
Dissertation
submitted to the

Faculty of Computer Science and Mathematics

University of Passau

A Layered Conversational Recommender System

Sven Radde

June 25, 2013

Supervisor: Prof. Dr. Burkhard Freitag

Dissertation for the acquisition of the degree of a doctor in natural sciences at the

Faculty of Computer Science and Mathematics of the University of Passau.

1st reviewer: Prof. Dr. Burkhard Freitag

2nd reviewer: Prof. Dr. Harald Kosch

Abstract

In this thesis a new approach to building product recommender systems is introduced.

By using a customer-centric dialogue, the customers’ preferences are elicited. These

are the basis for inferring utility estimations about the desired technical properties of

the products in question. Systems built this way can both operate autonomously, e.g.,

in an online store, and support a salesperson directly at the point-of-sale.

The core of the approach is formed by a layered domain description that models cus-

tomer stereotypes and needs, product attributes, the products themselves, and the

causal interrelations between customer and product properties. Maintenance of the

domain description, i.e., keeping the model up-to-date in face of frequent changes, is

facilitated by the clear separation of concerns provided by the layered structure. In

fact, the most frequently used class of updates can be handled in an entirely auto-

mated way if some constraints are satisfied. On a high level of abstraction, the system

behavior is described by State Charts that are parameterized according to the domain

description. Those parts of the system description where State Charts would be too

imprecise are implemented by separate components realizing the required complex se-

mantics. From the domain description, a Bayesian network is generated that forms

the core of the inference engine of the recommender system. The network essentially

controls the system-initiated dialogue flow and the recommendation process. Due to

the characteristics of Bayesian networks, it is possible to respond to user-initiated

dialogue steps in a natural way. Moreover, an explanation of the current recommen-

dation can be generated without having to explicitly encode additional information in

the modeling layer. Finally, a database structure and the SQL queries necessary to

obtain recommendations can be inferred from the corresponding parts of the domain

description. Instantiation of the system to a specific business domain is supported

by a dedicated maintenance application that hides the complexities of the underlying

algorithms. Thus, day-to-day system updates by non-technical domain experts, e.g.,

product managers, are facilitated.

The developed concepts were implemented in cooperation with a local industry partner

who intends to apply the recommender system in the field of mobile communications.

i

Kurzfassung

In dieser Dissertation wird ein neuer Ansatz zur Konstruktion von Produkt-Beratungs-

systemen vorgestellt, die mit den Kunden einen bedürfnisorientierten Dialog führen

und dann aus den gegebenen Antworten Abschätzungen über die jeweilige Nützlichkeit

verschiedener charakteristischer Attribute der zu empfehlenden Produkte gewinnen.

Die so erstellten Systeme können sowohl autonom, beispielsweise in einem Onlineshop,

als auch zur Unterstützung von Verkäufern direkt im Ladengeschäft eingesetzt werden.

Eine Domänenbeschreibung, die auf mehreren Ebenen Kundenstereotypen, -bedürf-

nisse, Produktattribute, sowie die Beziehungen zwischen Kunden- und Produkteigen-

schaften und die Produkte selbst modelliert, bildet den Kern des Ansatzes. Die Pflege

der Domänenbeschreibung wird durch die Unterteilung in mehrere Ebenen deutlich

unterstützt. Tatsächlich kann unter gewissen Bedingungen die häufigste Klasse von

Aktualisierungen vollautomatisch vom System selbst gehandhabt werden.

Mit Elementen der Domänenbeschreibung parametrisierte State Charts beschreiben

das Systemverhalten auf abstrakter Ebene, während domänenspezifische Teile, welche

durch State Charts nicht ausreichend präzise modelliert werden können, durch sepa-

rate Komponenten implementiert werden, die die erforderlichen Funktionen realisieren.

Aus der Domänenbeschreibung wird ein Bayesnetz generiert, das den Kern der In-

ferenzmaschine des Beratungssystems bildet und zur Steuerung des Beratungsdialogs

und des Empfehlungsprozesses genutzt wird.

Die Eigenschaften von Bayesnetzen ermöglichen es unter anderem, Nutzer-initiierte Di-

alogschritte auf natürliche Weise in den Beratungsprozess zu integrieren. Darüber hin-

aus können verständliche Erklärungen für die erzeugten Produktempfehlungen gener-

iert werden, ohne dass dazu zusätzliche Informationen explizit in die Modellierung

eingebracht werden müssen. Desweiteren können die vom System zu verwendende

Datenbankstruktur und die zur Empfehlungsgenerierung benötigten SQL-Abfragen

aus den entsprechenden Teilen der Domänenbeschreibung erzeugt werden.

Die Instanziierung des Systems für ein konkretes Geschäftsfeld erfolgt über eine dedi-

zierte Pflegeanwendung, die die mathematische Komplexität der eingesetzten Algo-

iii

rithmen verbirgt und so die Aktualisierung des Systems auch durch Domänenexperten

ohne technische Ausbildung, wie z.B. Produktmanager, ermöglicht.

Eine praktische Implementierung erfolgte im Rahmen eines gemeinsamen Projekts mit

einem Industriepartner aus der Region, der das Beratungssystem u.a. im Bereich des

Vertriebs von Mobilfunkprodukten einsetzen möchte.

Acknowledgements

My thanks, first and foremost, go to Professor Dr. Burkhard Freitag for giving me

the chance of writing my dissertation at his institute, for his demanding, yet always

very constructive supervision and guidance of my research, and for his patience and

continued support. I would also like to thank Professor Dr. Harald Kosch for his

encouraging feedback and for serving as the second reviewer of my thesis.

Furthermore, I wish to thank all my colleagues, current and past, for providing a

both friendly and professional environment to work in, for the many opportunities

to discuss my work with them, and for the valuable suggestions resulting from these

discussions. In particular, my thanks go to Alexander Stenzer, Christian Schönberg,

Christoph Ehlers, and Claudia Woller for proofreading large parts of my thesis and

thus especially helping me in my fight of American vs. British English.

Also, I would like to thank the :a:k:t: Informationssysteme AG for giving me the oppor-

tunity to work with an extraordinary team in an impressive project that put many of

the concepts described in this thesis into practice. Special thanks go to Bettina Zach

and Swantje Leippi for our close and valuable cooperation that laid the cornerstone of

this dissertation.

Finally, writing this dissertation would have been impossible without the help of my

family and many friends, who supported me in a myriad of ways, big and small. I

cannot name all of them personally here, but I would like to particularly express

my gratitude to my loving parents and my close friend Dennis Holtschulte for their

continued encouragement, most notably during a time of personal hardship.

Part of this research was co-funded by the European Regional Development Funds

(ERDF/EFRE) through the “IuK-Bayern” grant programme.

The core of our implementation of Bayesian inference is based on the SMILE reasoning engine

for graphical probabilistic models, contributed to the community by the Decision Systems

Laboratory of the University of Pittsburgh (http://dsl.sis.pitt.edu/).

v

http://dsl.sis.pitt.edu/

Contents

1 Introduction 1

1.1 Aims and Objectives . 1

1.2 Motivation . 2

1.3 Key Contributions . 3

1.4 Overview . 5

2 Background and Literature 7

2.1 Recommender Systems . 7

2.1.1 Collaborative Recommender Systems 8

2.1.2 Content-Based Recommender Systems 9

2.1.3 Knowledge-Based Recommender Systems 10

2.2 Probabilistic Reasoning . 11

2.2.1 General . 11

2.2.2 Bayesian Inference . 13

2.2.3 Bayesian Networks . 16

2.2.4 Bayesian Network Inference Algorithms 19

2.2.4.1 Exact Inference . 19

2.2.4.2 Approximative Algorithms 20

2.3 Statecharts . 22

2.3.1 Mealy Diagrams . 22

2.3.2 Extension to Statecharts . 24

2.4 Use Case . 26

2.4.1 Mobile Telecommunications . 26

2.4.2 Movies / DVDs . 27

2.4.3 Courses of Study . 27

3 Metamodel Specification and Semantics 29

3.1 Customer Metamodel . 30

3.2 Product Metamodel . 33

3.3 Interrelations . 36

3.4 Project Experiences . 42

vii

Contents

3.5 Conclusion . 45

4 Metamodel Implementation 49

4.1 Intermediate Representation . 49

4.1.1 Intermediate Model . 49

4.1.2 Generation from Domain Model 51

4.1.2.1 Converting ReasoningElements 51

4.1.2.2 Converting Influences 52

4.2 Implementation Based on Bayesian Networks 54

4.2.1 Introduction . 54

4.2.2 Bayesian Model . 56

4.3 Conclusion . 67

5 Dialogue Management 69

5.1 Question Based Preference Elicitation 69

5.1.1 General Interaction Concept 70

5.1.2 Dialogue Structure . 71

5.1.3 Layer / Topic Structure . 74

5.2 Question Relevance . 78

5.3 Implementation . 80

5.4 Conclusion . 82

6 Inference Engine 85

6.1 Inference Engine Requirements . 85

6.2 Answers . 86

6.3 Predictions . 89

6.4 Utility Estimations . 90

6.5 Explanations . 90

6.6 Conclusion . 92

7 Recommendation Generation 95

7.1 Utility Function . 95

7.2 Implementation in SQL . 99

7.3 Implementation Alternatives . 101

7.3.1 Pareto-optimality Based Queries 101

7.3.2 NoSQL . 103

7.4 Conclusion . 104

8 System Lifecycle 107

8.1 Short Term: Instance Modifications . 107

viii

Contents

8.2 Medium Term: Model Adaptations . 109

8.2.1 Technological Changes . 109

8.2.2 Marketing Changes . 110

8.2.3 Model Editor Application . 111

8.3 Long Term: Evolution of the Metamodel 113

8.4 Bayesian Network Construction . 115

8.5 Conclusion . 117

9 Evaluation 119

9.1 Practical Adequacy of the Approach 119

9.2 Performance . 122

9.2.1 Runtime Measurements . 122

9.2.1.1 Bayesian Inference . 122

9.2.1.2 Database Queries . 123

9.2.1.3 Complete Dialogue Step 125

9.2.1.4 Project Experience . 127

9.2.2 Memory Usage . 128

9.3 Limitations . 129

9.4 Conclusion . 130

10 Further Work 131

10.1 Enhance Interaction Paradigm by Incorporating Explanations 131

10.2 Derive Maintenance Necessity Automatically 131

10.3 Allow More Complex Influence Relationships 132

11 Summary 135

A Bibliography 139

B List of Figures 147

ix

1 Introduction

1.1 Aims and Objectives

The goal of this dissertation is to provide a novel method of specifying conversational

recommender systems for industrial domains in which conventional recommendation

techniques such as collaborative filtering cannot be used. At its most basic, the concept

of a conversational recommender system is to engage in a dialogue with a prospective

customer and then to select the appropriate items from a product catalogue, much as

a natural salesperson would do. Figure 1.1 illustrates the basic idea of our approach

at a very abstract level.

Conversational

Recommender System

Choice

Dialogue

Figure 1.1: Basic idea of a conversational recommender system

A common challenge that conversational recommender systems have to meet is the

necessity to maintain their internal knowledge base. The knowledge base allows them

to draw conclusions from the information elicited from customers regarding the prod-

ucts the recommender system has to recommend. Such maintenance is particularly

expensive in fast-paced industrial environments that are affected by frequent releases

of new products and technological innovations.

Our approach is composed of several architectural layers. They introduce a separation

of concerns that reduces maintenance complexity by keeping the adaptations necessary

1

CHAPTER 1. INTRODUCTION

to respond to changes in the domain local and allowing for automation in the most

frequent cases. At the core of the layered approach lies a metamodel that allows

the specification of customer and product properties and interrelations between both.

From instances of this metamodel, the dialogue management and the recommendation

component are generated automatically, as well as the inference engine that allows to

draw the necessary conclusions from a customer’s answers, as illustrated in figure 1.2.

Automated GenerationAutomated Generation

Inference Engine
(Bayes Network)

Dialogue
Manager

(Statecharts)

Metamodel
Domain Model

.

.

.

.

.

.

Intermediate RepresentationInstantiate

DB

Recommender
System Core

Domain-independentDomain-independent Domain-dependentDomain-dependent

Figure 1.2: Layer structure

1.2 Motivation

Customers intending to buy a new mobile phone commonly are in significant need

of qualified assistance and recommendations. Not only are the products complex by

themselves, but the properties of the domain also change frequently so that possibly

acquired knowledge ages quickly. Indeed, even professional salespersons find them-

selves challenged by the permanent need to adapt to new circumstances, which is even

more pertinent if we consider not only specialised retailers but also chain stores. Com-

petition in the market is fierce and vendors see valuable recommendations as one way

to differentiate themselves from competitors.

However, due to the changes in the domain and the fact that customers buy mobile

phones too infrequently to establish a realiable user profile, many traditional recom-

mender system technologies, such as collaborative filtering, perform very poorly in

2

1.3. KEY CONTRIBUTIONS

this scenario. On the other hand, more advanced recommendation approaches, such

as knowledge-based and conversational systems often are not capable enough to pro-

vide a satisfying customer experience. This becomes particularly apparent, if we take

into account that a suitable recommender system should also be able to support sales-

persons directly at the point-of-sale.

Our chosen approach combines several techniques into an integrated system that pro-

vides a solution applicable for this use case. While the individual building blocks are

considered to be well-established in their respective communities, our combination of

the techniques results in a novel approach to conversational recommender systems that

alleviates many of the problems with knowledge-based systems for our use case. In

particular, to the best of our knowledge, Bayesian networks as the central component

of our inference engine, were not known to be suitable or adequate for the task at

hand before our implementation.

In cooperation with a local industry partner, we completed a project to deliver an

industrial strength prototype implementation of the developed concepts in a span of

about two years.

1.3 Key Contributions

Using the mobile telecommunications market as an example, we have made a con-

versational recommender system operational in a challenging industrial domain. A

metamodel-based generative approach enables efficient maintenance of the system in

spite of frequent changes in the domain. The inference engine is based on a Bayesian

network and functions adequately in this context. The dialogue management com-

ponent is flexible enough to even allow using the recommender to assist salespersons

directly at the point-of-sale, apart from the more conventional applications in web-

stores or kiosk computers as illustrated in figure 1.3.

In addition to implementing a research prototype based on the mentioned techniques,

the developed concepts were also put into practice during a joint R&D project with

our local industry partner, the :a:k:t: Informationssysteme AG in Passau. Their next

generation of Point-of-Sale assistance software will be able to include recommendation

technologies relying on the approach described in this thesis. As part of this software,

a representative knowledge base for their use case was created and is being maintained

routinely.

3

CHAPTER 1. INTRODUCTION

Answers

WWW-Based / Online Shop

„Self-Service“ via Kiosk Computer

Salesperson Interaction at Point-of-Sale

Inference
Engine

Dialogue
Manager

Recommender System

DB

Questions

Recommendations

Explanations

Figure 1.3: Different interaction scenarios

During this project, the general applicability of our approach as a recommender system

for mobile telecommunication products was positively evaluated in a study conducted

by an external market research institute, whereas further experiments with our pro-

totype provided evidence for the transferability of the approach to other domains.

Performance measurements conducted both in our lab and in a realistic deployment

at our industry partner confirm that the approach adequately meets the requirements

for interactive usage.

Our solution is build as a combination of a number of novel ideas:

We do not explicitly model the dialogue. Instead, we model the domain knowledge at a

more abstract level and derive an appropriate dialogue (and other domain-dependent

components) from the model. The domain model represents “soft” information that

can be elicited from the customers in an interactive dialogue without undue cognitive

effort, such as desires, needs, or expectations.

Further, the domain model represents relationships that allow inferring the “hard”

information necessary to provide recommendations using an inference engine based on

a Bayesian network. As part of the inference engine, explanations can be provided

regarding the system behaviour and the generated recommendations.

4

1.4. OVERVIEW

Based on these ideas, we characterize our key contributions as follows:

• Our work describes a novel architecture for building conversational recommender

systems based on a domain (meta-)modelling that allows using electronic recom-

mender systems in application domains that are currently unreachable for more

conventional approaches.

• Our system relies on a new approach to elicit customer preferences based on

a flexible, model-derived recommendation dialogue, which serves to reduce the

maintenance efforts commonly associated with knowledge-based recommender

systems.

• The inference engine used by our approach combines uncertain reasoning with

database query technology.

– We show that Bayesian networks, appropriately generated from our domain

model, are an adequate end efficient formalism to this end.

– In particular, our approach uses a variant of the “Noisy-OR” method to

generate the probability tables of the Bayesian networks. We chose and

adapted this variant to work particularly well in our chosen use case.

1.4 Overview

The remainder of this thesis is organized as follows: Chapter 2 will provide background

knowledge about the core concepts used in the thesis and give a general overview about

relevant literature in doing so.

We then define our metamodel in chapter 3 and show its implementation as a Bayesian

network in chapter 4. Our statechart-based approach to dialogue management is

presented in chapter 5, while chapter 6 shows the usage of the Bayesian network as

central inference engine of our recommender system. In chapter 7 we describe the

recommendation algorithm and its implementation in SQL, before detailing system

maintenance processes in chapter 8.

We provide an evaluation of the adequacy and performance of our approach in chap-

ter 9, before concluding with pointers to future work in chapter 10 and a summary in

chapter 11.

5

2 Background and Literature

2.1 Recommender Systems

In the broadest sense, recommender systems are software systems that assist their users

in making decisions. Research in this field can be classified as a (practically-oriented)

sub-discipline of artificial intelligence but can also be seen as a multi-disciplinary field

due to its numerous, often commercial applications.

This section is based on the introductory chapters of [JZFF11] by Jannach et al. For

deeper studies of the entire field of recommender systems, the interested reader is

referred to their book along with [RRSK11].

The most prominent use case for recommender systems, and also the focus of this

dissertation, is to recommend suitable retail products to potential buyers. However,

techniques from the field have also been deployed to locate agreeable services (e.g.,

restaurants [Bur07], travel offers [RD06, Ric02], TV programmes [Höl11], or education

courses [SB11]), find ’interesting’ documents [GBH09, HHHC04] (i.e., to solve essen-

tially an information retrieval task) and also to help decide about courses of action in

areas like, e.g., preservation of digital heritage objects [Kul09].

Though diverse, all these applications share the common goal of recommender systems:

Present to the user the “best” alternative from a set of choices. To put our approach

into the context of the field, we modularize recommender systems into the following

building blocks:

• A method to elicit profiles:

Recommender systems must have means to obtain profiles from their users.

These can be categorized into implicit approaches (e.g., observing the users’

behavior when surfing a website or analyzing buying histories) or explicit mod-

els (e.g., requesting item ratings from users or asking questions). Some systems

also combine techniques from both categories (e.g., enhance buying histories with

explicit ratings) to maximize the information available for the recommendations.

7

CHAPTER 2. BACKGROUND AND LITERATURE

• A component to build preferences:

Given the profile, the recommender system must attempt to deduce the prefer-

ences of the customer. This can be done in a variety of ways and is often tied

closely to the kind of the recommendation algorithm the system uses. Prevalent

ways to accomplish this are, for example, comparisons to similar customer pro-

files or the deduction of personality traits that have not been asked for explicitly.

• A notion of optimality :

Once suitable preferences have been built, the available items must be sorted

accordingly. This commonly requires the use of utility functions (i.e., assigning

a score to every item that reflects its usefulness), similarity measures (e.g., to

find products similar to a “perfect” item), or by defining a set of constraints that

optimal items must satisfy.

Regarding this classification, we can characterise our chosen approach as follows: The

profiles are elicited explicitly, by asking questions in the course of an interactive dia-

logue. For our preferences, we derive importance and usefulness estimations about the

technical properties of the products based on an expert-built knowledge base. These

preferences are then used in a utility function to find the optimal products in the

catalogue.

2.1.1 Collaborative Recommender Systems

A multitude of recommender systems is built around the concept of analysing the sim-

ilarity of the customer’s profile to other profiles. The profiles are commonly built im-

plicitly, e.g., from buying histories or website logs. The central idea is that a customer

will prefer items that similar users have preferred in the past (this “collaborating”

of different users gave the approach its name). Explicit techniques to build a profile

exist, e.g., by showing items to a customer and asking for ratings.

Recommender systems based on this technique are widely deployed in industry. For

example, the online retail store Amazon uses collaborative filtering for its recommen-

dations. The topic is also well-investigated in the research community (cf. [SK09,

HKTR04] for just two overview-orientated works), with a particular interest being

sparked a few years ago by the “Netflix Prize” competition1. In October 2006, the

online video rental store Netflix published a transaction dataset from its log files and

promised to award one million dollars to the team of researchers that would be able

to improve the company’s own prediction algorithms by 10%. The facts that the de-

1http://www.netflixprize.com/

8

http://www.netflixprize.com/

2.1. RECOMMENDER SYSTEMS

manded increase of 10% can be called somewhat modest and that it nevertheless took

almost three years until the prize could be claimed [Kor09], testify about the maturity

of the field.

Collaborative recommender systems have another nice property, namely that they

can be totally ignorant about the products they recommend. They only consider

which products were sold to which customers and they do have no need at all to

analyse the products themselves. For example, this property allows cross-domain

recommendations if one can assume a general transferability of the customer profile

across these domains (e.g., Amazon would be able to recommend CDs based on the

books you bought).

However, this strength is also indicative for the greatest weakness of collaborative

recommender systems: Newly appeared products that have not been sold yet, conse-

quently are not recommended at all by such a system. This situation can be alleviated

by considering similarity between products in addition to similarity between users.

Called “item-based” recommendations (or item-based filtering), this approach works

essentially by letting products “inherit” the rankings from other similar products, mak-

ing them instantly available for recommendations. Item-based filtering only works as

long as suitable similarities between products can be established.

While it is possible to build purely item-based recommender systems, the technique is

commonly combined with collaborative filtering. Such systems are then called “hybrid”

recommenders. In fact, we would assume that the majority of deployed recommender

systems can be classified as “hybrid” instead of using purely collaborative or item-

based techniques.

2.1.2 Content-Based Recommender Systems

Content-based recommender systems, as the name suggests, take a different approach

to recommendation than collaborative filtering approaches. They basically rely on

explicit information about products, such as descriptions and technical properties, and

attempt to derive importances for these properties from user profiles, which are then

used to recommend products. For example, when buying books, the customer profile

could hold information about which genres the customer prefers and the recommender

system could then recommend books of the same genre. Profiles can also be built

explicitly by asking a customer the appropriate questions.

The approach does not need a large user base to work well, since a profile is individual

for each customer and does not have to be compared to other profiles. Also, new

9

CHAPTER 2. BACKGROUND AND LITERATURE

products can be recommended immediately once their properties are known. On

the other hand, content-based recommenders have to face challenges dealing with new

customers for whom no profile was built yet, because the design of the system generally

centers around the question of how products can be classified as compatible with a

user’s profile (the direct correlation of the genre in the example above is strongly

simplified).

Apart from the retail scenario, the approach is often used in information retrieval

or information filtering, respectively, to select documents relevant for a user. The

nice property of this use case is the relative simplicity of automatically extracting all

meaningful item properties directly from the documents.

2.1.3 Knowledge-Based Recommender Systems

Both collaborative and content-based recommender systems rely on a user profile which

is commonly gathered implicitly, i.e., by observing the customer’s actions such as

his/her purchases over a longer period of time. However, in many domains such

profiles are not available since they involve a lot of “one-time” buyers with very few

interactions with the store and the recommender system. In those cases, a collaborative

recommender system will not perform well [Bur00]. For example, german customers

buy a new mobile phone roughly every two years (the common term of a subscription

contract), so that their profile, even if any could be built, would likely be out-of-age

by the time of their next interaction with the recommender system. Also, consider

that it may not be possible to re-identify customers in such scenarios, much less if we

take “offline” use cases into account.

Thus, we need recommender systems that can elicit a profile quickly, which commonly

means to ask explicit questions about information that the customer can provide. This

often excludes technically oriented questions as would be necessary for content-based

recommenders, as customers cannot be expected to be able to answer them in the case

of more complex products. Because of the interactive style of eliciting the profile and

providing recommendations, such systems are also called conversational recommender

systems.

The conclusions about the properties of recommendable products must then be drawn

from combining the profile with an additional knowledge base, also called a domain

model. A domain model can for example contain “recommendation rules” that match

customer properties to product properties or more direct similarity rules between user

profiles and products.

10

2.2. PROBABILISTIC REASONING

Knowledge-based recommender system can commonly be classified as constraint-based

systems that attempt to solve a constraint-system which is created from the user

profile based on the possible solutions given by the product catalogue, or as case-

based systems that compare the items in the product catalogue with a hypothetical

“optimal” product in terms of similarity. In both cases, the customer may be required

to change his/her preferences if the recommendation algorithm did not find appropriate

products.

As mentioned, knowledge-based recommenders are able to avoid the “cold-start” prob-

lems prevalent in other approaches. However, they do so at the cost of having to

maintain the knowledge base, including the recommendation rules and the necessarily

extensive information about the products themselves.

2.2 Probabilistic Reasoning

This section is based primarily on [RN10] and at times borrows from a lecture script

at our chair [Fre10, ch. 8]. The reader is referred to these works for a more exhaustive

treatment of probabilistic and particularly Bayesian reasoning. [Düm03] may be taken

as a textbook-style introduction into the topic, too.

2.2.1 General

Probabilistic reasoning must be employed if the domain to investigate contains un-

certainty, which would make classical logical reasoning infeasible. A logical agent in

worlds with uncertainty would have to consider every logically possible belief state,

making rational choices impossible, or, at least, practically useless. There are three

basic reasons for the presence of uncertainty in domain modelling (quoted from [RN10,

13.1.1]):

• Laziness:

It is too much work to list the complete set of antecedents and consequents

needed to ensure exceptionless rules and it would be too hard to use such rules.

• Theoretical ignorance:

Science has no complete theory for the domain.

• Practical ignorance:

Even if we know all the rules, we might be uncertain about a particular situation

11

CHAPTER 2. BACKGROUND AND LITERATURE

because not all necessary tests have been run or could be run.

In order to support uncertainty, agents must extend their belief state model by the

notion of a degree of belief, enabling them to use probability theory and utility theory

to extend their reasoning ability to expected outcomes in a system of random variables

with their associated probability distributions (also called a probability model).

We will now introduce some basic definitions and notations (based on [RN10, 13.2]).

Definition 2.2.1 (Random Variable) A random variable has a name that begins

with an uppercase character, e.g., Var and an associated domain, which is a set of

values that the variable can take on, denoted as, e.g. dom(Var) = {val1 , val2 , val3}.

Elementary propositions involving random variables would then be written as, e.g.,

Var = val1 and the common connectives of propositional logic can be used to create

more complex propositions, e.g., Var = val1 ∨Var = val2 .

If the domain of a random variable is Boolean, i.e., dom(Var) = {true, false}, we

may use the shorthand notations of var and ¬var for Var = true and Var = false,

respectively. Also, we may denote, e.g., val2 as an abbreviation for Var = val2 , if

doing so does not create ambiguity.

An important note about infinite domains While random variables may have infinite

domains in general, we limit ourselves to finite, explicitly enumerated domains for the

purposes of this thesis. In many of the cases that we cover here, even Boolean variables

will suffice.

Definition 2.2.2 (Unconditional Probability) Propositions that involve random

variables have an assigned unconditional probability P (π) for a proposition π, repre-

senting the probability that π evaluates to true given all possible worlds.

It holds that 0 ≤ P (π) ≤ 1.

Also, given a random variable Var , it holds that
∑

v∈dom(Var)

P (Var = v) = 1.

Definition 2.2.3 (Probability Distribution) As an abbreviation for the uncondi-

tional probabilities of all the possible values of a random variable Var with a finite

domain dom(Var) = {val1 , . . . , valn} having a pre-defined ordering, we write its prob-

ability distribution as P(Var). The result of P(Var) is a vector as follows:

P(Var) = 〈P (val1), . . . , P (valn)〉

12

2.2. PROBABILISTIC REASONING

It is also possible to denote a combined probability distribution for several random

variables, e.g., P(A,B ,C), which lists the probabilities for every possible combination

of the values of A, B, and C. Such a distribution is called the full joint distribution

and often written in tabular form, in this case called the full joint distribution table.

2.2.2 Bayesian Inference

The full joint distribution table introduced in definition 2.2.3 is the most powerful

instrument for inference in a system of random variables. It enables the computation

of all desirable marginal probabilities and probability distributions by simply sum-

ming up the appropriate table entries. Unfortunately, as the size of the table grows

exponentially with the number of random variables, using the full joint distribution is

infeasible for many practical problems (e.g., anticipating our use case, we will have to

deal with more than 100 random variables).

If a given system of random variables conforms to certain constraints, Bayesian net-

works form a more efficient representation of the full joint distribution in practice.

In order to introduce Bayesian networks, we need to establish some more definitions,

leading to Bayes’ Law and the concept of conditional independence:

Definition 2.2.4 (Conditional Probability) Let π and κ denote two propositions.

We define the conditional probability of “π given κ” P (π|κ) as follows:

P (π|κ) = P (π∧κ)
P (κ) , whenever P (κ) > 0.

Similarly to definition 2.2.3, when we consider two random variables A and B with

finite domains, a conditional probability distribution P(A|B) can be used as an abbre-

viation over listing the conditional probabilities P (A = ai|B = bj) for each possible

i, j pair.

Definition 2.2.5 (Product Rule) We can write the definition of conditional prob-

ability in a different form, called the product rule:

P (π ∧ κ) = P (π|κ)P (κ), which can be equivalently formulated as

P (π ∧ κ) = P (κ|π)P (π)

13

CHAPTER 2. BACKGROUND AND LITERATURE

Definition 2.2.6 (Bayes’ Law) By equating both forms of the product rule, we

define Bayes’ Law :

P (κ|π) = P (π|κ)P (κ)
P (π)

For two random variables A and B, Bayes’ Law can be rewritten using probability

distributions:

P(B|A) = P(A|B)P(B)
P(A)

If the P-notation is used in this way, the expression is to be interpreted as a set of

equations with one element for each possible combination of the values of the involved

random variables (i.e., the above expression is a shorthand notation for writing a set

of |dom(A)| · |dom(B)| individual equations P (B = bj |A = ai) =
P (A=ai|B=bj)P (B=bj)

P (A=ai)
).

The meaning of Bayes’ Law becomes more apparent, if we replace A and B by other,

more intuitive variable names, Cause and Effect :

P(Cause|Effect) =
P(Effect |Cause)P(Cause)

P(Effect)
(2.1)

This may still not seem particularly helpful at first, but it is often the case that good

probability estimations for three of the probability distributions exist. If, e.g., we

have knowledge about the absolute probablities of causes and effects and we know

how causes induce effects, we can make conclusions about the likelihood of a cause if

we observe some effects in a particular case (this is often called the “diagnostic” view).

Also, Bayes’ Law enables us to combine several effects. Consider the following expres-

sion that contains a combination of two different effect-variables:

P(Cause|Effecta ,Effectb) =
P(Effecta ,Effectb |Cause)P(Cause)

P(Effecta ,Effectb)
(2.2)

If this formula is used to calculate the complete conditional probability distribution

P(Cause|Effecta ,Effectb), we would obviously have to know the entire conditional

probability distribution for P(Effecta ,Effectb |Cause). While this may be feasible for

a small number of effects, it does not scale much better than directly using the full

joint distribution.

For a more efficient way to calculate P(Cause|Effecta ,Effectb), we therefore need to

make some more assertions that allow us to simplify the expression further.

14

2.2. PROBABILISTIC REASONING

Definition 2.2.7 (Conditional Indepence) Let A, B, and C denote random vari-

ables. A and B are conditionally indepent given C, iff

P(A,B|C) = P(A|C)P(B|C), which is equivalent to

P(A|C) = P(A,B|C)
P(B|C) and P(B|C) = P(A,B|C)

P(A|C) .

In other words, the conditional probability of “A given C”, may not depend on the

state of B (and vice versa).

If we assume that Effecta and Effectb are conditionally independent given Cause, we

can use this independence to rewrite equation 2.2 as:

P(Cause|Effecta ,Effectb) =
P(Effecta |Cause)P(Effecta |Cause)P(Cause)

P(Effecta ,Effectb)
(2.3)

It is common to regard the entries of P(Effecta ,Effectb) as “normalisation factors”

which ensure that the corresponding entries in P(Cause|Effecta ,Effectb) (i.e., single

“rows” of the vector/table) sum up to 1. So we can replace 1/P(Effecta ,Effectb) by

α in the notation (often, the α is also left out altogether, as the normalisation can be

accomplished without knowing the factor, based alone on the probability distribution

to be normalised):

P(Cause|Effecta ,Effectb) = αP(Effecta |Cause)P(Effectb |Cause)P(Cause) (2.4)

Product rule and conditional independence can also be combined to give us a repre-

sentation of the full joint distribution:

P(Effecta ,Effectb ,Cause) = P(Effecta ,Effectb |Cause)P(Cause) (2.5)

= P(Effecta |Cause)P(Effectb |Cause)P(Cause)(2.6)

The equation can be generalised to n conditionally independent effects, as follows:

P(Cause,Effect1 , . . . ,Effectn) = P(Cause)

n∏
i=1

P(Effecti |Cause) (2.7)

A full joint probability distribution specified in this way is commonly called a näıve

15

CHAPTER 2. BACKGROUND AND LITERATURE

Bayes model, because it is frequently used without proving the necessary conditional

independence of the effect variables. In fact, such a model is often used when it is

even known that the variables are not actually independent [RN10, p. 499] and it is

found that the approach works well nonetheless [MN98, Fri97, DP96].

The principal advantage of specifying a full joint distribution in this way is the fact

that the tables needed to represent the conditional probability distributions are much

smaller than the one table holding the full joint distribution would be. Entries from

the full joint distribution can then be obtained by making on-demand calculations

based on equation 2.7.

2.2.3 Bayesian Networks

A Bayesian network is a data structure that extends equation 2.7 to represent any full

joint probability distribution, exploiting possible conditional independencies between

random variables to reduce the size of the necessary probability tables.

Definition 2.2.8 (Bayesian Network) A Bayesian Network is a directed acyclical

graph (DAG) with the following properties:

• Each node corresponds to a random variable with a finite domain. If there is an

edge from node X to node Y , X is a parent of Y and the set of parent nodes of

Y is denoted as Parents(Y). The edge is said to represent a “direct influence”

from X to Y .

• Each node must be conditionally independent of its non-descendants, given its

parents.

• Each node Xi has a conditional probability distribution P(Xi|Parents(Xi)) that

quantifies the effects of the parents on the node.

(For brevity of notation, we use the term “node” also in the meaning of “random vari-

able corresponding to the node”, if the context does not require a stricter distinction.)

We can use the Bayesian network to give us the full joint probability distribution for

its variables X1, . . . , Xn as follows:

P(X1, . . . , Xn) =

n∏
i=1

P(Xi|Parents(Xi)) (2.8)

16

2.2. PROBABILISTIC REASONING

If we number the nodes X1, . . . , Xn in such a way that Parents(Xi) ⊆ {Xi−1, . . . , X1},
we can use the so-called chain rule that builds on the product rule (definition 2.2.5)

to give a slightly different form of equation 2.8:

P(X1, . . . , Xn) = P(Xn|Xn−1, . . . , X1)P(X1, . . . , Xn−1) (2.9)

= P(Xn|Xn−1, . . . , X1)P(Xn−1|Xn−2, . . . , X1) · · ·P(X1)(2.10)

=
n∏
i=1

P(Xi|Xi−1, . . . , X1) (2.11)

From equations 2.8 and 2.11 it follows for every variable Xi in the network that:

P(Xi|Parents(Xi)) = P(Xi|Xi−1, . . . , X1) (2.12)

In other words, the chain rule proves that the full joint probability distribution can

be reconstructed from the conditional probability distributions for all Xi given all

respective predecessors in the node ordering. Equation 2.12 now allows us to minimise

the set of parents (i.e., the set of nodes with edges towards Xi) to those predecessors

that have an actual influence on Xi. In turn, this leads to a minimal size of the

conditional probability tables.

Example 2.2.9 (The “Alarm” Bayes Network) Let us complete this section by

a well-known example that illustrates probability calculations relating to a freshly

installed burglary alarm. (The example originates from [Pea97] whose author lives

near Los Angeles, which explains the explicit interest in earthquakes.)

Your new alarm triggers (variable A) on burglaries (variable B) and also on minor

earthquakes (variable E) that are common in your region. You have two neighbours,

John and Mary, that will phone you if they hear the alarm (you are rarely at home

since you work hard to finish your dissertation). John calls you (variable J) quite

reliably when the alarm sounds but also, at times, only imagines that he has heard the

alarm. Mary (variable M), on the other hand, often listens to loud music and might

not hear the alarm at all.

There are a couple of additional assumptions that allow us to efficiently model this

scenario in a Bayesian network. Firstly, we assume that burglaries are not related

to earthquakes in any way and that John and Mary do not communicate with each

other about whether they hear the alarm. Secondly, we assume that John and Mary

17

CHAPTER 2. BACKGROUND AND LITERATURE

do neither directly observe the burglary (only via the alarm) nor do they feel the

earthquakes. They are too minor to be felt by humans but tend to trigger sensitive

equipment like alarms.

We can use these conditional (in-)dependencies to create a Bayesian network that

captures the described scenario as shown in figure 2.1.

Burglary Earthquake

Alarm

Mary callsJohn calls

P (b)

0 .0 0 1

P (e)

0 .0 0 2

B E P (a)

t t 0 .95

t f 0 .94

f t 0 .29

f f 0 .001

A P (j)

t 0 .90

f 0 .05

A P (m)

t 0 .70

f 0 .01

Figure 2.1: The “Alarm” network, including conditional probability tables

This Bayesian network can be used to calculate any particular entry of the full joint

distribution by multiplying the appropriate conditional probabilities. For example,

what is the probability that the alarm rings, but neither a burglary nor an earthquake

have occured and both John and Mary call?

Using a simplified notation for the variables, we get:

P (j ∧m ∧ a ∧ ¬b ∧ ¬e) = P (j|a)P (m|a)P (a|¬b ∧ ¬e)P (¬b)P (¬e)
= 0.90× 0.70× 0.001× (1− 0.001)× (1− 0.002)

= 0.000628 ≈ 0.06%

By summing up the appropriate entries, any query that can be answered by the full

joint distribution can be answered by using the Bayes network. As an example, the

reader is encouraged to calculate the marginal probability that a burglary actually

occured if both John and Mary call, i.e., P (j ∧m ∧ b). The next section introduces a

tool that will make this very comfortable.

18

2.2. PROBABILISTIC REASONING

2.2.4 Bayesian Network Inference Algorithms

In this section, we give an overview about algorithms for calculating the posterior

probability distributions in a Bayes network, focussing on those that are supported by

the SMILE software library. SMILE (“Structural Modeling, Inference, and Learning

Engine”) is a C++ library developed by the Decision Systems Laboratory at the

University of Pittburgh, implementing graphical probabilistic and decision-theoretic

models, such as Bayesian networks, influence diagrams, and structural equation models

[LV07].

The library can be used as an API from own software (bindings for Java and .NET

are provided) or via the application GeNIe (“Graphical Network Interface”) that is

stated to have received a wide acceptance within both academia and industry[LV07].

Both GeNIe and SMILE are available free of charge and may be used for commercial

purposes2, although they are not open source.

We limit ourselves to presenting the most significant properties of the algorithms for

our use case and refer the reader to the primary literature for in-depth descriptions of

the implementations. The descriptions contain work that was aggregated in a master

thesis at our chair [Alt09].

2.2.4.1 Exact Inference

Exact inference in Bayesian networks is principally done using the so-called “Cluster-

ing” algorithm. The algorithm is based on the idea of transforming a Bayesian network

into a polytree by combining some nodes into “cluster nodes”. Inference for Bayesian

networks in polytree form can be done in linear complexity. However, transforming

an arbitrary Bayes network into a polytree is, in the worst case, of exponential time

and space complexity [RN10], leading to an exponential overall complexity, as would

be expected.

The Clustering algorithm profits from networks with much evidence, since this allows a

reduction of the size of the conditional probablity tables by filling in evidence variables

as fixed values, which is particularly helpful for the commonly large cluster nodes.

Unfortunately, the Bayesian networks used in our approach are not very suitable for

transformation into a polytree, requiring very large cluster nodes. Given real problem

sizes, the algorithm would use more memory than available. Using the clustering algo-

2http://genie.sis.pitt.edu/license.html

19

http://genie.sis.pitt.edu/license.html

CHAPTER 2. BACKGROUND AND LITERATURE

rithm only becomes feasible after a significant amount of evidence has been gathered

[Alt09].

2.2.4.2 Approximative Algorithms

Approximative algorithms are used whenever exact inference becomes infeasible be-

cause of its complexity – as it is for example the case in our approach. The algorithms

are all based on the idea of estimating the posterior probability distributions by col-

lecting a large number of “samples” from the Bayesian network, i.e., they conduct a

Monte Carlo simulation. As such, their complexity is linear in relation to the num-

ber of nodes / random variables in the network. However, it requires a few thousand

sampling runs to obtain a confident estimation.

Forward Sampling The most simple sampling algorithm is Forward Sampling as in-

troduced in [Hen88], also called Probabilistic Logic Sampling. It operates on a topolog-

ical ordering of the random variables. Starting with the variables that have absolute

probability distributions from the beginning, one of the outcomes is chosen randomly

as a “sample” based on its probability distribution. The sample is then inserted into

the dependent random variables, in turn enabling random choices for their outcomes.

The posterior probability distributions per random variable are then estimated based

on number of samples for each outcome. Most notable about Forward Sampling (as

implemented in SMILE) is the fact that existing evidence is ignored for the sampling

process. Only after a sampling run, a check whether the sample conforms to the

evidence is executed, leading to a possible discard of the sample. In effect this may

lead to very many discards if the Bayesian network contains much evidence, leading

to very few acceptable samples which then dominate the calculation – or, indeed, to

no suitable samples, which constitutes an inference failure as we frequently observed

in our use case. On the plus side, the algorithm is very fast, due to its simplicity.

Most other sampling algorithms are variations on the general approach presented by

Forward Sampling, introducing heuristics to weigh individual samples, to improve the

sampling order, or similar.

Likelihood Weighting The Likelihood Weighting algorithm [FC90, RN10] fixes the

values for evidence variables, thus ensuring that all samples are consistent with the

evidence, contrary to plain Forward Sampling. In addition, the samples are weighted

according to their likelihood in respect to the evidence. While a good idea at first,

20

2.2. PROBABILISTIC REASONING

the estimation quality suffers with many evidence variables as very many samples are

assigned an infinitesimally small weight and the estimations are then dominated by a

few sample runs with larger weights.

Importance Sampling This describes a family of sampling algorithms that use a

modified Likelihood Weighting to better approximate the posterior distributions. They

all use the concept of a so-called “importance distribution” P ′ and primarily differ in

its exact definition.

Self-Importance Sampling [SP90] uses a weight function to constantly update its im-

portance distribution. From the same authors, Heuristic-Importance Sampling uses a

modified polytree algorithm to calculate likelihood functions for all unobserved (i.e.,

non-evidence) random variables, having to do an approximation of the likelihood func-

tion if the network does not form a polytree.

Adaptive Importance Sampling (AIS) [CD00] and Evidence Pre-propagation Impor-

tance Sampling (EPIS) [YD03] use even more refined methods to model their impor-

tance distributions. They are considered to be the most advanced general purpose

sampling methods available, but, because of the significant calculation overhead for

each sample, they are also amongst the slowest.

Backward Sampling As its name suggests, Backward Sampling [FdF94] uses a differ-

ent sorting of the random variables than the previously described “forward” methods:

Beginning from the evidence variables, the samples are collected against the direc-

tion of the edges towards the parent variables. Since our approach tends to introduce

evidence into the Bayesian network starting at the “root” nodes and then continues

to elicitate evidence following the direction of the edges, this algorithm will in fact

behave similar to the normal Forward Sampling approach for our use case.

Markov-Chain Sampling Also called Gibbs Sampling in the case of Bayesian net-

works, Markov-Chain Sampling [RN10, 14.5.2] is another approach to approximate

posterior probability distributions. Its idea to generate samples is different from the

other algorithms, in that it continually makes changes to the respective preceding sam-

ple instead of generating completely new samples. This way, the algorithm settles into

a “dynamic equilibrium” that represents the posterior distributions. Since the SMILE

software library does not contain an implementation of the technique, we decided not

to investigate it further in the course of our work.

21

CHAPTER 2. BACKGROUND AND LITERATURE

2.3 Statecharts

We use statecharts to formalise and visualise the behaviour of our recommendation

dialogue. Regarding syntax and semantics, we follow the definitions of R.J. Wieringa

which suit our requirements well. The interested reader is referred to chapter 12 of

[Wie03] for a more exhaustive treatment of the topic. Possibly more prevalent are

UML state diagrams (cf., e.g., [BD04, 2.4.4]), that show some minor differences when

compared to statecharts, primarily in syntactic details.

2.3.1 Mealy Diagrams

Since statecharts are an extension of Mealy diagrams, we will begin by illustrating the

principal syntactic and semantic elements of the latter (cf. [Wie03, 12.1]).

The primary modelling elements of Mealy diagrams are states, represented by rounded

rectangles, and state transitions, represented by arrows and annotated with a label of

the form event expression [guard expression] / action expression.

A Mealy diagram must contain a starting state, represented by a bullet, and may

contain final states, represented by a bullet in a circle (see figure 2.2 below). In addition

to states, the diagrams may make use of arbitrary global variables (cf. [Wie03, 12.2]).

• The event expression is a named event (e.g., “answer received”) that can be

fired in the modelled system. All events are broadcast through the entire system,

i.e., there is no “scoping” of events. Alternatively, temporal events, such as “after

5 minutes” or “at 12:00” could be specified in Mealy diagrams, but our approach

does not use such events.

• The guard expression denotes a condition that may contain the common

Boolean operators to combine more elementary conditions over arbitrary global

variables present in the modelled system.

• The action expression denotes a set of actions to be executed. Our approach

generally uses only single actions, but multiple actions could be separated by

commas or semicolons to specify simultaneous or sequential execution, respec-

tively.

We refer to these labels as “ECA” rules (for Event-Condition-Action, as we commonly

only have elementary conditions for our guard expression). Figure 2.2 shows two states

S1 and S2, connected by the ECA rule e[c]/a. This modelling means that the system

22

2.3. STATECHARTS

will make a transition into state S2, iff the system is currently in state S1 and the

condition c evaluates to true. In this case, the action(s) specified by a will be executed

during the transition. Note that the formalism does not specify a general means to

resolve ambiguities, i.e., if several transitions would be eligible to be executed. It is

up to the modeller to avoid those ambiguities or to design an application-specific way

to resolve them.

S2S1

e[c] / a

Figure 2.2: Basic Mealy diagram for S1
e[c]/a−→ S2

All expressions within a transition label are optional, the minimal label would be

“/” or, depending on notation preferences, “[]/”. No specified event expression

means that the transition is executed immediately if the condition evaluates to true

(one may call this a “condition change event”), whereas an omitted or empty guard

expression can simply be regarded as shorthand for [true]. If no action is specified,

the transition is just executed without triggering other behaviour.

A special type of state, the so-called decision state, represented by a hexagon, can be

used to model the evaluation of a specific condition. To symbolise the fact that the

system cannot remain in this state, transitions outgoing from a decision state often do

not contain an event expression in our diagrams, as illustrated by figure 2.3. To the

same end, it should be ensured that one of the guard expression evaluates as true

in all cases. Our approach uses decision states at some points to make the important

decisions of the system more explicit.

ConfirmSave

[status=‘save‘]

 / DoSave(file)

CheckSave
Click / Test(file)

[status!=‘save‘] /

Figure 2.3: Example Mealy diagram for saving a file, showing a decision state

As a side note, we would like to observe that the Mealy diagrams shown in figures

2.2 and 2.3 of course also display valid statecharts, which merely extend the Mealy

diagram syntax as decribed below.

23

CHAPTER 2. BACKGROUND AND LITERATURE

2.3.2 Extension to Statecharts

According to [Wie03, 12.3], statecharts provide three additional modelling techniques

that are not present in Mealy diagrams:

• State reactions allow to specify actions that are supposed to be executed when

the control flow enters or leaves a particular state (in addition to actions implied

by the transition ECA-rule itself). Also, other events may be handled by actions

without triggering a state transition (i.e., the control flow stays within the current

state). Our modelling does not use state reactions.

• State hierarchies allow to specify a system’s behaviour within a state in a fine-

grained way, essentially by allowing to recursively embed entire sub-statecharts

into states. We use this technique to model the system’s behaviour at different

abstraction levels.

• Parallelism allows to specify that the system is in several states simultaneously

that may then react to events independently of each other. In our modelling,

the recommendation generation and the dialogue management are two parallel

processes that we model with this technique.

State hierarchies can be used to provide statecharts for different abstraction levels of

the system behaviour. As figure 2.4 illustrates, any state may itself contain another

statechart, even recursively. From a more abstract point of view, the nested statechart

may be seen as a “black box” and ignored. The syntax is also called “OR-state” since

the control flow can only be in one of the states of the sub-chart. Labels for OR-states

are frequently either omitted or moved to the top as shown in the figure.

Contrastingly, “AND-states” enable parallelism by allowing the control flow to be

in several states at once. An AND-state contains several areas separated by dotted

lines. Each of these areas contains a sub-statechart that is executed independently

of the other charts. Note that there are no direct transitions between different sub-

statecharts within an AND-state, but remember that events are broadcast through the

entire system and therefore can be used to communicate between parallel processes.

In order to specify precisely how the AND-state should be entered, hyperedges that

target several states in different areas of the AND-state can be used, as shown in figure

2.5.

24

2.3. STATECHARTS

InputData

WaitForInput

input /

CheckInput ProcessData

[ok=false] /

showWarning()
[ok=true] /

ProcessData

InputData

a)

b)

input /

Figure 2.4: Example statechart for data input, a) showing the higher abstraction level,
and b) showing a state hierarchy that details the input validation

TrafficLights

Red

switchNS /

Green

switchEW /

Light 1 (North/South)

Green

switchNS /

Red

switchEW /

Light 2 (East/West)

Figure 2.5: Example statechart for two (simplified) traffic lights, showing parallel but
synchronized processes in an AND-state

25

CHAPTER 2. BACKGROUND AND LITERATURE

2.4 Use Case

2.4.1 Mobile Telecommunications

The concepts developed in this dissertation are primarily applied to the mobile telecom-

munications domain, specifically to recommend appropriate mobile phones to con-

sumers. Backed by a research project conducted in cooperation with the :a:k:t: Infor-

mationssysteme AG3, a local industry partner, the implementation for this use case

relies on real data, models, and sales knowledge, demonstrating the applicability of

the approach to a real-life scenario with industry-strength requirements.

Some properties of the mobile telecommunications domain make it particularly suitable

for using electronic recommender systems:

• The products are relatively complex. Essentially, today’s mobile phones are multi-

purpose devices with a variety of technical functions and complicated properties

that have to be taken into account when customers want to make an optimal

buying decision. Also, customers would generally not immerse themselves suffi-

ciently into these technical details to obtain the necessary knowledge individually.

It can therefore be assumed that customers have to rely on informed external

advice when choosing a mobile phone and that, consequently, vendors who offer

qualified consultation to their prospective customers will enjoy the advantage of

increased customer satisfaction. A recommender system can provide this service

in fields where an individualised consultation would normally be infeasible, e.g.,

in discount shops or for online / WWW-based scenarios.

• The domain changes frquently. Driven by a constant need of innovation to remain

competitive in the market, manufacturers frequently release new products, often

with new technical properties that address new customer wishes, up to implying

entirely new business models. For example, consider the widespread integration

of GPS receivers in mobile phones that led to the development of location-based

services and which has a number of additional implications, e.g., in relation

to privacy. Hence, even salespersons with profound knowledge of this specific

domain find that the level of knowledge ages quickly and they have to spend

significant effort to keep themselves up-to-date. A recommender system can be

maintained in a centralized way and thus enables more timely and cost-efficient

adaptations of the domain knowledge.

3http://www.akt-infosys.de/

26

http://www.akt-infosys.de/

2.4. USE CASE

While the complexity and changeability properties are particularly apparent in the

telecommunication use case, they are very general and shared by many other domains.

For this reason, the developed concepts were used to implement recommenders for a

few other applications, in order to demonstrate the transferability of the approach to

a wider range of possible use cases.

2.4.2 Movies / DVDs

Having a real-life use case absolutely has its benefits, but debugging the application

and analyzing its behaviour based on this use case requires considerable effort. The

domain model is very large and, due to its complexity, cannot be sensibly maintained

by developers without assistance from domain experts. Ironically, one can see this as a

side effect of our design goal to separate the concerns of domain experts and software

engineers.

Hence, we decided to model a domain that is slightly smaller and simpler than our

primary use case so that we are able to use it more efficiently in experimentation. We

have chosen the movies domain, i.e., recommending DVDs, since many people have an

intuitive knowledge about the domain based on their own experiences and preferences

(unlike the mobile phone domain, where people generally have experiences, but do not

often form strong opinions on the domain as a whole).

Our ’reference’ movies domain model was created during a workshop by the members

of the chair of information management. Despite the low effort involved in creat-

ing this second domain model, it produces plausible recommendations when tested

with a number of stereotypical movie buyers’ personalities. Although no formal val-

idation/evaluation was carried out (to measure, e.g., recommendation quality), the

movies domain serves as the proof-of-concept for the transferability of the developed

approach.

2.4.3 Courses of Study

Another example domain was built using an early prototype of the recommender

system during the Open Day of the University of Passau in 2008. In this instance, we

attempted to recommend the courses of study offered by our university to prospective

students.

27

CHAPTER 2. BACKGROUND AND LITERATURE

Our domain model contained questions about the school subjects in which the students

completed their “Abitur” (german general qualification for university entrance), and

was refined with questions about desirable personal traits with the help of the student

bodies of our faculties.

The prototype was used by a large number of members of the general public and our

evaluations of the experiment led to first insights about the dialogue management, as

will be detailed in section 5.2.

28

3 Metamodel Specification and Semantics

The domain metamodel defines the “language” that can be used to describe the domain

of discourse of the system, i.e., the market segment that is targeted. The behaviour

of the recommender system is defined exclusively in terms of the metamodel, making

it independent of the concrete domain at hand. As such, the metamodel, along with

its instances, can be seen as the interface between implementers and users of the

recommender system, which requires us to make a careful transition between different

levels of abstraction, complexity, and formality.

We have chosen to define the metamodel semi-formally as a set of UML class dia-

grams (cf. [BRJ05]), focussing on the intended concepts and therefore remaining at

an abstract level. The core design decisions underlying the metamodel reflect the in-

tent of the recommender system to collect information about customers, namely by

asking them questions during an interactive dialogue. From there, the system reasons

about other information by exploiting the causal influences between the modelled ele-

ments. Figure 3.1 shows the basic structure of the metamodel: information that may

be elicited or reasoned about is represented as ReasoningElements (elaborated on in

sections 3.1 and 3.2) and the causal Influences are modelled as associations between

ReasoningElements (elaborated on in section 3.3).

«interface»
ReasoningElement

«interface»
InfluenceSource

«interface»
InfluenceTarget

Influence

{exhaustive; non-disjoint}

Figure 3.1: Metamodel basic structure: Influences connect ReasoningElements

29

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

-id

Trait

-id

Need

-id

TraitGroup «interface»
InfluenceSource

«interface»
InfluenceTarget

-id

AttributeValue

Figure 3.2: UML diagram of the customer metamodel

Modelling the domain of discourse by enumerating the relevant elements and defining

the interrelations between them is the central aspect of our approach, as we already

presented in [RZF09, RF07]. When analysing the “natural” recommendation processes

in the domain of our project, we found such a modelling to adequately reflect the

practice of salespersons in the field. Hence, domain experts should be able to express

their knowledge easily and intuitively using the means provided by the metamodel

(see also section 9.1).

Noteworthy is the implicitness of the modelling, which becomes particularly apparent

when comparing our design to other approaches aimed at specifying conversational

recommender systems, such as [AFF+03]. Rather than explicitly describing a series of

dialogue steps, possibly with conditional branches and other similar control elements,

we model in a declarative instead of a procedural way only the knowledge that is

required for the recommendation process. The actual dialogue is then constructed

by the recommender system based on inferences from the model. Chapter 5 further

elaborates on this concept.

3.1 Customer Metamodel

The customer metamodel provides the means to describe information about customers

(e.g., personal traits, demographic information, interests, and personal preferences)

that the system must consider during the recommendation process. Figure 3.2 shows

the customer metamodel on an intentionally abstract level.

30

3.1. CUSTOMER METAMODEL

In the course of analyzing the way sales experts describe customers, two different

concepts emerged which we called Traits and Needs. Both share the idea that the

relevant knowledge about the customer is composed of essentially Boolean bits of

information, following the practice of salespersons to classify their customers into a

set of categories. When non-Boolean information is requested from a customer, this is

typically only done to check whether it falls into a certain category, i.e., the obtained

knowledge actually is Boolean again.

• Traits represent facts about a customer, modelled as Boolean properties, repre-

senting whether a certain Trait applies to a customer or not. Commonly, Traits

are created to represent classes of non-Boolean customer properties, e.g., con-

sider a Trait “young” with (young = true) ⇐⇒ (age ∈ [0, 20]). In other words,

the non-Boolean property age is converted to a Boolean Trait by classification.

Since they are supposed to be objective information, Traits cannot be influenced

by other metamodel elements (i.e., they can only function as an InfluenceSource).

Furthermore, this objectivity can be exploited, e.g., to pre-answer corresponding

questions from a CRM software (if the customer can be identified when using

the recommender system).

• Needs are used to describe customer properties beyond standard personal infor-

mation, such as opinions, preferences, and demands. Therefore, when eliciting

information about Needs, the typical answer will not be a binary yes or no but

instead a more fine-grained representation of the degree of agreement (we will

elaborate on this in section 4.1).

As indicated by the implemented interfaces in fig. 3.2, Needs can be influenced

by other elements of the metamodel and can, in turn, influence other elements,

as we will describe in detail in section 3.3.

The metamodel also provides the option to combine Traits into TraitGroups to support

the common case that some Traits are mutually exclusive with each other.

For instance, if the customer’s age is modelled as a number of Traits representing

different age classes (see example 3.1.1 below), exactly one of those Traits can apply to

him/her and combining the Traits into a suitable TraitGroup allows the recommender

system to take advantage of this knowledge.

Creating concrete domain models is accomplished by instantiating the classes provided

by the metamodel as illustrated by the following example.

31

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

Example 3.1.1 (Customer model for the mobile phone domain) Let us con-

sider a simplified customer model for selling mobile phones that is built on a single

TraitGroup instance:

Let the only considered customer property be his/her age, modelled by creating the

TraitGroup “ageclasses”, separated into ranges by the conditions shown in table 3.1.

Each range is represented as an instance of the class Trait in the customer model and

is annotated with its proportion of the population in Germany [Sta10].

Trait condition proportion

ageclassjunior age ≤ 20 20%

ageclassmiddle age ∈ [21, 54] 49%
ageclasssenior age ≥ 55 31%

Table 3.1: Ranges for TraitGroup “ageclasses”

Further assume that four Needs have been identified for the domain. Therefore, we

create four instances of the class Needs. As the recommender system will elicit knowl-

edge about the Needs by engaging in a dialogue with the customer, we illustrate them

by giving a sample wording of a corresponding question.

• Multimedia: Does the user intend to use the new mobile phone to create or

play back multimedia content?

• Music: Does the user intend to use the new mobile phone to listen to music?

• Office: Does the user intend to use the new mobile phone as a mobile office?

• Internet: Does the user intend to access the internet with the new mobile

phone?

Despite its limited complexity, example 3.1.1 illustrates the central design concepts of

the customer metamodel: The customer’s age can be ascertained without ambiguity.

Based on this information, the corresponding value classes are modelled as Traits.

On the other hand, questions regarding the intended usage of the new mobile phone

are likely to be answered in a non-Boolean fashion and therefore modelled as Needs.

Also, a customer’s age is likely to influence the other Needs in the customer model.

Additionally, it is plausible that some of the Needs are causally related to each other.

Capturing the causal relationships between Traits and Needs is the essential part of

building an appropriate domain model and will be revisited in section 3.3.

32

3.2. PRODUCT METAMODEL

-id
-name

Article

-id
-name
-importance : decimal

Attribute

-id
-name

AttributeValue

1

1..*

hasValueRange

1

1..*

hasAttributes

-id
-name

Product

1

*

*

1..*

hasValues

-serialNo

Item

1

*

«interface»
InfluenceTarget

Figure 3.3: UML diagram of the product metamodel

3.2 Product Metamodel

The product metamodel described here allows for modelling the Articles in the domain

of discourse and also allows for expressing information about Products.

Individual Items are not represented in the metamodel in an elaborate way, but are

left to dedicated order-management or store-keeping systems that come into play when

the recommendation process is completed successfully. Items may be relevant for the

recommendation process if the recommender system is integrated with these tools.

33

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

The product domain is modelled by using a simple composition of parts (see figure

3.3):

• Articles have a finite number of Attributes, which may either be technical (e.g.,

camera resolution or compatibility with a certain multimedia file format) or

non-technical (i.e., sales-oriented, with terms like “chic” or “exclusive”).

• Attributes have a finite, explicitly enumerated range of AttributeValues, represent-

ing all possible values that an Attribute may have (e.g., for camera resolution, all

megapixel values of all cameras in currently available mobile phones). They also

have a numeric importance value that denotes the significance of the Attribute

for the recommendation process, as will be detailed in section 7.1.

• Products always instantiate a particular Article. The modelling allows specifying

all concrete AttributeValues that the Product has.

• Items instantiate a Product and add identifying information, such as serial num-

bers, storage locations or similar data.

The modelling concepts for products were developed in cooperation with our industry

partner and closely follow the naming conventions used by domain experts in the

field. Therefore, although all elements are situated on the “metamodel” layer for the

recommender system, they represent different abstraction levels in practice and it is

important to correctly differentiate between them. Table 3.2 lists the terms used and

illustrates them by giving an example for each (cf. also figure 3.4).

concept example

Article “Mobile phones” in their entirety
Product “Nokia N9” mobile phone series
Item concrete Nokia N9 phone with IMEI #357923042078495

Table 3.2: Abstraction levels for the product modelling

Attribute B

Value B.2 Value B.3Value B.1

Attribute A

Value A.1 Value A.2

Article:
Definitions for all Products

Product:
Describes technical properties for a series of Items

Item:
Identifies one single, concrete thing

#42

Attribute B
Value B.2 Value B.3Value B.1

Attribute A

Value A.1 Value A.2

Article:
Definitions for all Products

Product:
Properties for a series of Items

Item:
Identifies one single, concrete thing

#42

Figure 3.4: Product modelling abstraction levels illustrated

34

3.2. PRODUCT METAMODEL

In analogy to the customer metamodel, concrete product models are created by in-

stantiating the appropriate classes of the product metamodel, as the following example

illustrates.

Example 3.2.1 (Product model for the mobile phone domain) Let us build

on example 3.1.1 by considering a grossly simplified product model for the Article

“mobile phone”:

Let the mobile phone have three Attributes with AttributeValues and importance values

corresponding to table 3.3. So, as a whole, our product model consists of one instance

of the class Article, three instances of Attribute and seven instances of AttributeValue,

linked by the appropriate composition relations according to figure 3.3. We do not

model instances of the Product or Item classes in this example.

Since Attributes with only two AttributeValues can very often be interpreted as Boolean

variables, denoting the presence or absence of a particular capability, alternative values

of “true” and “false” are given where appropriate.

Attribute (importance) AttributeValue

MP3 playback (2) available (true)
not available (false)

Internal memory size (1) small (e.g., <1GB)
medium (e.g., 1–8GB)
large (e.g., >8GB)

UMTS/3G ability (2) capable (true)
incapable (false)

Table 3.3: Attributes and AttributeValues

The example also illustrates the way to limit the value ranges of Attributes to finite

sets, i.e., in this case, by dividing various memory sizes into three discrete categories

(as given in table 3.1.1).

Note that a discretisation step like this implicitly allows to further develop the prod-

uct model, e.g., by redefining the meaning of “large memory” based on technological

improvements without having to touch the modelled Attributes and AttributeValues

themselves.

35

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

3.3 Interrelations

Up until now, we have defined the product and customer metamodels in an isolated

way, without fully elaborating on the possible relationships between the modelling

elements. Examples 3.1.1 and 3.2.1, however, already suggested obvious causal de-

pendencies between some elements. For example, the customer’s age is very likely

to influence his/her multimedia affinity and office requirements, which, in turn, will

imply certain technical requirements. The picture will be completed in example 3.3.6

below, after we have explained the concept of an Influence as shown in figure 3.5.

«interface»
InfluenceSource «interface»

InfluenceTarget

-cause : CauseEffectType
-effect : CauseEffectType
-weight : int

Influence

*

-source

*

-target

+getBeliefState() : BeliefState

«interface»
ReasoningElement

Trait Need AttributeValue

Figure 3.5: UML diagram of the interrelationships metamodel

As already shown in figure 3.1, interfaces separate ReasoningElements into categories

according to whether they may have an influence on some other modelling elements

(InfluenceSource, e.g., Trait), or whether they can be influenced by other modelling

36

3.3. INTERRELATIONS

elements (InfluenceTarget, e.g., AttributeValue). It is possible that modelling elements

both influence other elements and can themselves be influenced (in fact, this is exactly

the case for the class Need, which simply implements both interfaces).

Given this separation, Influences are defined as follows:

Definition 3.3.1 (Influence) An Influence represents a potential causal dependency

between one element of type InfluenceSource with one InfluenceTarget element. The

relationship is further characterised by a cause and an effect, both being of type

CauseEffectType which is an enumeration of “positive” and “negative”. It also has

a numerical weight to signify the strength of the Influence, i.e., its ability to modify

the BeliefState of its target given appropriate knowledge available for its source (see

definitions 3.3.2 and 3.3.4 below).

Effectively, Influences can be regarded as the edges of a directed graph whose nodes can

be separated into Traits that are only sources, AttributeValues that are only sinks and

Needs that may function as both sources and sinks at the same time. Since Influences

are intended to model a “causal” relationship, the graph is required to be acyclical.

To explain the semantics of Influences more clearly, we will give a definition of the

BeliefState that can be determined for every ReasoningElement in an instance of the

metamodel. The concept itself is largely analogous to the corresponding notion in-

troduced in [RN10, section 4.4], but in our conceptualization there exists a separate

BeliefState for every ReasoningElement, as opposed to [RN10] where the belief state is

only a single parameter of the whole system that is being observed.

Every ReasoningElement may be in one of two states, namely positive and negative.

The particular meaning of those states depends on the type of the ReasoningElement:

• For Traits, the BeliefState signifies whether the particular Trait applies to the

customer that the recommender system is reasoning about.

• For Needs, the BeliefState signifies whether the customer feels the particular

Need.

• For AttributeValues, the BeliefState signifies whether a Product with that partic-

ular AttributeValue will satisfy the customer’s wishes (in relation to the corre-

sponding Attribute).

Since the inference algorithms will employ techniques for uncertain reasoning, the

system’s beliefs cannot be adequately represented by a Boolean value. Therefore, the

37

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

BeliefState uses a degree value, to model its confidence that the ReasoningElement is

in the positive state. The degree is frequently represented as a number in [0, 1] and it

is implied that a complementary degree of belief exists regarding the negative state of

the ReasoningElement.

These considerations allow us to define the BeliefState as follows:

Definition 3.3.2 (Belief State) Given a ReasoningElement r, the BeliefState βr of

r represents the system’s belief about the state r is in, given all knowledge available

to the system.

βr = {(positive, β+r), (negative, β−r)} with positive and negative the states that r may

be in and β+r , β
−
r ∈ [0, 1] the corresponding degrees of belief (i.e., a measure of the

confidence that the system is in the corresponding state, given all knowledge available

to the system).

Example 3.3.3 (Belief State) Given a certain state of the recommendation dia-

logue, the system has determined the following belief states for some of the Rea-

soningElements in its customer model (cf. example 3.1.1):

βMultimedia = {(positive, 0.7), (negative, 0.3)}, meaning that the customer will more

likely have a need for multimedia functions than not.

βMusic = {(positive, 0.5), (negative, 0.5)}, meaning that no clear statement about the

customer’s music requirements can be made at this point of the dialogue.

βOffice = {(positive, 1.0), (negative, 0.0)}, meaning that the system is certain that the

customer will need office functions.

βInternet = {(positive, 0.15), (negative, 0.1)}, meaning that the system’s predicition

confidence regarding the customers internet need is very low, albeit with a slight

tendency towards the positive state.

Note that a degree of belief is not directly equivalent to a likelihood, but merely a

numeric representation of a confidence estimation normalized to [0, 1]. However, since

we will use probability theory anyhow later in our implementation, equalling a degree

of belief to a probability may serve as a useful approach to make the abstract concept of

belief states more intuitive. A key difference is that definition 3.3.2 does not mandate

a dependency between β+r and β−r as would be the case for probabilities (where β+r
and β−r would always sum to 1.0), which is illustrated by the last point in example

3.3.3.

38

3.3. INTERRELATIONS

Using the concept of BeliefStates introduced above, a definition of the semantics of the

cause-effect relationships represented by Influences can be given:

Definition 3.3.4 (Semantics of an Influence) The semantics of an Influence i is

defined as follows:

• If the system’s degree of belief in the cause of i is modified (e.g., by elicitating

appropriate knowledge from the customer), the degree of belief in the effect is

modified appropriately as well, taking the weight of the Influence into account

(the exact way of doing this will be defined in chapter 4).

• In all other cases, the degree of belief for the effect remains unchanged. (Note

that, depending on the concrete implementation, a change may result from the

fact that an increase in confidence for the source has become impossible.)

It is noteworthy that an Influence only models direct causal dependencies between two

ReasoningElements. The concept of a single Influence does not encompass “chains” or

network-like structures of causal interrelations. If domains contain such relationships

between their modelling elements, a correspondingly great number of Influences will

need to be created.

Example 3.3.5 (Semantics of an Influence) Based on example 3.1.1, consider two

Needs, multimedia and music, and let i be an Influence with i.source = multimedia,

i.target = music, i.cause = positive, i.effect = positive, i.weight = 2 . In other words,

the Influence models that customers who want multimedia functions will likely also

want music playback functions.

Now, if a given dialogue interaction causes the recommender system to modify its

estimation for β+multimedia , e.g., increasing it from 0.5 to 0.7, it also has to update its

estimation for β+music by increasing the value. Let us assume for now that the increase

for the effect is implemented as being directly proportional to the change of the cause,

so β+music is also increased from 0.5 to 0.7 as a result from evaluating i.

Example 3.3.6 (Interrelations model for the mobile phone domain) Let us

complete examples 3.1.1 and 3.2.1 by providing a number of causal interrelations

between the elements as described here:

• Young customers (i.e., aged 21 and younger) will have a demand for multimedia

functions.

• Customers with multimedia needs will...

39

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

– ...also have a need for music-specific functions;

– ...prefer devices with a large internal memory;

– ...also settle for devices with a medium amount of internal memory if nec-

essary.

• Customers with a need for music functions will request devices with MP3 players

while finding devices without one inacceptable.

• Adult customers (i.e., aged between 22 and 54) will have a demand for office

functions.

• Customers with office needs will...

– ...also need internet functions;

– ...find too small amounts of internal memory inacceptable;

– ...be satisfied by a medium amount of internal memory;

– ...not gain a substantial advantage from very large memory sizes.

• Customers with a demand for internet functions will request devices with broad-

band wireless connectivity such as UMTS and deem devices without those ca-

pabilities inacceptable.

These informal descriptions for causal dependencies are summarised in table 3.4 which

lists the instances of Influence that would need to be created. It is noteworthy that

the weights are strictly limited to the values 1 and 2, respectively. We will provide an

explanation for this in section 3.4 below.

Note that all Influences in example 3.3.6 have positive causes. Apart from simplifying

this concrete example, we have found very few instances where an Influence with a

negative cause was created, leading to the conclusion that, at least in our application

project, salespersons do not frequently draw conclusions from the absence of Needs

for a customer. The only examples of Influences with negative causes where generally

associated with Needs relating to customers’ price-sensitivity.

Example 3.3.7 (Running Example) Figure 3.6 combines examples 3.1.1, 3.2.1,

and 3.3.6. This combined model of the mobile phone domain will serve as the running

eaxmple for the remainder of this thesis.

40

3.3. INTERRELATIONS

source target cause effect weight

age ≤ 21 multimedia positive positive 2
22 ≤ age ≤ 54 office positive positive 2
multimedia music positive positive 2
multimedia memory: large positive positive 2
multimedia memory: medium positive positive 1
music MP3: available positive positive 2
music MP3: not available positive negative 2
office internet positive positive 2
office memory: small positive negative 2
office memory: medium positive positive 1
internet UMTS: capable positive positive 2
internet UMTS: incapable positive negative 2

Table 3.4: Sample Influences

Age

Office

Internet

Music

Multi-
media

UMTS

capable

not capable

Memory

medium

small

large

MP3-Player

available

not available
≤ 21

22 - 54

≥ 55

Figure 3.6: Sample model for the mobile phone domain

Solid green arrows denote Influences with a positive effect, whereas dotted red arrows

denote Influences with a negative effect (as mentioned, all causes are positive). The

line thickness of the arrows signifies the weight of the corresponding Influences (i.e., 1

or 2).

In order to illustrate the way how ReasoningElements interact with Influences, we pro-

vide another example that may represent the first step of an actual recommendation

dialogue:

41

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

Example 3.3.8 (Inference in the example domain) Consider the mobile phone

domain as modeled in example 3.3.7 with all its belief states in their initial configu-

rations (e.g., equal degrees of belief for positive and negative or, alternatively, initial

estimations based on demographic sources or similar).

We will now demonstrate how elicited knowledge propagates through the domain

model. Since the quantitave changes in the degrees of belief are based on the con-

crete implementation that is introduced in later chapters, we will keep our example

on a mainly qualitative level.

Assume that, as its first question, the system asks about the customer’s age and

learns that he/she is 20 years old. In order to represent this information in its internal

model, the system would update its belief state βage≤21 by increasing the value of

β+age≤21 and decreasing the value of β−age≤21. A plausible new belief state would be

βage≤21 = {(positive, 1.0), (negative, 0.0)}.

Following the defined Influences, this leads to changes for the belief states of other

ReasoningElements (cf. figure 3.7):

β+multimedia must be increased, “transitively” leading to an increase of β+music . These

changes, consequently, lead to increases in the degrees of belief for the following At-

tributeValues:

β+MP3 available

β−MP3 not available

β+memory large

β+memory medium (to a lesser extent because of an Influece with a smaller weight)

Hence, from the answered question, the recommender system can infer an increased

interest in multimedia and music functions, leading to first insights about a desired

MP3 player and suitable sizes for the memory size of the mobile phone.

Finally, the system could also adjust its belief states for the other age groups in the

domain model (the customer cannot be in any of them), possibly leading to further

changes similar to those described above.

3.4 Project Experiences

Let us extend the modelling concepts introduced in the preceding sections by providing

some lessons that we learned during the concrete application of the concepts together

with our industry partner.

42

3.4. PROJECT EXPERIENCES

Age

Office

Internet

Music

Multi-
media

UMTS

capable

not capable

Memory

medium

small

large

MP3-Player

available

not available

22 - 54

≥ 55

≤ 21

pos + pos +

pos +
pos +

neg +

pos +

pos +

Figure 3.7: Belief state change propagation

Lacking a concrete use-case, we did not explore multi-domain recommendation pro-

cesses in detail, but while instances of the customer metamodel are always built with

a concrete market domain in mind, multi-domain models can be created in principle

by unifying different customer models and merging synonymous elements. In such

a case, knowledge about the customer learnt from the sales dialogue for one domain

would then automatically and transparently be reused for recommendations in the

other domains.

Analyzing the similarity-based merging of models is beyond the scope of this disserta-

tion and the interested reader is therefore referred to works about ontology matching or

ontology merging, respectively (e.g., [Tay10, KS03, CGL01]). The research described

in [Hel11] might be of interest, too.

Attributes and their value ranges deserve some further notes regarding our practical

experiences with their usage:

• The limitation to finite, explicitly enumerated value ranges may seem overly

restrictive at first. As it turned out in practice, the issue was not significant:

– Many value ranges that would be infinite (e.g., numbers used as weights or

sizes) can be discretised in our use-case, since losing some precision often

does not matter for the recommendation process. For example, it is not

practically relevant to differentiate the weight of mobile phones by single

grams. As another example, products are usually priced at important psy-

chological boundaries (e.g., EUR 9.99 instead of EUR 10.35), creating an

43

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

implicit descretisation (again, minor variances can be ignored safely).

– Surprisingly, in the mobile phone use case, the Attribute “colour” proved

to be the most difficult Attribute to represent suitably. Since practically all

manufacturers use fancy marketing terms to describe their devices’ colors

(e.g., “steel grey”, “midnight blue”, or “fiery red”) that might or might

not represent actual visual differences, the colours could not be adequately

grouped together without looking at the concrete items.

• Many Attributes have “Boolean” value ranges, denoting the presence or absence

of a particular feature. User interfaces may decide to group related Attributes

into lists for display (e.g., a list of supported audio file formats would be modelled

as several Boolean Attributes internally).

• It may be necessary to include an AttributeValue with a semantic of “unknown”

with every Attribute if the data that can be obtained about products is not

always 100% complete. This is particularly often the case for newly published

products, according to our project experience, but cannot generally be ruled out

for any product. However, the treatment of an AttributeValue with an “unknown”

semantic during the recommendation process is generally difficult and dependent

on the domain (i.e., should it be treated equal to a detrimental value or neutrally

compared to other values?). Removing these values as far as possible is therefore

desirable to eliminate negative effects on recommendation quality.

Definition 3.3.1 allows the weight of an Influence to be an arbitrary real number. While

this is conceptually true, we found it useful to limit the interval from which weights

can be chosen, because of the way that they will be used later (cf. definition 4.2.4).

Furthermore, we wanted to explicitly avoid that domain experts would draw conclu-

sions from the numerical values. Therefore, we decided to further simplify the available

modelling options by limiting the available weights for Influences to a “strong” and a

“weak” Influence in our practical implementation. These are internally represented by

the numerical values 1 and 2, respectively, as was already shown in example 3.3.6.

Example 3.4.1 (Real Domain Model Sizes) Example 3.3.7 serves well to demon-

strate the significant points of our approach. In order to illustrate the size of our real

world use case, let us give another example. The actual mobile phone sales domain

model of our prototype consists of:

• A single TraitGroup called “customer stereotype” with the following Traits:

– Business customer

44

3.5. CONCLUSION

– Fun-oriented user

– “Gearhead”

– Craftsman (quite surprisingly for the outsider, craftsmen actually are a

specific marketing target group for mobile phone sales, preferring robust,

simple phones with fixed-cost rate plans)

– Individual customer (sort of an “anything else” answer option)

By grouping these Traits into a TraitGroup, it is implicitly assumed that a cus-

tomer may be classified into exactly one of these stereotypes.

• 22 Needs, such as “Multimedia”, “Price sensitive”, “Gaming”, or “Comfort”.

• 78 Attributes with a total of 374 AttributeValues.

– Of these, 51 are Attributes with a Boolean value range, denoting the presence

or absence of a particular feature.

– All value ranges contain a dedicated “NONE” AttributeValue to model lack

of knowledge explicitly, i.e., even “Boolean” value ranges contain 3 elements.

– The modelled Attributes range from purely technical properties such as

“weight”, “camera resolution”, or “manufacturer” to artificial marketing

terms like “target audience”, demonstrating the flexibility of the modelling.

• 1198 Influences, resulting in a maximum parent degree of 10 for a ReasoningEle-

ment (we anticipate that the processing of a domain model has a complexity that

is exponential with respect to the parent degree).

To give a rough idea of the size of the domain model, fig. 3.8 shows a rendering of

the graph defined by the ReasoningElements and Influences (omitting non-connected

ReasoningElements). Generally, Traits are located in the center of the image, ringed by

Needs, while AttributeValues would form the “leaves” on the outsides.

3.5 Conclusion

In this chapter, we presented a metamodel for modelling domains for recommender

systems. The metamodel represents the first main contribution of this dissertation. It

can be separated into a customer metamodel and a product metamodel.

45

CHAPTER 3. METAMODEL SPECIFICATION AND SEMANTICS

Figure 3.8: Sample rendering of the real domain model

The customer metamodel allows for specifying customer properties such as age, pro-

fession, or similar objective information. Furthermore, it provides means for modelling

expectations, desires and needs that customers have regarding the product they intend

to buy. Elements from this model will later be used by the recommender system to

elicit the appropriate information from concrete customers by engaging in a dialogue

with them (cf. chapter 5).

The product metamodel, on the other hand, allows for modelling the technical prop-

erties of the products that are sold in the domain. For each technical attribute, a

finite range of possible values has to be specified. Instances of the product metamodel

will later be used by the recommender system to derive a utility function that is used

to rank the contents of the product catalogue according to the customer’s wishes (cf.

chapter 7).

46

3.5. CONCLUSION

Elements from both parts are connected by Influences that represent the causal interre-

lations that may exist between customer needs and the technical properties that fulfill

these needs. The Influences are an essential component in generating the inference

engine that forms the core of our recommender system (cf. chapters 4 & 6).

47

4 Metamodel Implementation

4.1 Intermediate Representation

4.1.1 Intermediate Model

The intermediate model is designed as a connective link between the more intuitive,

use-case oriented domain metamodel and the concrete implementation of the inference

engine.

As such, it must be formal and concise enough to allow for a well-defined implemen-

tation of its intended semantics. In fact, we are able to prove the soundness and

completeness of our concrete implementation with respect to the intermediate model

in section 4.2.2. Secondly, it must be expressive enough to support the representation

of the behaviour of the recommender system as implied by instances of the domain

metamodel.

Definition 4.1.1 (Intermediate Model) The intermediate model I = (V,E) is de-

fined as follows:

V denotes a set of nodes representing variables. Every V ∈ V has an associated

discrete finite value range dom(V) and a BeliefState βV (cf. definition 4.1.2 below).

There are two sets S and T, not necessarily disjoint, with V = S ∪T. S denotes the

set of sources and T denotes the set of targets.

E denotes the set of edges E with E = (S ∈ S, s ∈ dom(S), T ∈ T, t ∈ dom(T), w ∈ R)

where S is the source variable of E, s is the source value of E, T is the target variable

of E, t is the target value of T , and w is the weight of E.

Given E = (S, s, T, t, w), we often call the tuple (S, s) a cause and the tuple (T, t) an

effect with respect to E.

Before describing the process to obtain an intermediate model from a domain model

in detail in section 4.1.2, we will provide a definition of the semantics of an edge in

49

CHAPTER 4. METAMODEL IMPLEMENTATION

the intermediate model which will be closely along the lines of definition 3.3.4.

Definition 4.1.2 (Belief State in the Intermediate Model) Given an interme-

diate model I = (V,E), the Belief State βV of a variable V ∈ V is defined as follows:

βV =
⋃
v∈dom(V) {(v, βv)} where we call βv the system’s degree of belief relating to the

value v with ∀(v, βv) ∈ βV : βv ∈ [0..1].

Note that probability theory would give us an obvious implementation of the belief

state as given by definition 4.1.2. However, at this point of our work, we do not

want to limit ourselves to regard a degree of belief exclusively as a probability of the

corresponding event. Restricting intermediate models to such a narrow view would not

provide significant advantages, while, on the other hand, it would possibly preclude

alternative approaches to be described in terms of the intermediate model.

For example, if using probability theory, a restriction of
∑

v∈dom(V) βv = 1.0 would

have to be observed by all implementations, which is intentionally not enforced by

definition 4.1.2 to allow a greater freedom of implementation.

We could envision, e.g., implementations based on fuzzy logic, pure propositional logic,

or even entirely different ways of reasoning. As long as they are able to express their

internal inference results in terms of a belief state as introduced by definition 4.1.2

(subject to the constraints imposed by definition 4.1.3 below), these approaches could

be subsumed by our modelling.

Nevertheless, we agree that probability theory is a very suitable way of reasoning about

belief states. After all, the concept was also chosen as the basis for the implementation

of our own inference engine (see section 4.2).

Definition 4.1.3 (Semantics of an Edge in the Intermediate Model) Let E =

(S, s, T, t, w) be an edge in an intermediate model I = (V,E). The semantics of E

then define how changes in the belief state of the source variable S propagate to the

target variable T .

Assume that, due to newly elicited knowledge, the system’s belief state for S changes

from βS = {. . . , (s, βs), . . .} to β̂S = {. . . , (s, β̂s), . . .}.

Then, the existence of E implies corresponding changes in βT , as follows:

• If β̂s ≥ βs, it holds that β̂t ≥ βt.

• If β̂s ≤ βs, it holds that β̂t ≤ βt.

50

4.1. INTERMEDIATE REPRESENTATION

The weight w controls the strength of the propagation, i.e., the larger the value w,

the larger will the value of |β̂t− βt| be (for a given |β̂s− βs| and all other things being

equal). The exact numerical meaning of w is left to the implementation, however.

This definition is largely analogous to the semantics of Influences in definition 3.3.4.

Whereas Influences allow to express the system’s beliefs only in respect to complete

ReasoningElements, the intermediate model provides a more fine-grained specification

of the change behaviour that is useful for concrete implementations.

Given an intermediate model, a concrete implementation only needs to define how

its internal workings relate to the concepts of “degree of belief” and how exactly the

“weight” factor is to be interpreted. For our concrete implementation, we will answer

these questions in section 4.2.

4.1.2 Generation from Domain Model

The procedure to generate an intermediate representation I = (V,E) from a given do-

main model is straight forward. First, the ReasoningElements have to be appropriately

converted into variables. Then, the Influences have to be converted into edges.

4.1.2.1 Converting ReasoningElements

When transforming domain models into their respective intermediate representations,

one variable V ∈ V is created for every ReasoningElement. More precisely, Traits and

Needs (i.e., all implementors of the InfluenceSource interface) are considered sources ∈
S, whereas Needs and AttributeValues (i.e., InfluenceTarget’s implementors) are targets

∈ T. Note that S ∩ T is generally not empty, since it likely contains Needs (cf. fig.

3.2).

A value range must be defined for all created variables. Along the lines of defi-

nition 3.3.2, Traits and AttributeValues receive simple binary value ranges since ei-

ther their positive or their negative state can be applicable in a particular situa-

tion. Therefore, for a variable V that was created from a Trait or an AttributeValue,

dom(V) = {pos1 ,neg1}.

For Needs, on the other hand, both the positive and the negative state of definition 3.3.2

may be applicable in varying degrees as introduced in section 3.1. To represent this,

the generation process requires the specification of a parameter d ∈ N (for “detail”).

51

CHAPTER 4. METAMODEL IMPLEMENTATION

Using d, the value range of a variable V that was created from a Need is defined as

dom(V) = {posi |i ≤ d} ∪ {negi |i ≤ d} ∪ {neutral}, leading to |dom(V)| = 2d+ 1.

Effectively, this allows us to represent the degree to which a Need applies on the Likert-

scale [Lik32] that serves as a widely accepted standard in questionnaires that require

answers to attitude-related questions. In our main use case, we chose d = 2 globally

for all Needs, leading to value ranges as exemplified in table 4.1.

v ∈ dom(V) Intuition

pos2 “strongly agree”
pos1 “partly agree”

neutral “neither agree nor disagree”
neg1 “partly disagree”
neg2 “strongly disagree”

Table 4.1: Possible value range for a Need

Instead of a global parameter, it would also be possible to define d on a per-Need

basis by a trivial extension of the domain metamodel (see section 3.1). However, it

turned out that domain modellers found it difficult to decide on a specific level of

detail for individual Needs, so that we opted for one global value that conforms to the

expectations posed to Likert-scales.

Note on Implementation It should be noted that, while these things would be con-

ceptually independent, the cardinality of the value ranges for Need-variables has a

direct impact on the performance of our concrete implementation. Hence, a modeller

must observe the trade-off between a desire for very fine-grained inference and the tim-

ing constraints for interactive system usage. Also, very detailed reasoning requires the

customers to give equally detailed answers, which may not be appropriate. The default

value range has shown to be reasonable in our use cases with respect to granularity,

complexity for customers, and performance.

4.1.2.2 Converting Influences

Influences are each converted into a number of edges, which serve to connect the values

of the corresponding source variable of the Influence to the appropriate values of the

corresponding target variable. Therefore, given a globally fixed parameter d, d2 edges

are created per Influence between Needs.

52

4.1. INTERMEDIATE REPRESENTATION

For example, given an Influence from Need S to Need T with (cause = positive, effect =

negative,weight = 2), the following edges would be created if we assume d = 2:

E1,1 = (S, pos1, T, neg1, w1,1)

E1,2 = (S, pos1, T, neg2, w1,2)

E2,1 = (S, pos2, T, neg1, w2,1)

E2,2 = (S, pos2, T, neg2, w2,2)

The weights are calculated based on the assumption that the more extreme values (i.e.,

those with a higher index, such as pos2) represent the clearest statements according

to the Likert-scale that the values represent. The weight should reflect this by being

higher for edges to and from values with higher indices. Therefore, the indices are

factored into the calculation of a weight for an edge as follows.

Definition 4.1.4 (Weight of an Edge) Given an edge E = (S, vali, T, valj , w) and

imax and jmax the maximum possible indices of dom(S) and dom(T), respectively, we

define the weight w of E as

w = i∗j
imax∗jmax

∗ wInfluence

with wInfluence being the weight of the original Influence that E was created from,

imax =

{
d if S is a Need

1 otherwise
,

and, analogously,

jmax =

{
d if T is a Need

1 otherwise
.

Example 4.1.5 (Weight of an Edge) As an example, let E1,1, E1,2, E2,1, and E2,2

be as above. With wInfluence = 2, we get w1,1 = 1
2 , w1,2 = w2,1 = 1, and w2,2 = 2 for

their respective weights, since imax = jmax = d = 2.

Note that there are no edges generated to and from the neutral values that may be

in the value range of variables that correspond to Needs when using the technique as

described. Both in our primary use case and in all other domains that were examined,

we never found a requirement to support drawing conclusions from customer state-

ments that would correspond to “I don’t know.” or “I don’t care.” statements or, vice

versa, causal relationships that would explicitly lead the recommender system’s belief

towards one of these statements for a ReasoningElement.

53

CHAPTER 4. METAMODEL IMPLEMENTATION

A Note on Generality Of course, the absence of such a requirement cannot be proven

for all imaginable application domains. Hence, should such a requirement be found, the

domain metamodel would have to be extended – specifically, a way to accomplish this

would be to allow more values for the CauseEffectType as shown in figure 3.5. Given

such an extension, the process being described in the current section would have to

be expanded as well. However, instances of such an extension would be within the

definition of the intermediate representation and its usage as described in section 4.2

would not be affected. Having to implement only local changes in spite of a significant

modification is one of the advantages of the layered nature of our approach. We will

revisit this topic in chapter 8.

4.2 Implementation Based on Bayesian Networks

4.2.1 Introduction

Bayesian networks as defined in section 2.2 have a number of properties that make

them suitable as the underlying formalism for the implementation of the inference

engine:

• Bayes networks are designed to represent exactly these kinds of cause-effect re-

lationships that form the core of both the domain model and its intermediate

representation.

• Bayes networks are able to represent the uncertainty that is inherently present

when reasoning about human emotions and preferences.

• Bayes networks can cope with the incomplete knowledge that must be expected

in dialogue management:

– Since the dialogue flow is very flexible, answers are obtained in an arbitrary

order. Bayes networks support this, since they do not place requirements

on evidence being inserted in any particular sequence.

– Some questions might even not be answered at all, which is also supported

by Bayesian networks since the inference will transparently use conditional

probability distributions for all random variables that do not have associ-

ated evidence. As a sidenote, this also means that there is no “minimum

amount” of evidence that the system would have to obtain before being

able to provide recommendations.

54

4.2. IMPLEMENTATION BASED ON BAYESIAN NETWORKS

– Belief revision (i.e., if customers change their opinion during the dialogue)

is also supported transparently by simply changing the inserted evidence to

represent the corrected answer.

• While our approach primarily uses the causal way of reasoning in a Bayes net

(i.e., knowledge is perceived as propagating along the direction of the edges),

the so-called diagnostic view of the network may be used to obtain explanations

of decisions or other system behaviour without further effort.

Furthermore, mature software libraries exist, which are free for education, research,

and commercial purposes, to assist the usage of Bayesian networks in practical appli-

cations, such as computational biology [FLNP00], information retrieval [dCFLH04],

and medicine [DMIZ97].

The intermediate semantics defined in 4.1.1 were therefore implemented by defining

an algorithm to transform an instance of the intermediate model into a corresponding

Bayesian network. The network has to satisfy the requirement to represent the se-

mantics of the intermediate model as described in definition 4.1.3 in a consistent way,

which will be proven in section 4.2.2.

Given an instance of the intermediate model I = (V,E), with V being the set of

variables and E being the set of edges (S, s, T, t, w), we first define the structure of the

Bayes net in a straight-forward way:

• Each variable V ∈ V is represented in the Bayes net as a single node nV with a

corresponding random variable rV that has a value range dom(V). To simplify

notation, we may also write V for node nV and random variable rV , if doing so

does not create ambiguity.

• For each edge E = (S, s, T, t, w) ∈ E in the intermediate model, an edge (nS , nT)

and, consequently, a corresponding conditional dependency between the random

variables rS and rT is added to the Bayes net, unless it is not already present.

– If E contains several edges of the form (s, ∗, t, ∗, ∗), only one edge is actually

added to the Bayes net. The mutiplicity of edges is then taken into account

when constructing the conditional probability tables of the random variables

as detailed below.

A central requirement for the applicability of Bayesian networks is the conditional

independence of the random variables (cf. section 2.2 and [RN10, 13.5] for a general

discussion) in the above structure. Namely, each random variable must be condition-

ally independent of its non-descendants, given its parents. Simply put, if a conditional

55

CHAPTER 4. METAMODEL IMPLEMENTATION

dependency between two variables exists, it must be represented in the Bayes net by

edges.

We build a so-called “näıve” Bayes model, i.e., conditional indepence between variables

is assumed without actually proving it. Such a proof, if possible at all, would have to

be done for every targeted domain separately and would require enormous amounts of

statistical data. However, näıve Bayesian networks are known to work “surprisingly

well” [RN10, p.499] (cf. section 2.2.2).

Also, though not a proof, we find it plausible that our Bayes networks are “close”

to a truthful representation of the relations between the random variables. This is

based on the consideration that modellers do have the option of using Influences to

express all causal interrelations between variables if they deem them relevant. Doing so

would then create a corresponding conditional dependency in the Bayesian network.

Consequently, the absence of a dependency implies that, while two given random

variables might not be independent, the modeller did not consider the relation between

the two corresponding ReasoningElements to be relevant enough to warrant an explicit

representation as an Influence.

4.2.2 Bayesian Model

For every random variable generated in the Bayesian network, either a conditional or a

plain probability distribution must be specified, depending on whether the respective

random variable has any parents.

Definition 4.2.1 (Parents of a Random Variable) Given an instance of the in-

termediate model (V,E), let V ∈ V be a variable (which has a corresponding node

nV and random variable rV in the Bayesian network).

The set of parents of V is defined as parents(V) = {X|X ∈ V∧∃((X, ∗, V, ∗, ∗) ∈ E)}.

The set of parent edges of V is defined as parentedges(V) = {(∗, ∗, V, ∗, ∗) ∈ E}.

First, consider random variables without parents. This is always the case if the random

variable originates from a Trait in the domain model instance but may also happen

for any other variables if the particular domain model instance did not contain cor-

responding Influences. For these variables, a total probability distribution must be

provided. Unless a suitable specific a-priori probability distribution can be obtained

from an external source (as illustrated, for instance, in table 3.1), a uniform probability

distribution will be assumed.

56

4.2. IMPLEMENTATION BASED ON BAYESIAN NETWORKS

More interesting, of course, are random variables that are dependent on other variables.

In this case, a conditional probability table (“CPT”) must be specified, i.e., for every

possible valuation of the list of parent variables, a probability distribution has to be

provided. Intuitively, the “columns” of the conditional probability table are filled

one-by-one depending on their corresponding valuation of the parent variables.

Example 4.2.2 (Sample conditional probablity table) Consider the node/vari-

able “Memory medium” from example 3.3.7. In this case, parents(Memory medium) =

{Multimedia,Office} which means that we have to calculate the conditional probability

distribution P(Memory medium|Multimedia,Office).

To save space, we assume that all variables are Boolean and we abbreviate them as

M m, M , and O , respectively. In a tabular form and using the proposition shorthands

introduced in definition 2.2.1, the CPT would look as illustrated by table 4.2.

M = true M = false
O = true O = false O = true O = false

P (m m|m ∧ o) P (m m|m ∧ ¬o) P (m m|¬m ∧ o) P (m m|¬m ∧ ¬o)

P (¬m m|m ∧ o) P (¬m m|m ∧ ¬o) P (¬m m|¬m ∧ o) P (¬m m|¬m ∧ ¬o)

Table 4.2: Sample CPT for Memory medium

We chose a variant of the “Noisy-OR” concept as the general idea behind the con-

struction of our CPTs that we use here in an extended way that works well with the

multi-valued random variables of our use case (cf. also [RN10, PPNH94, DG93]).

Generally speaking, Noisy-OR is a more concise way of specifying conditional prob-

ability tables that is applicable if the random variables in question follow certain

restrictions:

Given an effect and its possible causes, Noisy-OR assumes that each individual cause

can trigger the effect independently of the other causes (realising the “OR”). On

the other hand, each cause may be inhibited from triggering the effect (realising the

“Noisy” property), again, independently of the other causes. These restrictions make

it possible to build conditional probability tables in a systematic way, rather than

determining each entry “manually”.

57

CHAPTER 4. METAMODEL IMPLEMENTATION

Under these independency assumptions, the probability that several simultaneous

causes do trigger the dependent effect can be determined by looking at the complemen-

tary event: If these causes are present but do not trigger the effect, all of the causes

must have been inhibited. The probability for this can then be calculated by simply

multiplying the individual probabilities that each single cause has been inhibited.

In other words, given a variable Effect that is causally dependent on two variables

Cause1 andCause2 as described above, we can calculate P (effect |cause1, cause2) as

follows (all variables are Boolean and inhibition(X) denotes the inhibition probability

assigned to variable X):

P (effect |cause1, cause2) = 1− P (¬effect |cause1, cause2)

= 1− (inhibition(Cause1) ∗ inhibition(Cause2))

Other entries of the conditional probability table can be calculated analogously and

the approach scales well to random variables with many parents. In fact, given a

random variable variable with n parents, O(2n) values would have to be specified to

give the full CPT. This is reduced to O(n) parameters (i.e., the inhibition probabilities

of each parent variable) if the causal relationship follows the Noisy-OR restrictions (cf.

[RN10, 14.3]).

By introducing a “leak probability”, the approach can be extended to allow for the fact

that there may be further, unknown causes that may trigger the effect, i.e., allowing

for P (effect |¬cause1,¬cause2) > 0.

The central assumptions of our application reflect the restrictions to apply Noisy-OR

appropriately, allowing us to use the approach for building our CPTs:

1. Customer needs can be triggered by multiple causes. Analogously, a particular

technical property may be desirable because of several causes.

2. All these causes can produce the effect independently of each other, i.e., every

single cause may produce the effect, regardless of other possible causes for the

the same effect.

3. However, when reasoning about human preferences and feelings, it is not certain

that an effect is actually invoked at all, even if one or several of the possible

causes are present. Hence, the possible causes must be assigned an inhibition

probability to model this fact.

58

4.2. IMPLEMENTATION BASED ON BAYESIAN NETWORKS

4. For the same reason, on the other hand, the effect may be invoked despite the fact

that neither of the causes are present. I.e., there is always a “base” probability

for the effect that can only be increased (by appropriate Influences) – similar to

the “leak” probability in the conventional Noisy-OR concept.

Example 4.2.3 (Applicability of Noisy-OR) As an illustration of these assump-

tions and their applicability to our concrete use case, consider the reasons why people

buy Apple phones. These devices are well-known for their ease-of-use and have a

reputation as expensive high-class smartphones. A wish for usability and a desire for

prestige therefore make two reasons for buying one of them (cf. point 1 in the list

above).

Both the wish for usability and the desire for prestige can be the sole reason a customer

wants an Apple smartphone (cf. point 2). There may also be customers that want both

an easily usable and prestigious phone but who do not want an Apple smartphone,

e.g., because of company regulations (cf. point 3).

Last, but not least, Apple smartphones may also appeal to people that neither have a

particular need for usability or prestige, since these are certainly not the only reasons

for buying an Apple phone (cf. point 4).

Central to the Noisy-OR concept is the provisioning of an inhibition probability for

each possible cause, representing the likelihood that the cause is unable to achieve its

effect. In our approach, instead of specifying these probabilities directly, we calculate

them by using the weights of the corresponding edges.

Definition 4.2.4 (Inhibition Probability Conversion Function) A strictly de-

creasing function ipc : w →]0, 1[is called inhibition probability conversion function.

In other words, greater weights w lead to smaller inhibition probabilities ipc(w), which

effectively “implements” definition 4.1.3. On the other hand, this general definition

allows a great amount of freedom for implementers to adapt the function to their own

interpretation of weights from their intermediate model.

Note that there is no conceptual restriction on the allowed values for a weight w, as

long as the value can be processed using the conversion function. In practice, however,

we found it useful to strictly limit the available values as we will show in example 4.2.6.

Definition 4.2.5 (Valuation of a Random Variable) Let V denote a random

variable in a Bayesian network.

59

CHAPTER 4. METAMODEL IMPLEMENTATION

A set of tuples val(V) = {(P, p)} with P a random variable and p ∈ dom(P) is called

a valuation of V , iff it contains exactly one tuple (P, ∗) for every P ∈ parents(V).

We now present an algorithm that calculates a probability distribution for a random

variable given a concrete valuation of its parents in the Bayesian network. In order

to extend the Noisy-OR approach to our multi-valued random variables, we calculate

the inhibition probability individually for each possible value. We then normalize the

probabilities to obtain a proper probability distribution for the variable. Recall that

all random variables considered are assumed to have finite domains.

Algorithm 4.1 Calculation of a Probability Distribution for a Single Valuation val(V)

1: Let ipc(w) be an inhibition probability conversion function.
2: Let V be the random variable for which the CPT is to be calculated.
3: Let inhibition[] be an array with |dom(V)| elements, representing the “inhibition

probability” of each outcome.
4: Let inhibition[v], with v ∈ dom(V), be the array element corresponding to v.
5: for all v ∈ dom(V) do
6: inhibition[v] = 0.5 {Initialise with a “base” probability}
7: end for
8: for all (P, p, V, v, w) ∈ parentedges(V) do
9: if (P, p) ∈ val(V) then

10: inhibition[v] = inhibition[v] ∗ ipc(w)
11: end if
12: end for
13: Let cpt[] be the array holding the current column of the conditional probability

table.
14: for all v ∈ dom(V) do
15: cpt[v] = 1.0− inhibition[v]
16: end for
17: Pval (V) = normalize(cpt[])

Algorithm 4.1 only calculates a part of the entire conditional probability table, namely

a single “column” of the table if we consider a CPT representation analogous to exam-

ple 4.2.2. We use Pval (V) as notation for this probability distribution. By iterating

through all possible valuations of the parent variables of V , algorithm 4.1 may be used

to fill the CPT for V column-by-column.

The initialisation of the inhibition probabilities array with starting values of 0.5 was

chosen to be consistent for instances where no edges to the corresponding effect exist

in the intermediate model. In those cases, the starting value would remain unchanged

60

4.2. IMPLEMENTATION BASED ON BAYESIAN NETWORKS

throughout the execution of algorithm 4.1, making a “leak” probability of 0.5 a logical

choice. In our approach, a probability of 0.5 models a “no information available” state

of the system.

Example 4.2.6 (Inhibition Probability Conversion Function) In our project,

the inhibition probability conversion was chosen as ipc(w) = 0.3w according to defini-

tion 4.2.4, based on the following considerations (note in particular that w > 0 holds

for our use case):

To simplify our domain modelling, we only allowed “weak” and “strong” Influences,

represented by numerical weights of 1 and 2, respectively. Also, we decided that a

weak Influence should correspond to an inhibition probability of 30% and a strong

Influence should correspond to 10% based on the notion that two weak Influences were

supposed to be roughly equal in strength to one strong Influence.

Therefore, the uniform formula of 0.3w was chosen to approximate these inhibition

probabilities (leading to 9% for weight 2), while producing consistent results for all

other fractional values that may occur during the generation of the intermediate model

(cf. section 4.1.2).

Proofs

Before we can prove the correctness and completeness of the transformation of an inter-

mediate model into a Bayesian network, we must represent the conditional probability

tables as calculated by algorithm 4.1 in closed form.

We use the familiar notation of e.w to denote the weight of en edge e = (T, t,X, x, w).

Proposition 4.2.7 (Closed form of algorithm 4.1) Given a conditional probabil-

ity table as constructed by algorithm 4.1, the conditional probability of the outcome

T = t given a valuation val(T) = {(S1, s1), . . . , (Sn, sn)} can be formulated as

P (T = t|S1 = s1, . . . , Sn = sn) =
1− 0.5(

∏
e∈Et

ipc(e.w))∑
Et∈ET

(1− 0.5(
∏
e∈Et

ipc(e.w)))
(4.1)

with

Et = {e ∈ E|e = (X,x, T, t, ∗) ∧ (X,x) ∈ val(T)}
ET = {Et|t ∈ dom(T)}

61

CHAPTER 4. METAMODEL IMPLEMENTATION

Proposition 4.2.7 gives us a single probability P (T = t|S1 = s1, . . . , Sn = sn). Hence,

the entire conditional probability distribution P(T |parents(T)) can be calculated by

iterating through all combinations of the values in dom(T) and all possible valuations

of the parent variables of T

In other words, each application of proposition 4.2.7 fills exactly one “entry” of the

CPT shown in example 4.2.2, whereas algorithm 4.1 produces an entire “column” of

the CPT during each invocation. We will now show that both ways are equivalent.

Proof The proof will first detail both the construction of the inhibition[] array and

the composition of the set Et:

Lines 5–7 initialise all elements of inhibition[] with the value 0.5, representing a “base”

inhibition probability which will be decreased whenever a corresponding edge has to

be considered.

The for-loop in line 8 iterates over all edges ending in V in the intermediate model.

Line 9 checks whether the current edge corresponds to the currently constructed val-

uation val(V).

If this is the case, the current edge e is known to be part of Et and in line 10, the

corresponding element of inhibition[] is multiplied with ipc(e.w) with e.w being the

weight of e.

Therefore, after completion of the loop in lines 8–12, we have processed the contents

of all sets Ex for all x ∈ dom(V). Also, we know that each element of inhibition[]

contains a product consisting of the factor 0.5 and one factor of ipc(e.w) for each

element of the corresponding set Ex:

∀x ∈ dom(V) : inhibition[x] = 0.5(
∏
e∈Ex

ipc(e.w)) (4.2)

Now, since the elements of inhibition[] contain inhibition probabilities that we cannot

use directly in the specification of a Bayesian network, we use lines 14–16 to fill the

cpt [] array with the probabilties of the respective complementary events:

∀x ∈ dom(V) : cpt [x] = 1.0− (0.5(
∏
e∈Ex

ipc(e.w))) (4.3)

62

4.2. IMPLEMENTATION BASED ON BAYESIAN NETWORKS

With ET as defined in proposition 4.2.7, the sum of all elements in cpt [] can be written

as:

∑
x∈dom(V)

cpt [x] =
∑

Et∈ET

(1− 0.5(
∏
e∈Et

ipc(e.w))) (4.4)

Since the sum may be unequal to 1.0, we normalize the array in line 17 to finally

obtain the conditional probability P (T = t|S1 = s1, . . . , Sn = sn) by dividing the

corresponding element of cpt [] by the sum:

P (T = t|S1 = s1, . . . , Sn = sn) =
1− 0.5(

∏
e∈Et

ipc(e.w))∑
Et∈ET

(1− 0.5(
∏
e∈Et

ipc(e.w)))
(4.5)

Hence, after line 17, we have calculated one entry of the probability distribution

Pval (T) for a given valuation val . Pval (T) may therefore be constructed by iterat-

ing through the elements of dom(T).

q.e.d.

In propositions 4.2.8 and 4.2.9 we will now show that changes in the intermediate

model, namely adding an edge or modifying the weight of an edge, indeed have the

expected effects on the generated conditional probability tables.

Proposition 4.2.8 (Soundness of algorithm 4.1, part a) Let (V,Ewith) and

(V,Ewithout) denote two intermediate models that are identical except for one ar-

bitrary additional edge, i.e., Ewith = Ewithout ∪ {(S, s, T, t, w)}.

Then, the following inequality holds for the Bayesian networks generated from them:

P(V,Ewith)(T = t|S = s, . . .) > P(V,Ewithout)(T = t|S = s, . . .)

Proof According to proposition 4.2.7, it holds:

P (T = t|S = s, . . .) =
1− 0.5(

∏
e∈Et

ipc(e.w))∑
Et∈ET

(1− 0.5(
∏
e∈Et

ipc(e.w)))
(4.6)

The numerator of the right-hand side of equation 4.6 is also contained as one of the

summands in its denominator.

63

CHAPTER 4. METAMODEL IMPLEMENTATION

We single out that summand and substitute xt := 1− 0.5(
∏
e∈Et

ipc(e.w)):

P (T = t|S = s, . . .) =
xt

xt +
∑

Et′∈ET \Et
(1− 0.5(

∏
e∈Et′

ipc(e.w)))
(4.7)

To simplify, we further substitute c :=
∑

Et′∈ET \Et
(1− 0.5(

∏
e∈Et′

ipc(e.w))):

P (T = t|S = s, . . .) =
xt

xt + c
=
xt + c− c
xt + c

= 1− c

xt + c
(4.8)

Note that the value of c is not dependent on whether we calculate P(V,Ewith)(T =

t|S = s, . . .) or P(V,Ewithout)(T = t|S = s, . . .).

Conversely, xt = 1− 0.5(
∏
e∈Et

ipc(e.w)) differs between (V,Ewith) and (V,Ewithout)

by one additional factor of ipc(e.w). Therefore, it holds that xwith
t > xwithout

t (since

ipc(e.w) ∈]0, 1[), leading to

1− c

xwith
t + c

> 1− c

xwithout
t + c

(4.9)

q.e.d.

Proposition 4.2.9 (Soundness of algorithm 4.1, part b) Let E denote a set of

edges in an intermediate model and δ > 0.

Let (V,Ebig) and (V,Esmall) denote two intermediate models that differ only in

the weight of a single edge, i.e., Ebig = E ∪ {(S, s, T, t, w + δ)} and Esmall = E ∪
{(S, s, T, t, w)}.

Then, the following inequality holds for the Bayesian networks generated from them:

P(V,Ebig)(T = t|S = s, . . .) > P(V,Esmall)(T = t|S = s, . . .)

The proof of proposition 4.2.9 is largely analogous to proving proposition 4.2.8. It

exploits the fact that one of the ipc(e.w) factors within xbig
t has a greater e.w parameter

than its corresponding factor in xsmall
t , leading again to xbig

t > xsmall
t (since xt =

1− 0.5(
∏
e∈Et

ipc(e.w)) and ipc(e.w) is strictly decreasing).

We have now proven the soundness of algorithm 4.1 in propositions 4.2.8 and 4.2.9 in

the sense that modifications of intermediate models are appropriately represented in

the Bayesian networks generated from them.

64

4.2. IMPLEMENTATION BASED ON BAYESIAN NETWORKS

Additionally, we will prove its completeness, i.e., that if probability distributions in

the generated Bayesian network deviate from the uniform distribution assumed in the

default case, the reason of this must have been represented in the intermediate model.

Proposition 4.2.10 (Completeness of algorithm 4.1) Let 1 = (V1,E1) and 2 =

(V2,E2) be two intermediate models. Assume without loss of generality that V1 =

V2 = V.

If, in the Bayesian networks generated from the models, P 1(T = t|S = s, . . .) >

P 2(T = t|S = s, . . .), then the following holds:

(i) ∃e = (S, s, T, t, w) ∈ E1 : e /∈ E2 ∨
(ii) ∃e1 = (S, s, T, t, w1) ∈ E1, ∃e2 = (S, s, T, t, w2) ∈ E2 : w1 > w2 ∨

(iii) ∃e = (S, s, T, t′, w) ∈ E2 : t′ 6= t, e /∈ E1 ∨
(iv) ∃e2 = (S, s, T, t′, w2) ∈ E2 : ∃e1 = (S, s, T, t′, w1) ∈ E1 : t′ 6= t, w2 > w1

In other words, to account for the difference, either there exists an additional edge to

t in E1 (i), one of the common edges to t of E1 and E2 have a different weight (ii),

there exists an additional edge in E2 towards t′ ∈ dom(T) \ {t} (iii), or E1 and E2

have a common edge from s to t′ that has a different weight (iv).

Proof Let P 1(T = t|S = s, . . .) > P 2(T = t|S = s, . . .) with

P 1(T = t|S = s, . . .) =
1− 0.5(

∏
e∈E1

t
ipc(e.w))∑

E1
v∈E1

T
(1− 0.5(

∏
e∈E1

v
ipc(e.w)))

P 2(T = t|S = s, . . .) =
1− 0.5(

∏
e∈E2

t
ipc(e.w))∑

E2
v∈E2

T
(1− 0.5(

∏
e∈E2

v
ipc(e.w)))

Both conditional probabilities are fractions with numerator and enumerator each > 0.

Hence, for the inequality to hold, it must be the case that either a) the numerator of

P 1(T = t|S = s, . . .) is greater than the numerator of P 2(T = t|S = s, . . .) or b) its

denominator is smaller – or both.

65

CHAPTER 4. METAMODEL IMPLEMENTATION

a) Numerator

Assume that the numerator of P 1(T = t|S = s, . . .) is greater and simplify:

1− 0.5(
∏
e∈E1

t

ipc(e.w)) > 1− 0.5(
∏
e∈E2

t

ipc(e.w)) ⇔

∏
e∈E1

t

ipc(e.w) <
∏
e∈E2

t

ipc(e.w)

which may be the case if the left-hand side consists of more factors than the right-hand

side (since ipc(x) ∈]0, 1[) or if at least one factor on the left-hand side has a greater e.w

parameter than the matching factor on the right-hand side (due to the monotonicity

of ipc(x)).

Since the construction method ties each factor and its exponent to exactly one edge

and its weight, this leads to (i) or (ii) in proposition 4.2.10.

b) Denominator

Assume that the denominator of P1(T = t|S = s, . . .) is smaller and simplify:

∑
E1

v∈E1
T

(1− 0.5(
∏
e∈E1

v

ipc(e.w))) <
∑

E2
v∈E2

T

(1− 0.5(
∏
e∈E2

v

ipc(e.w))) ⇔

∑
E1

v∈E1
T

∏
e∈E1

v

ipc(e.w) >
∑

E2
v∈E2

T

∏
e∈E2

v

ipc(e.w)

Since ipc(x) ∈]0, 1[, all factors are > 0 and therefore all summands are > 0. Hence,

the inequality holds only if

∃v ∈ dom(T) :
∏
e∈E1

v

ipc(e.w) >
∏
e∈E2

v

ipc(e.w)

which, analogously to the line of reasoning in a), can only be the case if the product∏
e∈E1

v
ipc(e.w) has fewer factors than

∏
e∈E2

v
ipc(e.w) or that one or more factors have

smaller e.w parameters (due to the monotonicity of ipc(x)).

66

4.3. CONCLUSION

Again, each factor has exactly one corresponding edge in the intermediate model.

Hence, the existence of additional edges towards v or variations in their weights can

be deduced. However, two cases regarding v must be distinguished for such an edge:

1. v 6= t:

In this case, the corresponding edge is not connected to t but to a different

element of dom(T), leading to (iii) or (iv) in proposition 4.2.10, respectively.

2. v = t:

Here, the corresponding edge would be connected to t. However, according to

propositions 4.2.8 and 4.2.9, the existence of such an edge in E2 would lead to

P 1(T = t|S = s, . . .) < P 2(T = t|S = s, . . .), violating the initial assumption of

proposition 4.2.10. Therefore, this case is impossible.

q.e.d.

To summarize, these proofs show both the soundness and completeness of the trans-

formation of an intermediate model into a Bayesian network according to algorithm

4.1. Hence, it can be said that the generated Bayesian networks adequately capture

the semantics of a domain model according to definition 3.3.4.

4.3 Conclusion

In this chapter, we have have shown how the Bayesian network that forms the core

of the inference engine of our approach is generated from a domain model. To this

end, the model is first transformed into a more detailed and formalized intermediate

representation. From there, the Bayes network is generated in such a way that its

graph structure and calculated conditional probability tables reflect the semantics

of Influences as established in definition 4.1.3. The construction of the conditional

probability tables is based on the “Noisy-OR” concept which was adapted to suit the

requirements of the use case adequately.

While the transformation of a domain model into its intermediate representation is

relatively straight forward, we have explicitly proven the soundness and the correct-

ness of the algorithm that generates the Bayesian network. Adding the intermediate

layer creates a certain abstraction between the domain model and the Bayesian imple-

mentation that allows to keep adaptations of the domain model semantics local and

independent of the Bayesian network, as long as the intermediate representation can

remain constant (see also figure 1.2).

67

5 Dialogue Management

5.1 Question Based Preference Elicitation

Our general approach is to elicit the customer’s preferences by having the recommender

system pose questions that the customer is supposed to answer. While it is not our

goal to incorporate natural language processing in the narrower sense, the dialogue

structure must be flexible enough to support a natural dialogue flow, which is crucial to

our use case of supporting a salesperson in his/her recommendation dialogue directly

at the point-of-sale.

Therefore, a rigid dialogue structure would not be acceptable for both salespersons

and customers, leading us to formulate the following requirements for the dialogue

management:

• Answering a particular question must not be compulsory.

It must be possible to skip questions and the recommender system must be able

to seamlessly continue its dialogue. Likewise, the system must not rely on a

“completed” dialogue before providing recommendations. Ideally, recommen-

dations should be provided for all combinations of answered and unanswered

questions.

• A customer must be allowed to change the topic on his/her own initiative.

The dialogue manager must be able to respond to cases where the customer does

actually answer a different question than the current one.

• A customer must be allowed to modify his/her answer to a past question.

Such a belief revision must be possible without interference to other parts of

the dialogue, e.g., without losing answers to later questions (as would commonly

be the case in a “wizard” style dialogue with a strict forwards and backwards

navigation paradigm), and the changed knowledge must be integrated into the

recommendations transparently.

69

CHAPTER 5. DIALOGUE MANAGEMENT

To fulfill these requirements, the dialogue management relies to a certain extent on an

inference engine whose features (e.g., to support the partial knowledge that must be

assumed if users are allowed to skip questions) will be discussed in chapter 6.

The goal of this chapter is to describe how the dialogue is built to take advantage of

those features.

We use a set of statecharts (cf. section 2.3) which are in part domain-independent and

in part domain-dependent to both visualize the dialogue structure and to provide well-

defined execution semantics for the system’s behaviour for implementors (see section

5.3 for notes on our implementations). This approach has been published in [RBF07].

5.1.1 General Interaction Concept

Fig. 5.1 shows a coarse overview of the general dialogue cycle that we will refine during

the course of this chapter. Esssentially, the recommendation process is divided into

two cyclic sub-processes that run in parallel:

• The recommendation loop continually alternates between presenting a recom-

mendation to the customer and producing a new, updated recommendation for

display.

• The dialogue loop similarly switches between choosing the optimal next questions

and presenting them to the customer, waiting for an answer.

As shown in the figure, the loops are synchronised by the customer’s answers – both

have to react to the newly acquired knowledge which is signalled by the answer event

and, on the other hand, cannot do meaningful work in the background without new

knowledge.

Modelling both loops independently of each other allows a greater flexibility for im-

plementors. A suitable adaptation of the statechart might, for example, remove the

strict requirement that every answer produces a new recommendation and opt to up-

date the recommendations only if the inference engine detects significant changes in

its estimations.

Also, the modelling hints at a parallelism that may be leveraged by implementors if

we think of, e.g., AJAX-based web applications that can query a server using asyn-

chronous parallel requests.

70

5.1. QUESTION BASED PREFERENCE ELICITATION

dialogue_overview

generate_recommendation

show_recommendation

answer /

choose_question

ask_question

answer /

Figure 5.1: General dialogue overview

In order to reach an appropriately fine-grained representation of the dialogue, we will

begin by refining the representation of the recommender cycle (i.e., the left-hand side

of Fig. 5.1). Although it is the goal of our system to provide useful recommendations

as early as possible, the acquired knowledge at a given point in the dialogue may be

insufficient to do so – most notably this would likely be the case before any questions

have been answered.

Therefore, Fig. 5.2 extends the correponding statechart by allowing the system to

choose an alternative default recommendation to be displayed. A suitable default could

be built, e.g., from the current top-selling products, based on advertising, or, as will

be detailed in section 6.3, the inference engine may be used despite the low knowledge,

under some circumstances. As before, the answer event triggers a re-evaluation of the

situation based on newly elicited knowledge.

Secondly, the dialogue cycle needs to be structured in more detail. To this end, the

questions are organised into a number of layers, as detailed below.

5.1.2 Dialogue Structure

Before we describe the dialogue structure itself, we should establish the source of the

questions that will be used in the dialogue. Basically, the question pool is formed by

creating questions for the ReasoningElements in the domain model at hand. In fact,

we already hinted at this in example 3.1.1, by giving a question wording for the Needs

defined there.

71

CHAPTER 5. DIALOGUE MANAGEMENT

generate_recommendation

show_recommendationshow_default

answer / answer /

recommendation_

created /

insufficient_

data /

Figure 5.2: Refined recommendation cycle

The exact way of creating questions depends on the subtype of the concrete Rea-

soningElement:

• For Traits contained in a TraitGroup, one single question for the complete Trait-

Group is generated, with corresponding answer options for all Traits in the Trait-

Group, implementing the “single choice” semantic established in section 3.1.

• For a stand-alone Trait, a question with the answer options “positive” and “neg-

ative” is generated.

• For a Need, a question with answer options according to parameter “detail”

introduced in section 4.1.2 is generated.

• For AttributeValues, one question for the corresponding Attribute is generated,

with answer options according to the all AttibuteValues.

More formally, a question q is defined via its associated set Rq and Aq as follows:

Definition 5.1.1 (Questions) Let q denote a question. Then Rq denotes the set of

ReasoningElements and Aq denotes the set of answer options that correspond to q.

We do not formally define question wordings since their exact composition depends

on the concrete application architecture (and, particularly, user interface design), but

remember that questions will commonly have natural texts and/or images associated

with them that correspond to the question itself and its answer options.

Now, these dialogue questions are organised as a number of layers that are supposed to

72

5.1. QUESTION BASED PREFERENCE ELICITATION

correspond to the customer’s perceived difficulty of answering them. Since we do not

model a question difficulty explicitly, the type of the ReasoningElement corresponding

to the question is used based on the following considerations:

Questions for Traits are supposed to be the easiest to answer since they only elicit ob-

jectively determinable information. Needs form the second layer, requiring somewhat

more effort for being answered. Finally, questions about Attributes are considered the

most difficult. Since we cannot generally assume that a customer is at all able to

express his/her technical preferences, these questions should preferably be completely

avoided. On the other hand, some customers may have particular technical wishes

or the dialogue may have provided only inconclusive information about a customer.

Hence, the dialogue manager should be able to transition to the most technical layer

if required or requested by the customer.

layer::needs

layer::traits

[layer=’traits’] /

[layer=’needs’] /

[layer=’attributes’] / layer::attributes

user_layer_change

[la
y
e

r =
’a

ttrib
u

te
s
’] /

[la
y
e

r =
’n

e
e

d
s
’] /

[la
y
e

r =
’tra

its
’] /

change_layer(layer) /

choose_

next_layer

full_dialogue

Figure 5.3: Dialogue layers

Fig. 5.4 details the extensions to the overview statechart necessary to accomodate

the different layers in the dialogue. The decision state choose next layer is used by

the dialogue manager to select the next dialogue level based on information from the

inference engine (cf. section 6.1), whereas a customer is able to switch to the layer of

his/her liking by triggering the change layer event – something which can be modelled

very conveniently in the statechart ECA-syntax.

The mechanism of user- and system-initiated changes of difficulty can be generalized

to cover multiple dialogue topics as well, e.g., if the recommender system is built to

73

CHAPTER 5. DIALOGUE MANAGEMENT

combine several different domains into one large domain model as hinted to in section

3.4. Fig. 5.4 illustrates this more general design. In such a case, a topic itself may be

composed of several layers or sub-topics, as required for the domain(s) at hand.

full_dialogue

topic::t1

[topic=1] /

[topic=2] /

[topic=n] / topic::tn

user_topic_change

[to
p

ic
=

n
] /

[to
p

ic
=

2
] /

[to
p

ic
=

1
] /

change_topic(topic) /

choose_

next_topic

...

subtopic_1 subtopic_n...

Figure 5.4: Dialogue with multiple topics

5.1.3 Layer / Topic Structure

Up to this point, all statecharts were largely domain-independent, without looking at

the particular pool of questions that is available for the domain at hand. As a reminder,

we have established that every ReasoningElement of a domain model is the source for

a question and that these questions are organised into layers/topics according to their

subclass.

Now, we show the “deeper” structure of any given layer, realised as hierarchical states

in our syntax. In other words, even while the system may be in a deeply nested state,

all transitions at the upper levels can be triggered as well. This becomes relevant,

e.g., for the change layer event described in the preceding section which allows switch-

ing to a different layer no matter what question is currently asked. The so-defined

behaviour can be compared to the “exception” mechanisms known in many common

programming languages.

Within a layer, the structure is quite similar to the topmost group of states for the

different layers. A layer consists of one decision state that allows the dialogue manager

74

5.1. QUESTION BASED PREFERENCE ELICITATION

to decide which question to ask next and one state for every question in the layer as

shown in fig. 5.5. Again, a special event caters for user-initiated changes of the current

question, enabling a fully local reaction to this situation without further measures.

layer::l1

question::q1

answer / process(a)

finished /

[question=’q1’] /

question::q2

question::qn

[question=’q2’] /

[question=’qn’] /

choose_next_

question
...

change_question(question) /

Figure 5.5: Sub-statechart for a single layer

Note that the dialogue manager has the option to transition into an explicit end state

within a layer. If this occurs, the control flow of the statecharts returns to the hierarchy

level above, which, according to fig. 5.3, would then initiate the selection of a new

layer to continue the dialogue.

Often, a user interface requires that not only a single question be asked at one point in

time but rather that the user has the option to answer several questions simultaneously.

However, statecharts do not provide a native means of specifying that a system is

supposed to be in “n-out-of-m” states at the same time. Hence, in order to support

this behaviour, we have to extend the generated statecharts (as illustrated by fig. 5.6

in comparison to fig. 5.5):

• An AND-state (cf. section 2.3.2) with a number of sub-states equal to the

maximum number of simultaneously asked questions is introduced.

• Each of the sub-states of the AND-state contains one state per question in the

dialogue.

75

CHAPTER 5. DIALOGUE MANAGEMENT

layer::l1-multi

q1,1

answer / process(a)

finished /

q2,1

q3,1

choose_next_

questions

q1,2

q2,2

q3,2

q1,n

q2,n

q3,n

q2,0

q3,0

...

...

...

single_question

double_question

triple_question

[#questions=1] /

[#questions=2] /

[#questions=3] /

change_question(question) /

Figure 5.6: Single layer with 1-3 simultaneous questions (some hyperedges and labels
omitted for readability)

• All sub-states except the first contain another state representing “no question”

connected to a starting state. This is done in order to support the possibility

that less than the maximum allowed number of questions is displayed in a given

dialogue step. E.g., if a dialogue supports up to three simultaneous questions but

a given dialogue step only contains two questions, the third sub-state transitions

into the “no question” state.

• Additional decision-states are introduced to differentiate between the number of

questions in a given dialogue step. From these, the appropriate hyperedges are

generated to allow every possible combination of questions for a dialogue step

by transitioning into the corresponding states within the large AND-state.

Despite being somewhat cumbersome because of a potentially big number of states

and hyperedges, the extension is straight-forward and in particular keeps the simple

answer-based synchronization of the dialogue steps.

Example 5.1.2 (Complete statechart for the running example) Our running

example (3.3.7) is small enough so that it can be presented as a statechart in its

entirety (although we already have to omit some labels). According to section 5.1.2,

the domain-dependent part or the statechart will be composed of three layers:

1 Traits ageclasses

2 Needs multimedia, music, office, internet

3 Attributes mp3, memory, umts

Fig. 5.7 shows the complete generated statechart. Accord to the figure, when the

recommendation process is started, the dialogue manager will transition into the

76

5.1. QUESTION BASED PREFERENCE ELICITATION

layer::needs

[layer=’traits’] /

[layer=’needs’] /

[layer=’attributes’] /

layer::attributes

[la
y
e

r =
’a

ttrib
u

te
s
’] /

[la
y
e

r =
’n

e
e

d
s
’] /

[la
y
e

r =
’tra

its
’] /

change_layer(layer) /

choose_

next_layer

dialogue_cellphones

layer::traits

question::multimedia

answer / process(a)

finished /

[question=’multimedia’] /

question::music

question::office

[question=’music’] /

[question=’office’] /

choose_next_

question

change_question(question) /

question::ageclasses

answer / process(a)

question::mp3

answer / process(a)

finished /

[question=’mp3’] /

question::memory

question::umts

[question=’memory’] /

[question=’umts’] /

choose_next_

question

change_question(question) /

question::internet

[question=’internet’] /

user_layer_change

generate_

recommendation

show_recommendation

show_default

answer /

answer /

recommendation_created /

insufficient_data /

Figure 5.7: Statechart for the running example

77

CHAPTER 5. DIALOGUE MANAGEMENT

show default state for the recommendations and into the question ageclasses state for

the dialogue. The dialogue manager will use the layer::traits layer as it is supposedly

the easiest for the customer to answer. And within that layer, the only available ques-

tion is question ageclasses (for this reason, layer::traits also uses a simplified structure

that leaves out the normally necessary decision state).

Once the customer gives an answer to the first question, the current recommenda-

tion will be created and displayed in the show recommendation state. In parallel,

layer::traits will be completed, the control flow will reach choose next layer and con-

tinue into layer::needs where the next question that will be chosen by the dialogue

manager will depend on the concrete answer previously given by the customer.

5.2 Question Relevance

One of the principal tasks of the dialogue manager is to determine the next step of

the dialogue by evaluating the available questions regarding their usefulness for the

recommendation process. When reasoning about the optimal next question in our

framework, the system has two conflicting goals:

• On the one hand, it is important for a recommender system that the customer

trusts its recommendations. This is particularly important for our use case since

the interactions between customer and recommender are very limited (i.e., there

is no long-lasting customer relationship as would frequently be assumed for col-

laborative filtering approaches). Therefore, practically the only chance for the

recommender system to demonstrate understanding and expertise to the cus-

tomer is during the sales dialogue.

We can accomplish this by using the Bayes network to predict the customer’s an-

swers to future questions and to use these predictions to customise the questions,

e.g., by choosing a more suggestive wording or by highlighting the customer’s

most probable answer. Obviously, these measusures can only be successfully

employed if the predictions are sufficiently certain, because incorrect predictions

would be counterproductive for the goal of presenting a recommender system

that understands the customer.

• On the other hand, sales dialogues are supposed to be as short as possible in order

to increase conversion rates. To this end, the recommender system must pro-

vide meaningful recommendations quickly (i.e., after few dialogue steps), which

makes it necessary to prioritise questions that promise a large gain in knowl-

78

5.2. QUESTION RELEVANCE

edge. On average, the greatest knowledge gain will be achieved for questions

whose predictions are particularly uncertain since answering such questions is

guaranteed to increase the system’s knowledge. On contrast, answering ques-

tions with highly confident predictions is likely to only confirm them, without

acquiring new knowledge.

Based on these considerations, a question’s relevance for the dialogue process should

be connected to the confidence of the answer prediction for the question. In our

metamodel, the ReasoningElements have an associated BeliefState, which, according

to definition 3.3.2 contains the “degree of belief” of the two possible states of a Rea-

soningElement, β+ and β−.

The precise way to calculate these values will be detailed in section 6.3. At this point,

however, it is just necessary to define how the relevance of a question relates to β+

and β−.

The core question, i.e., whether to favour questions with highly confident or deliber-

ately un-confident predictions, remains. To get more insights into this, we conducted

a small informal experiment during the University of Passau Open Day in 2008 where

a prototypical recommender system was deployed to recommend courses of study to

visiting interested students.

There, questions were asked in a way that preferred confident predictions, i.e., to

test how well the predictions were accepted. To this end, the system visualised its

predictions by pre-selecting the most likely answer option. The evaluation was car-

ried out informally by observing the users and casually interviewing them after the

recommendation process was complete.

Our experiment yielded interesting results:

• Predictions were frequently accepted (i.e., the pre-selected answer option was

rarely changed).

• The system was generally regarded as being “competent” regarding the predic-

tions. The so-earned trust carried over to the generated recommendations.

• The early questions frequently did not have a great influence on the generated

recommendations. On the other hand, answering the final questions commonly

changed the recommendation significantly.

Clearly, the last property is undesired – even more so if we consider that the recom-

mendations were only perceived as “correct” at the end of the dialogue. Fortunately,

79

CHAPTER 5. DIALOGUE MANAGEMENT

in the experimental setup, the users were mostly eager to “play” with the system and

follow the dialogue until the end. This cannot be assumed for an actual sales use-case,

however, and there exists a significant concern that the system would not be able to

produce good recommendations in time before prospective customers grow inpatient

and leave.

As a consequence, we decided that the advantages of asking confidently predicted ques-

tions was offset by the poor recommendation quality early in the dialogue. Question

relevance is therefore defined as follows, favoring fast knowledge-gains:

Definition 5.2.1 (Relevance of a Question) Let q denote a question and Rq de-

note the ReasoningElements corresponding to q as in definition 5.1.1.

Then, the relevance rel(q) of q is defined using the average difference between the two

degrees of belief β+r and β−r of each ReasoningElement r ∈ Rq to model the confidence:

rel(q) = 1−
∑

r∈Rq
|β+

r −β−r |
|Rq |

A higher value of rel(q) corresponds to a lower confidence in the predictions (i.e., the

degrees of belief are very similar) and means that the question is more relevant to the

current state of the recommendation dialogue (i.e., should be asked earlier).

5.3 Implementation

Statecharts as described in section 5.1 have precise execution semantics. If created at

a suitable degree of detail, executable code may be obtained from statecharts, e.g., by

techniques of the Model Driven Architecture (“MDA” – cf. [Fra03]), or by directly

executing a statechart through a generic interpreter.

However, instead of generating the very detailed statecharts necessary for such an

approach, we decided to implement the domain-independent part of the statecharts

as a dedicated web application that shows behaviour as implied by the statecharts.

The domain-dependent parts (i.e., the question lists and their structuring into lay-

ers / topics) are generated and then used as parameters in the web application. Figure

5.8 illustrates this architecture by showing a corresponding UML diagram.

The interaction model of a web application fits the statechart design well: In our state-

charts, the only externally caused events are answer, change question, and change layer.

In the view of the web-based implementation, these events are seen in the form of

“clicks” (or, more precisely, HTTP requests) caused by the user, that move the control

80

5.3. IMPLEMENTATION

Domain Model

«interface»
ReasoningElement

Question

-text : String
-answerTexts : String[]

+answerQuestions()
+goToQuestion() : DialogueStep
+goToLayer() : DialogueStep
+getCurrentDialogueStep() : DialogueStep
+getCurrentRecommendation() : Recommendation

DialogueManager

-inferenceEngine
-rankingEngine

Recommendation

Product

1

1

currentDialogueStep
DialogueStep1

0..*

dialogueHistory
0..*

1..*

Layer

1 1..*

1

1..*

questionPool

1

1..*

1

1

currentRecommendation

0..*

1..*

Domain-specific

Figure 5.8: UML diagram for the dialogue management component

flow from states that are on the client side to states on the server side, as conceptu-

alised in figure 5.9. The server application then decides about the next dialogue step

and delivers a HTML page to the client, which is equivalent to a transition into the

states on the client side and waiting for the next event.

answer / process(a)

change_question(question) /

change_layer(layer) /

question::qn
question::q2

question::q1

show_default

show_recommendation

process_answers_and_navigation

answer / process(a)

HTTP request

HTML page

Server

Client

Figure 5.9: Statecharts implemented as a web application with HTTP requests for the
external events

Finally, it is noteworthy that the implementation is not limited to offering a web appli-

cation. The DialogueManager and its associated classes shown above form the model

of a system architecture based on the Model-view-controller (“MVC”) software archi-

tecture (cf., e.g., [BD04, chapter 6]). In our current implementation, controller and

view are implemented as Java Server Pages (“JSPs”) and Java servlets, respectively,

but the model is fully independent of this technology.

81

CHAPTER 5. DIALOGUE MANAGEMENT

In fact, in the cooperation with our industry partner, the same architecture was em-

ployed to build a Service-Oriented Architecture (“SOA” – cf. [Erl06]) where a “rich”

client application accesses the dialogue management and recommendation functional-

ities of a web service whose backend is designed very similar to figure 5.8.

5.4 Conclusion

In this chapter, we showed a dialogue modelling based on statecharts and a web-based

implementation of the implied system behaviour that fulfill the requirements posed

towards a dialogue management component of a conversational recommender system.

The main contribution of our method is its flexibility that allows for using the system

even in highly dynamic environments such as during a natural sales dialogue. Assisting

salespersons directly at the point-of-sale is explicitly part of the design goals of our

system.

In particular, neither the modelling nor the implementation rely on fixed paths through

the dialogue. Therefore, no question must be seen as compulsory for a continuation

of the recommendation process. By de-coupling the dialogue management and the

generation of recommendations, the system is able to react to any new answers with

an updated recommendation.

As such, the dialogue does not have to be completed before recommendations can be

displayed. However, the modelling does allow for the option of displaying a default

recommendation in the case of insufficient knowledge. We will show in section 6.3 why

this is rarely necessary in our approach, if at all.

Also, the model and implementation support user-initiated changes of topic and allow

to change the question within the current topic. Nothing precludes a customer to

use this mechanism to return a a previously answered question and to re-answer it

differently.

The synchronisation of the recommendation component to the dialogue progress based

on the answer event ensures that the so-changed knowledge is taken into account

automatically, without having to, e.g., backtrack the dialogue history and invalidating

other answers (in part, this is a feature of the inference engine based on Bayesian

networks that we describe in chapter 6 below).

82

5.4. CONCLUSION

Related Work

In its flexibility and ability to support user-initiated actions, our dialogue management

is notably different from other conversational recommender system approaches, such

as [AFF+02, AFF+03, FFJZ06]. Ardissono and Felfernig model the dialogue by spec-

ifying which question succeeds which other questions, forming a graph-like structure

with all paths that the dialogue is allowed to take. The approach allows a very fine-

grained, explicit modelling of the dialogue (up to the point of specifying additional

user interface elements such as info boxes). On the other hand, the requirement for

explicit specification naturally limits the possible freedom.

The systems based on this approach that we have seen deployed in practice1 seem to

only support a wizard-style “forward” / “backward” navigation through the dialogue.

It is unclear how belief revision, skipping questions, and recommendations despite an

incomplete dialogue can be handled comfortably. Furthermore, to suggest personalised

default answers to questions, our approach does not need to rely on a set of business

rules as appears to be the case in [AFF+02].

Statecharts were also proposed in [Köl99] as a means of modelling general conver-

sational dialogues. However, her intention is to provide dialogue designers with an

intuitive tool for modelling the dialogue, whereas we focus on generating the dia-

logue automatically, given a domain model of a particular area of application (namely,

product recommendation) and use statecharts as a means of visualization and basis of

further processing (e.g., code generation).

In [SB01], dialogues are formally modelled as state machines. In their model, a “sit-

uation” (state) contains information about the preferences of the user, the dialogue

history and the current recommendation, resulting in a large space of possible situ-

ations. Depending on user input, different transition functions between these states

are executed (called “interactions”). Our approach, in contrast, does not need to in-

clude preferences, recommendations etc. into the definition of the states themselves.

Instead, this information is accessible via local variables of the statecharts at those

points where it is needed, considerably reducing the complexity of the model.

Also, with the approach of [SB01], a dialogue developer has to define the “strategy” of

the dialogue either by modelling a directed graph that combines the possible interac-

tions with the possible situations (resembling, in a way, a statechart) or by providing

a set of ECA rules. This approach is static and due to the presumable complexity of

the model not applicable to the rapidly changing domains that our approach targets.

1Visit http://www.premium-cigars.ch/index.php?action=mortimer for an impression (in german).

83

http://www.premium-cigars.ch/index.php?action=mortimer

CHAPTER 5. DIALOGUE MANAGEMENT

It allows for a very flexible crafting of the dialogue, but, on the other hand, presents

a correspondingly big challenge to the domain expert that is charged with the task of

specifying the strategy. Alternatively, they propose dynamic techniques based on CBR

to determine the next relevant question to be asked, e.g., by measuring information

gain.

Another approach is presented in the work by the research group around Pearl Pu at

EPFL [HP10, HP09]. They use standard personality quizzes to infer the properties

of desired products. A central point of their approach is that no recommendation

is possible if the dialogue is incomplete. Also, it remains doubtful for us whether a

standardized psycholgical questionnaire is able to provide customer’s preferences for

general market domains.

The flexibility of our approach becomes particularly apparent if we imagine the system

being used in a store to support a sales dialogue between natural persons, which is

explicitly part of our use case. Whereas a certain rigidity in the dialogue flow may

be acceptable when interacting with a computer program (since users simply do not

expect anything better), it would be plainly inadequate in that context.

84

6 Inference Engine

6.1 Inference Engine Requirements

The inference engine is a core component of our recommender system, encapsulating

the central “intelligence” functions for both managing the dialogue and recommending

products. In summary, it must be able to provide the following functionalities:

• Add new knowledge.

In our approach, this is accomplished by answering questions.

• Revise previously acquired knowledge.

Questions may be re-answered by the customer.

• Predict unanswered question responses.

This may be used to improve dialogue behaviour.

• Evaluate the relevance of questions.

This is used for the system-led dialogue path.

• Predict the usefulness of technical properties.

The main goal of our approach is to derive appropriate knowledge about the

technical properties the customer desires. This encompasses prioritizing proper-

ties within single technical attributs as well as weighing attributes against each

other.

• Explain system behaviour.

This is used to provide feedback to the customer about why a certain product

was recommended.

The following sections will show how a Bayesian network as described in section 4.2

can be used to implement the interface that is posed by the requirements. Figure 6.1

shows a UML representation of the implementation, containing the InferenceEngine

itself and the BayesNetwork with their methods. Note in particular the simplicity

of the required functions of the Bayesian network. For our concrete implementation

85

CHAPTER 6. INFERENCE ENGINE

+answerQuestion() : short
+predictQuestion()
+getRelevance()
+getUtility()
+getExplanation()

«interface»
InferenceEngine

BayesianInferenceEngine

+setEvidence()
+getPosteriorDistribution()
+updateBeliefs()

BayesNetwork

Implemented by
concrete library,
e.g., SMILE.
Instanced via
Factory-pattern.

+answerQuestion(question, answeroption)
+predictQuestion(question) : BeliefState
+getRelevance(question) : double
+getUtility(attribute, attributevalue) : double
+getExplanation(product) : Map<Need,BeliefState>

+setEvidence(variable,outcome)
+getPosteriorDistribution(variable)
+updateBeliefs()

Figure 6.1: UML diagram of the inference engine

we use the SMILE library introduced in section 2.2.4 and its graphical user interface

GeNIe.

6.2 Answers

As mentioned above, our recommender system acquires knowledge by processing the

answers asked in the dialogue. There can be further sources to gain information from,

such as querying data from a CRM system if applicable, but ultimately, these can also

be broken down to answering the modelled questions.

In general, given an answered question q according to definition 5.1.1, its answer a is

one of the available answer options, i.e. a ∈ Aq and it is used in the form of evidence

for the corresponding random variables in the Bayesian network. The exact way to

treat an answer is, once again, depending on the ReasoningElement(s) corresponding

to the question (cf. section 5.1.1):

• For questions referring to Traits contained in a TraitGroup, a denotes a particular

Trait ta and the following evidence is set in the Bayes net:

– For rta , i.e., the random variable corresponding to ta, its outcome pos1 is

set as evidence.

– For each other random variable relating to the TraitGroup, its outcome neg1

is set as evidence.

86

6.2. ANSWERS

• For a stand-alone Trait, a is either “positive” or “negative”. Correspondingly,

evidence is set for either the outcome pos1 or neg1, respectively.

• For a question referring to a Need, there ist a 1:1 mapping between answer

options and outcomes of the corresponding random variable, and evidence is set

accordingly.

• For questions relating to an Attribute, a denotes a particular AttributeValue and

the following evidence is set in the Bayes net:

– The random variable corresponding to the AttributeValue, its outcome pos1
is set as evidence.

– For the random variables relating to the other AttributeValues of the At-

tribute, their outcomes neg1 are set as evidence.

After setting the appropriate evidence, the Bayesian network then has to update its

calculations for the posterior probability distributions for all random variables that

are still not known by evidence. Section 9.2 will provide performance measurements.

Therefore, it suffices to state that, given the size of our Bayesian networks, we com-

monly have to rely on sampling algorithms (cf. section 2.2.4.2) to obtain results within

time constraints appropriate for interactive operation.

Example 6.2.1 (Bayes network with evidence) Figure 6.2 shows the Bayesian

network corresponding to the running example 3.3.7 with updated posterior probabil-

ities for an answer of “agree strongly” (i.e., pos2) for the question corresponding to

the Need “office”.

A Bayesian network has two significant properties that are particularly helpful for

our use case: It does not place particular demands on the ordering in which evi-

dence is inserted, nor does it rely on “immutability” of evidence once set, although

some algorithms may profit from such a property by only having to do incremen-

tal re-calculations. These qualities are very accommodating to our requirements for

conducting a flexible recommendation dialogue.

Based on these considerations, the mechanism for belief revision also becomes appar-

ent: If the customer changes an answer, the evidence for the corresponding random

variables is simply re-set to reflect the new answer. The new knowledge will then be

used transparently. Again, Bayesian networks support this central requirement of our

use case in a natural way.

87

CHAPTER 6. INFERENCE ENGINE

Figure 6.2: Inference snapshot

Implementation Note: “Impossible” Outcomes Depending on the way the con-

ditional probability tables are generated, it is possible that, given a combination of

certain evidence, some outcomes of a random variable may have the probability of

0.0. Mathematically correct, the software library SMILE that we use prevents set-

ting conflicting evidence for such an outcome, pointing out that such an action is

“impossible”.

Nevertheless, we must be able to set such evidence for a number of reasons (e.g., the

model may be incorrect, or the customer simply does not act rationally), because

rejecting a customer-given answer as being “impossible” would be inacceptable for a

sales dialogue. Hence, our practical implementation adapts the generated conditional

probability tables to avoid probabilities of 0.0 by changing them to a very small positive

value such as 0.000001 (subtracted from the greatest probability of the respective

distribution). While this does not have a measurable effect on the calculations of the

posteriori distributions (even less so if we use approximative algorithms), it keeps all

outcomes “possible” and avoids this issue.

Note that calculating the conditional probability tables according to algorithm 4.1

avoids this issue altogether, since all elements are guaranteed to be 6= 0 (as they are

obtained by multiplication and all factors are 6= 0 themselves). (Screenshots might

show probabilities as “0%” due to rounding, however.)

88

6.3. PREDICTIONS

6.3 Predictions

The first use of the inference engine is to give estimations about the BeliefState of

ReasoningElements (as defined in section 3.3) about which the customer has not yet

answered a question. These predictions will then be used to determine the relevance of

a question according to definition 5.2.1 and can also be employed to adapt the question

display as described in section 5.2.

Given a certain point in the dialogue (i.e., a certain amount of evidence set in the

Bayesian network), we can obtain the belief state of a ReasoningElement from the

calculated posterior probability distribution of the corresponding random variable.

For a given ReasoningElement r, the BeliefState βr = {(positive, β+r), (negative, β−r)}
(cf. definition 3.3.2) can be determined by calculating the degree of belief:

Definition 6.3.1 (Obtaining degrees of belief from the Bayes net) Let R de-

note a ReasoningElement, V its corresponding random variable and dom(V) its value

range. Let posdom(V) ⊂ dom(V) and negdom(V) ⊂ dom(V) be subsets of the value

range, containing its “pos” and “neg” elements, respectively. Put differently, it holds

that posdom(V) ∪ negdom(V) = dom(V) \ {neutral}.

We define the degrees of belief β+r and β−r as follows:

• β+R :=
∑

v∈posdom(V)(i∗P (V=v |...))∑
v∈posdom(V)(i∗P (V=v |...))+

∑
v∈negdom(V)(i∗P (V=v |...))

• β−R :=
∑

v∈negdom(V)(i∗P (V=v |...))∑
v∈posdom(V)(i∗P (V=v |...))+

∑
v∈negdom(V)(i∗P (V=v |...)) = 1− β+R

One special case exists: Iff. p(V =neutral | . . .) = 1.0 (i.e., evidence has been inserted

for the “neutral” outcome), we define β+R = β−R = 0.0, i.e., the system beliefs in neither

of the two possible outcomes.

If desired, a simplification can be used to calculate the values of βr for Traits or

AttributeValues instead of definition 6.3.1. Since their random variables have binary

value ranges, the BeliefState can be read directly from their corresponding conditional

posterior probabilities, i.e.

• β+R := p(V =pos1 | . . .) and, correspondingly,

• β−R := p(V =neg1 | . . .) = 1− β+R

89

CHAPTER 6. INFERENCE ENGINE

6.4 Utility Estimations

We use a very simple way to estimate the utility of an AttributeValue for an Attribute.

The BeliefState for an AttributeValue as introduced in definition 6.3.1 is closely linked

to the posterior probability distribution of the corresponding random variable.

The random variable models the likelihood that a Product with the corresponding

AttibuteValue us useful for the customer, given the knowledge available to the recom-

mender system. The utility of that AttributeValue is therefore defined in a straight-

forward way:

Definition 6.4.1 (Utility of an AttributeValue) Let a denote an Attribute and av ∈
dom(a) an AttributeValue. Further, let {(positive, β+av), (negative, β−av)} the calculated

BeliefState of av . The utility ua(av) of av is then defined based on the degree of belief

for positive:

ua(av) = β+av

We can apply this definition to every AttributeValue in the domain model. The utility

of the AttributeValues will then serve as basis for the recommendations as we will

describe in section 7.1.

Example 6.4.2 (Utility of a complete Attribute) Consider the BeliefStates indi-

cated by the state of the Bayesian network in example 6.2.1. For the Attribute “mem-

ory”, the following utilities can be obtained:

umemory(small) = 0.0

umemory(medium) = 0.75

umemory(large) = 0.5

In other words, a medium memory size is suited best for the customer in this case.

6.5 Explanations

The inference engine can be employed in various ways to explain parts of the recom-

mender system behaviour to a customer. These measures are useful to demonstrate

understanding and, finally, to have the customer place trust in the generated recom-

mendations.

90

6.5. EXPLANATIONS

We already encountered one of the explanation functionalities when discussing ques-

tion relevance in section 5.2. By showing accurate predictions for the customer’s

answers, the recommender system demonstrates its competence. Although the chosen

relevance measure means that questions suitable for this approach will commonly be

only encountered late during the dialogue, the predictions can be used to make the

reasoning behind the question order transparent to the user.

On explicit request, the predictions for other questions can be shown, making it clear

that they are not considered very relevant at the moment due to their confident pre-

dictions. Furthermore, given our flexible dialogue model, the customer then has the

simple option to switch to one of these questions to correct a false prediction directly.

Much in the same fashion, the utility estimations introduced in section 6.4 can be made

transparent to the customer, allowing him/her to understand the reasoning behind

an individual recommendation. When viewing a product datasheet, this information

can also be used to highlight the “important” technical properties of a product in a

personalized way.

The previous explanation techniques only relied on knowledge that was present in the

Bayes network when performing its regular functions. Most interesting, however, is to

use the diagnostic (i.e., “backwards”) line of reasoning of a Bayes network to explain

a given recommendation not in purely technical terms (i.e., which technical properties

are important etc.) but instead using the terms that the customer used to describe

himself/herself (i.e., in terms of the Traits and Needs that formed the basis of the

dialogue so far).

In other words, given a Product with its concrete AttributeValues, we attempt to de-

termine the Needs responsible for the recommendation. To this end, we set evidence

in the Bayes net for the pos1 outcome of each random variable corresponding to an

AttributeValue of the current Product. We can then compute the posterior probability

distributions for the “upper” layers of the Bayesian network, obtaining BeliefStates for

all other ReasoningElements in the regular fashion.

This information may then be used to show to the customer the particular Needs a

Product is especially useful for. By comparing these with the customer’s answers,

the information can be shown in a personalized way, i.e., which of the customer’s

preferences will be particularly satisfied by the Product and which wishes would remain

unfulfilled.

It is noteworthy that the diagnostic view only depends on the Product at hand and is

not itself personalized to the customer. As such, it may be precomputed and cached,

91

CHAPTER 6. INFERENCE ENGINE

enabling instantaneous explanations for a large number of Products – which would

not be possible if we had to do these calculations every time again because of the

performance cost (cf. section 9.2).

6.6 Conclusion

In this chapter, we showed the design of the inference engine that provides all functions

necessary for our recommender system. In particular, we showed how the higher-level

requirements for such a component (as described in section 6.1) were implemented us-

ing the simple, probability-based interface of a Bayesian network generated according

to section 4.2.

Most notably, the inference engine / Bayes network provides us with

• Predictions about future user bahaviour which are used for choosing the next

questions and personalizing them;

• Estimations about the utility of technical properties which will be used to pro-

duce the actual product recommendations;

• Explanations about parts of the recommender system behaviour.

The Bayesian network obtains new knowledge by processing answers to questions as

evidence for the outcomes of its random variables. This very flexible approach allows

a mixed-initiative dialogue and easy belief revision.

Related Work

An approach similar to ours is presented in [JSSW95]. However, the utility estimations

(the “value tree”) of Jameson et al. do not seem to be built on an explicit model of

the currently served customer but instead on the assumed properties of an average

user of their system. Hence, the derived preferences are not personalized as strongly

as in our approach. Also, as the value tree is a strictly hierarchical structure, it cannot

capture the fact that a technical attribute may be influenced by more than one single

need. Furthermore, it is not completely clear how informal statements (e.g., “I am a

law student.”) can be interpreted as relevant knowledge (e.g., an increased interest in

politics) by the system apart from the possibility that a domain expert models this

association directly within the Bayesian network.

92

6.6. CONCLUSION

The aforementioned approach of Pu et al [HP10, HP09] uses a matrix that directly links

the elicited knowledge with probability distributions for the desired product properties.

While we have doubts about the maintainability of such a structure (we will revisit

this in chapter 8), we note the similarity of their technique to the specification of

a full joint probability distribution of which a Bayesian network is a compact form.

Apart from generating the recommendations, they do not use the matrix for dialogue

management or explanation functionality.

In [MR07], an adaptive approach to select technical questions is presented. It is able

to suggest “tightenings” (i.e. further questions) to reduce recommendation size based

on a previously learned probability model. Their approach includes the possibility

to re-learn the model when more dialogue histories are available. In contrast, our

approach does not include a learning step but delegates that task to a domain expert.

Also, our model is not concerned with direct connections between dialogue elements

as is the case in [MR07] but instead specifies a more abstract view on the product

domain from which the dialogue structure is inferred.

A domain model based on dynamic logic programming was introduced by Leite and

Babini in [LB06]. Both customer and user model are represented using a large set

of declarative rules which allows a detailed and powerful specification of the business

domain – possibly even extended by user-supplied rules. However, the complex formal

models appear expensive to maintain when confronted with domain changes. Further-

more, it seems unlikely that domain experts, much less customers, are able to express

their knowledge by logic rules, whereas intuitiveness and maintainability of the model

are two key points of our approach.

In [CL07] Cao and Li develop a recommender system for consumer electronics by

using a fuzzy-based approach for the inference process which involves reasoning about

a product’s features. The approach does not include an explicit customer model and

therefore is limited to reason only about the technical features of products. Therefore,

its potential for a conversational recommender system that aims at complex product

domains appears limited.

Bayesian networks are used by Ji et al. in [JSLZ03] to obtain recommendations in the

commodities market. In contrast to our approach, they do not rely on a domain or

customer model, but focus on learning the structure of the network and all probabilities

from history data. Based on evidence provided by the current customer’s purchases,

other commodities are recommended depending on their posterior probabilities. This

kind of evidence is not available in our application scenario, as the customer generally

will make a single purchase and leave.

93

CHAPTER 6. INFERENCE ENGINE

Park et al. use Bayesian networks for a very detailed user representation in [PHC07].

They use an expectation maximization algorithm to learn the conditional probability

tables on their network. However, the structure of the network itself has been designed

by a domain expert and is intended to remain fixed. Therefore, their approach requires

extensive work when the underlying model changes.

94

7 Recommendation Generation

7.1 Utility Function

Our approach to generate recommendations is based on Multi-Attribute Utility-Theory

(“MAUT”), as described in [WE86] and also in [RN10, ch. 16]. Basically, this tech-

nique is centered around the specification of a utility function that combines multiple

properties of an item to calculate a score value, representing the “utility” (i.e., the

degree of usefulness) of the item in question.

Common ways of applying MAUT (though often done informally) are the assignment

of “school grades” to various aspects of an item which are then combined into some

“average” grade and used to compare different items.

Other approaches compute fictional costs that convert arbitrary item-properties into

monetary values to allow “fair” comparisons between items. A well-known application

of the latter approach is the concept of the so-called “Total Cost of Ownership” [ES93].

The most important task with MAUT-based approaches is therefore to define an ap-

propriate utility function.

For our scenario, the utiliy function must obviously set off the Attributes of any given

Product against each other to condense their individual utility values calculated as

described in section 6.4 into one single score value.

To this end, we use the widespread weighted sum approach that adds up each At-

tribute’s utility value, taking its individual importance with respect to the recommen-

dation process into account.

Thus, we can define the utility function for a given product in a general way (as

originally published in [RF10]):

95

CHAPTER 7. RECOMMENDATION GENERATION

Definition 7.1.1 (Utility Function for an Article) Let A denote the set of At-

tributes of the Article in question and let p denote a corresponding Product.

We define the utility of p as

utility(p) =
∑

a∈A (da · ia · sa · ua(ava(p))), with

da the distinctiveness of a as will be defined in definition 7.1.2 below,

ia the importance of a as in definition 7.1.4,

sa the situation factor of a as in definition 7.1.5, and

ua(ava(p)) with ava(p) ∈ dom(a) the utility of the Product p for the customer with

respect to a, as introduced in section 6.4.

The product wa = da · ia · sa is also called the weight of Attribute a. The three factors

are based on the following considerations:

1. Those attributes that customers show significant interest in should be regarded

as more important than others. In our model, “significant interest” is derived

from the fact that more distinctive predictions for the attribute values exist.

2. A domain expert may assign a static numerical importance to each attribute (cf.

section 3.2). Marketing research shows that some attributes are inherently more

important than others in a buying decision. Our experiments indicate that it is

sufficient to classify attributes into a small number of weight classes, which is

considered to be simple for suitably knowledgeable experts.

3. The dialogue situation has influence on the importance of an attribute for the

elicitation process. Attributes that are not connected to any already answered

question, should not have any influence at all.

Definition 7.1.2 (Distinctiveness of an Attribute) The distinctiveness da of an

Attribute a is defined as the average of the distances of the utilities of all possible

attribute values v ∈ dom(a) from the “indifferent” utility of 0.5. We multiply the

fraction by 2 in order to normalize it to [0..1] (each term of the sum in the denominator

yields a value in [0..0.5]).

da := 2

∑
v∈dom(a)(|ua(v)− 0.5|)

|dom(a)|

As a sidenote, we would like to observe that the distinctiveness measure is closely

related to the relevance of a question introduced in definition 5.2.1. If viewed in

96

7.1. UTILITY FUNCTION

Figure 7.1: Inference snapshot (Traits omitted)

comparison, both measures have a very similar meaning, making it plausible that they

are calculated in analogous ways.

Example 7.1.3 (Distinctiveness of an Attribute) To calculate the distinctiveness

dmemory of the Attribute “memory”, assume that the following utilities have been in-

ferred (cf. figure 7.1):

umemory small = 0.0

umemory medium = 0.75

umemory large = 0.5

dmemory = 2 ∗ |0.0−0.5|+|0.75−0.5|+|0.5−0.5|3 = 0.5

The result fits our intuition: We are not yet sure about the customer’s opinion re-

garding memory size at this point of the dialogue. Therefore, values derived for this

attribute should not be taken too seriously.

Definition 7.1.4 (Importance of an Attribute) The importance ia of an Attribute

a is a positive real number. It is commonly obtained from the current domain model

as suggested by figure 3.3.

Definition 7.1.5 (Situation Factor of an Attribute) Let Qanswered be the set of

all questions already answered in the current dialogue. For an Attribute a let P(a)

denote the set of all Influence-ancestors of a, i.e., the Needs connected directly or

transitively with a AttributeValue of a via an Influence-path in the network.

97

CHAPTER 7. RECOMMENDATION GENERATION

The Situation Factor sa of a is defined as follows:

sa :=

{
0 if ∀q ∈ Qanswered : q /∈ P(a)

1 otherwise

Example 7.1.6 (Weight of an Attribute) Extending example 7.1.3, we determine

wmemory based on the following parameters for distinctiveness, situation factor and

importance:

dmemory = 0.5 (example 7 .1 .3)

smemory = 1.0 (memory is connected to answered questions, Fig . 7 .1)

imemory = 2.0 (taken from the domainmodel)

wmemory = 0.5 ∗ 1.0 ∗ 2.0 = 1.0

Notice how wa combines ia, a static, expert-defined value with da, a dynamic, customer-

dependent value, taking these both important aspects into account. In particular, da
must be updated after each dialogue step to account for the newly learnt knowledge.

Of course, the same holds true for sa, which brings the current status of the dialogue

into the calculation.

Also, wa would be a natural point to evolve the utility function, e.g., to include more

factors, weigh factors differently, or similar extensions.

It is worth noting that, in general, the calculated utility for a Product does not have

an absolute meaning (i.e., a statement about how useful the product is, cannot be

made). The value can only be interpreted in a relative way, i.e., a higher utility means

greater usefulness.

Example 7.1.7 (Preference Order by MAUT) Assume that the current product

catalogue contains the entries as shown in table 7.1. The utility and distinctiveness

Name mp3 memory umts

MobileA yes medium no
MobileB yes large no
MobileC no medium yes
MobileD no small no

Table 7.1: Example product catalogue for the mobile phone domain

98

7.2. IMPLEMENTATION IN SQL

values are derived from the dialogue situation shown in figure 7.1:

uumts yes = 1.0

uumts no = 0.0 dumts = 1.0

umemory small = 0.0

umemory medium = 0.75

umemory large = 0.5 dmemory = 0.5

ump3 yes = 0.5

ump3 no = 0.5 dmp3 = 0.0

For simplicity, assume situation factors sa and importances ia of 1.0 for all attributes

in this example. For this constellation, the following ranking of catalogue entries

according to the utility values computed as shown above results:

1) MobileC (Utility: 1.0 · 1.0 + 0.5 · 0.75 + 0.0 · 0.5 = 1.375)

2) MobileA (Utility: 1.0 · 0.0 + 0.5 · 0.75 + 0.0 · 0.5 = 0.375)

3) MobileB (Utility: 1.0 · 0.0 + 0.5 · 0.5 + 0.0 · 0.5 = 0.25)

4) MobileD (Utility: 1.0 · 0.0 + 0.5 · 0.0 + 0.0 · 0.5 = 0.0)

Since UMTS capability is the most relevant feature for our sample business customer,

it is decisive in producing the utility-based rank (“MobileC” is the only UMTS-capable

device in table 7.1). In contrast, support for MP3 does not play a role since the course

of the dialogue did not yet allow any conclusions about the customer’s wishes in this

respect.

7.2 Implementation in SQL

The utility function can be formulated as a standard SQL query. For the sake of

simplicity, we assume that all relevant data for an article is available in a single table

with one column for each technical attribute and an additional column containing the

product’s name. Every tuple in this table represents one concrete product (e.g., in the

sample domain, one concrete mobile phone).

The following SELECT query computes a numerical UTILITY value for each tuple and

orders the answer set accordingly:

SELECT *, ($utilityfunction) AS UTILITY

FROM article_table

ORDER BY UTILITY DESC

99

CHAPTER 7. RECOMMENDATION GENERATION

$utilityfunction calculates the overall utility of a given Article by summing up the

utility of each attribute value uvalue (as established in definition 7.1.1), weighted by

wattribute for each Attribute:

$utilityfunction =

$utility(att_1)$ * w(att_1) + ... +

$utility(att_n)$ * w(att_n)

The utility of a single attribute is calculated using a set of SQL CASE-THEN clauses

using the utilities of the attribute values uvalue (cf. section 6.4):

$utility(att_x) =

CASE WHEN att_x = val_x1 THEN u(val_x1) ELSE 0.0 END + ... +

CASE WHEN att_x = val_xn THEN u(val_xn) ELSE 0.0 END

As an obvious optimisation, the CASE-WHEN clauses can be nested to enable early

termination of the term’s evaluation, which we do not show here for better legibility.

Also, our actual implementation replaces the string-valued columns by numerical ones

to avoid costly string comparisons during the query execution phase (taking advantage

of the fact that all value ranges must be enumerated explicitly, cf. section 3.2). If the

database supports ENUM column types, these can be used as another optimisation.

The structure of the query is known at the time of domain model design. Therefore, the

query can be implemented as a stored procedure that can be called with the current

weights and utility values as parameters. Since compiling the complex CASE-WHEN

statements is a non-trivial task for the database server, this approach can provide a

significant performance improvement.

In our experiments, the actual query execution times were only a few millliseconds

(we will elaborate on performance measurements in section 9.2). It should be noted,

however, that there are less than 1,000 different mobile phones on the market today,

leading to a small product catalogue and thus a small domain size.

It is noteworthy that our queries do not limit the result set: It always contains all

tuples of the corresponding Article’s table with only the ordering dependent on the

current situation, allowing a customer to examine the entire product catalogue. This

is possible due to the generally small size of product catalogues in our use case and it

is of course allowed to use a top-k operator to simply limit the result set size if desired.

100

7.3. IMPLEMENTATION ALTERNATIVES

Also, there are a few possibilities to place “hard” limits on the result set:

• When a customer has answered questions relating to Attributes, it is still possible

that Products are ranked top that have one or more AttributeValues for which the

customer has explicitly expressed a dislike, which may be irritating. Therefore,

instead of providing input for the utility function, questions about Attributes can

be used to create “filtering” options that are then treated as hard contraints

(i.e., would be used to build a WHERE clause).

– An alternative would be to modify the utility function to strongly penalize

such Products, thus ensuring that they are never present in the top ranks.

• A hard WHERE clause could be built automatically if the utility of AttributeValues

falls below a certain threshold (implying that Products with such AttributeValues

are completely inacceptable for the customer).

However, it is clear that implementations must be prepared to deal with empty result

sets whenever hard constraints are used. Our work does not focus on constraint /

query relaxation techniques necessary to solve such an issue and we would like to

argue that keeping the entire result set and allowing the user to choose freely from all

alternatives (guided by the produced ordering) generally provides a superior option

(see also [FFG+07, CP05] for the advantages of ordered recommendations).

7.3 Implementation Alternatives

The method described so far can also be used to provide the necessary inputs for more

general approaches to rank query answers using Boolean predicates, such as the one

presented in [BF08, BRF07]. To take full advantage of the more elaborate possibilites

offered there, it would be necessary to extend our product modelling by ways to express

the potentially hierarchical structure of complex boolean conditions.

Two more approaches were put into practice during the dissertation on an experimental

basis:

7.3.1 Pareto-optimality Based Queries

The inference engine described above can be used to derive preferences for approaches

based on pareto-optimality such as PreferenceSQL [KK02, Kie02]. In effect, the infer-

101

CHAPTER 7. RECOMMENDATION GENERATION

ence engine provides an ordering for all values of a technical attribute by interpreting

the calculated utility values as the pareto-preferences serving as an input for Prefer-

enceSQL.

The PreferenceSQL query language supports “LAYERED” preferences (cf. [Kie05]) for

situations where a domain dom(A) of an attribute can be partitioned into subsets

that are ordered according to a “better than” relation. In our approach, all attribute

values that have the same utility are grouped together in the same “layer”, leading to

a straight-forward application of the LAYERED preference constructor.

Clustering techniques may be used to limit the number of subsets that have to be

considered by interpreting some values as equally preferred, despite minimal differences

in their numerial utility values, in a roughly similar way to the discretization already

applied to value ranges for Attributes.

Since the semantics of our approach relies on the notion that the customer is generally

indifferent about attribute values with the same utility (i.e., all values with the same

value are mutually substitutable), we annotate each LAYERED preference with the ad-

ditional “REGULAR” keyword (cf. section 4 in [Kie05]). These preferences are combined

using the pareto “AND” operator to form the complete PreferenceSQL query.

Example 7.3.1 (PreferenceSQL) We re-use the dialogue situation of example 7.1.7

to formulate a query in PreferenceSQL. Using the pattern described above leads to

the following statement:

SELECT * FROM mobilephones PREFERRING

umts LAYERED ((’yes’), (’no’), others) REGULAR AND

memory LAYERED ((’medium’), (’large’), (’small’), others) REGULAR AND

mp3 LAYERED ((’yes’, ’no’), others) REGULAR

Executing this statement against the product catalogue of table 7.1 yields “MobileC ”

as the query result, which is the pareto-optimal tuple of the relation and therefore the

only result according to the “Best-Matches-Only” semantics of PreferenceSQL.

Successively re-executing the query with added WHERE-clauses to exclude the already-

retrieved tuples yields the following results which are ordered exactly as those obtained

using our MAUT-approach in example 7.1.7. Note that we do not claim that the

orderings produced by both approaches are equivalent (in fact, generally they are

not).

102

7.3. IMPLEMENTATION ALTERNATIVES

1) MobileC

2) MobileA (WHERE name <> ’MobileC’)

3) MobileB (AND name <> ’MobileA’)

4) MobileD (AND name <> ’MobileB’)

Generated in this straight-forward way, the PreferenceSQL query would consist of a

very large number of pareto-preferences. To reduce the number of preferences, the

weight of an Attribute may be exploited to limit the preferences to a fixed number

or to consider only preferences for Attributes having a weight that exceeds a certain

threshold.

7.3.2 NoSQL

The possibility of implementing the recommendation functionality on the basis of

recent NoSQL-techniques (cf. [EFHB10]) was investigated in the course of a bache-

lor’s thesis at our chair [Kar11], using the document-based database “CouchDB” (cf.

[ALS10]).

Conceptually, using this approach, Products are seen as documents, i.e., the largely

schema-less entities that form the primary data objects of CouchDB as contrary to

tuples. The utility function as in section 7.1 remains but is now used as a mapping

function for the Map/Reduce-based querying approach of CouchDB (cf. [DG04]).

The result of auch a query is an ordered map, containing all Products indexed by their

utility value as key.

However, while the idea is interesting, the personalized nature of our utility function

prevents CouchDB from using its internal caching abilities (a mechanism very similar

to materialized views in RDBMS), resulting in a very poor runtime performance (i.e.,

several orders of magnitude worse than the plain SQL approach). An acceptable

performance – but still significantly slower than all other approaches – could only be

achieved by using extensive application-side caching.

A possible advantage of this approach is the integrated distributability of queries over

several database nodes. We could envision manufacturers to provide the technical

datasheets of their products in a CouchDB instance, enabling, among other things,

querying from our recommender system. However, we remain doubtful whether the

performance issues can be alleviated in the foreseeable future, since our use-case (i.e.,

a constantly changing map function) does not appear to be of primary concern.

103

CHAPTER 7. RECOMMENDATION GENERATION

7.4 Conclusion

In this chapter, we showed how our recommender system generates recommendations

by sorting the entire product database using a utility function.

As an application of Multi-Attribute Utility-Theory, the utility function uses a weighted

sum approach to add up the utilities of the individual AttributeValues of a given Prod-

uct to form a single value representing a relative indicator of the usefulness of the

product. Let us stress again that the utility value is only meaningful in comparison to

other values calculated from the exact same utility function. It does not provide an

absolute measure or can be sensibly compared with utility values corresponding to a

different state of the dialogue.

All information necessary to construct the ranking function is either available in the

domain model or can be obtained from the inference engine. We then showed how

the utility function is implemented in plain SQL and mentioned alternatives using

ranking- or pareto-based database querying techniques, as well as an experimental

NoSQL implementation.

Related Work

PreferenceSQL by Kießling et al [KK02, Kie02] was already mentioned in section 7.3.1

and is quite compatible to our MAUT implementation. In fact, we implemented a

PreferenceSQL connector that can be used in our software based on a simple con-

figuration switch, subject to the following observations. Since both approaches use

different semantics, i.e., Best-Matches-Only vs. MAUT, the query result are generally

not equivalent, however.

Also, when used näıvely, our approach would generate a large number of pareto-

preferences (i.e., one per Attribute) which practically guarantees that no single Product

fulfills all, or even most, of the preferences. Consequently, PreferenceSQL successively

relaxes the number of preferences considered to check whether that layer contains

pareto-dominant items. I.e., given n preferences, it tries all combinations of (n-1)–of–

n preferences, then (n-2)–of–n and so on, until dominant items are found.

However, since the number of these combinations grows quickly, this approach has a

somewhat negative impact on performance and, worse, frequently leads to a situation

where a given layer did not yield results yet, whereas the successive layer provides very

many results (up to the entire catalogue, in some observed cases). While this is not

104

7.4. CONCLUSION

a problem per se (our approach always returns the entire dialogue), the result set of

PreferenceSQL contains only dominant items. Since, based on the pareto-semantics,

no sensible ordering can be defined over dominant items, the usefulness of this approach

is very limited for our use case. It is a necessity to strictly limit the used number of

preferences and our experiments indicate plausibly useful result set sizes only with

as few as 5-10 preferences, which means that a large amount of knowledge would be

ignored.

On the other hand, should PreferenceSQL find, e.g., a single dominant item, its Best-

Matches-Only semantics would return only this item, making it impossible to compare

the recommendation to runners-up or similar actions.

As another related approach, Ardissono et al [AFF+02, AFF+03] use their recommen-

dation dialogue to gather a number of constraints relating to the technical properties

of the products they have to recommend. These constraints are then used by a general

constraint-solving application to look for those elements of the product catalogue that

form solutions of the posed constraint-system. Unlike our sorting-based approach, they

generally have to deal with the fact that the constraint-system may be un-solvable,

i.e., there are no products in the catalogue satisfying all requirements. For this case,

they employ automatic constraint-relaxation techniques that subsequently drop con-

straints until the system can be solved again. In this, their approach is quite similar

to PreferenceSQL’s behaviour mentioned above, although they attempt to drop con-

straints based on their perceived importance, comparable to our notion of weights for

an Attribute.

105

8 System Lifecycle

Knowledge-based recommender systems are typically known to require extensive main-

tenance efforts, particularly for dynamic business domains like our primary application

scenario (cf. section 2.4.1). Hence, in order to provide an adequate solution for our

use case, we specifically took maintainability issues into account during the design of

our approach.

Our considerations led to the layered, metamodel-based, generative design that has

been described so far. It is built to support short- and medium-term maintenance

scenarios efficiently, or even automatically, while being flexible enough to allow an

evolution of the developed ideas in the longer term.

8.1 Short Term: Instance Modifications

The most frequent maintenance scenario concerns changes in the domain model in-

stance, e.g., the appearance of new Products or changes regarding some AttributeValues

(such as “price”), that can, however, still be expressed in terms of the current domain

model.

We anticipate that such updates occur between several times a month and daily. For

example, in our mobile phone use case, new phones are commonly released twice a

month with the option of doing weekly price updates in between. In our movie scenario,

new DVDs / Blurays are released on a weekly basis.

It is noteworthy that recommender systems based on collaborative filtering are com-

pletely unable to handle this situation without requiring significant effort. Since new

products have not yet been bought or rated by anyone, they are completely invisible to

the buyer profiles and, consequently, are never recommended. To solve this issue, such

systems have to combine their collaborative approach with item-based techniques that

allow to transfer ratings between items based on their similarity. This way, a new item

will “inherit” the rating of existing items that are comparable to the new product.

107

CHAPTER 8. SYSTEM LIFECYCLE

Contrastingly, in our approach, new and changed Products are integrated into the rec-

ommendation process transparently. Once present in the product catalogue database,

the utility function can calculate their utility in exactly the same way as for older

Products, enabling a seamless integration of doman model instance changes into the

recommendation process. In fact, there is no conceptual obstacle to allowing this even

during a running recommendation dialogue.

The feasibility of the update process was verified during the cooperation with our

industry partner. There, our prototypical implementation regularly synchronised its

internal database with a centrally managed product catalogue that was continually

updated during the day-to-day operations of the industry partner. Also, the product

catalogue for our movies recommender system was manually updated several times to

keep up-to-date with new movie releases.

However, our project experiences also demonstrated the limits of automation in this

respect. At first, it was attempted to acquire product datasheets directly from the

manufacturers or third parties, and to import these into the recommender system in

a fully automated way. There exist commercial service providers that offer product

datafiles for an extremely wide range of article classes on a subscription basis, aggregat-

ing the data published by the individual manufacturers. The data sheets are available

in easily machine-readable formats, e.g., as Access-databases or CSV-textfiles.

Automatically importing these datafiles required significant effort, however. The data

vendor did not provide compulsory schema information, leading to a large number of

synonyms, i.e., different representations of the same information, such as “4 Megapix-

els”, “4.0 MP”, the integer “4”, or combinations thereof, including typing errors, for

digital camera resolution. While it proved feasible to normalise a given set of in-

put data, the lack of schema implied the risk of encountering previously unknown

synonyms with every new data set, limiting the trust that could be placed onto an

automated import engine. Also, none of the data fields was guaranteed to be present,

which leads to potentially incomplete product descriptions. While the product model

is principally able to handle incomplete data as described in section 3.4, doing so is

detrimental to the recommendation quality.

Finally, the inclusion of new products into the delivered data files always lagged behind

the release dates by a certain time span. Since this directly opposes our goal of

“instantaneous” recommender system updates, this was the primary reason for our

industry partner to build the in-house managed product database mentioned above,

along with the data quality issues, which were largely eliminated in the process.

108

8.2. MEDIUM TERM: MODEL ADAPTATIONS

8.2 Medium Term: Model Adaptations

In our approach, the domain model codifies the product structure and the marketing

knowledge for a given domain. Both are subject to change, though not as frequently

as the domain instance as we described in the previous section. Maintaining a rec-

ommender system’s knowledge base is generally considered to be an expensive task

and our metamodelling approach was specifically designed to keep the maintenance

requirements low.

8.2.1 Technological Changes

The first need to adapt the domain model results from technical innovation in the

domain that cannot be adequately represented in the current model. In particular,

this means that the utility function (cf. section 7.1) is generally unaware of these new

technical properties and consequently fails to take them into account.

Generally, two categories of technical changes can be distinguished: Adding a new

Attribute, and extending the value range of an existing Attribute by new AttributeValues.

It is similarly imaginable to remove Attributes or AttributeValues, but in practice there

is no reason to delete such knowledge.

For example, in our use case, the pervasiveness of GPS receivers is a relatively recent

development, requiring integration into the recommendation process – even more so if

we consider that the development sparked new services along with it that, again, had

an influence on technical properties like a requirement for online connectivity. As an

example for the need to extend a value range, consider the ever-increasing megapixel

numbers for the integrated digital cameras – just recently a mobile phone with a

resolution of 41 megapixels was announced1.

In the most simple case, the new AttributeValues can be integrated into the domain

model by connecting them to existing InfluenceSources (i.e., Traits and Needs) via ap-

propriate Influences. Should it be known that the new element of the value range is

essentially “better” than the existing AttributeValues, a new Influence could be sug-

gested more or less automatically.

In other cases, like the aforementioned GPS receiver, the existing questions may be

insufficient to elicit the knowledge necessary to establish whether a particular technical

function is desirable for the customer. Here, it would be necessary to extend the

1see http://www.heise.de/-1443641.html – in German, last accessed on 05.03.2012

109

http://www.heise.de/-1443641.html

CHAPTER 8. SYSTEM LIFECYCLE

customer model by additional Needs, leading to new questions in the dialogue. Of

course, new AttributeValues may be connected to a mixture of old and newly created

Needs in the customer model.

The fact that Influences represent only simple causal relationships between a single

source and a single target is particularly helpful in keeping the necessary model adap-

tations local and intuitive. The Bayesian inference engine described in chapter 6

ensures that the entire model remains consistent, i.e., by propagating evidence along

the modified Influences and adapting its conditional probability tables accordingly.

8.2.2 Marketing Changes

In addition to adapting the recommendation dialogue to technological changes in the

domain, new marketing knowledge may be found independently and may need to be

integrated into the recommendation process.

As an example from our use case, senior citizens were recognized as a potential buyer

group for mobile phones only rather recently. In order to take these customers into

consideration, new Needs and Traits/TraitGroups would have to be created (example

3.3.7 already contains a corresponding age group), along with the appropriate Influ-

ences to connect the new ReasoningElements to the rest of the model.

Other, simpler examples of modifications that are more likely to occur during the

day-to-day maintenance of the recommender system are the addition and removal of

a few Influences, or the optimisation of some weights.

In many cases, the product model can remain untouched in spite of such customer

model adaptations. Then, the only step necessary to incorporate the new marketing

knowledge is to re-generate the Bayesian network. However, reciprocal to technologi-

cal changes, new ways of marketing may also necessitate the gathering of previously

disregarded technical properties. For example, when targeting senior citizens, larger

keypads are a property that is related to their needs. Note that, of course, these prop-

erties have always been present in the product, they may just not have been registered

in the product model.

For this reason, it proved useful during the course of our practical project to consider

all available technical information for inclusion into the product model, independent

of whether a certain Attribute was currently relevant for the concrete recommendation

process. Both the Bayes network generation and the utility function can be trivially

optimised to ignore isolated Attributes (i.e., Attributes whose AttributeValues are not

110

8.2. MEDIUM TERM: MODEL ADAPTATIONS

connected to any Influences at all), practically eliminating any performance issues that

might arise from an “unnecessarily rich” product model.

In fact, our industry partner took the opportunity to build a very general product

catalogue system that contains all available technical information about the product

they sell. As mentioned in the previous section, such a database of high quality

product information has a value in itself and provisioning our recommender system

with a subset of its data is only one of its intended usage scenarios.

8.2.3 Model Editor Application

While the domain model is already designed to hide the complex mathematical for-

malisms from the user, it is necessary to provide further support in the form of a

convenient editing application that can be used to solve the model maintenance sce-

narios described above.

Figure 8.1: Domain model editor screenshot

We have built a prototypical domain model editor centered on the idea that the graph

that represents the domain model is too large to be comprehended if presented in its

entirety (cf. figure 3.8). Hence, we decided to provide partial views on the graph,

always visualizing a single ReasoningElement along with its parents and children with

an easy navigation along the edges through the graph (see figure 8.1 for a screenshot).

This approach allows a domain expert to work along two principal paradigms:

111

CHAPTER 8. SYSTEM LIFECYCLE

• The “top down” view, i.e., which ReasoningElements are influenced by the model

element currently under consideration?

• The “bottom up” view, i.e., which ReasoningElements influence the current model

element?

Of course, both views may be mixed during editing, depending on individual prefer-

ences.

In addition, the editor supports the import and export of spreadsheet representations

of the domain model (in the form of an adjacency matrix representing the Influences as

shown in figure 8.2) and the Product data (see figure 8.3). We have found that using

the spreadsheet format is suitable and efficient for the initial creation of a customer

model, whereas the graph view is preferable for the minor modifications common in

the day-to-day operation.

Figure 8.2: Influences adjacency matrix spreadsheet

Figure 8.3: Product catalogue spreadsheet

The editor application is integrated into the software landscape of our industry partner

and used during the regular system maintenance operations there (in conjunction with

112

8.3. LONG TERM: EVOLUTION OF THE METAMODEL

keeping the aforementioned product catalogue up-to-date). In fact, the domain model

for our primary use case was revised several times during the course of our project –

partly using the aforementioned spreadsheets and partly using the editor application.

8.3 Long Term: Evolution of the Metamodel

Although we have of course designed our metamodel to fulfill the current requirements

of our primary use case, we have taken care to keep the metamodel very general and

to not include elements that would be overly specific or restricting to a particular mar-

keting domain. Still, we cannot assume that our metamodel will remain immutable

forever, particularly if we consider a possible desire by users to include those very

domain-specific extensions/optimisations that we explicitly avoided in our more gen-

eral approach.

With regard to this anticipated evolution, our system design introduces a separation

of concerns between the metamodel and the actual implementation via its generative

approach. As long as the intermediate layer of our architecture remains constant,

such changes require only adaptations to the generation function that transforms an

instance of the metamodel into the intermediate representation. The handling of the

intermediate representation itself remains untouched, keeping the required software

changes local.

As an example, consider the possibility of allowing Influences to/from “neutral” Be-

liefStates that we mentioned in section 4.1.2. The intermediate representation already

implicitly allows for the corresponding edges, making the extension possible without

having to touch the generation algorithm for the Bayes network or the Bayes network

usage.

Another example is more concrete, coming from our project use case. When investigat-

ing how to extend the recommendation capabilities from mobile phones to encompass

the corresponding rate plans, we found that the predominant criterion for customers

to choose their rate plan is, not surprisingly, the price. However, the actual cost of a

rate plan usually depends on the customer’s behaviour and can be surprisingly difficult

to calculate even when the behaviour is known, due to extremely varying and com-

plicated billing schemes, according to our industry partner, therefore an exhaustive

treatment of this subject is beyond the scope of this dissertation.

To integrate the necessary knowledge into our approach, the metamodel had to be

extended by adding approximations for a customers behaviour regarding dimensions

113

CHAPTER 8. SYSTEM LIFECYCLE

like “call minutes per month”, “text messages sent per month”, or “megabytes down-

loaded per month”. As a first step into that direction, we extended the Traits to carry

corresponding data fields as illustrated by the UML diagram in figure 8.4. During the

recommendation dialogue, this information is then provided to a rate calculator that

returns a price approximation for the available rate plans. The approximation then

serves as an additional input for the product ranking in addition to the utility function

described in section 7.1.

-id

Trait

-id

Need

-id

TraitGroup «interface»
InfluenceSource

«interface»
InfluenceTarget

TraitWithProfile

-monthlyMinutes : Integer
-monthlyMessages : Integer
-monthlyMegabytes : Integer

PhoneUsageProfile

1

*

Figure 8.4: UML diagram of a metamodel extension

One more example from our project experience does not concern an extension of the

metamodel per se, but primarily a modification of the intermediate model generation

algorithm, changing the interpretation of how Influences operate.

Given an Influence I = (S, positive, T, positive, w) (without loss of generality), the cur-

rent algorithm creates a number of edges that connect the “pos?” elements of the value

ranges of the variables S and T (cf. section 4.1.2). An earlier version of the algorithm

created additional edges equivalent to those that the current algorithm would create

if we assumed an additionally present Influence I ′ = (S,negative, S,negative, w).

In other words, the older interpretation of an Influence contained an “inverse” semantic,

implying that if the presence of a particular feature fulfilled a given customer need,

114

8.4. BAYESIAN NETWORK CONSTRUCTION

the absence of the need would also make the absence of the feature more desirable

than its presence. We found that this did not adequately capture reality as illustrated

by the following example:

Example 8.3.1 Consider our domain model from example 3.3.7 that contains an

Influence connecting the Need “music” to the AttributeValue “MP3: available” with

(cause = positive, effect = positive,weight = 2).

Using the old semantics, not having the Need “music” would have meant that mobile

phones without MP3 players would have been preferable to mobile phones that have

MP3 functionality. In reality, however, a customer without particular wishes regarding

music would be indifferent towards MP3 functionality and the new semantics reflects

this.

Note that the former semantics can always be achieved by explicitly adding a corre-

sponding “inverse” Influence.

This modification was achieved by adapting the generation algorithm of the inter-

mediate representation only. In particular, neither the treatment of the intermediate

model – once generated – nor the metamodel itself or any instances of it needed to be

modified.

8.4 Bayesian Network Construction

The multi-layered design approach serves to “protect” the internal implementation

from changes at the domain model and metamodel layers as shown in the preceding

sections and, vice versa, ensures that the implementation may be modified without

implications for existing models. Obviously, this property was at its most useful during

the development phase before the implementation was stable, but it still provides the

opportunity to adapt the implementation or to investigate technology alternatives as

demonstrated by the experimental inclusion of PreferenceSQL and NoSQL techniques

for the recommender engine (cf. section 7.3).

We would like to elaborate on another significant modification in the construction of

the Bayes network that illustrates our improved experience for the recommendation

processes during the course of our industry project. Due to the abstraction provided by

the layered design, the modification could be executed without requiring adaptation to

our existing domain models, leading to an “instant” improvement of recommendation

quality.

115

CHAPTER 8. SYSTEM LIFECYCLE

Calculating the conditional probability tables (“CPTs”) of the Bayes network in the

way described in section 4.2 supersedes an earlier approach, originally published in

[RKF08]. If we call the current algorithm “OR-based”, the calculation of [RKF08]

can be described as “AND-based”. In other words, whereas currently one cause is

sufficient to achieve an effect with sufficient certainty, the older algorithm drew the

likelihood for the effect based on a weighted sum of the number of all fulfilled sources.

An OR-based CPT is constructed by using a product of its parents’ individual inhibi-

tion probabilities, leading to the overall inhibition probability (cf. proposition 4.2.7):

P (T = t|S1 = s1, . . . , Sn = sn) =
1− 0.5(

∏
e∈Et

ipc(e.w))∑
Et∈ET

(1− 0.5(
∏
e∈Et

ipc(e.w)))
(8.1)

In contrast, an AND-based CPT can be roughly characterized by a sum of its parent

Influences weights (cf. [RKF08]):

P (T = t|S1 = s1, . . . , Sn = sn) =

∑
e∈Et

e.w∑
Et∈ET

∑
e∈Et

e.w
(8.2)

It is noteworthy that both approaches conform to the semantics of an Influence as

in definition 3.3.4. Yet, as equation 8.2 shows for the AND-based approach, a great

likelihood for a particular outcome can only be achieved if Et is a large subset of ET .

This is generally only the case if the valuation S1 = s1, . . . , Sn = sn corresponds to

many “fulfilled” Influences, which does not adequately capture reality for our use case,

as the following situation illustrates:

Some AttributeValues, particularly those relating to some mobile phone manufacturers

have a large number of incoming Influences, resulting from the fact that the manufac-

turer represents a certain brand image that is supposed to be desirable for people in

many situations. In this case, the Influences (or, more precisely, their sources) can be

regarded as reasons to buy a mobile phone of the particular brand. Conversely, adding

a new parent / reason leads to a general decrease of the likelihoods for many valuations

of that variable in our Bayesian network, which is clearly against the intention of the

model designer. The new OR-based approach remedies this, as a new reason can only

increase the likelihood (i.e., by reducing the remaining inhibition probability).

116

8.5. CONCLUSION

8.5 Conclusion

In this chapter, we showed how our recomender system supports changes, both in the

targeted market domain(s) and the underlying algorithms and the metamodel. We

provided evidence of the proposed capabilities by giving examples from our project

experience where the system is deployed and actively maintained at all described

frequency levels.

In particular, short term maintenance can be largely automated (provided a high-

quality data source exists) and medium term model maintenance is efficiently sup-

ported by a dedicated editor application. Also, the layered system architecture pro-

vides the opportunity to extend the metamodel or to adapt the underlying algorithms.

These are properties that we put to good use during the project phase of this disser-

tation.

Related Work

The conversational recommender system described in [AFF+03, AFF+02] follows a

similar approach to ours for the product model and should basically be able to achieve

comparable performance for short term maintenance (i.e., for the integration of newly

released products). However, their explicit dialogue specification appears more ex-

pensive to maintain in the face of changes within the domain. To incorporate new

marketing knowledge, the entire graph formed by the dialogue steps would have to be

analyzed to find the suitable places where to integrate new questions into the several

dialogue paths.

The questionnaire-based recommender system in [HP10, HP09] uses a matrix to pro-

vide a direct mapping between the personality traits derived from the questionnaire

and the product properties. The matrix is obtained from a user survey. Since they

use a standard personality quiz, there is generally no need to integrate new questions.

However, it remains unclear how new marketing knowledge can be taken into account

apart from continually renewed user surveys. In addition, it remains unclear to us,

how the approach would scale to more complex product models that are described by

more than a single product attribute due to the significant growth of the matching

matrix.

117

9 Evaluation

9.1 Practical Adequacy of the Approach

Recommender systems are generally found to be difficult to evaluate because it is

practically impossible to measure the direct impact of the recommendations [JZFF11,

ch. 7]. Furthermore, for conversational recommenders, it is practically impossible

to find a system that is comparable enough to serve as a benchmark. In addition,

with knowledge-based approaches, it is always hard to separate the quality of the

knowledge model from the quality of the approach itself. During our project, our

industry partner constantly refined the used domain model until we were reasonably

confident that it was sound and complete to a reasonable degree – implying that,

should the recommender system commit mistakes, these mistakes would have to be

found within its interpretation of the model.

The best imaginable evaluation would have been to measure the effect of using the

recommender system in a real-life application (in terms of increased revenue or the

like). Unfortunately, this was not possible within the limited time frame of our industry

cooperation project and we sought another way to judge the developed approach.

Our industry partner employed an independent market research institute to conduct

a study [Cen10, Cen09] to evaluate the quality of the recommendations provided by

the implementation of the recommender system. While we cannot claim credit for

conducting the study ourselves, we would like to report about its methodology and

results.

The institute began its research by defining nine clusters of customers with similar

properties [Cen09]. Each cluster was described in terms of attitudes and desires, partic-

ularly with respect to the mobile telecommunications domain. For each of the clusters,

a dedicated scoring model was created, by using the product model of our prototype

(i.e., the Article definition with its Attributes and AttributeValues) and deciding about

the relative importance of the Attributes and the suitability of certain AttributeValues

for a representative member of each cluster.

119

CHAPTER 9. EVALUATION

It should be noted that the institute, at this point of the study, was deliberately

unaware of the other parts of our domain model, most notably the Needs and Influences.

Also, they were not informed about the internal workings of our approach, in particular

about our use of a Bayesian network and a MAUT-based ranking approach. Therefore,

it can be confidently said that their modelling was conceptually independent of our

domain model and approach.

Interestingly though, their chosen approach was very similar to our own, since, in fact,

they created a utility function not unlike the one described in section 7.1. Whereas

their scoring model / utility function is manually defined for each cluster, our system

uses the Bayesian network to derive the function individually and automatically for

each customer. The scoring model was then used to obtain one ranked list of the

available mobile phones for each cluster which would serve as a benchmark for the

recommendations provided by our approach.

To be able to obtain recommendations from our system, the institute was provided

with the list of questions that were represented in our domain model at the time of

the study. By relying on the attidues defined for the clusters, the institute answered

the questions from the point of view of a representative customer from each cluster.

These pre-defined answers were then used in interactions with our prototype to record

the provided recommendations at two points in the dialogue: after answering 10 ques-

tions and after completing the entire dialogue.

To estimate the similarity between the recommendations from our system for a given

customer and the respective benchmark ranking, the distance (in positions) between

each Product in the Top-20 recommendations was calculated and graded. Accumulated

over all clusters, the following results were found as illustrated by figure 9.1 (taken

from [Cen10]):

• More than 95% of the recommendations were considered at least “good”, based

on their distance in the two ranked recommendation lists.

• About one third of the recommendations was considered “excellent”, meaning

that they were either at the same position in both rankings or only one position

apart.

• The differences in quality between the clusters were not found to be significant

for practical use.

• During the dialogue, the recommendation quality improves and even compen-

sates intentional wrong answers during the first ten questions.

120

9.1. PRACTICAL ADEQUACY OF THE APPROACH

Figure 9.1: Study results, showing the distribution of grades accumulated over all cus-
tomer groups and for the “individual” cluster in particular

Another, not as rigorous evaluation comes from using our prototype application in the

context of university marketing events, such as Girls’ Days or study information days.

There, we organized workshops in which the participants, commonly eigth to tenth

graders, form teams of four or five and have to use the editor application to build a

simple domain model for a simplified movies domain (cf. section 2.4.2) – for which we

assume a general level of knowledge with the participants.

The timeframe for the workshops is three, possibly up to four hours and includes an

introduction into the modelling techniques to use, defining Needs and Influences and

actually trying out the recommender system based on the built domain model. We

can report the following results from these workshops:

• Despite the minimal introduction, all participants were able to understand the

modelling techniques and use them to build a domain model in their teams. All

of the about 20 teams that participated until now (except for one group with

technical difficulties not directly related to the task) successfully completed the

task within the time frame, i.e., they built a complete domain model and were

able to try it out.

• Despite their simpleness and a significant variance in the taken approaches, the

recommendations produced by these models were generally plausible and com-

parable in quality to the “reference” model that was built by the members of

our chair in preparation of the prototype.

These experiences are admittedly limited but we argue that they nevertheless allow

to conclude that our domain metamodel fulfils its principal requirement of being easy

enough to use for domain experts. Furthermore, they demonstrate the general trans-

ferability of our approach beyond the mobile telecommunications use case.

121

CHAPTER 9. EVALUATION

9.2 Performance

9.2.1 Runtime Measurements

The principal requirement for our approach is its applicability in the context of a web

application or a “kiosk” style PC. In other words, the recommender system must be

responsive enough to be used in an interactive way, allowing for a maximum delay

between request and answer of, say, a few hundred milliseconds.

Our in-house measurements with our prototype were conducted on one of our standard

lab PCs with the following technical configuration. Unless specifically mentioned, all

measurements were conducted on the basis of the real world use case as described in

example 3.4.1.

CPU Intel Core2Duo @ 2.13 GHz

RAM 2GB

Operating System Microsoft Windows 7 Professional

Application Server Tomcat 7

Database Server MySQL 5

9.2.1.1 Bayesian Inference

Executing the inference with our Bayes network is the primary cost factor with respect

to runtime. Exact inference, using the standard “clustering” algorithm, is infeasible

in our real-world use case with regard to both time and memory constraints. Hence,

we decided to use approximative “sampling” algorithms (cf. section 2.2) which are

generally less demanding in memory consumption, requiring no significant amount of

memory beyond the necessity of storing the Bayes network itself. Also, they possess

the innate ability of balancing inference quality against runtime by varying the number

of samples used for the approximation.

In the course of a master’s thesis [Alt09], the different sampling algorithms provided

by the SMILE library were investigated regarding their suitability for our specific use

case. Surprisingly, while the “advanced” algorithms like AIS or EPIS (cf. section

2.2.4) would be considered a generally optimal choice, the simpler algorithms Likeli-

hood Weighting and Heuristic Importance Sampling proved superior with regards to

performance, while not incurring a loss in estimation quality. Our implementation can

be configured to use any available algorithm, but consequently defaults to Likelihood

122

9.2. PERFORMANCE

Weighting. The study results in section 9.1 are based on this algorithm with a sample

count of 8,000 (as will be detailed in section 9.2.1.4 below).

We have measured the execution time of the “update beliefs” request to obtain the

posterior probability distributions after setting the answers, by repeatedly executing

the “cluster” dialogues described in section 9.1. Overall, each of the 9 dialogues

consisted of 23 individual steps (one TraitGroup and 22 Needs in the model) and was

executed 10 times, resulting in 2070 measurements which form a representative sample

of typical workloads expected for using the recommender system with varied portions

of the random variables set as evidence. Figure 9.2 shows our measurement results,

displaying a roughly linear development for increasing numbers of samples.

0

50

100

150

200

250

300

350

400

450

1000 2000 5000 8000 10000 20000

ti
m

e
 t

o
 u

p
d

at
e

 b
e

lie
fs

 in
 m

ill
is

e
co

n
d

s

number of samples

Figure 9.2: Bayesian inference performance measurements, showing median values

9.2.1.2 Database Queries

We have measured the execution time of the database queries to obtain the recom-

mendation list, by using the same experimental setup as described in section 9.2.1.1

above. Again we believe that the more than 2000 measurements form a representative

workload for our system.

123

CHAPTER 9. EVALUATION

Our measurements compare our own utility-based approach with the corresponding

queries in PreferenceSQL (cf. section 7.3.1), as shown in figure 9.3. In addition to the

“full” queries considering all 23 Attributes, one set of tests was run in which only the

5 most important Attributes were included in the pareto conditions / utility function.

This was done in order to create a more “favourable” workload for PreferenceSQL,

which performs very poorly when faced with a large number of preferences, as we will

describe below.

0

100

200

300

400

500

all Attributes 5 Attributes

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
ill

is
e

co
n

d
s

Utility Function

PreferenceSQL

Figure 9.3: Database performance measurement results, showing the median execution
time of recommendation queries in milliseconds

The measurements show the following results:

• The utility-based database queries (cf. section 7.2) complete in less than 100ms

in all cases, which is adequate for our requirements.

• When all Attributes are considered, PreferenceSQL must be regarded as too slow,

with requiring more than 500ms to provide recommendations.

• Both approaches take advantage of the reduced query complexity that results

from lowering the number of evaluated Attributes. For PreferenceSQL, a reduc-

tion to 5 Attributes yields adequate performance for practical use.

124

9.2. PERFORMANCE

To understand the speed deficiency of PreferenceSQL in our use case, one must consider

how its pareto-based semantics are implemented: Given a set of n preferences, the

database is queried for items that are pareto-optimal for all n preferences. If there

are none, the database is queried for a union of all pareto-optimal items given each

(n-1)–of–n subset of the preferences set. This is repeated for all (n-2)–of–n subsets,

(n-3)–of–n subsets, and so on, until one of the queries returns items that are pareto-

optimal.

Given the large set of preferences our implementation generates, one can easily see that

PreferenceSQL will likely have to execute many sub queries until it finds Products

that are pareto-optimal, leading to the observed execution times. Based on these

considerations, the large speedup for the reduced number of preferences is plausible,

too, although our utility-based approach also profits from the simplified queries and

therefore retains a speed advantage.

In addition to the runtime issues, we also found it quite hard to control the number

of query results that PreferenceSQL returns. Often, a significant portion of the entire

database content is returned when all Attributes are used as preferences. Since all of

the returned Products are considered to be pareto-optimal, they cannot be ordered

reasonably for presentation.

9.2.1.3 Complete Dialogue Step

To give an impression of the overall system performance, we provide additional mea-

surements for a complete “dialogue step”, which we define as the time that is spent

“within” our Java servlet to process the HTTP request. This includes the times for

updating the Bayes network, getting recommendations, and all other overheads apart

from client-server network latency. Again, the following chart shows the median values

from the same experimental setup as we used for the two preceding sections. We used

“Likelihood Weighting” with 8,000 samples and our utility-based approach with all

Attributes considered as our “standard” configuration, and show additional variations

of the number of samples and consideres Attributes.

We can see how the number of taken samples can serve as a simple parameter to control

the overall system performance. Above, we have chosen the number of 8,000 samples

because it consistently leads to 200–300ms execution time for the complete dialogue

step. Assuming a network latency of 200ms at maximum (which is a conservative

estimate if we consider a LAN or even a DSL connection), this leads to a user-perceived

delay of less than half a second which we consider acceptable.

125

CHAPTER 9. EVALUATION

0

50

100

150

200

250

300

350

400

450

500

8000 1000 2000 5000 10000 20000

m
e

d
ia

n
 t

im
e

s
in

 m
ill

is
e

co
n

d
s

number of samples

Overheads

Bayesian Inference

Database Query

Figure 9.4: Performance measurements for complete recommendation dialogue steps,
showing median values

If desired, the system might be extended to increase the number of samples for the

“later” stages of the dialogue. Since the algorithms run faster if the Bayes network

contains more evidence, the time that is gained in this way may be spent for increasing

the inference quality, based on the consideration that the accuracy of the predictions

is more important when nearing the end of the dialogue as the buying decision will be

close. It is even possible to switch to the non-approximative clustering algorithm (cf.

[Alt09]). However, [Alt09] also shows that the increase in quality of the probability

estimations is generally not significant once, say, a few thousand samples have been

executed. Our SMILE library defaults to 1,000 samples and our standard of 8,000

samples leads to already very small variances in the posteriori probability estimations.

All measurements reported above relate to the full real-life use case described in exam-

ple 3.4.1. For completeness, we did also measure performance in our “movies” domain

model, which is significantly smaller. Since we did not have representative customer

dialogues available for this use case, the measurements were conducted on fully ran-

dom dialogues. As would be expected, all parts of the system perform notably faster,

leading to runtimes as shown in table 9.1.

126

9.2. PERFORMANCE

Measurement Median Duration Notes

Database Query 16ms Utility-based approach, all Attributes

Bayes Inference 59ms Likelihood Weighting, 8,000 samples

Dialogue Step 79ms = Database + Bayes + Overhead

Table 9.1: Measurements for the movies domain

9.2.1.4 Project Experience

Apart from our own experimental setup, we also conducted runtime measurements for

the recommender system prototype built in the context of the software landscape of

our industry partner. This implementation is based on the .NET framework and uses

Microsoft SQL Server (via ADO.NET) as its database backend. The measurements

taken in this setup can be considered to be under the most realistic circumstances that

we were able to create, using production-level servers located in the datacentre of our

industry partner.

The goal for our application was to achieve a “round trip”, i.e., the time period

from submitting the answers to a given question to displaying the next question and

the corresponding recommendations including all associated overheads, of less than

1500ms. This requirement comes from the fact that about 1.5 seconds would be

covered by transitioning animations on the client device and therefore can be regarded

as meaning no noticeable delay for a user of the system.

Through various implementation optimizations, we were able to achieve an average

“round trip” of 900ms, a significant improvement from about 4500ms that we measured

for the first working version.

Of this time, 590ms are spent “inside” the actual recommender web service logic, the

rest of the time is consumed by additional tasks like querying of product information

(including multimedia data) for presentation, network latency, and other overheads.

As one would expect from our lab experiments, these 590ms are primarily separated

into the time spent for the Bayesian inference and executing the recommendation

database query. Consistent with our other measurements, the Bayesian inference takes

275ms, whereas the database queries use 260ms.

In this setup, the SQL queries were implemented as stored procedures and the main

performance cost was to populate their large parameter lists. Also, the used database

was a shared remote machine so that we have to assume some network latency (we

127

CHAPTER 9. EVALUATION

cannot influence things like pooling of database connections in ADO.NET) as well as

a certain base load that other users created on the database server.

In summary, our measurements proved that the recommender system exhibits a run-

time performance that is fully adequate for its intended usage in a realistic industry

configuration.

9.2.2 Memory Usage

Our prototypical web application / web service generally uses a modest amount of

memory, considering the fact that it is designed to run on “server” hardware. The

largest amount of memory is consumed by the Bayesian inference engine, more con-

cretely by its internal representation of the Bayes network itself.

We have measured the amount of memory used by a single instance of the Bayes

network corresponding to the real-world use case (cf. example 3.4.1) to be in the

order of magnitude of 100MB.

The SMILE software library requires thread-exclusive access to a Bayes network in-

stance for reliable behaviour. Therefore, in order to support several parallel user

sessions, the recommender system must keep several instances of the Bayes network

in memory simultaneously, increasing the memory requirements correspondingly.

However, if we regard a “user session” as the entire recommendation process, i.e., the

complete dialogue, including the times waiting for the customer to select answers etc.,

it becomes obvious that the Bayes network is only used a fractional amount of time

during the session. Consequently, it would be an enormous waste of resources to keep

one instance of the Bayesian network per user session. Instead, we opted to create a

“network pool” that contains a fixed number of Bayes networks that are assigned to

user sessions on-demand for the short duration of inference operations only and reset

afterwards. This approach performs significantly better than, e.g., instantiating fresh

Bayesian network objects for each request.

The size of the pool serves as an easily modifiable parameter to balance the consumed

memory against the maximum number of allowed parallel requests to the inference

engine. Note that the number of concurrent user sessions generally can be much

higher since only very few sessions will require use of the inference engine at any given

point in time.

128

9.3. LIMITATIONS

Concretely, we found it a good practice to set the size of the network pool equal to

the number of threads that the server can execute in parallel. At this point, the

Bayesian inference becomes CPU-bound and no further gains in throughput can be

expected from permitting more parallelism. In other words, given a concrete server

machine with two quad-core CPUs that we had access to, the pool size was limited

to 8 Bayesian networks, allowing for maximum parallelism with a measured overall

memory consumption of around 1GB.

9.3 Limitations

Our evaluations also turned up some limitations of our approach, some of which can

be said to be part of the design, whereas others were only found during practical use.

The dialogue is only specified indirectly, using the domain model, as the metamodel

provides no means to explicitly structure the dialogue into a series of questions or

similar. This means that a domain expert must ultimately concede the control of the

dialogue flow to the recommender system which may not be desired in every cases.

Some questions, for example, may be intuitive successors of others and the dialogue

manager might fail to infer this relationship automatically. On the other hand, one

might argue that the inferred dialogue sequence is in fact superior to an arbitrarily

defined “logical” ordering.

Our approach relies on a relatively “rich” product model. It is doubtful how adequate

the utility function would be, if the Articles were described by only very few Attributes.

The utility function allows only purely relative conclusions. It is not sensible to com-

pare the calculated utility values from different states of the dialogue and in particular

it is impossible to use the utility function for cross-domain recommendations. Such an

approach would require intensive effort to merge the different domain models before-

hand. Also, the numercial utility value does not allow conclusions about the absolute

quality of the recommendation (i.e., it is not possible to provide a measure like the

well-known “1 to 5 stars” rankings for our recommendations).

As already described in section 8.1, the degree of automation that can be achieved

for the model maintenance is dependent on the quality of the available product data.

In our use case, it was necessary to invest more manual work than was originally

expected.

129

CHAPTER 9. EVALUATION

9.4 Conclusion

In summary, the evaluations show that our recommender system approach is suitable

for its intended purpose. The recommendation quality is comparable to a dedicated

scoring model for representative customer groups built by experts during a study from

a market research institute. We argue that the market study nicely shows the real

strength of our approach: Whereas the institute had to tediously build one dedicated

scoring model / utility function per customer group, our system determines a person-

alized utility function for each single customer, even if he/she is not fully typical.

Beyond the day-to-day maintenance of the domain model by our industry partner as

described in chapter 8, our student workshops revealed the simplicity and efficiency of

the modelling approach. High-school students were able to understand the approach

and build basic recommendation models during workshop session that lasted only a

few hours. In addition, the workshops serve as principal evidence for the transferability

of our approach to domains beyond mobile telecommunications.

Furthermore, our measurements show that the recommender system exhibits ade-

quate performance to be used in the envisioned web-application scenario. Supported

by additional lab measurements, benchmarks conducted in a realistic scenario at our

industry partner show roundtrip times of less than one second, which are fully accept-

able for interactive usage in our prototype. In particular, our measurements show that

the utility-based database queries against a standard SQL database system compare

favourably to PreferenceSQL and that the memory requirements for using Bayesian

inference are controllable.

130

10 Further Work

10.1 Enhance Interaction Paradigm by Incorporating

Explanations

In section 6.5, we described the use of explanations to inform the customer about

some of the reasoning behind the behaviour of the recommender system. It would be

interesting to expand the use of explanations beyond their plain informative charac-

ter that they have in our current approach towards a more “active” use in dialogue

management.

We envision that the dialogue could – after a brief sequence in the conventional fash-

ion – continue by selecting questions based on explanation-based criteria, such as an

observed discrepancy between the explanation and the predicted or actual answers of

a customer. The customer could then be given the choice to “fix” these discrepan-

cies before moving on through the regular dialogue. Furthermore, (re-)answering a

question could immediately lead to feedback about how the answer has changed the

recommendations and uncover new questions that now require “fixing” by the user.

10.2 Derive Maintenance Necessity Automatically

It has been observed that our usage of Bayesian networks completely excludes learning-

based approaches, which is somewhat uncommon amongst the pertinent scientific com-

munity. In part, this was due to the fact that no data to learn from was available for

our use case. Assuming the availablity of such information, let us consider some ways

where learning techniques could be used to improve the recommender system:

• Discrepancies between the generated recommendations and the actually bought

products can be uncovered. The responses to such an event may vary from a

notification of the domain model maintainer to automated analysis resulting in

suggestions of how to adapt the Bayesian network (ranging from changes in the

131

CHAPTER 10. FURTHER WORK

conditional probability tables to the introduction of new dependencies, i.e., new

Influences in the domain model).

• Also, analysis of dialogue protocols can detect cases where the predicted an-

swers differ significantly from the actual answers, likewise leading to manual or

automatic adaptations of the domain model.

It would also be interesting to investigate techniques to generate the Bayesian network

completely from history data, beginning with the conditional probability distributions

and possibly even the network structure itself. We are, however, convinced that an

expert-designed domain model will always have a certain influence on the Bayesian

network, since the lack and possible inapplicability of history data was the very basis

of our project. So, even when historic data is available, it remains doubtful that future

marketing strategies could be designed without appropriate expert input. The com-

bination of expert-provided and learnt probability distributions may be a promising

field for further research.

10.3 Allow More Complex Influence Relationships

In section 8.4, we discussed our move from an “AND-based” to the “OR-based” ap-

proach of constructing the conditional probability tables of the Bayes network. While

this has proven to be an adequate choice for the investigated use cases and is mo-

tivated by the discussed deficiencies of the AND-based calculation, it nevertheless

seems somewhat arbitrary to restrict ourselves to a very specific way of constructing

the probability tables.

To this end, we could imagine a more comprehensive way to specify the interrelations

within a set of parent Influences for a given ReasoningElement that incorporates logical

operators such as “AND”, “OR”, and “NOT”.

In other words, assuming a set of Influences {IA, IB, IC , ID}, the current approach

combines these using “OR”, conceptually denoted as: IA∨IB∨IC∨ID. The envisioned

extension could allow more fine-grained specifications like, for example, (IA ∧ IB) ∨
(IC ∧ ID), and build a conditional probability table that reflects the specification.

It should be noted, however, that such an extension adds a significant complexity for

both the domain modeller and the editor application (cf. section 8.2) which would

have to be weighted against the added expressiveness that the extension provides.

The significant effort to put the extension into practice, combined with the fact that

132

10.3. ALLOW MORE COMPLEX INFLUENCE RELATIONSHIPS

it was unclear whether a concrete use case would be found in our project, led us to

not pursue the idea further in the course of the dissertation.

133

11 Summary

In this dissertation, we presented a novel metamodel-based approach to specify conver-

sational recommender systems. The metamodel provides means to specify customer

properties such as desires, needs, or expectations, the technical properties of the prod-

ucts in the domain, and the interrelationships between both. We can use domain

models built upon the presented metamodel to generate all domain-dependent compo-

nents of the recommender system automatically, which enables efficient maintenance.

The domain model is the foundation for a dialogue management component based on

statecharts. It allows for a flexible organisation of the dialogue and is at the same

time easy and intuitive to implement. In particular, the approach supports mixed-

initiative dialogues, personalised dialogue paths and transparent belief revision that

are necessary requirements for a conversational recommender system to be also used

to assist salespersons at the point-of-sale.

Furthermore, the domain model is used to generate the system’s central inference

engine that relies on Bayesian networks as its underlying formalism. The inference

engine provides predictions and relevance estimations for the dialogue questions and

derives utility values for the technical attributes of products. The Bayesian network

handles belief revision and incomplete knowledge common to the expected usage sce-

nario. On the other hand, it can be used to explain parts of the system’s behaviour

such the question choosing strategy and the generated recommendations in terms that

are understandable by the users.

To recommend products, the approach uses the usefulness estimations from the infer-

ence engine as inputs for a multi-attribute utility function. The function is executed

on a conventional relational database to return a list of products that is ordered ac-

cording to the customer’s wishes. Our evaluations showed that the quality of this

individualised ranking is comparable to an expert-created manual scoring model.

In addition to being implemented as a research prototype, the approach has been put

into practice in an enterprise environment during a cooperation with a local industry

partner to provide recommendations in the mobile telecommunications domain. An

135

CHAPTER 11. SUMMARY

evaluation by an external market research institute confirmed the suitability of the

approach for the use case and measurements showed adequate performance in a re-

alistic scenario. Additional evaluations demonstrated the general applicability of the

approach to further business domains.

By using the implemented recommender system on a daily basis at our industry part-

ner, we were able to demonstrate that many maintenance tasks can be solved efficiently

and even semi-automatically. Additionally, a number of student workshops suggest

that the developed modelling concepts are simple and efficient to use.

When comparing the approach with the works of other researchers within the recom-

mender systems community, we find that our solution provides advantages particularly

in the flexibility of the dialogue management, resulting from the fact that the dialogue

is derived from the domain model rather than being specified explicitly. On the other

hand, conventional collaborative or item-based recommender systems form an exces-

sively well researched field that has proven its strengths in many practical applications.

We would assume that such systems will be preferred over the approach presented here,

if the surrounding conditions permit their use. In particular, such systems can han-

dle cross-domain recommendations transparently and have the potential of even lower

maintenance requirements, due to their implicit data gathering.

However, as our use case demonstrates, there are domains that cannot be adequately

covered by collaborative recommender systems, because they fail to build an appro-

priate customer profile or rely on an unsuitable interaction model. A conversational

recommender system relying on the approach presented in this thesis can be applied

successfully to those scenarios.

To summarize, our work is built around the following key contributions:

• We have described a novel architecture for conversational recommender systems

that relies on a simple, yet powerful domain modelling instead of having to

use customer profiles. Systems built using this architecture can be successfully

applied to problem domains that are considered to be hard to solve for other

recommendation approaches.

• To this end, we have presented a new approach to elicit customer preferences

that uses a flexible dialogue that is derived from the domain model, thereby

enabling efficient maintenance.

• The described approach relies on an inference engine that combines uncertain

reasoning with database query technology by using causal relationships specified

136

in the domain model. We have described our choice of a specialized variant

of the “Noisy-OR” paradigm for the generation of Bayesian networks and have

shown that Bayes networks using this variant are a suitable formalism for our ap-

proach, with respect to both its practical adequacy and its runtime and memory

performance.

Our work combines these contributions into a system that enables product recommen-

dations in areas that are currently unreachable for more conventional recommender

technologies. Finally, it can be said that our contributions provide a suitable solution

for the targeted use case and have proven their adequacy in an industrial strength

environment.

137

A Bibliography

[AFF+02] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, M. Meyer,

G. Petrone, R. Schaefer, W. Schuetz, and M. Zanker. Personalizing online

configuration of products and services. In Proceedings of the 15th European

Conference on Artificial Intelligence (ECAI), 2002.

[AFF+03] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, G. Petrone,

R. Schaefer, and M. Zanker. A Framework for the Development of per-

sonalized, distributed Web-Based Configuration Systems. AI Magazine,

24:93–110, 2003.

[ALS10] J.C. Anderson, J. Lehnardt, and N. Slater. CouchDB, The Definitive

Guide. O’Reilly Media Inc., Sebastopol, 2010.

[Alt09] B. Altmann. Erweiterte Bayessche Modellierung von Domänenmodellen

in einem Beratungssystem. Master’s thesis, University of Passau, Chair

for Information Management, 2009.

[BD04] B. Bruegge and A.H. Dutoit. Object-Oriented Software Engineering. Pear-

son Education Inc., 2004.

[BF08] M. Beck and B. Freitag. Weighted Boolean Conditions for Rank-

ing. In Proceedings of the ICDE Workshop on Ranking in Databases

(DBRank’08), 2008.

[BRF07] M. Beck, S. Radde, and B. Freitag. Ranking von Produktempfehlungen

mit präferenz-annotiertem SQL. In Alfons Kemper et al., editor, Proceed-

ings der 12. GI-Fachtagung für Datenbanksysteme in Business, Technolo-

gie und Web (BTW 2007), volume 103 of Lecture Notes in Informatics,

pages 82–95, Aachen, Germany, March 2007. Gesellschaft für Informatik.

in German.

[BRJ05] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Lan-

guage User Guide. Addison-Wesley, 2005.

139

A Bibliography

[Bur00] R. Burke. Knowledge-based Recommender Systems. Encyclopedia of Li-

brary and Information Science, 69(32):180–200, 2000.

[Bur07] R. Burke. Hybrid Web Recommender Systems. In P. Brusilovsky,

A. Kobsa, and W. Nejdl, editors, The Adaptive Web, volume 4321 of

LNCS, pages 377–408. Springer Verlag, 2007.

[CD00] J. Cheng and M.J. Druzdzel. AIS-BN: An adaptive importance sampling

algorithm for evidential reasoning in large Bayesian networks. In Jour-

nal of Artificial Intelligence Research (JAIR), volume 13, pages 155–188.

Elsevier Science Publishers B.V. (North Holland), 2000.

[Cen09] Centrum für Marktforschung der Universität Passau. Nutzerprofile für

Mobiltelefone und Software-Evaluation: Zwischenbericht. October 2009.

[Cen10] Centrum für Marktforschung der Universität Passau. Nutzerprofile für

Mobiltelefone und Software-Evaluation: Ergebnisbericht. January 2010.

[CGL01] D. Calvanese, G. De Giacomo, and M. Lenzerini. Ontology of Integration

and Integration of Ontologies. In C.A. Goble, D.L. McGuinness, R. Möller,

and P.F. Patel-Schneider, editors, Description Logics, volume 49 of CEUR

Workshop Proceedings. CEUR-WS.org, 2001.

[CL07] Y. Cao and Y. Li. An intelligent fuzzy-based recommendation system for

consumer electronic products. Expert Systems with Applications, 33:230–

240, 2007.

[CP05] L. Chen and P. Pu. Trust Building in Recommender Agents. In Pro-

ceedings of the 1st International Workshop on Web Personalization, Rec-

ommender Systems and Intelligent User Interfaces (WPRSIUI-05), pages

135–145, Reading, UK, 2005.

[dCFLH04] L.M. de Campos, J.M. Fernandez-Luna, and J.F. Huete, editors. Infor-

mation Processing and Management: Special Issue on Bayesian Networks

and Information Retrieval, volume 40. Elsevier, 2004.

[DG93] P. Dagum and A. Galper. Additive Belief-Network Models. In Proc.

of the 9th Annual Conference on Uncertainty in Artificial Intelligence

(UAI1993), 1993.

[DG04] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters . In Sixth Symposium on Operating System Design and

Implementation (OSDI’04), San Francisco, December 2004.

140

A Bibliography

[DMIZ97] F. J. Dı́ez, J. Mira, E. Iturralde, and S. Zubillaga. DIAVAL, a Bayesian

expert system for echocardiography. Artificial Intelligence in Medicine,

10:59–73, 1997.

[DP96] P. Domingos and M.J. Pazzani. Beyond independence: conditions for the

optimality of the simple Bayesian classifier. In Proceedings of the 13th

International Conference on Machine Learning (ICML 96), Bari, Italy,

1996.

[Düm03] L. Dümbgen. Stochastik für Informatiker. Springer Verlag, 2003.

[EFHB10] S. Edlich, A. Friedland, J. Hampe, and B. Brauer. NoSQL, Einstieg

in die Welt nichtrelationaler Web 2.0 Datenbanken. Carl Hanser Verlag

München, 2010.

[Erl06] T. Erl. Service-Oriented Architecture. Concepts, Technology, and Design.

Prentice Hall, 2006.

[ES93] L. M. Ellram and S. P. Siferd. Purchasing: The cornerstone of the total

cost of ownership concept. Journal of Business Logistics, 14(1), 1993.

[FC90] R. Fung and K.-C. Chang. Weighting and integrating evidence for stochas-

tic simulation in Bayesian networks. In Uncertainty in Artificial Intelli-

gence, volume 5, pages 209–219. Elsevier Science Publishers B.V. (North

Holland), 1990.

[FdF94] R. Fung and B. del Favero. Backward simulation in Bayesian networks. In

Uncertainty in Artificial Intelligence, Tenth Conference, pages 227–234.

Morgan Kaufmann, San Francisco, CA, 1994.

[FFG+07] A. Felfernig, G. Friedrich, B. Gula, M. Hitz, T. Kruggel, R. Melcher,

D. Riepan, S. Strauss, E. Teppan, and O. Vitouch. Persuasive recom-

mendation: Exploring Serial Position Effects in Knowledge-based Rec-

ommender Systems. In Proceedings of the 2nd Internation Conference

of Persuasive Technology, volume 4744, Stanford, USA, 2007. Springer

Verlag.

[FFJZ06] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. An Integrated en-

vironment for the Development of Knowledge-Based Recommender Ap-

plications. International Journal of Electronic Commerce, 11(2):11–34,

2006.

[FLNP00] N. Friedman, M. Linial, I. Nachman, and D. Peer. Using Bayesian Net-

141

A Bibliography

works to Analyze Expression Data. Journal of Computational Biology,

7(3/4):601–620, 2000.

[Fra03] David S. Frankel. Model Driven Architecture: Applying MDA to Enter-

prise Computing. OMG Press, 2003.

[Fre10] Burkhard Freitag. Präferenzen und Ranking in Informationssystemen.

Lecture script of the Chair for Information Management, University of

Passau, 2010.

[Fri97] J.H. Friedmann. On bias, variance, 0/1-loss, and the curse-of-

dimensionality. Data Mining and Knowledge Discovery, 1(1):55–77, 1997.

[GBH09] B. Gipp, J. Beel, and C. Hentschel. Scienstein: A Research Paper Rec-

ommender System. In Proceedings of the International Conference on

Emerging Trends in Computing (ICETiC09). Kamaraj College of Engi-

neering and Technology India, IEEE, 2009.

[Hel11] M. Helm. Semantic Search: Semantische Suche auf taxonomisch struk-

turierten Daten im verteilten Archivsystem MonArch. Master’s thesis,

University of Passau, Chair for Information Management, 2011.

[Hen88] M. Henrion. Propagating uncertainty in Bayesian networks by probabilis-

tic logic sampling. In Uncertainty in Artificial Intelligence, volume 2,

pages 149–163. Elsevier Science Publishers B.V. (North Holland), 1988.

[HHHC04] S. M. Hsieh, S. J. Huang, C. C. Hsu, and H. C. Chang. Personal document

recommendation system based on data mining techniques. In Proceedings

of the 2004 IEEE/WIC/ACM International Conference on Web Intelli-

gence, WI ’04, pages 51–57, Washington, DC, USA, 2004. IEEE Computer

Society.

[HKTR04] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J. Riedl. Evaluating

collaborative filtering recommender systems. ACM Transactions on In-

formation Systems, 22(1):5–53, 2004.

[HP09] R. Hu and P. Pu. A Comparative User Study on Rating vs. Personality

Quiz based Preference Elicitation Methods. In Proceedings of the Inter-

national Conference on Intelligent User Interfaces. ACM, 2009.

[HP10] R. Hu and P. Pu. A study of Building Profiles for Different Objects using

Personality Quizzes in Recommender Systems. In Proceedings of the 18th

International Conference on User Modeling, Adaptation and Personaliza-

142

A Bibliography

tion (UMAP), volume 6075 of LNCS. Springer Verlag, 2010.

[Höl11] G. Hölbling. Personalized Means of Interacting with Multimedia Content.

PhD thesis, University of Passau, 2011.

[JSLZ03] J.Z. Ji, Z.Q. Sha, C.N. Liu, and N. Zhong. Online recommendation

based on customer shopping model in e-commerce. In Proceedings of the

IEEE/WIC International Conference on Web Intelligence (WI), 2003.

[JSSW95] A. Jameson, R. Schaefer, J. Simons, and T. Weis. Adaptive Provision

of Evaluation-Oriented Information: Tasks and Techniques. In Proceed-

ings of the 14th International Joint Conference on Artificial Intelligence

(IJCAI), 1995.

[JZFF11] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender

Systems: An Introduction. Cambridge University Press, 2011.

[Kar11] J. Karl. Nutzung einer NoSQL-Datenbank für Produktempfehlungen in

einem elektronischen Beratungssystem. Bachelor’s thesis, University of

Passau, Chair for Information Management, 2011.

[Kie02] W. Kießling. Foundations of Preferences in Database Systems. In Proc.

of the 28th International Conference on Very Large Data Bases (VLDB),

pages 311–322. Morgan Kaufmann, 2002.

[Kie05] W. Kießling. Preference Queries with SV-Semantics. In Proceedings of

the 11th International Conference on Management of Data (COMMAD),

pages 15–26. Computer Society of India, 2005.

[KK02] W. Kießling and G. Köstler. Preference SQL – Design, Implementation,

Experiences. In Proceedings of the 28th International Conference on Very

Large Data Bases (VLDB), 2002.

[Köl99] A. Kölzer. Universal Dialogue Specification for Conversational Systems.

In J. Alexanderrson, L. Ahrenberg, K. Jokinen, and A. Joensson, editors,

Special Issue on Intelligent Dialogue Systems, number 9 in News Journal

on Intelligent User Interfaces. ETAI, 1999.

[Kor09] Y. Koren. The BellKor Solution to the Netflix Grand Prize. Technical

report, Netflix Prize Documentation, 2009.

[KS03] Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: The State Of The

Art. Knowledge Engineering Review, 18(1):1–31, 2003.

143

A Bibliography

[Kul09] H. Kulovits. Recommender Systems in Preservation Planning. In Pro-

ceedings of the 9th Workshop on Data Analysis (WDA-09), Certovika,

Slovakia, July 2009.

[LB06] J. Leite and M. Babini. Dynamic Knowledge Based User Modeling for

Recommender Systems. In Proceedings of the ECAI-06 Workshop on Rec-

ommender Systems, 2006.

[Lik32] R. Likert. A Technique for the Measurement of Attitudes. Archives of

Psychology, 22(140):55ff, 1932.

[LV07] T.D. Loboda and M. Voortman. About GeNIe & SMILE. Available

online at http://genie.sis.pitt.edu/about.html, 2007. Last accessed

on 2012-03-27.

[MN98] A. McCallum and K. Nigam. A Comparison of Event Models for Naive

Bayes Text Classification. In Proceedings of the AAAI Workshop on

Learning for Text Categorization, Madison, USA, 1998.

[MR07] T. Mahmood and F. Ricci. Learning and adaptivity in interactive recom-

mender systems. In Proceedings of the 9th International Conference on

Electronic Commerce. ACM, 2007.

[Pea97] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann, 1997.

[PHC07] M.-H. Park, J.-H. Hong, and S.-B. Cho. Location-Based Recommendation

System Using Bayesian User’s Preference Model in Mobile Devices. In

Proceedings of the 4th International Conference on Ubiquitous Intelligence

and Computing (UIC), 2007.

[PPNH94] M. Pradhan, G. Provan, B. Niddleton, and M. Henrion. Knowledge En-

gineering for Large Belief Networks. In Proceedings of the Conference on

Uncertainty in AI, 1994.

[RBF07] S. Radde, M. Beck, and B. Freitag. Generating Recommendation Di-

alogues from Product Models. In Proceedings of the AAAI Joint Work-

shop on Intelligent Techniques for Web Personalization and Recommender

Systems in E-Commerce, pages 126–129, Vancouver, Canada, July 2007.

AAAI Press.

[RD06] F. Ricci and J. Delgado, editors. Special issue on Travel Recommender

Systems, volume 6 of Information Technology and Tourism, 2006.

144

http://genie.sis.pitt.edu/about.html

A Bibliography

[RF07] S. Radde and B. Freitag. SIPREACT - Kontextsensitive Beratungssys-

teme. In R. Koschke, O. Herzog, K.-H. Rödiger, and M. Ronthaler, editors,

Proceedings des GI-Workshops zu Situierung, Individualisierung und Per-

sonalisierung, volume P-109 of GI-Edition LNI, pages 259–262, Bremen,

Germany, September 2007. Gesellschaft für Informatik. in German.

[RF10] S. Radde and B. Freitag. Using Bayesian Networks To Infer Product

Rankings From User Needs. In Proceedings of the UMAP Workshop on

Intelligent Techniques for Web Personalization and Recommender Sys-

tems (ITWP’10), Big Island, Hawaii, June 2010.

[Ric02] F. Ricci. Travel recommender systems. IEEE Intelligent Systems, 2002.

[RKF08] S. Radde, A. Kaiser, and B. Freitag. A Model-Based Customer Inference

Engine. In Proceedings of the ECAI Workshop on Recommender Systems,

Patras, Greece, July 2008. ECCAI.

[RN10] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson Education Inc., 2010.

[RRSK11] F. Ricci, L. Rokach, B. Shapira, and P.B. Kantor, editors. Recommender

Systems Handbook. Springer Verlag, Berlin, 2011.

[RZF09] S. Radde, B. Zach, and B. Freitag. Designing a Metamodel-Based Rec-

ommender System. In T. Di Noia and F. Buccafurri, editors, Proceedings

of the 10th International Conference on E-Commerce and Web Technolo-

gies (EC-Web 2009), volume 5692 of LNCS, pages 264–275, Linz, Austria,

September 2009. Springer Verlag.

[SB01] S. Schmitt and R. Bergmann. A Formal Approach to Dialogs with On-

line Customers. In Proceedings of the 14th Bled Electronics Commerce

Conference, pages 309–328, 2001.

[SB11] O.C. Santos and J.G. Boticario, editors. Educational Recommender Sys-

tems and Technologies: Practices and Challenges. IGI Global, 2011.

[SK09] X. Su and T.M. Khoshgoftaar. A Survey of Collaborative Filtering Tech-

niques. Advances in Artificial Intelligence (AAI), 2009, 2009.

[SP90] R.D. Shachter and M.A. Peot. Simulation approaches to general proba-

bilistic inference on belief networks. In Uncertainty in Artificial Intelli-

gence, volume 5, pages 221–231. Elsevier Science Publishers B.V. (North

Holland), 1990.

145

A Bibliography

[Sta10] Statistisches Bundesamt. Altersstruktur der Bevölkerung (Stand:

31.12.2009) im Vergleich zum Vorjahr. Available online at

http://de.statista.com/statistik/daten/studie/1351/umfrage/

altersstruktur-der-bevoelkerung-deutschlands/, Nov 2010. Last

accessed on 27.09.2011.

[Tay10] M.M. Taye. State-of-the-Art: Ontology Matching Techniques and On-

tology Mapping Systems. International Journal of ACM Jordan, (3):8,

2010.

[WE86] D. Winterfeldt and W. Edwards. Decision Analysis and Behavioral Re-

search. Cambridge University Press, 1986.

[Wie03] R.J. Wieringa. Design Methods for Reactive Systems. Morgan Kaufmann,

2003.

[YD03] C. Yuan and M.J. Druzdzel. An Importance Sampling Algorithm Based

on Evidence Pre-propagation. In Proceedings of the 19th Conference on

Uncertainty in Artificial Intelligence (UAI-03), pages 624–631. Morgan

Kaufmann: San Mateo, CA, 2003.

146

http://de.statista.com/statistik/daten/studie/1351/umfrage/altersstruktur-der-bevoelkerung-deutschlands/
http://de.statista.com/statistik/daten/studie/1351/umfrage/altersstruktur-der-bevoelkerung-deutschlands/

B List of Figures

1.1 Basic idea of a conversational recommender system 1

1.2 Layer structure . 2

1.3 Different interaction scenarios . 4

2.1 The “Alarm” network, including conditional probability tables 18

2.2 Basic Mealy diagram for S1
e[c]/a−→ S2 23

2.3 Example Mealy diagram for saving a file, showing a decision state . . 23

2.4 Example statechart for data input, a) showing the higher abstraction

level, and b) showing a state hierarchy that details the input validation 25

2.5 Example statechart for two (simplified) traffic lights, showing parallel

but synchronized processes in an AND-state 25

3.1 Metamodel basic structure: Influences connect ReasoningElements . . . 29

3.2 UML diagram of the customer metamodel 30

3.3 UML diagram of the product metamodel 33

3.4 Product modelling abstraction levels illustrated 34

3.5 UML diagram of the interrelationships metamodel 36

3.6 Sample model for the mobile phone domain 41

3.7 Belief state change propagation . 43

3.8 Sample rendering of the real domain model 46

5.1 General dialogue overview . 71

5.2 Refined recommendation cycle . 72

5.3 Dialogue layers . 73

5.4 Dialogue with multiple topics . 74

5.5 Sub-statechart for a single layer . 75

5.6 Single layer with 1-3 simultaneous questions (some hyperedges and la-

bels omitted for readability) . 76

5.7 Statechart for the running example . 77

5.8 UML diagram for the dialogue management component 81

147

List of Figures

5.9 Statecharts implemented as a web application with HTTP requests for

the external events . 81

6.1 UML diagram of the inference engine 86

6.2 Inference snapshot . 88

7.1 Inference snapshot (Traits omitted) . 97

8.1 Domain model editor screenshot . 111

8.2 Influences adjacency matrix spreadsheet 112

8.3 Product catalogue spreadsheet . 112

8.4 UML diagram of a metamodel extension 114

9.1 Study results, showing the distribution of grades accumulated over all

customer groups and for the “individual” cluster in particular 121

9.2 Bayesian inference performance measurements, showing median values 123

9.3 Database performance measurement results, showing the median exe-

cution time of recommendation queries in milliseconds 124

9.4 Performance measurements for complete recommendation dialogue steps,

showing median values . 126

148

	Introduction
	Aims and Objectives
	Motivation
	Key Contributions
	Overview

	Background and Literature
	Recommender Systems
	Collaborative Recommender Systems
	Content-Based Recommender Systems
	Knowledge-Based Recommender Systems

	Probabilistic Reasoning
	General
	Bayesian Inference
	Bayesian Networks
	Bayesian Network Inference Algorithms
	Exact Inference
	Approximative Algorithms

	Statecharts
	Mealy Diagrams
	Extension to Statecharts

	Use Case
	Mobile Telecommunications
	Movies / DVDs
	Courses of Study

	Metamodel Specification and Semantics
	Customer Metamodel
	Product Metamodel
	Interrelations
	Project Experiences
	Conclusion

	Metamodel Implementation
	Intermediate Representation
	Intermediate Model
	Generation from Domain Model
	Converting ReasoningElements
	Converting Influences

	Implementation Based on Bayesian Networks
	Introduction
	Bayesian Model

	Conclusion

	Dialogue Management
	Question Based Preference Elicitation
	General Interaction Concept
	Dialogue Structure
	Layer / Topic Structure

	Question Relevance
	Implementation
	Conclusion

	Inference Engine
	Inference Engine Requirements
	Answers
	Predictions
	Utility Estimations
	Explanations
	Conclusion

	Recommendation Generation
	Utility Function
	Implementation in SQL
	Implementation Alternatives
	Pareto-optimality Based Queries
	NoSQL

	Conclusion

	System Lifecycle
	Short Term: Instance Modifications
	Medium Term: Model Adaptations
	Technological Changes
	Marketing Changes
	Model Editor Application

	Long Term: Evolution of the Metamodel
	Bayesian Network Construction
	Conclusion

	Evaluation
	Practical Adequacy of the Approach
	Performance
	Runtime Measurements
	Bayesian Inference
	Database Queries
	Complete Dialogue Step
	Project Experience

	Memory Usage

	Limitations
	Conclusion

	Further Work
	Enhance Interaction Paradigm by Incorporating Explanations
	Derive Maintenance Necessity Automatically
	Allow More Complex Influence Relationships

	Summary
	Bibliography
	List of Figures

