possible, post-filter mechanism at the embedded nodes.

Most DSMSs, such as TelegraphCQ for example, are based on relational
data. StreamGlobe, however, focuses on plain-text XML data streams as well
as on XML-based query languages such as XQuery [Boag et al., 2007] or the
above mentioned WXQuery. Consequently, nodes used for distributed data
stream processing in systems such as StreamGlobe and Borealis generally
need to be far more powerful than the microcontrollers for constrained em-
bedded devices that we aim for in this thesis. E.g., our reference hardware,
such as the ARM Cortex M3 microcontroller with 256kB RAM, 16kB ROM,
and 24MHz, would be overcharged by the complex XML parsing libraries as
well as the query engine to evaluate data relevance. Our approach of realizing
efficient binary XML (see Chapter 3) and constructing of high performance
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filter mechanisms (see Chapter 4) enables us to bring DSMS topics to the
domain of constrained embedded networks.

5.7.2 Content-based Network Routing

In our approach, filter nodes such as pre-filter or post-filter ones decide how to
best forward service messages if there are one or more matches. The destina-
tions may include service requester nodes and/or other post-filter nodes. In
the literature, this is called content-based routing or application-level routing
since routing depends on constellation of data within a message. In that con-
text, we can refer to works such as the combined broadcast and content-based
(CBCB) routing scheme [Carzaniga and Wolf, 2002|, the application layer
multicast algorithm (ALMA) [Ge et al., 2006], the usage of XML Router [Sno-
eren et al., 2001], and view selection for stream processing based on XML
data [Gupta et al., 2003]. Below, we will concentrate on the last mentioned
related works since they also involve XML-based data content.

The XML Router approach [Snoeren et al., 2001] creates an overlay net-
work that is implemented by multi XML routers. An XML router is a node
that receives XML packets and forwards a subset of these XML packets. The
XML packets are forwarded to other routers or the final client node destina-
tions. Thereby, the output links represent the XPath queries that describe
the portion of the router’s XML stream that should be sent to the host on
that connection link. XML routers are comparable to our pre- and post-filter
concept. However, additional strategies, such as reassembling a data packet
stream from diverse senders provided by the diversity control protocol (DCP)
or the banking on plain-text XML and XPath interpreters, are not feasible
in a resource constrained embedded environment.

The view selection for stream processing method is an interesting ap-
proach followed in [Gupta et al., 2003, Gupta et al., 2002]. The main con-
cept includes selecting a set of XPath expressions which are called wviews.
The service data producers evaluate the views and add the result to the data
package in the form of a (binary) header. The advantage is that servers
which keep a local set of queries can evaluate their workload by inspecting
only the values in the header and do not need to parse the XML document.
This leads to a speed-up of routing decisions. However, this is only true
for cases in which the evaluation in the header is positive. Otherwise, the
complete (plain-text) XML document has to be parsed and the query has to
be evaluated in a normal way. Again, this is an obstacle in the constrained
embedded environment. In addition, one of our goal is to achieve seamless
protocol usage and to work with standardized message representations to
support interoperability in a heterogeneous network environment. Adding a
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header to a message would break this principle and necessitate an adjustment
of communication protocols.

5.8 Summary

In this chapter we presented an approach to realize efficient service data
dissemination in the context of known service data demands of the service
subscribers. Finding a suitable pre-filter node in an embedded network leads
to an early evaluation of relevant service messages. By using post-filters in
a determined dissemination tree we are able to avoid redundant transmis-
sions and share the service data, especially if there is a multi-query match
of different kinds of service requesters. The effectiveness in terms of device
classes occurrences, connection quality, and number of shared connections
was demonstrated in a simulated environment based on our embedded net-
work simulator that compared our approach to a non-shared and non-filter
dissemination variant. Our approach reduces both network traffic and com-
putational load of embedded nodes. In general, this also leads to less energy
usage within the network which is an important resource boundary of WSNs.
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Chapter 6

Project Experiences

6.1 Introduction

In the following chapter we are going to show how our developed approaches
can be beneficial to realize cross-domain applications in an embedded envi-
ronment consisting of resource-constrained hardware. As an example how a
Web service-based adoption can be used in a real-world scenario, we refer to
the field of electro mobility. In that context we will share our experiences
from the participation in standardization activities in ISO/IEC 15118 and
from the cooperation with our project partners such as electricity suppliers
and original equipment manufacturers (OEMs).

6.2 Vehicle-to-Grid Standardization

The evaluation section in Chapter 3 already introduced V2G messaging based
on ISO/ICE 15118 standardization (see Section 3.4.1). The major goal of
this standard is to define a charging protocol valid worldwide. Vehicles from
any vendor and from any country shall be able to charge their batteries at
any arbitrary charging station of any utility and energy provider. Users of
electric vehicles shall have the same user experience as provided by today’s
conventional refueling at the gas station.

To reach this goal, there has to be agreement on all different kinds of com-
munication levels, starting with the physical layer up to the application layer.
Based on the electric cable connectors between the Electrical Vehicle (EV)
and Electric Vehicle Supply Equipment (EVSE), power line communication
(PLC) is obvious. The actual application communication units are called
Electrical Vehicle Communication Controller (EVCC) for the EV side and
Supply Equipment Communication Controller (SECC) for the EVSE side



6.2. Vehicle-to-Grid Standardization

[ EEEseer e E) 1))

IdevittySO

EVSE Server started! Watt for PEV messages...EXI stream (number of bytes: 5):
1442165188 0

ID

Plain XML (number of bytes: 765):
<7l version="1,0" encoding="UTF-8"7
<nS0:V26_Message xmins:ns0="urm:iso:15118:2:2010;evall.0:MsgDef">
<nsOiHeader>

<nsl

mi
xmins:ns2="4
</nsl:Sessioninformation>
</ns0:Header>

<ns0:Body>
<nsS:SessionSetupReq xmins:nsS="urniiso:15118:2:2010:evall.0:MsgBody">
<nsS:PEVStatus>

<ns6:Connectorlocked

Jminsins6="urm:iso:l 5118:2:2010:evall >0</ns6iConnectorLocked:
<ns7:Chargerstandby

xmins:ns7="urnis0:15118:2:201 0:evall. 0:MsgDataTypes"=0</ns7:Chargerstandby=
<nsg:ReadyToCharge

xmins:ns8="urn:is0:15118:2:2010:evall. 0:MsgDataTypes">0</ns8:ReadyToCharge>
</nsS;PEVStatus>

<InsS:SessionSetupReq>

<Ins0:Body>

<INS0:V2G_Message>

niis0:15118:2:201 0:evall
0:MsgDataTypes’/>

EXI stream (number of bytes: 24)
144 216 65129 137 145 153 161 169 177 189 193 3 161 35 69 74 30 181 46 8122 212176

Plain XML (number of bytes: 1502):
<zxml version="1,0" encoding="UTF-8"7>
G,

iis0:15118:2:2010:evall.0:MsgDataTypes”

d="urm:is0:15118:2:2010:evall.0:MsgDef"
xmins:v2gci_h="urm:iso:15118:2:2010:evall.0:MsgHeader"
xmins:nsO="urniso:15118:2:2010:evall, 0:MsgBody*

xmlnsixsi="https/Mww.w3.0rg/2001 MMLSchema-instance”

<v2gci_diHeader>
<v2gci_h:Sessioninformation>

<v2gei
<Nv2gci_fiSessioninformation
<n2gci_dHeader=|
<v2gci_d:Body>
<ns0:SessionSetupRes>

<nsO:EVSEID>a12345</ns0:EVSEID>

(b)

Figure 6.1: (a) EVSE, SECC (vertical white box within the EVSE), and EV;
(b) Charging message trace in binary XML (highlighted in blue) with EXI
and in plain-text XML.

(see Figure 6.1(a)). Between these units and via PLC media, different kinds
of information have to be exchanged between an EV and an EVSE. This
includes which kind of charging mode is desired (e.g., AC or DC), physical
values (e.g., max/min voltage and max/min current), charging schedules,
tariff tables, and value-added services (VAS) such as traffic information or
remote access via a smartphone to the vehicle [Kébisch et al., 2010b]. Fur-
thermore, security aspects also have to be considered since confidential data
such as contract IDs and tariff information are exchanged under certain cir-
cumstances. The decision for selecting an XML-based Web service approach
can be considered by different kind of aspects:

Heterogeneous infrastructure A suitable approach shall be independent
of any used hardware and used software platforms which may be specific to
the particular vehicle or supply equipment manufacturers. Furthermore, dif-
ferent kind of V2G stakeholders such as energy retailers and clearing houses
shall be able to participate in a charging process. As we already know and
have discussed in this thesis, a Web service-based approach, which uses hard-
ware and platform independent standards, perfectly meets the criteria for
this.
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6.2. Vehicle-to-Grid Standardization

Modelling XML schema provides a powerful mechanism for modeling XML
data in a very precise manner in terms of content structuring and type re-
strictions (see also Section 2). Based on the usage of microcontroller units
and the constrained amount or memory on both the EV and EVSE side, each
data item has to be declared as it is actually used. Commercial and open-
source professional XML Schema tools support the development of the data
model by supplying a graphic interface and validating correctness. This eases
the development process and enables faster identification of mismodelling.

Encoding Messaging in plain-text XML puts high demands on hardware
resources; these, however, do not meet the needs of the embedded environ-
ment of the charging domain. Due to issues of time constraint in DC-based
charging (20ms for a roundtrip message via PLC) and the usage of con-
strained embedded devices on both sides (EV and EVSE), an efficient mes-
sage encoding method has to be selected to facilitate interaction. Based on
our research and demonstrations, we were able to show that EXI perfectly
meets these requirements. Thus, parallel to the V2G standard and in terms
of proof of concept we published project OpenV2G! which provided a Web
service-based reference implementation of ISO/IEC 15118 based on our de-
veloped approach in this thesis. OpenV2G is world wide used in products
(e.g., Siemens EVSEs), in laboratory environments and in projects of dif-
ferent vehicle OEMs and energy providers. Latter ones include, e.g., our
project contribution to Electromobility Model Region Munich? with partners
such as BMW Group and the municipal utility Stadtwerke Miinchen (SWM).
OpenV2G could be successfully applied to fast DC charging on a SECC for
a Siemens EVSE and on an EVCC for a BMW ActiveE EV.

Security Web services and their extensions such as the ones WS-* (see
Section 2.5.2) provide a rich number of standardized protocols for all differ-
ent kinds of applications. The ISO/IEC 15118 profited from that by utilizing
the XML Signature framework [Eastlake et al., 2002], which has been stan-
dardized by the W3C. Instead of defining a unique mechanism for signing
confidential data content, we were able to simply embed the XML Signature
framework. In this context, we initiated to have EXI Canonical [Kabisch and
Peintner, 2013] standardized by the W3C so as to implement normative re-
quirements for having a unique representation of the different EXI modes (see
Section 3.2.2) for any application (e.g., for signature purposes) that requires

thttp:/ /openv2g.sourceforge.net/
http:/ /www.siemens.com /press/pool/de/events/corporate/2010-10-
ecartec/eCarTec2010-Factsheet-MODELLGREGION-MUENCHEN _e.pdf
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6.3. Complex Charging Infrastructure

the canonical form of the data.

Debugging Due to the binary XML representation of V2G messages, a
direct debugging, e.g., on the wire, is not possible, since the highly compact
EXT format is designed to be machine readable and not human readable.
However, based on the XML Infoset requirements, EXI can easily be trans-
formed into a human readable format such as a plain-text XML represen-
tation. Figure 6.1(b) shows a snippet of our trace tool that shows the EXI
representation on the one hand and features the plain-text representation
below. In conclusion, applications profit from the highly efficient machine-
readable binary XML format, and on the other hand, developers always have
the opportunity to have the high structure plain-text XML as a representa-
tion available to them for debugging or other monitoring reasons.

There are further benefits, such as the flexibility and extendibility of
XML-based messaging. This enables transmission of additional information
(e.g., vendor or costumer specific), which, however, does not need to be
domain specific standardized. Thus, vehicle vendors or energy providers are
able to support extra features and market them to costumers.

6.3 Complex Charging Infrastructure

Charging standards such as ISO/IEC 15118 are mainly focused on the com-
munication protocol between an EV and an EVSE. The infrastructure is
getting more complex when congeries of EVSEs are considered, which may
be found in parking areas. Figure 6.2 shows a sample infrastructure and its
possible interaction variants based on 4 fixed charging stations. It is not
necessary to place the charging control unit, the SECC, within the EVSE.
In terms of cost reduction, the unit can be outsourced and the EVSE node
only has routing functionality. Figure 6.2 illustrates this case by having two
SECCs. Depending on the current resource load of the SECCs, the EVSE
can select one of the SECCs for a new charging session. The SECCs can
also communicate with a backend server, maintained by an energy provider,
for example, to obtain current local grid load information. Another case in-
volves the SECC communicating with a VAS that is triggered by an EV. A
VAS can be a vehicle specific application such as a remote control (e.g., by
smartphone) for setting up the air conditioning in advance.

The scenario shows just how complex the interaction can become when a
high number of heterogeneous instances, such as vehicles, charging stations,
and service providers, are taken into consideration. The SOA approach meets
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EV/EVCC EVSE SECC Backend

Lo L

R

(N

H H
Figure 6.2: Different instances of a standardized charging infrastructure
based on 4 EVSEs: Arbitrary EVs are able to connect and communicate (by
the EVCC) with one of the EVSE (represented as dotted lines). The com-
munication unit of the EVSE, the SECC, is outsourced. The EVSE routes
the messages to one of the SECCs (depending on resource load). Depend-

ing on the charging session and costumer demands, the SECCs are able to
communicate with arbitrary backend services (represented as dotted lines).

these conditions perfectly. Filter approaches as presented in the previous
chapters in this thesis can be used to identify, e.g., irregular values such as
exciting power values. For example, this can be checked by the EVSE nodes.
In these types of situations, emergency messages can be sent to all SECCs
commanding them to interrupt current charging sessions.

6.4 Related Work

ISO/IEC 15118 is not the only standardization related to vehicle-to-grid or
smart grid, respectively. DIN 70121 [DIN, 2012] is a subset of the DIS status
of ISO/IEC 15118 that mainly addresses DC charging and skips VAS as
well as security topics. It is assumed that ISO/TEC 15118 will replace this
standard once it is finally released.

The Smart Energy Profile 2.0 (SEP 2.0) [ZigBee, 2013] from the ZigBee
alliance is a standard running parallel to ISO/IEC 15118, which mainly ad-
dresses smart grid applications such as smart metering. Like ISO/TEC 15118,
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6.5. Conclusion

SEP 2.0 uses XML-based technologies. Originally, SEP 2.0 was supposed to
have a unique charging protocol for EV; however, this has been deferred and
most likely the ISO/IEC 15118 will be used instead.

6.5 Conclusion

Using XML-based technologies such as Web services provides many bene-
fits in terms of development, maintenance, and debugging of applications
for embedded networks. In this chapter we discussed the positive usage of
Web service-based applications and our associated developed approaches in
a real-world scenario, the V2G domain. Based on our initiative such as proof
of concept demonstrator or the OpenV2G project, we were able to show that
V2G service interacting between EV and EVSE using XML-based messages
are highly efficient and feasible to constrained devices such as microcon-
trollers. This supported the decision to make XML-based service interaction
with EXI encoding mandatory in the ISO/IEC 15118 standard.
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Chapter 7

Conclusion and Outlook

The Service-oriented Architecture (SOA) concepts such as independence and
reusability of services perfectly meets the unique characteristics of embed-
ded networks that may consist of a high number of heterogeneous and very
constrained embedded devices, when it comes to the development of, e.g.,
cross-domain applications. Standardized Web services - the popular imple-
mentation that would perfectly follow the SOA paradigm - provide commu-
nication technologies to enable interaction between distributed and hetero-
geneous instances in a very dedicated manner. However, these technologies
are highly demanding of hardware resources and are therefore not scalable to
embedded networks, which may consist of small microcontrollers that only
have a few kBytes of memory, restricted processing capabilities, and very
limited communication bandwidth.

This thesis has presented innovative approaches for efficiently realizing
standardized Web services and interaction with them in the domain of em-
bedded networks, which takes constrained microcontrollers into account also.
XML Infoset describes in an abstract manner how XML-based data content
shall be structured in a normative way. Typically, Web services mainly use
plain-text XML; this, however, is not feasible for constrained embedded de-
vices. We are pursuing a novel approach by using binary XML with the Effi-
cient XML Interchange (EXI) format. EXT fulfills XML Infoset requirements
and is based on a regular grammar philosophy used to convey XML-based
content into binary form (encoding) and vice versa (decoding). This way, we
do not consider the transformation from or to plain-text XML (into or from
binary XML), instead we operate directly within the binary representation
to gather the relevant information.

Our Web service generator developed in this thesis takes a service de-
scription, such as the well-known WSDL, and creates a source code that is
also scalable to constrained embedded devices. Through a detailed analysis,



we determined the relevant information required for both the client and Web
service side contexts. We used our findings to optimize the EXI grammar
for each context and to adjust the data binding and service message inter-
preter such as the dispatcher. We proved applicability in terms of memory,
processing speed, and message size for bandwidth usage by taking a real
world scenario from the electro mobility domain. Based on these findings,
we were able to show - despite a relatively complex Web service serving dif-
ferent kinds of RPCs with over 100 data elements being exchanged - that
XML-based Web services are feasible for the embedded domain, even if very
constrained devices such as microcontrollers are used.

A high number of service requesters with different kinds of service data de-
mands would increase service data interaction within constrained embedded
networks. Keeping limited bandwidth and the constrained embedded devices
in mind, an efficient interaction is desirable that only delivers messages to
the service requester if relevant information is present in the message. This
thesis presented different approaches for constructing filter mechanisms for
efficient service data dissemination. XPath expressions can be used to eval-
uate the relevance of binary XML streams. As a baseline, we introduced the
BasicEXIFiltering approach that runs on top of a given EXI grammar. In
contrast, the Optimized EXIFilter operates directly within the grammar and
prunes it. The outcome is a filter grammar that represents all given XPath
expressions. This enables very fast evaluation with a very low resource and
processing overhead on microcontrollers.

Furthermore, we investigated a possible approach for organizing and im-
proving service data dissemination by placing so-called pre- and post-filters
in constrained embedded networks. A suitable pre-filter node leads to an
early evaluation of the relevance of service data by at least one service re-
quester. By using post-filters in a determined dissemination tree we were able
to avoid redundant transmissions and share service data. Based on our cost
model that takes into account device class, link quality, and processability,
we approximated the best node position for the pre- and post filter to find a
dissemination tree from service provider to service requesters. In a simulated
environment, we were able to demonstrate that our approach would improve
service data dissemination by avoiding very constrained device classes and
weak links as well as enabling branch sharing to avoid redundant submissions.

There are other very interesting topics that would extend this work. The
most important ones are as follows:

o At the time of writing, the IETF was developing a very promising pro-

tocol specialized for usage in constrained embedded networks: CoAP
(see Section 2.5.3). An interesting investigation would involve extend-
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ing our Web service generator to generate efficient Web services based
on CoAP in combination with binary XML with EXI as a payload
format.

e Our binary XML filtering approaches, which were introduced in Chap-
ter 4 may be extended to support additional XPath facets such as
the node-set functions (e.g., count() and name()) and math operations
(e.g., div and mod).

e Another focus could include research into dynamic filtering changes at
runtime when it comes to modifying query requests. Realizing this in
our OptimizedEXIFilter approach, which removes non-required gram-
mar fragments for evaluation, would be challenging.

e A similar investigation could involve modifying the dissemination tree
for service data distribution at runtime. This could be useful when en-
countering changes in the topology of constrained embedded networks,
which would cut dissemination branches or improve the cost function.

In conclusion, the approaches presented in this thesis provide a fundamen-
tal concept for realizing standardized Web service technologies for the con-
strained embedded domain. In a real world scenario, we were able to prove
that V2G service implementation is applicable to constrained devices such as
microcontrollers, which resulted in the agreement to make XML-based service
interaction with EXI encoding obligatory in the ISO/IEC 15118 standard.
Thus our approaches have contributed to the future of electromobility.
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Appendix A

Web Service Description

Full Web service description as presented in Section 2.3.4.

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:edws="embedded:device:ws"
xmlns:edd="embedded:device:data"
targetNamespace="embedded:device:ws">

KV —— skokokokoskokok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok okok ok ok ok ok ok ok sk ok Kok ok ok sk ok kR ok k ok ok ——D>
<!-- @author: Sebastian Kaebisch -->

<!-- Embedded Device Web Service -->

K —— skokokok koK ok ok ok ok ok 3 ok 3 ok 3k ok 3k ok 3k ok ok 3 ok 3 ok 3 ok 3k oK 3k ok 3k ok ok ok ok 3 ok 3 ok 3 ok sk ok sk ok sk ok ok ——>
<types>

<xs:schema targetNamespace="embedded:device:data" xmlns="
embedded:device:data"
elementFormDefault="unqualified" attributeFormDefault="
unqualified">

<l-- getTemperature request definition -->
<xs:element name="GetTemperature" type="GetType"/>

<!-- Temperature response definition -->
<xs:element name="Temperature" type="TemperatureType"/>

<l-- getHumidity request definition -->
<xs:element name="GetHumidity" type ="GetType"/>



<!-- Humidity response definition -->
<xs:element name="Humidity" type ="HumidityType"/>

<!-- generic device information -->
<xs:element name="status" type="statusType"/>

<!-- Complex Types -—>
<xs:complexType name="GetType">
<xs:sequence>
<xs:element name="subscribe" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="TemperatureType">
<xs:sequence>
<xs:element name="value" type="xs:float"/>
</xs:sequence>
<xs:attribute name="scale" type="tempScaleType"/>
</xs:complexType>

<xs:complexType name="HumidityType">
<Xs:sequence>
<xs:element name="value" type="xs:byte"/>
</xs:sequence>
<xs:attribute name="scale" type="humScaleType" use="
required"/>
</xs:complexType>

<!-- Simple Types -->
<xs:simpleType name="tempScaleType">
<xs:restriction base="xs:string">
<xs:enumeration value="Celsius"/>
<xs:enumeration value="Fahrenheit"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="humScaleType">
<xs:restriction base="xs:string">
<xs:enumeration value="Absolute"/>
<xs:enumeration value="Relative'"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="statusType">
<xs:restriction base="xs:string">
<xs:enumeration value="Standby"/>
<xs:enumeration value="0K"/>
<xs:enumeration value="Error"/>
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</xs:restriction>
</xs:simpleType>
</xs:schema>
</types>

<!-- Header definations -->
<message name="SOAPHeader">

<part name="header" element="edd:status"/>
</message>

<!-- Body definitions -->
<l-- getTemperature message -->
<message name="GetTemperatureMsg">
<part name="parameters" element="edd:GetTemperature"/>
</message>

<!-- Temperature message ——>
<message name="TemperatureMsg">

<part name="parameters" element="edd:Temperature"/>
</message>

<I-- getHumidity message -->
<message name="GetHumidityMsg">

<part name="parameters" element="edd:GetHumidity"/>
</message>

<!-- Humidity message ——>
<message name="HumidityMsg">

<part name="parameters" element="edd:Humidity"/>
</message>

<!-- Port defination for request/response -->
<portType name="embeddedDeviceReqResInterface">

<!-- Access Operation -->
<operation name="Temperature">
<input message="edws:GetTemperatureMsg"/>
<output message="edws:TemperatureMsg"/>
</operation>

<!-- Humidity Operation -->

<operation name="Humidity">
<input message="edws:GetHumidityMsg"/>
<output message="edws:HumidityMsg"/>

</operation>
</portType>
<!-- Port defination for eventing -->

<portType name="embeddedDeviceEventingInterface">
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<!-- Temperature Operation -->
<operation name="Temperature">

<output message="edws:TemperatureMsg"/>
</operation>

<!-- Humidity Operation -->
<operation name="Humidity">
<output message="edws:HumidityMsg"/>
</operation>
</portType>

<binding name="embeddedDeviceWSReqRes" type="edws:
embeddedDeviceReqResInterface">
<soap:binding style="document" transport="http://schemas.xmlsoap
.org/soap/http"/>

<!-- Temperature operation -->
<operation name="Temperature">
<!-- <soap:operation soapAction="http://localhost:20012/
EVSEAccessInterface/#Access"/> —-->

<input>
<soap:body use="literal"/>
</input>
<output>
<soap:header message="edws:S0APHeader" part="header" use=
"literal"/>
<soap:body use="literal"/>
</output>
</operation>
<!-- Humidity operation -->

<operation name="Humidity">
<!-- <soap:operation soapAction="http://localhost:20012/
EVSEAccessInterface/#Status"/> -->
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:header message="edws:S0APHeader" part="header" use=
"literal"/>
<soap:body use="literal"/>
</output>
</operation>

</binding>
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<binding name="embeddedDeviceWSEventing" type="edws:
embeddedDeviceEventingInterface">
<soap:binding style="document" transport="http://schemas.xmlsoap
.org/soap/http"/>

<!-- Temperature operation -->
<operation name="Temperature'">
<output>
<soap:body use="literal"/>
</output>
</operation>
<!-- Humidity operation -->
<operation name="Humidity">
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<!-- Service location -->

<service name="EmbeddedDeviceWS">
<port name="EmbeddedDeviceReqRes" binding="edws:
embeddedDeviceWSReqRes">
<soap:address location="http://localhost:20012/
embeddedDeviceWS" />
</port>

<port name="EmbeddedDeviceEventing" binding="edws:
embeddedDeviceWSEventing">
<soap:address location="http://localhost:20013/
embeddedDeviceWS" />
</port>
</service>
</definitions>

- 173 -



- 174 -



Appendix B
XPath Queries

Used queries for the experimental evaluation with microcontrollers in Sec-
tion 4.5.3.

Scenario 1:

e /V2G_Message/Header /N otification/FaultCode

e //ServiceDiscoveryReq/ServiceCategory[text() =" EV Charging']
Scenario 2:

e Queries of scenario 1

e /V2G _Message/ * /ChargeParameter DiscoveryReq/ * ...
.../ EV MazimumCurrent Limit/V alue[text() > 90]

e //ChargeParameterDiscoveryReq/DC _EV ChargeParameter...
./ FullSOCtext() > 100]

Scenario 3:

e Queries of scenario 2

e V2G _Message/Body/Power DeliveryReq/ x | * ...
.../EV ErrorCode[text() =" FAILED_EV RESSMal function']

V2G_Message/Body/ Power DeliveryReq/ DC_EV Power Delivery Parameter...
.../ChargingComplete[text() = "true”]

//Current DemandReq/EV TargetVoltage/V alue[text() > 450]

V2G _Message/Body /Current DemandReq...
../ EVTargetCurrent/V alueltext() > 110]
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