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High-Resolution Scalar Quantization
with Rényi Entropy Constraint

Wolfgang Kreitmeier and Tamás Linder, Senior Member, IEEE

Abstract—We consider optimal scalar quantization with rth
power distortion and constrained Rényi entropy of order α. For
sources with absolutely continuous distributions the high rate
asymptotics of the quantizer distortion has long been known for
α = 0 (fixed-rate quantization) and α = 1 (entropy-constrained
quantization). These results have recently been extended to
quantization with Rényi entropy constraint of order α ≥ r + 1.
Here we consider the more challenging case α ∈ [−∞, 0)∪ (0, 1)
and for a large class of absolutely continuous source distributions
we determine the sharp asymptotics of the optimal quantization
distortion. The achievability proof is based on finding (asymp-
totically) optimal quantizers via the companding approach, and
is thus constructive.

Index Terms—Companding, high-resolution asymptotics, opti-
mal quantization, Rényi entropy.

I. INTRODUCTION

W ITH the exception of a few very special source distri-
butions the exact analysis of the performance of opti-

mal quantizers is a notoriously hard problem. The asymptotic
theory of quantization facilitates such analyses by assuming
that the quantizer operates at asymptotically high rates. The
seminal work by Zador [31] determined the asymptotic behav-
ior of the minimum quantizer distortion under a constraint on
either the log-cardinality of the quantizer codebook (fixed-rate
quantization) or the Shannon entropy of the quantizer output
(entropy-constrained quantization). (See the article by Gray
and Neuhoff [12] for a historical overview and related results.)
Zador’s results were later clarified and generalized by Bucklew
and Wise [5] and Graf and Luschgy [9] for the fixed-rate case,
and by Gray et al. [11] for the entropy-constrained case.

Recently, approaches that incorporate both the fixed and
entropy-constrained cases have been suggested. In [10] a La-
grangian formulation is developed which puts a simultaneous
constraints on entropy and codebook size, including fixed-
rate and entropy-constrained quantization as special cases.
Another approach that has been suggested in [10] and further
developed in [18], [19] uses the Rényi entropy of order α of
the quantizer output as (generalized) rate. One obtains fixed-
rate quantization for α = 0, while α = 1 yields the usual
(Shannon) entropy-constrained quantization approach.

The choice of Rényi entropy as the quantizer’s rate can
be motivated from a purely mathematical viewpoint. In the
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axiomatic approach to defining entropy, Rényi’s entropy is a
canonical extension of Shannon-entropy, satisfying fewer of
the entropy axioms [26], [1]. From a more practical point of
view, the use of Rényi entropy as quantizer rate is supported by
Campbell’s work [6], who considered variable-length lossless
codes with exponentially weighted average codeword length
and showed that Rényi’s entropy plays an analogous role to
Shannon entropy in this more general setting. Further results
on lossless coding for Rényi entropy were obtained in [24].
Jelinek [16] showed that Rényi’s entropy (of an appropriate
order α ∈ (0, 1)) of a variable-length lossless code determines
the encoding rate for a given reliability (exponential decrease
of probability) of buffer overflow when the codewords are
transmitted over a noiseless channel at a fixed per symbol
rate. At least in such situations, measuring the quantizer’s rate
by Rényi’s entropy is operationally justified. An overview of
related results can be found in [2]. The diverse uses of Rényi’s
entropy (and differential entropy) in emerging fields such as
quantum information theory (e.g. [15]), statistical learning
(e.g. [17]), bioinformatics (e.g. [21]), etc., may also provide
future motivation for this rate concept.

The only available general result on quantization with
Rényi entropy constraint appears to be [18] where the sharp
asymptotic behavior of the rth power distortion of optimal
d-dimensional vector quantizers has been derived for α ∈
[1 + r/d,∞]. The proof shows that for these α values the
optimal quantization error is asymptotically determined by
the distortion of a ball with appropriate radius around the
most likely values of the source distribution. Thus it suffices
to evaluate the rth moment of this ball (see [18, Theorem
4.3]), which remarkably simplifies the derivation and makes
the case α ≥ 1 + r/d quite unique. In the classical (α = 0
and α = 1) settings, the contributions of the codecells of an
optimal quantizer to the overall distortion are asymptotically
of the same order. Bounds on the optimal performance in
[18] suggest a similar situation for α < 1 + r/d, making the
problem more challenging than the case α ≥ 1 + r/d.

In this paper, at the price of restricting the treatment to
the scalar (d = 1) case, we are able to determine the
asymptotics of the optimal quantization error under a Rényi
entropy constraint of order α ∈ [−∞, 0) ∪ (0, 1) for a fairly
large class of source densities. The achievability part of the
proof (providing a sharp upper bound on the asymptotic
performance) is constructive via companding quantization. In
particular, we determine the optimal point density function
for each α ∈ [−∞, 1 + r) and provide rigorous performance
guarantees for the associated companding quantizers (for
α = 0 and α = 1, these results have of course been known).
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Matching lower bounds are provided for α ∈ [−∞, 0)∪(0, 1),
which leaves only the case α ∈ (1, 1+r) open. We note that in
proving the matching lower bounds, one cannot simply apply
the techniques established for α = 0 or α = 1. In our case
the distortion and Rényi entropy of a quantizer must be si-
multaneously controlled, a difficulty not encountered in fixed-
rate quantization. Similarly, the Lagrangian formulation that
facilitated the corrected proof of Zador’s entropy-constrained
quantization result in [11] cannot be used since it relies on the
special functional form of the Shannon entropy. On the other
hand, using the monotonicity in α of the optimal quantization
error, one can show that our results imply the well-known
asymptotics for α ∈ {0, 1}, at least for the special class of
scalar distributions we consider.

The paper is organized as follows. In Section II we introduce
the quantization problem under a Rényi entropy constraint
and review some definitions and notation. In Section III, after
summarizing some related work, we state our main result. The
next three sections are devoted to developing the machinery
needed in the proof. Section IV presents results on the asymp-
totic distortion and Rényi entropy of companding quantizers,
which, with the proper choice of the compressor function in
a Bennett-like integral, will turn out to be (asymptotically)
optimal. In Section V technical results needed mostly for
establishing lower bounds are developed. Section VI presents
upper and lower bounds on the optimal quantization error for
mixture distributions. Section VII contains the proof of the
main results. Section VIII contains concluding remarks and
a discussion on extending the results to vector quantization.
All the longer, technical proofs of the auxiliary results are
relegated to the appendices.

II. PRELIMINARIES AND NOTATION

We begin with the definition of Rényi entropy of order α.
Definition 2.1: Let N := {1, 2, . . .}. Let α ∈ [−∞,∞]

and p = (p1, p2, . . .) ∈ [0, 1]N be a probability vector, i.e.,∑∞
i=1 pi = 1. The Rényi entropy of order α, Ĥα(p) ∈ [0,∞],

is defined as (see [26], [1, Definition 5.2.35] and [14, p. 1])

Ĥα(p) =



1
1−α log

( ∑
i:pi>0

pαi

)
, α ∈ R \ {1}

−
∞∑
i=1

pi log pi, α = 1

− log (max{pi : i ∈ N}) , α =∞
− log (inf{pi : i ∈ N, pi > 0}) , α = −∞.

We use the conventions 0 · log 0 := 0 and 00 := 0. All
logarithms are to the base e.

Remark 2.2: (a) With these conventions we obtain

Ĥ0(p) = log (card{i ∈ N : pi > 0}) ,

where card denotes cardinality. Using l’Hospital’s rule it is
easy to see, that the case α = 1 follows from the case α 6= 1
by taking the limit α → 1 (see, e.g., [1, Remark 5.2.34]).
Moreover, one has

lim
α→∞

Ĥα(p) = Ĥ∞(p), lim
α→−∞

Ĥα(p) = Ĥ−∞(p). (1)

(b) We note that the usual definition of Rényi entropy is
restricted to nonnegative values of the order α. However, it
will turn out that the case α < 0 can be handled without too
much additional technical difficulties, and we believe that this
generalization may turn out to have useful implications.

Now let d ∈ N and X be an Rd-valued random variable
with distribution µ. Let I ⊂ N and S = {Si : i ∈ I} be a
countable and Borel measurable partition of Rd. Moreover let
C = {ci : i ∈ I} be a countable set of distinct points in Rd.
Then (S, C) defines a quantizer q : Rd → C such that

q(x) = ci if and only if x ∈ Si.

We call C the codebook and the ci the codepoints. Each Si ∈
S is called codecell. Clearly, C = q(Rd) (the range of q).
Moreover,

S = {q−1(z) : z ∈ q(Rd)}

where q−1(z) = {x ∈ Rd : q(x) = z}. Let Qd denote
the set of all quantizers on Rd, i.e., the set of all Borel-
measurable mappings q : Rd → Rd with a countable number
of codepoints q(Rd). The discrete random variable q(X) is a
quantized version of the random variable X whose distribution
is denoted by µ ◦ q−1. In measure-theoretical terms the image
measure µ ◦ q−1 has a countable support and defines an
approximation of µ, the so-called quantization of µ by q. With
any enumeration {i1, i2, . . .} of I we define

Hα
µ (q) = Ĥα(µ(Si1), µ(Si2), . . .) (2)

as the Rényi entropy of order α of q with respect to µ.
We intend to quantify the error in approximating the original
distribution µ with its quantized version µ ◦ q−1. To this
end let ‖ · ‖ be any norm on Rd and ρ : [0,∞) → [0,∞)
a strictly increasing function. For q ∈ Qd we measure the
approximation error between X and q(X), resp. µ and µ◦q−1,
also called the quantizer distortion, as

Dµ(q) = Eρ(‖X − q(X)‖) =

∫
ρ(‖x− q(x)‖) dµ(x).

For any R ≥ 0 we define

Dα
µ(R) = inf{Dµ(q) : q ∈ Qd, Hα

µ (q) ≤ R}, (3)

the optimal quantization distortion of µ under Rényi α-entropy
bound R. We note that Dα

µ(R) is a nonincreasing function of
α (see Lemma 2.3).

We call a quantizer q optimal for µ under the entropy
constraint R if Dµ(q) = Dα

µ(R) and Hα
µ (q) ≤ R. In the rest

of this paper we focus on the one-dimensional case (scalar
quantizers, d = 1) and the so-called rth power distortion
measure ρ(x) = xr, where r ≥ 1. Thus the distortion of
quantizer q ∈ Q1 is given by

Dµ(q) = E|X − q(X)|r =

∫
|x− q(x)|r dµ(x).

For simplicity we write Q1 = Q. Also, let Qc ⊂ Q denote
the set of all scalar quantizers with finitely many codecells,
each of which is an interval, and such that every codepoint lies
in the closure of the corresponding codecell. The following
lemma (proved in A) presents two key properties of optimal
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quantization under Rényi entropy constraint.
Lemma 2.3: For all R ≥ 0 and α, β ∈ [−∞,∞] with β ≤

α, we have
Dβ
µ(R) ≥ Dα

µ(R). (4)

Assume that E|X|r < ∞ and µ is nonatomic. Then for all
R ≥ 0 and α ∈ [−∞, 0], we have

Dα
µ(R) = inf{Dµ(q) : q ∈ Qc, Hα

µ (q) ≤ R} (5)

while for all α ∈ (0,∞],

Dα
µ(R) = inf{Dµ(q) : q ∈ Qc, Hα

µ (q) = R}. (6)

The second statement of the lemma says that under the
given conditions the optimum quantizer performance can be
approached arbitrarily closely by quantizers in Qc. For this
reason, in the rest of the paper all quantizers will be assumed
to belong toQc; in particular, we only consider quantizers with
finitely many interval cells. According to (6), when α ∈ (0,∞]
it suffices to consider only those quantizers in Qc whose
entropy attains R.

From [18, Thm. 5.2] it is known that for α ∈ [0, 1] the
product erRDα

µ(R) remains bounded and is bounded away
from zero as R → ∞. This motivates the following notion
of quantizer optimality that will play an important role in our
work.

Definition 2.4: Let (qn)n∈N ⊂ Q be a sequence of quan-
tizers such that Hα

µ (qn)→∞ as n→∞. If erRDα
µ(R)→ c

as R→∞ for some c ∈ (0,∞) and

lim
n→∞

erH
α
µ (qn)Dµ(qn) = c, (7)

then we call (qn)n∈N an asymptotically optimal sequence of
quantizers for µ.

We denote by λ the one-dimensional Lebesgue measure. For
a measurable real function f on R and measurable nonempty
set A ⊂ R, ess infA f = sup{b : λ({x ∈ A : f(x) < b}) =
0} denotes that the essential infimum of f on A. Similarly,
ess supA f = inf{b : λ({x ∈ A : f(x) > b}) = 0} is the
essential supremum of f on A. We let supp(µ) denote the
support of µ defined by

supp(µ) = {x : µ((x− ε, x+ ε)) > 0 for all ε > 0}.

Note that supp(µ) is the smallest closed set whose comple-
ment has µ measure zero. We will often deal with the situation
where supp(µ) is contained in a bounded interval I . In such
cases, we usually leave a quantizer q ∈ Q undefined outside
I , as we may since µ(R \ I) = 0.

Let Z denote the set of all integers and assume ∆ > 0.
The infinite-level uniform quantizer q̂∆ on R has codecells
{(i∆, (i + 1)∆] : i ∈ Z} and corresponding codepoints that
are the midpoints of the associated cells, so that q̂∆(x) =
(i+ 1/2)∆ if and only if x ∈ (i∆, (i+ 1)∆].

III. MAIN RESULTS

First we summarize the known results regarding the sharp
high-rate asymptotics of the distortion of optimal scalar quan-
tizers. In order to unify the treatment, we reformulate the
classical (resolution and entropy) rate constraints in terms of

the Rényi entropy with appropriate order. For r > 0 we let

C(r) =
1

(1 + r)2r
.

Theorem 3.1 ([31], [5], [9], [11], [18]): Let r ≥ 1 and
µ = µa + µs be the Lebesgue decomposition of distribution
µ of the scalar random variable X with respect to the one-
dimensional Lebesgue measure λ, where µa denotes the abso-
lutely continuous part and µs the singular part of µ. Assume
that µa(R) > 0 and let f = dµa

dλ be the density of µa.

(i) If α = 0 and E|X|r+δ <∞ for some δ > 0, then

lim
R→∞

erRD0
µ(R) = C(r)

(∫
f1/(1+r) dλ

)1+r

. (8)

(ii) If α = 1, µs(R) = 0,
∫
f log f dλ exists and is finite,

and H1
µ(q̂∆) <∞ for some ∆ > 0, then

lim
R→∞

erRD1
µ(R) = C(r)e−r

∫
f log f dλ. (9)

(iii) If α ∈ [1 + r,∞], µs(R) = 0, E|X|r+δ < ∞ for some
δ > 0, and ess supR f <∞, then

lim
R→∞

e(1+r)β(α)RDα
µ(R) = C(r) (ess sup Rf)

−r
,

where β(α) = (α−1)/α if α ∈ [1+r,∞) and β(α) = 1
if α =∞.

Note that f is a probability density function if and only if
µs(R) = 0. Part (i) of the theorem is originally due to Zador
[31] who considered the multidimensional case; corrected and
generalized proofs were given by Bucklew and Wise [5] and
Graf and Luschgy [9]. Part (ii) is also due to Zador [31] with
corrections and generalizations by Gray et al. [11]. Part (iii) is
due to Kreitmeier [18] who also gave upper and lower bounds
for the case α ∈ (1, 1 + r).

Definition 3.2: A one-dimensional probability density func-
tion f is called weakly unimodal if f is continuous on its
support and there exists an l0 > 0 such that {x : f(x) ≥ l} is
a compact interval for every l ∈ (0, l0).

Remark 3.3: Note if f is weakly unimodal density, then it
is bounded and its support is a (possibly unbounded) interval.
Clearly, all continuous unimodal densities are weakly uni-
modal. Thus the class of weakly unimodal densities includes
most parametric source density classes commonly used in
modeling information sources such as exponential, Laplacian,
Gaussian, and generalized Gaussian densities.

For α ∈ (−∞, r + 1) \ {1} we define

a1 =
1− α+ αr

1− α+ r
, a2 =

1− α+ r

1− α
. (10)

The following is the main result of the paper.
Theorem 3.4: Let r > 1 and assume that the distribution

µ of X is absolutely continuous with respect to λ having
density f . Assume that ess supR f < ∞ and let M =
(inf(supp(µ))), sup(supp(µ))). In either of the following
cases:

(i) α ∈ (0, 1), E|X|r+δ < ∞ for some δ > 0, and f is
weakly unimodal,

(ii) α ∈ (−∞, 0), ess infM f > 0 and f is continuous on M ,
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we have

lim
R→∞

erRDα
µ(R) = C(r)

(∫
M

fa1 dλ

)a2

. (11)

If ess infM f > 0 and f is continuous on M , then

lim
R→∞

erRD−∞µ (R) = C(r)

(∫
M

f1−r dλ

)
. (12)

The proof of the theorem is given in Section VII. Upper
bounds will be established using a companding approach,
while matching lower bounds are developed by considering
increasingly more general classes of source densities.

Remark 3.5: (a) Note that if we formally substitute α = 0
in (11), it reduces to (8). Moreover, it is easy to show that
(11) reduces to (9) if α → 1. Due to monotonicity of the
quantization error (Lemma 2.3) and by the upper bound for
the quantization error for α ∈ [−∞, 1+r) (Corollary 4.11) one
can rigorously show that the known asymptotics for α ∈ {0, 1}
also follow from Theorem 3.4, at least in the scalar case and
under our restrictions on the source density.
(b) The results of the theorem can be expressed in terms of
the Rényi differential entropy hα(µ) = 1

1−α log
(∫
fα dλ

)
of

order α 6= 1. It is easy to check that (11) can be rewritten as

lim
R→∞

erRDα
µ(R) = C(r)erh

a1 (µ). (13)

Setting a1 = limα→−∞
1−α+αr
1−α+r = 1 − r for α = −∞,

we also obtain (12) from the above expression. Also, for
α = 0 we have a1 = 1

1+r , and (13) reduces to (8); while for
α = 1, we have a1 = 1, and we formally get back (9) since
lima1→1 h

a1(µ) = h1(µ) = −
∫
f log f dλ (cf. Section IV-B).

Thus (13) expresses the old and the new asymptotic results in
a unified form.
(c) Since ess infM f > 0 the right hand side of (12) is finite.
For the same reason, the right hand side of (11) is finite for
all α < 0. For α ∈ [0, 1) the right hand side of (11) can be
shown to be finite by an application of Hölder’s inequality as
in [9, Remark 6.3 (a)].
(d) The weak unimodality and continuity conditions on f
are the results of our approximation techniques in proving
lower bounds and are probably not necessary. In fact, with a a
little tweaking of the companding approach in the next section
one can show that the right hand sides of (11) and (12) still
upper bound the asymptotic performance if these conditions
are dropped.
(e) Note that condition (ii) implies (i). Also, the right hand side
of (11) converges to the right hand side of (12) as α→ −∞.
(f) The condition r > 1 is needed in the proof of the lower
bounds on Dα

µ(R) where [19, Thm. 3.1] is invoked (see
Proposition 7.2). The upper bounds only need r ≥ 1 (see
Section IV).

IV. DISTORTION AND RÉNYI ENTROPY ASYMPTOTICS OF
COMPANDING QUANTIZERS

A. Companding quantizers

Let N ≥ 2 and QN ∈ Q denote the N -level uniform scalar
quantizer with step size 1/N for sources supported in the unit

interval [0, 1] defined by QN (x) = 1/2N if x ∈ [0, 1/N ] and

QN (x) =
i− 1

N
+

1

2N
if x ∈

(
i− 1

N
,
i

N

]
(14)

for i = 2, . . . , N , The compressor G derived from a
probability density g on the real line is the function

G(x) =

∫ x

−∞
g(y) dλ(y). (15)

Thus the increasing function G : R → [0, 1] is the cumula-
tive distribution function associated with the density g. The
generalized inverse Ĝ of G is defined by

Ĝ(y) := sup{x : G(x) ≤ y} = max{x : G(x) ≤ y}

for y ∈ (0, 1). Note that if g is positive almost everywhere
with respect to λ (a.e. for short), then G is strictly increasing
and Ĝ is its (ordinary) inverse.

In this paper we will work only with compressor densities g
having compact support, i.e., if ν denotes the measure induced
by g, then supp(ν) is bounded. Thus we can extend the
definition of Ĝ onto [0, 1] by letting

Ĝ(0) := min{supp(ν)} and Ĝ(1) := max{supp(ν)}.

The N -level companding quantizer Qg,N associated with g is
defined on [Ĝ(0), Ĝ(1)] by

Qg,N (x) = Ĝ(QN (G(x))).

Note that the codecells of Qg,N are N intervals
I1,N , . . . , IN,N with I1,N = [Ĝ(0), Ĝ(1/N)] and

Ii,N = (Ĝ((i− 1)/N), Ĝ(i/N)], i = 2, . . . , N.

The corresponding quantization points are Ĝ((2i −
1)/2N), i = 1, . . . , N .

Remark 4.1: (a) The function g is often called the point
density for Qg,N (x) since it has the property that for any
a < b,

lim
N→∞

1

N
card(Qg,N ((a, b))) =

∫ b

a

g(x) dλ(x).

(b) If PN is an arbitrary N -level quantizer on R having convex
(interval) codecells, then it can be implemented as a compand-
ing quantizer. In particular, there exists a positive point density
g such that PN (x) = Qg,N (x) for all (except perhaps a finite
number of) x ∈ R (any x such that PN (x) 6= Qg,N (x) is a
cell boundary for both quantizers).

The following result represents the error asymptotics of the
compander if the number of output levels increases without
bound. The result originates with Bennett [3] for r = 2 and
has appeared in the literature in several different forms (but
most often without precise conditions and a rigorous proof);
see [12] for a historical overview. The proof is given in A and
follows the development in [22] which gives a rigorous proof
for the limit (16) under different conditions that include the
continuity of g and certain tail conditions, but allow f and g
to have unbounded support.

Proposition 4.2: Let X be a random variable with distribu-
tion µ which is absolutely continuous with respect to λ and let



IEEE TRANSACTIONS ON INFORMATION THEORY 5

f denote its density. Let G be a compressor with point density
g. Assume that the support of µ is included in a compact
interval I such that ess infI g > 0 and g(x) = 0 a.e. on R \ I .
Then for r ≥ 1,

lim
N→∞

NrDµ(Qg,N ) = C(r)

∫
I

f

gr
dλ. (16)

Remark 4.3: Since ess infI g > 0 we know that µ is
absolutely continuous with respect to gλ and

∫
I
f
gr dλ <∞.

B. Rényi entropy asymptotics of companding quantizers

In order to be able to construct asymptotically optimal
companding quantizers (cf. (7)), in addition to the asymptotic
distortion, we also have to control the quantizer’s entropy,
at least for high rates. In this section we derive a result
(Proposition 4.8) which asymptotically describes the Rényi
entropy of the compander as a function of the number of
quantization points. Let 1A denote the indicator function of
A ⊂ R.

Definition 4.4: Let µ be absolutely continuous
with respect to λ with density f and define
M = (inf(supp(µ)), sup(supp(µ))). Let α ∈ [−∞,∞]
and assume that
(i) 1supp(µ)f

α is integrable if α ∈ R \ {1},
(ii) ess infM f > 0 if α = −∞,

(iii) f log f is integrable if α = 1,
(iv) ess supR f <∞ if α = +∞.
Then the Rényi differential entropy of order α of µ is defined
by

hα(µ) =


1

1−α log(
∫

supp(µ)
fα dλ), α ∈ R \ {1}

−
∫
f log f dλ, α = 1

− log(ess supR f), α =∞
− log(ess infM f), α = −∞.

Remark 4.5: Just as in the case of Rényi entropy (see Re-
mark 2.2) the mapping [−∞,∞] 3 α→ hα(µ) is continuous
for the differential entropy.

Recall that q̂∆ denotes the infinite-level uniform quantizer
with step-size ∆ > 0. Recall M from Definition 4.4 and let
A(∆,M) = {a ∈ q̂∆(R) : q̂−1

∆ (a) ⊂M} and

q∆,M (·) =
∑

a∈A(∆,M)

a · 1q̂−1
∆ (a)(·).

The following result is due to Rényi [27] and Csiszár [8]
for α ∈ (0,∞). The proof for α ∈ [−∞, 0] is given in A.

Lemma 4.6: Let µ be absolutely continuous with respect to
λ having density f . Let α ∈ [−∞,∞) and assume that the
Rényi differential entropy of order α of µ exists and is finite.
Assume that Hα

µ (q̂∆) <∞ for some ∆ > 0. If α ∈ (−∞,∞),
then

lim
∆→0

(
Hα
µ (q̂∆) + log(∆)

)
= hα(µ).

Moreover,

lim
∆→0

(
H−∞µ (q̂∆,M ) + log(∆)

)
= h−∞(µ).

Next we define the Rényi relative entropy between two
probability measures for the case where both have densities.

Definition 4.7: Let µ and ν be probability measures which
are absolutely continuous with respect to λ. Denote by f and g
the densities of µ and ν. Moreover, assume that µ is absolutely
continuous with respect to ν and, therefore, we assume w.l.o.g.
that {g = 0} ⊂ {f = 0}. Setting

E = {f > 0} and M = (inf(supp(µ)), sup(supp(µ)))

the Rényi relative entropy of order α between the distributions
µ and ν is defined as

Dα(µ‖ν) =



1
α−1 log

(∫
E
fαg1−α dλ

)
, α ∈ R \ {1}∫

E
f log f

g dλ, α = 1

log(ess supE
f
g ), α =∞

log(ess infM
f
g ), α = −∞.

(17)
(For D−∞(µ‖ν) to be well defined, we need the condition
ess infM f > 0.)

The following result determines the asymptotics of the
Rényi entropy of a companding quantizer.

Proposition 4.8: Let α ∈ [−∞,∞). Suppose µ and ν are
as in Definition 4.7 and Dα(µ‖ν) <∞. Then

lim
N→∞

(
Hα
µ (Qg,N )− logN

)
= −Dα(µ‖ν).

Remark 4.9: (a) For the sake of distortion analysis we
previously specified that g has bounded support, but in this
proposition the only condition on f and g is the finiteness of
Dα(µ‖ν).
(b) In a sense, the proposition generalizes Lemma 4.6. Indeed,
if the support of µ is included in a compact interval I and g is
the uniform density on I , then Qg,N is the uniform quantizer
of step-size ∆N = λ(I)/N over I , and the proposition reduces
to Lemma 4.6 (for the sequence of step-sizes ∆N ).

Proof: Recall the definition of the compressor G from (15).
We proceed in two steps.

1. We show that hα(µ ◦ G−1) = −Dα(µ‖ν) for every α ∈
[−∞,∞).

Let α ∈ (−∞,∞)\{1} and let fG be the density of µ◦G−1

(see Lemma A.1 in A). Definition 4.4 and Lemma A.1 imply

hα(µ ◦G−1)

=
1

1− α
log

∫
(fG)α dλ

=
1

1− α
log

∫
(f(Ĝ(y))Ĝ′(y))α dλ(y)

=
1

1− α
log

(∫
Ĝ−1(E)

f(Ĝ(y))αg(Ĝ(y))1−αĜ′(y) dλ(y)

)
=

1

1− α
log

(∫
E

f(x)αg(x)1−α dλ(x)

)
= −Dα(µ‖ν)

where in the penultimate equality we used again the chain
rule for the Lebesgue integral (see [30, Corollary 4]), which
is applicable due to the monotonicity of Ĝ and the integrability
of fαg1−α (which follows from the finiteness of Dα(µ‖ν)).
Note that the above chain of equalities implies that (fG)α is
integrable. One can deduce the assertion of step 1 for α ∈
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{−∞, 1} in a very similar manner.

2. Now we prove the assertion of the proposition. Since G is
increasing and continuous, Ĝ is strictly increasing on (0, 1).
Recall the definition of QN in (14) and note that QN = q̂1/N

on (0, 1). Then

Hα
µ (Qg,N ) = Hα

µ◦G−1(QN ) (18)

for all α ∈ [−∞,∞). Since µ ◦ G−1((0, 1)) = 1, we
obtain Hα

µ◦G−1(QN ) = Hα
µ◦G−1(q̂1/N ). In view of (18) we

deduce Hα
µ (Qg,N ) = Hα

µ◦G−1(q̂1/N ). From step 1 and by the
assumption we know that hα(µ ◦ G−1) is finite. Since q̂1/N

has no more than N cells with nonzero µ◦G−1−measure, the
entropy Hα

µ◦G−1(q̂1/N ) is also always finite. Lemma 4.6 and
step 1 imply

lim
N→∞

(
Hα
µ (Qg,N )− logN

)
= lim

N→∞

(
Hα
µ◦G−1(q̂1/N )− logN

)
= hα(µ ◦G−1) = −Dα(µ‖ν).

�
Remark 4.10: Although we do not need this fact in the

sequel it is worth noting that Lemma 4.6 and Proposition 4.8
are also valid for α = ∞. For example, by an application of
Lebesgue’s density theorem one can show that

lim
∆→0

sup{µ(q̂−1
∆ (a)) : a ∈ q̂∆(R)}

∆
= ess supRf,

which yields the assertion of Lemma 4.6 for α =∞. General-
izing the proof of Proposition 4.8 to α =∞ is straightforward.

C. Optimal point densities

Combining the previous results we can find a companding
quantizer which provides an (asymptotic) upper bound for the
optimal quantization error. Later on we will show that this
quantizer is an asymptotically optimal one. Recall definition
(10) of a1 and a2.

Corollary 4.11: Let r ≥ 1 and α ∈ [−∞, 1 + r). Assume
that µ is supported on a compact interval I and has density
f such that ess infI f > 0. Moreover, assume that fa1 is
integrable if α ∈ (1, 1 + r) and f log f is integrable if α = 1.
Let

f∗ =


(
∫
I
f1/a2 dλ)−1f1/a2 , α ∈ (−∞, 1 + r) \ {1}

(λ(I))−11I , α = 1

f, α = −∞.
(19)

Then,

lim
N→∞

erH
α
µ (Qf∗,N )Dµ(Qf∗,N )

=


C(r)(

∫
I
fa1 dλ)a2 , α ∈ (−∞, 1 + r) \ {1}

C(r)e−r
∫
f log f dλ, α = 1

C(r)
∫
I
f1−r dλ, α = −∞.

(20)

Proof: It is not hard to show using Hölder’s inequality
that fa11I is integrable for every α ∈ (−∞, 1 + r) \ {1} (cf.

[9, Remark 6.3 (a)]). Moreover f1−r is integrable. Clearly,
f1/a21I is integrable for every α ∈ (−∞, 1 + r). These facts
imply that f∗ is well defined (note that ess infI f

∗ > 0),∫
f/(f∗)r dλ < ∞, and the integrals on the right hand side

of (20) are finite. It is also easy to check that Dα(µ‖f∗λ) is
finite. Thus we can apply Propositions 4.8 and 4.2. We obtain

lim
N→∞

erH
α
µ (Qf∗,N )Dµ(Qf∗,N )

= lim
N→∞

e−rDα(µ‖f∗λ)NrDµ(Qf∗,N )

= e−rDα(µ‖f∗λ)C(r)

∫
I

f

(f∗)r
dλ.

Now (19) and (17) yield the assertion. �
Remark 4.12: For α ∈ [−∞, 1 + r) the point density

g = f∗ in the corollary minimizes the asymptotic perfor-
mance lim

N→∞
erH

α
µ (Qg,N )Dµ(Qg,N ). For α = 0 and α = 1

this optimal choice of g has long been known. In the case
α ∈ (−∞, 1 + r) \ {1}, by Propositions 4.2 and 4.8 the above
limit is proportional to(∫

I

fαg1−α dλ

) r
1−α

∫
I

fg−r dλ

and Hölder’s inequality (for α < 1) or the reverse Hölder
inequality (for α ∈ (1, 1 + r)) can be used to show that this
functional is minimized by g = f∗. The resulting minimum
is
(∫
I
fa1 dλ

)a2 . The case α = −∞ follows by letting α →
−∞.

V. SOME IMPORTANT PROPERTIES OF OPTIMAL SCALAR
QUANTIZATION

Define

i(f) = ess infsupp(µ) f, s(f) = ess supsupp(µ) f.

For the case α = 0 the following result is originally due to
Pierce ([25], [9, Lemma 6.6]). In our proof, given in A, we use
a refined version provided by Luschgy and Pagès [23, Lemma
1].

Proposition 5.1: (i) If R ≥ 1 and
∫
|x|r+β dµ(x) <∞ for

some β > 0, then there exists a constant C0 > 0 (which
depends only on r and β) such that

erRDα
µ(R) ≤ C0

(∫
|x|r+β dµ(x)

)r/(r+β)

for every α ∈ [0,∞].
(ii) Suppose supp(µ) is a compact interval and µ absolutely
continuous with respect to λ with density f . Assume that
i(f) > 0. Then for all α < 0

erRDα
µ(R) ≤ 2r

i(f)r
. (21)

As an immediate consequence we obtain the following.
Corollary 5.2: Under either condition (i) or (ii) of Propo-

sition 5.1 we have limR→∞Dα
µ(R) = 0.

Let diam(A) = sup{|x−y| : x, y ∈ A} denote the diameter
of an arbitrary non-empty set A ⊂ R. The next result shows
that the measure of the codecells of optimal quantizers tends to
zero for absolutely continuous distributions. The proof, given



IEEE TRANSACTIONS ON INFORMATION THEORY 7

in A, adopts some techniques of Gray et al. [11, Proof of
Lemma 11].

Lemma 5.3: Let µ be absolutely continuous with respect to
λ having density f . Assume further either of the following
conditions
(i) α ∈ [0,∞] and

∫
|x|r+β dµ(x) <∞ for some β > 0,

(ii) α < 0 and supp(µ) is a compact interval and 0 < i(f) ≤
s(f) <∞.

Then for every ε > 0 there exists an R0 > 0 with the property
that for every R ≥ R0 there is a δ > 0 such that

max{µ(q−1(a)) : a ∈ q(R)} < ε (22)

for every q ∈ Q with Hα
µ (q) ≤ R and |Dµ(q)−Dα

µ(R)| < δ.
If, additionally, in case (i) the support of µ consists of m ≥ 1
compact intervals I1, . . . , Im and i(f) > 0, then in both cases
(i) and (ii) we have

max{diam(q−1(a) ∩ Ii) : a ∈ q(R), i ∈ {1, . . . ,m}}
< ε · i(f)−1 (23)

where m = 1 and I1 = I for case (ii).
Let µ be absolutely continuous with respect to λ and denote

the density of µ with f . Let

C =

(
i(f)

s(f)

) r+1
r
(

1

4r(1 + r)

)1/r

∈ (0, 1). (24)

For any q ∈ Q let

Nq = {a ∈ q(R) : µ(q−1(a)) > 0}.

In the case α < 0 we need to control in our proofs the
cardinality of the codebook of any quantizer whose entropy
is less than or equal to the rate constraint R. To this end, for
R ≥ 0, we define

HR = {q ∈ Qc : Hα
µ (q) ≤ R, CeR ≤ card(Nq) ≤ eR}.

In addition, we will have to control the difference between
the rate constraint and the entropy of the quantizer. Thus, for
α ∈ (−∞, 0), arbitrary constant κ > 0, and R > log( 21−α−1

κ ),
we define

KR = KR(κ)

=

{
q ∈ HR : eR−H

α
µ (q) ≤

(
1

1− (21−α − 1)κ−1e−R

) 1
1−α
}
.

The next lemma is proved in A.
Lemma 5.4: Let µ be absolutely continuous with respect to

λ having density f . Assume that supp(µ) is a compact interval
and 0 < i(f) ≤ s(f) <∞. For every α ∈ [−∞, 0] and R ≥ 0
we have

Dα
µ(R) = inf{Dµ(q) : q ∈ HR}. (25)

If α ∈ (−∞, 0) and R > log( 21−α−1
C ), then

Dα
µ(R) = inf{Dµ(q) : q ∈ KR(C)}. (26)

We let U(I) denote the uniform distribution on a bounded
interval I ⊂ R with positive length. Let m ≥ 2 and let
I1, . . . , Im be a partition of I into m intervals of equal length
diam(I)/m. Let s1, . . . , sm ∈ (0, 1)m with

∑m
i=1 si = 1

and assume the source distribution is of the form µ =∑m
i=1 siU(Ii). Of special interest in our proofs are the code-

cells which are straddling the intervals Ii. Hence we define
for any quantizer q ∈ Q the sets

A(q) =

m⋃
i=1

{a ∈ q(R) : λ(q−1(a) \ Ii) = 0} (27)

and
S(q) = q(R) \A(q). (28)

In the proof of our main result we have to ensure that the
contribution of the straddling cells to the overall entropy of
the quantizer can be (asymptotically) neglected. For α < 0
this is the case if it suffices to consider only quantizers with
the property that the length of each straddling cell is at least
as large as a certain (fixed) constant times the length of the
smallest non-straddling cell. Exactly this is ensured by the
following lemma which sharpens Lemma 5.4. The proof is
given in A. Recall the definition (24) of the constant C and
let κ ∈ (0, C). For R > log( 21−α−1

κ ) let

GR = GR(κ)

=
{
q ∈ KR(κ) : 2 inf{diam(q−1(a) ∩ I) : a ∈ S(q)}
≥ inf{diam(q−1(a)) : a ∈ A(q)}

}
.

Lemma 5.5: Assume that µ =
∑m
i=1 siU(Ii) is a piecewise

uniform distribution as specified above. Let r > 1 and κ ∈
(0, C). Then for every α ∈ (−∞, 0) there is an R0(κ) > 0
such that for every R ≥ R0(κ),

Dα
µ(R) = inf{Dµ(q) : q ∈ GR(κ)}.

A bijective mapping T : R → R is called a similarity
transformation if there exists c ∈ (0,∞), the scaling number,
such that |Tx − Ty| = c|x − y| for every x, y ∈ R. The last
result of this section describes how the optimal quantization
error scales under a similarity transformation. For α = 0 the
reader is also referred to [9, Lemma 3.2]. Let us denote by

Cαµ (R) = {q ∈ Qc : Dµ(q) = Dα
µ(R)}

the set of all optimal quantizers in Qc for µ under Rényi
entropy constraint R of order α.

Lemma 5.6: Let α ∈ [−∞,∞] and T : R → R be a
similarity transformation with scaling number c > 0. Then
for any R ≥ 0 we have

Dα
µ◦T−1(R) = crDα

µ(R).

Moreover,

Cαµ◦T−1(R) = {T ◦ q ◦ T−1 : q ∈ Cαµ (R)}.

Proof: The lemma follows because for any q ∈ Q we have
q̄ := T ◦q◦T−1 ∈ Q, Hα

µ◦T−1(q) = Hα
µ (q̄), and Dµ◦T−1(q) =

crDµ(q̄) (also, q ∈ Qc iff q̄ ∈ Qc). See also [19, Lemma 2.4]
where α ≥ 0 and r > 1 are considered, but the same proof
clearly works for all α < 0 and r > 0. �

VI. INEQUALITIES FOR MIXTURE DISTRIBUTIONS

In this section we provide upper and lower bounds for
the optimal quantization error of mixture distributions in
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terms of the optimal quantizer performance for the component
distributions. Proofs are given in A.

Definition 6.1: Let m ≥ 2 and A1, . . . , Am be measurable
sets which are pairwise disjoint. The distribution µ is called
m−divisible with respect to (A1, . . . , Am) if µ(Ai) > 0 for
all i = 1, . . . ,m and µ(∪mi=1Ai) = 1.

For any measurable A ⊂ R with µ(A) > 0 we let µ(·|A)
denote the conditional probability of µ with respect to A, i.e.,
µ(B|A) = µ(B ∩A)/µ(A) for all measurable B ⊂ R. If µ is
m−divisible, then we write µi = µ(·|Ai).

Proposition 6.2: Let R ≥ 0, α ∈ [0,∞) \ {1}, and m ≥ 2.
Assume that µ is m−divisible with partition (A1, . . . , Am).
Moreover assume, that

∫
|x|rdµi(x) < ∞ for every i =

1, . . . ,m. Let R1, . . . , Rm ∈ [0,∞). Letting si = µ(Ai), we
have

Dα
µ(R) ≤

m∑
i=1

siD
α
µi (Ri)

if either one of the following inequalities holds:

log

(
m∑
i=1

sαi e
(1−α)Ri

)
≤ (1− α)R if α ∈ [0, 1), (29)

log

(
m∑
i=1

sαi e
(1−α)Ri

)
≥ (1− α)R if α ∈ (1,∞). (30)

Recall the definition (10) of a1 and a2. Let m ≥ 2
and s1, . . . , sm ∈ (0, 1)m with

∑m
i=1 si = 1. For every

i ∈ {1, . . . ,m} and α ∈ [0, r + 1) \ {1} let

ti = s
1/a2

i

 m∑
j=1

sa1
j

− 1
1−α

. (31)

Lemma 6.3: Let m ≥ 2. Let µ be non-atomic
and m−divisible with respect to (A1, . . . , Am). Assume∫
|x|r dµi(x) <∞ for all i = 1, . . . ,m. Let i0 ∈ {1, . . . ,m}

with µ(Ai0) = s = max{µ(Ai) : i = 1, . . . ,m}. If α ∈ [0, 1),
then

lim inf
R→∞

erRDα
µ(R) ≥ sa1a2 lim inf

R→∞
erRDα

µi0
(R). (32)

Let si = µ(Ai) and assume α ∈ [0, r + 1) \ {1}. Then we
have

lim sup
R→∞

erRDα
µ(R) ≤

m∑
i=1

sit
−r
i lim sup

R→∞
erRDα

µi(R). (33)

VII. PROOF OF MAIN RESULT

Recall that U(I) denotes the uniform distribution on a
bounded interval I with positive length. First we show that
the optimal quantizer performance for U(I) is the same for
all negative α.

Lemma 7.1: Let −∞ < a < b <∞. For every R ≥ 0 and
α < 0, we have

Dα
U([a,b])(R) = D0

U([a,b])(R).

Proof: Note that by Lemma 5.6 it suffices to consider the
case [a, b] = [0, 1]. Since Dα

U([a,b])(R) is nonincreasing in α

by Lemma 2.3 it suffices to prove the assertion for α = −∞.
Let R ≥ 0 and assume q ∈ Q satisfies H−∞µ (q) ≤ R. Setting

Nq = {a ∈ q(R) : µ(q−1(a)) > 0}

this condition is equivalent to

p = min{µ(q−1(a)) : a ∈ Nq} ≥ exp(−R). (34)

Let bxc denote the largest integer less than or equal to x ∈ R.
Using 1 ≥ card(Nq) · p we get

card(Nq) ≤ bexp(R)c, (35)

which is equivalent to H0
µ(q) ≤ R. From, e.g., [9, Example

5.5] we know that only the quantizer g ∈ Q which partitions
the unit interval into bexp(R)c intervals of equal length with
their midpoints as quantization points, attains the optimal
error, i.e., DU([0,1])(g) = D0

U([0,1])(R). But this quantizer
satisfies conditions (34) and (35) simultaneously. Hence,
DU([0,1])(g) = D−∞U([0,1])(R), which yields the assertion. �

Next we determine the exact behavior of Dα
U([0,1])(R) for

large R. For α = 1 the following result is from [13]. For the
case α = 0 the reader is referred, for example, to [9, Example
5.5].

Proposition 7.2: Let r > 1 and R > 0. Let −∞ < a <
b <∞. Then the following hold:

(i) If α ∈ [0, r + 1), an optimal quantizer always exists for
U([a, b]), i.e., we can find a q ∈ Q with Hα

U([a,b])(q) ≤ R
and DU([a,b])(q) = Dα

U([a,b])(R).
(ii) Suppose α ∈ [0, r + 1) and let n ∈ N be such that R ∈

(log(n), log(n + 1)]. Then the restriction to [a, b] of the
quantizer q in (i) has (n + 1) interval cells, n of which
are of equal lengths and one having length less than or
equal to that of the others. If α > 0, then q meets the
entropy constraint with equality, i.e., Hα

U([a,b])(q) = R.
(iii) For all α ∈ [−∞, r + 1), we have

lim
R→∞

erRDα
U([0,1])(R) = C(r). (36)

Proof: Assertions (i) and (ii) follow directly from [19, Thm.
3.1] by noting that in view of Lemma 5.6 it suffices to consider
the case [a, b] = [0, 1]

To prove (iii) first we note that by Lemma 7.1, the limit
(36) holds for all α ∈ [−∞, 0) since it holds for α = 0. Thus
we need only concentrate on the case α ∈ (0, r + 1) \ {1}.
Applying [19, Thm. 3.1] we obtain

Dα
U([0,1])(log(n)) = C(r)n−r

for every n ∈ N. Now let R ≥ 0 and nR ∈ N, such that
log(nR) < R ≤ log(nR + 1). We get

nrRC(r)(nR + 1)−r = nrRD
α
U([0,1])(log(nR + 1))

≤ erRDα
U([0,1])(R)

≤ (nR + 1)rDα
U([0,1])(log nR)

= (nR + 1)rC(r)n−rR .

Letting R→∞ yields (36) for α ∈ (0, r + 1) \ {1}. �
Proof of Theorem 3.4: We divide the proof into four main

steps. In step 1 we begin by proving a (sharp) asymptotic lower
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bound on the optimal quantization error for any distribution
with a density that is piecewise constant on a finite number of
intervals of equal lengths. In step 2 we generalize the lower
bound of step 1 to any density whose support is a compact
interval on which it is bounded away from zero. Together
with a matching upper bound based on the companding result
Corollary 4.11 this will finish the proof for α ∈ (−∞, 0). In
step 3 we show that the lower bound holds for all distributions
subject to our restrictions and apply again the companding
upper bound to finish the proof for α ∈ (0, 1). Step 4 treats
the remaining α = −∞ case and thus completes the proof.

Throughout we assume w.l.o.g. that R ≥ R0(C/2) where
is C defined in (24) and R0(C/2) is from Lemma 5.5.
Step 1.

Let M be a compact interval of positive length and let m ≥
2 and α ∈ (−∞, 1) \ {0}. Assume that µ =

∑m
i=1 siU(Ai),

where the Ai are disjoint intervals of equal length l = l(Ai) =
λ(M)/m that form a partition of M . We assume si > 0 for
all i = 1, . . . ,m. Thus

∑m
i=1 si = 1 and

f =
dµ

dλ
=

m∑
i=1

sil
−11Ai .

For α ∈ (−∞, 1) \ {0} define ti = s
1/a2

i

(∑m
j=1 s

a1
j

)− 1
1−α

,
i = 1, . . . ,m as in (31). Let

R ≥ max{0,max{− log(ti) : i = 1, . . . ,m}}

and define
Ri = R+ log(ti) ≥ 0.

From Proposition 7.2 we deduce

erRDα
U([0,1])(Ri) =

(
eR−Ri

)r
erRiDα

U([0,1])(Ri)

→ t−ri C(r) as R→∞.

A simple calculation shows(∫
M

fa1 dλ

)a2

=

(∫ ( m∑
i=1

sil
−11Ai

)a1

dλ

)a2

= l(1−a1)a2

(
m∑
i=1

sa1
i

)a2

= lr

(
m∑
i=1

sa1
i

)a2

= lr
m∑
i=1

sit
−r
i . (37)

Now, according to Lemma 5.3 there exist functions ε :
(0,∞) → (0,∞) and δ : (0,∞) → (0,∞) such that for
every R > 0 and quantizer q ∈ Q with Hα

µ (q) ≤ R and
|Dα

µ(R)−Dµ(q)| ≤ δ(R) we have

max{µ(q−1(a)) : a ∈ q(R)} < ε(R) (38)

where ε(R)→ 0 as R→∞. Moreover,

max{diam(Ai ∩ q−1(a)) : a ∈ q(R), i ∈ {1, . . . ,m}}

<
l · ε(R)

min{si : i = 1, . . . ,m}
. (39)

Now, again, let R ≥ R0 and γ > 0. According to Lemma 2.3
let qR ∈ Q be a quantizer whose codecells with positive
µ−mass are intervals, satisfying Hα

µ (qR) ≤ R and

|Dα
µ(R)−Dµ(qR)| ≤ min(γe−rR, δ(R)). (40)

Hence, qR satisfies also the relations (38) and (39). In view
of Lemma 5.5 let us assume w.l.o.g. that qR ∈ GR if α < 0.
Now let i ∈ {1, . . . ,m} and

Ii(qR) = {a ∈ qR(R) : λ
(
q−1
R (a) \Ai

)
= 0}

and
Ai,qR =

⋃
a∈Ii(qR)

q−1
R (a).

With

Ji(qR) = {a ∈ qR(R) \ Ii(qR) : µ(Ai ∩ q−1
R (a)) > 0}

we obtain from (39) that

lim
R→∞

sup{diam(Ai ∩ q−1
R (a)) : a ∈ Ji(qR)} = 0.

Every point of Ji(qR) is a codepoints of a codecell which is
straddling the boundary of Ai and is not µ − a.s. contained
in Ai. Hence {Ai ∩ q−1

R (a) : a ∈ Ji(qR)} consists of at most
two intervals and we get

lim
R→∞

diam(Ai,qR) = diam(Ai) = l. (41)

We compute

Dµ(qR) =

m∑
i=1

sil
−1

∫
Ai

|x− qR(x)|r dλ(x)

≥
m∑
i=1

sil
−1

∫
Ai,qR

|x− qR(x)|r dλ(x). (42)

Let

Ri,qR = Hα
U(Ai,qR )(qR)

=
1

1− α
log

 ∑
a∈Ii(qR)

(U(Ai,qR)(q−1
R (a)))α


=

α

α− 1

(
log(si)− log

(
l

λ(Ai,qR)

))

+
1

1− α
log

 ∑
a∈Ii(qR)

µ(q−1
R (a)))α

 (43)

where U(Ai,qR)(q−1
R (a)) is the measure of the cell q−1

R (a) un-
der the uniform distribution on Ai,qR . Then using Lemma 5.6
and (42) we obtain

Dµ(qR)

≥
m∑
i=1

sil
−1Dα

U(Ai,qR )(Ri,qR) diam(Ai,qR)

=

m∑
i=1

sil
−1Dα

U([0,1])(Ri,qR) diam(Ai,qR)1+r. (44)
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Now pick a sequence (Ln) of non-negative real numbers, such
that Ln →∞,

erLnDα
µ(Ln)→ lim inf

R→∞
erRDα

µ(R), (45)

and
eRi,qLn

eLn
→ vi ∈ [0,∞], i = 1, . . . ,m (46)

as n→∞. Because we want to determine a lower bound for
the optimal quantization error, using Proposition 7.2 (i) we
can assume w.l.o.g. that qLn is Ri,qLn−optimal for U(Ai,qLn ),
i.e., that Dα

U(Ai,qLn
)(Ri,qLn ) = DU(Ai,qLn

)(qLn). By Propo-
sition 7.2 (ii) the quantizer qLn divides Ai,qLn into (k + 1)-
intervals with Ri,qLn ∈ (log(k), log(k + 1)] where at least k
intervals are of equal length.

We next prove that Ri,qLn →∞ as n→∞. Assume to the
contrary that (Ri,qLn )n∈N is bounded. Then k = k(Ri,qLn )
will also be bounded. Thus let k0 ∈ N such that k ∈
{1, . . . , k0} for every n ∈ N. Together with (41) we deduce

lim inf
n→∞

Dµ(qLn)

≥ lim inf
n→∞

∫
Ai,qLn

|x− qLn(x)|r dµ(x)

≥ lim inf
n→∞

si
l
k · 2

∫ 1
2

diam(Ai,qLn
)

k+1

0

xr dλ(x)

≥ C(r)sil
r

·min

{
k

(k + 1)r+1
: k ∈ {1, . . . , k0}

}
> 0.

But this contradicts (cf. Corollary 5.2)

lim sup
n→∞

Dµ(qLn) ≤ lim sup
n→∞

(Dα
µ(Ln) + γe−rLn) = 0.

Thus we obtain that Ri,qLn → ∞ as n → ∞ for all i ∈
{1, . . . ,m}. Proposition 7.2 yields for i = 1, . . . ,m,

lim
n→∞

erRi,qLnDα
U([0,1])(Ri,qLn ) = C(r). (47)

Because γ > 0 was arbitrary we obtain

lim inf
R→∞

erRDα
µ(R) = lim

n→∞
erLnDα

µ(Ln)

= lim
n→∞

erLnDµ(qLn)

≥ lim
n→∞

eLnr
m∑
i=1

sil
−1Dα

U([0,1])(Ri,qLn ) diam(Ai,qLn )1+r

= C(r)

m∑
i=1

siv
−r
i lr (48)

where the first equality holds by (45), the second by (40), the
inequality follows from (44), and the third equality follows
from (41), (46), and (47). In the last expression, 1/vi = 0 if
vi =∞. The case vi = 0 cannot occur because otherwise the
right hand side of (48) is not finite, which would contradict
the assertion of Proposition 5.1. Recall that {Ai ∩ q−1

R (a) :
a ∈ Ji(qR)} contains at most two intervals for every i and
n ∈ N. Now assume that α ∈ (0, 1). In this case, since by (6)

we can assume w.l.o.g. that Hα
µ (qLn) = Ln, we obtain

1 ≤ δ1(Ln, µ, qLn)

:=
eLn(1−α)∑m

i=1

∑
a∈Ii(qLn ) µ(q−1

Ln
(a))α

=

∑m
i=1

∑
a∈Ii(qLn ) µ(q−1

Ln
(a))α∑m

i=1

∑
a∈Ii(qLn ) µ(q−1

Ln
(a))α

+

∑
a∈qLn (R)\∪nj=1Ij(qLn ) µ(q−1

Ln
(a))α∑m

i=1

∑
a∈Ii(qLn ) µ(q−1

Ln
(a))α

≤ 1 +
(m+ 1) supa∈qLn (R) µ(q−1

Ln
(a))α∑m

i=1

∑
a∈Ii(qLn ) µ(q−1

Ln
(a))α

.

From (43) and limn→∞Ri,qLn =∞ we deduce

lim
n→∞

m∑
i=1

∑
a∈Ii(qLn )

µ(q−1
Ln

(a))α =∞.

Thus we get
lim
n→∞

δ1(Ln, µ, qLn) = 1. (49)

Using Lemma A.2 in A we recognize that the limit relation
(49) also holds for α < 0. Consequently, we deduce together
with (41) and (43) for every α ∈ (−∞, 1) \ {0} that

m∑
i=1

sαi v
1−α
i =

m∑
i=1

sαi lim
n→∞

e(Ri,qLn
−Ln)(1−α)

= lim
n→∞

[ m∑
i=1

∑
a∈Ii(qLn )

µ(q−1
Ln

(a))α
(

l

λ(Ai,qLn )

)α
·e−Ln(1−α)

]
= 1.

Moreover we obtain from (49) and (43) that vi < ∞ for
every i = 1, . . . ,m. Since

∑m
i=1 s

α
i v

1−α
i = 1, we can apply

Lemma A.3, (48), and (37) to obtain for α ∈ (−∞, 1) \ {0}
that

lim inf
R→∞

erRDα
µ(R) ≥ C(r)

m∑
i=1

sit
−r
i lr

= C(r)

(∫
M

fa1 dλ

)a2

.

Step 2.

Now let us assume that the support of µ is a compact
interval M ⊂ R and that f is continuous on M . Again, let
α ∈ (−∞, 1) \ {0}. Let i(f) = min{f(x) : x ∈ M} resp.
s(f) = max{f(x) : x ∈ M}. Clearly, s(f) < ∞. Let us
assume that

i(f) > 0. (50)

Let l = λ(M). For k ∈ N partition M into intervals {Ai : i =
1, . . . , k} of common length λ(Ai) = l/k Set

µk =
k∑
i=1

µ(Ai)U(Ai)
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and

fk =
dµk
dλ

=

k∑
i=1

µ(Ai)

λ(Ai)
1Ai .

The continuity of f implies that fk converges pointwise to f
as k →∞. In view of (50) and due to

i(f) = min{f(x) : x ∈M} ≤ min{fk(x) : x ∈M}
≤ max{fk(x) : x ∈M} ≤ max{f(x) : x ∈M}
= s(f) <∞

for every k ∈ N, dominated convergence implies

lim
k→∞

∫
M

fa1

k dλ =

∫
M

fa1 dλ. (51)

Moreover step 1 yields

lim inf
R→∞

erRDα
µk

(R) ≥ C(r)

(∫
M

fa1

k dλ

)a2

. (52)

Now let R ≥ max(1, R0). Let δ > 0 and qR be a quantizer
with |Dα

µ(R) − Dµ(qR)| < δe−rR and Hα
µ (qR) ≤ R. In

addition, we assume w.l.o.g. (cf. Lemma 5.4, resp. Lemma 2.3)
that qR ∈ KR(C) if α < 0 and R is large enough, and
Hα
µ (qR) = R if α > 0. For i = 1, . . . , k let

0 < ci,k = min{f(x) : x ∈ Ai}
≤ ti,k = max{f(x) : x ∈ Ai} <∞

and
0 < ck = min

{
ci,k
ti,k

: i = 1, . . . , k

}
.

For every a ∈ qR(R) we have

ckµk(q−1
R (a)) ≤ µ(q−1

R (a)) ≤ c−1
k µk(q−1

R (a)).

and because f is uniformly continuous, in view of (50), we
have

lim
k→∞

ck = 1. (53)

We obtain from the definitions of Hα
µ (qR) and ck that

min

(
c

α
1−α
k , c

α
α−1

k

)
≤ eH

α
µ (qR)−Hαµk (qR)

≤ max

(
c

α
1−α
k , c

α
α−1

k

)
=: vk (54)

where vk → 1 as k →∞. Again from the uniform continuity
of f we deduce

lim
k→∞

‖f − fk‖∞ = 0 (55)

with

‖f − fk‖∞ = max{|f(x)− fk(x)| : x ∈M}.

In view of Proposition 5.1 there exists an m0 > 0, such that
for all R ≥ 1

Dα
µ(R) ≤ m0e

−rR. (56)

By the choice of qR we have

erRDα
µ(R) ≥ erRDµ(qR)− δ. (57)

Thus (56) yields

|Dµ(qR)−Dµk(qR)|

≤
∫
M

|x− qR(x)|r|f(x)− fk(x)| dλ(x)

≤ ‖f − fk‖∞
1

i(f)

∫
M

|x− qR(x)|rf(x) dλ(x)

≤ ‖f − fk‖∞
1

i(f)
(Dα

µ(R) + δe−rR)

≤ ‖f − fk‖∞
m0 + δ

i(f)
e−rR.

Hence, (57) gives

erRDα
µ(R)

≥ erR(Dµk(qR)− |Dµ(qR)−Dµk(qR)|)− δ

≥ erRDµk(qR)− ‖f − fk‖∞
m0 + δ

i(f)
− δ

= er(R−H
α
µk

(qR))erH
α
µk

(qR)Dµk(qR)

− ‖f − fk‖∞
m0 + δ

i(f)
− δ

≥ e−r(|R−H
α
µ (qR)|+|Hαµ (qR)−Hαµk (qR)|)

·erH
α
µk

(qR)Dµk(Hα
µk

(qR))

− ‖f − fk‖∞
m0 + δ

i(f)
− δ. (58)

Due to the choice of qR there exists a function g : (0,∞) 7→
(0,∞) with eR−H

α
µ (qR) ≤ g(R) and g(R) → 1 as R → ∞.

Equation (54) implies

|Hα
µk

(qR)−R| ≤ |Hα
µk

(qR)−Hα
µ (qR)|+ |Hα

µ (qR)−R|
≤ | log(vk)|+ | log(g(R))|. (59)

Clearly, inequality (59) yields limR→∞Hα
µk

(qR) = ∞. Ap-
plying relations (59) and (52) to (58) we deduce

lim inf
R→∞

erRDα
µ(R) ≥ e−r| log(vk)|C(r)

(∫
M

fa1

k dλ

)a2

− ‖f − fk‖∞
m0 + δ

i(f)
− δ.

By letting k →∞ and noting that δ > 0 is arbitrary we obtain
from (51), (53) and (55) that

lim inf
R→∞

erRDα
µ(R) ≥ C(r)

(∫
M

fa1 dλ

)a2

. (60)

Next we show a matching upper bound for α ∈ (−∞, 0).
The assumptions on f allow us to use Corollary 4.11 showing
the existence of a sequence of companding quantizers (qN ) =(
Qf∗,N

)
such that

lim
N→∞

erH
α
µ (qN )Dµ(qN ) ≤ C(r)

(∫
M

fa1 dλ

)a2

. (61)

Let RN = Hα
µ (qN ) and note that Proposition 4.8 implies

lim
N→∞

RN =∞, lim
N→∞

(RN −RN−1) = 0. (62)

Let R > 0 be arbitrary and let n = max{N : RN ≤ R}.
Then Rn ≤ R < Rn+1 and since Dα

µ(R) is a nonincreasing
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function of R

erRDα
µ(R) ≤ erRn+1Dα

µ(Rn) ≤ er(Rn+1−Rn)erRnDµ(qN ).

This, (61), and (62) yield

lim sup
R→∞

erRDα
µ(R) ≤ C(r)

(∫
M

fa1 dλ

)a2

.

Together with (60 ) this completes the proof for the case α ∈
(−∞, 0).

Step 3.

Now let µ be arbitrary, but satisfying all assumptions of the
theorem. Let α ∈ (0, 1). For k, l ∈ N let

I1 = (−∞,−k), I2 = [−k, k]∩f−1([1/l, l]), I3 = (k,∞)

and
I4 = R \ (I1 ∪ I2 ∪ I3).

Because f is bounded and weakly unimodal we can pick k0 ∈
N such that µ(I2) > 0, f−1([1/l, l]) = f−1([1/l,∞)), 1/l <
l0 (see Definition 3.2), and

µ(I2) = max{µ(Ii) : i ∈ {1, 2, 3, 4}}

for every k ≥ k0 and l ≥ k0. Note that I2 is a compact
interval. Now let min(k, l) ≥ k0. Let us first assume that
µ(Ii) > 0 for every i = 1, 2, 3, 4. Consider the decomposition
µ =

∑4
i=1 µ(Ii)µ(·|Ii). Lemma 6.3 yields

lim inf
R→∞

erRDα
µ(R)

≥ µ(I2)
1−α+αr

1−α lim inf
R→∞

erRDα
µ(·|I2)(R). (63)

By construction, i(µ(I2)−1f1I2) > 0, s(µ(I2)−1f1I2) < ∞,
and µ(I2)−1f1I2 is supported by a compact interval. Thus we
can apply the results of step 2. Together with the definition of
a1 and a2 we deduce from (60) and (63) that

lim inf
R→∞

erRDα
µ(R)

≥ µ(I2)
1−α+αr

1−α C(r)

(∫
I2

(µ
(
I2)−1f

)a1
dλ

)a2

≥ µ(I2)
1−α+αr

1−α −a1a2C(r)

(∫
I2

fa1 dλ

)a2

= C(r)

(∫
I2

fa1 dλ

)a2

. (64)

Due to a1 > 0 and by monotone convergence we obtain

lim
k→∞

lim
l→∞

∫
I2

fa1 dλ =

∫
fa1 dλ. (65)

Thus we get from (64) that

lim inf
R→∞

erRDα
µ(R) ≥ C(r)

(∫
fa1 dλ

)a2

. (66)

The case min{µ(I1), µ(I3), µ(I4)} = 0 can be treated simi-
larly.

To show the matching upper bound, note that since 1/l ≤
f ≤ l on I2, we can directly apply Corollary 4.11 to
µ2 := µ(·|I2) and its density f2 := µ(I2)−1f1I2 to show
the existence of a sequence of companding quantizers (qN ) =

(
Qf∗

2 ,N

)
such that

lim
N→∞

erH
α
µ2

(qN )Dµ2
(qN ) ≤ C(r)

(∫
fa1

2 dλ

)a2

.

Thus by the same argument as in the previous step

lim sup
R→∞

erRDα
µ2

(R)

≤ C(r)

(∫
fa1

2 dλ

)a2

= C(r)µ(I2)−a1a2

(∫
I2

fa1dλ

)a2

. (67)

Again from Lemma 6.3 we obtain for α ∈ (0, 1) the upper
bound

lim sup
R→∞

erRDα
µ(R)

≤ C(r)µ(I2)1−a1a2t−r2

(∫
I2

fa1dλ

)a2

+ 3 max
i=1,3,4

µ(Ii)t
−r
i lim sup

R→∞
erRDα

µ(·|Ii)(R).

Using Proposition 5.1 we get a K > 0 independent of k, l
such that

lim sup
R→∞

erRDα
µ(·|Ii)(R) ≤ Kµ(Ii)

−r/(r+δ).

for i ∈ {1, 3, 4}. Letting l, k tend to infinity we obtain by the
definition of ti that liml,k→∞ t−r2 = 1, resp. liml,k→∞ t−ri =
0, i = 1, 3, 4. Using (65) and (67) we get

lim sup
R→∞

erRDα
µ(R) ≤ C(r)

(∫
fa1dλ

)a2

which, together with the lower bound (66) completes the proof
for the case α ∈ (0, 1).
Step 4.

Let α = −∞ and β ∈ (−∞, 0). Fix a1 = a1(β) and
a2 = a2(β). From Lemma 2.3 we deduce

lim inf
R→∞

erRD−∞µ (R) ≥ lim
R→∞

erRDβ
µ(R)

= C(r)

(∫
supp(µ)

fa1 dλ

)a2

.

Since the integral on the right hand side converges to∫
f1−r dλ as β → −∞, we obtain

lim inf
R→∞

erRD−∞µ (R) ≥ C(r)

∫
supp(µ)

f1−r dλ.

The proof is finished by noting that Corollary 4.11 and an
argument identical to the one used in step 2 provide a matching
upper bound. �

VIII. CONCLUDING REMARKS

We have determined the sharp distortion asymptotics for
optimal scalar quantization with Rényi entropy constraint for
values α ∈ [−∞, 0)∪(0, 1) of the order parameter. Our results,
together with the classical α = 0 and α = 1 cases, and the
recent result [18] for α ∈ [r + 1,∞], leave only open the
case α ∈ (1, 1 + r) for which non-matching upper and lower
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bounds are known to date (cf. [18]). We note that the upper
bound provided by optimal companding in Corollary 4.11 also
holds for α ∈ (1, 1+r). Based on this, we conjecture that our
main result is also valid for this remaining range of the α
parameter.

Apart from the question of high-rate asymptotics, it remains
open if optimal quantizers exist for all α ∈ [−∞, 1 + r]. The
non-existence of optimal quantizers in case of α > 1 + r has
already been shown in [19]. Looking at our main result, it is
obvious that the integrals on the right hand sides of (11) and
(12) are not finite in general if µ has unbounded support. It
needs further research to determine the exact high-rate error
asymptotics for certain classes of source distributions with
unbounded support and α < 0. Of special interest is the
question whether companding quantizers with point density
f∗ are still asymptotically optimal for source densities with
unbounded support. The definition of f∗ needs the integrability
of f1/a2 in order to guarantee a finite number of quantization
points for the (asymptotically optimal) companding quantizer.
Nevertheless, the right hand side of (11) is defined only when
fa1 is integrable. It remains an open problem if (11) still holds
for some α ∈ (−∞, 1+r)\{1} and distributions where fa1 is
integrable but f1/a2 is not. Such an example, if it exists, would
show that the companding approach is not always applicable
to generate asymptotically optimal quantizers, but the known
asymptotics (11) are still in force. Another interesting open
question is whether the non-integrability of f1/a2 always
implies the non-existence of optimal quantizers with a finite
codebook.

A careful reading of the proofs shows that many arguments
can be straightforwardly generalized to the d-dimensional case
and rth power distortion based on some norm on Rd. For
α ∈ [−∞, 1) and under appropriate conditions we conjecture
that

lim sup
R→∞

e
r
dRDα

µ(R) = C(r, d)

(∫
fa1 dλd

)a2

where λd is the d-dimensional Lebesgue measure,

a1 =
1− α+ α rd
1− α+ r

d

, a2 =
1− α+ r

d

1− α

and C(r, d) is a positive constant that depends only on r, d,
and the underlying norm.

However, some important steps in our proofs are definitely
restricted to the scalar case, e.g., equation (23) in Lemma
5.3, which yields (41). One of the key problems concerns the
first step of the proof of Theorem 3.4. In higher dimensions
one has to control the contribution to distortion and entropy
of cells straddling the common boundary of at least two
touching cubes in the support of µ. The “firewall” construction
used in case of α = 0 (see [9, p.87]) does not seem to
work in the general case. For α 6= 0 it seems to be very
hard to control the entropy of the quantizer when adding
or changing codecells and codepoints in a certain region.
In order to progress in this direction, one would certainly
need more refined knowledge about the codecell geometry of
(asymptotically) optimal quantizers. Even in the case α = 0
little is known on this subject (results in [29] highlight

the difficulty of the problem). As already mentioned in the
introduction, the methods used for the case α = 1 are also
not applicable to the general case because they rely on the
special functional form of the Shannon entropy. It appears
that generalization to higher dimensions would necessitate the
development of isodiametric inequalities for the (bounded)
codecells of asymptotically optimal quantizers.

APPENDIX

Proof of Lemma 2.3: To show (4), let q ∈ Q be such that
Hα
µ (q) ≤ R and assume β ≤ α. It is easy to check that
d
dγH

γ
µ(q) ≤ 0 on (−∞, 0) ∪ (0, 1) ∪ (1,∞), and thus the

mapping γ 7→ Hγ
µ(q) is non-increasing on these intervals.

In view of the continuity of Hα
µ (q) at α ∈ {0, 1} (see

(Remark 2.2(a)) we deduce that Hα
µ (q) ≤ Hβ

µ (q). Now the
assertion follows from Definition (3).

Equation (5) of the second statement follows directly from
the more general results Theorem 3.2 and Proposition 4.2 in
[20]. For (6), we refer to [19, Proposition 2.1.(i)]. �

Proof of Proposition 4.2: We proceed in several steps.

1. Since Ĝ is increasing, it has a derivative Ĝ′ a.e. (by
convention we set Ĝ′(x) = 0 if Ĝ is not differentiable at
x). Also, note that G and Ĝ are strictly increasing on I , resp.
on [0, 1], and Ĝ is Lipschitz with constant (ess infI g)−1 and
thus absolutely continuous. Since Ĝ′(x) = 1/g(Ĝ(x)) a.e. on
(0, 1), we obtain∫

f

gr
dλ =

∫
(Ĝ′(G(x)))r dµ(x).

2. Next we prove

lim
N→∞

∫
(mN (G(x)))r dµ(x) =

∫
(Ĝ′(G(x)))r dµ(x), (68)

where mN is the piecewise constant function defined by
mN (x) = N

∫
[(i−1)/N,i/N)

Ĝ′ dλ, if x ∈ [(i − 1)/N, i/N),
i = 1, . . . , N and mN (x) = 0 otherwise.

Lebesgue’s differentiation theorem (see, e.g., [7, Thm.
6.2.3]) implies that mN (x) → Ĝ′(x) as N → ∞ a.e. on
(0, 1). Also, from Ĝ′(x) = 1/g(Ĝ(x)) we deduce

mN (·)

≤ max

{
N

∫
[(i−1)/N,i/N)

1

g(Ĝ(x))
dλ(x) : 1 ≤ i ≤ N

}
≤ (ess infI g)−1.

Thus, the dominated convergence theorem yields (68).

3. Let Q̄g,N be the quantizer with the same codecells as Qg,N
but with the midpoints of the codecells as quantization points:

Q̄g,N (x) =
1

2
(Ĝ(i/N) + Ĝ((i− 1)/N)) if x ∈ Ii,N ,

for i = 1, . . . , N . We will show that

lim
N→∞

Nr

∫
|x−Q̄g,N (x)|rfN (x) dλ(x) = C(r)

∫
f

gr
dλ,
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where fN is the piecewise constant density defined by
fN (x) = 1

λ(Ii,N )

∫
Ii,N

f dλ if x ∈ Ii,N , i = 1, . . . , N and
fN (x) = 0 otherwise.

A simple calculation shows

Nr

∫
|x− Q̄g,N (x)|rfN (x) dλ(x)

= Nr
N∑
i=1

C(r)fN

(
Ĝ

(
i

N

))
(λ(Ii,N ))r+1

= C(r)Nr
N∑
i=1

∫
Ii,N

f(x)(N−1mN (G(x)))r dλ(x)

= C(r)

∫
mN (G(x))rf(x) dλ(x).

Now the assertion follows from steps 1 and 2.

4. Next we show that

lim
N→∞

NrDµ(Q̄g,N ) = C(r)

∫
f

gr
dλ.

For any i ∈ {1, . . . , N} and x ∈ Ii,N we have

Nr|x− Q̄g,N (x)|r ≤ Nr
(
λ(Ii,N )

)r
= Nr

(∫
((i−1)/N,i/N)

Ĝ′ dλ

)r
= mN (G(x))r.

Therefore∣∣∣∣Nr

∫
|x− Q̄g,N (x)|rf(x) dλ(x)

−Nr

∫
|x− Q̄g,N (x)|rfN (x) dλ(x)

∣∣∣∣
≤

∫
mN (G(x))r|f(x)− fN (x)| dλ(x)

≤ (ess infI g)−1

∫
|f(x)− fN (x)| dλ(x).

By Lebesgue’s differentiation theorem we have fN → f a.e.,
and now Scheffé’s theorem [4, Thm. 16.11] implies

lim
N→∞

∫
|f − fN | dλ = 0.

Hence,

lim
N→∞

NrDµ(Q̄g,N )

= lim
N→∞

Nr

∫
|x− Q̄g,N (x)|rfN (x) dλ(x),

where the right hand side is equal to C(r)
∫

f
gr dλ from step 3.

5. In view of step 4, to prove relation (16) it suffices to show
that

lim
N→∞

NrDµ(Q̄g,N ) = lim
N→∞

NrDµ(Qg,N ). (69)

Applying the mean value theorem of differentiation (if r >
1) or by the triangle inequality (if r = 1), we have for each

i ∈ {1, . . . , N} and x ∈ Ii,N ,

Nr
∣∣|x− Q̄g,N (x)|r − |x−Qg,N (x)|r

∣∣
≤ Nr|Q̄g,N (x)−Qg,N (x)|r(λ(Ii,N ))r−1. (70)

Further, note that the definitions of mN , Qg,N , Q̄g,N also yield

Nr
∣∣|x− Q̄g,N (x)|r − |x−Qg,N (x)|r

∣∣
≤ rNr(λ(Ii,N ))r = r ·mN (G(x))r. (71)

Let I1
i,N and I2

i,N denote the partition of Ii,N into two
intervals of equal length λ(Ii,N )/2. Let j = j(x) ∈ {1, 2} be
such that x ∈ Iji,N . Letting a = inf(Ii,N ) and b = sup(Ii,N )

we obtain by the absolute continuity of Ĝ

Ĝ((a+ b)/2) = Ĝ(a) +

∫ (a+b)/2

a

Ĝ′ dλ

and

Ĝ(a) + Ĝ(b)

2
= Ĝ(a) +

∫ (a+b)/2

a

Ĝ(b)− Ĝ(a)

b− a
dλ.

Thus we get

|Q̄g,N (x)−Qg,N (x)| =

∣∣∣∣Ĝ((a+ b)/2)− Ĝ(a) + Ĝ(b)

2

∣∣∣∣
≤ λ(Iji,N )|L(x,N)| (72)

where

L(x,N) =
1

λ(Iji,N )

∫
Iji,N

Ĝ′ dλ− Ĝ(b)− Ĝ(a)

b− a

=
1

λ(Iji,N )

∫
Iji,N

Ĝ′ dλ− 1

λ(Ii,N )

∫
Ii,N

Ĝ′ dλ

if x ∈ Iji,N , i = 1, . . . , N . In view of (70) and (72) we deduce

Nr
∣∣|x− Q̄g,N (x)|r − |x−Qg,N (x)|r

∣∣
≤ rNrλ(Iji,N )|L(x,N)|(λ(Ii,N ))r−1

≤ r ·mN (G(x))r|L(x,N)|.

Lebesgue’s differentiation theorem yields limN→∞ L(x,N) =
0 a.e. Hence

lim
N→∞

Nr
∣∣|x− Q̄g,N (x)|r − |x−Qg,N (x)|r

∣∣ = 0 a.e. (73)

Due to the relations (73), (71) and together with step 2, we
can apply the generalized dominated convergence theorem [28,
Chapter 11.4] to obtain (69). �

Lemma A.1: Let µ be a probability distribution which is
absolutely continuous with respect to λ and let f denote its
density. Let G be a compressor for µ with point density g. If
{g = 0} ⊂ {f = 0}, then µ ◦ G−1 is absolutely continuous
with respect to λ. Also

Ĝ′(y) =
1

g(Ĝ(y))
1{g>0}(Ĝ(y)) a.e. on (0, 1) (74)

and µ ◦G−1 has the density

fG(y) = f(Ĝ(y))Ĝ′(y)

=
f(Ĝ(y))

g(Ĝ(y))
1{g>0}(Ĝ(y)) a.e. on (0, 1). (75)
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Proof: In order to prove that µ ◦ G−1 is absolutely
continuous let us make the key observation that, although G
is in general not invertible, we have

Ĝ(G(x)) = x µ-a.e. x ∈ R (76)

Indeed, by the definition of G and due to {g = 0} ⊂ {f = 0}
there exists a measurable set AG ⊂ R such that G is
differentiable on AG, µ(AG) = 1, and

G′(x) = g(x) ∈ (0,∞) for every x ∈ AG.

Hence G is locally invertible at x ∈ AG, so Ĝ(G(x)) = x
which proves (76). Moreover,

Ĝ′(G(x)) = 1/g(x) for every x ∈ AG (77)

which proves (74).

Ĝ is strictly increasing (and thus one-to-one) and maps
(0, 1) onto Ĝ((0, 1)). Thus, together with (76) we obtain for
every Borel measurable B ⊂ R that

µ ◦G−1(B) = µ({x : Ĝ(G(x)) ∈ Ĝ(B)})
= µ(Ĝ(B)). (78)

If U([0, 1]) denotes the uniform distribution on [0, 1] we obtain
again from (76) that

U([0, 1]) ◦ Ĝ−1((−∞, x]) = G(x) for a.e. x ∈ R.

Thus, U([0, 1])◦Ĝ−1 = gλ. Now let B ⊂ (0, 1) be Borel mea-
surable and λ(B) = 0. This implies U([0, 1])◦ Ĝ−1(Ĝ(B)) =
0. Because µ is absolutely continuous with respect to gλ we
obtain µ(Ĝ(B)) = 0. Hence, (78) implies µ ◦ G−1(B) = 0
showing that µ◦G−1(B) is absolutely continuous with respect
to λ. In order to prove (75) let [a, b] ⊂ (0, 1). In view of (78)
and from the definition of Ĝ we obtain

µ(G−1([a, b])) =

∫ Ĝ(b)

Ĝ(a)

f dλ. (79)

From (77) we deduce

Ĝ′(y) =
1

g(Ĝ(y))
1{g>0}(Ĝ(y)) a.e. on (0, 1).

Because µ◦G−1 is absolutely continuous with respect to λ its
cumulative distribution function is absolutely continuous and,
therefore, differentiable a.e. Applying the chain rule for the
Lebesgue integral (see [30, Corollary 4]) we obtain∫ Ĝ(b)

Ĝ(a)

f(x) dλ(x) =

∫ b

a

f(Ĝ(y))Ĝ′(y) dλ(y). (80)

Now, (79) and (80) prove the first equation in (75). The second
equality in (75) follows from (74). �

Proof of Lemma 4.6:

1. α ∈ (0,∞). For this range of α the result goes back to
Rényi [27, 11§] who stated it with somewhat less generality.
Csiszár [8, Thm. 2] gives a more general form of the result
that implies our statement.

2. α = −∞.
Clearly,

lim inf
∆→0

inf{µ(q̂−1
∆,M (a)) : a ∈ q̂∆,M (R)}

∆
≥ ess inf Mf. (81)

Now let ε > 0 and define Nε = {x : f(x) < ess inf Mf+ε}∩
M . Hence, λ(Nε) > 0. By Lebesgue’s differentiation theorem
we can find an x ∈ Nε such that µ is differentiable at x with
f(x) = dµ

dλ (x). Moreover a ∆0(ε) > 0 exists, such that for
every ∆ ≤ ∆0 a b ∈ q̂∆,M (R) can be found with x ∈ q̂−1

∆,M (b)
and

µ(q̂−1
∆,M (b))

∆
≤ ess inf Mf + 2ε.

Because ε is arbitrary we obtain

lim sup
∆→0

inf{µ(q̂−1
∆,M (a)) : a ∈ q̂∆,M (R)}

∆
≤ ess inf Mf.

(82)
In view of Definition 4.4 and the definition of H−∞µ (·), the
combination of (81) and (82) yields the assertion.
3. α ∈ (−∞, 0]. Here we adapt Rényi’s original proof to our
case. With the convention 00 := 0 and in view of Definition
4.4 resp. Remark 2.2 it suffices to show that∫

supp(µ)

fα dλ = lim
∆→0

∑
a∈q̂∆(R)

∆1−α

(∫
q̂−1
∆ (a)

f dλ

)α
.

(83)
For ∆ > 0 and x ∈ R we define

g1,∆(x) = 1supp(µ)(x)
∑

a∈q̂∆(R)

1q̂−1
∆ (a)(x)

1

∆

∫
q̂−1
∆ (a)

fα dλ

and

g2,∆(x)

= 1supp(µ)(x)
∑

a∈q̂∆(R)

1q̂−1
∆ (a)(x)∆−α

(∫
q̂−1
∆ (a)

f dλ

)α

= 1supp(µ)(x)

 ∑
a∈q̂∆(R)

1q̂−1
∆ (a)(x)

1

∆

∫
q̂−1
∆ (a)

f dλ

α

.

Applying Lebesgue’s differentiation theorem we obtain
g1,∆ → fα and g2,∆ → fα a.e. as ∆ → 0. Now note that
since α ≤ 0, the function x 7→ xα is convex on (0,∞), so by
Jensen’s inequality(

1

∆

∫
q̂−1
∆ (a)

f dλ

)α
≤ 1

∆

(∫
q̂−1
∆ (a)

fα dλ

)
for all a ∈ q−1(R), implying g2,∆(x) ≤ g1,∆(x) for all x.
Since g2,∆ ≥ 0 and

∫
g1,∆ dλ =

∫
supp(µ)

fα dλ ∈ (0,∞),
we can apply the generalized dominated convergence theorem
[28, Chapter 11.4] to obtain

lim
∆→0

∫
g1,∆ dλ = lim

∆→0

∫
g2,∆ dλ,

which is equivalent to (83) and, therefore, finishes the proof.
�

Proof of Proposition 5.1:
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(i) Recall that bxc denotes the largest integer less than or
equal to x ∈ R. In view of Lemma 2.3 we have Dα

µ(R) ≤
D0
µ(R). Consequently, we deduce from [23, Lemma 1] the

existence of a constant κ > 0 (that depends only on r and δ)
such that

Dα
µ(R) ≤ D0

µ(R) ≤ D0
µ(log(beRc))

≤ (beRc)−rκr
(∫
|x|r+δ dµ(x)

)r/(r+δ)
.

Due to R ≥ 1 we obtain

(beRc)−r ≤ e−rR
(

eR

eR − 1

)r
≤ e−rR

(
e

e− 1

)r
,

which yields the assertion with C0 = κr
(

e
e−1

)r
.

(ii) In view of Lemma 2.3 it is enough to prove relation (21)
for α = −∞. Let I = supp(µ), R ≥ 0 and qR ∈ Q with
H−∞µ (qR) ≤ R. According to Lemma 2.3 let us assume
w.l.o.g. that all codecells of qR with positive µ−mass are
intervals. By subdivision of codecells with µ−mass greater
than or equal to 2e−R we can assume w.l.o.g. that

e−R ≤ µ(q−1
R (a)) < 2e−R (84)

for every a ∈ qR(R) with µ(q−1
R (a)) > 0, where the first

inequality holds since H−∞µ (qR) ≤ R. Moreover, for every
such a we obtain

diam(q−1
R (a) ∩ I) ≤

µ(q−1
R (a))

i(f)
(85)

and we can assume w.l.o.g. that a ∈ q−1
R (a)∩I if q−1

R (a))∩I 6=
∅ (otherwise the distortion can be decreased by redefining a).
Then we have

Dµ(qR)

=
∑

a∈qR(R)

∫
q−1
R (a)

|x− a|rf(x) dλ(x)

≤
∑

a∈qR(R)

∫
q−1
R (a)

(diam(q−1
R (a) ∩ I))rf(x) dλ(x).

In view of (84) and (85) we get

Dµ(qR)

≤
∑

a∈qR(R)

∫
q−1
R (a)

(
µ(q−1

R (a))

i(f)

)r
f(x) dλ(x)

=
1

i(f)r

∑
a∈qR(R)

(µ(q−1
R (a)))r+1

<
1

i(f)r

∑
a∈qR(R)

µ(q−1
R (a))(2e−R)r =

2r

i(f)r
e−rR,

which yields (21) by taking the infimum over all qR ∈ Q with
H−∞µ (qR) ≤ R. �

Proof of Lemma 5.3: Let ε > 0. Choose c, t ∈ (0,∞), such
that

1− µ(Ac,t) <
ε

2
(86)

with Ac,t = {x : f(x) ≥ c} ∩ {x : f(x) ≤ t} ∩ [−t, t]. Let

κ =
c

(1 + r)2r

and use Corollary 5.2 to choose R0 > 0 such that

t

(
2Dα

µ(R0)

κ

) 1
1+r

<
ε

2
.

Now let R ≥ R0, δ = Dα
µ(R) > 0, and choose q ∈ Q with

Hα
µ (q) ≤ R and |Dµ(q)−Dα

µ(R)| < δ. We have

Dµ(q) =
∑
a∈q(R)

∫
q−1(a)

|x− a|rf(x) dλ(x)

≥
∑
a∈q(R)

c

∫
q−1(a)∩Ac,t

|x− a|r dλ(x). (87)

Let B(x, l) = [x− l, x+ l] for any l > 0 and x ∈ R. For every
a ∈ q(R) define

sa = λ(q−1(a) ∩Ac,t)/2. (88)

Since Ac,t is bounded, we have sa ∈ [0,∞). Moreover, it is
easy to show that∫

q−1(a)∩Ac,t
|x− a|r dλ(x) ≥

∫
B(a,sa)

|x− a|r dλ(x) (89)

(see, e.g., [9, Lemma 2.8]). Using (88) we compute∫
B(a,sa)

|x− a|r dλ(x)

=
2sr+1
a

1 + r
=

sra
1 + r

λ(q−1(a) ∩Ac,t). (90)

Combining (89) and (90) with (87) we obtain

Dµ(q) ≥ c

1 + r

∑
a∈q(R)

λ(q−1(a) ∩Ac,t)sra

=
c

(1 + r)2r

∑
a∈q(R)

λ(q−1(a) ∩Ac,t)(2sa)r.

Using (88) we get

Dµ(q) ≥ c

(1 + r)2r

∑
a∈q(R)

λ(q−1(a) ∩Ac,t)1+r

≥ κ · sup
a∈q(R)

λ(q−1(a) ∩Ac,t)1+r.

On the other hand the choice of δ and the monotonicity of
Dα
µ(·) yields

Dµ(q) ≤ 2Dα
µ(R) ≤ 2Dα

µ(R0)

Thus we deduce

κ · sup
a∈q(R)

λ(q−1(a) ∩Ac,t)1+r ≤ 2Dα
µ(R0).

Also, since f is upper bounded by t on Ac,t,

max
a∈q(R)

µ(q−1(a) ∩Ac,t)

≤ t · sup
a∈q(R)

λ(q−1(a) ∩Ac,t)
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≤ t

(
2Dα

µ(R0)

κ

) 1
1+r

<
ε

2
. (91)

With (86) and (91) we finally obtain

max
a∈q(R)

µ(q−1(a))

≤ max
a∈q(R)

µ(q−1(a) ∩Ac,t) + 1− µ(Ac,t)

< ε,

which proves (22). Now, additionally, let i(f) > 0. Let a ∈
q(R) with µ(q−1(a)) > 0. By Lemma 2.3 we can assume,
that q−1(a) is an interval. Thus we obtain

λ(q−1(a) ∩ Ii) = diam(q−1(a) ∩ Ii)

for every i ∈ {1, . . . ,m}. Together with Ii ⊂ supp(µ) we
deduce

µ(q−1(a)) ≥ µ(q−1(a) ∩ Ii)

=

∫
q−1(a)∩Ii

f(x) dλ(x)

≥ i(f)λ(q−1(a) ∩ Ii)
= i(f) diam(q−1(a) ∩ Ii) (92)

for every i ∈ {1, . . . ,m}. Relation (23) follows now immedi-
ately from (22) and (92). �

Proof of Lemma 5.4: Let α ∈ [−∞, 0]. Then by Lemma 2.3
for any γ > 1 there exists a quantizer q with Hα

µ (q) ≤ R such
that each cell of q is an interval with positive µ−mass (and
thus q(R) = Nq) and

Dµ(q) ≤ γ ·Dα
µ(R). (93)

According to definition (2) we obtain in case of α > −∞ that∑
a∈q(R)

µ(q−1(a))α ≤ e(1−α)R. (94)

We deduce

eR ≥
( ∑
a∈q(R)

µ(q−1(a))(1/µ(q−1(a)))1−α
)1/(1−α)

≥ n (95)

where n is the number of codepoints of q and the second
inequality follows from Jensen’s inequality applied to the
concave function x 7→ x1/(1−α). In case of α = −∞ we
obviously have n <∞. We get

1 =
∑
a∈q(R)

µ(q−1(a)) ≥ n ·min{µ(q−1(a)) : a ∈ q(R)}

≥ ne−R.

Hence, n ≤ eR for every α ∈ [−∞, 0]. Let supp(µ) = [c, d],
where −∞ < c < d <∞. For every a ∈ q(R) let ma denote
the midpoint of q−1(a)∩ [c, d]. As in the proof of Lemma 5.3,

we obtain

Dµ(q) =
∑
a∈q(R)

∫
q−1(a)

|x− a|rf(x) dλ(x)

≥
∑
a∈q(R)

i(f)

∫
q−1(a)∩[c,d]

|x−ma|r dλ(x)

=
∑
a∈q(R)

i(f)(2r(1 + r))−1 diam(q−1(a) ∩ [c, d])r+1.

Clearly (cf. (85)),

µ(q−1(a))

s(f)
≤ diam(q−1(a) ∩ [c, d]) ≤ µ(q−1(a))

i(f)

for every a ∈ q(R) with µ(q−1(a)) > 0. Thus we deduce
from the convexity of x 7→ xr+1 that

Dµ(q)

≥ i(f)(2r(1 + r))−1s(f)−r−1
∑
a∈q(R)

(µ(q−1(a)))r+1

≥ i(f)(2r(1 + r))−1s(f)−r−1
n∑
i=1

(1/n)r+1

= i(f)(2r(1 + r))−1s(f)−r−1n−r.

Combining (93) and Proposition 5.1 (ii) we obtain

i(f)(2r(1 + r))−1s(f)−r−1n−r ≤ γ 2r

i(f)r
e−rR. (96)

Because γ ∈ (1,∞) was arbitrary, inequality (96) remains
valid if we set γ = 1. Hence we obtain(

i(f)

s(f)

) r+1
r
(

1

4r(1 + r)

)1/r

eR ≤ n,

which yields (25).
Now assume α ∈ (−∞, 0). We will modify q such that the
new quantizer is in KR and it still satisfies the rate constraint,
while its distortion does not exceed that of q. Let

p = max{µ(q−1(a)) : a ∈ q(R)} > 0

and ap ∈ q(R) such that µ(q−1(ap)) = p. If Hα
µ (q) < R

we can subdivide the cell q−1(ap) into two cells with equal
µ−mass, such that the entropy increases by

− 1

1− α
log

(
pα +

∑
a∈q(R)\{ap}

µ(q−1(a))α
)

+
1

1− α
log

(
2(p/2)α +

∑
a∈q(R)\{ap}

µ(q−1(a))α
)
> 0.

If we take the optimal quantization points for the two new
cells, the new quantizer does not increase the quantization
error. As long as the entropy is lower than R we repeat
this procedure. Hence there exists a modified quantizer (also
denoted by q) satisfying

e(1−α)R − e(1−α)Hαµ (q) ≤ (21−α − 1)pα. (97)

Note that (94) and (95) remain valid also for this modified
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quantizer. Consequently,

0 < CeR ≤ card(q) ≤ eR <∞. (98)

Thus we deduce

e(1−α)R ≥ e(1−α)Hαµ (q) =
∑
a∈q(R)

µ(q−1(a))α

≥ card(q) · pα ≥ CeRpα,

which implies
pα ≤ C−1e−Re(1−α)R.

Together with (97) and R > log( 21−α−1
C ) we obtain

1 ≤ e(1−α)R

e(1−α)Hαµ (q)

=
e(1−α)R

e(1−α)R − (e(1−α)R − e(1−α)Hαµ (q))

≤ e(1−α)R

e(1−α)R − (21−α − 1)pα

≤ e(1−α)R

e(1−α)R − (21−α − 1)C−1e−Re(1−α)R
. (99)

In view of (99) and (98) we conclude that q ∈ KR, which
proves (26). �

Proof of Lemma 5.5: Recall the definition (24) of constant
C. Fix κ ∈ (0, C). Let R0 > 0 such that CeR−(m−1) ≥ κeR
for every R ≥ R0. According Lemma 5.3, in the definition of
Dα
µ(R) it suffices w.l.o.g. to consider for R ≥ R0 only those

quantizers q ∈ HR satisfying

sup{diam(q−1(a) ∩ I) : a ∈ q(R)} < diam(I)/2m. (100)

In view of Lemma 5.4 it suffices to show that for R ≥ R0

any quantizer q ∈ HR that satisfies (100) can be modified such
that the distortion of the new quantizer q̃ does not exceed that
of q and it satisfies q̃ ∈ KR(κ) and

2 inf{diam(q̃−1(a) ∩ I) : a ∈ S(q̃)}
≥ inf{diam(q̃−1(a)) : a ∈ A(q̃)}.

According to the upper bound (100) we always have A(q) 6=
∅. If S(q) = ∅, then the assertion is obvious. Hence, let
S(q) 6= ∅. Let us assume w.l.o.g. that µ(q−1(b)) > 0 and that
(see Lemma 2.3) q−1(b) is an interval for every b ∈ q(R).
For every a ∈ S(q) let ∅ 6= N(a) ⊂ q(R) \ {a} be the set
of neighbor points, i.e., for every b ∈ N(a) we have either
sup q−1(b) = inf q−1(a) or inf q−1(b) = sup q−1(a). Due to
(100) we know that N(a)∩S(q) = ∅. Moreover, N(a) ⊂ A(q)
and card(N(a)) = 2. Fix ia ∈ {1, . . . ,m − 1} such that
q−1(a) ⊂ Iia ∪ Iia+1. Because a ∈ S(q), we have ∆1 =
diam(q−1(a)∩Iia) > 0 and ∆2 = diam(q−1(a)∩Iia+1) > 0.
Moreover, diam(q−1(a)) = ∆1 + ∆2. Let b1 ∈ N(a) such
that inf(q−1(a)) = sup(q−1(b1)) and let b2 ∈ N(a) such that
inf(q−1(b2)) = sup(q−1(a)). Next we will show that

inf(q−1(a)) +
∆1

2
≤ a ≤ inf(q−1(a)) + ∆1 +

∆2

2
. (101)

To see this, one recognizes that a has to be optimal for
µ(·|q−1(a)). As a consequence (see, e.g., [9, Lemma 2.6 (a)]),

a ∈ [inf(q−1(a)), sup(q−1(a))]. Moreover, a has to be a
stationary point (see [9, Lemma 2.5]), which yields∫

[inf(q−1(a)),a]

|x− a|r−1 dµ(x)

=

∫
[a,sup(q−1(a))]

|x− a|r−1 dµ(x). (102)

Now let us assume that the first inequality in (101) does not
hold. Hence,

a < inf(q−1(a)) + ∆1/2. (103)

Note that sup(Iia) = inf q−1(a) + ∆1 and that sup(Iia) +
∆2 = sup(q−1(a)). From (102) and ∆2 > 0 we get∫

[inf(q−1(a)),a]

|x− a|r−1 dµ(x)

>

∫
[a,inf q−1(a)+∆1]

|x− a|r−1 dµ(x). (104)

Because the density of µ is constant on
[inf(q−1(a)), inf(q−1(a)) + ∆1] we obtain from (104)
that a > inf(q−1(a)) + ∆1/2, which contradicts (103). Thus
we have proved the left inequality in (101). Similarly, we
deduce from ∆1 > 0 and (102) the right inequality in (101).

Recall that µ has constant density on q−1(bi); i = 1, 2.
Again by stationarity (102) we obtain

b1 = inf q−1(a)− diam(q−1(b1))/2 (105)

and

b2 = inf q−1(a) + ∆1 + ∆2 + diam(q−1(b2))/2.

Let ∆ = ∆1 +∆2. Next we show that w.l.o.g. we can assume
2∆ ≥ min(diam(q−1(b1)),diam(q−1(b2))). Assume to the
contrary that

2∆ < min(diam(q−1(b1)),diam(q−1(b2))). (106)

Then we have diam(q−1(b1)) > 2∆ > 2∆1 + ∆2, and
applying (105) we get

inf q−1(a)− b1 > inf q−1(a) + ∆1 +
∆2

2
− inf q−1(a)

Hence, (101) implies

inf q−1(a)− b1 > a− inf q−1(a). (107)

Similarly we obtain

b2 − sup q−1(a) > sup q−1(a)− a. (108)

In view of (106) and by the definition of µ we have

diam(I)

m
µ(q−1(b1)) = diam(q−1(b1)) · sia

> 2∆ · sia
and

diam(I)

m
µ(q−1(b2)) = diam(q−1(b2)) · sia+1

> 2∆ · sia+1.
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Moreover,

diam(I)

m
µ(q−1(a)) = ∆1sia + ∆2sia+1

< 2∆ max{sia , sia+1}.

Thus we obtain

µ(q−1(a)) < max(µ(q−1(b1)), µ(q−1(b2))) (109)

as long as (106) holds. Thus, in view of (107) and (108), we
can modify q by increasing the codecell q−1(a), which yields
a reduction of the quantization error and a non-increasing
entropy of q (due to α < 0, as long as (109) holds, the
entropy is a non-decreasing function of the left endpoint of
the cell q−1(a) and a non-increasing function of the right
endpoint of q−1(a)). The codecell can be expanded this way
until 2∆ = min(diam(q−1(b1)),diam(q−1(b2))) holds. Note
that independent of this modification q remains an element of
HR. Thus we can assume w.l.o.g. that

2∆ ≥ min(diam(q−1(b1)),diam(q−1(b2))). (110)

If q ∈ KR(κ), then the proof is finished. Hence, let us assume
that q /∈ KR(κ). We will show that q can always be modified
such that the new quantizer belongs to KR(κ) and still satisfies
relation (110). We proceed as in the proof of relation (26). Let

W (q) = {a ∈ q(R) : µ(q−1(a)) = max{µ(q−1(b)) : b ∈ A(q)}}.

We subdivide one by one the cells q−1(a) with a ∈W (q) and
p = µ(q−1(a)) as in the proof of (26) in Lemma 5.4. Note,
that the entropy of the quantizer will exceed any given bound
if we repeat the subdivision process enough times. We stop
this process with a quantizer q̃ that satisfies relation (97). Now
recall that CeR− (m− 1) ≥ κeR if R ≥ R0 by the definition
at the beginning of the proof. Thus, with p = µ(q̃−1(a)), we
have

e(1−α)R ≥ e(1−α)Hαµ (q̃) ≥ (card(q̃(R))− (m− 1))pα

≥ (CeR − (m− 1))pα ≥ κeRpα.

Now the inequality e(1−α)R ≥ meRpα allows us to perform
steps identical to the ones in the chain of inequalities (99) and
we obtain that the quantizer belongs to KR(κ). Obviously,
(110) is still in force for q̃ and the proof is complete. �

Proof of Proposition 6.2: For every i ∈ {1, . . . ,m} choose a
quantizer qi ∈ Q for µi with Hα

µi(qi) ≤ Ri. Let

Ji = {a ∈ qi(R) : µ(q−1
i (a) ∩Ai) > 0}.

Let Ii ⊂ N be an index set of the same cardinality as Ji and
for every k ∈ Ii choose ai,k ∈ qi(R) such that Ji = {ai,k :
k ∈ Ii}. Let

N = R \ ∪mi=1 ∪k∈Ii q−1
i (ai,k) ∩Ai.

Note that µ(N) = 0. Now we define the quantizer q by the
codecells

{N} ∪ {q−1
i (ai,k) ∩Ai : i = 1, . . . ,m; k ∈ Ii}

and corresponding codepoints

{0} ∪ {ai,k : i = 1, . . . ,m; k ∈ Ii}.

Note that despite our general assumption, the codepoints now
are not necessarily distinct. Recall the convention 00 = 0.
Since µ(N) = 0, the definition of Hα

µ (q) yields

Hα
µ (q) =

1

1− α
log

(
m∑
i=1

∑
k∈Ii

µ(q−1
i (ai,k) ∩Ai)α

)

=
1

1− α
log

 m∑
i=1

sαi
∑

a∈qi(R)

µi(q
−1
i (a))α


=

1

1− α
log

(
m∑
i=1

sαi e
(1−α)Hαµi

(qi)

)
.

Since Hα
µi(qi) ≤ Ri, we obtain in both cases (α < 1 and

α > 1) that

Hα
µ (q) ≤ 1

1− α
log

(
m∑
i=1

sαi e
(1−α)Ri

)
.

Now it is easy to check that Hα
µ (q) ≤ R is satisfied if either

(29) or (30) holds. Further we deduce

Dα
µ(R) ≤ Dµ(q) =

∫
|x− q(x)|r dµ(x)

=

m∑
i=1

si

∫
Ai

|x− qi(x)|r dµi(x)

=

m∑
i=1

siDµi(qi).

Taking the infimum on the right hand side of above inequality
yields the assertion. �

Proof of Lemma 6.3: From Definition 6.1 we have s ∈ (0, 1).
Let R ≥ 0 and δ > 0. Let q ∈ Q with Hα

µ (q) ≤ R and
δ +Dα

µ(R) ≥ Dµ(q). We obtain

δ +Dα
µ(R) ≥ Dµ(q) ≥ s

∫
|x− q(x)|r dµi0(x). (111)

Since α ∈ [0, 1), we deduce

R ≥ Hα
µ (q)

=
1

1− α
log

 ∑
a∈q(R)

(
m∑
i=1

siµi(q
−1(a))

)α
≥ 1

1− α
log

( ∑
a∈q(R)

(
sµi0(q−1(a))

)α)
=

α

1− α
log(s) +Hα

µi0
(q).

Because δ was arbitrary we get from (111) that

Dα
µ(R) ≥ sDα

µi0

(
R− α

1− α
log(s)

)
,

which yields

erRDα
µ(R) ≥ ser(

α
1−α log(s))er(R−

α
1−α log(s))

·Dα
µi0

(
R− α

1− α
log(s)

)
= sa1a2er(R−

α
1−α log(s))
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·Dα
µi0

(
R− α

1− α
log(s)

)
and therefore proves (32).

Now let α ∈ [0, r + 1) \ {1} and fix R0 > 0, such that

R0 ≥ max{− log(ti) : i = 1, . . . ,m}.

For any R > R0 let Ri = R+ log(ti) > 0, i = 1, . . . ,m. We
obtain

m∑
i=1

sαi e
(1−α)Ri = e(1−α)R, (112)

if α ∈ [0, r + 1) \ {1}. Indeed, (112) is equivalent to∑m
i=1 s

α
i t

1−α
i = 1. But this equation is satisfied by the

definition of ti. Applying Proposition 6.2 we obtain

Dα
µ(R) ≤ sDα

µi0
(Ri0) +

m∑
i=1;i 6=i0

siD
α
µi (Ri) .

Thus we can compute

erRDα
µ(R) ≤ erRsDα

µi0
(Ri0) +

m∑
i=1;i6=i0

erRsiD
α
µi(Ri)

= er(R−Ri0 )serRi0Dα
µi0

(Ri0)

+

m∑
i=1;i6=i0

er(R−Ri)sie
rRiDα

µi(Ri)

= st−ri0 e
rRi0Dα

µi0
(Ri0)

+

m∑
i=1;i6=i0

sit
−r
i erRiDα

µi(Ri). (113)

Because all terms in (113) are nonnegative we obtain (33). �

Lemma A.2: Let m ∈ N and
∑m
i=1 si = 1 with si > 0 for

every i ∈ {1, . . . ,m}. Let the probability measure µ be sup-
ported on a bounded interval I such that µ =

∑m
i=1 siU(Ii)

where the Ii are intervals of equal length λ(I)/m that partition
I . Let α ∈ (−∞, 0) and (Rn)n∈N be an increasing sequence
of positive numbers such that Rn →∞ as n→∞. Then for
every sequence (qn)n∈N of quantizers with qn ∈ GRn , relation
(49) holds.

Proof: Recall from (27) and (28) the definition of A(q) and
S(q). For any n ∈ N

1 ≤ e(1−α)Hαµ (qn)∑
a∈A(qn) µ(q−1

n (a))α

=

∑
a∈A(qn) µ(q−1

n (a))α +
∑
a∈S(qn) µ(q−1

n (a))α∑
a∈A(qn) µ(q−1

n (a))α

≤ 1 +
card(S(qn)) · sup{µ(q−1

n (a))α : a ∈ S(qn)}∑
a∈A(qn) µ(q−1

n (a))α

≤ 1 + (m− 1)
sup{µ(q−1

n (a))α : a ∈ S(qn)}∑
a∈A(qn) µ(q−1

n (a))α

= 1 + (m− 1)
(inf{µ(q−1

n (a)) : a ∈ S(qn)})α∑
a∈A(qn) µ(q−1

n (a))α
. (114)

Now let

h1 = min

{
si

λ(I)/m
: i ∈ {1, . . . ,m}

}
> 0

and

h2 = max

{
si

λ(I)/m
: i ∈ {1, . . . ,m}

}
> 0.

Since qn ∈ GRn , we have

1 ≤ 1 + (m− 1)(h1/2)α

· (min{diam(q−1
n (a)) : a ∈ A(qn)})α∑

a∈A(qn) µ(q−1
n (a))α

≤ 1 + (m− 1)(h1/2h2)α

· (min{diam(q−1
n (a)) : a ∈ A(qn)})α∑

a∈A(qn) diam(q−1
n (a))α

. (115)

Fix i = i(n) ∈ {1, . . . ,m} and b ∈ A(qn) ∩ Ii such that

diam(q−1
n (b)) = min{diam(q−1

n (a)) : a ∈ A(qn)}. (116)

From Proposition 7.2 and by [9, Example 5.5] we know that
all codecells q−1

n (a) with a ∈ A(qn) ∩ Ii can be assumed
to have equal length. Because qn ∈ GRn ⊂ KRn we
obtain limn→∞Hα

µ (qn) = ∞. In view of (116) we thus get
card(A(qn)∩ Ii)→∞ as n→∞. From (114) and (115) we
deduce

1 ≤ e(1−α)Hαµ (qn)∑
a∈A(qn) µ(q−1

n (a))α

≤ 1 +
(m− 1)(h1/2h2)α(diam(q−1

n (b)))α∑
a∈A(qn)∩Ii diam(q−1

n (a))α

= 1 +
(m− 1)(h1/2h2)α

card(A(qn) ∩ Ii)
→ 1 as n→∞. (117)

Again from qn ∈ GRn ⊂ KRn we have
limn→∞ e(1−α)(Rn−Hαµ (qn)) = 1, which yields together
with (117) the assertion. �

Let m ≥ 2 and s1, . . . , sm ∈ (0, 1)m with
∑m
i=1 si = 1. For

(v1, . . . , vm) ∈ (0,∞)m and α ∈ (−∞,∞) \ {1} we define

F (v1, . . . , vm) =

m∑
i=1

siv
−r
i

and set ti = s
1/a2

i

(∑m
j=1 s

a1
j

)− 1
1−α

, i = 1, . . . ,m as in (31).

Lemma A.3: If α ∈ (−∞, 1), then

F (t1, . . . , tm)

= inf

{
F (v1, . . . , vm) : (v1, . . . , vm) ∈ (0,∞)m;

m∑
i=1

sαi v
1−α
i = 1

}
.

Proof: Let xi = sαi v
1−α
i . We calculate

vi = (xis
−α
i )

1
1−α
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and

F (v1, . . . , vm) =

m∑
i=1

si(xis
−α
i )

−r
1−α

=

m∑
i=1

s
1−α+αr

1−α
i x

− r
1−α

i =: G(x1, . . . , xm).

Applying [9, Lemma 6.8] we deduce that G attains its min-
imum on (0,∞)m subject to the constraint

∑m
i=1 xi = 1 at

the point (y1, . . . , ym) with

yi =

(
s

1−α+αr
1−α

i

) 1
1+ r

1−α

∑m
j=1

(
s

1−α+αr
1−α

j

) 1
1+ r

1−α

=
sa1
i∑m

j=1 s
a1
j

for every i ∈ {1, . . . ,m}. Hence, F attains its mini-
mum subject to the constraint

∑m
i=1 s

α
i v

1−α
i = 1 at the

point (w1, . . . , wm) with wi = (yis
−α
i )

1
1−α for every i ∈

{1, . . . ,m}. We deduce

w1−α
i =

s
1−α+αr
1−α+r

i s−αi∑m
j=1

(
s

1−α+αr
1−α

j

) 1
1+ r

1−α

=
s

(1−α)2

1−α+r

i∑m
j=1 s

a1
j

which yields wi = ti. �
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