
Holistic Security Engineering for
Software-Defined Road Vehicles

by

Dominik Püllen

A

Dissertation

submitted to the

Faculty of Computer Science and Mathematics

at the

University of Passau

In Partial Fulfilment of the Requirements

for the Degree of

Doctor of Engineering (Dr.-Ing.)

1st Reviewer: Prof. Dr. Stefan Katzenbeisser
2nd Reviewer: Prof. Dr. Frank Kargl

Day of Submission: 22.02.2024
Day of Oral Examination: 19.06.2024

Passau 2024

Declaration of Originality

I, Dominik Püllen, hereby declare that this Ph.D. thesis, titled “Holistic Security Engineering

for Software-Defined Road Vehicles”, is entirely my own work, except where otherwise indicated.

All ideas, research findings, analysis, and conclusions presented in this thesis are the result of

my own independent research and intellectual effort.

I acknowledge and understand the ethical and academic responsibilities associated with producing

original research. I have appropriately cited and referenced all sources of information, including

but not limited to:

– Any published or unpublished works, including books, articles, reports, and electronic

sources, that have been directly quoted, paraphrased, or summarized in this thesis.

– Any assistance or contributions from fellow researchers, advisors, or individuals who have

provided guidance, data, or other forms of support for this research.

– Any collaborative work or contributions from co-authors or collaborators in publications

or projects related to this research.

I have complied with all relevant ethical standards and academic conventions regarding the proper

citation and acknowledgment of sources. I have used automated tools such as Grammarly to

correct orthographic and grammatical mistakes.

Dominik Püllen Date

III

Abstract

With the increasing use of digital technologies in the automotive sector, the traditional automo-

bile is undergoing a structural transformation, requiring new technologies and enabling innovative

mobility concepts. In particular, the ability to drive automatically or even fully autonomously,

update control software, and remain connected to the environment allows attackers to infiltrate

highly critical vehicle systems and take control without adequate protection. Once not only

individual vehicles but entire fleets are dominated by software, cyberattacks could disrupt a

significant portion of the infrastructure and expose passengers to substantial risks.

This work follows a holistic approach to protecting highly automated software-defined vehicles

from cyberattacks by designing and implementing security concepts in the main phases of a

vehicle’s lifecycle. We use SAE level 4 prototype vehicles to evaluate our proposed techniques.

We start with a systematic security requirement analysis using the ISA-62443 standard series,

demonstrating how threats can be identified in a collaborative, hierarchical process and how the

resulting security risks impact the software and hardware architecture of a self-driving vehicle.

We show how this analysis process results in concrete requirements whose consideration reduces

the overall security risk to a tolerable level.

Subsequently, we develop technical solutions for selected requirements. We begin by securing the

Controler Area Network (CAN) and FlexRay legacy protocols, which we foresee being used in

specific areas of Software-Defined Vehicles (SDVs) in a transitional period despite technological

changes. To enable vehicle-wide security management, we address the management and dis-

tribution of cryptographic keys within such networks, mainly focusing on resource-constrained

devices. We propose using lightweight implicit certificates for deriving cryptographic group keys

that can be used in CAN networks. Additionally, we demonstrate how the slot-based frame

structure of the FlexRay protocol allows for efficient “multi-slot” authentication, for which we

calculate cryptographic keys using hash-based key chains.

SDVs use Ethernet-based communication protocols and custom middleware stacks to transmit

large amounts of data in real-time. We develop a three-stage security process for the novel

Automotive Service-Oriented Architecture (ASOA), which enables the development and central

orchestration of system-agnostic functional software components on embedded systems and High

Performance Computing (HPC) platforms. After the central specification of the security archi-

tecture at the data flow level, security tokens are automatically calculated and distributed for

runtime protection of the service-oriented, DDS-based data transmission. Our process ensures

the strict separation of function and system knowledge, allowing for cost-effective and adaptable

security architecture management. The evaluation in four self-driving, software-defined vehicles

demonstrates an average runtime overhead of approximately 5.71%.

V

As the initial risk analysis and actual cyberattacks have shown, protective measures against

the compromise of control units must be taken alongside communication security. To address

this, we develop a method for verifying and validating the software integrity of control units.

A governmental third party confirms a measurement through a digital certificate, proving the

examined vehicle’s trustworthiness and suitability for participation in automated traffic.

In the final step of this work, we present an assessment scheme that allows software-defined

vehicles to evaluate security incidents during operation in terms of their maximum expected

damage and initiate appropriate countermeasures. We follow the ISO/SAE 21434 standard

and model attack paths using a graph representing dependencies among internal vehicle assets

to account for the propagation effects of cyberattacks. The assessment of a security incident

considers not only the probability of individual attack paths but also the vehicle context. Our

practical evaluation demonstrates that we can detect, report, and assess security incidents below

the human reaction time in the earlier mentioned prototype vehicles.

Zusammenfassung

Mit dem vermehrten Einsatz digitaler Technologien im Automobilbereich erfährt das klassis-

che Fahrzeug einen strukturellen Wandel, der neuer Technologien bedarf und innovative Mo-

bilitätskonzepte ermöglicht. Insbesondere die Fähigkeit, automatisiert oder sogar vollständig au-

tonom zu fahren, Steuersoftware zu aktualisieren und dabei mit dem Umfeld vernetzt zu bleiben,

ermöglicht es Angreifern, in hochkritische Fahrzeugsysteme einzudringen und die Kontrolle bei

ungenügendem Schutz zu übernehmen. Sobald nicht nur einzelne Fahrzeuge von Software do-

miniert werden, sondern ganze Flotten, könnten Hackerangriffe einen Großteil der Infrastruktur

lahmlegen sowie die Passagiere großen Gefahren aussetzen.

Diese Arbeit verfolgt einen ganzheitlichen Ansatz zum Schutz hochautomatisierter, software-

definierter Fahrzeuge (SDVs) vor Cyberangriffen, indem Sicherheitskonzepte in den Hauptphasen

des Lebenszyklus eines Fahrzeugs entworfen und umgesetzt werden. Dabei verwenden wir vier

SAE-Level-4-Prototypenfahrzeuge, um unsere vorgeschlagenen Lösungen zu testen und zu be-

werten. Zunächst beginnen wir mit einer systematischen Sicherheitsanforderungsanalyse unter

Verwendung der ISA-62443-Normenreihe, um zu zeigen, wie Bedrohungen in einem koopera-

tiven, hierarchischen Prozess identifiziert werden können und wie die resultierenden Sicherheit-

srisiken die Software- und Hardwarearchitektur eines selbstfahrenden Fahrzeugs beeinflussen.

Wir zeigen, wie dieser Analyseprozess in konkreten Sicherheitsanforderungen resultiert, dessen

Berücksichtigung das Gesamtrisiko auf ein tolerierbares Niveau senkt.

Im Anschluss entwickeln wir für ausgewählte Anforderungen technische Lösungen. Wir beginnen

mit der Absicherung des Controler Area Network (CAN) und des FlexRay Legacy-Protokolls,

deren Einsatz wir trotz des technologischen Wandels auch in nächster Zukunft an spezifischen

Stellen in software-definierten Fahrzeugen sehen. Um ein fahrzeugweites Sicherheitsmanage-

ment zu ermöglichen, befassen wir uns mit der Verwaltung und Verteilung kryptographischer

Schlüssel innerhalb solcher Netzwerke und betrachten vor allem ressourcenbeschränkte Geräte.

Wir schlagen die Verwendung impliziter Zertifikate zur Ableitung von Gruppenschlüsseln in

CAN-Netzwerken vor. Außerdem zeigen wir, wie die slotbasierte Framestruktur des FlexRay-

Protokolls eine effizientemulti-slot Authentifizierung ermöglicht, für welche wir die kryptographis-

chen Schlüssel mittels hashbasierter Schlüsselketten berechnen.

Für die Echtzeitübertragung großer Datenmengen, die beispielsweise bei der Auf- und Verar-

beitung von Sensordaten entstehen, verwenden software-definierte Fahrzeuge Ethernet-basierte

Übertragungsprotokolle und eigene Middleware-Stacks. Wir erarbeiten einen dreistufigen Sicher-

heitsprozess für die neuartige Automotive Service-Oriented Architecture (ASOA), welche die

Entwicklung und zentrale Orchestrierung systemagnostischer funktionaler Softwarekomponenten

auf eingebetteten Systemen sowie auf HPC-Plattformen ermöglicht. Nach der zentralen Spezi-

fikation der Sicherheitsarchitektur auf Datenflussebene erfolgt die automatische Berechnung und

Verteilung von Sicherheitstokens, welche zur Laufzeit für den Schutz der service-orientierten,

VII

DDS-basierten Datenübertragung verwendet werden. Unser Prozess berücksichtigt die strikte

Trennung von Funktion und Systemwissen und ermöglicht daher eine kostengünstige sowie adap-

tierbare Verwaltung der Sicherheitsarchitektur. Die Evaluation in vier selbstfahrenden, software-

definierten Fahrzeugen belegt den vernachlässigbaren gemittelten Laufzeit-Overhead von rund

5.71%.

Wie die anfänglich durchgeführte Risikoanalyse sowie tatsächliche Cyberangriffe zeigen, müssen

neben der Kommunikationsabsicherung Schutzmaßnahmen zur Kompromittierung von Steuer-

geräten ergriffen werden. Dazu entwickeln wir ein Verfahren zur Verifizierung und Validierung

der Software-Integrität von Steuergeräten. Eine hoheitliche dritte Partei bestätigt eine erfolgte

Integritätsmessung durch ein digitales Zertifikat, das die Vertrauenswürdigkeit des untersuchten

Fahrzeuges und damit dessen Eignung zur Teilnahme am automatisierten Verkehr belegt.

Im letzten Schritt dieser Arbeit präsentieren wir ein Bewertungsschema, das es software-definierten

Fahrzeugen im laufenden Betrieb ermöglicht, Sicherheitsvorfälle hinsichtlich ihres maximal zu

erwartenden Schadens zu bewerten und entsprechende Gegenmaßnahmen einzuleiten. Dazu

orientieren wir uns am ISO/SAE 21434 Standard und modellieren Angriffspfade anhand eines

Graphen, der Abhängigkeiten fahrzeuginterner Assets repräsentiert, um Propagierungseffekte

von Cyberangriffen zu berücksichtigen. In die Bewertung eines Sicherheitsvorfalls fließt neben

der Wahrscheinlichkeit einzelner Angriffspfade auch der Fahrzeugkontext ein. Unsere praktis-

che Evaluation zeigt, dass die Detektion, Meldung und Bewertung von Sicherheitsvorfällen in

einem der zuvor genannten prototypischen Fahrzeuge unterhalb der menschlichen Reaktionszeit

möglich ist.

List of Publications

Peer-reviewed publications used in this thesis:

[1] Dominik Püllen, Nikolaos Anagnostopoulos, Tolga Arul, Stefan Katzenbeisser.
“Safety meets security: Using IEC 62443 for a highly automated road vehicle.” In:
Computer Safety, Reliability, and Security: 39th International Conference, SAFE-
COMP 2020, Lisbon, Portugal, September 16–18, 2020, Proceedings 39, pp. 325-340.
Springer International Publishing, 2020.

[2] Dominik Püllen, Nikolaos Anagnostopoulos, Tolga Arul, Stefan Katzenbeisser. “Us-
ing implicit certification to efficiently establish authenticated group keys for in-vehicle
networks.” In: IEEE Vehicular Networking Conference (VNC). 2019.

[3] Dominik Püllen, Nikolaos Anagnostopoulos, Tolga Arul, Stefan Katzenbeisser. “Se-
curing FlexRay-based in-vehicle networks.” In: Microprocessors and Microsystems 77
(2020): 103144.

[4] Dominik Püllen, Florian Frank, Marion Christl, Wuhao Liu, Stefan Katzenbeisser.
“A Security Process for the Automotive Service-Oriented Software Architecture.” In:
Transactions on Vehicular Technology (2023).

[5] Dominik Püllen, Nikolaos Anagnostopoulos, Tolga Arul, Stefan Katzenbeisser.
“Poster: Hierarchical Integrity Checking in Heterogeneous Vehicular Networks.” In:
IEEE Vehicular Networking Conference (VNC). 2018.

[6] Dominik Püllen, Felix Klement, Alexey Vinel, Stefan Katzenbeisser. “Ensuring Trust-
worthy Automated Road Vehicles: A Software Integrity Validation Approach.” In:
IEEE International Automated Vehicle Validation Conference, 2023

[7] Dominik Püllen, Jonas Liske, and Stefan Katzenbeisser. “ISO/SAE 21434-Based Risk
Assessment of Security Incidents in Automated Road Vehicles.” In: Computer Safety,
Reliability, and Security: 40th International Conference, SAFECOMP 2021, York,
UK, September 8–10, 2021, Proceedings 40. Springer International Publishing, 2021.

Further publications:

[8] Florian Kohnhäuser, Dominik Püllen, and Stefan Katzenbeisser. “Ensuring the Safe
and Secure Operation of Electronic Control Units in Road Vehicles.” In: IEEE Secu-
rity and Privacy Workshops (SPW). 2019.

[9] Timo Woopen, Bastian Lampe, ..., Dominik Püllen, et al. “UNICARagil - Disruptive
Modular Architectures for Agile, Automated Vehicle Concepts”, In: 27. Aachen
Colloquium Automobile and Engine Technology, 2018.

IX

Preface

I would like to take the opportunity to express my gratitude to all those who have supported me

throughout the journey of writing this dissertation. First, I extend my thanks to my supervisor,

Stefan Katzenbeisser, for allowing me to conduct my research under his guidance. I appreciated

much the freedom he granted me in shaping my daily work routine while continually offering

the possibility for consultation. Beyond the original research, I am grateful for the management

skills I acquired under his supervision. The experience of overseeing various research tasks

and projects, hiring supporting personnel, and applying for project funding has broadened my

horizons. In particular, I am grateful for being in charge of the UNICARagil project, which paved

my academic path and significantly inspired my research. This project enabled me to work in

a large interdisciplinary team of researchers and taught me to collaborate with smart people of

different backgrounds. Therefore, I also express my appreciation to the German taxpayer and

the Federal Ministry of Education and Research for their public funding support, which has been

instrumental in the success of UNICARagil.

I also extend my thanks to Frank Kargl, who accepted the role of second examiner for this

dissertation. His thorough examination and expert insights have contributed to the quality of

this work.

Additionally, I thank my colleagues for our chair’s supportive atmosphere and social environment.

Our friendly relations made me come joyous to the office and created a motivating atmosphere,

even during challenging times like the coronavirus outbreak. I learned how team spirit and a

strong company positively impact personal effectiveness. Special thanks are also due to Marion

Christl, whose assistance as a student researcher has been very helpful to me.

Shortly before submitting this thesis, my grandfather, Horst Graebe, passed away. He was

determined to read this thesis. I would therefore like to pay special tribute to him at this

point.

Lastly, and most importantly, I want to express my profound gratitude to my family, especially

my wonderful wife, Marta. Relocating to Passau after our chair moved from the Technical Uni-

versity of Darmstadt was a decision we made together, and her presence and encouragement have

been a driving force behind my perseverance and determination to complete this thesis.

To all those mentioned above and to everybody who played a part in shaping this dissertation,

thank you very much!

Passau, February 2024

XI

To Our Lady Mary

Table of Contents

List of Figures .XIX

List of Tables .XXI

List of Acronyms .XXIII

1 Introduction . 1

1.1 The Vision of Autonomous Driving . 2

1.2 Vehicle Architectures in Transition . 3

1.3 Automotive Security . 5

1.4 Research Questions . 6

1.5 Contributions . 7

1.6 UNICARagil . 8

1.7 Thesis Outline . 9

2 Background . 11

2.1 Software-Defined Vehicles . 11

2.2 Controler Area Network . 11

2.3 FlexRay . 12

2.4 SOME/IP . 13

2.5 Data Distribution Service . 14

2.5.1 DDS Security Specification . 15

2.6 Physical Unclonable Functions . 15

3 Related Work . 17

3.1 Cyberattacks on Road Vehicles . 17

3.2 Security Requirement Analysis . 18

3.3 Securing the CAN communication . 20

3.4 Securing the FlexRay communication . 21

3.5 Securing Service-Oriented Communication . 22

3.6 Ensuring Integrity of Automotive Software . 25

3.7 Resilience of Automotive Systems . 26

4 Security Requirement Analysis . 29

4.1 Reference Architecture . 30

4.1.1 E/E Architecture . 30

4.1.2 Software Architecture . 32

4.1.3 External Infrastructure . 33

4.2 The ISA-62443 standards . 33

4.3 Risk Analysis using ISA-62443 . 35

XV

4.3.1 High-Level Risk Analysis and System Partition 35

4.3.2 Detailed Cybersecurity Risk Assessment 42

4.3.3 Threat Mitigation . 47

4.4 Discussion . 51

4.4.1 Applicability of ISA-62443 . 51

4.4.2 Quality of Assessments . 52

4.4.3 Comparison to ISO/SAE 21434 . 53

4.5 Sub-conclusion . 53

5 Securing Signal-Based Protocols . 55

5.1 Attacker Model . 56

5.2 System Model . 56

5.3 A Key Distribution Scheme for CAN Networks 57

5.3.1 Implicit Certificates . 57

5.3.2 Notation . 58

5.3.3 Assumptions . 58

5.3.4 Scheme Phases . 58

5.3.5 Evaluation . 64

5.3.6 Sub-conclusion . 68

5.4 Securing the FlexRay Protocol . 68

5.4.1 Security Requirements . 69

5.4.2 Key Organization . 69

5.4.3 Traffic Authentication . 70

5.4.4 Secure Key Updates . 73

5.4.5 Realization in FlexRay . 75

5.4.6 Security Discussion . 75

5.4.7 Evaluation . 77

5.4.8 Outlook . 81

5.4.9 Sub-conclusion . 81

6 Securing Service-Oriented Architectures . 83

6.1 Automotive Service-Oriented Software Architecture 84

6.1.1 Services . 84

6.1.2 Communication . 85

6.1.3 Orchestration . 85

6.1.4 Resource Utilization . 86

6.1.5 Comparison . 86

6.2 ASOA Security Process . 86

6.2.1 Security Goals & Attacker Model . 88

6.2.2 Design Decisions . 88

6.2.3 Definitions & Notation . 90

6.2.4 Annotating ASOA Dataflows . 91

6.2.5 Computation and Distribution of Security Tokens 92

6.2.6 Runtime Protection Unit . 97

6.3 Formal Verification . 99

6.3.1 Tamarin . 99

6.3.2 Protocol Specification . 99

6.3.3 Security Properties . 100

6.3.4 Intermediate Conclusion . 100

6.4 Evaluation . 100

6.4.1 Evaluation Platform . 101

6.4.2 Dataflow Analysis . 101

6.4.3 Runtime Analysis . 103

6.4.4 PUF-enhanced Token Exchange Protocol 106

6.5 Sub-conclusion . 109

7 Ensuring Software Integrity of ECUs . 111

7.1 System Model . 111

7.2 Attacker Model . 112

7.3 Software Validation Scheme . 112

7.3.1 Initialization . 113

7.3.2 Integrity Measurement . 113

7.3.3 Validation . 115

7.3.4 Registration . 115

7.3.5 Invalidation . 116

7.4 Security Requirements . 116

7.4.1 Authenticated Boot . 116

7.4.2 Remote Attestation . 116

7.5 Implementation . 117

7.5.1 OP-TEE . 117

7.6 Evaluation . 118

7.6.1 Validation Overhead . 118

7.6.2 Registration Overhead . 120

7.7 Sub-conclusion . 121

8 Reaction to Security Incidents . 123

8.1 The ISO/SAE 21434 standard . 124

8.1.1 Risk Assessment Methods . 124

8.1.2 Cybersecurity Assurance Level . 125

8.2 System Model . 125

8.3 Security Incidents . 126

8.4 Context-Aware Reactions to Security Incidents 126

8.4.1 Offline Phase . 127

8.4.2 Online Phase . 130

8.5 Evaluation . 133

8.5.1 Setup . 133

8.5.2 Discussion . 136

8.6 Sub-Conclusion . 138

9 Conclusion . 139

9.1 Outlook . 140

Bibliography . 143

A Security Requirement Analysis . 153

B Securing Service-Oriented Architectures . 159

List of Figures

1.1 The four UNICARagil vehicles . 8

2.1 Structure of a CAN frame . 12

2.2 Structure of a FlexRay communication cycle . 12

2.3 Structure of a FlexRay frame . 13

4.1 Reference E/E architecture . 32

4.2 Workflow of the ISA-62443-3-2 . 34

4.3 Security zones and their relationship . 40

4.4 Overview of zones and conduits . 41

4.5 Threat types . 44

5.1 ECU authentication phase . 60

5.2 ECU certification phase . 61

5.3 Key computation phase . 62

5.4 Time consumption of ECU authentication and certification 66

5.5 Time consumption for classical CAN . 67

5.6 Options to associate keys with FlexRay time slots 70

5.7 Authentication tags for FlexRay time slots . 71

5.8 MACs in FlexRay dual-channel mode . 72

5.9 Key derivation in FlexRay networks . 73

5.10 Overhead in FlexRay network . 78

5.11 Execution time in FlexRay network . 80

6.1 Wiring of ASOA services . 86

6.2 Phases of the ASOA security process . 87

6.3 ASOA process . 89

6.4 Annotation of ASOA services . 91

6.5 Hierarchical organization of keys . 93

6.6 TokDist-SecMem protocol . 95

6.7 TokDist-PUF protocol . 96

6.8 ASOA Runtime Protection Unit (RPU) . 97

6.9 Average number of security tokens . 102

6.10 Performance of authentication algorithms . 104

6.11 Structure of a RO-PUF . 108

6.12 PUF in Xilinx Vivado block diagram . 108

7.1 Integrity validation scheme . 113

7.2 Layers of a zonal Electrical/Electronic (E/E) architecture 117

7.3 ARM boot chain . 118

XIX

7.4 Visualization of registration overhead . 121

8.1 Threat and damage scenarios in ISO/SAE 21434 124

8.2 Context-aware risk assessment scheme . 127

8.3 Setup for evaluating the security assessment scheme 133

8.4 Distribution of compensating actions . 137

List of Tables

4.1 Vehicle hardware . 31

4.2 Impact evaluation . 37

4.3 Pairwise comparison matrix . 38

4.4 AHP impact weights . 38

4.5 Likelihood criteria . 39

4.6 Risk matrix . 39

4.7 Threat classes . 45

4.8 Security target levels for each zone . 47

5.1 Throughput and round trip time for classical CAN and CAN-FD 65

5.2 Scheme primitives . 66

5.3 Evaluation parameters of our FlexRay network 78

6.1 Average length of ASOA packets . 103

6.2 Ranking of cryptographic primitives . 105

6.3 Timing behavior of ASOA RPU . 107

7.1 Time consumption of software integrity checks 119

7.2 Parameters for simulating vehicle registration . 120

8.1 Negative events are mapped onto a threat category. 126

8.2 Common Criteria methodology . 128

8.3 The attack score is mapped to an attack potential that indicates the attack feasibilty.128

8.4 Criteria for assessing the vehicle context . 132

8.5 Risk matrix used to assess security incidents . 132

8.6 Vehicle reactions depending on risk values . 132

8.7 Rated damage scenarios . 134

8.8 Performance evaluation of incident assessment scheme 136

A.1 Impact criteria with their scores . 153

A.2 High-Level risk analysis . 154

A.3 Complete overview of all threats . 156

A.4 Rated threats . 157

XXI

List of Acronyms

ABS Anti-lock Braking System

ADG Asset Dependency Graph

AEAD Authenticated Encryption with Associated Data

AHP Analytic Hierarchy Process

ASOA Automotive Service-Oriented Architecture

ASP ASOA Security Platform

AUTOSAR AUTomotive Open Systems ARchitecture

CA Certificate Authority

CAL Cybersecurity Assurance Level

CAN Controler Area Network

CAN-FD CAN with Flexible Data rate

DDS Data Distribution Service

DoS Denial-of-Service

DTLS Datagram Transport Layer Security

E/E Electrical/Electronic

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECQV Elliptic Curve Qu-Vanstone

ECU Electronic Control Unit

FPGA Field Programmable Gate Array

FSBL First-Stage Bootloader

HMAC Hash-based Message Authentication Code

HMI Human-Machine Interface

HPC High Performance Computing

HSM Hardware Security Module

IACS Industrial and Automation Control System

XXIII

IMA Integrity Management Architecture

KDF Key Derivation Function

LIN Local Interconnect Network

MAC Message Authentication Code

MITM Man-In-The-Middle

MOST Media Oriented Systems Transport

NIST National Institute of Standards and Technology

NIT Network Idle Time

OMG Object Management Group

OP-TEE Open Portable Trusted Execution Environment

OS Operating System

OTP One-Time Pad

PKI Public Key Infrastructure

PUF Physical Unclonable Function

QoS Quality of Service

RoA Range of Awareness

ROS Robot Operating System

RPi Raspberry Pi

RPU Runtime Protection Unit

RTPS Real-Time Publish-Subscribe

RU Registration Unit

SDV Software-Defined Vehicle

SGX Software Guard Extensions

SM Secure Monitor

SOME/IP Scalable Service-Oriented Middleware over IP

SUC System Under Consideration

TA Trusted Application

TARA Threat Analysis and Risk Assessment

TCB Trusted Computing Base

TEE Trusted Execution Environment

TSU Trusted Software Authority

ZCR Zone and Conduit Requirement

1. Introduction

From time immemorial, mobility has been an intrinsic part of humankind, playing a crucial

role in shaping societies, economies, and cultures. The advancement in transportation methods

has always been crucial to economic growth and wealth, allowing humans to bridge increasingly

large distances and convey goods around the globe. History is marked by several milestones

that significantly contributed to the efficient, affordable, widely available, and most recently,

climate-friendly locomotion: The invention of the wheel in antiquity, the utilization of coaches

in medieval times, the advent of the steam engine during the 18th century, the development

of the first combustion engine in the late 19th century, and ultimately, the mass production of

road vehicles in the 20th century are turning points that massively boosted society in terms of

technological progress and wealth. Nowadays, road vehicles have become indispensable to our

everyday lives, in particular, because automobiles can be privately owned and customized.

The production of road vehicles entails a large industry involving numerous companies as suppli-

ers. They all contribute to the growth and power of today’s economies, especially in Germany,

where many world-leading manufacturers along the entire automotive supply chain are located.

Consequently, the automotive industry is by far the strongest industrial sector in Germany re-

garding turnover and exports [10], and hence, has significantly contributed to the country’s

prosperity. Specifically, Germany is strong in traditional mechanical engineering, which, over

decades, has been a synonym for the technological innovation and competitive advantages of

road vehicles, e.g., through more efficient and powerful combustion engines or increased safety

and comfort at high quality.

With the mass production of vehicles beginning in the early 20th century, the aspect of safety

increasingly attracted attention, and awareness for protecting the driver and passengers began

rising. Contemporary road vehicles are equipped with numerous life-protecting measures such

as airbags, distance control systems, and a Anti-lock Braking System (ABS). Today, construct-

ing and deploying road vehicles is subject to regulation and certification in most jurisdictions,

although basic safety means like seat belts only became mandatory in Germany in 1979.

The complexity of producing safe and reliable automobiles led to a complex development pro-

cess that includes stages for planning, engineering, prototyping, testing, quality control, mass

production, and long-term support. Until today, this cycle is rather stiff and time-consuming.

On average, it takes a manufacturer four to five years from designing to producing a vehicle [11].

Many stakeholders are involved in a vehicle’s development process and must consider technologi-

cal and legal requirements. Eventually, manufactured automobiles contain many driving features

and safety measures, yet their internals have traditionally remained hidden from external parties,

rendering them effectively a closed system.

1

Chapter 1 Introduction

1.1 The Vision of Autonomous Driving

In the last decade, further technological turning points have started disrupting the automotive

industry, similar to those mentioned above:

First, the electrification of road vehicles makes established propulsion methods superfluous, such

that the industry must make significant investments in this technology for the sake of its survival.

The transition to electric propulsion methods is a prominent political goal for environmental

reasons because the required electricity can originate from climate-friendly, renewable sources.

These considerations have become so significant that the European Union intends to phase out

combustion engines by 2035 [12] despite their long-standing role as a driving economic force.

Since the underlying technology fundamentally differs from traditional combustion engines, new

market entrants compete with the established industry, making the future of the automotive

market unclear.

Second, the continuous expansion of digital technologies into our daily lives not only holds the

potential for transformative impacts on our society but also significantly contributes to an ongoing

technological transition within the automotive domain. This transition will eventually turn road

vehicles, originally mechanical devices, into software-defined computer systems on wheels.

The emergence of the Internet of Things and technologies such as artificial intelligence and cloud

computing enables novel mobility ecosystems where smart, self-driving, and interconnected auto-

mobiles dominate the roads. Such SDVs illustrate how the role of software engineering becomes

increasingly relevant, shifting the automotive industry’s focus from traditional machine engineer-

ing to software engineering. With a growing number of automation features in contemporary road

vehicles, the pace of this technological transition is picking up momentum. Envisioning a lasting

future of autonomous traffic, today, the Society of Automotive Engineers distinguishes between

five levels of driving automation, with humans relinquishing control to the vehicle from level

three. Despite open ethical and liability questions, the automation of road vehicles encompasses

clear advantages:

1. Safety: In 2018, the U.S. Department of Transportation stated that drivers are account-

able for as much as 94% of all accidents, with vehicle defects contributing a mere 2% [13].

Consequently, the majority of vehicle accidents can be linked to human errors such as dis-

traction, stress, missing safety distances, or speeding [14]. In contrast, automated vehicles

neither get tired nor break traffic laws, thus improving passengers’ safety.

2. Driving Behavior: Automated and interconnected traffic can positively influence traffic

flows, particularly when the infrastructure is appropriately adjusted (e.g., allocating more

space for drop-off locations) [15]. Context-aware driving and automatic route optimizations

can result in less congestion and fewer traffic jams.

3. Resource Utilization: Self-driving vehicles are anticipated to operate more efficiently

than their human counterparts, resulting in energy savings ranging from 11% to 55% [16].

Moreover, human passengers can utilize travel time for other productive activities.

4. Mobility Concept: Automated traffic facilitates the idea of on-demand driving, poten-

tially leading to a decreased demand for parking spaces, particularly in densely populated

areas. This shift opens the door for entirely new mobility concepts [17].

2

Chapter 1 Introduction

While improved safety is one of the proponents’ strongest arguments, critics argue the opposite.

Computer-based safety-critical systems, such as SDVs, possess a significantly larger attack sur-

face, mainly due to their ability to communicate with external parties and continuously receive

software updates. Unlike the traditional automobile, which resembles a closed system, SDVs are

open systems, making them susceptible to cyberattacks. This concern became a reality for the

first time in 2015 when researchers demonstrated how an adversary could take complete control

of an off-the-shelf automobile [18], thus enormously endangering the passenger’s safety. Since

then, cybersecurity has moved into the focus of attention because the safety of SDVs requires

the ability to detect and defend against any malicious party. In short, security is necessary to

guarantee safety.

1.2 Vehicle Architectures in Transition

The increasing role of software in road vehicles due to automation and interconnection calls

for innovative middleware stacks and tailored automotive operating systems, allowing for the

dynamic, safe, and secure integration and maintenance of automotive functions. Historically,

road vehicles have been designed as closed and rather static systems, almost resembling a black

box from an engineer’s perspective. This design obviously contradicts the requirements of a

dynamic software architecture since deploying updates, patches, and functional upgrades be-

comes challenging. Besides, it is difficult, if possible at all, to effectively protect such systems

from cyberattacks if security features are added in the aftermath. Therefore, not only software

architectures must evolve according to security requirements, but the underlying Electrical/Elec-

tronic (E/E) architecture must also be designed in a security-aware fashion. Thus, the ongoing

transition to SDVs necessitates a profound transformation of the internal architectures of these

vehicles.

Conventional Domain-Based Architectures

Classical road vehicles consist of Electronic Control Units (ECUs), with each ECU typically

responsible for a specific task, such as the Engine Control Module, the Transmission Control

Module, the Airbag Control Module, the Tire Pressure Monitoring System, and the infotainment

system. These ECUs are organized into domains, forming a domain-based E/E architecture.

Within such a system, an ECU is typically an embedded system that is highly optimized regarding

its electric usage, memory consumption, and processor requirements to carry out a dedicated task

efficiently.

With the increasing number of vehicle functions, the quantity of ECUs has steadily grown such

that modern automobiles can contain up to 150 ECUs. Traditionally, these ECUs are arranged

in a bus topology, communicating through tailored, mostly signal-based automotive bus systems

designed for a specific purpose. The term “signal-based” indicates that these protocols primarily

exchange individual signals or data points instead of entire messages or packets. Most promi-

nently, the CAN enables reliable data exchange between ECUs using a priority-based arbitration

mechanism such that critical data is always transmitted first. When first introduced, the CAN

protocol contributed significantly to reducing the wire harness and thus to cost savings. Local

Interconnect Network (LIN), simpler and slower, finds use in less critical applications like mir-

ror control. FlexRay ensures real-time communication for safety-critical ECUs with predefined

time slots, while Media Oriented Systems Transport (MOST) is tailored for multimedia and

infotainment systems. AUTomotive Open Systems ARchitecture (AUTOSAR) Classic standard-

3

Chapter 1 Introduction

izes communication interfaces and software development for the mentioned protocols in classical

automotive systems.

These automotive signal-based protocols share several similarities. Firstly, they often require

complex setups. For example, setting up a CAN network involves defining a communication

matrix, specifying what ECU sends and receives messages of what type. In comparison, FlexRay

networks require an even more complex setup, including a predefined communication schedule

that assigns time slots to ECUs. Once configured, these networks typically remain unchanged

and inflexible towards later modifications. Secondly, most signal-based protocols, ranging from

20 Kbit/s (LIN) to 10 Mbit/s (FlexRay), offer relatively low bandwidth, insufficient for the data

transmission demands of autonomous driving and connected vehicle services. Gigabit connections

are essential for real-time sensor data and environmental models within a vehicle. Thirdly, signal-

based protocols inherently lack security support, posing challenges in the face of cyberattacks on

modern automobiles. Although AUTOSAR SecOC [19] offers guidelines for securing signal-based

communication, such solutions must be considered in an overall security process of SDVs.

Novel Zone-Based Architectures

SDVs pose technological requirements that traditional E/E architectures cannot meet. The

secure and reliable transmission of potentially large amounts of real-time data is unfeasible with

signal-based protocols. Furthermore, achieving the dynamic execution of software with agile

development cycles while maintaining connections to external vehicle entities is impossible on

conventional ECUs. The traditional approach of implementing automotive functions on dedicated

ECUs becomes impractical with a continuously growing number of functions. Therefore, SDVs

implement novel E/E architectures that consolidate multiple functions into centralized zones

within the vehicle. These “zonal architectures” deploy fewer but more powerful, often general-

purpose ECUs that can run high-performance applications as required by automated driving

functions. The purpose is to ease maintainability and to reduce costs. A zone encompasses

several physically proximate ECUs which are not necessarily related concerning the functions

they execute. Unlike conventional architectures, where ECUs are primarily organized in domains,

these zonal architectures enhance modularity and scalability, resulting in better adaptability and

improved integration and deployment processes. As a result, the overall architecture complexity

decreases, which is favorable for maintenance and cost reduction.

To ensure high bandwidths at low latency for data-intensive tasks, SDVs deploy Ethernet net-

works in a switched topology to support dynamic IP-based software architectures. Automotive

software communicates using service-oriented protocols that improve scalability, interoperabil-

ity, and modularity compared to signal-based protocols. While AUTOSAR Classic focuses on

the development of safety-critical applications for traditional, resource-constrained ECUs, the

AUTOSAR Adaptive framework reacts to the trend toward zonal architectures and service-

oriented communication within vehicles by providing standardized guidelines to develop software

for such environment.

Nevertheless, AUTOSAR Adaptive often faces criticism from automotive experts as it does not

adequately address all demands, e.g., when it comes to the certification of safety-critical applica-

tions. As a result, OEMs, Tier 1 suppliers, and emerging companies are working on new solutions

and promising automotive middleware stacks to develop safe mobility software efficiently.

For instance, the Volkswagen Group founded its subsidiary, Cariad, to develop vwOS. The Robert

Bosch company and its subsidiary, the ETAS Group, are working on the Automotive Operating

4

Chapter 1 Introduction

System, a specific middleware solution for Advanced Driving Assistance System. Meanwhile, the

recently founded company Qorix, in which the ZF Group holds a fifty-percent stake, is develop-

ing another middleware stack for modern automotive systems. APEX.AI gained much attention

after receiving safety certification according to ISO 26262 for a custom ROS2 core, aiming to

penetrate the automotive market with an alternative Operating System (OS). Besides commer-

cial solutions, academic projects like the Automotive Service-Oriented Architecture (ASOA) [20]

focus on developing cost-efficient, secure, and safe automotive architectures. However, it re-

mains unclear what framework will ultimately prevail and whether the automotive industry will

converge toward one or multiple solutions.

These recent developments demonstrate the tremendous market potential. According to a

McKinsey report on the future of autonomous driving released in January 2023, it is projected

that “by 2035, autonomous driving could generate a revenue ranging from $300 billion to $400
billion” [21].

1.3 Automotive Security

The transformation from conventional vehicles to SDVs, the associated shift from classical

domain-based to zonal E/E architectures, and the deployment of dynamic software architec-

tures constitute a protracted process within the automotive industry. It would be foolish and

impossible to quickly replace well-established and reliably functioning legacy systems with emerg-

ing technologies. For example, the automotive industry has long-term contracts with suppliers

and customers, making it challenging to reinvent road vehicles in a relatively short timeframe.

Furthermore, vehicle manufacturers are known for their risk-averse nature, partly due to the

high safety standards they have to guarantee. Since legacy systems are proven in terms of relia-

bility and safety, they must not be demonized, but their co-existence with novel technologies is

the most likely outcome. The transformation to SDVs will likely happen gradually, so modern

software architectures must remain compatible with established legacy.

The acceptance of highly automated driving, which involves replacing established legacy systems

with emerging technologies, depends on the assurance that these vehicles operate securely and

safely. However, a 2020 Forbes report on automotive cybersecurity hacks, citing the CEO of

Awen Collective, states that “nearly every manufacturer has been hacked” [22]. At the same

time, the 2016 KPMG Loss Baromoter [23] revealed that 72% of consumers would hesitate to

purchase from a vehicle brand that had experienced a cyberattack, while even 10% of consumers

would refrain from buying from an affected brand at all. Therefore, ensuring security becomes

mandatory for every automaker, particularly with SDVs possessing a larger attack surface than

conventional road vehicles due to their interconnectivity and modularity.

Road vehicle security involves adjusting existing development processes because it is not solely

about equipping an existing system with defense measures but rather about sensitizing the entire

process with security awareness. In the interest of safety, modern vehicles must incorporate

security considerations from the early phases of the development cycle, treating security as a

process rather than a mere set of features. As legacy and emerging technologies will continue

co-existing in the following years, both must be protected against cyberattacks and considered

in a holistic security process.

5

Chapter 1 Introduction

1.4 Research Questions

The importance of security in road vehicles and specifically for interconnected SDVs has led

to five fundamental research questions (referenced as RQ1 - RQ5) on which this dissertation is

based. While RQ1 investigates the security awareness in the early design phase of a vehicle,

RQ2, RQ3, and RQ4 explore defense techniques against attackers who may have control over the

network or the software running on ECUs. Lastly, RQ5 focuses on the real-time monitoring and

continuous assessment of the vehicle’s secure state during its operational phase.

RQ1 What security requirements must SDVs meet to ward off cyberattacks?

To develop a secure and safe SDV, security awareness is essential from the very beginning.

To what extent are the well-established ISA-62443 industry standards applicable to the

automotive domain? In Chapter 4, we analyze and conduct each step of ISA-62443-3-2

risk analysis for a prototype vehicle platform. In this context, we explore how to model

and assess threats effectively and derive security requirements.

RQ2 How can legacy signal-based protocols be safeguarded against manipulation?

How can we efficiently create and distribute authenticated cryptographic keys for CAN

messages in a network with resource-constrained ECUs? Can the typical timeslot-based

structure of FlexRay frames be leveraged for key computation, and is the dual-channel

mode suitable for establishing a dedicated cryptography channel? We address these ques-

tions in Chapter 5.

RQ3 What does an effective security process for automotive service-oriented soft-

ware middleware look like?

In Chapter 6, we examine how an emerging automotive middleware stack can be extended

with an effective security process while segregating system knowledge from functions on a

service level. Such a process specifies how security parameters can be configured and how

identities and cryptographic keys can be managed while accommodating software updates

and relocations to others ECUs. How is it possible to maintain transparency for functional

developers while guaranteeing communication security between software modules?

RQ4 How can the trustworthy software state of customizable SDVs be proven?

Since the adversaries not only manipulate in-vehicle networks but also software running

on ECUs, we investigate in Chapter 7 how to proactively determine the trustworthiness

of automotive software while allowing for the customization of specific uncritical software

components. How can an SDV prove the absence of compromised software to a third party,

such as a legal authority, and how can suspicious vehicles be excluded from traffic?

RQ5 How should SDVs respond to security incidents while in motion?

Is it feasible to predict the worst-case safety consequences if a security-aware SDV equipped

with reactive and proactive defense techniques reports a security alarm? Is it obligatory for

an SDV to always come to a safe halt in response to a security incident? How can a poten-

tial assessment scheme account for the propagating effects and identify attack paths, such

as an attack originating from an initially inconspicuous position but ultimately impacting

safety-critical components? Chapter 8 tries to provide answers to these questions.

6

Chapter 1 Introduction

1.5 Contributions

Our research questions resulted in security solutions that constitute our main contributions. In

this dissertation, we followed a holistic engineering approach for the secure design and operation

of an SDV. The term holistic emphasizes our efforts to cover the entire vehicle lifecycle with

security awareness, starting in the early conception phase and extending to vehicle operation

in real-world traffic. As outlined earlier, we anticipate that future road vehicles, particularly

those capable of autonomous driving, will incorporate novel software and E/E architectures

while well-established legacy technology prevails at specific points. Therefore, this work not only

focuses on securing emerging technologies but also addresses the security needs of existing legacy

systems. Our holistic approach considers security a process rather than merely a set of features

added to an existing platform. Therefore, besides presenting specific defense techniques, our

work defines a cost-efficient and scalable maintenance process for a modern automotive software

architecture. Security goes beyond encrypting traffic and detecting intruders; it must remain

scalable, maintainable, and certifiable within the software architecture, or it is unlikely to be

deployed in a commercial product.

Our scientific contributions begin in the conceptual phase with a systematic risk analysis of a

software-driven road vehicle, which we develop as part of a large consortium of researchers, as

described in Section 1.6. We present a consensus-based implementation of the generic ISA-62443

cybersecurity standards for the UNICARagil vehicle platform. In that context, we identify risk

evaluation criteria, suggest a scoring scheme to assess automotive risks, and propose a hierar-

chical thread model for a collaborative threat identification process. Based on the identified

security requirements, we then present various techniques for protecting signal-based CAN and

FlexRay networks. In particular, we focus on efficiently managing cryptographic keys in legacy

networks and defense techniques against traffic manipulations. Regarding emerging Ethernet-

based service-oriented middlewares, we define a cost-efficient, maintainable security process for

the recently presented Automotive Service-Oriented Architecture (ASOA). This process is de-

signed to be transparent from functional developments and enable software module relocations

within the SDV. Our security solution secures service-oriented communication while maintaining

the loose coupling of software modules and separating system knowledge and functions. While

these works assume an attacker controlling the network, we present a proactive scheme to detect

the corruption of ECUs. This scheme determines the software integrity of an ECU in a secure

manner, allowing the SDV to prove its trustworthy state to a third party. That way, authorities

or service providers can validate a vehicle’s software state and grant further actions, such as

participation in automated traffic.

Lastly, we focus on a vehicle’s operating phase, presenting a scheme that assesses the severity

of security incidents. We assume a security-aware SDV that incorporates all countermeasures

derived during the initial risk analysis. However, we argue that a protected vehicle still needs the

means to react to security alarms, such as when a defense technique detects suspicious behavior.

Our scheme assesses the worst-case severity of reported security incidents, enabling the vehicle

to perform appropriate safety actions.

All contributions are presented in six primary scientific papers [1, 2, 3, 4, 6, 7]. Each chapter

of this thesis is based on at least one publication mentioned at the outset of the respective

chapter. While all contributions were thoroughly evaluated in realistic environments, some were

additionally integrated into the aforementioned prototype vehicles. These vehicles resulted from

the UNICARagil project and were unveiled to the public in May 2023.

7

Chapter 1 Introduction

1.6 UNICARagil

In 2018, a consortium of eight German universities1 and selected industry partners received

funding from the Federal Ministry of Education and Research for the UNICARagil project. The

project aimed to design a platform for a fully automated and electric SDV and to construct

four prototype vehicles based on that common platform. The project aimed to address the

disruptive mobility trends and technological challenges arising from the ongoing transformation

from conventional automobiles to automated SDVs.

While the automotive industry naturally reacts slowly and cautiously when it comes to adopt-

ing utterly new vehicle concepts, academia has different possibilities and incentives, as it does

not need to produce and sell a series of vehicles. The objective of the UNICARagil project

was to consolidate highly specialized knowledge and expertise from leading German universities

into one vehicle platform, fostering collaboration instead of competition. As pointed out earlier,

Germany’s economy is highly dependent on the automotive industry, which is undergoing fun-

damental changes in an increasingly competitive and international environment. UNICARagil

attempts to bundle state-of-the-art knowledge in a prototype vehicle to pave the way for the

industry and to showcase what an automated SDV may look like. The political goal behind

UNICARagil is to strengthen Germany’s industrial base.

UNICARagil utilizes a modular and scalable vehicle concept consisting of a common platform

for adding customized superstructures. This modular approach significantly reduces cost, as new

vehicles need not be designed from scratch. UNICARagil demonstrates the applicability of that

platform with four distinct prototype vehicles: The autoElf is a privately owned vehicle, while the

autoTaxi can be ordered on demand for driving services. In contrast, the autoShuttle is designed

to transport human beings, particularly in rural areas with limited public infrastructure. Finally,

the autoCargo is intended for the automated delivery of parcels using a robotic arm. All vehicles

operate at SAE Level 4 automation and are displayed in Figure 1.1.

Figure 1.1: The four UNICARagil vehicles: autoShuttle, autoTaxi, autoElf, autoCargo

The vehicles incorporate novel concepts covering nearly the entire spectrum of automotive engi-

neering areas. This includes an efficient battery management concept for a stable and economical

power supply, individual 90-degree wheel actuation, allowing for sideways maneuvers, and a cen-

tral control unit at the heart of each vehicle. Among others, this control unit executes the

vehicle’s controller for converting trajectories into low-level driving commands and contains the

self-perception unit, a crucial safety system component. This unit continuously monitors and

1RWTH Aachen, TU Darmstadt, University of Passau, TU Munich, TU Braunschweig, University of Stuttgart,
University of Ulm, Karlsruhe Institute of Technology

8

Chapter 1 Introduction

assesses the vehicle’s capabilities, initiating measures to ensure passenger safety when necessary.

Another fundamental safety mechanism is the provision of an emergency trajectory implemented

reflexively in case of failures, which typically results in a safe halt.

The vehicle platform is organized as a zonal E/E architecture, employing fewer but comparatively

powerful ECUs. The control units use the ASOA to process and exchange data in real-time. A

sophisticated sensor system, including cameras, lidar, and radar components, ensures a 360-

degree perception of the surroundings, resulting in a detailed environmental model. This model

is enriched with real-time information from the road infrastructure, enabling route planning

algorithms to optimize traffic depending on the current context. Additionally, a remote control

unit allows human intervention if automation cannot resolve an unexpected situation.

The complexity of the proposed vehicle platform led to numerous scientific publications in various

research areas, such as automation, modularization, validation, safety, and security. As a partner

of the UNICARagil consortium, we contributed a holistic security concept to protect SDVs

from cybersecurity attacks. Therefore, the research questions in this dissertation align with

the UNICARagil project’s objectives. Our security considerations influenced the design and

development of the UNICARagil vehicle platform from its early phases. In particular, the security

process and defense mechanisms presented in Chapter 6 were fully integrated into all four vehicles.

Yet, our solutions are not specific for the UNICARagil vehicles but applicable to any SDV.

On May 11, 2023, the UNICARagil vehicles were unveiled to the public, who had the opportunity

to take automated test drives at the Aldenhoven Testing Center.

1.7 Thesis Outline

In Chapter 2, we provide essential background information to understand the subsequent chapters

comprehensively. After that, we present an overview of related work for each research question

in Chapter 3.

Chapter 4 examines the applicability of the ISA-62443 standards to automated, software-driven

road vehicles, comparing them with the novel ISO/SAE 21434 standard. We will systematically

identify and assess cybersecurity risks through a semi-automated process, leading to the deriva-

tion of security requirements for the UNICARagil vehicle platform. To do so, we introduce the

UNICARagil hardware and software architecture as our reference platform. Throughout this

work, we will present technical solutions for selected requirements and integrate them into the

UNICARagil vehicles to reduce the overall security risk to a tolerable level.

In Chapter 5, we will address the security requirements of classical automotive signal-based com-

munication protocols. Specifically, we will present a scheme for efficiently deriving cryptographic

group keys for the CAN protocol using implicit certificates. Subsequently, we will investigate

highly critical FlexRay-based communication and present methods to protect it from manipula-

tions.

Chapter 6 will shift the focus toward securing emerging automotive middleware stacks using

service-oriented communication. We will define a security process for the novel ASOA, enabling

cost-efficient specification and maintenance of secure system-agnostic services on both embedded

and high-performance platforms. We will demonstrate that our solution can quickly adapt to

software updates and relocations within the vehicle while remaining transparent from functional

software developers. This process was integrated into all four vehicles, making them capable

9

Chapter 1 Introduction

of repelling network attacks, but it was also adopted and tested by the UNICARagil consor-

tium.

In Chapter 7, we will assume the presence of attackers residing on in-vehicle control units, thereby

controlling the software without necessarily corrupting the network. This assumption is based on

our security analysis from Chapter 4, which revealed that the ability to receive remote updates

and allow for software customizations makes software attacks likely. We will present a proactive

scheme that allows a vehicle to prove its trustworthiness to a service provider, such as a legal

authority, a vehicle fleet, or a highway operator. This approach ensures that automated traffic

is not disrupted by malicious vehicles.

Chapter 8 will introduce a scheme enabling SDVs to react to security incidents during operating

time. Once a vehicle has been equipped with both reactive and proactive security measures,

it will need the ability to assess the occurrence of security alarms, particularly during runtime.

These alarms may be false and accidental, e.g., resulting from a transmission error, or indeed

indicate an actual attack. Depending on the vehicle context and its internal layout, the expected

severity of the consequences of a security incident can range from negligible to fatal. Our work

will analyze how an attack may propagate through the vehicle, eventually leading to a safety

response.

Finally, in Chapter 9, we provide a summary and conclusion of our work, along with an outlook

on further advancements and unresolved questions in the field of secure SDVs.

10

2. Background

This chapter provides essential background information for the comprehensive understanding of

this dissertation. We specifically introduce protocols, standards, and frameworks that will be

used throughout this work.

2.1 Software-Defined Vehicles

A Software-Defined Vehicle (SDV) predominantly enables its functions and features through

software, unlike traditional vehicles that use dedicated hardware modules to accomplish the same.

This software-centric approach enables manufacturers to replace, update, or upgrade the vehicle’s

software after production. SDVs, while not necessarily fully self-driving, typically incorporate

a wide range of automation features. An SDV may sometimes integrate legacy technology in

specific areas, though its core architecture is usually characterized by a modular, service-oriented

design. A holistic security strategy is essential to safeguard SDVs against cyberattacks. This

strategy must encompass the entire system rather than focusing solely on protecting individual

components. The UNICARagil vehicle, as introduced in Section 1.6, serves as an illustrative

example of an SDV.

2.2 Controler Area Network

The Controler Area Network (CAN) is a multi-master broadcasting protocol used for prioritized

and event-triggered data transmission in automotive systems. Originally developed by Bosch

in 1983, it has been standardized as ISO 11898 since 1994 [24]. Its cost-effectiveness, robust-

ness, efficiency, and flexibility have been key factors contributing to its success. Today, CAN is

primarily employed in road vehicles but can also be found in drones, radar systems, and even

submarines.

CAN is a message-based protocol, meaning frames do not have dedicated recipients. Instead,

they are identified by arbitration identifiers that define their message type. Consequently, when

receiving data, CAN controllers filter messages based on their types. The arbitration identifier

also determines the frame priority on the CAN bus. Data are encoded in dominant and recessive

bits, with dominant signals automatically taking precedence over recessive ones. Frames with

lower arbitration identifiers have a higher priority.

Data is transmitted over a twisted pair of wires, where a dominant bus level corresponds to a

logical 0, and a recessive level is interpreted as binary 1. Since dominant signals are inherently

prioritized on the bus, typically, safety-critical commands are sent with higher priority.

In 2012, an enhanced version of the classical CAN protocol, known as CAN with Flexible Data

rate (CAN-FD), was introduced to address the growing demand for higher bandwidth in auto-

11

Chapter 2 Background

Identifier

R
T
R

ID
E r

D
L
C

Payload CRC

D
E
L

A
C
K

D
E
L

arbitration control 8 bytes checksum

Figure 2.1: Classical CAN frame. The arbitration identifier defines the CAN message type and likewise
determines the frame priority. RTR indicates whether the sender requests rata. DLC encodes the message
length and DEL are delimiter bits.

motive networks. CAN-FD supports a theoretical bandwidth of up to 8 Mbit/s, whereas classical

CAN allows a maximum of 1 Mbit/s. Since CAN was initially designed for the periodic trans-

mission of relatively small data packets, each classical CAN frame has a limited payload of 8

bytes. In contrast, CAN-FD frames can carry up to 64 bytes. Figure 2.1 illustrates the simplified

structure of a classical CAN frame.

2.3 FlexRay

FlexRay is a time-triggered in-vehicle communication protocol suitable for highly safety-critical

applications demanding robust and deterministic real-time behavior. It is commonly deployed

in x-by-wire systems, Active Cruise Control (ACC), and the Anti-lock Braking System (ABS).

Since 2013, FlexRay has been defined by the ISO standard 17458 [25].

In contrast to the well-known CAN protocol, a FlexRay channel provides higher data throughput

(up to 10 Mbit/s instead of 1 Mbit/s) and a higher degree of reliability (TDMA-based messaging).

Additionally, a second physical link allows for fault-tolerant data transmission.

FlexRay communication is divided into periodic cycles of fixed duration. A cycle adheres to

a predefined communication schedule containing all network parameters known to every node.

The general underlying time unit is called macrotick, typically lasting between 1µs and 6µs.

The overall duration of a complete cycle usually ranges between 8 and 16,000 macroticks. As

illustrated in Figure 2.2, each cycle consists of at least two segments: the static segment and

the Network Idle Time (NIT). The static segment enables communication in a TDMA fashion,

ensuring reliable data transmission and fixed network latencies. It is divided into a fixed number

of time slots (gdNumberOfStaticSlots), known as static slots. A static slot, in turn, consists of a

predefined number of macroticks (gdStaticSlot). The total duration of the static segment can be

expressed as the product gdNumberOfStaticSlots × gdStaticSlot × gdMacrotick. All static slots

have the same length and cannot be omitted during a cycle. A null frame is sent if a node

has no data to transmit in an assigned static slot. This ensures continuous traffic inside the

static segment. To keep track of the current slot, all nodes maintain a counter vSlotCounter,

static segment

m0 m1 m2 m3 ... mn

dynamic segment

m′0 m′1 ... m′n

symbols NITsegments:

time slots:

TDMA (strong determinism)
mandatory

FTDMA (event-driven)
optional optional

sync
mandatory

Figure 2.2: Structure of a FlexRay communication cycle

12

Chapter 2 Background

incremented by one at the end of every slot. The NIT allows node synchronization, which is

crucial for enforcing the communication schedule.

A communication cycle can optionally contain a dynamic segment and a symbol window. The

dynamic segment enables sporadic communication and is likewise composed of time slots called

dynamic slots. A dynamic slot consists of minislots lasting between two and 63 macroticks

(gdMinislot). Similar to static slots, dynamic slots are assigned to network nodes. However,

they are not of fixed length but adjust dynamically in size. The duration of a dynamic slot

extends until the end of the minislot, at which point a given node terminates transmission.

Thus, once a node has permission to transmit on a dynamic slot, it suppresses the transmission

of other nodes, enabling data prioritization similar to CAN, where high-priority data supersedes

low-priority data. The communication duration is limited only by the predefined length of the

dynamic segment (gdNumberOfMinislots). In case no node transmits data, the length of each

dynamic slot defaults to one minislot. The symbol window indicates specific activities inside

a FlexRay network, such as the start of communication, with three symbols: the Collision

Avoidance Symbol, the Media Test Symbol, and a Wakeup Symbol.

Figure 2.3 shows the structure of a FlexRay frame, consisting of a header, a payload, and a

trailer. While the trailer contains a CRC over the entire frame, the header integrity is additionally

ensured in a dedicated header CRC field.

header payload

cycle count (6 bit)

header CRC (11 bit)

payload length (7 bit)

identifier (11 bit)

indicators (5 bit)

trailer (CRC)

40 bits 254 bytes 24 bits

Figure 2.3: Simplified structure of a FlexRay frame.

The FlexRay protocol provides a redundant channel layout to address highly safety-critical ap-

plications and to increase fault tolerance. A second, electrically decoupled channel can either

transmit data redundantly or double the bandwidth to 20 Mbit/s. The dynamic transmission

may differ, while both channels’ static segments look identical. This is why two slot counters are

maintained on each node for the dynamic segment.

2.4 SOME/IP

The Scalable Service-Oriented Middleware over IP (SOME/IP) [26] is designed for efficient data

transmission among heterogeneous control units in Ethernet-based automotive networks.

As the name implies, it introduces the design principle of service orientation to enhance flexibility

and interoperability in road vehicles. A service typically represents a software component offering

a specific function. Services across the system interact by offering and consuming data. In

contrast to classical signal-based protocols, where data is sent once available, SOME/IP transmits

data only when needed, resulting in more efficient bus usage. Nevertheless, it is designed to

coexist with signal-based protocols and allows the transport of CAN and FlexRay frames.

13

Chapter 2 Background

The middleware comprises three fundamental building blocks: SOME/IP, SOME/IP-SD, and

SOME/IP-TP. The first one, SOME/IP, defines message formats, contains rules for communi-

cation between services, and prescribes data serialization. SOME/IP-SD adds service discovery

capabilities to SOME/IP networks. During this process, services can dynamically discover and

register each other. A service can be identified by a service ID, while each service instance has a

unique instance ID. That means the same service can run multiple times in a network, allowing

different servers to offer the same function. The OfferService(service ID, instance ID)

sends a multicast message indicating that a server offers a specific service to the network. While

the service ID needs to be precise, the instance ID may be filled with the placeholder 0xFFFF if

no specific instance is necessary. Respectively, the StopOffer(Service ID, Instance ID) tells

the network that the corresponding service is not available anymore. If a client does not receive

a required service, the FindService(Service ID, Instance ID) enables them to search for a

service providing specific data. Hence, services require system knowledge since the service ID and

the instance ID are necessary to create such requests. The SOME/IP middleware allows servers

to define a priority and a weight for its service such that clients can decide for a specific instance

in case different servers offer the same service. Additionally, servers allow load-balancing options

to optimize the bus usage.

SOME/IP services can implement a publish-subscribe pattern for asynchronous data exchange.

The SubscribeEventgroup(service ID, instance ID) allows a service to subscribe to another

service, automatically receiving notifications about specific events. Similarly, a subscription

can be stopped with the StopSubscribeEventgroup command. Besides the publish-subscribe

approach, SOME/IP offers Remote Procedure Calls, enabling a service to execute a remote

function and request the output.

The last building block, SOME/IP-TP, adds support for segmented or fragmented messages.

This feature is used to segment large packets which do not fit into a single UDP packet. In case

latency does not play a crucial role, it is possible to use SOME/IP over TCP.

The SOME/IP specification does not incorporate security features, leaving communication secu-

rity to the system operator. Therefore, SOME/IP networks are usually secured on the link layer

using MACSec or the AUTOSAR SecOC [19].

2.5 Data Distribution Service

The Data Distribution Service (DDS) [27] is a middleware standard for reliable, scalable, and

efficient real-time communication. Maintained by the Object Management Group (OMG), DDS

has found significant applications in embedded systems, particularly in domains such as auto-

motive, military, aerospace, and robotics, where real-time data exchange is crucial. Although,

initially, DDS has not been developed exclusively for the automotive domain, the AUTOSAR,

a worldwide association between automotive industry partners, integrated DDS into their adap-

tive platform as a connectivity standard in 2018. DDS utilizes a topic-based publish-subscribe

pattern for data transport between writers and readers. Notably, DDS distinguishes itself from

other publish-subscribe protocols like MQTT [28] by operating in a fully decentralized manner,

eliminating the need for a central broker. Instead, DDS participants discover each other by

periodically sending out beacons and keeping track of the network topology. DDS defines key

entities such as topics, domains, publishers, and subscribers. A topic describes a specific data

type to which Quality of Service (QoS) parameters can be appended. That way, enforcing real-

time, redundant, bandwidth, resource, or cached policies is possible. These capabilities enable

14

Chapter 2 Background

DDS to tailor its behavior to the application’s specific needs. DDS participants operate within

domains which delineate the communication context for DDS entities. Participants within the

same domain can communicate with each other through the exchange of data using publishers

and subscribers. Publishers are responsible for managing DataWriter objects, while subscribers

utilize DataReaders to receive and process data. To ensure interoperability among different DDS

implementations, the Real-Time Publish-Subscribe (RTPS) wire protocol has been developed and

standardized [29]. This underlying protocol facilitates the discovery, communication, and reliable

data delivery between DDS participants, regardless of their specific implementations.

2.5.1 DDS Security Specification

In 2014, the OMG added a security specification [30] to prevent tampering with DDS traffic. This

specification comprises five Service Plugin Interfaces, which offer out-of-the-box security capa-

bilities encompassing authentication, access control, cryptography, logging, and data tagging.

Secure DDS entities employ symmetric cryptography to ensure the confidentiality and integrity

of their data exchanges. However, the decentralized nature of DDS, coupled with the absence of

a central authority responsible for security, introduces distinct infrastructure requirements and

influences the behavior of DDS entities. To establish secure DDS communication, entities must

acquire and manage relevant key material from authorized remote entities. The authentication

of DDS traffic necessitates the possession of at least two X.509 certificates by a domain par-

ticipant: The first certificate defines the Identity Certificate Authority (CA), while the second

one binds the participant’s GUID, the Global Unique IDentifier to its public key. Additionally,

another certificate from a Permissions CA is required for implementing access control. This CA

signs governance and permission documents, which need to be maintained by each participant.

During the discovery phase, a three-way handshake between pairs of DDS participants ensures

the secure transmission of key material through the Secure Key Exchange Channel. The sender

and the receiver must fully match, encompassing identical topics, security attributes, and com-

patible QoS settings, as a prerequisite of this handshake. Throughout this process, the sender

and receiver mutually authenticate using the earlier-mentioned certificates, exchange signed per-

mission files, and share security attributes. To verify an incoming message, the receiver utilizes

the sender ID and key ID to identify the corresponding key from its locally stored key material.

This key, in combination with a session ID, allows the receiver to derive a session key for message

verification. As the session key is only valid for one communication channel, the number of keys

rises proportionally with the number of topic subscriptions.

2.6 Physical Unclonable Functions

Electronic devices exhibit unique physical properties that can be leveraged to derive a digital

fingerprint, which can be transformed into a cryptographic key. These properties depend on

random and unpredictable factors, such as minor variations in transistor doping [31].

For a particular input (challenge), a Physical Unclonable Function (PUF) should consistently

generate the same output (response) on the same device. Consequently, a challenge sent multiple

times to the same device must lead to the same response, while other devices create different

responses. A fuzzy extractor scheme can mitigate noise in the response, stabilizing it and con-

verting it into a usable key. To facilitate key sharing, a one-time enrollment process is required.

During this process, party A gains access to the challenge-response pairs of party B’s PUF and

15

Chapter 2 Background

selects a fuzzy extractor scheme. Conducting this enrollment process in a secure environment is

crucial to prevent the leakage of challenge-response pairs.

As explained in [32], A subsequently can select a key and encode it by utilizing a PUF response

through the chosen fuzzy extractor scheme, resulting in what is referred to as helper data.

Typically, this helper data stabilizes the PUF response by eliminating erroneous bit flips. Since

the helper data does not contain confidential information, it is not required to be kept secret,

except for the challenge-response pairs. When A wishes to share this key with B, it transmits

the helper data and the challenge c to B, where c corresponds to the PUF response. B can then

reconstruct the key chosen by A by decoding the helper data using the PUF response associated

with c through the fuzzy extractor scheme.

Consequently, a PUF can retrieve and share unique keys from hardware. Intrinsic PUFs are

based on the inherent properties of system components, such as memories, and do not necessitate

additional hardware. Memory-based PUFs exploit the distinctive behavior of memory cells. For

example, SRAM-based PUFs primarily build upon the uniqueness of SRAM cell values after a

device reboot, while certain DRAM PUFs are based on the decay of the values in DRAM cells

that are not being refreshed. As a result, commonly used memory components can be employed

to generate device-specific keys.

16

3. Related Work

This chapter outlines the scientific context in which this dissertation takes place. While Sec-

tion 3.1 discusses cyberattacks on road vehicles, each subsequent section presents relevant related

work for our five research questions. We highlight each work’s main contributions and differences,

which we attempt to address in our research.

3.1 Cyberattacks on Road Vehicles

The following attacks are just a few that demonstrate the vulnerability of vehicles to cyberattacks.

What they all have in common is exploiting multiple vulnerabilities to get into safety-critical

areas. Once this is possible, an attacker can control the engine, block critical communication,

and provide passengers with false information. Some of the vulnerabilities were known and

resulted from outdated software. As long as vehicles had no external interfaces and did not

communicate with remote parties, the “security by obscurity” approach was effective.

Today, it is essential to systematically identify a vehicle’s attack surface, detect attack paths, im-

plement effective protective measures, and be able to handle security incidents at runtime.

Miller and Valasek [18] successfully infiltrated a Jeep Cherokee in 2014, taking complete control

of the vehicle while in motion. The attack consisted of a chain of malicious events, eventually

allowing them to inject driving commands to a safety-critical CAN bus. More precisely, they first

broke into a poorly secured infotainment system, then manipulated the firmware of a gateway,

and eventually injected driving commands into the bus.

The entry point to the vehicle was a vulnerability inside the infotainment system. This system

provides a WiFi network whose password was set based on the manufacture day and, thus, was

predictable. After gaining access to the infotainment system, the authors could control the music

player and even get access to the vehicle’s GPS position. However, ironically, the infotainment

system was not directly connected to the CAN bus transporting safety-critical driving commands

for security reasons. Instead of directly communicating on that bus, it could communicate with a

gateway, a V850 microprocessor, allowing it to listen to the CAN bus but not to send commands.

The authors succeeded in manipulating this gateway’s firmware by simply upgrading it. No

authorization checks were necessary for that step.

By taking control of that chip, the authors could finally send safety-critical commands through

the CAN, enabling them to control the entire car, including the steering wheel, the engine, and

the braking system.

This attack impressively demonstrated how a combination of vulnerabilities on different, some-

times non-critical, vehicle components can be exploited.

17

Chapter 3 Related Work

Cai et al. [33] uncovered a series of vulnerabilities in BMW vehicles, enabling attackers to ex-

ecute arbitrary code on in-vehicle components and send fake diagnosis messages to ECUs. The

authors illustrated the risk of attack chains that exploit multiple vulnerabilities. They present at-

tacks requiring physical contact with the vehicle and those that can be remotely triggered.

The identified vulnerabilities were located in the infotainment system, the telematic communi-

cation box, and the central gateway. These components communicate through Ethernet, CAN,

and USB buses. The central gateway is linked to additional bus systems, including CAN, MOST,

and FlexRay. At the same time, the telematic communication box has Internet access and can

receive updates over the air.

The authors combined logic flaws, missing security checks, and software bugs to execute attack

chains. For instance, by installing a fake GSM base station, they could send an SMS message to

the telematic communication box, triggering a provisioning update. Despite the encapsulation of

a digital signature, reverse engineering exposed a missing boundary check on a buffer containing

the signature. Consequently, conducting a return-oriented programming attack became possible,

ultimately allowing remote execution of arbitrary code on the telematic unit.

Once this was possible, the attack could propagate through the vehicle, allowing the resetting

of ECUs and control over the driver seat. This work demonstrates how vulnerabilities can be

combined, emphasizing that adversaries can infiltrate critical vehicle parts through seemingly

uncritical components. All identified vulnerabilities were reported to BMW and fixed shortly

afterward.

Nie et al. [34] conducted a remote attack on the Tesla Model S by exploiting a complex chain of

vulnerabilities. Initially, they accessed the vehicle through the cellular network and subsequently

compromised multiple in-vehicle components, including the instrument cluster, the central infor-

mation display, and a gateway.

An outdated and insecure web browser enabled the opening of a remote shell for arbitrary code

execution. An additional kernel vulnerability led to a privilege escalation necessary for the

successful execution of any code. From there, the authors demonstrated that the instrument

cluster accepted incoming SSH connections without asking for a password.

Furthermore, the authors took control of the gateway by obtaining another shell. Reverse engi-

neering the gateway’s firmware exposed a security token that was left unprotected in the code.

This token was utilized to open the shell, enabling the transmission of arbitrary CAN message

on the in-vehicle bus system. This allowed the vehicle’s lights to be turned on or ESP messages

to be blocked, posing a dangerous intervention for the passengers.

Similar to previously mentioned attacks, a combination of vulnerabilities affecting the browser,

the kernel, and ECU firmware resulted in an attack that seriously jeopardized passenger safety.

3.2 Security Requirement Analysis

Security has not been a priority in developing vehicles or their components until recently. The

first cybersecurity standard for the automotive sector, ISO/SAE 21434 [35], was published only

in 2021 in response to the UNECE regulation R155, which mandates cybersecurity certification.

Only a few works address a systematic requirements analysis in the automotive sector, some of

which are presented below.

18

Chapter 3 Related Work

Schmittner et Macher [36] provide an overview of safety and security engineering standards

and discuss their applicability in the automotive domain. The IEC 61508, first released in 1998,

introduces a safety life cycle and a probabilistic failure approach for safety-related systems. Based

on that, ISO 26262 is a functional safety standard tailored for the automotive sector. Much like

the IEC 61508, it evaluates risks of hazardous situations, helping to derive safety measures to

avoid failures. The standard outlines a safety lifecycle and categorizes safety requirements using

Automotive Safety Integrity Level, with its second version incorporating recommendations for a

safety and security co-engineering approach.

Regarding security, the SAE J3061, first published in 2016, is a collection of guidelines gov-

erning the secure development of automotive systems. It suggests high-level recommendations,

including a lifecycle process and information on existing methodologies and tools. Notably, SAE

J3061 has significantly impacted the development of the ISO/SAE 21434, the first complete

cybersecurity standard for road vehicles. Like ISO 26262, it employs integrity levels, so-called

Automotive Cybersecurity Integrity Levels, to quantify security requirements. Since the publi-

cation of ISO/SAE 21434, the SAE J3061 has been withdrawn, although there are expectations

for its extension with additional technical documents addressing aspects beyond the scope of

the ISO/SAE 21434. While the latter standard is primarily tailored for road vehicles, the ISA-

62443 and the ISO 27000 present a broader security requirement analysis process encompassing

cyber-physical systems.

Beyond standardization, the authors underscore the increasing need to integrate cybersecurity

into regulatory frameworks. In this context, the UNECE, which establishes rules for type ap-

proval across 62 countries, mandates incorporating a cybersecurity management system and a

secure process for software updates.

In summary, the authors illustrate the growing security awareness in the automotive sector

and highlight the endeavors towards combining security and safety aspects in an automotive

engineering process.

Steger et al. [37] presented the DEWI metric for a systematic security analysis of a cyberphysical

(automotive) system. This metric is primarily designed to support the SAE J3061 guidelines to

identify security requirements for an automotive system during the conceptual phase. It can be

seamlessly integrated into the SAE J3061 concept phase. Before applying the DEWI metric, the

overall system needs to be subdivided into subsystems, each consisting of components. Every

component is associated with a set of parameters, such as cryptographic primitives. The authors

suggest a non-linear scale to assess the system parameters, arguing it aligns better with human

interpretation of criticality.

When applying the metric as part of the SAE J3061, a Threat Analysis and Risk Assessment

(TARA) is typically one of the first steps to be conducted, resulting in a list of potential threats

associated with a distinct security level. The authors propose a scheme to map this security

level to a DEWI security goal, thereby achieving a secure system configuration that is eventually

transformed into precise requirements.

While the necessity for meaningful and reproducible assessment tools during a security require-

ment analysis becomes evident, the proposed metric is only explained at a high level, making it

challenging to adopt it in an actual risk assessment.

Schmittner et al. [38] apply the SAE J3061 to an exemplary in-vehicle gateway, conducting a

threat analysis and defining high-level security requirements to mitigate potential threats. The

19

Chapter 3 Related Work

SAE J3061 adopted concepts from the well-established ISO 26262 safety standards, such as the

characteristic V-model as a security lifecycle.

The example automotive gateway, for which the authors envision a security-aware development

stage, connects to various physical buses such as Ethernet, USB, CAN, GSM, and WLAN,

supporting functionalities like remote control, maintenance tasks, and over-the-air updates.

Throughout a TARA, a fundamental component of the SAE J3061, the authors identify soft-

ware, functionality, and data as assets, pointing out that these assets must align with business

goals and regulatory requirements. In a brainstorming session involving a team of experts, they

identify potential attack scenarios and associated threats. Each threat is linked with possible

consequences, with a focus on safety and security aspects. Furthermore, they calculate an at-

tack probability by adding up attack potentials, which include factors such as time, expertise,

knowledge, window of opportunity, and equipment. This assessment approach is adopted from

the HEAVENS [39] project. Ultimately, they identify high-level security goals from which precise

functional requirements can be derived.

The authors conclude that identification and authentication control, secure communication, sys-

tem integrity, and the management of cryptographic keys are essential requirements for securely

constructing the automotive gateway in accordance with SAE J3061 guidelines.

3.3 Securing the CAN communication

The Controler Area Network (CAN) is one of the most well-known signal-oriented communication

protocols. Its widespread use in vehicles has repeatedly exposed its vulnerability to attacks. As

a result, numerous publications have emerged, primarily proposing mechanisms for manipulation

security. Some of these works present cryptographic solutions to ensure protection against traffic

manipulations. Others focus on key delivery, and some aim to identify traffic anomalies to detect

adversaries. While Section 2.2 provides technical insights into the CAN protocol, we explain the

scientific context of research question RQ2 in the following.

Jain and Guajardo [40] leverage the physical properties of the CAN bus to compute shared

keys between ECUs. They intentionally allow data collisions to occur on the CAN bus and de-

rive a secret key based on the arbitration results. In the initial run, two parties simultaneously

transmit data on the CAN bus, leading to a collision. In the second run, the data is inverted

and again transmitted simultaneously. In both cases, the output on the CAN bus is recorded.

The bit positions where both recordings are 0 are concatenated to produce the secret key, which

an adversary cannot reproduce. This scheme is also extended to the multi-party scenario. The

authors present a thorough analysis but need to provide a practical implementation. Key au-

thenticity is ensured by assuming the existence of a pre-shared key among all ECUs and the

gateway.

vatiCAN [41] is a backward compatible authentication mechanism for the CAN bus. Messages

are authenticated by computing a fresh Hash-based Message Authentication Code (HMAC)

transmitted in a CAN frame. Since a single CAN frame can transport a maximum of 8 bytes, the

HMAC is transmitted in a dedicated frame. Consequently, only every second frame can be used

for payload data transmission, halving the overall bandwidth. Therefore, the authors recommend

authenticating only safety-critical commands to compensate for the bandwidth loss.

20

Chapter 3 Related Work

Regarding key distribution, vatiCAN assumes that all cryptographic keys are distributed during

vehicle assembly. However, this approach renders the vehicle inflexible regarding key updates,

which might be necessary in the event of corruption or hardware replacements. The authors

explicitly acknowledge the necessity of key provisioning but still rely on manual key distribution

due to the expected overhead.

LeiA [42] is a lightweight authentication protocol designed for the CAN bus. Message Authenti-

cation Codes (MACs) are utilized to ensure data authenticity and, similar to vatiCAN, they are

transmitted in an additional CAN frame. Each time the vehicle starts, a session key is derived

from a long-term symmetric key permanently embedded in the ECUs during the production

phase. This session key is supposed to facilitate a more adaptable key management. However, if

the long-term key becomes compromised, it jeopardizes the security of the entire vehicle system.

Technically, the ECUs need secure memory to prevent attackers from compromising keys. We

argue that key sharing at production time poses a challenge, given the involvement of various

companies in ECU manufacturing.

Fassak et al. [43] use Elliptic Curve Cryptography (ECC) to establish a session key in CAN

networks, subsequently employed for generating symmetric keys for authenticating CAN frames.

They employ a recipient-based authentication scheme, meaning that an individual MAC is com-

puted for each ECU. Given that CAN is a broadcasting protocol, this approach results in

significant computational overhead for the ECUs. The resulting MACs are concatenated and

then truncated to 1 byte, allowing them to fit alongside the data payload within the same CAN

frame. At vehicle production time, the manufacturer is tasked not only with installing an indi-

vidual ECC key pair on each ECU but also with including the public keys of all other ECUs.

Since no key distribution mechanism is available, key updates are not possible.

Vasile et al. [44] evaluate four keying paradigms for automotive broadcast authentication pro-

tocols. Since most studies on in-vehicle traffic authentication predominantly rely on symmetric

cryptography, it is crucial to establish a reasonable keying strategy. The authors categorize these

strategies into four main types: global keys (I), pairwise keys (II), group keys (III), and periodic

keys (IV). The most basic approach, type I, involves a single key shared among all ECUs. In con-

trast, type II establishes a unique key for each pair of ECUs. Type III employs a key for a group

of ECUs, making it more scalable with respect to the number of ECUs and messages compared to

II. Type IV proposes broadcasting cryptographic keys at fixed time intervals. The authors con-

clude that sharing symmetric keys among groups of ECUs represents the most realistic approach,

as it strikes the best balance between security and bandwidth efficiency.

3.4 Securing the FlexRay communication

Unlike the CAN protocol, FlexRay is primarily used for highly critical communication, such as

x-by-wire applications and engine control. FlexRay communication is structured into static and

dynamic time slots, guaranteeing ECUs to communicate in a specific time interval. This design

ensures deterministic and predictable communication. FlexRay is vulnerable to cyberattacks

since there are no inherent security mechanisms to protect against manipulations. Section 2.3

provides technical insights into how FlexRay operates, while the following publications describe

various efforts to enhance the security of FlexRay communication. These resources further

contextualize research question RQ2 within the scientific literature.

21

Chapter 3 Related Work

Murvay et al. [45] demonstrated in their work that FlexRay is susceptible to both message

spoofing and Denial-of-Service (DoS) attacks. They distinguish between two types of DoS at-

tacks: full and targeted. Full DoS attacks aim to disrupt communication entirely, while targeted

DoS attacks focus on suppressing specific message types, such as all messages within a given

time slot. Once a malicious device gains access to the bus, it can initiate a DoS by continu-

ously transmitting a dominant signal, preventing legitimate messages from being received and

rendering communication impossible.

The authors note that message spoofing goes undetected only in the dynamic segment of a

communication cycle, as a malicious node cannot occupy a foreign static slot without causing a

collision, which would be detectable. Since data transmission in the dynamic segment is optional,

message spoofing attacks may occur there.

To illustrate the feasibility of these attacks, the authors provide experimental evaluations con-

ducted on hardware. They propose an active star topology as a mitigation technique against

DoS attacks, as it allows the host node to disconnect network segments, effectively excluding

malicious nodes. They suggest using cryptographic mechanisms regarding message spoofing but

have yet to present a specific implementation.

Mousa et al. [46] adapted the LCAP framework [47] to extend FlexRay with authentication.

Initially designed for authenticating CAN traffic, LCAP proved adaptable to FlexRay, benefiting

from the larger payload size of FlexRay frames that negates the need for authentication tag

truncation. In addition to frame authentication, LCAP also offers traffic encryption capabili-

ties. However, one drawback of LCAP is the high number of exchanged messages required in

advance to establish secure communication. Nonetheless, LCAP’s advantage lies in its lack of

need for hardware modifications, making it an appealing choice for a FlexRay security frame-

work. Mousa et al. demonstrated that LCAP’s implementation minimally impacts the overall

system performance. Nevertheless, they emphasize the need for an effective key distribution

technique. The current protocol version relies solely on a pre-shared key, which can complicate

maintenance.

Vasile et al. [44] conducted a comparison of various key distribution schemes for ECUs. They

categorized these schemes into four keying paradigms: (1) a single key for all ECUs, (2) a unique

key for each pair of ECUs, (3) a shared key for groups of ECUs, (4) time-delayed keying.

These four options serve to balance the trade-off between security and overhead. Using a single

key simplifies key maintenance and exchange. However, it poses a vulnerability in that compro-

mising a single ECU can jeopardize the entire security of the vehicle system. In contrast, pairwise

keying demands a key for each pair of ECUs, potentially resulting in a substantial overhead dur-

ing key exchanges, depending on the network’s size. Furthermore, achieving real-time behavior

becomes more challenging if keys are delayed in delivery. This study served as an inspiration for

our work in Section 5.4 on different keying techniques for FlexRay-based networks, particularly

concerning slot-based communication.

3.5 Securing Service-Oriented Communication

Service-oriented approaches enable the scalable, modular, and adaptable exchange of large vol-

umes of data, distinguishing them from signal-based protocols. The term “service orientation”

does not primarily denote a specific communication method but rather serves as an umbrella

term for an architectural type. As its name implies, such architecture comprises services, typi-

22

Chapter 3 Related Work

cally representing functional software components. These services can be dynamically loaded and

managed, requiring minimal effort for subsequent system adjustments. Communication among

these services often occurs through a publish-subscribe mechanism, ensuring that the services

remain loosely coupled and do not need to manage each other directly. Service-oriented ap-

proaches are increasingly adopted in the automotive sector due to their benefits in scalability

and modularity.

Notably, SOME/IP [26], a service-oriented middleware, has become an integral part of the

standardized AUTOSAR Adaptive Architecture. However, not all service-oriented approaches

inherently offer secure communication, leaving room for potential manipulation by attackers.

Below, we present some efforts to enhance communication security in service-oriented architec-

tures.

Iorio et al. [48] enhanced the SOME/IP framework with a security model to deter manipulation

attacks while allowing security policy enforcement. For that purpose, they introduced three

security levels that differ in criticality. While the first does not provide security protection, the

second level demands authentication and integrity. The third level adds confidentiality to prevent

eavesdropping. A network operator needs to associate software services with one of those levels.

Eventually, only services of the same criticality are allowed to communicate with each other. The

security policy mentioned above specifies what resources a given service can query from other

services. It consists of rules represented as digital certificates, whose Subject Alternative Name

field contains the actual rule in a URI format. Policy rules can be added, updated, or removed

by adjusting the certificates accordingly. The security framework realizes a fully decentralized

approach, i.e., a central component neither maintains keys nor the access policy. Instead, all rule

certificates must be replicated and stored on every control unit.

The authors formally verify their security framework and prove the correctness of the proposed

scheme. The distributed nature of the security solution for SOME/IP goes at the cost of main-

tainability and modularity since every ECU has to keep track of all certificates. Consequently,

modifications of the access policy are complex because minor changes require an update of all

control units. Moreover, the maintenance of many certificates may be complicated on embedded

devices with limited (memory) resources. Therefore, whether the proposed security enhancement

is applicable to an automotive system remains questionable.

Zelle et al. [49] demonstrate how an attacker can impersonate a server in a SOME/IP network

with enabled link layer security. To prevent such attacks, the authors present and evaluate two

security extensions in a practical setup.

The SOME/IP specification lacks security provisions, so it is usually deployed in networks with

a secured link layer. Solutions like IEEE 802.1AE provide point-to-point traffic authenticity on

Ethernet links. The assumed attacker has complete control over the network and the ability

to compromise ECUs. The authors reveal two possible attacks by analyzing the security of the

SOME/IP middleware using the Tamarin model prover [50].

One of the identified attacks is the copycat attack. Here, an adversary Adv waits for a benign

server S to broadcast an OfferService o. Once this happens, Adv generates a deceptive service

offer o′ with its address in the endpoint options while retaining the service ID and the instance

ID. Consequently, a client C receives both o and o′ for the same service

Opting for o′ puts Adv in a Man-In-The-Middle (MITM) position. In the de-association attack,

Adv makes the client C believe that the legitimate service offer o is no longer available. This is

23

Chapter 3 Related Work

achieved by sending a StopOffer shortly after o has been put on the network. Consequently,

client C no longer faces a choice between two offers for the same service and is more likely to

accept o′, thereby enabling Adv’s MITM position.

Both attacks exploit a common vulnerability: a SOME/IP client does not verify the authentic

origin of a service offer. Even with a secured link layer, the client cannot ascertain the origin

of a service offer. The secured link layer only prevents Adv from direct communication in the

network, necessitating the compromise of an ECU for network access.

Zelle et al. propose a decentral and a central solution to establish secure channels between servers

and clients, preventingAdv from executing MITM attacks. In the decentral approach, servers sign

service offers digitally. To implement this, all SOME/IP entities must possess public and private

keys and certificates, allowing them to verify other’s public keys. In a Diffie-Hellman exchange,

servers and clients use their keypairs to compute a shared session key. This enables client C to

quickly detect that o′ does not originate from S. Alternatively, the central solution involves a

dedicated authorization server that tracks the services a server can offer. Each service offer o is

routed through this server, which verifies o’s authenticity using a MAC and generates a session

key securely transmitted to all clients. That way, Adv cannot fake o since the authorization

server would detect this. The authors evaluate both security solutions in a practical setup,

showing that the central approach outperforms the decentral one in terms of latency and message

overhead.

While both security solutions effectively protect SOME/IP networks against copycat and de-

association attacks, they only represent a first step towards a practical solution. In either case, a

security maintenance process is necessary to distribute and update cryptographic material within

the network, particularly in a dynamic software environment like that of an SDV. Furthermore,

these solutions make the link layer protection redundant, as the session key enables authentication

and encryption, providing similar security protection on another network layer.

Mayoral-Vilches et al. [51] present SROS2, a collection of tools to facilitate securing ROS

systems. The authors present a methodology of modeling, authentication, authorization, gen-

eration, deployment, and monitoring. Since the DDS middleware has in-built security features,

it must be appropriately set up to protect against cyberattacks effectively. However, a proper

security setup of DDS-based environments is complex and demanding, especially in larger net-

works where ROS is typically deployed. SROS2 helps organize the security capabilities of ROS

2 systems in a usable way. At first, the authors propose an automated introspection of the ROS

2 computational graph to derive security policies. These are converted into authorization and

authentication rules in an XML format. Subsequently, security policies are mapped to graph

resources operating in the same security domain. SROS2 enables the generation of security ar-

tifacts for the previously generated policies. Finally, SROS2 provides monitoring tools to detect

security flaws while running ROS 2 graphs.

Friesen et al. [52] conducted a comparative evaluation of the DDS Security Specification [30]

and Datagram Transport Layer Security (DTLS) [53]. Rather than focusing on performance

evaluations, their work primarily aimed to identify functional differences, configurability, and

adaptability between the two frameworks. Both frameworks are technically suitable for securing

a service-oriented environment. While the in-house DDS Security Specification offers mecha-

nisms to protect DDS traffic from manipulation and unauthorized access, the DTLS likewise

protects against tampering attacks but operates at the network layer instead of the application

layer. Both solutions ensure essential security objectives such as authenticity, confidentiality,

24

Chapter 3 Related Work

and integrity. However, DDS goes beyond that by supporting non-repudiation, enhancing avail-

ability, and enabling access control. While the cryptographic capabilities of DTLS and DDS

are comparable, the authors point out significant differences in configuration and adaptability.

DDS allows for individual topic protection and fine-tuning connections through QoS parameters,

but this flexibility introduces additional participant requirements. For instance, to ensure au-

thenticated traffic, DDS requires the setup and distribution of multiple CAs, X.509 certificates,

and signed permission and governance documents. In contrast, DTLS uses master keys for each

secure connection. DDS participants establish session keys by exchanging digital certificates and

utilizing a hash-based key derivation function. DTLS, on the other hand, uses the record proto-

col to distribute the earlier-mentioned master keys to the corresponding network nodes. While

DDS enables the reuse of a master key for multiple session keys, DTLS lacks this capability. The

authors conclude that DDS provides greater customization options compared to DTLS, albeit

at the cost of a more complex setup involving a key management infrastructure (CAs) and the

distribution of certificates and signed policy documents for each participant.

3.6 Ensuring Integrity of Automotive Software

For holistic vehicle protection, it is essential to expand the attacker model to the extent that

an attacker can not only gain control of a vehicle through poorly protected communication but

can also cause damage by manipulating control software. This is particularly possible as soon as

software can be updated and customized.

The following publications use isolated execution environments in hardware, either to safely

calculate and verify critical control commands on potentially manipulated ECUs at runtime or

to measure the software integrity of a vehicle during bootup and confirm it to a trusted third

party.

Erickson et al. [54] suggest the concept of autonomous vehicle contracts to enforce expected

driving behavior in a platoon. A contract can be viewed as a set of driving parameters (e.g.,

speed, safety distance) that the vehicles in a given platoon must adhere to. According to the

underlying threat model, vehicles within a platoon may be compromised, making it necessary

to monitor driving commands continuously. Commands directed to the powertrain and brakes

are monitored, and if they violate the contract, they are filtered. The monitoring process takes

place within a secure execution environment known as an enclave. In this manner, trusted code

can be executed on a potentially compromised system, enabling remote attestation that proves

system integrity to a third party. Consequently, vehicles in a platoon can attest to each other’s

enclave, ensuring that everyone conforms to the driving contract.

Furthermore, the authors present mechanisms to respond to unexpected situations, such as

suddenly emerging obstacles, where the current contract must be violated to maintain safety.

In that case, the vehicle platoon first undergoes a recovery phase followed by a separation phase.

During the recovery phase, the vehicle aims to recover from broken communication resulting

from failures or jamming attacks. Once a timeout elapses, the platoon starts separating, which

is necessary to establish a safe distance for the vehicles to regain autonomy. Only then can a

driving contract be violated to respond to unforeseeable situations. For separation, the authors

propose an emergency termination procedure, intending to separate vehicles as quickly as possible

if communication becomes possible. This procedure calculates an individual deceleration for each

vehicle, considering the platoon’s size and velocity.

25

Chapter 3 Related Work

The evaluation demonstrates that the recovery and separation phases consume approximately

1500ms in the worst case. As this time corresponds to the human perception and reaction time,

the authors conclude that their solution applies to real-world scenarios.

Kohnhäuser et al. [8] presented an attestation scheme designed to ensure the integrity of

software running on ECUs. Upon startup, the scheme computes a hash of the deployed software,

authenticates it using a secret attestation key, and transfers the result to a central and trusted

master unit. This master unit verifies the measurements and prevents the vehicle’s movement if

a compromised ECU is detected. This is possible because the master unit controls the vehicle’s

power supply and needs to release it before the vehicle can drive.

As the attestation scheme executes in a potentially compromised environment, it necessitates

specific hardware properties. Firstly, it must not be disrupted, as any disruption would allow an

attacker to tamper with the integrity measurement. Secondly, it must be stored in a write-only

area, preventing alterations. Thirdly, the underlying hardware must provide secure storage to

safeguard the attestation key from potential attackers.

The authors present two slightly different versions of the scheme, one for simple and another

for advanced ECUs. A simple ECU is an embedded device consisting of firmware loaded by the

bootloader. In comparison, an advanced ECU is equipped with a full-stack OS and an ARM

TrustZone for secure code execution.

By disabling interrupts on simple ECUs, the uninterrupted execution of the attestation scheme

is guaranteed. In contrast, the scheme is executed on advanced ECUs within the privileged and

isolated secure world provided by the ARM TrustZone. Both the integrity measurement and the

verification occur inside the vehicle. While this approach is effective for a single vehicle, scalability

for vehicle fleets is questionable, and maintenance in an updatable software environment poses

challenges.

The authors implement and evaluate the attestation scheme, demonstrating that it does not

cause perceptible delays for passengers.

3.7 Resilience of Automotive Systems

Analyzing the intrusion and propagation of attacks in computer networks is a well-explored field.

Attackers are often characterized by specific abilities required to infiltrate a network and target

other systems through communication channels. In the worst-case scenario, propagation effects

can result in the corruption of an entire, potentially well-protected network by exploiting its

weakest link. Such propagation effects are typically modeled with (attack) graphs, a method

originating from fault trees that allows the identification of the cause of a failure. Typically,

a node represents an attack or an adverse event caused by an attacker. Deductive analysis

facilitates identifying causal relationships and examining how attacks can propagate through the

network.

Road vehicles consist of networks of communicating control units, rendering them susceptible to

attacks and their propagation. For instance, the well-known Jeep attack described in Section 3.1

could only achieve its full impact through propagation effects. Therefore, established concepts

for attack detection and analysis need to be adapted to the vehicular environment.

26

Chapter 3 Related Work

Below, we present related work addressing attack detection, modeling, and analysis in computer

networks. This literature presents the scientific context for answering research question RQ5

regarding the optimal response to a security incident.

Nikoletseas et al. [55] explored four schemes modeling attack propagation within computer

networks. In their work from the early 2000s, the authors assumed a greedy intruder attempting

to infiltrate as many systems as possible. They suggested modeling the success of an attack

through spread and traceability factors. The spread factor describes the number of nodes cap-

tured by an attacker, while the traceability factor denotes the number of links between the node

where an attack occurs and the node of intrusion. The attacker aims to maximize both factors

to cause the greatest possible damage while making it challenging for the defense mechanism

to protect the system. During their study, the authors assumed an attacker of limited power

operating in a secured network.

The authors presented a new system intrusion and attack propagation model using two param-

eters besides the number of network nodes. The first parameter represents the probability that

an attack fails and the security level of the attacked system. The second parameter describes the

maximum number of attempts an intrusion software can make before being detected. For three

attack schemes, the authors demonstrated that the spread and traceability factors are mostly

linearly related during an ongoing attack. This implies that the efforts of intrusion detection

algorithms correlate proportional to the number of corrupted network nodes.

Noel et al. [56] introduce a model for quantitatively analyzing a network’s security to balance

reducing vulnerabilities and managing costs. The goal is to provide means to determine the most

effective security measures while keeping costs low. The authors argue that counting the number

of vulnerabilities is insufficient to assess a network’s security effectively; instead, a more realistic

metric is necessary to represent the dependencies between them. The authors use attack graphs

to describe the incremental network penetration and propagation likelihood. Specifically, they

attribute probabilistic values to exploits, creating chains based on their relationships. An attack

is a specific path within the attack graph, with edges possessing pre- and postconditions that

must be satisfied. Attack paths, in turn, encompass multiple malicious operations an attacker

conducts.

The authors employ Monte Carlo methods to simulate attack graphs under uncertain input

values. While the attack graph is only computed once, it undergoes evaluation for each Monte

Carlo sample. Ultimately, the metric quantifies a network’s overall security and risk.

Besides the attack graph, the risk model comprises a cost analysis. This analysis assesses the

expected costs for eliminating attack paths from the networked system, a crucial step in reducing

overall cybersecurity risk. However, such actions may again incur substantial costs. For example,

blocking SSH might effectively counter specific attacks, but it introduces complexities to network

usage and could lead to maintenance problems. The author’s model allows system operators to

determine the most effective security measures while keeping costs low.

Roschke et al. [57] designed a correlation algorithm capable of detecting multiple attack scenar-

ios in a computer network. The work is based on attack graphs that model existing vulnerabilities

in the system under investigation. The starting point is an existing algorithmic approach that

aims to reduce the number of false positives of intrusion detection systems by correlating and

clustering alerts. However, this approach only considers the last alert of a particular type, making

27

Chapter 3 Related Work

it difficult to identify similar attack scenarios for forensic purposes. Consequently, they propose

an improved algorithm consisting of five fundamental steps:

Following an initialization step, alerts are mapped to nodes of attack graphs. Next, the alerts

are clustered, resulting in an alert dependency graph, enabling the detection of suspicious graph

subsets with the correlation algorithm. In the last step, the authors employ a Floyd-Warshall

algorithm to find the shortest paths.

Ultimately, the authors implement and evaluate their algorithm on a multi-core platform, reveal-

ing that the path-finding step consumes roughly 85% of the processing. The authors demonstrate

the applicability of the proposed algorithm for forensic purposes; however, whether it can be used

for on the fly analysis in the automotive context remains to be seen.

Salfer et al. [58] introduce a stochastic model for automatically generating attack graphs,

aiming to quantify cybersecurity risks in automotive networks. This model is valuable in early

development, potentially influencing critical business decisions while designing secure automotive

architectures. Additionally, the authors formalize a model to assess the risk of an attacker

compromising a specific asset in an in-vehicle network. This model considers the necessary

budget and cost, the attacker’s resources, and those essential to executing the attack.

Given that the analysis of propagation effects often relies on attack graphs, the automatic gen-

eration of these graphs based on development documents proves to be a helpful feature. The

authors demonstrate that the attack generation algorithm will always terminate and can ef-

fectively handle graph cycles. The evaluation highlights that the automation of attack graph

generation can be distributed across multiple computers, as the independent path extensions

enable efficient MapReduce computations. Finally, the authors implement and evaluate their

model, demonstrating its performance benefits over the typical Bayesian implementation of at-

tack graphs.

Krisper et al. [59] propose the RISKEE process for risk assessment using attack graphs. This

involves characterizing events in attack paths by frequency, vulnerability, and impact - represent-

ing event occurrences, attack success probability, and expected monetary loss, respectively.

After generating an attack graph, the attributes of each event must be determined. For that

purpose, the authors utilize expert ratings, typically taken from a group of three to five individ-

uals with different backgrounds. The arithmetic mean of all ratings is then calculated to express

each attribute as a single value. Subsequently, the custom RISKEE propagation algorithm is

employed to compute the cybersecurity risks of a given computer system.

The propagation algorithm initially extracts all possible paths from entry nodes to those defining

a loss magnitude, referred to as goal nodes. For each path, the attack frequency of the entry

node is propagated to all intermediate nodes, meaning that it is multiplied by the correspond-

ing vulnerability likelihood. In addition, the magnitudes denoting the expected outcome are

accumulated during this process. Finally, the cumulative risk is determined by multiplying the

propagated frequency with the accumulated magnitude. This risk is then backpropagated to all

nodes and edges on the path by adding it to their risk values.

According to the authors, the RISKEE process offers detailed information about potential out-

comes, including confidence intervals, enabling meaningful decision-making. However, evaluating

the backpropagation of risks along attack paths is yet to be conducted, leaving the benefits of

this approach open to further exploration.

28

4. Security Requirement Analysis

The design of a secure Software-Defined Vehicle (SDV) requires a security-aware engineering

process with security considerations integrated from the early development stage. Every design

decision, whether related to the hardware or software architecture, must be weighed from a

security perspective to establish a solid foundation for protection against cyberattacks. Only a

systematic requirement analysis can effectively capture the attack surface of an SDV. Such a

systematic approach typically follows a standardized process consisting of various steps, including

management processes, threat and risk assessment, validation, and documentation. Furthermore,

it often provides tools to help determine and assess risks from which precise security requirements

can be derived. By adhering to standards, manufacturers can provide evidence to regulatory

authorities of ensuring the vehicle’s optimal security.

While the ISO 26262 is an internationally recognized standard for functional safety in automotive

systems, the ISO/SAE 21434 [35], published in 2021, focuses explicitly on cybersecurity. These

standards were designed for the automotive sector and currently dominate engineering processes.

However, the significance of security in the automotive domain only became relevant with the

transition from closed vehicles into interconnected SDVs. Prior to this transformation, only high-

level security engineering guidelines like the SAE J3061 existed for road vehicles. Besides, security

standards for other domains had already been established, like the ISA-62443 for industrial

systems.

This chapter demonstrates how to perform a security requirement analysis for a SDV. We use

the SDV presented in Section 1.6 as a reference vehicle. Our focus is systematically identifying

threats, assessing cybersecurity risks, and mapping them to concrete technical requirements.

This analysis is the first crucial step in a holistic security engineering approach for road vehicles

developed from scratch. As it was mainly carried out in 2018 when the ISO/SAE 21434 did not

yet exist, we utilized the ISA-62443-3-2 standard for risk assessment, Our contribution lies in

the implementation of the mostly generic risk assessment from ISA-62443-3-2, aiming to identify

precise requirements to protect the SDV against cybersecurity throughout its lifecycle. Moreover,

we explore the applicability of the ISA-62443-3-3, which provides technical requirements, to the

automotive domain and compare the standard to the novel ISO/SAE 21434.

This chapter intends to answer research question RQ1 and is the foundation for the further course

of this dissertation, where we address selected security requirements.

This chapter is built upon the publication “Safety meets Security: Using IEC 62443 for a Highly Auto-

mated Road Vehicle” [1], which was presented at the Computer Safety, Reliability, and Security confer-

ence (SafeComp) in 2020.

29

Chapter 4 Security Requirement Analysis

4.1 Reference Architecture

The UNICARagil reference vehicles feature a distinctive zonal E/E architecture and utilize the

novel Automotive Service-Oriented Architecture (ASOA) [20] for efficient software design and

maintenance, along with ensuring reliable real-time communication. These vehicles, developed

from the ground up, serve as a demonstration and evaluation platform for innovative concepts

across various automotive domains, including automation, modularization, verification, valida-

tion, safety, and security. According to the SAE’s driving automation taxonomy, these vehicles

are classified as Level 4, indicating autonomous operation in known environments with the abil-

ity to reach a safe position at all times. However, human intervention may be required when

operating outside these predefined environments. Given their predominantly software-driven na-

ture, we regard the UNICARagil vehicles as ideal representatives for an SDV. They enable the

addition or removal of vehicle capabilities by providing and connecting corresponding services

while the E/E architecture remains consistent across all vehicle types.

As a preliminary step in the security requirement analysis, we elucidate the internal structure of

the vehicles with a specific focus on the E/E and software architecture. In the following chapters,

the term “reference vehicle” refers to the UNICARagil vehicle.

4.1.1 E/E Architecture

In contrast to traditional road vehicles that typically rely on domain-based architectures with

numerous ECUs, the UNICARagil architecture comprises four zones, each located at one of the

four vehicle corners. Each is connected to a central Ethernet network via a dedicated switch.

The network follows a ring topology, ensuring communication even in the event of a link failure.

The Precision Time Protocol guarantees clock synchronization among ECUs, especially critical

ones affecting the driving behavior. The vehicle incorporates a total of 26 ECUs, with four

primary types guiding the main event chain: sensor modules, the cerebrum, the brainstem, and

dynamic modules. Not only is their terminology inspired by the human nervous system, but also

their behavior, which ensures a safe state even in case of failure. Figure 4.1 illustrates the E/E

architecture [60] and Table 4.1 gives an overview of the hardware and software configuration of

the ECUs.

The brainstem, situated at the vehicle’s core, operates as a fail-operational embedded real-time

system for trajectory control and emergency trajectory implementation at any time. It internally

employs two redundant Zynq Ultrascale+ ZU3EG chip instances, each equipped with a quad-core

ARM Cortex A53 and an ARM Cortex R5 processor. The R5 processor handles real-time tasks,

while the A53 processor orchestrates communication, monitors battery utilization, and manages

the door control. Both processors are connected to the in-vehicle Ethernet network, utilizing the

service-oriented ASOA middleware for communication.

The spinal cord translates low-level driving commands from the brainstem into wheel actuation,

comprising four dynamic modules, each controlling one of the four wheels. Each wheel can be

individually controlled and rotated by almost 180 degrees for lateral parking maneuvers. Each

dynamic module comprises an Infineon Aurix Tricore TC27 platform with a lockstep architecture

for ASIL-D software development. It can operate at temperatures between -40 °C and 150°C.
They employ FreeRTOS as a lightweight OS and run the ASOA similar to the brainstem’s

Cortex R5 processor. The dynamic modules are redundantly connected through a FlexRay

30

Chapter 4 Security Requirement Analysis

Control Unit Hardware OS

Brainstem
ARM Cortex-R5 FreeRTOS

ARM Cortex-A53 PetaLinux

Dynamic Module Infineon Tricore Aurix TC27 FreeRTOS

Cerebrum
AMD Ryzen Threadripper 3970X,
2x Nvidia GeForce RTX 3080

Linux

Sensor Module
(Perception)

AMD Ryzen Threadripper 3970X,
Nvidia GeForce RTX 2080

Linux / ROS

Localization AM335x Cortex-A8 Embedded Linux

Air Condition Beaglebone (AM335x) Linux

HMI / Door Control ARM Cortex-A72 (Raspberry Pi 4) Linux

Battery Management ARM Cortex-A72 Linux

.

Table 4.1: The vehicle we use for evaluation consists of high-performing computing units (e.g., the cere-
brum) and small embedded hardware (e.g., the spinal cord).

network for safety, ensuring communication even if the Ethernet network fails or experiences

critical latency.

Four sensor modules [61], one in each corner, enable the vehicles to perceive their surroundings

using different technologies, mitigating each other’s shortcomings. Each sensor module comprises

a vertical stack of one lidar, two radar, and four camera units, providing a 270° perception angle.

Combining these modules offers a robust 360° view without blind spots. In addition to the sensors,

each module includes an inertial measurement unit for precise localization and a trigger box for

real-time synchronization. The sensor modules’ main tasks are to detect traffic participants,

infrastructure, and free space where the vehicle can safely navigate. Given the computational

demands of sensor data processing, each module incorporates an AMD Ryzen Threadripper

3970X as the central processor and two NVIDIA GeForce RTX 3080 graphic cards. In addition

to this primary perception system, the vehicles feature a secondary one as a fallback system,

with platform sensors detecting near-field surroundings, ensuring a safe halt in case of severe

sensor module failures.

The cerebrum consolidates preprocessed environment models from the sensor modules into a

single-vehicle environment model. Responsible for behavior and trajectory planning, it deter-

mines a navigable corridor for the vehicle. For efficient route planning, the cerebrum commu-

nicates with a cloud that offers valuable traffic information through a collective memory. The

environmental model and trajectory enable continuous self-monitoring of the vehicle’s capabili-

ties, providing input for maneuver control that selects a policy based on suitable behavior. The

cerebrum possesses maneuver policies for intersections, crossing pedestrians, and regular driving

modes, used to produce a trajectory covering the next five seconds.

Besides these main components, additional ECUs handle efficient battery management, provide

a control interface to the passengers, and determine the precise vehicle localization. This control

interface, referred to as Human-Machine Interface (HMI), is similar to the infotainment systems

found in contemporary cars. However, we consistently refer to it as HMI, given the vehicles’

research-focused nature that excludes entertainment services. Instead, the HMI connects the

vehicle and its human occupants. It provides real-time status information about the ongoing

ride and lets passengers input their destination preferences. As mentioned earlier, not only the

31

Chapter 4 Security Requirement Analysis

cloud control room drones

wireless communication
ex-vehicle

in-vehicle

dynamic module dynamic module

dynamic module dynamic module

switch switch

switch switch

se
n
so
r
m
o
d
u
le
s sen

so
r
m
o
d
u
les

ra
d
ar

rad
arli

d
ar

lid
ar

ca
m
er
a

cam
era

cerebrum

brainstem

thermal control
systems

energy control
systems

router handling technique

HMI

localization

platform
sensors

chassis

fallback network
(FlexRay)

fallback network
(FlexRay)

Figure 4.1: Overview of the E/E architecture of the UNICARagil vehicles

ECUs’ naming is based on the human nervous system but also their behavior in exceptional

situations. If a failure occurs at or before the brainstem, the spinal cord reflexively implements

the trajectory, ensuring a safe halt position at any moment. This safety mechanism works even

without communication on the Ethernet network since the dynamic modules are additionally

wired through FlexRay.

4.1.2 Software Architecture

The vehicle’s software architecture is based on the Automotive Service-Oriented Architecture

(ASOA). This middleware defines a methodology for designing, developing, and maintaining

functional software components, referred to as services. The primary goal is to decouple services

from each other and the hardware, facilitating easy replacement and updates. Consequently,

services are intentionally designed to be agnostic to the vehicle system, devoid of system-specific

knowledge or dependencies on other services. As a result, central orchestration is essential to

ensure proper data reception and transmission within the vehicle. For detailed information about

the ASOA, please consult Section 6.1.

The ASOA is implemented across all control units, supporting resource-constrained embedded

systems such as the dynamic modules or the Cortex R5 real-time processor on the brainstem.

The orchestrator on the brainstem’s A53 application processor establishes connections between

services during vehicle bootup and whenever a vehicle’s state changes.

The ASOA handles payload transmission and also appends a quality vector to transmitted data.

This quality vector allows the receiver to assess the transmitted data, enhancing the vehicle’s self-

perception system - a critical safety feature that continuously monitors the vehicle’s capabilities.

For example, annotated position data can provide insight into the accuracy of the vehicle’s

position, enabling adaptive responses in vehicle automation.

32

Chapter 4 Security Requirement Analysis

Certain internal functions, especially those running the sensor modules and the cerebrum, lever-

age the Robot Operating System (ROS). The ASOA seamlessly integrates ROS services into

its ecosystem, ensuring a cohesive and interoperable software environment. A central router

allows ECUs to establish connections with remote entities that belong to the external infrastruc-

ture.

4.1.3 External Infrastructure

The UNICARagil vehicles are part of an automotive ecosystem, encompassing a cloud, drones,

and a control room, all aiming to optimize traffic and enhance safety. The vehicles commu-

nicate with these remote components through a central router linked to the internal Ethernet

network.

The cloud comprises three key components: the collective environment model, the collective

memory, and collective behavior. Each component facilitates the vehicle’s automation process

and enhances passenger safety. The collective environment model aims to prevent hazardous

situations by extending a single vehicle’s perspective to encompass the perceived environment of

surrounding vehicles. This allows, for instance, the visualization of objects hidden behind a wall.

In contrast, collective memory improves automation algorithms by learning from data collected

across all vehicles. The collective behavior generates safe trajectories based on previously trained

models, utilizing the collective memory as the input source.

The control room is another essential element in the UNICARagil ecosystem. It permits human

intervention when automatic maneuvering is infeasible, or automation fails to resolve a particular

scenario. The control room serves as a fallback, intervening only in exceptional circumstances,

enabling human operators to regain control and thereby comply with legal requirements. A

typical operation occurs if a vehicle must break the law, such as crossing a sidewalk after being

obstructed. In such cases, a remote human takes control of the vehicle and manually drives

it using a joystick. During this process, the remote controller utilizes the vehicle’s sensors to

perceive its environment and reinstates automation once the vehicle is ready.

Drones play a supportive role for both the vehicle and the control room by providing additional

perception data from the air.

4.2 The ISA-62443 standards

Since there was no established security requirement analysis for vehicle systems at the time of

this work, we explored the applicability of the ISA-62443 standard series.

The ISA-62443 [62] constitutes a series of standards and technical reports that present a struc-

tured risk assessment and mitigation process for Industrial and Automation Control Systems

(IACSs). Additionally, it offers management guidance, policies, and terminology. An IACS typ-

ically encompasses a complex system comprising various computing units, sensors, actuators,

temporarily connected devices, and a human interface, collaboratively working toward a spe-

cific product outcome. The primary objective of ISA-62443-3-2 and ISA-62443-3-3 is to identify

threats, assess risks, and devise protection techniques.

As depicted in Figure 4.2, the risk assessment in ISA-62443-3-2 process is detailed in consecutive

steps, denoted as Zone and Conduit Requirements (ZCRs). In the first step (ZCR 1), all relevant

assets of the System Under Consideration (SUC) are identified. A high-level security analysis

33

Chapter 4 Security Requirement Analysis

Asset
Identification

ZCR 1

High-Level
Risk Assessment

ZCR 2

Partition of SUC into
Zones and Conduits

ZCR 3

High Level Risk >
Tolerable Risk?

ZCR 4

Documentation,
Owner Approval

ZCR 6/7

ZCR 5

Threat and Vulner-
ability Identification

ZCR 5.1-5.2

Impact and Likeli–
hood Computation

ZCR 5.3-5.4

Risk and SL-T
Computation

ZCR 5.5-5.6

Unmitigated Risk >
Tolerable Risk?

ZCR 5.7/5.11

Identification of
Countermeasures

ZCR 5.8

Reassessment of Like-
lihood, Impact, Risk

ZCR 5.9-5.10

Start

No

Yes

Yes

N
o

Figure 4.2: Simplified workflow of the ISA-62443-3-2

(ZCR 2) reveals the worst-case unmitigated risk on each asset and determines whether further

investigation is necessary. Based on this analysis, the SUC is partitioned into zones and conduits

(ZCR 3), where a zone contains related assets, for instance, in terms of functionality, localization,

or safety. In contrast, a conduit is a special zone connecting two other zones. The tolerable risk

(rtol) of each zone is compared with the unmitigated risk ru in ZCR 4. If rtol surpasses ru, no

further action is needed; otherwise, a detailed risk assessment ensues in ZCR 5.

The primary goal of ZCR 5 is to reduce the unmitigated security risk of identified threats (T)

iteratively by implementing compensating countermeasures. Threats are associated with seven

Foundational Requirements (FR), namely, Identification and Authentication Control (IAC), Use

Control (UC), System Integrity (SI), Data Confidentiality (DC), Restricted Data Flow (RDF),

Timely Response to Events (TRE), and Resource Availability (RA). Section 4.3.2 presents more

information about the foundational requirements.

The design of a secure IACS requires the identification of an exhaustive list of threats and

exploitable vulnerabilities (ZCR 5.1-5.2). Both the impact and the likelihood of each threat

(ZCR 5.3-5.4) are determined to compute the unmitigated security risk ru of each threat (ZCR 5.5).

Based on these results, a target security level SL-T for each zone is computed, differentiating

between four levels, SL-1, SL-2, SL-3, and SL-4. While SL-0 is implicitly defined as no re-

quirements, SL-1 requires protection against coincidental violations. SL-2, SL-3, and SL-4 cover

intentional security violations with an escalating level of skills, resources, and motivation. After

introducing changes to the SUC, such as implementing countermeasures, impact and likelihood

are reevaluated (ZCR 5.9), ideally leading to a reduction of the residual risk (ZCR 5.10). This

step, however, does not lead to a reassessment of the high-level risk. Once ru of all threats falls

below rtol, the SUC is considered secure.

34

Chapter 4 Security Requirement Analysis

4.3 Risk Analysis using ISA-62443

We consider the reference vehicle introduced in Section 4.1 as our SUC. Although the ISA-62443

standards were not explicitly designed for automotive systems, we argue that an SDV resembles

an IACS as it shares many essential properties. Specifically, the reference vehicle comprises

sensors, actuators, and computing units interconnected in a network, many depending on the

calculations of others. Additionally, the seven foundational requirements used to describe the

SUC’s security demands match the vehicle context by considering system and communication

security as well as timing demands necessary in a safety-critical environment. According to

the ISA-62443, the design of secure systems involves requirements affecting the organization’s

process, the personnel, and the technology.

Our objective is to illustrate the implementation of the generic guidelines ZCR 1-5 outlined in

ISA-62443-3-2, with the ultimate aim of formulating a customized set of security requirements

to ensure the secure and safe operation of the SUC. That means we concentrate on technological

aspects while leaving out requirements for the organization’s process and personnel. At first, we

conduct a TARA using the ISA-62443-3-2 prescriptions, proposing how to implement the rather

generic steps. Subsequently, we leverage our findings to define precise security requirements using

ISA-62443-3-3 in conjunction with UN Regulation No. 155 [63], which encompasses additional

risk mitigation proposals. For meaningful assessment, we engaged a group of eight experts from

the Security Engineering Group at TU Darmstadt. The assessments provided by all experts were

collected, and a mean value was calculated to obtain a final assessment.

Note that the entire security requirement analysis comprises many documents, most of which

are appended to this work. In the subsequent sections, we only present excerpts for enhanced

readability.

4.3.1 High-Level Risk Analysis and System Partition

ISA-62443-3-2 commences with a high-level risk analysis of zones and conduits. This allows

for an initial assessment of possible security requirements, enabling the exclusion of zones that

do not warrant further attention either due to their low criticality or because they are already

adequately secured. In total, the high-level risk analysis comprises four ZCRs.

ZCR 1

The objective of ZCR 1 is to systematically explore the SUC, enabling a subsequent reason-

able cybersecurity analysis. Initially, the SUC undergoes a partitioning process into assets, with

an asset defined as a “pyhsical or logical object” necessary for the “complete automation solu-

tion”.

In our context, an asset constitutes a physical functional component with the potential to impact

the safe driving process, representing a concrete automation solution as denoted by ISA-62443.

Therefore, we deconstruct the reference vehicle into ECUs, considering each an asset since every

ECU influences the automated driving process. Besides, each external component is treated

as an individual asset, given that the SUC processes data from the cloud and can be steered

from the control room. Note that our focus lies in the secure design and construction of the

reference vehicle, excluding detailed consideration of the external infrastructure. Although we

acknowledge the complexity of the cloud, drones, and the control room, which would require a

35

Chapter 4 Security Requirement Analysis

dedicated security requirement analysis, we treat them as monolithic external communication

nodes in this study.

In the process of identifying assets, we also have to recognize access points to the SUC, as

they serve as potential gateways for attackers to infiltrate the system. Our experts identified

a total of 19 asset types, notably including the sensor modules, the cerebrum, the brainstem,

and the dynamic modules. The term “type” refers to the fact that some ECUs exist multiple

times but are counted as a single asset. For instance, four dynamic and four sensor modules are

inside the SUC. Since they are identically constructed, we treat them as two separate assets.

Table A.2 provides a complete list of the identified assets. Additionally, the SUC possesses an

access point through the router, as all incoming and outgoing communication flows must cross

this router.

ZCR 2

After the SUC has been divided into assets, a high-level cybersecurity risk assessment is con-

ducted in ZCR 2 to determine an initial security target level for each asset ai. According to

ISA-62443-3-2, evaluating both the high-level likelihood LHL
ai and the high-level impact IHL

ai of a

potential attack on ai is necessary. However, this standard does not prescribe a specific method

for this assessment. To address this, we propose employing a multi-criteria decision-making pro-

cess, which is especially useful when a decision involves multiple criteria rather than a single

one.

This approach allows each criterion to be weighted and establishes a hierarchy among them. Tech-

nically, we represent both the high-level likelihood and impact as vectors L⃗HL
ai = (L1 L2 ... Ln)

⊺

and I⃗HL
ai = (I1 I2 ... Im)⊺, respectively. Each vector field signifies a specific criterion, initially

ranked by experts and then weighted based on their criticality. After scoring each criterion, we

normalize LHL
ai and IHL

ai , followed by a multiplication with precomputed weight matrices, denoted

as LHL
ai = L⃗HL

ai · W⃗L, respectively IHL
ai = I⃗HL

ai · W⃗I, where · is the dot product. Normalization en-

sures that a score of LHL
ai =1 indicates the highest possible likelihood, while IHL

ai =1 stands for

the worst-case impact. Finally, the high-level risk rHL
ai = (IHL

ai , LHL
ai ,) is mapped to a risk class

using the weighted normalized decision matrix in Table 4.6.

Impact Assessment We evaluate the anticipated impact of a cyberattack on a given asset ai
across four criteria: Passenger Safety (PS), Financial Loss (FL), Operational Restrictions (OR),

and Privacy (P). Consequently, we express L⃗HL
ai = (PS FL OL P)⊺ as a vector of four impact

criteria. Our experts independently score each criterion using a set of exclusive parameters,

denoted as P. Table A.1 describes the notion of each parameter and the corresponding quantified

value.

– Passenger Safety (PS): Safety considerations include the well-being of passengers and

those near the vehicle. Parameters range from no injuries to fatal, associated with integer

values from 1 to 4. That means, PPS = {fatal, seriously injured, slightly injured,no injuries}.

– Financial Loss (FL): This criterion addresses the monetary consequences for the man-

ufacturer or vehicle operator in the event of a successful cyberattack. Parameters range

from “severe” to “negligible”, with severity based on the Value of Statistical Life (VSL) [64]

assumed to be $10 million.

36

Chapter 4 Security Requirement Analysis

– Operational Restrictions (OR): Operational limitations resulting from a cyberattack

are expressed in terms of “massive”, “high”, “medium”, and “low”. A massive limitation

occurs if all traffic comes to a halt. High limitations lead to traffic jams in a designated

area, while medium constraints occur when a vehicle can only operate at reduced speed.

Finally, low limitations result from hijacking non-critical assets such as the chassis.

– Privacy (P): Privacy criteria range from severe to negligible, reflecting the degree of

sensitive data leakage following a successful attack. A severe privacy leakage occurs if

the leaked data reveals the passenger’s identity and can be directly linked to him. In

contrast, major privacy leakage requires low computational power to link stolen data to

the passenger, while a moderate leakage necessitates data in large quantities to reveal

personal information. A negligable privacy leakage happens when the data does not allow

any conclusions to be drawn about the passenger.

In this analysis, the focus is solely on the functional description of asset ai, excluding propagating

side effects. Otherwise, all assets would receive the highest impact score, which could result in

over-engineering. Transitive attacks are covered by conduits in later steps.

Table A.2 presents unweighted impact ratings for each asset during a successful cyberattack. For

instance, the corruption of a sensor module may result in severe privacy issues due to its use

of cameras, radars, and lidar for environmental perception. However, the impact on passenger

safety is expected to be moderate because a corrupted sensor module does not directly influence

driving dynamics such that the vehicle can still come to a safe halt. For the same reason,

the financial loss is likewise expected to be moderate in the worst case. We expect medium

operational restrictions as the vehicle may only drive at reduced speed, causing traffic jams.

No Asset ai PS FL OR P

1 sensor module moderate moderate medium severe

2 cerebrum moderate moderate medium moderate

3 brainstem moderate moderate medium moderate

...

Table 4.2: For each asset, the potential impact of a successful attack is evaluated, quantified, and pre-
sented as a four-dimensional vector encompassing Passenger Safety (PS), Financial Loss (FL), Operational
Restrictions (OR), and Privacy (P). A detailed overview of the impact ratings is presented in Table A.2.

Impact Weighting. To express the overall impact of a cyberattack on a given asset, a single

value is calculated, incorporating individual criteria scores. As mentioned earlier, these criteria

undergo weighting in a multi-criteria decision-making process, emphasizing their relevance. In

our context, passenger safety is the highest priority, followed by financial loss and operational

restrictions, which are considered equally relevant. Privacy has the lowest priority, indicating a

preference for accepting a serious privacy incident over a severe injury.

We suggest following a Analytic Hierarchy Process (AHP) to derive meaningful weights for

each criterion. The Analytic Hierarchy Process (AHP), developed by Thomas L. Saaty in the

1980s [65], enables complex decision analysis by breaking down decisions into simpler options

and performing pairwise comparisons. Table 4.3 shows the pairwise comparison of our impact

37

Chapter 4 Security Requirement Analysis

options (PS, FL, OR, P). Passenger safety is three times more relevant than privacy and twice

as important as financial and operational consequences.

PS FL OR P

PS 1 2 3 4

FL 1
2 1 1 2

OR 1
2 1 1 2

P 1
3

1
2

1
2 1

Table 4.3: The pairwise comparison matrix, an essential part of the Analytic Hierarchy Process (AHP)
method, shows the relevance between all possible impact criteria.

According to the AHP method, a given criterion’s final weight is the corresponding row’s nor-

malized geometric mean, leading to W⃗L = (0.423147, 0.2273505, 0.2273505, 0.122152) as outlined

in Table 4.4.

Criterion Weight

Passenger Safety 0.42315

Financial Loss 0.22735

Operational Restrictions 0.22735

Privacy 0.12215

Table 4.4: Weighted impact criteria used in the AHP.

Note that the AHP method offers a consistency check to ensure logical weightings without con-

tradictions. This is the case if the quotient of the consistency index and the so-called random

consistency index are smaller than 0.1. In our case, the consistency ratio of our pairwise com-

parisons is 0.003836 [66], confirming the consistency of the weights.

Impact Computation. Having assessed the impact categories (Table 4.3) and determined the

impact weights (Table 4.4), an impact value for each asset is computed through LHL
ai = L⃗HL

ai · W⃗L

after normalizing L⃗HL
ai . Table A.2 shows a complete overview of the impact values of all assets.

For example, the expected impact resulting from a corrupted sensor module is computed as

follows:

Impact =
2

4
· 0.42315 + 2

4
· 0.22735 + 3

4
· 0.22735 + 4

4
· 012215 = 0.61791 (4.1)

Likelihood Assessment The likelihood parameter represents an attacker’s difficulty in com-

promising a given asset. Recall that we consider standalone devices such as ECUs or external

entities like the control room as assets. Assets with open interfaces generally pose an easier

target than those physically isolated without connectivity. We have identified six rating criteria

to capture this, all providing an adversary with options to gain unauthorized access.

These criteria are represented as Boolean fields within a six-dimensional vector, denoted as

L⃗HL
ai = (IC WI U EI B TP)⊺. This vector determines for each asset ai whether the following

conditions are met: the ability to establish an Internet Connection (IC), the presence of Wireless

Interface (WI), the asset’s Updatability (U) nature, the existence of External Interfaces (EI) such

38

Chapter 4 Security Requirement Analysis

as OBD2, USB, direct connection to the in-vehicle Bus (B), and whether ai deploys software by

a Third Party (TP).

For instance, the vector L⃗HL
ai = (1 0 1 0 1 0)⊺ denotes an updatable asset connected to the in-

vehicle bus with the capability to establish an Internet connection. Table 4.5 shows a selection of

rated assets according to the previously identified likelihood criteria. The criteria order implicitly

No Asset ai
Likelihood Criteria

Likelihood LHL
aiIC WC U EI B TP

1 sensor module 1 0 1 1 1 0 0.71

5 lidar 0 0 0 0 1 1 0.11

8 hmi 1 1 1 1 1 0 0.96

16 control room 1 1 1 1 0 0 0.89

Table 4.5: Each likelihood criterion is assessed and weighted, resulting in a likelihood value.

reflects their relevance in terms of their potential to facilitate an attack. That means an asset

connected to the Internet is more susceptible to be attacked than an asset without an Internet

connection but with a USB interface, as the attacker would need to be physically present.

We again apply an AHP to mathematically express each criterion’s relevance, resulting in dis-

tinct weights. This again involves a pairwise comparison of all likelihood criteria, followed by

normalization, resulting in W⃗L = (0.38 0.25 0.16 0.10 0.06 0.04)⊺. Finally, an asset’s high-level

likelihood LHL
ai is obtained by computing L⃗HL

ai · W⃗L. Table A.2 presents our assessment results

and the corresponding likelihood values.

Risk Assessment After assessing the attack impact and likelihood for each asset ai, we can

derive a risk value. ISA-62443-3-2 suggests using a risk matrix that relates the impact IHL
ai to

the likelihood LHL
ai . However, as in the previous steps, no precise instructions for implementation

are given by the standard, so we divide the spectrum of likelihood and impact into the five

classes “low”, “medium”, “major”, “high”, and “very high”. Such an even division is possible

because the previously calculated impact and likelihood values are normalized. Table 4.6 shows

the resulting risk matrix, which we now use to determine a risk value for each asset ai. This

Likelihood LHL
ai

negligble

0

very low

(0, 0.25]

low

(0.25, 0.5]

medium

(0.5, 0.75]

high

(0.75, 1]

Im
p
a
c
t
I
H
L

a
i negligible [0, 0.25] low low low low low

moderate (0.25, 0.5] low low medium medium major

major (0.5, 0.75] low medium major high very high

severe (0.75, 1] low major high very high very high

Table 4.6: Risk matrix with grey cells indicating a tolerable risk.

calculated risk value is the result of ZCR 2. It is used in subsequent steps to partition the SUC

and to answer whether a detailed security requirement analysis is necessary. Again, Table A.2

provides a detailed overview of the risk values for all assets.

39

Chapter 4 Security Requirement Analysis

Note that we intentionally added a likelihood of zero in the risk matrix to express the successful

mitigation of a threat in later steps. With this column in the risk matrix, threats with a severe

impact could be considered mitigated since security measures will only significantly lower the

likelihood of a threat. At the same time, the safety consequences remain the same. Consequently,

the objective is to make such attacks impossible by applying sound technical means. In such a

situation, we assign a zero likelihood, resulting in a tolerable risk.

The risk analysis confirms that assets exerting direct or indirect influence on driving dynamics

or possessing numerous external interfaces carry a significant cybersecurity risk. For instance,

the dynamic modules responsible for propelling the reference vehicle constitute a noteworthy

cybersecurity risk, thereby warranting a classification of a very high risk. Conversely, sensor

modules, tasked with perceiving the vehicle’s surroundings and likewise crucial for safe driving,

have a high cybersecurity risk. The sensor modules are remotely updatable and indirectly impact

driving behavior through environmental perception. However, an attacker would need to simul-

taneously seize control of most sensor modules to compromise the vehicle’s ability to perceive its

surroundings correctly. Additionally, the vehicle can even reach a safe position without sensor

modules. Therefore, these ECUs are not categorized in the highest risk class. The vehicle’s

nearfield sensors have a medium cybersecurity risk, as neither major safety consequences are

expected nor a significant likelihood for compromise is given. About external assets, the drone

likewise poses a medium risk since it only provides additional environmental information on a

high level. At the same time, the control room belongs to the very high risk category since an

attacker may gain access not only to one vehicle but to an entire vehicle fleet.

ZCR 3

The objective of ZCR 3 is to partition the SUC into zones and conduits to simplify the ensuing

detailed security requirement analysis of the overall system. The standard defines a zone as a

grouping of assets based on functional, logical, or physical relationships. Physical zones clus-

ter nearby assets, while functional zones comprise assets with similar or related functionality.

Nested zones are also possible, i.e., one zone can encompass another. Additionally, virtual zones

categorize assets based on specific properties, such as common security requirements.

In our context, virtual zones serve to group assets sharing identical cybersecurity risks. Instead

of creating a dedicated zone for each risk class, we incorporate other factors for a meaningful

partition of the SUC, as displayed in Figure 4.3. First, we separate vehicle-internal and ex-

Assets

vehicle-internal

safety-critical
Z1

Z2

uncritical

Z3

Z4

Z5

vehicle-external
Z6

Z7

Figure 4.3: For the partitioning of the SUC into zones and conduits, we considered not only the security
risk of the assets but also whether they are located inside or outside the vehicle and whether they execute
safety-critical tasks.

40

Chapter 4 Security Requirement Analysis

switches (4x)
vehicle gateway

C
on
dui

t C1

cerebrum, brainstem,
sensor modules (4x),

localization

Zone Z1

dynamic
modules (4x)

Zone Z2

lidar(4x), radar(8x),
camera (4x),

platform sensors

Zone Z3

energy control,
thermal control,
door control

Zone Z4

HMI

Zone Z5

Conduit C2

(FlexRay)

Conduit C3 (CAN)

control
room

Zone Z6

cloud,
drone

Zone Z7

Conduit C4

(5G)

in-vehicle ex-vehicle

Figure 4.4: The SUC is partioned into seven zones and four conduits. Conduits C2 and C3 are nested in
the zones Z2 and Z3 because they only allow for communication within these zones. Conduit C1 represents
the main Ethernet-based in-vehicle bus.

ternal assets; then, we differentiate between their safety relevance by considering all assets as

safety-critical whose impact rating is either major or severe. Finally, we consider the functional

characteristics of individual assets within vehicles, such as the four dynamic modules forming a

unit known as the spinal cord. Despite their distribution across all four corners of the vehicle, we

assign them to the same zone due to their functional relationship. In total, the SUC is divided

into seven zones Z1, ..., Z7 as illustrated in Figure 4.4. Figure 4.3 illustrates the relationship

between these zones, while Table A.2 lists the corresponding zone for each asset.

Zone Z1 comprises the ECUs responsible for environment perception, route planning, and control,

all having a high cybersecurity risk. As earlier mentioned, the dynamic modules belong to a

dedicated zone Z2 because they bear a very high cybersecurity risk and directly control the

wheels. Zone Z3 houses lidar, radar, camera, and the nearfield platform sensors, either with

a low or medium cybersecurity risk. Severe consequences are only anticipated if an attacker

gains control over the majority of these sensors. In contrast, zone Z4 contains low-level, safety-

critical assets such as the energy and door control system, but without directly impacting driving

dynamics. Zone Z5 accommodates the HMI module. Although its cybersecurity risk is akin to

that of Zone Z4, we deliberately assign it to a dedicated zone as it is the sole ECU with a user

interface. Processing user input and potentially managing different user accounts, we anticipate

distinct security requirements for this zone.

Finally, Z6 and Z7 incorporate the vehicle-external assets. The control room, capable of directly

controlling any vehicle, is designated with a very high cybersecurity risk and is placed in the

dedicated zone Z6. As for the drone and cloud, we opted to position them in Z7 as they serve a

supportive role without direct influence on driving behavior. Their high security risk stems from

their update capability and interfaces, which expand the attack surface.

41

Chapter 4 Security Requirement Analysis

Besides the zones, we identified four conduits C1, ..., C4. A conduit is a particular type of zone

that enables communication between zones. C1 encompasses the in-vehicle Ethernet network,

four switches, and the router. C2 denotes the FlexRay network providing a fallback level be-

tween the dynamic modules, while the CAN network linking the platform nearfield sensors to

the brainstem is placed in C3. Both C2 and C3 are nested conduits inside zone Z2 and Z3,

respectively, since they only allow for communication within these zones. Finally, C4 represents

the wireless communication between the SUC and remote assets, such as the control room and

the cloud.

ZCR 4

As part of ZCR 4, we must decide which zones require a detailed security assessment. Previously,

we assigned a high-level cybersecurity risk rHL
ai to each asset ai and partitioned the SUC into

zones and conduits. The risk rHL
ai assists us in identifying the need for extended security analysis,

as mandated by ISA-62443-3-2.

For that purpose, we compare each asset’s rHL
ai with the zone’s maximum tolerable risk rtolZi

. We

only exclude a zone from further consideration if all its assets have a risk value below the tolerable

risk. That way, we eventually define security requirements solely for zones needing protection,

preventing over-engineering in subsequent phases.

The ISA-62443-3-2 does not specify a methodology for determining rtolZi
. Therefore, we elaborated

on this, considering only the grayed cells in the risk matrix presented in Table 4.6 as acceptable

risks. In other words, rtol= low holds, meaning that zones with a low security risk do not require

further attention if they are not connected to critical zones through a conduit. Notably, only

zone Z3 houses assets with low and medium cybersecurity risks. However, Z3 is connected to

C1 as its assets can communicate via the in-vehicle Ethernet network. Consequently, security

incidents may propagate through C1 into Z1 or Z2, containing safety-critical assets. Therefore,

Z3 must be included in subsequent security analysis steps. As all other zones exhibit either high

or very high risks, they are also part of the following detailed security analysis.

4.3.2 Detailed Cybersecurity Risk Assessment

ZCR 5 outlines the steps of a detailed cybersecurity risk assessment, which becomes mandatory

when a zone’s previously determined high-level risk exceeds the maximum tolerable risk rtolZi
.

This detailed analysis consists of thirteen substeps (ZCR 5.1-ZCR 5.13). The term “detailed”

indicates that impact, likelihood, and risk values are not determined at the asset granularity but

are instead used to assess individual threats.

The substeps aim to identify and assess threats at a fine-grained level, establish a target security

level for each zone, and eventually mitigate the unmitigated risk ruZi
by applying compensating

measures. In that context, security level quantifies security demands arising from risks, where a

risk results from a threat on a given asset combined with at least one vulnerability. As mentioned

earlier, the standard uses seven foundational requirements to determine security levels in response

to the identified threats. A threat is a specific attack compromising a system’s confidentiality,

integrity, or availability. Compensating measures encompass specific security requirements that

affect both software and hardware. These measures contribute to the design of a secure SUC

in reference to a predefined set of threats and vulnerabilities, eventually lowering a zone’s ruZi
.

Consequently, the achieved security level SL-AZi advances towards the target security level SL-

TZi .

42

Chapter 4 Security Requirement Analysis

The ISA-62443-3-2 permits choosing an appropriate risk assessment methodology in ZCR 5.

However, it emphasizes the importance of maintaining consistency with the risk ranking scale

established in earlier stages. The assessments can only yield meaningful and coherent results by

adhering to this criterion.

Foundational Requirements

The ISA-62443-1-1 standard defines seven categories, termed foundational requirements, forming

the basis for subsequent security assessments:

1. Identification and authentication control (IAC)

2. Use control (UC)

3. System Integrity (SI)

4. Data confidentiality (DC)

5. Restricted data flow (RDF)

6. Timely response to events (TRE)

7. Resource availability (RA)

These foundational requirements FR are used to characterize a system’s security properties and

determine security levels in ISA-62443-3-2. That way, the vague term “security” gets a concrete

meaning through the foundational requirements. They enable the measurement and quantifi-

cation of the SUC’s security, particularly by assessing each cybersecurity threat in terms of

the foundation requirements it violates. Ultimately, we manifest a security level as a seven-

dimensional vector of foundational requirements, expressing the security demands for each zone.

This approach facilitates deriving specific compensating technologies to mitigate previously iden-

tified threats.

Alternatively, the CIA triad offers a method for assessing security threats by distinguishing be-

tween confidentiality, integrity, and availability. The foundational requirements offer a more

nuanced perspective than the CIA triad, especially concerning system integrity and resource

availability. In our context, these requirements prove advantageous as they simplify the consid-

eration of communication and system security. Moreover, the TRE requirement facilitates the

description of attacks attempting to increase latency in safety-critical environments - a scenario

that demands attention, especially in road vehicles.

Threat Modeling

ZCR 5.1 prescribes to compile a list of threats that could negatively affect assets. The biggest

challenge lies in developing a comprehensive and realistic list of threats T, as all subsequent

analysis steps depend on that list. Ultimately, the SUC will be secured against these threats,

making an incomplete threat list an opportunity for attackers to infiltrate the system.

During threat identification, we face two core problems: Ensuring completeness for T is a difficult,

if not impossible, task despite various supportive techniques, such as CIA, STRIDE, and Threat

Trees [67]. By relying on our expert group, we claim to have diverse views on the SUC and

to obtain a reasonable number of threats. Additionally, we acknowledge the work by Petit and

Shladover [68], who identified potential attack surfaces on road vehicles, inspiring our threat

identification.

43

Chapter 4 Security Requirement Analysis

Moreover, a collaborative threat identification process requires a common notion of the granu-

larity level of a threat. For instance, t1 =“The attacker triggers the vehicle brakes.” and t2 =

“A network man-in-the-middle attacker injects forged braking commands.” are both potential

threats with the same outcome. However, t1 is articulated on a purely functional level, while t2
already addresses one potential attack vector. The author of t1 might perceive the SUC at a

coarser granularity level, potentially missing attack vectors, as more than one vector can lead to

the same outcome.

To address the challenge of a common notion, we propose a three-round threat identification

process in ZCR 5.1, ensuring scalable threat management with threats at a comparable granu-

larity level. In the first round, we identify top-level threats on a purely functional level, focusing

on what consequences are possible. In the second round, each top-level threat is decomposed

into intermediate threats, taking into account how they can be realized. An intermediate threat

always refers to at least one specific asset, hence providing a precise attack vector as required by

the ISA-62443-3-2 standard. Since an attack vector can be used to realize more than one attack,

an intermediate threat may appear multiple times. For instance, threats t0-2 and t2-2 in Table

A.3 are identical and are thus treated equally in succeeding steps.

“Manipulation of
driving behavior”

“Firmware manipulation
of the brainstem”

“Firmware manipulation
of the dynamic modules”

“Firmware manipulation
of the sensor modules”

“Injection of fake commands
to the FlexRay network”

“Injection of fake commands
to the Ethernet network”

“Unauthorized
traffic replay”

“Illegal software
update”

“Unauthorized
traffic manipulation”

Top Layer Threat Intermediate Threats Threat Classes

Figure 4.5: A top-level threat describes adverse functional actions composed of potentially several inter-
mediate threats. An intermediate threat represents how a specific asset is compromised and may reoccur
during the threat analysis. Intermediate threats are generalized in threat classes.

In the third and final round, intermediate threats are further organized into threat classes.

Threat classes are generalized threats considered essential ingredients to implement an attack.

For instance, the threat class of “unauthorized traffic manipulation” may impact all in-vehicle

networks, contingent on the attacker’s capabilities and objectives. Given that our SUC encom-

passes three distinct networks - Ethernet, CAN, and FlexRay - this threat is replicated three

times, eventually resulting in tailored security requirements for each bus technology. Similarly,

the threat of “illegal software update” pertains to all ECUs and, therefore, must be considered

26 times. We argue that duplicating threats and their separate consideration is crucial since

different ECUs may possess distinct update mechanisms, demanding varying resources.

44

Chapter 4 Security Requirement Analysis

In later steps, threat classes help map intermediate threats to foundational requirements. They

are divided into two categories for a better organization: communication and hardware. The

communication category consolidates threats involving any adverse behavior on the network,

while the hardware category encompasses threats affecting ECUs, such as software manipulation

or key leakage. These categories later translate into different attacker models, each necessitating

specific capabilities to implement a threat. Figure 4.5 illustrates the relationship between the

threat types.

Threat Assessment In ZCR 5.1, we identified a total of 48 intermediate threats and cate-

gorized them into 9 threat classes. The identified threat classes are outlined in Table 4.7, and

a comprehensive overview of the threats can be found in Table A.3 in the appendix. Impact

Category Threat Class Abbreviation FRs

Communication Unauthorized traffic manipulation TC1 SI

Unauthorized traffic replay TC2 SI

Eavesdropping of privacy sensitive data TC3 DC

Privilege escalation TC4 IAC

Denial-of-Service TC5 RA

Hardware Illegal software update TC6 SI

Leakage of cryptographic secrets TC7 IAC, SI, DC

Unauthorized connection to interfaces TC8 SI

Identity theft TC9 IAC

Table 4.7: A threat class is a generalized intermediate threat. Each one is uniquely mapped to a selection
of foundational requirements

(ZCR 5.3) and unmitigated likelihood (ZCR 5.4) assessments were conducted for each intermedi-

ate threat, resulting in the determination of a cybersecurity risk (ZCR 5.5). We applied almost

the same metrics utilized in the high-level security analysis conducted in ZCR 2 throughout these

steps, however, enriching the likelihood assessment with additional aspects. That way, we expect

more realistic assessments.

More precisely, we suggest a cascading parameter approach that assesses likelihood based on ad-

ditional factors such as vulnerabilities and attacker’s capabilities. Specifically, the likelihood of a

successful threat ti is determined by the necessary capabilities for its execution and exploitable

vulnerabilities (ZCR 5.2). We acknowledge the prior proposal of integrating the attacker’s capa-

bilities into threat likelihood in [69].

A vulnerability refers to a technical flaw that, if exploited, allows attackers to breach the system.

Databases like the CVE system contain known software vulnerabilities that can be referenced

for each ECU. Each vulnerability is assigned a value from V = {severe,medium,negligible}.
For example, a severe vulnerability might involve a broken cryptographic protocol or a zero-day

exploit, while a medium one may require user privileges. A negligible vulnerability is primarily

theoretical, such as quantum attacks.

For simplicity and due to resource limitations during the risk analysis, we assume a “medium”

vulnerability for each ECU instead of researching real-existing vulnerabilities as required in

ZCR 5.2. However, we point out that the systematic recording of vulnerabilities remains pertinent

for commercial use cases.

45

Chapter 4 Security Requirement Analysis

In relation to the capabilities of the attacker, we utilize three factors, akin to the HEAV-

ENS project [39]: Experience (E), Knowledge (K), and Resources (R), denoted collectively

as AC = E × K ×R. Concerning expertise, we categorize individuals into three levels: layman,

proficient, and expert. Regarding knowledge, a three-tier distinction is made: public, restricted,

and sensitive. In terms of resources, we differentiate among standard, specialized, and bespoke.

These potential characteristics are also drawn from the HEAVENS project. As illustrated in

Table A.4, each factor is independently assessed for all threats.

Security Levels

In ZCR 5.6, we establish a target security level, denoted as SL-TZi , for each zone Zi ∈ ZC. This

level indicates the envisioned degree of protection for a particular zone, typically involving aspects

such as access control, confidentiality, authentication methods, and software integrity. The ISA-

62443-3-2 standard does not prescribe the method for computing SL-T but merely recommends

representing it either as a scalar or a vector. While a scalar value is simpler to determine

and minimizes verification efforts, it lacks the capacity for fine-grained resolution across various

security aspects. For instance, a zone may necessitate strong authenticity protection and thus

be assigned a high-security level, while other security considerations, such as confidentiality or

access control, may be less critical. Encoding such nuanced information into a single scalar is

challenging and may lead to over-engineering.

Therefore, we express the target security level of a zone Zi ∈ ZC as a seven-dimensional vector,

with each field representing a foundational requirement. This approach enables the individual

weighting of each requirement, yielding a more meaningful and subtle representation. In other

words, for each zone, we assign a security level to each foundational requirement, thereby ex-

pressing to what extent it is affected in Zi. Recall that ISA-62443-1-1 defines five security levels

(SL-0 - SL-4). SL-0 indicates the unnecessity of security protection, while SL-1 demands pro-

tection against coincidental violation. SL-2, SL-3, and SL-4 have in common to protect against

intentional violation with increasing resources, skills, and motivation.

To derive a meaningful SL-TZi for zone Zi, we begin by identifying the foundational requirements

influenced by threats within Zi. This is possible because we explore each threat’s impact on

specific zones (c.f., Table A.3), coupled with the additional mapping of each threat to a threat

class. Since each threat class is distinctly linked to a set of foundational requirements FR′ ∈ FR,

we can associate the corresponding threat with FR′.

For instance, threat t0,1 describes the firmware corruption of a dynamic module through a fake

update, thereby associating it with zone Z2. t0,1 is mapped to threat class TC6, which in turn

refers to the foundational requirement “System Integrity”. Since t0,1 lies in zone Z2, this zone

requires protection concerning system integrity.

Eventually, we determine a security level for each field of SL-TZi depending on whether the

foundational requirement is affected in zone Zi.

Risk Comparison

ZCR 5.7 mandates the comparison each threat’s unmitigated risk ruti with the tolerable risk

threshold rtol. Only if ruti exceeds rtol should the threat ti be taken into account in subsequent

steps for identifying compensating measures.

46

Chapter 4 Security Requirement Analysis

Zone/Conduit IAC UC SI DC RDF TRE RA

Z1 SL-4 SL-4 SL-4 SL-4 SL-0 SL-4 SL-0

Z2 SL-4 SL-0 SL-4 SL-0 SL-0 SL-4 SL-0

Z3 SL-4 SL-0 SL-4 SL-4 SL-0 SL-4 SL-0

Z4 SL-4 SL-0 SL-4 SL-0 SL-0 SL-4 SL-0

Z5 SL-4 SL-4 SL-4 SL-0 SL-0 SL-3 SL-0

Z6 SL-4 SL-4 SL-4 SL-0 SL-0 SL-4 SL-0

Z7 SL-3 SL-0 SL-3 SL-0 SL-0 SL-3 SL-0

C1 SL-0 SL-0 SL-4 SL-4 SL-4 SL-0 SL-4

C2 SL-0 SL-0 SL-4 SL-0 SL-4 SL-0 SL-4

C3 SL-0 SL-0 SL-4 SL-0 SL-4 SL-0 SL-4

C4 SL-0 SL-0 SL-3 SL-3 SL-3 SL-0 SL-3

Table 4.8: A zone’s security target level is a seven-dimensional vector with each field representing a
foundational requirement.

Similar to step ZCR 4, where we compared an asset’s high-level risk with the corresponding

zone’s tolerable risk rtolZi
, we designate the grayed cells in our risk matrix as tolerable (c.f.,

Table 4.6). Our analysis shows that ruti > rtol holds for each threat. Consequently, all threats

must be considered in the ensuing steps. This finding is unsurprising, as the SUC has not yet

been secured and cannot effectively defend against attackers. SUC.

To express the actual security level the SUC provides, the ISA-62443-3-2 uses SL-AZi . Since the

SUC is still in the design phase, we initially did not assume any security measures, resulting in

SL-A=(SL-0 SL-0 SL-0 SL-0 SL-0 SL-0 SL-0) for all zones. The SL-TZi from Table 4.8 help us

identify appropriate countermeasures, which decrease the residual risk of each threat by fortifying

the SUC against cyberattacks and meanwhile approximate SL-A to SL-T.

4.3.3 Threat Mitigation

The final phase of the detailed security analysis revolves around identifying compensating mea-

sures that lower the unmitigated threat risks to a tolerable level. In other words, the objective

is to lower ruti of threat ti beneath the tolerable risk rtolZi
by applying countermeasures. These

measures result in security requirements for which the SUC operator must integrate concrete

technical solutions. Only then can the SUC be considered secure with reference to the threats

from ZCR 5.1.

ZCR 5.8 until ZCR 5.12 can be executed in a loop in which countermeasures are identified and

then applied to the SUC. After doing so, each threat’s likelihood and impact are reevaluated in

ZCR 5.9, resulting in a residual risk (ZCR 5.10). This risk is compared with rtol in ZCR 5.11,

and additional countermeasures are identified in ZCR 5.12 if the residual risk is still not accept-

able. The detailed risk analysis ends in ZCR 5.13, where the results are documented and made

available.

The ISA-62443-3-2 specifies that requirements may encompass both technical and non-technical

aspects, such as policies and procedures. Our focus, however, is specifically on technical re-

quirements. In the course of this work, we will develop solutions tailored to these technical

requirements and partly integrate them into the SUC.

47

Chapter 4 Security Requirement Analysis

The ISA-62443-3-3 furnishes an extensive overview of countermeasures for each foundational

requirement, contingent upon the security level. Nonetheless, many of these countermeasures

may not be directly applicable to our SUC because the ISA-62443 series was conceived for IACSs

rather than automotive use cases. For example, a security level SL-2 for the IAC requirement

necessitates a Public Key Infrastructure (PKI), a challenging demand for in-vehicle platforms

comprising resource-constrained embedded systems. The complexity of maintaining long chains

of public key certificates, especially on resource-constrained embedded systems, renders such an

approach less practical. Therefore, we sought alternative solutions that are lighter and more

resource-saving.

A first step towards alternative solutions was the work by El-Rewini et al. [70], which exten-

sively surveyed automotive threats and countermeasures. In addition, the UNECE R 155 [63] is

particularly helpful as it officially presents numerous mitigation techniques in part B of the fifth

annex. Yet, we initially use ISA-62443-3-3 to identify countermeasures depending on the target

security level SL-TZi and only in the aftermath consult the UNECE R 155 in case a specific

technical requirement is not applicable to our SUC. In the following, we give an overview of

these countermeasures that are the security requirements for our SUC:

System Integrity One of the most critical security requirements for our SUC is system in-

tegrity. As a result of our threat analysis, the SL-TZi indicate that all zones and conduits require

the highest possible integrity protection. In ISA-62443-3-3, system integrity is a broad concept

encompassing communication, software, and control units covering the foundational requirements

of SI and IAS. More precisely, we identify the following security requirements:

1. Software Integrity: It must be determinable for any software whether it corresponds

to the original or has been manipulated. This is especially crucial for updatable software

components entering the vehicle from external sources. Violations of software integrity

must be logged and reported.

2. Communication Integrity: Data transmission must be protected against network at-

tacks aiming at manipulation, eavesdropping, or the insertion of false data. This protection

must be maintained even during physical contact between the attacker and the bus. In ad-

dition to data integrity, its verifiable authenticity must be ensured so the message recipient

can be confident of receiving data from a trusted source.

3. Boot Process: The integrity of the boot process of ECUs must be guaranteed to prevent

the loading of malicious software during startup. This requirement applies especially to

HPC platforms like the brainstem, cerebrum, or sensor modules of our SUC, which are

equipped with a full-stack operating system. A technical solution is secure boot, which the

boot loader must support.

4. Malware Checks: Any software must pass a malware check before its deployment into

the SUC. This significantly reduces the risk of infected software components entering one

or more vehicles. The verification must occur offline, and updates must also be considered.

5. Physical Tamper Resistance: ECUs must be protected against physical manipulation

such as unauthorized replacement. Furthermore, they must have mechanisms for the secure

storage of cryptographic tokens used, such as identity verification or secure communica-

tion. Hardware Security Modules (HSMs), which are also integrated into the AUTOSAR

standard, maybe a technical solution

48

Chapter 4 Security Requirement Analysis

In addition to these requirements, ISA-62443-3-3 prescribes additional ones, particularly at a

high-security level of SL-3 or SL-4. However, we find many of these requirements unnecessary or

simply not applicable to our SUC. Notable is the validation of user inputs, which exists in the

SUC only to a minimal extent in the HMI.

Data Confidentiality Protecting against eavesdropping and the leakage of sensitive data is

another crucial security requirement for the SUC. In particular, transmitting sensor, environ-

mental, and positional data can cause privacy issues as they reveal insights into the passenger’s

identity and behavior. Additionally, potentially confidential data such as bank information or

login credentials may be stored on the HMI and must be protected against unauthorized ac-

cess.

Specifically, data confidentiality in our SUC is required in zones Z1, Z2, and Z3, as indicated

by the foundational requirement DC. These zones encompass the ECUs along the main event

chain, such as the brainstem, cerebrum, sensor, and dynamics modules. The requirement for

data confidentiality applies to the latter because even rudimentary control parameters such as

steering angle and torque can be used to reconstruct a vehicle’s trajectory [71]. We derive the

following security requirements for the SUC:

1. Encryption: Data transmission between applications on different ECUs must be encrypt-

able to prevent unauthorized access to sensitive material such as environmental and posi-

tional data. To maximize efficiency, encryption should be selectively employed.

2. Hardware Acceleration: To minimize latency and achieve optimal performance, sym-

metric cryptography should be used, and hardware accelerators should provide correspond-

ing primitives.

3. Data Persistence: Sensitive data must be completely and irreversibly deleted after pro-

cessing on ECUs.

Identification Our threat analysis highlights the importance of protecting against unautho-

rized access to ECUs, which is necessary to avoid identity theft, the deployment of malicious

software, and data leakage. This necessity is expressed by the foundational requirements IAC

and UC in all zones, resulting in the following security requirements:

1. User Identification: Access to ECUs must only be granted to authorized entities. Non-

embedded systems, especially, must have a password-protected user management system

to prevent unauthorized access.

2. Software Process: Software components need the ability to identify each other. For this

purpose, an identity per component is necessary and must be assigned no later than during

integration. Unknown software, for example, uploaded by the user to the infotainment

system, must also have an identity.

3. Access Control: Authorized entities must possess explicit permissions defining what

actions are permitted, a requirement. Access control is particularly relevant for regulating

access to sensitive sensor data in Zone Z1, determining the rights of identified users using

the HMI in Zone Z5, and controlling authorized external access through the control room

in Zone Z6.

49

Chapter 4 Security Requirement Analysis

Especially with the IAC requirement, it becomes apparent that the ISA-62443 standard series was

not explicitly designed for automotive systems but for IACS, where numerous human individuals

have access to control systems, and portable devices are also regularly connected and disconnected

to the network. For this reason, the requirements of ISA-62443-3-3 are tailored to scenarios in

which a person gains access to a system component, which is only necessary in the maintenance

case for our SUC. Therefore, we refrain from requirements such as multifactor authentication

for all networks or a PKI within the vehicle.

Segmentation For zone Z1 and conduit C1, segmentation is a crucial security requirement to

separate safety-critical communication from non-critical traffic and prioritize them concurrently.

On HPC platforms, applications must also be segmented to prevent negative mutual influence,

especially in case of corruption. The following security requirements have been identified:

1. Network Segmentation: Physically or logically segmenting the SUC networks can lower

the number of entry points and significantly reduce the attack surface. Attacks such as

privilege escalation or lateral movements can be prevented. Simultaneously, it simplifies

monitoring, prioritization, and access control of data, ultimately leading to higher network

efficiency. Our SUC consists of a central Ethernet network in C1 organized in a ring

topology, including both highly critical traffic like control parameters from the cerebrum

to the dynamic modules and non-critical user inputs from the HMI. Critical traffic must

be isolated and prioritized. This makes it more difficult for attacks to propagate through

the vehicle. Since a physical separation is not feasible due to the need for a compact wiring

harness, network segmentation must occur on a logical level, for example, through VLAN.

Therefore, switches and the vehicle gateway must support configurability for this purpose.

2. Application Partitioning: Similar to network traffic, applications on ECUs should be

isolated from each other. This prevents potential security breaches from affecting other

applications and allows for more efficient resource utilization. Virtualizing applications

is a suitable technical solution for this purpose. A unified environment enables better

coexistence of legacy applications, more efficient development and testing, and improved

responsiveness to regulatory requirements. The SUC has different HPC platforms in zone

Z1 and Z4 supporting the execution of multiple applications

3. Zone Boundary Checks: Access control and monitoring must be possible at zone bound-

aries. For this purpose, ISA-62443-3-3 calls for managed interfaces such as switches, routers,

and dedicated firewalls. Regarding our SUC, the transition from conduit C1 to conduit

C4 must be controllable, as this is the vehicle’s interface to the outside world. The vehicle

gateway must, therefore, support configurable control flow monitoring and a robust logging

mechanism.

DoS Protection Threats that attempt to restrict the availability of the SUC conduits have

been identified for all conduits of the SUC. This typically occurs through DoS attacks, where

a network is flooded with specific messages, causing a significant increase in latency. Especially

for time-critical use cases, high latency is unacceptable, leading to the derivation of the following

security requirements for the SUC.

1. Rate Limiting: Mitigating the consequences of a DoS attack can be achieved by lim-

iting the transmitted data. However, it is crucial not to violate critical time guarantees

50

Chapter 4 Security Requirement Analysis

for transmitting critical traffic. Such limitation must, therefore, be finely adjustable and

possibly applicable only to specific network areas.

2. Firewall: The central gateway, through which external connections enter the vehicle, must

have a firewall that filters or even wholly blocks traffic. A strict deny-by-default policy for

access control is necessary.

Monitoring The ability to detect and react to security incidents is necessary within all zones,

expressed through the foundational requirement TRE. In particular, we derive the following

security requirements for our SUC:

1. Continuous Monitoring: The SUC must be capable of detecting security-critical inci-

dents. Such detection mechanisms should not only report failures during the verification

of cryptographic protection but also identify network anomalies to detect DoS attacks in

the SUC.

2. Logging and Reaction: Security incidents must be logged and made available to autho-

rized entities. That means ECUs must provide an audit log locally and to an authorized

third party. To protect the passenger’s safety, we extend the requirement to make the SUC

capable of adequately responding to a security incident, such as stopping or slowing down

the vehicle.

With these security requirements protecting the SUC, we reevaluated the likelihood and impact

of the threats in ZCR 5.9, resulting in a tolerable risk for each threat (ZCR 5.10 and ZCR 5.11).

The security requirements must be technically realized while considering potentially conflicting

requirements from other areas, such as the safety domain.

4.4 Discussion

Our threat and risk analysis particularly underscores the need for system and communication

integrity, authentication, network and application segmentation, and the SUC’s ability to respond

to security incidents. Software and communication integrity, in particular, play crucial roles in

achieving a secure automotive system. This finding aligns with previous research [68], which

identifies the injection of fake messages as one of the most severe threats to modern vehicles. In

the following discussion, we elaborate on various aspects that became evident during our risk

assessment and the derivation of security requirements:

4.4.1 Applicability of ISA-62443

No established automotive standard existed when we started the threat and risk assessment.

Hence, we opted for the ISA-62443 standards, even though they were initially designed for IACS

rather than a software-defined vehicle. ISA-62443-3-2 provides a comprehensive risk analysis

scheme for systematically identifying and documenting security requirements. However, certain

aspects, such as the computation of security levels, are open to interpretation. ISA-62443-3-3

presents security requirements based on pre-determined security levels tailored for systems with

regular interactions between humans and computing units. While these requirements are gen-

erally relevant, some, like two-factor authentication and a PKI for in-vehicle systems, may be

unnecessary or inappropriate for the automotive domain. Thus, a reevaluation of the compensat-

ing measures given in ISA-62443-3-3 is essential for automotive system.s Today, UN regulation

No. 155 [63] presents measures specifically designed for application in the automotive field.

51

Chapter 4 Security Requirement Analysis

The risk analysis in ISA-62443-3-2 relies on identifying and assessing threats, with each threat

assigned a risk value. Compensating measures are then iteratively applied to reduce these risks to

a tolerable level. However, the standard does not explicitly guide the determination of security

levels. A future standard should clarify the relationship between risk and security levels to

establish a common understanding.

Lastly, the ISA-62443 standards approach the SUC purely from a security perspective. Con-

sequently, some security requirements must be evaluated, considering potential conflicts with

requirements from other domains. For instance, the need to encrypt low-level driving commands

in zone Z2 addresses privacy concerns but introduces additional latency, a critical factor for

safety. Ultimately, it will be a matter of weighing up which goal is more important and which

measures should be implemented.

If adopting the risk analysis of ISA-62443-3-2 for the automotive domain, we suggest the following

adaptations:

1. Common Evaluation Criteria: Establish a standard set of evaluation criteria and a

consistent scoring scheme for automotive systems to enhance the comparability of analysis

results. Consider prioritizing assessments using a multi-criteria decision-making process,

such as AHP.

2. Tailored Countermeasures: Adjust the countermeasures listed in ISA-62443-3-3 for the

automotive domain. Focus on lightweight and resource-saving techniques instead of user-

oriented, computationally heavy systems. A good starting point is the recently published

UN Regulation No. 155.

3. Security-Safety Co-Engineering: Extend foundational requirements to include safety

requirements such as reliability, timing constraints, and redundancy for a security-safety

co-engineering approach. This integration can address hazardous situations with outcomes

similar to certain cybersecurity threats in a unified process.

In conclusion, we find the risk analysis of ISA-62443-3-2 applicable to automotive systems with

the considerations outlined above. The partition into zones and conduits effectively breaks down

the system’s complexity for a more manageable analysis. Additionally, the concept of conduits

enables modeling the propagating effects of attacks through the in-vehicle network.

4.4.2 Quality of Assessments

To obtain reasonable and consistent assessments of the SUC, we engaged an expert committee

of eight computer scientists and mathematicians affiliated with the Security Engineering Group

at the Technical University of Darmstadt.

The committee conducted thorough discussions for each assessment task, covering various as-

pects such as the relevance of evaluation criteria in the AHP processes, identifying threats, and

determining security target levels. To commence this process, our experts underwent a detailed

introduction to the SUC through a Q&A session.

The expert committee jointly accomplished the threat identification process and all assessments.

We argue such a consensus-based approach effectively addresses subjectivity and vagueness, en-

suring a well-rounded and reliable evaluation. It is worth noting that increasing the committee’s

heterogeneity, particularly in terms of educational background, might have further enhanced the

robustness of our results.

52

Chapter 4 Security Requirement Analysis

4.4.3 Comparison to ISO/SAE 21434

Today, the ISO/SAE 21434 standard provides a risk analysis process for automotive systems.

While the detailed risk analysis of ISA-62443-3-2 begins with identifying threats, the ISO/SAE

21434 starts from potential damage scenarios and traces them back to attack paths. More

precisely, the risk assessment methods comprise seven steps (I-VII). Initially, damage scenarios

that may occur through compromised assets are identified (I). A damage scenario is triggered

by a set of adverse actions, a so-called threat scenario, enumerated in (II). The impact of each

damage scenario is assessed according to four core categories of consequences: Safety, Financial,

Operational, and Privacy (III). Subsequently, each threat scenario is decomposed into attack

paths in a top-down or bottom-up approach (IV). The feasibility of each path is assessed according

to a pre-defined scale (V), resulting in a risk value (VI) for each threat scenario, which also

incorporates the impact of the damage scenario. Finally, risk reduction methods shall be realized

(VII). If the risk for a threat scenario has to be reduced, a Cybersecurity Assurance Level (CAL)

reveals requirements for the affected item.

At first glance, the risk analysis process of ISO/SAE 21434 and ISA-62443 have little in common.

On closer inspection, however, both standards do share similar concepts. The CAL is similar

to the SL-T values, which are only determined if the risk is too large. Instead of conduits,

attack paths cover the propagating effects of adverse actions. While the idea of decomposing

threat scenarios into attack paths is the most prominent feature of ISO/SAE 21434, our work

reveals requirements that still need to be met by ISO/SAE 21434. Unlike ISA-62443, the novel

automotive standard suggests assessment criteria and parameters in its annex. However, it

insists on neither underlying cybersecurity requirements nor mitigation techniques, contrary to

ISA-62443. Suggestions of countermeasures for specific CALs are helpful for a common minimum

security perception because road vehicles are generally subjected to the same safety and legal

requirements. Also, consistent scoring schemes and a dedicated process to identify relevant

critical assets of a potentially complex architecture would be desirable.

4.5 Sub-conclusion

In this chapter, we presented a consensus-based implementation of the generic ISA-62443 cy-

bersecurity standard for a software-defined vehicle. Our work involved the identification of

risk evaluation criteria and the application of a multi-criteria decision-making scheme to assess

automotive risks comprehensively. Additionally, we introduced a hierarchical threat model to

facilitate a collaborative threat identification process, enabling experts to identify threats at a

granular level for better comparability.

Based on the safety aspects and high-level security risks, we divided the SUC into zones and

conduits and determined security levels for each as a vector, with each element representing the

extent to which a foundational requirement is affected in the corresponding zone. Leveraging

ISA-62443-3-3, we derived security requirements for the zones and conduits of the SDV, effectively

mitigating risks to a tolerable level. Despite ISA-62443 initially targeting IACS, we advocate

for its applicability to the automotive domain, especially when combined with the adaptations

proposed in this work.

Addressing our first research question (RQ1), we conclude that system integrity, authentication,

access control, the separation and prioritization of critical and uncritical networks and applica-

tions, and the ability to respond to security incidents are crucial for a secure SDV. Recognizing

53

Chapter 4 Security Requirement Analysis

that security is not free and introduces latency and maintenance costs is essential. Therefore,

adopting a security-safety co-engineering approach is vital, considering requirements from differ-

ent domains.

Concerning maintenance, SDVs not only require effective countermeasures against cyberattacks

but also need integration into an overarching security process. This ensures the ability to update

and maintain the system cost-efficiently, even after years of operation. In the subsequent chapters,

we will present technical solutions for selected security requirements and integrate them into the

UNICARagil vehicles.

54

5. Securing Signal-Based Protocols

The security requirement analysis conducted in Chapter 4 revealed that system integrity and

authenticity are crucial prerequisites for a secure and safe SDV. This finding aligns with the

cyberattacks presented in Section 3.1, which exploit software vulnerabilities to gain access to

a poorly secured communication bus, eventually allowing the attacker to inject manipulated

driving commands. Therefore, a crucial step in securing SDVs is to ensure that attackers can

neither manipulate nor inject messages to in-vehicle networks, particularly if they transport

safety-critical commands.

This chapter provides technical solutions to ensure authentic communication using signal-based

protocols. Specifically, we focus on the Controler Area Network (CAN) and FlexRay, two well-

established automotive communication protocols. While SDVs usually rely on Ethernet networks

to transport large amounts of data, legacy protocols will not disappear immediately but rather be

slowly replaced during the transition from classical vehicles to SDVs. This is why holistic security

engineering must also consider them and investigate means to protect traffic from unauthorized

access. Both CAN and FlexRay are deployed in isolated places in our reference vehicle.

The CAN protocol is one of the most famous signal-based legacy protocols. Researchers have

demonstrated its susceptibility to cyberattacks in the last decade since vehicles are equipped

with an increasing number of interfaces and undergo a technological transition, as elaborated in

Chapter 1. Note that the CAN protocol has been deployed to road vehicles since the late 1980s.

Due to its popularity and wide application area, many security solutions have been presented,

aiming to authenticate CAN traffic efficiently. However, the protection against manipulation is

only one side of the coin. An adequate key management process is necessary for a modular and

dynamic software environment, as envisioned for SDVs. Therefore, this chapter presents a key

computation and distribution scheme for CAN networks.

Regarding FlexRay, we elaborate on how protocol intrinsic properties can be used to authenticate

traffic. Typically, FlexRay is used for highly critical and deterministic communication, such as

x-by-wire applications. In addition, we investigate how cryptographic keys can be efficiently

and securely updated, especially in a long-living vehicular system. Our reference vehicle deploys

FlexRay as a fallback network for the four dynamic modules that actuate the wheels.

Please refer to Section 2.2 and Section 2.3 for more information on CAN and FlexRay. The

further course of this chapter is structured as follows: Section 5.1 defines the attacker model,

and Section 5.2 describes the system model. Subsequently, we present our key computation

and distribution scheme for the CAN protocol in Section 5.3, followed by protection means for

FlexRay networks in Section 5.4.

55

Chapter 5 Securing Signal-Based Protocols

5.1 Attacker Model

Our works on securing CAN and FlexRay communication assume that the attacker Adv behaves

like a typical Dolev-Yao attacker [72]. This attacker has significant network control and can

monitor, publish, delete, and modify traffic on both CAN and FlexRay buses. The methods

through which Adv gains control include physically connecting to the bus or exploiting software

vulnerabilities on ECUs. Installing a fake ECU in a dishonest repair shop or connecting to an

unsecured diagnostic interface are examples of the first case. The second case encompasses known

vulnerabilities a (remote) attacker could exploit to access the bus through an honest ECU.

In CAN networks, Adv can communicate once access to the bus is established. This implies that

Adv can potentially introduce malicious messages, modify existing ones, or disrupt the normal

flow of communication within the CAN network.

Manipulating FlexRay traffic is more challenging, as Adv first needs to learn the network param-

eters required to participate in communication without violating the communication schedule.

This complexity stems from the deterministic nature of FlexRay, where communication occurs

according to a predefined schedule. Therefore, Adv faces a higher barrier to entry in interfering

with FlexRay traffic compared to CAN.

Despite the significant control Adv has over the network, explicit limitations exist. Adv cannot

break cryptographic primitives, suggesting that the security of cryptographic mechanisms is

assumed to be intact. Additionally, Adv cannot actively corrupt ECUs, such as reading secrets

from secure memory or installing software.

5.2 System Model

Our system model assumes signal-based protocols within small subnetworks, serving a specific use

case and supporting legacy technology. In our reference vehicle, the CAN bus connects nearfield

radar sensors in a line topology, while the FlexRay network acts as a fallback communication

method for the highly safety-critical dynamic modules responsible for the wheels.

Traditionally, embedded ECUs in legacy automotive networks were designed for a specific task

without clear hardware and software separation. Therefore, we assume that ECUs communicat-

ing through CAN or FlexRay are rather resource-constrained and highly integrated while still

allowing for a more resourceful ECU to manage security measures.

We further assume the existence of a trusted security platform, EC, that any ECU can com-

municate with. EC can be a dedicated ECU or a specially secured binary running on an HPC

platform. Conceptually, EC does not need to be inside the vehicle if direct communication is

feasible with the ECUs. However, we suggest integrating EC inside the vehicle for practical and

scalability reasons.

The term “trusted” implies that EC functions as a root of trust, meaning that Adv neither

compromises nor controls EC. EC stores cryptographic secrets of ECUs that are part of the CAN

and FlexRay network and are available whenever requested. To achieve this, EC must be equipped

with fault-tolerant mechanisms to operate even during failures and robust protection against

attacks. Though the task of designing and securing EC is orthogonal to our initial motivation

of creating a secure key distribution protocol and ensuring traffic authenticity, we provide some

insights: EC should be redundantly deployed to reduce the risk of failures and physically secure

56

Chapter 5 Securing Signal-Based Protocols

through HSMs offering secure storage for cryptographic secrets. Note that hardware security

and HSMs, in particular, belong to the requirements we identified in Section 4.3.3. The trust

can be distributed across multiple instances of EC if necessary.

In our case, the brainstem is a promising candidate for EC due to its redundant layout and

fail-operational position within the vehicle. Additionally, its ARM processors, equipped with a

TrustZone, offer a secure environment for executing trusted code.

5.3 A Key Distribution Scheme for CAN Networks

The following sections are based on the publication “Using Implicit Certification to Efficiently Establish

Authenticated Group Keys for In-Vehicle Networks” [2], which was presented at the Vehicular Network-

ing Conference in 2019.

This section describes a modular key establishment scheme for in-vehicle networks using implicit

certificates for lightweight key authentication. We derive authenticated elliptic-curve key pairs

from previously distributed implicit certificates for each ECU during initialization. Next, we

compute symmetric keys for those ECUs subscribed to the same CAN message identifier. As

stated in [44], such a key strategy is the most promising one regarding scalability. We demonstrate

how an One-Time Pad (OTP) can efficiently transmit keys and what precautions are necessary

to keep the protocol secure. We consider our scheme as a preceding step to the numerous

frameworks [73, 41, 42, 43, 44] that have been presented in recent years to authenticate and

encrypt in-vehicle traffic. Since many existing solutions lack a key distribution scheme, we

address the necessity for such a scheme.

Digital certificates are a common way of proving ownership of a cryptographic key to another

digital entity. Typically, their application requires a PKI, resulting in a chain of trust represented

by a series of dependent certificates. Consequently, each ECU would need to store a potentially

long chain of certificates, which contradicts not only our system model that assumes resource-

constrained ECUs and strives for a high degree of maintenance. Therefore, our key distribution

scheme uses implicit certificates as a lightweight computational version. That way, assigning a

digital identity to resource-constrained ECUs facilitates deployment in an SDV.

5.3.1 Implicit Certificates

A certificate binds an identity to a cryptographic key, thus allowing it to prove key authenticity.

Usually, this is done by a trusted Certificate Authority (CA) that signs the identifier and the key.

If a third party trusts this CA, it will also trust the ownership of the key. Explicit certificates

contain information about the owner, the key, and a digital signature by the CA. They are a

well-established tool on contemporary computer systems. In most cases, explicit certificates are

available in the X.509 format. Since a third party typically considers only a small number of

CAs as trustworthy, a chain of trust is built to verify a certificate. Such a chain of trust relies

on transitive trust, i.e., if a party A trusts CA and CA certifies CA’ then A trusts CA’ as well.

Verifying chains of explicit certificates imposes a comparably large computational and memory

overhead, making them inconvenient for embedded in-vehicle components.

In comparison, an implicit certificate is a lightweight cryptographic primitive that also allows

one to verify the identity behind a key. It enables the certificate owner to derive the public

key by using the public key of the trusted authority. The certificate owner can exclusively

compute the corresponding secret key. Evidence of key authenticity is implicitly guaranteed

57

Chapter 5 Securing Signal-Based Protocols

once the certificate owner uses the private key corresponding to the derived public key. Implicit

certificates are also called micro certificates because they are generally smaller and faster than

explicit ones. Assuming a key length of 128 bits, an implicit certificate is 23 times smaller than

the explicit equivalent [74]. For this reason, we investigate in this work to what extent they

apply to in-vehicle networks to authenticate shared keys between ECUs.

5.3.2 Notation

In the subsequent sections, we use the following notation: Let ECU be the set of ECUs with

Ei ∈ ECU representing a specific ECU participating in our scheme. As mentioned, EC is a

trusted component functioning as a CA. The set C encompasses all CAN message identifiers

with CEi indicating the message types to which Ei is subscribed. ECAN-ID refers to the set of

ECUs subscribed to CAN messages of type CAN-ID ∈ C. The elliptic-curve private key of Ei is
represented by dEi , while QEi is the corresponding public key.

5.3.3 Assumptions

We assume a static network topology, as described in our system model in Section 5.2. It is

expected that each ECU possesses SRAM memory. This assumption is essential, as we leverage

the physical properties of SRAM memory to retrieve a unique key using a Physical Unclonable

Function (PUF). Given that legacy ECUs typically have limited resources and are highly in-

tegrated systems, we avoid the requirement for secure memory. However, we do assume that

all ECUs participating in our scheme possess the required cryptographic metadata, including

a common generator G for the elliptic curve P-256, a secure hash function Hash, and a Key

Derivation Function (KDF) denoted as KDF, where KDF(k,i) refers to the derivation of a key

through i iterations from the seed sd. Depending on the chosen Hash, the KDF can be con-

structed iteratively from Hash. Finally, it is important to note that no initial level of trust is

preassumed between the ECUs.

5.3.4 Scheme Phases

Our key distribution scheme comprises three main phases that must be executed sequentially.

Since we do not expect an initial level of trust between the ECUs, we first mutually authenticate

each Ei ∈ ECU with EC using a PUF. In the second phase, each legitimate ECU Ei receives an

implicit certificate ICEi , which allows to prove authenticity to others ECUs. This step is crucial

to prevent man-in-the-middle attacks in subsequent steps. The third phase involves computing

a symmetric key for each CAN message type using Elliptic Curve Diffie-Hellman (ECDH). Note

that after performing the first two phases, the third one can be repeated arbitrarily often, re-

sulting in authentic message-based group keys. To summarize, the three phases of our scheme

can be outlined as follows:

1. ECU Authentication Phase: Each Ei ∈ ECU contacts EC, and they mutually authenti-

cate using a PUF. By doing so, EC ensures to only issue implicit certificates for legitimate

ECUs in the second phase. Similarly, each Ei must ensure the authenticity of QEm to verify

implicit certificates of other ECUs.

2. ECU Certification Phase: EC issues an implicit certificate ICEi for each legitimate Ei.
In the end, EC possesses an authenticated public key QEi of Ei.

58

Chapter 5 Securing Signal-Based Protocols

3. Key Computation Phase: Finally, the ICEi allows the ECUs from ECAN-ID to compute a

shared symmetric group key for messages of identifier CAN-ID. To achieve this, we establish

an authentic session key using ECDH, which subsequently secures the transmission of

further cryptographic keys.

Executing the first and second phases of the scheme is necessary only if a new implicit certificate is

issued. This situation may arise after a predefined key lifetime, a firmware update, or replacing an

ECU. Only the third phase must be rerun for a simple key update to secure CAN communication.

However, all involved ECUs must be capable of storing the certificate ICEi after shutdown. If

they only possessed volatile memory, all three phases must be conducted whenever a key is

required. We propose performing these phases for each new driving session, such as when the

vehicle starts. In the following, we describe each scheme phase in more detail.

ECU Authentication Phase

This phase is designed to establish an initial level of trust between each Ei and EC. In subsequent

steps, EC issues an implicit certificate only for those control units that have been successfully

authenticated in this phase. The primary objective of this phase is to generate a shared symmetric

key, denoted as kphyi , between Ei and EC, and to provide Ei with EC’s public key QEm . QEm is

necessary for verifying certificates of other ECUs. The key kphyi is derived by creating a physical

fingerprint of Ei. Consequently, Ei and EC only trust each other if both can demonstrate possession

of kphyi .

To establish the initial level of trust, we use an SRAM PUF to generate and share kphyi based

on the PUF response and a pre-agreed fuzzy extractor scheme. Since the PUF response resides

on Ei, its challenge-response pair should be securely stored in EC at fabrication time. Since the

unique SRAM PUF response is exclusively known to EC, no other ECU can obtain kphyi . The

benefit of using a PUF is that we do not need to deploy a cryptographic key on Ei at fabrication
time but instead solely rely on physical properties.

Figure illustrates 5.1 the ECU authentication phase. At vehicle startup, EC sends a randomly

chosen nonce n, the challenge c and helper data hd to Ei. A challenge is the set of memory

addresses that can be queried. Upon reception, Ei queries its PUF with c as input and retrieves

the PUF response. Using a fuzzy extractor, Ei computes kphyi by XORing the PUF response with

the helper data. Note that the fuzzy extractor removes noise from the PUF response. Ei likewise
selects a nonce l and sends n + l encrypted with kphyi back to EC. EC decrypts the received

message, computes l, and sends its public key QEm , l, and a unique identifier idi encrypted with

kphyi to Ei. idi identifies Ei and will be included in the implicit certificate. Since only EC can

compute kphyi , Ei trusts QEm after this step.

As indicated above, we deliberately do not use a pre-shared long-term key between EC and Ei
since we do not assume ECUs to be equipped with secure memory. However, ECU do have

memory components that always have unique physical properties. At fabrication time, EC needs

once to gain access to the PUF of Ei to compute the corresponding helper data to kphyi , which

is selected randomly.

ECU Certification Phase

In the second phase, as illustrated in Figure 5.2, EC issues an implicit certificate ICEi to the

previously authenticated Ei. Such micro certificates are not only smaller in size but require less

59

Chapter 5 Securing Signal-Based Protocols

EC Ei

1.1. Select challenge c
1.2. kphyi ← Z2

1.3. r ← PUF(c)
1.4. hd← r ⊕ kphyi

2.1. Create request req

3.1. Generate nonce n
3.2. Select challenge c

4.1. r′ ← PUF(c)
4.2. kphyi

← r′ ⊕ hd
4.3. Select nonce l
4.4. m ← Enc(n+ l)kphyi

5.1. n, l← Dec(m)kphyi

5.2. Create idi

5.3. m′ ← Enc(QEm | l |
idi)kphyi

6.1. l← Dec(m)kphyi

6.2. Check l
6.3. Save QEm

and idi

8.1. Close connection

req

n, c, hd

m

m′

ACK

d
u
ri
n
g

fa
b
ri
ca
ti
o
n

E
C
U

A
u
th
en
ti
ca
ti
o
n
P
h
a
se

Figure 5.1: During the ECU Authentication Phase, EC and Ei mutually authenticate. For this purpose,
Ei retrieves kphyi from its PUF by using a challenge c. EC sends its public key QEm encrypted to Ei. Since
both Ei and EC eventually possess kphyi

, they trust each other.

computational resources compared to X.509 certificates. More precisely, EC distributes Elliptic

Curve Qu-Vanstone (ECQV) certificates [75] to those ECUs authenticated in the first phase.

An implicit certificate allows a third party to derive an authenticated public key QEi of Ei using
QEm . Since the authenticity of QEm has been proven in the first phase, we do not need to verify

potentially long and inefficient certificate chains. As mentioned earlier, this would be hard to

achieve in an automotive system, including resource-constrained devices. Only after this phase

QEi is used to compute CAN message-based group keys.

The ECU Certification Phase is triggered with an authentication request message sent by each Ei
that asks for an ICEi . This triggering message has a high-priority type, potentially overwriting

other messages on the bus. The request contains the previously obtained identifier idi. Ei selects
a random x ∈R [1, o− 1] and sends the product x ·G to EC, where G is a generator point on the

elliptic curve P-256, and o is the order of G. EC creates the implicit certificate ICEi for Ei. For

this, it first calculates w = x ·G+ l ·G, where l ∈R [1, o− 1], and then encodes w and idi in ICEi .

Additionally, it computes hHash(ICEi) and s = h · l+ dEC . Ei needs s to calculate its private key

dEi that corresponds to ICEi . EC encrypts s with kphyi and sends ICEi and s back to Ei.

The encryption of s is not part of the original ECQV scheme. However, by decrypting s, Ei
implicitly proves its identity to EC because kphyi is only known to these two parties. Without this

encryption step, the adversary Adv could easily impersonate Ei, leading to the erroneous issuance

of a valid certificate. Any party can compututationally derive the public key QEi by calculating

QEi = h′ ·w+QEm = h′ ·(m+ lG)+QEm = h′xG+h′lG+QEm = (h′x+hl+dEC) ·G = dEi ·G. The

60

Chapter 5 Securing Signal-Based Protocols

Ei EC

1.1. x ∈R [1, o− 1]
1.2. m← x ·G

2.1. l ∈R [1, o− 1]
2.2. w ← m + l ·G
2.3. ICEi ← Encode(idi, w)
2.4. s← Hash(ICEi) · l + dEC

2.5. m′ ← Enc(s)kphyi

3.1. h′ ← Hash(ICEi)
3.2. s′ ← Dec(m′)kphyi

3.3. dEi
← h′ · x+ s′

3.4. QEi
← h′ · w +QEm

= dEi
·G

4.1. Close connection

m, idi

m′, ICEi

ACK

Figure 5.2: During the ECU Certification Phase, EC issues ECQV certificates to all previously authenti-
cated control units Ei. Any ECU possessing ICEi

can derive the authenticated public key QEi
, while only

Ei can compute the corresponding private key dEi
.

computation of the corresponding private key dEi requires x, which is known only to Ei. More

precisely, Ei computes dEi as h
′ · s′, which is equivalent to h′ · x+ h · l + dEC and therefore is the

matching private key to QEm .

After this phase, each legitimate Ei possesses an implicit certificate ICEi that allows any further

party to derive an authenticated public key QEi . In the third phase, our scheme uses QEi to create

group keys for securing CAN messages. Unlike traditional explicit X.509 certificates, implicit

certificates have no means of revocation. Therefore, we suggest defining a fixed expiration time,

after which new certificates must be issued.

Key Computation Phase

In the final phase, we use the previously distributed implicit certificates to establish short-term

symmetric keys for securing CAN frames of a specific identifier. In the end, a given Ei receives∣∣CEi∣∣ distinct cryptographic keys, with each key corresponding to a subscribed CAN message

identifier. The role of kCAN-ID is to secure CAN frames of the type CAN-ID. Its primary

functions include computing a MAC and, optionally, encrypting traffic. As CAN operates as a

broadcast protocol without distinct recipients, kCAN-ID is made accessible to all ECUs in ECAN-ID.

In other words, all ECUs communicating through the message identifier CAN-ID receive the same

key kCAN-ID.

Once the first two phases of the scheme are executed, the third phase can be rerun arbitrarily

often, allowing for fast key updates with minimal overhead. However, for security reasons, we

recommend executing all phases if the ECUs cannot securely store the private key dEi . Failing to

do so may expose dEi to theft, enabling an adversary to participate in the communication.

This phase consists of two steps: In step [A], we compute a session key KEi−EC between Ei and
EC using ECDH. Subsequently, in step [B], we utilize this key to securely transmit the keys to

the ECUs subscribed to CEi .

[A] Ei sends a session key request to EC containing its implicit certificate ICEi . Upon reception,

EC publishes a randomly chosen nonce n′ ∈ Z128
2 and both Ei and EC compute KEi−EC =

61

Chapter 5 Securing Signal-Based Protocols

KDF(n′ ·dEi ·QEm) = KDF(n′ ·dEC ·QEi). The key derivation function KDF serves as a high

entropy source to obtain a uniformly distributed key string. Moreover, it hides potential

structural information of the raw ECDH key.

[B] EC collects a random and secret zEi ∈ Z128
2 from each ECU Ei after having broadcasted

a session start notification. For that purpose, Ei encrypts its zEi using again the session

key KEi−EC and sends the ciphertext to EC. In response, EC decrypts zEi and subsequently

computes kCAN-ID = zEi⊕zEi+1⊕ ... zEn∀ Ei ∈ ECAN-ID, n =
∣∣ECAN-ID

∣∣ for every CAN-ID ∈
C. Finally, EC encrypts the keys and sends them back to Ei.

ECU E1

kE1−EC

0xba
0x3a
0x43

ECU E2

kE2−EC

0x77
0x3a
0x43

ECU En

kEn−EC

0xba
0x3a

ECU E3

?0xba

ECU EC

kE1−EC

kE2−EC

kEn−EC

...

[B2] : zE2
∈ Z128

2

czE1
= Enc(zE1

)kE1−EC

[B6] : k0x3a, zE1 = Dec(c0x3a,E1)kE1−EC

Check zE1

[B2] : zE2
∈ Z128

2

czE2
= Enc(zE2)kE2−EC

[B6] : k0x3a, zE2
= Dec(c0x3a,E2

)kE2−EC

Check zE2

[A3] : kE3−EC
= KDF(n′ · dEC

·QE3
)

[B2] : zEn ∈ Z128
2

czEn
= Enc(zEn)kEn−EC

[B6] : k0x3a, zEn = Dec(c0x3a,En)kEn−EC

Check zEn

[A3] : kE3−EC
= Hash(n′ · dEC

·QE3
)

[B4] : k0x3a = zE1 ⊕ zE2 ⊕ zEn

C
A
N

[B3] : czE3

[B3] : czE2

[A1] : session req(ICE3)

[B3] : czEn

[A2] : n′ ∈ Z128
2

[B1] : session start notification()

[B5] : c0x3a,E1
= Enc(k0x3a, zE1

)kE1−EC

c0x3a,E2
= Enc(k0x3a, zE2

)kE2−EC

c0x3a,En = Enc(k0x3a,zEn
)kEn−EC

cryptographic
keys

subscribed
CAN messages

Figure 5.3: In stages [A1] to [A3] of step [A], E3 negotiates a session key KE3−EC
with EC using ECDH and

its implicit certificate ICE3 . In stages [B1] to [B6] of step [B], EC initiates the creation of the symmetric
key k0x3a for the CAN-ID 0x3a. At first, E1, E2, and En create each a secret zE1 , zE2 and zEn , encrypt
them with the session key [B2] and send the ciphertexts to EC [B3]. EC computes k0x3a = zE1

⊕ zE2
⊕ zEn

[B4] and sends it encrypted to E1, E2, and En [B5]. The ECUs decrypt k0x3a [B6] and store it.

Figure 5.3 illustrates the individual steps to compute a kCAN-ID. Note that each kCAN-ID is the

XORed random numbers produced by the Ei that are subscribed to CAN-ID. Consequently,

those message types to which the same ECUs are subscribed receive the same key. An additional

key would not significantly increase security, as the same parties communicate through the same

bus.

Step [B] should be repeated every time the vehicle starts to get fresh keys. Once the implicit

certificate is considered expired or the ECUs cannot securely store the keys, all phases must be

rerun.

62

Chapter 5 Securing Signal-Based Protocols

Using an OTP for Encryption and Decryption To protect the cryptographic keys associ-

ated with CAN message identifiers from eavesdroppers, we must transmit them encrypted from

EC to the ECUs. We generically indicate this using the Enc command during the scheme’s third

phase.

Consequently, the involved ECUs must support an encryption and decryption primitive, prefer-

ably provided by a hardware crypto extension. The responsibility of determining the functional-

ities represented by Enc lies with the vehicle manufacturer. Depending on the chosen algorithm,

slight modifications may be required in the scheme phase to ensure security.

One option is to adopt an OTP as a lightweight and simultaneously secure variant. When

employed correctly, the OTP guarantees perfect secrecy, ensuring that the ciphertext does not

disclose any information about the original message and remains indistinguishable from a random

number. Another advantage is that implementation involves only an XOR operation, making it

suitable for any microprocessor.

However, the key of an OTP must be used only once. Otherwise, its perfect secrecy gets lost,

potentially leading to the revelation of the original message in the worst-case scenario. In our case,

an OTP can only be correctly applied if a KDF is involved in step [B] of the third phase. This is

necessary because ECU Ei encrypts its random number zEi using the shared key kEi−EC . Later,

kEi−EC is used to secure the transmission of the group key kCAN-ID. Although each encryption

itself is secure, the entire protocol would be broken if kEi−EC is indeed used twice, as we show in

the following:

Consider a network comprising two ECUs, denoted as EA and EB, engaged in communication

on the message identifier 0xAB. According to the proposed protocol, both ECUs independently

choose random numbers, namely zEA and zEB . EA computes czEA = zEA ⊕ kEA−EC while EB
similarly calculates czEB = zEB ⊕ kEB−EC .

Upon receiving these values, EC decrypts zEA and zEB , computes k0xAB = zEA ⊕ zEB , calculates

ck0xAB ,EA = k0xAB ⊕ kEA−EC and ck0xAB ,EB = k0xAB ⊕ kEB−EC , and sends both ciphertext to the

corresponding ECUs. Meanwhile, the attacker Adv intercepts czEA , czEB , ck0xAB ,EA , and ck0xAB ,EB .

Recall that Adv possesses this ability according to the attacker model presented in Section 5.1.

Subsequently, Adv can recompute the secret zEB by XORing the ciphertexts:

czEA ⊕ ck0xAB ,EA = zEA ⊕ kEA−EC ⊕ k0xAB ⊕ kEA−EC

= zEA ⊕ k0xABEC
= zEA ⊕ zEA ⊕ zEB

= zEB

Similarly, Adv could obtain zEA , eventually enablingAdv the recomputation of the key k0xAB.

This example shows that using the same key more than once carries significant consequences if

using an OTP for Enc. Therefore, rather than directly employing the key kEA−EC , we recommend

using it as a seed for a KDF. Besides, the KDF receives the number of iterations as input,

indicating the count of internal hashing operations. This iteration count must vary each time

step [B] is invoked unless a new implicit certificate is issued, leading to the generation of a fresh

kEA−EC .

63

Chapter 5 Securing Signal-Based Protocols

5.3.5 Evaluation

In this section, we describe the implementation of the proposed scheme and then evaluate it using

runtime measurements and a theoretical security analysis. We mainly focus on timing behavior

since automotive networks typically must not have large latencies for safety reasons.

Central vs. Decentral

Our protocol relies on the presence of the central EC, responsible for issuing certificates and

computing cryptographic keys for CAN message types. Nevertheless, only minor adjustments

to the proposed scheme are required to enable decentralized key computation. Once each ECU

possesses an implicit certificate, it can establish secure connections with all others, facilitating

the secure transmission of its secret z value. Eventually, all ECUs subscribed to a specific CAN

message identifier can compute the corresponding key by XORing the received z values.

The deliberate choice of a central instance for key computation offers two primary advantages.

Firstly, a central approach scales better regarding the number of transmitted messages. In a

network with n ECUs, our central approach necessitates the establishment of n secure channels,

whereas a fully decentralized approach would result in n·(n−1)
2 connections. Since a typical legacy

network in an SDV is not expected to be large, the scalability argument may not be convincing

alone. Another rationale for centrally administering cryptographic keys is maintenance. In a

decentralized scheme, each ECU requires system knowledge, necessitating awareness of other

participating parties, which complicates system updates. In a central approach, ECUs remain

system-agnostic and interact solely with EC without the need to engage with other ECUs. Conse-

quently, changes to the security model only need to be implemented in EC. From a maintenance

perspective, such an approach is more promising as it is more cost-efficient.

Security Analysis

The presented scheme employs implicit certificates for distributing authenticated keys to ECUs,

facilitating the rapid computation of shared symmetric keys. Initially, a session key is generated

using ECDH. Implicit certificates and ECDH are based on the Elliptic Curve Discrete Logarithm

Problem (ECDLP), considered hard [76]. While it is straightforward to compute a point P = x·G
given x and G, determining x from P and G is computationally hard. As x remains confidential,

Adv can neither forge implicit certificates nor spoof a session key.

We suggest using OTPs to compute group keys for CAN message types for efficiency reasons.

Assuming a key length of 128 bits makes brute-force attacks difficult, requiring 2128 attempts.

The integrity of our scheme relies on keeping kphy secure. This key is never disclosed and is

exclusively stored on EC, with each Ei deriving it from unique physical properties.

The authenticity of keys is based upon the implicit certificates, while nonces ensure freshness,

thereby enabling the detection of replay attacks.

Implementation

We connected seven exemplary ECUs in both a classical CAN network and a CAN-FD network.

As detailed in Section 2.2, CAN-FD offers a higher bandwidth of up to 8 Mbit/s compared to

classical CAN (1 Mbit/s). A CAN-FD frame supports a payload of 64 bytes, while a classical

CAN frame is limited to 8 bytes.

64

Chapter 5 Securing Signal-Based Protocols

For the classical CAN network, we utilized Olimex ESP32-EVB boards as an evaluation platform.

These boards feature 4 MB flash memory, a 240 MHz 32-bit microprocessor, and an integrated

CAN interface. In the case of the CAN-FD network, Raspberry Pis (RPis) 3B+ with a PiCAN-

FD shield were employed. These RPi boards have 1 GB RAM and a 1.4 GHz ARM Cortex-A53.

While acknowledging that RPi boards cannot be classified as low-resource ECUs, they are used

in our reference vehicle and hence depict a legit architecture for evaluation.

The ECU Authentication Phase was evaluated on a Texas Instruments Stellaris LM4F120 Launch-

Pad Evaluation Board, leveraging the SRAM PUF accessible from prior work [77]. Given that

most devices incorporate SRAM, an intrinsic SRAM PUF can be implemented on them. In cases

where SRAM is unavailable, a PUF can also be implemented on DRAM or Flash memory.

Cryptographic operations are implemented using the BearSSL1 library, specifically designed for

small embedded devices with Elliptic Curve Cryptography (ECC) support. All cryptographic

operations involving ECC are conducted on the NIST P-256 curve. Table 5.1 summarizes the

essential characteristics of our evaluation networks. Despite CAN-FD supporting a bandwidth

of up to 8 Mbit/s, our network yields a lower throughput. We attribute this deviation to the

CAN controller of the PiCAN-FD shied.

Operation Classic CAN CAN-FD

Throughput (Mbit/s) 0.95 4.65

Round Trip Time (RTT) (ms) 0.17 0.15

Table 5.1: Throughput and round trip time for classical CAN and CAN-FD

The traffic of each scheme phase occurs through a designated high-priority CAN message type.

Specifically, all messages exchanged within a given phase share the same CAN identifier. Message

identifiers 0x1, 0x2, and 0x3 are assigned to the traffic of the first, second, and last phases, respec-

tively. This approach protects our scheme from potential delays caused by network congestion,

as other messages are preempted by high-priority traffic.

Furthermore, we allocate the first two payload bits for the current communication step of each

phase. Two bits suffice since there are at most four communication steps per phase. Additionally,

we reserve five additional payload bits to address a specific Ei. Although theoretically, we can

address 32 different ECUs, in an SDV, we expect far less ECUs connected to a single CAN. This

expectation arises from the diminishing prevalence of large CAN networks in contemporary road

vehicles.

Finally, we allocate four bits to track the fragmentation of primitives across different frames,

indicating the order of these frames, as not all primitives can be encoded within a single frame.

For example, an implicit certificate, with a size of 65 bytes, requires classical or two CAN-FD

frames. Table 5.2 illustrates the byte requirements and the corresponding number of CAN frames

for encoding key primitives in our scheme. This allocation results in the use of eleven payload

bits for transmitting metadata, reducing the available payload to 53 bits (classical CAN) and

501 bits (CAN-FD).

1https://bearssl.org/

65

Chapter 5 Securing Signal-Based Protocols

Primitive Size (bytes) #CAN frames #CAN-FD frames

Request Frame – 1 1

Public Key CAN QECU i 65 10 2

Implicit Certificate CAN IC i 65 10 2

CAN Kcanid 16 3 1

Nonce 8 2 1

Table 5.2: Size and number of frames for scheme primitives

Runtime Measurements

After implementing the scheme, we investigate its timing performance. We differentiate between

the initialization time and the time required to generate cryptographic keys for CAN message

types. The ECU Authentication Phase, the Certification Phase, and step [A] of the Key Com-

putation Phase are considered as the scheme initialization since they only need to be executed

once during the lifetime of an implicit certificate.

The SRAM PUF results are derived from measurements taken in our prior works [77]. As the

SRAM PUF was only available on the Stellaris devices used in the prior work, we implemented a

dummy function on the ESP32-EVB and RSP3b+ boards to simulate key extraction from their

SRAM.

To accurately measure the time consumption of the ECU Authentication Phase, we replaced the

time consumption of the dummy function with values obtained from our previous works. The

SRAM PUF response is accessible only after a device reboot, as it relies on the startup values

of the SRAM cells. This aligns with our scheme, as we recommend running the entire scheme

at vehicle startup. Given that reboot time varies across different ECUs, we excluded the actual

reboot time from our measurements to prevent distorting results.

Figure 5.4 presents three measurements for the first two scheme phases, differing in the number

of ECUs in use.

125 250 500 800 1,000 1,250

2

2.1

2.2

2.3

2.4

2.5

Kbit/s

t[s] 7 ECUs
5 ECUs
3 ECUs

4,650

Figure 5.4: Time consumption of the first two scheme phases in a classical CAN network with varying
numbers of ECUs and for various bandwidths. The network throughput does not have a significant
influence, but rather the computational overhead.

Generally, more ECUs in the network leads to increased traffic and prolonged time for implicit

certificate distribution. However, the bandwidth has a marginal impact on timing for a given

number of ECUs because relatively little data needs to be transferred. We observe an average

time of 2.3167s for authenticating devices using a PUF and distributing implicit certificates at

66

Chapter 5 Securing Signal-Based Protocols

1 Mbit/s, the classical CAN bandwidth. This represents a reasonable overhead, considering

initialization occurs only at vehicle startups.

In our second experiment, we measured the time required to establish a specific number of sym-

metric keys among a fixed number of ECUs, indicating the time overhead of the Key Computation

Phase. We explored three network setups: We were initially connecting five ECUs, then adding

two more, and finally extrapolating our results to simulate a CAN with 30 ECUs. We assumed

each key is shared by all ECUs, acknowledging that this is a worst-case scenario as not every

ECU subscribes to all CAN message types. Besides, as explained earlier, in such a case, an opti-

mization would be to deliver only one key to all ECUs because the count of network participants

remains identical.

Figure 5.5 illustrates our results on a classical CAN network with a bandwidth of approximately

1 Mbit/s. It took 27.25 milliseconds to establish a single shared key between seven ECUs and

135.75 milliseconds between 30 ECUs. The computational overhead is small compared to net-

work transmission time, also because our implementation uses an OTP in theKey Computation

Phase.

As depicted in Figure 5.5, both the number of subscribed ECUs and the number of keys have

a linear impact on the time behavior. We do not get perfectly straight lines due to network

collisions and packet loss, as we had to resend frames in such cases, resulting in larger time

consumption.

64 256 512 768 1,024 1,536 2,048
1
10

20

30

40

50

60

#keys

t[s] 5 ECUs 7 ECUs 30 ECUs

Figure 5.5: Time consumption on a classical CAN network at 1 Mbit/s for creating sets of group keys
being shared by 5, 7, and 30 ECUs.

In scenarios where all ECUs share the same keys, time consumption increases dramatically. For

instance, it takes roughly one minute to establish 512 symmetric keys in a bus topology. In

addition to the increased time, the ECU would require at least 512 · 16B = 8192B unused

memory to store the keys. This time would be unacceptable in a real scenario, which, however,

is unlikely to occur and only of theoretical interest.

Practical Implications As stated, we compute a key for each CAN message type in the third

phase. In the classical CAN protocol, eleven bits are allocated for the message type within

the arbitration frame field. Consequently, a maximum of 211 = 2048 keys is needed. However,

CAN-FD utilizes an extended format with 29 bits reserved for arbitration, theoretically allowing

for 229 = 536, 870, 912 different message types.

As maintaining such an extensive key set is impractical, we propose two options to reduce the

potential number of keys if necessary: Firstly, the same key can be utilized for message types

subscribed to by the same set of ECUs. In other words, each distinct group of ECUs shares

67

Chapter 5 Securing Signal-Based Protocols

precisely one key. Secondly, a key is only necessary for safety-critical or confidential messages. A

preliminary network analysis should identify which message types require security, determining

the number of keys needed.

5.3.6 Sub-conclusion

An efficient key distribution protocol is essential in safeguarding signal-based communication

against manipulation. Efficiently updating cryptographic keys is particularly vital for SDVs

with a modular software architecture. The three-phased scheme presented here provides a partial

solution to our research question RQ2: Cryptographic manipulation protection necessitates the

availability of keys on the involved ECUs. The ability to update keys in a modular environment

is essential to prevent key leakages and adequately react to system changes.

Instead of using the group key from the third scheme phase solely for securing messages of a

specific CAN identifier, it could be employed to secure a topic in a service-oriented environment.

This way, mapping a topic to a CAN message is easily achievable from a security perspective,

facilitating the coexistence of legacy communication and novel Ethernet-based approaches.

Our key computation and distribution scheme leverages PUFs to verify the identity of ECUs

and employ implicit certificates to establish a key pair on authenticated ECUs. As implicit

certificates are small and demand low computational resources, they are particularly suitable for

environments such as CAN networks with resource-constrained ECUs. To our knowledge, this

has yet to be done in prior works. These lightweight certificates are ultimately used to compute

a session key and obtain an authentic group key.

While the scheme initialization, comprising the first two phases, consumes on average 2.316 s

in our exemplary CAN network, a 128-bit group key can be created and distributed in only

27.25 ms in the third phase. This phase can be repeated arbitrarily often as long as the implicit

certificate is valid. We recommend executing the three phases at vehicle startup after significant

changes (e.g., ECU replacement, firmware updates) or at predefined time intervals.

We are confident that implicit certificates also pave the way for deploying other automotive and

security-demanding technologies, such as over-the-air updates or V2X communication.

5.4 Securing the FlexRay Protocol

The following sections are inspired by the research presented in the article “Securing FlexRay-based

in-vehicle Network” [3], originally published in the Microprocessors and Microsystems journal in 2020.

In the following sections, we look at FlexRay, another legacy network entirely different from CAN.

Instead of employing arbitration logic and allowing communication at any time, FlexRay has a

deterministic communication schedule divided into time slots as outlined in Section 2.3. Although

we assume that FlexRay will disappear from automobiles in the long term, especially from SDVs,

our reference vehicle demonstrates that this technology may still persist in specific places for a

while. For holistic protection, we explore this protocol and examine how communication can be

made tamper-proof.

This objective directly results from the security requirement analysis conducted in Chapter 4,

which highlights the importance of System Integrity in the zone containing the dynamic mod-

ules.

68

Chapter 5 Securing Signal-Based Protocols

5.4.1 Security Requirements

To protect the FlexRay network against message spoofing, we leverage slot-based communication

to compute and transmit authentication tags. We use the second FlexRay channel for a higher

degree of fault-tolerance and security and propose means to efficiently maintain cryptographic

keys, ensuring that key leakages or protocol updates can be seamlessly handled throughout the

lifetime of road vehicles. Since FlexRay, despite limited attention, is employed for highly safety-

critical communication, our solution contributes to designing a secure vehicle.

Addressing one of the most severe automotive security threats, the injection of forged commands

[68], our primary security objective is the ability to verify the authenticity of FlexRay traf-

fic. Besides authentication FlexRay traffic, Nilsson et al. [78] highlight encryption as another

security property for FlexRay networks, confirming the earlier identified requirement for data

confidentiality. However, as most traffic typically does not carry secret information but rather

safety-critical data, confidentiality only plays a minor role in our work. We even argue that

safety-critical data should not be encrypted due to potential decryption flaws, impeding vehicle

safety. Nevertheless, we contend that our work can be readily adapted to achieve encryption,

thereby potentially safeguarding passenger privacy [71].

5.4.2 Key Organization

Strong, fresh cryptographic keys and efficient data management methods are prerequisites for

secure SDVs. Recent research has organized two primary organizational approaches for symmet-

ric keys: The first method involves issuing a single key for a group of network nodes [47], while

the second one associates keys with distinct message types [73].

Depending on the network setup, type-based keying techniques can result in an enormous number

of keys due to the typically large number of potential message types. A purely recipient-based

approach proves challenging since the recipient is often unknown to a sender node in a broadcast

protocol. In response, we propose associating cryptographic keys with FlexRay time slots, en-

compassing static and dynamic slots. As illustrated in Figure 5.6, we differentiate between three

possible options:

1. One key for all time slots.

2. One key for each time slot.

3. One key for a group of time slots.

While the first option offers simplicity, a key leakage will have significant consequences, as all

nodes share the same key for cryptographic operations. Alternatively, each FlexRay time slot is

associated with a key. Consequently, all nodes interested in a specific slot require the correspond-

ing key. Since the communication schedule is predefined, a key establishment phase could run

during the network’s start. As a maximum number of 1023 static slots is theoretically possible,

a FlexRay node still needs to administer 1023 keys in the worst case. This may be infeasible

in practice due to constrained hardware and memory overhead. Therefore, we recommend the

third option, which groups time slots in batches so that fewer cryptographic keys are required. In

particular, if a specific FlexRay node occupies multiple successive slots, it may be reasonable to

use the same key. The third option demands a thorough network design process, as the batch size

depends on the network parameter and the exchanged data. When it comes to authentication,

69

Chapter 5 Securing Signal-Based Protocols

FlexRay slots:
(static or dynamic) time slot time slot time slot time slot ... time slot

k′0 k′1 k′2 k′3 k′nOption 2:

k0Option 1:

k′′1 k′′2 k′′nOption 3:

Figure 5.6: Either a single shared key is used for all slots (option 1), a unique key is created for each slot
(option 2) or a series of slots (option 3) is associated with a key.

a verification delay must be acceptable if one authentication tag is computed for multiple slots.

Our evaluation shows the negligible impact of such a delay from a safety perspective.

5.4.3 Traffic Authentication

In the following section, we propose means of transmitting authentication data over FlexRay

and explore the security implications of leveraging the dual-channel model. Rather than intro-

ducing a new authentication scheme, we emphasize practical aspects, specifically organizing and

updating cryptographic keys and transmitting authentication data over FlexRay. The ultimate

goal is to provide data authenticity for both the static and the dynamic segments of a FlexRay

communication cycle.

Although performing a successful spoofing attack on a static slot is technically challenging, the

requirement for authenticated traffic is also valid within a static segment, as a resourceful attacker

might attempt to prevent a benign node from sending a null frame in an empty static slot and

subsequently inject fake messages.

Data authenticity typically involves using keyed hash functions and generating a MAC as an

authentication tag. A key challenge in authenticating in-vehicle traffic lies in the efficient and

reasonable transmission of these authentication tags, given that automotive legacy networks are

typically bandwidth-constrained and must fulfill strict real-time requirements. In the subsequent

discussion, we differentiate between the two FlexRay operating modes: single-channel and dual-

channel mode.

Single-channel mode

The single-channel mode describes FlexRay communication over one physical link. We distin-

guish between two options on how to transfer an authentication tag. The first option describes

the naive way of integrating a MAC into the frame that is being authenticated. This can be

achieved by either appending it to the payload or embedding it into other frame fields, such as

the header CRC field and the frame trailer. Both fields are used for error correction, an essential

capability of a communication protocol. Related works have demonstrated how message authen-

tication codes can be equipped with error-correcting capabilities [79]. This concept is relatively

old but has again caught the attention of the 5G technology [80]. In total, a FlexRay frame

provides 11 + 24 = 35 bits for error correction. According to the birthday paradox, an attacker

would observe, on average, the first collision after 218 = 262, 144 authenticated messages, which

is a reasonably poor security level. Frequent key updates could mitigate the effect of short MACs

since it is harder to correlate collisions. Short MACs can also result from MAC truncation; a

method to deal with MAC in case of resource limitations. For instance, AUTOSAR [19] pro-

70

Chapter 5 Securing Signal-Based Protocols

MAC for a
group of slots

m1 m2 ...
mn MAC(m1, ...)k1 ...

k1

authenticates

MAC for a
single slot

m1 MAC(A)B m2 MAC(A)C ...

k1 k2

authenticates authenticates

Figure 5.7: Authentication tags for groups of slots are stored in a dedicated time slot.

poses the use of MAC truncation. Besides the limited security properties, this option requires

adaptions of the FlexRay controller because error correction typically happens below the net-

work layer. Consequently, this approach is not a backward-compatible solution, which is why we

generally discourage its realization, but we still mention it for completeness. Alternatively, the

MAC can be appended to the actual frame payload. Our evaluation shows that this leads to a

bandwidth reduction of roughly 3.15%.

The second, more convenient option is to reserve a dedicated time slot for transmitting a MAC.

If the second keying option is selected and a unique key is associated with each slot, then two

adjoining slots are considered one unit. The first slot transmits the payload, while the subsequent

one delivers the authentication data. Depending on the network setup and the available hardware

resources, the slot duration may need longer to compute a MAC. In such a case, we propose to

compute an authentication tag for a group of consecutive slots and transmit it in a dedicated

slot. This approach aligns with the third keying option, where one key is associated with multiple

slots. Figure 5.7 illustrates both cases. This approach is fully backward compatible, although

the bandwidth decreases up to 50% in the worst case, as our evaluation shows.

Dual-channel mode

The optional second FlexRay link enables concurrent data transmission. That way, a doubled

bandwidth of at most 20 MBit/s is possible if both channels transmit distinct data. Alternatively,

the second channel increases reliability by redundant data transmission. This is interesting from

a safety point of view since data exchange remains possible even if one channel is faulty or

completely broken. We suggest leveraging this second channel to transmit MACs efficiently. For

this purpose, we again differentiate between two options: The first one uses the second FlexRay

channel exclusively as a cryptochannel to not lower the bandwidth on the data channel. More

precisely, the authentication tag of a given message is sent concurrently over the second channel

to the receiver. While the static segments are synchronized on both channels, the dynamic ones

may differ due to a varying slot size. These circumstances have to be taken into account by

network developers. That means the layout of the dynamic segment should be the same to

allow undelayed transmission of cryptographic and payload data. Consequently, the bandwidth

on the data channel remains unaffected since additional cryptographic data is sent over the

crypto channel. This option is suitable if the second channel is not required for (redundant) data

transmission.

71

Chapter 5 Securing Signal-Based Protocols

channel 1
(10 MBit/s)

channel 2
(10 MBit/s)

m1 m1
1 m2 m1

2

m1 m2
1 m2 m2

2

...

...

...

...

...

...

m1 = MAC(m1, n1)
n1 ∈ N, l1 = |m1|

m2 = MAC(m2, n2)
n2 ∈ N, l2 = |m2|

m1
1 = m1[l1 − 1:

l1
2
]

m2
1 = m1[

l1
2
− 1: 0]

m1
2 = m2[l2 − 1:

l2
2
]

m2
2 = m2[

l2
2
− 1: 0]

Figure 5.8: The MAC mi is split into two equally sized parts m1
i and m2

i , which are transmitted over
distinct physical links. If one channel breaks, authentication is still possible at a lower security level.

The loss of redundancy, however, is the obvious downside of this option, as the second channel

is wholly reserved for cryptographic data. Since redundancy may be a crucial safety prereq-

uisite, our second option enables redundant payload transmission while cryptographic data is

split on both channels. Let m be a data packet ready for transmission. The sender node first

authenticates m by computing m = MAC(m,n), where n is a randomly chosen and publicly

known nonce, that guarantees freshness. Subsequently, it splits m into two equally sized parts

m1 and m2, where m1 = m[l − 1: l
2] and m2 = m[l2 − 1 : 0] with l denoting the bitlength of m.

Eventually, the sender sends (m, m1) over the first channel and (m, m2) over the second one.

The receiver obtains m on both channels and reconstructs the original MAC by concatenating

m1 and m2, i.e., m = m1 || m2. The receiver verifies m and distinguishes between three possible

outcomes.

1. m can be successfully verified. The receiver accepts m and processes its content.

2. Only m1 or m2 can be successfully verified. There can be multiple reasons for this. Either

the transmission was faulty, or one channel had been compromised. In that case, the

receiver verifies m1 and m2 independently and accepts m if at least one MAC part is valid.

Since the integrity of one channel cannot be guaranteed anymore, we suggest lowering the

vehicle’s driving capabilities as suggested in [9] and discussed in Section 5.4.6. To mitigate

potential cryptanalysis attacks, the corresponding cryptographic key is updated according

to the protocol in Section 5.4.4.

3. m, m1 and m2 cannot be verified. In that case, we either assume severe network failures

or an attacker who controls both channels. We suggest reporting a security incident,

possibly leading to an emergency halt. To prevent an overreaction, such an incident must

be analyzed regarding the expected damage. Chapter 8 presents one possibility to do so.

Since we accept the message in the second case, cryptanalysis attacks become easier if only half

of the authentication tag can be verified. Therefore, we conduct a key update in the second case.

We claim this approach complies with the earlier MAC truncation method, which has a similar

effect to our MAC division technique as shown in Figure 5.8.

72

Chapter 5 Securing Signal-Based Protocols

5.4.4 Secure Key Updates

A weak, broken, or leaked key can allow Adv to subvert security mechanisms and eventually gain

unauthorized access to the vehicle. Automotive systems, which typically operate for many years,

have an even higher demand for updating cryptographic keys.

A naive approach would involve computing a new key on a master node and then sending it

encrypted to all recipient nodes. Alternatively, key updates can be organized in a distributed

way where each node computes a new key once a predefined event is triggered. This event could

be the reception of an authenticated trigger message or the elapsing of a predefined time. We

propose deriving new keys from a locally maintained hash-based key chain in a reversed manner,

meaning that the first key in use is the last chain element. When a key update is triggered, each

affected node retrieves the previous chain element and adopts it as a new key. This approach

allows the derivation of forward-secure keys, provided that the underlying hash function is pre-

image resistant. More precisely, we assume a pre-shared key K shared among all benign FlexRay

nodes Ei. We acknowledge that legacy ECUs often lack tamper-proof memory where such a key

could be securely stored. Still, we refer to PUFs as used earlier in this chapter, allowing us to

retrieve a unique key from physical properties.

The master key K serves as a trust anchor between EC and Ei and is used to encrypt confidential

data. As illustrated in Figure 5.9, we distinguish between two phases: the Seed Distribution

Phase and the Key Update Phase. kc denotes the current key retrieved from the hash chain

position j ∈ [0, l − 1] and is expected to be updated later.

1.1
sd ∈R K, l∈N, n1 ∈ N
j ← l − 1
s′ ← Enc(sd, l,slt, n1, c)K

2.1
Select randomly: n2 ∈R N
j ← j − 1
j′ ← MAC(j, n2, c)K

FlexRay master EC

1.3
Decrypt s′, verify n1

Precompute HCl(sd, c)
kc ← kl−1

2.3
verify j’ and
retrive j-th
key kj

kc ← kj

FlexRay nodes Ei

1.4
Re-encrypt
sd or se-
curely
store HC

1.2 n1, s
′

2.2 n2, j
′

1.x: Seed Distribution Phase 2.x: Key Update Phase

s

k0

k1

..
.

← kl−1kc
′

HMAC(slt, s)

HMAC(k0, c)

HMAC(...)

HMAC(kl−2, c)

u
p
d
at
e
u
p
d
at
e

u
p
d
at
e

HCl(sd, c)

Figure 5.9: Each FlexRay Ei derives a hashed-based key chain FRHC of length l from a seed sd for a
context string c. The current key kc´ is initially set to the last chain element and moves backwards each
time a key update is triggered.

Seed Distribution Phase

The Seed Distribution Phase starts (Step 1.1) with the master node EC randomly selecting a seed

sd ∈R K, where K denotes the key space. It also selects a nonce n1 ∈R N, the chain length l ∈ N,
a random bitstring slt from a high-entropy source, and an optional context string c. The nonce

n1 ensures freshness and prevents replay attacks. Depending on the selected keying technique,

a FlexRay network may need to maintain multiple keys simultaneously (e.g., for various slots).

73

Chapter 5 Securing Signal-Based Protocols

In such cases, a context bitstring c allows differentiation between different keys while still using

the same seed. EC encrypts sd, l, slt, c, and n1 using K and publishes it to all FlexRay nodes

Ei (Step 1.2). Ei decrypts the received data, verifies their freshness with the help of n1, and

initializes kc with the last chain element kl−1 (Step 1.3). For this, the hash chain HCl(sd, c) is

recursively built, following an extract-and-expand paradigm. We use an HMAC Key Derivation

Function [81] for the extraction and expansion stages.

Initially, a pseudorandom key k0 is extracted from the seed sd as a fixed-length input. This is

achieved by computing k0 = HMAC(slt, sd). Note that the secrecy of the entire hash chain relies

solely on sd, emphasizing the need to protect sd against unauthorized access. In contrast, c and

slt are public values, with the latter enhancing the strength of HCl(sd, c). The salt supports

“source-independent” extraction [81] and makes the output more similar to a random oracle

answer.

Next, k0 is extended to a chain of pseudorandom keys through HCl(sd, c). To achieve this, we

compute kj = HMAC(kj−1, c), j ∈ [1, l − 1].

The key chain HCl(sd, c) can be maintained in two ways. One approach involves Ei unrolling the

entire chain and storing each precomputed key encrypted in memory. While this method leads

to higher memory consumption and, therefore, is often infeasible in practice, it enables faster key

updates since the corresponding key only needs to be decrypted. Alternatively, only the seed is

stored encrypted, and key updates are computed on the fly.

When opting for the latter approach, a key update from the j-th to the (j-1)-th position necessi-

tates j calls to HMAC because HCl(sd, c) has to be traversed in reverse. We assess computational

and memory overhead in Section 5.4.7.

Key Update Phase

Once the Seed Distribution Phase has terminated, a key update can be efficiently accomplished

without causing significant network overhead. A fresh key is selected by moving back one step

in the hash chain. Specifically, Ei overwrites kc with its predecessor in HCl(sd, c). During a key

update, kc is shifted from kj to kj−1. This reverse mechanism ensures forward secrecy if the

underlying cryptographic hash function is considered secure, meaning the pre-image computation

is infeasible. Consequently, an adversary gains no information about subsequent keys, even if a

key at a specific position has been revealed.

The master node EC triggers a key update by first decrementing the current chain position j by

one. Then, it authenticates the new value of j, resulting in j′ (Step 2.1). The master includes an

optional context string and a nonce n2 to j′ to guarantee freshness. Otherwise, an attacker could

replay an old j and force the production of an (old) key in a given communication cycle.

EC subsequently distributes the key update trigger message j′ to the FlexRay nodes Ei (Step 2.2.).

The new chain position is ambiguous information for Ei because a fresh key is always obtained

by moving back exactly one position in the hash chain. This ambiguity, however, contributes

to protocol synchronization between the nodes. Alternatively, the Key Update Phase could be

executed after some time, e.g., after a predefined number of cycles, since FlexRay offers strong

synchronization, making such a protocol modification easily realizable.

Upon receiving j′, Ei verifies its authenticity and freshness and obtains the new key from

HCl(sd, c) (Step 2.3). This can be achieved in two ways: If HCl(sd, c) has been precomputed

74

Chapter 5 Securing Signal-Based Protocols

during the Seed Distribution Phase, the new key can be instantly updated by reading and de-

crypting it from memory. Alternatively, Ei has to perform j+1 recursive hash operations on the

seed to obtain kj . Once the Key Update Phase has been repeated l − 1 times, EC has to rerun

the Seed Distribution Phase and distribute a new secret sd, as all keys of HCl(sd, c) have been

used up.

Automotive sessions

The presented key update protocol enables the fast renewal of forward-secure keys without long

key negotiations. We recommend defining automotive sessions as a known concept from re-

lated works [43, 73, 82]. Given the strong synchronization between FlexRay nodes, a promising

approach involves combining event-driven and time-driven session strategies. An event-driven

session prompts a key update after a specific event (e.g., a software update or workshop repair).

In contrast, time-driven sessions initiate the key renewal process after a predefined duration (e.g.,

after being parked for at least a week). In the context of our reference vehicle, a new session

might begin whenever the operating mode changes, as is the case when switching from automated

to remote driving.

5.4.5 Realization in FlexRay

A key update can be considered an exceptional event, requiring sporadic messaging. Conse-

quently, we propose handling key renewals within the optional dynamic segment, which of-

fers event-driven communication. Recall that the dynamic segment allows for the exchange of

variable-length and priority messages, while the static segment is designed for periodic real-time

data transmission in fixed-length time slots.

To implement this, the communication schedule should be structured so that the master node

transmits a key update trigger message at the highest priority, ensuring it cannot be suppressed

by any other message. That means the first dynamic slot is assigned to the master. From a

technical standpoint, the smallest slot counter value should be associated with the master node,

reserving the initial mini-slots for a key update. Other nodes can occupy subsequent dynamic

slots to broadcast messages if no update is due.

5.4.6 Security Discussion

The techniques presented for traffic authentication on the FlexRay bus rely on the unforgeability

of MACs under a chosen message. Successful authentication should only be possible for ECUs

possessing the correct key, even if an adversary gains access to valid (data, MAC) pairs. AU-

TOSAR recommends a default key length of 128 bits as successful brute-force attacks become

extremely unlikely. The minimum MAC length should also be at least 64 bits.

According to the birthday paradox, an attacker observes a collision after 2n/2 messages on av-

erage. While a collision does not immediately lead to the ability to forge MACs, it gives the

attacker an advantage in cryptanalysis. Hence, the secure construction and application of mes-

sage authentication algorithms are crucial since any flaw can compromise the system, even if the

underlying cryptographic primitive is proven secure. For example, the secret prefix method [83]

exploits the simple and insecure construction MAC(m)k = Hash(k||m), where a secret k is

prepended to a message m.

75

Chapter 5 Securing Signal-Based Protocols

In combination with an iterative method such as Merkle-Damg̊ard, length extension attacks

enable the construction of valid MACs for arbitrary messages that have MAC(m)k as a prefix,

although k remains unknown to the adversary. In contrast, a CBC-MAC construction is generally

secure, but its improper application can lead to an existential forgery. Specifically, CBC-MAC

must only be used for messages of fixed length; otherwise, an adversary can construct an unseen

message for a given (message, MAC) pair.

In our work, we find the HMAC construction promising for two reasons. First, it is not prone

to the aforementioned length extension attack due to its internal structure of an inner and outer

hash. While the inner hash includes the actual message and may be of variable length, the input

of the outer hash always has a fixed length, preventing length extension attacks. Despite two

calls to the underlying hash function, an HMAC is still efficient because the outer hash is only

computed over a short two-block message. Second, HMAC demands weaker security assumptions

specifically suitable for a long-term operating environment. Only weak collision resistance must

be guaranteed for the underlying hash function [84]. For this reason, even HMAC-MD5 is secure

despite the fact that the hash function of MD5 is considered broken.

The presented scheme for key updates relies on the secrecy of the initially distributed seed that

is only required to retrieve a new key from the underlying key chain. In the meantime, we

suggest keeping it encrypted in the available memory. We utilize the root key for its encryption,

assuming it is securely stored in hardware or can be retrieved from unique physical properties as

we did before leveraging a PUF. Session keys can be buffered unencrypted in the same memory,

assuming an attacker without access to the memory while a session is running.

In Section 5.4.3, we suggest splitting authentication tags into equally sized parts sent indepen-

dently over both physical channels. This approach lowers the security level, as we accept the

corresponding message if at least one tag part can be verified. Consequently, an attacker requires

fewer resources to undermine security since only half of the MAC bits need to be attacked. Our

experiments revealed a faulty transmission rate of 0.25% in our exemplary FlexRay network,

meaning an unverifiable MAC is not necessarily caused by an attack.

Therefore, instant rejection of any unverifiable message may lead to driving instabilities if they

cannot be assessed adequately. The dual-channel mode allows us to weigh potential security

incidents and react appropriately if authenticity checks fail on a single physical link. Specifically,

we suggest informing a monitoring system in such a case, which constantly supervises and assesses

the vehicle’s capabilities, i.e., the current vehicle state. Regarding our reference vehicle, this could

be the self-perception system employed in the reference vehicle, enabling continuous monitoring

of the vehicle’s security and safety state. Section 8 explains what appropriate measures a vehicle

may select depending on its context and the perceived security flaw.

Key Lifetime

The presented key update scheme details how to update a key but does not state when an

update should happen. The National Institute of Standards and Technology (NIST) notes in its

Recommendation for Key Management [85] that short cryptoperiods generally enhance security

unless a system’s paramount concern is denial-of-service attacks.

A reasonable key lifetime depends on various risk factors, such as the key’s purpose, the strength

of the deployed cryptographic algorithms, potential side channels, the operating environment,

the number of stakeholders, data sensitivity, and the key derivation process. While each one has

76

Chapter 5 Securing Signal-Based Protocols

to be individually assessed for a given system, all cryptographic keys should at least be renewed

once the vehicle starts. In the following, we outline the main aspects of this assumption.

Lifetime of Road Vehicles Road vehicles typically have a long average lifetime spanning

many years. Consequently, there can be a significant delay between when a key begins to be

used and when an attacker obtains it. Adversaries may gain key access by subverting an in-

vehicle network, exploiting side channels such as power supply analysis [86] that penetrate a

system to steal sensitive data and circumvent cryptographic protection.

Due to road vehicles’ expected long operating lifetime, even a small bandwidth would not pose a

major problem for Adv, given ample time to conduct an attack. Moreover, key updates mitigate

the impact of increasing computational power available to the attacker. Road vehicles are often

left unsupervised, allowing Adv to gain physical access and steal cryptographic keys. Therefore,

a short crypto period effectively mitigates the impact of long vehicle lifetimes.

Operating Environment According to the NIST recommendations, a shorter crypto period is

desirable for protecting critical data, as typically is the case in FlexRay networks. Another reason

for short crypto periods is that the design and construction process of road vehicles typically

involve numerous stakeholders, resulting in a higher probability of key leakages. Moreover, the

complexity of supply chains means that key leakages may remain undetected for longer if the

reporting of such incidents is not properly handled. Note that we require a uniform security

incident reporting mechanism as part of the requirements analysis to prevent such scenarios.

Therefore, any system change should lead to the renewal of cryptographic keys, particularly in

times of SDVs incorporating a modular and updatable software architecture.

ECU Resources Legacy ECUs are usually constrained in resource, lacking tamper-proof mem-

ory and access to a high-entropy source. For example, a missing high-entropy source can lead to

weak cryptographic parameters (e.g., initialization vectors, nonces), making cryptography more

susceptible to being easily compromised. A short crypto period is a mitigation strategy for such

resource limitations because it gives adversaries less time for a successful attack. Combining

the arguments for frequent key updates with the NIST recommendation that symmetric keys

should not be used after the end of the originator-usage period, we conclude that the renewal of

cryptographic keys should happen at least at vehicle startup.

5.4.7 Evaluation

We used the NXP S12XFSTARTERKITE evaluation kit as a target platform for our imple-

mentation. The kit comprises two FlexRay nodes, each with a 16-bit MCU (S12XF512) and

an XGATE co-processor. Specifically designed for autonomous high-speed data processing, the

XGATE module aims to reduce the S12X interrupt load. According to the NXP documentation,

the FlexRay nodes in this kit are commonly employed in applications such as active braking,

lane departure warning, and driving assistance features. Each node has 512 KB of flash memory

and 32 KB of RAM.

The evaluation hardware conforms to the FlexRay V2.1 specification and supports the data

transmission over two channels. Table 5.3 shows the main network parameters that remained

unchanged throughout our experiments.

77

Chapter 5 Securing Signal-Based Protocols

Network Parameter Value

Duration of macrotick (MT) 1µs
Length of communication cycle 5000 MT

Length of static segment 3000 MT

Number of static slots 75

Static slot duration 0.04 ms

Length of dynamic segment 880 MT

Duration of a minislot 40 MT

Average frame transmission time 66.78 µs
Average of erroneous transmissions 0.25%

Table 5.3: Parameters of our evaluation network containing two NXP S12XF512 nodes.

For the following experiments, we measure the average of 100 executions to obtain representative

results. The number of slots and the payload only have a negligible impact on the transmission

time. In our observations, when transmitting payloads of sizes 16B, 64B, 128B, and 254B,

we noted a standard deviation of 0.392 µs. A total of 0.25% of the transmissions were faulty,

meaning data contained errors after reception. The subsequent experimental results provide

insights into the memory and computational overhead of the presented security concepts. The

authentication algorithm employed was HMAC-SHA2-256, which was implemented in software

using the BearSSL library again.

Network Overhead

Figure 5.10 shows the timing overhead imposed by the presented techniques for transmitting an

authentication tag over FlexRay. The authentication tag is either integrated into the frame to

authenticate its payload, or a dedicated time slot is reserved for the tag to authenticate a group of

preceding slots. The baseline for comparison is unauthenticated FlexRay communication.

We measured the time it takes until a data set of varying sizes is available at the receiving

node. That means the elapsed time also includes the fragmentation time on both the sender and

receiver sides. This experiment assumes a maximum load, so the test data was split into 254

bytes (i.e., the maximum frame payload).

64 128 256 368 512 640 768

100
200

400

600

800

1,000

1,200 g=1
g=2
g=3

KB

t[ms] No Security In-Frame Tag Group Tag

Figure 5.10: Network overhead caused by the transmission of an authentication tag. The best solution
is to append such tag to each frame, which, however, may not be feasible without hardware acceleration
due to the small slot duration. The group size g indicates how many slots are authenticated by a single
tag, which is included in a dedicated slot. All measurements are averaged values over 100 executions.

78

Chapter 5 Securing Signal-Based Protocols

In our evaluation setup, we achieved an actual bit rate of 8.3 MBit/s, slightly below the maximum

rate of 10 Mbit/s. This deviation is likely attributed to an unbalanced workload because the

experiment was conducted in the static segment while the dynamic one remained untouched.

Considering that a FlexRay frame allows a maximum payload of 254 bytes, the overhead to

include an authentication tag of 8 bytes into each frame is minimal.

If we apply the dual-channel mode, the tag length is halved, as it is partially transmitted over

both channels. In contrast, the bit rate decreases by roughly 50% if authentication tags are

transmitted in a dedicated slot with a group size of 1. Recall that the group size indicates how

many slots are authenticated by one authentication tag. A group size of 2 leads to a bandwidth

reduction of roughly one-third, while a group size of 3 results in a bandwidth reduction of 25%.

As the receiver node has to wait until the arrival of all data for verification, a larger group size

leads to larger verification delays. Such a delay must be considered from a safety perspective, as

delayed processing of braking commands, for instance, may cause passenger harm. A worst-case

delay of 3 ms, the total duration of the static segment, would result in a path extension of roughly

0.09m if the vehicle is moving at 120 km/hr. Hence, the selection of the group size depends not

only on the available computational power but also on potential safety implications.

From a pure network perspective, it is advisable to append a MAC to the payload when applying

the single-channel mode. However, our computational analysis demonstrates that this solution

may not be feasible on resource-constrained devices because the computation and verification

of an HMAC can last longer than a slot. Thus, slot-based authentication can only be realized

if enough computational power is available, enabling the computation of authentication tags in

microseconds. We recommend using the dual-channel mode and splitting the authentication tag

for fault tolerance, as explained in Section 5.4.3.

Computational and Memory Overhead

As mentioned, we assume a fixed key length of 128 bits and a payload of 254 bytes, with 8 bytes

reserved for an authentication tag. We define the authentication tag as the highest 64 bits of

the HMAC-SHA2-256 output. In total, it takes 15.49 ms on the FlexRay nodes to compute an

authentication tag for random data, which far exceeds an acceptable overhead. Note that the

duration of a static slot is only 0.04 ms.

We argue, however, that this limitation is specific to our setup rather than a general problem.

Depending on available resources, an efficient implementation of an HMAC can be achieved,

allowing for a time consumption of 20 µs [87] or even 2 µs [88]. Compared to our results on

the S12X processor, the same implementation yields an execution time of 10.01 ms on a RPi

3B+. Without sufficient computational resources, slot-based authentication with a low group

size appears unrealistic. Instead, either network parameters need adjustment, or the group size

must be increased to enable computation and verification within the scheduled time slots.

Key Updates In the following, we investigate the presented key update mechanism from

Section 5.4.4, which allows us to obtain forward-secure keys through hash chains. The master

node has to rerun the Seed Distribution Phase once all keys have been used up, indicating that

the chain has been fully traversed. In that way, a new seed is distributed, and a new key chain

can be established on each node.

The subsequent experiment assumes two daily vehicle starts on average, yielding roughly 730

yearly key updates. This assumption aligns with our discussion in Section 5.4.6 to conduct a key

79

Chapter 5 Securing Signal-Based Protocols

50 100 200 300 400 500 600 700

5
10
15
20
25
30
35
40
45
50

l = 750

lmin = 112

#key update

t[
m
s]

NXP S12XF512
Raspberry PI 3B+

Intel i7-8550U
FlexRay Cycle Duration

Figure 5.11: Execution time to perform the i-th key update. The i-th update requires l − i + 1 HMAC
operations, with l denoting the length of the key chain. All measurements are averaged values over 100
executions.

update once the vehicle is turned on. Since these assumptions are based on average numbers, we

define a slightly larger chain length of l = 750.

Considering each key occupies 16 bytes, the total size of HCl(sd, c) is 16B · 750 = 12KB if

precomputed and securely stored. Many resource-constrained devices, like the deployed FlexRay

evaluation boards, provide sufficient memory (512KB) for storing such a chain. However, the

dynamic modules used in our reference vehicle do not possess an additional 12 KB for security

tokens, meaning the hash chain must be shorter, or intermediate keys cannot be persistently

stored. In a precomputed chain, each key must be encrypted with the root key to protect it

against leakages. Consequently, a key update would result in a single decryption operation of

the corresponding encrypted key.

Alternatively, instead of precomputing the entire chain, an ECU can compute the update key

value on the fly. Once an update is triggered, each ECU builds up the chain using the seed

and retrieves the key at the new position. As the key chain is traversed in reversed order, the

first key update consumes most of the time, while the last one requires only a single MAC

operation. Figure 5.11 visualizes the time consumption for the i-th key update. For comparison,

we executed on an Intel i7-8550U processor, assuming that similar processors may be deployed

in HPC platforms of SDVs.

The dotted horizontal line illustrates the 5 ms duration of a communication cycle in our setup.

Consequently, achieving a key update within one cycle is feasible on the S12XF512 FlexRay node

only if the chain length remains below lmin = 112. Otherwise, it takes more than 5 ms to iterate

through the key chain because a longer chain leads to more recursive computations and, thus,

to a longer execution time. Establishing the full chain of length 750 consumes 47.02 ms on the

S12X FlexRay nodes, which is a reasonable time in case the vehicle is not moving.

As expected, both the RPi and the i7-8550U outperform the FlexRay node due to their superior

computational power. From a computational standpoint, the selection of the chain length must

account for the available resources. Our key update protocol enables the renewal of a key within

a single communication cycle, which is beneficial for maintaining synchronization among the

nodes. We recommend retrieving a new key from the chain on the fly when needed rather than

precalculating the entire chain in advance.

80

Chapter 5 Securing Signal-Based Protocols

Combining the computational and network overhead results, we find group-based slot authenti-

cation most promising for FlexRay networks, as it leads to an acceptable computational overhead

on both strong and resource-constrained devices.

5.4.8 Outlook

Our security solutions protect against message spoofing and forgery attacks on the FlexRay

bus and present a possible way to update cryptographic keys. Nevertheless, the challenge of

DoS remains a concern for FlexRay networks, where an adversary can disrupt communication

by sending dominant bus signals. This straightforward attack could have severe consequences,

particularly if safety-critical control units are impeded from exchanging messages. Since cryp-

tographic solutions are ineffective in preventing this attack, the initial line of defense involves

physical protection measures.

Moreover, the dual-channel mode, allowing for two physical links, adds an additional layer of

security as both channels must be compromised for a successful DoS attack. As highlighted

in our security requirement analysis in Chapter 4, addressing protection against DoS attacks is

crucial, but this aspect is left for future work at this place.

Another potential threat is the hijacking of a FlexRay network by a remote attacker installing

unauthorized software on an ECU through a compromised software update process. While our

attacker model outlined in Section 5.1 does not attribute such capabilities to the attacker, we

specifically address this issue in Section 7.

5.4.9 Sub-conclusion

In the preceding sections, we introduced methods for securing FlexRay-based communication

against manipulation attacks and updating cryptographic keys. We recommended reversing hash-

based key chains based on an initially distributed seed seed to maintain secrecy. The FlexRay

nodes in our test network could securely update a key in less than 5 ms. Additionally, we exploited

the dual-channel mode in FlexRay networks to transmit authentication tags, primarily to sustain

a high level of fault tolerance. Specifically, we divided authentication tags and transmitted them

over both physical channels. If one channel becomes corrupted, we can still receive data and verify

its authenticity. As for the transmission of authentication tags, network capacity is not a limiting

factor due to the relatively large frame size. However, our evaluation reveals that single-slot

authentication is challenging for weak computational devices without crypto extensions.

Combining these recent findings, we conclude that safeguarding signal-based protocols, including

CAN and FlexRay, necessitates precise planning of the legacy network. Due to often limited

resources, the manufacturer must determine which data requires cryptographic protection, which

hardware requirements are available (e.g., crypto extensions), and how cryptographic keys can

be managed over a long period. In this chapter, we presented various strategies for securing both

CAN and FlexRay communication, thereby offering an answer to research question RQ2.

81

6. Securing Service-Oriented Architectures

After examining the security of automotive legacy protocols in the last chapter, we now turn to

novel service-oriented software architectures. In comparison to highly integrated systems that

communicate with each other in a signal-oriented manner, only appearing in isolated places in

SDVs and likely to disappear completely over time, modern software architectures are primarily

designed to be modular, interchangeable, and updatable. They facilitate shorter development

cycles, the addition or removal of features, and a high level of interconnectivity of the entire

vehicle with its environment, enabling new mobility concepts.

The trend toward modular architectures, whether at the hardware or software level, has resulted,

among other things, in AUTOSAR Adaptive. This standardized vehicle platform exists in parallel

with AUTOSAR Classic and enables the development of complex, high-performance software

components. AUTOSAR Adaptive, for example, provides a service-oriented runtime environment

and supports different communication mechanisms such as SOME/IP. However, criticism has

arisen due to its high level of complexity, partly inaccurate documentation, and the closed-

source nature. Thus, the effort to create a standardized vehicle platform has yet to be fully

successful. Instead, considerable efforts are underway to develop alternative solutions and tap

into a significant market potential. Well-known OEMs are developing their software solutions,

newcomers like ApexAI are entering the automotive market, and government-funded projects

like UNICARagil contribute to designing vehicle software architectures with their middleware

solutions.

Automotive middlewares, often called automotive OS, address numerous aspects, including the

orchestration of software components, the optimal utilization of resources, the abstraction be-

tween hardware and software, and a uniform maintenance process. The latter, in particular,

is essential for practical use: subsequent changes to SDVs must occur seamlessly, quickly, and

securely without causing high costs or even recalls.

To ensure the highest possible flexibility, automotive middlewares are usually service-oriented.

Consequently, the resulting software architecture is not static but rather dynamic. However,

this dynamic nature increases the attack surface due to more external interfaces and more room

for manipulation. Therefore, security is an integral component, as with signal-oriented com-

munication. In addition to effective protection mechanisms, a security process is necessary to

ensure that changes to the software architecture do not compromise security. Such a process

includes, for example, the system description from a security perspective and the management

and deployment of security tokens within the vehicle.

In this chapter, we address research question RQ3 by developing a security process for the

ASOA [20] that ensures secure communication between services and considers the strict separa-

tion of system and functional knowledge. The ASOA is a software architecture for embedded

83

Chapter 6 Securing Service-Oriented Architectures

systems and HPC platforms developed for our reference vehicles as part of the UNICARagil

project. Our security solution for the ASOA has been fully implemented and integrated into all

reference vehicles.

The following chapter is structured as follows: First, we explain how the ASOA works in Sec-

tion 6.1. We then propose a security process for the ASOA in Section 6.2, verify essential parts

formally in Section 6.3, and eventually evaluate the runtime behavior in Section 6.4.

The following work is based on the publication “A Security Process for the Automotive Service-Oriented

Software Architecture” [4], which was published in the IEEE Transactions on Vehicular Technology in

2023. I extend special thanks to Florian Frank, Wuhao Liu, and Marion Christl for their support in

implementing the ASOA Security Process.

6.1 Automotive Service-Oriented Software Architecture

The Automotive Service-Oriented Architecture (ASOA) [20] is a framework designed to develop

real-time, high-performance, and scalable software for an automotive ecosystem. One of its core

elements is a middleware allowing for seamless and reliable data transmission between functional

components, employing the DDS [27]. Notably, this middleware incorporates mechanisms to

ensure strict adherence to timing requirements, particularly for safety-critical tasks, while also

enabling operators to monitor event chains within vehicles. The ASOA also encompasses a

comprehensive web-based tool for describing vehicular software architectures, specifically tailored

to support the specification of communication endpoints, timing, and hardware requirements.

Combining an architecture specification tool and a middleware that enforces predefined system

parameters renders the ASOA a powerful framework for designing modern automotive systems,

especially those reliant on zonal E/E architectures. Instead of deploying many ECUs with

dedicated functions, zonal vehicles consist of fewer, yet more powerful, control units capable

of providing computational resources for various, not necessarily related, functions.

6.1.1 Services

A service is considered a self-contained functional unit that interacts with other services by

exchanging data. Depending on the resource requirements and topological constraints, a ser-

vice can be deployed to any available control unit. The ASOA framework supports powerful,

general-purpose control units and resource-constrained embedded systems, facilitating service

deployment throughout the vehicle. Moreover, even external software components such as a

traffic server or cloud functions can be represented as services, gradually dissolving the vehicle

border to remote units. For instance, a service providing traffic information will likely run in the

cloud but may still be connected to a route planning service inside the vehicle. Services, akin to

Android applications, exhibit a lifecycle and can be started, paused, and terminated.

The ASOA framework emphasizes the complete decoupling of services from one another by ex-

cluding any global system knowledge, such as topological or architectural information. This

design approach enables services to be easily relocated, divided, and maintained without modi-

fying other automotive components. In contrast, SOME/IP services often possess an awareness

of the existence of other services, e.g., from which they can query data. Consequently, system

adaptions become more expensive when services originate from different stakeholders. An ASOA

service may comprise multiple tasks, which can be scheduled based on their criticality by the

underlying OS.

84

Chapter 6 Securing Service-Oriented Architectures

6.1.2 Communication

ASOA services adhere to a data-centric communication approach, wherein the architecture tool

mentioned earlier empowers developers to define a service’s communication endpoints and their

corresponding quality expectations through a contractual mechanism that ensures compatibility.

These contracts contain information concerning data formats, data quality attributes, and the

frequency of data provision or requirements. Their purpose is to determine whether service

endpoints can be connected, which is the case if their data type and quality parameters match.

An endpoint denotes a service’s input or output, referred to as a requirement or guarantee,

respectively. A requirement can be wired to one or multiple guarantees, thereby enabling the

receipt of data from the latter. Similarly, a guarantee publishes data on a specific topic to which

an indefinite number of requirements can subscribe. Hence, ASOA services employ a publish-

subscribe pattern for data exchange, obviating the need for services to possess explicit knowledge

of their communication partners. A service is agnostic regarding the data source as long as

the contractual obligations are upheld, i.e., the expected data type and quality specification

are met. This design philosophy leads to a highly modular and decoupled automotive software

system, wherein ASOA services are autonomous and independent entities. The ASOA framework

leverages the DDS technology to map guarantees and requirements onto DDS endpoints, resulting

in brokerless data transmission once services are entirely wired. However, the ASOA cannot be

classified as decentralized because it incorporates a central communication management unit

known as the orchestrator.

6.1.3 Orchestration

As explained, services do not carry information about their communication partners, necessi-

tating external assistance for establishing connections. The orchestrator takes over this task by

wiring ASOA services and controls the dataflows between them. Moreover, it manages the lifecy-

cle of services by starting, stopping, and pausing them. In other words, the orchestrator connects

services based on the prevailing operating mode of the vehicle and subsequently launches them.

The operation mode indicates a vehicle’s state, such as whether it drives automated or is under

human control. In the former scenario, a service responsible for actuating the wheels might

receive torques from a controller that converts a computed trajectory into low-end driving in-

structions. Conversely, the same service may obtain data from a user input device like a steering

wheel. In both operating modes, the actuating services remain oblivious to the identity of the

data provider, relying instead on the orchestrator’s wiring configuration. The orchestrator learns

from the architecture tool which services must be connected for a given operating mode.

The ASOA framework even allows for dynamic re-wiring of services during vehicle operation.

For example, if a particular service cannot guarantee the quality of its output, it can be replaced

by a more reliable source through reconfiguration. Figure 6.1 shows the orchestrator’s role in

a simplified ASOA system featuring four services. Both rows depict distinct service wiring,

each representing an operation mode. In the first row, the orchestrator establishes a connection

between a guarantee of Service 1 and a requirement of Service 3. In the second row, the same

requirement of Service 3 receives the data from Service 2, e.g., due to a degeneration of Service

1. Here, Service 2 replaces Service 1 as the data provider.

85

Chapter 6 Securing Service-Oriented Architectures

Wiring 1: Service 1 Service 2 Service 3 Service 4

: guarantee: requirement

Wiring 2: Service 1 Service 2 Service 3 Service 4

Figure 6.1: In the top row, the orchestrator wires the output (guarantee) of Service 1 with the input
(requirement) of Service 3. In the bottom row, Service 2 replaces Service 1 as the data provider, resulting
in a rewiring where it now provides data to Service 3. This dynamic rewiring capability enables adaptive
data flows within the ASOA system.

6.1.4 Resource Utilization

In addition to facilitating service development and communication, the ASOA framework allows

for resource optimization and analysis. A vital aspect of this endeavor involves deploying services

to control units optimally regarding effective resource utilization. The framework solves an

optimization problem to achieve this objective, accounting for topological constraints, processor

capabilities, memory availability, and network resources. By considering these factors holistically,

the ASOA framework strives to yield a balance in resource utilization. Furthermore, the ASOA

enables the analysis of complex event chains, benefitting from the well-defined service internals

in the architecture tool. The predictability and clarity of service behavior at runtime are crucial

to automotive systems, particularly when deploying multiple software components on a shared

platform.

6.1.5 Comparison

Unlike related solutions, the ASOA framework covers many aspects of the design and maintenance

of automotive software systems. Its distinguishing characteristic lies in the architecture design

tool, which enables the specification of crucial system parameters that are subsequently enforced

by the ASOA runtime core. Currently, the ASOA uses DDS for data exchange; however, it

will likely expand to support other communication middlewares. While ASOA services reveal

internals like task allocation, related systems like ROS2 nodes are black boxes, making the

retrieval of analytical information about node interferences hard. The central orchestration of

services enables the design of isolated services that do not carry system knowledge, making it

easy to replace and update them.

6.2 ASOA Security Process

The deployment of the ASOA framework in SDVs would currently lead to an insecure and unsafe

system due to a missing security model. For instance, an adversary could easily impersonate the

orchestrator and provoke a wrong wiring of services. Also, safety-critical control commands

could be manipulated, and sensitive data would not be protected against unauthorized access.

Therefore, we present a security process for the ASOA framework in this section, allowing vehicle

operators to enforce legitimate dataflows while defending against typical manipulation attacks

that have been carried out in prominent examples [18, 34, 89].

86

Chapter 6 Securing Service-Oriented Architectures

Although the ASOA uses DDS for communication between services and despite the effective

security provided by the DDS Security Standard [30], we have intentionally opted against its

selection as a security solution for the ASOA framework, primarily because the vehicle’s security

specification would be spread across the network, making it difficult to align with the central con-

figuration and maintenance process proposed by the ASOA. Furthermore, instead of deploying

multiple CAs and managing other participants’ certificates, permissions, and governance files, we

envision a more lightweight solution that can be applied even on resource-constrained devices.

While the a-priori replication of certificates is a possible optimization technique, their manage-

ment is still problematic for embedded control units, which the ASOA framework also addresses.

Notably, the RTPS implementation [90] deployed on ECUs units does not even support the DDS

Security Specification. Finally, incorporating a dedicated security solution tailored for the ASOA

framework will facilitate the support for other communication middlewares.

Our efforts focus on a solution that offloads as many security-related operations from ASOA

service developers. Furthermore, our solution does not lead to new inter-service dependencies

since such would impede the cost-efficient maintenance of the automotive ecosystem. We argue

that individual control units do not need a global view of the security architecture but should

only be equipped with a minimum of necessary security artifacts. While purely decentralized

solutions like the DDS Security Specification require each component to keep track of third-party

certificates and a list of global permissions, we adhere to the centralized management approach

of the ASOA framework by centrally administering security requirements. Consequently, auto-

motive software components remain decoupled from each other since they only know themselves

and can be modified, added, or removed at a relatively low cost. Our security process consists

of three consecutive phases, as shown in Figure 6.2.

The first one (P1) provides means to associate dataflows of a centrally maintained vehicular

architecture with security attributes. For that purpose, we enhance the existing architecture

tool. Only at that point, service operators have to become active with regard to security. During

the second phase (P2), a trusted platform reads an annotated communication model resulting

from P1, converts it into security tokens, and distributes them securely to the ECUs during a

one-time initialization step. At last, the third phase (P3) denotes the actual runtime protection

of ASOA-based communication. That is, once a service starts running, it uses the previously

received tokens to secure outgoing and verify incoming data according to the objectives that

have been earlier specified in P1.

Dataflow
Annotation

P1

Security Token
Computation

P2

Runtime
Protection

P3

onlineoffline

Figure 6.2: Our security process consists of three phases: P1, P2, and P3. In an offline step, service
developers annotate dataflows with security attributes in P1. The ASOA Security Platform converts the
annotated communication graph into tokens in P2, which are used to protect ASOA traffic during vehicle
operation time in P3.

Typically, automotive ecosystems consist of various heterogeneous control units regarding re-

sources and technical capabilities. Although there is a clear tendency for less but more powerful

87

Chapter 6 Securing Service-Oriented Architectures

in-vehicle control units [91], we argue there will still be constrained devices such as sensors or

actuators. Also, ECUs may be shielded on an isolated bus due to safety considerations and,

therefore, have fewer networking capabilities. We consider those circumstances in P2 and P3 by

providing tailored solutions for resource-constrained control units.

The remaining section is structured as follows: We first describe our attacker model and then

explain the notation we use in the further course of this work. We also present the benefits of

a centralized security solution for automotive use cases and weigh our design decisions against

existing work. In the further course, we use the term service for ASOA services for simplic-

ity.

6.2.1 Security Goals & Attacker Model

Prominent attacks on road vehicles have demonstrated how automotive systems, particularly

those without a human fallback layer, are prone to cyberattacks due to several risk factors, as

elaborated in Section 3.1. A widely known risk results from the adversary’s ability to manipulate

and inject potentially safety-critical traffic, allowing him to control road vehicles (remotely) [18].

Therefore, for a safe driving experience, automotive operators and passengers must rely on

the authentic real-time transmission of safety-critical operations, an important finding of the

conducted security requirement analysis in Chapter 4.

In contrast, the installation of a fake ECU, e.g., in a dishonest repair shop, makes traffic pro-

tection dispensible because such ECU is a legitimate communication node, which, however, acts

maliciously. Thus, we require means of verifying and validating the integrity and well-functioning

of ECUs before they start action. Another risk factor is compromising security-related infrastruc-

ture, such as trust anchors and certificate authorities. Furthermore, modern software frameworks

facilitate over-the-air updates, thereby allowing adversaries to infiltrate benign ECU. As a re-

sult, the update process must fulfill strong security requirements, such as those outlined in UN

Regulation No 156.

We categorize the previously mentioned risk factors into two attacker types: the first describes

an adversary connected to the network, i.e., a typical man-in-the-middle attacker conducting

spoofing attacks. The second type denotes an adversary residing on an ECU through fake

hardware or a compromised update. Currently, the ASOA does neither support authentic nor

confidential communication, despite the proven efficacy of the first attacker type in compromising

passenger safety. Therefore, this chapter concentrates on that particular type and presents

a security solution protecting against the risk of a Dolev-Yao attacker. Our security process

thwarts adversaries who can intercept, modify, drop, and inject (ASOA) traffic within the network

and impersonate legitimate participants. Meanwhile, we acknowledge that automotive software

frameworks eventually have to be capable of dealing with all risk factors. Nevertheless, this chater

does not encompass hardware attacks and software manipulation. To guarantee the adversary’s

absence from control units to prevent illegal code execution, data theft, and software corruption,

we refer to Chapter 7.

6.2.2 Design Decisions

The ASOA framework combines elements of both decentralization and centralization. At the net-

work layer, it leverages the DDS standard for decentralized data transmission between services.

Simultaneously, the framework employs the centrally functioning orchestrator that maintains

a holistic view of all available services and orchestrates their connections based on the desired

88

Chapter 6 Securing Service-Oriented Architectures

operation mode. To stick to the ASOA philosophy of minimizing inter-service dependencies, it

is inevitable to store as little security-related information on ECUs as possible. That means

a service should not be required to manage security attributes like keys, permissions, or cer-

tificates of others since this would increase their coupling and complicate the overall system

maintenance. We achieve this by introducing another central component, the ASOA Security

Platform (ASP).

The ASP utilizes the system specification maintained in the architecture tool to identify le-

gitimate dataflows between services and establish appropriate access policy. Each time a new

session starts, the ASP converts these flows into security tokens and disseminates them to the

ECUs, enabling secure communication. Like the orchestrator, the ASP possesses a global system

perspective, specifically regarding its security specification. That way, we align with the core

tenets of the ASOA philosophy, emphasizing decoupled and updatable services while minimizing

dependencies. Moreover, this central component coincides with current automotive trends, as

evidenced by a German draft law from 2019 [92], which prescribes a central authority for au-

tonomous road vehicles, and recent research on future mobility systems that also advocates for a

central component [93]. The flow diagram in Figure 6.3 illustrates the interactions between the

ASP, the orchestrator, and ASOA services in an automotive session.

Start
Wait for se-
curity tokens

Identify
active services

Wire services

Read system
specification

Compute
security tokens

Distribute
tokens to ECUs

Wait for se-
curity tokens

Wait for being
wired and started

Provide
functionality

V
e
h
ic
le

D
ri
v
in
g

Orches-

trator

Services

ASP

Figure 6.3: At first, the ASP computes security tokens, representing authorized dataflows, by querying
the system specification stored in the architecture tool. Upon reception, the orchestrator establishes
connections between the services, synergistically enabling the vehicle to navigate.

For simplicity, we treat the ASP as a single component serving as a root of trust for the entire

automotive network. This assumption, however, results in a potential single point of failure, as

secure service communication becomes unattainable if the ASP is unavailable or even compro-

mised. Possible solutions involve the redundant deployment of the ASP, including fault-tolerant

mechanisms to ensure continued operation in the event of failures. By minimizing the attack

surface, the probability of successful cyberattacks can be reduced. Hardware security modules

offer secure key storage and protection against physical attacks and unauthorized access, further

fortifying the root of trust. Additionally, the trust can be distributed across multiple instances of

the ASP through techniques such as multi-party computation or a distributed consensus protocol.

The secure and highly available design of a computer system like the ASP must be addressed;

however, this aspect is considered orthogonal to the objectives of this work. Therefore, we treat

the ASP as a trusted component in this work, being well aware of the necessity to protect it in

a real-life scenario.

89

Chapter 6 Securing Service-Oriented Architectures

6.2.3 Definitions & Notation

The term automotive ecosystem describes the network of hardware and software components

contributing to fully automatized vehicle driving. It includes ECUs, HPCs, roadside units, control

rooms, and cloud servers. The term ECU commonly refers to traditional resource-constrained

legacy control units designed for specific automotive functions. In contrast, HPC platforms

offer greater computational capabilities and possess a general-purpose nature. Since the ASOA,

encompassing our security process, supports both ECUs and HPCs, we employ the term ECU

to denote both categories of control units.

Control units communicate through dataflows using the ASOA framework. A specific control

unit is part of or involved in a dataflow if it sends data to or receives data from that particular

dataflow. We use the following notation to express our security model formally: While the set

G contains all ASOA guarantees of the automotive ecosystem, R describes the set of ASOA re-

quirements, respectively. Recall that guarantees and requirements are communication endpoints

of services. Similarly, E is the set of all communication endpoints of the automotive ecosystem,

i.e., E = R ∪ G. An endpoint can never be a guarantee and a requirement simultaneously, which

is why R ∩ G = ∅ holds. This leads to the set

D = {(g, r1, r2, ..., rn) | g ∈ G, r1, r2, ..., rn ∈ R}

that contains the legitimate dataflows of the automotive system. We obtain D as a result of the

specification and annotation of the communication model. An ASOA dataflow d ∈ D consists

of exactly one guarantee as a source and an arbitrary number of requirements as sinks. Hence,

we express d as an n-tuple, whose first element is the guarantee, followed by its requirements.

πi(t) returns the i-th element of a tuple t. According to the definition of D, any guarantee

gi = π1(di), di ∈ D cannot appear as a requirement in any other dataflow dj , i.e.,

∀di, dj ∈ D | π1(di) ̸= πk(dj), k > 1

is invariant on set D. This fact is important since guarantees and requirements will eventually

be represented as DDS endpoints on the technical layer. We express the set of requirements

as R = {r ∈ E | ∃d ∈ D ∃i ∈ N \ {0} : r = πi(d)} and the set of guarantees accordingly, i.e.,

G = {g ∈ E | ∃d ∈ D | π0(d) = g}. S describes the collection of ASOA services within the

automotive ecosystem. Any service s ∈ S consists of a name and a finite number of endpoints,

i.e., S = {(name, e1, e2, ..., en), ei ∈ E}. Be aware that services cannot share endpoints since

dataflows would not be definite otherwise. This is why

∀s′, s ∈ S : πi(s) = πj(s
′) ≡ s = s′, i ∈ [2, |s|], j ∈ [2, |s′|]

holds on S. The relation φS(e) : E → S returns the service to which the input endpoint

e ∈ E belongs. Similar to services, we formally express the control unit as an n-tuple con-

sisting of a name, a cryptographic root identity, and a finite number of services, i.e., ECU =

{(name, root identity, s1, s2, ..., sn) | si ∈ S}. Accordingly, φE(s) : S → ECU returns the control

units on which the input service s ∈ S runs. Furthermore, we call P the set of permissions

associated with dataflows from vehicle operators. A permission pi ∈ P is a string for which the

ASP creates a distinct key to secure the corresponding dataflow. Later, in Section 6.2.5, we ex-

plain how to arrange permissions hierarchically to express dependencies between keys and, thus

enabling trusted third party (e.g., a domain controller) to derive keys computationally.

90

Chapter 6 Securing Service-Oriented Architectures

6.2.4 Annotating ASOA Dataflows

The first phase of our security process is to allow vehicle operators and service developers to

define legitimate dataflows and annotate them with security attributes. In 2018, Kampmann

et al. [20] presented an architecture tool for specifying vehicular architectures, which offers a

graphical interface for establishing connections between services and defining dataflows. We ex-

tend this tool to allow operators to associate dataflows with one of three possible security levels,

along with permissions and optionally cryptographic primitives. The security level represents

the intended protection for a specific dataflow during runtime. We categorize the security lev-

els as authentication (AUTH), encryption and authentication (AUTH+ENC), or no protection

(NONE). Figure 6.4 illustrates how the architecture tool can be utilized to define and annotate

two dataflows between four services. The first dataflow will undergo authentication and encryp-

tion (l) using the SipHash and the AES algorithm (c). The required key will be derived from the

permission “safety” (p). The second dataflow is tagged with the permission “media” and will

only be authenticated, again, using the SipHash primitive.

The ASP eventually converts each permission into a distinct key. This allows dataflows of the

same security level to be grouped and associated with the same cryptographic key, which we

find advantageous for dataflows between the same control units. We pursue a hierarchical key

organization scheme, allowing us to group dataflows and delegate the key computation process,

if needed, for small embedded ECUs that cannot directly communicate with the ASP (c.f.,

Section 6.2.5). By default, our security solution assigns a unique permission to each dataflow, but

it grants operators the flexibility to optimize key management by defining new permissions.

The collection of annotated dataflows forms a communication matrix stored in a PostgreSQL

database. Whenever a new automotive session begins, the ASP parses this database and inter-

prets the dataflows as legitimate. Any other dataflow is considered unauthorized and reported

as a security alert during vehicle operation. Technically, the ASP computes a cryptographic key

for the permission of each di ∈ D and distributes it to the control units running the services

involved in di (c.f., Section 6.2.5).

By annotating dataflows with the mentioned security attributes, vehicle operators only need to

specify them once, rather than manually managing security artifacts like certificates, keys, and

access control lists and distributing them to individual control units. This simplifies maintenance

since changes or updates can be made in one place and propagated to the services through the

ASOA Security Platform. In Section 6.4, we give insight into a fully annotated communication

graph of a self-driving vehicle and evaluate the automatic processing by the ASP.

Service 1

Service 2

Service 3

Service 4

l:=AUTH+ENC, p:=safety, c={SipHash, AES}

l:=AUTH, p:=media, c={SipHash}

Figure 6.4: A graphical user interface allows vehicle operators to define dataflows between ASOA services
and annotate them with a security level, a permission, and cryptographic primitives. The ASOA Security
Platform parses the annotated communication matrix and derives individual security tokens from the
control units.

91

Chapter 6 Securing Service-Oriented Architectures

6.2.5 Computation and Distribution of Security Tokens

The second phase of our work deals with the computation and distribution of security tokens,

enabling ASOA services to communicate securely with each other. Recall that security tokens

are derived from the annotated communication model resulting from phase P1. Each ECU sends

a key request to the ASP at the beginning of an automotive session. The ASP uses the annotated

communication model to look up the legitimate dataflows D′ ⊆ D of the requesting control unit

and creates a security token for all d ∈ D′. Such a token consists of a cryptographic key, a list of

DDS topic names, a security level, and the cryptographic primitives to secure the corresponding

dataflow. The ASP uses its secret root keyKASP to compute the key for the permission of a given

dataflow. If no permission has been assigned to a dataflow, the ASP creates a unique dummy

permission in the background. During the distribution of security tokens, the authenticity of the

requesting control unit is implicitly verified to prevent adversaries from intercepting the tokens.

Ultimately, the ASP sends a security token for each protected dataflow back to the requesting

control unit. Although a potentially large number of services may reside on a control unit, there

is precisely one request sent. Hence, the response contains the security tokens of all services of

a particular control unit.

Hierarchical Permission Organization

Permissions are associated with dataflows and converted into unique shared keys. The more

permissions exist, the more keys are created and distributed. The number of keys would grow

fast in large automotive ecosystems without gaining a significant security benefit. Therefore,

dataflows between the same control units may share the same key. We achieve this by assigning

the same permission to them. Cryptographic keys are renewed in each session. Typically, not

every ECU can send a request to the ASP due to technical constraints or, more generally, because

they are shielded inside the vehicle. For instance, small sensors or safety-critical control units

may not be permitted to communicate with external components. In that case, we argue that

a trusted in-vehicle component (e.g., a zone gateway or domain controller) can compute and

distribute the keys later. For that purpose, we arrange permissions hierarchically such that they

depend on each other. Dataflow permissions are leaf nodes, i.e., they do not have children.

In contrast, intermediary permissions are never directly associated with dataflows but instead

granted to trusted third-party control units, making them capable of computing the keys of

descendant permissions for potentially shielded or technically limited control units.

Formally, we describe our tree-based key computation scheme as follows: While P denotes the set

of permissions (c.f., Section 6.2.3), we call the collection of cryptographic keys K = {k1, k2, ..., kn}.
The permissions are arranged in a directed rooted graph T , allowing us to describe dependencies

between them. We consider two permissions pi and pj dependent if pi is an ancestor of pj . The

root permission p0 must only be known to the ASP since all other permissions depend on p0.

Hence, the owner of p0 can compute all keys ki ∈ K. Figure 6.5 shows an example permission tree.

Each permission is assigned a unique index, growing from left to right and indicating its position

within the tree. This index is used to produce a unique key for the corresponding permission.

We call Idx(:)P → N the function that returns that index of a given permission. For instance,

Idx(Engine) returns 5 with respect to the example tree given in Figure 6.5. A component can

only compute the key ki ∈ K for permission pi if it has an ancestor pi. Hence, the hierarchically

organized permission tree T leads to dependencies between keys. That means two keys depend

on each other if their permissions are also dependent. For example, suppose the ASP grants the

permission p3= “Sensors” to a trusted in-vehicle sensor processing unit. In that case, the latter

92

Chapter 6 Securing Service-Oriented Architectures

Root0

In-Vehicle1

Sensors3

Radar8 Lidar9

Media4 Engine5

Steer Angle10 Brake11

Ex-Vehicle2

Cloud6 RSU7

Traffic Lightn... ...

Figure 6.5: Permissions are organized hierarchically. They are numbered from left to right. If an inter-
mediate permission is granted, all child permissions are also granted. This way, trusted domain or zonal
controllers can derive cryptographic keys and pass them to shielded control units.

can then compute the keys k8 and k9 for p8= “Radar” and p9= “Lidar”. Eventually, k8 and k9
are forwarded to the target control units that cannot directly communicate with the ASP.

Key Computation

Technically, we realize the hierarchic key computation scheme by recursively applying a secure

hash function Hash on the root secret k0 associated with the root permission p0. Consequently, a

permission enables its owner to compute the keys of its descendants but does not reveal anything

about its ancestors or neighbors. It is generally impossible to compute an ancestor permission as

this requires finding pre-images of Hash, which would violate the cryptographic properties of hash

functions. Thereby, the permission index indicates how often Hash is applied. Our approach is

similar to keyed hashed chains [94], a well-studied and established way of deriving cryptographic

keys from a single input source. However, we do not build a flat hash chain but consider a tree

structure instead. In the following, we use the function Prnt : P→ P to query the parent node of

a permission. Moreover, the function CalcKey : P → K calculates the key ki for the permission

pi and is defined as follows:

CalcKey(pi) =

{
KDF (KASP || Ksession, slt) i = 0

HMACIdx(pi) (slt, CalcKey(Prnt(pi))) else

We distinguish between the computation of k0 and ki with i > 0. In the former case, we first

concatenate the root secret KASP with a randomly chosen session key Ksession. Recall that KASP

is the root secret of ASP and does not change over time. Subsequently, we feed the result into a

Key Derivation Function (KDF) to obtain k0.

As an example, the Password-Based Key Derivation Function 2 (PBKDF2) [95], or the Scrypt [96]

could serve as KDF. While PBKDF2 protects against dictionary and rainbow table attacks, it

is not resistant to parallelization attacks. In contrast, Scrypt requires both computational and

memory resources. We leave the ultimate choice of the KDF to the vehicle operator. When it

comes to the computation of key ki with i > 0, we repeatedly compute an HMAC of the parent

key, i.e., of the key of permission Prnt(pi). More precisely, we call the HMAC function as often

as the tree index of pi indicates. In that way, we ensure that every permission receives a unique

93

Chapter 6 Securing Service-Oriented Architectures

key and simultaneously map the tree hierarchy on the derived keys. Since the computation of

a particular key requires the parent key, an intermediate permission enables its owner to derive

the keys of all child permissions computationally.

Once the ASP receives a key request from a particular control unit Ei ∈ ECU, it conducts the

steps shown in Algorithm 1. That means it first queries the dataflows D′ ⊆ D that involve at least

one service running on Ei. We express D′ as D′ = {d ∈ D | ∃i ∈ {0, ..., |d|} | φE(φS(πi(d))) = Ei}.
The ASP reads the permission of each di ∈ D′ and computes the key using the above-mentioned

CalcKey function. Moreover, it queries the desired security level and retrieves the cryptographic

primitives to be used. After that, the ASP determines the topic names of the DDS streams

that emerge from each d ∈ D′. This step is necessary because ASOA dataflows are internally

converted into DDS streams that can be identified by the topic name. As Section 6.1 explains,

an ASOA dataflow can internally lead to more than one DDS stream since the ASOA framework

carries quality and metadata on separate streams. The name of an ASOA guarantee is used to

determine the topic name of the resulting DDS stream. For that purpose, ASOA framework

offers an encoding scheme that inputs a guarantee and the resulting topic names. The ASP

constructs a security token for each di ∈ D consisting of the key, the DDS topic names, the

security level, and the cryptographic primitives to be used. Later, our runtime protection unit

unpacks the token and attaches the key, the security level, and the cryptographic primitives to

the corresponding DDS streams of dataflow di. Using the following scheme, the ASP transfers

the security tokens to the requesting control unit.

Algorithm 1 GetSecTokens(idEi)

1: tokens ← empty()
2: D′ ← GetDataFlows(idEi)
3: for di in D′ do
4: slj ← di.GetSecurityLevel() ▷ defined in P1
5: prj ← di.GetCryptPrimitives() ▷ defined in P1
6: pj ← di.GetPermission() ▷ defined in P1
7: kj ← CalcKey(pj) ▷ see Section 6.2.5
8: tnj ← di.GetTopicNames()
9: tokenj ← (kj , tnj , prj , slj)

10: tokens.Add(tokenj)
11: end for
12: return tokens

Token Exchange Protocol

The construction and transmission of security tokens are embedded into an exchange protocol

executed between ECUs and the ASP when a new automotive session begins. The scheme consists

of three main messages. At first, a control unit Ei sends a request to the ASP before launching

its services. Next, the ASP replies with encrypted security tokens for Ei and implicitly verifies

the identity of Ei to prevent man-in-the-middle attacks. Finally, Ei acknowledges the successful

execution of the protocol and provides the received tokens to our runtime protection unit.

The security tokens are encrypted with a shared identity key during transmission. The encryption

protects them from eavesdropping and serves as implicit authenticity proof since the identity key

is only known to the requesting Ei and the ASP. We deliberately use an identity key and abstain

from certificates because control units do not need to provide an identity to third parties but

94

Chapter 6 Securing Service-Oriented Architectures

only negotiate with the ASP. As the identity key persists between automotive sessions, storing

and protecting it securely from illegal access and leakage is crucial. While we assume secure,

non-volatile memory on larger control units, resource-constrained devices do not necessarily

provide hardware support. Therefore, we present two variations of our exchange protocol, which

differ in how secure identity information is obtained from a control unit. The first version

(TokDist-SecMem) reads an identity key from secure memory and, thus, is specifically applicable

to resourceful control units. In contrast, the second one (TokDist-PUF) exploits unique physical

memory characteristics using a PUF (cf. Section 2.6) to prove its identity to the ASP.

TokDist-SecMem The requesting control unit Ei is assumed to possess a unique identity key

KEi that is shared with the ASP and stored in secure memory. This key has been agreed on

in a one-time initialization step (e.g., during fabrication), together with a multiplicative group

of integers modulo p and a primitive root g. As illustrated in Figure 6.6, three messages are

exchanged in total. At first, Ei selects a private key skEi from Zp and computes the corresponding

public key pkEi = gskEi mod p. Then, Ei creates a key request m, consisting of its identifier idEi
and the public key pkEi . Next, Ei computes the MAC mac on m using the identity key KEi and

sends both m and mac to the ASP. Upon reception, the ASP checks the authenticity of m by

verifying mac and computes the security tokens sectok for Ei using Algorithm 1. Similar to Ei,
the ASP selects a private key skASP , generates its public key pkASP , and computesK ′Ei = pkskASP

Ei
mod p, i.e., it performs a Diffie-Hellman key exchange.

Ei ASP

1. Create pkEi
, skEi

2. m=[idEi
, pkEi

]

3. Verify mac
4. sectok = GetSecTokens(idEi

)
5. Create pkASP , skASP , nASP

6. K ′
Ei

= pkskASP

Ei

7. m′=Enc(nASP , sectok)K′
Ei

8. K ′
Ei

= pk
skEi

ASP

9. Decrypt m′ and
store sectok

10.KEi
← K ′

Ei

11. Check nASP

12. KEi
← K ′

Ei

[pkASP ,m
′]

[m,MAC(m)KEi
]

[nASP]

Figure 6.6: ECU Ei with secure memory sends a request (2) to the ASOA Security Platform (ASP)
containing its ID and a Diffie-Hellman public key. The ASP verifies the request (3), creates (4) and
encrypts (7) the security tokens using a shared DH key (5,6), and eventually sends it back to Ei The
requesting control unit decrypts (9) the tokens and updates its identity key (8,10).

After having done so, the ASP selects a random nonce nASP and encrypts it together with

sectok using K ′Ei . Eventually, it sends the ciphertext and pkASP back to Ei. The encryption of

sectok prevents its disclosure while being transmitted to Ei and likewise serves as an implicit

authenticity proof of Ei to the ASP since only Ei is capable of computing K ′Ei , required to decrypt

the data. For that purpose, Ei multiplies its private key skEi with ASP’s public key and obtains

K ′Ei . At that point, Ei uses K ′Ei to decrypt the nonce nASP as well as sectok . It acknowledges

the successful reception of the security tokens by sending nASP to ASP. If the ASP successfully

verifies nASP , it updates Ei’s identity key and stores it in secure memory to protect it from illegal

95

Chapter 6 Securing Service-Oriented Architectures

access. Without such an update mechanism, the KEi would persist throughout the vehicle’s

lifetime, which may be decades. However, a long-living key is more likely to be disclosed or

leaked because the attacker gains more computational power over time.

TokDist-PUF Not all ECUs possess secure memory for storing security tokens. To address this

issue, we propose utilizing unique physical memory properties as an alternative method to obtain

an identity key. Specifically, we employ a PUF to extract an unforgeable and distinct fingerprint

from a resource-constrained control unit. This fingerprint undergoes several processing steps

to derive a cryptographic key, which can be used for the secure transmission of the security

tokens. A PUF takes advantage of the deterministic exhibition of unique physical properties,

which are typically random and unpredictable, such as minor variations in transistor doping.

Memory itself is often an intrinsic PUF due to its distinctive access behavior. For instance,

an SRAM PUF uses the values of SRAM memory cells after bootup as a fingerprint [97]. In

contrast, row hammering [98] and latency [99] PUFs rely on the decay of DRAM cells to create a

fingerprint. Ideally, a PUF produces the same output (response) for the same input (challenge).

In this context, a challenge refers to a specific memory region whose physical properties are

measured and encapsulated in a fingerprint. The PUF response is fed in a fuzzy extractor, a

vital post-processing step to remove noise and to receive a stable output. Thus, a PUF enables

us to derive an identity proof from memory characteristics without explicitly storing a key, as

we did previously. Consequently, we can deploy our security solution even on embedded devices

lacking secure, non-volatile memory. During a one-time initialization step, a finite number of

challenges CEi is created and provided into the PUF of Ei. As a result, we obtain a set of responses

REi . Subsequently, we define ϕ : C → R as the function that produces the response for a given

challenge. Figure 6.7 illustrates the process wherein three messages are required to securely

transmit the tokens from Ei to ASP.

Ei ASP

1. Create nonce nEi

2. Create key KEi
3. sectok = GetSecTokens(idEi)
4. PUF challenge: c ∈R CEi
5. hd = ϕ(c)⊕KEi
6. Create nonce nASP

7. m′ = Enc(nASP , nEi , sectok)KEi

8. Query PUF: R = PUF(c)
9. Compute key KEi = R⊕ hd
10. Decrypt m′ and store sectok

11. Check nASP

[c, hd,m′]

[idEi , nEi]

[nASP]

Figure 6.7: ECU Ei without secure memory uses a PUF as identity proof. It first sends a random nonce
and its ID to the ASP (1), which generates a secret key (2) KEi

, creates the security tokens (3), randomly
selects a PUF challenge (4) and encrypts the tokens using the expected PUF response (7). Upon reception,
Ei queries its PUF (8), computes the key (9), and decrypts the security tokens (10).

At first, Ei sends its identifier idEi , along with a randomly selected nonce nEi to the ASP. The

latter computes the security tokens sectok as explained in Algorithm 1. Furthermore, it creates

a key KEi and uses it to encrypt another random nonce nASP and sectok . In addition, the

96

Chapter 6 Securing Service-Oriented Architectures

ASP randomly picks a challenge c ∈ CEi and queries the corresponding response r = ϕ(c). Then,

it builds the helper data hd that uses r as a one-time pad to disguise KEi , i.e., hd = r ⊕ KEi .

Eventually, the ASP sends the reply message [c, hd,Enc(nASP , nEi , sectok)KEi
] to Ei.

Upon receiving the reply message, Ei first checks nEi , then employs c to challenge its PUF

and eventually obtains the response r′. If Ei is authentic, then r′ = r holds. Ei computes

KEi = r′ ⊕ hd, thereby reconstructing KEi . Note that other control units can neither reproduce

r′ nor decrypt sectok since the PUF response r′ is tied to unique physical properties of Ei. Ei
decrypts sectok and nASP and sends the latter back to ASP. By doing so, Ei acknowledges the
protocol’s successful termination and proves its authenticity to the ASP.

Finally, Ei launches its services after providing them the security tokens through our runtime

protection unit.

6.2.6 Runtime Protection Unit

The Runtime Protection Unit (RPU) provides essential functionalities for securing and verifying

dataflows during vehicle operation. Its primary purpose is to enforce the security objectives

specified in P1 by utilizing security tokens obtained from the ASP. Upon reception, the control

unit stores these tokens in a shared memory segment, ensuring accessibility to all services on

the respective machine. Next, a launching service converts its guarantees and requirements into

DDS endpoints and then utilizes the RPU to associate the security tokens with those endpoints.

This step is crucial for later matching data from endpoints to ASOA dataflows. Technically, we

achieve this association by modifying the eProsima RTPS [100] as well as the embeddedRTPS [90]

implementation such that the tokens’ content, like the security level, the cryptographic key, and

the primitives are attached to the corresponding endpoints. Ultimately, this enables the RPU

to effectively associate frames with their original ASOA dataflow and enforce the earlier defined

security objectives.

The RPU comprises two essential components: the encryption engine and the authentication

engine, both accessing the crypto core, a library providing cryptographic primitives. The crypto

core allows for easy extension through system updates to introduce better and more secure

primitives over the vehicle’s lifetime. The encryption engine is situated on the edge of the ASOA

ASOA Core

E
n
c/
D
ec

RTPS Core

A
u
th
/V

er
if
yunsec

unsec

decrypted

enc

enc

E
th
ern

et

enc auth+enc

auth

auth

verified auth+enc

security alarm

security tokens security tokens

ASOA Middleware

×Service ×Surveillance Unit

al
ar
m

Figure 6.8: The encryption engine produces ciphers of the payload data at the edge of the ASOA core. In
contrast, the authentication engine intercepts RTPS frames and guarantees and verifies their authenticity.
In the event of a failed cryptographic operation, a security alarm is reported to a central surveillance unit.

97

Chapter 6 Securing Service-Oriented Architectures

layer. In contrast, the authentication engine resides between the RTPS layer and the Ethernet

interface, as depicted in Figure 6.8. In scenarios where dataflows do not require protection,

both engines forward the data. In contrast, if the security level prescribes authenticity and

confidentiality, the encryption engine produces a cipher of the payload. This cipher is then

passed to the RTPS Core, transforming it into RTPS frames. Subsequently, the authentication

engine intercepts these frames, computes an authentication tag, and ensures data freshness by

maintaining a unique counter for each endpoint. The authentication tag provides evidence of the

ciphertext’s authenticity and the entire RTPS frame, including the header and all submessages.

This approach prevents tampering at the RTPS layer while safeguarding confidential content.

Thus, our approach follows an authenticated encryption paradigm by encrypting the data to

be transmitted and subsequently authenticating both the ciphertext and the remaining RTPS

frame.

The distinct layers at which the encryption and authentication engine operate in our software

stack make the direct application of an Authenticated Encryption with Associated Data (AEAD)

solution infeasible. AEAD algorithms combine encryption and authentication into a single op-

eration, providing benefits in terms of efficiency and security. A prominent example is the

combination of the stand-alone algorithms ChaCha20 [101] and Poly1305 [102], both part of our

crypto core, into an AEAD algorithm [103]. Our deliberate decision to deploy the encryption

engine at the ASOA core’s edge and the authentication engine at the RTPS layer ensures au-

thenticity for payload data, header fields, and meta RTPS frames that are invisible on the ASOA

layer. Most prominently, RTPS utilizes discovery, heartbeat, and acknowledgments to discover

the network topology and to confirm earlier received messages. Without security precautions, an

attacker could easily introduce non-existent control units by injecting false discovery messages

into the network. By leaving the encryption engine on the ASOA layer, the RPU is not fully

coupled to a specific RTPS implementation, which would complicate future support for other

communication middlewares. Another aspect of why we chose to encrypt data on ASOA layer

is the evitable computational overhead that would occur when encrypting data on RTPS layer

after the frame has already been created. In such cases, the ciphertext may be longer than the

original message, requiring a new frame to be produced.

The RPU plays a dual role in the system, ensuring the security of outgoing messages and verifying

the integrity and authenticity of incoming traffic. Once messages are successfully verified, they

undergo processing by the RTPS core and are assembled into a dataflow within the ASOA Core.

Eventually, they are made accessible to services through the corresponding requirement. As a

result, the RPU remains concealed from the services and their developers, operating transparently

in the background.

In the event of failed verification or decryption, the associated engine raises a security alarm,

signaling a potential security breach. These alarms are intended to be reported to a central

surveillance unit. We have established an interface to facilitate the reporting of security alarms,

enabling immediate assessment and potential response. We argue that the ability to interpret

security-related incidents is of utmost importance. For instance, the failure to verify the au-

thenticity of a data frame could be attributed to a transmission error or, in more severe cases,

an attack. Therefore, equipping road vehicles and the broader automotive ecosystem with dedi-

cated protection and defense mechanisms and the capability to comprehend potential warnings

and alerts is crucial to ensuring overall security. We will present and discuss a possible solution to

reacting to security incidents in Chapter 8. Our security process contributes to this demand by

98

Chapter 6 Securing Service-Oriented Architectures

facilitating the centralized collection of security alarms, which can be analyzed and interpreted

to enhance situational awareness and response capabilities.

In summary, the RPU realizes dataflow protection during runtime, using the security tokens

created and supplied by the ASP every time a new session starts. This approach ensures that

changes made to the security model are securely propagated from the architecture design tool

to the network layer of each control unit, eliminating the need for manual intervention. As a

result, service developers do not need to worry about improper or missing security initialization

as long as the legitimate dataflows have been defined in P1. Hence, we claim that our solution

adheres to the principles of the ASOA philosophy, preserving a high degree of cost-efficient

maintainability.

6.3 Formal Verification

This section evaluates the security of the proposed token distribution protocol. We employ

formal verification methods to ensure the protocol can protect tokens from manipulation during

transmission. Formal verification is a rigorous process that involves proving or disproving whether

a system satisfies specific properties. At first, we represent both protocol variants as formal

models and then utilize the Tamarin model checker [50] to prove their correctness. Note that

our security analysis focuses solely on the token distribution protocol. It does not encompass

the cryptographic algorithms employed by the RPU, as they have been extensively evaluated

through cryptanalysis in prior works.

6.3.1 Tamarin

The Tamarin prover is an open-source tool designed for protocol verification, employing multiset

rewriting rules to model the behavior of a given protocol. In this context, a multiset represents

the current state of the protocol, with the initial state being an empty multiset. Tamarin uses

rules consisting of a premise, a conclusion, and optional action facts to model state transitions.

Generally, a rule is executable if the current state includes all the facts specified in its premise.

Moreover, Tamarin executes rules concurrently in potentially various instances. The resulting

trace incorporates the action facts, while the state facts from the premise are replaced by those

derived from the rule’s conclusion. Tamarin uses first-order logic formulas over traces of action

facts and time points to express security properties in lemmas. During the verification process,

Tamarin searches for traces to confirm or discard the assumed security property expressed in

the lemma. Tamarin assumes the same attacker capabilities as our attacker model presented in

Section 6.2.1. That means a Dolev-Yao adversary controls the untrusted network, being capable

of manipulating, injecting, delaying, replaying, and dropping messages arbitrarily often.

6.3.2 Protocol Specification

The protocol variants, as depicted in Figures 6.6 and 6.7, consist of four distinct steps. Each

step is modeled as a Tamarin rule, ensuring a formal representation of the protocol’s behavior.

Listing 6.1 expresses the initial step where an ECU initiates a token request. The rule’s premise

encompasses three crucial facts: the generation of a fresh nonce (ecunonce), the utilization of

a shared identity key (id key), and the involvement of a temporal secret key (sk). In contrast,

the conclusion contains the resultant token request (req) and its corresponding MAC. Apart

from the four protocol steps, the additional Deploy ID Keys rule is introduced to deploy the

identity key on each ECU. We model the security tokens as a random number that the ASP

99

Chapter 6 Securing Service-Oriented Architectures

creates every time it receives a request. For those interested in the complete proof, please refer

to annex B.1.

1 rule ecu_send_token_request:

2 let

3 ecupubkey = ’g’^sk

4 req = <$ECU , ecupubkey >

5 in

6 [! ID_Key_ECU(id_key), !SK($ECU , sk)]

7 --[Send($ECU , req), Secret(id_key), Secret(sk)]->

8 [Out(<req , mac(req , id_key)>)]

Listing 6.1: This Tamarin rule models an ECU requesting security tokens according to the

proposed token distribution protocol depicted in Figure 6.6.

6.3.3 Security Properties

Next, we formulate lemmas to establish and validate each desired security property. This step

is crucial as the absence of a lemma could obscure a protocol vulnerability despite yielding

seemingly valid proof. Our analysis encompasses five lemmas, each addressing a specific aspect

of the token distribution protocol. Two lemmas explicitly assert that both the ECU and the ASP

possess identical security tokens and an identical updated shared identity key after executing

either protocol variant. An additional lemma emphasizes that the tokens and identity key must

never be exposed to the adversary. While the inherent characteristics of a PUF guarantee source

authenticity within TokDist-PUF, the first protocol variant necessitates the utilization of a MAC.

As cryptographic primitives such as MACs are also symbols in Tamarin, we require more lemmas

to express their properties. Two further lemmas are formulated to ensure a token request’s

authentic and fresh transmission from the ECU to the ASP. Failure to uphold these properties

would enable an adversary to forge a token request, thereby gaining the ability to conceal the

updated identity key and eventually gain unauthorized access to the security tokens. Besides, we

introduce two operational lemmas to ensure the termination of the token distribution protocol

and validate the successful updating of the identity keys on both the ECU and the ASP.

6.3.4 Intermediate Conclusion

We successfully verified the lemmas using the Tamarin model checker, confirming that our pro-

tocol satisfies the properties of ensuring the confidential, authentic, and fresh transmission of

security tokens. Hence, our solution effectively protects against adversaries according to our

attacker model, including scenarios such as installing a fake ECU. In such cases, the attacker’s

capabilities would need to surpass those assumed by our attacker model, as we proved that the

secret identity key is never revealed on the network.

6.4 Evaluation

This chapter evaluates our security process on a fully automatized prototype vehicle. Since the

ASOA framework has been designed for real-time automotive systems, we especially focus on time

behavior. At first, we present the evaluation platform, a self-driving road vehicle, in Section 6.4.1

and then inspect the underlying communication model by analyzing the security annotations in

Section 6.4.2. Afterward, we perform a thorough runtime analysis in Section 6.4.3. That means

we first investigate the timing behavior of the Crypto Core on various control units and identify

100

Chapter 6 Securing Service-Oriented Architectures

the fastest-performing ones. Then, we measure the overall time overhead that our RPU incurs

while the vehicle is in motion. Finally, we implement a Physical Unclonable Function on an

Field Programmable Gate Array (FPGA) in Section 6.4.4 and demonstrate how it is capable

of authenticating embedded, potentially resource-constrained control units during the proposed

token exchange protocol.

6.4.1 Evaluation Platform

We evaluate our security process in the reference vehicles presented in Section 4.1. Recall that

these vehicles are built on an innovative bionic E/E architecture inspired by the human nervous

system. Figure 4.1 visualizes the vehicles’ hardware architecture. Across the main event chain,

environment perception, route and trajectory planning, control system, and wheel actuation

occur. The primary event chain involves environment perception, route and trajectory planning,

control system, and wheel actuation, all implemented across four main zones containing four

sensor modules, the cerebrum, the brainstem, and four dynamic modules.

Additional ECUs carry out tasks such as battery management, door control, localization, and

the HMI. The hardware deployed in the vehicle encompasses various types, including high-

performing computing systems, small embedded devices, real-time processing units, and off-the-

shelf components, as illustrated in Table 4.1.

6.4.2 Dataflow Analysis

After enhancing the architecture design tool for vehicular architectures, we engaged a team of

researchers to annotate the dataflows of the reference system using the graphical user interface

provided by this tool. The latter facilitates the storage of the vehicle architecture, encompass-

ing service contracts, interfaces, service dataflows, and security annotations, in a PostgreSQL

database. Subsequently, we developed a server that connects to this database, dynamically parses

the stored information, and exposes the annotated communication model to the ASP through a

REST interface. Furthermore, we have developed a website1 where service developers and vehicle

operators can manually examine the dataset. In our analysis, we examined the communication

graph of the reference vehicle, which is represented in XML format, and extracted relevant sta-

tistical data. The findings indicate that, on average, a control unit executes 2.77 services and

possesses 14.77 endpoints. The system comprises 26 active control units and 61 services, with

communication occurring through 113 dataflows. Within this context, we established 113 guar-

antees associated with 269 requirements, considering the possibility of requirements appearing in

multiple dataflows. Depending on the vehicle operation mode, 48 requirements receive data from

two different guarantees, 32 are wired to four guarantees, and 15 receive data from up to five

guarantees. This observation implies that dynamic rescheduling of dataflows is prevalent within

the vehicle, showcasing the flexible administration of software components, which is one of the

key advantages of the ASOA framework. In contrast, 174 requirements are consistently con-

nected to the same guarantee, indicating static data transmission. Interestingly, there are eight

dataflows where the requirements and guarantees reside within the same control unit. Security

tokens are not generated in such cases since no data is transmitted over the network. Instead, the

data exchange occurs within these guarantees and requirements through shared memory, thus

falling outside the purview of our attacker model.

1https://asoasecurity.seceng.fim.uni-passau.de/

101

 https://asoasecurity.seceng.fim.uni-passau.de/

Chapter 6 Securing Service-Oriented Architectures

5 10 15 20 25 30 35 40

2

4

6

1

3

5

4

1

2

1

5

1 1 1 1

Security Tokens

#
C
on

tr
o
l
U
n
it
s

Figure 6.9: ECUs require 15 security tokens on average. The brainstem and the vehicle gateway are
outliers, with 43 and 34 tokens, respectively. In contrast, the battery management needs only six tokens.

We generate a security token for each dataflow for the remaining control units, as explained in

Section 6.2.5. Figure 6.9 illustrates the number of control units receiving a particular number

of tokens. On average, the security platform transmits 15 tokens to each control unit. Since a

single token occupies 49 bytes, 15 ·49 = 735 bytes are necessary on average to store all tokens. It

is important to note that this memory usage poses no issues for any deployed ECUs, including

the small embedded ones. Thus, we consider the imposed memory overhead to be negligible. In

comparison, X.509 v3 certificates, as required by the DDS Security Specification, typically range

in size from 1 KB to 4 KB. As discussed in Section 2.5, the DDS Security Specification mandates

participants to store and collect various certificates, signed permission files, and governance

documents. While this may not pose a problem for powerful control units, it can be challenging

for resource-constrained devices with limited memory. Therefore, we find our solution is better

suited for embedded devices.

Our analysis observed that the brainstem and the vehicle gateway are outliers, requiring the

largest number of security tokens (41 and 34, respectively). This observation aligns with the

vehicle architecture, as the brainstem lies on the main event chain between two major zones,

the cerebrum and the spinal cord. In addition to examining the set of legitimate dataflows, we

also evaluated the manually crafted permission tree, which differentiates between safety-critical

and non-safety-critical, as well as in-vehicle and ex-vehicle dataflows. Currently, the permission

tree consists of 62 permissions for 113 dataflows. Hence, the ASP generates 62 cryptographic

keys for each session, a reasonable number for an automotive system. In contrast, if the DDS

Security Specification were employed, the number of cryptographic keys generated would be

significantly higher. Specifically, at least 226 cryptographic keys would be required due to the

113 ASOA dataflows necessitating twice as many DDS topics to accommodate the transmission

of quality data on separate topics, as discussed in Section 2.5. It is important to note that this

figure represents a conservative estimate, as distinct cryptographic keys are computed for each

data link in DDS security. Therefore, considering that many ASOA dataflows consist of multiple

requirements (i.e., DDS subscriptions), the actual number of cryptographic keys would be even

higher.

102

Chapter 6 Securing Service-Oriented Architectures

6.4.3 Runtime Analysis

We now focus on the performance of the RPU. In particular, we evaluate the timing behavior

and identify the overhead during vehicle runtime.

Evaluation Sizes

The data size processed significantly impacts the runtime performance of cryptographic primitives

and the transmission through the network. Therefore, we first identify reasonable packet sizes

for meaningful runtime analysis and then use them for subsequent evaluation steps. For that

purpose, we recorded ASOA-based traffic using the Wireshark2 tool and inspected the sizes of

the captured packets. Table 6.1 illustrates the relative frequency of a specific packet length.

Obviously, there are two peaks: 51% of the captured packets lie between 40 and 159 bytes,

Packet Length (Bytes) Average Packet Size (Bytes) Percent

0-39 20 0%

40-159 100 51%

160-639 400 2%

640-1279 960 7%

1280-2559 1920 40%

2560-5119 3840 1%

Table 6.1: Average length of ASOA packets

while another 47% have a size of 640 to 2559 bytes. A detailed inspection reveals that metadata

(heartbeats, acknowledgments, DDS discovery requests, ...) causes the first peak, while the

second represents the ASOA service payload, i.e., the automotive data being moved along the

event chain in the road vehicle. It may seem confusing that transmitting large amounts of data

(e.g., sensor data) does not lead to larger frames on the wire. We attribute this fact to the internal

fragmentation and optimization by the ASOA cores. For the following evaluation experiments,

we use representative test packets of the average size of the identified peaks (i.e., 100 and 1440

bytes).

Crypto Core

The crypto core (c.f., Section 6.2.6) provides implementations of various cryptographic primitives

used for securing ASOA communication during vehicle operation time. It currently covers the cat-

egories authentication, encryption, and additionally provides two elliptic curves (Curve25519 [104]

and FourQ [105]) for efficient computations. Besides, the crypto core consists of seven authen-

tication (Blake2, Blake3, Chaskey, HMAC-SHA256, Poly1305AES, SipHash, Skein) and four

encryption (AES-ECB, Chacha20, Speck64/128, Sparx64/128) algorithms. Our goal is to keep

the overall runtime impact of our security solution as low as possible. Therefore, this evalu-

ation experiment serves to identify the fastest algorithms that are afterward brought into the

reference vehicle. Since all of the mentioned cryptographic primitives are well-established and

have been reviewed by experts, we abstain from a security analysis. Instead, we investigate how

they perform on five representative control unit architectures and determine the best-performing

primitive for each category mentioned above. By considering the evaluation results from differ-

ent architectures, we try to compensate for potential hardware-specific optimizations that might

2https://www.wireshark.org/

103

https://www.wireshark.org/

Chapter 6 Securing Service-Oriented Architectures

Sensor Modules Brainstem (A53) HMI Cerebrum Brainstem (R5)

0

10

20

30

40

50
2.
0

13
.0
1

2.
39

12
.4 1
0.
76

28
.3

8.
78

3
1.
37

5.
6

2
6.
73

5.
13

3.
38 5
.7

2
.2
4

1
.8
3

1
3.
89

35
.0
8

2
4.
19

3
7.
99

23
.5
5

3.
35 5.
63

2.
8

2.
83 2.
68

3.
8
3

2.
14 3.
71

1.
22 3
.4

10
.7
9

8.
14

15
.9
1

13
.3
7 1
2.
6

M
ic
ro
se
co
n
d
s
(µ
s)

Blake2 Blake3 Chaskey HMAC-SHA256 Poly1305 SipHash Skein

0

10

20

30

M
illisecon

d
s
(m

s)

Figure 6.10: As part of evaluating the crypto core, we measured the time consumption of seven authen-
tication primitives on five selected architectures. While the SipHash implementation performs best, the
HMAC-SHA256 primitive is almost always the slowest. Note the different time scale on the significantly
slower embedded real-time processor ARM Cortex-R5 of the brainstem.

distort the overall performance of a given primitive in the road vehicle. For example, we observed

Blake2 performing roughly ten times faster if SSE registers were available. Similarly, we doubled

the performance of Blake3 using the AVX-512 instruction set. However, especially embedded

control units are not necessarily equipped with such hardware extensions. We measure the time

it takes for each cryptographic primitive to process test frames of size 100 and 1440 bytes on

the selected control units. For more robust results, we repeat each measurement 10,000 times.

Figure 6.10 visualizes the time it took to authenticate test packets of size 1440 bytes.

We rank each primitive according to its timing behavior on a particular control unit, whereas

a smaller score indicates a better timing behavior. In the end, we sum up the ranks for each

primitive to an overall score as shown in Table 6.2. We consider those algorithms the winner with

the smallest score in their category. Hence, Blake2 performs the fastest on the sensor modules

and the HMI, most likely due to an optimized NEON implementation. In contrast, it ranges

among the three worst-performing algorithms on the Cerebrum, although SSE acceleration has

been enabled. Therefore, Blake2 occupies only the fourth position among the rated algorithms.

Surprisingly, Blake3 beats Blake2 on the Cerebrum but is by far the slowest authentication

primitive on the Perception and the HMI. HMAC-SHA256 comes off worst on almost all control

units, while the Skein primitive ranges in the midfield. SipHash, Poly1305, and Chaskey perform

equally well without significant outliers. Since SipHash has a slightly smaller overall score than

the others, we consider it the winner of the authentication category. Similar to the evaluation

experiment presented in Figure 6.10, we evaluated the encryption primitives and the elliptic

curves. As a result, we deploy SipHash for authenticating and Speck64/128 for encrypting

ASOA traffic, while the elliptic curve Curve25519 is used for efficient key computations as part

of the token exchange protocol.

Runtime Security Overhead

Having determined the best-performing cryptographic primitives, we are now ready to assess

the total runtime overhead imposed by our security process. To still obtain meaningful and

104

Chapter 6 Securing Service-Oriented Architectures

Frame Length:

1440 bytes

Brainstem
Cerebrum Perception HMI

Σ

RanksA53 R5

E
n
c
ry

p
ti
o
n AES-ECB 4 4 3 3 4 18

Chacha20 2 1 1 2 2 8

Speck64/128 1 2 2 1 1 7

Sparx64/128 3 3 4 4 3 17

A
u
th

e
n
ti
c
a
ti
o
n

Blake2 6 4 5 1 1 17

Blake3 5 6 4 7 7 29

Chaskey 2 1 2 4 4 13

HMAC-SHA256 7 7 7 6 6 33

Poly1305 3 2 3 2 2 12

SipHash 1 3 1 3 3 11

Skein 4 5 6 5 5 25

E
C

FourQ 1 1 2 2 2 8

Curve25519 2 2 1 1 1 7

Table 6.2: We rank each cryptographic primitive according to its time consumption. The ranks are added
to a final score (last column), indicating the overall performance across the selected five control units.
The fastest primitives (in bold) are deployed in the road vehicle.

representative results, we measure the time it takes for vehicle services to communicate through

the ASOA framework, once with our security extension enabled and once without it. Since the

services running on the reference vehicle are protected intellectual property, they are only avail-

able in a binary format. Therefore, time measurement is not possible directly at the services’

guarantees and requirements because this would require white-box evaluation. While the ser-

vices internals remain hidden, their interfaces, however, are publicly available in the design tool,

which we enhanced in Section 6.2.4. Hence, we can rebuild the skeleton services of the main

vehicle event chain. That means our services have the same interfaces but are internally empty,

i.e., they do not perform automotive tasks. As an example, the replica of the perception service

does not compute an environmental model. Instead, it directly applies the receiving input data

to its outputs without further, potentially time-consuming, computations. Hence, the measured

relative overhead of our security solution refers to the bare ASOA implementation, whose re-

source consumption mainly reflects management tasks. Consequently, we expect the relative

overhead to drop significantly once services perform computationally demanding tasks. As the

relative overhead is likely much lower, we also provide the absolute time for better assessment.

To determine the security overhead, we measure the round-trip time to exchange test packets

between services running on five selected control units communicating in the reference vehicles.

Hence, we claim that the evaluated communication flows are authentic, although the services

only perform dummy operations. In total, we conducted three experiments for each combination

of control units. That is, we first send test data through raw sockets (UDP), i.e., remove the

ASOA framework and, thus, obtain a baseline given by the operating system. Next, we install the

ASOA on all ECUs and use it to transfer the same test data. Finally, we activate the proposed

runtime protection unit using the fastest-performing algorithms from Table 6.2. As explained

earlier, the security level of each dataflow indicates how it is supposed to be secured, i.e., whether

the data requires authentic or additional confidential transmission. According to the annotations

of the ASOA dataflows, most require authentication but no encryption, probably because most

105

Chapter 6 Securing Service-Oriented Architectures

automotive data is not confidential. Therefore, we use the AUTH level for all dataflows in our

evaluation setup. In total, we conducted the three mentioned experiments ten times on dif-

ferent control units. As a first finding, the security overhead does not significantly depend on

the payload size, although cryptographic operations last longer when the data to be processed

grows. Meanwhile, however, the ASOA framework also requires more time to process the data

and, in that way, keeps the relative overhead at bay. Second, we observe a more significant

overhead (9.56%) once the embedded Cortex-R5 system is involved. One possible explanation

is the optimized implementation of the RTPS protocol for embedded systems (c.f., Section 6.1),

resulting in more efficient and, thus, faster processing. This assumption is strengthened because

the ASOA overhead is comparably low at 23.8%. Note that we expect the relative overhead

to drop significantly once services perform actual automotive tasks, but the security overhead

remains constant. According to the vehicle design tool’s service specifications, the largest service

period is 100 Hz. That means the service expects new data to arrive every 10ms. Therefore, we

conclude that an average absolute delay of 33.3 µs is acceptable, and our runtime protection is

indeed applicable to a vehicular system.

6.4.4 PUF-enhanced Token Exchange Protocol

Ultimately, we evaluate the implementation of our token exchange protocol and primarily focus

on control units without the capability to securely store a long-term identity key. In that case,

we suggest using a PUF as an identity proof as outlined in Section 6.2.5. Our objective is

neither the development nor the improvement of a specific PUF. Instead, we aim to show how

unclonable and unique hardware fingerprints apply to the ASOA framework and, thus, to the

automotive domain. Our implementation targets the brainstem, the core control unit of the

reference vehicle. It is made of a Zynq Ultrascale+ ZU3EG-1E MPSoC that includes an intrinsic

FPGA that we leverage to realize a Ring-Oscillator PUF (RO-PUF), a well-established type of

PUF [106, 107].

An RO-PUF leverages the frequency differences of multiple ring oscillators to generate a unique

fingerprint. We find it particularly well-suited for demonstration because it can be realized on

an FPGA. Unlike the brainstem, we acknowledge that most embedded systems do not have

an in-built FPGA. In that case, however, other PUF techniques like SRAM [97] or memristor

arrays [108] are also reasonable solutions for our token exchange protocol. Figure 6.11 visualizes

the basic architecture of an RO-PUF. A single ring oscillator consists of an odd number of

k inverters connected in series with a loopback. This structure makes the ring oscillator toggle

between one and zero as soon as a voltage is applied. Since each inverter has a unique propagation

delay, the toggling frequency of the oscillator is also unique. In total, there are 2n ring oscillators,

whereas n are connected to a multiplexer. Each multiplexer selects the frequency of a specific

oscillator and forwards it to an individual counter. The counter value shows how often the

selected oscillator produced a bit. Finally, the counter values are compared, resulting in one bit

of the PUF response. Hence, the unique frequency differences of the selected oscillators impact

the counter value and, therefore, lead to a unique and unpredictable bit, the PUF response.

Depending on the number of required bits, the described construction can be replicated such that

longer responses (i.e., bitstreams) become possible. That means an n-bit response requires at

least ⌈ln(n)⌉ different pairs of ring oscillators. In turn, selecting oscillators, i.e., the multiplexers’

input, is considered the PUF challenge.

FPGAs are well suited to implement RO-PUFs because of their configurable lookup tables, which

are arranged in a matrix structure. Typically, only a small fraction of the FPGA is utilized for

106

Chapter 6 Securing Service-Oriented Architectures

E
C
U

1
E
C
U

2
P
a
y
lo
a
d

(B
y
te
s)

R
a
w

S
o
ck

e
ts

A
S
O
A

(v
a
n
il
la
)

A
S
O
A

O
v
e
rh

e
a
d

A
S
O
A
+
S
e
c
u
ri
ty

S
e
c
u
ri
ty

O
v
e
rh

e
a
d

M
e
a
n

M
e
d
ia
n

M
e
a
n

M
e
d
ia
n

M
e
a
n

M
e
d
ia
n

%
A
b
so

lu
te

B
ra
in
st
em

H
M
I

12
0

21
5

µs
2
1
2

µs
3
2
0

µs
3
1
8

µs
3
3
.3
%

3
2
7

µs
3
2
8

µs
3
.0
5
%

1
0

µs
16
00

27
0

µs
2
7
8

µs
4
6
5

µs
4
6
1

µs
3
9
.7
0
%

4
7
5

µs
4
7
9

µs
2
.1
1
%

1
8

µs

C
er
eb
ru
m

B
ra
in
st
em

12
0

12
1

µs
1
1
9

µs
1
4
4

µs
1
3
8

µs
1
2
.3
2
%

1
5
4

µs
1
4
1

µs
2
.1
3
%

3µ
s

16
00

20
0

µs
2
0
0

µs
4
0
5

µs
4
0
2

µs
5
0
.0
2
%

4
1
3

µs
4
1
3

µs
2
.6
6
%

1
1

µs

B
ra
in
st
em

C
er
eb
ru
m

12
0

34
2

µs
3
5
1

µs
5
0
0

µs
4
9
2

µs
2
8
.6
6
%

5
4
0

µs
5
2
6

µs
6
.4
5
%

3
4

µs
16
00

51
1

µs
5
1
9

µs
6
7
7

µs
6
8
1

µs
2
3
.8
%

7
6
1

µs
7
5
3

µs
9
.5
6
%

7
2µ

s

H
M
I

D
o
or

M
an

ag
em

en
t

12
0

37
4

µs
3
7
3

µs
5
4
0

µs
5
3
5

µs
3
0
.3
0
%

5
7
1

µs
5
7
0

µs
5
.5
4
%

3
5

µs
16
00

64
4

µs
6
4
2

µs
8
9
0

µs
8
9
6

µs
2
8
.3
4
%

9
7
1

µs
9
7
0

µs
7
.6
2
%

7
4

µs

P
er
ce
p
ti
on

C
er
eb
ru
m

12
0

44
5

µs
4
5
1

µs
7
6
5

µs
8
0
7

µs
5
8
.1
7
%

8
1
1

µs
8
3
5

µs
6
.0
1
%

2
8

µs
16
00

56
8

µs
5
9
0

µs
8
9
5

µs
9
1
2

µs
5
7
.5
7
%

9
4
5

µs
9
6
0

µs
5
.5
8
%

4
8

µs
A
S
O
A

O
v
e
rh

e
a
d
:

3
6
.2
2
%

S
e
c
u
ri
ty

O
v
e
rh

e
a
d
:

5
.7
1
%

3
3
.3

µ
s

T
ab

le
6.
3:

W
e
d
et
er
m
in
ed

th
e
ov
er
al
l
ru
n
ti
m
e
ov
er
h
ea
d
o
f
p
h
a
se

P
3
o
f
o
u
r
se
cu
ri
ty

p
ro
ce
ss

b
y
m
ea
su
ri
n
g
th
e
ti
m
e
it

ta
ke
s
to

ex
ch
a
n
g
e
te
st

p
ac
ke
ts

b
et
w
ee
n
fi
ve

se
le
ct
ed

ar
ch
it
ec
tu
re
s.

W
e
a
ls
o
co
m
p
a
re

th
e
o
ri
g
in
a
l
A
S
O
A

im
p
le
m
en
ta
ti
o
n
to

ra
w

so
ck
et
s.

E
ve
n
tu
a
ll
y,

w
e
av
er
a
g
e
th
e

re
la
ti
ve

ov
er
h
ea
d
s
to

ob
ta
in

a
si
n
gl
e
re
p
re
se
n
ta
ti
ve

n
u
m
b
er
.

107

Chapter 6 Securing Service-Oriented Architectures

MUX
n → 1

MUX
n → 1

Counter

Counter

>?

n oscillators

k inverters

n oscillators

k inverters

challenge c

n

n

R
esp

o
n
se

1
/
0

E
n
ab

le

Figure 6.11: An RO-PUF compares the oscillation frequencies of two selected ring oscillators. It generates
one bit of the response based on which counter provides the higher value.

specific actions, leaving much space available. This remaining space can be leveraged to manually

position ring oscillators with symmetrical line lengths, resulting in a sizable challenge-response

space.

To construct our RO-PUF, we employed the Xilinx Vivado Suite3 to describe the design in Verilog

and connect it to the ASOA framework. Figure 6.12 shows our setup as a Vivado block design,

where the PUF implementation is represented by the puf core block on the right. The block

zy
nq

_u
ltr

a_
ps

_e
_0

Zy
nq

 U
ltr

aS
ca

le
+

M
PS

oC

M
_A

XI
_H

PM
0_

LP
D

m
ax

ih
pm

0_
lp

d_
ac

lk

pl
_p

s_
irq

0[
0:

0]

pl
_r

es
et

n0

pl
_c

lk
0

puf_control_signals

AXI GPIO

S_AXI
GPIO

gpio_io_o[1:0]
GPIO2

gpio2_io_i[0:0]
s_axi_aclk
s_axi_aresetn

ip2intc_irpt

axi_bram_ctrl_0

AXI BRAM Controller

S_AXI
BRAM_PORTAs_axi_aclk

s_axi_aresetn

rst_ps8_0_100M

Processor System Reset

slowest_sync_clk
ext_reset_in
aux_reset_in
mb_debug
dcm_locked

mb_reset
bus_struct_reset[0:0]
peripheral_reset[0:0]

interconnect_aresetn[0:0]
peripheral_aresetn[0:0]

axi_smc

AXI SmartConnect

S00_AXI M00_AXI
M01_AXIaclk

aresetn

control_unit

control_unit_v1_0

clk
puf_f
ena_rst[1:0]

addr[31:0]
we[3:0]

ena_bram
ena_puf

rst_puf
fin

puf_core

puf2_v1_0

puf_c[31:0]
ena
rst
clk

puf_f
puf_r[31:0]

blk_mem_gen_0

Block Memory Generator

BRAM_PORTA
BRAM_PORTB
addrb[31:0]
clkb
dinb[31:0]
doutb[31:0]
enb
web[3:0]

Figure 6.12: The block design from Xilinx Vivado shows how the PUF interacts through a control unit
and block memory with the ASOA framework running on the Zynq Ultrascale+ MPSoC.

memory (blk mem gen 0) beneath the puf core facilitates data sharing between the Cortex-R5

processor and the FPGA. In addition, we introduced a control unit (control unit) positioned

above the puf core. It offers three signals through which the ASOA framework can control the

PUF.

3https://www.xilinx.com/products/design-tools/vivado.html

108

https://www.xilinx.com/products/design-tools/vivado.html

Chapter 6 Securing Service-Oriented Architectures

The Enable signal is activated once the PUF challenge has been written to the earlier-mentioned

block memory. Typically, this happens whenever the ASOA, running in a FreeRTOS environment

on the Cortex-R5 processor, requires an identity proof within the token exchange protocol. The

Enable signal indicates to the PUF that it can proceed to read the challenge, produce a response,

and write it back to the block memory. Subsequently, the PUF sets the Finish signal, which

triggers an interrupt on the application layer. This interrupt notifies the ASOA framework that

the identity proof can now be read from memory and processed by the token exchange protocol

(c.f., Figure 6.7).

On the opposite side, we implemented the ASP as a threaded server capable of handling multiple

incoming requests simultaneously. We successfully executed the token exchange protocol on the

Cortex-R5 processor of the brainstem, using the above RO-PUF as identity proof. In total, it

took the protocol 15 ms to complete, with approximately 1ms allocated to FPGA request and

interrupt processing. Since the security tokens are exchanged during session startup, typically

when the vehicle starts, we consider the measured delay acceptable, as no specific time constraints

exist in this phase.

6.5 Sub-conclusion

This chapter presented a security process for the Automotive Service-Oriented Architecture

(ASOA) to protect the underlying communication from manipulation and data theft attacks.

Our solution is transparent to service developers and aligns with ASOA’s efforts of providing a

centrally manageable software architecture consisting of fully decoupled services. We achieve this

by enabling system designers to specify security objectives in a central architecture design tool,

which are processed by the ASOA Security Platform (ASP) on session startup. The ASP creates

security tokens accordingly and securely transmits them to the control units. That way, changes

to the security model are instantly and securely propagated from the design layer to the services

inside the vehicle, making the maintenance and update process cost-efficient and simple.

To uphold ASOA’s support for embedded and resource-constrained control units, we suggest

leveraging distinct physical properties as an identity proof within our token distribution protocol

instead of solely relying on secure hardware modules. In this context, we demonstrated the appli-

cability of a Physical Unclonable Function (PUF) as part of our security process in a prototype

implementation on an FPGA. Moreover, we organize cryptographic keys in a tree structure to

allow a trusted in-vehicle ECU to derive keys for shielded control units computationally, e.g., for

those that cannot directly communicate the ASP. We formally verified our token distribution

protocol using the Tamarin model checker and thoroughly evaluated our work in a self-driving

prototype vehicle. Our experiments showed that our work imposes an average runtime overhead

of 5.71% corresponding to an absolute delay of 33.3 µs.

To answer research question RQ3, we conclude that an efficient security process should allow

the seamless integration of security aspects without introducing dependencies between software

modules. It should support changes to the software architecture, requiring updating permissions,

cryptographic keys, and security levels. Lastly, it should enable the collection of logs and analysis

of security incidents. Our work contributes to a holistic security approach since the proposed

security process begins in the vehicle design phase and allows for modifications when the vehicle

is actively used.

109

7. Ensuring Software Integrity of ECUs

Section 3.1 has illustrated how well-known cyberattacks on vehicles operate and has made it

clear that not only unprotected communication but also corrupted ECUs poses a serious threat

to automotive systems. This fact aligns with our security requirement analysis from Chapter 4,

which states that while secure communication is an essential part of a security concept for an

SDV, yet control units and their software must also be protected from manipulation. This is

especially necessary when they can be updated remotely or even allow user customization, such

as personalizing an infotainment system.

Consequently, the requirement “system integrity” includes not only communication but also

software integrity. Otherwise, attackers not sitting between ECUs but on them could take control

of the vehicle and provoke fatal consequences.

This chapter addresses how the software state of SDVs can be quantified, verified, and validated.

The objective is to prove the trustworthiness and thus the roadworthiness of an SDV to a

third party. If verification and validation are successful, the examined vehicle receives a digital

certificate authorizing it to participate in traffic or other services. Since compromised control

software can have fatal safety consequences, similar to faulty or worn mechanical components, we

argue integrity checks are essential for SDVs. Our work may contribute to regulations requiring

proof of uncompromised and trustworthy software, similar to mandatory safety and quality

inspections of mechanical vehicle parts. We compare this with the legally required technical

inspection of mechanical components.

Unlike the previous chapters, we assume an attacker residing on the ECUs. To detect this, we

present a proactive scheme for measuring the software integrity of ECUs. In this context, we first

describe the system model in Chapter 7.1, then specify the attacker model, and finally present

a software validation scheme to answer the research question RQ4 in Section 7.3. Section 7.5

describes our implementation, which we then evaluate in Section 7.6.

This chapter builds upon the research described in the article “Ensuring Trustworthy Automated Road

Vehicles: A Software Integrity Validation Approach” [6], which was presented at the IEEE International

Automated Vehicle Validation Conference in 2023. I thank Felix Klement for supporting the evaluation

of the registration overhead in Section 7.6.2.

7.1 System Model

Each vehicle within our ecosystem is assumed to possess a unique digital identifier called VID,

akin to a license plate number. Furthermore, we assume the existence of a central ECU, denoted

as EC, which, aside from providing computational power for automotive tasks, functions as a

communication gateway for external components.

111

Chapter 7 Ensuring Software Integrity of ECUs

We introduce a generic Registration Unit (RU) requiring vehicles to register for actions they

intend to perform. The idea behind the RU is to grant permission to the requested action only

if the vehicle can provide proof of trustworthiness, thereby ensuring a validated software state,

as compromise may pose a significant hazard to other traffic members. The precise role of the

RU can be customized to suit a variety of mobility concepts. For instance, a vehicle may wish

to participate in automated traffic in an urban environment, where the RU could comprise all

automobiles in a specified perimeter that share environmental sensor data and, thus, need to

trust each other. Alternatively, the RU could be a traffic surveillance unit, as has been suggested

by recent research [109] and even required by a German draft law [92] from 2019. Another

potential use case may be a platoon whose master vehicle requires proof of trustworthiness from

vehicles seeking to join.

In our system, a vehicle’s trustworthiness is attested by the Trusted Software Authority (TSU),

another vehicle-external component. It is primarily responsible for the maintenance of automo-

tive software and, for that purpose, keeps a copy of each authentic software component. The TSU

acts as a verifier and issues a certificate if the vehicle can prove its benign software state. No-

tably, unlike related work [8] that assumes an in-vehicle trust anchor, our approach entails each

vehicle solely trusting the remote TSU and possessing its public key. Furthermore, we assume

the existence of a shared identity key, denoted as KEi , between each ECU and the TSU.

We acknowledge that maintaining a separate key for each ECU in every vehicle does not scale

in a large automotive ecosystem. Therefore, envision a key derivation mechanism, allowing

the TSU to computationally determine KEi based on the vehicle identity VID. However, a

practical solution is orthogonal to the problem of ensuring trustworthiness and is left for future

research.

7.2 Attacker Model

We assume an adversary, denoted as Adv, who possesses control of the in-vehicle and external

network (Dolev-Yao) and the ECUs. Adv can drop, inject, manipulate, and delay messages

transmitted within the vehicle as well as traffic to external units. Additionally, Adv can penetrate

ECUs, where he may install potentially harmful software and execute it, facilitated through over-

the-air updates or poorly secured interfaces. However, we do not consider the manipulation of

software during vehicle operating time. While Adv can infiltrate hardware, he cannot affect the

code execution within trusted environments such as Intel Software Guard Extensions (SGX) or

ARM TrustZone. Moreover, Adv cannot break cryptographic primitives as he is computationally

constrained.

7.3 Software Validation Scheme

Our scheme for validating vehicle integrity comprises five consecutive steps, executed every time

proof of trustworthiness is required, typically when a vehicle starts. The fundamental principle

involves the computation of integrity identifiers for every ECU in a cascading manner, considering

the integrity of that ECU and that of its children. Eventually, a trustworthy vehicle receives

a certificate that enables it to register for an automotive action, such as participating in urban

traffic or joining a platoon. Figure 7.1 illustrates our scheme schematically.

112

Chapter 7 Ensuring Software Integrity of ECUs

7.3.1 Initialization

The integrity measurement begins with the central ECU EC sending an attestation request to the

TSU, containing the vehicle’s identity VID. In response, the TSU generates a random nonce n

and a distinct attestation key kAT , which will be used to authenticate the integrity measurements.

The purpose of n is to ensure freshness and thwart Adv from replaying outdated measurements.

To prevent leakage of kAT , the TSU encrypts it for each ECU using the corresponding identity

key KEi to obtain CkAT
Ei

= Enc(kAT)KEi
. The encrypted keys CkAT

E1
,CkAT

E2
, ...,CkAT

En
along with n

are sent back to the vehicle, where EC disseminates them to all Ei.

HPC

ZC1

ZC2

ZC3

ZC4

ECU 1

ECU 2

ECU 3

ECU 4

ECU 5

ECU 6

ECU 7

ECU 8

ECU 9

Vehicle Sensor/Actuator

Trusted Software Authority
(TSU)

Registration Unit
(RU)

(1
.1
)
IM

R
eq

u
es
t,

V
ID

(1
.2
)
n
,
C
k
A
T

E 1
,
C
k
A
T

E 2
,
..
.,
C
k
A
T

E 1
6

(1
.2
)

n,

CkAT
ZC4

(1.2)
n,

CkAT
E8

(1.2)

(1.2)

n, C
kAT
E9

(1
.2
)

n, C
kAT
E10

(2) IntIDE2 ,IntME2

(2)

(2) IntIDE7
,IntME7

(2)

(3
.1
)
I
n
tI
D
V
ID

,
I
n
tM

V
ID

,
p
k
V
ID

,
m
a
c

(3
.1
)

(3
.2
)
cr
t
=

C
er
t(
p
k
V
ID

,V
ID

)

(4
.1
)
A
ct
io
n

R
eq

u
es
t,

p
k
V
ID

,
cr
t

(4
.2
)
C
h
a
ll
en

g
e
c

(4
.3
)
c s

ig
=

S
ig
n
(c
) s

k
V
ID

Figure 7.1: An illustration of our integrity validation scheme in a simplified zonal architecture with
a central HPC and four zones. After distributing a nonce and an encrypted attestation key to each
ECU (Step 1.2), the ECUs determine their software integrity by running Measure (Step 2) in a secure
hardware-isolated environment. The integrity identifier is sent, along with the measurements, to the TSU
for validation (Step 3.1). Depending on the result, the TSU issues a certificate (Step 3.2), which proves
trustworthiness to an RU, allowing to establish a secure channel required to perform the requested action
(Step 4). To enhance legibility, we only show selected steps in one zone each.

7.3.2 Integrity Measurement

Upon receipt, Ei commences the process of measuring its software integrity by calling the pro-

cedure Measure (Algorithm 2) in a secure environment. The measurement of Ei produces an

113

Chapter 7 Ensuring Software Integrity of ECUs

integrity identifier that we refer to as IntIDEi
. This value is the authenticated hash of selected

software components, denoted as SCEi
. These components encompass software on the functional

layer, such as SOME/IP or ASOA services, ROS nodes, or custom binaries, often provided by

third parties, as they are subject to regular extension and updates. To prevent Adv from pene-

trating lower levels of the software stack, including the OS or the bootloader, we also ensure the

integrity of system files and the bootloader during authenticated boot (c.f., Section 7.4.1).

Measure operates in a cascading manner, merging the measurement of the current ECU with that

of its children. As a result, IntIDEi
represents the integrity of Ei and all Ej that are positioned

hierarchically below. This enables the inclusion of shielded ECUs, such safety-critical embedded

systems that are directly wired to their parent without the ability to communicate with external

components. For example, if Ei was a zone controller, IntIDEi
would incorporate not only the

integrity of Ei but also of all ECUs within that particular zone.

Algorithm 2 Software Integrity Measurement

1: procedure Measure(SCEi
, IntIDC

Ei
, IntMC

Ei
, CkAT

Ei
, n)

2: IntM ← array() ▷ contains all measurements

3: kAT ← Dec(CkAT
Ei

)KEi
▷ get attestation key

4: for each sw ∈ SCEi
do ▷ measure sw integrity

5: bin = Load(sw)
6: hash← Hash(bin) ▷ e.g., using Linux IMA
7: IntM[Ei].Append(sw, hash)
8: end for
9: authboot← GetAuthBootCodes()

10: IntM[Ei].Append(“bootchain”, authboot)
11: while idx ̸= len(IntIDC

Ei
)) do ▷ verify authenticity

12: IntIDEj
← IntIDC

Ei
[idx]

13: IntMEj
← IntMC

Ei
[idx]

14: if Verify(IntIDEj
)kAT = Authentic then

15: IntM. Join(IntMEj
)

16: else
17: IntM[Ej]← “untrusted”
18: end if
19: end while
20: IntID ← MAC(IntM, n)kAT ▷ authenticate
21: SendToParent(IntID, IntM)
22: end procedure

Along with IntIDEi
, Measure produces an array IntM that contains the labels of the measured

software and the corresponding hashes. IntM enables the TSU to identify software whose in-

tegrity check failed and factor this during validation. Given that an ECU may have several

children, we utilize the array IntMC
Ei

to store the IntM of Ei’s children. Similarly, IntIDC
Ei

holds the integrity identifiers of Ei’s children. In line 3, Measure first decrypts CkAT
Ei

to receive

the attestation key kAT . Then, starting in line 4, Measure performs integrity measurement by

computing the hash of each software, which is added along with the software label to IntMEi

in line 7. Following this, Measure retrieves the results from the authenticated boot (line 9) to

IntM[Ei], allowing the TSU to verify the benign state of the OS and the bootloader. Finally,

Measure verifies the authenticity of the measurements (line 11) carried out by Ei’s children using

the key kAT . This step is necessary to exclude manipulations of the measurements during their

114

Chapter 7 Ensuring Software Integrity of ECUs

transmission within the vehicle. If the verification succeeds, the hashes and software labels of

Ei’s children are appended to IntMEi
. Otherwise, Ei flags the software of the respective ECU as

“untrusted”, allowing the TSU to determine potential consequences during validation.

Ultimately, in line 20, the integrity identifier IntID for ECU Ei is computed using a MAC that

takes as input the hashes and software labels in IntM, along with the nonce n. Since IntM

comprises the measurement of Ei’s children, the IntID also reflects their integrity state. Finally,

both the IntID and the corresponding measurements stored in IntM are sent to the parent ECU

(line 21).

7.3.3 Validation

A trustworthy vehicle receives a certified digital identity that enables it to register with the RU.

This certificate links the vehicle’s identity VID to a public key pkVID, which is generated by EC
alongside the corresponding secret key skVID every time the integrity measurement process termi-

nates. Since EC has no parent ECU within the vehicle, it sends IntIDVID, IntMVID, and pkVID

to the TSU after terminating Measure. Furthermore, it transmits mac = MAC(VID, pkVID)kAT ,

allowing the TSU to verify the authentic origin of pkVID. Upon reception, the TSU first verifies

mac and IntIDVID. For that purpose, the TSU extracts the software labels from IntM, queries

the original binaries from its database, and computes their hashes. The vehicle’s software state

is considered fully trusted if the verification succeeds immediately. Otherwise, the TSU identifies

the distrusted software and validates whether it must be considered critical. We propose imple-

menting a validation process that considers the ECU on which the untrusted software runs and

whether it has access to actuators and the potential to impact vehicle dynamics. Customiza-

tion at or below the OS must be strictly prohibited. Therefore, the integrity of all boot stages

must be ensured. That way, a customized application operating on the infotainment system may

not pose a threat, while unverifiable software in a safety-critical zone must inevitably lead to

countermeasures. If the validation judges the vehicle trustworthy, the TSU issues a certificate

crt = Cert(pkVID,VID), which is eventually sent back to the vehicle. Otherwise, an error is

returned, and consequently, pkVID remains uncertified, rendering it impossible for the vehicle to

register with the RU.

7.3.4 Registration

Registering a vehicle with the RU entails applying for a specific automotive action, which may

vary depending on the mobility concept being employed. In either case, a secure communication

channel is necessary to perform the requested action, which gives the possibility to exclude

illegitimate vehicles. The registration is a challenge-response mechanism between a vehicle and

the RU. Apart from the desired action, the request contains the vehicle’s public key pkVID and

the previously obtained certificate crt. Once the request is received, the RU verifies the certificate

and responds with a challenge, denoted as c. Upon reception, the requesting vehicle computes the

signature csig = Sign(c)skVID
and sends it back to the RU. If the RU successfully verifies csig, the

vehicle is considered trustworthy, and the requested action is permitted by establishing a secure

channel between the RU. This is achieved through the use of the trusted public key pkVID, which

may be employed, for example, through a Diffie-Hellman key exchange. Otherwise, the request

is rejected, and the vehicle is excluded from further actions. Hence, successful registration is

contingent upon the vehicle having undergone an integrity measurement process prior to the

request. Otherwise, the authenticity of pkVID cannot be proven to the RU as the certificate crt

would not have been issued.

115

Chapter 7 Ensuring Software Integrity of ECUs

7.3.5 Invalidation

To prevent Adv from using certificates representing an outdated software state, the TSU revokes

the issued certificate when a vehicle is powered off. To achieve this, the central ECU EC imple-

ments a notification procedure Notify to inform the TSU when the vehicle is shut down. Similar

to Measure, this procedure is executed in a secure environment.

7.4 Security Requirements

The genuine and secure execution of Measure and Notify is the fundamental assumption of our

scheme. The problem, however, is that these functions are executed in a possibly compromised

environment since our attacker model assumes the presence of Adv on the ECUs. Therefore, both

procedures and the secret identity keyKEi are part of the Trusted Computing Base (TCB), which

is inaccessible to potential adversaries. This design ensures that even if Adv gains access to an

ECU, it is impossible to tamper with or prevent Measure from executing as intended, i.e., it must

not be interrupted by any other process. Technically, the TCB is protected through enclaves,

which provide an isolated and secure environment for running trusted code, commonly referred

to as secure world. As elaborated in [8], Measure and Notify must be kept in a write-protected

memory area to preclude tampering. Similarly, the secret identity key KEi must be safeguarded

against illegitimate access, which can be achieved through secure memory. Exclusive access to

KEi can be enforced using an I/O Memory Management Unit.

7.4.1 Authenticated Boot

Beyond applications at the functional layer, it is essential to incorporate low-level software com-

ponents into the integrity measurement process, particularly if ECUs are equipped with a full-

stack OS. Adv may compromise components such as the bootloader to gain control of the ECU.

To address this, we employ authenticated boot, a technique to ensure that a computer system

loads in an expected and trustworthy state. The boot process typically involves multiple stages

that form a chain. The process usually begins with a code snippet from read-only memory that

contains the logic to select the boot device where the First-Stage Bootloader (FSBL) is expected.

The FSBL initializes basic hardware controllers and loads the Second-Stage Bootloader, for ex-

ample, a U-Boot environment. The latter loads the Linux kernel space, which in turn loads the

Linux user space where automotive applications run. During authenticated boot, the integrity of

each stage of this boot chain is measured. The measurement results are stored in memory rather

than verified immediately, as is the case with secure boot. We retrieve these results in line 9 of

Algorithm 2 and integrate them into the integrity identifier as a single hash.

7.4.2 Remote Attestation

For measuring the software integrity on a possibly compromised ECU, we leverage the principles

of remote attestation that have been widely discussed [110]. Typically, a prover makes a claim

about its system to a remote party, also referred to as the verifier. During attestation, the

prover provides computational evidence about this claim to the verifier, who either confirms or

rejects it. Special hardware extensions like a Trusted Platform Module, Intel SGX, or the ARM

TrustZone provide an isolated execution environment in which the prover creates the evidence.

Alternatively, lightweight solutions [111, 112] can be used for embedded systems. In our work,

we leverage the technique of remote attestation to execute Measure and Notify.

116

Chapter 7 Ensuring Software Integrity of ECUs

7.5 Implementation

We implemented and evaluated the proposed integrity measurement scheme on the hardware

used in our reference vehicle presented in Section 4.1. As illustrated in Table 4.1, many ECUs

employ ARM processors, which benefit from their inherent safety and security features. For

instance, modern ARM processors support a dual-core lockstep mode and use the TrustZone

technology for software isolation. In our setup, we recreated the zonal E/E architecture of the

reference vehicles in a best-effort approach using the original hardware where possible. That

means we utilized the brainstem’s Ultrascale platform for the central ECU EC and RPis for the

remaining controllers. To implement the proposed scheme, each ECU needs to know its parent

and child nodes within the E/E architecture. Figure 7.2 schematically illustrates the hierarchical

arrangement of the ECUs. Each zone ultimately connects to the central brainstem and consists of

Brainstem

ZC1

E1 E2 E3

ZC2

E4 E5

ZC3

E6 E7 E8

ZC4

E9 E10

Figure 7.2: The zonal E/E architecture replicated by our setup consists of four hierarchical layers: (1) the
central brainstem as the root node, (2) the zone controllers, (3) the ECUs, and (4) sensors and actuators.

two or three ECUs, whereas one is connected to a sensor or actuator. In total, our setup consists

of 19 ECUs. We use ordinary laptops with Intel Core i7-1260P processors and a full-stack Linux

OS for the TSU.

7.5.1 OP-TEE

To ensure compliance with the security requirements outlined in Section 7.4 for the execution of

Measure and Notify, we utilize the publicly available Open Portable Trusted Execution Environ-

ment (OP-TEE) 1, a framework leveraging the ARM TrustZone technology to create a secure

world in which applications and data are isolated and protected from access by the normal world.

This approach builds upon prior work [8] in which we proposed an attestation scheme for ECUs

running a full-stack OS. OP-TEE uses the ARM Security Extensions to establish a Trusted Ex-

ecution Environment (TEE) inside the secure world using two core building blocks: A Trusted

Application (TA) is a signed binary that runs in the secure world and has access to shielded

cryptographic features such as secure memory. In contrast, the Secure Monitor (SM) starts and

stops TAs and manages communication channels between the secure and normal worlds. Note

that while resources in the secure world may access the normal world, the reverse is impossi-

ble. In our implementation, we developed the Measure and Notify procedures in C++ as TAs.

Measure uses the Linux Integrity Management Architecture (IMA) to perform the hashing of the

targeted applications in SC. At the moment, we include all files in user space into SC to facilitate

the creation of a policy for the IMA kernel module. The specification of SC may be adjusted

to include or exclude specific files from processing. To allow ECUs to compute an aggravated

integrity identifier, we include the addresses of the child and parent ECUs into each instance of

1https://www.op-tee.org/

117

https://www.op-tee.org/

Chapter 7 Ensuring Software Integrity of ECUs

Measure. We argue that hardcoding these addresses seems appropriate as the network topology

remains static. The hashes produced by the IMA are securely stored and made available to

Measure in the TEE for processing them as described in Algorithm 2.

BL1
ROM

BL2
FSBL

BL32
SSBL

Secure World
OP-TEE

BL33
SSBL

Normal World
Linux Kernel

Measure

Notify

App 1

..
.

App n

Figure 7.3: The ARM boot chain uses a separate Second-Stage Bootloader to load a secure world, in
which we execute the Measure function.

To guarantee the integrity of the OP-TEE environment, we integrate it into the authenticated

boot process, as illustrated in Figure 7.3. For that purpose, we leverage the ARM boot chain,

which provides dedicated stages for loading a TEE within the secure world. Specifically, the

BL32 boot stage loads the SM and then the OP-TEE while the BL33 stage loads the Linux

kernel in the normal world.

While this setup allows us to evaluate the proposed scheme in a realistic environment, it is

important to note that our implementation remains a prototype requiring further engineering

efforts for secure deployment in a road vehicle. Notably, the RPi lacks a Memory Protection Unit

and hence the ability to provide secure storage, enabling an attacker to access sensitive data such

as key material from the normal world. Additionally, our approach currently does not protect

against runtime attacks, as automotive applications may be altered after the measurements have

been made.

7.6 Evaluation

We utilize our implementation to evaluate the proposed scheme in two steps. Initially, we analyze

the average time required for determining and validating the integrity of a vehicle. Subsequently,

we investigate the registration overhead by simulating a moving vehicle in both an urban and

a highway environment, where it is mandated to prove its benign software state to nearby enti-

ties.

7.6.1 Validation Overhead

We began by determining the boot time of each ECU without our scheme enabled to obtain

a baseline. This involved loading a bare Linux OS without performing authenticated boot or

computing integrity identifiers. We observed an average boot time of 17.2 s on the RPis platforms

and 15.3 s on the central Xilinx Ultrascale+ system. Next, we built the OP-TEE environment,

deployed it on our setup’s ECUs, and initiated the Measure procedure in the secure world.

During the integrity measurement process, we generated hashes of all files stored on the ECUs.

Specifically, the RPi platform contains 130,578 system files, while the Xilinx Ultrascale+ board

has 48,738 files. Note that the integrity of system files is expressed as a single hash, as described

in line 9 of Algorithm 2. Hence, the TSU can recognize an untrusted OS but cannot identify the

corrupted files, which is unnecessary as we always require a benign OS. In contrast, automotive

118

Chapter 7 Ensuring Software Integrity of ECUs

Bare Boot
Auth.

Boot + Measure
Overhead

Single ECUs
RPi 17.2 s 21.3 s 4.1 s

Brainstem 15.3 s 18.4 s 3.1 s

Full Scheme
Tree 600ms

Bus 1.8s

Validation Delay 1036 ms

Total Averaged Overhead 5.236 s

Table 7.1: Time consumption to validate the software integrity of our setup with each ECU running four
automotive applications.

applications in SCEi
are individually included in the integrity identifier, as these applications

are typically added or updated and, thus, require precise validation. We created four dummy

ASOA services for each ECU to simulate these applications. This number originates from the

earlier mentioned prototype vehicles, which deploy 4.3 automotive applications on average on

every ECU. As shown in Table 7.1, our scheme executes in 21.3 s on the RPi platform and 18.4

s on the Ultrascale+ board. Thus, the integrity measurement adds an overhead of 4.1 s and 3.1

s, respectively, to the original boot process.

While the execution time on a single ECU is a first reasonable performance estimate, we still

need to consider the time a given ECU needs to wait for its children to terminate. Recall that

an integrity identifier includes the measurements of all hierarchically lower positioned ECUs,

resulting in a dependency among them. For instance, the zone controller ZC1 shown in Figure 7.2

can only proceed computing IntIDZC1
and IntMZC1

, after the ECUs E1, E2, and E3 have provided
their results.

Our setup takes 21.9 s from booting the system to the computation of the integrity identifier for

the ECU on the highest hierarchical layer, i.e., the brainstem. Hence, we observe an additional

latency of 600 ms compared to the longest execution ofMeasure on a single device. This additional

latency encompasses the network delay and the time of the ECUs for their children to terminate

and, therefore, highly depend on the hierarchical structure of the E/E architecture. Ideally, the

ECUs are arranged in a flat tree since the integrity measurement can occur fully parallel as

only the root node needs to wait. In the worst case, the ECUs are arranged in a chain where

each ECU has to wait for the adjoining one. We modified our setup to implement the latter

case and observed that the computation of the vehicle’s integrity identifier consumes 23.1 s,

corresponding to an overhead of 1.8 s. We conclude that the hierarchical arrangement of the

ECUs does impact the scheme execution time. However, this overhead is relatively low compared

to the time necessary to boot and measure the individual files.

Finally, the vehicle’s integrity identifier has to be transmitted to and validated by the TSU. In a

real scenario, a cellular V2X channel would probably be used for transmission. For simplicity, we

use a wireless connection based on the IEEE 802.11ac standard. We measure the time it takes

to transmit the integrity identifier from the central brainstem to the TSU, to validate it, and to

reply with a certificate of trustworthiness. In our case, the validation describes the cryptographic

verification process, but we do not judge the deployed dummy applications since they only serve

as an example. We observe an average time of 1036 ms to perform the earlier-mentioned steps

on an authenticated integrity identifier of size 1130 KB.

119

Chapter 7 Ensuring Software Integrity of ECUs

Parameter Value

Road layout [Highway, Urban] 5km, 3+3 lanes

Density [50, 100, 150, 200] vehicles/km

Ranges of Awareness [50, 100, 200, 300] meters

Average speeds [30, 50, 120] km/h (± 12 km/h)

Channel 5.9 GHz

Bandwidth 10 MHz

Antenna gain (tx and rx) 3 dBi

Propagation model WINNER+, Scenario B1

Shadowing Variance 3 dB, decorr. dist. 25 m

Registration Payload 2136 KB

Table 7.2: Technical parameters for simulating the vehicle registration phase.

Overall, we have a total average overhead of 5.236 s. At first glance, this figure might seem

high; however, most time is necessary for measuring the system files of the unoptimized OS.

The overhead can be reduced by appropriately configuring the OS and minimizing its overall

size. Considering that this overhead is added to the vehicle booting process, we find it accept-

able.

7.6.2 Registration Overhead

At last, we aimed to determine whether the latency of the registration step is acceptable in

a real scenario. To answer this question, we simulated an ecosystem in which traffic entities

engage in continuous communication within a Range of Awareness (RoA) to optimize traffic and

improve safety. For example, they might share sensor data to enhance situational awareness,

especially in cases where obstacles or events are hidden from their direct perception. A traffic

entity describes a communicating automotive object such as a vehicle, a roadside unit, or a traffic

symbol. A vehicle seeking to join automated traffic must provide evidence of its trustworthiness

to all entities in the RoA, i.e., registration is necessary. In other words, the RU consists of all

traffic entities within a given RoA. We used a Matlab simulation framework [113] to examine the

average time required for a vehicle to register with traffic entities in its RoA. This framework

enabled us to simulate the data transmission based on Dedicated Short Range Communication,

which is based on the IEEE 802.11p standard.

We assumed a moving vehicle; thus, new traffic entities appear in the RoA while others leave.

Consequently, the registration step was continuously repeated while the vehicle was in motion.

Table 7.2 summarizes the configuration parameters of our simulation that considers an urban

and a highway scenario, both established by the ETSI [114]. The scenarios mainly differ in

the density of obscuring objects, which affects the scattering behavior. The urban environment

is densely populated with many roadside units, traffic signals, and vehicles. In contrast, our

highway features three lanes with a primarily unobstructed line of sight. Vehicles existing on

one end of the highway re-enter the same lane on the opposite one, requiring a new registration

process as they are treated untrusted again. We modeled vehicle speeds in the urban and high

environments using a Gaussian distribution with average speeds of 30 km/h and 50 km/h, and

90 km/h and 120 km/h, respectively. The standard deviation used for both environments was

12 km/h.

120

Chapter 7 Ensuring Software Integrity of ECUs

Our simulation encompassed multiple experiments investigating the registration overhead, i.e.,

the delay from a moving automobile to all traffic entities within its RoA. We considered densities

of 50, 100, 150, and 200 traffic entities within a perimeter of one kilometer and RoAs of 50, 100,

200, and 300 meters. Note that the RoA generally has fewer traffic entities as it only covers

part of the scenario area. A single registration required the transmission of the certificate of

trustworthiness crt (1048 KB), the public key pkVID (1024 KB), and the action string (64 B) as

described in the fourth step of our scheme. We also add a flat rate of 10 ms to our results to

account for the time required to verify crt and the challenge signed c, acknowledging that this

value may vary on different systems.

Figure 7.4 visualizes the relationship between the average traffic density in all RoAs and the

average registration overhead. Note that the number of traffic entities within the RoAs is assumed

to be the same in the highway and urban scenario. Our results show that the delay grows

5 10 15 20 25 30 35 40 45 50 55

50

55

Traffic Entities in the RoA

A
v
er
a
g
e
R
eg
is
tr
a
ti
o
n
O
v
er
h
ea
d
(m

s)

Highway (90km/h) Urban (30km/h)
Highway (120km/h) Urban (50km/h)

Figure 7.4: The more traffic entities are in the RoA, the longer the registration takes. In an urban ETSI
scenario, the registration generally lasts longer due to more obscuring objects than on a highway.

with increasing traffic entities, although registrations are independent of each other and run in

parallel; as expected, more communication leads to more channel congestion and a larger delay.

Additionally, on average, registration takes longer in an urban environment than on a highway,

likely due to more obscuring objects, leading to a different scattering behavior. The registration

delay ranges from 47 to 58.5 ms, which we found acceptable as the minimal -induced delay in

such settings has been estimated to be approximately 40-50 ms [115].

7.7 Sub-conclusion

To give an answer to research question RQ4, we presented a novel scheme for determining and

validating the software integrity of road vehicles. The trustworthy software state of SDVs can be

proven with regular integrity measurements carried out in isolated environments on ECUs. Unlike

existing solutions, we do not rely on a trusted in-vehicle verification unit since such an approach

does not scale for modern updatable systems. Instead, our scheme involves a remote component

to validate a vehicle’s integrity, allowing it to approve uncritical customizations or software from

unknown sources. This component issues a certificate if it finds the vehicle’s software trustworthy,

enabling it to register with third parties requiring evidence of its trustworthiness. That way, other

121

Chapter 7 Ensuring Software Integrity of ECUs

vehicles, roadside units, or authorities can ensure that vehicles do not pose a safety threat due

to malicious software modifications.

We employ hardware isolation techniques to securely compute an integrity identifier on po-

tentially compromised systems in a cascading manner, leveraging the hierarchical structure of

modern E/E architectures. We implemented the scheme on a prototype setup based on a recently

presented zonal E/E architecture, evaluated its performance, and simulated the registration step

in an urban and highway ETSI scenario.

Our experimental results show that the proposed scheme currently incurs an average overhead of

5.236 s to the vehicle’s starting procedure, while the average registration delay ranges between

47-58.5 ms.

122

8. Reaction to Security Incidents

This chapter assumes an SDV that is optimally protected against all known threats, regularly

monitors its security status, detects possible attacks, and operates on the road. Therefore, we

now look at the operation phase of the vehicle life cycle. Even a well-protected SDV is not

completely immune to cyberattacks due to the constantly changing and growing attack surface.

With a high probability, security incidents will occur, either intentionally or accidentally. In both

cases, we want the SDV to remain operable as long as possible and only initiate an emergency

stop if the passengers’ safety cannot be ensured anymore. Consequently, SDVs require means to

assess and react to security incidents since not each can be attributed to an attack.

For instance, how should the vehicle behave if it detects unauthenticated traffic while in motion?

The answer to this question depends on various factors, such as the vehicle’s topology, its context

(e.g., its current speed), and the deployed security concept. A missing answer, however, can lead

to unexpected behavior, such as a compromised infotainment system allowing the acceleration

of the vehicle [18]. That means SDVs must be resilient to security incidents.

Our security requirement analysis from Chapter 4 underscores the necessity of monitoring and

reacting to security incidents. While this requirement originally does not stand for immediate

response to security incidents but rather expects logging and reporting mechanisms, we expand

the notion that an SDV can interpret the alarm triggered by any deployed security means.

In this chapter, we address the last research question RQ5 and present a context-aware scheme for

SDVs to assess the risk of security incidents based on the vehicle’s context, intending to identify

adequate countermeasures automatically. Our scheme is inspired by the risk assessment process

of the ISO/SAE 21434, which uses attack paths to model static threat scenarios. We specifically

focus on attack propagation effects as a typical cyberattack is usually not a single event but a

chain of events. Therefore, our scheme dynamically queries an Asset Dependency Graph (ADG)

once a security incident is reported to identify attack paths leading to pre-assessed damage

scenarios. Based on a risk value, the vehicle selects and realizes a compensating reaction.

This chapter is organized as follows: Section 8.1 presents the risk assessment process of the

ISO/SAE 21434 standard. Section 8.4 describes the scheme we suggest for analyzing security

incidents while the vehicle is in motion. We discuss the scheme in Section 8.5 and present a

prototype implementation in Section 8.5.1. Our evaluation reveals that, on average, we require

0.61 ms to respond to a security incident in our setup.

This chapter builds upon research article “ISO/SAE 21434-based Risk Assessment of Security Incidents

in Automated Road Vehicles” [7], which was presented at the Computer Safety, Reliability, and Security

conference (SafeComp) in 2021. I thank Jonas Liske, who helped conduct the offline phase in Section 8.5.

Students completed parts of the implementation and evaluation work as part of the Advanced Security

Engineering Lab at the University of Passau.

123

Chapter 8 Reaction to Security Incidents

8.1 The ISO/SAE 21434 standard

The ISO/SAE 21434 [35] is a cybersecurity engineering standard developed for road vehicles,

and its first edition was published in 2021. This standard considers entire vehicle ecosystems by

addressing organizational cybersecurity management, distributed cybersecurity activities, and

the concept, development, and post-development phases. Comprising fifteen clauses, ISO/SAE

21434 provides a framework for common terminology, guidelines for managing security risks, cy-

bersecurity policies, and processes. Specifically, the fifteenth clause introduces a Threat Analysis

and Risk Assessment (TARA) process, which seems particularly suitable for our objective of

assessing the propagating effects of security incidents, as it analyzes attack paths, a technique in

modeling attack propagation.

The TARA process requires an item definition as mandatory input and involves nine consecu-

tive compulsory steps, along with several optional ones. Organizations systematically identify

threat scenarios and assess risks through this process to eventually determine appropriate defense

techniques. Figure 8.1 visualizes the simplified methods presented in the fifteenth clause.

asset a1
�

asset a2
�

asset a3
�

... ...

asset an
�

damage scenario 1 damage scenario 2 damage scenario n...

negative action

�
corrupts

threat
scenario

leads to

Figure 8.1: A threat scenario describes at least one series of negative actions (attack path) that leads to
the corruption of an asset. This, in turn, causes at least one damage scenario. ISO/SAE 21434 computes
the risk of threat scenarios by combining the attack path feasibility with the severity of the expected
damage scenarios.

8.1.1 Risk Assessment Methods

The initial step of the TARA mandates the identification of damage scenarios, describing poten-

tial outcomes of cyberattacks and their relationships to item functionality, adverse consequences,

and assets. Subsequently, critical assets whose compromise directly leads to a damage scenario

must be identified. While we considered ECUs as assets during our security requirement analy-

sis in Chapter 4, ISO/SAE 21434 adopts a broader definition, encompassing anything with the

potential to cause a damage scenario, such as personal information or the transmission of critical

commands.

The subsequent step involves the identification of threat scenarios, detailing how the corruption

of critical assets may occur through multiple attack paths. A threat scenario specifies each

asset’s compromised cybersecurity properties and the cause of compromise. In the next step, the

impact of each damage scenario is assessed in terms of safety, financial, operational, and privacy

considerations, categorized as “severe”, “major”, “moderate”, or “negligible”. In addition, a

safety-related impact rating is derived from ISO 26262, contributing to a security-safety co-

engineering approach.

124

Chapter 8 Reaction to Security Incidents

Once the severity of damage scenarios has been assessed, the threat scenarios are thoroughly

analyzed by identifying attack paths within them. An attack path is a chain of dependent

actions leading to asset corruption. For instance, the corruption of firmware may lead to the

undetected injection of false messages to a physically shielded bus, eventually allowing Adv to

control the vehicle. Once all threat scenarios are associated with at least one attack path,

the attack feasibility for each path needs to be then determined. To achieve this, ISO/SAE

21434 proposes either an attack potential-based, a CVSS, or an attack vector-based approach.

The resulting risk values, ranging from one to five, where one represents a minimal risk, are

associated with threat scenarios.

In the final step, the organization selects appropriate risk treatment options for each threat

scenario. Before this, it is essential to specify whether the risk should be avoided, reduced,

shared, or retained.

8.1.2 Cybersecurity Assurance Level

ISO/SAE 21434 introduces the concept of Cybersecurity Assurance Level (CAL), a classification

scheme to express assurance requirements for assets. The usage of CALs is comparable to

the security levels used in the ISA-62443 standards, helping to derive technical requirements.

While risks change over time depending on the attack surface and the deployed countermeasures,

CALs remain constant after being determined typically in the concept phase. Similar to the

security levels in ISA-62443 that either describe an entire zone or relate to individual foundational

requirements, a CAL can be assigned to all cybersecurity goals or alternatively be used to describe

individual goals. CALs are primarily used to determine methods for development, verification,

the analysis of vulnerabilities, and security assessments.

Annex E of ISO/SAE 21434 provides insight into determining and using CALs. Instead of

purely general guidelines, it provides examples for each level’s notion and explains how impact

and attack vector parameters can yield a specific CAL.

8.2 System Model

Researchers have presented numerous defense techniques for legacy and cutting-edge systems [116].

In this work, we expect vehicles to be equipped with state-of-the-art protection techniques meet-

ing the security requirements identified in Section 4.3.3. These requirements include traffic

and software integrity, intrusion detection, monitoring and logging mechanisms, and access con-

trol.

Specifically, we expect all benign ECUs to verify the authenticity of incoming data and discard

unverifiable content. Software integrity checks are performed on vehicle startup, as explained in

Chapter 7, preventing unauthorized, potentially malicious alteration to the software. Moreover,

we assume that communication delays can be detected by ECUs [117] and that a firewall protects

the in-vehicle network from external threats.

We expect any security violation to be reported to the central ECU EC through the in-vehicle

network. It is essential to note that the transmission of security incidents introduces a new attack

vector, as Adv might attempt to intercept security incidents, thereby preventing the vehicle

from analyzing and reacting to them. Nevertheless, in this chapter, we assume uninterrupted

reporting of security incidents, aware that further investigation is required to achieve this. That

means that EC is always informed about suspicious and potentially malicious in-vehicle activities,

125

Chapter 8 Reaction to Security Incidents

encompassing unverifiable traffic, illegal software changes, and the output of intrusion detection

systems. EC is considered a security anchor within the vehicle, similar to the ASP presented

in Chapter 6. Consequently, EC is considered trusted and will not be corrupted by Adv. To

achieve this, we refer to Section 6.2.2, discussing how to protect a trusted component technically.

Regarding our reference vehicle, EC can be implemented on the brainstem, which is designed to

be fail-operational.

8.3 Security Incidents

ISO 27005 [118] defines a security incident as an event compromising a specific property, such

as authenticity or availability. Such an event can result in physical damage and is initiated by

a threat. In alignment with the ISO/SAE 21434 standard, we characterize a security incident

as a threat scenario initiated by a negative event during vehicle runtime, which is then reported

to EC. Thus, a security incident, perceived by a specific ECU, describes the violation of an

asset’s security property, with this property corresponding to a threat category derived from the

deployed threat model.

We use the CIA triad, leading to T = {Confidentiality, Integrity, Availability}, where T denotes

the set of all threat categories. A threat category reflects the violated security property and is

contingent on the applied threat model. While the ISO/SAE 21434 employs the CIA triad, other

threat models such as STRIDE [119] or the foundational requirements used in ISA-62443 (c.f.,

Section 4.3.2) could offer more granular alternatives.

Negative events are mapped onto the relevant threat categories upon detection, as illustrated in

Table 8.1. For instance, data originating from an unverifiable source and untrustworthy firmware

affects “Integrity”, while delayed safety-critical messages are associated with the category “Avail-

ability”.

Negative Event Threat Category (CIA)

Unknown Data Origin Integrity

Unverifiable Firmware Integrity

Unauthorized Data Access Confidentiality

Delayed Traffic Availability

.

Table 8.1: Negative events are mapped onto a threat category.

Let ECU be the set of ECUs and A denote the set of assets. We formally express a security incident

ev as an element of ECU×A×T. Hence, ev consists of the reporting ECU, the compromised asset,

and the corresponding threat category linking the incident. For instance, the security incident ev

=(brainstem, door open cmd, Integrity) states that the brainstem received a command to open

the door whose integrity cannot be verified.

8.4 Context-Aware Reactions to Security Incidents

This section presents our context-aware assessment scheme to properly handle and react to

security incidents in SDVs. We specifically focus on attack propagation effects since related works

have demonstrated their relevance in automotive networks. We consider a security incident a

126

Chapter 8 Reaction to Security Incidents

Damage Identifica-
tion and Assessment

Step Ioff

ECU Identifica-
tion and Assessment

Step IIoff

Asset
Identification

Step IIIoff

Asset Dependency
Graph

Step IVoff

offline phase

Attack Path
Feasability

Step IIon

Attack Path
Identification

Step Ion

Context-Aware
Risk Determination

Step IIIon

Vehicle Reaction

Step IVon

online phase

risk of i

vehicle
context

ra
te
d

d
a
m
a
g
e

sc
en

a
ri
o
s

a
sset

d
ep

en
d
en

cy
g
ra
p
h

security in-
cident i

Figure 8.2: Structure of our context-aware risk assessment scheme for security incidents in automated
road vehicles. White fields are not part of ISO/SAE 21434.

dynamic threat scenario and use an Asset Dependency Graph (ADG) to identify and rate possible

attack paths. As shown in Figure 8.2, our scheme consists of an offline and an online phase. The

offline phase identifies and rates damage scenarios, the vehicle topology, and, in particular, the

ADG. They serve as input for the online phase, assessing the risk of a reported security incident

and taking compensating action.

In the remaining sections, we explain each step of our scheme in detail, refer to the corresponding

ISO/SAE 21434 requirements, and use the following notation: We denote EC as the monitoring

control unit that executes the online phase of our scheme. πk(x) returns the entry k of an ordered

collection x (e.g., a tuple).

8.4.1 Offline Phase

The offline phase occurs once and is ideally carried out by experts during the vehicle design stage.

This phase furnishes essential inputs for the subsequent online assessment phase, including rated

damage scenarios and the ADG.

Step Ioff: Damage Identification and Assessment

At first, we specify the set of all damage scenarios, denoted as D, in expert panel discussions.

A damage scenario characterizes the anticipated outcome of security incidents, such as uncon-

trolled driving behavior. Experts collect, discuss, and rate damage scenarios in brainstorming

sessions. In compliance with ISO/SAE 21434, each di ∈ D is ranked in the four categories:

Safety, Financial, Operational, and Privacy (SFOP). For that purpose, we suggest implement-

ing a multi-criteria decision-making process, such as the AHP method outlined in Section 4.3.

This approach assigns varying weights to each impact category based on relevance. That way, a

worst-case privacy violation is consistently regarded as less severe than a worst-case safety im-

pact. Ultimately, the weighted scores are mapped to one of the four values: negligible, moderate,

major, or severe. This mapping should align with the interpretation of those values provided in

the ISO/SAE 21434 standard. For instance, a moderate impact on safety means light injuries,

whereas a major impact indicates severe but non-fatal injuries.

127

Chapter 8 Reaction to Security Incidents

Step IIoff: ECU Identification and Assessment

Subsequently, we identify ECU by enumerating all in-vehicle control units and assessing the attack

potential AP for each Ei ∈ ECU. ECUs hold a key role in our context-aware assessment scheme.

Firstly, the propagation of attacks in road vehicles results from the communication between

ECUs. Secondly, ECUs not only trigger damage scenarios but also detect and report security

incidents. Hence, a compromised ECU poses a severe security threat as it can either directly

cause damage or facilitate attack propagation, such as forwarding corrupted data. Therefore, it

is crucial to include the attack potential AP of ECUs in the risk assessment of a security incident

since a well-protected and resilient network of ECUs makes it harder for an attack to propagate.

That means AP gives us a notion of how susceptible Ei is to manipulation. As demonstrated in

Section 3.1, cyberattacks on road vehicles often necessitate the manipulation of ECUs (e.g., to

gain access to a physically shielded bus) for successful execution along a given attack path.

The rationale behind determining AP lies in the necessity of assessing the feasibility of attack

paths in later steps during the online phase. Generally, we assume a higher path feasibility if

the ECUs on that path have a larger attack potential, as it is easier for Adv to manipulate

them. Note, however, that ISO/SAE 21434 does not prescribe to determine the attack potential.

Instead, we introduced this step to facilitate the automatic assessment of the path feasibility.

We describe each ECU Ei as a tuple Ei = (name, AP) comprising a unique name and its attack

potential AP .

To determine AP , we adhere to the ISO/IEC 15408 [120], also known as common criteria, ranking

the minimum required attack resources in terms of Elapsed Time, Expertise, Knowledge, Window

of Opportunity, and Equipment. Again, each parameter is associated with a distinct numerical

value as indicated in Table 8.2. Eventually, we sum up these values to obtain a single attack score

Elapsed Time Expertise Knowledge
Windows of

Opportuniy
Equipment

Option Value Option Value Option Value Option Value Option Value

<1 week 0 Layman 0 Public 0 Unlimited 0 Standard 0

<1 month 1 Proficient 3 Restricted 3 Easy 1 Specialized 4

<6 months 4 Expert 6 Confidential 7 Moderate 4 Bespoke 7

≤3 years 10
Multiple

Experts
8

Strictly

Confidential
11 Difficult 10

Multiple

bespoke
9

>3 years 19

Table 8.2: We employ Common Criteria methodology to determine the attack potential of ECUs.

for Ei, as suggested by ISO/SAE 18045 [121]. Subsequently, this value is uniformly mapped onto

AP as shown in Table 8.3. We recommend performing this step as part of the post-development

phase activities when the ECUs attack potential can be considered fixed.

Attack Score 0-9 10-13 14-19 20-24 >25

Attack Potential (AP) 0.9 0.7 0.5 0.3 0.1

Attack Feasibility very high high medium low very low

Table 8.3: The attack score is mapped to an attack potential that indicates the attack feasibilty.

128

Chapter 8 Reaction to Security Incidents

Step IIIoff: Asset Identification

In this step, we identify the assets A as required by ISO/SAE 21434. An asset describes any-

thing whose compromise could lead to a damage scenario, either directly or through propaga-

tion effects. Consequently, assets are typically protected against manipulation, usually achieved

through cryptographic measures and anomaly detection systems.

Our analysis of prevalent automotive attacks in Section 3.1 revealed that attackers frequently

combine in-vehicle traffic manipulation with the intrusion of ECUs. In response, we distinguish

between two types of assets: flowing and rigid. Flowing assets pertain to logically connected

traffic between ECUs, such as services or messages on a specific topic. In contrast, a rigid asset

resides on an ECU but can still impact flowing assets. Notably, these include software elements

like services and firmware, as well as critical items such as cryptographic keys and configuration

files.

Further differentiation is made between two subgroups, namely At and Ap, with A = At∪Ap and

At ∩ Ap = ∅. At contains assets whose compromise directly triggers a damage scenario without

any detour, meaning without attack propagation. For instance, the undetected corruption of

the steering angle is likely to cause immediate harm. In contrast, Ap describes assets whose

compromise leads to damage only through propagation effects. For example, a vulnerability in

the infotainment firmware may enable an attacker to infiltrate forged commands, but it does not

necessarily cause immediate harm.

Step IVoff: Asset Dependency Graph

Assets are interdependent because ECUs continuously communicate and perform computations

on incoming assets. We write ay ← ax to indicate that any change of asset ax also influences

asset ay. This step aims to arrange the previously identified assets into an Asset Dependency

Graph (ADG). This graph enables us to automatically check whether the corruption of a specific

asset can transitively lead to damage. Formally, we describe the ADG as a directed multigraph

ADG = (V,E). The set of vertices V comprises physical (Vp) and virtual (Vv) vertices, meaning

that V = Vp∩Vv. ECUs are physical vertices with in-flowing and out-flowing assets. In contrast,

we use a virtual vertex to indicate a dependency on a rigid asset residing on an ECU. For

example, all outgoing assets of an ECU usually depend on its firmware.

We express an edge ei ∈ E as a quintuplet according to Formula 8.1. That is, an edge ei ∈ E

exists between a source Ex ∈ ECU and a target Ey ∈ ECU if there is an asset a ∈ A flowing from

Ex to Ey. Each edge ei is associated with a probabilistic weight w, indicating to what extent it

contributes to a path in the ADG.

E ⊆ {(vx, vy, a, w,D) | (vx, vy) ∈ V2 ∧ a ∈ A ∧ w ∈ [0, 1] ∧D ⊆ A \ {a}} (8.1)

ei also maintains a reference D containing those assets on which ei directly depends on, i.e.,

D = {aj ∈ Ap | ai ← aj ∧ ∃ej ∈ E | (πa(ej) = aj ∧ πvy(ej) = πvx(ei))}. This is necessary because

an out-flowing asset does not necessarily depend on all in-flowing assets. For instance, not every

output of an ECU may be secured by a cryptographic key stored on that ECU.

The specification of ADG requires a profound knowledge of the network topology and the in-

vehicle data flows, typically known only to the manufacturer. Creating such graphs is generally

labor-intensive, so system designers may consider automated approaches [122].

129

Chapter 8 Reaction to Security Incidents

8.4.2 Online Phase

The online phase is executed by EC every time a security incident is reported. In that case, EC
identifies attack paths between the corrupted asset and any ai ∈ At in ADG. Then, it determines

their feasibilities and weights the severity of the expected damage with context information,

resulting in a risk value of the security incident. Based on this risk, the SDV selects an appropriate

reaction to the security incident.

Step Ion: Attack Path Identification

A security incident i ∈ ECU×A×T reports the corrupted asset ax = πa(i) on ECU Ex = πECU (i).

It requires further attention if it can lead to a damage scenario di ∈ D, either directly or through

propagation. This is the case if there is a path from Ex to an Ey ∈ ECU, whereas Ey triggers di
through the corruption of an ay ∈ At, which depends on ax. We denote such a path pth

ay←ax
Ex−Ey

and formally describe it as a series of edges in ADG as shown in Equation 8.2. For readability

reasons, we later use pthi to refer to a valid attack path in ADG.

pth
ay←ax
Ex−Ey ∈ {(e1, ..., en) | ei ∈ E} (8.2)

The boundary conditions of Equation 8.2 are given by

πvx(e1) = Ex ∧ πvy(en) = Ey ∧ ay = πen(a) (8.2a)

∃e ∈ E | πa(e) = ax ∧ πvy(e) = Ex (8.2b)

∀ej, 2≤j≤n | πvy(ej−1) = πvx(ej) (8.2c)

∀ej, 2≤j≤n | πa(ej−1) ∈ πD(ej) (8.2d)

That is, the path starts at Ex and ends at Ey, where ay may be corrupted through attack

propagation (8.2a). Furthermore, there is an edge that leads into Ex and contains the corrupted

ax (8.2b). All edges form a continuous path (8.2c) between ECUs. Besides, two adjoining edges

have to carry dependent assets (8.2d), since otherwise attack propagation from ax to ay would

not be possible. Note that EC may find multiple attack paths for a security incident leading to

the same damage. Currently, we take the most feasible path among those with the worst impact,

acknowledging that other strategies may also be reasonable.

Step IIon: Attack Path Feasibility

The ISO/SAE 21434 standard expresses the feasibility of each identified attack path as high,

medium, low, very low. The feasibility indicates the likelihood of an attack being successfully

carried out along a given path. As shown in Equation 8.3, we propose to calculate the feasibility

Fpthi
of a path pthi = (e1, ..., en) as the product of the corresponding edge weights w.

Fpthi
= Fmap

(n∏
j=1

πw(ej)
)
, with Fmap(p) =


high p ∈ [0.9, 1]

medium p ∈ [0.5, 0.9[

low p ∈ [0.2, 0.5[

very low p ∈ [0, 0.2[

(8.3)

The edge weight is only determined in the online phase since it depends in particular on the

security incident and the vehicle state. For instance, a DoS attack will likely propagate through

large parts of the in-vehicle network as the communication slows down. In contrast, illegally

130

Chapter 8 Reaction to Security Incidents

injected traffic only becomes harmful if ECUs process it instead of rejecting it. However, ac-

cording to our system model, the latter only happens if the ECU is compromised because we

assume a well-protected SDV. Thus, whenever a path along a specific edge requires the manip-

ulation of an ECU, we take the previously determined attack potential AP from Step IIoff as w.

Besides, edges may be temporarily inactive, especially in a service-oriented environment (e.g.,

SOME/IP or ASOA). For instance, some services may only run when the vehicle is driving in a

fully automated manner, while others are implemented for manual maneuvering. Inactive edges

are assigned a zero weight, making the attack path infeasible. Furthermore, an SDV will likely

possess multiple modes, e.g., for automated, manual, or remote maneuvering. Altogether, we

distinguish between three cases for w:

1. w = 0: An edge weights zero if unavailable in the current vehicle state. For instance, a

specific service is not running.

2. w = 1: An edge weight of one indicates a definite propagation between two vertices in

ADG. This happens, for instance, if Availability is the threat category of an incident since

delayed/dropped messages typically affect all subsequent assets. This also concerns rigid

assets represented by virtual nodes. For example, the output of an ECU always depends

on its firmware.

3. w = πAP (πvx(ei)): We use the attack potential AP of the edge’s source Ex as edge weight

if the manipulation of Ex is required for attack propagation, e.g., to circumvent security

checks. This, for instance, may be necessary to transport forged traffic through the vehicle,

as benign Electronic Control Unit (ECU) would discard it.

Step IIIon: Context-Aware Risk Determination

Eventually, the risk of the security incident is determined by combining the attack path feasibil-

ities with the expected severity of the associated damage scenarios. Recall that by definition (cf.

Step 8.4.2on), an attack path always leads to exactly one damage scenario.

If worst-case damage were identified in Step Ioff, we would probably obtain a high risk unless

the attack path feasibility is “very low”. However, assuming a fixed damage may not necessarily

aid in pinpointing an appropriate reaction. For instance, considering the worst-case damage of

a corrupted headlight control command, which could imply fatalities, an emergency stop seems

reasonable during a night ride. Yet, during daylight hours, an emergency stop might be excessive,

and driving at a reduced speed may be a more acceptable alternative (e.g., to reach the nearest

repair shop). We suggest weighing the damage with vehicle context parameters for a realistic

understanding of the expected damage.

Note that we are not the first to use such parameters for modeling the vehicle context, although

related works typically do this in different fields. For instance, Helmholz et al. [123] consider

the daytime and the route frequency for predicting trajectories. Since the latter is extraneous

for the instant assessment of expected damage, we use the current speed and the traffic density

instead. We express the vehicle context as a vector C⃗ = (S TD T RQ)⊺, consisting of the four

parameters Speed (S), Traffic Density (TD), Time (T), and Route Quality (RQ).

We allow only Boolean values for each parameter to maintain simplicity, as illustrated in Table

8.4. For example, we distinguish between low speed (<30km/h) and high speed (≥30km/h), day

and night drive, and so forth. Recognizing that these criteria do not all carry the same weight

in influencing the severity of a damage scenario, we assign weights to C⃗ using the normalized

131

Chapter 8 Reaction to Security Incidents

Speed (V) Traffic Density (TD) Time (T) Route Quality (RQ)

Weight 0.5 0.3 0.1 0.1

Value
low (0.5) low (0.5) day (0.5) easy (0.5)

high (1) high (1) night (1) difficult (1)

Table 8.4: Criteria for assessing the vehicle context

vector W⃗C = (0.5 0.3 0.1 0.1)⊺. Consequently, vehicle speed contributes five times more to the

context than the route quality. The expert panel determined these weights, which are subject to

future adjustments if necessary.

We calculate a scalar representation of the vehicle context by computing C = C⃗ ·W⃗C, C ∈ [0.5, 1].

This scalar value is then multiplied by the numerical damage assessment of Step Ioff, aiming to

achieve a more realistic, context-aware assessment of the expected damage.

Finally, we obtain the context-aware risk ri for the security incident i using the risk matrix in

Table 8.5, as proposed in ISO/SAE 21434.

Attack Path Feasibility Fpthi

Risk ri very low low medium high

Im
p
ac
t
of

d
am

ag
e

sc
en

ar
io

negligible 1 1 1 1

moderate 1 2 2 2

major 1 2 3 4

severe 1 3 4 5

Table 8.5: Risk matrix from ISO/SAE 21434 used to assess the risk of a security incident

Step IVon: Vehicle Reaction

Finally, the risk value ri is translated into an appropriate compensating vehicle action. We

identified four compensating actions (cf., Table 8.6) in brainstorming sessions. An emergency

stop is mandated when the anticipated outcomes involve fatalities, severe injuries, or substantial

financial losses. Conversely, driving at reduced speed is considered appropriate if the security

incident is expected to result in operational limitations (e.g., traffic jams) or minor injuries.

We argue that this option is similar to the run-flat system of contemporary vehicles, which are

activated in case of moderate damage.

If damage to the vehicle and passengers is expected to be only feasible with considerable effort,

the vehicle displays a dashboard control message. This option is also selected in cases involving

Risk Value Compensating Action

1 log/report incident + continue driving without restrictions

2 log/report incident + display a dashboard control message

3 log/report incident + driving at low speed

4, 5 log/report incident + emergency stop

Table 8.6: The context-aware risk of a reported security incident leads to a vehicle reaction.

132

Chapter 8 Reaction to Security Incidents

potential privacy violations. Lastly, for incidents resulting in negligible damage, the response is

limited to logging and reporting the event to an authority without additional actions.

8.5 Evaluation

In this section, we implement and evaluate the proposed scheme, taking two aspects into ac-

count:

Firstly, we are interested in the response time to security incidents. Given that we intend to

react on-the-fly to potential security breaches, the vehicle’s response time should be as small as

possible. More precisely, we investigate whether an SDV can react faster than a human passenger

could do.

Secondly, we explore the quality of the vehicle reaction, indicating whether it aligns with the

perceived incident. One motivation behind the assessment of security incidents is to keep SDVs

operable as long as possible, thereby preventing an emergency halt each time an anomaly is

detected.

As part of our evaluation, we construct a Asset Dependency Graph (ADG) for our reference

vehicle presented in Section 4.1. Additionally, we generate artificial graphs to investigate the

scheme’s behavior as the graph expands in size.

8.5.1 Setup

Initially, we implemented the scheme in C++ and deployed it as a standalone binary on the

application processor of the brainstem. As detailed in Section 4.1.1, the brainstem is a central

component in the reference vehicle designed to be fail-operational and consists of a real-time and

application processor. After having added the binary to the autostarts, the brainstem listens on

a fixed port for incoming security incidents.

Figure 8.3 visually represents our physical setup, involving three hardware components: two

representing conventional ECUs, and the third representing the brainstem. We created two

dummy ASOA services, A and B, each consisting of a guarantee and a requirement, and deployed

them on the ordinary ECUs. Service A generates a random integer and publishes it through its

...running incident
assessment scheme...

Brainstem

Ethernet Switch

...running
service A...

ECU 1

...running
service B...

ECU 2

Figure 8.3: Our evaluation setup comprises two dummy ECUs, exchanging authenticated integers. ECU
1 intentionally transmits a false MAC every 500 iterations, triggering a security incident on ECU 2.
Subsequently, ECU 2 reports the incident to the brainstem, where the prototype implementation of our
assessment scheme is running.

133

Chapter 8 Reaction to Security Incidents

guarantee, while service B receives this integer, verifies its authenticity, adds one, and publishes

it again. This creates a ping-pong game where the transmitted number increments by one in

each iteration. Every 500 iterations, service A deliberately transmits a wrong MAC, triggering

a security incident on the counterpart that is instantly reported to the brainstem.

Both services run on dedicated hardware, namely two RPis, which are also deployed in our ref-

erence vehicle. Although they do not comply with automotive requirements, they facilitate pro-

totyping. Whenever a false MAC is detected, the security incident is reported to the brainstem,

which runs the proposed assessment scheme. Similar to the reference vehicle, communication

between the dummy ECUs and the brainstem occurs through a switch connected to the same

Ethernet network.

Damage Scenarios and ECU Identification

As required by the proposed scheme, we first conducted the offline phase, starting with iden-

tifying and rating damage scenarios in Step Ioff. In total, we identified 8 damage scenarios.

Each was rated according to the expected worst-case impact across the four SFOP categories,

as presented in Table 8.7. The first damage scenario, denoted as d1 = Uncontrolled Driving,

ID Damage Scenario S F O P Weighted Score Result

d1 Uncontrolled Driving 0.5 0.5 0.5 0 0.438 Severe

d2 Manipulated Vehicle
Routing

0.167 0.167 0.5 0 0.087 Major

d3 Passenger Inconvenience 0.167 0 0.333 0 0.134 Moderate

.

d8 Battery Degradation 0 0.5 0.333 0 0.078 Major

Table 8.7: In total, eight damage scenarios have been identified and rated with regard to their worst-case
impact on safety, financial, operational, and privacy.

describes a malicious party’s illegal takeover of the dynamic modules and is probably the most

feared consequence of an attack. In the worst case, not only fatalities are likely to occur, but

also severe financial and operational impacts because of legal consequences such as lawsuits. In

contrast, d3 =Passenger Inconvenience describes limitations arising mainly from manipulations

within the vehicle interior, such as a tampered heating system or blocked doors. Instead of severe

physical harm, we expect financial damage due to patching and a loss of reputation.

Moving on to Step IIoff, we identified 26 ECUs and determined their attack potential AP . For

instance, the well-protected brainstem yielded an absolute attack score of 29, corresponding to

the low attack potential AP = 0.1 (refer to Table 8.3). In contrast, the HMI exhibited a high

attack potential of AP = 0.9 primarily attributed to external interfaces and user input.

Asset Dependency Graphs

For a realistic evaluation, we construct the full ADG for our reference vehicle by systematically

querying the architecture tool introduced in Section 6.1. Recall that this web-based tool is

connected to a database describing the vehicle’s hardware and software architecture, including

communication links between ASOA services. For simplicity, we make the following assumptions

while creating the ADG:

134

Chapter 8 Reaction to Security Incidents

– We exclusively consider communication between ASOA endpoints, meaning that flowing

assets are exchanged between guarantees and requirements.

– We add a rigid asset to each ECU, representing its firmware or OS, respectively.

– All outgoing guarantees depend on all incoming requirements.

In particular, the last assumption needs adjustment, particularly when deploying our scheme in

a road vehicle, as not every incoming data affects all outgoing computations. This is especially

not the case in a service-oriented and zonal architecture where fewer ECUs perform multiple

and independent tasks. Our assumption leads to more asset dependencies and, consequently, to

an increase in attack paths, possibly making the overall assessment oversensitive. However, it

simplifies the generation of the ADG and is expected to produce rather conservative evaluation

numbers since more attack paths must be considered.

In total, we identified 32 assets in Step IIIoff, whose corruption can directly cause at least one of

the previously identified damage scenarios, i.e., |At| = 32. For instance, d1 = Uncontrolled Driving

can result from the corruption of the assets a1 =“Steering Angle”, a2 =“Torque”, a3 =“Rota-

tional Frequency”, and/or a4 =“Firmware Dynamic Module”. After that, we identified 82 assets

from Ap in a bottom-up approach, focusing on assets capable of causing damage through propa-

gation. In summary, our ADG comprises 173 edges and 59 nodes. Note that the number of nodes

exceeds the number of ECUs because we introduced rigid nodes for firmware assets that do not

flow between ECUs but still impact other assets (see Step IVoff). The fan-in and fan-out of each

node indicate that most dependencies exist between the brainstem, the cerebrum, and the sensor

modules. This finding is unsurprising, given that the main event chain leads along these ECUs.

For instance, the brainstem has a fan-out of 26, while smaller ECUs have an average fan-out of

only three.

Eventually, we deploy the complete ADG as an adjacency list on the brainstem. Every time a

security incident is reported by service B, we randomly map the service on one of the ECUs of

the prototype vehicle. This approach introduces slight variations in each incident compared to

the previous one, enhancing the meaningfulness of our measurements.

Synthetic Graphs Besides the ADG taken from the reference vehicle, we repeat our evaluation

experiment with larger, artificially crafted ADGs. That way, we aim to assess the impact of the

graph size, which we expect to increase in a production vehicle. Along with the number of nodes,

the graph complexity is a crucial parameter of artificially created ADGs. The complexity denotes

the maximum number of connections each node can have. A higher complexity can eventually

lead to a mesh network, thereby shortening attack paths.

Results

Table 8.8 summarizes the results of our experiments. We compared three well-known algorithms

for (attack) path identification: Dijkstra, a breadth-first search, and Bellman-Ford. For each

measurement, we computed the mean, minimum, and maximum time. As anticipated, the Dijk-

stra implementation outperforms the others, while a complete traversal of the ADG proves to be

the slowest. Our benchmark is to surpass human reaction time, typically around 250 ms.

Using a Dijkstra implementation with the reference vehicle’s ADG, it took an average of 0.61ms

to detect, report, and assess a security incident. In contrast, the assessment time increases

to 0.68 ms and 0.71 ms when utilizing Bellman-Ford or a breadth-first search for attack path

135

Chapter 8 Reaction to Security Incidents

Dijkstra (ms) Bellman-Ford (ms) Breadth first (ms)

#Nodes 59 1000 10000 59 1000 10000 59 1000 10000

Mean 0.61 68.29 3,163.34 0.68 41.48 3,224.13 0.71 43.78 3,385.811

Min 0.41 0.46 0.614 0.417 0.54 0.69 0.51 0.54 0.608

Max 0.76 71.09 4,284.27 0.58 58.87 3,985.27 0.89 51.31 3,866.18

Table 8.8: We measured the time it takes to report and assess a security incident using three different
algorithms.

identification. We find these values acceptable since they lie below our baseline of 250 ms,

meaning a vehicle can opt for an appropriate safety measure much faster than a human.

In contrast, we observe a substantial increase as the number of edges and nodes grows. For

instance, with an artificial graph containing 10,000 nodes and a complexity of 10, the average

response time exceeds three seconds for all deployed algorithms, far beyond an acceptable range.

Hence, maintaining a slim ADG is crucial because otherwise, a safety reaction may be initiated

too late. This involves reducing dependencies between in-vehicle components, both hardware

and software, to generate smaller ADGs. Non-functional dependencies can be reduced through

segmentation, a requirement that we had already identified in Section 4.3.3 as a result of our

security requirement analysis.

Our analysis shows that assessing security incidents is feasible during vehicle operation if depen-

dencies are kept low and the ADG as light as possible.

Optimizations

To further optimize the time complexity, it is possible to enhance the implementation of the

attack path identification algorithm. Internally, we store the ADG as an adjacency list, resulting

in a time complexity of O(|V |2) with V indicating the set of nodes. However, we could achieve

O(|V | log(|V |) + |E|) by utilizing a Fibonacci heap [124] in our Dijkstra implementation. This

improvement results in a more efficient algorithm execution, particularly beneficial as the size of

the ADG grows.

8.5.2 Discussion

In the previous section, we showed that a sufficiently short response time is feasible. However,

a short response time is only one side of the coin. The other side is concerned about the

quality of the selected reaction. Recall that we want to keep the vehicle operating as long as

possible instead of always initiating an emergency stop. Given the impracticality of observing

our scheme’s reactions in real traffic over an extended period, we simulate security incidents and

discuss the compensating action in this chapter. Before that, we discuss the general efficacy

of attack assessment and whether our scheme is a solution to making vehicles more resilient to

cyberattacks.

Attack Detection

The online phase assesses the risk of security incidents, prompting the question of which attacks

can be uncovered. Given that a security incident follows a negative event, our scheme can only

detect and address attacks that the deployed security mechanisms can perceive. Therefore, a

136

Chapter 8 Reaction to Security Incidents

thorough security requirement analysis, as we did in Chapter 4, is a crucial prerequisite during

the vehicle design phase, as it is only then that necessary defense techniques can be identified

and subsequently realized.

We categorize each negative event into a threat category, thereby simplifying the determina-

tion and assessment of attack paths. However, this approach comes with a trade-off - while it

streamlines the process, it results in a reduced attack resolution, with different attacks mapped

to the same threat category. Currently, we employ the CIA triad and allocate all security in-

cidents to one of these three categories. To mitigate the resulting loss of information, a more

fine-grained threat model, such as STRIDE [119] or the foundational requirements of ISA-62443

(see Section 4.3.2) can be considered.

Furthermore, some negative events may not be uniquely associated with one threat category.

For instance, “unauthorized data access” can affect both Integrity and Confidentiality. In such

instances, multiple security incidents could be reported for a single negative event and processed

by EC based on their respective risk levels.

Ultimately, automotive organizations must decide the desired trade-off between attack resolution

and model complexity.

Compensating Actions

Our scheme selects a compensating action based on the computed risk of the security incident.

In this way, we aim to protect the passenger from dangerous cyberattacks while ensuring the

continued operability of the vehicle for as long as possible. The severity of a security incident

depends on the attack path feasibility and the expected damage, with the latter considering the

vehicle context.

To simulate security incidents, we assumed corruption of the assets in At. Subsequently, we

investigated how frequently each compensating action is taken under fixed worst-case damage

conditions (i.e., we assume the most unfavorable vehicle context) but for varying attack path

feasibilities. Figure 8.4 illustrates that smaller feasibility typically leads to a weaker compensat-

ing action because more attacker capabilities are required to propagate an attack successfully.

More precisely, an emergency stop is necessary for 30% of security incidents with expected high

Emergency
Stop

Driving at
low Speed

Dashboard
Message

No
Restrictions

0

20

40

60

80

100

P
ro
p
or
ti
o
n
(%

)

Fpthi
=high Fpthi

=medium Fpthi
=low

Figure 8.4: Assuming a constant worst-case damage, a smaller attack path feasibility usually leads to a
weaker compensating action.

137

Chapter 8 Reaction to Security Incidents

feasibility. In contrast, no emergency stop is triggered when the feasibility is low; weaker actions

like dashboard messages are selected (up to 70%). We note that this distribution does not fully

reflect reality, as not all assets in At are usually compromised with equal frequency. However,

it confirms our intention for an adequate compensating action - treating non-critical security

incidents less severely than those jeopardizing the passenger’s well-being.

The application of our scheme can help interpret an SDV’s security state but requires awareness

for attacks that take effect immediately and are difficult to assess. For instance, in case an

attacker gains access to a safety-critical ECU and can immediately corrupt a critical asset from

32, our scheme is unlikely to prevent this from happening. However, attacks with a long attack

path or those that gradually evolve over time, such as the flooding of an in-vehicle network,

the compromise of a seemingly uncritical component, or access violations, can be handled and

mitigated.

8.6 Sub-Conclusion

This chapter dealt with the question of how a vehicle should respond to a security incident. To

answer this question, we introduced a scheme allowing us to assess security incidents concerning

the expected damage. This scheme intends to enhance the resilience of SDV to security incidents

occurring during vehicle operation. It is the last building block of our holistic security engineering

approach, as it covers the operation phase in which it enables SDVs to select a compensating

action for a previously reported incident automatically. The objective is to prevent damage and

passenger harm while keeping the SDV operable as long as possible.

We specifically focussed on attack propagation, as popular attacks on road vehicles have illus-

trated how manipulating even minor ECUs may allow attackers to infiltrate substantial vehicle

components. Our work is based on the novel automotive cybersecurity standard ISO/SAE 21434

that utilizes attack paths to model in-vehicle dependencies for the risk assessment of threat

scenarios. This concept is transferred to vehicle operation time by treating a security incident

as a dynamic threat scenario. The core idea involves identifying attack paths within an asset

dependency graph and determining their feasibility with respect to the security incident. The

offline phase of our scheme was applied to our reference vehicle, for which we crafted an asset

dependency graph consisting of 59 nodes and 173 edges.

Our evaluation demonstrates that detecting, reporting, and assessing security incidents is possible

below the human reaction time. We observed an average response time of 0.61 ms using an

ADG representing our reference vehicle. However, it was also apparent that the response time

highly depends on the ADG’s size and algorithm for identifying attack paths. Keeping asset

dependencies low in SDV results in fewer attack paths, hence contributing to the SDV’s security.

This can be achieved by clearly specifying which input of a service impacts which output.

Finally, we attempted to anticipate the quality of the selected vehicle reaction, demonstrating

that high-risk incidents typically lead to an emergency stop, while less severe incidents trigger

weaker actions. Moreover, we pointed out it is important to remember that some cyberattacks

take effect instantaneously (e.g., a software exploit), while others evolve, particularly those on

the network, spoofing, and data leakage.

Considering these factors, we consider our scheme a step towards a resilient SDV and an answer

to our last research question RQ5.

138

9. Conclusion

The transformation of road vehicles into dynamic, interconnected, software-driven systems has

significantly expanded the attack surface for potential threats. Numerous cyberattacks have

demonstrated how adversaries can compromise vehicles and even take control of entire vehicle

fleets, posing a substantial risk to passenger safety. Since then, there has been a growing demand

for enhanced security within the automotive industry, as a safe vehicle must be resilient to

cyberattacks.

In this thesis, we followed a holistic approach to develop security concepts that address various

stages of a vehicle’s lifetime. Several of our proposed concepts were integrated and evaluated

in the four automated, software-driven UNICARagil vehicles, resulting from a national research

project funded by the German government. Our work was guided by five central research ques-

tions (referenced as RQ1 - RQ5), each tackling a specific security aspect along the vehicle’s

lifecycle.

At first, we conducted a risk analysis of the software and hardware architecture of the UNICARagil

vehicles, aligning with the ISA-62443 industry standards. This analysis led to the derivation of

security requirements aimed at reducing the overall cybersecurity risk of previously identified

threats to a tolerable level. Our analysis revealed system integrity, access control, network

and application segmentation, DoS protection, monitoring of, and the ability to react to security

breaches as top-priority requirements, directly addressing RQ1. While several technical solutions

have already existed for these requirements, the key for SDVs lies in having adaptable and main-

tainable solutions, given an average vehicle lifetime of twenty years. Besides defense techniques,

the answer to RQ1 also encompasses the need for an overall security process capable of quickly

reacting to new security breaches without necessitating costly system interventions.

Subsequently, we addressed selected security requirements, particularly system integrity, as pop-

ular cyberattacks exploited missing integrity features. We started investigating the security of

the CAN and FlexRay legacy protocol, proposing efficient means to compute and distribute

cryptographic keys while ensuring the authenticity of in-vehicle traffic. In response to RQ2,

our findings emphasize the importance of authenticity for safety-critical traffic within these net-

works. Achieving communication security involves cryptographic protection and implementing a

systemwide configuration and maintenance process, enabling the computation and distribution

of cryptographic keys to both resource-constrained and high-performance control units.

Such a process becomes even more critical for automotive middleware stacks as they support

the dynamic loading and relocation of software components alongside service-oriented commu-

nication subject to regular updates and changes. Addressing RQ3, we introduced a three-stage

process. This process centralizes the administration of a vehicle’s security specification, compu-

tation, and secure distribution of security tokens according to that specification. Additionally,

139

Chapter 9 Conclusion

it involves the enforcement of desired security objectives during runtime. A widespread consor-

tium of researchers has used this process during the software integration of the UNICARagil

vehicles.

To ensure the integrity of automotive software within SDVs, we expanded the vehicle’s bootup

process with an integrity measurement scheme using remote attestation techniques. Like manda-

tory functional and operational tests of contemporary automobiles, we envisioned a security check

once an SDV intends to participate in (automated) traffic. To answer RQ4, we suggest a scheme

where a legal authority verifies and validates a previously computed integrity identifier and, upon

successful verification, issues a certificate. That certificate serves as proof of the vehicle’s trust-

worthiness to other parties, providing a mechanism to prevent malicious vehicles from accessing

the roads.

Finally, we shifted our focus to the runtime behavior of a security-aware SDV, which should

effectively respond to security incidents. Such incidents can be triggered by false alarms or actual

attacks. In response to RQ5, we introduced a context-aware assessment scheme determining

the worst-case impact a security incident could cause. This involves specifying and evaluating

attack paths within an asset dependency graph, which, among others, considers in-vehicle data

flows, ultimately leading to the implementation of appropriate safety measures. We implemented

our scheme and demonstrated that detecting, reporting, and assessing security incidents in our

reference vehicle is possible below the human reaction time. We pointed out that the response

time depends on the number of dependencies within the SDV and the algorithm used to identify

attack paths on the fly. While our scheme does not prevent cyberattacks from happening, it

contributes to the resilience of SDVs.

In summary, this work has investigated the systematic analysis of security requirements for

automobiles, the design of both reactive and proactive protective measures to defend against cy-

berattacks, and how vehicles should respond to security alarms. Our solutions for these aspects

have resulted in holistic security engineering covering different phases of a vehicle’s lifecycle.

While security is a relatively new aspect in the field of automotive engineering, it has become

a must-have for vehicles, especially as they transition into software-controlled, remotely updat-

able, and interconnected entities. Yet, effective protective measures are only one side of the

coin, mainly because, in most cases, the cryptographic tools for securing automotive systems al-

ready exist. The other side encompasses the need for a security management process to prepare

these protective measures for real-world applications, demanding long-term maintenance sup-

port. Precisely, this process must reflect the adaptability and maintainability properties of the

underlying software architecture and align with legal and organizational demands. We conclude

that the combination of effective protective and monitoring measures, along with such a process,

is essential for ensuring the security and, ultimately, the safety of SDVs.

9.1 Outlook

The transformation of road vehicles into software-defined systems affects technological devel-

opments and influences the entire automotive market, as explained at the beginning of this

dissertation. We anticipate drastic changes in the market due to new participants from around

the globe, all trying to catch on to developments towards electrified and automated traffic. The

140

Chapter 9 Conclusion

traditional market, as found in Germany, will have to adjust, as we can already see with OEMs

taking again direct responsibility for software architectures.

Another potential area of growth in the automotive domain lies in the rapid advancements in

artificial intelligence. A perhaps absurd idea is a huge neural network controlling the entire vehicle

such that all current efforts in redesigning vehicular hardware and software architectures become

superfluous. Whether this idea is only a dream or can become true will show the future.

In the short term, further developments are likely to occur in the following four points, particu-

larly concerning the field of automotive security:

Security-by-Design The digitalization and automation of road vehicles are ongoing processes,

so designing secure automobiles remains a challenge with open research questions. In particular,

investigating how the automotive industry can adopt a security-by-design process is essential,

mainly due to the multitude of in-vehicle software and hardware components provided by sup-

pliers. Therefore, a proper security-by-design approach requires full stakeholder collaboration to

establish secure development practices along the supply chain. Automotive industry regulations

specifying standard compliance rules are necessary to facilitate these collaborative efforts and

enable a holistic and proactive security engineering approach. All stakeholders must recognize

that security is a foundational element of vehicle design and development. In 2021, a promising

initial step toward that direction was undertaken with the publication of the ISO/SAE 21434

standard. Nevertheless, whether in discussions with industry professionals or research colleagues,

we often encountered the prevailing attitude of prioritizing security in the aftermath rather than

integrating it into significant design decisions. A security-by-design approach helps the industry

systematically address cybersecurity threats and resulting attacks, provides evidence for regula-

tory authorities, and offers liability protection. In this context, governmental authorities must

specify compliance and regulatory requirements in greater detail for SDVs to meet at a minimum

level.

Configurable Security Another trend we anticipate describes configurable security solutions,

particularly beneficial in service-oriented environments where software can be dynamically loaded

and remotely updated. Taking communication security as an example, fundamental properties

like traffic authenticity and confidentiality could be achieved using technologies such as IEEE

802.1AE, which operates at the link layer. Despite the clear performance benefits, such solutions

can only be configured coarse-grained and require significant management efforts, particularly

in dynamic systems. At the link layer, distinct data flows become invisible, and additional

security requirements like access control are challenging to implement. While we acknowledge

the importance of security solutions being both performant and transparent to applications, we

also believe they need to be as configurable and adaptable as the overall middleware.

Fine-grained security configuration and the potential for adaptability require support from the

deployed middleware, also known as automotive OS. Currently, it is still unclear which auto-

motive OS will prevail. Although many automotive companies affirm the value of a common

solution, many are still working on individual products, as pointed out in Section 1.2. In the

coming years, either the market will converge toward a specific or a limited number of automotive

OS options, or a variety of solutions will coexist. OEM companies increasingly exert control over

the software development branch, which has been outsourced to suppliers for many years. The

direction in which automotive software architectures evolve will determine the extent of the shift

in software responsibility.

141

Chapter 9 Conclusion

Automotive Hardware Not only are automotive software architectures evolving, but the un-

derlying hardware is also undergoing a fundamental transformation. We expect the trend towards

centralized and zonal E/E architecture to continue gaining speed while hardware and software are

becoming increasingly decoupled. Modern will ECUs likely consist of multiple microprocessors,

typically an application and a real-time processor, as is the case with the UNICARagil brainstem.

For maximum protection against adversaries, automotive hardware must inherently provide se-

curity features, including secure storage for cryptographic secrets and long-term maintenance

of identities. Furthermore, hardware-accelerated implementations of cryptographic primitives

can enhance overall system performance, while secure environments facilitate the execution of

critical code. For example, ARM processors come equipped with such security features. They

are renowned for their energy efficiency, support hardware virtualization, and are optimized for

running safety-critical code that must adhere to standards like ISO 26262. These characteristics

make them suitable for automotive applications. Beyond technical aspects, we anticipate greater

modularity in automotive hardware, similar to the ongoing transformations in the software layer.

Modular hardware systems are easier to maintain and improve cost-efficiency, which are essential

goals in the competitive automotive industry.

Security Measures The design and maintenance of secure vehicle systems unquestionably

require a security-by-design approach and robust management processes. However, the actual

protection of SDVs against adversaries ultimately relies on effective and efficient defense mea-

sures. While we have presented solutions for only a selection of the identified security require-

ments, SDVs must address all requirements. Beyond the measures presented in this thesis, a

secure SDVs necessitates privacy-friendly technologies, especially when operating autonomously

and utilizing sensors for environment perception. While our work primarily relied on crypto-

graphic solutions to detect adversaries, intrusion detection systems offer an alternative approach

to detecting adversaries. Although analyzing anomalies in computer systems is not new, its

applicability in vehicular contexts requires further exploration, particularly regarding real-time

behavior and reliability. In addition, the virtualization of automotive software, the physical or

virtual separation of critical and non-critical traffic, and the development of quantum-resistant

cryptographic primitives are also significant considerations in the design of secure SDVs.

We argue that technical solutions exist for most security challenges, making entirely new funda-

mental security research optional. However, the adaptation and applicability of these solutions

in the context of vehicles necessitate thorough investigation, taking into account safety, timing,

and performance requirements while adhering to industry standards.

In summary, as soon as security is no longer considered an annoying feature but an integral part

of the vehicle development and maintenance process, the vision of secure, safe, highly automated

self-driving vehicles is within reach.

142

Bibliography

[1] Dominik Püllen, Nikolaos Athanasios Anagnostopoulos, et al. “Safety Meets Security:

Using IEC 62443 for a Highly Automated Road Vehicle”. In: Computer Safety, Reliability,

and Security. 2020, pp. 325–340. doi: 10.1007/978-3-030-54549-9_22.

[2] Dominik Püllen, Nikolaos Athanasios Anagnostopoulos, et al. “Using Implicit Certification

to Efficiently Establish Authenticated Group Keys for In-Vehicle Networks”. In: 2019

IEEE Vehicular Networking Conference (VNC). 2019. doi: 10.1109/VNC48660.2019.90

62785.

[3] Dominik Püllen, Nikolaos Athanasios Anagnostopoulos, et al. “Securing FlexRay-based

in-vehicle networks”. In: Microprocessors and Microsystems 77 (2020), p. 103144. doi:

10.1016/j.micpro.2020.103144.

[4] Dominik Püllen, Florian Frank, et al. “A Security Process for the Automotive Service-

Oriented Software Architecture”. In: IEEE Transactions on Vehicular Technology (2023).

doi: 10.1109/TVT.2023.3333397.

[5] Dominik Püllen, Nikolaos Athanasios Anagnostopoulos, et al. “Poster: Hierarchical In-

tegrity Checking in Heterogeneous Vehicular Networks”. In: 2018 IEEE Vehicular Net-

working Conference (VNC). 2018. doi: 10.1109/VNC.2018.8628375.

[6] Dominik Püllen, Felix Klement, et al. “Ensuring Trustworthy Automated Road Vehicles: A

Software Integrity Validation Approach”. In: 2023 IEEE International Automated Vehicle

Validation Conference (IAVVC). 2023. doi: 10.1109/IAVVC57316.2023.10328103.

[7] Dominik Püllen, Jonas Liske, and Stefan Katzenbeisser. “ISO/SAE 21434-Based Risk

Assessment of Security Incidents in Automated Road Vehicles”. In: Computer Safety,

Reliability, and Security. 2021, pp. 82–97. doi: 10.1007/978-3-030-83903-1_6.

[8] Florian Kohnhäuser, Dominik Püllen, and Stefan Katzenbeisser. “Ensuring the Safe and

Secure Operation of Electronic Control Units in Road Vehicles”. In: 2019 IEEE Security

and Privacy Workshops (SPW). 2019, pp. 126–131. doi: 10.1109/SPW.2019.00032.

[9] Timo Woopen, Bastian Lampe, et al. “UNICARagil - Disruptive Modular Architectures

for Agile, Automated Vehicle Concepts”. In: 27. Aachen Colloquium Automobile and

Engine Technology 2018. 2018, pp. 663–694. doi: 10.18154/RWTH-2018-229909.

[10] Deutschland.de. Germany as an industrialised country - the main facts. 2023. url: http

s://www.deutschland.de/en/topic/business/germanys-industry-the-most-impor

tant-facts-and-figures (visited on 01/15/2024).

[11] Mark Andrews. How Digitization Is Changing the Way to Manufacture Cars. 2022. url:

https://emag.directindustry.com/2022/07/25/how-digitization-is-changing-t

he-way-to-manufacture-cars/ (visited on 01/11/2024).

143

https://doi.org/10.1007/978-3-030-54549-9_22
https://doi.org/10.1109/VNC48660.2019.9062785
https://doi.org/10.1109/VNC48660.2019.9062785
https://doi.org/10.1016/j.micpro.2020.103144
https://doi.org/10.1109/TVT.2023.3333397
https://doi.org/10.1109/VNC.2018.8628375
https://doi.org/10.1109/IAVVC57316.2023.10328103
https://doi.org/10.1007/978-3-030-83903-1_6
https://doi.org/10.1109/SPW.2019.00032
https://doi.org/10.18154/RWTH-2018-229909
https://www.deutschland.de/en/topic/business/germanys-industry-the-most-important-facts-and-figures
https://www.deutschland.de/en/topic/business/germanys-industry-the-most-important-facts-and-figures
https://www.deutschland.de/en/topic/business/germanys-industry-the-most-important-facts-and-figures
https://emag.directindustry.com/2022/07/25/how-digitization-is-changing-the-way-to-manufacture-cars/
https://emag.directindustry.com/2022/07/25/how-digitization-is-changing-the-way-to-manufacture-cars/

Chapter 9 Bibliography

[12] European Parliament, Council of the European Union. Regulation (EU) 2023/851 of the

European Parliament and of the Council of 19 April 2023 amending Regulation (EU)

2019/631 as regards strengthening the CO2 emission performance standards for new pas-

senger cars and new light commercial vehicles in line with the Union’s increased climate

ambition (Text with EEA relevance). Tech. rep. 2023/851. Available at https://eur-le

x.europa.eu/eli/reg/2023/851/oj (visited 2024-01-30). 2023.

[13] Santokh Singh. Critical Reasons for Crashes Investigated in the National Motor Vehicle

Crash Causation Survey. Brief Statistical Summary. 2018.

[14] Eleni Petridou and Maria Moustaki. “Human factors in the causation of road traffic

crashes”. In: European Journal of Epidemiology 16.9 (2000), pp. 819–826. doi: 10.1023

/A:1007649804201.

[15] Irene Overtoom, Gonçalo Correia, et al. “Assessing the impacts of shared autonomous

vehicles on congestion and curb use: A traffic simulation study in The Hague, Nether-

lands”. In: International Journal of Transportation Science and Technology 9.3 (2020),

pp. 195–206. doi: 10.1016/j.ijtst.2020.03.009.

[16] Jooyong Lee and Kara M Kockelman. “Energy implications of self-driving vehicles”. In:

Proceedings of the 98th Annual Meeting of the Transportation Research Board, Washing-

ton, DC, USA. 2019, pp. 13–17.

[17] Raphael van Kempen, Bastian Lampe, et al. “AUTOtech.agil: Architecture and Tech-

nologies for Orchestrating Automotive Agility”. In: 32. Aachen Colloquium Sustainable

Mobility. 2023. doi: 10.18154/RWTH-2023-09783.

[18] Charlie Miller and Chris Valasek. “Remote exploitation of an unaltered passenger vehicle”.

In: Black Hat USA 2015.S 91 (2015). http://illmatics.com/Remote%20Car%20Hackin

g.pdf (visited on 2024-30-01).

[19] Specification of Secure Onboard Communication. Documentation Identification No: 969.

AUTOSAR. 2020.

[20] Alexandru Kampmann, Bassam Alrifaee, et al. “A Dynamic Service-Oriented Software

Architecture for Highly Automated Vehicles”. In: 2019 IEEE Intelligent Transportation

Systems Conference (ITSC). 2019, pp. 2101–2108. doi: 10.1109/ITSC.2019.8916841.

[21] McKinsey & Company. Autonomous driving’s future: Convenient and connected. 2023.

url: https://www.mckinsey.com/industries/automotive- and- assembly/our-

insights/autonomous- drivings- future- convenient- and- connected (visited on

01/11/2024).

[22] Steve Tengler. Top 25 Auto Cybersecurity Hacks: Too Many Glass Houses To Be Throwing

Stones. 2020. url: https://www.forbes.com/sites/stevetengler/2020/06/30/top-

25-auto-cybersecurity-hacks-too-many-glass-houses-to-be-throwing-stones

/?sh=5be0b54b7f65 (visited on 01/04/2024).

[23] KPMG. Consumer Loss Barometer. 2016. url: https://assets.kpmg.com/content

/dam/kpmg/cn/pdf/en/2016/08/consumer- loss- barometer- v1.pdf (visited on

01/04/2024).

[24] International Organization for Standardization. ISO 11898-2:2016: Road vehicles Con-

troller area network (CAN). Standard. Available at https://www.iso.org/standard/6

7244.html. 2016.

144

https://eur-lex.europa.eu/eli/reg/2023/851/oj
https://eur-lex.europa.eu/eli/reg/2023/851/oj
https://doi.org/10.1023/A:1007649804201
https://doi.org/10.1023/A:1007649804201
https://doi.org/10.1016/j.ijtst.2020.03.009
https://doi.org/10.18154/RWTH-2023-09783
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://doi.org/10.1109/ITSC.2019.8916841
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected
https://www.forbes.com/sites/stevetengler/2020/06/30/top-25-auto-cybersecurity-hacks-too-many-glass-houses-to-be-throwing-stones/?sh=5be0b54b7f65
https://www.forbes.com/sites/stevetengler/2020/06/30/top-25-auto-cybersecurity-hacks-too-many-glass-houses-to-be-throwing-stones/?sh=5be0b54b7f65
https://www.forbes.com/sites/stevetengler/2020/06/30/top-25-auto-cybersecurity-hacks-too-many-glass-houses-to-be-throwing-stones/?sh=5be0b54b7f65
https://assets.kpmg.com/content/dam/kpmg/cn/pdf/en/2016/08/consumer-loss-barometer-v1.pdf
https://assets.kpmg.com/content/dam/kpmg/cn/pdf/en/2016/08/consumer-loss-barometer-v1.pdf
https://www.iso.org/standard/67244.html
https://www.iso.org/standard/67244.html

Chapter 9 Bibliography

[25] International Organization for Standardization. ISO 17458-1:2013 Road vehicles FlexRay

communications system. Standard. Available at https://www.iso.org/standard/5980

4.html. 2013.

[26] SOME/IP Protocol Specification. Documentation Identification No: 696. AUTOSAR. 2022.

[27] Object Management Group. OMG Data Distribution Service. 2015. url: https://www.o

mg.org/spec/DDS/1.4/PDF (visited on 01/12/2024).

[28] Organization for the Advancement of Structured Information Standards.Message Queuing

Telemetry Transport. 2014. url: https://mqtt.org/ (visited on 03/02/2024).

[29] Object Management Group. About the DDS Interoperability Wire Protocol Specification

Version 2.5. 2017. url: https://www.omg.org/spec/DDSI-RTPS/ (visited on 02/03/2024).

[30] Object Management Group. OMG DDS Security. Version 1.1. 2018. url: https://www

.omg.org/spec/DDS-SECURITY/1.1/PDF (visited on 01/12/2024).

[31] Helena Handschuh. “Hardware-Anchored Security Based on SRAM PUFs, Part 1”. In:

IEEE Security & Privacy 10.3 (2012), pp. 80–83. doi: 10.1109/MSP.2012.68.

[32] Nikolaos Athanasios Anagnostopoulos. “Practical Lightweight Security: Physical Unclon-

able Functions and the Internet of Things”. PhD thesis. Technische Universität Darm-

stadt, 2022. doi: 10.26083/tuprints-00021494.

[33] Zhiqiang Cai, Aohui Wang, et al. “0-days & mitigations: roadways to exploit and secure

connected BMW cars”. In: Black Hat USA 2019.39 (2019), p. 6.

[34] Sen Nie, Ling Liu, and Yuefeng Du. “Free-fall: Hacking tesla from wireless to can bus”.

In: Briefing, Black Hat USA 25.1 (2017). Available at https://www.blackhat.com/doc

s/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-

Bus-wp.pdf (visited on 2024-30-01).

[35] ISO and SAE. ISO/SAE 21434:2021 road vehicles cybersecurity engineering. Available at

https://www.iso.org/standard/70918.html. 2021.

[36] Christoph Schmittner and Georg Macher. “Automotive Cybersecurity Standards - Rela-

tion and Overview”. In: Computer Safety, Reliability, and Security. 2019, pp. 153–165.

doi: 10.1007/978-3-030-26250-1_12.

[37] Marco Steger, Michael Karner, et al. “A security metric for structured security analysis

of cyber-physical systems supporting SAE J3061”. In: 2016 2nd International Workshop

on Modelling, Analysis, and Control of Complex CPS (CPS Data). 2016. doi: 10.1109

/CPSData.2016.7496425.

[38] Christoph Schmittner, Zhendong Ma, et al. “Using SAE J3061 for Automotive Security

Requirement Engineering”. In: Computer Safety, Reliability, and Security. 2016, pp. 157–

170. doi: 10.1007/978-3-319-45480-1_13.

[39] HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS). 2018.

url: https://research.chalmers.se/en/project/5809 (visited on 11/15/2023).

[40] Shalabh Jain and Jorge Guajardo. “Physical Layer Group Key Agreement for Automotive

Controller Area Networks”. In: Cryptographic Hardware and Embedded Systems – CHES

2016. 2016, pp. 85–105.

[41] Stefan Nürnberger and Christian Rossow. “vatiCAN – Vetted, Authenticated CAN Bus”.

In: Cryptographic Hardware and Embedded Systems – CHES 2016. 2016, pp. 106–124.

doi: 10.1007/978-3-662-53140-2_6.

145

https://www.iso.org/standard/59804.html
https://www.iso.org/standard/59804.html
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://mqtt.org/
https://www.omg.org/spec/DDSI-RTPS/
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://doi.org/10.1109/MSP.2012.68
https://doi.org/10.26083/tuprints-00021494
https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf
https://www.iso.org/standard/70918.html
https://doi.org/10.1007/978-3-030-26250-1_12
https://doi.org/10.1109/CPSData.2016.7496425
https://doi.org/10.1109/CPSData.2016.7496425
https://doi.org/10.1007/978-3-319-45480-1_13
https://research.chalmers.se/en/project/5809
https://doi.org/10.1007/978-3-662-53140-2_6

Chapter 9 Bibliography

[42] Andreea-Ina Radu and Flavio D. Garcia. “LeiA: A Lightweight Authentication Protocol

for CAN”. In: Computer Security – ESORICS 2016, pp. 283–300. doi: 10.1007/978-3-

319-45741-3_15.

[43] Samir Fassak, Younes El Hajjaji El Idrissi, et al. “A secure protocol for session keys

establishment between ECUs in the CAN bus”. In: 2017 International Conference on

Wireless Networks and Mobile Communications (WINCOM). 2017. doi: 10.1109/WINCO

M.2017.8238149.

[44] Paula Vasile, Bogdan Groza, and Stefan Murvay. “Performance Analysis of Broadcast

Authentication Protocols on CAN-FD and FlexRay”. In: Proceedings of the WESS’15:

Workshop on Embedded Systems Security. 2015. doi: 10.1145/2818362.2818369.

[45] Pal-Stefan Murvay and Bogdan Groza. “Practical Security Exploits of the FlexRay In-

Vehicle Communication Protocol”. In: Risks and Security of Internet and Systems. 2019,

pp. 172–187. doi: 10.1007/978-3-030-12143-3_15.

[46] Ahmed Refaat Mousa, Pakinam NourElDeen, et al. “Lightweight Authentication Protocol

Deployment over FlexRay”. In: Proceedings of the 10th International Conference on In-

formatics and Systems (INFOS ’16). 2016, pp. 233–239. doi: 10.1145/2908446.2908485.

[47] Ahmed Hazem and HA Fahmy. “LCAP - A Lightweight CAN Authentication Protocol for

Securing In-Vehicle Networks”. In: 10th Embedded Security in Cars Conference (ESCAR).

2012.

[48] Marco Iorio, Massimo Reineri, et al. “Securing SOME/IP for In-Vehicle Service Protec-

tion”. In: IEEE Transactions on Vehicular Technology 69.11 (2020), pp. 13450–13466.

doi: 10.1109/TVT.2020.3028880.

[49] Daniel Zelle, Timm Lauser, et al. “Analyzing and Securing SOME/IP Automotive Services

with Formal and Practical Methods”. In: Proceedings of the 16th International Conference

on Availability, Reliability and Security. doi: 10.1145/3465481.3465748.

[50] Simon Meier, Benedikt Schmidt, et al. “The TAMARIN Prover for the Symbolic Analysis

of Security Protocols”. In: Computer Aided Verification. 2013, pp. 696–701. doi: 10.100

7/978-3-642-39799-8_48.

[51] Victor Mayoral-Vilches, Ruffin White, et al. “SROS2: Usable Cyber Security Tools for

ROS 2”. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). 2022, pp. 11253–11259. doi: 10.1109/IROS47612.2022.9982129.

[52] Maxim Friesen, Gajasri Karthikeyan, et al. “A comparative evaluation of security mech-

anisms in DDS, TLS and DTLS”. In: Kommunikation und Bildverarbeitung in der Au-

tomation. 2020, pp. 201–216. doi: 10.1007/978-3-662-59895-5_15.

[53] Yakov Rekhter and Tony Li. Datagram Transport Layer Seurity Version 1.2. RFC 6347.

2012. doi: 10.17487/RFC6347.

[54] Jeremy Erickson, Shibo Chen, et al. “CommPact: Evaluating the Feasibility of Autonomous

Vehicle Contracts”. In: 2018 IEEE Vehicular Networking Conference (VNC). 2018. doi:

10.1109/VNC.2018.8628319.

[55] Sotiris Nikoletseas, Grigorios Prasinos, et al. “Attack propagation in Networks”. In: The-

ory of Computing Systems 36.5 (2003), pp. 553–574. doi: 10.1007/s00224-003-1087-5.

[56] Steven Noel, Lingyu Wang, et al. “Measuring Security Risk of Networks Using Attack

Graphs”. In: International Journal of Next-Generation Computing 1.1 (2010), pp. 135–

147.

146

https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1109/WINCOM.2017.8238149
https://doi.org/10.1109/WINCOM.2017.8238149
https://doi.org/10.1145/2818362.2818369
https://doi.org/10.1007/978-3-030-12143-3_15
https://doi.org/10.1145/2908446.2908485
https://doi.org/10.1109/TVT.2020.3028880
https://doi.org/10.1145/3465481.3465748
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1109/IROS47612.2022.9982129
https://doi.org/10.1007/978-3-662-59895-5_15
https://doi.org/10.17487/RFC6347
https://doi.org/10.1109/VNC.2018.8628319
https://doi.org/10.1007/s00224-003-1087-5

Chapter 9 Bibliography

[57] Sebastian Roschke, Feng Cheng, and Christoph Meinel. “High-quality attack graph-based

IDS correlation”. In: Logic Journal of the IGPL 21.4 (2012), pp. 571–591. doi: 10.1093

/jigpal/jzs034.

[58] Martin Salfer and Claudia Eckert. “Attack graph-based assessment of exploitability risks

in automotive on-board networks”. In: ARES 2018. 2018.

[59] Michael Krisper, Jürgen Dobaj, et al. “RISKEE: A Risk-Tree Based Method for Assessing

Risk in Cyber Security”. In: Systems, Software and Services Process Improvement - 26th

European Conference, EuroSPI 2019, Proceedings. 2019, pp. 45–56. doi: 10.1007/978-3

-030-28005-5_4.

[60] Dan Keilhoff, Dennis Niedballa, et al. “UNICARagil – New architectures for disruptive

vehicle concepts”. In: 19. Internationales Stuttgarter Symposium. 2019, pp. 830–842. doi:

10.1007/978-3-658-25939-6_65.

[61] Michael Buchholz, Fabian Gies, et al. “Automation of the UNICARagil vehicles”. In: 29th

Aachen Colloquium Sustainable Mobility. Vol. 2. Universität Ulm. 2020, pp. 1531–1560.

doi: http://dx.doi.org/10.18725/OPARU-34024.

[62] International Society of Automation. ISA/IEC 62443 Security for Industrial Automation

and Control Systems. Standard. 2017.

[63] United Nations Economic Commission for Europe (UNECE). UN Regulation No. 155.

2021. url: https://unece.org/sites/default/files/2023-02/R155e%20%282%29.pd

f (visited on 01/04/2024).

[64] U.S. Department of Transportation. “Revised Departmental Guidance 2016: Treatment

of the Value of Preventing Fatalities and Injuries in Preparing Economic Analyses”. In:

(2021). Accessed on August 8, 2023.

[65] R.W. Saaty. “The analytic hierarchy process—what it is and how it is used”. In: Mathe-

matical Modelling 9.3 (1987), pp. 161–176. doi: https://doi.org/10.1016/0270-0255

(87)90473-8.

[66] Sebastian Karlstorfer. “A Security Risk Analysis for a Fully Automated Road Vehicle”.

Master’s thesis. University of Passau, 2023.

[67] Nataliya Shevchenko, Timothy A. Chick, et al. Threat Modeling: A Summary of Available

Methods. Tech. rep. Available at https://insights.sei.cmu.edu/documents/569/2

018_019_001_524597.pdf (visited 2024-01-30). Carnegie Mellon University Software

Engineering Institute, 2018.

[68] Jonathan Petit and Steven E. Shladover. “Potential Cyberattacks on Automated Vehi-

cles”. In: IEEE Transactions on Intelligent Transportation Systems 16.2 (2015), pp. 546–

556. doi: 10.1109/TITS.2014.2342271.

[69] Lotfi ben Othmane, Rohit Ranchal, et al. “Incorporating attacker capabilities in risk

estimation and mitigation”. In: Computers & Security 51 (2015), pp. 41–61. doi: 10.101

6/j.cose.2015.03.001.

[70] Zeinab El-Rewini, Karthikeyan Sadatsharan, et al. “Cybersecurity challenges in vehicular

communications”. In: Vehicular Communications 23 (2020), p. 100214. doi: 10.1016/j

.vehcom.2019.100214.

[71] Miro Enev, Alex Takakuwa, et al. “Automobile Driver Fingerprinting.” In: Proc. Priv.

Enhancing Technol. 2016.1 (2016), pp. 34–50. doi: 10.1515/popets-2015-0029.

147

https://doi.org/10.1093/jigpal/jzs034
https://doi.org/10.1093/jigpal/jzs034
https://doi.org/10.1007/978-3-030-28005-5_4
https://doi.org/10.1007/978-3-030-28005-5_4
https://doi.org/10.1007/978-3-658-25939-6_65
https://doi.org/http://dx.doi.org/10.18725/OPARU-34024
https://unece.org/sites/default/files/2023-02/R155e%20%282%29.pdf
https://unece.org/sites/default/files/2023-02/R155e%20%282%29.pdf
https://doi.org/https://doi.org/10.1016/0270-0255(87)90473-8
https://doi.org/https://doi.org/10.1016/0270-0255(87)90473-8
https://insights.sei.cmu.edu/documents/569/2018_019_001_524597.pdf
https://insights.sei.cmu.edu/documents/569/2018_019_001_524597.pdf
https://doi.org/10.1109/TITS.2014.2342271
https://doi.org/10.1016/j.cose.2015.03.001
https://doi.org/10.1016/j.cose.2015.03.001
https://doi.org/10.1016/j.vehcom.2019.100214
https://doi.org/10.1016/j.vehcom.2019.100214
https://doi.org/10.1515/popets-2015-0029

Chapter 9 Bibliography

[72] Danny Dolev and Andrew Yao. “On the security of public key protocols”. In: IEEE

Transactions on Information Theory 29.2 (1983), pp. 198–208. doi: 10.1109/TIT.1983

.1056650.

[73] Anthony Van Herrewege, Dave Singelée, and Ingrid M. R. Verbauwhede. “CANAuth -

A Simple, Backward Compatible Broadcast Authentication Protocol for CAN bus”. In:

Conference: ECRYPT Workshop on Lightweight Cryptography. 2011, pp. 229–235.

[74] BlackBerry. Explaining Implicit Certificates. url: https://www.certicom.com/conten

t/certicom/en/code-and-cipher/explaining-implicit-certificate.html (visited

on 12/16/2023).

[75] Certicom Research. Standards for Efficient Cryptography: SEC 4 - Elliptic Curve Qu-

Vanstone Implicit Certificate Scheme (ECQV). Tech. rep. Version 1.0. Certicom Research,

2013.

[76] Kristin E Lauter and Katherine E Stange. “The elliptic curve discrete logarithm problem

and equivalent hard problems for elliptic divisibility sequences”. In: International Work-

shop on Selected Areas in Cryptography. Springer. 2008, pp. 309–327. doi: 10.1007/978

-3-642-04159-4_20.

[77] Nikolaos Athanasios Anagnostopoulos, Tolga Arul, et al. “Low-Temperature Data Rema-

nence Attacks Against Intrinsic SRAM PUFs”. In: 2018 21st Euromicro Conference on

Digital System Design (DSD). 2018, pp. 581–585. doi: 10.1109/DSD.2018.00102.

[78] Dennis K. Nilsson, Ulf E. Larson, et al. “A First Simulation of Attacks in the Automotive

Network Communications Protocol FlexRay”. In: Proceedings of the International Work-

shop on Computational Intelligence in Security for Information Systems CISIS’08. 2009,

pp. 84–91. doi: 10.1007/978-3-540-88181-0_11.

[79] Charles C. Y. Lam, Guang Gong, and Scott A. Vanstone. “Message Authentication Codes

with Error Correcting Capabilities”. In: Proceedings of the 4th International Conference

on Information and Communications Security. 2002, 354–366. doi: 10.1007/3-540-361

59-6_30.

[80] Elena Dubrova, Mats Näslund, and Göran Selander. “CRC-Based Message Authentication

for 5G Mobile Technology”. In: 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. 2015,

pp. 1186–1191. doi: 10.1109/Trustcom.2015.503.

[81] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function

(HKDF). Request for Comments 5869. RFC Editor, 2010. doi: 10.17487/RFC5869.

[82] Qiyan Wang and Sanjay Sawhney. “VeCure: A Practical Security Framework to Protect

the CAN Bus of Vehicles”. In: 2014 International Conference on the Internet of Things

(IOT). 2014, pp. 13–18. doi: 10.1109/IOT.2014.7030108.

[83] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 2001. isbn: 0-8493-8523-7.

[84] Mihir Bellare. “New Proofs for NMAC and HMAC: SecurityWithout Collision-Resistance”.

In: Advances in Cryptology - CRYPTO 2006, pp. 602–619. doi: 10.1007/11818175_36.

[85] National Institute of Standards and Technology (NIST). Recommendation for Key Man-

agement: Part 1 – General. Tech. rep. NIST SP 800-57 Part 1 Rev. 5. National Institute

of Standards and Technology, 2016. doi: 10.6028/NIST.SP.800-57pt1r5.

148

https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://www.certicom.com/content/certicom/en/code-and-cipher/explaining-implicit-certificate.html
https://www.certicom.com/content/certicom/en/code-and-cipher/explaining-implicit-certificate.html
https://doi.org/10.1007/978-3-642-04159-4_20
https://doi.org/10.1007/978-3-642-04159-4_20
https://doi.org/10.1109/DSD.2018.00102
https://doi.org/10.1007/978-3-540-88181-0_11
https://doi.org/10.1007/3-540-36159-6_30
https://doi.org/10.1007/3-540-36159-6_30
https://doi.org/10.1109/Trustcom.2015.503
https://doi.org/10.17487/RFC5869
https://doi.org/10.1109/IOT.2014.7030108
https://doi.org/10.1007/11818175_36
https://doi.org/10.6028/NIST.SP.800-57pt1r5

Chapter 9 Bibliography

[86] Mark Randolph and William Diehl. “Power Side-Channel Attack Analysis: A Review of

20 Years of Study for the Layman”. In: Cryptography 4.2 (2020). doi: 10.3390/cryptog

raphy4020015.

[87] Goncalo Martins, Arul Moondra, et al. “Computation and Communication Evaluation

of an Authentication Mechanism for Time-Triggered Networked Control Systems”. In:

Sensors 16.8 (2016). doi: 10.3390/s16081166.

[88] Hsin-Te Wu, Alan Yein, and Wen-Shyong Hsieh. “Message Authentication Mechanism

and Privacy Protection in the Context of Vehicular Ad Hoc Networks”. In: Mathematical

Problems in Engineering 2015 (2015), pp. 1–11. doi: 10.1155/2015/569526.

[89] Chen Yan, Wenyuan Xu, and Jianhao Liu. “Can you trust autonomous vehicles: Contact-

less attacks against sensors of self-driving vehicle”. In: Def Con 24.8 (2016), p. 109.

[90] i11, RWTH Aachen. embeddedRTPS. https://github.com/embedded-software-labor

atory/embeddedRTPS/commit/68915c8ccc744db171a202182dce2ef55b7728ca. 2022.

[91] Victor Bandur, Gehan Selim, et al. “Making the Case for Centralized Automotive E/E

Architectures”. In: IEEE Transactions on Vehicular Technology 70.2 (2021), pp. 1230–

1245. doi: 10.1109/TVT.2021.3054934.

[92] Bundesregierung Deutschland. Entwurf eines Gesetzes zur Änderung des Straßenverkehrs-

gesetzes und des Pflichtversicherungsgesetzes – Gesetz zum autonomen Fahren. 2021. url:

https://dserver.bundestag.de/btd/19/274/1927439.pdf (visited on 02/02/2023).

[93] Johannes Feiler, Simon Hoffmann, and Dr. Frank Diermeyer. “Concept of a Control Cen-

ter for an Automated Vehicle Fleet”. In: 2020 IEEE 23rd International Conference on

Intelligent Transportation Systems (ITSC). 2020. doi: 10.1109/ITSC45102.2020.92944

11.

[94] Leslie Lamport. “Password authentication with insecure communication”. In: Communi-

cations of the ACM 24.11 (1981), pp. 770–772. doi: 10.1145/358790.358797.

[95] B. Kaliski. PKCS 5: Password-Based Cryptography Specification Version 2.0. Tech. rep.

2898. 2000. doi: 10.17487/RFC2898.

[96] C. Percival and S. Josefsson. The scrypt Password-Based Key Derivation Function. RFC.

2016. doi: 10.17487/RFC7914.

[97] Christoph Böhm, Maximilian Hofer, and Wolfgang Pribyl. “A microcontroller SRAM-

PUF”. In: 2011 5th International Conference on Network and System Security. 2011,

pp. 269–273. doi: 10.1109/ICNSS.2011.6060013.

[98] Andre Schaller, Wenjie Xiong, et al. “Intrinsic Rowhammer PUFs: Leveraging the Rowham-

mer effect for improved security”. In: IEEE International Symposium on Hardware Ori-

ented Security and Trust (HOST). 2017. doi: 10.1109/HST.2017.7951729.

[99] Jack Miskelly and Máire O’Neill. “Fast DRAM PUFs on Commodity Devices”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 39.11 (2020),

pp. 3566–3576. doi: 10.1109/TCAD.2020.3012218.

[100] eProsima. Fast DDS. https://github.com/eProsima/Fast-DDS/tree/627277859f6a5

401c2bd236b4079e312e2580374. 2023.

[101] Adam Langley, W Chang, et al. ChaCha20-Poly1305 cipher suites for transport layer

security (TLS). RFC. 2016. doi: 10.17487/RFC7905.

149

https://doi.org/10.3390/cryptography4020015
https://doi.org/10.3390/cryptography4020015
https://doi.org/10.3390/s16081166
https://doi.org/10.1155/2015/569526
https://github.com/embedded-software-laboratory/embeddedRTPS/commit/68915c8ccc744db171a202182dce2ef55b7728ca
https://github.com/embedded-software-laboratory/embeddedRTPS/commit/68915c8ccc744db171a202182dce2ef55b7728ca
https://doi.org/10.1109/TVT.2021.3054934
https://dserver.bundestag.de/btd/19/274/1927439.pdf
https://doi.org/10.1109/ITSC45102.2020.9294411
https://doi.org/10.1109/ITSC45102.2020.9294411
https://doi.org/10.1145/358790.358797
https://doi.org/10.17487/RFC2898
https://doi.org/10.17487/RFC7914
https://doi.org/10.1109/ICNSS.2011.6060013
https://doi.org/10.1109/HST.2017.7951729
https://doi.org/10.1109/TCAD.2020.3012218
https://github.com/eProsima/Fast-DDS/tree/627277859f6a5401c2bd236b4079e312e2580374
https://github.com/eProsima/Fast-DDS/tree/627277859f6a5401c2bd236b4079e312e2580374
https://doi.org/10.17487/RFC7905

Chapter 9 Bibliography

[102] Daniel J Bernstein. “The Poly1305-AES message-authentication code”. In: International

Workshop on Fast Software Encryption. Springer. 2005, pp. 32–49. doi: 10.1007/11502

760_3.

[103] A. Langley Y. Nir Dell EMC and Google Inc. ChaCha20 and Poly1305 for IETF Protocols.

RFC. 2018. doi: 10.17487/RFC8439.

[104] S. Turner A. Langley M. Hamburg. Elliptic Curves for Security. RFC. 2016. doi: 10.17

487/RFC7748.

[105] Craig Costello and Patrick Longa. FourQ: four-dimensional decompositions on a Q-curve

over the Mersenne prime. Cryptology ePrint Archive, Paper 2015/565. https://eprint

.iacr.org/2015/565. 2015.

[106] Abhranil Maiti and Patrick Schaumont. “Improved ring oscillator PUF: An FPGA-friendly

secure primitive”. In: Journal of Cryptology 24 (2011), pp. 375–397. doi: 10.1007/s001

45-010-9088-4.

[107] Jiliang Zhang, Gang Qu, et al. “A Survey on Silicon PUFs and Recent Advances in Ring

Oscillator PUFs”. In: Journal of Computer Science and Technology 29 (2014), pp. 664–

678. doi: 10.1007/s11390-014-1458-1.

[108] Florian Frank, Tolga Arul, et al. “Using Memristor Arrays as Physical Unclonable Func-

tions”. In: Computer Security – ESORICS 2022. 2022, pp. 250–271. doi: 10.1007/978-

3-031-17143-7_13.

[109] Johannes Feiler, Simon Hoffmann, and Dr. Frank Diermeyer. “Concept of a Control Cen-

ter for an Automated Vehicle Fleet”. In: 2020 IEEE 23rd International Conference on

Intelligent Transportation Systems (ITSC). 2020. doi: 10.1109/ITSC45102.2020.92944

11.

[110] George Coker, Joshua Guttman, et al. “Principles of remote attestation”. In: International

Journal of Information Security 10 (2011), pp. 63–81. doi: 10.1007/s10207-011-0124-7.

[111] Carlton Shepherd, Konstantinos Markantonakis, and Georges-Axel Jaloyan. “LIRA-V:

Lightweight Remote Attestation for Constrained RISC-V Devices”. In: 2021 IEEE Secu-

rity and Privacy Workshops (SPW). 2021, pp. 221–227. doi: 10.1109/SPW53761.2021.0

0036.

[112] Ivan De Oliveira Nunes, Karim Eldefrawy, et al. “VRASED: A Verified Hardware/Soft-

ware Co-Design for Remote Attestation”. In: 28th USENIX Security Symposium (USENIX

Security 19). 2019, pp. 1429–1446.

[113] Vittorio Todisco, Stefania Bartoletti, et al. “Performance Analysis of Sidelink 5G-V2X

Mode 2 Through an Open-Source Simulator”. In: IEEE Access 9 (2021), pp. 145648–

145661. doi: 10.1109/ACCESS.2021.3121151.

[114] Intelligent Transport Systems (ITS); Access Layer; Part 1: Channel Models for the 5,9

GHz frequency band. Technical Report. European Telecommunications Standards Insti-

tute, 2019.

[115] Andrea Baiocchi, Ion Turcanu, et al. “Age of Information in IEEE 802.11p”. In: 2021

IFIP/IEEE International Symposium on Integrated Network Management (IM). 2021,

pp. 1024–1031.

[116] Mahdi Dibaei, Xi Zheng, et al. An Overview of Attacks and Defences on Intelligent Con-

nected Vehicles. 2019. doi: 10.48550/arXiv.1907.07455.

150

https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11502760_3
https://doi.org/10.17487/RFC8439
https://doi.org/10.17487/RFC7748
https://doi.org/10.17487/RFC7748
https://eprint.iacr.org/2015/565
https://eprint.iacr.org/2015/565
https://doi.org/10.1007/s00145-010-9088-4
https://doi.org/10.1007/s00145-010-9088-4
https://doi.org/10.1007/s11390-014-1458-1
https://doi.org/10.1007/978-3-031-17143-7_13
https://doi.org/10.1007/978-3-031-17143-7_13
https://doi.org/10.1109/ITSC45102.2020.9294411
https://doi.org/10.1109/ITSC45102.2020.9294411
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1109/SPW53761.2021.00036
https://doi.org/10.1109/SPW53761.2021.00036
https://doi.org/10.1109/ACCESS.2021.3121151
https://doi.org/10.48550/arXiv.1907.07455

Chapter Bibliography

[117] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. “Intrusion detection system based

on the analysis of time intervals of CAN messages for in-vehicle network”. In: 2016 Inter-

national Conference on Information Networking (ICOIN). 2016, pp. 63–68. doi: 10.110

9/ICOIN.2016.7427089.

[118] ISO and IEC. ISO/IEC 27005:2018 Information security. Standard. Available at https:

//www.iso.org/standard/75281.html. 2018.

[119] Microsoft Corporation. STRIDE: A Threat Modeling Framework. 2009. url: https://doc

s.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)

(visited on 01/15/2024).

[120] International Organization for Standardization. ISO 15403-1:2022 Information security,

cybersecurity and privacy protection. Standard. Available at https://www.iso.org/sta

ndard/72891.html. 2022.

[121] ISO and IEC. ISO/IEC 18045: Methodology for IT security evaluation. Standard. Avail-

able at https://www.iso.org/standard/72889.htm. 2020.

[122] Martin Salfer and Claudia Eckert. “Attack Graph-Based Assessment of Exploitability

Risks in Automotive On-Board Networks”. In: Proceedings of the 13th International Con-

ference on Availability, Reliability and Security. 2018. doi: 10.1145/3230833.3230851.

[123] Patrick Helmholz, Edgar Ziesmann, and Susanne Robra-Bissantz. “Context-Awareness in

the Car: Prediction, Evaluation and Usage of Route Trajectories”. In: Design Science at

the Intersection of Physical and Virtual Design. 2013, pp. 412–419. doi: 10.1007/978-3

-642-38827-9_30.

[124] Thomas H. Cormen, Charles E. Leiserson, et al. Introduction to Algorithms. 2nd. MIT

Press, 2001, p. 599. isbn: 978-0262032933.

151

https://doi.org/10.1109/ICOIN.2016.7427089
https://doi.org/10.1109/ICOIN.2016.7427089
https://www.iso.org/standard/75281.html
https://www.iso.org/standard/75281.html
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.iso.org/standard/72891.html
https://www.iso.org/standard/72891.html
https://www.iso.org/standard/72889.htm
https://doi.org/10.1145/3230833.3230851
https://doi.org/10.1007/978-3-642-38827-9_30
https://doi.org/10.1007/978-3-642-38827-9_30

A. Security Requirement Analysis

Criterion Rating Description

Safety

severe (4) The passenger’s death is likely.

major (3) Severe injuries like internal bleeding and brain damage are likely.

moderate (2) Light injuries like broken bones are possible.

negligible (1) No injuries or scratches are likely.

Financial

severe (4)]$10M , ∞]

major (3)]$10K, $10M [

moderate (2)]$0, $10K]

negligible (1) $0

Operational

massive (4) All traffic comes to an halt.

medium (3) A traffic jams occurs in a dedicated area.

low (2) A vehicle can operate only at reduced speed.

none (1) No restriction

Privacy

severe (4) The leaked information reveals the passenger’s identity.

major (3) The leaked data can be linked to the passenger at low cost.

moderate (2) The leaked sensitive data can only be linked to the passenger if
available in large quantities.

negligible (1) Leaked data is not sensitive.

Table A.1: Impact criteria with their normalized and weighted scores

153

Chapter A Security Requirement Analysis

N
o

A
ss
e
t

Im
p
a
c
t
C
ri
te

ri
a

Im
p
a
c
t

L
ik
e
li
h
o
o
d

C
ri
te

ri
a

L
ik
e
li
h
o
o
d

R
is
k

Z
o
n
e

P
S

F
L

O
R

P
IC

W
C

U
E
I

B
T
P

1
se
n
so
r
m
o
d
u
le

2
2

3
4

0
,6
2

1
0

1
1

1
0

0
.7
1

4
1

2
ce
re
b
ru
m

2
2

3
3

0
,5
9

1
0

1
1

1
0

0
.7
1

4
1

3
b
ra
in
st
em

2
2

3
2

0
,7
2

1
0

1
1

1
0

0
.7
1

4
1

4
d
y
n
a
m
ic

m
o
d
u
le

4
3

4
1

0
,8
5

1
0

1
1

1
0

0
.7
1

5
2

5
li
d
a
r

1
2

2
3

0
,4
2

0
0

0
0

1
1

0
.1
1

1
3

6
ra
d
a
r

1
2

2
3

0
,4
2

0
0

0
0

1
1

0
.1
1

1
3

7
ca
m
er
a

1
2

3
4

0
,5
1

0
0

0
0

1
1

0
.1
1

2
3

8
h
m
i

2
2

2
4

0
,5
6

1
1

1
1

1
0

0
.9
6

4
4

9
lo
ca
li
za
ti
o
n

3
3

2
4

0
,7
2

1
0

1
0

1
0

0
.6
1

4
1

1
0

p
la
tf
o
rm

se
n
so
rs

2
2

3
2

0
,5
6

0
0

0
0

1
1

0
.1
1

2
4

1
1

en
er
g
y
co
n
tr
o
l
sy
st
em

3
3

3
1

0
,6
9

1
0

1
1

1
0

0
.6
1

3

1
2

th
er
m
a
l
co
n
tr
o
l
sy
st
em

2
2

4
1

0
,5
8

1
0

1
1

1
0

0
.6
1

4
4

1
3

d
o
o
r
co
n
tr
o
l
sy
st
em

2
2

4
1

0
,5
8

1
0

1
1

1
0

0
.6
1

4
4

1
4

sw
it
ch

3
3

3
1

0
,6
9

1
0

1
1

1
1

0
.7
5

4
A

1
5

ro
u
te
r

3
3

3
4

0
,7
8

1
0

1
1

1
1

0
.7
5

5
A

1
6

co
n
tr
o
l
ro
o
m

4
4

4
4

1
1

1
1

1
0

0
0
.8
9

5
5

1
7

d
ro
n
e

1
2

1
3

0
,3
7

1
1

1
0

0
0

0
.7
9

3
5

1
8

cl
o
u
d

1
1

2
3

0
,3
7

1
1

1
0

0
0

0
.7
9

3
5

T
ab

le
A
.2
:
F
ol
lo
w
in
g
id
en
ti
fy
in
g
as
se
ts
,
a
d
iv
er
se

p
an

el
o
f
ex
p
er
ts

ra
te
d
d
is
ti
n
ct

im
p
a
ct

a
n
d
li
ke
li
h
o
o
d
cr
it
er
ia
,
su
b
se
q
u
en
tl
y

w
ei
gh

te
d
th
ro
u
gh

th
e
A
n
al
y
ti
c
H
ie
ra
rc
h
y
P
ro
ce
ss

(A
H
P
).

Im
p
a
ct

a
n
d
li
ke
li
h
o
o
d
in
d
ic
a
te

th
e
ex
p
ec
te
d
co
n
se
q
u
en
ce
s
a
n
d

th
e
p
ro
b
ab

il
it
y
of

at
ta
ck
in
g
a
gi
ve
n
as
se
t.

T
h
ey

ev
en
tu
a
ll
y
re
su
lt
in

a
ri
sk

va
lu
e
th
a
t
a
ss
is
ts

in
d
et
er
m
in
in
g
th
e
zo
n
es

a
n
d

co
n
d
u
it
s
u
se
d
in

th
e
d
et
ai
le
d
ri
sk

an
a
ly
si
s.

154

Chapter A Security Requirement Analysis

T
o
p

L
e
v
e
l
T
h
re

a
t

ID
In

te
rm

e
d
ia
te

T
h
re

a
t

ID
Z
o
n
e
s

R
is
k

M
a
n
ip
u
la
ti
o
n
o
f
d
ri
v
in
g
b
eh

av
io
r

t 0

A
tt
a
ck
er

m
a
n
ip
u
la
te
s
co
n
tr
o
l
va
ri
a
b
le
s
o
n
F
le
x
R
ay

b
u
s

t 0
,0

C
2

v
er
y
h
ig
h

F
ir
m
w
a
re

co
rr
u
p
ti
o
n
o
f
d
y
n
a
m
ic

m
o
d
u
le
s

t 0
,1

Z
2

h
ig
h

A
tt
a
ck
er

m
a
n
ip
u
la
te
s
co
n
tr
o
l
va
ri
a
b
le
s
in

A
S
O
A

t 0
,2

C
1

v
er
y
h
ig
h

Im
p
er
so
n
a
ti
o
n
o
f
th
e
co
n
tr
o
l
ro
o
m

t 0
,3

C
4

m
o
d
er
a
te

F
o
rg
er
y
o
f
co
n
tr
o
l
ro
o
m

co
m
m
a
n
d
s

t 0
,4

C
4

h
ig
h

R
a
n
d
o
m

o
p
en

in
g
/
cl
o
si
n
g
o
f
th
e
d
o
o
r

t 1

M
a
n
ip
u
la
ti
o
n
o
f
d
o
o
r
co
n
tr
o
l
fi
rm

w
a
re

t 1
,0

Z
4

h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
b
ra
in
st
em

fi
rm

w
a
re

t 1
,1

Z
1

v
er
y
h
ig
h

In
je
ct
io
n
o
f
fa
ls
e
o
p
en

in
g
/
cl
o
si
n
g
co
m
m
a
n
d
to

E
th
er
n
et

b
u
s

t 1
,2

C
1

v
er
y
h
ig
h

C
a
m
er
a
d
a
ta

fo
rg
er
y

t 2

M
a
n
ip
u
la
ti
o
n
o
f
ca
m
er
a
d
a
ta

o
n
th
e
E
th
er
n
et

b
u
s

t 2
,0

C
1

v
er
y
h
ig
h

Im
p
er
so
n
a
ti
o
n
o
f
ca
m
er
a

t 2
,1

C
1

v
er
y
h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
ca
m
er
a
fi
rm

w
a
re

t 2
,2

Z
4

m
o
d
er
a
te

D
o
S
a
tt
a
ck

o
n
E
th
er
n
et

b
u
s

t 2
,3

C
1

v
er
y
h
ig
h

L
id
a
r
d
a
ta

fo
rg
er
y

t 3

M
a
n
ip
u
la
ti
o
n
o
f
li
d
a
r
co
m
m
a
n
d
s
o
n
E
th
er
n
et

b
u
s

t 3
,0

C
1

v
er
y
h
ig
h

Im
p
er
so
n
a
ti
o
n
o
f
li
d
a
r

t 3
,1

C
1

v
er
y
h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
li
d
a
r
fi
rm

w
a
re

t 3
,2

Z
4

m
o
d
er
a
te

D
o
S
a
tt
a
ck

o
n
E
th
er
n
et

b
u
s

t 3
,3

C
1

v
er
y
h
ig
h

R
a
d
a
r
d
a
ta

fo
rg
er
y

t 4

M
a
n
ip
u
la
ti
o
n
o
f
A
S
O
A

ra
d
a
r
co
m
m
a
n
d
s
o
n
C
A
N

b
u
s

t 4
,0

C
3

h
ig
h

Im
p
er
so
n
a
ti
o
n
o
f
ca
m
er
a

t 4
,1

C
3

v
er
y
h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
ca
m
er
a
fi
rm

w
a
re

t 4
,2

Z
3

m
o
d
er
a
te

D
o
S
a
tt
a
ck

o
n
E
th
er
n
et

b
u
s

t 4
,3

C
1

v
er
y
h
ig
h

E
av
es
d
ro
p
p
in
g
o
f
p
o
si
ti
o
n
d
a
ta

t 5
S
p
o
o
fi
n
g
o
f
th
e
lo
ca
li
za
ti
o
n
m
o
d
u
le

t 5
,0

C
1

h
ig
h

F
ir
m
w
a
re

co
rr
u
p
ti
o
n
o
f
th
e
lo
ca
li
za
ti
o
n
m
o
d
u
le

t 5
,1

Z
1

h
ig
h

D
el
ib
er
a
te

sa
fe

h
a
lt

t 6

F
ir
m
w
a
re

co
rr
u
p
ti
o
n
o
f
b
ra
in
st
em

t 6
,0

Z
1

v
er
y
h
ig
h

F
a
k
e
en

v
ir
o
n
m
en
t
p
er
ce
p
ti
o
n

se
e
th
re
a
ts

t 2
-
t 4

D
o
S
a
tt
a
ck

o
n
E
th
er
n
et

b
u
s

t 6
,2

C
1

v
er
y
h
ig
h

B
a
tt
er
y
co
rr
u
p
ti
o
n

t 7
F
ir
m
w
a
re

m
a
n
ip
u
la
ti
o
n
o
f
en

er
g
y
m
o
d
u
le

t 7
,0

Z
4

v
er
y
h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
A
S
O
A

co
m
m
a
n
d
s
o
n
E
th
er
n
et

b
u
s

t 7
,1

C
1

v
er
y
h
ig
h

F
o
rg
er
y
o
f
th
e
ex
te
rn
a
l
en
v
ir
o
n
m
en
t
m
o
d
el

t 8

Id
en
ti
ty

th
ef
t
o
f
v
eh

ic
le

t 8
,0

C
4
,
Z

1
v
er
y
h
ig
h

Id
en
ti
ty

th
ef
t
o
f
cl
o
u
d

t 8
,1

C
4
,
Z

6
v
er
y
h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
d
a
ta

in
th
e
cl
o
u
d

t 8
,2

Z
6

m
o
d
er
a
te

M
a
n
ip
u
la
ti
o
n
o
f
en
v
ir
o
n
m
en

t
d
a
ta

fr
o
m

cl
o
u
d
to

v
eh

ic
le

t 8
,3

C
4

v
er
y
h
ig
h

155

Chapter A Security Requirement Analysis

F
o
rg
in
g
tr
a
ffi
c
fr
o
m

d
ro
n
e

t 9
Id
en
ti
ty

th
ef
t
o
f
d
ro
n
e

t 9
,0

C
4
,
Z

6
m
o
d
er
a
te

M
a
n
ip
u
la
ti
o
n
o
f
d
ro
n
e
co
m
m
a
n
d
s

t 9
,1

C
4

v
er
y
h
ig
h

R
em

o
te

v
eh

ic
le

h
ij
a
ck
in
g

t 1
0

Im
p
er
so
n
a
ti
o
n
o
f
th
e
co
n
tr
o
l
ro
o
m

t 1
0
,0

C
4
,
Z

4
v
er
y
h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
re
m
o
te

co
n
tr
o
l
co
m
m
a
n
d
s

t 1
0
,1

C
4

v
er
y
h
ig
h

H
ij
a
ck
in
g
o
f
th
e
co
n
tr
o
l
ro
o
m

t 1
0
,2

Z
5

m
o
d
er
a
te

U
se
r
d
ec
ep

ti
o
n

t 1
1

F
ir
m
w
a
re

co
rr
u
p
ti
o
n
o
f
H
M
I

t 1
1
,0

Z
4

h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
A
S
O
A

co
n
tr
o
l
co
m
m
a
n
d
s
o
n
E
th
er
n
et

b
u
s

t 1
1
,1

C
1

v
er
y
h
ig
h

P
o
si
ti
o
n
m
a
n
ip
u
la
ti
o
n

t 1
2

G
P
S
ja
m
m
in
g

t 1
2
,0

C
4

h
ig
h

F
ir
m
w
a
re

co
rr
u
p
ti
o
n
o
f
th
e
lo
ca
li
za
ti
o
n
m
o
d
u
le

t 1
2
,1

Z
1

h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
p
o
si
ti
o
n
o
n
E
th
er
n
et

b
u
s

t 1
2
,2

C
1

v
er
y
h
ig
h

F
o
rg
er
y
o
f
en
v
ir
o
n
m
en
ta
l
m
o
d
el

t 1
3

F
ir
m
w
a
re

co
rr
u
p
ti
o
n
o
f
th
e
ce
re
b
ru
m

t 1
3
,1

Z
1

v
er
y
h
ig
h

M
a
n
ip
u
la
ti
o
n
o
f
en
v
ir
o
n
m
en

t
d
a
ta

fr
o
m

cl
o
u
d
to

v
eh

ic
le

t 1
3
,2

C
4

v
er
y
h
ig
h

L
o
g
S
te
a
li
n
g

t 1
4

Il
le
g
a
l
a
cc
es
s
to

se
n
si
ti
v
e
lo
g
s
o
n
th
e
m
a
in

H
P
C

t 1
4
,1

Z
1

v
er
y
h
ig
h

Il
le
g
a
l
a
cc
es
s
to

se
n
si
ti
v
e
lo
g
s
lo
w
-l
ev
el

co
n
tr
o
l
u
n
it
s

t 1
4
,2

Z
4

v
er
y
h
ig
h

P
ri
v
il
eg
e
E
sc
a
la
ti
o
n

t 1
5

M
a
li
ci
o
u
s
a
p
p
li
ca
ti
o
n
o
n
H
P
C
s
in
te
rf
er
es

w
it
h
o
th
er

a
p
p
li
ca
ti
o
n
s

t 1
5
,1

Z
1

v
er
y
h
ig
h

R
es
o
u
rc
e
E
x
h
a
u
st
io
n
o
n
H
P
C
s

t 1
5
,2

Z
1

v
er
y
h
ig
h

T
ab

le
A
.3
:
C
om

p
le
te

ov
er
v
ie
w

o
f
a
ll
th
re
a
ts

u
se
d
in

th
e
se
cu
ri
ty

re
q
u
ir
em

en
t
a
n
a
ly
si
s

156

Chapter A Security Requirement Analysis

Intermediate
Threat

Impact
Likelihood Risk

Capabilities Vuln.

PS FL OR P Ex K R

t0,0 3 3 3 1 2 2 2

medium

high

t0,1 4 3 3 1 2 1 2 high

t0,2 4 3 3 2 3 2 3 very high

t0,3 4 4 4 3 2 2 2 high

t0,4 4 3 3 2 3 2 3 very high

t1,0 3 2 2 1 2 1 2 high

t1,1 4 3 3 4 2 1 2 high

t1,2 3 2 2 1 3 2 3 very high

t2,0 4 3 3 1 3 3 3 very high

t2,1 4 3 3 1 2 2 2 high

t2,2 4 3 3 3 2 1 2 high

t2,3 4 3 3 1 3 3 3 very high

t3,0 4 3 3 1 3 2 3 very high

t3,1 4 3 3 1 2 2 2 high

t3,2 4 3 3 1 2 2 2 high

t3,3 4 3 3 1 3 3 3 high

t4,0 4 3 3 1 2 1 2 high

t4,1 4 3 3 1 2 2 2 high

t4,2 4 3 3 3 2 1 2 high

t4,3 4 3 3 1 3 3 3 very high

t5,0 3 2 2 1 3 2 3 very high

t5,1 3 3 3 4 2 1 2 high

t6,0 4 3 3 4 2 1 2 high

t6,1 4 3 3 1 3 3 3 very high

t7,0 4 3 3 1 2 1 2 high

t7,1 4 3 3 2 3 2 3 very high

t8,0 2 2 1 4 2 3 3 very high

t8,1 3 3 3 4 2 2 3 very high

t8,2 3 4 4 2 1 1 2 high

t8,3 3 3 3 1 2 2 2 high

t9,0 0 0 0 0 0 0 0 very high

t9,1 0 0 0 0 0 0 0 very high

t10,0 4 4 4 3 2 2 2 high

t10,1 4 3 3 2 2 2 2 high

t10,2 4 4 4 4 2 1 1 high

t11,0 3 2 2 4 2 1 2 high

t11,1 4 3 3 2 3 2 3 very high

t12,0 2 1 3 1 3 3 3 major

t12,1 0 0 0 0 0 0 0 very high

t12,2 4 3 3 1 3 3 3 very high

t13,1 4 3 3 4 2 1 2 high

t13,2 3 3 3 1 2 2 2 high

t14,1 0 0 0 4 2 2 2 moderate

t14,2 0 0 0 4 3 3 3 high

t15,1 4 3 3 2 2 1 2 very high

t15,2 3 3 3 1 2 2 2 high

Table A.4: The impact and likelihood of each intermediate threat is assessed individually.

157

B. Securing Service-Oriented Architectures

1 theory token_distribution

2 begin

3

4 builtins: diffie -hellman , symmetric -encryption , signing

5 functions: mac/2

6 equations: sdec(senc(m, k), k) = m

7

8 // Initialization and deployment rules

9

10 // The OnlyOnce () action ensures that the keys are generated only once.

Otherwise , the attacker can re -create keys such that the lemmas cannot be

proven any more.

11 rule Deploy_ID_Keys:

12 [Fr(∼id_key)]

13 --[OnlyOnce (),

14 Has_ID_Key_ECU(∼id_key), Has_ID_Key_ASP(∼id_key)

15]->

16 [! ID_Key_ECU(∼id_key), !ID_Key_ASP(∼id_key)]

17

18 rule Create_SK:

19 [Fr(∼sk)]

20 -->

21 [!SK($A , ∼sk)]

22

23 // Protocol steps

24

25 rule ecu_send_token_request:

26 let

27 ecupubkey = ’g’^sk

28 req = <$ECU , ∼ecunonce , ecupubkey >

29 in

30 [Fr(∼ecunonce), !ID_Key_ECU(id_key), !SK($ECU , sk)]

31 --[Send_1($ECU , req), Secret(id_key), Secret(sk)

32]->

33 [Out(<req , mac(req , id_key)>)]

34

35 rule asp_receive_request_send_tokens:

36 let

37 asppubkey = ’g’^sk

38 rcdash = ecupubkey^sk

39 enc_tokens = senc(∼tokens , rcdash)

40 enc_nonce = senc(∼aspnonce , rcdash)

41 req = <$ECU , ecunonce , ecupubkey >

42 reply = <$ASP , asppubkey , enc_nonce , enc_tokens >

43 in

159

Chapter B Securing Service-Oriented Architectures

44 [Fr(∼aspnonce), Fr(∼tokens), !SK($ASP , sk), !ID_Key_ASP(id_key), In(<req , mac(

req , id_key) >)]

45 --[Recv_1($ASP , req), Send_2($ASP , reply), Authentic($ECU , req), Secret_Nonce

(∼aspnonce), Secret(∼tokens), Freshness(ecunonce), Secret(sk), Secret(

id_key), Tokens_Created($ECU , ∼tokens), ASP_Update_Key($ASP , rcdash)

46]->

47 [Step_2($ASP , ∼aspnonce , ∼tokens), Out(reply)]

48

49 rule ecu_receive_tokens_send_nonce:

50 let

51 rcdash = asppubkey^sk

52 dec_nonce = sdec(enc_nonce , rcdash)

53 dec_tokens = sdec(enc_tokens , rcdash)

54 reply = <$ASP , asppubkey , enc_nonce , enc_tokens >

55 in

56 [Step_2($ASP , aspnonce , tokens), !ID_Key_ECU(id_key), !SK($ECU , sk), In(reply)]

57 --[Recv_2($ECU , reply), Send_3($ECU , dec_nonce), ECU_Update_Key($ECU , rcdash),

Secret(id_key), Secret(sk), Nonce_Revealed(aspnonce), Eq(aspnonce , dec_nonce

), Eq(tokens , dec_tokens), Tokens_Received($ECU , tokens)

58]->

59 [Out(<$ECU , dec_nonce >)]

60

61 rule asp_receive_nonce:

62 [In(<$ECU , aspnonce >)]

63 --[Recv_3($ASP , aspnonce),

64 Fin($ASP , aspnonce)

65]->

66 []

67

68 // Restrictions

69

70 restriction UniqueNonce:

71 "not(Ex n1 n2 #i #j. Freshness(n1)@#i & Freshness(n2)@#j & n1 = n2 & not(#i = #

j))"

72

73 restriction OnlyOnce:

74 "All #i #j. OnlyOnce ()@#i & OnlyOnce ()@#j ==> #i = #j"

75

76 restriction Equality:

77 "All x y #i. Eq(x,y) @i ==> x = y"

78

79 // Security Lemmas

80

81 // This lemma proves the authentic transmission of ECU ’s public key to the ASP.

82 // Without this guarantee , an attacker could perform a MitM attack and forge the

computation of the identity key.

83 lemma Authentic_ECU_PK:

84 "All b m #i. Authentic(b,m) @i

85 ==> (Ex #j. Send_1(b,m) @j & j<i)"

86

87 lemma Fresh_ECU_PK:

88 "All n1 n2 #i #j. (Freshness(n1)@i & Freshness(n2)@j & not(#i = #j) ==> not(n1

= n2))"

89

90 // This lemma proves that the attacker never learns confidential data that is

put on the wire. This includes the security tokens and the aspnonce until it

is published by the ECU.

91 lemma Secret_Transmission:

160

Chapter 9 Securing Service-Oriented Architectures

92 "(All x #i.

93 Secret(x) @i ==> not (Ex #j. K(x)@j)) &

94 (All x #i.

95 (Secret_Nonce(x)@i & not(Nonce_Revealed(x)@i)) ==> (not(Ex #j. K(x)@j & (j < i)

) & not(K(x)@i)))"

96

97 // This lemma proves that both the ECU and the ASP eventually share the same

secret tokens. For an attacker , it is impossible to forge them during

transmission.

98 lemma Same_Tokens:

99 "All ecu x #i #j .

100 Tokens_Created(ecu , x)@i & Tokens_Received(ecu , x)@j ==> not(Ex #k. K(x)@k & j

< k) & i < j "

101

102 // This lemma proves that the attacker never learns the identity key and

therefore is not able to impersonate any legitimate ECU

103 lemma ID_Key_Never_Leaked:

104 "(All ECU rcdash #i.

105 ECU_Update_Key(ECU , rcdash)@i ==> not (Ex #j. K(rcdash)@j)) &

106 (All ASP rcdash #i.

107 ASP_Update_Key(ASP , rcdash)@i ==> not (Ex #j. K(rcdash)@j)) &

108 (All id_key #i.

109 Has_ID_Key_ASP(id_key)@i ==> not (Ex #j. K(id_key)@j)) &

110 (All id_key #i.

111 Has_ID_Key_ECU(id_key)@i ==> not (Ex #j. K(id_key)@j))"

112

113 // Operational Lemmas

114

115 // This lemma proves that the protocol is executable and logically well defined.

116 lemma Executable_and_Terminable:

117 exists -trace

118 "Ex ECU ASP request reply ack #req_sent #req_recv #reply_sent #reply_recv #

ack_sent #ack_recv.

119 (Send_1(ECU ,request)@ #req_sent & Recv_1(ASP ,request)@ #req_recv &

120 Send_2(ASP ,reply)@ #reply_sent & Recv_2(ECU ,reply)@ #reply_recv &

121 Send_3(ECU ,ack)@ #ack_sent & Recv_3(ASP ,ack) @ #ack_recv &

122 req_sent < req_recv &

123 req_recv < reply_sent &

124 reply_sent < reply_recv &

125 reply_recv < ack_sent &

126 ack_sent < ack_recv)

127 "

128

129 // This lemma proves that the ECU only updates its identity key after the ASP

has already computed the new key.

130 lemma ASP_Update_After_ECU_Update:

131 "All ecu rcdash #i.

132 ECU_Update_Key(ecu , rcdash) @ i

133 ==> (Ex asp #j. ASP_Update_Key(asp , rcdash) @ j & j < i)"

134

135 end

Listing B.1: This is the complete Tamarin proof of the proposed token distribution protocol

depicted in Figure 6.6.

161

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	The Vision of Autonomous Driving
	Vehicle Architectures in Transition
	Automotive Security
	Research Questions
	Contributions
	UNICARagil
	Thesis Outline

	Background
	Software-Defined Vehicles
	Controler Area Network
	FlexRay
	SOME/IP
	Data Distribution Service
	DDS Security Specification

	Physical Unclonable Functions

	Related Work
	Cyberattacks on Road Vehicles
	Security Requirement Analysis
	Securing the CAN communication
	Securing the FlexRay communication
	Securing Service-Oriented Communication
	Ensuring Integrity of Automotive Software
	Resilience of Automotive Systems

	Security Requirement Analysis
	Reference Architecture
	E/E Architecture
	Software Architecture
	External Infrastructure

	The ISA-62443 standards
	Risk Analysis using ISA-62443
	High-Level Risk Analysis and System Partition
	Detailed Cybersecurity Risk Assessment
	Threat Mitigation

	Discussion
	Applicability of ISA-62443
	Quality of Assessments
	Comparison to ISO/SAE 21434

	Sub-conclusion

	Securing Signal-Based Protocols
	Attacker Model
	System Model
	A Key Distribution Scheme for CAN Networks
	Implicit Certificates
	Notation
	Assumptions
	Scheme Phases
	Evaluation
	Sub-conclusion

	Securing the FlexRay Protocol
	Security Requirements
	Key Organization
	Traffic Authentication
	Secure Key Updates
	Realization in FlexRay
	Security Discussion
	Evaluation
	Outlook
	Sub-conclusion

	Securing Service-Oriented Architectures
	Automotive Service-Oriented Software Architecture
	Services
	Communication
	Orchestration
	Resource Utilization
	Comparison

	ASOA Security Process
	Security Goals & Attacker Model
	Design Decisions
	Definitions & Notation
	Annotating ASOA Dataflows
	Computation and Distribution of Security Tokens
	Runtime Protection Unit

	Formal Verification
	Tamarin
	Protocol Specification
	Security Properties
	Intermediate Conclusion

	Evaluation
	Evaluation Platform
	Dataflow Analysis
	Runtime Analysis
	PUF-enhanced Token Exchange Protocol

	Sub-conclusion

	Ensuring Software Integrity of ECUs
	System Model
	Attacker Model
	Software Validation Scheme
	Initialization
	Integrity Measurement
	Validation
	Registration
	Invalidation

	Security Requirements
	Authenticated Boot
	Remote Attestation

	Implementation
	OP-TEE

	Evaluation
	Validation Overhead
	Registration Overhead

	Sub-conclusion

	Reaction to Security Incidents
	The ISO/SAE 21434 standard
	Risk Assessment Methods
	Cybersecurity Assurance Level

	System Model
	Security Incidents
	Context-Aware Reactions to Security Incidents
	Offline Phase
	Online Phase

	Evaluation
	Setup
	Discussion

	Sub-Conclusion

	Conclusion
	Outlook

	Bibliography
	Security Requirement Analysis
	Securing Service-Oriented Architectures

