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1 Preface



Crises of di�erent magnitude have been part of the �nancial services industry since its origin.

However, only few crises, if any, have had the impact of the recent subprime �nancial crisis.

After a stage of cheap money pursued by the US Federal Reserve that resulted in a massive

rise of US housing prices, the burst of the consequent bubble triggered widespread distress

throughout banks and insurance companies, which �nally distorted the world's economy as a

whole. The current sovereign debt crisis can also be regarded as a direct consequence of the

subprime �nancial crisis. Many governments have initiated rescue programs to assist troubled

banks and insurance companies or to prevent their economy from falling into a recession. Due

to their enormous extent, these countermeasures had an massive impact on national budgets.

Additionally, the global economic cooling had a negative e�ect on national budgets as well.

Besides its enormous impact, what makes the subprime �nancial crisis stand out, is its fast

transition over di�erent sectors and countries. Having its origin in the US housing market,

the crisis spread quickly and was by no means exclusive to the US or the housing sector. To

give an example, between 01/07/2007 and 04/31/2009, the S&P 500 index dropped by 42%

and the Eurostoxx 50 index, a well-diversi�ed index in Europe, dropped by almost 49 %. The

growing interdependence of �nancial markets as a consequence of the ongoing globalization

is one of the reasons for this observations. Others argue that innovations in the �nancial

services industry itself favored the quick transition of the crisis throughout di�erent sectors.

Among these innovations, the market for credit risk and credit derivatives are particularly under

suspicion.

Credit markets and especially credit derivatives are widely believed to have acted as ac-

celerants during the subprime �nancial crisis. The market for credit risk had grown rapidly

before the crisis emerged. It allows to separate the origination of credit risk and bearing the

exposure to such risks, by transferring the risk to a third party. This can be achieved in several

ways. One way is by means of true sale transactions. A bank that grants loans to private

persons or companies, can directly sell the loans to a third party. Another way is by means

of a securitization transaction. In this kind of transaction an originator or a third party that

bought loans in a true sale transaction, pools the loans together and sells securities that are

contingent on the cash �ows, the pooled loans generate. A third possible way to transfer

credit risk to a third party is by means of credit derivatives. A bank granting a loan to a large

company can e.g. transfer the credit risk to a third party by insuring against the default of

the company via a credit default swap (CDS) contract or other forms of credit derivatives.

Not only can an originator of credit risk eliminate its exposure to it, third parties with

no expertise in the lending business can obtain exposure to credit risk by the aforementioned

techniques. This is one of the reasons why the subprime �nancial crisis was not exclusive to US
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Savings and Loans Associations, as one might expect, but infected the global �nancial services

industry as a whole. Additionally, this circumstance has had an amplifying e�ect. Since a

broader base of investors had been able to obtain exposure to credit risk, the demand for such

exposure increased signi�cantly. Therefore, the volume of originated loans and mortgages

increased as well. Nevertheless, as the originators did not have to bare the risk of these loans,

they where not overly concerned with the creditworthiness of their borrowers. This is one of

the reasons why the subprime market grew so rapidly.

Another important issue concerning the recent �nancial crisis is the fact that many market

participants underestimated the inherent risks of securitization transactions and credit deriva-

tives, especially for portfolio products, such as nth-to-default baskets and collateralized debt

obligations (CDOs). These products share the common feature that they promise payments,

which are contingent on the solvency of a pool of reference assets. By construction, such

products are very sensitive towards systemic risk, i.e. the joint default of several entities

in their respective reference pool. On the other hand, the pricing models of such products

rely on a joint distribution of defaults for several borrowers, which is highly sensitive towards

the assumptions concerning default dependence. Therefore, underestimating the systemic risk

component, i.e. the default dependence between the reference entities under consideration will

lead to misleading results concerning the risks of portfolio products. Furthermore, the high

complexity of standard models for credit portfolio risk, hampered the assessment of the risks

of structured products, leaving some investors unaware of the actual risk they were exposed

to.

Given the aforementioned setting, it seems natural to investigate the interdependence be-

tween credit markets, credit derivatives and the recent subprime �nancial crisis. This investi-

gation is at the core of this dissertation. In particular, it is dedicated to the following research

questions:

• What are the causes of the subprime �nancial crisis?

• Which role did credit markets and credit derivatives play during the crisis?

• How might the crisis be resolved?

• What is the impact of the crisis on market participants perception of credit risk?

• How can complex credit derivatives be modeled in a way that allows an understanding

of their inherent risk?

These research questions are addressed in three self-contained essays. The �rst essay, co-

authored by Niklas Wagner, is dedicated to examine the causes of the subprime �nancial crisis
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and possible conclusions that can be drawn from it. We discuss instruments such as credit

markets and credit derivatives and how they fostered the instability of the �nancial system and

show how the collapse of the �nancial system was eventually triggered. Additionally, we discus

possible means of government intervention in oder to resolve the crisis within the �nancial

system. We propose a resolution by means of government sponsored purchase programs for

troubled assets. This way of recapitalizing the �nancial system has the appealing feature that

it creates a setting, where illiquid, but otherwise solvent, banks are separated from insolvent

banks. Consequently, we address the lessons learned from the subprime �nancial crisis by

discussing possible consequences for the design, as well as the regulation of the �nancial

system in the future.

The essay adds to the literature on the recent subprime �nancial crisis by providing a

thorough discussion of the causes and consequences of the crisis. We put a special focus on

the role of credit markets and credit derivatives as accelerants. Furthermore, we add to the

literature on government intervention by providing a formal illustration of how the design of

government bailout programs can in�uence decision making among �nancial institutions. For

this purpose, we set up a simple and intuitive model, which helps to illustrate the e�ects of

typical government bailout programs rather than providing informal arguments in favor of a

certain design. With the help of the model, it can be shown that bailout programs can be

designed in a way such that illiquid but solvent banks behave di�erently from insolvent banks.

While not favoring solvent banks in the short run, this provides a valuable signal to outsiders,

including investors as well as government agencies.

The second essay, co-authored by Niklas Wagner, addresses the question how the recent

subprime �nancial crisis has altered market participants perceptions concerning the determi-

nants of credit risk, i.e. has the crisis had an impact on the market for credit risk itself? As

the crisis has clearly shown the large vulnerability of the �nancial system to systemic risk, one

would expect that market participants have altered their assessment of systematic risk when

pricing credit derivatives. This e�ect should be particularly pronounced for portfolio products

such as credit indices, as these are, by construction, vulnerable to systemic risk.

To analyze this, we conduct an empirical investigation of the iTraxx Europe index universe

with the recent �nancial crisis in focus. We have a special focus on three di�erent issues. First,

we analyze the determinants of iTraxx spread changes to learn about the drivers of aggregate

credit risk. We investigate whether the determinants have changed as a consequence of the

recent �nancial crisis. If this would have been the case, this would suggest that investors

have adjusted their models of credit risk and have reassessed their assumptions concerning

the systemic component of aggregate credit risk. Second we perform a quantile regression to
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analyze whether the determinants of iTraxx spreads are suited to explain spread changes in

the upper and lower tail of the empirical distribution, i.e. whether extreme spread changes

are subject to the same factors as changes around the mean or median of the empirical

distribution. Third, we are concerned whether market participants use the iTraxx index as a

source of (additional) information regarding systemic risk. Therefore, we investigate the lead-

lag relationship between the iTraxx index market and equity markets. In case the iTraxx index

market provide valuable information concerning systemic risk, iTraxx spread changes should

not be led by stock market returns.

In order to address the issues outlined above we structure our empirical investigation as

follows. First we examine the determinats of iTraxx spread changes by regressing daily spread

changes of iTraxx Europe index family members on a rich set of explanatory variables. The

set of independent variables comprises factors implied by structural models of credit risk, a

set of liquidity factors and macroeconomic variables. We examine the determinants of the

iTraxx Europe benchmark index, as well as the determinants of the di�erent subindices of the

benchmark index. In oder to examine possible changes of the determinants as a consequence of

the recent subprime �nancial crisis, we repeat our analysis for di�erent subsamples. Our overall

sample ranges from 06/16/2004 to 08/06/2010 and spans the crisis period, as well as a pre-

and a post-crisis period. Hence, we can examine the evolution of credit spread determinants

throughout the �nancial crisis. First we estimate our econometric model for the overall sample

and then repeat the estimation for the pre-crisis, crisis and post-crisis subsamples to detect

changes in the set of spread drivers.

In a next step we reestimate our econometric model via a quantile regression. Therefore,

we can examine the performance of our set of explanatory variables in the upper and lower

quantiles of the empirical distribution of spread changes, i.e. to check for the robustness of our

OLS-regression results in di�erent quantiles of the empirical distribution of spread changes.

The quantile regression is conducted for all subindices and all subsamples. This allows us

to study the determinants of spread changes in upper and lower quantiles of the empirical

distribution, as well as changes in the determinants in the course of the �nancial crisis.

Consequently, to examine whether market participants rely on the iTraxx index as a source of

additional information concerning systemic risk, we examine the lead-lag relationship between

the market for credit risk and stock markets. For this purpose we estimate a vector autore-

gressive model with exogenous variables (VARX-model). The exogenous variables used in the

VARX-model are supposed to jointly determine credit spread changes, as well as stock returns

on a portfolio constructed out of the iTraxx index constituents. We estimate the VARX-model

for all subindices and all respective subsamples to investigate whether the lead-lag relationship
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has been altered by the recent �nancial crisis.

The essay contributes to the existing literature in several ways. First we investigate the

explanatory power of a rich set of independent variables, including proxies for liquidity and

macroeconomic factors. Second, to the best of our knowledge, this is the �rst empirical

investigation of the behavior of iTraxx index spreads of the benchmark index and all subindices

with a special focus on changes on credit spread determinants in the course of the recent

subprime �nancial crisis. Third, our empirical paper provides deeper insights into the mechanics

of iTraxx spreads by explicitly examining the behavior of credit spread changes at the upper and

lower quantiles of the empirical distribution. Finally, we contribute to the existing literature

by examining the evolution of lead-lag relationships between the iTraxx and stock returns in

the course of the recent �nancial crisis, while controlling for several exogenous variables.

In the third essay I address the issue of complexity within portfolio products and credit

derivatives such as nth-to-default baskets and CDSs subject to counterparty risk. During the

recent �nancial crisis many of the assumptions behind standard pricing models for portfo-

lio products proved to be myopic. Obviously, many market participants underestimated the

systemic risk component, i. e. the risk associated with the joint default of several entities,

inherent in these portfolio products. Approaches such as the Gaussian copula, which is applied

in latent variable models, do not account for extreme default dependence, i.e. a clustering of

defaults. However, this clustering is a common feature of distressed �nancial markets and was

also observed during the recent subprime �nancial crisis. Therefore, the market's perception

concerning the inherent risks of portfolio products were not adequate, as common models of

dependent defaults are highly sensitive with respect to assumptions regarding the dependence

structure (Frey and McNeil (2003)).

Models of portfolio credit risk allowing for extreme (possibly asymmetric) dependence of

default are available. However, they are complex and di�cult to implement. In this light there

is a pronounced need for concepts allowing to stress test prices of portfolio products, possibly

leading to bounds within the prices (spreads) of such products have to lie in the absence of

arbitrage opportunities and that hold regardless of the actual dependence structures within

the portfolio members. Such concepts allow for a decent understanding of the inherent risk of

portfolio products, as they provide insights concerning the impact of default correlation and

systemic risk on the pricing of such products.

The essay addresses the problem outlined above by introducing the method of maximum

implied default correlation. It contributes to the existing literature by showing that, given the

markets's perception of the stand-alone credit risk of two entities under consideration, it is

possible to derive bounds for the default correlation between them. These bounds hold, as
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long as no arbitrage opportunities exists. In turn, these bounds can be used to derive upper

and lower bounds for the prices of securities that are subject to credit risk and sensitive to

default correlation via numerical methods. Examples of such securities are credit default swaps

(CDSs) subject to counterparty risk and nth-to-default baskets.

I apply the method of maximum implied default correlation to derive bounds for the prices of

these two types of securities using an intuitive and easy to implement Monte Carlo simulation

algorithm, which is based on a simple intensity model of default. The algorithm involves several

steps. First, implied upper bounds for the default correlation of certain entities are calculated

based on observed market data. Next, the implied upper default correlations are converted

into a variance-covariance matrix of the respective default processes. In a succeeding step

I model the default processes relying on the overlapping sums (OS) method. This involves

expressing the default process of each entity under consideration as a sum of independent

idiosyncratic as well as common default processes. For each entity its respective sum of

default processes is calibrated to match the implied variance-covariance matrix of its default

process. Consequently, the default times of each entity under consideration are simulated,

allowing to derive the upper bound for securities with sensitivity to the default of the entity

under consideration. The respective lower bound can be simulated by assuming that defaults

are independent, i.e. that no default correlation is present. In addition to calculating upper

and lower bounds for nth-to-default baskets and CDSs subject to counterparty risk, I analyze

the sensitivity of the respective spreads concerning changes in the correlation structure of

the underlying entities to provide a better understanding of the potential impact of default

correlation.

The proposed approach allows for the comparison of market spreads for credit derivatives

with model-implied maximum and minimum spreads, without extensive modeling of default

correlations. In the absence of arbitrage opportunities, market quotes have to lie in between

the implied bounds, regardless of the underlying default correlation structure between the

entities contributing to the risk of the security under consideration. Hence, this paper provides

further insights on the impact of default correlation on spreads of credit derivatives sensitive

to default correlation and the e�ciency of the credit derivatives market as a whole.
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Abstract

The recent global �nancial crisis represents a major economic challenge. In order to prevent

such market failure, it is vital to understand what caused the crisis and what are the lessons

to be learned. Given the tremendous bailout packages worldwide, we discuss the role of gov-

ernments as lenders of last resort. In our view, it is important not to suspend the market

mechanism of bankruptcy via granting rescue packages. Only those institutions which are

illiquid but solvent should be rescued, and this should occur at a signi�cant cost for the re-

spective institution. We provide a formal illustration of a rescue mechanism, which allows

to distinguish between illiquid but solvent and insolvent banks. Furthermore, we argue that

stricter regulation cannot be the sole consequence of the crisis. There appears to be a need

for improved risk awareness, more sophisticated risk management and an alignment of interest

among the participants in the market for credit risk.
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2.1 Introduction

The ongoing credit crisis has been of major economic policy concern for over a year. It not

only vastly a�ects the �nancial system, but is also likely to have severe consequences for

the global economic development. The extent of the crisis is enormous. According to the

Bank of England (2008), the total volume of government support packages for the �nancial

system amounted to approximately EUR 5.55 trillion as of October 2008. Due to the growing

globalization and complexity of the �nancial system, the contagion e�ect of the current crisis

throughout �nancial markets is unprecedented. The crisis clearly reveals the vulnerabilities of

the �nancial system in its current form. Hence, it is of particular importance to understand

what actually triggered the collapse of the �nancial system, and how such a collapse can be

prevented in the future.

Our purpose here is to explain what led to the current crisis, and which conclusions can

be drawn from it.1 We describe the instruments fostering the instability of the �nancial

system and show how the collapse of the �nancial system was eventually triggered. We then

comment on the di�erent possible means of government intervention, which aim at limiting

the damage to the �nancial system. We show formally that only rescue packages including a

purchase program for distressed assets create a setting where illiquid, but otherwise solvent,

banks are separated from insolvent banks. Furthermore, we provide an overview of the possible

consequences for the design, as well as the regulation of the �nancial system in the future.2

So far, the amount of literature commenting on how bailout plans for the current crisis

should be arranged is scarce. Hoshi and Kashyap (2008) investigate government intervention

during the recent Japanese �nancial crisis. Given this experience, the authors draw conclusions

for the design of the Troubled Asset Relief Program (TARP) in the United States. They argue

that buying distressed assets is an appropriate way to recapitalize banks. Nevertheless, they

conclude that the Japanese program lacks e�ciency, as assets cannot be purchased for more

than their economic value and hence, the total amount of assets purchased remains low.

Therefore, no capital is rebuilt and the system remains undercapitalized. Hence, the authors

propose that besides buying distressed assets, government assistance should also be conducted

via direct equity injections. Bebchuk (2008) comments on the design of the TARP emergency

legislation. He agrees that asset purchases are suitable to cope with the �nancial crisis,

1Other reviews of the subprime �nancial crisis include Batten and Hogan (2009), P�eiderer and Marsh
(2009), and Allen and Carletti (2010), among others. Batten and Hogan (2009) focus mainly on monetary
and �scal action in response to the crisis. P�eiderer and Marsh (2009) examine the role of misaligned
incentives and lacking transparency in �nancial markets, which eventually triggered the crisis. Allen and
Carletti (2010) discuss long-term consequences for international �nancial markets which can be be drawn
from the subprime �nancial crisis.

2A �rst sketch of the ideas discussed in this paper is also presented in Breitenfellner and Wagner (2010).
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nevertheless he proposes a redesign of the legislation in order to achieve the targets of the

program, i.e. restoring stability in the �nancial system, while limiting costs to taxpayers. He

argues that the possibility to overpay for certain assets is not in the interest of taxpayers. In

order to prevent undercapitalization, he rather advocates allowing the purchase of securities

newly issued by troubled institutions. Additionally, he argues that �nancial �rms should be

required to raise additional capital from their existing shareholders. A potential design of

a government funded asset purchase program is presented by Bebchuk (2009). The author

argues that, rather than setting up a single "Bad Bank", there should be several privately

managed funds which acquire the assets. Their capital should be provided by the government

and by private investors. The fact that several funds compete for the troubled assets assures

that the market for these assets is restored.

Closest to our paper are the papers of Freixas (1999), Gorton and Huang (2004), Diamond

and Rajan (2005), Acharya and Yorulmazer (2008) and Wilson (2010a).

Freixas (1999) compares the costs and bene�ts associated with a bailout of a bankrupt bank.

It is shown that the the optimal bailout policy is determined by the amount of unsecured debt

issued by the respective bank. Nevertheless, the author shows that in equilibrium the lender

of last resort, i.e. the government, will not rescue all banks which have a certain amount of

unsecured debt outstanding, since rescues are costly. Some of these costs are due to moral

hazard at the bank management due to the fact that managers anticipate the chance of being

bailed out. Instead, the lender of last resort optimally follows a mixed bailout strategy, where

she decides case by case whether to rescue a speci�c bank or not.

Gorton and Huang (2004) claims that the bene�ts of government bailouts depend on the type

of liquidity shock faced by banks. The authors distinguish liquidity shocks from capitalization

shocks. A liquidity shock is an event where banks suddenly need new resources. In contrast,

capitalization shocks stem from a shock to the value of assets on a banks balance sheet.

Government bailouts may be a counterproductive response to banks facing liquidity shocks

as shown by Diamond and Rajan (2002). In case banks face a capitalization shock, Gorton

and Huang (2004) show that government bailouts via asset purchases are feasible, when the

number of assets to be sold is too large to be absorbed by private investors. In this case the

provision of liquidity by the government increases overall welfare.

Acharya and Yorulmazer (2008) provide a formal illustration of the optimal resolution of

bank failures. They show that, in case a su�ciently large number of banks fail, government

intervention is superior to a private sector resolution of failed banks in terms of social welfare.

They argue that the best way for the government to intervene is through the provision of

liquidity to surviving banks. These funds in turn are used by surviving bank to acquire the
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assets of failed banks. In contrast to our model, they assume that solvent and insolvent

banks can be separated ex ante. Therefore, their model does not incorporate a mechanism to

distinguish illiquid but solvent and insolvent banks.

A similar approach to ours is followed by Wilson (2010a). The author examines the Public

Private Investment Partnership (PPIP) plan relying on option pricing arguments. In contrast

to our �ndings, he concludes, that only solvent banks will be willing to sell distressed assets.3

The reason for the di�erent result lies in the fact that the author does not impose an exigent

liquidity need on the banks. Hence, there is no need for the banks to chose the re�nancing

option which is most favorable for them, as it is the case in our model.

We add to the literature on government intervention by providing a formal illustration of

how the design of government bailout programs can in�uence decision making among �nancial

institutions. As such, rather than providing informal arguments in favor of a certain design, we

set up a simple and intuitive model, which helps to illustrate the e�ects of typical government

bailout programs. We show that bailout programs can be designed in a way such that illiquid

but solvent banks behave di�erently from insolvent banks. This provides a valuable signal to

outsiders, including investors as well as government agencies.

The remainder of this paper is organized as follows. Section 2.2 brie�y describes recent

developments in the market for credit risk, which eventually led to the crisis. In Section 2.3,

we discuss why the �nancial system broke down and how the crisis spread throughout the

system. Some considerations referring to the use of government bailout programs and our

model are presented in Section 2.4. The lessons learned from the current crisis are discussed

in Section 2.5. Section 2.6 concludes the paper.

2.2 The Tale of Unlimited Risk Transfer

Once upon a time there was a world where banks did not have to bear any risks, as they could

get rid of them in no time. This is an appropriate introduction for a tale about the market for

credit risks. Unfortunately, this is not a tale.

The market for credit risk has grown rapidly since the early 1990's. It seemed to be one of

the biggest success stories in the history of �nancial intermediation. The new paradigm was

that underwriting and bearing credit risk could be perfectly separable. As such, credit risk

could be transferred with hardly any constraints by banks to those seeking exposure in certain

credit risks. On the other hand, any player in the �nancial system was able to gain exposure

3Wilson (2010b) shows that in some cases even solvent banks might be reluctant to sell toxic assets, as their
shareholders posses an implicit option to put the bank in case of default, which is more valuable if the
bank's asset volatility is large.
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in the credit risk of certain entities, without direct involvement with the respective entity or

even without upfront capital outlays.

The tools for credit risk transfer are numerous, among which Residential Mortgage Backed

Securities (RMBSs) and Credit Default Swaps (CDSs) are the most prominent. The economic

reasoning behind risk transfer is obvious. Financial institutions are able to specialize on certain

segments of the banking landscape. For example, institutions with no expertise in the lending

business are able to gain exposure in any kind of credit risk. On the other hand, originators

are able to eliminate large positions from their books by passing them through to other market

participants. In turn, the relieved capital can be used to grant additional loans. This devel-

opment paves the way for new cash �ows to credit markets, allowing the whole economy, as

well as the public to pro�t from eased funding opportunities, which would not have existed

without the risk transfer. From an economic perspective, it might be questionable whether se-

curitization actually generates additional cash �ows to credit markets. Nevertheless, it fosters

an optimal allocation of resources in the credit market, as banks with expertise in the lending

business are best suited to allocate scarce �nancial resources among those in need of external

funding.

2.2.1 Securitization

The classic way of transferring credit risk is by means of securitization. In a typical securitiza-

tion transaction, the originator of a credit portfolio sells his credit portfolio to a special purpose

vehicle (SPV), which is re�nanced via capital markets. Although the assets transferred to the

SPV do no longer occur on the originator's balance sheet, the ties between the originator and

the SPV are manifold, e.g. through swap agreements or guarantees. Securitization transac-

tions have many advantages for the originator. The proceeds from selling the loan portfolio

can readily be used to grant new loans. Therefore, securitization can be regarded as a form

of re�nancing. Among the other advantages are the transfer of credit risk to the SPV (and

eventually to investors), and lower regulatory capital requirements for the originator.4

Overall, securitization transactions clearly augment lending capacities in the �nancial system

and improve allocational e�ciency of �nancial markets concerning both, funds and exposures.

In turn, optimal allocation of resources helps to reduce the cost of credit (see e.g. Du�e

(2007)). Unfortunately, the number of high quality obligors in the system will be limited.

Hence, the overall proportion of low quality lenders will increase with the volume of lending. At

this point, a disadvantage of securitization becomes obvious. As the originator may eliminate

4Gorton and Souleles (2005) provide a detailed overview of such transactions.
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all the credit risk associated with the loan portfolio,5 he will not be overly concerned with

the quality of his obligors. Consequently, there will be loans included in the portfolio, which

would not have been granted by the originator, if he still had to account for them. This is

a classic adverse selection problem. The deterioration of the average loan quality is further

ampli�ed by the incentive schemes within the lending business, where employee compensation

largely depends on lending volume rather than on risk-adjusted return (see e.g. Mills and Ki�

(2007)).

Additionally, SPVs will typically try to obtain maximal funding from selling securities on

the capital market. In turn, the proceeds are transferred to the originator as a compensation

for acquiring the loan portfolio. Hence, SPVs have an incentive to overstate the quality of

their loan portfolio, again a moral hazard problem, as the investors buying SPV bonds and

commercial papers will typically have an information disadvantage concerning the quality of

the loans contained in the portfolio. The complexity of many securitization transactions adds

to this information asymmetry. The overall quality of the loans underlying the securitization

transaction declines with every new transaction, as the amount of high quality borrowers in the

�nancial market is limited. However, the capital in�ow due to the securitization transaction,

will tempt the originator to grant further loans, despite the lower quality of obligors seeking

debt �nancing via loans. These loans are then in turn securitized, creating some sort of �vicious

circle�.

2.2.2 The Market for Credit Protection

Another segment of the market for credit risk is the market for credit protection. As shown

in Figure 2.2.2, the market for credit protection has grown rapidly in recent years. As of June

2008, it amounted to a total volume of about USD 57.3 trillion of notional principal. Unlike

securitization and credit insurance, buying and selling credit protection in the credit derivatives

market does not require owning the underlying asset. In other words, credit protection is a

synthetic transaction allowing market participants to gain exposure in credit risk with no initial

cash outlay, or without owning the underlying asset.

Among the most common products of the credit protection industry are CDSs and Col-

lateralized Debt Obligations (CDOs).6 Such products compensate the protection buyer for

her losses associated with a credit event related to the underlying asset of the transaction.

Due to the absence of an upfront payment, or the need to actually own the underlying asset,

5At least, this seems to be the case in the �rst place. Nevertheless, this is not quite adequate as we discuss
later.

6Details on credit derivatives can e.g. be found in Scheicher (2003), who also includes some early warnings
on �nancial stability.
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Figure 2.1: Notional amounts of credit default swaps outstanding in USD billion. Data source:
Bank for International Settlements.

credit protection can be regarded as a convenient and widely used instrument for investors to

gain exposure to various kinds of credit risk. This is clearly favorable from a diversi�cation

perspective. Additionally, credit protection can be used as a hedging instrument for exposures

in the credit market, as given for example by corporate bond portfolios. Hedging by means

of credit protection also has an e�ect on the regulatory equity cushion as required by the

Basel II accord. Credit exposures which are hedged via credit protection transactions are no

longer subject to regulatory capital requirements. Only the swap itself is accounted for, which

reduces regulatory capital requirements as long as the swap carries a lower risk weighting than

the underlying (see Basel Committee on Banking Supervision (2004)).

2.3 A Rude Awakening

2.3.1 The Collapse of Credit Markets

So far, we argued that the market for credit risk is to the bene�t of the economy. So why did

we experience such a devastating crisis? The answer is quite simple. There has been a lack
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of risk awareness and overcon�dence7 among market participants.

As stated above, securitization transactions were widely used by originators to eliminate

credit portfolio risk from their balance sheets. An explanatory hypothesis would be that

the notion was that loans which are o�-balance sheet do not contribute to the institution's

risk pro�le. This proved to be rather myopic. With the increasing number of securitization

transactions, the quality of the loan portfolios declined. Those who invested in the tranches of

the securitization transactions often were unaware of the inherent risk and relied on the external

assessments of rating agencies, which in many cases were overly optimistic. After the burst

of the housing bubble8 in the United States, more and more loans defaulted. Consequently,

those who invested in securitization transactions incurred severe losses on their tranches, in

particular on the �rst loss piece. Therefore, they had to write down their investments. This

in turn put investors on the spot to liquidate their positions in order not to run into over-

indebtedness. Additionally, the growing uncertainty concerning the actual risk pro�le of the

securitization tranches led to an erosion of liquidity in the secondary market, resulting in

enormous discounts on the tranches, if they were sellable at all. This created a vicious circle

in the market for securitization tranches, which consequently collapsed. This collapse led to

further write-downs on �nancial institutions' assets, which absorbed much of the �nancial

system's liquidity. As a consequence, although exposures due to the loan portfolios securitized

were not on the banks' balance sheets in the �rst place, they �nally got there through the

back door. Given increased illiquidity within the �nancial system, �nancial institutions ran into

re�nancing problems. The fact that many �nancial institutions heavily relied on short term

re�nancing, while being highly leveraged, further boosted the crisis. What made things even

worse was the psychological e�ect of a loss of trust in the overall �nancial system. To avoid

over-indebtedness, all kinds of assets had to be liquidated and the crisis spread throughout

the system. The contagion e�ect was enormous throughout institutions, markets as well as

regions.

2.3.2 The CDS-Domino-E�ect

Of course, the crisis in �nancial markets also spilled over to the market for credit protection.

Figure 2.3.2 illustrates the impact of the crisis, which led to signi�cantly wider spreads in the

market for credit risk. Here again, the contagion was fostered by the structure of the market.

Most players in the market for credit protection hedge their exposures by an o�setting trans-

7Still in mid-2007, market participants believed that advances in credit risk modeling would prevent severe
losses on highly rated tranches and credit derivatives, see e.g. Mills and Ki� (2007).

8See e.g. Shiller (2008) for a discussion of the role of bubbles in the subprime crisis.
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action, thus exposures are passed on throughout the market. This seems perfectly reasonable

as long as there is no counterparty risk. Unfortunately, this was actually not the case, as the

market for credit protection is an over-the-counter (OTC) market. The �nancial turmoil at

American International Group (AIG) clearly revealed the vulnerabilities of the market structure.

Given the setting in the market for credit risk described above, a CDS-Domino-E�ect

emerges as follows. In case a major player defaults, the CDS contracts it has written be-

come virtually worthless. This leads to large unhedged positions at his swap counterparties.

This may in turn force them into default, e.g. via increasing regulatory capital requirements,

despite their given �nancial solvency. Again, exposures which seem to be perfectly hedged,

instantly become a serious risk position, as they are not (fully) bu�ered by an equity cushion.

The result is a domino-e�ect spreading throughout the market for credit protection, further

destabilizing the overall �nancial system, caused by the failure to recognize the inherent coun-

terparty risk in such credit protection contracts. In fact, the counterparty risk in a swap

transaction does not solely depend on the respective direct counterparty, but it is rather de-

termined by the weakest link (i.e. weakest protection seller) in the system, as the collapse of

one major player may force the whole system into distress. This setting adds a major portion

of systemic risk to the market for credit protection, which has to be accounted for.

2.3.3 The Drying Up of the Interbank Lending Market

As discussed above, disruptions, both in the market for securitization tranches and the market

for credit protection, absorbed much of the liquidity in the global �nancial system. This e�ect

was further emphasized by a loss of trust in the banking system. Rising uncertainty concerning

the �nancial health of the banking system led to an increased reluctance among banks to lend

money to each other in the wholesale market. This is illustrated by the behavior of LIBOR

rates during the crisis as given in Figure 2.3.3. Even interventions by central banks were not

able to o�set the negative e�ects due to the loss of trust. Fears in the market were further

fostered by the failure of Lehman Brothers. Unfortunately, many banks were highly dependent

on wholesale funding as a consequence of major balance sheet expansions during the times of

economic growth and business models based on high leverage. This failure of the interbank

lending market was another cornerstone of the crisis. It forced many banks to liquidate large

positions of liquid assets, leading to severe losses as for example in the equity markets.
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2.4 Stabilizing the Financial System - Short Term

Government Intervention

There is no doubt that immediate action has to be taken in order to cope with a crisis of such

magnitude. Otherwise, severe consequences for the �nancial system, as well as for the global

economy would be inevitable. Due to the dimension of the subprime crisis, governments seem

to be the only players which can achieve a signi�cant impact from their interventions. The

general reason behind government intervention and �scal policy is subject to ongoing debate

and beyond the scope of this paper. In this section, we focus on the design of short term

government intervention, which aims at stabilizing the �nancial system.9

2.4.1 Are Rescue Packages Appropriate?

Governments worldwide have structured rescue packages to support �nancial institutions in

distress. This rises an important question: Should distressed �nancial institutions be rescued

by the government and consequently by tax payers? On the one hand, rescue measures seem

appropriate given that the bankruptcy costs for the economy would exceed the costs of the

rescue.10 On the other hand, with a government as the lender of last resort, there is little

incentive for �nancial institutions to pursue sophisticated risk management strategies. In

contrast, the incentive would be to increase the overall risk pro�le of the institution in order

to obtain a higher expected payo� for shareholders. With a lender of last resort, shareholders

are equipped with a put option written by the government, generating an incentive to increase

the risk pro�le of the �rm at the cost of the government. This again is a classic moral hazard

problem.

In this light, guarantees as sole instrument of government intervention do not seem to

be the appropriate measure to rescue banks. In case a rescue is inevitable, it should be

perused with the help of capital injections rather than guarantees alone in order to avoid

principal agent con�icts. Nevertheless, rescue packages should not be used arbitrarily. As

stated above, the presence of a rescue package suspends the important market mechanism

of bankruptcy. This mechanism ensures that only those �nancial institutions survive the

crisis, which have pursued sound risk assessment and management. Those institutions with

insu�cient �nancial precautions, in the form of equity bu�ers, should fail in order to ensure

9A long term perspective of government intervention, i.e. deposit insurance, is discussed in Bryant (1980)
and Diamond and Dybvig (1983) among others.

10Bankruptcy costs not only comprise direct costs associated with the bankruptcy of a single bank. Addition-
ally, the indirect costs of contagion e�ects within the banking system have to be incorporated, as claimed
by Goodfriend and King (1988).
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the allocational e�ciency of the �nancial system. Therefore, governments should not rescue

�nancial institutions, as long as the bankruptcy costs born by the economy do not exceed the

cost of rescue. In case the rescue of a certain �nancial institution is inevitable, these measures

of assistance should come at a signi�cant cost for the respective institution. Otherwise, the

rescue packages could encourage institutions to rely on them as a cheap source of funding.

Given the above, an adequate design of rescue packages appears to be of particular impor-

tance. Among the possible means of government intervention are:

• Government guaranteed debt issuance programs,

• Direct equity injections,

• Purchases of distressed asset by the government.

In general, the design of a government rescue package for the �nancial services industry

largely depends on its targets. Among those targets are the stabilization of the �nancial

system via recapitalization, taxpayer protection, separation between good and bad management

performance, to name just a few. Unfortunately, some of these targets work in opposite

directions (like recapitalization and tax payer protection). Furthermore, the costs associated

with bank failure are hard to quantify, making it di�cult to measure an exact trade-o�.

An appropriate rescue package avoids principal agent con�icts, while providing immediate

liquidity to institutions which are in the state of distress. Furthermore, the package should only

be to the bene�t of banks which are illiquid but solvent, or of systemic relevance. At a �rst

glance, a superior method to rescue banks is via asset purchases, where �nancial institutions

sell with a discount to the economic value of the assets. As the economic value of many of

those assets is above their current market value, this strategy has two major advantages. On

the one hand, only those �nancial institutions with severe liquidity problems will be willing

to sell undervalued assets. On the other hand, the government itself can pro�t from the

expected higher payo�s from those assets in the future. Nevertheless, banks which need to be

rescued due to their systemic relevance, might not be able to sell distressed assets. Therefore,

combinations of di�erent means of recapitalization seem to be necessary.

2.4.2 A Formal Illustration of Di�erent Means of Government

Intervention

In this section we formally show how di�erent means of government intervention can in�uence

decision making within the �nancial sector. Our purpose is to illustrate the design of a

rescue package, which allows to distinguish between illiquid but solvent versus insolvent banks.
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Although this focus might not be in the very best interest of taxpayers in the short run, at

least it allows to identify and reward good management performance. In the long run, this

separation is inevitable for the design of incentive mechanisms, which reward good management

performance. This in turn can prevent future misconduct within the �nancial services industry.

In order to illustrate how the di�erent means of government rescue packages can in�uence

decision making among the �nancial services industry, suppose the following setting. There

are two periods. In period t = 0 �nancial institutions face a liquidity shortage and decide how

their liquidity need has to be re�nanced. In t = T the liquidity need vanishes and the capital

obtained in period t = 0 matures. Furthermore, the present value, V0,i, of a future claim is

given by

V0,i = E0[VT,i]e
−ri T , (2.1)

where ri is the continuously compounded risk adjusted discount rate for asset i and E0[VT ] is

the time zero expected cash �ow due to the claim at maturity.

We next assume that there are two types of banks in the �nancial system, good banks and

bad banks, which di�er in their default risk. The di�erent risk pro�les of the two types of banks

largely stem from the quality of their balance sheets. Outside investors, including government

authorities, cannot distinguish between the two types, due to information asymmetries.11 The

risk adjusted cost of external funding for good banks is rg and the one for bad banks is rb,

where rg < rb.

Given the probability of ending up with a good bank is pg, 0 < pg < 1 investors will require

a rate of

rl = pgrg + (1− pg)rb (2.2)

for debt capital invested in a bank. Note that, due to asymmetric information, good banks

su�er from losses due to higher than necessary re�nancing costs. To overcome this problem,

they could provide a signal to outside investors and pro�t from lower re�nancing rates. How-

ever, as long as bad banks can imitate the signal without incurring signi�cant costs, the signal

of being either a good or a bad bank is worthless.

Guaranteed Debt Issuance Programs

Suppose now that both types of banks su�er from liquidity problems due to a system-wide

�nancial crisis and are in need of external debt capital. Both banks can acquire a guarantee for

their debt issuance programs, allowing them to borrow at the risk-free rate rf , where rf < rg.

11This is not a overly restrictive assumption in case the �nancial system is in distress. In this case, the focus
of the government is more on providing immediate liquidity rather than assessing the risk pro�le of banks
in need of funding.
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The guarantee comes at a cost at the rate of s, which is the same for both types of lenders, as

the government cannot distinguish between them.12 In this setting, the rate at which a bank

can be re�nanced is given by

min[pgrg + (1− pg)rb, rf + s]. (2.3)

Banks of both types will rely on the government guarantee as long as the risk-free rate plus the

fee s is lower than their initial re�nancing costs. This is always true for both banks, since the

good banks cannot provide a credible signal of being in the good cohort. As a consequence,

government support packages will equally favor both types of banks or none of them. In this

case state guarantees are not suited to create a setting where good banks can be separated

from bad ones.

Government assistance in the form of guaranteed debt issuance programs has another im-

portant drawback. As the fee s charged for the state guarantee is a compensation for the

risk of default of the guarantee taker, the government will incur a loss as long as s is too low

relative to the default risk of the guarantee taker. In fact, the government faces the problem

of any other outside investor. Consequently, the fair spread it should charge is given by

s = [pgrg + (1− pg)rb]− rf . (2.4)

The risk-adjusted fee, s, charged for the guarantee is given by the risk-adjusted cost of debt

capital less the risk-free rate. In this setting, the guarantee is either ine�ective, as it does not

lower the cost of capital for the bank, or it will result in a loss for the government, as the fee

it charges does not cover the expected losses.

Direct Equity Injections

Another way to support distressed �nancial institutions is by means of direct equity injections.

This can e.g. be conducted via an increase in share capital, either in the form of common or

preferred stock. The risk adjusted rate of return for preferred stock is rgp for a good bank and

rbp for a bad bank, where rgp < rbp, due to the higher default risk associated with a bad bank.

Accordingly, a good bank is charged a rate of rgc for common equity, and a bad bank is charged

rbc, where r
g
c < rbc . As equity capital has a lower seniority than debt capital, rg ≤ rgp ≤ rgc

and rb ≤ rbp ≤ rbc must hold. Suppose that the government is willing to obtain preferred or

common shares of a bank. The rate it charges for the equity injection is rf + ip and rf + ic,

12Merton (1977) derives entity speci�c prices for guarantees using option pricing arguments. However, this
approach does not seem appropriate for banks, due to the dynamic structure of their assets.
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respectively, where i represents the risk premium. Again, investors cannot distinguish between

good and bad banks. Thus, any bank can be re�nanced via preferred shares at a rate of

min[pgr
g
c + (1− pg)rbp, rf + i], (2.5)

regardless of its risk pro�le.

The choice between re�nancing via debt or equity largely depends on the structure of the

respective bank's balance sheet. In general, equity capital is chosen in case the bank aims at

increasing its core capital ratio. In case a bank only seeks for liquidity, as it is otherwise healthy,

it will rather chose to re�nance via debt capital. Nevertheless, comparing the two possible

cases, it is obvious that the problem faced by banks and investors is nearly the same in both

of them. Both types of banks can re�nance at the same conditions, regardless of their risk

pro�le. Additionally, intervention in both cases will either result in a loss for the government

(as long as the risk premium it charges is lower than the expected losses) or, otherwise, it will

be ine�ective.

Purchases of Distressed Assets

Next suppose that the government, instead of providing guarantees on debt �nancing programs,

aims at recapitalizing �nancial institutions by buying illiquid assets from their balance sheets.

The purchase of the assets comes at a discount to the (pre-crisis) book value of the assets.

The discount is given by d, d ≥ 0, so the i'th asset is purchased at the time zero price

Pi = Xi(1− d), (2.6)

where Xi is the book value of the asset.

Selling assets to the government has a similar e�ect on a bank's leverage as being recapital-

ized via an equity injection. Both means of intervention help to decrease the bank's leverage

via increasing its core capital ratio. The di�erence between the two lies in the way through

which this decreased leverage is achieved. Asset purchase programs result in reduced balance

sheet totals at the banking sector, while this is not achieved via equity injections.

Combinations of Di�erent Means

Most of the government bailout programs launched in the course of the subprime �nancial

crisis are a combination of di�erent means of government intervention.13 In this section we

13The TARP program is a combination of equity injections and asset distressed asset purchases, while most
European bailout programs combine government guaranteed debt issuance programs with direct equity
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focus on a combination of debt issuance programs and asset purchases. Nevertheless, our

results generally apply to other combinations as well.

Assume that V0,i is the present value of the expected payo� from asset i at maturity. As

long as V0,i ≤ Pi it is rational to sell the asset from the bank's perspective. Furthermore,

for banks with a need for liquidity, selling assets instead of obtaining debt �nancing can be

rational even if V0,i ≥ Pi. In any case, the costs of obtaining funding via selling an asset are

given by

V0,i − Pi.

The costs for obtaining external debt �nancing amount to

Pi
(
emin[pgrg+(1−pg)rb, rf+s]T − 1

)
. (2.7)

In both case we assume a liquidity need of Pi.
14 For any bank it is now rational to sell assets

as long as

V0,i − Pi ≤ Pi
(
emin[pgrg+(1−pg)rb, rf+s]T − 1

)
. (2.8)

It follows from equation (2.8) that the form of re�nancing chosen by a bank in our world

depends on the quality of its assets as well as the time horizon of the re�nancing transaction.

The willingness of the bank to sell assets will decline with a better quality of its assets and a

shorter time horizon of its liquidity needs.

Equilibrium Conditions I

As assumed above, the di�erent risk pro�les of the two types of banks largely stem from

the quality of their balance sheet. The quality of assets held by good banks is likely to be

better than the one of bad banks' assets. Let assets owned by good banks be denoted by

the subscript j and let the ones owned by bad banks carry the subscript k. All banks su�er

a liquidity shock and have to obtain liquid funds in order not to default. Both types of banks

face the problem characterized by equation (2.8). Nevertheless, in this setting, the two banks

will behave di�erently. As the good banks own high quality assets, they will be reluctant to

sell them and rather chose to be re�nanced via external debt capital. In contrast, the banks

of the bad cohort will sell a large fraction of their assets.

Furthermore, as the illiquidity of the good banks is caused by a market shock, it is likely to

vanish shortly after its occurrence. Therefore, the time horizon for which good banks have to

injections.
14In the special case that the fee equals the fair risk premium, the cost at which any bank may obtain external

funding amounts to Pi(e
rlT − 1).
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obtain external capital is short (as they are only subject to the liquidity shock, but otherwise

are solvent). The reverse holds for the bad banks, as their illiquidity is not only due to the

market shock, but also a result of structural issues within the bank.

Therefore, we may assume that Tg ≤ Tb. As long as

V0,j − Pj > Pj
(
emin[pgrg+(1−pg)rb, rf+s]Tg − 1

)
, ∀j, (2.9)

good banks will not sell any assets. This is a robust signal for market participants of being a

good bank, as long as it is irrational for bad banks to mimic. If this is the case, good banks

can obtain external funding at a rate of rg, as long as we assume that rg < rf + s, and rf + s

otherwise. Hence, the two types of banks can be distinguished as long as bad banks sell some

of their assets. From a bad bank's perspective, this is rational as long as

n∑
k=1

(V0,k − Pk) <
n∑
k=1

Pk
(
emin[pgrg+(1−pg)rb, rf+s]Tb − 1

)
, (2.10)

supposing that their funding need amounts to
n∑
k=1

Pk. For inequalities (2.9) and (2.10) to

hold, the discount d must satisfy

d > 1− V0,j
Xjemin[pgrg+(1−pg)rB , rf+s]Tg

, ∀j (2.11)

and

d < 1−

n∑
k=1

V0,k

n∑
k=1

Xkemin[pgrg+(1−pg)rb, rf+s]Tb
. (2.12)

If the discount is chosen according to equations (2.11) and (2.12), government bailout pro-

grams including possible asset purchases generate a separating equilibrium between good banks

and bad banks through a self-selection mechanism15. The good banks are able to borrow money

at their risk adjusted cost of external capital and they are better o� than in a situation where

the government intervention is conducted via guaranteed debt funding programs only.16 As

long as long as V0,i > Pi, the government can pro�t from the rescue packages, as it acquires

assets for less than their economic value. In sum, all three parties are better o� than with

15We thank an anonymous referee for noting that the self-selection mechanism might fail if the discount
o�ered is either chosen to be to large or to small. For the mechanism to work a prudent choice of the
discount is of paramount importance.

16As long as rf + s > rg.
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government guarantees only.

Equilibrium Conditions II

In the setting described above, good banks do not hold any assets for which,

V0,j − Pj > Pj
(
emin[pgrg+(1−pg)rb, rf+s]Tg − 1

)
. (2.13)

Putting it di�erently, we assume that good banks do not hold any distressed assets, which is a

rather restrictive assumption. Nevertheless, this assumption can be relaxed, while we still are

able to separate good and bad banks. This is achieved, as long as selling illiquid assets and

obtaining external debt capital are mutually exclusive.17 In this case, banks are not allowed to

obtain external funding, given that they have sold distressed assets to the government. Good

banks, having a funding need of
m∑
j=1

Pj, will not sell any assets as long as

m∑
j=1

(V0,j − Pj) >
m∑
j=1

Pj
(
emin[pgrg+(1−pg)rb, rf+s]Tg − 1

)
. (2.14)

Banks will retain assets for which inequality (2.8) holds and they will incur a loss by retaining

assets for which selling is rational. Nevertheless, this loss is outweighed by the loss they would

incur by not being able to rely on external funding, due to the mutual exclusiveness of the two

funding sources. The lower bound for the discount d, for which good banks will be reluctant

to sell any assets, implied by inequality (2.14) is given by

. (2.15)

The upper bound as given by (2.12) remains unchanged. Hence, it can be seen that good and

bad banks still behave di�erently in this setting.

A Numerical Example

To illustrate our �ndings we provide a small numerical example. Suppose pg = 0.5, rf =

5%, rg = 8%, and rb = 16%. There are two banks, one of either type, which both have a

liquidity need of 100 over the next two months. In the �rst case, suppose government assitance

17This can be ensured by restrictive covenants in the purchase agreement. From the government's perspective,
this is clearly desirable. Otherwise, banks could use rescue packages as a �dump� for worthless assets,
regardless of their solvency.
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comes in the form of a guarantee at the cost of s = 5%. Hence, the cost of obtaining external

capital via state guaranteed lending for both banks is

(100 · (e(0.05+0.05)· 2
12 − 1) = 1.68.

Next, suppose government assistance comes in the form of a purchase of illiquid assets by

state authorities. The good bank owns two assets. Each asset has a book value of 60. The

�rst asset has a present value of 60 and the second asset has a present value of 45. The bad

bank also owns two assets, each with book value of 60. The �rst asset has a present value of

60 and the second has a present value of 41. Further suppose that the discount is d = 16.67%.

For both the good and the bad bank, debt capital can be aquired at a cost of

100 · (e(0.5·0.08+0.5·0.16)· 2
12 − 1) = 2.02.

The cost of obtaining capital via selling assets for the good bank are

(60 + 45)− 2 · [60 · (100%− 16.67%)] = 5.

Therefore, it will chose to obtain fresh capital via external debt funding. The bad banks cost

of obtaining capital via an asset sale is

(60 + 41)− 2 · [60 · (100%− 16.67%)] = 1.

Therefore, the bad bank will decide to sell the assets instead of relying on external funding.

This provides a signal for outsiders allowing the good bank to lend at its risk adjusted rate

of 8%. Hence, it is better o� than in the state guarantee case. In this simple example, we

showed that all three parties are better o� when the government's rescue package comes in

the form of asset purchases. A drawback of this situation is that the bad bank is able to lend

money at a lower rate than the good bank (5.97% compared to 8%). Nevertheless, the two

types can be separated, allowing to reward good banks in the future.

2.5 Consequences in the Long Term - Lessons

Learned

Given the above, several questions arise: What are the lessons learned from the current crisis?

What has gone wrong and how can such failures be prevented in the future? Is there a need
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for stricter regulation in the �nancial system? It appears straightforward to blame the �nancial

services industry for the crisis and to ask for stricter regulation, but unfortunately, the answer

is not quite as simple as that.

2.5.1 The Future Role of Securitization

In the public discussion, securitization is often blamed to be �the root of all evil�, leading to

the melt-down in the �nancial system. Given this, what consequences should the crisis have

for the securitization market? Is there still room for securitization transactions, or do the

drawbacks of securitization outweigh the advantages discussed above?

The advantages of securitization transactions do warrant the risks inherent in securitization

transactions. However, the system has to undergo certain changes to avoid a collapse like the

one we see today. As argued by the International Monetary Fund (2003) and Franke and Krah-

nen (2008), there currently is a misalignment of the incentives of the di�erent counterparties

in typical securitization transactions. As the originator can eliminate the whole credit portfolio

from her balance sheet, she has little incentive to assure certain minimum quality requirements

for loans contained in the securitized portfolio, which is con�rmed empirically by Amiyatosh

(2009).18 This can easily be prevented by requiring the originator to retain a certain share of

the transaction, preferably a fraction of the �rst-loss-piece, on her books. This would ensure

that no �toxic waste� is contained in the loan portfolio, since the originator is directly exposed

to its inherent credit risk. Furthermore, the originator should be required to publicly declare

the share and the tranches of the transaction she retains. This signal can be used by investors

to assess the risk associated with a certain transaction. The optimal size of the share of the

transaction the originator is required to hold is subject to further research. On the one hand, if

the share is too small, the alignment of incentives is not accomplished. On the other hand, if

the share is too large, the whole securitization transaction becomes unattractive for the issuer,

since other forms of re�nancing, e.g. the issuance of covered bonds become more rewarding.

This terminates the positive e�ects of securitization transaction for the economy. Requiring

the originator to retain a certain share of the transaction has another positive e�ect, as it also

limits the overall volume of loans granted. In case the originator retains a certain share of the

transaction, she expends her balance sheet, which would not be the case if she fully passes

on all the tranches of the transaction. This automatically limits the number of loans she can

grant as she cannot (at least she should not) exceed a certain level of leverage. This assures

18Gorton (2009) disagrees with the opinion that securitization transactions lead to a decline in the quality of
mortgages originated. He argues that, despite the fact that the credit risk is eliminated from the originator's
balance sheet, she still is exposed to the performance of the securitized mortgage portfolio, e.g. through
servicing fees and warehousing risks.
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that the quality of obligors does not decrease arbitrarily.

Another important issue, which led to the �nancial crisis is the enormous complexity of

certain products in the market for credit risk. This complexity not only hampered investors'

assessment of the risk associated with the products, even rating agencies were not able to

specify and measure the risk underlying certain transactions. Unfortunately, many investors

relied on external ratings, which were provided by overly optimistic rating agencies. Neverthe-

less, it is astonishing that investors relied on ratings and invested in products they obviously

did not fully understand. The only explanation for this is that sophisticated risk assessment

and management was sacri�ced on the altar of irrational return expectations.

2.5.2 The Role of Internal Risk Management

The absence of proper risk awareness among market participants is surely among the basic

causes of the current crisis. As argued above, market participants may assume that various

risks can easily be eliminated through instruments like securitization and credit protection.

What has been overseen is the fact that there are risks besides credit risk, which cannot be

eliminated easily, including market risks, liquidity risks, and counterparty risks. The number

of bad loans in the economy does by no means justify the enormous volume of �nancial

products which are labeled as �toxic waste�19during the recent period of market stress. The

essential problem is that there no longer exists a market for these products, due to a lack of

liquidity as well as due to a lack of trust in those products. This fact, in connection with

the fair value accounting principle, causes serious write-downs on investments in those assets,

although these write-downs might only in part be driven by a lack of quality of the product

itself. The possibility of such an erosion of secondary markets has obviously not been taken

into account. This is clearly a failure of internal risk management within �nancial institutions.

In this light, one has to discuss the question, whether or not this failure can be prevented

by stricter regulation. A possible solution may be to require �nancial institutions to hold an

increased equity cushion in order to absorb losses due to market and liquidity risk.20 On the

other hand, it seems doubtful whether or not this is really an issue for regulators. Normally,

those market participants which had not accounted properly for their exposure to market and

liquidity risks would be wiped out, and those with appropriate risk management systems in

19According to Bank of England (2008) estimates, about 37% of the mark-to-market losses on US subprime
RMBSs can be attributed to discounts for illiquidity and uncertainty rather than actual credit risk.

20Admittedly, it is impossible to hold equity cushions to absorb any potential losses due to market and
liquidity risk. The October 2008 market meltdown is clearly some tail event, which cannot be fully
absorbed. Nevertheless, it seems doubtful that the situation would have spread the way it did, had market
participants at least provided enough capital to absorb moderate losses due to market and liquidity risk.
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charge would prevail. Unfortunately, this market mechanism was suspended by the rescue

packages initiated by governments worldwide.

2.5.3 Long Term Pro�tability versus Short Term Cash Generation

The above discussion leads us to another trigger of the �nancial crisis, namely inappropriate

management incentives. Typical performance measures (such as the Return on Equity (ROE),

among others) do not seem to be sound target �gures for �nancial institutions as they do not

account for risk. Instead of rewarding sophisticated risk management, such measures rather

induce managers to increase leverage and to pursue a more risky business model. This strategy

may yield sound performance �gures in the short run, but does not necessarily promote the

long term stability of an institution. This corporate governance issue could be resolved via

shareholders. Unfortunately however, the number of long term investors seems to be steadily

decreasing in the markets. Instead, investors with a short term investment horizon, e.g. hedge

funds, own signi�cant shares in many �nancial institutions. Their focus is frequently on short

term cash generation rather than sustainable growth. This clearly plays a supporting role in a

failure of internal control mechanisms of publicly listed companies. Rather than assuring that

the management acts in the sake of long term stability, via linking compensation to typical

performance ratios, management is o�ered an incentive to increase short term pro�tability.

2.6 Conclusion and Outlook

The current turmoils in the global �nancial system are unprecedented. They highlight the

need for massive structural changes in the �nancial services industry. In our view, stricter

regulation is not the sole answer to the problem. In the future, �nancial institutions need

to focus on appropriate risk management and risk assessment instead of maximizing short

term pro�tability. In this light, government support packages granted to �nancial institutions

have to be seen with prudence, as they may hinder the future development of sound risk

management strategies. Rather than solely providing guarantees, government support should

aim at appropriate capital ratios within the banking system.21 This recapitalization must come

at a signi�cant cost in order to provide accurate incentives.

An recent interesting issue is why banks seem to be reluctant to rely on government bailout

programs. Most programs are designed in a way that allows �nancial institutions to lower their

re�nancing cost. Hence, it would seem reasonable to rely on government assistance from a

21On March 30, 2010, it was announced that the Irish National Asset Management Agency (NAMA) would
buy of risky loans worth EUR 16 billion at a discount of 47%.
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shareholder value perspective. Nevertheless, the restrictive covenants of the packages (e.g.

caps on management salaries, as well as the stigma of being in need of state assistance), seem

to tempt some managers to proceed without assistance. Furthermore, it remains questionable

whether market participants have learned their lesson from the current crisis. The worldwide

development of treasury bonds since the early 1980's indicates yet another bubble. Time will

tell when and how the �nancial system will cope with its future potential crises.
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Abstract

We examine risk factors that explain daily changes in aggregate credit default swap (CDS)

spreads before, during and after the 2007-2009 �nancial crisis. Based on the European iTraxx

index universe, we document time-variation in the signi�cance of spread determinants. Before

and after the crisis, spread changes are mainly determined by stock returns and implied stock

market volatility. Global �nancial variables possess explanatory power during the pre-crisis and

the crisis period. Liquidity proxy variables are signi�cantly related to spread changes for �nan-

cials, while unrelated for non-�nacials. Our examination of the risk factors' explanatory power

for large spread changes, reveals weakened signi�cance, indicating that additional factors are

necessary for their explanation. Finally, we examine the lead-lag relationship between spread

changes and stock returns. Stock market returns lead spread changes during the crisis period,

while a bi-directional relationship emerges after the crisis period. This suggests that aggregate

spread changes are informative for equity market participants, possibly measuring systemic risk.

Keywords: aggregate credit risk, credit default swaps, �nancial crisis, quantile regression,

vector autoregression, iTraxx;
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3.1 Introduction

In the light of the 2007-2009 global �nancial crisis, a more decent understanding of credit

markets appears desirable. An important segment of the market for credit risk are credit

derivatives, a recent �nancial market innovation, which have a huge impact on �nancial mar-

kets. Credit derivatives can be separated into single name products such as e.g. credit default

swaps (CDSs) and portfolio products like collateralized debt obligations (CDOs) and credit

indices.1 From a researcher's point of view, credit derivatives provide an excellent laboratory

for studying the mechanics of credit markets. Due to their pronounced liquidity compared to

bonds they quickly process information, which is relevant for determining the creditworthiness

of a company. Furthermore, portfolio products, such as credit indices, seem well suited to

re�ect relevant information concerning the creditworthiness of a sector or even an economy

as a whole. Furthermore, as Longsta� and Rajan (2008) point out, credit derivatives are

sensitive to the joint distribution of default risk. Hence, they are crucial for an understanding

of systemic risk in �nancial markets.

We conduct an empirical investigation of the iTraxx Europe index universe with the recent

�nancial crisis in focus. We address three di�erent issues. First, we want to identify the deter-

minants of iTraxx spread changes to learn about the drivers of aggregate credit risk which in

turn can be regarded as systemic risk factors. We are particularly interested in whether the de-

terminants have changed as a consequence of the recent �nancial crisis, i.e. whether investors

have adjusted their models of credit risk and have reassessed their assumptions concerning the

systemic component of spreads. Second, we investigate whether the determinants of iTraxx

spreads are suited to explain spread changes in the upper and lower tail of the empirical distri-

bution, i.e. whether extreme spread changes are subject to the same factors as changes around

the mean or median of the empirical distribution. Third, we are concerned whether market

participants use the iTraxx index as a source of (additional) information regarding systemic

risk. Therefore, we investigate the lead-lag relationship between the iTraxx index market and

equity markets. If the iTraxx market is used as a source of information regarding systemic risk

by investors it should not be led by stock markets.

In order to address these three issues we proceed in the following way. In a �rst step

we regress daily spread changes of iTraxx Europe index family members on a rich set of

explanatory variables. It comprises variables implied by structural models of credit risk, a set

of liquidity factors and global �nancial variables. We examine spread changes of the iTraxx

Europe benchmark index, as well as spread changes of the di�erent subindices of the benchmark

index. We put a special focus on changes of credit spread determinants as a consequence of

1A credit index can be regarded as a single tranche CDO.
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the recent �nancial crisis. Our sample ranges from 06/16/2004 to 08/06/2010 and spans

the crisis period, as well as a pre- and a post-crisis period. This allows us to examine the

evolution of credit spread determinants throughout the �nancial crisis. First we estimate our

econometric model for the full sample and then repeat the estimation for the pre-crisis, crisis

and post-crisis subsamples to detect changes in the set of spread drivers.

In a next step we reestimate our econometric model via quantile regression. This allows

us to examine the performance of our set of explanatory variables in the upper and lower

quantiles of the empirical distribution of spread changes, i.e. to check for the robustness of

our OLS-regression results in di�erent quantile of the empirical distribution of spread changes.

The quantile regression is conducted for all subindices and all subsamples. This allows us

to study the determinants of spread changes in upper and lower quantiles of the empirical

distribution, as well as changes in the determinants in the course of the �nancial crisis.

To examine whether market participants rely on the iTraxx index as a source of additional

information we examine the lead-lag relationship between the market for credit risk and stock

markets. For this purpose we estimate a vector autoregressive model with exogenous variables

(VARX-model). The exogenous variables are supposed to jointly determine credit spread

changes, as well as stock returns on a portfolio constructed out of the iTraxx index constituents.

We estimate the VARX-model for all subindices and all respective subsamples to investigate

whether the lead-lag relationship has been altered by the recent �nancial crisis.

Our paper contributes to the existing literature in several ways. First we investigate the

explanatory power of a rich set of independent variables, including proxies for liquidity and

global �nancial factors. Second, to the best of our knowledge, this is the �rst empirical

investigation of the behavior of iTraxx index spreads of the benchmark index and all subindices

with a special focus on changes on credit spread determinants in the course of the recent

�nancial crisis. Third, our empirical paper provides deeper insights into the mechanics of

iTraxx spreads by explicitly examining the behavior of credit spread changes at the upper and

lower quantiles of the empirical distribution. Finally, we contribute to the existing literature

by examining the evolution of lead-lag relationships between the iTraxx and stock returns in

the course of the recent �nancial crisis, while controlling for several exogenous variables.

We �nd strong evidence of variation in the determinants of credit spread changes in the

course of the recent �nancial crisis. This �nding suggests that market participants have altered

their models of credit risk as a consequence of the crisis. While the number of factors nec-

essary to explain iTraxx spread changes varies throughout the sample period, the explanatory

power of our set of independent variables rises. The predominant factor determining iTraxx

spread changes for all subsamples and all subindices is the return on an equal-weighted stock
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portfolio consisting of the iTraxx constituents. The performance of the other factors implied

by structural models, i.e. the risk-free rate, stock market volatility and the shape of the risk-

free curve, is signi�cantly worse in all of the subsamples and for all subindices. Furthermore,

in contrast to the results of Alexander and Kaeck (2008) we do not �nd empirical evidence

that stock market volatility rather than stock market returns have a predominant in�uence on

credit spread changes in crisis periods.

The explanatory power of our liquidity and global �nancial variables di�ers largely throughout

the di�erent subindices and subsamples. Global �nancial variables have a statistically, as well

as economically signi�cant in�uence on spread changes in the pre-crisis and in the crisis period

for most subindices. Especially during the crisis, systemic risk, as measured by the returns on

a global stock index has a signi�cant in�uence on spread changes, highlighting the increased

awareness of investors regarding systemic risk throughout the crisis. Equity market illiquidity

is not signi�cant except for the Senior Financials and the Subordinated Financials index, for

which we observe a positive relationship between stock market illiquidity and spread levels.

For those subindices, the e�ect is especially pronounced in the crisis period. This suggests

that during the crisis investors were especially concerned with hedging their risk towards the

�nancial sector. The illiquidity of the iTraxx index itself is not signi�cant, except for the Non-

Financials index. This comes as no surprise as the iTraxx Non-Financials index tends to be

the most illiquid subindex of the iTraxx index universe.

Furthermore, we observe pronounced positive autocorrelation in iTraxx spread changes for

all subindices, even after controlling for a rich set of explanatory variables. However, the e�ect

is largest for the pre-crisis sample and declines steadily throughout our sample period. The

declining autocorrelation of iTraxx spread changes suggests that the liquidity of the iTraxx

index has constantly risen throughout our sample period.

The results of the quantile regression generally con�rm the results of the OLS-regression

analysis. However, there is strong empirical evidence that our set of explanatory variables

performs worse in explaining spread changes in the upper and lower quantiles of the empirical

distribution than at the median or the mean. Both spread widening and spread tightenings

in the tail of the empirical distribution are systematically underestimated. Regression results

reveal that a statistically signi�cant systemic component of spread changes in the upper and

lower quantile is not explained by our set of independent variables. This �nding is not in line

with structural models. Hence, adjustments to structural models of credit risk seem necessary.

Additionally, the explanatory power of our set of variables varies throughout the di�erent

quantiles.

The results of the VARX-model provide empirical evidence for the existence of variation in
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the lead-lag relationship between credit spread changes and stock returns. While the regression

results for the full sample convey a two-sided relationship, the regression yields incomprehensive

results for the di�erent subsamples. In the pre-crisis sample no apparent lead-lag relationship

between iTraxx spread changes and stock returns can be observed. In the course of the recent

�nancial crisis, stock returns lead spread changes for almost all subindices. In contrast, we

observe a two-sided relationship in the post-crisis sample for all subindices. The results for the

Senior Financials and the Subordinate Financials index even suggest that spread changes tend

to lead stock returns in the post-crisis period.

In general the results of the VARX-model provide strong evidence that both the market for

credit risk and the stock market possess relevant information for market participants. There

is no apparent lead-lag relationship favoring one market over the other, except for the pre-

crisis period. Furthermore, the role of credit markets in processing information has changed

in the course of the recent �nancial crisis, as it tends to lead stock markets in the post-crisis

subsample, at least for �nancial entities. This result con�rms the previous �nding that the

liquidity of the iTraxx index has increased signi�cantly. We conclude that market participants

rely on information of both markets when engaging in trading or hedging. Hence, the iTraxx

index universe indeed provides additional information concerning the systemic risk of �nancial

markets.

The rest of this paper is organized as follows. The literature related to our empirical

investigation is reviewed in Section 3.2. We introduce CDS indices and the iTraxx index

universe in Section 3.3. The theoretical aspects underlying our empirical investigation are

discussed in Section 3.4. The data set used in the empirical analysis is introduced in Section

3.5. Our econometric model and the results are discussed in Section 3.6. Section 3.7 concludes

the paper.

3.2 Literature Review

The pricing of credit derivatives has gained increasing attention in the literature recently.

Currently there are two fundamental approaches available. On the one hand there are the

structural models based on the seminal work of Merton (1974). In structural models the

default process is explicitly modeled by assuming that an issuer defaults on its obligations

when its �rm value drops below a certain threshold. Although perfectly reasonable in the �rst

place, structural models su�er from a considerable drawback. Major input data like the �rm

value, or its volatility cannot be observed directly and have to be approximated. This often

causes a poor model �t to empirical data.
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On the other hand there is the class of reduced form models. In this model class an issuer

default is an unpredictable event driven by a random jump process characterized by the default

intensity (see e.g. Du�e and Singleton (1999), Jarrow et al. (1997) and Lando (1998) among

many others). Securities subject to credit risk can be priced with reduced-form models, by

extracting default intensities from historical data. This provides more �exibility and mitigates

some of the data problems inherent with structural models. Nevertheless, they su�er from the

di�cult calibration of the jump process modeling the issuer default.

Both approaches have been veri�ed in numerous empirical studies. Many of them focus on

the explanatory power of the variables implied by the framework instead of testing the model

directly. This detour is sometimes necessary as major input data for structural models are

unavailable, or because the extensive calibration of the default intensity in reduced form models

yields unrealistic results. Benkert (2004) uses the structural framework to derive theoretical

determinants of CDS spreads. The implied variables are used as explanatory variables in a

panel regression to explain CDS spread levels. This approach was �rst introduced by Collin-

Dufresne et al. (2001) who use the theoretical determinants of credit spreads implied by the

structural framework to explain changes in corporate bond spreads. A similar access is also

followed by Campbell and Taksler (2002). Benkert (2004) concludes that CDS spreads are

to a large extend in�uenced by the determinants implied by structural models, especially by

equity volatility.

Ericsson et al. (2004) examine the explanatory power of independent variables implied by

structural models in explaining CDS spread levels, as well as spread changes. They �nd

strong evidence that �rm leverage, volatility, and the risk-free rate are statistically, as well

as economically signi�cant in the determination of CDS spreads. A principal component

analysis of the residuals suggests that the structural framework explains a signi�cant amount

of variation in the data and that there is only weak evidence in favor of a missing common

explanatory factor.

Among the �rst studies to examine the e�ect of illiquidity on CDS spreads is Tang and Yan

(2007). They measure liquidity e�ects by constructing several illiquidity proxies to account for

several aspects of illiquidity in CDS markets. They �nd evidence that both the liquidity level

and liquidity risk have signi�cant in�uence on CDS spreads, on average accounting for about

20% of CDS spreads. They conclude that there is an explicit need for a CDS pricing model

taking liquidity e�ects into account. Das and Hanouna (2009) investigate the in�uence of

equity market liquidity on credit spreads. Using a sample of single name CDS data the authors

discover a statistically, as well as economically signi�cant relationship between equity market

liquidity and credit spreads. The in�uence is most likely to be due to investors' need to hedge
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their credit exposure in equity markets.

While the aforementioned studies focus on single name credit risk, there is a growing amount

of literature covering portfolio products such as CDS indices. In one of the �rst empirical

papers with a focus on credit indices Byström (2005) analyzes the relationship between equity

market returns, equity market volatility and iTraxx spreads. He �nds strong evidence that

current, as well as lagged stock returns explain much of the variation in CDS index spreads.

Furthermore he discovers signi�cant correlations between stock markets and CDS markets,

whereas the stock market seems to lead the CDS market in the transmission of �rm speci�c

information. Alexander and Kaeck (2008) introduce a Markov switching model to examine

the determinants of iTraxx Europe index spreads in two di�erent regimes. They con�rm the

statistically signi�cant explanatory power of the variables implied by the structural framework.

Additionally, they �nd that CDS spreads are more sensitive to stock returns than stock volatility

in normal market conditions. In times of turbulences, spreads are extremely sensitive to stock

volatility. Scheicher (2008) analyzes to what extent the set of explanatory variables governing

iTraxx CDX tranche spreads has changed during the recent global �nancial crisis. The author

�nds empirical evidence that a decreasing risk appetite of investors, as well as concerns about

market liquidity have contributed to the rising spread levels during the crisis. Furthermore,

the author discovers that the repricing of tranches during the crisis is more pronounced in

the CDX than in the iTraxx index universe. Giammarino and Barrieu (2009) use an adaptive

nonparametric modeling approach to explain iTraxx spreads by tradeable market factors. Their

model allows for dynamic factor sensitivities. The authors �nd empirical evidence for signi�cant

variation in factor sensitivities. During crises, factor sensitivities may be subject to sudden

jumps while showing pronounced time consistency in calm periods.

Lead-lag relationships between the market for credit risk and stock markets have been

addressed in several empirical studies. For example Norden and Weber (2009) analyze the

relationship between CDS, bond and stock markets with a vector autoregressive model. The

authors �nd empirical evidence that stock markets lead CDS and bond markets, while CDS

spread changes lead bond spread changes. The co-movement between CDS spreads and bond

returns is especially pronounced for companies with low credit quality or large bond issues.

Fung et al. (2008) examine the relationship between the U.S. stock market and the CDS

markets. The authors discover that the stock market leads the CDS index market in price

discovery. However, CDS markets have a crucial role in the volatility spillover between the

two markets. The authors conclude that both markets provide relevant information for market

participants.
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3.3 Characteristics of CDS Contracts and CDS Indices

A CDS can be regarded as an insurance against the default of a certain issuer of debt capital,

called reference entity, at the cost of a periodic fee, called spread. In case of an issuer default,

the protection buyer is compensated for his losses due to the default by the protection seller.

Therefore, CDS spreads can be regarded as a measure for the credit risk of the reference

entity, as they represent the compensation an investor has to be o�ered in order to be willing

to obtain exposure to the reference entity's default risk. In contrast to a classical insurance

contract, an engagement in a CDS contract does not require owning the reference asset.

Credit indices are among the major �nancial innovations in the new millennium. In contrast

to single name CDSs they allow to insure a whole portfolio of single name credit risk with a

single transaction. The outcome is similar to buying protection on each of the names in the

portfolio. Hence credit indices can be regarded as an aggregation of single name CDSs.

3.3.1 The iTraxx Europe Index Family

Up to date there exist two major families of credit indices, the Dow Jones CDX index universe,

covering North America and emerging markets, and the iTraxx index universe, with a regional

focus on Europe and Asia. The iTraxx Europe benchmark index consists of 125 European

entities with an investment grade rating (Markit (2011)). Among the subindices of the iTraxx

Europe benchmark index are the iTraxx HighVol, the iTraxx Senior Financials, the iTraxx

Subordinated Financials and the iTraxx Non-Financials index.2 The iTraxx Senior and Subor-

dinated Financial indices comprise the same set of constituents, while o�ering protection on

di�erent (senior vs. subordinated) reference obligations. Within each index, the constituents

are weighted equally. The indices are rolled twice a year. At each role date the constituents

of the respective index are determined according to a liquidity poll, ranking entities based on

the trading volume in the CDS market in the previous six months.3 The sectoral breakdown

of the �nal 125 index constituents is as follows:

• 30 Autos & industrials,

• 30 Consumers,

• 20 Energy,

2The iTraxx index family was formed as a result of the merger of the iBoxx and Trac-X indices in June 2004.
Each iTraxx index family consists of a benchmark index and further subindices. There had been further
sectoral indices in the past, which are no longer rolled.

3For further details regarding the membership determination details refer to Markit (2011).
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• 20 TMT (Technology, Media and Telecommunication),

• 25 Financials.

In case one of the index constituents is subject to a credit event, the entity is removed from

the index. The notional of the index is reduced accordingly. The credit event triggers a payout

from the protection seller to the protection buyer. The settlement can either be physical or in

cash.

3.3.2 Index Pricing

Markit calculates both quoted and theoretical index prices and levels. The procedures are

described in Markit (2010b). Quoted index prices and spreads are calculated as the arithmetic

average of prices and spreads quoted by market makers. The calculated spread has to be

based on quotes of at least three di�erent market makers. The highest an the lowest quotes

are discarded and do not enter the calculation in order to eliminate outliers.

In addition to the quoted spreads, theoretical spreads are calculated as a benchmark of the

pricing accuracy of market participants. The calculation is based on spread data for each of the

index constituents. The spread data is used to construct a spread curve for each constituent.

Spreads for terms which are not traded are obtained via linear interpolation. The spread

curves are used to calculate the survival probabilities at each coupon payment date for each

index constituent. Then the present value (PV) and the accrued interest (AI) for each index

constituent is calculated.4 These are aggregated to the index PV (PV ) and accrued interest

(AI) by calculating the weighted averages of the constituents's PVs and accrued interest. The

index price is then calculated as

Pindex = 1 + PV − AI. (3.1)

The theoretical index spread is obtained by solving for the �at curve that gives PV .

3.4 Background

3.4.1 Spread Modeling

The theoretical framework we rely on for our empirical analysis is based on the �ndings of Lando

(1998) and the reduced form pricing framework of Du�e and Singleton (1999). Reduced form

4An example of how the PV of an constituent is calculated is give in Markit (2010a).
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models treat default as an unpredictable event driven by a hazard process λt. The mean loss

rate at time t is given by λtLt, where Lt is the expected fractional loss of market value in

case of a default at time t. Given that the mean loss rate process λtLt is exogenous, standard

term structure models are applicable to the pricing of default risky claims, by parameterizing

the risk-adjusted short rate process Rt = rt + λtLt instead of the short rate process rt (see

Lando (1998)).

This �nding is used by Du�e and Singleton (1999) to price contingent claims subject to

credit risk as follows. Suppose an arbitrage-free setting where all claims are priced under the

equivalent martingale measure Q. Next, suppose that a contingent claim is a pair (Z, τ),

where Z is a random variable representing a payment and τ is the time when Z is paid. The

price process V of a given contingent claim (Z, τ) is given by

Vt = EQ
t

exp

− τ∫
t

Rt dt

Z

 , t < τ, (3.2)

where EQ
t represents the risk neutral, conditional expectation at date t given the information

�ltration F .
Some empirical studies like Berndt et al. (2005) and Pan and Singleton (2005) observe

actual CDS spreads which are systematically higher than those implied by reduced-form pricing

models. In the arbitrage-free setting of this framework we would expect these mispricings to

be fully arbitraged away, which is obviously not the case. A possible explanation for this puzzle

are frictions due to illiquidity e�ects, which in turn hamper arbitrage.

In order to account for illiquidity e�ects in the reduced-form pricing framework for contingent

claims subject to credit risk, Du�e and Singleton (2003) propose that an liquidity premium

should directly be applied in terms of a price discount for the valuation of contingent claims,

such as CDS. Therefore, the risk-adjusted short-rate process is expressed as

Rt = rt + λtLt + `t, (3.3)

where `t represents an liquidity premium, which can be interpreted as the risk-neutral expected

fractional loss due to illiquidity e�ects.

3.4.2 Implications for our Empirical Investigation

As outlined in the previous section, specifying the risk-adjusted short rate process Rt is essential

for pricing claims subject to credit risk, such as bonds and CDS. Given that a credit index
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has to be priced, the claim is contingent on the solvency of a portfolio of obligors. Hence,

Rt has to re�ect the risk of the portfolio of index constituents. Nevertheless, as the index

PV is calculated as the weighted average of the constituents's PVs, there is no fundamental

di�erence between the pricing of the iTraxx index and a e.g. a single name CDS. In the

remainder we are concerned with identifying the determinants of Rt. The variables implied

by structural models of credit risk are natural candidates. However, since Rt cannot be fully

explained by these variables, additional factors determining Rt, such as illiquidity components

have to be incorporated.

3.5 Data

In this section we introduce the data set used for our empirical analysis. The iTraxx data is

described in Section 3.5.1 and the independent variables used are introduced in Section 3.5.2.

3.5.1 iTraxx Spread Data

Our dataset consists of daily bid and ask quotes of the �rst 13 series of the iTraxx Europe

benchmark index, as well as the subindices of the iTraxx Europe universe. We chose a tenor

of �ve years as this is the most liquid maturity available. The sample ranges from June 16th

2004 to August 6th 2010 and comprises 1603 trading days. The sample is also split into three

subsamples. Sample lengths are chosen according to the results of a Chow-breakpoint test with

5% signi�cance level. Rather than analyzing every roll of the index on its own, we aggregate

the single iTraxx series to form a single time series of iTraxx spreads for each (sub)index.

This may lead to distortions, i.e. jumps in the index levels, as the index constituents change

with every roll. However, the number of changes is moderate, thus there are no large spread

di�erences between the single roll dates. The current index mid-spread is calculated as the

arithmetic mean of the bid and ask quotes. The data set is obtained from Open Bloomberg.

We analyze daily spread changes in order to have su�cient observations to obtain robust

results, despite the large amount of independent variables and the fact that the sample is

divided into subsamples. In the empirical analysis we focus on spread changes rather than on

spread levels, since spread levels are non-stationary, as con�rmed by a unit root test. A time

series plot for both iTraxx spread levels and spread changes is shown in Figure 3.1.

The upper panel of Figure 3.1 illustrates the massive impact of the global �nancial crisis on

the iTraxx Europe benchmark index. Since the �rst series of the iTraxx Europe index the mid-

spread had declined steadily, besides a peak at May 2005 at about 60 basis points (bps) when

Ford and general Motors were downgraded, from about 45 bps in June 2004 to the all-time

48



Figure 3.1: Time series plots of iTraxx Europe mid-spread levels (upper panel) and mid-spread
changes (lower panel) throughout the entire sample ranging from 06/16/2004 to
08/06/2010 measured in basis points.

 0

 50

 100

 150

 200

 2005  2006  2007  2008  2009  2010

Sp
re

ad
 le

ve
l i

n 
ba

sis
 p

oi
nt

s

(a) iTraxx Europe spread levels

-30

-20

-10

 0

 10

 20

 30

 2005  2006  2007  2008  2009  2010

Sp
re

ad
 c

ha
ng

es
 in

 b
as

is 
po

in
ts

(b) iTraxx Europe spread changes

49



Table 3.1: Descriptive statistics
This table provides descriptive statistics for both, iTraxx Europe spread levels and spread changes
between 06/16/2004 and 08/06/2010. spread levels and changes are measured in basis points.

spread levels spread changes

Mean 67.643 0.035
Median 44.000 -0.054
Minimum 20.159 -29.996
Maximum 216.870 24.427
Standard deviation 45.108 3.575
Skewness 1.069 -0.513
Excess kurtosis 0.20865 11.759

low of 20.159 bps in June 2007. After the outburst of the �nancial crisis in the second half of

2007, mid-spreads had risen massively and peaked at 216.870 bps in December 2008. Since

then, the mid-spread had declined to about 100 bps at the end of our sample. Nevertheless,

they ranged well above the levels between June 2004 and June 2007.

The lower panel of Figure 3.1 indicates that our sample comprises di�erent volatility regimes

throughout the sample. After a calm period between June 2004 and June 2007, we observe a

period of very volatile spreads between the second half of 2007 and early 2009 as a result of

the recent �nancial crisis. Since early 2009, spread volatility declined again but remained well

above pre-crisis levels. This observation will be accounted for in our empirical investigation,

by splitting the full sample into three subsamples. This is done to investigate whether the

determinants of spread changes di�er among the subsamples.

Summary statistics for both iTraxx Europe spread levels and spread changes are provided in

Table 3.1. Neither iTraxx Europe spread levels, nor spread changes are normally distributed.

Spread levels are skewed to the right and exhibit moderate excess kurtosis. Spread changes

are skewed to the left and are subject to signi�cant excess kurtosis. The mean spread level

throughout our sample is 67.643 bps and the median spread level is 44 bps. Since spread levels

change massively throughout the sample, with values ranging from 20.159 to 216.687 bps,

the standard deviation of spread levels is quite high at 45.108 bps. The mean spread change

throughout the sample is close to zero at 0.035 bps. Nevertheless, spread changes are highly

volatile with a standard deviation of 3.575 bps. The high volatility is emphasized by the large

gap between the minimum and the maximum spread change (-29.996 bps vs. 24.427 bps).
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3.5.2 Independent Variables

The set of independent variables used is based on the theoretical methodology outlined in

Section 3.4. Natural candidates to use for the regression analysis are the variables implied by

structural models. Unfortunately not all factors implied by structural models are observable

and therefore have to be proxied by observable factors. Furthermore, additional variables seem

necessary, as variables implied by structural models fail to capture all the variation in credit

spreads. Hence, we augment the set of variables used with liquidity, as well as global �nan-

cial variables. In the remainder of this section we introduce the independent variables used

for the empirical analysis and explain their theoretical in�uence on iTraxx Europe spread levels.

Variables implied by structural models

Structural models are appealing when it comes to explain the mechanics behind the default

process of a company. Since the factors implied by structural models have a theoretical

underpinning, it is straightforward to include them in an empirical investigation on spread

determinants. The variables included in our econometric models are discussed below.

The risk-free rate

According to structural models the e�ects of the risk-free rate are twofold. On the one hand,

an increasing risk-free rate leads to an increasing drift rate of the company value. The higher

the drift rate, the more likely the company value is to remain above the default boundary

and thus default risk decreases. On the other hand, a higher risk-free rate refers to a higher

discount rate, which decreases the present value of future cash �ows. This e�ect devalues the

put option of the company's owners. Both e�ects imply that a rising risk-free rate should lead

to a decrease in credit spreads. In the empirical analysis we use the one year Euribor rate as

a proxy for the risk-free rate.

The company value

Another important factor in structural models is the company value. An increasing company

value raises the distance-to-default of the respective entity. The distance-to-default measures

the number of standard deviations the �rm value lies above the default barrier. The higher the

distance-to-default the more unlikely the entity is to hit the barrier, i.e. the lower the credit

risk. Thus, an increasing company value theoretically leads to lower credit spreads. As the

company value is not directly observable and we investigate spread changes rather than spread

levels, we refer to stock returns as a proxy for changes in the company value.
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To examine the e�ect of stock returns on iTraxx Europe spread changes we form equal

weighted stock portfolios for every iTraxx series. The portfolio constituents comprise the

constituents of the respective iTraxx series. If an iTraxx constituent has no traded stock or

no stock data is available for the respective entity it is removed from the portfolio and the

portfolio weights are adjusted accordingly. If the iTraxx constituent has no traded equity but

is a subsidiary of a parent with traded equity, the parent is included into the portfolio. All

equity prices are converted to Euro currency to avoid biases due to exchange rate e�ects. We

calculate the log-return of the portfolios on a daily basis and aggregate the portfolio returns

to a single time series to match the iTraxx time series. The equity data set is obtained from

Thomson One Banker.

The volatility of the company value

Since structural models of credit risk rely on option pricing arguments, the volatility of the

company value is another important driver of credit spreads. The higher the volatility the more

valuable is the put option of the company owners and the less valuable is the value of the

�rms debt. Therefore, rising equity volatility leads to an increase of the respective company's

spreads.

As the volatility of the company value is not directly observable stock volatility is used as a

proxy. Therefore we calculate the standard deviation of the equity portfolios described above

using a rolling window containing the preceding 20 return observations. The volatilities then

are aggregated to a time series matching the iTraxx Europe time series.

The slope of the risk-free term structure

When the risk-free rate is assumed to be time-varying, an increasing slope of the yield curve

implies a higher spot rate in the future. This is because an increasing slope causes forward

rates to increase, which are similar to expected future spot rates. Hence, an increasing slope

of the risk-free curve should lower credit spreads. We calculate the slope of the risk-free curve

as the di�erence between the one year Euribor and the Eonia overnight rate.

Liquidity variables

In the empirical analysis we account for two possible sources of illiquidity e�ects. On the

one hand illiquidity in the iTraxx Europe index itself could have a signi�cant in�uence on the

spreads. On the other hand equity market illiquidity is another possible factor priced.
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Liquidity in the market for credit risk

We use the quoted bid-ask spread changes of the iTraxx Europe index as a proxy for illiquidity

in the market for credit risk. Bid-ask spreads are widely used as liquidity proxies in empirical

studies. Wider bid-ask spreads are a sign for growing illiquidity in the market. This in turn

may be interpreted as a sign of growing market uncertainty and therefore rising risks in the

market, which causes spreads to widen. Additionally, if investors demand a risk premium for

illiquidity, the factor should be priced in iTraxx spreads and growing illiquidity should cause

spreads to widen. Bid and ask quotes for the iTraxx Europe index are obtained from Open

Bloomberg. The spread is calculated as the di�erence between the quoted bid and ask spread

of the respective index.

Equity market illiquidity

Equity market illiquidity is another factor, which is believed to be priced in credit spreads. Das

and Hanouna (2009) argue that equity market liquidity is priced in the market for credit risk

due to hedging activities. If investors hedge their positions in the market for credit risk via

equity markets, growing illiquidity causes hedges to be more expensive. This in turn will cause

spreads to rise. Unfortunately, equity market liquidity, especially on a market or portfolio level,

is not directly observable and di�cult to proxy. To date several methods to measure market

liquidity have been proposed. We employ the liquidity measure of Amihud (2002)

The measure of Amihud (2002) is based on the idea that in a perfectly liquid market, large

trades should have no impact on prices as long as the trade is not induced by price relevant

information. Therefore, equity market liquidity is expressed by the AILLIQ-measure, which

relates price changes to trading volume. It is calculated as

AILLIQt =
1

Nt

Nt∑
t=1

|Ri,t|
V OLDi,t

, (3.4)

where Nt is the number of stocks at time t, Ri,t is the time t return of stock i, and V OLDi,t

is the daily trading volume in Euro currency (EUR) of stock i at time t.5 Since the AILLIQ-

measure typically yields very small values, we multiply it by 106 to make it more manageable

for our regression analysis.

Global �nancial variables

5Note that we do not take a time average of the ratio
|Ri,t|

V OLDi,t
as it is done by Amihud (2002) to dampen

the e�ect of outliers. In our case this is achieved by taking the average over our stock portfolio.
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We include several global �nancial variables, which account for macroeconomic e�ects into

the econometric model. The recent �nancial crisis has shown that credit spreads do not seem

to be solely driven by �rm-speci�c data.

The state of the global economy

As a consequence of the globalization the state of the world economy is of rising importance

for companies. A global recession will result in growing default rates around the world and

will lead to higher credit spreads. To proxy for the state of the world economy we include the

MSCI World log index returns as an explanatory variable in our econometric model. The data

is obtained from Thomson One Banker.

Global market risk

Rising perceptions of global market risk, measured by implied stock market volatility, can be

regarded as a sign of growing uncertainty in �nancial markets. This in turn will lead to higher

spreads in credit markets, as defaults are more likely in times of market stress. We include the

VStoxx implied volatility index as a measure of market risk. Besides measuring market risk,

the VStoxx index has additional appeal for our empirical analysis, as it can be regarded as a

proxy for the implied volatility of iTraxx constituents. Although we calculate the volatility of

the equity portfolio including the members of the iTraxx index, this measure might not capture

the perceptions of future volatility, which is the case for the VStoxx index.

Crisis indicator

In times of market distress many investors seek to curtail their risk exposure and invest in safe

assets. A classical, so called save harbor, is gold. Therefore we include gold price changes as

a proxy for changes in the risk appetite of investors and the stability of �nancial markets. In

times of distress, the risk appetite of investors and the stability of the market declines and

investments such as gold become more popular, leading to rising gold prices. In times of

crisis, defaults are more likely, so rising gold prices should lead to rising iTraxx spread levels.

We employ daily gold price quotes from the London afternoon �xing and calculate daily log-

returns of the gold price. The data is download from the website of Deutsche Bundesbank

(www.buba.de).
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Table 3.2: Independent variables included in the econometric model
The table contains the explanatory variables used in the empirical analysis as well as the signs
of regression coe�cients as predicted by theory.

Explanatory Variable Description Predicted Sign
∆Euribor Change in the Euribor rate -
RP Return on the stock portfolio comprising iTraxx in-

dex constituents
-

∆V olP Change of the trailing volatility of the stock port-
folio comprising iTraxx index constituents

+

∆Steep Change in the steepness of the risk-free curve -
∆Spread Change of the bid-ask spread of the iTraxx index +
∆AILLIQ Change in the Amihud-Liquidity measure for the

stock portfolio comprising iTraxx index constituents
+

RMSCI Return on the MSCI World index -
∆V Stoxx Change in the VStoxx volatility index +
RGold Return on the gold price +
∆iT raxxt−1 Lagged change of the iTraxx spread +/-

Summary

Table 3.2 gives an overview of all variables included in the econometric model and signs of the

regression coe�cients predicted by theory.

3.6 Empirical Analysis

Our empirical analysis seeks to �nd answers to �ve research questions:

• What are the determinants of aggregate credit spread cahnges and consequently systemic

risk?

• How do the determinants evolve throughout the recent �nancial crisis?

• Do the determinants di�er for the single subindices?

• Do the determinants of aggregate credit spread changes di�er within the various quantiles

of the empirical distribution?

• Do market participants use information provided by aggregate credit spreads as a measure

of systemic risk?
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For this purpose we conduct our empirical analysis in the following way. First we examine

the determinants of iTraxx spread changes and their evolution throughout the recent �nancial

crisis by estimating an OLS-regression model. We analyze the iTraxx Europe benchmark index,

as well as all of its subindices. Our goal is to achieve a better understanding of the drivers of

systemic risk in �nancial markets and their underlying dynamics. The results are presented in

Section 3.6.1. In oder to check for the robustness of the OLS-regression results and to examine

the performance of our set of independent variables in the upper and lower quantiles of the

empirical distribution of spread changes, we additionally provide results for a quantile regression

in Section 3.6.2. Finally, we investigate the lead-lag relationship between the market for credit

risk and the stock market by estimating a VARX-model to assess whether the systematic

risk component contained in iTraxx spreads is actually priced by market participants. If it is,

iTraxx spread changes should not be led by stock returns. The results for the VARX-model

are discussed in Section 3.6.3.

Using daily spread changes leaves us with su�cient observations under a division of our

sample into subsamples. We split the sample into three subsamples based on the results of

a Chow (1960) breakpoint test. Our analysis reveals that the null hypothesis of no structural

break at a given date can be rejected at the 5 percent signi�cance level and with a p-Value of

0.000 for July 2, 2007. The same holds for May 1, 2009 with a p-Value of 0.035. Given these

results and the historical setting as outlined in Section 3.5.1, we label the �rst subsample as

"pre-crisis" (June 16, 2004 to July 2, 2007), the second subsample as "crisis" (July 3, 2007

to May 1, 2009) and the �nal subsample as "post-crisis" (May 2, 2009 to August 6, 2010)

period.

3.6.1 OLS-Regression Results

In this section we investigate the determinants of iTraxx spread changes. We check for the

explanatory power of a large set of independent variables. Additionally, we investigate the

evolution of spread determinants throughout the recent �nancial crisis. We perform the in-

vestigation for the whole sample period, as well as for three subsamples. These comprise

a pre-crisis sample a crisis sample and a post-crisis sample. The sample lengths are chosen

according to a Chow-breakpoint test with a signi�cance level of 5%. We repeat the anylsis for

the benchmark index, as well as all subindices of the iTraxx index family. For this purpose we
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estimate an OLS-model of the form

∆iT raxxt =β0 + β1∆Euribort + β2RP,t + β3∆V olP,t

+ β4∆Steept + β5∆Spreadt + β6∆AILLIQt

+ β7RMSCI,t + β8∆V Stoxxt + β9RGold,t + β10∆iT raxxt−1 + εt,

(3.5)

where iT raxxt is the level of the mid-iTraxx-spread at time t and εt is the error term.
6 In order

to account for possible heteroskedasticity and autocorrelation in the error term, we calculate

Newey-West heteroskedasticity and autocorrelation consistent estimators.

The model described by equation (3.5) is estimated for the whole sample period, as well

as for the single subsamples. Furthermore, we analyze spread changes of the iTraxx Europe

benchmark index, as well as spread changes of the di�erent subindices, i.e. the iTraxx HighVol,

the iTraxx Senior Financials, the iTraxx Subordinated Financials and the iTraxx Non-Financials

indices.

Regression results for the benchmark index

Table 3.3 contains the regression results for the benchmark index. In the �rst column the

results for the full sample are summarized. As expected, the log return on the equal weighted

stock portfolio comprising the constituents of the respective iTraxx series has a statistically, as

well as economically signi�cant in�uence on iTraxx spread cahnges. This is in line with results

of previous empirical studies investigating the determinants of credit spreads. In contrast to

other studies, neither the past volatility of the equity portfolio nor implied equity volatility

has a statistically signi�cant in�uence on credit spread changes. In general, the variables

implied by structural models perform rather poor in explaining spread changes, besides equity

returns. Neither the interest rate factors nor the volatility factors have a statistically signi�cant

in�uence. The same holds for the liquidity proxies.

The results for the global �nancial variables are mixed. The state of the global economy, as

proxied by the return on the MSCI World index, is statistically signi�cant at the 5% level. As

expected, the regression coe�cient is negative con�rming theoretical arguments. Returns on

gold and the Vstoxx index do not have a statistically signi�cant in�uence in the full sample.

The AR(1) term is signi�cant at the 1% level, suggesting that there is pronounced positive

autocorrelation in spread changes of the benchmark index. This can be interpreted as under-

reaction due to a lack of liquidity. The adjusted R-squared of the econometric model is quite

6The dependent variable in our regression model is spread changes rather than spread levels, as a Dickey-Fuller
unit root test cannot reject the null of a unit root in iTraxx spread levels, which suggests non-stationarity
in the spreads.
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Table 3.3: OLS-regression results for the benchmark index
This table provides the regression coe�cients and t-values of the OLS-model for the iTraxx
Europe benchmark index. T-values are given in parentheses. Coe�cients which are statistically
signi�cant di�erently from zero are marked with asterisks. ∗ refers to a 10%, ∗∗ refers to a 5%
and ∗∗∗ refers to a 1% level of signi�cance. The results for the full sample period are given in
the �rst panel. The second panel contains the results for the pre-crisis subsample, the third
panel contains the results for the crisis subsample and the fourth panel contains the results for
the post-crisis period.

iTraxx Europe 5Y
Full sample Pre-crisis Crisis Post-crisis

const 0.0247 0.0067 -0.0617 -0.0039
(0.39) (0.26) (-0.30) (-0.03)

∆Euribort -5.4489 -1.1756 -18.2117 25.4492
(-1.16) (-0.96) (−2.19)∗∗ (1.42)

RP,t -128.0807 -25.8476 -160.8244 -145.2223
(−6.22)∗∗∗ (−4.23)∗∗∗ (−5.30)∗∗∗ (−4.02)∗∗∗

∆V olP,t -230.4598 -69.8637 -96.8877 -193.8085
(-1.21) (-0.76) (-0.45) (-0.62)

∆Steept 0.5357 -0.2205 1.7187 -0.6719
(0.70) (-0.91) (1.07) (-0.49)

∆Spreadt 0.1482 0.7148 -0.0557 0.3557
(0.57) (1.33) (-0.11) (1.56)

∆AILLIQt 0.0132 -0.0226 -0.6809 6.0326
(0.20) (-0.80) (-0.14) (0.83)

RMSCI,t -42.0082 -2.7386 -48.0169 -23.0503
(−2.53)∗∗ (-0.39) (−2.09)∗∗ (-0.60)

∆V Stoxxt 0.1280 0.2005 -0.1178 0.4411
(0.77) (3.12)∗∗∗ (-0.64) (3.78)∗∗∗

RGold,t -11.2684 -2.6852 -20.3185 -7.6853
(-1.62) (−1.71)∗ (-1.47) (-0.61)

∆iT raxxt−1 0.0829 0.2528 0.0872 0.0573
(3.33)∗∗∗ (5.62)∗∗∗ (2.33)∗∗ (1.50)

Adj. R2 0.46 0.25 0.47 0.55
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high at 0.46, hence our set of covariates is able to explain a signi�cant part of the variation

in iTraxx spread changes.

The results for the di�erent subsamples provide some further insights into the mechanics

behind credit spread changes. For the pre-crisis subsample the results di�er from the full

sample in many respects. Nevertheless, the autocorrelation is even more pronounced in the

pre-crisis sample than in the full sample. Additionally, gold price changes have a statistically, as

well as economically signi�cant in�uence on iTraxx spreads. However, the regression coe�cient

is negative rather than positive implying that rising cold prices are accompanied by declining

spreads. This contradicts the theoretical arguments discussed in Section 3.4. In contrast to

the full sample results the implied volatility is signi�cant at the 1% level for the pre-crisis

period. The return on the stock portfolio is again signi�cant at the 1% level. However, the

absolute value of the regression coe�cient is lower for the full sample (-128.0807 vs. -25.8476),

suggesting that the sensitivity of spread changes to stock returns is less pronounced in the

pre-crisis period. The adjusted R-squared of the model is signi�cantly lower for the pre-crisis

sample than for the full sample at 0.25.

Within the crisis sample the in�uence of the equity return is much more pronounced than

within the pre-crisis period. The regression coe�cient is more than six times higher than in the

pre-crisis sample. None of the two volatility factors has a signi�cant in�uence on iTraxx spreads

during the crisis period. The Euribor rate is signi�cant at the 5% level. The macroeconmic

variables do not have a statistically signi�cant in�uence on spread changes, except for the

MSCI world index. The autocorrelation is still signi�cant but less pronounced in the crisis

period than in the pre-crisis period. Overall, the independet variables are able to explain about

47% of the variation in iTraxx spread changes during the crisis, almost twice than in the

pre-crisis period. However, the level of determination is largely driven by stock returns.

For the post-crisis sample, the dominant factors are the ones implied by structural models,

i.e. equity returns and equity volatility, although the realized equity volatility again has no

signi�cant in�uence. This may be attributed to the backward-looking manner the volatility is

calculated. The AR(1) term is no longer signi�cant at common con�dence levels. The level

of determination for the post-crisis sample is the highest of all subsamples with an adjusted

R-squared of 0.55%.

The main results for the benchmark index can be summarized as follows. Equity returns are

the predominant factor in iTraxx spread changes. The return of the equity portfolio underlying

the iTraxx Europe index is highly signi�cant, both statistically and economically, throughout all

subsamples. The results for the other variables implied by structural models are less convincing.

Implied equity volatility is signi�cant in two of the three subsamples, but not during the recent
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�nancial crisis. Liquidity variables do not play a role in the determination of spread changes

of the benchmark index, regardless of the respective subsample. Global �nancial variables

are signi�cant in the pre-crisis and crisis period. Nevertheless, compared to stock s, they

explain only a small share of the variation in iTraxx spread changes. The variables generally

show mixed results and are insigni�cant in many cases. The same is true for the interest rate

factors. Hence, variables other than equity volatility and equity returns have a limited in�uence

on spread changes.

Our analysis provides strong evidence that the determinants of iTraxx spread changes are

varying through time. The factor sensitivities of iTraxx spread changes vary signi�cantly

throughout the di�erent subsamples. Furthermore, there is evidence that the factors priced

change throughout our sample period. Although fewer factors seem to be priced in the post-

crisis period than in the pre-crisis period, the level of determination is much higher for the

post-crisis period. This suggests that market participants alter their models of aggregate credit

risk when economic conditions change. In general, stock returns and stock market volatility

explain most of the variation, especially in the pre- and the post-crisis sample. In the crisis

sample, volatility has no signi�cant in�uence on the spreads. In contrast, the in�uence of

stock returns is even more pronounced in the crisis sample than in the other subsamples, while

both volatility factors are not signi�cant at common levels. Admittedly, this �nding might be

a speci�c feature of the recent �nancial crisis, which was characterized by a large systemic

impact leading to high correlations of di�erent segments of �nancial markets. MSCI world

returns, are economically, as well as statistically signi�cant in the crisis period, suggesting that

concerns about global stability play a dominant role. The autocorrelation within the spread

changes declines throughout the sample, suggesting that the liquidity of the benchmark index

is generally rising.

Variables other than equity volatility and equity returns have a limited in�uence on the

spreads of the benchmark index. Liquidity e�ects are not priced throughout all subsamples.

The global �nancial variables show mixed results and are not signi�cantly di�erent from zero

in many cases. The same is true for the interest rate factors.

Subindices

In a next step, we repeat the analysis conducted for the benchmark index for the di�erent

subindices. The results for the iTraxx HighVol and the iTraxx Senior Financials index are

presented in Table 3.4. The results for the iTraxx Subordinated Financials and the Non-

Financials index are presented in Table 3.5.
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The results obtained from the regression analysis for the di�erent subindices of the iTraxx

Europe benchmark index are in many respects similar to the ones of the benchmark index.

There is empirical evidence that stock returns are the major determinant of iTraxx spread

changes. Stock market returns prove to be statistically signi�cant in twelve out of 16 regres-

sions for the di�erent subindices. The other factors implied by structural models do not play

such an important role as the stock market factor. Changes in the Euribor rate are signi�cant

in only three out of 16 cases. The steepness of the risk-free curve has no statistically in�u-

ence for all subsamples and subindices. Implied equity volatility has a statistically signi�cant

in�uence in seven out of 16 cases. Again, previous �ndings of related empirical studies that

credit spreads are especially sensitive towards volatility in times of crises are not con�rmed.

Illiquidity e�ects are more pronounced for the subindices than for the benchmark index.

Equity market illiquidity is priced in the Senior Financials index, as well as in the Subordinated

Financials index. In contrast, equity market illiquidity has no statistically signi�cant in�uence

on the HighVol and the Non-Financials index. This results suggest that hedging needs of

investors are especially pronounced when credit risk of �nancial institutions is borne. In line

with the theoretical arguments provided by Das and Hanouna (2009), rising illiquidity in equity

markets causes credit spreads to rise, as it makes hedging more expensive. The in�uence of

equity market illiquidity is stronger within the crisis and post-crisis sample than in the pre-

crisis sample, suggesting that illiquidity had a crucial role in the recent �nancial crisis. The

fact that the sensitivity of iTraxx spread changes towards stock market liquidity is even more

pronounced after the crisis suggests that market participants have altered their perception of

the impact of stock liquidity on aggregate credit risk and have therefore altered their models

as a consequence of the crisis. Illiquidity in the market for credit risk, as measured by the

bid-ask spread of the respective index, does not have a signi�cant in�uence except for the

iTraxx Non-Financials index. This con�rms that the iTraxx Non-�nancials index is generally

the most illiquid of the subindices.

The results for the other independent variables are in line with the results for the benchmark

index. Both the state of the global economy, as measured by the MSCI World index returns

and gold price changes, are signi�cantly related to credit spread changes. However, the e�ect

of gold price changes is most pronounced during the pre-crisis period. In general, the additional

explanatory power of the global �nancial variables is small compared to the stock returns and

volatility and the gain from including them into a model of aggregate credit risk, which already

accounts for stock returns, is minor.

Similar to the benchmark index the degree of autocorrelation in spread changes declines

throughout the sample for all subindices. In the pre-crisis period, all subindices show statis-
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tically signi�cant positive autocorrelation. This suggests that the subindices underreact to

new information, which can be interpreted as a lack of liquidity in the early years of the index

family, which steadily declines as the iTraxx matures. During the post-crisis period only the

iTraxx HighVol index shows signi�cant autocorrelation. This suggests that the e�ciency of

the iTraxx index universe has risen signi�cantly since the start of the index in 2004.

The results for the di�erent subindices con�rm the presence of variation in the determinants

of iTraxx spread changes. As observed for the benchmark index, the degree of determination

rises throughout the di�erent subsamples, reaching the highest levels for the post-crisis period.

In contrast, the number of factors necessary to explain spread changes seems to decline through

time. In the post-crisis samples most of the variation in iTraxx spreads is explained by stock

returns and implied stock market volatility, while other factors have limited or no in�uence.

3.6.2 Quantile Regression Results

In order to assess the robustness of the results obtained in the OLS-regression analysis in

the upper and lower quantiles of the empirical distribution of spread changes we perform

a quantile regression.7 This approach allows us to assess the performance of our set of

explanatory variables in predicting spread changes in upper and lower quantiles of the empirical

distribution. In other words, we analyze whether our set of explanatory variables is suited to

predict large spread changes, either positive or negative. For our purpose we estimate the

linear model described by equation (3.5) via quantile regression for the 0.25, the 0.50 and

the 0.75 quantile of the empirical distribution. The results for the di�erent subindices and

subsamples are presented in Tables 3.6 to 3.10.

The results of the quantile regression are in many respects similar to the results of the

OLS-regression. The return on the stock portfolio of index constituents is the predominant

determinant of iTraxx spread changes. This result is robust for all quantiles and all subindices

and subsamples, and statistically highly signi�cant in almost every case. The regression coef-

�cient generally is the highest for the upper 0.75 quantile, i.e. large spread widenings, except

for the post-crisis period. This �nding suggests that the dependence between asset classes has

asymmetric features and is especially pronounced in downturns.

The results of the quantile regression con�rm the results of the OLS-regression concerning

the presence of varying determinants within the complete sample. Comparing the post-crisis

sample results to the ones for pre-crisis sample, there is empirical evidence that di�erent

7This approach was introduced by Koenker and Bassett (1978). According to Koenker and Hallock (2001)
quantile regression models are models which express quantiles of the conditional distribution of the depen-
dent variable as a function of observed covariates.
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Table 3.6: Quantile regression results for the benchmark index
This table contains the regression coe�cients and t-values of the quantile regression for the benchmark index. The regression is performed for the 0.25, the
0.50 and the 0.75 quantile (τ) of the empirical distribution. Coe�cients which are statistically signi�cantly di�erent from zero are marked with asterisks.
∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1% level of signi�cance. The results for the full sample period are given in the �rst panel. The
second panel contains the results for the pre-crisis subsample, the third panel contains the results for the crisis subsample and the fourth panel contains the
results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
τ coe�cient t-value coe�cient t-value coe�cient t-value coe�cient t-value

0.25 -0.852 −13.69∗∗∗ -0.261 −11.54∗∗∗ -1.816 −5.90∗∗∗ -1.503 −7.88∗∗∗

const 0.5 0.053 1.39 -0.002 -0.11 0.042 0.26 0.016 0.11
0.75 1.005 15.77∗∗∗ 0.251 10.00∗∗∗ 1.739 7.78∗∗∗ 1.544 8.82∗∗∗

0.25 3.911 1.99∗∗ -0.947 -1.02 -18.443 −1.78∗ 46.490 2.92∗∗∗

∆Euribort 0.5 -2.051 -1.29 -2.240 −2.53∗∗ -17.300 −3.05∗∗∗ -8.007 -0.53
0.75 -8.868 −4.64∗∗∗ -2.413 −5.24∗∗∗ -23.697 −3.52∗∗∗ -26.360 -1.20

0.25 -85.882 −10.35∗∗∗ -28.341 −5.26∗∗∗ -136.375 −4.53∗∗∗ -95.395 −3.84∗∗∗

RP,t 0.5 -89.192 −17.49∗∗∗ -27.646 −6.11∗∗∗ -144.588 −8.31∗∗∗ -127.206 −6.34∗∗∗

0.75 -113.896 −13.34∗∗∗ -32.302 −6.36∗∗∗ -163.178 −7.49∗∗∗ -128.713 −5.08∗∗∗

0.25 -114.847 −1.98∗∗ -60.438 −1.87∗ 69.974 0.43 369.280 1.40
∆V olP,t 0.5 131.754 3.53∗∗∗ 43.914 1.21 116.326 0.81 226.696 1.47

0.75 313.335 4.70∗∗∗ 58.645 1.14 272.783 1.73∗ -77.183 -0.39

0.25 0.578 1.16 -0.338 -1.32 1.179 0.48 -0.625 -0.38
∆Steept 0.5 0.610 1.73∗ 0.024 0.12 2.496 2.21∗∗ -0.388 -0.30

0.75 0.862 1.65∗ 0.125 0.64 2.700 2.61∗∗ -2.785 −1.71∗

0.25 0.021 0.37 -0.041 -0.15 -0.330 -0.86 0.135 0.50
∆Spreadt 0.5 0.059 1.04 0.114 0.39 -0.207 -0.93 0.037 0.15

0.75 -0.104 -1.19 0.853 5.84∗∗∗ -0.226 -0.93 0.143 0.61

0.25 0.011 0.04 0.018 0.92 7.929 0.35 14.796 1.61
∆AILLIQt 0.5 -0.056 -0.55 -0.042 -1.47 -0.123 -0.02 -2.384 -0.35

0.75 -0.088 -0.53 -0.047 -1.07 1.125 0.71 -4.442 -0.36

0.25 -46.574 −5.08∗∗∗ -3.038 -0.55 -59.413 −3.05∗∗∗ -58.733 −2.29∗∗

RMSCI,t 0.5 -37.745 −7.08∗∗∗ -1.318 -0.28 -70.342 −4.49∗∗∗ -29.865 -1.42
0.75 -49.893 −5.89∗∗∗ 0.039 0.01 -72.059 −3.18∗∗∗ -17.517 -0.66

0.25 0.235 6.21∗∗∗ 0.084 2.31∗∗ -0.090 -0.54 0.397 3.02∗∗∗

∆V Stoxxt 0.5 0.163 4.61∗∗∗ 0.048 1.47 -0.273 −2.47∗∗ 0.430 3.95∗∗∗

0.75 0.100 1.84∗ 0.060 1.56 -0.285 −1.75∗ 0.471 4.44∗∗∗

0.25 -11.018 −2.90∗∗∗ -4.204 −2.84∗∗∗ -35.570 −2.40∗∗ -15.376 -1.17
RGold,t 0.5 -3.887 -1.48 -1.422 -1.01 -16.887 −1.98∗∗ -19.957 −2.70∗∗∗

0.75 -4.198 -0.99 -0.390 -0.23 1.427 0.12 -18.871 -1.39

0.25 0.119 9.85∗∗∗ 0.210 22.86∗∗∗ 0.129 3.08∗∗∗ 0.031 0.73
∆iTraxxt−1 0.5 0.134 15.72∗∗∗ 0.214 10.04∗∗∗ 0.105 3.96∗∗∗ 0.064 2.00∗∗

0.75 0.107 9.69∗∗∗ 0.242 9.86∗∗∗ 0.100 3.10∗∗∗ 0.100 2.55∗∗
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Table 3.7: Quantile regression results for the HighVol index
This table contains the regression coe�cients and t-values of the quantile regression for the HighVol index. The regression is performed for the 0.25, the
0.50 and the 0.75 quantile (τ) of the empirical distribution. Coe�cients which are statistically signi�cantly di�erent from zero are marked with asterisks.
∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1% level of signi�cance. The results for the full sample period are given in the �rst panel. The
second panel contains the results for the pre-crisis subsample, the third panel contains the results for the crisis subsample and the fourth panel contains the
results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
τ coe�cient t-value coe�cient t-value coe�cient t-value coe�cient t-value

0.25 -1.407 −10.45∗∗∗ -0.533 −10.19∗∗∗ -2.804 −5.76∗∗∗ -2.942 −8.82∗∗∗

const 0.5 0.089 1.31 0.003 0.09 0.262 1.05 -0.049 -0.17
0.75 1.650 12.65∗∗∗ 0.546 9.73∗∗∗ 2.832 5.92∗∗∗ 2.675 9.24∗∗∗

0.25 4.639 1.87∗ -0.659 -0.30 -30.135 −2.63∗∗∗ 126.727 2.76∗∗∗

∆Euribort 0.5 -4.107 -1.44 -4.937 −2.86∗∗∗ -35.923 −4.35∗∗∗ 28.005 0.56
0.75 -22.630 −5.11∗∗∗ -3.355 −1.67∗ -40.169 −3.13∗∗∗ -74.359 −2.15∗∗

0.25 -161.499 −9.46∗∗∗ -51.452 −3.98∗∗∗ -147.386 −2.96∗∗∗ -267.562 −5.25∗∗∗

RP,t 0.5 -149.488 −18.95∗∗∗ -67.489 −7.94∗∗∗ -182.999 −6.16∗∗∗ -188.481 −4.56∗∗∗

0.75 -180.661 −11.50∗∗∗ -72.269 −5.82∗∗∗ -245.426 −5.93∗∗∗ -246.485 −12.56∗∗∗

0.25 -326.665 −2.48∗∗ -40.710 -0.46 -90.255 -0.22 -198.050 -0.92
∆V olP,t 0.5 81.943 1.42 73.540 1.09 103.162 0.58 -357.365 −2.67∗∗∗

0.75 50.714 0.51 -17.550 -0.17 175.187 0.72 -746.537 −2.85∗∗∗

0.25 0.091 0.09 -0.798 −2.28∗∗ 3.091 1.03 0.916 0.29
∆Steept 0.5 0.585 1.29 -0.325 -1.48 3.610 1.79∗ -0.403 -0.13

0.75 2.280 2.96∗∗∗ -0.423 -0.71 0.356 0.10 -2.996 -1.02

0.25 0.093 1.10 -0.156 -0.42 -0.078 -0.19 0.182 1.02
∆Spreadt 0.5 -0.063 -0.95 0.141 0.46 -0.198 -0.72 0.107 0.62

0.75 -0.032 -1.08 0.865 2.19∗∗ -0.336 -0.74 0.150 0.56

0.25 0.819 0.42 93.569 0.32 -1.768 -0.25 1124.860 1.49
∆AILLIQt 0.5 2.999 2.65∗∗∗ 468.983 1.97∗ -0.411 -0.08 617.821 1.47

0.75 0.682 1.16 560.193 1.73∗ 8.406 1.61 -1049.740 −2.08∗∗

0.25 -112.421 −7.57∗∗∗ -7.705 -0.65 -213.530 −4.71∗∗∗ -59.643 -1.07
RMSCI,t 0.5 -98.199 −10.22∗∗∗ -3.779 -0.40 -165.019 −5.90∗∗∗ -135.779 −3.10∗∗∗

0.75 -91.951 −6.72∗∗∗ 14.740 1.08 -182.507 −3.21∗∗∗ -67.207 −2.70∗∗∗

0.25 0.047 0.60 0.200 2.12∗∗ -0.266 -0.91 0.319 1.43
∆V Stoxxt 0.5 -0.037 -1.19 0.064 1.04 -0.371 −2.99∗∗∗ 0.703 5.30∗∗∗

0.75 0.078 0.86 0.158 1.78∗ -0.698 −3.10∗∗∗ 0.637 5.01∗∗∗

0.25 -9.940 -1.64 -10.441 −4.25∗∗∗ -38.878 −1.87∗ -43.470 -1.59
RGold,t 0.5 -7.157 −2.02∗∗ -6.784 −2.89∗∗∗ -8.968 -0.64 -7.682 -0.33

0.75 -10.889 −1.89∗ -2.377 -0.64 -10.404 -0.55 -29.362 -1.50

0.25 0.110 6.87∗∗∗ 0.260 9.45∗∗∗ 0.107 3.86∗∗∗ 0.148 3.26∗∗∗

∆iTraxxt−1 0.5 0.144 29.73∗∗∗ 0.251 11.61∗∗∗ 0.145 6.25∗∗∗ 0.151 4.01∗∗∗

0.75 0.143 8.61∗∗∗ 0.307 9.48∗∗∗ 0.181 4.40∗∗∗ 0.063 2.21∗∗
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Table 3.8: Quantile regression results for the Senior Financials index
This table contains the regression coe�cients and t-values of the quantile regression for the Senior Financials index. The regression is performed for the
0.25, the 0.50 and the 0.75 quantile (τ) of the empirical distribution. Coe�cients which are statistically signi�cantly di�erent from zero are marked with
asterisks. ∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1% level of signi�cance. The results for the full sample period are given in the �rst
panel. The second panel contains the results for the pre-crisis subsample, the third panel contains the results for the crisis subsample and the fourth panel
contains the results for the post-crisis period.

Full Pre-crisis Crisis Post-Crisis
τ coe�cient t-value coe�cient t-value coe�cient t-value coe�cient t-value

0.25 -0.851 −12.28∗∗∗ -0.128 −11.34∗∗∗ -2.052 −6.12∗∗∗ -1.566 −5.43∗∗∗

const 0.5 0.057 1.47 -0.016 −2.05∗∗ -0.190 -1.00 0.212 1.18
0.75 1.067 11.80∗∗∗ 0.099 7.88∗∗∗ 1.970 6.59∗∗∗ 2.056 8.67∗∗∗

0.25 1.994 0.95 0.136 0.30 -14.675 -1.57 26.048 1.37
∆Euribort 0.5 -0.157 -0.09 -0.663 −1.76∗ -18.351 −3.28∗∗∗ -17.753 -0.87

0.75 -8.770 −3.12∗∗∗ -1.070 −2.35∗∗ -15.588 −1.93∗ -10.584 -0.65

0.25 -86.028 −10.26∗∗∗ -4.435 −1.77∗ -127.329 −3.59∗∗∗ -114.974 −3.59∗∗∗

RP,t 0.5 -62.981 −13.42∗∗∗ -4.314 −2.10∗∗ -120.621 −8.07∗∗∗ -116.150 −4.48∗∗∗

0.75 -88.579 −7.91∗∗∗ -7.467 −2.97∗∗∗ -160.522 −4.66∗∗∗ -99.557 −4.22∗∗∗

0.25 -160.057 −4.49∗∗∗ -8.806 -0.51 -260.076 -1.36 -14.456 -0.14
∆V olP,t 0.5 -50.452 -1.08 20.205 1.29 -227.885 −1.67∗ 34.049 0.37

0.75 113.954 1.73∗ 48.311 5.51∗ ∗ ∗ 222.916 1.67∗ -141.372 -1.59

0.25 0.843 1.70∗ -0.206 −1.99∗∗ 0.503 0.20 0.392 0.16
∆Steept 0.5 0.436 1.45 0.072 0.76 3.288 3.70∗∗∗ -0.381 -0.23

0.75 0.491 0.89 0.062 0.41 0.940 0.41 -2.843 −1.86∗

0.25 -0.042 -0.37 0.041 0.66 -0.242 -0.73 -0.132 -0.34
∆Spreadt 0.5 -0.153 −1.99∗ 0.125 2.26∗∗ 0.095 0.35 -0.037 -0.13

0.75 -0.117 -0.98 0.107 1.72∗ 0.263 0.57 0.332 1.11

0.25 2.426 0.13 13.257 0.48 1579.460 1.11 -1.025 -0.03
∆AILLIQt 0.5 4.896 15.28∗∗∗ -4.096 -0.14 362.955 0.37 3.252 1.54

0.75 2.177 0.09 12.090 0.22 -866.668 -0.66 3.135 0.22

0.25 -62.165 −9.24∗∗∗ -2.015 -0.84 -66.968 −2.10∗∗ -102.772 −3.10∗∗∗

RMSCI,t 0.5 -50.909 −13.33∗∗∗ -0.600 -0.28 -59.870 −3.71∗∗∗ -90.555 −3.24∗∗∗

0.75 -63.743 −6.33∗∗∗ 3.380 1.17 -63.284 −2.57∗∗ -56.883 −2.02∗∗

0.25 -0.013 -0.28 0.016 0.90 -0.393 −2.83∗∗∗ 0.209 1.39
∆V Stoxxt 0.5 0.071 2.56∗∗ -0.001 -0.06 -0.104 -1.05 0.232 2.60∗∗

0.75 0.093 1.76∗ 0.025 1.45 -0.383 −3.25∗∗∗ 0.683 6.01∗∗∗

0.25 -6.928 −2.04∗∗ -1.664 −2.35∗∗ -15.177 -0.92 -17.850 -0.87
RGold,t 0.5 -0.560 -0.22 -1.418 −2.07∗∗ 1.130 0.17 -14.746 -1.08

0.75 0.935 0.21 -1.928 −2.22∗∗ 6.449 0.44 -13.791 -0.92

0.25 0.129 14.03∗∗∗ 0.167 6.43∗∗∗ 0.146 3.22∗∗∗ 0.114 3.00∗∗∗

∆iTraxxt−1 0.5 0.091 13.06∗∗∗ 0.203 9.06∗∗∗ 0.055 1.96∗ 0.109 4.72∗∗∗

0.75 0.066 3.83∗∗∗ 0.254 11.28∗∗∗ 0.016 0.40 0.068 2.09∗∗
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Table 3.9: Quantile regression results for the Subordinated Financials index
This table contains the regression coe�cients and t-values of the quantile regression for the Subordinated Financials index. The regression is performed for
the 0.25, the 0.50 and the 0.75 quantile (τ) of the empirical distribution. Coe�cients which are statistically signi�cantly di�erent from zero are marked
with asterisks. ∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1% level of signi�cance. The results for the full sample period are given in the �rst
panel. The second panel contains the results for the pre-crisis subsample, the third panel contains the results for the crisis subsample and the fourth panel
contains the results for the post-crisis period.

Full Pre-crisis Crisis Post-Crisis
τ coe�cient t-value coe�cient t-value coe�cient t-value coe�cient t-value

0.25 -1.415 −11.65∗∗∗ -0.205 −10.49∗∗∗ -3.256 −5.91∗∗∗ -2.970 −6.50∗∗∗

const 0.5 0.114 1.55 -0.020 -1.41 -0.114 -0.36 0.300 1.10
0.75 1.761 12.57∗∗∗ 0.175 7.53∗∗∗ 2.881 6.74∗∗∗ 3.252 7.63∗∗∗

0.25 1.803 0.33 -0.279 -0.35 -31.460 −2.22∗∗ 63.642 1.65
∆Euribort 0.5 -0.434 -0.15 -0.661 -1.00 -17.332 −1.78∗ 26.374 1.21

0.75 -14.381 −2.32∗∗ -0.849 -1.23 -21.668 −1.78∗ 11.557 0.26

0.25 -127.845 −9.95∗∗∗ -8.062 −2.00∗∗ -237.462 −4.46∗∗∗ -256.105 −4.69∗∗∗

RP,t 0.5 -104.365 −10.47∗∗∗ -8.240 −2.39∗∗ -248.862 −8.84∗∗∗ -168.582 −5.11∗∗∗

0.75 -131.944 −7.08∗∗∗ -11.749 −2.53∗∗ -249.115 −7.24∗∗∗ -103.908 −2.03∗∗

0.25 -459.121 −4.62∗∗∗ 24.531 1.51 -682.849 −2.57∗∗ 335.766 1.54
∆V olP,t 0.5 -176.192 −1.72∗ 44.980 1.81∗ -493.309 −3.63∗∗∗ -186.497 −1.73∗

0.75 152.727 2.19∗∗ 87.175 2.12∗∗ -349.383 −2.13∗∗ -147.917 -1.00

0.25 1.312 2.21 -0.225 -1.13 5.225 1.41 2.437 0.70
∆Steept 0.5 0.566 1.20 -0.005 -0.05 3.107 1.72∗ -1.023 -0.59

0.75 0.829 0.86 -0.032 -0.14 2.070 0.58 -3.284 -1.10

0.25 0.222 1.41 -0.033 -0.33 0.778 1.05 -0.118 -0.46
∆Spreadt 0.5 -0.011 -0.48 -0.137 −1.98∗∗ 0.613 1.38 -0.160 -1.36

0.75 -0.005 -0.04 -0.261 −2.72∗∗∗ 0.391 0.80 0.178 0.49

0.25 10.703 0.37 -54.153 -0.60 2920.830 1.41 8.287 6.20∗∗∗

∆AILLIQt 0.5 14.848 31.04∗∗∗ 1.971 0.06 1529.780 1.07 4.884 2.57∗∗

0.75 16.833 18.12∗∗∗ -24.488 -0.24 910.995 0.57 17.626 0.34

0.25 -79.033 −5.62∗∗∗ -5.699 −1.68∗ -46.143 -1.01 -205.545 −3.24∗∗∗

RMSCI,t 0.5 -77.186 −6.81∗∗∗ -5.217 -1.51 -74.209 −2.72∗∗∗ -212.227 −6.92∗∗∗

0.75 -127.047 −6.16∗∗∗ -5.445 -1.13 -106.897 −3.80∗∗∗ -231.760 −3.89∗∗∗

0.25 0.431 3.83∗∗∗ 0.026 1.03 -0.391 -1.27 0.366 1.46
∆V Stoxxt 0.5 0.342 7.41∗∗∗ 0.010 0.39 -0.426 −3.67∗∗∗ 0.975 5.70∗∗∗

0.75 0.211 1.76∗ 0.012 0.38 -0.615 −2.29∗∗ 1.025 3.21∗∗∗

0.25 -0.634 -0.09 -1.233 -1.03 -0.684 -0.04 34.110 1.09
RGold,t 0.5 -1.796 -0.41 -2.267 −2.03∗∗ 31.342 1.77∗ 19.103 0.96

0.75 6.066 0.69 -3.576 −2.29∗∗ 41.014 2.68∗∗∗ -6.666 -0.26

0.25 0.111 8.87∗∗∗ 0.230 10.77∗∗∗ 0.117 2.88∗∗∗ 0.078 3.54∗∗∗

∆iTraxxt−1 0.5 0.124 25.73∗∗∗ 0.251 15.96∗∗∗ 0.100 4.09∗∗∗ 0.116 5.73∗∗∗

0.75 0.105 7.11∗∗∗ 0.324 11.41∗∗∗ 0.068 1.49 0.092 2.75∗∗∗
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Table 3.10: Quantile regression results for the Non-Financials index
This table contains the regression coe�cients and t-values of the quantile regression for the Non-Financials index. The regression is performed for the 0.25,
the 0.50 and the 0.75 quantile (τ) of the empirical distribution. Coe�cients which are statistically signi�cantly di�erent from zero are marked with asterisks.
∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1% level of signi�cance. The results for the full sample period are given in the �rst panel. The
second panel contains the results for the pre-crisis subsample, the third panel contains the results for the crisis subsample and the fourth panel contains the
results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
τ coe�cient t-value coe�cient t-value coe�cient t-value coe�cient t-value

0.25 -0.627 −10.99∗∗∗ -0.285 −11.77∗∗∗ -0.424 −2.26∗∗ -1.546 −8.34∗∗∗

const 0.5 -0.017 -0.62 -0.003 -0.16 0.000 0.00 0.061 0.38
0.75 0.708 11.07∗∗∗ 0.269 10.67∗∗∗ 0.920 5.03∗∗∗ 1.597 8.15∗∗∗

0.25 0.622 0.26 -3.029 −2.61∗∗ -2.520 -0.79 48.432 3.27∗∗∗

∆Euribort 0.5 -3.017 −8.16∗∗∗ -1.258 -1.37 0.000 0.00 23.742 1.37
0.75 -9.637 −4.26∗∗∗ -1.713 -1.50 -15.687 −2.61∗∗ 17.233 1.05

0.25 -21.038 −2.64∗∗∗ -17.485 −3.09∗∗∗ -9.305 -0.86 -106.970 −4.97∗∗∗

RP 0.5 -19.116 −10.15∗∗∗ -19.123 −4.17∗∗∗ 0.000 0.00 -102.571 −4.53∗∗∗

0.75 -47.072 −6.22∗∗∗ -18.936 −3.20∗∗∗ -23.864 -1.56 -63.581 −3.39∗∗∗

0.25 106.945 2.91∗∗∗ 55.964 1.11 144.999 1.13 211.491 1.15
∆V olP,t 0.5 116.130 6.72∗∗∗ 9.987 0.24 0.000 0.00 323.283 1.56

0.75 316.136 5.60∗∗∗ -3.465 -0.07 388.689 3.22∗∗∗ 67.629 0.27

0.25 -0.155 -0.39 0.097 0.50 0.029 0.03 0.632 0.89
∆Steept 0.5 -0.157 -0.78 0.008 0.03 0.000 0.00 0.148 0.12

0.75 0.580 1.54 -0.133 -1.24 1.241 1.06 0.919 1.33

0.25 0.006 0.37 0.472 15.02∗∗∗ 0.384 0.28 0.001 0.02
∆Spreadt 0.5 -0.006 -0.46 0.508 14.30∗∗∗ 0.429 0.82 0.004 0.12

0.75 -0.016 -0.93 0.538 13.03∗∗∗ 0.126 1.22 0.023 0.69

0.25 0.012 0.10 -0.013 -0.54 -1.224 -0.25 8.916 1.48
∆AILLIQt 0.5 0.000 0.00 0.009 0.68 -0.014 0.00 -6.376 -1.05

0.75 -0.079 −1.90∗ -0.021 -0.58 1.721 0.26 -7.460 −2.00∗∗

0.25 -13.332 −2.25∗∗ -8.927 -1.60 -8.080 -0.73 -31.426 -1.26
RMSCI,t 0.5 -8.248 −2.81∗∗∗ 3.060 0.61 0.000 0.00 -26.049 -1.04

0.75 -11.761 −1.82∗ -1.250 -0.23 -21.846 -1.53 -25.540 -1.24

0.25 0.230 4.91∗∗∗ 0.052 1.22 -0.004 -0.06 0.224 1.81∗

∆V Stoxxt 0.5 0.143 8.58∗∗∗ 0.093 2.69∗∗∗ 0.000 0.00 0.243 1.98∗∗

0.75 0.176 3.91∗∗∗ 0.095 2.42∗∗ 0.048 0.58 0.414 3.50∗∗∗

0.25 -11.874 -3.52 -3.798 -2.42 -6.648 -1.85 -6.921 -0.61
RGold,t 0.5 -6.578 -4.56 -0.510 -0.34 0.000 0.00 -20.143 -1.62

0.75 -8.436 -3.07 0.643 0.34 5.043 0.58 -36.005 -3.20

0.25 0.032 1.45 0.130 5.66∗∗∗ -0.135 −8.93∗∗∗ 0.029 1.80∗

∆iTraxxt−1 0.5 0.092 12.60∗∗∗ 0.201 9.63∗∗∗ -0.037 -0.45 0.029 0.70
0.75 0.117 7.52∗∗∗ 0.237 9.63∗∗∗ 0.081 1.12 0.071 2.04∗∗
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explanatory variables are signi�cant in the single subsamples. This points to the fact that

the pricing of the iTraxx by market participants has been reassessed in the light of the recent

credit crisis.

In addition to con�rming the major results of the OLS-regression, the quantile regression

reveals some additional insights regarding the mechanics governing iTraxx spread changes. For

example, the volatility of the stock portfolio shows some remarkable results for the quantile

regression. When we look at the results for the full sample period (the �rst panel of Tables 3.6-

3.10), there is a switch in the regression coe�cient between the upper and the lower quantile.

For the lower quantile the regression coe�cient carries the wrong sign from a theoretical

perspective. In general, the volatility is statistically signi�cant for several quantiles and seems

to be better suited in explaining large spread widenings than large spread tightenings. Hence,

it provides valuable information for upper and lower quantiles of spread changes, although it

is not signi�cant in the OLS-regression.

The interest rate factor, proxied by the Euribor rate, shows some nonlinearities as well. The

factor is statistically signi�cant in the upper quantile in almost all cases, except for the post-

crisis samples. In contrast, its predictive power is worse for the lower quantile, with the wrong

sign of the regression coe�cient in most cases. Just like the volatility of the equity portfolio,

the Euribor rate has predictive power for large spread widenings, while showing inconsistent

results for large spread tightenings.

The opposite is true for the gold price changes. Their statistical signi�cance is generally

higher in the lower quantile than in the upper quantile, i.e. gold price changes have higher

explanatory power for large spread tightenings than large spread widenings. However, the sign

of the regression coe�cient is negative and not in line with theory.

The liquidity variables, especially the proxy for equity market illiquidity, perform best around

the median of spread changes. Surprisingly, their predictive power in the upper and lower

quantiles is statistically not signi�cant, even for the subsamples and subindices where they

have a statistical signi�cant in�uence in the OLS-regression.

A look at the regression results for the constant reveals another interesting feature of iTraxx

spread changes. In the preceding OLS-regression, the constant is not statistically di�erent from

zero for all subsamples and all subindices. In the quantile regression, the picture is di�erent.

The constant is statistically signi�cantly di�erent from zero at the 1%-level for all upper and

all lower quantiles. This result is robust for all subsamples and all subindices. In contrast, the

constant is not statistically signi�cant di�erent from zero for all median quantiles. It carries a

negative sign for all lower quantiles and a positive sign for all upper quantiles. This suggests

that our set of explanatory variables systematically underestimates large spread tightenings,
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as well as large spread widenings.

This empirical �nding leads to the conclusion that our set of explanatory variables is not able

to explain a signi�cant systematic fraction of spread changes in the upper and lower tail of the

empirical distribution. Additional factors seem to be necessary to explain spread changes at

the tails of the empirical distribution that are not implied by structural models. The liquidity

variables, which seem to be natural candidates for predicting extreme spread movements fail

to ful�ll this task, having no statistically signi�cant in�uence in the upper and lower quantiles.

3.6.3 The Lead-Lag Relationship Between the Market for Credit

Risk and the Stock Market

In order to assess whether market participants use iTraxx Europe spreads as an additional

source of information regarding systemic risk, we examine the lead-lag relationship between

iTraxx spread changes and stock returns on the portfolio consisting of iTraxx constituents.

For this purpose we estimate a VARX-model. The exogenous variables used in the model are

supposed to jointly determine iTraxx spread changes, as well as stock returns. The set of

exogenous variables used in the preceding OLS-regression are natural candidates. As these

variables should in theory determine the creditworthiness of the index constituents, they in

turn should drive stock returns as well. The same is true for the hedging arguments related to

the liquidity variables. Using a VARX- instead of a simple VAR-model has the advantage that

no biases due to omitted variables arise. The econometric representation of the VARX-model

is of the form

∆iT raxxt = c1 +
4∑
i=1

β1,i∆iT raxxt−i +
4∑
i=1

γ1,iRP,t−i + λ1,1∆Euribort

+ λ1,2∆V olP,t + λ1,3∆Steept + λ1,4∆Spreadt + λ1,5∆AILLIQt

+ λ1,6RMSCI,t + λ1,7∆V Stoxx+ λ1,8RGold,t + ε1,t

RP,t = c2 +
4∑
i=1

β2,i∆iT raxxt−i +
4∑
i=1

γ2,iRP,t−i + λ2,1∆Euribort

+ λ2,2∆V olP,t + λ2,3∆Steept + λ2,4∆Spreadt + λ2,5∆AILLIQt

+ λ2,6RMSCI,t + λ2,7∆V Stoxx+ λ2,8RGold,t + ε2,t.

(3.6)

We choose a lag order of 4 lags, which is the model with the lowest value for the Hannan-
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Table 3.11: VARX-regression results for the benchmark index
This table provides the regression coe�cients and t-values of the VARX-model for the iTraxx Europe benchmark index. T-values are given in parentheses.
Coe�cients which are statistically signi�cant di�erently from zero are marked with asterisks. ∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1%
level of signi�cance. The results for the full sample period are given in the �rst panel. The second panel contains the results for the pre-crisis subsample,
the third panel contains the results for the crisis subsample and the fourth panel contains the results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t

∆iTraxxt−1 0.1405 0.0000 0.2611 0.0001 0.1858 0.0000 0.0183 0.0001
(5.33)∗∗∗ (-0.11) (6.98)∗∗∗ (0.28) (3.42)∗∗∗ (-0.28) (0.36) (0.97)

∆iTraxxt−2 -0.0904 0.0002 -0.0617 0.0002 -0.0449 0.0001 -0.2134 0.0004

(−3.38)∗∗∗ (2.50)∗∗ (-1.57) (1.22) (-0.81) (0.74) (−4.12)∗∗∗ (2.96)∗∗∗

∆iTraxxt−3 -0.0651 0.0000 -0.0022 -0.0003 -0.1153 0.0001 -0.0497 0.0001
(−2.39)∗∗ (0.47) (-0.06) (-1.50) (−1.99)∗∗ (0.51) (-0.97) (0.46)

∆iTraxxt−4 -0.0858 0.0001 -0.0169 0.0002 -0.0414 0.0002 -0.1697 0.0000
(−3.17)∗∗∗ (1.12) (-0.43) (1.20) (-0.73) (1.37) (−3.29)∗∗∗ (-0.25)

RP,t−1 24.1083 -0.0066 -0.5533 0.0003 44.8871 -0.0207 -11.7071 0.0179
(3.49)∗∗∗ (-0.42) (-0.13) (0.02) (2.98)∗∗∗ (-0.65) (-0.80) (0.53)

RP,t−2 -25.4689 0.0555 3.0922 0.0195 -20.2091 0.0129 -61.7319 0.1363
(−3.67)∗∗∗ (3.48)∗∗∗ (0.74) (0.91) (-1.32) (0.40) (−4.29)∗∗∗ (4.10)∗∗∗

RP,t−3 -11.5521 -0.0021 -2.0161 0.0209 -8.5873 0.0024 -24.1543 -0.0072
(-1.63) (-0.13) (-0.48) (0.98) (-0.54) (0.07) (−1.68)∗ (-0.22)

RP,t−4 -14.8114 0.0444 1.5152 -0.0063 3.7480 0.0727 -54.5310 0.0256
(−2.10)∗∗ (2.73)∗∗∗ (0.36) (-0.29) (0.24) (2.21)∗∗ (−3.74)∗∗∗ (0.76)

const 0.0514 -0.0001 -0.0002 0.0003 0.1946 -0.0010 0.0990 0.0000

(0.72) (-0.56) (-0.01) (2.14)∗∗ (0.85) (−2.05)∗∗ (0.60) (-0.05)
∆Euribort -7.3211 0.0172 -1.1653 -0.0024 -22.6257 0.0133 45.4544 0.0096

(−2.11)∗∗ (2.15)∗∗ (-0.81) (-0.33) (−2.98)∗∗∗ (0.83) (2.94)∗∗∗ (0.27)
∆V olP,t -327.5970 1.0400 -74.6520 0.3903 -317.7549 1.9413 -265.3628 0.1780

(−3.77)∗∗∗ (5.20)∗∗∗ (-1.21) (1.24) (-1.64) (4.75)∗ ∗ ∗ (−1.69)∗ (0.49)
∆Steept 0.5027 -0.0007 -0.2953 0.0029 2.5078 -0.0011 -0.2199 -0.0061

(0.71) (-0.43) (-0.90) (1.71)∗ (1.30) (-0.28) (-0.16) (−1.97)∗
∆Spreadt 0.1449 0.0002 1.3288 0.0007 0.1467 -0.0008 0.2229 0.0010

(1.04) (0.76) (3.21)∗ ∗ ∗ (0.31) (0.45) (-1.16) (1.05) (2.10)∗∗

∆AILLIQt 0.0211 -0.0001 -0.0179 0.0000 -4.8356 0.0244 4.7632 -0.0128
(0.11) (-0.22) (-0.36) (-0.04) (-0.44) (1.06) (0.55) (-0.64)

RMSCI,t -128.0997 0.6746 -18.5060 0.5544 -141.3565 0.6069 -136.4626 0.7839
(−15.25)∗∗∗ (34.85)∗∗∗ (−2.80)∗∗∗ (16.39)∗∗∗ (−7.93)∗∗∗ (16.16)∗∗∗ (−7.82)∗∗∗ (19.42)∗∗∗

∆V Stoxxt 0.5000 -0.0030 0.2998 -0.0043 0.3886 -0.0030 0.8358 -0.0028
(10.26)∗∗∗ (−26.29)∗∗∗ (6.82)∗∗∗ (−19.23)∗∗∗ (3.88)∗∗∗ (−14.131)∗∗∗ (8.12)∗∗∗ (−11.56)∗∗∗

RGold,t -7.3422 -0.0312 -3.0476 -0.0063 -14.1937 -0.0648 -3.2729 -0.0379
(-1.35) (−2.48)∗∗ (-1.28) (-0.52) (-1.07) (−2.32)∗∗ (-0.26) (-1.29)

Adj. R2 0.42 0.79 0.24 0.73 0.42 0.81 0.54 0.80

Quinn information criterion (see Hannan and Quinn (1979)).

VARX-results for the benchmark index

The regression results for the benchmark index are given in Table 3.11. The �rst panel shows

the results of for the full sample. The lead-lag relationship between the spread changes and

the stock return is two-sided. While the second lag of spread changes is signi�cant at the

1% level when regressing stock returns, the �rst, second and fourth lag of stock returns is

signi�cant when regressing spread changes. The regression coe�cients for the second lag

of iTraxx spread changes and the �rst lag of stock returns are postive. This is not in line

with theory. In contrast, the coe�cients for the second and fourth lag of stock returns are

negative, which is in line with theoretical arguments. Hence, we conclude that there is a

two-sided information �ow between the two markets. This is a novel �nding which is generally

not in line with previous empirical �ndings and suggests that market participants actually

use the iTraxx index as a source of additional information regarding systemic risk. However,

information is �owing from stock markets to the iTraxx market quicker than vice versa.
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In a next step we reestimate the VARX-model to examine the development of the lead-

lag relationship throughout our sample period. The results for the di�erent subsamples are

given in panels one to four of Table 3.11. In the pre-crisis subsample, no lead-lag relationship

between iTraxx spread changes and stock returns on the portfolio of iTraxx constituents can

be observed. T-statistics for lagged spread changes are higher than for lagged stock returns,

but do not reach common levels of signi�cance.

During the crisis subsample stock returns lead spread changes. The �rst lag of stock returns

is signi�cant at the 1% level when regressing iTraxx spread changes, with a postive regression

coe�cient. The positive regression coe�cient contradicts theoretical arguments. A possible

explanation might be that shocks in the stock market tempt investors to invest in other asset

classes, especially in crisis periods. Hence corporate bond spreads decline, leading to tighter

iTraxx spread levels. In calm periods no such e�ect is observed. No other lags are signi�cant

at standard signi�cance levels. New information is precessed quickly, as only the �rst lag is

signi�cant.

In the post-crisis period, the results convey a di�erent picture. We observe a two-sided

relationship between the iTraxx spread changes and stock returns. The second lag of iTraxx

spread changes is signi�cant at the 1% level, while the second and fourth lagged stock re-

turns are signi�cant when regressing iTraxx spread changes at the 1% level. The regression

coe�cient of the second lag of iTraxx spread changes is not with theoretical predictions. A

possible interpretation of this result might again be that shocks in credit markets tempt in-

vestors to invest in equity markets as a consequnece of increasing hedging needs. In contrast

to the opposite case, this seems to be the case only in calm priods and not during crises. The

coe�cients of lagged stock returns are in line with theory.

Concerning the exogenous variables, the VARX-results are generally in line with the OLS-

regression results. Throughout the di�erent subsamples di�erent factors are needed to explain

iTraxx spread changes, while the variation in iTraxx spread changes explained by the exogenous

variables constantly rises throughout the sample.8

The results for the benchmark index lead us to the conclusion that credit and stock markets

both play a role in processing new information, possibly concerning systemic risk. No market

has an obvious lead over the other one. Furthermore, the relationship changes throughout our

sample period. While lead-lag relationship can be observed in the pre-crisis subsample, stock

returns lead spread changes during the recent �nancial crisis. In the aftermath of the crisis we

observe a two-sided relationship. Hence, we conclude that the lead-lag relationship is subject

8Note that the explained variation measured in terms of the adjusted R-squared is generally lower than for
the OLS-regression, although the same set of explanatory variables is used. This is due to the fact that
contemporaneous stock returns are not included in the VARX-model, in contrast to the OLS-model.
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Table 3.12: VARX-regression results for the HighVol index
This table provides the regression coe�cients and t-values of the VARX-model for the iTraxx Europe HighVol index. T-values are given in parentheses.
Coe�cients which are statistically signi�cantly di�erent from zero are marked with asterisks. ∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1%
level of signi�cance. The results for the full sample period are given in the �rst panel. The second panel contains the results for the pre-crisis subsample,
the third panel contains the results for the crisis subsample and the fourth panel contains the results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t

∆iTraxxt−1 0.1874 0.0000 0.2860 0.0000 0.2091 -0.0001 0.0725 0.0001
(7.01)∗∗∗ (-0.41) (7.68)∗∗∗ (0.47) (3.96)∗∗∗ (-1.08) (1.35) (1.19)

∆iTraxxt−2 -0.0273 0.0000 -0.0323 0.0001 -0.0452 0.0000 -0.0463 0.0000
(-1.00) (-0.11) (-0.83) (0.59) (-0.83) (-0.04) (-0.85) (0.19)

∆iTraxxt−3 -0.0838 0.0001 -0.0181 -0.0001 -0.1504 0.0001 -0.0843 0.0001
(−3.03)∗∗∗ (2.19)∗∗ (-0.46) (-0.98) (−2.66)∗∗∗ (1.34) (-1.56) (1.08)

∆iTraxxt−4 0.0288 0.0000 -0.0265 0.0001 0.1215 0.0001 -0.1327 0.0000
(1.06) (0.88) (-0.68) (1.45) (2.24)∗∗ (0.91) (−2.44)∗∗ (0.26)

RP,t−1 37.0876 -0.0145 1.5378 0.0015 67.0270 -0.0389 -25.5158 0.0161
(2.93)∗∗∗ (-0.94) (0.18) (0.07) (2.59)∗∗ (-1.25) (-0.90) (0.51)

RP,t−2 -26.7863 0.0244 7.8001 0.0129 -30.4209 -0.0113 -68.7980 0.0648
(−2.12)∗∗ (1.59) (0.91) (0.61) (-1.17) (-0.36) (−2.46)∗∗ (2.06)∗∗

RP,t−3 -27.6353 0.0096 3.4805 0.0247 -27.2698 0.0104 -56.4951 0.0031
(−2.14)∗∗ (0.62) (0.40) (1.17) (-1.02) (0.32) (−2.03)∗∗ (0.10)

RP,t−4 8.0267 0.0417 -3.2142 -0.0028 79.1761 0.0527 -114.3776 0.0491
(0.62) (2.67)∗∗∗ (-0.38) (-0.13) (2.99)∗∗ (1.65) (−4.03)∗∗∗ (1.54)

const 0.0469 -0.0001 0.0077 0.0003 0.5518 -0.0010 -0.1695 0.0000
(0.35) (-0.54) (0.14) (2.08)∗∗ (1.35) (−2.00)∗∗ (-0.49) (0.07)

∆Euribort -19.6870 0.0192 -3.6218 -0.0014 -52.5534 0.0223 114.1309 0.0080
(−2.98)∗∗∗ (2.40)∗∗ (-1.21) (-0.19) (−3.91)∗∗ (1.38) (3.32)∗∗∗ (0.21)

∆V olP,t -305.1222 0.6514 -58.9561 0.2284 -165.3728 1.1409 -588.1014 0.1503
(−1.98)∗∗ (3.49)∗∗∗ (-0.50) (0.79) (-0.52) (2.96)∗∗∗ (−1.85)∗ (0.42)

∆Steept 1.8566 -0.0007 -0.6279 0.0027 4.7871 -0.0024 1.5120 -0.0028
(1.36) (-0.44) (-0.92) (1.63) (1.37) (-0.58) (0.54) (-0.88)

∆Spreadt -0.0074 0.0003 1.9257 0.0000 0.4247 -0.0004 -0.0520 0.0003
(-0.06) (2.26)∗∗ (3.58)∗∗∗ (-0.03) (0.91) (-0.78) (-0.30) (1.81)∗

∆AILLIQt -0.5733 0.0086 280.0000 2.1884 -1.8050 0.0082 86.2478 0.9699
(-0.11) (1.32) (0.67) (2.12)∗∗ (-0.23) (0.87) (0.14) (1.43)

RMSCI,t -247.0277 0.6771 -33.4760 0.5538 -277.2575 0.6071 -243.7097 0.7835

(−15.46)∗∗∗ (34.92)∗∗∗ (−2.43)∗∗ (16.43)∗∗∗ (−8.87)∗∗∗ (16.08)∗∗∗ (−6.69)∗∗∗ (19.12)∗ ∗ ∗
∆V stoxxt 0.6675 -0.0029 0.5834 -0.0044 0.4822 -0.0029 1.2445 -0.0027

(7.27)∗∗∗ (−26.10)∗∗∗ (6.40)∗∗∗ (−19.49)∗∗∗ (2.76)∗∗∗ (−13.85)∗∗∗ (5.88)∗∗∗ (−11.53)∗∗∗

RGold,t -28.7768 -0.0277 -7.9675 -0.0100 -46.3355 -0.0651 -28.8391 -0.0215
(−2.77)∗∗∗ (−2.20)∗∗ (-1.60) (-0.82) (−1.96)∗ (−2.28)∗∗ (-1.09) (-0.72)

Adj. R2 0.38 0.79 0.24 0.74 0.43 0.80 0.43 0.80

to variation, as it is the case for the determinants of spread changes.

VARX-results for the subindices

The results for the di�erent subindices are given in Tables 3.12 to 3.15. The empirical �ndings

for the di�erent subindices con�rm the results for the benchmark index in most respects. In the

full sample we observe a two-sided relationship between iTraxx and spread changes for three

out of four indices. Stock returns lead spread changes only for the iTraxx Non-Financial index.

However, lagged stock returns are better suited to explain spread changes than vice versa, as

more coe�cients di�er signi�cantly from zero when regressing spread changes against lagged

stock returns compared to the results when regression stock returns against lagged spread

changes. This suggests that stock markets are faster in processing relevant information than

the iTraxx index universe due to their higher liquidity.

In the pre-crisis sample no lead-lag relationship is observed for all subindices. In con-

trast, stock returns lead spread changes during the crisis period for all subindices except the

Non-Financials index. Interestingly, only the �rst lag of stock returns has a regression coef-

�cient statistically di�erent from zero. All other lags cannot be distinguished from zero for
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Table 3.13: VARX-regression results for the Senior Financials index
This table provides the regression coe�cients and t-values of the VARX-model for the iTraxx Europe Senior Financials index. T-values are given in
parentheses. Coe�cients which are statistically signi�cantly di�erent from zero are marked with asterisks. ∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗

refers to a 1% level of signi�cance. The results for the full sample period are given in the �rst panel. The second panel contains the results for the pre-crisis
subsample, the third panel contains the results for the crisis subsample and the fourth panel contains the results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t

∆iTraxxt−1 0.1588 0.0000 0.2222 0.0000 0.2132 0.0001 0.0601 0.0000
(6.11)∗∗∗ (0.17) (6.05)∗∗∗ (0.13) (4.00)∗∗∗ (0.77) (1.16) (-0.58)

∆iTraxxt−2 -0.0949 0.0000 0.0263 0.0002 -0.1063 0.0000 -0.1297 0.0001
(−3.61)∗∗∗ (0.91) (0.70) (0.39) (−1.94)∗ (0.23) (−2.62)∗∗∗ (1.77)∗

∆iTraxxt−3 -0.0380 0.0001 0.0191 -0.0003 -0.0415 0.0000 -0.0900 0.0002
(-1.41) (2.07∗∗) (0.50) (-0.77) (-0.73) (0.20) (−1.75)∗ (2.30)∗∗

∆iTraxxt−4 -0.1325 0.0000 0.0148 0.0001 -0.0998 0.0001 -0.1446 -0.0001
(−4.92)∗∗∗ (-0.08) (0.39) (0.23) (−1.76)∗ (1.04) (−2.82)∗∗∗ (-1.19)

RP,t−1 32.7991 -0.0085 -4.0557 -0.0061 55.3943 -0.0067 6.6538 -0.0249
(4.12)∗∗∗ (-0.59) (−2.08)∗∗ (-0.31) (3.51)∗∗∗ (-0.25) (0.33) (-0.77)

RP,t−2 -25.9160 0.0390 1.4735 0.0059 -14.1019 0.0019 -71.9146 0.1069
(−3.25)∗∗∗ (2.72)∗∗∗ (0.76) (0.30) (-0.88) (0.07) (−3.84)∗∗∗ (3.50)∗∗∗

RP,t−3 -4.1297 0.0078 -3.7446 0.0311 6.8789 -0.0019 -28.5238 0.0187
(-0.51) (0.54) (−1.94)∗ (1.56) (0.42) (-0.07) (-1.50) (0.61)

RP,t−4 -12.6434 0.0321 -1.1761 -0.0165 8.7054 0.0666 -52.0262 0.0070
(-1.55) (2.19)∗∗ (-0.61) (-0.83) (0.53) (2.35)∗∗ (−2.70)∗∗∗ (0.22)

const 0.0702 -0.0001 -0.0012 0.0003 0.2372 -0.0010 0.2301 0.0000
(0.77) (-0.56) (-0.10) (2.07)∗∗ (0.87) (−2.11)∗∗ (0.97) (-0.04)

∆Euribort -4.7167 0.0182 -0.1676 -0.0013 -16.0948 0.0093 21.4288 0.0273
(-1.06) (2.27)∗∗ (-0.23) (-0.17) (−1.76)∗ (0.59) (0.99) (0.78)

∆V olP,t -231.5547 0.6120 6.9056 0.1481 -311.8259 1.6576 -179.9884 -0.0056
(−3.69)∗∗∗ (5.42)∗∗∗ (0.25) (0.53) (−1.91)∗ (5.87)∗∗∗ (−1.77)∗ (-0.03)

∆Steept 1.1327 -0.0004 0.0233 0.0030 3.8177 -0.0003 0.5732 -0.0033
(1.25) (-0.26) (0.14) (1.80)∗ (1.67)∗ (-0.08) (0.30) (-1.06)

∆Spreadt 0.1408 0.0011 0.1935 -0.0016 0.0713 0.0021 0.3063 0.0003
(0.65) (2.87)∗∗∗ (2.06)∗∗ (−1.69)∗ (0.15) (2.55)∗∗ (0.82) (0.56)

∆AILLIQt 4.8699 -0.0109 36.1214 -0.4326 2320.0000 0.0803 4.5440 -0.0117
(1.42) (−1.77)∗ (0.59) (-0.69) (1.85)∗ (0.04) (1.05) (−1.66)∗

RMSCI,t -152.5539 0.6750 0.7427 0.5581 -131.3070 0.6051 -207.0969 0.7817
(−14.25)∗∗∗ (35.09)∗∗∗ (0.23) (16.53)∗∗∗ (−6.17)∗∗∗ (16.48)∗∗∗ (−8.12)∗∗∗ (18.82)∗∗∗

∆V stoxxt 0.3211 -0.0030 0.1204 -0.0042 0.2068 -0.0031 0.8323 -0.0028
(5.13)∗∗∗ (−26.43)∗∗∗ (5.56)∗∗∗ (−19.06)∗∗∗ (1.72)∗ (−15.07)∗∗∗ (5.37)∗∗∗ (−11.00)∗∗∗

RGold,t 1.3125 -0.0333 -2.0667 -0.0061 0.2199 -0.0773 6.0247 -0.0291
(0.19) (−2.66)∗∗∗ (−1.75)∗ (-0.50) (0.01) (−2.82)∗∗∗ (0.33) (-0.99)

Adj. R2 0.33 0.79 0.13 0.73 0.30 0.82 0.48 0.80
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Table 3.14: VARX-regression results for the Subordinated Financials index
This table provides the regression coe�cients and t-values of the VARX-model for the iTraxx Europe Subordinated Financials index. T-values are given in
parentheses. Coe�cients which are statistically signi�cantly di�erent from zero are marked with asterisks. ∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗

refers to a 1% level of signi�cance. The results for the full sample period are given in the �rst panel. The second panel contains the results for the pre-crisis
subsample, the third panel contains the results for the crisis subsample and the fourth panel contains the results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t

∆iTraxxt−1 0.1648 0.0000 0.3423 -0.0001 0.2011 0.0000 0.0805 0.0000
(6.33)∗∗∗ (-0.01) (9.28)∗∗∗ (-0.30) (3.83)∗∗∗ (0.37) (1.53) (-0.32)

∆iTraxxt−2 0.0053 0.0000 -0.1299 0.0002 0.0094 0.0000 -0.0252 0.0001
(0.20) (1.67)∗ (−3.30)∗∗∗ (0.95) (0.18) (0.88) (-0.49) (2.17)∗∗

∆iTraxxt−3 -0.0016 0.0000 0.0392 -0.0002 -0.0381 0.0000 -0.0102 0.0000
(-0.06) (0.02) (0.98) (-0.84) (-0.68) (-0.88) (-0.19) (0.08)

∆iTraxxt−4 -0.1013 0.0000 -0.0310 0.0003 -0.0773 0.0001 -0.1116 0.0000
(−3.78)∗∗∗ (0.95) (-0.82) (1.19) (-1.41) (0.96) (−2.07)∗∗ (0.09)

RP,t−1 58.1985 -0.0093 -5.3733 -0.0080 100.2335 -0.0121 12.1946 -0.0187
(4.00)∗∗∗ (-0.65) (-1.50) (-0.39) (3.65)∗∗∗ (-0.44) (0.32) (-0.58)

RP,t−2 -12.9224 0.0415 1.2138 0.0103 5.5821 0.0047 -55.1271 0.1041
(-0.89) (2.91)∗∗∗ (0.34) (0.52) (0.20) (0.17) (-1.52) (3.36)∗∗∗

RP,t−3 14.3416 -0.0083 -4.9964 0.0323 46.6232 -0.0109 -50.1585 -0.0206
(0.96) (-0.57) (-1.40) (1.61) (1.65) (-0.39) (-1.38) (-0.67)

RP,t−4 -35.5997 0.0389 -4.1212 -0.0114 -11.6791 0.0606 -110.4516 0.0300
(−2.40)∗∗ (2.69)∗∗∗ (-1.16) (-0.57) (-0.41) (2.17)∗∗ (−2.95)∗∗∗ (0.94)

const 0.0370 -0.0001 -0.0037 0.0003 0.2287 -0.0010 0.4471 0.0000
(0.22) (-0.56) (-0.16) (2.11)∗∗ (0.48) (−2.12)∗∗ (0.97) (-0.03)

∆Euribort -7.5904 0.0172 -0.6792 -0.0014 -29.2012 0.0077 61.7045 0.0242
(-0.93) (2.14)∗∗ (-0.52) (-0.19) (−1.83)∗ (0.49) (1.47) (0.68)

∆V olP,t -498.4757 0.6185 32.2146 0.1431 -1005.2620 1.6760 -224.7501 0.0513
(−4.32)∗∗∗ (5.47)∗∗∗ (0.65) (0.51) (−3.48)∗∗∗ (5.86)∗∗∗ (-1.15) (0.31)

∆Steept 1.4730 -0.0005 -0.1483 0.0030 5.4303 -0.0002 1.9111 -0.0041
(0.88) (-0.29) (-0.50) (1.79)∗ (1.35) (-0.06) (0.53) (-1.34)

∆Spreadt 1.0187 -0.0001 -0.1304 -0.0010 1.5173 -0.0005 0.5918 0.0001
(4.33)∗∗∗ (-0.29) (-0.92) (-1.25) (2.82)∗∗∗ (-0.90) (1.50) (0.34)

∆AILLIQt 12.5600 -0.0114 50.4124 -0.4422 4300.0000 -0.0894 8.5070 -0.0102
(1.98)∗∗ (−1.83)∗ (0.46) (-0.71) (1.96)∗ (-0.04) (1.02) (-1.44)

RMSCI,t -276.5923 0.6769 -4.1316 0.5519 -221.8832 0.5882 -426.4380 0.7957
(−14.08)∗∗∗ (35.19)∗∗∗ (-0.69) (16.31)∗∗∗ (−6.02)∗∗∗ (16.09)∗∗∗ (−8.64)∗∗∗ (18.96)∗∗∗

∆V stoxxt 0.6031 -0.0029 0.2110 -0.0043 0.4931 -0.0032 1.1607 -0.0026
(5.29)∗∗∗ (−26.26)∗∗∗ (5.35)∗∗∗ (−19.19)∗∗∗ (2.36)∗∗ (−15.32)∗∗∗ (3.95)∗∗∗ (−10.54)∗∗∗

RGold,t 26.3088 -0.0318 -2.1285 -0.0070 71.9650 -0.0703 3.4059 -0.0341
(2.05)∗∗ (−2.53)∗∗ (-0.98) (-0.57) (2.57)∗∗ (−2.54)∗∗ (0.10) (-1.14)

Adj. R2 0.32 0.79 0.19 0.74 0.35 0.82 0.44 0.80
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Table 3.15: VARX-regression results for the Non-Financials index
This table provides the regression coe�cients and t-values of the VARX-model for the iTraxx Europe Non-Financials index. T-values are given in parentheses.
Coe�cients which are statistically signi�cantly di�erent from zero are marked with asterisks. ∗ refers to a 10%, ∗∗ refers to a 5% and ∗∗∗ refers to a 1%
level of signi�cance. The results for the full sample period are given in the �rst panel. The second panel contains the results for the pre-crisis subsample,
the third panel contains the results for the crisis subsample and the fourth panel contains the results for the post-crisis period.

Full sample Pre-crisis Crisis Post-crisis
∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t ∆iTraxxt RP,t

∆iTraxxt−1 -0.0030 -0.0001 0.2229 0.0000 0.2011 0.0000 0.0805 0.0000
(-0.12) (-1.62) (6.54)∗∗∗ (-0.02) (3.83)∗∗∗ (0.37) (1.53) (-0.32)

∆iTraxxt−2 -0.0657 0.0000 0.0136 0.0001 0.0094 0.0000 -0.0252 0.0001
(−2.54)∗∗ (0.98) (0.39) (0.65) (0.18) (0.88) (-0.49) (2.17)∗∗

∆iTraxxt−3 -0.0471 -0.0001 0.0060 0.0000 -0.0381 0.0000 -0.0102 0.0000
(−1.79)∗ (-1.12) (0.17) (-0.14) (-0.68) (-0.88) (-0.19) (0.08)

∆iTraxxt−4 -0.0766 0.0000 0.0498 0.0002 -0.0773 0.0001 -0.1116 0.0000
(−2.98)∗∗∗ (0.23) (1.46) (0.93) (-1.41) (0.96) (−2.07)∗∗ (0.09)

RP,t−1 -8.3902 -0.0128 -5.9762 -0.0017 100.2335 -0.0121 12.1946 -0.0187
(-1.30) (-1.03) (-1.46) (-0.08) (3.65)∗∗∗ (-0.44) (0.32) (-0.58)

RP,t−2 -12.0634 0.0293 2.1438 0.0120 5.5821 0.0047 -55.1271 0.1041
(−1.87)∗ (2.34)∗∗ (0.53) (0.59) (0.20) (0.17) (-1.52) (3.36)∗∗∗

RP,t−3 -25.1629 -0.0162 -1.4866 0.0344 46.6232 -0.0109 -50.1585 -0.0206
(−3.84)∗∗∗ (-1.28) (-0.37) (1.70)∗ (1.65) (-0.39) (-1.38) (-0.67)

RP,t−4 -14.3395 0.0274 4.5720 -0.0082 -11.6791 0.0606 -110.4516 0.0300
(−2.19)∗∗ (2.16)∗∗ (1.14) (-0.41) (-0.41) (2.17)∗∗ (−2.95)∗∗∗ (0.94)

const 0.0411 -0.0001 -0.0038 0.0003 0.2287 -0.0010 0.4471 0.0000
(0.48) (-0.46) (-0.14) (2.04) (0.48) (−2.12)∗∗ (0.97) (-0.03)

∆Euribort -9.1635 0.0192 -2.0861 -0.0012 -29.2012 0.0077 61.7045 0.0242
(−2.21)∗∗ (2.39)∗∗ (-1.40) (-0.17) (−1.83)∗ (0.49) (1.47) (0.68)

∆V olP,t 226.3420 0.9222 -34.6043 0.4903 -1005.2620 1.6760 -224.7501 0.0513
(1.95)∗ (4.10)∗∗∗ (-0.55) (1.56) (−3.48)∗∗∗ (5.86)∗∗∗ (-1.15) (0.31)

∆Steept 0.4305 -0.0007 -0.1152 0.0030 5.4303 -0.0002 1.9111 -0.0041
(0.51) (-0.45) (-0.34) (1.76)∗ (1.35) (-0.06) (0.53) (-1.34)

∆Spreadt -0.0223 0.0001 0.5624 0.0000 1.5173 -0.0005 0.5918 0.0001
(-0.66) (0.84) (11.96)∗∗∗ (-0.17) (2.82)∗∗∗ (-0.90) (1.50) (0.34)

∆AILLIQt -0.0033 -0.0001 -0.0082 0.0000 4300.0000 -0.0894 8.5070 -0.0102
(-0.02) (-0.18) (-0.20) (-0.06) (1.96)∗ (-0.04) (1.02) (-1.44)

RMSCI,t -62.7936 0.6815 -5.6313 0.5540 -221.8832 0.5882 -426.4380 0.7957
(−6.28)∗∗∗ (35.16)∗∗∗ (-0.83) (16.37)∗∗∗ (−6.02)∗∗∗ (16.09)∗∗∗ (−8.64)∗∗∗ (18.96)∗∗∗

∆V stoxxt 0.2534 -0.0029 0.2797 -0.0043 0.4931 -0.0032 1.1607 -0.0026
(4.36)∗∗∗ (−25.79)∗∗∗ (6.26)∗∗∗ (−19.30)∗∗∗ (2.36)∗∗ (−15.32)∗∗∗ (3.95)∗∗∗ (−10.54)∗∗∗

RGold,t 0.2902 -0.0279 -1.4285 -0.0079 71.9650 -0.0703 3.4059 -0.0341
(0.04) (−2.21)∗∗ (-0.58) (-0.65) (2.57)∗∗ (−2.54)∗∗ (0.10) (-1.14)

Adj. R2 0.13 0.79 0.27 0.73 0.35 0.82 0.44 0.80
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all subindices. This can be interpreted as a sign that investors are especially sensitive to new

information in times of crises and therefore incorporate new information promptly.

In the post-crisis period we observe a two-sided relationship for all subindices except for the

HighVol index, where stock returns lead spread changes. For the Senior Financials and the

Subordinated Financials index, the predictive power of lagged spread changes when regressed

against stock returns is equal to the predictive power when regressing spread changes against

lagged stock returns or even slightly higher. The lead-lag relationship has shifted in favor

of lagged spread changes in the aftermath of the crisis. This is true for all but one index,

and most pronounced for the two �nancial indices. As the �nancial sector is widely believed

to contribute signi�cantly to systemic risk, this actually leads us to the conclusion that the

iTraxx index contains useful information regarding systemic risk that is actually incorporated

by market participants.

Again, there is empirical evidence that there is variation in the lead-lag relationship between

the market for credit risk an stock markets. While stock returns lead spread changes in the

crisis period, no apparent lead-lag relationship between the two can be observed in the pre-

crisis period. In the post crisis period we observe a two-sided relationship between the two

markets. In general, the results suggest that the role of credit markets in processing �rm

speci�c information has strengthened through time. Thus, systemic risk measured in credit

markets is priced in equity markets and it is necessary to rely on information from both markets

when one engages in trading or hedging.

3.7 Conclusion

This paper empirically investigates the behavior of iTraxx Europe spread changes around the

2007-2009 �nancial crisis. The iTraxx index universe is of special interest, as iTraxx spreads

can be interpreted as a measure of systemic risk. We examine the determinants of iTraxx

spread changes, as well as changes in these determinants due to the recent �nancial crisis. We

�nd empirical evidence that iTraxx spread change determinants are subject to variation in the

course of the �nancial crisis. While stock returns and implied stock market volatility explain

most of the variation in the post crisis period, global variables have a statistically signi�cant

in�uence in the pre-crisis and crisis period. In general the explanatory power of our set of

independent variables is increasing throughout the sample.

In order to check for the robustness of the regression results we perform a quantile regression.

This approach allows us to assess the explanatory power of our set of independent variable

for spread changes in the upper and lower tail of the empirical distribution. We �nd empirical
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evidence that a signi�cant systematic fraction of spread changes in the tails of the empirical

distribution is not explained by the independent variables, suggesting that additional factors

have to be incorporated when explaining large spread widenings or large spread tightenings

that are not implied by structural models.

We additionally investigate changes in the lead-lag relationship between iTraxx spread

changes and stock returns during the recent �nancial crisis in order to assess whether market

participants rely on the iTraxx index universe as a source of information regarding systemic risk.

We �nd empirical evidence that the lead-lag relationship is subject to variation as well. While

stock returns lead spread changes in the crisis period, a two-sided relationship is observed in

the post crisis period.

Our results provide further insights in the mechanics of credit markets. Future research

might focus on the modeling of iTraxx spread changes in the upper and lower tail of the

empirical distributions, since standard models fail to explain large spread changes. Another

interesting approach is whether changes in factor sensitivities of spreads can be observed before

a market turmoil evolves, i.e. whether factor sensitivities can be used as a warning signal in

�nancial markets.
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Abstract

Default dependence is of paramount importance when portfolio products or credit derivatives

subject to counterparty risk have to be evaluated. Unfortunately, the modeling of default

dependence is non-trivial and very sensitive to the underlying assumptions. In this light, a

method that makes it possible to estimate the potential in�uence of default dependence on a

certain �nancial instrument is desirable. I introduce the method of maximum implied default

correlation as a potential solution to this problem. It is based on market-implied pairwise

bounds for the default correlation of the entities under consideration. I apply the method

to default swaps subject to counterparty risk and basket credit derivatives to illustrate the

potential in�uence of default correlation on the respective spreads. I show that the potential

in�uence of assumptions concerning default correlation is especially large for homogeneous

portfolios with investment grade issuers. In general, the bounds for spreads implied by the

method of maximum implied default correlation are wide, in particular for portfolio products,

limiting its practical relevance as a pricing tool. However, although the method seems to have

limited practical relevance as a pricing tool, it is well suited to asses the potential in�uence of

assumptions concerning default correlation on �nancial securities sensitive to default depen-

dence and as a tool for stress testing.

Keywords: default correlation, counterparty risk, credit derivatives, credit risk
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4.1 Introduction

The pricing of securities subject to credit risk has gained major attention within �nancial market

research in recent years. Usually, this task involves deriving the distribution of default times of

the entities under consideration. In case that securities subject to counterparty risk or portfolio

products have to be priced, joint distributions of default times have to be estimated. If default

times are dependent, i.e. if defaults are correlated, this becomes a complex task. Furthermore,

the results obtained are highly sensitive to assumptions concerning the dependence structure

of the entities' default times.

During the recent �nancial crisis many of the assumptions behind standard pricing models

for portfolio products proved to be myopic. Approaches such as the Gaussian copula, which

is applied in latent variable models, do not account for extreme default dependence, i.e. the

clustering of defaults. However, this clustering is a common feature of distressed �nancial

markets and was also observed during the recent �nancial crisis. Therefore, the market's per-

ception concerning the inherent risks of portfolio products were not adequate, as common

models of dependent defaults are highly sensitive with respect to assumptions regarding the

dependence structure (Frey and McNeil (2003)). Models allowing for extreme (possibly asym-

metric) dependence of default times are available. However, they are complex and di�cult to

implement. In this light there is a pronounced need for concepts allowing to stress test prices

of portfolio products, possibly leading to bounds within the prices (spreads) of such products

have to lie in between in the absence of arbitrage opportunities and that hold regardless of the

actual dependence structures within the portfolio members. Such concepts allow for a decent

understanding of the inherent risk of portfolio products as they provide insights concerning

the impact of default correlation on the pricing of these products. Hence, market participants

can assess in which range changes in the assumptions concerning the dependence structure of

entities within the portfolio do a�ect the fair prices of these securities.

This paper addresses the problem outlined above by introducing the method of maximum

implied default correlation. It contributes to the existing literature by deriving upper and lower

bounds for the default correlation for pairs of entities using market data. These bounds hold

as long as no arbitrage opportunities exist. These bounds in turn can be used to derive upper

and lower bounds for the prices of securities that are subject to credit risk and sensitive to

default correlation. Examples of such securities are credit default swaps (CDS) subject to

counterparty risk and nth-to-default baskets.

I apply the method of maximum implied default correlation to derive bounds for the prices of

these two securities using an intuitive and easy to implement Monte Carlo simulation algorithm,

which is based on an simple intensity model of default. The algorithm involves several steps.
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First, implied upper bounds for the default correlation of certain entities are calculated based

on observed market data. Next, the implied upper default correlations are converted into a

variance-covariance matrix of the respective default processes. In a succeeding step I model

the default processes relying on the overlapping sums (OS) method. This involves expressing

the default process of each entity under consideration as a sum of independent idiosyncratic

as well as common default processes. For each entity its respective sum of default processes

is calibrated to match the respective implied variance-covariance matrix of its default process.

This is achieved by applying the algorithm of Park and Shin (1998).1 Consequently, the default

times of each entity under consideration are simulated, allowing to derive the upper bound

for securities with sensitivity to the default of the entity under consideration. The respective

lower bound can be simulated by assuming that defaults are independent, i.e. that no default

correlation is present. In addition to calculating upper and lower bounds for nth-to-default

baskets and CDS subject to counterparty risk, I analyze the sensitivity of the respective spreads

concerning changes in the correlation structure of the underlying entities to provide a better

understanding of the potential impact of default correlation.

The proposed approach allows for the comparison of market spreads for credit derivatives

with model-implied maximum and minimum spreads, without extensive modeling of default

correlations. In the absence of arbitrage opportunities, market quotes have to lie in between

the implied bounds, regardless of the underlying default correlation structure between the

entities contributing to the risk of the security under consideration. Hence, this paper provides

further insights on the impact of default correlation on spreads of credit derivatives sensitive

to default correlation and the e�ciency of the credit derivatives market as a whole.

The remainder of this paper is organized es follows. In Section 4.2 I provide an overview of

models for pricing credit derivatives such as CDS and introduce the intensity model on which

the Monte Carlo simulations are based. In Section 4.3 I discuss the concept of default correla-

tion and show how upper and lower bounds for the default correlation between two issuers can

be implied from market data. The issue of simulating an intensity model incorporating default

correlation is addressed in Section 4.4. Section 4.5 presents the results of the simulations. In

Section 4.6 i present an alternative application for the method of maximum implied default

correlation. Section 4.7 concludes the paper.

1An example how the algorithm works is provided in the appendix.
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4.2 Related Literature

There are two major classes of models for dependent defaults. The �rst class comprises ex-

tensions of the Merton (1974) structural model. In this class of models, default occurs if a

latent variable, usually interpreted as the asset value of the obligor, hits a certain threshold.

Dependence between the defaults of multiple issuers is introduced via dependent latent vari-

ables, e.g. correlated asset value processes. Examples for this class of models are the Moody's

KMV Model or RiskMetrics. The second class of models consists of so called mixture mod-

els. In this class of models the default probability of an obligor is expressed as a function

of certain, possibly economic, factors. Default dependence is introduced if certain obligors

are exposed to similar factors. Conditioning on the factors, defaults of the single obligors are

independent. The CreditRisk+ model is an example of this class of models. According to Frey

and McNeil (2003) both approaches share the feature that they are highly sensitive to the

assumptions regarding the dependence structure between di�erent obligors. Mixture models

can be combined with the class of intensity models in the spirit of Jarrow and Turnbull (1995).

This approach has e.g. been applied by Du�e and Gârleanu (2001). In intensity models,

default is an unpredictable event governed by the �rst jump of a Poisson process. The default

probability depends on the respective hazard rate. In this class of models default dependence

can be introduced by correlating the hazard rate processes of di�erent entities. However, as

stated by Jarrow and Yu (2001), the default correlation attainable in this class of models is

low unless one allows for large jumps in the default intensities of the surviving entities in case

of an observed default.

For the pricing of securities subject to credit risk, default dependence plays a role in two

distinct ways. One the one hand, default correlation has to be incorporated when portfolio

products, such as collateralized debt obligations (CDO) and nth-to-default swaps, have to be

priced. In both cases the cash �ows of the security depend on the solvency of a portfolio of

entities. In case of pronounced default dependence within the portfolio, a clustering of defaults

is possible, i.e. multiple portfolio constituents default almost simultaneously before the security

matures. Several papers address the pricing of portfolio products. Du�e and Gârleanu (2001),

Longsta� and Rajan (2008) and Giesecke and Kim (2011) rely on an intensity framework to

evaluate CDO tranches. Hull and White (2004) and Laurent and Gregory (2005) price CDO

and nth-to-default swaps relying on a mixture model with di�erent copula assumptions. Li

(2000) relies on a latent variable model with applications to single name CDSs and �rst-to-

default swaps. Jabbour et al. (2009) evaluates nth-to-default swaps with default dependence

governed by Gaussian and Student-t copulas.

On the other hand, default correlation is an issue when credit derivatives subject to counter-
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party risk, such as over-the-counter (OTC) CDS, have to be evaluated. As credit derivatives

are often OTC products, introducing the concept of counterparty risk is a natural expansion to

the problem of pricing such derivatives. The presence of counterparty risk in CDS markets is

con�rmed by Jorion and Zhang (2008), who �nd signi�cant empirical evidence that counter-

party risk is an important driver of CDS spreads. The issue of pricing credit derivatives subject

to counterparty risk has been addressed in numerous papers. Hull and White (2001) rely

on a structural framework, while Jarrow and Yu (2001) and Leung and Kwok (2005) employ

an intensity model to price credit risky securities subject to counterparty risk such as CDSs.

Mashal and Naldi (2005) introduce the concept of bounds for credit derivatives. They derive

upper and lower bounds for swap spreads subject to counterparty risk. Furthermore, Turnbull

(2005) adds to the aforementioned approach and derives upper and lower bounds for pro�ts

and losses due to such default swaps. However, as opposed to the approach proposed in this

paper, these bounds do not hold regardless of the assumptions made concerning the default

correlation between the di�erent entities involved.

4.3 Correlated Defaults and Implied Bounds for

Default Correlation

Correlated defaults contribute signi�cantly to credit risk. Default correlation refers to the case

when the default process of an entity is related to the default process of another or several

other entities. There are several potential sources of default correlation, with some examples

discussed below:

• Several entities are exposed to common systematic factors,

• entities have direct exposures with other entities,

• unhedged protection selling and default of the reference entity,

• regulatory capital requirements due to positions in the CDS market which are hedged

via o�setting positions written by a distressed entity.

An exposure to common systematic factors is an obvious reason for default correlation. This is

the case when entities are engaged in the same region, or in the same industry. If the industry

faces a demand shock, all entities will be negatively a�ected, although to di�erent degrees.

Some of the entities in the industry might not survive the shock and hence, their defaults are

correlated due to the common exposure to the demand shock. A direct involvement between
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di�erent entities is another source of default correlation. To give an example, suppose a bank

has a large credit exposure with a single obligor. If the obligor defaults, this may create losses

for the bank, which in turn will cause it to default. Unhedged protection selling as a potential

source of default correlation is typically found, although not exclusive to, in the �nancial

services industry. Financial institutions, which sell protection on a certain reference entity in

the CDS market without hedging their positions are exposed to large cash drains in case the

reference entity defaults. If the unhedged position is large, this may have severe consequences

for the �nancial stability of the protection seller. The last source of default dependence may not

seem obvious in the �rst place, although it is clearly of high importance. Financial institutions

typically hedge their positions in the credit derivatives market via o�setting transactions. These

hedges in turn reduce regulatory capital requirements related to the respective exposures.

If the counterparty of the o�setting transaction defaults, the hedging institution ends up

with an unhedged position. If it fails to replace the o�setting transaction by an equivalent

transaction with another counterparty, it has to hold regulatory capital according to the risk of

the unhedged position. Depending on the size of the position in the credit derivatives market,

the regulatory capital requirements may lead to liquidity problems for the institution.

A technical treatment of the concept of default correlation can be found in Lucas (1995).

I build on the work of Lucas (1995) and introduce the concept of market implied bounds for

default correlation. To clarify this concept suppose the following. The T -year yield spreads of

two bonds issued by di�erent reference entities a and b are known to be sa and sb, respectively.

Furthermore, I assume the yield spread is a pure default risk premium, implying that it does not

depend on market imperfections such as liquidity premia or taxation e�ects. Then a maximum

implied default correlation between the two issuers can be derived as follows (see also Lucas

(1995)). The default event of entities a and b are denoted by A and B, respectively. The

risk-neutral T -year default probabilities, given the relevant information at time t, Ft, for a and
b are denoted by P (Da,T = 1|Ft) and P (Db,T = 1|Ft), which can be written as P (τA ≤ T |Ft)
and P (τB ≤ T |Ft). For notational simplicity I denote the default event of entities a and b

by A and B, hence P (A) = P (Da,T = 1|Ft) and P (B) = (Db,T = 1|Ft). Given that the

entities under consideration have traded debt, the risk neutral default probabilities can be

derived from the yield spreads of the respective bonds. Assuming zero recovery at default, the

T -year default probability is approximately equal to the T -year yield spread of the respective

bond. Hence,

P (A) ≈ sa, and P (B) ≈ sb. (4.1)

The T -year joint default probability of the two entities, P (Da,T = 1∧Db,T = 1|Ft) = P (τA ≤
T ∧ τB ≤ T |Ft) = P (A,B), can be expressed in terms of their individual default probabilities
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and their T -year default correlation ρA,B, i.e.

P (A,B) = P (A)P (B) + ρA,B
√
P (A)(1− P (A))

√
P (B)(1− P (B)), (4.2)

where

ρA,B =
σA,B
σAσB

,

σA =
√
P (A)(1− P (A)), σB =

√
P (B)(1− P (B)),

and

σA,B = E(AB)− E(A)E(B).

As the joint default probability is unobservable, the default correlation between entity a and b

cannot be derived from equation (4.2). Nevertheless, market yield spreads of the two entities

can be used to imply upper and lower bounds for the joint default probability, which in turn can

be used to derive upper and lower bounds for the default correlation between the two entities.

This is because the maximum joint default probability of the two entities cannot exceed the

lower of the two individual default probabilities, whereas the minimum joint default probability

is zero, implying that defaults of the reference entities are mutually exclusive events. Hence,

for the joint default probability P (A,B),

0 ≤ P (A,B) ≤ min[P (A), P (B)] (4.3)

must hold.

Substituting equation (4.3) into equation (4.2) and rearranging terms leaves us with upper

and lower bounds for the default correlation between default events A and B, i.e.

ρA,B ≥
−P (A)P (B)√

P (A)(1− P (A))
√
P (B)(1− P (B))

, (4.4)

and

ρA,B ≤
min[P (A), P (B)]− P (A)P (B)√
P (A)(1− P (A))

√
P (B)(1− P (B))

. (4.5)

From inequalities (4.4) and (4.5) we see that the maximum, as well as the minimum implied

default correlation between two issuers is a function of the individual default probabilities as

well as the maximum attainable joint default probability of the two reference entities. Figure

4.1 illustrates the maximum attainable default correlation as a function of the spread between

the individual default probabilities and the maximum joint default probability. We see that

the maximum attainable default correlation is positively related to the maximum joint default
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probability and negatively related to the spread between the individual default probabilities of

the two entity under consideration.

Figure 4.1: Maximum attainable implied default correlation as a function of the spread between
individual default probabilities and maximum attainable joint default probability
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4.4 Incorporating Default Correlation into an

Intensity-Based Pricing Framework for Credit

Derivatives

When it comes to the pricing of securities subject to credit risk, default correlation is of

particular importance if the payments the security promises are contingent to the solvency

of more than one entity. This is for example the case with credit derivatives subject to

counterparty risk or securities with payo�s contingent on the solvency of a portfolio of entities.

In this case we have to explicitly incorporate the dependence structure between the default

times of the single entities.

Intensity models are commonly used to price securities subject to credit risk. One possible

way to incorporate default correlation between di�erent entities into an intensity-based model
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is by allowing for correlated intensity processes. Nevertheless, as discussed in Hull and White

(2001), the magnitude of default correlation attainable by means of correlated default intensi-

ties is low, even if the processes are perfectly correlated. One way to overcome this problem,

is to allow for large jumps in the default intensity of one entity, if a related entity defaults, as

proposed by Jarrow and Yu (2001).

In this paper I rely on an alternative way to incorporate default correlation in an intensity-

based pricing framework, the overlapping sums (OS) method. The OS method is discussed in

Holgate (1964), among others. The method has been applied by Madsen and Dalthorp (2007)

to simulate correlated count data. The idea behind the OS method is to split the default

processes of the entities under consideration into idiosyncratic and common components. To

illustrate this concept, suppose we are interested in generating correlated Poisson variables

A and B with intensity λA, λB and covariance σA,B, i.e. the default processes of entities a

and b. Suppose that the Poisson variables are constructed as a sum of independent Poisson

variables X, Y, and Z, such that

A = X + Y

and

B = X + Z.

Although X, Y and Z are independent, the processes A and B are correlated via the com-

mon component X. The covariance between the two sums is governed by the overlapping

component, i.e.

σA,B = λX ,

where λX denotes the intensity of the process X. This method can be easily adapted to

the method of maximum implied default correlation described in Section 4.3 by modeling the

default process of each entity under consideration as a sum of overlapping default processes

that yields the desired dependence structure. An example is provided in the appendix.

Using the OS method to model the default process has some intuitive implications. The

default process for each entity is split into an idiosyncratic component, the non-overlapping

Poisson process and a common, or correlation component, the overlapping Poisson process.

Hence, there are two possible reasons for a speci�c entity to default. Default can be triggered by

the idiosyncratic component, representing a default due to �rm speci�c reasons. Additionally,

an entity can default due to contagion e�ects. These contagion e�ects may represent inter-

�rm relations between two entities, or a systemic component, where the default of a major

player within a certain industry has negative e�ect for the �nancial stability of other members

of the industry.
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Due to the nature of the OS method, �rms defaulting as a consequence of contagion default

simultaneously. In this case there is no lag between their respective default times, as it would

be likely in the real world. In order to model lagged dependent defaults, a model like the

one of Jarrow and Yu (2001) needs to be applied, where the default of an entity may cause

jumps in the default intensities of its counterparties. Nevertheless, for the evaluation of a

CDS, a lagged dependent default has no in�uence on expected payo�s due to the default of

the reference entity, as long as we assume immediate settlement of the contract as soon as

a credit event occurs. In case portfolio products are under consideration, the simultaneous

defaults become an issue. For my purpose this feature of the OS method is actually desirable,

as I am interested in deriving bounds for the spreads of these securities, and simultaneous

defaults are helpful for describing the worst case scenario.

The OS method is used in the remainder of this paper to generate dependent default times

and examine the e�ect of default correlation on the prices of securities sensitive to default

dependence via Monte Carlo simulation.2 One drawback of the OS method is that negative

default correlations cannot be attained. However, this is not critical for deriving upper and

lower bounds for CDS prices, as long as we assume that the CDS contract is immediately

closed after one of the three involved parties defaults. In other words, for protection payment

counterparty risk is only an issue, if defaults happen simultaneously. In this case, two special

cases are of interest. In the �rst one, the protection seller and the reference entity default

simultaneously, in which case the protection buyer is not compensated for his losses. In

the second one, the protection buyer and the reference entity default simultaneously, and

accordingly the protection seller does not have to compensate the protection buyer. What

happens after the �rst credit event, be it a correlated or a single entity default, is of no

relevance for the pricing of the CDS at hand, and therefore negative default correlations do

not have to be accounted for.

When credit derivatives with payo�s depending on the default processes of a portfolio of

entities are considered, negative default correlation matters. However, the (downside) risk of

the portfolio is clearly determined by positive default correlation. Additionally, there are few

cases where pronounced negative default correlation is observed in reality. Therefore, I do not

consider negative default correlation when simulating the implied bounds for these securities.

2Alternative approaches to simulate dependent default times are discussed in Du�e and Singelton (1999),
Joshi and Kainth (2004), Chen and Glasserman (2008) and Giesecke et al. (2011) among others.
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4.5 Possible Applications for the Method of Maximum

Implied Default Correlation

4.5.1 General Methodology

For the simulation analysis I rely on the reduced form pricing framework. Therefore, I suppose

that the uncertainty within the economy during the time horizon T can be described by the

�ltered probability space (Ω, F , {Ft}Tt=0, P ), where F = FT , and P is the equivalent martin-

gale measure under which discounted security prices are martingales. I assume the uniqueness

and existence of P , hence security markets are priced by arbitrage as shown by Harrison and

Kreps (1979) in a discrete time setting and Harrison and Pliska (1981) in continuous time.

The default time of entity i is de�ned as

τi = inf

{
t :

∫ t

0

λi,s ds ≥ ξi

}
, (4.6)

where {ξi, i = 1, ..., N} is a set of independent unit mean exponential random variables. The

intensity λi,t is predictable under Ft and has right-continuous sample paths. Therefore, the

default time of entity i conditional on the information set Ft is given by the distribution

function

P (τi > t|Ft) = exp

(
−
∫ t

0

λi,s ds

)
, t ∈ [0, T ],

and the default process of entity i is de�ned as

Di,t = 1{τi≤t}.

The process governing the default intensity λi,t can be modeled in various ways. Lando (1998),

for instance, models the default intensity as a double stochastic Poisson process (Cox process),

driven by set of economic state variables. These state variables are governed by an Rd-valued

state process Xt, where d is the number of the state variables governing the intensity process.

In case default correlation is present λi,t also depends on the default processes of other entities.

Hence, the �ltration Ft is generated jointly by the state variables and the default processes,

i.e.

Ft = FX,t ∨ F1,t ∨ ... ∨ FN,t,

where

FX,t = σ{Xs, 0 ≤ s ≤ t} and Fi,t = σ{Di,s, 0 ≤ s ≤ t}

represent the �ltrations generated by the the processes Xt and Di,t, respectively.
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4.5.2 Deriving Bounds for a CDS Subject to Counterparty Risk

In a CDS transaction three parties are involved, the protection buyer a, the protection seller

b and the reference entity c. In brief, a CDS insures the protection buyer against losses due

to a credit event related to a third party, the reference entity. The insurance is provided by

the swap counterparty, the protection seller. CDS contracts are credit derivatives traded in

OTC markets. As such, CDSs are subject to counterparty risk. In general, counterparty risk

in credit derivatives contracts has two dimensions, mark-to-market-risk and failure to perform

(see also Turnbull (2005)). To illustrate these two aspects, suppose a setting with a default

free protection buyer. If the protection seller defaults the swap contract terminates and the

protection seller is no longer insured against potential losses due to the default of the reference

entity. Hence he needs to �nd a new swap counterparty. If the credit quality of the reference

entity has worsened since initiation of the original swap, he incurs replacement costs as the

original swap has positive value. This represents the mark-to-market risk component. If the

reference entity is subject to a credit event and the protection seller defaults prior to the

settlement of the swap contract, the protection buyer bears all losses due to the reference

entity's default. This represents the failure to perform component.

Hence, the value of a speci�c contract is particularly driven by the creditworthiness of the

swap counterparty. In case the default risk of the swap counterparty depends on the default

risk of the reference entity, i.e. in the presence of (positive) default correlation between the

two, counterparty risk in CDS contracts is even more pronounced. The pricing of a CDS in

an arbitrage-free setting is described below.

Due to the existence and uniqueness of P we can price contingent claims such as CDS using

arbitrage arguments. In an arbitrage-free setting the expected present value of the premium

leg has to equal the expected present value of the default leg. Without loss of generality, I

assume that there is zero recovery at default and that the risk-free rate follows the process rt.

The information relevant to determine rt is adapted to FX,t. Then, the present value of the

premium leg, given that all three parties are subject to credit risk, can be expressed as

E

 T∫
0

exp

− s∫
0

ru du

 pCDS1{τa>s}1{τb>s}1{τc>s} ds

 =

pCDS

T∫
0

E

exp

− s∫
0

ru du

1{τa>s}1{τb>s}1{τc>s}

 ds,
(4.7)

where E denotes the risk neutral expectation. From (4.7) we can see that the protection buyer
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makes payments to the protection seller at the rate pCDS, or swap spread, as long as none of

the relevant entities has defaulted yet. As soon as one of these entities defaults the payments

seize immediately.

In case the reference entity defaults, the protection buyer compensates the protection buyer

for her losses due to the default. The present value of this compensation, the default leg, is

given by

E

1{τa≤T} exp

− T∫
0

ru du

1{τb>τa}1{τc>τa}

 . (4.8)

From (4.8) we see that the compensation payment is only made if the reference entity is

the �rst of the three entities to default within the maturity of the CDS. If either the protection

seller or the protection buyer defaults prior to the reference entity, the contract expires.3

Since a fairly priced CDS has zero value at initiation, the premium leg has to equal the

default leg and we may solve for the fair swap spread pCDS at initiation of the CDS, which

can be calculated as

pCDS =
E
[
1{τa≤T} exp

(
−
∫ T
0
ru du

)
1{τb>τa}1{τc>τa}

]
∫ T
0
E
[
exp

(
−
∫ s
0
ru du

)
1{τa>s}1{τb>s}1{τc>s}

]
ds
. (4.9)

There might not necessarily be a solution for equation (4.9) in closed form. This is especially

true if the default processes of the three relevant entities are not independent. Jarrow and Yu

(2001) and Brigo and Chourdakis (2008) impose several assumptions allowing them to solve

equation (4.9) in closed form. In this paper I rely on the approach of Hull and White (2001)

and derive an analytical solution for the fair swap spread p via Monte Carlo simulation.

4.5.3 Simulation Results

To illustrate the e�ect of default correlation on the spread of a CDS subject to counterparty

risk I assume the following. The time horizon is one year and premium payments are made on

a yearly basis. The protection payment is made immediately after the default of the reference

entity. If either the protection seller or the protection buyer defaults prior to the reference

entity and the �nal maturity, the contract is closed without any further payments. I suppose

3This might not hold in every circumstance. As an example suppose that the protection seller defaults prior
to maturity of the CDS and the reference entity has not defaulted yet. In case the contract has positive
value for the protection seller, it is likely to be part of her bankruptcy assets. Hence the CDS will rather
be sold to a third party, instead of expiring.
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Table 4.1: Results for scenario 1

Lower bound Upper bound
Spread 0.00294 0.00506
Standard deviation 0.00002 0.00002

Table 4.2: Results for scenario 2

Lower bound Upper bound
Spread 0.02863 0.04996
Standard deviation 0.00005 0.00007

a recovery rate of zero at default and a constant risk-free rate of 300 basis points (bps). I

perform 107 simulation steps for each scenario under investigation.

The simulation comprises three scenarios. First I simulate upper and lower bounds for the

CDS spread on a reference entity with a one year default probability of 50 bps. The protection

seller has a default probability of 10 bps and the protection buyer has a default probability of 20

bps. I repeat the simulation for a reference entity with default probability of 500bps, a default

probability for the protection seller of 100 bps and a protection buyer with default probability

of 200 bps to illustrate the e�ect of creditworthiness on the implied bounds. Additionally,

I illustrate the e�ect of the homogeneity of the underlying entities by assuming a reference

entity with a default probability of 100 bps a protection seller with 5 bps and a protection

buyer with 25 bps

Table 4.1 provides the results for the �rst scenario. The lower bound for the spread of the

CDS at hand is given by the spread simulated under the assumption of maximum implied default

correlation, which is 29.4 bps. The upper bound, which is attained under the assumption of

zero default correlation, is 50.6 bps. In this scenario, an investor who is willing to buy protection

the reference entity potentially overestimates the fair spread by 21.2 bps or 172%, if he assumes

zero default correlation between him, the protection buyer and the reference entity.

The results for the second scenario are provided in Table 4.2. The upper bound for the

fair spread is 499.6 bps, while the lower bound has a simulated value of 286.3 bps. Again,

an investor who assumes zero default correlation potentially overestimates the fair spread by

213.2 bps or 174.5%, which con�rms the result of the �rst scenario.

Table 4.3 contains the results for the simulation of the third scenario. The simulated lower

bound for the CDS spread amounts to 469.5 basis points. The upper bound, as implied by

the spread simulated under the assumption of independent defaults of the entities involved,
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Table 4.3: Results for scenario 3

Lower bound Upper bound
Spread 0.04695 0.05039
Standard deviation 0.00007 0.00007

is 503.9 bps. In this case we see that the bounds, within the fair spread has to lie, are much

tighter than in the previous scenarios, which is due to the increased inhomogeneity concerning

the creditworthiness of the entities under consideration. This inhomogeneity largely determines

the maximum implied default correlation and consequently the simulated spreads.

The results for the simulation analysis can be summarized as follows. When we assume

homogeneous, investment grade entities, the gap between the maximum and the minimum

spread becomes large. If we look at inhomogeneous entities this gap becomes signi�cantly

smaller. In this case, assuming the maximum implied spread correlation results in spread

estimates which are close to the potential true value. Hence, extensive modeling of default

dependence seems unnecessary in this particular case.

4.5.4 Pricing Nth-to-Default Baskets

A nth-to-default basket or nth-to default swap is a credit derivative that is in many respects

similar to a CDS. The protection buyer pays a periodic fee in exchange for a contingent

payment made by the protection seller prior to maturity. Rather than a single reference entity,

baskets have a speci�ed pool of reference entities, the reference portfolio. The typical size of

the pool ranges from two to ten entities. The contingent payment is triggered by the default

of a speci�ed number n of reference entities that are included in the basket. In contrast to a

CDS, it is irrelevant which of the reference entities has defaulted. The protection payment can

be determined as a function of one single default or a function of several defaults of basket

constituents. In the remainder I suppose that the contingent payment is a fraction of the loss

due to the default of the nth entity. Similar to CDS, nth-to-default swaps are OTC products

and subject to counterparty risk.

To price the nth-to-default basket one needs to specify the time of the nth default in the

reference portfolio. Suppose that the reference portfolio comprises J entities. I de�ne

Kt =
J∑
j=1

Dj,t (4.10)
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as the number of reference entities that have defaulted up to time t. The point in time of the

nth default is denoted by

τn = inf {t : Kt ≥ n} . (4.11)

I suppose that there is zero recovery at default. Furthermore, to come up with general results,

I assume that both the protection buyer and the protection seller may default. Every member

of the reference pool has a notional principle of 1. The protection seller continues to make

periodic payments at the rate pBasket unless Kt ≤ n or until maturity T , given that the

protection seller has not yet defaulted. Hence the premium leg can be expressed as

E

 T∫
0

exp

− s∫
0

ru du

 pBasket1{τn>s}1{τb>s}1{τc>s} ds

 =

pBasket

T∫
0

E

exp

− s∫
0

ru du

1{τn>s}1{τb>s}1{τc>s}

 ds,
(4.12)

where E denotes the risk neutral expectation with respect to Ft.

In case the reference entity defaults, the protection buyer compensates the protection seller

for her losses due to the default of entity n, given that both the protection seller and the

protection buyer have survived up to time τn. The present value of this compensation, the

default leg, is given by

E

1{τn≤T} exp

− T∫
0

ru du

1{τb>τn}1{τc>τn}

 . (4.13)

For the nth-to-default basket to be fairly priced, the present value of the premium leg has

to equal the present value of the default leg. Solving for the fair premium pBasket I obtain

pBasket =
E
[
1{τn≤T} exp

(
−
∫ T
0
ru du

)
1{τb>τn}1{τc>τn}

]
∫ T
0
E
[
exp

(
−
∫ s
0
ru du

)
1{τn>s}1{τb>s}1{τc>s}

]
ds
. (4.14)

Equation (4.14) represents the most general case as the protection seller as well as the

protection buyer is subject to default risk. Although there might not be a closed form solution

to it, it can easily be solved numerically via Monte Carlo simulation. This is done in the next

section.
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4.5.5 Simulation Results

In order to illustrate the e�ects of the maximum implied default correlation concept on the

pricing of nth-to-default basket, I perform several tasks. For computational ease, I examine

a basket with three reference entities and perform simulations for the 1st-, 2nd- and 3rd-to-

default swap of this illustrative basket. For simplicity, I assume that there is no counterparty

risk involved. Throughout the simulations I rely on the assumption that the default probabili-

ties of the reference entities as well as the risk-free rate are constant through time. I choose

a time horizon of one year and yearly premium payments. The default premium is paid imme-

diately after the n-th reference entity defaults. The recovery is set to be zero. I choose a risk

free rate of 300 bps and perform 107 simulation steps for each scenario under investigation.

Although these are restrictive assumptions they allow me to illustrate the e�ects of default

correlation while keeping computation time in reasonable levels. The simulations focus on

two main aspects. First, I derive the upper and lower bounds for the defaults swaps on the

basket to illustrate the e�ect of default correlation. Second, I illustrate the e�ect homogeneity

of entities within the basket has on the pricing of the tranches. For this purpose I vary the

relative spread di�erences of the entities included in the basket.

Derivation of Bounds

I simulate fair spreads for the independence case and the maximum implied default correla-

tion case. I start with a basket of investment grade issuers (P(A)=0.00065, P(B) = 0.004,

P(B)=0.007) and repeat the simulation for a basket consisting of non-investment grade issuers

(P (A)=380 bps, P (B)=800 bps, P (C)=1290 bps). In order to provide a better understanding

of the e�ect of default correlation I also include spread estimates for a given default correlation

of 10% between all basket constituents. This gives a hint of how conservative the bounds are.
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Table 4.4 contains the bounds for 3rd-, 2nd- and 1st-to default swaps on the basket of

investment grade reference entities. The results for the 3rd-to-default basket, which is most

sensitive to default dependence, show that the upper bound of the spread level is much

higher (6.4 bps) than the spread in the independence case, which is close to zero due to

diversi�cation e�ects. Obviously the maximum implied default correlation method allows for

only very moderate diversi�cation e�ects. In fact the fair spread is close to the spread we

would expect on a CDS on the best issuer in the basket. In the independence case the spread

is indistinguishable from zero, i.e. the probability of all three counterparties defaulting within

a one year horizon is close to zero. Hence, the possible impact of default correlation on

our 3rd-to-default swap written on the basket at hand is as large as approximately 6.4 bps,

which is not much in absolute terms but enormous on a relative basis. As expected, the

spread for an assumed default correlation of 10% lies within the bounds manifested by the

zero dependence and the maximum implied correlation case. The simulated spread for a 3rd-

to-default basket amounts to 1.6 bps or 26% of the maximum implied spread. Accordingly an

investor assuming a default correlation of 10% potentially underestimates the true spread by

a factor of approximately four.

The results for the 2nd-to-default swap are similar. Again, the upper spread bound (39bps)

is far from the independence spread (0.3 bps). The simulated spread for the moderate default

correlation (5.8 bps) is also signi�cantly lower. The potential e�ect of assumptions concerning

default correlation on the 2nd-to-default swap amount to 38.7 bps. Again, the method of

maximum implied default correlation yields only very limited diversi�cation e�ects and can be

regarded as a very conservative estimate.

In line with expectations, the results for the 1st-to-default swap are di�erent from the pre-

vious ones. In case the e�ect of maximum implied default correlation works in the opposite

direction, i.e. the probability of observing one or more defaults is lower than in the indepen-

dence case. The maximum implied default correlation spread, which is a lower bound of the

1st-to-default swap spread, amounts to 69.0 bps, while the independence spread is at 114.6

bps, which is 66% higher on a relative basis. The spread for the moderate default correlation

of 10% is in between the bounds and amounts to 107 bps. This con�rms that the holders

of tranches absorbing the �rst losses actually bene�t from higher default correlations, while

holding individual default probabilities �xed.
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The results for the non-investment grade issuers are given in table 4.5. In general they

resemble the results of the previous analysis. The simulated upper bound for the 3rd-to-

default basket is 340.1 bps. In case we assume independence of defaults, the simulated spread

amounts to 3.9 bps, which is signi�cantly lower. In our case the possible range of in�uence

concerning assumptions on the default dependence is as large as 337 bps. Put di�erently, an

investor assuming zero default correlation between the three entities contained in the basket

potentially underestimates the spread by a factor of almost 100. This result emphasizes

the large in�uence default dependence on portfolio products. The simulated spread for an

assumed default correlation lies in between the two bounds, as expected and amounts to 56.1

bps. Assuming a default correlation of 10% increases the spread by a factor of 14.4 compared

to the assumption of independent defaults.

For the 2nd-to-default basket the simulated upper bound of the spread is 719.4 bps, while

under the assumption of independence it amounts to 171.5 bps. This shows that in rela-

tive terms the gap between the two spreads is reduced for the non-investment grade issuers

compared to the investment grade case.

For the 1st-to default swap, the spread obtained under the assumption of maximum implied

default correlation represents the lower bound for the spread level. It amounts to 1156 bps.

The simulated spread for an assumed default correlation of 10% is 207.6 bps almost twice the

lower spread bound.

In general the results point to the fact that the method of maximum implied default cor-

relation provides very conservative spread estimates. As a consequence the upper and lower

bounds of the spreads simulated for the independence and the maximum implied correlation

case are far apart on a relative basis especially for nth-to default spreads with large n. How-

ever, this comes as no surprise since under the assumption of independence a clustering of

defaults is unlikely. Under moderate dependence assumptions, the simulated spreads are closer

to the implied upper bounds, but still signi�cantly lower. One might argue that for this reason

the method of maximum implied default correlation is of limited use. However, the recent

�nancial crisis has shown that default correlations appear to be much higher than previously

estimated. This is especially true if a common factor driving defaults, possibly unobservable, is

not included in the pricing model. Since the method of maximum implied correlation provides

conservative estimates, the danger of underestimating the dependence is signi�cantly reduced.

Therefore, it can be regarded as a tool for stress testing �nancial instruments that are sensitive

to the assumptions concerning default correlation.

E�ects of the homogeneity of the reference pool
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To examine the e�ects of homogeneity within the reference assets of the 3rd-to-default basket,

I repeat the simulation by �xing the default probability of the best reference entity in the basket

and allowing the default probability of the second best and worst entity to increase with every

simulation step. The di�erence between the default probability of the second and third entity

is either kept constant or is increased as well. The initial parameters are the same as in the

investment grade scenario.

Figure 4.2 illustrates the e�ect of varying the homogeneity of the reference entities underlying

the 3rd-to-default basket by �xing the default probability of the best entity and �xing the

di�erence between the second best and the worst entity. The black dots represent the simulated

spread levels and the blue line is the �tted spread as a function of the PD-gap between the

best and the second best reference entity. We see that, although the maximum implied spread

correlation between the �rst and the second best entity in the basket constantly declines, the

maximum implied spread of the 3rd-to-default basket decreases only slowly. Overall it lies only

slightly below 5 bps, i.e. the diversi�cation e�ects within the basket are only moderate. In case

we have no correlation between the assets, the spread would decline much more rapidly. We

would expect a similar e�ect when the default correlation within the basket declines. However,

we do not observe a signi�cant decline.

The explanation of this result is the following. Although the default correlation between

the best and the second best entity of the basket constantly declines, the diversi�cation e�ect

is limited. To understand why, think of a simple example. On the one hand we have an

investment grade issuer, which is supposed to default in only very few cases. On the other

hand we have an entity of limited credit quality that will default in a lot of cases. If there is

measurable default correlation between the two, this means that in case the investment grade

issuer defaults, the weaker entity is quite sure to default simultaneously. Otherwise, we would

not be able to measure a signi�cant default correlation between the two. In our case the

best entity has a default probability of 5 bps, which is approximately the default probability

of an A-rated entity according to historical default rates. The other two entities have default

probabilities up to 400 bps. Hence, in order to have a measurable default correlation between

the entities, a default of the best entity is accompanied almost surely by the default of the

other two entities. This is why diversi�cation e�ects are not pronounced when calculating

spreads based on the method of maximum implied default correlation. This observation seems

to be restrictive and limits the use of the maximum implied default correlation method. On the

other hand there might be good reasons to accept this restriction. To put it in an economic

context, the method suggests that the default of an entity with very good credit quality will
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Figure 4.2: E�ect of the basket's homogeneity on the spread level
This �gure illustrates the in�uence of asset homogeneity on the spread level. The black dots
are the simulated spreads. The blue line represents the �tted spread levels as a function of the
PD-gap between the best and the second best issuer. The PD-gap between the second best
and the worst reference entity is �xed.
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be accompanied by the default of speculative grade entities. If we suppose that investment

grade AAA obligors only default in case of a systemic crisis, it is not unrealistic to assume that

this crisis will force many speculative grade issuers into default as well.

In a next step I further examine the e�ect of homogeneity between the reference assets by

�xing the default probability of the best asset and letting the default probabilities of the other

two increase. For each simulation step the default probability of the worst entity increases

twice as much as the one of the second best entity. Therefore, the degree of homogeneity

within the pool is lowered for every simulation step.

Figure 4.3 illustrates the e�ect of homogeneity on the maximum implied spread of the 3rd-

to-default swap on the asset pool. The dots represent the simulated spreads and the blue

line represents the spread level as a function of the PD-gap between the best and the second

best reference entity, when the PD-gap between the second best and worst reference entity is

increased. The red line represents the �tted spread level when the PD-gap between the second

best and the worst reference entity is �xed, as in the previous example. Again, the method of

maximum implied default correlation hampers diversi�cation e�ects. However, the additional

heterogeneity introduced by allowing the gap between the default probability of the second

and third best entity to vary, decreases spread levels. Hence, the more heterogeneous the

asset pool is composed, the lower is the maximum implied spread of the nth-to default basket,

for n greater than one. This is because the more heterogeneous the assets are, the lower

are their potential maximum implied default correlations and consequently the probability of

simultaneous defaults.

From the above examples, we see that the method of maximum implied default correlation

accounts for diversi�cation e�ects. However, the e�ect is much less pronounced than for other

approaches, e.g. an independence assumption or the Gaussian copula. Therefore the method

yield very conservative estimates concerning the spreads of portfolio products. Nevertheless,

this might be desirable, e.g. to stress test the dependence structures of certain products to

come up with estimates of how large the impact of misspeci�ed default correlations might be.

4.6 An Alternative Use: Comparing Di�erent

Dependence Assumptions

Due to the very conservative nature of my approach, the practical relevance besides stress

testing applications seems limited. However, the approach can be used to compare di�erent

assumptions concerning the dependence structure of defaults. This is achieved by compar-

ing the spreads generated by the maximum implied default correlation method with spreads
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Figure 4.3: Comparison of di�erent degrees of homogeneity
This �gure illustrates the in�uence of asset homogeneity on the spread level. The black dots
represent the simulated spreads. The blue line represents the �tted spread levels as a function
of the PD-gap between the best and the second best issuer, with varying gap between the
second best and the worst reference. The red line represents the �tted spread levels with �xed
PD-gap between the second best and the worst reference entity.
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obtained by relying on di�erent dependence assumptions, e.g the Gaussian copula or the

Student-t copula model.

To illustrate the argument I refer to the 3rd-to-default basket of Section 4.5.4. Since the

method of maximum implied default correlation provides an upper bound for the spread of

a 3rd-to-default swap on the basket, we can compare the spreads obtained by alternative

dependence assumptions and compare them to the maximum obtainable spread. Therefore

I introduce the dependence measure dm, which is the ratio between the maximum implied

spread, pmaxBasket, and the spread of the alternative model, paltBasket, i.e.

dm =
paltBasket
pmaxBasket

. (4.15)

To give an example, I simulate the spread obtained for the same basket under the assumption

that default dependence is governed by a Gaussian copula. To obtain n dependent default

times governed by the Gaussian copula model I start with simulating a vector (X1, ..., Xn)

of n correlated N(0, 1) random variables (see Glasserman (2004) for a detailed description).

These are transformed into a vector uniforms by the inverse transformation method

Ui = Φ−1(Xi), i = 1, ..., n, (4.16)

where Φ−1 represents the inverse normal function. These uniforms are consequently trans-

formed into dependent exponential random variables by setting

ξi = − log(1− Ui), i = 1, ..., n. (4.17)

The vector of exponentials can then be used to generate a vector of dependent default times

(τ1, ..., τi) via equation (4.6). I assume a correlation parameter of ρ = 0.24 for the correlated

normals. The simulated spread for the Gaussian copula model is 5.6 bps. Hence, the copula

model has a dependence measure of 0.016. This con�rms the well known fact that the Gaussian

copula provides only very limited default dependence. The same analysis can be repeated for

a wide class of di�erent dependence assumptions.

4.7 Conclusion

The method of maximum implied default correlation is not supposed to be able to render

any assumptions concerning default dependence obsolete. The results show that generally the

method is only of limited use for pure pricing purposes, as the bounds obtained are usually
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far apart. Nevertheless, the method seems to be well suited to asses the impact default

correlation can potentially have on a given security. By deriving the upper and lower bounds

for spreads on such products, market participant are able to get an understanding of the actual

risk behind a certain security, without having to rely on a cumbersome modeling approach,

which in turn is likely to be very sensitive concerning its underlying assumptions. The method

of maximum implied default correlation can therefore be understood as a possible way to stress

portfolio products with regards to default correlations within their underlying reference pool.

Furthermore, the method provides a benchmark to assess the degree of default dependence

that is produced by speci�c assumptions, such as the Gaussian copula, by relating the result

obtained with a certain assumptions to the result of the method of maximum implied default

correlation.
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4.A The Algorithm of Park and Shin (1998)

As discussed in section 4.4 the overlapping sums method is used to simulate the correlated

default processes of the respective entities involved in a CDS contract. At the core of this task

is the variance-covariance matrix of the respective default processes as implied by the maximum

attainable default correlation, which can be calculated from equation (4.4). In a next step,

this dependence structure has to be reproduced by an overlapping sum of independent Poisson

processes. This is achieved by employing the algorithm of Park and Shin (1998). This algorithm

expresses the random default vector D as a product Wx, where the matrix W represents a

weighing matrix consisting of zeros and ones and the vector x, which is a vector of independent

random variables with variances v. To see how the algorithm works, suppose the following

setting. A protection buyer b with a one year probability of default (PD) of 13 basis points

(bps) wants to buy protection on a reference entity c with a PD of 50 bps. The protection

seller a has a PD of 30 bps. Employing equation (4.4) the resulting variance-covariance matrix

of maximum implied default dependence is

Σ0 =

0.0012983 0.0012961 0.0012935

0.0012961 0.0029910 0.0029850

0.0012935 0.0029850 0.0049750

 ,

where the subscript 0 indicates that this is the initial variance-covariance matrix. This depen-

dence structure has to be replicated by a set of independent default processes.

The algorithm works as follows. In a �rst step, the minimum upper triangular element of

the variance-covariance matrix is chosen, which in the given example is 0.0012935. This is the

variance of the common component shared by the default processes of the protection seller

a and the reference entity c, i.e. σA,C = 0.0012935. Furthermore, as σA,B = 0.0012983 >

0.0012935 and σB,C = 0.0029850 > 00.012935, also the protection buyer b shares this com-

mon default component with both a and c. This interrelation is expressed through the �rst

entry in both, the matrix W and the vector v, i.e.

W =

1

1 ...

1

 ,v =

(
0.0012935

...

)

The interpretation is that all three default processes share a common component with

variance 0.0012935. The initial variance-covariance matrix has to be adjusted for this common

component. The residual matrix Σ1 is given as
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Σ1 = Σ0 −

0.0012935 0.0012935 0.0012935

0.0012935 0.0012935 0.0012935

0.0012935 0.0012935 0.0012935



=

0.0000048 0.0000026 0

0.0000026 0.0016975 0.0016915

0 0.0016915 0.0036815

 .

After the adjustment of the variance-covariance matrix, the �rst iteration of the algorithm is

complete. In the next iteration step, again the minimum non-zero upper triangular element of

the matrix Σ1, is chosen. In the the above example this is 0.0000026, which is the variance of

the default component shared by a and b. As the residual covariance σA,C = 0 < 0.0000026, a

and c do not share this component. The matrix W and the vector v are adjusted accordingly,

i.e.

W =

1 1

1 1 · · ·
1 0

 ,v =


0.0012935

0.0000026
...

 .

The residual matrix Σ2 is calculated as

Σ2 = Σ1 −

0.0000026 0.0000026 0

0.0000026 0.0000026 0

0 0 0

 =

0.0000022 0 0

0 0.0016949 0.0016915

0 0.0016915 0.0036815

 .

The algorithm continues until there are no more non-zero upper triangular elements in the

residual variance-covariance matrix. The remaining elements on the main diagonal, are the

idiosyncratic default components of the single counterparties. These are not shared by any

other entity. In the above example the algorithm has the �nal outcome

W =

1 1 0 1 0 0

1 1 1 0 1 0

1 0 1 0 0 1

 ,v =



0.0012935

0.0000026

0.0016915

0.0000022

0.0000034

0.0019900


.
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The interpretation of the above results is straightforward. To simulate the default processes

of the three entities a, b and c with the given maximum implied dependence structure Σ0,

one has to simulate six independent default processes with variances given by the vector v,

of which the �rst three are contagious, leading to the simultaneous default of two or more

entities and the last three are completely idiosyncratic. For example, if the default process

with variance given by the �rst entry of the vector v is the �rst to default, this triggers a

simultaneous default of all three entities. In contrast if the default component with variance

given by the fourth entry of the vector v is the �rst to default, this would result in a default

of entity a only.

In order to derive the default times of the entities under consideration according to equa-

tion (4.6), the variances of the default processes are converted into the respective default

probabilities.4 These, in turn, are converted into one year default intensities via

λI = − ln(1− P (I)).

4Since the variance of entity i's default process is calculated as σN = P (I)(1− P (I)), this involves solving
a quadratic equation. Hence, there are two possible solutions for the probability of default, which sum to
one by construction. Of the two solutions the one which suits si is chosen. For reasonable choices of si
this will always be the smaller one.
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5 Epilog



As outlined in section 1, this dissertation is dedicated to several research questions that

were addressed in the preceding three essays. At the core of all three essays is the relationship

between the recent subprime �nancial crisis and the market for credit risk. The �rst essay is

dedicated to the investigation, which causes are behind the subprime �nancial crisis, the role

credit markets and credit derivatives played in the course of the crisis and how the crisis can be

resolved from a government perspective. Several circumstances contributed to the subprime

�nancial crisis and credit derivatives clearly played a signi�cant role as an accelerant for the

transmission of the crisis throughout the �nancial services industry.

In the �rst essay we discuss several possibilities how the crisis might be resolved by means

of government intervention. Among these are direct recapitalization, state guarantees and

purchase programs for troubled assets. We formally show that only the latter provide the

possibility to establish a mechanism allowing to separate illiquid but solvent and insolvent

banks and therefore to resolve the uncertainty within �nancial markets concerning the solvency

of individual banks. If the price o�ered for the troubled assets is chosen correctly, solvent and

insolvent banks will behave di�erently and reveal the state they are actually in to outsiders. In

the end, all banks are better of revealing their true state than trying to mimic a solvent bank.

Given the tremendous impact of the subprime �nancial crisis, it is straight forward to raise

the question, how a similar crisis can be prevented in the future. A stricter regulation of credit

markets can not be the sole conclusion drawn out of the crisis. In general the innovations in

the market for credit risk are bene�cial for the economy. However, it must be assured that

market participants are aware of the risks they are exposed to and act in a reasonable not

solely pro�t driven way.

The second essay is dedicated to the question what impact the recent subprime �nancial

crisis had on market participants' perceptions of credit risk. For this purpose we conduct

an empirical analysis of the determinants of iTraxx spread changes, which can be regarded

as a measure of aggregate credit risk. We �nd empirical evidence that the determinants

of iTraxx spread changes have evolved in the course of the subprime �nancial crisis. This

�nding suggests that market participants have altered their perceptions concerning credit risk

as a consequence of the crisis. In general, during the subprime �nancial crisis, determinants

as implied by structural models of credit risk show a weakened explanatory power for iTraxx

spread changes. This is especially true if we examine the determinants of large spread changes.

A quantile regression reveals that factors, as implied by structural models of credit risk, are not

su�cient to explain extreme spread changes, indicating that structural models of credit risk

need further improvement. A VARX-model reveals that the role of credit markets in processing

relevant information has changed during the subprime �nancial crisis. While stock returns
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tended to lead iTraxx spread changes before the crisis, there is a tendency of iTraxx spread

changes leading stock returns after the crisis. Hence, we conclude that market participants

rely on iTraxx spreads as a source of information concerning systemic risk in �nancial markets.

Consequently, the third essay deals with the question, how complex credit derivatives can

be modeled in a way that allows for an understanding of their inherent risk, while reducing the

complexity of the modeling approach to a necessary minimum. For this purpose I introduce

the method of maximum implied default correlation. The method is based on bounds for the

default correlation of pairs of entities that can be inferred from market prices. The approach

allows for a derivation of bounds for the prices of credit derivatives that hold in the absence of

arbitrage, regardless of the true default correlation between the entities under consideration. I

propose an easy to implement Monte Carlo algorithm that allows to derive a numerical solution

for the bounds of credit derivatives that are sensitive towards default correlation. I apply the

model to two types of credit derivatives that are sensitive towards default correlation, CDSs

subject to counterparty risk and nth-to-default baskets.

While the method of maximum implied default correlation is of limited use when it comes

to the exact pricing of credit derivatives that are sensitive towards default correlation, it

proves to be a useful tool to asses the extend such products are actually exposed to default

correlation. I show that given for some products, the simulated bounds for the prices of some

credit derivatives are far apart from what one might expect given state of the art model of

default correlation, such as the Gaussian copula model. Therefore, the method of maximum

implied default correlation can be used as a benchmark for the conservativeness of di�erent

assumptions concerning default correlation.
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