
INSA Lyon & University of Passau

Detecting Inference Attacks Involving Sensor
Data

Paul Lachat

Advisors Supervisors

Dr. Nadia Bennani Prof. Dr. Lionel Brunie
Associate Professor at INSA Lyon Professor at INSA Lyon
Dr. Veronika Rehn-Sonigo Prof. Dr. Harald Kosch
Associate Professor at University of Franche-Comté Professor at University of Passau

A dissertation submitted to the faculty of computer science and mathematics in partial fulfillment of
the requirements for the degree of doctor of natural sciences / engineering sciences / natural philosophy

Lyon, January 2024

Datum Rigorosum 12.04.2024

i

Abstract

The collection of personal information by organizations has become increasingly essential for so-
cial interactions. Nevertheless, according to the GDPR (General Data Protection Regulation), the
organizations have to protect collected data. Access Control (AC) mechanisms are traditionally
used to secure information systems against unauthorized access to sensitive data. The increased
availability of personal sensor data, thanks to IoT-oriented applications, motivates new services
to offer insights about individuals. Consequently, data mining algorithms have been proposed
to infer personal insights from collected sensor data. Although they can be used for genuine
purposes, attackers can leverage those outcomes, combining them with other type of data, and
further breaching individuals’ privacy. Thus, bypassing AC mechanisms thanks to such insights
is a concrete problem.

In this thesis, we address this problem by analyzing queries users issued to a sensor database,
and by identifying when they obtain sufficient information to infer insights thanks to data mining
algorithms. We refer to such a kind of inference as an Inference Attack Involving Sensor Data
(IAISD). Detecting them strengthens individuals’ data protection. When attackers query the
sensor database, the important information is not so much the exact value of the obtained data
points, but rather if the relevant information (e.g., type of data) are obtained according to the
conditions of disclosure of such algorithms. To fulfill this objective, this thesis consists in three
contributions:

Raw sensor data based Inference ChannEl Model (RICE-M) models the query history of a
querying user which contains information obtained from queries, as well as the conditions of
disclosure associated to an insight. RICE-M enables first the modeling of queries issued to a
sensor database as a set of metadata units. Those units are built from the query parameters (e.g.,
selected attributes), the query context (e.g., the identity of the querying user), and the query
result metadata (e.g., the number of data points). This set constitutes the query metadata. Second,
RICE-M models both the constraints that a user’s knowledge must satisfy to apply data mining
algorithm and the corresponding personal insight. Those descriptions correspond to the inference
channels attackers leverage to perform IAISDs.

The second contribution of this thesis is RICE-M based inference detection System (RICE-Sy).
For each user, our system maintains a history log which keeps track of the queries metadata
extracted from the queries they have issued to a sensor database. When a user issues a new query,
the related query metadata is extracted and processed by the system. To correctly consider the
current user’s knowledge, RICE-Sy retrieves from the history log the metadata units that can be
merged with the newly obtained units. It then determines if those units satisfy the constraints of
a described inference channel, in which case an IAISD attempt is detected. Otherwise, the user’s
history log is updated with the new query metadata. To efficiently filter units from the history
log, we endow RICE-Sy with two conceptual optimizations: the Query Based Filtering (QBF) and
Search Set Filtering (SSF).

The last contribution of the thesis is a query metadata sequence generator which objective is
to evaluate the performance of RICE-Sy. To produce realistic sequences, we identify querying
behaviors by analyzing inference attack strategies and the nature of sensor databases. Based
on those behaviors, we define three archetypes: the one-time attacker, the genuine employee,
and the deceptive attacker. We demonstrate the validity of the generated datasets by providing
visualizations of sequences for each archetype. Thanks to the generator outcome, we evaluate
RICE-Sy in terms of detection time per query and size of the history log. The results obtained
validate the efficiency of QBF and SSF, and demonstrate the feasibility of detecting IAISDs at
query-time using RICE-Sy.

Keywords: Data privacy, Sensor data, Inference detection system, Query modeling, Metadata

ii

Zusammenfassung

Die Erfassung personenbezogener Daten durch Organisationen ist für soziale Interaktionen im-
mer wichtiger geworden. Dennoch müssen die Organisationen gemäß der GDPR (General Data
Protection Regulation) die gesammelten Daten schützen. Zugriffskontrollmechanismen (Access
Control, AC) werden traditionell eingesetzt, um Informationssysteme vor unberechtigtem Zugriff
auf sensible Daten zu schützen. Die zunehmende Verfügbarkeit von persönlichen Sensordaten
dank IoT-orientierter Anwendungen motiviert neue Dienste, die Erkenntnisse über Einzelperso-
nen bieten. Folglich wurden Data-Mining-Algorithmen vorgeschlagen, um aus gesammelten
Sensordaten persönliche Erkenntnisse abzuleiten. Obwohl sie für echte Zwecke verwendet wer-
den können, können Angreifer diese Ergebnisse ausnutzen, indem sie sie mit anderen Datentypen
kombinieren und die Privatsphäre von Personen weiter verletzen. Ein konkretes Problem ist
daher die Umgehung von Schutzmechanismen dank solcher Erkenntnisse.

In dieser Arbeit befassen wir uns mit diesem Problem, indem wir die von den Nutzern an eine
Sensordatenbank gestellten Anfragen analysieren und feststellen, wann sie dank Data-Mining-
Algorithmen genügend Informationen erhalten, um Rückschlüsse zu ziehen. Wir bezeichnen
eine solche Art von Schlussfolgerung als Inference Attack Involving Sensor Data (IAISD). Deren
Erkennung stärkt denDatenschutz des Einzelnen. WennAngreifer die Sensordatenbank abfragen,
ist die wichtige Information nicht so sehr der genaue Wert der erhaltenen Datenpunkte, sondern
vielmehr, ob die relevanten Informationen (z. B. die Art der Daten) gemäß den Bedingungen
für die Offenlegung solcher Algorithmen erhalten werden. Um dieses Ziel zu erreichen, besteht
diese Arbeit aus drei Beiträgen:

Raw sensor data based Inference ChannEl Model (RICE-M) modelliert die Abfragehistorie
eines abfragenden Nutzers, die sowohl Informationen aus Abfragen als auch die mit einer
Einsicht verbundenen Offenlegungsbedingungen enthält. RICE-M ermöglicht zunächst die
Modellierung von Abfragen, die an eine Sensordatenbank gestellt werden, als eine Menge von
Metadateneinheiten. Diese Einheiten werden aus den Abfrageparametern (z. B. ausgewählten
Attributen), dem Abfragekontext (z. B. der Identität des abfragenden Benutzers) und den Meta-
daten des Abfrageergebnisses (z. B. der Anzahl der Datenpunkte) gebildet. Dieser Satz bildet
die Abfrage-Metadaten. Zweitens modelliert RICE-M sowohl die Einschränkungen, die das
Wissen eines Benutzers erfüllen muss, um den Data-Mining-Algorithmus anzuwenden, als
auch die entsprechenden persönlichen Erkenntnisse. Diese Beschreibungen entsprechen den
Inferenzkanälen, die Angreifer nutzen, um IAISDs durchzuführen.

Der zweite Beitrag dieser Arbeit ist RICE-M based inference detection System (RICE-Sy). Unser
System führt für jeden Benutzer ein Verlaufsprotokoll, in dem die Metadaten der von ihm an
eine Sensordatenbank gestellten Abfragen festgehalten werden. Wenn ein Benutzer eine neue
Anfrage stellt, werden die zugehörigen Metadaten der Anfrage extrahiert und vom System verar-
beitet. Um den aktuellen Wissensstand des Benutzers korrekt zu berücksichtigen, ruft RICE-Sy
aus dem Verlaufsprotokoll die Metadateneinheiten ab, die mit den neu gewonnenen Einheiten
zusammengeführt werden können. Es stellt dann fest, ob diese Einheiten die Bedingungen
eines beschriebenen Inferenzkanals erfüllen; in diesem Fall wird ein IAISD-Versuch erkannt.
Andernfalls wird das Verlaufsprotokoll des Benutzers mit den neuen Abfrage-Metadaten aktu-
alisiert. Um Einheiten aus dem Verlaufsprotokoll effizient zu filtern, statten wir RICE-Sy mit
zwei konzeptionellen Optimierungen aus: dem Query Based Filtering (QBF) und dem Search Set
Filtering (SSF).

Der letzte Beitrag der Arbeit ist ein Generator für Abfrage-Metadaten-Sequenzen, dessen
Ziel es ist, die Leistung von RICE-Sy zu bewerten. Um realistische Sequenzen zu erzeugen,
identifizieren wir das Abfrageverhalten, indem wir die Strategien von Inferenzangriffen und die
Natur von Sensordatenbanken analysieren. Basierend auf diesen Verhaltensweisen definieren wir

iii

drei Archetypen: den einmaligen Angreifer, den echtenMitarbeiter und den betrügerischen Angreifer.
Wir demonstrieren die Gültigkeit der generierten Datensätze, indem wir die Sequenzen für jeden
Archetyp visualisieren. Dank der Ergebnisse des Generators bewerten wir RICE-Sy in Bezug auf
die Erkennungszeit pro Abfrage und die Größe des Verlaufsprotokolls. Die erzielten Ergebnisse
bestätigen die Effizienz von QBF und SSF und zeigen die Machbarkeit der Erkennung von IAISDs
zur Abfragezeit mit RICE-Sy.

Schlüsselwörter: Datenschutz, Sensordaten, System zur Erkennung von Inferenzen, Model-
lierung von Abfragen, Metadaten

iv

Acknowledgments

Foremost, I want to express my gratitude to my two supervisors, Lionel and Harald, for accompa-
nying me during my PhD. Particularly for all the ideas, help, and feedback you gave me. A very
special gratitude goes to my two advisors, Nadia and Veronika, for your patience and invaluable
guidance. I can’t stress enough how happy I am to have had you as my supervisors! Special
thanks are also directed to the students I supervised, specifically Hugo Le Bon and Corentin
Laharotte.

Next, I want to express my thanks to all the people I met in France and Germany, from the
ones I encountered at LIRIS before the Covid lockdown, during my stay in the DIMIS chair of
the University of Passau, to the new faces of the DRIM team I met once coming back to INSA
Lyon. An obvious thanks goes to Felix and Ashish! I won’t name anyone else because I’m too
afraid to miss someone. Yet, thanks for the random political/ethical/metaphysical discussions,
the diverse weekend events, the usual cooking, and your overall presence. Special mention to
Jessy, my initial research partner, as well as Tom, Antoine, and Pierre.

Enfin, merci à ma famille à qui je n’ai rien de mieux à dire que je vous aime !

Contents

List of Figures viii

List of Tables x

List of Algorithms xi

List of Acronyms xii

1 Introduction 1
1.1 Motivating example . 3
1.2 Problem statement . 4
1.3 Challenges and research questions . 5

1.3.1 Inference channels involving sensor data 5
1.3.2 Sensor data queried from the database . 6
1.3.3 Monitoring queries to detect IAISDs . 6
1.3.4 Evaluating the system detecting IAISDs 7

1.4 Contributions . 7
1.5 Thesis outline . 7

2 Background: Sensor data mining as inference channels 9
2.1 Taxonomy of data mining approches . 10

2.1.1 Type of sensor deployment . 10
2.1.2 Type of sensor data . 11
2.1.3 Type of mined personal information . 12
2.1.4 Type of constraints . 12
2.1.5 Classified references . 13

2.2 Discussion . 15
2.3 Conclusion . 15

3 State of the art: The inference problem in databases 17
3.1 Type of attributes . 17
3.2 Types of disclosure . 18

3.2.1 Identity disclosure . 18
3.2.2 Membership disclosure . 20
3.2.3 Attribute disclosure . 21

3.3 Inference attacks in databases . 24
3.3.1 Inference strategies in databases . 24
3.3.2 Approaches to prevent inferences in databases 25

3.4 Taxonomy and classification of the inference detection system 29

v

vi CONTENTS

3.5 Positioning . 36

4 RICE-M: Raw sensor data based Inference ChannEl Model 39
4.1 Case studies description: mHealth & Orange4Home 40

4.1.1 mHealth case study . 40
4.1.2 Orange4Home case study . 41

4.2 Capturing information to constitute the user’s knowledge 42
4.2.1 Query parameters . 43
4.2.2 Query context . 44

4.3 Modeling the user’s knowledge . 45
4.4 Modeling inference channels . 47

4.4.1 Concept definitions . 48
4.4.2 Constraints as filters for the user’s knowledge 52

4.5 Discussion . 53
4.5.1 Incorporating more constraints . 54
4.5.2 Logical constraints over the user’s knowledge 55

4.6 Conclusion . 56

5 RICE-Sy: RICE-M based inference detection System 57
5.1 Generic workflow of RICE-Sy: The Reasoner & The Knowledge Storage 57
5.2 The Reasoner module . 59

5.2.1 The detection module . 60
5.2.2 The consolidation of users’ knowledge . 62
5.2.3 The consolidation module . 63
5.2.4 Filtering only the relevant subset of users’ knowledge 66
5.2.5 The filtering modules . 67

5.3 Complete workflow of RICE-Sy . 68
5.4 Discussion . 69

5.4.1 Incorporating more constraints . 69
5.4.2 Filtering module . 70

5.5 Conclusion . 70

6 Generator: Archetypes & Query metadata sequences 72
6.1 Assumptions about users’ querying behaviors . 72

6.1.1 Querying behaviors . 73
6.1.2 Archetypes . 73

6.2 Requirements for a suitable dataset . 74
6.3 Existing datasets . 75
6.4 Archetype-based generation: Definitions of concepts 76

6.4.1 Timeline . 76
6.4.2 Periods . 77
6.4.3 Blocks . 78
6.4.4 Sequence of queries metadata . 79
6.4.5 Consolidation & Groups of attributes . 79

6.5 Workflow of the dataset generation . 80
6.6 Archetype-based generation of query metadata sequences 82

6.6.1 The one-time attacker (OA) . 82
6.6.2 The genuine user (GU) . 84
6.6.3 The deceptive attacker (DA) . 88

CONTENTS vii

6.7 Parameters value of query metadata sequences 92
6.8 Discussion . 94
6.9 Conclusion . 94

7 Evaluation of the conceptual optimizations 96
7.1 Metrics: Detection overhead and ConsQHL size 96
7.2 Implementation of RICE-Sy & the Generator . 97
7.3 Evaluations of RICE-Sy . 97

7.3.1 Monitoring the impact of the filtering modules 98
7.3.2 How the query issuing order impacts RICE-Sy? 104
7.3.3 How the consolidation impacts RICE-Sy 106
7.3.4 How multiple users impact RICE-Sy for a fixed number of queries 112

7.4 Discussion . 117
7.5 Conclusion . 118

8 Conclusion and perspectives 120
8.1 Summary of the contributions . 120
8.2 Future research perspectives . 122

8.2.1 Short term research directions . 122
8.2.2 Long term research directions . 124

8.3 Publications . 127

Bibliography 128

List of Figures

1.1 Inference attack exploiting probabilistic dependencies as an inference channel in a
profile database. 3

1.2 Inference attack using a first inference channel depicted in Figure 1.1 and a second in
between the sensor and the profile database. 4

2.1 Publication trends for personal information mined from sensor data. 9

3.1 Example of a probabilistic attribute disclosure inspired from Chen et al. [31]. LAX
is an airport, R1 a runway, and C5 an aircraft. The sensitive node has a dash-dotted
outline. The known nodes have a red and solid outline. The unknown nodes have a
dotted outline. 27

3.2 Example of queries transaction generated with a lattice [141]. 33

4.1 Usage context of RICE-M: When a new query issued to the sensor database, the user’s
knowledge is modeled and processed by the InfDS w.r.t. the known modeled inference
channels. Then, the data controller is notified when an inference is detected. 39

4.2 Probability distribution of classifying human activities in the mHealth inference
channel. The labels L01 to L12 correspond to the following human activities: standing
still, sitting and relaxing, lying down, walking, climbing stairs, waist bends forward,
frontal elevation of arms, knees bending, cycling, jogging, running, jumping forwards
and backwards, respectively. 40

4.3 Probability distribution of classifying human activities in the Orange4Home inference
channel, at home level. The labels L01 to L17 correspond to the following human
activities: cleaning, computing, cooking, dressing, eating, entering, going down, going
up, leaving, napping, preparing, reading, showering, using the sink, using the toilet,
washing the dishes, watching tv. 41

4.4 Two individuals sharing their sensor data points via two distinct data streams. . . . 43
4.5 Query issued to DBsen. 43
4.6 The query metadata is valid only for the individuals sharing their sensor data. . . . 44
4.7 Query metadata extraction workflow. For readability sake, the data stream individ-

ual₁_stream is denoted i₁_s. 45
4.8 A pattern filtering from a QHL the MKUs referencing an attribute, for a duration of

at least one seconds, and for a quantity of data points greater than five. 48
4.9 The MKUs 𝑚𝑘𝑢2, 𝑚𝑘𝑢5, and 𝑚𝑘𝑢8 are identified by the constrained patterns filter as

the subset of the patterns which satisfies the constraint of knowing three attributes
for a common time interval with a duration of at least two seconds. 49

4.10 During relationship in interval algebra [5]. 50

5.1 Generic workflow of RICE-Sy. The knowledge extraction is depicted in Figure 4.7. . 58

viii

LIST OF FIGURES ix

5.2 Example of an initial user’s knowledge. Since all the MKUs refer the same environ-
ment, it is denoted by _ for the sake of simplicity. 58

5.3 Example of new queries metadata. Since all the MKUs refer the same environment, it
is denoted by _ for the sake of simplicity. 59

5.4 New query metadata, denoted by 𝑄𝑀𝑄6, an the QHL obtained after RICE-Sy has pro-
cessed 𝑄𝑀𝑄4 in Figure 5.3a. The MKUs of 𝑄𝑀𝑄6 are displayed lower to differentiate
them from the one within the QHL. 62

5.5 Overlapping relationship in interval algebra [5]. 63
5.6 Consolidation using the during relationship depicted in Figure 4.10. It discards 𝑚𝑘𝑢7

and keeps 𝑚𝑘𝑢4 depicted in Figure 5.4. 65
5.7 Consolidation using the overlapping relationship depicted in Figure 5.5. The 𝑚𝑘𝑢5

and 𝑚𝑘𝑢9 depicted in Figure 5.4 are consolidated into 𝑛𝑒𝑤_𝑚𝑘𝑢. 65
5.8 Example of filtering ConsQHL before the consolidation or the detection. 66
5.9 Complete workflow of RICE-Sy. 69

6.1 The generation timeline and the periods. 77
6.2 The representation of queries are generated based on the metadata referred in a block. 78
6.3 Workflow of the dataset generation. The indice 0 (resp. 1) denotes a sequence gener-

ated for the inference channel mHealth (resp. Orange4Home). 80
6.4 Illustrations of sequences generated for a one-time attacker. 82
6.5 Sequence generated considering the mHealth case study. 86
6.6 Sequence generated considering the Orange4Home case study. 87
6.7 Sequence generated considering the mHealth case study. 88
6.8 Sequence generated considering the Orange4Home case study. 92

7.1 Evolution of the overhead considering a single user following the GE archetype.
Median of measurements performed over 10 datasets using the same parameters. . 100

7.2 Evolution of the overhead considering a single user following the DA archetype.
Measurements performed over the first dataset, among the 10 generated for mHealth,
and the 10 generated for Orange4Home. Attacks are shown as vertical dotted bar. . 102

7.3 Impact of varying three time the order in which queries are issued by the DA archetype.
Measurements of the first dataset, among the 10 generated for mHealth and Or-
ange4home. Attacks are shown as vertical dotted bar. 105

7.4 Impact of varying probabilities of consolidation for the GE archetype. Measurements
of the first dataset, among the 10 generated for mHealth and Orange4home. 107

7.5 Mean access to MKUs in the ConsQHL for varying probabilities of consolidation
considering the GE archetype. Measurements of the first dataset, among the 10
generated for mHealth and Orange4home. 108

7.6 Impact of varying the number of query metadata triggering the consolidation for the
GE archetype. Measurements of the first dataset, among the 10 generated for mHealth.111

7.7 Impact of varying the number of users following the GE archetype for a fix quantity
of queries. Measurements of the first dataset, among the 10 generated for mHealth
and Orange4home. 114

7.8 Impact of varying the number of users following the DA archetype for a fix quantity
of queries. Measurements of the first dataset, among the 10 generated for mHealth
and Orange4home. Attacks are shown as vertical dotted bar. The bottom plots display
the overhead with and without the filtering modules. 116

List of Tables

2.1 References describing the usage of data mining algorithms on sensor data in order to
infer personal information. 15

2.2 Distribution of the references in Table 2.1 by considering the constraint and the
environment for which the inferred information is valid. Timestamp based Sliding
Window (TSW), Sequence based Sliding Window (SSW), Aggregation (AGG), Sam-
pling (SAM). 16

3.1 Simplified re-identification example provided in [140]. The following column names
stand for Security Social Number (SSN), Data of Birth (DOB), Marital Status (MS),
and Health Problem (HP). 20

3.2 Probabilistic attribute disclosure example proposed by Li et al. [109]. 23
3.3 Example of techniques used to perform disclosure in different source of information.

DB stands for database and ML for machine learning. 23
3.4 Example of generalization inspired by [140]. 25
3.5 Example of a dataset perturbation presented by [95]. 26
3.6 Comparison of query-time IC mechanisms. E. S. Profile, E. U. Profile, S. B. Profile,

and I. a. Sensor correspond to the facet value exact static profile data, exact updatable
profile data, static boolean profile fact, exact sensor data points, information about
sensor data points, respectively. 37

3.7 Summary of differences of assumptions between profile database and sensor database. 38

4.1 Symbols defined to model user’s knowledge in RICE-M. 47
4.2 Symbols defined to model inference channels in RICE-M. 54

5.1 Symbols defined to formalize RICE-Sy. 70

6.1 Symbols defined to generate queries metadata. 80

7.1 Median overhead for mHealth and Orange4Home, according to the three iterations. 106
7.2 Median overhead for mHealth and Orange4Home, according to different probabilities

of blocks consolidation. 109
7.3 Mean access to MKUs for mHealth and Orange4Home, according to different proba-

bilities of blocks consolidation. 109

x

List of Algorithms

5.1 Detecting IAISDs based on a user’s global knowledge and the ICR. 61
5.2 Consolidating the MKUs between a query metadata and ConsQHL. 64
5.3 Filtering ConsQHL for the consolidation module. 67
5.4 Filtering ConsQHL for the detection module. 68
5.5 Reasoner module of RICE-Sy. 69

6.1 Generation of a query metadata sequence for the OA archetype & mHealth 83
6.2 Part 1: Generation of a sequence for the GU archetype & mHealth 85
6.3 Part 2: Generation of a sequence for the GU archetype & mHealth 85
6.4 Part 1: Generation of a sequence for the DA archetype & mHealth 89
6.5 Part 2: Generation of a sequence for the DA archetype & mHealth 89
6.6 Part 3: Generation of a sequence for the DA archetype & mHealth 91

xi

List of Acronyms

AC Access Control. 1, 24, 119

ConsQHL Consolidated Query History Log. 63, 69, 120

CPF Constrained Patterns Filter. 49, 55, 57, 76

CVD Cardiovascular Disease. 3

DA Deceptive Attacker. 73, 81, 92

FD Functional Dependency. 2, 21, 27, 29

GPS Global Positioning System. 10

GU Genuine User. 72, 81, 92

IAISD Inference Attack Involving Sensor Data. 5, 8, 16, 22, 38, 56, 69, 71, 74, 119

IC Inference Control. 3, 26

ICR Inference Channel Repository. 51, 56, 69, 76

InfDS Inference Detection System. 27, 38, 71, 120

IoT Internet of Things. 8

MKU Metadata Knowledge Unit. 45, 46, 55, 69, 119

ML Machine Learning. 18

MLP MultiLayer Perceptron. 12, 40

MRD Multilevel Relational Database. 26

OA One-time Attacker. 73, 81, 92

PAL Physical Activity Level. 3

PPT Privacy-Preserving Techniques. 24

QBF Query Based Filtering. 66, 97

xii

LIST OF ACRONYMS xiii

QHL Query History Log. 45, 56

QID Quasi-Identifiers. 17

RICE-M Raw sensor data based Inference ChannEl Model. 7, 38, 55, 56, 69, 71, 119

RICE-Sy RICE-M based inference detection System. 7, 56, 69, 71, 95, 116, 119

SSF Search Set Filtering. 66, 97

SSW Sequence based Sliding Window. ix, 12, 15, 38, 53, 121, 123

SVM Support Vector Machine. 40

TSW Timestamp based Sliding Window. ix, 12, 15, 38, 53, 121

Chapter 1

Introduction

With the advances in technology, the sharing of personal information with organizations has
become increasingly essential for social interactions. According to [12], in 2019 more than 60%
of US adults considered that they could have a daily life without sharing data with companies or
with the government. We observe that 73% of US companies and 71% of European companies
collected personal data in 2021 [73]. With customers’ consent, organizations collect and store
personal data to provide personalized services or to generate profit by selling that information

to data brokers [39]. In 2021, according to [58], 87% of companies rely on third parties to
process the collected data. Among them, only 14% perform an on-site audit to ensure the third
party capability to protect data [58]. This situation leads to 79% [12] of US adults stating that, in
2019, they are “very or somewhat” concerned about the usage of their shared data by companies.

To gain credibility and encourage the customers to share their data, organizations have to
protect customers from attacks which aim to disclose personal data without their consent.
In Europe, the legal framework of data controllers is defined by the GDPR (General Data
Protection Regulation) [69]. According to the GDPR, the “personal data are defined as any

information relating to an identified or identifiable natural person (data subject); an identifiable
natural person is one who can be identified, directly or indirectly, in particular by reference to
an identifier such as a name, an identification number, location data, an online identifier or to
one or more factors specific to the physical, physiological, genetic, mental, economic, cultural or
social identity of that natural person”. A data controller is a “natural or legal person, public
authority, agency or other body” which defines for which purpose and how collected personal

data are processed. They must ensure that, “[…] by default personal data are not made
accessible without the individual’s intervention to an indefinite number of natural persons”.

To achieve the principle of protection by design and by default, solutions have been proposed to
consider the consent provided by a data subject to share their¹ data with data controllers. For
instance, Gerl et al. [70] have proposed a layered privacy language which incorporates the legal
requirements in the policy to offer fine-grained access-control. Indeed, Access Control (AC)

mechanisms [133] have been traditionally used to secure information systems against
unauthorized access to sensitive data. Whereas those direct access are controlled (e.g., selecting

a specific attribute in a database), sensitive data may be indirectly accessed. An indirect
access [57] to a sensitive data occurs when one exploits an inference channel using non-sensitive

data and information such as the existence of data dependencies, integrity constraints, etc.

Definition. An inference channel is the capability to infer sensitive data from non-sensitive
data [152].

¹In this thesis, we use the singular they as a generic pronoun.

1

2 CHAPTER 1. INTRODUCTION

For instance, in a relational database a Functional Dependency (FD) can be combined with
non-sensitive attributes (e.g., an employee’s rank and name) to infer a sensitive attribute (e.g.,
this employee’s salary). By exploiting an inference channel, one performs an inference attack.

However, AC mechanisms are not capable of controlling indirect access to data [57], thus data
subjects are not protected from inference attacks by AC mechanisms. Yet, this type of attack is

identified as a privacy threat in systems such as databases [90] or the IoT [99].
Notorious examples of such attacks are the AOL search log release and the Netflix prize. In 2006,
the New York Times reported [1] that journalists managed to infer the identity of an individual,
based on their queries among the 20 million Web search queries publicly published by AOL.

Similarly, in the context of a competition organized by Netflix, a training dataset containing film
ratings was publicly published. Narayanan et al. [122] propose an algorithm to match the

individuals’ public record in IMDb² with the anonymized record in the Netflix dataset. By doing
so, the authors are able to de-anonymize two individuals by correlating the rating of movies and
the dates of ratings, respectively. The two records are 28 standard deviations and 15 standard
deviations away from the second-best candidate, respectively. Apart from those two examples,
we observe in the scientific literature that inference attacks are identified for information sources
as diverse as computing devices [153] (e.g., the 4096-bit RSA decryption key can be inferred

from a device sound), social networks [128] (e.g., the age and gender can be inferred based only
on the link structure between friends), machine learning models [87] (e.g., the presence of a data
instance in the training set of a model can be inferred), or databases [90] (e.g., the salary of an

employee can be inferred via a functional dependency). Therefore, inference attacks are a
critical privacy threat in information society, which are furthermore strengthened by the rise of
a new category of data originating from sensors. Nowadays, the constantly expanding market of
consumer electronic sensors [38] implies that more and more individuals own wearable sensors

(e.g., embedded in smartphones), or ambient sensors (e.g., deployed in their homes).
The rising availability of personal sensor data motivates new services to offer insights about:

customers’ health via devices such as wrist-bands [60] or anomalies in elderly home
activities [151]. In recent years, various data mining algorithms have been proposed to infer new

personal data from collected sensor data. While those algorithms can be used for genuine
purposes, they can also be leveraged by attackers to gain insights, and to breach individuals’
privacy [100, 99]. For instance, Banos et al. [15] and Chikhaoui et al. [33] demonstrated using
the mHealth and the Opportunity datasets, respectively, that one can infer human activities (e.g.,
walking, cycling, etc.) from specific wearable sensor observations, if the observation interval

exceeds a minimum temporal duration. Cumin et al. [42] and Shahi et al. [142] demonstrated on
the Orange4Home and the CASA-Aruba datasets, respectively, how daily human activities can be
inferred from ambient sensors, thus considering the spatial environment in which sensors are
deployed. Aside from human activities, sensor data can be exploited to infer the behavior of

individuals [37], the PIN code of a smartphone [114, 61, 145] (e.g., using the microphone to infer
the keystrokes), or even to infer the individual’s identity for authentification purpose [2] (e.g.,
using keystrokes dynamics). In all those examples, the data are produced by wearable sensors,
or ambient sensors deployed in a single inhabitant home. They are considered as personal data,

since they are related to an identifiable data subject.
As a result, data controllers have to collect personal data related to the same individual, from
different data sources. The first one is the individual themselves providing their information
(e.g., when creating an account on a Website). The second one are the sensors related to this

individual (e.g., the accelerometer in their smart-watch). To differentiate between the two types
of data, in this thesis we refer to them as the profile data and the sensor data, respectively. Usually,
attackers perform inference attacks on a single data source to infer a stored sensitive data. In

²An online database of information related to movies and other multimedia contents.

1.1. MOTIVATING EXAMPLE 3

CVD

Age
Sex

PAL

Service

Customer

Attacker

Employees

PAL, Sex, Age

✖
❶

Figure 1.1: Inference attack exploiting probabilistic dependencies as an inference channel in a
profile database.

presence of sensor data, they may exploit this new type of information to infer a personal
information (e.g., an individual’s activities), and then combine it with non-sensitive profile data

to infer a profile sensitive data. In the following section we provide a complete example to
illustrate this situation and to motivate the importance of controlling inferences stemming from

sensor data.

1.1 Motivating example

Let us consider the following example where a recommendation service aims to enable its
customers to stay healthy. According to Venkatachalam et al. [156], recommender systems

provide goals or predict the needs of individuals who voluntarily use them “[…] as a practice or
habit, for health reasons, or as a self-made goal”. For instance, the habits may be related to
eating more healthy dishes [22] or to perform adapted physical activities, as presented by

Venkatachalam et al. In order for the service to recommend suitable activities, all the
information constituting the customers’ profile are assumed to be manually provided during

subscription. To do so, the service collects and stores in a relational database (DBpro) the
following information: Age, Sex, Physical Activity Level (PAL) and Cardiovascular Disease

(CVD) status. In parallel, to provide more context to the recommendations and let them deliver
more accurate advises, sensor data are collected with the purpose of inferring customers’

activities [15]. We assume that wearable sensors are provided to the service customers by an
external company. The mission of this is to calibrate the customers’ sensors based on their
profile. The produced data are accessed via the sensor database [17] (DBsen) managed by the

service only. Based on a customer’s profile data and inferred activities, the service recommends
the most healthy and suitable exercises to them. In the following, we refer to: DBpro as the profile

data database or profile database; DBsen as the sensor data database or sensor database.
Among all the collected data, only the CVD is considered as sensitive personal data. To protect

this data, the service deploys an AC mechanism on DBpro. This mechanism prevents
unauthorized access to the CVD. Moreover, since the threat of inference attacks is well known
for profile data [57], the service also deploys an Inference Control (IC) mechanism on DBpro. This
second mechanism monitors authorized access to non-sensitive data and prevents queries to
exploit an inference channel. Both mechanisms are depicted as a lock in Figure 1.2. Like

multiple companies [58], we assume that the service relies on a third party to manage some
collected data. The service depends on the external company providing the sensors, to efficiently
store sensor data (DBsen). Employees of the external company all have authorized access to the
DBsen and DBpro, hosted by the external company and by the service, respectively. The sensitive
personal data is not shared with the third party. According to the GDPR, in our example the

4 CHAPTER 1. INTRODUCTION

CVD

Age
Sex

PAL

DBpro DBsen

Service

Customer

Attacker

Employees

Shares
profile data

Sex, Age

✔
❸

Sensor data
✔ ❶

Mine
PAL

❷

Figure 1.2: Inference attack using a first inference channel depicted in Figure 1.1 and a second
in between the sensor and the profile database.

service acts as the controller, the customers are the data subjects, and the third party’s employees
are the recipients. In such a setting, the attacker is an employee aiming to breach the privacy of a

customer, by obtaining the value of their CVD status. This type of threat is known as the
external insider [85] in the literature. According to the European Union Agency for Cybersecurity
(ENISA) [53], databases are the most vulnerable asset to the insider threat. In our example, their

motivation here, can be to sell the customer’s health information to data brokers.
Due to the AC mechanism implemented on DBpro, the attacker is unable to directly query the
CVD. Instead, they will infer the CVD status of a customer. To do so, the attacker uses an

available scientific literature to determine that, based on the Age, Sex, and PAL of an individual,
one can infer their cumulative incidence of having a CVD [101]. This corresponds to an

inference channel that the attacker exploits by querying the three non-sensitive data in DBpro.
Assuming that this channel is known by the IC (i.e., the lock), the query is prevented to protect

the customer’s privacy ❶ in Figure 1.1.
The attacker now attempts to infer the CVD by combining the two source of data, i.e., DBpro and
DBsen. Once again, they consult a scientific article to determine that human activities can be

recognized from sensor data (i.e., produced by accelerometers, gyroscopes, and
magnetometers) [15]. As illustrated in Figure 1.2, the attacker queries from DBsen the relevant
targeted customer’s sensor data ❶, and infer their activities. Then, the attacker can exploit a last

article to infer the customer’s PAL ❷ based on known correlation with the duration of each
deduced activities [23]. The attacker exploits this second inference channel between sensor data

and the PAL. Finally, the attacker queries the Age and Sex information from DBpro. The IC
mechanism answers the query ❸, since the information are not sufficient to exploit the first
inference channel. The attacker has all the required data to infer the sensitive CVD status.

1.2 Problem statement

The problem addressed in this thesis is associated to the inference of personal information using
individual’s sensor data stored in the sensor database. By combining this knowledge acquired
from these data with personal data in profile databases to which access is allowed, attackers
bypass the IC mechanism protecting a profile database, leading to a personal data breach [69].
Without this problem, data collectors could handle sensor data, while adhering to the GDPR.
The escalation of services collecting sensor data, and the growing research aiming to infer

personal information from sensors, amplifies the prominence of this form of privacy breach [99].

1.3. CHALLENGES AND RESEARCH QUESTIONS 5

While the inferred personal information itself may not be sensitive (e.g., the PAL), attackers can
combine them with other data. Detecting information inferred from sensor databases becomes

imperative to enable IC mechanisms in other databases (e.g., the lock of DBpro depicted in
Figure 1.2) to effectively control how individuals’ data is accessed. We refer to such an inference

as Inference Attack Involving Sensor Data (IAISD). In this research, our focus lies on the
detection process of IAISDs that should be set up on sensor data in order to prevent personal
data breaches illustrated in the motivating example. Such process could be combined with a

conventional IC to enhance the prevention capabilities of a data controller. The prevention part
is out of scope of this thesis. The goal of this thesis is to present our contributions towards an
IAISD detection system. Next, we describe the challenges and research questions associated to

our goal.

1.3 Challenges and research questions

Before describing, in the following sections, the challenges that lead to each of our four research
questions, we define the terms individual, user, and attacker used through this thesis:

• An individual is a person sharing the sensor data collected by data controllers.

• A user is a person having an authorized access to sensor data managed by data controllers
(e.g., the employees in Figure 1.2).

• An attacker is a malicious user which aims to breach the privacy of an individual.

1.3.1 Inference channels involving sensor data

To perform an IAISD, the attacker exploits an inference channel. In our motivating example, the
attacker queries the sensor database according to the data mining process they use. For instance,
to infer the PAL of a customer as depicted in Figure 1.2, the attacker infers first this customer’s
human activities. To obtain this personal information, the attacker knows that, according to

Banos et al.’s work [15], they have to query the data points produced by the customer’s
accelerometer, gyroscope, and magnetometer sensors, during the same time interval having a
duration of at least 2 s. The attacker has queried the necessary data to replicate Banos et al.’s

inference.
Given the wide range of mining algorithms proposed for various purposes, there is a large

variety of approaches used to prepare data used to train ML models (e.g., during the
pre-processing phase where data points are divided into sliding windows). For instance, Cumin
et al. [42] demonstrate that, by considering vectors of 20 data points corresponding to multiple
measurements (e.g., CO₂ level, luminosity, …) produced during the same time interval of 15 s,
the human activities performed by a individual in an appartement can be inferred from ambient

sensors. While our motivating example is based on the example of human activities, other
personal information can be targeted. For example, Hart et al. [81] present how by computing
the mean, the maximum of the absolute readings, and other aggregations from the data points

generated by the accelerometer and gyroscope sensors embedded in their smartphone, the
emotions (e.g., fatigue, mood, arousal, etc.) of an individual can be inferred.

Consequently, the system detecting IAISDs must know which inference channels the attackers
can exploit by querying a sensor database. This entails representing under which conditions a

channel can be exploited.

6 CHAPTER 1. INTRODUCTION

RQ1 How to model the inference channels exploited in IAISDs?

The detection system needs to be able to model the inference channel by capturing its
characteristics: what sensor data is used, under what conditions personal information is
disclosed, what information is disclosed, etc.

1.3.2 Sensor data queried from the database

When the attacker queries the sensor database, the important information is not so much the
exact value of the queried data points, but rather if the relevant type of data (e.g., acceleration,
rotation, etc.), quantity of data points, … are obtained according to the condition of disclosure of

an inference channel (e.g., the 2 s in Banos et al.’s work).
The information inferred when performing an IAISD is assumed to be personal, i.e., associated

to a data subject. For instance, in the motivating example, the attacker queries sensor data
related to the targeted individual (depicted on the left side of Figure 1.2) and infers their PAL.

The attacker then queries the Age and Sex associated to the same individual to combine
information related to the same data subject.

In the example of Section 1.1, we explain that the attacker queries all the necessary sensor data
in one query. However, the same inference channel may be exploited differently by distinct

attackers. For instance, another attacker than the one depicted in the motivating example may
issue, in order,: (i) a query to select all the accelerometer data produced during a time interval of
2 s, (ii) another query for all the gyroscope data generated in this interval, (iii) a last query to

select all the magnetometer data produced in the same interval. By combining the three results,
the attacker can infer the human activities, similarly to the one depicted in the motivating

example.
Hence, according to the modeled condition of disclosure of all known inference channels, for

each user querying the sensor database, the system detecting IAISDs must capture the
characteristics of the queried data and the individual associated to those sensor data.

RQ2 How to model the queried sensor data used in IAISDs?

The detection system needs to be able to model the knowledge acquired by users inter-
rogating sensor data. The proposed model must capture the identity of the individual
whose data was queried, as well as information about the queried data (e.g., what type of
data, how many data points, …).

1.3.3 Monitoring queries to detect IAISDs

As shown in the motivating example, the queries issued to DBpro are monitored by the IC
mechanism (see ❸ in Figure 1.2). At the opposite, the queries targeting DBsen are not monitored,
the queries selecting sensor data are not monitored, hence enabling the attack described in the
motivating example. The attacker can either obtain all the information they need for the attack
using a single query (e.g., in the motivating example all the required sensor data are obtained
via a singled query on DBsen), or asking for the same data using several queries. In both cases, the

system should be able to detect the IAIDSs on DBsen.

1.4. CONTRIBUTIONS 7

RQ3 How can IAISDs be detected by a system?

The system must be able to detect an IAIDS, taking into account the modeled inference
channels and the queried knowledge, regardless of the number of requests issued by the
attackers.

1.3.4 Evaluating the system detecting IAISDs

As previously observed, the queries targeting DBsen are not monitored by a detection system. To
the best of our knowledge, no existing datasets — used to evaluate the detection system

protecting DBpro (e.g., Toland et al. [152]), systems querying sensor databases (e.g.,
TPCx-IoT [129]), and so on — can be used to evaluate the proposed detection system. Besides

the multiplicity of approaches attackers can use to query sensor data (i.e., via different
combination of queries), the users that interact with the DBsen can have genuine querying
behaviors (e.g., some employees in Figure 1.2). The system detecting IAISDs needs to be

evaluated with datasets that capture this diversity of approaches.

RQ4 What datasets can be used to evaluate our detection system?

A suitable dataset should contain query sequences targeting data points related to certain
inference channels known to the system. These query sequences should correspond to
realistic behaviors of genuine and malicious users.

Next, we present the contributions associated to our four research questions.

1.4 Contributions

In this thesis we present three contributions with the objective of tackling the problem exposed
in Section 1.2. The first contribution is Raw sensor data based Inference ChannEl Model
(RICE-M), a new model which is formalized in two parts associated to RQ1 and RQ2,

respectively:

(i) The first one formalizes the representation of the personal information inferred via a
channel and the condition for which this disclosure occurs.

(ii) The second part formalizes how the sensor data obtained by both attackers and non-
attackers is represented based on the issued queries (e.g., the name of a selected attribute)
and the queries results (e.g., the quantity of obtained data points).

The second contribution is called RICE-M based inference detection System (RICE-Sy). To
address RQ3, we propose a detection system which implements the detection of IAISDs at the
time queries are issued. The third contribution is a query generator which provides us with
sequences of queries. This contribution tackles the lack of datasets satisfying the RQ4. We

describe the methodology used to generate sequences of queries that correspond to different
querying behaviors

1.5 Thesis outline

The remainder of this manuscript is organized as follows: as an background introduction, in
Chapter 2 we briefly provides examples of inference channels used in IAISDs and describe their

8 CHAPTER 1. INTRODUCTION

specificities. In Chapter 3, we present the existing IC mechanisms proposed to detect inference
attacks in databases; highlight their limitation regarding our research questions; position our
contribution w.r.t. those solutions. We provide in Chapter 4 the formal description of our first
contribution, i.e., RICE-M. The proposed formalization is illustrated using the mHealth [15] and
Orange4Home [42] case studies. In Chapter 5, we present the generic workflow of our second
contribution, i.e., RICE-Sy, as well as a set of conceptual optimizations which limit the quantity
of data considered at query-time, during the detection. To evaluate RICE-Sy, we describe in

Chapter 6 the methodology used to generate synthetic query metadata. Based on those synthetic
data, we evaluate in Chapter 7 the conceptual optimizations proposed in Chapter 5, using our

case studies. Chapter 8 summarizes our contributions and presents future work.

Chapter 2

Background: Sensor data mining as
inference channels

As presented via the motivating example in Section 1.1, the attacker is assumed to be an external
insider [85] which “consists of third-party personnel, such as contractors and suppliers, as well

as internal employees with limited authorized access to various compartments inside an
organization, such as, security guards, servicemen, and cleaners”. In the literature, it is

commonly assumed that the attacker possesses certain background knowledge concerning the
dependencies between the data used to perform an inference attack [57]. In the context of an

Inference Attack Involving Sensor Data (IAISD), there are differences in the assumptions
associated with this knowledge acquisition process. It is worth describing how to mine personal
information sensor data that are used as background knowledge by attackers, even if they are

initially proposed for a genuine purpose.
With the increasing trend of Internet of Things (IoT), a lot of solutions have been proposed to
extract meaningful information from sensor data. Data mining approaches have been widely

proposed for various domains and objectives [149], such as:

• Smart-home, ambient assistant living, and smart healthcare [111]: These domains utilize

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

1 1 1 0 1 3
7

4
7

19
24

41

(a) Number of articles found by
year of publication for the query
IoT and data mining [172].

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0

100

200

300

400
#Article

(b) Cumulative number of peer-
reviewed articles on human ac-
tivity recognition using smart-
phone sensors [147].

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

2
1
2 2

6
4

10
6
7

16
7

2

(c) Number of articles found by
year of publication considered
in this chapter.

Figure 2.1: Publication trends for personal information mined from sensor data.

9

10 CHAPTER 2. BACKGROUND: SENSOR DATA MINING AS INFERENCE CHANNELS

data mining techniques for human activity recognition and identification, energy conser-
vation, safety and security measures, healthcare emergency detection, and detection of
emotions or behavior deviations.

• Smart-transportation [143]: This domain leverages data mining for traffic sign detection
and recognition, traffic prediction and forecasting, transportation service planning, and
driver behavior analysis.

Since over more than 10 years, the availability of such works has been intensified, as depicted in
Figure 2.1. Zhong et al. [172] observe in Figure 2.1a that, just from 2020 and 2021, the quantity
of articles that focuses on data mining in IoT has doubled. Even by focusing on data mining

using smartphone sensors, Straczkiewicz et al. [147] report a continuous increase of published
articles since 2013, as illustrated in Figure 2.1b. This increasing availability and diversity of

those new data mining solutions shows the relevance of detecting IAISDs.
In order to illustrate the specificities of the inference channels we have to model to tackle RQ1,
we describe the diversity of approaches used to mine personal information from sensor data. To
present a comprehensive set of references, we selected articles from recent surveys [166, 103,

147], as well as well-known sensor datasets used to train ML models (UCI-HAR [7], mHealth [15],
REDD [98], etc.). We extracted the solutions presented as the most efficient to mine personal
information, or the newest in case of similar performances. The final list contains a total of 85
references published between 2011 and 2022. Although this list is not exhaustive, we also notice

in Figure 2.1c that more articles have been published in recent years.
This chapter is organized as follow: we present in Section 2.1 the facets we consider to classify
those references and, for each, we describe the related works. At the end of this section, we

compile this classification in Table 2.1. In Section 2.2, we discuss the families of references that
we consider in the remainder of this thesis. We conclude this chapter in Section 2.3 by providing

a summary of our classification.

2.1 Taxonomy of data mining approches

To analyze the specificities of the inference channels considered in IAISDs, we classify the
selected references using four main facets, i.e., the type of: (i) sensors (ii) produced sensor data
(iii) mined personal information (iv) constraints related to the processed data. In the following,

we present those facets, we explain how we have defined their respective values, and we
illustrate each of them with associated references. Furthermore, the information in bold and
between parenthesis represents the value used to classify references in the table at the end of

this section.

2.1.1 Type of sensor deployment

The first facet is related to the observation that sensors are either wearable or ambient sensors:

• Wearable (W) sensors. For instance, Lee et al. [108] use the WISDM dataset [160] produced
using sensors from a smartphone and a smartwatch.

• Ambient (A) sensors. For instance, Shahi et al. [142] leverage the CASA-Aruba dataset¹
produced using motion sensors, door closure sensors, and temperature sensors deployed
in a smart-home with a single inhabitant.

¹Published the 07/07/2011 in casas.wsu.edu/datasets.

casas.wsu.edu/datasets

2.1. TAXONOMY OF DATA MINING APPROCHES 11

A few works consider both wearable and ambient (W & A) sensors. For instance, Cumin et
al. [43] leverage the Opportunity dataset [46] produced with 17 wireless sensors attached to the
individual and 33 ambient sensors fixed to objects (e.g., a coffee machine) and furniture (e.g., a

drawer) in a room representing a studio flat.
We consider this facet, since in IAISDs the relationship between individuals and the inferred

information depends on the surroundings of sensors. For instance, a data mining process based
on wearable sensor data yield an information related to the individual wearing the considered
the sensors. Likewise, a process based on ambient sensor data implies that the information is
linked to all the individuals present in the area where the sensors are installed. Considering the

type of sensor is necessary to determine the environment² for which an inferred personal
information is valid. Due to the focus on a specific type of sensors, the fact that the mined
information is valid only for a environment is inherent in those works, even through it isn’t

explicitly addressed.

2.1.2 Type of sensor data

The second facet corresponds to the observation in our references, the following five types of
physical observations are considered:

• Inertial (In) data. For instance, the WISDM dataset contains acceleration and rotation
data on the x, y, and z axis obtained from a smartphone and a smartwatch. Fu et al. [64]
exploit the step count measured by a stepometer.

• Location (Lo) data. Asim et al. [11] use the Extrasensory [154] dataset contains, among other
data, the rotation data on three axis from a smartphone, the compass measurements of a
watch, the Global Positioning System (GPS) data from location services, and the number of
WiFi access points.

• Ambient (Am) data. The CASA-Aruba dataset contains pressure information to determine
if a door is close and the temperature of the flat. Cumin et al. [44] propose theOrange4Home
dataset which contains measurements such as the humidity, infra-red proximity, CO₂ level,
luminosity, … in a smart-home. Liu et al. [113] use a private dataset containing the WiFi
channel state information (i.e., how the signal scatters, fades, or decays) related to the
signal emitted by a router and received by three smartphones.

• Multimedia (Mu) data. Lian et al. [111] have collected their own data containing the
frequency modulated continuous wave signal produced by speakers.

• Biological (Bi) data. For example, Sabry et al. [138] have collected their own public dataset.
It contains, among other data, the galvanic skin reaction (i.e., the electrical variation in the
human skin) and the photoplethysmography (i.e., the blood volume changes) of individuals.
Clarke et al. [37] have collected, among other data, the hearth rate of volunteers using
wearable sensors.

We consider this facet to illustrate the diversity of sensor data exploited in the literature.
Moreover, we show that the increasing availability of all kind of sensor data have a
privacy-invading potential [99] which can be reinforced if IAISDs are not tackled.

²This concept is formalized in the following chapter.

12 CHAPTER 2. BACKGROUND: SENSOR DATA MINING AS INFERENCE CHANNELS

2.1.3 Type of mined personal information

The third facet corresponds to the type of personal information mined in the different references:

• Human activities (Act). To enhance individuals’ life and to enable healthcare at home for
elderly and dependent people, a large body of work aim to infer human activities [103]. For
instance, Akhavian et al. [3] infer construction workers’ activities to control and manage
more efficiently projects. Other works such as Arifogl et la. [8] recognize activities to
identify abnormal one, which could be caused by dementia. To improve individuals’ health,
Fu et al. [64] propose to monitor fitness level via the inference of performed activities.

• Appliance usage (App). The usage of smart metering to control electrical consumption
in household creates concern about its privacy impact. As presented by Eibl et al. [51],
those sensors are usually used to provides energy feedback to individuals via non-intrusive
appliance load monitoring analyze. Hevesi et al. [83] infer the appliance operation mode (e.g.,
opened refrigerator, the usage of a water boiler, and so on). Knowing which appliance is
used when can be exploited to infer further personal information, such as human activities.

• Health. With the worldwide increase of elderly population, the smart healthcare is a
common technical answer proposed to support patients [149]. For instance, long term
exposure to stress can lead to social isolation, help developing health problem, etc. Maxhuni
et al. [116] infer individuals’ stress level for the purpose of monitoring their well-being.
Other information such as the emotion can help handling an individual’s well-being.
Hossain et al. [86] recognize emotions such as anger, disgust, fear, happiness, sadness,
surprise, etc. to enable robotic patient therapy where robots provide feedback based on
the patient’s emotions. Further personal information, such as detecting: falls to reduce
the rescue period [14]; the risk of cardiac arrest related to respiration disease [113]; the
possibility ofmental health condition [167]; drinking problems associated to heavy drinking
episodes [13]; the dehydration level of elderly peoples that do not feel thirst [138].

• Navigation (Nav). To facilitate the navigation of individuals in urban areas, transportation
systems have to take into account how their users’ move and what are their behavior.
Sharma et al. [143] infer individuals’ travel mode (i.e., stationary, walk, bicycle, car, bus,
and subway) so that those systems can determine each user’s movement. Bejani et al. [16]
recognize the driving style of individuals to help them reduce the fuel consumption, for
instance.

• Localization (Loc). The location-based systems have a common requirement, to provide
the current user positioning. The GPS may be sufficient for outdoor, but not sufficient for
accurate indoor environment [54]. For instance, Zhang et al. [168] infer an individual’s
indoor location to improve the location-based systems. Yet, to determine which system
to use, one needs to known if an individual is indoor or outdoor. Kelishomi et al [54]
recognize the environment in which the users of such system is located.

This facet is important to illustrate both the multiplicity of motivation leading the discovery of
new IAISDs attackers can leverage; the heterogeneity, and thus the challenge of modeling the

personal information in inference channels, associated to RQ1.

2.1.4 Type of constraints

The last facet corresponds to the observed techniques used to segment sensor data and extract
features to enable personal information inference [66, 65]:

2.1. TAXONOMY OF DATA MINING APPROCHES 13

• Aggregation (AGG). Statistical measures are used to summarize features of the generated
sensor data. For instance, Arora et al. [9] use wearable sensors producing inertial data to
infer if individuals’ have Parkinson’s disease. They extract 23 features an accelerometer
data points, ranging from the mean and the standard deviation, to the entropy and the
cross-correlation between the acceleration on the x and y-axis. Arora et al. are then able
to discriminate individuals having Parkinson’s disease with an accuracy of 98% using a
random forest model.

• Sampling (SAM). Data points are selected, deterministically or randomly, to be analyzed.
For example, Anagnostopoulos et al. [6] use wearable sensor generating inertial, ambient,
and location data to infer if an individual is indoor or outdoor. They use a deterministic
sampling method which consist in retaining only 1 data point every 𝑥 s. While this reduce
the accuracy of detecting change of environments the larger 𝑥 is, it enables them to reduce
the energy consumption of the smartphone mining the personal data.

• Sliding Window. A sub-sets of data points generated in a window are analyzed. The main
assumption which motivated the usage of sliding windows is that the recently generated
sensor data are more relevant than historical data for the mining process. The two kinds of
windows are:

– Sequence based Sliding Window (SSW). It is defined by the number of data points
that it contains. For instance, Cumin et al. [44] use ambient sensor generating inertial,
location, and ambient data to recognize human activities. They divide the generated
data in windows containing 20 data points. The authors are able to infer activities
with a F1 score of 93% using a MultiLayer Perceptron (MLP) model.

– Timestamp based Sliding Window (TSW). It is defined by a time interval. For ex-
ample, Banos et al. [15] use wearable sensor generating inertial data to infer human
activities. They segment the sensor data in non-overlapping windows having a du-
ration of 2 s. This data preparation enables them to obtain a F1 score of 98% with a
decision tree model.

We consider this facet, since in addition to selecting specific types of sensor data described in an
article, to perform an IAISD, the attacker must query sensor data points so that they can

replicate the techniques used to prepare data in the article. For instance, if the expected input of
a data mining process is a window containing data points generated for a specific duration, then
the attacker must query the required type of sensor data produced during a common interval of
this duration. Hence, the techniques act as constraints³ with regard to how attackers must query
sensor data. In the following section, we show the final classification of our collected references.

2.1.5 Classified references

Table 2.1 compiles all our references. Each column corresponds to the presented facets: (i) Depl.
describes the type of sensor deployment from Section 2.1.1. (ii) Sensor data describes the type

of sensor data from Section 2.1.2. (iii) Mined data describes the type of mined personal
information from Section 2.1.3. (iv) Constraint describes the type of constraints from

Section 2.1.4 (v) Dataset is an additional facet describing the name of the public dataset used by
a reference. Private and public untitled datasets are denoted by C+ and C-, respectively.

³This concept is formalized in the following chapter.

14 CHAPTER 2. BACKGROUND: SENSOR DATA MINING AS INFERENCE CHANNELS

Depl. Sensor data Mined data Constraint Dataset

[15] W In Act TSW, AGG mHealth
[94] W In, Lo Act AGG mHealth
[43] W, A In, Lo, Am Act SSW Opportunity
[44] A Am, Mu Act TSW, SSW Orange4Home
[33] W In Act TSW Opportunity
[96] W In Act TSW, AGG UCI-HAR
[55] A Am Act AGG CASA-Kyoto

[142] A Am Act TSW CASA-Aruba
[56] A Am Act AGG CASA-Multiresident
[8] A Am Health TSW Van Kasteren

[51] A Am App, Act SSW REDD
[83] A Am App, Act TSW, AGG C-

[124] A In, Am Act TSW, AGG C-
[37] W Bi Health TSW C-
[4] A Am Act SSW ARAS

[159] W In, Am, Mu Act AGG C-
[86] A Mu Health TSW RML, eNTERFACE
[6] W In, Am, Lo, Mu Loc SAM, TSW C-
[9] W In Health AGG C-

[29] W, A In, Lo, Mu Act TSW C-
[32] W In Act TSW HARUSDS
[79] W In Act, Health AGG C-

[108] W In Act SSW WISDM
[137] W In Act SSW C-
[158] W Lo Nav AGG C-
[161] W In Health SSW, AGG WISDM
[139] W In Health TSW C-

[3] W In Act SSW, AGG C-
[82] W In Act TSW, AGG SBRHAPTDS

[102] W Mu Health TSW C+
[16] W In Nav SSW C-

[116] W In, Lo, Mu Health SSW, AGG C-
[64] W In, Mu Act TSW C-

[117] W, A In, Am Nav AGG C-
[173] W In, Lo Nav TSW, AGG C-
[13] W In, Lo Health TSW C-

[169] W In, Lo, Mu Health AGG C-
[10] W In, Lo Loc SSW, AGG C-
[14] W In Health TSW C-

[167] W In Health TSW C-
[110] W In Act TSW UniMiB SHAR
[59] W In Act TSW UniMiB SHAR
[72] W In Act, Nav SAM, TSW SHL

[170] W In, Lo Act, Nav TSW, AGG SHL
[121] W In Act TSW MobiAct
[50] W In Act TSW, AGG MobiAct
[24] W In, Lo Act TSW WISDM, UCI-HAR, SHOAIB

[157] W In, Lo Act TSW, AGG C-, SHOAIB

2.2. DISCUSSION 15

[144] W In Act TSW WISDM, Actitracker
[135] W In Act TSW WISDM, Actitracker
[11] W In, Lo Act TSW, AGG Extrasensory
[40] W In, Lo Act TSW, AGG Extrasensory
[97] W In Act SSW C-, RW, MS, SA
[27] W In, Lo Act TSW Walking recognition
[68] W In, Lo Act TSW Real-life HAR

[143] W In, Lo Nav SSW SHL, TMD
[54] W In Loc TSW, AGG HASC-2016

[118] W In, Lo Act TSW, AGG Miao
[123] A Am, Mu Act AGG ARAS
[81] W In Health AGG C-

[138] W In, Lo, Bi Health SSW, AGG C+
[111] A Mu Loc TSW C-
[113] W, A Am Health TSW, AGG C-
[168] W In, Lo Loc SSW, AGG C-
[115] W In, Lo Loc AGG C-

Table 2.1: References describing the usage of data mining algorithms on sensor data in order to
infer personal information.

In the following section, we present the family of constraints that we consider in this thesis.

2.2 Discussion

We observe that, among all the constraints employed by the references studied above, the most
pervasive ones are the usage of TSW and SSW (see Section 2.1.1). This comes from the necessity
of processing continuous data points to discover personal information such as human activities.
As a first step towards tackling the detection of IAISDs, we focus on those two types of sliding

windows as constraints in this thesis. Furthermore, as presented in Section 2.1.4, the
environment in which sensor are deployed defines the individual related to an inferred personal

information.
In the references compiled in Table 2.1, datasets containing sensor data are used to demonstrate
the feasibility of the proposed data mining process. To depict the environments considered in
those references, we display in Table 2.2 the corresponding constraint. We observe that most

references are divided between the individual and area environments. Only Cumin et al. [43, 44]
explicitly consider that some inferred information (i.e., human activities) are specific to sub-area
(i.e., rooms in a smart-home). Since both wearable and ambient sensors are equally used in the
literature, we estimate that capturing this diversity of environments is important. In this thesis,

we consider as environments: the individual, the area, and the sub-area.

2.3 Conclusion

As an introduction to our first contribution, we have observed in Table 2.1 that an increasing
number of references inferring personal information from sensor data have been published in
the last 10 years. To observe the diversity of approaches and heterogeneity of inferred personal
information, we have proposed to classify those references with the following taxonomy: we

consider the type of sensor deployment (i.e., on an individual or in an area such as a
smart-home); the type of physical observations performed by sensors (i.e., inertial, location,

16 CHAPTER 2. BACKGROUND: SENSOR DATA MINING AS INFERENCE CHANNELS

Individual Area Sub-area

TSW [15, 44, 33, 96, 37, 6, 29, 32, 139,
82, 102, 16, 64, 173, 13, 14, 167,
110, 59, 170, 121, 50, 24, 157,
144, 135, 11, 40, 27, 68, 54, 118,
113]

[142, 8, 83, 124, 86, 29, 111] [44]

SSW [43, 44, 108, 137, 161, 3, 116, 10,
72, 97, 143, 138, 168]

[44, 51, 4] [43, 44]

AGG [15, 94, 96, 159, 9, 79, 158, 161,
3, 82, 116, 117, 173, 169, 10, 170,
50, 157, 11, 40, 54, 118, 123, 81,
138, 113, 168, 115]

[55, 83, 124]

SAM [6, 72] [55, 83, 124]

Table 2.2: Distribution of the references in Table 2.1 by considering the constraint and the
environment for which the inferred information is valid. Timestamp based Sliding Window
(TSW), Sequence based Sliding Window (SSW), Aggregation (AGG), Sampling (SAM).

ambient, multimedia, and biological data); the type of mined personal information (i.e., human
activities, appliance usage, health, navigation, localization); and the type of constraints applied
to sensor data (i.e., aggregation, sampling, and sliding windows). Finally, in this thesis, we will
focus on the most common constraints Timestamp based Sliding Window (TSW) and Sequence
based Sliding Window (SSW), and the environment corresponding to sensors deployed on an

individual, in an area, or a sub-area. In the next chapter, we present the state of the art of
inference detection system for profile databases, and position the work of this thesis according

to the specificities of the references presented here.

Chapter 3

State of the art: The inference problem in
databases

As the concept of inference attack is generic, a variety of terms has been used in the scientific
literature to denote such attacks. The usages we observe range from describing this concept as a
problem (e.g., the inference problem, the data leakage problem, or the disclosure problem), as a
privacy threat, an inference violation, etc. Harris-Kojetin et al. [80] define disclosure as the “[…]

inappropriate attribution of information to a data subject, whether an individual or an
organization”. While the disclosed information varies depending on each setting, three main
generic types of disclosure are identified in the literature [26, 92]: the identity disclosure, the
membership disclosure, and the attribute disclosure. They are often analyzed according to the

information source leveraged by the attacker (e.g., ML models [87] or databases [90]).
In the first part of this chapter, we position the problem of this thesis according to the categories

used in the literature: the Inference Attack Involving Sensor Data (IAISD) is an attribute
disclosure where the information source is a database containing sensor data. As presented by
Woodall et al. [163], attackers exploits different inference strategies to disclose attributes from
databases. An attacker performed the IAISD by exploiting the External Dependency strategy,

since both information from the database (i.e., queried sensor data) and from an external source
(i.e., the published data mining algorithm settings) are used. In the second part, we present the
two families of solutions that tackle inference attacks in databases and described, using our
taxonomy, the solutions in the state of the art related to the Inference Control mechanisms.

The outline of this chapter is the following: In Section 3.1, we present the terminology used to
classify attributes leveraged to disclose individuals’ information. Section 3.2 reviews the

different types of disclosure studied in the literature. We illustrate each of them using examples
of disclosure associated to different information sources. We put the focus on the inference

strategies used in databases for the attribute disclosure in Section 3.3, and the two main research
directions pursued to prevent this type of disclosure in databases. We introduce in Section 3.4

the taxonomy used to classify the state of the art according to our research questions. In
Section 3.5, we present the limitations of those solutions w.r.t. to our research questions.

3.1 Type of attributes

According to Carvalho et al. [26], the collected attributes related to individuals can be classified
using the following terminology:

• Identifiers: attributes which uniquely identify an individual, e.g., a social security number.

17

18 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

• Quasi-Identifiers (QID): attributes which may, if combined, uniquely identify an individual,
e.g., gender, birth date, ZIP code.

• Sensitives: attributes considered as confidential by individuals, laws, or regulations, e.g.,
religion, political orientation, etc.

• Non-Sensitives: all the other attributes, e.g., hashed email address or smartphone advertis-
ing ID [35].

According to the GDPR [69], the data controllers must “[…] implement appropriate technical
and organisational measures, such as pseudonymisation, which are designed to implement

data-protection principles, such as data minimisation, in an effective manner […]”.
Pseudonymizing (e.g., with k-anonymity [150]) or perturbing (e.g., with differential privacy [49])

individuals’ data while preserving good utility is challenging. Although such processing
removing or modifying identifiers attributes is essential, attackers are able to leverage available

data to disclose individuals’ personal information. Next, we present the different types of
disclosure considered in the literature and we illustrate how attackers disclose data using

different information sources.

3.2 Types of disclosure

In the scientific literature, the three main type of disclosures: identity, membership, and attribute.
They are often studied by focusing on the information sources that attackers exploit. Some of
those sources, such as electronic devices [153], social networks [128], ML models [87], and relational
databases [90], contain personal data from which personal information may be inferred. In the
following, we illustrate how attackers leverage those information sources to perform each of the

three types of disclosure.

3.2.1 Identity disclosure

An identity disclosure occurs when an attacker is able to recognize that some data in the
information source concerns an individual by matching QID attributes [26].

Electronic device

The wearable sensors and the sensors embedded in smartphones are often used to provide
measurements about an individual. Those information can be exploited to disclose the identity
of such an individual. For instance, Gohar et al. [74] propose a technique to re-identify peoples
in an automated surveillance environment. The objective is to associate sensors data with a

unique individual. Instead of relying on cameras to extract visual features, the authors leverage
accelerometers and gyroscopes from both smartphone sensors and wearable sensors. Those

measurements are used to analyze the gait of individuals’, which is assumed to be unique. Using
inertia data collected for 86 participants, Gohar et al. demonstrate that the walking signature of

human gait enables a high accuracy of re-identification (i.e., 87%), using four distinct deep
learning model. Since accelerometer and gyroscope sensors are often accessible on smartphone,
even without the owner’s authorization [99], an attacker may use such approach to disclose the

identity of an individual using an publicly available dataset.

3.2. TYPES OF DISCLOSURE 19

Social networks

The social graph data are valuable for diverse analysis. However, it can disclose the identity of
individuals, thus breaching their privacy. Even when the identifiers attributes are removed from
the release social graph data, an attacker can exploit the structure of the graph to disclose an

individual’s identity. Chen et al. [30] demonstrate how users can be re-identified from a
pseudonymized social network graph periodically released. The authors assume that the

attacker knows the identity of the targeted individual in the pre-release social network. The
attacker’s objective is to find which node in the released graph is the one related to this

individual. The attack is performed by creating fake interconnected nodes (i.e., accounts), which
are connected with the targeted individual’s node. This pattern of connections is used as a

fingerprint for this individual. Chen et al. describe that for each periodic release of the graph,
the attacker retrieves first the set of fake accounts according to their structure of interconnection.
Then, the attacker re-identifies the individual’s node. They can improve the certainty by refining
a previous re-identification upon a new release of the graph. The attacker can remove from the
set of fake accounts of the previous release of the graph, a subset of account with a size equals to

the number of node removed between these snapshots of the graph.

ML models

The availability of both large datasets and new tools (e.g., Torch, TenserFlow, and so on) has
increased the usage of Machine Learning (ML) models [18]. To the best of our knowledge, the
identity disclosure attacks that use ML models always follow the approach presented for Gohar
et al. [74], i.e., identifying unique data records in a dataset. However, instead of having a model
trained with inertial data, it can be trained with pictures [93] or other data. While for Gohar et
al., the attacker have access to the sensor data directly to then train a model, here, the attacker
has only access to the ML model. For instance, using a model inversion attack, one can leverage a

pre-trained ML model to make it generate data similar to the training data, thus disclosing
sensitive information. Khosravy et al. [93] show how such attack can be performed on an image
classification model to re-identify an individual. The authors assume that the attacker has access
to the black-box model which takes as input picture and classify them into a pre-registered

individual. The attacker trains a new model which takes as input the identity of the black-box
model and produces as output the corresponding pictures. The authors show that with a deep

generative approach, they are able to reconstruct pictures with a rate of similarity of 96%.

Relational database

Relational database are the common approach to store and manage data. To illustrate the
identity disclosure in this context, let us consider the example provided by Samarati et al. [140]

and illustrated by Table 3.1. The patients’ data in Table 3.1a have been de-identified by
removing the identifier attributes, here the names and the Social Security Numbers (SSNs), to
publish data without disclosing identities. However, some attributes such as the ZIP code, Day
of Birth (DOB), race, sex, and the Marital Status (MS) may be released in another dataset, with
the individuals’ identity which can be linked with a patient. For instance, the ZIP, DOB, and sex

present in Table 3.1a can be linked with the voter list, depicted by Table 3.1b, to identify a
patient’s name, address, and city. When some of the record is unique, it uniquely identifies the

patient, e.g., pointed by ➤ in our example.

20 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

SSN Name Race DOB Sex ZIP MS HP

asian 09/27/64 female 94139 divorced hypertension
asian 04/18/64 male 94139 married chest pain
black 03/13/63 male 94138 married hypertension
black 09/13/64 female 94141 married shortness of breath
white 05/08/61 male 94138 single obesity

➤ white 09/15/61 female 94142 widow shortness of breath

(a) Medical data released as anonymous.
Name Address City ZIP DOB Sex Party

… … … … … … …
Sue J. Carlson 900 Market St. San Francisco 94142 9/15/61 female democrat
… … … … … … …

(b) Voter list.

Table 3.1: Simplified re-identification example provided in [140]. The following column names
stand for Security Social Number (SSN), Data of Birth (DOB), Marital Status (MS), and Health
Problem (HP).

3.2.2 Membership disclosure

A membership disclosure occurs when an attacker is able to infer that the sensitive information
regarding an individual is present or not in the information source [26].

Electronic device

Besides the inertial sensors embedded in smartphone, the location service can be used to
determine if an individual is present, or not, within an aggregate a set of locations. This

disclosure can be sensitive by itself or a first step towards further disclosure targeting the same
individual. Pyrgelis et al. [130] show that by using Principal Component Analysis (PCA), the
attacker is able to capture how many times an individual has been in a location over time. Then,
the PCA is combined with Logistic Regression (LR) classifier to perform membership disclosure.
Besides this feature, the authors demonstrate that the volume of contributed data in aggregate

location time-series, as well as the regularity and particularity of users’ mobility patterns,
enables improves this type of disclosure.

Social network

Zheleva et al. [171] identity the group membership disclosure as a threat where an attacker infer
“whether a person belongs to a group relevant to the classification of a sensitive attribute”. To
the best of our knowledge, no attacks have been proposed in the literature for the membership
disclosure in social network. Furthermore, while the membership disclosure is studied for social

network data, the assumption is that they are always accessible via a ML model trained on
them [112].

ML models

According to Carvalho et al. in a Federated Learning settings where several hospitals train a
model for the COVID-19 diagnosis, an attacker can reveal which patient have been tested. Then,

3.2. TYPES OF DISCLOSURE 21

they can identify in which hospital the patient went, which leads to a discrimination risk,
reinforced when the hospital is in a unsafe area (e.g., state or country) [47]. Another example is
presented by Liu et al. [112]. They propose an attack which determines if the data of a specific
individual have been used, or not, to train a ML model. The authors first generate synthetic data
that have the same format than the dataset used to train the targeted model. Then, they classify
the synthetic data according to the related prediction provided by the targeted model. For each
prediction, the related data are clustered in two groups: training set for data that have a small
variance and testing set for the other. A deep learning model is then trained with those data to

mimic the prediction accuracy of the targeted model, until the output of both are
indistinguishable. Finally, Liu et al. train the attacker model based on the prediction differences
of the mimic model between the training and testing set. For a given record, the attacker collects
the targeted model prediction and use the attacker model to predict if the record was part of the

training set or testing set.

Relational Database

As presented by Woodall et al. [163], in relational databases the membership disclosure can
occur via the exploitation of database constraints. Let us consider the following two relations:
MT(MissionID, Type) and SMD(Startship, MID, Destination) [132]. The SMD relation describes

missions. For instance, “Enterprise is on mission #101 to Rigel” corresponds to the tuple
(Enterprise, 101, Rigel). The MT relation determines the classification level of a mission. For
instance, classifying the mission 101 has “top-secret” results in the tuple (101, top-secret). All
the sensitive value for the attribute MID refers to a sensitive or non-sensitive MissionID. If the
database schema prevents deletion of a non-sensitive MissionID referred to by a sensitive MID
tuple, the attacker can infer the existence of a sensitive MID by trying to delete a MissionID.

Hence, insert, update and delete operations can be leveraged by attackers to exploits the system
constraints and infer the presence of a sensitive value.

3.2.3 Attribute disclosure

An attribute disclosure occurs when an attacker is able to determine new information of an
individual based on the data available in the information source [26]. The attacker may not

precisely identify the record of a targeted individual, but could perform an attribute disclosure
by leveraging the data related to the group in which the target belongs [89]. Hence, an attribute

disclosure does not necessarily entail an identity disclosure.

Electronic device

The sensors embedded in smartphones can be leveraged to disclosure attribute such as an
individual’s transportation mode (e.g., still, run, bike, car, etc.). Sharma et al. [143] demonstrate

that they are able to identify this information by using the accelerometer, gyroscope, and
magnetometer data. The authors leverage multiple deep learning techniques (i.e., convolutional,
LSTM, and fully connected blocks) to classify the transportation modes based on the sensors
time-series data. They achieve an accuracy of 95% and 92% for the two considered datasets.
While their objective is to provide context-aware assistance in an intelligent transportation

system, an attacker may leverage the same approach for a nefarious purpose.

22 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

Social network

According to Piao et al. [128], in social networks, the attribute disclosure leverage three types of
information:

• The profile content. For example, the gender, marital status, and relationship status of
a Facebook user are inferred, with an accuracy of more than 90%, from their publicly
available profile data (e.g., name, birthday, …) [34].

• The social links. The hidden attributes of a user’s profile (i.e., college, employment, and
location) are inferred by [162]: using the publicly available attributes of other profiles;
computing the community of profiles having a directed relationships (i.e., followers, fol-
lowing, and friends) which this user using the Louvain method [21]; leveraging their own
cost function to compute the attribute vector of the initial user according to the profiles in
the same circle.

• The user behavior. E.g., by matching the user profiles having similar musical interest, via
the shared message or appreciated content, the age of a profile (i.e., the hidden information)
is inferred from the age of the related users [28].

ML models

According to Hu et al. [87], ML models are exposed to different attribute disclosures.
Frederikson et al. [62] present a model inversion attack which uses a model output to disclose
sensitive features used for training. However, whereas Khosravy et al. [93] use this type of attack

to re-identify an individual, the objective is here to disclose answers to a sensitive question.
Indeed, to demonstrate their attack, they leverage the FiveThirtyEight survey [84] which contains
answers to questions such as “Do you ever smoke cigarettes?”, “Have you ever cheated on your
significant other?”, and so on. The authors assume that the attacker has access to a decision tree
trained on this dataset to predict the sensitive attribute. This attribute is here assumed to be the
answer “Yes” to the question about infidelity. Frederikson et al. show that by having access to

the trained model and the features of an individual, the attacker is able to identify the
individuals that have answered “Yes” to this question with a perfect accuracy.

Relational database

In the example of Samarati et al. [140] the attacker is able to know wether the Health Problem
(HP) is related to the patient named Sue J. Carlson. An identity disclosure is here required to
perform the attribute disclosure. However, in other situations, the identity disclosure is not
necessary. Let us consider a database having the following relation Employee(Name, Rank,

Salary), a security rule preventing users to obtain the salary of an employee, and a Functional
Dependency (FD) between the attribute rank and salary. To disclose the salary of an employee,
an attacker exploits the inference channel (i.e., the FD) by first querying the name and rank of

the targeted employee, and then querying all the rank and salary [152].
While the attribute disclosure provides a knowledge of an individual’s information, it is possible
to infer a sensitive attribute with high confidence from the released data. For instance, publicly

available data with high correlation between income and purchase price of home can be
leveraged to infer an individual’s salary [136]. As described by Iyengar [89], some works

consider that an “[…] attribute disclosure occurs when something about an individual is learnt
from the released data”. To illustrate how an attacker can increase their confidence w.r.t. an

attribute, let us consider the example proposed by Li et al. [109]. A company wants to share its

3.2. TYPES OF DISCLOSURE 23

Age ZIP Salary

17 12k 1000
19 13k 1010
20 14k 1020
24 16k 50000
29 21k 16000
34 24k 24000
39 36k 33000
45 39k 31000

(a) Original data.

Group Age ZIP Salary

1 [17,24] [12k,16k] 1000
1 [17,24] [12k,16k] 1010
1 [17,24] [12k,16k] 1020
1 [17,24] [12k,16k] 50000
2 [29,34] [21k,24k] 16000
2 [29,34] [21k,24k] 24000
3 [39,45] [36k,39k] 33000
3 [39,45] [36k,39k] 31000

(b) Released data.

Table 3.2: Probabilistic attribute disclosure example proposed by Li et al. [109].

Type of
disclosure

Information sources

Electronic devices Social networks ML models Relational DB

Identity
Inertia sensors &

Data mining
techniques [74]

Graph structure
analysis [30]

Camera sensors &
Model inversion

attack [93]

Record linkage
technique [140]

Membership Location service &
PCA & LR [130] — Mimic model

training [112]
Contraints

violation [163]

Attribute
Inertia sensors &

Data mining
techniques [143]

Graph structure
analysis [128]

Yes/No question &
Model inversion

attack [62]

Statistical
inference [109]

Table 3.3: Example of techniques used to perform disclosure in different source of information.
DB stands for database and ML for machine learning.

payment information, depicted by Table 3.2a, with sociology scientists. The salary attribute is
considered as sensitive, and the age and ZIP are QIDs. Assuming that an attacker knows the age
(e.g., 17) and ZIP (e.g., 12k) of an individual named Andy. According to Table 3.2a, the attacker

deduces Andy’s salary (i.e., 1000), since the first tuple matches certainly their information.
Hence, to protect the individuals’ privacy, the company generalizes the data before the release,
by grouping QIDs as illustrated by Table 3.2b, so that it renders indistinguishable tuples w.r.t.
the age and ZIP. The attacker cannot with certainty determine if Andy’s is 1000, 1010, 1020, or

50000. However, the attacker can determine with a high confidence the limited interval in
which Andy’s salary is. By knowing only Andy’s QIDs, the attacker presumes that each record in
the first group of Table 3.2b has the same chance to be Andy’s tuple. Hence, they can conclude

that Andy’s salary is in the range [1000, 1020] with 75% probability, even if there is only a
probability of 25% to infer the real salary. The attacker is able to infer with a high confidence

that Andy’s salary is approximately equal to 1000.

As summarized in Table 3.3, diverse approaches are utilized to disclose identity, membership, or
attribute of an individual. As stated in Section 1.2, in this thesis we focus on the problem of

detecting the inference of personal information from a sensor database. Since the attacker aims
to obtain new information about an individual, we consider that an Inference Attack Involving
Sensor Data (IAISD) is an attribute disclosure. Furthermore, we consider that the attacker uses

as a information source the sensor database DBsen. In the following section, we focus on the

24 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

inference attacks that disclose attribute in databases.

3.3 Inference attacks in databases

In the following sections, we present the strategies used by attackers to query a database in
order to infer non-authorized attributes, and the two main families of approaches that aim to

control inferences performed by those attackers.

3.3.1 Inference strategies in databases

To the best of our knowledge, Woodall et al. [163] is the only work that comprehensively reviews
inference attacks strategies in databases. The authors identified the following strategies related

to attribute disclosure:

(i) Split Query strategy: This strategy is used in a setting where an access control mechanism
prevents attackers from querying two or more specific attributes together in the same query,
while authorizing querying these attributes separately. The goal of an attacker is thus to
bypass the access rule. To do so, they issue a query per targeted attribute and links together
the attribute values coming from the same instance.

(ii) Colluding Users strategy: With this strategy, the attack follows the same process as the split
query strategy, however the queries are issued by at least two users who then recombine
their answers to infer data that they individually do not have complete access to.

(iii) External Information strategy: With this strategy, the attacker does not obtain all the infor-
mation from the database. Instead, they leverage knowledge outside to obtain sensitive
information from the database. For instance, Chen et al. [31] depict a context where the
relation between the size of an aircraft and the landing track properties is assumed to be a
domain expert knowledge. An attacker can use this knowledge as a dependency to infer
sensitive information about the airport in which aircrafts land.

(iv) Secondary Path strategy: In relational databases, a secondary path is a way to join attributes
of different tables which are not intended by the database designers (e.g., by not using the
primary/foreign keys). With this strategy, like with the split query one, the attacker aims
to bypass an access control rule preventing them from querying two or more attributes
together. However, the difference is that a single query using the secondary path is issued
here. For instance, selecting the primary key between the Employee and EmpSalary tables
maybe denied to prevent attackers to select the salary and name of an employee. An
attacker can use as a secondary path the employees’ phone number, which is a unique
attribute, to join the two tables and select the name and salary of an employee.

(v) Hybrid strategy: This last strategy is leveraged by chaining together multiple inference
strategies. The attacker uses the output of a first used strategy as input for the second, and
so on, until the targeted sensitive information is inferred.

In the motivating example described in Section 1.1, the attackers leverage the Hybrid strategy by
combining two External Information strategies corresponding to the two described inference
channels. The PAL obtained from sensor data, thanks to the first external information [15], is
used with the Age and Sex to infer the CVD, thanks to the second external information [101].
We classify them as External Information strategies, since the attacker leverages knowledge

outside of the database (i.e., the works proposed by Kubota et al. [101] and Banos et al. [15]) to

3.3. INFERENCE ATTACKS IN DATABASES 25

Race ZIP

asian 94139
asian 94139
black 94138
black 94141
white 94138
white 94142

Race ZIP

person 9413*
person 9413*
person 9413*
person 9414*
person 9413*
person 9414*

blackasian white

person

94139 94141 9414294138

9413* 9414*

941**

Table 3.4: Example of generalization inspired by [140].

disclose the CVD. Hence, the IAISD is a type of inference attack where attackers use the
External Information strategy in order to disclose an individual’s attribute. In the remainder of
this thesis, inference is used as a synonyme of an attribute disclosure. Next, we illustrate how

proposed solutions prevent inference attacks on databases.

3.3.2 Approaches to prevent inferences in databases

To prevent the inference of sensitive personal information it is necessary to control inferences.
The two protection approaches associated to databases are to either rely on query restriction or
query perturbation [45]. The perturbation approach aims to modify the data on which the query
is performed or the result of the query. The restriction approach determines if the query result
must be returned or not. The two related families of solutions we have identified are the Access

Control (AC) mechanisms and the Privacy-Preserving Techniques (PPT), respectively.
The purpose of PPT [26] is to guarantee privacy while preserving the utility of shared data (e.g.,
for prediction tasks). The purpose of those solutions is to undergo alterations on shared data
(e.g., with k-anonymity [150] or differential privacy [49]) while preserving utility the shared

data. Those approaches aim to release useful data, while preventing re-identification of
individuals whose data have been used to compute the statistics.

In Section 3.2.1, we have presented the example proposed by Samarati et al. [140], where an
individual is re-identified by linking their anonymized data thanks to the use of a voter list. To
address this issue, Samarati et al. propose to use generalization according to the data semantic.
For instance, the proposed hierarchy to generalize the Marital Status attribute has three levels:
(i) married, divorced, widow, single, or (ii) been married, never married, or (iii) not released. An
attribute with the married value can be generalized first to been married and then to not released,
if required. Hence, to prevent the identity disclosure relying on QIDs such as the race and ZIP
code, those attributes can be generalized by one level, according to the hierarchies depicted in
Table 3.4. The resulting data preserve utility, since one can still compute statistics about the area

where each patient is located, for instance.
Let us consider another example provided by Kim et al. [95] and illustrated by Table 3.5. An

analyst aims to determines the most frequent itinerary between subway stations. To do so, they
issue a query to the data controller collecting the credit card payment data for subway fares,

depicted by Table 3.5a. Here, an exponential mechanism is used to determine which answer is to
be returned to the analyst. This type of mechanism is used for non-numerical query output. It
uses a function to associate to each possible answer a score. The score is set so that it is higher for
the true output of the query. Then, the mechanism uses the scores as probabilities to randomly

26 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

ID Ori. Dest. Time

1001 s1 s2 13:02
1002 s1 s2 13:15
1003 s1 s4 14:28
1004 s2 s1 14:55
1005 s2 s1 15:21
1006 s1 s2 15:30

(a) Credit card payment data for subway
fares between an origin (Ori.) and destina-
tion (Dest.) subway stations.

Route Freq.
Selection probability

𝜀 = 0.01 𝜀 = 0.1 𝜀 = 1

s1 → s2 3 0.335 0.350 0.507
s2 → s1 2 0.333 0.333 0.307
s1 → s4 1 0.332 0.317 0.186

(b) Example of exponential mechanism with the
dataset in Table 3.5a.

Table 3.5: Example of a dataset perturbation presented by [95].

choose the query answer. Let us consider Table 3.5b which contains the different routes and
their frequencies, according to Table 3.5a. For instance, the route s1 → s2 is used three times.

The selection probability corresponds to the score associated by the mechanism, to each possible
answer to the analyst’s query. The parameter 𝜀 corresponds to the privacy budget. A small (resp.
higher) 𝜖 value leads to a strong (resp. weaker) privacy guarantee, but it incorporates more (resp.
less) noise in the result. The exponential mechanism is parametrized with 𝜀 to adjust the score
associated to each possible query output. For example, considering 𝜀 = 0.001, we observe that
each possible route has approximately the same probability to be selected. When 𝜀 = 1, a higher

probability is associated to the true output of the query (i.e., s1 → s2).
On the other hand, AC mechanisms [133] are used to secure databases access according to

policies, roles, attributes, etc. This ensures that only authorized users can directly access data.
However, the standard AC mechanisms are not capable of detecting the inference of sensitive
information via the access to non-sensitive data [57]. We refer to the AC mechanisms proposed

to tackle this specific problem as Inference Control (IC) mechanisms.
In the following, we develop an example proposed by Chen et al. [31], illustrated by Figure 3.1.

The authors propose to use Bayesian networks to represent the probabilistic dependencies
between the attributes of a database, as well as each user queried data. Here, the graph makes
references to three distinct instances: LAX, R1, and C5 which correspond to an airport, a runway,

and an aircraft, respectively. Each illustrated attribute is prefixed with its corresponding
instance. The nodes of the graph describe the a priori value distribution of the attributes, at the

moment the Bayesian network is learnt. In this illustration, the sensitive attribute is
TAKEOFF_LANDING_CAPACITY (TLC) (i.e., the dash-dotted node). All the other attributes are
considered as non-sensitive. The authors set an inference threshold equal to 70% for the TLC
attribute. This indicate that an inference is detected when an attacker knows one of the value of
TCL with a probability equal or greater than 70%. Assuming that the attacker knows (e.g., via

previous queries) that C5 is able to land on R1 from LAX, and that they have queried
C5_MIN_LAND_DIST (= long) and C5_MIN_RUNWAY_WIDTH (= wide) (i.e., both have red

and solid outlines), then the attacker is able to infer the value of TLC with a confidence of 58.3%
in Figure 3.1a. If they succeed to query LAX_PARKING_SQ_FT (= large), they would be able to
infer that TCL is equal to large with a percentage of confidence of 71.5% in Figure 3.1b. Since it
is greater than the defined inference threshold, an inference attack is detected for this last query

and the authors propose to deny answering it.
A way of classifying the solutions related to the PPTs and the AC mechanisms is to consider the

time at which they protect the database.

3.3. INFERENCE ATTACKS IN DATABASES 27

LAX_TAKEOFF_LAND...

LAX_PARK_SQ_FT

LAX_ELEV_FT R1_RUNWAY_LENGTH

R1_RUNWAY_WIDTH

C5_MIN_LAND_DIST

C5_MIN_RW_WIDTH

Prob. Value

0% unknown
0% short
0% medium

100% long

Prob. Value

0% small
0% large

Prob. Value

0% unknown
0% narrow

100% wide

Prob. Value

41.7% small
58.3% large

Inference threshold set to 70%.

(a) Bayesian network before querying LAX_PARK_SQ_FT.

LAX_TAKEOFF_LAND...

LAX_PARK_SQ_FT

LAX_ELEV_FT R1_RUNWAY_LENGTH

R1_RUNWAY_WIDTH

C5_MIN_LAND_DIST

C5_MIN_RW_WIDTH

0% unknown
0% short
0% medium

100% long

Prob. Value

0% small
100% large

Prob. Value

0% unknown
0% narrow

100% wide

Prob. Value

28.5% small
71.5% large

Inference threshold set to 70%.

(b) Bayesian network after querying LAX_PARK_SQ_FT.

Figure 3.1: Example of a probabilistic attribute disclosure inspired from Chen et al. [31]. LAX is
an airport, R1 a runway, and C5 an aircraft. The sensitive node has a dash-dotted outline. The
known nodes have a red and solid outline. The unknown nodes have a dotted outline.

Time of the detection

According to Frigerio et al. [63], the approaches that prevent inferences can be classified as either
non-interactive (i.e., by-design) or interactive (i.e., query-time) privacy technique/mechanism.

Detection by-design In a non-interactive setting, the PPT purpose is to sanitize the data
before the database use, i.e., before a user queries the database.

In this setting, the IC mechanisms function is to remove inference channels during database
design [57]. Then, users are able to issue infinite queries to the database without disclosing
sensitive information. For instance, Qian et al. [131] describe a tool called DISSECT to assist
with the discovery of inference channels, by considering only the information stored in a

Multilevel Relational Database (MRD). The MRDs store data that have different classification
levels and users are able to access data of a specific level. This solution searches existing

sequences of foreign key relationships that enable joining the same tables. If for two tables, one

28 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

or multiple sequences necessitate lower access levels than planned by the database designer, the
related relationships may be eliminated by modifying the database schema.

Yet, Su et al. [148] show that completely removing the inference channels in an MRD is an
NP-Complete problem. Moreover, the schema of databases is not always available and often not
modifiable. The difficulty of this approach is thus to preserve the data utility or data availability

without knowing which data will be selected.

Detection at query-time In the interactive setting, an entity (e.g., a middleware acting as a
control point) is placed between the database and the users to analyze issued queries. Since the
result of multiple queries can be combined by attackers (see Section 3.3.1) the entity performs
the analysis by considering the information queried by users in the past. It relies on a history to
log each user’s query result. Moreover, those solutions represent the inference channels that can
be leveraged by attackers. They are used to determine how a user’s new query result, according

to their history, must be restricted or perturbed.
The IC mechanisms goal is to detect when a query enables a user to disclose sensitive
information, and then to either deny or modify the query response (i.e., by refusing or

lying [20]). A special case corresponds to the detection of inference attacks at query-time, while
considering updates in the accessed data. To the best of our knowledge, only Toland et al. [152]
have considered this problem. In their solution, they represent FDs using Horn clauses. When
an update occurs in the relational database, it is also applied on the history keeping track of

each user’s previously obtained data. The update-time approaches is able to reason on
up-to-date information, without assuming that accessed database is static. The main drawbacks
of this setting is that the computation time for data modification (PPT) or for the detection (IC
mechanisms) impacts the query answer time. Similarly, both types of approaches have to keep
track of the information previously queried by a user, and to consider it when processing a new

query.

Discussion

In this thesis, we aim to detect IAISDs, i.e., non-sensitive personal information inferred from a
sensor database (see Section 1.2). The prevention part is out of our scope. We focus on the

detection part only.
The query modification approach associated to the PPTs is not suitable, since they do not detect
when an inference occurs, but rather modify the query output result [49, 150] by default. On the
other hand, according to Danezis et al. [45], the query restriction is the right approach when the
users require query answers to be exact. In the scientific literature, sensor databases are queried

to obtain the value of exact data points [17] or to obtain statistics computed over data
points [119, 78, 129]. In personal databases, the inference channels usually correspond to

dependencies between attributes (e.g., Functional Dependency (FD)). IC mechanisms detect
inferences attacks by verifying if a user’s issued query, combined with their history, enable them

to exploit a channel. Those solutions always detect when an inference before preventing it.
Moreover, due to the focus of this thesis, the solutions with a design-time approach are not
suitable, since the inferred personal data is non-sensitive. Removing the inference channel

obtained via the External Information strategy would reduce the data availability of the sensor
database. On the other hand, the query-time approach is commonly used by several works [90]

to reason on the data queried by users only.
Based on those observations, in the rest of this chapter, we focus on solutions in the family of
query-time IC mechanisms to describe how the detection of inferences is performed. In the

following, we introduce our taxonomy and classify the state of the art.

3.4. TAXONOMY AND CLASSIFICATION OF THE INFERENCE DETECTION SYSTEM 29

3.4 Taxonomy and classification of the inference detection system

For each work proposing a query-time IC mechanism, we focus on its Inference Detection
System (InfDS). To classify those systems, we propose a taxonomy guided by our research

questions presented in Section 1.3. Then, we illustrate each value associated to each facet of the
taxonomy with a representative InfDS. Table 3.6 synthesizes how each work is positioned. Since
this chapter focuses on the problem of inferences in database, the RQ4 related to the datasets is
not considered here, but in Chapter 6. In the following, we present each facet and describe the

associated works.

Information captured as user’s knowledge

In order to model the knowledge acquired by users querying databases RQ2, we have to consider
what type of data are stored in the databases and what types of query result are returned during

the detection phase.
The most common type of data considered in the literature are profile data (e.g., salary, age,

name, etc.) usually stored in relational databases. In those works, the query result is the exact
static profile data selected. Those solutions also assume that the protected database is not
updated. Once delivered to a user, the profile data is always assumed to be static (i.e.,

up-to-date) for the selected instance. For example, Pappachan et al. [127] consider as a use case
a profile database with two tables describing employees (e.g., ZIP code, role, work hours) and
wages (e.g., department name, salary) information. When a query selects attributes related to an
instance (e.g., the role and name of an employee), the modeled knowledge is the exact static data

returned as the query result (e.g., Role = Student and EName = Alice Land).
To the best of our knowledge, only two solutions [152, 165] explicitly consider updates in a
relation database and how it impacts the detection of inference attacks. For those works, the

query result is the exact non-static profile data. Some delivered profile data may become outdated
after a database update. The attacker may not be able to use correctly this knowledge at some
point in time (i.e., non-static). For instance, Toland et al. [152] illustrate their problem with a
profile database containing employees’ data (e.g., name, rank, salary, department). Upon issuing
a query (e.g., the rank and salary of an employee), the result contains the exact selected data

(e.g., Rank = Clerk and Salary = 38,000 for the employee named John). When an update occurs,
the authors represent that the obtained data have been updated (e.g., Clerk and 38,000 are

updated to Manager and 45,000 after John is promoted). The modeled knowledge is exact data
that can be updated according to a new state of the database. For instance, Toland et al. propose
to stamp the entry of the history containing the knowledge Rank = Clerk and Salary = 38,000
with the updated values (i.e., Manager and 45,000). The stamped values are considered when

the user issues a new query.
We observe that a few solutions consider profile data stored in a logical information system.

Users interact with the system via binary queries (i.e., yes/no queries). In a table containing the
name of employees, an example of a binary query would be to search if the salary of a specific
employee is greater than a given value. The query result would not be the exact salary, but a

boolean value. In those works, the database is also considered as static. Consequently, the query
result is a static boolean profile fact. As an example, Guarnieri et al. [77] consider a system with
the following tables containing the names of (i) all the patients (ii) the patients that are smoking
(iii) the patients which are the father of other patients (iv) the patients which is the mother of
other patients. The result of a query such as smokes(Carl) is the value true, or yes, since the

patient named Carl is within the smoking table. The knowledge is modeled as a static boolean
value related to a profile data, e.g., smokes(Carl) = true.

30 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

To the best of our knowledge, only a single work proposed by Noury et al. [125] considers sensor
data stored as time series. The query result is here the exact sensor data points queried for a

specific time interval. However, in their context, an inference attack occurs when at least two
conflicting access rules lead to some temporal intersection that enable attackers to infer values
that must be protected by the access control mechanism. Consequently, they do not consider
inference attacks exploiting the sensor data. We explain this lack of works related to inference
problem in sensor database by the focus made on PPT [26] to protect data via modification

applied by-design, and the ongoing research focusing on efficient querying of sensor data [164].
In this thesis, we assume that users issue open queries selecting sensor data. As presented

in RQ2, we capture information about sensor data points, such as the type of selected data, how
any data points are selected, and so on.

RQ2 – Facet Data:
(i) Exact static profile data (ii) Exact updatable profile data (iii) Static boolean profile fact
(iv) Exact sensor data points (v) Information about sensor data points.

Type of dependency captured as inference channel

As stated in RQ1, in order to model the inference channel, we have to consider the condition of
disclosure of personal information. In the state of the art, the solutions consider different types
of dependencies that are exploited by an attacker. The three main kinds we have identified are
Functional Dependency (FD) [152], Probabilistic dependencies [31], and Linkage dependencies [104].
In those works, FD represents a logical relationship between a set of one or multiple attributes

and a single attribute (e.g., {𝑋, 𝑌,…} → 𝑍). Usually, the attributes on the left side of the
dependency (e.g., {𝑋, 𝑌,…}) are considered as non-sensitive attributes, whereas the right side
attribute (e.g., 𝑍) is considered as a sensitive attribute. Since the sensitivity of an attribute

depends on the stored data, some dependencies may have sensitive attributes in the left side and
a non-sensitive attribute on the right side. The relationship models that, for the same instance,
knowing the value of the set of attributes {𝑋, 𝑌,…} enables inferring the value of 𝑍. For instance,
as illustrated in Section 3.2.3, the following relation Employee(Name, Rank, Salary) with a FD
between the rank and salary attributes is considered by Toland et al. [152] as the dependency

that an attacker leverages to infer the salary of an employee.
A probabilistic dependency represents a probabilistic relationship between the value of one or
multiple attributes and the value of a single attribute (e.g., 𝑃(𝑍 = 𝑎 ∣ 𝑋 = 𝑏, 𝑌 = 𝑐) = 80%). This

relationship models that, for the same instance, knowing that the value of 𝑋 is 𝑏 and 𝑌 is 𝑐
enables inferring that the value of 𝑍 is 𝑎 with a certainty of 80%. An illustration of such

dependency is provided in Section 3.3.2. Chen et al. [31] consider the probabilistic relationship
between data in the snapshot of a profile database as a graph constituting dependencies between
attributes. The dependencies leading to sensitive attributes are captured as inference channels,

since an attacker aims to exploit them.
The linkage dependency represents a relationship between two attributes in two instances in
distinct databases. The two instances represent the same real world entity. This dependency
models that an attacker can access the information from different databases. For instance,

Lachat et al. [104] illustrate an example of two databases related to an online DVD store and a
fictitious food company, respectively. They both contain the profile data of their customers. In
case the same individual is a customer of both services, an attacker can exploit this link to obtain
data such as postal code or contact name from different databases. In this thesis, we assume that
the attacker exploits a single sensor database. While the linkage dependencies are out of scope

3.4. TAXONOMY AND CLASSIFICATION OF THE INFERENCE DETECTION SYSTEM 31

of this thesis, they are combined with other dependencies (i.e., functional or probabilistic) to
perform an inference attack.

As presented in RQ1, in this thesis, we aim to capture constrained dependencies, i.e., inference
channels defining the expected type of selected sensor data, the specific quantity of data points

to query and/or the specific time for which they are generated, and so on. Thus, this
representation is depends on the requirements of RQ2.

RQ1 & RQ2 – Facet Dependency:
(i) Functional dependencies (ii) Probabilistic dependencies (iii) Linkage dependencies.

Dependency representation level

To model the condition of disclosure associated to an inference channel, RQ1 implies that we
consider if dependencies are represented between attributes (i.e., schema level) or between values
of instances (i.e., data level). According to RQ2, this level of representation impacts how the

information obtained by users must be modeled.
At the schema level, the dependencies are represented between attributes, without considering
the exact value stored in the database. Jebali et al. [91] leverage a use case with an hospital

database schema. It contains three relations Patients(Patient_id, Diagnosis_id, Admission_date,
Patient_details), Drugs(Drug_id, Drug_code, Drug_name, Drug_cost), and Consumption(Patient_id,

Drug_id). They model the following dependencies, among other:
𝐹𝐷3 ∶ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑 → 𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠 in Patients; 𝐹𝐷6 ∶ 𝐷𝑟𝑢𝑔_𝑖𝑑 → 𝐷𝑟𝑢𝑔_𝑐𝑜𝑑𝑒 in Drugs;
𝐹𝐷9 ∶ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑, 𝐷𝑟𝑢𝑔_𝑖𝑑 → 𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑 and 𝐹𝐷10 ∶ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑, 𝐷𝑟𝑢𝑔_𝑖𝑑 → 𝐷𝑟𝑢𝑔_𝑖𝑑 in
Consumption. When a user issues the following queries: 𝑄1 = {𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑, 𝐷𝑟𝑢𝑔_𝑖𝑑},

𝑄2 = {𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑, 𝑃𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠} and 𝑄3 = {𝐷𝑟𝑢𝑔_𝑖𝑑, 𝐷𝑟𝑢𝑔_𝑐𝑜𝑑𝑒}, based on the queried
attributes, the attacker is able to exploit those dependencies {𝐹𝐷9, 𝐹𝐷3, 𝐹𝐷10, 𝐹𝐷6}, which then
enables them to infer Patient_details and Drug_code, which violates the defined security rule. All

this reasoning never considers the exact values of the queried attributes.
At the data level, the dependency considers the exact values stored in the database. Most
solutions relying on the data level first represent dependencies at the schema level before

instantiating them w.r.t. the stored data. A good example to illustrate this level of representation
is depicted by Figure 3.1 in Section 3.3.2. Chen et al. [31] model first the dependencies between

attributes (e.g., 𝑃𝐴𝑅𝐾_𝑆𝑄_𝐹𝑇, 𝐸𝐿𝐸𝑉_𝐹𝑇, 𝑅𝑈𝑁𝑊𝐴𝑌_𝐿𝐸𝑁𝐺𝑇𝐻,𝑅𝑈𝑁𝑊𝐴𝑌_𝑊𝐼𝐷𝑇𝐻 →
𝑇𝐴𝐾𝐸𝑂𝐹𝐹_𝐿𝐴𝑁𝐷𝐼𝑁𝐺). Then, they are modeled between the instances of the database (e.g., the
LAX, R1, and C5 instances). When an attacker queries the attribute of a specific instance, based
on the value of this attribute (e.g., LAX_PARK_SQ_FT = large), the attacker will be able to infer

LAX_TAKEOFF_LANDING. All this reasoning considers the exact values of the queried
attributes. Some works implicitly consider the representation of dependencies directly at the

data level. Indeed, Staddon et al. [146] propose to represent dependencies between any
information that can be queried from the database (i.e., fact, attribute, value, or relation). Hence,

according to the domain of the stored information, an expert can directly represent a
dependency between an instance’s attributes values, without first modeling them at schema

level.
In this thesis, we model constrained dependencies RQ1 to reason on information obtained about

sensor data points RQ2, as presented for the two first facets. The representation level of
dependencies is neither at the schema level, since we need information more precise than the
name of selected attributes; nor at the data level, since it isn’t the exact value of a data point
which is important, but rather the metadata about queried information (e.g., the selected

32 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

physical observations or interval during which data points are generated, the quantity of data
points in the query result, and so on) enables one to satisfy the constraints of dependencies

associated to data mining processes (see Section 2.1.4). Hence, we represent the dependencies at
the metadata level.

RQ1 & RQ2 – Facet Level: (i) Schema (ii) Data (iii) Metadata.

Inference channel model framework

According to the type of dependency and the representation level, the solutions leverage
different types of model to represent and structure all inference channels considered by an IC
mechanism. Hence, according to the RQ1 we have to consider those different approaches. The
two main types of model we have identified are the graph-based model and the set-based model. To
illustrate the diversity of approaches that exists in each type, we will describe the framework

utilized by each work in the state of the work.

Graph-based model

We observe that this framework is leveraged by solutions which model probabilistic
dependencies. This choice is explained by the need of representing conditional probabilities
between attributes. The two models leveraged are Bayesian networks [31, 104, 77] and Petri

nets [165].
As previously illustrated with Chen et al. [31]’s work, the Bayesian network enables the
representation of dependencies at the data level. Each node corresponds to an instance’s
attribute and the distributions of probability, as well as the edges, are either automatically

computed from a database snapshot, or manually defined by a domain expert. In the context of
relational databases, the automatic computation of such models relies on the Probabilistic
Relational Model [71]. While Guarnieri et al. [77] represent facts about individuals (e.g., a
patient smokes or doesn’t smokes), since they associate probabilities to those fact, they also

leverage Bayesian networks to represent dependencies between profile data.
On the other hand, Yaseen et al. [165] use Petri nets to model the dependencies between

attributes of a personal database. Similarly to the Bayesian network, a node of the Petri net
corresponds to attributes in a personal database. The edges are defined manually by an expert.
With Toland et al., the authors are the second one to consider updates in the database. They

determine that the knowledge obtained by an attacker on the node of the Petri net changes when
the values of the parent nodes reach a specific constraint (e.g., the value is greater than a
threshold). Those conditions are encoded by the edge. The probabilities are also defined

manually and correspond to the certainty that an attacker has on a node after having queried
other nodes or changed an attribute value.

Set-based model

The latter model type structures dependencies as a set of non-connected elements describing
each an inference channel. We have identified three groups of solutions based on the
representation of (i) query transactions (ii) logical rules, and (iii) other approaches.

In the first group of works, the authors consider the dependencies that the attackers may
leverage and generate all the queries which enable their exploitation. Hence, Jebali et al. [91],

Sellami et al. [141], and Biskup et al. [20] represent inference channels as a set of query
transactions where each transaction leads to some sensitive value. For instance, Sellami et al.

3.4. TAXONOMY AND CLASSIFICATION OF THE INFERENCE DETECTION SYSTEM 33

𝐼 = ∅
𝐸 = {𝑆𝑆𝑁,𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑇𝑒𝑎𝑚, 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒, 𝐼𝐷𝐹𝑎𝑐𝑢𝑙𝑡𝑦}

𝐼 = {𝑆𝑎𝑙𝑎𝑟𝑦}
𝐸 = {𝑆𝑆𝑁, 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒}

𝐼 = {𝑁𝑎𝑚𝑒}
𝐸 = {𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑇𝑒𝑎𝑚, 𝐼𝐷𝐹𝑎𝑐𝑢𝑙𝑡𝑦}

𝐼 = {𝑆𝑎𝑙𝑎𝑟𝑦,𝑁𝑎𝑚𝑒}
𝐸 = ∅

FD₁, FD₂, Q₃{𝑆𝑆𝑁, 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑇𝑒𝑎𝑚, 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒, 𝐼𝐷𝐹𝑎𝑐𝑢𝑙𝑡𝑦}

FD₁, Q₁{𝑆𝑆𝑁, 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒,𝑁𝑎𝑚𝑒} FD₂, Q₂{𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑇𝑒𝑎𝑚, 𝐼𝐷𝐹𝑎𝑐𝑢𝑙𝑡𝑦, 𝑆𝑎𝑙𝑎𝑟𝑦}

DT₁

DT₃ DT₂

1

23

4

Figure 3.2: Example of queries transaction generated with a lattice [141].

rely on the Formal Concept Analysis (FCA) [67] framework to compute the transactions, instead
of relying on an external entity. A lattice is built by iteratively considering all FDs leading

directly, or indirectly, to an attribute in the access control rule. We consider as an access control
rule the fact that the salary and the name of an instance cannot be known by a user. The two
following FDs are modeled using FCA: (i) The first dependency (i.e., FD₁) leads to the name:

𝐼𝐷𝐹𝑎𝑐𝑢𝑙𝑡𝑦, 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑇𝑒𝑎𝑚 → 𝑁𝑎𝑚𝑒. (ii) The second (i.e., FD₂) leads to the salary:
𝑆𝑆𝑁, 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 → 𝑆𝑎𝑙𝑎𝑟𝑦. The lattice depicted in Figure 3.2 contains four nodes. Each node
describes some of the attribute of the control rule, denoted 𝐼 and the queryable attributes,

denoted by 𝐸. The node ① describes that, without knowing any attributes of the rule, if a user
issues the query Q₃, they can then leverage the dependencies FD₁ and FD₂ to infer the salary and
the name. This corresponds to a first disclosure transaction, denoted DT₁. The node ③ shows
that, if the SSN and Insurance are available and the attacker’s intent to infer the salary, then

issuing Q₁ and exploiting FD₁ creates a new disclosure transaction DT₃. The node ② leads to DT₂,
assuming the attacker focus on the name and issues Q₂. All the parents of the node ④ describe a
transaction disclosure of the set 𝐼. While the two first works represent open queries (i.e., the

standard SQL-like queries), Biskup et al. represent transactions of closed queries. Biskup et al.
and Jebali et al. assume that an external entity provides this model to the detection system.

The second group of works represent dependencies as rules used to determine what knowledge
attackers may obtain according to the queried information. Toland et al. [152], Pappachan et
al. [127], and Biskup et al. [19] model inference channels as formula such as Horn clauses,

first-order formula, or conjonction of logical facts (e.g., is the patient Carl smoking?),
respectively.

Lastly, two unrelated approaches are used to model dependencies. Staddon et al. [146] consider
dependencies as a set of objects in the database (e.g., attributes, values, relationships). The

authors represent each inference channel as a set of cryptographic tokens, where each token is
associated to an object and generated, and all the tokens associated to a channel are generated in
accordance to each other. El Mokhtari et al. [52] model inference channels as weighted matrices.
In each row, the first column is a sensitive data that an owner wishes to keep private, and all the
remaining columns describe the attributes that must be known in order to infer the sensitive
attribute. El Mokhtari et al. propose to affect weights to the non-sensitive attributes (i.e., the

cells in the matrix) to reflect their influence on the sensitive data.

In this thesis, guided by RQ1, we structure inference channels using a set-based model. Each
dependency is captured as a first-order formula encoding a data mining process constraints over

the queries metadata obtained by users.

34 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

RQ1 – Facet Model: (i) Graph-based model (ii) Set-based model.

Structure used by the system to keep track of the user’s knowledge

The InfDSs need to keep track of the information queried by users, as stated in RQ3. The
solutions performing the detection at query-time relies on a history which keeps track of

information gained by users via queries.
The first approach we have observed is to embed the history directly within the model used to

represent dependencies, thus reducing the system management burden. For instance, the
solutions using Bayesian networks, such as Chen et al. [31], store the user’s knowledge as
evidences. In other words, when the user queries the value of C5_MIN_LAND_DIST and

C5_MIN_RW_WIDTH, the network is updated as depicted in Figure 3.1a to keep track of that
those two values are known by the user. Then, when they query the value of LAX_PARK_SQ_FT,

the Bayesian network is further updated as illustrated in Figure 3.1b. The second type of
approach is to represent the history as an independent structure. For instance, in the solution

proposed by Toland et al. [152], a log is associated to each user where a line corresponds to the
result of a query issued by a user. This log is then combined with the model of inference channel
they use (i.e., Horn clauses) to logically infer all the data a user can obtain from their knowledge.
In this thesis, we keep track of a large user’s knowledge via an independent structure which can
be optimized without impacting the detection technique. Moreover, by decoupling the model
and the history, inference channels can be updated without impacting the users’ knowledge.

RQ3 – Facet History: (i) Embedded (ii) Independent

Detection technique used by the system

Based on RQ3, to tackle IAISDs, the detection system must reason on the conditions of
disclosure related to known inference channels. We identify which techniques are used to detect

inference attacks using a model representing inference channels.

Transaction search

Transaction search is used by the three works [91, 141, 20] modeling inference channels as a set of
query transactions. Their approach is straightforward. To determine if a query enables an

attacker to perform an inference, the InfDS searches if the query can be combined with queries
in this user’s history. If one of the candidate transaction (i.e., containing this new query)

corresponds to a transaction already computed in the model. Then, this new query is detected as
an inference attempt.

Logical inference

Some of the works modeling inference channels as logical formula perform logical inference.
Pappachan et al. [127] present a system which reasons on the view the user has obtained on the
database. The InfDS logically infers all the attributes that can be obtained by using the schema
level inference channels. If the resulting set of values contains a sensitive information, the query
is detected as leading to an attack. The system presented by Brodsky et al. [25] uses the model to
compute all the disclosed information according to the knowledge obtained by a new query, and

3.4. TAXONOMY AND CLASSIFICATION OF THE INFERENCE DETECTION SYSTEM 35

all knowledge in the history. In case a sensitive information is contained within the set of
generated information, the new query is detected as an inference attempt.

Brodsky et al.’s solution can wrongly detect inference attacks associated to outdated information.
In their example, the relation Employee(Name, Rank, Salary, Department) is queried by users. A
FD between the rank and salary exists (i.e., 𝑅𝑎𝑛𝑘 → 𝑆𝑎𝑙𝑎𝑟𝑦). The mechanism needs to prevent
users to obtain the salary associated to a given name. Consequently, when a user queries: all the

names and ranks of employees working in the toy department
𝑄1 = {⟨𝐽𝑜ℎ𝑛, 𝐶𝑙𝑒𝑟𝑘⟩, ⟨𝑀𝑎𝑟𝑦, 𝑆𝑒𝑐𝑟𝑒𝑡𝑎𝑟𝑦⟩}, and the salaries of all clerk working in the appliance
department 𝑄2 = {⟨𝐶𝑙𝑒𝑟𝑘, $38, 000⟩}. Then, the user can leverage the FD to infer the salary

associated to John. The query 𝑄2 is detected as an inference attack attempt. Now, if between the
two queries the following updates occur: the database is first updated to promote the instance of
the employee named John to the rank of manager. Then, a second update increases the salaries

of all clerk from 4%. Then, the result of 𝑄1 does not change and 𝑄2 = {⟨𝐶𝑙𝑒𝑟𝑘, $39, 520⟩}.
Brodsky et al.’s solution detects that the 𝑄2 breach the security rule. Because the disclosed

information (i.e., 𝑄1) are not updated in the history, when processing 𝑄2 the system wrongly
considers that the rank of John is still Clerk. Toland et al. [152] extend this work by proposing a
method to propagate database updates to the gained user’s knowledge. When an instance is
updated, the user’s knowledge that are referencing the attribute are stamped with either the
newest attribute value, or a with a stamp describing that the instance has been deleted. The

system is able to track the data which has been released to the user and thus to correctly reason
on new queries which occur after database updates.

Probabilistic inference

Similarly to the logical inference, the probabilistic inference is leveraged by works that model
probabilistic dependencies as inference channels. Guarnieri et al. [77] propose an InfDS which
applied new issued queries as evidences on the Bayesian network. For instance, if the logical fact
smokes(Alice). is queried, and hard evidence is applied on the associated random variable. Using
Bayesian inference, the belief of the attacker is updated. An inference attempts is detected if the
random variable corresponding to a sensitive value reaches the threshold specified by the system

policy. For instance, if after having issued the previous query, Mallory’s belief leads to a
certainty of 75% that cancer(Alice), an attack is detected. In their solution, since the Bayesian
network is used to represent a user’s belief, it also acts as an history by keeping track of the

obtained evidences (i.e., the queried facts). Chen et al. [31], Lachat et al. [104] (which extend the
work of Chen et al.), and Yaseen et al. [165] perform the detection similarly than Guarnieri et al.
On the other hand, El Mokhtari et al. [52] consider their weights matrix of accessed data, and
propose to computes a percentage of completion towards an inference. When the completion
reaches a given threshold, an attack is detected. Unlike the other works in the same category, the

probabilistic representation of the inference channels relies on the weights affected to each
attribute. It does not reflect the distribution of attribute values stored in the database that the
mechanism is protecting. Yet, we place El Mokhtari et al.’s work in this category, since it estimate
for each sensitive value, a probability interpreted as the confidence an attacker has to infer it.

Revocation

The two last works use revocation on a policy. The InfDS proposed by Biskup et al. [19] process
queries of propositional atoms (i.e., logical facts denoted by 𝜑𝑖) about individuals. The policy
contains the inference channels modeled as conjunction of facts: 𝜑𝑖 ∧…. When a user queries
information which appears within their policy, they are revoked from the related sentences. For
instance, a policy defining the following sentence 𝜑1 ∧ 𝜑2 indicates that those two facts cannot

36 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

be obtained together by a user. Querying the fact 𝜑1 does not violate the policy, which leads the
system to answer the query. The sentence of the policy is updated and becomes 𝜑2. Then,

querying the fact 𝜑2 is detected as an inference attacks attempt, since it violates the update
sentence. Staddon et al. [146] present an InfDS where inference channels are loosely modeled by
a set of tokens. When a user queries an object, they need to use the specific associated token
which can be used once. The access to the objects of an inference channel are more and more
restricted, until a user tries to query the last object of an inference channel which is detected as

an inference attempt.

Guided by RQ3, we leverage in this thesis our inference channels modeled as a set of first-order
formula, to logically determine when a new query enables an attacker to satisfy the constraints,

thus performing an IAISD.

RQ3 – Facet Detection:
(i) Transaction search (ii) Logical inference (iii) Probabilistic inference (iv) Revocation

3.5 Positioning

In this chapter, we have observed the differences of assumptions between the profile and sensor
databases synthetized in Table 3.7. Most of the solutions that can be found in the literature
assume that attackers follow an inference strategy [163] where the background knowledge
corresponds to some information contained within the database. However, for IAISDs, the

attackers follow the External Information strategy by using as background knowledge references
such as the one presented in Chapter 2. Moreover, we have observed that the knowledge gained
by users is represented as the exact data returned by a query. For IAISDs, it is not the exact
value of a sensor data point which is important, but rather if the knowledge gained by a user

enables them to an inference channel. In IAISDs, the representation of both this user’s
knowledge and inference channels must be done at the metadata level. In addition, for profile
databases, the existing works typically consider a single constraint for dependency between
attributes (see Section 3.4). In IAISDs we encountered a variety of sensor data types and

constraints that an attacker has to follow (see Section 2.1). The last difference is related to the
information that an attacker infers when performing an attack. In profile databases, the inferred
information is stored within the database. The inferred information can include the value of a
sensitive attribute, the existence of a sensitive value for an instance, etc. Instead, in IAISDs the
mined information does not correspond to data stored in the sensor database, but instead to a
probability distribution over the personal information values (e.g., running, walking, … for the

human activity).
Consequently, the work presented in this thesis is positioned as described in Table 3.6. To be

able to perform an IAISD, we consider that an attacker exploits one of the known references like
those presented in Chapter 2. Hence, they gather information from a sensor database guided by
a known environment and known constraints. To tackle RQ1, we model what is guiding an

attacker’s queries as an inference channel. To address RQ2, we choose to model the information
about selected sensor data as the query metadata, of each query issued to a DBsen, by capturing:

• The query parameters. When using an article as an external source describing how to
perform an IAISD, the attacker has to query specific types of sensor data. For instance,
to leverage the references that use the WISDM dataset [160], an attacker needs to query
data produced by an accelerometer and a gyroscope on three axis. Furthermore, the data

3.5. POSITIONING 37

D
at

a
D
ep

en
de

nc
y

Le
ve

l
M

od
el

H
is
to

ry
D
et

ec
ti
on

Bi
sk

up
(2

01
2)

S.
B.

Pr
ofi

le
Fu

nc
ti
on

al
D
at

a
Se

t-
ba

se
d

Em
be

dd
ed

R
ev

oc
at

io
n

Bi
sk

up
(2

02
0)

S.
B.

Pr
ofi

le
Fu

nc
ti
on

al
D
at

a
Se

t-
ba

se
d

In
de

pe
nd

en
t

Tr
an

sa
ct
io

n
se

ar
ch

C
he

n
an

d
C
hu

(2
00

8)
E.

S.
Pr

ofi
le

Pr
ob

ab
ili

st
ic

Sc
he

m
a
&

D
at

a
G
ra

ph
-b

as
ed

Em
be

dd
ed

Ba
ye

si
an

in
fe
re

nc
e

el
M

ok
ht

ar
ie

ta
l.

(2
02

1)
E.

S.
Pr

ofi
le

Fu
nc

ti
on

al
Sc

he
m

a
Se

t-
ba

se
d

In
de

pe
nd

en
t

Pr
ob

ab
ili

st
ic

in
fe
re

nc
e

G
ua

rn
ie
ri
,M

ar
in

ov
ic
,a

nd
Ba

si
n

(2
01

7)
S.

B.
Pr

ofi
le

Pr
ob

ab
ili

st
ic

Sc
he

m
a
&

D
at

a
G
ra

ph
-b

as
ed

In
de

pe
nd

en
t

Ba
ye

si
an

in
fe
re

nc
e

Je
ba

li
et

al
.(

20
22

)
E.

S.
Pr

ofi
le

Fu
nc

ti
on

al
,L

in
ka

ge
Sc

he
m

a
Se

t-
ba

se
d

In
de

pe
nd

en
t

Tr
an

sa
ct
io

n
se

ar
ch

La
ch

at
,R

eh
n-

So
ni

go
,a

nd
Be

nn
an

i(
20

20
)

E.
S.

Pr
ofi

le
Pr

ob
ab

ili
st
ic
,L

in
ka

ge
Sc

he
m

a
&

D
at

a
G
ra

ph
-b

as
ed

Em
be

dd
ed

Ba
ye

si
an

in
fe
re

nc
e

Pa
pp

ac
ha

n
et

al
.(

20
22

)
E.

S.
Pr

ofi
le

Fu
nc

ti
on

al
Sc

he
m

a
Se

t-
ba

se
d

In
de

pe
nd

en
t

Lo
gi

ca
li

nf
er

en
ce

Se
lla

m
i,

H
ac

id
,a

nd
G
am

m
ou

di
(2

01
9)

E.
S.

Pr
ofi

le
Fu

nc
ti
on

al
,L

in
ka

ge
Sc

he
m

a
&

D
at

a
Se

t-
ba

se
d

Em
be

dd
ed

Tr
an

sa
ct
io

n
se

ar
ch

St
ad

do
n

(2
00

3)
E.

S.
Pr

ofi
le

Fu
nc

ti
on

al
D
at

a
Se

t-
ba

se
d

Em
be

dd
ed

R
ev

oc
at

io
n

To
la
nd

,F
ar

ka
s,

an
d

Ea
st
m

an
(2

01
0)

E.
U
.P

ro
fil

e
Fu

nc
ti
on

al
Sc

he
m

a
&

D
at

a
Se

t-
ba

se
d

In
de

pe
nd

en
t

Lo
gi

ca
li

nf
er

en
ce

Ya
se

en
an

d
Pa

nd
a
(2

01
2)

E.
U
.P

ro
fil

e
Pr

ob
ab

ili
st
ic

Sc
he

m
a
&

D
at

a
G
ra

ph
-b

as
ed

In
de

pe
nd

en
t

Pr
ob

ab
ili

ty
in

fe
re

nc
e

R
IC

E-
Sy

I.
a.

Se
ns

or
Fu

nc
ti
on

al
M

et
ad

at
a

Se
t-
ba

se
d

In
de

pe
nd

en
t

Lo
gi

ca
li

nf
er

en
ce

Ta
bl

e
3.
6:

C
om

pa
ri
so

n
of

qu
er

y-
ti
m

e
IC

m
ec

ha
ni

sm
s.

E.
S.

Pr
ofi

le
,E

.U
.P

ro
fil

e,
S.

B.
Pr

ofi
le
,a

nd
I.

a.
Se

ns
or

co
rr
es

po
nd

to
th

e
fa

ce
t

va
lu

e
ex

ac
ts

ta
ti
c
pr

ofi
le

da
ta

,e
xa

ct
up

da
ta

bl
e
pr

ofi
le

da
ta

,s
ta

ti
c
bo

ol
ea

n
pr

ofi
le

fa
ct
,e

xa
ct

se
ns

or
da

ta
po

in
ts
,i

nf
or

m
at

io
n

ab
ou

ts
en

so
r

da
ta

po
in

ts
,r

es
pe

ct
iv

el
y.

38 CHAPTER 3. STATE OF THE ART: THE INFERENCE PROBLEM IN DATABASES

Background
Knowledge

Constraint /
Dependency User’s knowledge Inferred Information

Profile database Internal Unique Exact queried value Value with uncertainty
Sensor database External Multiple Query metadata Probability distribution

Table 3.7: Summary of differences of assumptions between profile database and sensor database.

stream selected by an attacker tells us which environment the attacker targets. Capturing
the parameters of a query provides information about the attacker’s intent.

• The query context. When an attacker performs an IAISD, the sensor database is notified with
the inferred personal information. To determine for which individual this information is
valid, we need to know precisely the identity of individuals for each targeted environment.
Moreover, knowing the identity of the user issuing a query enables keeping track of all
knowledge they have already gained. Capturing the context of a query provides information
about the identity of the user (i.e., a potential attacker) and the individuals (i.e., potential
victim of an IAISD).

• The query result metadata. The constraints force an attacker to obtain a specific data points
to exploit an inference channel. For instance, SSW or TSW implies that an attacker obtains
as a query result, a specific number of data points, or data generated during a specific time
duration. Capturing metadata (e.g., duration and quantity) about data points in a query
result provides information about the capability of an attacker to satisfy the constraints of
an inference channel.

In the next chapter, we present our first contribution which precises how the query metadata
and the inference channels an attacker can exploit are modeled.

Chapter 4

RICE-M: Raw sensor data based Inference
ChannEl Model

As shown in Chapter 2, inference channels implying sensor data are numerous and have each
specific constraints to exploit sensor data in order to infer some personal data (e.g., humant

activities). Consequently, to be able to detect an Inference Attack Involving Sensor Data (IAISD),
we should be able to model these specific constraints (RQ1). Moreover to let the IAIDS detection

system be able to check if an attacker has exploited an inference channel (RQ2), we need a
model that captures (i) which information and how many time their values are obtained, as we
are focusing on the constraints Timestamp based Sliding Window (TSW) and Sequence based
Sliding Window (SSW) (ii) what is the identity of the individual whose information has been

queried.
We present in this chapter our first contribution called Raw sensor data based Inference

ChannEl Model (RICE-M). As depicted in Figure 4.1, we assume that the sensor database is
protected by an Inference Detection System (InfDS) against IAISDs. An administrator models
the inference channels deemed as important using the first part of RICE-M. Then, when a user
issues a query to the sensor database, we extract and model the corresponding user’s knowledge
using the second part of RICE-M. In this thesis, for the sake of simplicity, we assume that users

are not colluding, i.e., that they are not sharing the user’s knowledge they obtain.
The structure of this chapter is organized as follows: We begin by introducing in Section 4.1 the

two case studies taken from the references presented in Section 2.1.5 to illustrate the

Knowledge extraction InfDS

Data controller
Sensor
database

User Administrator

Users’ knowledge Inference channels

RICE-M
Used by Used by

Forward
the query

Modeled user’s
knowledge

Notify
detected inferences

Issues
query

Modeled
inference channels

Figure 4.1: Usage context of RICE-M: When a new query issued to the sensor database, the user’s
knowledge is modeled and processed by the InfDS w.r.t. the known modeled inference channels.
Then, the data controller is notified when an inference is detected.

39

40 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

L0
1

L0
2

L0
3

L0
4

L0
5

L0
6

L0
7

L0
8

L0
9

L1
0

L1
1

L1
2

4
6
8

8.
7 9.
2 9

8.
5 8.
9

8.
6

8.
3 9

8.
5 9.
1 9

Activity
Pr

ob
a.

[%
]

3.
3

Figure 4.2: Probability distribution of classifying human activities in the mHealth inference
channel. The labels L01 to L12 correspond to the following human activities: standing still,
sitting and relaxing, lying down, walking, climbing stairs, waist bends forward, frontal elevation
of arms, knees bending, cycling, jogging, running, jumping forwards and backwards, respectively.

formalization of our proposed model. Then, we introduce the formalization of the user’s
knowledge and the inference channels in Section 4.3 and Section 4.4, respectively. We discuss

the choice and limits of RICE-M in Section 4.5 and conclude this chapter in Section 4.6.

4.1 Case studies description: mHealth & Orange4Home

To illustrate how our proposed model represents both inference channels and user’s knowledge
for IAISDs, we propose to use two examples of data mining algorithms applied to sensor data as
our case studies: mHealth [15] and Orange4Home [42]. We chose those two references because
they both use a publicly available dataset and provide information about their mining process
(e.g., type of model used and the parameters of the windows). They enable use to consider the

two constraints TSW and SSW. Furthermore, via mHealth, we cover both the individual
environment with wearable sensors, and via Orange4Home, the area and sub-area with ambient

sensors (see Section 2.2).

4.1.1 mHealth case study

mHealth is a public dataset published by Banos et al. [15] for training ML models to perform
human activity recognition. The authors provide detailed descriptions of the training process,
which allows to extract the information required to model the inference channel. To do so, we
analyze the dataset the authors leverage to determine the considered physical phenomenons and
the setting in which observations are made by sensors. Then, we analyze the data processing

section presented by Banos et al. [15] to determine how they prepare the sensor data before the
training. The two following paragraphs summarizes the dataset properties and how data are

processed to train the ML model.
The dataset contains observations (such as acceleration, turn rate, etc.) from three wearable

sensors placed on the chest, the right wrist, and the left ankle of a human being. The measures
are conducted with a total of 10 volunteers. The median number of data points per volunteer is
120 960, for a total of 1 215 745 data points measured. Each sensor records observations at a

fixed frequency while a volunteer performs each of the 12 human activities depicted in
Figure 4.2. Each activity is either performed during 1min, or repeated 20 times for the waist
bends forward, frontal elevation of arms, knees bending (crouching), and jump front & back

activities. Figure 4.2 displays the complete list of activities. The collected sensor data [126] are
represented as a vector of 23 attributes (e.g., x, y, and z axis for the acceleration) and the 24𝑡ℎ

attribute represents the label of the activity performed by the volunteer during the
measurements.

4.1. CASE STUDIES DESCRIPTION: MHEALTH & ORANGE4HOME 41

L0
1

L0
2

L0
3

L0
4

L0
5

L0
6

L0
7

L0
8

L0
9

L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

0
20
40
60

0.
7

2.
5

0.
4 2.
5

0.
5

0.
2

0.
2

0.
3 4 0.
5 4.
3

3.
5

1.
2

0.
5

1.
6 6

Activity

Pr
ob

a.
[%

]

70
.9

Figure 4.3: Probability distribution of classifying human activities in the Orange4Home inference
channel, at home level. The labels L01 to L17 correspond to the following human activities:
cleaning, computing, cooking, dressing, eating, entering, going down, going up, leaving, napping,
preparing, reading, showering, using the sink, using the toilet, washing the dishes, watching tv.

The authors aim to train a decision tree on this dataset to classify the measures into one of the
learned activities. To do so, they consider 21 among the 23 attributes, since they judge that the
two electrocardiogram measures from the chest sensor are not needed for a first evaluation.

They employ a non-overlapping sliding window with a duration of 2 s to pre-process the data.
They obtain a median F1 score of 98.5% when evaluating the classification performance of their
approach. Thus, the constraint that must be satisfied to be able to exploit this inference channel
is to know the values of the 21 attributes for a common duration of at least 2 s. The constraint
corresponds here to a TSW. By leveraging this dataset, it is possible to extract information about
the activities performed by the volunteers wearing the sensors. In this setting, the inferable
knowledge is represented by the random variable 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦. It corresponds to the probability

distribution among the 12 identified actions as depicted in Figure 4.2.

4.1.2 Orange4Home case study

The Orange4Home dataset, proposed by Cumin et al. [42], is also employed for training ML
models in the field of human activity recognition. Similarly to mHealth, we extracted from

Cumin et al.’s article the information used to model Orange4Home as an inference channel. To
do so, we follow the same process than for our first case study. The two following paragraphs

summaries the dataset properties and how data are processed to train the ML model.
This dataset contains observations (e.g., temperature, CO₂ level, luminosity, etc.) from 236
ambient sensors installed in nine rooms (i.e., entrance, kitchen, living room, toilet, staircase,
walkway, bathroom, office, and bedroom) within the same apartment. A total of 746 767 data
points [41] are conducted in the presence of a single inhabitant, which means that the mined

information is only related to this individual. Those measurements are done while the inhabitant
follows a schedule of tasks (e.g., computing, reading, eating, and so on). Figure 4.3 depicts the
list of activities performed in different rooms, and repeated for 20 days (except for the using the

toilet task which is unpredictable). A total of 493 instances of activities are measured in
approximately 180h. The inhabitant indicates manually when they start or stop a task and in
which room they perform it. The collected sensor data are represented as a vector containing:

• As a first field, either the timestamp of a measurement or the start of an activity

• The name of the sensor or the indication that the tuple represents a label

• The measurement value or the status and label of the activity. The data collected between
the two entry labels 2017-01-30 08:02:25,label,START:Bathroom|Showering and 2017-
01-30 08:18:12,label,STOP:Bathroom|Showering correspond to the observations per-
formed while the inhabitant performs the showering activity in the bathroom.

42 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

Based on this dataset, Cumin et al. demonstrate in [44] how they train MultiLayer Perceptron
(MLP) and Support Vector Machine (SVM) models for human activities recognition. They

demonstrate that recognition can be performed at two levels: at home level, where sensor data
are considered independently from the room where sensors are deployed; and at room level,
where models are trained for each room and fusion techniques are utilized to make a final
decision. To do so, they consider all sensor data in their dataset, and re-sample each activity

instance so that it is 20 sample long, thus forming feature vectors used as a training set. Cumin
et al. obtain a F1 score of 89.61% at home level, with the SVM, and 93.05% at room level, with
the MLP. The first constraint corresponds here to a SSW with a sequence of size 20. As described

in the previous paragraph, when starting an activity, the inhabitant manually records the
[…],label,START:Bathroom|Showering entry in the dataset. All entries recorded afterwards
correspond to data points measured during the activity, until the inhabitant stops the activity by
creating a […],label,STOP:Bathroom|Showering entry. Therefore, re-sampling this activity
into a sample of 20 data points implies that each sample contains data points in the temporal
order they are generated. An attacker needs to query 20 data points which are not generated

randomly, but rather 20 data points which have been generated in a common temporal duration.
This second constraint corresponds to a TSW. At home level, a single classifier model takes as

input 20 data points produced by all sensors to determine the correct class among all the
possible activities. At room level, a classifier model takes as input 20 data points produced by
sensors deployed in that room only, and decides the correct class among the activities related to
the room (e.g., showering in the bathroom). Thus, the chosen environment level (e.g., the home or
the room) impacts the duration of the TSW that needs to be satisfied to leverage the mining
algorithm. The duration at home level (resp. room level) is determined by computing the

median duration of feature vectors over all the activities (resp. over all the activities in a specific
room only). The median duration is equal to 15 s at home level (resp. 15 s for the bathroom, 16 s
for the bedroom, 10 s for the entrance, 11 s for the kitchen, 15 s for the living room, 17 s for the

office, 9 s for the staircase, 19 s for the toilet, 15 s for the walkway).
If both of these constraints are met by the user’s queried data, w.r.t. the selected environment
level (e.g., the home, the bathroom, etc.), the attacker is able to obtain some knowledge about
the activities performed by the inhabitant. Assuming that this attacker queried sensor data

without considering a specific room (i.e., home level), the inferrable knowledge in this case is
represented by the random variable 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 defining the probability distribution among the 17

identified activities, as shown in Figure 4.3.
With this second case study, we consider both a new constraint, i.e., SSW, and the fact that sensor
data can be generated from different spatial sub-areas (e.g., rooms) within a given area (e.g., a
home). In the following section, using our two case studies as illustration, we present how we

model the queried information and the inference channels.

4.2 Capturing information to constitute the user’s knowledge

To describe which information constitute the user’s knowledge, and how they are extracted as
depicted in Figure 4.1, let us first describe our example setting. In the following, the name of
each new concept is emphasized and its formal definition is provided below by using the same
name. Figure 4.4 illustrates that the Individual₁ shares all data points generated from their

wearable sensors as a single data stream. Those data points correspond to measurements of three
physical phenomenons (e.g., the acceleration). For the sake of simplicity, in our figures we

represent those phenomenons using squares with color and pattern instead of labels.
Individual₂ proceeds the same way with ambient sensors and three new physical phenomenons.

The sensor database exposes those two data streams to the users, and thus attackers.

4.2. CAPTURING INFORMATION TO CONSTITUTE THE USER’S KNOWLEDGE 43

Sensor
database
(DBsen)

Individual₁
Stream of wearable
sensors data points

,,
Individual₂

Stream of ambient
sensors data points

,,
Physical phenomenons

Figure 4.4: Two individuals sharing their sensor data points via two distinct data streams.

⟨query⟩ ⊧ SELECT ⟨attributes⟩ FROM ⟨streams⟩ WHERE ⟨conditions⟩
⟨attributes⟩ ⊧ 𝑎 ∈ 𝐴 ∣ 𝑎 ∈ 𝐴 , ⟨attributes⟩
⟨streams⟩ ⊧ 𝑠 ∈ 𝑆 ∣ 𝑠 ∈ 𝑆 , ⟨streams⟩

⟨conditions⟩ ⊧ ⟨condition⟩ ∣ ⟨condition⟩ AND ⟨conditions⟩
⟨condition⟩ ⊧ INTERVAL 𝑡 ∈ 𝑇

(a) Theoretical grammar of queries issued on data streams.

SELECT , ,
FROM individual₁_stream
WHERE INTERVAL (1, 2)

(b) Q₁

SELECT , ,
FROM individual₂_stream
WHERE INTERVAL (1, 2)

(c) Q₂

Figure 4.5: Query issued to DBsen.

Definition 4.2.1 (Data Stream). A data stream 𝑠 ∈ 𝒮 is a temporally ordered sequence of sensor
measurements.

Definition 4.2.2 (Sensor Database). A sensor database DBsen ⊆ 𝒮 is a set of data streams on
which queries can be issued.

Definition 4.2.3 (User). A user 𝑢 ∈ 𝒰 has an authorized access to DBsen.

Definition 4.2.4 (Attacker). An attacker is a user 𝑢 ∈ 𝒰 which attempts to perform an IAISD.

As illustrated in Figure 4.5, for the sake of simplicity we assume that queries follow the
SQL-inspired theoretical grammar of Figure 4.5a. A user issues queries such as Q₁ in Figure 4.5b

and Q₂ in Figure 4.5c. They select the data points associated to some phenomenons and
generated during some interval in a data stream.

4.2.1 Query parameters

As stated in Section 3.5, the first information we capture are the query parameters, since they
provide information about the users’ intent. Hence, for each query we extract:

• The attributes, i.e., the name of the queried physical phenomenon, from the SELECT clause.
The attributes of Q₁ (respectively Q₂) are , , and (respectively , , and).

• The data streams from the FROM clause. The data stream of Q₁ (respectively Q₂) is individ-
ual₁_stream (respectively individual₂_stream).

44 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

DBsenIndividual₁

SELECT
FROM individual₁_ stream
WHERE INTERVAL (1, 2)

❶
Q₁ and Q₂
issued to

,,

0 s 1 s 2 s 3 s

❷

❸
Only valid for Individual₁,

since it originates from
individual₁_ stream

Individual₂

SELECT
FROM individual₂_ stream
WHERE INTERVAL (1, 2)

,,

0 s1 s2 s3 s

❷

→ 15
→ 08
→ 08

❸
Only valid for Individual₂,
since it originates from
individual₂_ stream

Figure 4.6: The query metadata is valid only for the individuals sharing their sensor data.

• The time interval from the INTERVAL clause. Sensor data are usually queried by users
according to the time they are generated [17]. In this thesis we employ Allen’s definition
of the time interval [5]. The time interval of both Q₁ and Q₂ are (1, 2). A timestamp is the
elapsed number of seconds since the creation of the sensor data stream. Considering TSW,
this tells us the beginning timestamp (e.g., 1) and the ending timestamp (e.g., 2) between
which generated data points are selected.

Definition 4.2.5 (Attribute). An attribute 𝑎 ∈ 𝒜 is a physical phenomenon measured by sensors.
The fixed set of attributes provided by a data stream 𝑠 ∈ 𝒮 is denoted by 𝐴𝑠 ⊆ 𝒜.

Definition 4.2.6 (Time Interval). A time interval 𝑡 ∈ 𝒯 is defined as a pair of timestamps which
delimits the beginning and end of a query selection condition, denoted by 𝑡 = (𝑡−, 𝑡+), 𝑡− < 𝑡+,
where 𝑡− is the begin timestamp and 𝑡+ is the end timestamp [5].

4.2.2 Query context

The second information we capture are the query context provided by the DBsen to enable our
model to capture information that enables us to reason on the extracted query parameters.

Hence, for each query, we collect:

• The user issuing the processed query. This enables us to keep track of the knowledge
associated with each user. Let us consider that both Q₁ and Q₂ in Figure 4.5 are issued by
the same user, then the knowledge extracted from both queries will be incorporated in this
user’s knowledge.

• The identities of individuals sharing sensor data in a data stream. The information we
capture from a query is relevant to the individuals associated to the selected data stream
only. As illustrated in Figure 4.6 for Q₁, the knowledge that data points of the attributes ,
, and are known during the interval (1, 2) is valid for Individual₁ only, since the queried

data stream (i.e., individual₁_stream) contains only data generated by sensors worn by
this individual. We assume that the data controller managing DBsen knows the identities
of individuals sharing data for each data stream. We assume that this information is not
provided to users, for the sake of protecting individuals’ privacy. Instead, we assume that
an attacker knows which data stream to query based on external knowledge they obtained.
The individuals’ identity is captured to later reason on knowledge related to the same

4.3. MODELING THE USER’S KNOWLEDGE 45

DBsen

Knowledge extraction
⟨ , (i₁_s, { }), (1, 2), 1 ⟩

⟨ , (i₁_s, { }), (1, 2), 1.75 ⟩

⟨ , (i₁_s, { }), (1, 2), 0.5 ⟩

❽

Data controller

Individual₁0 s1 s2 s3 s

SELECT
FROM individual₁_stream
WHERE INTERVAL (1, 2)

,,

Q₁ selects Individual₁’s sensor data
U
ser₁

Issues
Q₁

❶

❷

❸

Q
uery

param
eters

Forward the query New user’s knowledge

Q
uery

context

❹Identity of the user

❺Individuals’ identities for i₁_s

❻ Environment level for i₁_s

❼ Frequencies for ,,

Figure 4.7: Query metadata extraction workflow. For readability sake, the data stream individ-
ual₁_stream is denoted i₁_s.

individual, as well as determining to which individuals an inferred personal information is
related.

• The environment level in which the sensors of a data stream are deployed. The environment
level of a stream providing only data from wearable sensors corresponds to the individual
wearing those sensors. In case a stream provides data from ambient sensors, selected
data points originate from a specific area or sub-area (e.g., the home or the bathroom in
Orange4Home). The environment level is captured to later reason on knowledge associated
to different data streams, but originate from the same individual, area, or sub-area.

• The frequency at which the data points of an attribute are generated. Considering SSW,
we have to examine the quantity of data points obtained in a selected time interval. As
illustrated in Figure 4.6 for Q₂, the frequencies of sensors is necessary to compute how
many data points generated during the interval (1, 2) for each of the attribute , , and .

Definition 4.2.7 (Individuals’ identity). A contextual identity of an individual 𝑑 ∈ 𝒟 is any
value uniquely identifies an individual (e.g., a auto-increment integer for each individual).

Definition 4.2.8 (Environment level). An environment level 𝑒𝑙 ∶ 𝒮 ↦ ℒ is a function which
specifies at which level sensors of a data stream are deployed.

Definition 4.2.9 (Frequency). Each attribute 𝑎 ∈ 𝒜 has a frequency (in Hz), denoted as 𝑓𝑞𝑎 ∈ ℝ,
at which a sensor generates data points.

Next, we show how those information are combined to model the user’s knowledge.

4.3 Modeling the user’s knowledge

The information extracted from a query is used to determine if an attacker is able to perform an
IAISD or not. To reason over some information, we have to ensure that they corresponds to data
produced in the same environment. Indeed, the attacker needs to combine information generated
from the same individuals and originating from data streams with the same environment level.

46 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

We propose to represent this environment as a data stream and the individuals’ identities.
Hence, two environments are similar if they share the same identities and data streams with the
same environment level. To verify that all the required attributes are queried and that the data
points associated to each of those attribute satisfy the required duration or quantity for TSW or

SSW, respectively, we have to organize the extracted information as attribute-level unit of
knowledge. We propose the Metadata Knowledge Unit (MKU) which models that the queried

data points related to an attribute, originating from an environment, are generated over a time
interval and at a specific frequency.

Definition 4.3.1 (Environment). An environment 𝑒𝑛𝑣 = (𝑠 ∈ 𝒮, 𝐷 ⊆ 𝒟) ∈ ℰ, |𝐷| ≥ 1, is a pair
defining the relationship between a data stream and the individuals’ identities sharing their
data in the stream. Two environments are similar, denoted by ≃, if they share the same set of
identities and reference data streams having the same level. Formally, for 𝑒𝑛𝑣 = (𝑠, 𝐷) ∈ ℰ and
𝑒𝑛𝑣′ = (𝑠′, 𝐷′) ∈ ℰ, 𝑒𝑛𝑣 ≠ 𝑒𝑛𝑣′ ∶ 𝑒𝑛𝑣 ≃ 𝑒𝑛𝑣′ ⇔ 𝐷 = 𝐷′ ∧ 𝑒𝑙(𝑠) = 𝑒𝑙(𝑠′).

Definition 4.3.2 (Metadata Knowledge Unit (MKU)). A metadata knowledge unit 𝑚𝑘𝑢 = ⟨𝑎 ∈
𝒜, 𝑒𝑛𝑣 ∈ ℰ, 𝑡 ∈ 𝒯, 𝑓𝑞𝑎 ∈ ℝ⟩ ∈ ℳ𝒦 represents the information captured from a query selecting:
the physical phenomenon described by an attribute 𝑎; deployed in the environment 𝑒𝑛𝑣 ∈ ℰ; for
a time interval 𝑡; and a frequency 𝑓𝑞𝑎.

All the MKUs extracted from a query constitute the query metadata, i.e., the new knowledge
obtained by a user. As illustrated by Figure 4.7, three MKUs are extracted from Q₁. To do so, the
attributes ❶, the data stream ❷, and the time interval ❸ are extracted from the query. The data
controller provides the identity of the user issuing Q₁ ❹, the identity of individuals ❺ and the
environment level ❻ associated to the selected data stream, the frequencies associated to each
selected attribute ❼. Since only one data stream is selected in the query, a single environment is
modeled here. Finally, the first modeled MKU is associated to the attribute , reference the

single environment, the selected time interval, and its specific frequency (i.e., 1) at which data
points are generated. The second and third MKUs are similar to the first one, except that they
are related to the attribute and , and the frequency 1.75 and 0.5, respectively. The three

MKUs form the query metadata of the query Q₁.

Definition 4.3.3 (Query Metadata). A query metadata 𝑄𝑀𝑄 ⊆ ℳ𝒦 is a set representing the
information captured from a query issued to DBsen, denoted by 𝑄. The set associated to a query
issued by a user 𝑢 ∈ 𝒰 is denoted by 𝑄𝑀𝑢

𝑄. The ith query issued by 𝑢 is denoted by 𝑄𝑀𝑢
𝑄𝑖.

We model the query metadata of each query issued to the DBsen. To detect if a user attempts to
perform an IAISD, we reason on all their query metadata. In consequence, we keep track of all
MKUs a user obtains via the Query History Log (QHL). The QHL of a given user represents their

user’s knowledge.

Definition 4.3.4 (Query History Log (QHL)). A query history log is a function, denoted by
𝑄𝐻𝐿∶ 𝒰 ↦ ℳ𝒦, which associates to each user 𝑢 ∈ 𝒰, the user’s knowledge after having issued 𝑛
queries, denoted by {𝑄1,… ,𝑄𝑛}, is 𝑄𝐻𝐿(𝑢) = ⋃𝑛

𝑖=1𝑄𝑀𝑢
𝑄𝑖.

Let us show how the user’s knowledge is modeled with our two case studies. An attacker
exploiting mHealth as an inference channel has to obtain a user’s knowledge such that MKUs are

referring to the 21 required attributes during a common metadata duration of 2 s (see
Section 4.1.1). Hence, issuing a query denoted by 𝑄 such as SELECT 𝑎1,… , 𝑎21 FROM

mhealth_individual₁_stream WHERE INTERVAL (1, 4) provides attacker 𝑢 with the sufficient data
to infer individual₁’s activities. The environment from which the queried data originate is here
𝑒𝑛𝑣 = (𝑚ℎ𝑒𝑎𝑙𝑡ℎ_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1_𝑠𝑡𝑟𝑒𝑎𝑚, {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1}). The corresponding query metadata 𝑄𝑀𝑢

𝑄

4.4. MODELING INFERENCE CHANNELS 47

Symbol Description

𝑠 ∈ 𝒮 A sensor data stream.
𝐷𝐵𝑠𝑒𝑛 ⊆ 𝒮 A sensor database DBsen containing data streams.

𝑢 ∈ 𝒰 A user issuing queries to 𝐷𝐵𝑠𝑒𝑛.
𝑎 ∈ 𝒜 An attribute, i.e., the name of a physical phenomenon.

𝐴𝑠 ⊆ 𝒜 Attributes which can be selected in data stream 𝑠.
𝑡 ∈ 𝒯 A time interval.
𝑑 ∈ 𝒟 An individual’s identity.

𝑒𝑙 ∶ 𝒮 ↦ ℒ The environment level of a data stream.
𝑓𝑞𝑎 ∈ ℝ The generation frequency of attribute 𝑎.
𝑒𝑛𝑣 ∈ ℰ An environment in which sensor data are generated.

𝑚𝑘𝑢 ∈ ℳ𝒦 A metadata knowledge unit extracted from a query.
𝑄𝑀𝑢

𝑄𝑖 ⊆ ℳ𝒦 A query metadata extracted from a query 𝑄𝑖 issued by user 𝑢.
𝑄𝐻𝐿∶ 𝒰 ↦ ℳ𝒦 The users’ knowledge (Query History Log).

Table 4.1: Symbols defined to model user’s knowledge in RICE-M.

represents the following set of MKUs: 𝑄𝑀𝑢
𝑄 = { ⟨𝑎𝑘, 𝑒𝑛𝑣, (1, 4), 𝑓𝑞𝑎𝑘⟩ ∣ 1 ≤ 𝑘 ≤ 21 }. In the

Orange4Home case study, an attacker has to obtain from a specific environment (e.g., the home) a
quantity of 20 or more data points, generated by the one or multiple sensors in this environment,
over a specific temporal duration (see Section 4.1.2). Issuing a query, denoted by 𝑄′, such as
SELECT 𝑎15, 𝑎123 FROM orange4home_stream WHERE INTERVAL (10, 20) provides the attacker 𝑢

with the required data to infer the home inhabitant’s activities. The environment from which the
queried data originate is here 𝑒𝑛𝑣 = (𝑜𝑟𝑎𝑛𝑔𝑒4ℎ𝑜𝑚𝑒_𝑠𝑡𝑟𝑒𝑎𝑚, {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙2}). The resulting query

metadata correspond to 𝑄𝑀𝑢
𝑄′ = { ⟨𝑎15, 𝑒𝑛𝑣, (10, 20), 𝑓𝑞𝑎15⟩, ⟨𝑎123, 𝑒𝑛𝑣, (10, 20), 𝑓𝑞𝑎123⟩ }.

To determine if the queries 𝑄 and 𝑄′ lead to an inference, we have to reason on the modeled
MKUs. Let us first consider the query metadata 𝑄𝑀𝑢

𝑄 related to the mHealth case study. We can
see that each of the required attributes (i.e., all the 𝑎𝑘), generated for the same individual

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, are selected over a common interval having a duration of 2 s. For the Orange4Home
case study, let us consider that in 𝑄𝑀𝑢

𝑄′, the frequencies 𝑓𝑞𝑎15 = 0.5 and 𝑓𝑞𝑎123 = 1.25.
Considering the time interval selected in 𝑄′, we see that the quantity of obtained data points is
equal to 18 for 𝑎15 and 6 for 𝑓𝑞𝑎123, hence more that 20 data points are selected in total. In both
cases, the modeled MKUs enable us to detect that each query performs an IAISD exploiting a

different inference channel.

Our proposed representation, i.e., the Metadata Knowledge Unit (MKU), enables representing
all the required information to detect if a user’s knowledge enables them, or not, to perform an
IAISD. To facilitate future references to our formalization of the user’s knowledge, Table 4.1
gives an overview of all the defined symbols. To perform this detection, an InfDS has to be

provided with the descriptions of the inference channels attackers can exploit. In the following
section, we formally present how we model the inference channels, based on the proposed user’s

knowledge representation.

4.4 Modeling inference channels

Attackers query the sensor database and are able to gather enough sensor data guided by their
background knowledge. Besides modeling the user’s knowledge, an InfDS has to model the core
of the attackers’ background knowledge, i.e., the description of those constraints. In RICE-M,

48 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

QHL

, , …

Δ(𝑡) ≥ 1 s

𝑑𝑝 (.) > 5

𝑝

Figure 4.8: A pattern filtering from a QHL the MKUs referencing an attribute, for a duration of
at least one seconds, and for a quantity of data points greater than five.

we capture those descriptions as inference channels to endow an InfDS with the background
knowledge that an administrator expects the attackers to leverage in IAISDs, as depicted in
Figure 4.1. In the following section, we define the concepts used to formally model those

inference channels.

4.4.1 Concept definitions

To describe the second part of our model focusing on inference channels, we define, illustrate,
and formalize: how the MKUs related to an inference channel are filtered from the user’s

knowledge based on the data they reference (e.g., attributes); the conditioned filtering which
determines if a subset of a user’s knowledge enables them to exploit an inference channel; how

the personal information inferred when exploiting an inference channel is modeled.

Filtering the user’s knowledge

Let us consider a given user 𝑢 ∈ 𝒰 such as user 𝑢 has the user’s knowledge 𝑄𝐻𝐿(𝑢), containing
MKUs which capture both: a diversity of metadata related to the inferences that the
administrator of the InfDS aims to detect, and sensor data originating from different

environment levels, e.g., generated from the wearable sensors of a single individual in mHealth,
or the ambient sensors within a smart-home in Orange4Home (see Section 4.1.2). Before

checking if a 𝑄𝐻𝐿(𝑢) meets the constraints of a modeled inference channel, an InfDS has to
filter from the user’s knowledge, the MKUs originating from similar environments and

capturing information related to an inference channel only. In the following, the name of each
new concept is emphasized and its formal definition is provided below by using the same name.
Let us illustrate this concept using Figure 4.8. The QHL on the left side contains different MKUs
(e.g., referencing different attributes). A hypothetical inference channel requires knowledge of

the single attribute . We aim to reason on all MKUs that reference this attribute for time
intervals with a duration Δ(𝑡) of at least 1 s and a quantity of obtained data points greater than 5.
To do so, we use the pattern 𝑝 depicted as a purple bottleneck, which provides the set of all

MKUs that met our required constraints.

Definition 4.4.1 (Duration). The duration is a function Δ∶ 𝒯 ↦ ℝ such that 𝑡 = (𝑡−, 𝑡+) ∈
𝒯, Δ(𝑡) = 𝑡+ − 𝑡−.

Definition 4.4.2 (Quantity). The quantity is a function 𝑑𝑝∶ 𝒯 × ℝ ↦ ℤ such that 𝑑𝑝𝑎(𝑡, 𝑓𝑞𝑎) =
⌊Δ(𝑡)/𝑓𝑞𝑎⌋ for an attribute 𝑎 ∈ 𝒜. For the sake of simplicity, and without loss of generality, we

4.4. MODELING INFERENCE CHANNELS 49

MK𝑝 ,𝑝 ,𝑝

⊢

⊢

⊢

𝑚𝑘𝑢1 𝑚𝑘𝑢2 𝑚𝑘𝑢3 𝑚𝑘𝑢4

𝑚𝑘𝑢5 𝑚𝑘𝑢6

𝑚𝑘𝑢7 𝑚𝑘𝑢8 𝑚𝑘𝑢9 𝑚𝑘𝑢10 𝑚𝑘𝑢11

Δ(𝑡𝑟𝑒𝑓) < 2 s
✖

Δ(𝑡𝑟𝑒𝑓) ≥ 2 s
✔

Δ(𝑡𝑟𝑒𝑓) < 2 s
✖

Figure 4.9: The MKUs 𝑚𝑘𝑢2, 𝑚𝑘𝑢5, and 𝑚𝑘𝑢8 are identified by the constrained patterns filter as
the subset of the patterns which satisfies the constraint of knowing three attributes for a common
time interval with a duration of at least two seconds.

assume that in an interval 𝑡 = (𝑡−, 𝑡+) ∈ 𝒯, 𝑡− corresponds to the timestamp of the first selected
data point.

Definition 4.4.3 (Pattern). A pattern 𝑝 ∈ 𝒫, 𝑝∶ ℳ𝒦 × ℰ ↦ ℳ𝒦𝑝, is a function which filters
MKUs referencing similar environments, the same attribute, and have specific metadata duration
or metadata quantity. The filtered set is denoted by ℳ𝒦𝑝 ⊆ ℳ𝒦.

For example, in our first case study mHealth, the MKUs to consider must: refer to one of the 21
attributes (see Section 4.1.1) originating from the environment of a given data stream 𝑠 ∈ 𝒮, with

a time interval having a non null duration, and a non null quantity of selected data points
(otherwise, the user did not obtain any data). Considering the first attribute of this case study,
i.e., the acceleration from the chest sensor (X axis) (see Section 4.1.1) denoted by 𝑎1 for the sake of

readability, the pattern defining the expected MKUs from a given set 𝑀𝐾 ⊆ ℳ𝒦 is:

𝑝(𝑀𝐾, 𝑒𝑛𝑣′) = {𝑚𝑘𝑢 ∣ ∃ 𝑚𝑘𝑢 = ⟨𝑎, 𝑒𝑛𝑣, 𝑡, 𝑓𝑞𝑎⟩ ∈ 𝑀𝐾∶ 𝑎 = 𝑎1 ∧ 𝑒𝑛𝑣 ≃ 𝑒𝑛𝑣′ ∧ (4.4.1)
Δ(𝑡) > 0 ∧ 𝑑𝑝𝑎(𝑡, 𝑓𝑞𝑎) > 0 } (4.4.2)

Similarly, considering our second case study Orange4Home, the MKUs to consider must: refer to
any attribute, originate from the environment of a given data stream 𝑠, with a time interval
having a non null duration, and a non null quantity of selected data points. Considering a

random attribute of this case study, e.g., bathroom heater temperature [42] denoted by 𝑎𝑏ℎ𝑡, the
related pattern for a given set 𝑀𝐾 is Equation 4.4.1, where 𝑎1 is replaced by 𝑎𝑏ℎ𝑡.

By defining patterns for each attribute required in an inference channel, we can filter from a
user’s knowledge all the MKUs that have to be analyzed. To determine if a subset of those MKUs
enables an attacker to exploit an inference channel, we need to represent the constraints that

they must satisfy.

Constrained filtering over the patterns

As illustrated in Figure 4.1, upon receiving from a user 𝑢 ∈ 𝒰 a new query 𝑄, the InfDS detects if
the newly modeled query metadata, denoted by 𝑄𝑀𝑢

𝑄, and their previously gained knowledge,

50 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

d ∶ 𝒯 ×𝒯 ↦ {⊤,⊥}
𝑡 = (𝑡−, 𝑡+) ∈ 𝒯, 𝑡′ = (𝑡′−, 𝑡′+) ∈ 𝒯 ∶ 𝑡′ d 𝑡

𝑡− 𝑡+

𝑡′− 𝑡′+

Figure 4.10: During relationship in interval algebra [5].

denoted by 𝑄𝐻𝐿(𝑢), enable them to perform an IAISD. Let us illustrate this detection by using
Figure 4.9. The set MK𝑝 ,𝑝 ,𝑝 on the left side is formed by the three patterns (from left to right)

describing MKUs that reference the attribute depicted by , , and (from top to bottom),
respectively. It represents the user’s knowledge 𝑄𝑀𝑢

𝑄 ∪ 𝑄𝐻𝐿(𝑢) considered for the detection.
The right side represents the same MKUs as time intervals aligned according to the referenced
attributes. For instance, we see that 𝑚𝑘𝑢1 to 𝑚𝑘𝑢4 are related to the attribute . In this example,
we consider that an inference channel is exploited if it exists three MKUs referencing each a

distinct attribute, and sharing the same time interval 𝑡𝑟𝑒𝑓 with a duration of at least 2 s. Such a
situation exists since the MKUs 𝑚𝑘𝑢2, 𝑚𝑘𝑢5, and 𝑚𝑘𝑢8 reference each one of the three required
attributes and share a common interval 𝑡𝑟𝑒𝑓 with a suitable duration. In this situation, attacker

𝑢’s knowledge enables them to perform an IAISD.
Since the pre-processing steps performed before training a ML model are constraining the input
sensor data, we consider them as mandatory steps that guide the queries issued by an attacker to
obtain suitable sensor data (see Section 2.1.4). In RICE-M, we model constraints as filters over
the patterns. The filters determine if a subset of the patterns contains MKUs describing that they
have obtained data points related to the required attributes, generated during a common time
interval, with a suitable duration (e.g., TSW), or with a required number of points (e.g., SSW).
Hence, the resulting set of MKUs is constrained according to the modeled constraints. We refer

to this filter as a Constrained Patterns Filter (CPF).

Definition 4.4.4 (Constrained Patterns Filter (CPF)). A constrained patterns filter 𝑓 ∈ ℱ,
𝑓∶ 𝑀𝐾𝑃 ↦ ℳ𝒦f, is a fonction over a set of MKUs, denoted by 𝑀𝐾𝑃 ⊆ ℳ𝒦, described by the set
of patterns, denoted by 𝑃, in the inference channel. In case a subset of those MKUs satisfies the
encoded constraint, it extracts the subset 𝑀𝐾𝑓 ⊆ 𝑀𝐾𝑃. Otherwise, it returns an empty set.

Modeling TSW and SSW as a CPF implies the definition of logical goals parametrized by a
specific quantity of collected data points or a duration during which they are generated. Those
values can change depending on the environment in which sensor data are collected from. In

Orange4Home, the value associated to the quantity is fixed to 20 data points. The value
associated to the duration depends on the considered environment (at home level or at room

level). If two distinct users query sensor data from the bathroom, and the bedroom, respectively,
then, the duration to meet w.r.t. the TSW is different (see Section 4.1.2). Consequently, the

modelization of constraints for inference channels has to be generic to cover this diversity of
settings. To reason about the time interval, in this thesis we employ Allen’s interval algebra [5].

For the sake of readability, we introduce the different relationships when using them.
Considering once again mHealth, the set 𝑀𝐾𝑝1,…,𝑝21 corresponds to all the MKUs referencing one
of the 21 attributes, defined in this case study, and associated to the set of individuals’ identities
𝐷. In this inference channel, the constraints are related to the TSW. Informally, the constraint
encodes the fact that, if it exists a time interval with a duration equal or greater than 2 s, common
to a subset of 𝑀𝐾𝑝1,…,𝑝21 containing MKUs referencing all the required attributes, then the user’s
knowledge enables the attacker to perform an attack. Here, we employ from Allen’s interval

algebra [5] the relationship during, denoted by the operator d and illustrated by Figure 4.10, to
verify that an interval occurs during the interval referenced in an MKU. In other words, it means

4.4. MODELING INFERENCE CHANNELS 51

that the attacker has gathered the necessary sensor data, during the right duration, to exploit a
mining algorithm. For mHealth, the required duration is equal to 2 s, since it is independent
from the environment. Indeed, the constraint can be defined for this set of MKUs, without

considering from which data stream they are related, because all sensors are wearable, hence
only a single individual is referenced in those MKUs. Formally, this constraint is defined as:

𝑓(𝑀𝐾𝑝1,…,𝑝21) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑀𝐾 ′ ⊆ 𝑀𝐾𝑝1,…,𝑝21, if ∃ 𝑡𝑟𝑒𝑓 ∈ 𝒯 ∶ Δ(𝑡𝑟𝑒𝑓) ≥ 2 s,
∃ 𝑎 ∈ {𝑎1,… , 𝑎21}, ∃! ⟨𝑎, _, 𝑡, _⟩ ∈ 𝑀𝐾 ′ ∶ 𝑡𝑟𝑒𝑓 d 𝑡

∅, otherwise
(4.4.3)

Now considering Orange4Home, like for mHealth, the set 𝑀𝐾𝑝1,…,𝑝256 corresponds to all the
MKUs referencing one of the 256 attributes of this case study, and associated to the set of

individuals’ identities 𝐷. Here 𝑝1 denotes the MKUs related to the first attribute in
Orange4Home, whereas in the previous paragraph, 𝑝1 denotes the first attribute of mHealth.

Informally, the CPF encodes the fact that, if a time interval exists, having a duration specific to
the environment where data are queried, common to a subset of 𝑀𝐾𝑝1,…,𝑝256 where the total

quantity of data points is equal or greater than 20, then an attack is detected. In other words, it
means that the attacker has gathered the necessary amount of data points, for the right period of

time, to exploit a mining algorithm. For instance, at the home level (see Section 4.1.2), the
required duration is set to 15 s. The required quantity is set to 20, since it is independent from

any environment level. Formally, for the home level, the constraint is defined as:

𝑓(𝑀𝐾𝑝1,…,𝑝256) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑀𝐾 ′ ⊆ 𝑀𝐾𝑝1,…,𝑝256, if ∃ 𝑡𝑟𝑒𝑓 ∈ 𝒯 ∶ Δ(𝑡𝑟𝑒𝑓) ≥ 15 s,
∃ 𝑎 ∈ {𝑎1,… , 𝑎256}, ∃! ⟨𝑎, _, 𝑡, _⟩ ∈ 𝑀𝐾 ′ ∶ 𝑡𝑟𝑒𝑓 d 𝑡 ∧
∑⟨𝑎,_,𝑡,𝑓𝑞𝑎⟩∈𝑀𝐾 ′ 𝑑𝑝𝑎(𝑡, 𝑓𝑞𝑎) ≥ 20

∅, otherwise
(4.4.4)

The constraints are modeled as constraints over MKUs. Yet, when an attacker has the required
user’s knowledge to perform an IAISD, they are able to infer some personal information related

to an individual. The final concept to introduce is the representation of the inferrable
knowledge obtained when exploiting an inference channel.

The inferred personal information

Upon the exploitation of an inference channel, an attacker infers some personal information
about an individual. This personal information is not stored within the sensor database used by
the attacker. Since in IAISDs, attackers exploit data mining algorithms as inference channels,

the knowledge they obtain on an individual usually corresponds to a distribution of
probabilities over values. For instance, in mHealth the knowledge corresponds to human

activities performed by individuals. For the reasons explained in Section 3.5, in our model, we
represent both inference channels and user’s knowledge at the metadata level. It implies that an
InfDS cannot determine the exact inferred distribution. Consequently, via the description of
inference channels provided to an InfDS by its administrator, as illustrated in Figure 4.1, they

have to define the distribution of probabilities that an attacker obtains upon exploiting a
channel. This process is illustrated in Section 4.1 for our two case studies. Both distributions of
probabilities are obtained by reproducing the training proposed by Banos et al. [15] and Cumin

52 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

et al. [42], for mHealth and Orange4Home, respectively. Then, by extracting the learned
distribution from the models. The difficulty of this process relies on the reproducibility of the
training. The obtained distribution is as exact as the model is accurate. The inferrable knowledge
is modeled as a random variable describing an inferrable attribute (e.g., human activities), having

a given domain of values (e.g., cycling, climbing stairs, and so on), and the distribution of
probabilities over this domain. In the following definition, we formally define the inferrable

knowledge obtained by attackers.

Definition 4.4.5 (Inferrable attribute). An inferrable attribute 𝑎𝑖𝑛𝑓 ∈ 𝐴𝑖𝑛𝑓 denotes a personal
information that can be inferred by an attacker via an inference channel. Such an attribute
cannot be queried from a sensor database, formally 𝐴𝑖𝑛𝑓∩𝐴 = ∅. Each attribute has a non-empty
domain of values, denoted by 𝑑𝑜𝑚(𝑎𝑖𝑛𝑓).

Definition 4.4.6 (Inferrable knowledge). An inferrable knowledge 𝑋 ∈ 𝒳 is a random variable
related to an inferrable attribute. It assigns a probability to each value in the domain of an
inferrable attribute. Formally, ∀ 𝑎𝑖𝑛𝑓 ∈ 𝐴𝑖𝑛𝑓, 𝑋∶ 𝑑𝑜𝑚(𝑎𝑖𝑛𝑓) ↦ [0, 1]

Considering mHealth, the inferrable attribute is denoted by 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑛𝑓 = {standing
still,…,jumping forwards and backwards} as depicted in Figure 4.2. For Orange4Home, the

inferrable attribute is denoted 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑛𝑓 = {cleaning,…,watching tv} as depicted in Figure 4.3.
In mHealth, the corresponding inferrable knowledge, denoted by 𝑋𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑛𝑓, is the distribution
over the activities illustrated in Figure 4.2. Similarly, for Orange4Home, the corresponding

inferrable knowledge, also denoted by 𝑋𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑛𝑓, is illustrated in Figure 4.3. This distribution
thus describes a generic knowledge that the attacker obtains about a targeted individual.

In the next section, we formally present how those concepts interact to enable the detection of
IAISDs.

4.4.2 Constraints as filters for the user’s knowledge

Now that we have defined each concept, we formalize the definition of inference channel
provided at the beginning of Chapter 1. Each inference channel is made of:

• The patterns defining the expected subset of MKUs that an attacker must have obtained

• The CPFs that filter from the patterns a subset of MKUs describing that this attacker has
obtained all the required sensor data

• The inferrable knowledge obtained by the attacker, in case such a subset if filtered from
the attacker’s knowledge.

Once defined by an administrator, all those descriptions are registered by an InfDS in the
Inference Channel Repository (ICR), as illustrated in Figure 4.1, and designated by a unique

inference channel identifier.

Definition 4.4.7 (Inference Channel). An inference channel 𝑖𝑐 = ⟨𝑃 ⊆ 𝒫, 𝐹 ⊆ ℱ, 𝑋 ∈ 𝒳⟩ ∈
ℐ𝒞, |𝑃| > 0, |𝐹| > 0 is a tuple whose members are: a set of patterns 𝑃 describing the MKUs
that the constraints have to consider; a set of constraints 𝐹 defining the constraints that must be
validated to exploit the channel; the inferrable knowledge 𝑋 obtained upon validation of the
constraints.

4.5. DISCUSSION 53

Definition 4.4.8 (Inference Channel Repository). The inference channel repository 𝐼𝐶𝑅∶ ℐ ↦
ℐ𝒞 is a function representing all known descriptions of inference channels registered by an
InfDS.

Definition 4.4.9 (Inference Channel Identifier). An identifier 𝑖 ∈ ℐ designates uniquely an
inference channel. The description of an inference channel identified by 𝑖 is retrieved via
𝐼𝐶𝑅(𝑖) = ⟨𝑃𝑖, 𝐹𝑖, 𝑋𝑖⟩. For the sake of readability, we identify an inference channel 𝑖𝑐 with its
identifier 𝑖.

To conclude the description of our two case studies, as inference channels, we summarize the
instantiated concept. For the sake of readability, mHealth and Orange4Home are associated to

the identifiers 𝑖 = 0 and 𝑖 = 1, respectively.
Considering mHealth first, the patterns are defined as 𝑃0 = {𝑝1,… , 𝑝21}, where each pattern

describes the MKUs referencing one of the 21 required attributes (see Section 4.1.1) and a time
interval having a non null duration, as formalized in Equation 4.4.1 for the attribute 𝑎1. This

channel is materialized by 𝐹0 = {𝑓} which encodes the CPF used to check if among the set of all
MKUs described by 𝑃0, it exists a subset referencing all required attributes and having a shared
time interval having a duration of at least 2 s, as formalized in Equation 4.4.3. The inferrable
knowledge 𝑋0, obtained in case the channel is exploited, corresponds to the distribution of
probabilities over all human activities considered in mHealth, illustrated by Figure 4.2 and
formalized as the first random variable 𝑋𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑛𝑓 in Section 4.4.1. Hence, we describe the

inference channel related to mHealth as ⟨𝑃0, 𝐹0, 𝑋0⟩.
Similarly, for Orange4Home the patterns are defined as 𝑃1 = {𝑝1,… , 𝑝256}, where each pattern
characterizes the MKUs referencing one of the 256 required attributes (see Section 4.1.2), with a
time interval having a non null duration, and a non null number of selected data points. The
single constraint 𝐹1 = {𝑓 ′} which enables verifying that in the MKUs described by 𝑃1, it exists a
subset which contains a common temporal interval with a duration associated to the data stream
environment (e.g., 15 s in the bathroom, see Section 4.1.2), and at least 20 selected data points.
This constraint is formalized by Equation 4.4.4. The inferrable knowledge 𝑋1 corresponds to the
distribution of probabilities over the human activities considered in Orange4Home, illustrated
by Figure 4.3 and formalized as the second random variable 𝑋𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑛𝑓 in Section 4.4.1. Hence,

we describe the inference channel related to Orange4Home as ⟨𝑃1, 𝐹1, 𝑋1⟩.

Our proposed representation of inference channels used in IAISDs enables the capture of the
constraints associated with the data mining algorithm corresponding each to a distinct inference
channel, as well as the knowledge that an attacker obtains for individuals once performing the
inference. To facilitate future references to the formalization of the inference channels, we have
compiled all the defined symbols in Table 4.2. In the following section, we first discuss how

RICE-M can be extended to further types of constraints and why we model constraints as logical
goals.

4.5 Discussion

In this section, we discuss the open issues related to the incorporation of new types of
constraints and the problems stemming from the direct usage of mining algorithms by a system

to detect IAISDs.

54 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

Symbol Description

𝑝 ∈ 𝒫 A pattern filtering the expected MKUs.
𝑀𝐾𝑃 ⊆ ℳ𝒦 A set of MKUs filtered by the patterns 𝑃 = {𝑝𝑎,… , 𝑝𝑧}.

𝑓 ∈ ℱ A CPF filtering MKUs according to a constraint.
𝑎𝑖𝑛𝑓 ∈ 𝐴𝑖𝑛𝑓 An attribute which can be inferred from an inference channel.
𝑑𝑜𝑚(𝑎𝑖𝑛𝑓) The domain of value of an inferrable attribute.
𝑋𝑎𝑖𝑛𝑓 ∈ 𝒳 A random variable over the values of an inferrable attribute.

𝑖 ∈ ℐ The identifier of an inference channel.
𝑖𝑐 = ⟨𝑃𝑖, 𝐹𝑖, 𝑋𝑖⟩ ∈ ℐ𝒞 The description of the inference channel identified by 𝑖.

𝐼𝐶𝑅∶ ℐ ↦ ℐ𝒞 The repository of associating identifiers and descriptions.

Table 4.2: Symbols defined to model inference channels in RICE-M.

4.5.1 Incorporating more constraints

In this thesis, we focused on two constraints related to sliding windows: (i) Timestamp based
Sliding Window (TSW) and (ii) Sequence based Sliding Window (SSW). They are illustrated via
the two case studies mHealth and Orange4Home, respectively (see Section 4.1). Those two types

of constraints are chosen since they are the most used approaches, based on our study
summarized in Table 2.1. However, other references mining personal information from sensor
data describe other kinds of constraints than the two we consider. As depicted by Table 2.1 in
Chapter 2, constraints such as the Aggregation and the Sampling are used by solutions either
alone or explicitly combined with one of the two constraints we have considered (TSW and
SSW). As a future work, a more generic version of RICE-M needs to consider those two new
constraints. To do so, we could assume that the users query the sensor database using an

extended version of the theoretical grammar illustrated in Figure 4.5a.

Integrating aggregation-constrained inference channels

For the Aggregation, the sensor database can propose a set of aggregation functions that can be
leveraged by a user to directly compute the aggregation of selected data points.

Query structure Let us consider the query 𝑄:

SELECT 𝑓(), 𝑦()
FROM data_stream
WHERE INTERVAL (𝑡−, 𝑡+)

Query 𝑄 selects data points generated within a given time interval for two attributes. Two
different aggregation functions are applied to the selected data points and their outputs are
returned as the query result. The functions 𝑓 and 𝑦 are, for instance, one of the following

{𝐴𝑉𝐺,𝑀𝐸𝐴𝑁, 𝑆𝑈𝑀,𝐶𝑂𝑈𝑁𝑇,𝑀𝐼𝑁,𝑀𝐴𝑋,…}.

MKU structure The used aggregation functions could be directly extracted from the query,
during the extraction of other query parameters shown in Figure 4.7. In addition to the

attributes and the time interval, the resulting MKUs would have a new field, which would either
be empty if no aggregation function is used in the query, or as a value describing each of the
used functions and the corresponding values. The patterns can then filter from the user’s

knowledge, MKUs having an aggregation function. The CPFs can filter those MKUs according to
the used aggregation functions and the attributes.

4.5. DISCUSSION 55

Integrating sampling-constrained inference channels

For the Sampling, the sensor database can offer the possibility to define how to sample data
points in a selected data stream.

Query structure Let us consider the query 𝑄:

SELECT ,
FROM data_stream
WHERE INTERVAL (𝑡−, 𝑡+) AND SAMPLE 0.75

Query 𝑄 selects with an equal probability of 75%, the data points generated during a given time
interval for two attributes. The sensor database can propose more complex functions to define

how selected data points are sampled.

MKU structure Here, the new query parameter corresponds to the sampling technique used.
Like for the Aggregation, the patterns and constraints of an inference channel could refer to this
new parameter to enforce the description of MKUs and the constraints related to the sampling
approach (e.g., the probability threshold value). To be consistant, the descriptions of inference
channels should refer to sampling approaches which could be used to query the sensor database
managed by the data controller. Considering this new type of query parameter implies that it
should be captured by MKUs. In addition to the previous query parameters, the MKUs would
have a new field which is either empty if the sampling clause is not used in the processed query,
or set to one of the type of sampling functions offered by the sensor database. In both cases, the

open challenge is to comprehensibly study which aggregation functions and sampling
techniques are used, as well as the related parameters, to determine the most general

representation to incorporate them in the MKUs, patterns, and constraints.

4.5.2 Logical constraints over the user’s knowledge

Besides the type of constraints considered, in RICE-M the constraints of inference channels are
modeled as logical constraints over the user’s knowledge. It means that, for an attacker to

perform an IAISD, we assume that they need to obtain the exact query metadata described by
those constraints. For instance, in mHealth, data points for 21 attributes must be queried for a
common time interval having a duration of 2 s. In Orange4Home, a quantity of at least 20 data
points, generated during a common time interval having some duration (e.g., 15 s at home level,
see Section 4.1.2). Yet, the attacker may query all required attributes during only 1.75 s, for
mHealth, or 18 data points, for Orange4Home, and still be able to obtain knowledge about a

targeted individual with a high enough certainty. Reasoning over logical goals implies a binary
decision w.r.t. the detection of attacks, and not a computation of the “risk” that a given user

performs an attack based on their issued queries. This stems from the fact that it is difficult to
quantitatively estimate how such a risk evolves, depending on the information obtained by a
user. In other words, is it when querying sensor data for 1.7 s, or 1.75 s, that a user starts to

obtain a “high enough” certainty about the inferrable attribute of the channel?
Using those sensor data as input, one could compare the output of some data mining algorithm
(e.g., the one proposed by Banos et al. [15] or Cumin et al. [44]), and tell when the probability
associated to one of the values of the inferrable attribute is high enough to count as an inference.
However, it implies that: (i) The detection system could run all data mining algorithms and

perform the detection considering all data points previously queried by a user, before answering
an issued query. (ii) To do so, the administrator of the detection system should guarantee that

56 CHAPTER 4. RICE-M: RAW SENSOR DATA BASED INFERENCE CHANNEL MODEL

each data mining algorithm deployed, for each known inference channel, matches the settings
they assume attackers to use when leveraging the same algorithm. While such an approach

would be more precise than modeling constraints as logical goals, it could be quite complicated
to maintain, due to those the two requirements we have exposed. Instead, with RICE-M, the
administrator task is limited to defining the description of inference channels that must be
registered. Even if it relies on an external entity to do so, the descriptions have to be created
once and do not require maintenance. Reasoning on the query metadata, instead of the exact

values of each data point, implies that: the InfDS keeps track of less information, thus reducing
the memory burden of detecting IAISDs; furthermore the system has to process fewer

information when performing this detection.
To model inference channels, besides the representation of constraints, a crucial aspect is to

quantitatively determine the distribution of probabilities of inferrable knowledge. Focusing on
an inference channel, one could keep track of the exact value of data points queried by users,

and use the data mining algorithm associated to this channel to obtain the exact distribution of
probabilities related to the queried data. Yet, running an algorithm for each issued query, and
after the detection, could highly increase the query answer time. Those computation could be
performed in the background to limit its potential overhead. However, if after detecting an

IAISD, the query is answered before estimating the distribution of probabilities, it would lead to
situations where an attacker bypasses other detection systems which did not have time to

consider this distribution. This comes back to the setting depicted by our motivating example in
Section 1.1. Instead, one can model a more generic representation of the inferrable knowledge.
By modeling inference channels with RICE-M, the administrator of an InfDS can leverage any
article that demonstrates how a data mining algorithm is applied to a sensor dataset to infer

personal information. They can reproduce the training of the model presented in the article, and
extract the learned distribution of probabilities. We used this approach to obtain the

distributions of mHealth and Orange4Home, depicted in Figure 4.2 and Figure 4.3, respectively.
Otherwise, the administrator could use other background knowledge to manually define the

suitable distribution.

4.6 Conclusion

In this chapter we have proposed the Raw sensor data based Inference ChannEl Model
(RICE-M), which tackles the challenges related to RQ1 and RQ2. It formalizes how the user’s
knowledge, obtained when querying the sensor database, is represented as a set of metadata units
called Metadata Knowledge Unit (MKU). We illustrate, thanks to the mHealth and Orange4Home
case studies, how different information and environments, in which sensors are deployed, can be

modeled adequately. We present the second part of our model which focuses on modeling
inference channels based on the patterns of MKUs, the set of Constrained Patterns Filter (CPF)

which filters patterns based on the contraints, and the inferrable knowledge that a user obtains
when a non-empty subset of their knowledge satisfies the CPFs. Similarly to the first part, we
illustrate how to model our two case studies, thus demonstrating the expressiveness of RICE-M.
We have discussed the open challenges related to the modelization of other types of constraints
and the logical approach we propose to model sliding windows constraints. To the best of our
knowledge, we propose the first model at metadata level for the task of detecting IAISDs. Yet,
our model does not provide any reasoning capability for such a detection. In the following

chapter, we present our detection system based on RICE-M.

Chapter 5

RICE-Sy: RICE-M based inference detection
System

Based on the knowledge modeling presented in the previous chapter, in this chapter, we will
present RICE-M based inference detection System (RICE-Sy) which is the system detecting an
Inference Attack Involving Sensor Data (IAISD). RICE-Sy is made of two main parts, i.e., the
Knowledge Storage and the Reasoner, which respectively: stores both the Query History Log

(QHL), for each known user, and the description of inference channels to consider registered in
the Inference Channel Repository (ICR), using the representation proposed in Raw sensor data
based Inference ChannEl Model (RICE-M); processes the query metadata to detect if it leads to
an IAISD. To formalize our system, we reuse the symbols defined in Chapter 4. To present our
contribution, we describe the workflow of RICE-Sy and, by using an example we illustrate and

motivate the need of each module constituting the Reasoner.
This chapter is organized as follows: We introduce the general workflow of our proposed system
in Section 5.1. In Section 5.2, we focus on detailing the Reasoner module. We explain how the

detection of IAISDs is performed and we formalize the detection module of RICE-Sy in
Section 5.2.1. We motivate in Section 5.2.2 the need of preparing the user’s knowledge to

perform the detection in every situation. In Section 5.2.3 we present how this preparation is
performed by merging the information referenced by MKUs, and we formalize the consolidation
module of our system. We explain in Section 5.2.4 how only a subset of previously obtained

MKUs can be considered for both the consolidation and the detection modules. In Section 5.2.5,
we formalize the two filtering modules of the Reasoner. We present in Section 5.3 the complete
workflow of our proposed system. We discuss our proposed contribution in Section 5.4 and

conclude this chapter in Section 5.5.

5.1 Generic workflow of RICE-Sy: The Reasoner & The Knowledge Storage

To formally present how the detection of IAISDs is performed by RICE-Sy, we first provide a
global overview of its architecture and workflow illustrated by Figure 5.1. When a user issues a

query to the sensor database ❶, the data controller managing this DBsen extracts the query
knowledge ❷. This process is described in Section 4.3 of the previous chapter. The resulting
query metadata corresponds to the first input of the Reasoner module ❸. The second input

corresponds to the QHL of the user issuing the query ❹. The third input of the Reasoner is the
description of all the known inference channels ❺. Then, by considering the new user’s

knowledge extracted from the query and the user’s knowledge previously obtained by issuing

57

58 CHAPTER 5. RICE-SY: RICE-M BASED INFERENCE DETECTION SYSTEM

Reasoner QHL ICR

Knowledge Storage

Knowledge
extractionData

controller

U
ser

❶

❷

❹

❺
❼

RICE-Sy

❸

❻

Figure 5.1: Generic workflow of RICE-Sy. The knowledge extraction is depicted in Figure 4.7.

𝑚𝑘𝑢1 = ⟨ , _, (0, 1), 3⟩
𝑚𝑘𝑢2 = ⟨ , _, (0, 1), 1.5⟩

𝑄𝑀𝑄1

𝑚𝑘𝑢3 = ⟨ , _, (1.25, 2), 3.75⟩𝑄𝑀𝑄2

𝑚𝑘𝑢4 = ⟨ , _, (1.5, 3), 3⟩𝑄𝑀𝑄3

(a) The initial queries metadata.

⊢

⊢

⊢
0 s 1 s 2 s 3 s

𝑚𝑘𝑢1 𝑚𝑘𝑢4

𝑚𝑘𝑢3

𝑚𝑘𝑢2

(b) The initial QHL, after having processed the initial
queries metadata.

Figure 5.2: Example of an initial user’s knowledge. Since all the MKUs refer the same environ-
ment, it is denoted by _ for the sake of simplicity.

queries, the Reasoner determines if one of the inference channels is exploited, or not, by the user.
Based on this result, the Reasoner notifies the data controller to indicate if the user has gained
some knowledge, or not ❻. In case no IAISD is detected, the Reasoner inserts the new query

metadata in the user’s QHL to keep track of their newly obtained knowledge ❼.
The purpose of the Knowledge Storage module is to maintain two of the Reasoner inputs. The
QHL is automatically updated during each detection. We assume that the administrator of a
RICE-Sy instance regularly performs a technological monitoring. Each time a new inference

channel is identified, the administrator models it using RICE-M, and enriches the ICR with its
representation. Let us illustrate the information in the Knowledge Storage.

We assume that the administrator has described a single inference channel identified by 𝑖 = 2 in
the ICR. The set of patterns 𝑃2 = {𝑝 , 𝑝 , 𝑝 } (see Table 4.2) define the MKUs in 𝑄𝐻𝐿(𝑢)

referencing: the attribute , , or ; similar environments; and a time interval with a non null
duration. The set of Constrained Patterns Filter (CPF) 𝐹2 contains a single CPF 𝑓 defining that
all those attributes must be referenced by MKUs during the same common interval having a

duration of 1 s. The inferrable knowledge 𝑋2 is not relevant in this example.
Moreover, we assume the following hypothesis about our example. A single user 𝑢 ∈ 𝒰 is issuing
queries to the same data stream, denoted by 𝑠 ∈ 𝒮. The following attributes are accessible via the
data stream 𝐴𝑠 = { , , }. The environment related to this data stream contains the identity of
a single individual 𝑑, i.e., 𝑒𝑛𝑣 = (𝑠, {𝑑}). For the shake of readability, 𝑒𝑛𝑣 is denoted by _, since it
is not used in this example. The queries 𝑄1, 𝑄2, and 𝑄3 do not lead to an IAISD according to the

inference channel 𝑖 = 2. As illustrated in Figure 5.2, the three extracted query metadata
depicted in Figure 5.2a lead to the 𝑄𝐻𝐿(𝑢) in Figure 5.2b. The process of updating the QHL ❼ is
straightforward. Let us consider the empty QHL, 𝑄𝐻𝐿(𝑢) = ∅. Processing the query metadata
(i) 𝑄𝑀𝑄1 leads to the insertion of 𝑚𝑘𝑢1 and 𝑚𝑘𝑢2, i.e., 𝑄𝐻𝐿(𝑢) = ∅ ∪ {𝑚𝑘𝑢1, 𝑚𝑘𝑢2} (ii) 𝑄𝑀𝑄2

5.2. THE REASONER MODULE 59

0 s 1 s 2 s 3 s
𝑚𝑘𝑢5 = ⟨ , _, (1.25, 2.25), 1.5⟩𝑄𝑀𝑄4

𝑚𝑘𝑢5

(a) A new query metadata, denoted by 𝑄𝑀𝑄4, which does not lead to an IAISD.

0 s 1 s 2 s 3 s
𝑚𝑘𝑢6 = ⟨ , _, (0, 1), 3.75⟩𝑄𝑀𝑄5

𝑚𝑘𝑢6

(b) A new query metadata, denoted by 𝑄𝑀𝑄5, which leads to an IAISD.

Figure 5.3: Example of new queries metadata. Since all the MKUs refer the same environment, it
is denoted by _ for the sake of simplicity.

leads to 𝑄𝐻𝐿(𝑢) = {𝑚𝑘𝑢1, 𝑚𝑘𝑢2} ∪ {𝑚𝑘𝑢3} and (iii) 𝑄𝑀𝑄3 leads to
𝑄𝐻𝐿(𝑢) = {𝑚𝑘𝑢1, 𝑚𝑘𝑢2, 𝑚𝑘𝑢3} ∪ {𝑚𝑘𝑢4} In this Figure, the time interval of 𝑚𝑘𝑢1 describes that
sensor data generated between 0 s and 1 s in the stream 𝑠 have been selected. At any point in
time, we assume that the QHL contains only queries metadata which does not enable the

exploitation of an inference channel in the ICR. In the following section, we present how the
Reasoner module detects IAISDs.

5.2 The Reasoner module

To intuitively illustrate how the Reasoner module works, let us consider the two queries
metadata illustrated in Figure 5.3. We focus first on an example which does not lead to an

IAISD, then we present the two cases where a query metadata leads to an IAISD.
From this initial state depicted by Figure 5.2, user 𝑢 issues the new query 𝑄4 selecting the single
attribute for a single time interval. As depicted in Figure 5.3a, it results in the query metadata
𝑄𝑀𝑄4. To perform the detection, RICE-Sy has to consider the 𝑚𝑘𝑢5 obtained via 𝑄𝑀𝑄4 and all
MKUs within 𝑄𝐻𝐿(𝑢). Then, the system has to search within the set of all those MKUs to check
if a subset of this user’s knowledge matches the set of patterns 𝑃2 and satisfies the CPF 𝑓. In our
example, we observe how 𝑚𝑘𝑢5 is temporally positioned w.r.t. the other MKUs in Figure 5.2b.

We see that it shares the common interval 𝑡′ = (1.5, 2.25) with the 𝑚𝑘𝑢4 of 𝑄𝑀𝑄3 and
𝑡′′ = (1.25, 2) with the 𝑚𝑘𝑢3 of 𝑄𝑀𝑄2. However, for the inference channel identified by 𝑖 = 2,

both 𝑡′ and 𝑡′′ are: common to MKUs referencing only two of the three attributes in 𝐴𝑠; less than
the expected duration, i.e., Δ(𝑡′) < 1 s and Δ(𝑡′′) < 1 s. Considering both the state of 𝑄𝐻𝐿(𝑢) in
Figure 5.2b and the 𝑄𝑀𝑄4 content (i.e., 𝑚𝑘𝑢5), the new user’s knowledge obtained via 𝑄𝑀𝑄4

does not enable user 𝑢 to exploit the inference channel. The Reasoner notifies the data controller
that user 𝑢 did not infer personal information about the individual 𝑑. Finally, the 𝑚𝑘𝑢5 is

inserted in 𝑄𝐻𝐿(𝑢) to track user 𝑢’s gained knowledge.
Let us consider that a new user 𝑢′ queries DBsen. The two cases where a query metadata 𝑄𝑀𝑄

enables user 𝑢′ to exploit the inference channel occur when:

• Put together with 𝑄𝐻𝐿(𝑢), 𝑄𝑀𝑄 allows to exploit an inference channel.
Let us consider that user 𝑢′ has the QHL depicted by Figure 5.2b. Then, they issue a new
query metadata 𝑄𝑀𝑄5 = {𝑚𝑘𝑢6} illustrated by Figure 5.3b. 𝑚𝑘𝑢6 shares a common time
interval 𝑡′ = (0, 1) with both 𝑚𝑘𝑢1 and 𝑚𝑘𝑢2 of 𝑄𝑀𝑄1. The interval 𝑡′ is common to MKUs
referencing each of the three attributes in𝐴𝑠 and it has a suitable durationΔ(𝑡′) = 1 s. Hence,
considering the initial 𝑄𝐻𝐿(𝑢′), the new user’s knowledge obtained via 𝑄𝑀𝑄5 enables the
user to exploit the inference channel identified by 𝑖 = 2.

60 CHAPTER 5. RICE-SY: RICE-M BASED INFERENCE DETECTION SYSTEM

• 𝑄𝑀𝑄 contains itself the required user’s knowledge to exploit an inference channel.
For instance, let us consider that user 𝑢′ has an empty QHL. They obtain a first query
metadata𝑄𝑀𝑄1′

= {𝑚𝑘𝑢1, 𝑚𝑘𝑢2, 𝑚𝑘𝑢6}, selecting some of the MKUs depicted in Figure 5.2.
Then, those three MKUs enable user 𝑢′ to exploit the inference channel identified by 𝑖 = 2
without leveraging MKUs from 𝑄𝐻𝐿(𝑢′).

Hence, at this generic level, the only task of the Reasoner is to perform the detection of IAISDs
for each query issued by each user. In the following section, we formalize how the detection of

IAISDs is performed by the Reasoner.

5.2.1 The detection module

In our system, the Reasoner incorporates the detection module whose task is to detect IAISDs. For
a given query, this task is formalized as a search problem among a set of MKUs. Users have the
capability to query multiple data streams through a query (see Figure 4.5a). The query metadata

may contain MKUs referencing different identities of individuals. This depends of the
environment in which the selected data points have been generated. The detection task is

formally defined in Definition 5.2.1.

Definition 5.2.1 (Detection). The detection is a function 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∶ ℳ𝒦 × ℐ ↦ 𝒟 × 𝒳. It
searches within a set of MKUs, if a known inference channel can be exploited according to
the environment of the queried sensor data. It returns a set of pairs containing the inferrable
knowledge of each exploited channel, associated with the individuals’ identity referenced by the
MKUs enabling the inference.

The detection module is formalized by Algorithm 5.1. The first main function, denoted by
detection, implements Definition 5.2.1. Since we assume that users are not colluding during a
detection, the considered MKUs are related to a single user 𝑢 ∈ 𝒰. The search set of this problem
is thus the set 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ. The module performs the detection by considering the environments
referenced in the query metadata 𝑄𝑀𝑢

𝑄, since the patterns need to ensure that we reason on
MKUs, from the 𝑄𝐻𝐿(𝑢), referencing similar environments (see Section 4.4.1). The detection is

thus independent from how sensor data are available either as a single data stream or via
multiple streams. Moreover, only the environments referenced in the MKUs of the query

metadata are considered, since it is the query metadata which provides new knowledge which
may lead to an inference. Hence, 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 iterates through each environment referenced in the

new query metadata, and each inference channel in ICR.
The second function, denoted by detection_for, is called for each known inference channel in the
ICR and each environment referenced in the 𝑄𝑀𝑢

𝑄. It first applies the patterns to filter from user
𝑢’s global knowledge, denoted by 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ, the MKUs that have the required attribute, metadata
duration, … considered for this channel. The resulting set is denoted by 𝑀𝐾𝑖 ⊆ 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ. It

corresponds to the input of the CPFs in 𝐹𝑖. If a non-empty subset of the input, denoted by 𝑀𝐾 ′,
satisfies all CPFs, it implies that user 𝑢 has some knowledge originating from the same data
stream, or from similar data streams, which enables them to perform an IAISD for those

individuals. Consequently, the function 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟 returns the inferrable knowledge 𝑋𝑖 that
user 𝑢 infers for the individuals’ identities, denoted by 𝐷. Otherwise, in case a CPF is not
validated, it means that user 𝑢 has no, or not enough, knowledge to exploit the channel

identified by 𝑖. The function then returns an empty set. To illustrate how RICE-Sy performs this
detection, let us instantiate the example presented previously.

Assume user 𝑢 issues a new query to the data stream 𝑠 which provides sensor data shared by the
individual 𝑑. Then, the function detection in Algorithm 5.1 is executed with the following

5.2. THE REASONER MODULE 61

Algorithm 5.1: Detecting IAISDs based on a user’s global knowledge and the ICR.

Inputs:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑄𝑀𝑢
𝑄 User 𝑢’s new query metadata.

𝑄𝐻𝐿(𝑢) User 𝑢’s previously obtained MKUs.
𝐼𝐶𝑅 The inference channel repository.

Output:
⎧⎪⎨⎪⎩
A set of pairs, each containing individuals’ identities
and the inferrable knowledge inferred by user 𝑢.

1 Function detection_for(𝑖, 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ, 𝑒𝑛𝑣 = (_, 𝐷))
2 𝑀𝐾𝑖 ← ⋃𝑝∈𝑃𝑖 𝑝(𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ, 𝑒𝑛𝑣) // MKUs suitable for the channel 𝑖

// If a subset of those MKUs satisfies all the CPFs of the channel 𝑖
3 if 𝑀𝐾𝑖 ≠ ∅ ∧ ∃! 𝑀𝐾 ′ ⊆ 𝑀𝐾𝑖,𝑀𝐾 ′ ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹𝑖 ∶ 𝑀𝐾 ′ ⊆ 𝑓(𝑀𝐾𝑖) then
4 return {(𝐷, 𝑋𝑖)} // The user 𝑢 infers 𝑋𝑖 for 𝐷
5 return ∅

6 Function detection(𝑄𝑀𝑢
𝑄, 𝑄𝐻𝐿(𝑢), 𝐼𝐶𝑅)

7 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← ∅
8 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ ← 𝑄𝑀𝑢

𝑄 ∪ 𝑄𝐻𝐿(𝑢)
9 𝑒𝑛𝑣𝑠 ← { 𝑒𝑛𝑣 ∣ ∃ ⟨_, 𝑒𝑛𝑣, _, _⟩ ∈ 𝑄𝑀𝑢 }

// Checks if, considering one of the query metadata environment
10 foreach 𝑒𝑛𝑣 ∈ 𝑒𝑛𝑣𝑠 do
11 foreach inference channel identifier 𝑖 registered in 𝐼𝐶𝑅 do

// The user 𝑢 exploits, or not, the inference channel identified by 𝑖
12 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∪ 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟(𝑖, 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ, 𝑒𝑛𝑣)
13 return 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

parameters: the new query metadata 𝑄𝑀𝑄4 depicted in Figure 5.3a; user 𝑢’s QHL, denoted by
𝑄𝐻𝐿(𝑢), in the state depicted in Figure 5.2b; the ICR contains a single inference channel

identified by 𝑖 = 2. Hence, 𝐼𝐶𝑅 = {⟨𝑃3, 𝐹3, 𝑋3⟩}. The only environment in 𝑄𝑀𝑄4 is 𝑒𝑛𝑣 = (𝑠, {𝑑}).
The function detection_for is executed once with the following parameters: the inference channel

identifier 𝑖 = 2; the search set 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ = 𝑄𝑀𝑄4 ∪ 𝑄𝐻𝐿(𝑢); the environment 𝑒𝑛𝑣. The set of
patterns applied to the search set 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ results in three distinct subsets: 𝑝 defines the subset
{𝑚𝑘𝑢1, 𝑚𝑘𝑢4}, 𝑝 defines the subset {𝑚𝑘𝑢3}, and 𝑝 defines the subset {𝑚𝑘𝑢2, 𝑚𝑘𝑢5}. The union
of those three subsets is denoted by 𝑀𝐾3. It is equal to 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ, since all MKUs reference: one
of the three attributes in 𝐴𝑠, the same environment 𝑒𝑛𝑣, and a strictly positive duration and

quantity metadata. As presented previously, 𝑀𝐾3 does not satisfy the single CPF in 𝐹3:
𝑓(𝑀𝐾3) = ∅. Consequently, both detection_for and detection return an empty set, thus notifying

the data controller that 𝑄𝑀𝑄4 does not lead to an IAISD.
Let us assume that instead of 𝑄𝑀𝑄4, the function detection receives the query metadata 𝑄𝑀𝑄5

depicted in Figure 5.3b. Once again, only the environment 𝑒𝑛𝑣 is captured. It thus calls
detection_for using the previous parameters values, except for the search set, which is now
𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ = 𝑄𝑀𝑄5 ∪ 𝑄𝐻𝐿(𝑢). The patterns applied to the search set result in: 𝑝 defines the

subset {𝑚𝑘𝑢1, 𝑚𝑘𝑢4}, 𝑝 defines the subset {𝑚𝑘𝑢3, 𝑚𝑘𝑢6}, and 𝑝 defines the subset {𝑚𝑘𝑢2}. As in
the previous example, only a CPF is applied to 𝑀𝐾3: 𝑓(𝑀𝐾3) = {𝑚𝑘𝑢1, 𝑚𝑘𝑢2, 𝑚𝑘𝑢3}.

Consequently, detection_for and then detection returns {({𝑑}, 𝑋2)}. Since the set is not empty, it
notifies the sensor database DBsen that 𝑄𝑀𝑄5 leads to an IAISD.

Now, let us assume that a user 𝑢′ has never issued any queries. Their QHL is thus empty,

62 CHAPTER 5. RICE-SY: RICE-M BASED INFERENCE DETECTION SYSTEM

⊢

⊢

⊢

0 s 1 s 2 s 3 s

𝑚𝑘𝑢1 𝑚𝑘𝑢4

𝑚𝑘𝑢3

𝑚𝑘𝑢2 𝑚𝑘𝑢5

𝑚𝑘𝑢7 = ⟨ , _, (2, 2.75), 3⟩
𝑚𝑘𝑢8 = ⟨ , _, (2, 2.75), 3.75⟩
𝑚𝑘𝑢9 = ⟨ , _, (2, 2.75), 1.5⟩

𝑄𝑀𝑄6

Figure 5.4: New query metadata, denoted by 𝑄𝑀𝑄6, an the QHL obtained after RICE-Sy has
processed 𝑄𝑀𝑄4 in Figure 5.3a. The MKUs of 𝑄𝑀𝑄6 are displayed lower to differentiate them
from the one within the QHL.

𝑄𝐻𝐿(𝑢′) = ∅. The function detection receives the query metadata 𝑄𝑀𝑄1′
= {𝑚𝑘𝑢1, 𝑚𝑘𝑢2, 𝑚𝑘𝑢6}

(see the MKUs in Figure 5.2). Only the environment 𝑒𝑛𝑣 is captured. The function detection_for
uses the previous parameters values, except for the search set, which is now 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ = 𝑄𝑀𝑄1′

.
The patterns filter all the MKUs within the search set, formally 𝑀𝐾3 = 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ. As in the

previous example, only a CPF is applied to 𝑀𝐾3: 𝑓(𝑀𝐾3) = 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ. Consequently,
detection_for and then detection returns {({𝑑}, 𝑋2)}. Since the set is not empty, it notifies the

sensor database DBsen that 𝑄𝑀𝑄1′
leads to an IAISD.

Finally, we consider that an individual, with the identity 𝑑, has sensor data shared via multiple
data streams, instead of a single one. The environment level in the patterns enables RICE-Sy to
reason over MKUs associated to different data streams. To illustrate this situation, we assume
that two data streams 𝑠1 and 𝑠2 exists. Each stream provides the following attributes: 𝐴𝑠1 = { }

and 𝐴𝑠2 = { , }. The two environments are here 𝑒𝑛𝑣1 = (𝑠1, {𝑑}) and 𝑒𝑛𝑣2 = (𝑠2, {𝑑}), which
have the same environment level, i.e., the individual wearing the sensors. The MKUs

{𝑚𝑘𝑢1, 𝑚𝑘𝑢4} reference 𝑒𝑛𝑣1 and the MKUs {𝑚𝑘𝑢2, 𝑚𝑘𝑢3, 𝑚𝑘𝑢5, 𝑚𝑘𝑢6} reference 𝑒𝑛𝑣2. Since both
the individuals’ identity and the environment level are equal, for 𝑄𝑀𝑄4 and 𝑄𝑀𝑄5, the patterns
𝑃3 define a set 𝑀𝐾3 containing the same MKUs than presented in the two previous examples.

Those examples show how, thanks to the detection module, the Reasoner enables RICE-Sy to
detect IAISDs. However, an implicite situation depicted here is that, a user never queries the
DBsen on attributes over time intervals that do not overlap. By doing so, the attacker put together

the data they obtained which leads to an inference situation. In the following section, we
illustrate this problem to motivate the introduction of a new process that we call the

consolidation.

5.2.2 The consolidation of users’ knowledge

Let us consider that user 𝑢 has the 𝑄𝐻𝐿(𝑢) = {𝑚𝑘𝑢1, 𝑚𝑘𝑢2, 𝑚𝑘𝑢3, 𝑚𝑘𝑢4, 𝑚𝑘𝑢5} depicted on the
left side of Figure 5.4. This results from the 𝑄𝐻𝐿(𝑢) in Figure 5.2b and 𝑄𝑀𝑄4 in Figure 5.3a. In

this example, 𝑄𝑀𝑄5 in Figure 5.3b is ignored. Assume now that user 𝑢 issues the query 𝑄6
where the three attributes 𝐴𝑠 are selected during the interval (2, 2.75). The resulting query
metadata is denoted by 𝑄𝑀𝑄6. The three MKUs are displayed next to MKUs in 𝑄𝐻𝐿(𝑢) and
with a vertical offset to signify that they come from 𝑄𝑀𝑢

6 . No new sensor data are queried for
the attribute , since they have already been obtained via 𝑚𝑘𝑢4. Instead, for the attributes and

, 𝑚𝑘𝑢8 and 𝑚𝑘𝑢9 extends to the selected time interval the queried data points of their
respective attribute. Considering the set of CPFs 𝐹2 from our previous example, if we focus on

the attribute , the module proceeds as follows:

5.2. THE REASONER MODULE 63

o ∶ 𝒯 ×𝒯 ↦ {⊤,⊥}
𝑡 = (𝑡−, 𝑡+) ∈ 𝒯, 𝑡′ = (𝑡′−, 𝑡′+) ∈ 𝒯 ∶ 𝑡′ o 𝑡

𝑡− 𝑡+

𝑡′− 𝑡′+

Figure 5.5: Overlapping relationship in interval algebra [5].

1. It checks if 𝑚𝑘𝑢2 contains an interval 𝑡 such that Δ(𝑡) ≥ 1 s, which is true, since 𝑡 = (0, 1).
It checks if the MKUs referencing the other attributes, during (see Figure 4.10) the same
interval as 𝑚𝑘𝑢2, share the same interval. Here, 𝑚𝑘𝑢1 is the only candidate having an
interval that occurs during 𝑡. There is not combination of three MKUs referencing all the
attributes of 𝐴𝑠. The CPF in 𝐹3 is not satisfied.

2. Then it repeats the same process for 𝑚𝑘𝑢5, which has a suitable interval (1.25, 2.25). Here,
the possible combinations are: {𝑚𝑘𝑢5, 𝑚𝑘𝑢3, 𝑚𝑘𝑢4}, {𝑚𝑘𝑢5, 𝑚𝑘𝑢8, 𝑚𝑘𝑢4}, {𝑚𝑘𝑢5, 𝑚𝑘𝑢3, 𝑚𝑘𝑢7},
and {𝑚𝑘𝑢5, 𝑚𝑘𝑢8, 𝑚𝑘𝑢7}. We observe for each set that there is no interval 𝑡 with a duration
greater than or equal to 1 s that has a during relationship (see Figure 4.10) with the intervals
of all the MKUs in a set.

3. Finally, the module stops, since there is no other subset of MKUs referencing different
attributes and having overlapping time intervals.

Yet, we observe that the interval (1.5, 2.75) has a duration greater than 1 s, and that user 𝑢 has a
continuous user’s knowledge over this time interval for each of the three attributes in 𝐴𝑠.

Therefore, equipping the Reasoner with the detection module only is not sufficient. A new
module should enable merging into a single MKU {𝑚𝑘𝑢3, 𝑚𝑘𝑢8} and {𝑚𝑘𝑢5, 𝑚𝑘𝑢9} to allow the
detection module to correctly reason over user 𝑢’s knowledge. In the following section, we
present and formalize the consolidation module which is dedicated to tackle the problem

identified through the example.

5.2.3 The consolidation module

The Reasoner incorporates the consolidation module which ensures that, upon receiving a query
metadata 𝑄𝑀𝑢

𝑄, its MKUs are consolidated with the MKUs in 𝑄𝐻𝐿(𝑢). The detection module is
then capable of properly performing the detection. The consolidation task is formally defined in

Definition 5.2.2.

Definition 5.2.2 (Consolidation). The consolidation is a function 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛∶ ℳ𝒦 ×ℳ𝒦 ↦
ℳ𝒦 ⊆ ℳ𝒦. It is applied to two MKUs 𝑚𝑘𝑢 = ⟨𝑎, 𝑒𝑛𝑣, 𝑡 = (𝑡−, 𝑡+), 𝑓𝑞𝑎⟩ and 𝑚𝑘𝑢′ = ⟨𝑎′, 𝑒𝑛𝑣′, 𝑡′ =
(𝑡′−, 𝑡′+), 𝑓𝑞′𝑎⟩ if 𝑎 = 𝑎′ ∧ 𝑒𝑛𝑣 ≃ 𝑒𝑛𝑣′ ∧ 𝑡 o 𝑡′. The result is a MKU 𝑛𝑒𝑤_𝑚𝑘𝑢 = ⟨𝑎, (𝑚𝑖𝑛(𝑡−, 𝑡′−),
𝑚𝑎𝑥(𝑡+, 𝑡′+)), 𝑓𝑞𝑎⟩. For readability sake, we define the operator⊕ as the application of the function
consolidation between two MKUs.

Intuitively, the role of the consolidation is to prepare the query metadata used in the search set
of the detection module. It ensures that this search set does not contain two MKUs where the
time interval of one (i) occurs during the time interval of the other or (ii) overlaps the time

interval of the other. By doing so, the consolidation tackles the problem illustrated in
Section 5.2.2. We assume that the knowledge extraction process produces a query metadata with
consolidated MKUs. The consolidation can occur when considering, in addition, the MKUs
originating from the QHL. The consolidation module precedes the detection module in the

Reasoner module. Considering the generic workflow illustrated in Figure 5.1, this new module
takes as input the query metadata ❸ and consolidates its MKUs with the MKUs in the QHL ❹.

64 CHAPTER 5. RICE-SY: RICE-M BASED INFERENCE DETECTION SYSTEM

The QHL contains only consolidated MKUs. Hence, we refer to this QHL as the Consolidated
Query History Log (ConsQHL). Performing the consolidation ahead of the detection has two

advantages (i) unlike a just-in-time approach during the detection, MKUs are consolidated only
once and (ii) when no inference is detected, RICE-Sy caches the consolidated MKUs for future

use by updating the ConsQHL.

Algorithm 5.2: Consolidating the MKUs between a query metadata and ConsQHL.

Inputs:
⎧⎪⎨⎪⎩
𝑄𝑀𝑢

𝑄 Query metadata𝑢 ∈ 𝑈.
𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) Consolidated QHL of user 𝑢.

Output:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑀𝐾𝑛𝑒𝑤 Set of newly consolidation MKUs.
𝑄𝑀𝑛𝑒𝑤 Set of MKUs, from 𝑄𝑀𝑢

𝑄, not consolidated with MKUs in 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢).
𝑀𝐾𝑜𝑙𝑑 Set of MKUs from 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢), consolidated with some MKUs in 𝑄𝑢

𝑄.

1 Function consolidation_process(𝑄𝑀𝑢
𝑄, 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢))

2 𝑄𝑀𝑛𝑒𝑤 ← 𝑄𝑀𝑢

3 𝑀𝐾𝑛𝑒𝑤, 𝑀𝐾𝑜𝑙𝑑 ← ∅, ∅
4 foreach (𝑎, 𝑒𝑛𝑣) ∈ { (𝑎, 𝑒𝑛𝑣) ∣ ∃ ⟨𝑎, 𝑒𝑛𝑣, _, _⟩ ∈ 𝑄𝑀𝑢

𝑄 } do
5 𝑀𝐾𝑢𝑠𝑒𝑑 ← ∅ // MKUs used for the consolidation

// MKUs referencing the same attribute and similar environments
6 𝑀𝐾 ← {𝑚𝑘𝑢 ∣ 𝑚𝑘𝑢 = ⟨𝑎′, 𝑒𝑛𝑣′, _, _⟩ ∈ 𝑄𝑀𝑢

𝑄 ∪ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢), 𝑎′ = 𝑎 ∧ 𝑒𝑛𝑣′ ≃ 𝑒𝑛𝑣 }
// MKUs with an interval which occurs during the interval of another MKU

7 𝑀𝐾𝑑 ← {𝑚𝑘𝑢 ∣ ∃ {𝑚𝑘𝑢 = ⟨_, _, 𝑡, _⟩,𝑚𝑘𝑢′ = ⟨_, _, 𝑡′, _⟩} ⊂ 𝑀𝐾, 𝑡 d 𝑡′ }
8 𝑀𝐾𝑢𝑠𝑒𝑑 ← 𝑀𝐾𝑢𝑠𝑒𝑑 ∪𝑀𝐾𝑑 // Those MKUs are used for the consolidation

// All clusters 𝐶𝐿 of ordered MKUs having overlapping intervals
9 foreach 𝐶𝐿 ⊆ 𝑀𝐾, ∀ {𝑚𝑘𝑢 = ⟨_, _, 𝑡, _⟩,𝑚𝑘𝑢′ = ⟨_, _, 𝑡′, _⟩} ⊂ 𝐶𝐿, 𝑡 < 𝑡′ ∶ 𝑡 o 𝑡′ do

// Are consolidated into a new MKU
10 𝑛𝑒𝑤_𝑚𝑘𝑢 ← applies Definition 5.2.2 to 𝐶𝐿 until a single MKU is remaining
11 𝑀𝐾𝑛𝑒𝑤 ← 𝑀𝐾𝑛𝑒𝑤 ∪ {𝑛𝑒𝑤_𝑚𝑘𝑢}
12 𝑀𝐾𝑢𝑠𝑒𝑑 ← 𝑀𝐾𝑢𝑠𝑒𝑑 ∪ 𝐶𝐿 // The cluster is used for the consolidation
13 𝑄𝑀𝑛𝑒𝑤 ← 𝑄𝑀𝑛𝑒𝑤 ∖ (𝑀𝐾𝑢𝑠𝑒𝑑 ∩ 𝑄𝑀𝑢

𝑄) // Remove used MKUs ⊆ the query
metadata

14 𝑀𝐾𝑜𝑙𝑑 ← 𝑀𝐾𝑜𝑙𝑑 ∪ (𝑀𝐾𝑢𝑠𝑒𝑑 ∩ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢)) // Remove used MKUs ⊆ the ConsQHL
15 return 𝑀𝐾𝑛𝑒𝑤, 𝑄𝑀𝑛𝑒𝑤, 𝑀𝐾𝑜𝑙𝑑

The consolidation module is formalized by Algorithm 5.2. The function consolidation_process
considers as input, the MKUs originating from user 𝑢’s new query metadata, denoted by 𝑄𝑀𝑢

𝑄,
and 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢). The output corresponds to three sets of MKUs denoted by 𝑀𝐾𝑛𝑒𝑤, 𝑄𝑀𝑛𝑒𝑤,
and 𝑀𝐾𝑜𝑙𝑑. Respectively, they represent the newly created MKUs; the MKUs originating from
the query metadata which are not consolidated; and the MKUs originating from the QHL, which
have been consolidated with MKUs from the query metadata. In case the query metadata does
not lead to an IAISD, the set 𝑀𝐾𝑜𝑙𝑑 corresponds to old consolidated MKUs to remove from the
ConsQHL. The consolidation module provides to the detection module the prepared query

metadata 𝑄𝑀𝑢
𝑄 = 𝑀𝐾𝑛𝑒𝑤 ∪ 𝑄𝑀𝑛𝑒𝑤. To illustrate the construction of those set, let us consider the
two examples which reuse some of the MKUs depicted in Figure 5.4.

For the first case, we assume that an MKU denoted by 𝑚𝑘𝑢7, references the same attribute and
a similar environment as a second MKU denoted by 𝑚𝑘𝑢4, as depicted in Figure 5.6. If the
interval 𝑡′ of 𝑚𝑘𝑢7 occurs during the interval 𝑡 of 𝑚𝑘𝑢4, according to Allen’s relationship

5.2. THE REASONER MODULE 65

𝑚𝑘𝑢4 = ⟨𝑎 = , 𝑒𝑛𝑣, 𝑡 = (1.5, 3), 3 ⟩

𝑚𝑘𝑢7 = ⟨𝑎′ = , 𝑒𝑛𝑣′, 𝑡′ = (2, 2.75), 3 ⟩

1.5 3

2 2.75

1.5 3

𝑚𝑘𝑢4 = ⟨ , 𝑒𝑛𝑣, 𝑡, 3 ⟩

If 𝑎 = 𝑎′
∧ 𝑒𝑛𝑣 ≃ 𝑒𝑛𝑣′
∧ 𝑡′ d 𝑡

Figure 5.6: Consolidation using the during relationship depicted in Figure 4.10. It discards 𝑚𝑘𝑢7
and keeps 𝑚𝑘𝑢4 depicted in Figure 5.4.

𝑚𝑘𝑢5 = ⟨𝑎 = , 𝑒𝑛𝑣, 𝑡 = (1.25, 2.25), 1.5 ⟩

𝑚𝑘𝑢9 = ⟨𝑎′ = , 𝑒𝑛𝑣′, 𝑡′ = (2, 2.75), 1.5 ⟩

1.25 2.25

2 2.75

1.25

2.75

𝑛𝑒𝑤_𝑚𝑘𝑢 = ⟨ , 𝑒𝑛𝑣, (1.25, 2.75), 1.5 ⟩

If 𝑎 = 𝑎′
∧ 𝑒𝑛𝑣 ≃ 𝑒𝑛𝑣′
∧ 𝑡′ o 𝑡

Figure 5.7: Consolidation using the overlapping relationship depicted in Figure 5.5. The 𝑚𝑘𝑢5
and 𝑚𝑘𝑢9 depicted in Figure 5.4 are consolidated into 𝑛𝑒𝑤_𝑚𝑘𝑢.

depicted in Figure 4.10, then 𝑚𝑘𝑢7 is discarded. This process is done in Line 7 of Algorithm 5.2.
All the MKUs that are in a situation similar to 𝑚𝑘𝑢7 in our example are put aside in Line 8. They
are removed from 𝑄𝑀𝑛𝑒𝑤 in Line 13 or added to 𝑀𝐾𝑜𝑙𝑑 in Line 14 in case they originate from the
query metadata 𝑄𝑀𝑢

𝑄 or 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢), respectively. No new MKUs are consolidated in this case.
Considering that 𝑄𝑀𝑢

𝑄 = {𝑚𝑘𝑢7} and 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) = {𝑚𝑘𝑢4}, the process returns 𝑀𝐾𝑛𝑒𝑤 = ∅,
𝑄𝑀𝑛𝑒𝑤 = ∅, and 𝑀𝐾𝑜𝑙𝑑 = ∅. Hence, 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ = ∅.

For the second case, in Figure 5.7 𝑚𝑘𝑢5 and 𝑚𝑘𝑢9 reference: the same attribute ; similar
environments; and time intervals that are overlapping according to Allen’s relationship depicted

in Figure 5.5. In this case, they are consolidated in a new MKU denoted by 𝑛𝑒𝑤_𝑚𝑘𝑢. It
references the attribute and the environment of 𝑚𝑘𝑢5, since both are similar. The time interval
𝑡′′ replaces 𝑡 and 𝑡′, since they are overlapping each other. All the MKUs that have overlapping
time intervals (e.g., 𝑚𝑘𝑢5 and 𝑚𝑘𝑢9) are consolidated according to Definition 5.2.2. All those
MKUs are put aside in Line 12. The new consolidated MKU is added to 𝑀𝐾𝑛𝑒𝑤 in Line 11.

Similarly to previous case, 𝑄𝑀𝑛𝑒𝑤 and 𝑀𝐾𝑜𝑙𝑑 are update according to the MKUs put aside. New
MKUs are consolidated in this case. Considering that 𝑄𝑀𝑢

𝑄 = {𝑚𝑘𝑢7} and
𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) = {𝑚𝑘𝑢5}, the process returns 𝑀𝐾𝑛𝑒𝑤 = {𝑛𝑒𝑤_𝑚𝑘𝑢}, 𝑄𝑀𝑛𝑒𝑤 = ∅, and

𝑀𝐾𝑜𝑙𝑑 = {𝑚𝑘𝑢5}. Hence, 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ = {𝑛𝑒𝑤_𝑚𝑘𝑢}.
In those two cases, 𝑄𝑀𝑛𝑒𝑤 is always empty either because 𝑚𝑘𝑢7 has been discarded or 𝑚𝑘𝑢9 has
been consolidated. Yet, the MKUs from a query metadata may not be consolidated into a new

MKU. For instance, when processing 𝑄𝑀𝑄4 = {𝑚𝑘𝑢5} and the initial
𝑄𝐻𝐿(𝑢) = {𝑚𝑘𝑢1, 𝑚𝑘𝑢2, 𝑚𝑘𝑢3, 𝑚𝑘𝑢4}, only 𝑚𝑘𝑢2 references the same attribute as 𝑚𝑘𝑢5. Since

their time intervals are not overlapping, they are not consolidated. The process returns
𝑀𝐾𝑛𝑒𝑤 = ∅, 𝑄𝑀𝑛𝑒𝑤 = {𝑚𝑘𝑢5}, and 𝑀𝐾𝑜𝑙𝑑 = ∅. Hence, 𝑀𝐾𝑠𝑒𝑎𝑟𝑐ℎ = {𝑚𝑘𝑢5}.

A single query metadata contains MKUs which are discarded, consolidated, or neither,

66 CHAPTER 5. RICE-SY: RICE-M BASED INFERENCE DETECTION SYSTEM

⊢

⊢

⊢
0 s 1 s 2 s 3 s

Interval selected in
𝑄𝑀𝑄6 for 𝑚𝑘𝑢9

𝑚𝑘𝑢1 𝑚𝑘𝑢4

𝑚𝑘𝑢3

𝑚𝑘𝑢2 𝑚𝑘𝑢5

(a) For the consolidation of𝑚𝑘𝑢8, obtained via𝑄𝑀𝑄6,
the 𝑚𝑘𝑢5 is retrieved from the 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢), since
they both refer to the same attribute, and have over-
lapping intervals.

⊢

⊢

⊢
0 s 1 s 2 s 3 s

Interval resulting from
𝑛𝑒𝑤_𝑚𝑘𝑢 = 𝑚𝑘𝑢5 ⊕ 𝑚𝑘𝑢9

𝑚𝑘𝑢1 𝑚𝑘𝑢4

𝑚𝑘𝑢3

𝑚𝑘𝑢2 𝑚𝑘𝑢5

(b) For the detection, the MKUs 𝑚𝑘𝑢3 and 𝑚𝑘𝑢4 are
retrieved from the 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢), since they refer to a
different attribute than the newly consolidated MKU
𝑚𝑘𝑢′, and they have overlapping intervals.

Figure 5.8: Example of filtering ConsQHL before the consolidation or the detection.

depending on the QHL. By incorporating those two modules in the Reasoner, we ensure that the
ConsQHL never contains MKUs that lead to an IAISD, as formally defined by Invariant 5.2.1.
Only the query metadata extracted from a new issued query enables a user to perform an IAISDs.

∀ 𝑢 ∈ 𝒰, ∀ ⟨𝑃, 𝐹, _⟩ ∈ ℐ𝒞ℛ, ∄ 𝑒𝑛𝑣 ∈ ℰ ∶

𝑀𝐾𝑢
𝑃 = ⋃

𝑝∈𝑃

𝑝(𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢), 𝑒𝑛𝑣), 𝑀𝐾𝑢
𝑃 ≠ ∅ ∧

∄ 𝑀𝐾 ′ ⊆ 𝑀𝐾𝑢
𝑃 , 𝑀𝐾 ′ ≠ ∅, ∀ 𝑓 ∈ 𝐹∶ 𝑓(𝑀𝐾𝑢

𝑃) = 𝑀𝐾 ′ (5.2.1)

The size of the ConsQHL continuously grows the more RICE-Sy receives query metadata from
users. Performing the consolidation and the detection while considering the whole ConsQHL is
quickly intractable. Instead, both modules only have to consider the subset of MKUs originating

from the ConsQHL which can be consolidated with or used to build the search set with the
MKUs originating from the query metadata. We illustrate this situation in the following section,

by reusing our previous example.

5.2.4 Filtering only the relevant subset of users’ knowledge

Let us consider the initial situation depicted in Figure 5.4, where user 𝑢 obtains the query
metadata 𝑄𝑀𝑄6. Upon receiving 𝑄𝑀𝑄6, the Reasoner relies on the consolidation module to

consolidate the search set of the detection module. Yet, as illustrated in Figure 5.8, considering
the whole ConsQHL for both the consolidation and the detection is not efficient, since only a

subset of MKUs originating from ConsQHL are overlapping with MKUs originating from 𝑄𝑀𝑄6.
As a first example, we focus on the consolidation of 𝑄𝑀𝑄6 with ConsQHL. We see in Figure 5.8a
that 𝑚𝑘𝑢9 queried in 𝑄𝑀𝑄6 has the interval (2, 2.75) and references the bottom attribute. As a
reminder, to consolidate 𝑚𝑘𝑢9, we search another MKU in ConsQHL which references the same
attribute and has an overlapping interval. In our example, the only MKU satisfying this criteria
is 𝑚𝑘𝑢5. Instead of retrieving all MKUs from ConsQHL, only 𝑚𝑘𝑢5 can be retrieved for 𝑚𝑘𝑢9.

This process can be repeated for all the other MKUs within 𝑄𝑀𝑄6, in order to obtain the subset
containing the relevant MKUs originating from ConsQHL.

Now, we focus on the detection performed for 𝑄𝑀𝑄6. To do so, the Reasoner creates the initial
search set that the set of patterns 𝑃2 take as input, by combining the consolidated MKUs (i.e.,

5.2. THE REASONER MODULE 67

𝑄𝑀𝑢
𝑄 = 𝑀𝐾𝑛𝑒𝑤 ∪ 𝑄𝑀𝑛𝑒𝑤) with MKUs from ConsQHL. That is, for each consolidated MKU, we

search for the MKUs within ConsQHL that have overlapping time intervals. For instance, we
observe in Figure 5.8b that the newly consolidated MKU 𝑛𝑒𝑤_𝑚𝑘𝑢 = 𝑚𝑘𝑢5 ⊕ 𝑚𝑘𝑢9 has the
interval (1.25, 3). The MKUs with overlapping intervals are 𝑚𝑘𝑢3 and 𝑚𝑘𝑢4. This process is
repeated for all the other consolidated MKUs, in order to form the consolidated search set.

By default, in both situation all the MKUs within the ConsQHL are considered as input of the
consolidation module and the detection module. In our example, the set of MKUs is

𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) = {𝑚𝑘𝑢1, 𝑚𝑘𝑢2, 𝑚𝑘𝑢3, 𝑚𝑘𝑢4, 𝑚𝑘𝑢5}. However, the consolidation module needs to
consider only the subset {𝑚𝑘𝑢5, 𝑚𝑘𝑢3} ⊂ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) w.r.t. to the query metadata 𝑄𝑀𝑄6. It
returns the set 𝑀𝐾𝑛𝑒𝑤 = 𝑚𝑘𝑢3 ⊕ 𝑚𝑘𝑢8, 𝑚𝑘𝑢5 ⊕ 𝑚𝑘𝑢9, 𝑄𝑀𝑛𝑒𝑤 = ∅, and 𝑀𝐾𝑜𝑙𝑑 = {𝑚𝑘𝑢3, 𝑚𝑘𝑢5}.
The detection module needs to consider only the subset {𝑚𝑘𝑢4} ⊂ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) w.r.t. to the
consolidation module output. Equipping the Reasoner with two filtering modules enables

retrieving only relevant MKUs from the ConsQHL. In the following section, we formalize those
two modules.

5.2.5 The filtering modules

The purpose of the two filtering modules is to retrieve the minimum relevant subset of MKUs in
ConsQHL to reduce the computation time of both the consolidation and the detection modules.

Algorithm 5.3: Filtering ConsQHL for the consolidation module.

Inputs:
⎧⎪⎨⎪⎩
𝑄𝑀𝑢

𝑄 The query metadata of user 𝑢 ∈ 𝑈.
𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) The 𝐶𝑜𝑛𝑠𝑄𝐻𝐿 of user 𝑢.

Output: 𝑀𝐾𝑞𝑏𝑓 is a subset of 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) to consolidated with 𝑄𝑀𝑢
𝑄.

1 Function query_based_filtering(𝑄𝑀𝑢
𝑄, 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢))

2 return 𝑀𝐾𝑞𝑏𝑓 = {𝑚𝑘𝑢 ∣ ∃ 𝑚𝑘𝑢 = ⟨𝑎, 𝑒𝑛𝑣, 𝑡, _⟩ ∈ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢),
∃ 𝑚𝑘𝑢′ = ⟨𝑎′, 𝑒𝑛𝑣′, 𝑡′, _⟩ ∈ 𝑄𝑀𝑢

𝑄,
𝑎 = 𝑎′, 𝑒𝑛𝑣 ≃ 𝑒𝑛𝑣′, 𝑡 o 𝑡′ }

The Query Based Filtering (QBF) module ensures that the input of the consolidation module
contains both the MKUs from the query metadata and only the subset of MKUs that, in

ConsQHL, can be consolidated with the query metadata. The QBF task is formally defined in
Definition 5.2.3. The QBF module is formalized by the function query_based_filtering in

Algorithm 5.3. For a given user 𝑢 ∈ 𝒰, it builds the subset, denoted 𝑀𝐾𝑞𝑏𝑓 ⊆ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢),
containing MKUs that reference the same attribute, similar environments, and overlapping time
intervals than MKUs in user 𝑢’s query metadata, denoted by 𝑄𝑀𝑢

𝑄. The consolidation module
receives as a second input 𝑀𝐾𝑞𝑏𝑓.

Definition 5.2.3 (Query based filtering). The query based filtering is a function denoted as
follows 𝑞𝑢𝑒𝑟𝑦_𝑏𝑎𝑠𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 ∶ ℳ𝒦×ℳ𝒦 ↦ ℳ𝒦. It defines the set ofMKUs from theConsQHL
that must be consolidated with the MKUs of a query metadata.

The Search Set Filtering (SSF) module builds the input of the detection module so that it contains
MKUs from ConsQHL that could be combined with the new MKUs, from the output of the
consolidation module, in order to form the search set of the detection task. The SSF task is
formally defined in Definition 5.2.4. The SSF module is formally defined by the function

search_set_filtering in Algorithm 5.4. It builds the subset, denoted
𝑀𝐾𝑠𝑠𝑓 ⊆ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) ∖ 𝑀𝐾𝑜𝑙𝑑, containing MKUs that reference different attributes, similar

68 CHAPTER 5. RICE-SY: RICE-M BASED INFERENCE DETECTION SYSTEM

Algorithm 5.4: Filtering ConsQHL for the detection module.

Inputs:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) The 𝐶𝑜𝑛𝑠𝑄𝐻𝐿 of user 𝑢.
𝑀𝐾𝑛𝑒𝑤 Set of newly consolidated MKUs.
𝑄𝑀𝑛𝑒𝑤 Set of new and non-consolidated MKUs.
𝑀𝐾𝑜𝑙𝑑 Subset of 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) used to consolidate 𝑀𝐾𝑛𝑒𝑤.

Output: 𝑀𝐾𝑠𝑠𝑓 is a subset of 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) to combine with 𝑀𝐾𝑛𝑒𝑤 ∪ 𝑄𝑀𝑛𝑒𝑤.

1 Function search_set_filtering(𝑀𝐾𝑛𝑒𝑤, 𝑄𝑀𝑛𝑒𝑤,𝑀𝐾𝑜𝑙𝑑, 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢))
2 return 𝑀𝐾𝑠𝑠𝑓 = {𝑚𝑘𝑢 ∣ ∃ 𝑚𝑘𝑢 = ⟨𝑎, 𝑒𝑛𝑣, 𝑡, _⟩ ∈ 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) ∖ 𝑀𝐾𝑜𝑙𝑑,

∃ 𝑚𝑘𝑢′ = ⟨𝑎′, 𝑒𝑛𝑣′, 𝑡′, _⟩ ∈ 𝑀𝐾𝑛𝑒𝑤 ∪ 𝑄𝑀𝑛𝑒𝑤,
𝑎 ≠ 𝑎′, 𝑒𝑛𝑣 ≃ 𝑒𝑛𝑣′, 𝑡 o 𝑡′ }

environments and overlapping time intervals than either: (i) the newly consolidated MKUs
(denoted by 𝑀𝐾𝑛𝑒𝑤) or (ii) the new MKUs from 𝑄𝑀𝑢

𝑄 that where not consolidated (denoted by
𝑄𝑀𝑛𝑒𝑤). Since the MKUs in 𝑀𝐾𝑜𝑙𝑑 have been consolidated, we do not consider them in

ConsQHL. The detection module receives as a second input 𝑀𝐾𝑠𝑠𝑓.

Definition 5.2.4 (Search set filtering). The search set filtering is a function denoted as follow
𝑠𝑒𝑎𝑟𝑐ℎ_𝑠𝑒𝑡_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 ∶ ℳ𝒦 ×ℳ𝒦 ↦ ℳ𝒦. It defines the set of MKUs from the ConsQHL that
must be combined with the newly consolidated MKUs and the new MKUs from the query
metadata.

In the following section, we describe the complete workflow of RICE-Sy and we provide the
formal description of the Reasoner module.

5.3 Complete workflow of RICE-Sy

The task of the Reasoner is formally defined by Definition 5.3.1.

Definition 5.3.1 (Reasoner). The reasoner is a function 𝑟𝑒𝑎𝑠𝑜𝑛𝑒𝑟 ∶ ℳ𝒦 ↦ 𝒟×𝒳. It reasons on the
known inference channels to determine if a query metadata enables a user to perform an IAISD.

The Reasoner module is formalized by Algorithm 5.5. The complete workflow of this module is
depicted in Figure 5.9. It relies on four distinct modules, namely: the QBF, the consolidation,
the SSF, and the detection. Upon receiving the new query metadata 𝑄𝑀𝑢

𝑄, extracted from a
query 𝑄 issued by user 𝑢 ∈ 𝒰 on DBsen ❸, the QBF module uses function query_based_filtering to
extract from 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) ❹ the subset 𝑀𝐾𝑞𝑏𝑓 ①. Both 𝑄𝑀𝑢

𝑄 and 𝑀𝐾𝑞𝑏𝑓 constitute the input of
the consolidation module. This module uses the function consolidation_process to compute three

sets ②: the new consolidated MKUs denoted by 𝑀𝐾𝑛𝑒𝑤, the non-consolidated new MKUs
originating from 𝑄𝑀𝑢

𝑄 denoted by 𝑄𝑀𝑛𝑒𝑤, and the MKUs from ConsQHL consolidated with
MKUs in 𝑄𝑀𝑢

𝑄 denoted by 𝑀𝐾𝑜𝑙𝑑. The new MKUs and 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) serve as input to the SSF
module which use function search_set_filtering to extract from 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) the subset of MKUs
𝑀𝐾𝑠𝑠𝑓 ③ to combine with 𝑀𝐾𝑢

𝑛𝑒𝑤 ∪ 𝑄𝑀𝑢
𝑛𝑒𝑤. The detection module builds the search set to check

with function detection, if user 𝑢 attempts to exploit a known inference channels described in the
ICR ❺. In case no inference is detected, 𝐶𝑜𝑛𝑠𝑄𝐻𝐿 is updated ❼. This process is performed by

the Reasoner. It first removes 𝑀𝐾𝑢
𝑜𝑙𝑑 from 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) and inserts the new MKUs

𝑀𝐾𝑢
𝑛𝑒𝑤 ∪ 𝑄𝑀𝑢

𝑛𝑒𝑤. By storing the consolidated MKUs and maintaining the Invariant 5.2.1,
RICE-Sy enables the detection of IAISDs. The filtering improves the consolidation and detection

5.4. DISCUSSION 69

QBF

Consolidation

SSF

Detection

Reasoner

ConsQHL ICR

Knowledge
Storage

Knowledge
extraction

Data
controller

U
ser

❶ 𝑄

❷
𝑄

❸

𝑄𝑀𝑢
𝑄

❹

𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢)

① 𝑀𝐾𝑞𝑏𝑓

②

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑀𝐾𝑛𝑒𝑤,
𝑄𝑀𝑛𝑒𝑤,
𝑀𝐾𝑜𝑙𝑑

③ 𝑀𝐾𝑠𝑠𝑓

❺
∀ 𝑖 ∈ ℐ, 𝐼𝐶𝑅(𝑖)

❻
∅ ∨ { 𝑑𝑥 ∣ 𝑑𝑥 ⊆ 𝒟 ×𝒳 }

❼

𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) ⧵ 𝑀𝐾𝑜𝑙𝑑
∪ 𝑀𝐾𝑛𝑒𝑤 ∪ 𝑄𝑀𝑛𝑒𝑤

RICE-Sy

Figure 5.9: Complete workflow of RICE-Sy.

time of the system by selecting only the relevant stored MKUs. Similarly to the previous chapter,
we have compiled all the defined symbols in Table 5.1. Next, we discuss how RICE-Sy can be
extended to perform the detection considering inference channels having different constraints

than our two case studies.

Algorithm 5.5: Reasoner module of RICE-Sy.
Inputs: 𝑄𝑀𝑢

𝑄 The query metadata of a user 𝑢 ∈ 𝒰.
Output: { 𝑑𝑥 ∣ 𝑑𝑥 ∈ 𝒟 ×𝒳 } when 𝑄𝑀𝑢

𝑄 enables user 𝑢 to make an IAISD, otherwise ∅.

1 𝑀𝐾𝑞𝑏𝑓 ← 𝑞𝑢𝑒𝑟𝑦_𝑏𝑎𝑠𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑄𝑀𝑢
𝑄, 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢)) // ❸,❹ → ①

2 𝑄𝑀𝑢
𝑛𝑒𝑤, 𝑀𝐾𝑢

𝑛𝑒𝑤, 𝑀𝐾𝑢
𝑜𝑙𝑑 ← 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑄𝑀𝑢

𝑄, 𝑀𝐾𝑞𝑏𝑓) // ❸,① → ②

3 𝑀𝐾𝑠𝑠𝑓 ← 𝑠𝑒𝑎𝑟𝑐ℎ_𝑠𝑒𝑡_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑀𝐾𝑢
𝑛𝑒𝑤, 𝑄𝑀𝑢

𝑛𝑒𝑤, 𝑀𝐾𝑜𝑙𝑑, 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢)) // ②,❹ → ③

4 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑄𝑀𝑢
𝑛𝑒𝑤 ∪𝑀𝐾𝑢

𝑛𝑒𝑤, 𝑀𝐾𝑠𝑠𝑓, 𝐼𝐶𝑅) // ②,③,❺ → ❻

5 if 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = ∅ then
6 𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) ← (𝐶𝑜𝑛𝑠𝑄𝐻𝐿(𝑢) ∖ 𝑀𝐾𝑢

𝑜𝑙𝑑) ∪ 𝑀𝐾𝑢
𝑛𝑒𝑤 ∪ 𝑄𝑀𝑢

𝑛𝑒𝑤 // ❼
7 return 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

5.4 Discussion

Next, we discuss the impact faced by RICE-Sy when incorporating more constraints and the cost
of including the two filtering modules in our architecture.

5.4.1 Incorporating more constraints

As explained in Section 4.6, as a future work, more constraints have to be considered when
modeling MKUs in order for RICE-M to be more generic. From the perspective of RICE-Sy,
including the Aggregation and the Sampling within the MKUs implies that the consolidation
module must consider which MKUs to consolidate not only according to the attribute they

reference, but also based on the newly captured metadata (i.e., the aggregation functions or the

70 CHAPTER 5. RICE-SY: RICE-M BASED INFERENCE DETECTION SYSTEM

Symbol Description

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∶ ℳ𝒦 × ℐ ↦ 𝒟 ×𝒳 Detects IAISDs.
⊕ = 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛∶ ℳ𝒦 ×ℳ𝒦 ↦ ℳ𝒦 Consolidates users’ knowledge.

𝑞𝑢𝑒𝑟𝑦_𝑏𝑎𝑠𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 ∶ ℳ𝒦 ×ℳ𝒦 ↦ ℳ𝒦 Filters ConsQHL w.r.t. a query metadata.
𝑠𝑒𝑎𝑟𝑐ℎ_𝑠𝑒𝑡_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 ∶ ℳ𝒦 ×ℳ𝒦 ↦ ℳ𝒦 Filters ConsQHL w.r.t. new MKUs.

𝑟𝑒𝑎𝑠𝑜𝑛𝑒𝑟 ∶ ℳ𝒦 ↦ 𝒟 ×𝒳 Main module of RICE-Sy.

Table 5.1: Symbols defined to formalize RICE-Sy.

sampling techniques). Let us first consider the Aggregation. If two MKUs reference the same
attribute, similar environments, and have overlapping intervals, then they can be consolidated.
To do so, the consolidation module has to create a new MKU, as depicted by Figure 5.7, which
will concatenate the aggregations functions referenced in the two initial MKUs. This new MKU

will thus contain all the captured information. It will correctly reflect which function was
applied to which attribute in the initial queries. On the other hand, the Sampling is more

challenging to take into account in the consolidation of two MKUs. Only MKUs extracted from
queries where data points are selected using the same sampling methods can be consolidated

into a single MKU.

5.4.2 Filtering module

The more a user queries DBsen, the larger their ConsQHL will become. This growing quantity of
MKUs has a direct impact on the input of the consolidation module and the detection module.
Hence, those two modules become computationally expensive the more MKUs are stored in

ConsQHL. As presented intuitively in Section 5.2.4, filtering ConsQHL can drastically reduce
the quantity of MKUs to consider when doing the consolidation and the detection. This greatly
lessen the cost of performing the consolidation and the detection, at the expense of increasing
the Reasoner computation time. The worst case occurs when the two filtering modules extract
all MKUs stored in the ConsQHL. However, the probability that such a case occur decreases the

more MKUs are stored, since for each attribute referenced in ConsQHL:

• For the QBF: a query metadata must contains a MKU referencing this attribute with a time
interval overlapping all the MKUs in ConsQHL that reference this attribute.

• For the SSF: the consolidation module must output a new MKU referencing this attribute
time a time interval overlapping all the MKUs in ConsQHL that reference a different
attribute.

While this extreme situation is unlikely, we evaluate how those two filtering modules improve
the detection time of RICE-Sy in Chapter 7.

5.5 Conclusion

In this chapter, we have presented RICE-M based inference detection System (RICE-Sy) which
tackles the problem of detecting an Inference Attack Involving Sensor Data (IAISD) based on

user’s knowledge and inference channels modeled with Raw sensor data based Inference
ChannEl Model (RICE-M). For each query received by the sensor database, query metadata is
extracted and RICE-Sy uses its Reasoner module to determine if it enables the exploitation of an
inference channel known by the system. The Knowledge base stores both the Inference Channel

5.5. CONCLUSION 71

Repository (ICR) and the Consolidated Query History Log (ConsQHL). The Reasoner employs the
consolidation module to consolidate each Metadata Knowledge Unit (MKU) in a query metadata
with MKUs in the ConsQHL. It ensures that the stored knowledge never leads to an inference
w.r.t. the channels in ICR. It also reduces the quantity of processed and stored MKUs. This step
is required by the detection module which determines if the newly MKUs and the previous one
enable a user to exploit one of the inference channel. In addition, we propose the query based
filtering module and the search set module to take from ConsQHL, only the relevant MKUs for the

consolidation and the detection, respectively.
At this stage, RICE-Sy processes every issued query metadata. When an inference attack occurs,
it means that a user has gathered all the required knowledge to satisfy the constraints of an

inference channel. Evaluating the accuracy of the system is not relevant, since no attack can be
missed with respect to the modeled channels. Yet, we must assess the computation time of the
Reasoner module. We want to demonstrate that these optimizations work for the different ways
users obtain sensor data. To do so, datasets containing query metadata sequences corresponding
to different querying behavior of users are required. Such a dataset represents queries issued by
users having different querying behaviors. Indeed, while an honest users may regularly query
DBsen for their work, attackers may have different behaviors guided by the inference channels
they aim to exploit. The objective is thus to demonstrate the applicability of our conceptual

optimizations by considering the TSW and SSW data prerequisites, for the main identified users’
querying behaviors. To the best of our knowledge, such datasets do not exist due to two main
issues: no InfDSs consider IAISDs, and no principal querying behaviors for dishonest users

performing IAISDs have been identified. Therefore, in the following chapter, we present how we
generate synthetic datasets to be able to evaluate our proposed system.

Chapter 6

Generator: Archetypes & Query metadata
sequences

Via our first contribution, i.e., Raw sensor data based Inference ChannEl Model (RICE-M), we
have enabled the modelization of the required information to perform the detection, namely the
user’s knowledge and the inference channels. Then, as a second contribution, we have presented

our Inference Detection System (InfDS) based on RICE-M, i.e., RICE-M based inference
detection System (RICE-Sy). We have described the workflow of the detection task and the
conceptual optimizations endowed to enable performing this task efficiently. Thanks to this

system, we can detect an Inference Attack Involving Sensor Data (IAISD). However, the
evaluation of our second contribution requires the usage of datasets containing queries issued by
users to a sensor database in order to perform an IAISD, or not. Such a dataset must contains:
queries metadata related to multiple users, which lead or not to an IAISD, via multiple queries
metadata that can be consolidated, following querying behaviors as realistic as possible. In this

chapter we present our third contribution, i.e., a generator producing queries metadata
sequences according to RICE-M and our two case studies, and guided by the behavior followed

by users when querying a sensor database to perform an IAISD.
The outline of this chapter is the following: we first identify in Section 6.1 the querying

behaviors and the three archetypes which guide the generation of queries. Then, in Section 6.2,
we define the requirements that a dataset must meet in order to enable the evaluation of

RICE-Sy. We present different datasets used in the state of the art in Section 6.3, and explain
why we propose a generator producing queries metadata. In order to describe how they are

produced, we describe, illustrate, and formalize in Section 6.4, the theoretical concepts we use.
Then, we present in Section 6.5 how a dataset is generated. Furthermore, based on the

requirements, the archetypes, the concepts, and the case studies, we describe, formalize, and
illustrate in Section 6.6, how users’ query metadata sequences are generated. Finally, we provide

a summary of our contribution and discuss its limits in Section 6.9.

6.1 Assumptions about users’ querying behaviors

When users query non-sensitive sensor data to perform an IAISD, we assume that they follow
some querying behaviors dictated by the assumptions they have about the InfDS protecting the
queried sensor database. In this section, we describe the distinct three main sets of querying
behaviors we have identified to be realistic in our context, and sufficiently generic to evaluate
RICE-Sy. Hence, in the following, we refer to those three sets as archetypes. The methodology we

72

6.1. ASSUMPTIONS ABOUT USERS’ QUERYING BEHAVIORS 73

follow is to study the querying behaviors, associated to inference attacks, that are identified in
the scientific literature. Due to the lack of existing work on this topic, in order to determine the
existing querying behaviors we leverage: (i) The strategies described by Woodall et al. [163], see
Section 3.3.1 (ii) The general features of sensor database presented by Belfkih et al. [17] and
Golab et al. [75], as well as the benchmarks [129, 78, 119] used to test sensor databases. Then,

we present the archetypes we consider as most generic and realistic.

6.1.1 Querying behaviors

Although most of those users are genuine, some are attackers. Woodall et al. [163] show that,
when using the Split Query strategy, the inference attack is performed by combining the answer
of two distinct queries. However, in this thesis, we focus on the External Information strategy

which does not restrict the number of issued queries. We assume that attackers can perform an
inference attack by either querying all required information via a single query or multiple ones.
Different kinds of queries are issued to sensor databases. According to Belfkih et al. [17] the

main types of queries considered in the literature are:

• Historical queries in order to obtain data related to events that occurred in the past.

• Aggregation queries using functions such a SUM, AVG, MAX, etc.

• Complex queries which are composed of sub-queries using several operators.

• Periodic (or continuous) queries which regularly select data points according to a defined
time interval.

• Instant (or ad hoc, or one-time) queries which select data points at a specific time.

Due to our focus on the sliding windows data prerequisites, we do not consider in this thesis the
aggregation queries and the complex queries.

The benchmarks [129, 78, 119] generate queries that correspond to real-word case studies. For
instance, the benchmark TPCx-IoT [129] considers queries selecting sensor data w.r.t. a temporal
criterion; Gupta et al. [78] and Mostafa et al. [119] consider the templates Observations and Raw
Data Fetching, respectively (see Section 6.3). We consider that users select the raw sensor data

using a temporal window.
The continuous nature of sensor data streams usually leads users to query the latest generated
data to stay up to date. Based on the observations of Golab et al. [75], we assume that users tend
to query sensor data in the order they are generated. However, users may legitimately need to
manually query old data points to perform specific analysis. Hence, among periodic queries,

users can issue instant queries, as described by Belfkih et al. [17]. Attackers can select the data
of a targeted individual via multiple queries. Those queries can be periodic, instant, or any

combination of the two types. Those multiple queries can result in the consolidation of queried
information. Based on those assumptions related to querying behaviors, we define below the

generic and realistic archetypes used to build our evaluation dataset.

6.1.2 Archetypes

By combining the exposed querying behaviors, we determine three archetypes. One of those
archetype represents users querying the sensor database with a genuine intent, and the two

other aim to perform IAISDs.
We refer to the genuine archetype as the Genuine User (GU):

74 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

Definition 6.1.1 (Genuine user (GU)). A genuine user select attributes required for its job using
periodic and instant queries. Those queries never lead to an inference attack.

It corresponds to most of the employees in the external company (see Section 1.1). We assume
that an employee following this archetype queries the sensor data required to calibrate sensors
only. They do not have any background knowledge related data mining algorithms and do not
perform IAISDs. In addition to the genuine archetype, we consider a first attacking archetype

called One-time Attacker (OA):

Definition 6.1.2 (One-time attacker (OA)). A one-time attacker performs a single inference
attack by querying all required information via a single instant query.

It corresponds to the archetype followed by an employee of the external company whose task is
not to perform the calibration. Yet, they managed to obtain an authorized access to the sensor
database. Finally, the last archetype corresponds to users which assumes that the best way to

bypass the InfDS or an administrator is to use multiple queries hidden among genuine queries.
We refer to this attacking archetype as Deceptive Attacker (DA):

Definition 6.1.3 (Deceptive attacker (DA)). A deceptive attacker performs multiple inference
attack using any combination of multiple consolidable instant queries selecting the required
sensor data, and hides them between non-consolidable periodic and instant queries.

It corresponds for instance, to an employee which performs inference attacks while continue
working in order to not look suspicious within its company. Evaluating RICE-Sy w.r.t. the

aforementioned archetypes implies that we have datasets containing queries issued by users
following such archetypes. To leverage such a dataset, it must meet several requirements. In the

following section, we first describe each requirement and motivate its necessity w.r.t. the
evaluation of RICE-Sy.

6.2 Requirements for a suitable dataset

A suitable dataset needs to contain queries issued by multiple and different users. This stems
from the fact that RICE-Sy keeps track of the user’s knowledge obtained from querying the
sensor database. To evaluate the capability of our system to manage and reason on the QHLs

associated to different users, the dataset has to contain more than a single user.
Moreover, within a dataset, queries metadata must reflect the honest or attackers querying the
same sensor database. Some users issue queries to exploit one or multiple inference channels,
whereas others select sensor data without performing any inference attacks. Besides, queries are
issued to the same database, since we assume that a RICE-Sy instance is managed by a single
data controller to protect its sensor database. Thus, it is required to have a diversity of queries,

and to know which one leads to inference attacks, in order to evaluate the capabilities of
RICE-Sy to correctly detect expected inference attacks. Some users may leverage multiple
queries to honestly select newly generated data points, or to perform an attack by selecting
required sensor data, step by step. Furthermore, a user can consolidate their knowledge, see
Section 5.2.2, only via the usage of multiple queries. Consequently, to evaluate RICE-Sy, the

dataset must represent users issuing a single query or multiple ones, with or without
consolidating their user’s knowledge.

In addition, the structure of the queries metadata, associated to a user in a dataset, must
correspond to a realistic querying behavior, i.e., our three archetypes. The sequences of queries

metadata associated to each user can differ w.r.t. different properties: the total number of
queries metadata within a sequence, the emission time of each query, what sensor data they

6.3. EXISTING DATASETS 75

select, in which temporal order, etc. Evaluating RICE-Sy for all random permutation of those
properties does not actually make sense, instead those sequences must be produced according to

the Specificities of our archetypes.

Therefore, as a summary, a dataset satisfies our requirements, iff. it contains:

(I) Queries metadata issued by multiple distinct users, on the same sensor database.

(II) Sequence of queries metadata which lead to one or multiple inference attacks, and genuine
sequence of queries metadata.

(III) Users are associated with a single query, multiple queries without consolidation, multiple
queries with consolidation, or any of those combinations.

(IV) Sequence of queries metadata reflecting the defined malicious and genuine archetypes.

In the following section, we present the state of the art related to datasets containing queries
issued to a sensor database, and we position them w.r.t. our requirements.

6.3 Existing datasets

Requirement (II) is the most important, since a dataset has to contain sequences of queries
metadata simulating an Inference Attack Involving Sensor Data (IAISD). Consequently, the

evaluation of RICE-Sy can be performed only with datasets containing both queries issued by
genuine users and attackers. Those datasets must be built considering specific users’ querying

behaviors, requirement (IV). While the remaining requirements are important in order to
evaluate RICE-Sy, they can be met by modifying a dataset which satisfies both requirement (II)

and requirement (IV). For instance, if the queries metadata of a dataset are explicitly or
implicitly associated to a single user with different behaviors, then this sequence of queries

metadata can be split in different sequences associated to distinct users, thus meeting
requirement (I). Yet, doing so may be impossible in case the queries metadata linked to each

behavior are not explicitly identified. Finally, the queries metadata contained in a dataset may
be transformed to simulate the diversity of approches defined by requirement (III), i.e., our

three archetypes.
We can mainly distinguish two types of datasets: the one proposed in order to evaluate the

query-time detection systems, focusing mainly on relational databases containing personal data,
but no sensor data [31, 77, 52, 152, 141, 91], and the one proposed to benchmark systems in a
sensor database setting [129, 78, 119]. While the first one considers the fact that some users
follow inference channels, the inference channels considered are limited to profile database.

They do not contain queries issued by users to a sensor database. Consequently, we cannot reuse
those datasets to create sequences of queries leading to an IAISD. In the latter case, although the

datasets contain queries issued to sensor databases, those queries do not represent query
metadata sequences issued with, or without the purpose to perform inference attacks. In the

following, we describe what prevent us to reuse those works.
As shown with the benchmark TPC-DI, the TPC (Transaction Processing Performance Council)
is an organization which propose benchmark standard for system managing data (e.g., online

transaction processing database, data integration systems, and so on). To the best of our
knowledge, the only benchmark proposed by TCP which consider sensor data and generate

queries for those data is TPCx-IoT [129]. This benchmark aims to “[…] measure the
performance of IoT gateway systems” by simulating sensor data received from edge devices and

76 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

analyzed via real-time queries. Hence, according to the specification of TPCx-IoT, the
benchmark generates analytic queries which randomly select generated data points over two

time intervals of five seconds. The first query select data generated up to five seconds before the
time at which the query is issued. The second query select data generated 1800 seconds before
the interval of the first query. Gupta et al. [78] propose a benchmark called SmartBench which

focus on evaluating DataBase Management System (DBMS) w.r.t. the support of queries
performed by near-real time applications and the long term analysis of sensor data. The authors

propose twelve template of queries which represent the diversity of queries issued by IoT
applications. Only four of those queries select raw sensor data. For instance, the template

referred as Observations is used to generate queries which select data point generated during a
given time interval either: by a single sensor, or by multiple ones. The second relevant template

is named C_Observation and enables the production of queries selecting data points in an
interval, if an only if a given condition is satisfied. Finally, the Statistics template produces

queries which aggregate data points generated during an interval. Similarly, Mostafa et al. [119]
propose a benchmark denominated SciTS which is designed to evaluate the performance of

time-series databases. They also introduce query templates extracted from “[…] practical and
real-life environments […]”. The Raw Data Fetching and Data Aggregation templates correspond

respectively to the Observation and Statistic template of Gupta et al.
To evaluate RICE-Sy, we need to have query metadata sequences. It is possible to extend those
works in order to obtain a dataset which corresponds to our requirements. We would have to
implement the possibility to generate genuine or malicious query sequences, based on the

datasets of our two case studies (i.e., mHealth and Orange4Home), and our three archetypes.
Then, we would have to implement the knowledge extraction module depicted by Figure 4.1, in
Chapter 4, to obtain the query metadata of each issued query. All the environment deployed

before this module would not be necessary for the evaluation. Consequently, to obtain datasets,
we propose to generate directly the sequence of queries metadata. In the following section, we

start by introducing the generic concepts used to do this generation.

6.4 Archetype-based generation: Definitions of concepts

The proposed generation of queries metadata relies on simple concepts which reflect the
requirements presented in Section 6.2. In the following, we present, illustrate, and formally
define those concepts, as well as their respective relations. We reuse the symbols defined in

RICE-M. They are either defined in Table 4.1 (e.g., the environment, MKUs, etc.), or in Table 4.2
(e.g., the duration or quantity of inference channels, etc.).

6.4.1 Timeline

To generate queries metadata that provide, or not, a user with more knowledge to exploit a
specific inference channel (see Requirement (II)), we consider the patterns and the set of
Constrained Patterns Filter (CPF) described in the Inference Channel Repository (ICR).

Moreover, to simulate a situation where an attacker performs an IAISD via multiple queries, we
have to ensure that the corresponding queries metadata we generate reference specific attributes,

obtained during the same time interval for instance, etc. To achieve that, we consider the
generation timeline on which sensor data points are generated.

Definition 6.4.1 (Generation Timeline). The generation timeline 𝑔𝑡 = (𝑡−,∞) ∈ 𝒯 is a time
interval during which data points are generated.

6.4. ARCHETYPE-BASED GENERATION: DEFINITIONS OF CONCEPTS 77

⊢

1 s0 s 2 s 3 s 4 s 5 s

𝑄𝑀𝑄1 𝑄𝑀𝑄2

𝑝𝑒𝑟𝑖𝑜𝑑1 𝑝𝑒𝑟𝑖𝑜𝑑2

(a) Sensor data generation timeline.

⊢

1 s0 s 1.5 s 2 s 2.5 s 3 s 4 s 5 s
𝑝𝑒𝑟𝑖𝑜𝑑1 𝑝𝑒𝑟𝑖𝑜𝑑2

𝑄𝑀𝑄1 𝑄𝑀𝑄2 𝑄𝑀𝑄3

(b) Periods of the generation timeline.

Figure 6.1: The generation timeline and the periods.

As illustrated in Figure 6.1a, a sensor produces data points for a single attribute By
considering the generation timeline, we can represent the quantity of selected data points, for
which duration they are selected (e.g., from 1 s to 3 s in query 𝑄1 and from 4 s to 5 s in query 𝑄2),
and so on. This timeline enables us to ensure that multiple generated queries metadata, such as
𝑄𝑀𝑄1 and 𝑄𝑀𝑄2, satisfy or not an inference channels. The order in which queries metadata are
generated over the generation timeline does not always represent the order in which they are

issued, or emitted, to a sensor database.

Definition 6.4.2 (Emission Timeline). The emission timeline 𝑒𝑡 = (𝑡−,∞) ∈ 𝒯 is a time interval
during which queries are emitted to a sensor database.

A query is issued either as soon as some new data point are generated, in which case the query
emission time is equal to the generation time, or later in time, in which case the emission time is
strictly greater than the generation time. For instance, the query 𝑄2 can be emitted before the

query 𝑄1, hence the query metadata 𝑄𝑀𝑄2 is then processed by RICE-Sy before 𝑄𝑀𝑄1.

6.4.2 Periods

We want to generate a finite number of queries metadata, associated to a user, referencing time
interval that occur during the generation timeline. An attacker can perform multiple IAISDs,
and more generally users can regularly query specific sensor data. To generate such situation,
we divide the generation timeline into a set of period which are arbitrary units of time of equal

duration.

Definition 6.4.3 (Period). A period 𝑝𝑒𝑟𝑖𝑜𝑑 ∈ 𝒯, 𝑔 𝑡 ∈ 𝒯, 𝑝𝑒𝑟𝑖𝑜𝑑 d 𝑔𝑡, is a time interval which
occurs during the generation timeline.

For instance, Figure 6.1b depicts two periods, denoted by 𝑝𝑒𝑟𝑖𝑜𝑑1 and 𝑝𝑒𝑟𝑖𝑜𝑑2, during which
queries metadata have their referenced time intervals. The MKU of 𝑄𝑀𝑄1 and 𝑄𝑀𝑄2 references
the time interval (1, 2.5) and (1.5, 2), respectively, which both occur in 𝑝𝑒𝑟𝑖𝑜𝑑1. The MKU of

𝑄𝑀𝑄3 references the time interval (4, 5) during 𝑝𝑒𝑟𝑖𝑜𝑑2. Since we generate queries metadata for
each period, the more periods are defined, the more queries metadata are generated for a user.

Compared to defining a fixed number of expected queries metadata, the usage of periods
enables the existence of some variability according to the quantity of queries metadata

generated between two users, with the same number of periods. The period is the concept
considered to indirectly define the quantity of generated queries metadata, and to generate

queries metadata whose properties match the defined archetypes. Hence, it is defined in order
to meet requirement (I) and requirement (IV), respectively.

78 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

⊢
⊢
⊢

1 s0 s 1.5 s 2 s 2.5 s 3 s 4 s 5 s
𝑝𝑒𝑟𝑖𝑜𝑑1 𝑝𝑒𝑟𝑖𝑜𝑑2

𝐵𝑙𝑘1
𝐵𝑙𝑘2

(a) Two blocks describing attributes, the time inter-
val during which data points are selected (the blue
dashed line), the common interval required to ex-
ploit an inference channel (red dashed line).

⊢
⊢
⊢

1 s0 s 1.5 s 2 s 2.5 s 3 s 4 s 5 s
𝑝𝑒𝑟𝑖𝑜𝑑1 𝑝𝑒𝑟𝑖𝑜𝑑2

𝑄𝑀𝑄1

𝑄𝑀𝑄2 𝑄𝑀𝑄3

(b) The queries metadata generated according to the
blocks. 𝐵𝑙𝑘1 leads to 𝑄𝑀1 and 𝑄𝑀2. 𝐵𝑙𝑘2 leads to
𝑄𝑀3.

Figure 6.2: The representation of queries are generated based on the metadata referred in a block.

6.4.3 Blocks

In our setting, we know beforehand the information that must, or not, appear in the MKUs to
perform, or not, an inference attack. Therefore, over a period, we define one or multiple blocks

that we use to produce MKUs grouped has queries metadata.

Definition 6.4.4 (Block). A block 𝑏𝑙𝑘 = ⟨𝐴𝑃 ⊆ 𝑃 ∈ 𝐵𝐴𝑖, 𝑒𝑛𝑣 ∈ ℰ, 𝑜𝑠 ∈ 𝒯, 𝑙𝑖 ∈ 𝒯⟩ ∈ ℬ is a tuple
defining the information used to generate MKUs. It is built according to an inference channel
identified by 𝑖 ∈ ℐ. 𝐴𝑖 ⊆ 𝒜 denotes the required attributes referenced in the set of patterns 𝑃𝑖.
𝐵𝐴𝑖 denotes the set of all partitions of 𝐴𝑖. 𝐴𝑃 is a subset of a partition 𝑃 in 𝐵𝐴𝑖. 𝑒𝑛𝑣 denotes the
environment of the MKUs. The time interval 𝑜𝑠 occurs during the time interval of all the MKUs.
The time interval 𝑙𝑖 corresponds to the limits of the block, such that 𝑜𝑠 d 𝑙𝑖.

By defining information such as the environment in which sensor data are generated, the
attributes, and the shared time interval, we are able to the create blocks having a malicious status

or a genuine status.

Definition 6.4.5 (Status of a block). A block 𝑏𝑙𝑘 ∈ ℬ, defined with an environment 𝑒𝑛𝑣 ∈ ℰ, is
malicious according to an inference channel identified by 𝑖 ∈ ℐ, if the produced queries metadata
enables to exploit the channel. Otherwise, 𝑏𝑙𝑘 is genuine. Blocks are not overlapping to preserve
their status.

Let us consider the inference channel identified by 𝑖 = 2 presented in Section 5.1. As a
remainder, the set of patterns is 𝑃2 = {𝑝 , 𝑝 , 𝑝 } and the set of CPFs 𝐹2 contains a single CPF 𝑓
defining that all those attributes must be referenced by MKUs during the same common time
interval having a duration of 1 s. Figure 6.2a depicts a malicious block denoted by 𝐵𝑙𝑘1 and a

genuine block denoted by 𝐵𝑙𝑘2.
𝐵𝑙𝑘1 references attributes partitioned in two sets, delimited by the dashed dotted line, i.e., { }

and { , }. The MKUs generated from 𝐵𝑙𝑘1 have a time interval which occurs during 𝐵𝑙𝑘1
interval 𝑙𝑖 = (1, 2) (the top dashed blue line). Moreover, the time intervals of all those MKUs

overlap on the interval 𝑜𝑠 = (1.5, 2.5) (the bottom dashed red line). A query metadata is
generated per set in the partition. As depicted in Figure 6.2b, the query metadata 𝑄𝑀𝑄1 and

𝑄𝑀𝑄2 are produced from 𝐵𝑙𝑘1. They reference the attributes ; and , respectively.
Considering a partition of 𝐴2 ensures that all the required attributes are referenced by the

queries metadata produced by a block. Moreover, the MKU of 𝑄𝑀𝑄1 overlaps the two MKUs of

6.5. WORKFLOW OF THE DATASET GENERATION 79

𝑄𝑀𝑄2 during the interval 𝑜𝑠 with a duration equal to 1 s. Those two queries metadata enable the
exploitation of the inference channel identified by 𝑖 = 2.

𝐵𝑙𝑘2 references a subset of a partition, i.e., { , }. Its limits is set to 𝑙𝑖 = (4, 5). Since 𝐵𝑙𝑘2 is
genuine, the time interval during which MKUs overlap is initialized to a null value. It is

formally denoted as 𝑜𝑠 = ∅ (compared to an empty set denoted by ∅). A single query metadata
𝑄𝑀𝑄3 is produced from this block. Even if the two MKUs of 𝑄𝑀𝑄3 have overlapping time

intervals with a duration of 1 s, since only two of the three attributes are referenced, 𝑄𝑀𝑄3 does
not enable to perform an IAISD for the channel identified by 𝑖 = 2.

The block is the central concept used to generate queries metadata leading, or not, to inference
attacks. As stated in Definition 6.4.5, blocks are not overlapping on the generation timeline to

ensure that, for instance, the queries metadata produced by two genuine blocks can not be
combined together. This ensure to preserve the status of blocks. Thus, it is defined to meet
requirement (II). Moreover, a block can lead to the generation of one or multiple queries

metadata, consequently it is defined to partially meet requirement (III).

6.4.4 Sequence of queries metadata

To build a dataset for the evaluation of RICE-Sy, we generate those queries metadata for a single
user following a single archetype. The goal of our generator is to generate a sequence of queries

metadata obtained by a user.

Definition 6.4.6 (Sequence of queries metadata). A sequence of queries metadata 𝑆𝑄 =
⟨𝑄𝑀𝑄1,… ,𝑄𝑀𝑄𝑛⟩ ⊆ 𝒮𝒬, 𝑛 ≥ 1 are queries metadata produced from blocks.

For instance, 𝐵𝑙𝑘1 in Figure 6.2 produces the sequence 𝑆𝑄 = ⟨𝑄𝑀𝑄1, 𝑄𝑀𝑄2⟩ and 𝐵𝑙𝑘2 produces
the sequence 𝑆𝑄′ = ⟨𝑄𝑀𝑄3⟩. Assuming that those two blocks are generated for a user 𝑢 ∈ 𝒰 and

the inference channel identified by 𝑖 ∈ ℐ, the final sequence generated for user 𝑢 is
𝑆𝑄𝑢

𝑖 = 𝑆𝑄 + 𝑆𝑄′ = ⟨𝑄𝑀𝑄1, 𝑄𝑀𝑄2, 𝑄𝑀𝑄3⟩, where + denotes the concatenation of two sequences.
Sequences of queries metadata are defined in order to meet requirement (III).

6.4.5 Consolidation & Groups of attributes

The two final concepts influence all queries metadata within a user’s sequence w.r.t. their
archetype. The deceptive attacker archetype is able to consolidate their user’s knowledge, query
by query (see Section 5.2.3). A user following an archetype, regularly queries sensor data related

to specific attributes as part of their work. Hence, selecting a specific group of attributes.

Definition 6.4.7 (Groups of attributes). A group of attributes 𝑔𝑝𝑎 ⊆ 𝒜 is a set of attributes
defined in a block within each period of the generation timeline.

This concept is defined to generate sequences which simulate, or not, the regular aspect of a
users’ querying behaviors, thus covering the requirement (IV). The consolidation is considered
here as a concept to meet the requirement (III), which is already partially covered by the blocks.
We leverage those five concepts to produce datasets containing metadata representations of

queries associated to users. The symbols defined for those concept are summarized in Table 6.1
to improve the readability when referencing them in the following sections. Next section, we
present the generation workflow of a dataset as well as the introduced concepts used at this

stage.

80 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

Symbol Description

𝑔𝑡 ∈ 𝒯 Generation timeline.
𝑝𝑒𝑟𝑖𝑜𝑑 ∈ 𝒯 A period of the generation timeline.

𝐴𝑖 ⊆ 𝒜 The attributes required for an inference channel identified by 𝑖.
𝑏𝑙𝑘 ∈ ℬ A block producing queries metadata during a period.

𝑆𝑄𝑢
𝑖 ⊆ 𝒮𝒬 Sequence of queries metadata generated for user 𝑢 and inference channel

identified by 𝑖.

Table 6.1: Symbols defined to generate queries metadata.

Users

OTA

GE

DA

⋮
𝑢1

𝑢𝑛

⋮
𝑢𝑚

𝑢𝑙

⋮
𝑢𝑘

𝑢𝑗

𝑆𝑄𝑢1
0

𝑆𝑄𝑢𝑛
1

𝑆𝑄𝑢𝑚
0 + 𝑆𝑄𝑢𝑚

1

𝑆𝑄𝑢𝑙
0 + 𝑆𝑄𝑢𝑙

1

𝑆𝑄𝑢𝑘
0 + 𝑆𝑄𝑢𝑘

1

𝑆𝑄𝑢𝑗
1

Dataset containing
sequences of

metadata queries
for the users
𝑢1,… , 𝑢𝑛,
𝑢𝑚,… , 𝑢𝑙,
𝑢𝑘,… , 𝑢𝑗

❶
𝑛𝑢𝑚𝑏𝑒𝑟_𝑢𝑠𝑒𝑟𝑠

❷
𝑟𝑎𝑡𝑖𝑜_𝑜𝑡𝑎,
𝑟𝑎𝑡𝑖𝑜_𝑟𝑤𝑢,
𝑟𝑎𝑡𝑖𝑜_𝑑𝑎

❸
𝐼𝐶𝑅, 𝑠𝑡𝑎𝑟𝑡_𝑝𝑒𝑟𝑖𝑜𝑑𝑠,

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑠, 𝐹𝑄

Figure 6.3: Workflow of the dataset generation. The indice 0 (resp. 1) denotes a sequence
generated for the inference channel mHealth (resp. Orange4Home).

6.5 Workflow of the dataset generation

The purpose of a generated dataset is to associate sequences of queries metadata to users. As
depicted in Figure 6.3, to generate a dataset, the first step is to define the number of users for

which queries metadata must be generated ❶. Then, an archetype is chosen for each user. To do
so, three ratios are defined in order to determine the number of users which follow the one-time
attacker, the genuine employee, and the deceptive attacker archetype, respectively ❷. Finally,

for each user and their associated archetype, a query metadata sequence is generated
considering ❸: the inference channels (e.g., mHealth denoted by 𝑖 = 0 and Orange4Home 𝑖 = 1)
described in the 𝐼𝐶𝑅 of RICE-Sy; the timestamp of the first period on the generation timeline,

denoted by 𝑠𝑡𝑎𝑟𝑡_𝑝𝑒𝑟𝑖𝑜𝑑; the duration of each period in the user’s sequence, denoted by
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑠; and the frequencies associated to attributes, denoted by 𝐹𝑄. For all users in a
dataset, we randomly select the timestamp of the first period on the generation timeline. We
establish that all periods in a sequence have the same duration in order to easily modify the
regularity of querying behaviors. The smaller the duration of periods is, the more regularly

groups of attributes are referenced in blocks. For coherent sake, in case ICR contains inference
channels having SSW constraints (e.g., the Orange4Home case study), the frequencies associated
to the attributes of those inference channels are defined beforehand. All sequences generated for

6.5. WORKFLOW OF THE DATASET GENERATION 81

those inference channels reference the same frequencies for the same attributes (e.g., all 𝑆𝑄
having the indice 0 in Figure 6.3). Finally, for the GU and DA archetypes, the generated queries
metadata are position over the emission timeline to determine in which order the sequence is

processed by RICE-Sy.
Let us consider an hypothetical example in which a dataset is generated for 100 users

(𝑛𝑢𝑚𝑏𝑒𝑟_𝑢𝑠𝑒𝑟𝑠 = 100), with the following distribution of archetypes: 5% of one-time attacker,
85% of genuine employees, and 10% of deceptive attacker (𝑟𝑎𝑡𝑖𝑜_𝑜𝑡𝑎 = 0.05, 𝑟𝑎𝑡𝑖𝑜_𝑔𝑢 = 0.85,
𝑟𝑎𝑡𝑖𝑜_𝑑𝑎 = 0.1). We consider that ICR contains only the description of our two case studies:

mHealth and Orange4Home. In the remainder of this thesis, we generate datasets by
considering a single inference channel for the sake of intelligibility. Yet, to concisely illustrate
how a dataset is generated according to both archetypes and inference channels, we a single
example which contains each archetype and each inference channel. The following kind of

sequences of queries metadata are generated:

• For the 5 OA, the sequence contains a single query metadata which exploits one of the
considered inference attacks. For example, user 𝑢1’s query metadata sequence is denoted by
𝑆𝑄𝑢1 = 𝑆𝑄𝑢1

0 . Only mHealth, denoted by the indice 0, is considered here. A single period
is defined for this archetype. The duration of this period must be greater or equal than 2 s
to define a malicious block according to mHealth (i.e., where Δ(𝑜𝑠) ≥ 2 s. The frequencies
𝐹𝑄 are ignored, since no SSW constraint is considered in this case study. The single query
metadata is affected a random emission time, greater than its generation time.

• For the 85 GU, the sequence contains multiple queries metadata which do not exploit any
of the inference attacks in the ICR. Hence, for example, the user 𝑢𝑚’s query metadata
sequence is denoted by 𝑆𝑄𝑢𝑚 = 𝑆𝑄𝑢𝑚

0 + 𝑆𝑄𝑢𝑚
1 . In such a sequence the duration of the period

is smaller than for the other archetypes, to simulate regularly selected groups of attributes.
The data points related to each inference channel may be selected during the same periods
(e.g., some data points related to mHealth or Orange4Home are selected during the same
periods, then the timestamp of the first period can be set to the same value for the two
sequences) or in series (e.g., first some data points related to mHealth and then some data
points related to Orange4Home, then the timestamp of the first period can be set to greatly
different values). Since one part of the sequence considers Orange4Home (denoted by the
indice 1), the frequencies 𝐹𝑄 are considered for the referenced attributes 𝐴1 in the queries
metadata of 𝑆𝑄𝑢𝑚

1 . Most of the queries are emitted in the order and at the time they are
generated to simulate the continuous querying. The other queries are emitted in a random
order, and with a time greater than their respective generation time.

• For the 10 DA, the sequence also contains multiple queries metadata which exploit both
of the considered inference channels. Hence, for example, the user 𝑢𝑘’s query metadata
sequence is denoted by 𝑆𝑄𝑢𝑘 = 𝑆𝑄𝑢𝑘

0 + 𝑆𝑄𝑢𝑘
1 . The duration of the period is larger than the

GUs. It is small enough to enforce regularly selecting the defined groups of attributes via
the generated genuine queries metadata, while being large enough to enable the definition
of malicious blocks. For each sequence, the timestamp of the first period can be chosen as
described for the GUs. Likewise, the frequencies 𝐹𝑄 are here considered for the attributes
𝐴1 only. The queries are positioned on the emission timeline similarly to the GU archetype.

The generation timeline is considered when generating the sequence of queries metadata
associated to a user. The emission timeline is considered only at the dataset level, to define the
order in which queries metadata are processed by RICE-Sy. In the following section, we present

and formalize how query metadata sequences are generated.

82 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

acc_
che

st_xacc_
che

st_yacc_
che

st_z

acc_
left

_an
kle_

x
acc_

left
_an

kle_
y

acc_
left

_an
kle_

z

acc_
righ

t_w
rist

_x

acc_
righ

t_w
rist

_y

acc_
righ

t_w
rist

_z

gyr
o_le

ft_a
nkl

e_x

gyr
o_le

ft_a
nkl

e_y

gyr
o_le

ft_a
nkl

e_z

gyr
o_ri

ght
_wr

ist_
x

gyr
o_ri

ght
_wr

ist_
y

gyr
o_ri

ght
_wr

ist_
z

magn
eto_

left
_an

kle_
x

magn
eto_

left
_an

kle_
y

magn
eto_

left
_an

kle_
z

magn
eto_

righ
t_w

rist
_x

magn
eto_

righ
t_w

rist
_y

magn
eto_

righ
t_w

rist
_z

period₁

0 10

1

(a) mHealth case study.

acti
ve_

pow
er

con
diti

on_
id_e

xt

dish
was

her
_vo

ltag
e

ligh
ting

_cu
rren

tpre
sen

ceshu
ttersno

w_e
xt

swi
tch_

top
_rig

ht

was
hin

gmach
ine_

pow
er

was
hin

gmach
ine_

tota
l_en

ergy

period₁

0 10

1

(b) Orange4Home case study.

Figure 6.4: Illustrations of sequences generated for a one-time attacker.

6.6 Archetype-based generation of query metadata sequences

Sequences of queries metadata are generated considering our two case studies, i.e., mHealth
presented in Section 4.1.1, and Orange4Home presented in Section 4.1.2, and our three defined
archetypes: the One-time Attacker (OA), the Genuine User (GU), and the Deceptive Attacker
(DA) (see Section 6.1.2). Each step of the generation process is formalized using the concepts

defined in Section 6.4.

6.6.1 The one-time attacker (OA)

Let us start by considering the simplest archetype corresponding to a attacker performing a
single IAISD using a single query (see Definition 6.1.2). Since this archetype does not rely on the
concepts of multiple queries, consolidation, groups of attributes, or genuine blocks, it’s the most
suitable starting point to explain and formalize how the generation of query metadata sequences
works for our two case studies. For an OA, a single period is defined to generate a sequence. A

single block is instantiated within this period, initialized with a malicious status, and is
referencing a full partition of the required attributes. Therefore, it produces a single query

metadata leading to an inference attack. In the following, we further illustrate with Figure 6.4
how this generation is performed for each of our two case studies.

mHealth The malicious block is initialized as formalized in Algorithm 6.1, by the function
𝑜𝑎_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ. Since data points must be queried for each attribute in a single

query metadata, it references a partition with a single set containing all the required attributes,
denoted by 𝐴0. The function then randomly selects (denoted by ∈𝑅) one of the environment 𝑒𝑛𝑣
among all the ones associated to this inference channel, denoted by 𝐸0. It determines the time

interval 𝑙𝑖 of the block, by randomly selecting an interval during the single period of the
sequence. It ensures that this interval is equal or greater than the required duration of mHealth.
For this archetype, the interval 𝑜𝑠 is ignored, since selecting all attributes during the limit of the
block ensures that the generated MKUs enable a user to exploit the inference channel. Based on
this malicious block denoted by 𝑏𝑙𝑘, a single query metadata is generated as formalized by the

6.6. ARCHETYPE-BASED GENERATION OF QUERY METADATA SEQUENCES 83

Algorithm6.1:Generation of a querymetadata sequence for theOAarchetype&mHealth

Inputs:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡 Start of the single period.
𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 Duration of the single period.
𝐹𝑄 Set of frequencies related to each attribute.

Output: A sequence containing a single query metadata exploiting mHealth.

1 Function oa_malicious_block_mhealth(𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡, 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
2 𝐴𝑃 ← {𝐴0}
3 𝑒𝑛𝑣 ← 𝑒𝑛𝑣 ∈𝑅 𝐸0
4 𝑙𝑖 ← 𝑙𝑖 ∈𝑅 (𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡, 𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡 + 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ∶ Δ(𝑙𝑖) ≥ 2 s
5 𝑜𝑠 ← ∅
6 return ⟨𝐴𝑃, 𝑒𝑛𝑣, 𝑜𝑠, 𝑙𝑖⟩

7 Function oa_sequence_mhealth(𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡, 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐹𝑄)
8 𝑏𝑙𝑘 = ⟨𝐴𝑃, 𝑒𝑛𝑣, 𝑜𝑠, 𝑙𝑖⟩ ← 𝑜𝑎_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑏𝑙𝑜𝑐𝑘(𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡, 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
9 𝑄𝑀𝑄1 ← ∅

10 foreach 𝑎 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ⊆ 𝐴𝑃 do
11 𝑄𝑀𝑄1 ← 𝑄𝑀𝑄1 ∪ {⟨𝑎, 𝑒𝑛𝑣, 𝑙𝑖, 𝑓𝑞𝑎 ∈ 𝐹𝑄⟩}
12 return ⟨𝑄𝑀𝑄1⟩}

function 𝑜𝑎_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚ℎ𝑒𝑎𝑙𝑡ℎ. For each attribute in the partition of 𝑏𝑙𝑘, an MKU is created to
reference it and the frequency at which data points are generated for this attribute. Each MKU
reference the environment of 𝑏𝑙𝑘 and its limits as their time interval. This set of MKUs forms the
query metadata denoted by 𝑄𝑀𝑄1. 𝑜𝑎_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚ℎ𝑒𝑎𝑙𝑡ℎ returns a sequence containing 𝑄𝑀𝑄1

only.

We visualize the generated sequence as depicted by Figure 6.4a. The right side of the plot shows
that a single query metadata is depicted with a blue color. The colored segments corresponds to
the MKUs in 𝑄𝑀𝑄1. They each references one of the attributes on the y-axis for the same time
interval on the x-axis. The x-axis corresponds to the generation timeline. The interval of the

block from which MKUs are produced is represented has a vertical dashed blue line. The single
period is represented by a horizontal solid line at the beginning of the block. In our second case

study, the generation must consider the SSW data prerequisite, and thus the generation
frequencies associated to attributes.

Orange4Home The malicious block is initialized in a similar fashion as for mHealth, but
considering 𝐴1 and 𝐸1. In addition to TSW, we take the SSW constraint of Orange4Home into

account. This implies that not all attributes 𝐴1 have to be selected in the block (see
Section 4.1.2). 𝐴𝑃 and 𝑙𝑖 are chosen following Equation 6.6.1, where 𝑓𝑞𝑎 denotes the frequency
associated to the attribute 𝑎. 𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡 and 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 are denoted by 𝑝𝑒_𝑠𝑡 and 𝑝𝑒_𝑑𝑢,
respectively, for readability purpose. This equation ensures that considering that the attributes
and the block limit are selected so that the quantity of the generated data points during the limit

is equal or greater than the required quantity. The sequence of query metadata is created
following function 𝑜𝑎_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚ℎ𝑒𝑎𝑙𝑡ℎ.

84 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

∃ 𝐴𝑃 ⊆ 𝑃 ∈ 𝐵𝐴1, ∃ 𝑙𝑖 ∈ 𝒯∶ 𝑙𝑖 d (𝑝𝑒_𝑠𝑡, 𝑝𝑒_𝑠𝑡 + 𝑝𝑒_𝑑𝑢) ∧

Δ(𝑙𝑖) ≥ 15 s ∧ ∑
∀ 𝑎∈𝐴𝑃

𝑑𝑝𝑎(𝑙𝑖, 𝑓𝑞𝑎) ≥ 20 (6.6.1)

Figure 6.4b depicts such a sequence, where we can observe that, similarly to the visualization of
mHealth, a single query metadata, denoted by 𝑄𝑀𝑄1, is generated and is affected the blue color.
Here, each colored segment also corresponds to an MKU within 𝑄𝑀1. They all have the same
interval, which corresponds to the interval of the block from which they originate. Yet, we see on

the y-axis that they reference only a subset of all available attributes in Orange4Home.
Moreover, the MKUs represent when the selected data points are generated w.r.t. the frequency

associated to each attribute.

Therefore, by focusing on the generation of query metadata sequences for the one-time attacker
archetype, we demonstrate how:

• A malicious block is initialized considering the data prerequisites of both case studies.
Hence, the requirement (II) is partially covered by considering the malicious status of a
block.

• A single query metadata is produced from this block. This partially covers the require-
ment (III) by demonstrating how a single query metadata is produced from a block.

• The properties of the sequence are influenced by the archetype, e.g., the number of periods,
the number of blocks, the number of queries, etc. Hence, the requirement (IV) is partially
covered by considering a first archetype among the three that we define.

To further cover the requirements defined in Section 6.2, in the next section we focus on the
second archetype, i.e., the genuine employee.

6.6.2 The genuine user (GU)

Let us continue by considering the GU archetype issuing multiple queries without performing a
single IAISD. This archetype is the most suitable to introduce how the concepts of multiple

periods, genuine blocks, and groups of attributes are combined to generate sequences of regular
queries metadata. A GU issues queries which regularly select the same groups of attributes,

among a few queries selecting other attributes. In this setting, multiple periods are defined and
each contains a few genuine blocks where most reference one of the group of attributes. The
selection frequency of the groups of attributes can be increased or decreased by setting the
duration of periods to a smaller or higher value, respectively. The number of genuine blocks

defined in a period must at least equal to the number of defined groups of attributes, in order to
enforce the regular behavior of the GU archetype. Besides the regularity, each genuine block
produce here a single query metadata. Since multiple blocks are defined for each period, the
resulting query metadata sequence contains multiple queries metadata. In the following, we

further illustrate how this generation works for each case study.

mHealth

Considering mHealth, the genuine block is initialized as formalized in Algorithm 6.2, by the
function 𝑔𝑢_𝑔𝑒𝑛𝑢𝑖𝑛𝑒_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ. Each block is generated within a period, and in each

6.6. ARCHETYPE-BASED GENERATION OF QUERY METADATA SEQUENCES 85

Algorithm 6.2: Part 1: Generation of a sequence for the GU archetype & mHealth

Inputs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡 (𝑝𝑒_𝑠𝑡) Start of the first period.
𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 (𝑛𝑢_𝑝𝑒) Number of periods.
𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑝𝑒_𝑑𝑢) Duration of all periods.
𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘 (𝑚𝑎_𝑏𝑙) Maximum number of block within a period.
𝑔𝑟𝑜𝑢𝑝𝑠_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝑔𝑟_𝑎𝑡) Groups of attributes which are regularly selected.

Output: A sequence of queries metadata which are not leading to an inference attack.

1 Function gu_genuine_block_mhealth(𝑐𝑢_𝑝𝑒, 𝑝𝑒_𝑑𝑢, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠)
2 𝐴𝑃 ← {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}
3 if 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 = 𝐴0 then 𝐴𝑃 ← {𝑝}, 𝑃 ∈𝑅 𝐵𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑝 ∈𝑅 𝑃

4 𝑙𝑖 ←
⎧⎪⎨⎪⎩
chose 𝑙𝑖 d (𝑐𝑢𝑓_𝑝𝑒, 𝑐𝑢_𝑝𝑒 + 𝑝𝑒_𝑑𝑢) s.t. Δ(𝑙𝑖) < 2 s
and li does not overlap the limit of another block

5 … // Initializes the block similarly to Algorithm 6.1
6 return ⟨𝐴𝑃, 𝑒𝑛𝑣, 𝑜𝑠, 𝑙𝑖⟩

Algorithm 6.3: Part 2: Generation of a sequence for the GU archetype & mHealth
1 Function gu_sequence_mhealth(𝑝𝑒_𝑠𝑡, 𝑛𝑢_𝑝𝑒, 𝑝𝑒_𝑑𝑢, 𝑚𝑎_𝑏𝑙, 𝑔𝑟_𝑎𝑡)
2 𝑆𝑄 ← ∅
3 𝑐𝑢_𝑝𝑒 ← 𝑝𝑒_𝑠𝑡
4 foreach 1,… , 𝑛𝑢_𝑝𝑒 do
5 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 ← 1

// Choose a random number of blocks
6 𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑙𝑜𝑐𝑘 ← 𝑈(|𝑔𝑟_𝑎𝑡|,𝑚𝑎_𝑏𝑙) 𝑐𝑢_𝑝𝑒 ← 𝑐𝑢_𝑝𝑒 + 𝑝𝑒_𝑑𝑢 + 1
7 foreach 1,… , 𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑙𝑜𝑐𝑘 do
8 if 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 ≤ |𝑔𝑟_𝑎𝑡| then

// Define a block per group of attributes
9 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 ← 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 + 1

10 𝑏𝑙𝑘 ← 𝑔𝑢_𝑔𝑒𝑛𝑢𝑖𝑛𝑒_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ(𝑐𝑢_𝑝𝑒, 𝑝𝑒_𝑑𝑢, 𝑔𝑟_𝑎𝑡𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝)
11 else

// Define more blocks when all groups are covered
12 𝑏𝑙𝑘 ← 𝑔𝑢_𝑔𝑒𝑛𝑢𝑖𝑛𝑒_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ(𝑐𝑢_𝑝𝑒, 𝑝𝑒_𝑑𝑢, 𝐴0)
13 … // Creates a query metadata 𝑄𝑀 similarly to Algorithm 6.1
14 𝑆𝑄 ← 𝑆𝑄 ∪ 𝑄𝑀
15 return 𝑆𝑄

period all defined groups of attributes must be selected by a query metadata. Hence, a genuine
block refers all the provided attributes, only if it correspond to a group of attributes. Otherwise,
the genuine block purpose is to generate a query metadata which randomly selects (denoted by
⊂𝑅) a partition of the mHealth attributes. Then, the remainder members (i.e., 𝑒𝑛𝑣, 𝑙𝑖, and 𝑜𝑠) of

the block are initialized following the same logic than in Algorithm 6.1. However, here the
interval of the block, denoted by 𝑙𝑖, is chosen within the interval of the currently considered

period, denoted by (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑒𝑟𝑖𝑜𝑑, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛). If genuine blocks have
overlapping 𝑙𝑖, it can produce query metadata which satisfy the constraints of an inference

86 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

acc_
che

st_xacc_
che

st_yacc_
che

st_z

acc_
left

_an
kle_

x
acc_

left
_an

kle_
y

acc_
righ

t_w
rist

_x

acc_
righ

t_w
rist

_y

gyr
o_le

ft_a
nkl

e_y

gyr
o_le

ft_a
nkl

e_z

gyr
o_ri

ght
_wr

ist_
y

gyr
o_ri

ght
_wr

ist_
z

magn
eto_

left
_an

kle_
x

magn
eto_

left
_an

kle_
y

magn
eto_

righ
t_w

rist
_x

magn
eto_

righ
t_w

rist
_y

period₁ period₂ period₃

0 5 6 8 10

12
.5 13 14 15 17 18 19 20 22

22
.5 26 27 29

1 2 3 4 5 6 7 8 9

Figure 6.5: Sequence generated considering the mHealth case study.

channel. 𝑙𝑖 is chosen so that it does not overlap another block in the same period. The query
metadata sequence for the GU archetype is generated as formalized by the function

𝑔𝑢_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚ℎ𝑒𝑎𝑙𝑡ℎ in Algorithm 6.3. For each considered period, it randomly determines the
number of genuine blocks to initialize using a uniform distribution, denoted by 𝑈. This number
is chosen to ensure that there is at least one block for each defined group of attributes, since they
should be selected in every period. A maximum number of blocks is provided as a parameter, s.t.
𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘 ≥ |𝑔𝑟𝑜𝑢𝑝𝑠_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠|, so that once a block has been initialized for each group, more
blocks selecting other sets of attributes can also be defined within a period, thus combining

regularity and diversity of selected attributes. For each block, the corresponding query metadata
is produced following the same approach as formalized in Algorithm 6.1. Finally, the sequence

is built by concatenating all created queries metadata.
We can observe such a sequence depicted in Figure 6.5. Here, for this example, we have defined:

three periods; a maximum number of four blocks; the two following groups of attributes
{acc_chest_x, acc_chest_y, acc_chest_z} and {magneto_right_wrist_x, magneto_right_wrist_y}.
We observe that a total of nine queries metadata are generated. In the first period, only two
genuine blocks are defined: one for each group. In the second period, there are four blocks,

hence the first and second one are selecting the groups of attributes, whereas the two last blocks
select random subsets of attributes. Finally, the last period contains three blocks where the first
selects random attributes and the two last select the groups of attributes. Therefore, we observe
that none of the blocks are overlapping other block. None of the produced queries metadata is

exploiting the mHealth inference channel. In the following, we explain how such a query
metadata sequence is built for Orange4Home.

Orange4Home

Considering our second case study, the genuine blocks are initialized following the logic of the
function 𝑔𝑢_𝑔𝑒𝑛𝑢𝑖𝑛𝑒_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ in Algorithm 6.2. However, similarly to the OA query
metadata sequence, we consider the frequencies 𝐹𝑄 associated to each attribute. Indeed, to

enforce the genuine status of blocks, the function chooses the time interval 𝑙𝑖 so that, considering
the attributes in 𝐴𝑃 and their frequencies, the block duration, denoted by Δ(𝑙𝑖), is smaller than

the expected duration and the number of data points is smaller than the expected quantity.
Hence, instead of the clause at line 4 in Algorithm 6.2, the genuine blocks for Orange4Home
must be initialized with an interval satisfying the clause of Equation 6.6.2. Finally, the query
metadata sequence for this case study is built by following the logic defined by the function
𝑔𝑢_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚ℎ𝑒𝑎𝑙𝑡ℎ in Algorithm 6.3. Moreover, the queries metadata produced from the
genuine blocks are defined using the approach presented in Section 12, i.e., where the SSW

6.6. ARCHETYPE-BASED GENERATION OF QUERY METADATA SEQUENCES 87

bed
_pr

essu
reclos

et_d
oorcon

diti
on_

ext

con
diti

on_
id_e

xtcup
boa

rd1cup
boa

rd3
frid

ge_
cur

ren
t

hea
ter1

_tem
per

atur
e

hoo
d_c

urre
nt

hoo
d_p

arti
al_e

ner
gyhum

idit
y

ligh
tligh
t1

ligh
t2

ligh
t3

ligh
t4

ligh
ting

_po
werlum

inos
itysho

wer
_do

orshu
ttershu
tter

1shu
tter

2swi
tch_

left

tv_p
lug

_co
nsu

mptio
n

wat
erh

eate
r_st

atus
win

dow

period₁ period₂

0

3.
5

3.
75 6.
5

6.
75

9.
75 10 12

12
.3 14

14
.5

16
.7

16
.9 18

18
.5

19
.8

1 2 3 4 5 6 7 8

Figure 6.6: Sequence generated considering the Orange4Home case study.

constraint of the MKUs reference the timestamp of the first data point, in the block interval, and
the frequency associated to an attribute.

∃𝐴𝑃 ⊆ 𝑃 ∈ 𝐵𝐴1, ∃ 𝑙𝑖 ∈ 𝒯∶ 𝑙𝑖 d (𝑐𝑢_𝑝𝑒, 𝑐𝑢_𝑝𝑒 + 𝑝𝑒_𝑑𝑢) ∧
⎛⎜⎜⎜
⎝
Δ(𝑙𝑖) < 15 s ∨ ∑

∀𝑎∈𝐴𝑃

𝑑𝑝𝑎(𝑙𝑖, 𝑓𝑞𝑎) < 20
⎞⎟⎟⎟
⎠

(6.6.2)

An example of a query metadata sequence generated for Orange4Home is depicted in Figure 6.6.
Here, we have defined: two periods; a maximum number of six blocks; one group of attributes:
{humidity, luminosity}. We observe that a total of eight queries metadata are generated. In the
first period, three queries metadata are generated, where the second one is selecting the group of
attributes. In the second period, five queries metadata are generated, and the group is selected
by the first query metadata. Hence, outside of the those two queries metadata, all the other

select random attributes without exploiting the Orange4Home inference channel.

Therefore, by focusing on the generation of query metadata sequences for the genuine employee
archetype, we demonstrate how:

• A genuine block is initialized considering our two case studies. Hence, the requirement (II)
is partially covered by considering both the malicious status, and now, the genuine status
of block producing a single query metadata.

• Multiple periods are leveraged to produce a sequence with multiple queries metadata. This
partially covers the requirement (III) by demonstrating how multiple queries metadata are
generated via the initialization of multiple blocks per period.

88 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

acc_
che

st_xacc_
che

st_yacc_
che

st_z

acc_
left

_an
kle_

x
acc_

left
_an

kle_
y

acc_
left

_an
kle_

z

acc_
righ

t_w
rist

_x

acc_
righ

t_w
rist

_y

acc_
righ

t_w
rist

_z

gyr
o_le

ft_a
nkl

e_x

gyr
o_le

ft_a
nkl

e_y

gyr
o_le

ft_a
nkl

e_z

gyr
o_ri

ght
_wr

ist_
x

gyr
o_ri

ght
_wr

ist_
y

gyr
o_ri

ght
_wr

ist_
z

magn
eto_

left
_an

kle_
x

magn
eto_

left
_an

kle_
y

magn
eto_

left
_an

kle_
z

magn
eto_

righ
t_w

rist
_x

magn
eto_

righ
t_w

rist
_y

magn
eto_

righ
t_w

rist
_z

period₁ period₂ period₃

0 5

5.
75 9.
5

10
.2 12

12
.5 15

15
.5 16

16
.8

19
.5

20
.2 24

24
.5

29
.81.
5

4.
5

12
.8

14
.8 17 18 25 27

1 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 6.7: Sequence generated considering the mHealth case study.

• The properties of the sequence are influenced by the archetype. Indeed, here the groups
of attributes are combined with periods to simulate a regular behavior with only genuine
blocks. Hence, the requirement (IV) is partially covered by considering the two first
archetype among the three we have defined.

In the next section, we focus on the last archetype.

6.6.3 The deceptive attacker (DA)

Let us consider the most complex archetype, see Definition 6.1.3, corresponding to an attacker
performing multiple IAISDs using multiple queries metadata. This attacker issues queries to

work like a genuine user and issues the necessary queries to exploit an inference channel. Both
malicious and genuine blocks are considered for this archetype. Similarly to the GU archetype,

the periods and the groups of attributes are leveraged to enforce a regular behavior for the
genuine blocks. Within a sequence of queries metadata of the DA archetype, at least one

malicious block is initialized in order to simulate an attack. However, more than one attack can
be simulated. Consequently, a period may contain both genuine and malicious blocks.

Furthermore, the malicious blocks produce at least two queries metadata to simulate the fact
that users following this archetype query the required data points by combining multiple
queries metadata. Those blocks reference multiple sets of attributes (i.e., |𝐴𝑃| > 1). In the
following, we illustrate how the generation of a query metadata sequence is performed

considering our two case studies.

mHealth

Considering mHealth first, the malicious block is here initialized as formalized by the function
𝑑𝑎_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ in Algorithm 6.4. To the opposite of the malicious block of the OA
archetype, between two queries metadata up to a provided maximum number are produced

from a block. The function randomly chooses the number of queries metadata using a uniform
distribution. Then, the attributes of mHealth are partitioned into one subset per query metadata
to produce. The block interval 𝑙𝑖, as well as the environment 𝑒𝑛𝑣, are initialized following the
logic defined by the function 𝑜𝑡𝑎_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ. Since multiple queries metadata are
produced, the malicious block ensures that the produced MKUs are overlapping during the
common time interval 𝑜𝑠, having a duration defined by the TSW constraint. While 𝑜𝑠 is not

6.6. ARCHETYPE-BASED GENERATION OF QUERY METADATA SEQUENCES 89

Algorithm 6.4: Part 1: Generation of a sequence for the DA archetype & mHealth

Inputs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡 (𝑝𝑒_𝑠𝑡) Start of the first period.
𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 (𝑛𝑢_𝑝𝑒) Number of periods.
𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑝𝑒_𝑑𝑢) Duration of all periods.
𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘 (𝑚𝑎_𝑏𝑙) Maximum number of block within a period.
𝑔𝑟𝑜𝑢𝑝𝑠_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝑔𝑟_𝑎𝑡) Groups of attributes which are regularly selected.
𝑚𝑎𝑥_𝑞𝑢𝑒𝑟𝑦 (𝑚𝑎_𝑞𝑢) Maximum number of queries metadata produced

by a malicious block.
𝑃𝑚𝑎𝑙 Probability that a block is malicious.
𝑃𝑐𝑜𝑛𝑠 Probability that a block produce consolidable queries metadata.
𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡 (𝑚𝑎_𝑠𝑝) Maximum number of split per query metadata.

Output:
⎧⎪⎨⎪⎩
Two query metadata sequences, i.e., the one produced by the genuine blocks and
the one produced by the malicious blocks.

1 Function da_malicious_block_mhealth(𝑝𝑒𝑟𝑖𝑜𝑑, 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑚𝑎𝑥_𝑞𝑢𝑒𝑟𝑦)
// Randomly choose the number of queries metadata.

2 𝑛𝑢𝑚𝑏𝑒𝑟_𝑞𝑢𝑒𝑟𝑦 ← 𝑈(2,𝑚𝑎𝑥_𝑞𝑢𝑒𝑟𝑦)
3 𝐴𝑃 ← partition 𝐴0 into 𝑛𝑢𝑚𝑏𝑒𝑟_𝑞𝑢𝑒𝑟𝑦 subsets
4 … // Initializes 𝑒𝑛𝑣 and 𝑙𝑖 similarly to Algorithm 6.1
5 𝑜𝑠 ← randomly choose 𝑜𝑠 d 𝑙𝑖 s.t. Δ(𝑜𝑠) ≥ 2 s
6 return ⟨𝐴𝑃, 𝑒𝑛𝑣, 𝑜𝑠, 𝑙𝑖⟩

Algorithm 6.5: Part 2: Generation of a sequence for the DA archetype & mHealth
1 Function da_consolidable_queries(𝑄𝑀𝑠, 𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡, 𝑃𝑐𝑜𝑛)
2 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑏𝑙𝑒_𝑄𝑀𝑠 ← ∅

// Randomly choose the number of simulated consolidation
3 𝑛𝑢𝑚𝑏𝑒𝑟_𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ← 𝑈(1,𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡)
4 foreach 𝑄𝑀 ∈ 𝑄𝑀𝑠 do
5 𝑠𝑝𝑙𝑖𝑡𝑒𝑑_𝑄𝑀𝑠 ← 𝑄𝑀
6 if 𝑟𝑎𝑛𝑑() ≥ 𝑃𝑐𝑜𝑛𝑠 then

7 𝑠𝑝𝑙𝑖𝑡𝑒𝑑_𝑄𝑀𝑠 ←
⎧⎪⎨⎪⎩
split 𝑄𝑀 in 𝑛𝑢𝑚𝑏𝑒𝑟_𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 new subsets of MKUs
s.t. they can all be consolidated into 𝑄𝑀

8 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑏𝑙𝑒_𝑄𝑀𝑠 ← 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑏𝑙𝑒_𝑄𝑀𝑠 ∪ 𝑠𝑝𝑙𝑖𝑡𝑒𝑑_𝑄𝑀𝑠
9 return 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑏𝑙𝑒_𝑄𝑀𝑠

exploited when considering the OA and GU archetype (since a single query metadata is
produced from each block), here it is randomly chosen as a time interval which occurs during

the time interval 𝑙𝑖, and having a suitable duration (e.g., 2 s for mHealth).
Moreover, the DA archetype uses multiple queries metadata to consolidate the user’s knowledge.

The queries metadata produced from a malicious block can be split in order to simulate
consolidation. To do so, as formalize by the function 𝑑𝑎_𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 in Algorithm 6.5,
the number of consolidation to simulate is randomly chosen following a uniform distribution.

At least a single consolidation is simulated, up to a given maximum number. Then, each
provided query metadata is split in the chosen number of new queries metadata. For instance,

90 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

let consider the query metadata 𝑄𝑀. If the number of consolidation is set to three, then 𝑄𝑀 is
split into three queries metadata: 𝑄𝑀1, 𝑄𝑀2, and 𝑄𝑀3, such that the consolidation of their

MKUs results in the MKUs of 𝑄𝑀. To provide diversity among the queries metadata produced
from a malicious block, each queries metadata have an equal probability to be split. The

function may split a subset of the provided queries metadata.
The query metadata sequence for the DA archetype is generated following the formalization
depicted by the function 𝑑𝑎_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚ℎ𝑒𝑎𝑙𝑡ℎ in Algorithm 6.6. Two distinct set of queries
metadata are returned: the ones originating from genuine block, and the ones produced by

malicious blocks. This is required to correctly order the queries metadata at the dataset level,
see Section 6.5. Since a malicious block produces multiple queries metadata, the number of

inference attacks cannot be deduced from the sequence of the DA archetype. Consequently, the
third value returned by this function is the number of malicious blocks generated. For each

period the number of block is chosen to guarantee that there is at least one more block than the
given groups of attributes. It guarantees that there is one genuine blocks per group of attribute.
Once all groups have been referenced, the remaining blocks to generate are either genuine or
malicious. Hence, more genuine blocks are generated according to a provided probability 𝑃𝑚𝑎𝑙 if
the sequence already contains at least one malicious block. Otherwise, malicious blocks are
generated and the resulting queries metadata are split according to the provided probability

𝑃𝑐𝑜𝑛𝑠. By considering this probability at the level of malicious blocks and at the query level, see
the function 𝑑𝑎_𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑞𝑢𝑒𝑟𝑖𝑒𝑠, the queries metadata produced by a block can perform
an inference attack by selecting the required information: without having any consolidation or
with a variable quantity of split queries metadata. Finally, the query metadata sequence of the

DA archetype is built by combining queries metadata originating from all blocks, i.e.,
𝑆𝑄 = 𝑆𝑄𝑔𝑒𝑛𝑢𝑖𝑛𝑒 + 𝑆𝑄𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠.

We can observe such a sequence depicted in Figure 6.7. Here, for this example, we have defined:

• Three periods

• A maximum number of four blocks

• A single group of attributes: {𝑎𝑐𝑐_𝑐ℎ𝑒𝑠𝑡_𝑥, 𝑎𝑐𝑐_𝑐ℎ𝑒𝑠𝑡_𝑦, 𝑎𝑐𝑐_𝑐ℎ𝑒𝑠𝑡_𝑧}

• A maximum number of three queries metadata produced by a block

• A probability of 0.75 that a block is malicious

• A probability of 0.5 that block, and each produced queries metadata are split

• A maximum number of three split performed for each query metadata

We observe that a total of 19 generated queries metadata are depicted in this plot. Note that the
used color palette contains only ten distincts colors, hence you can observe here that some colors
are shared by two queries metadata (e.g., 𝑄𝑀1 and 𝑄𝑀11), yet their are independent from each
other. We notice that in each period there is a genuine block generated in order to select the

single defined group of attributes. Hence, in the first period, we see that two blocks are
generated. The first one is malicious and produces the maximum number of queries metadata
(i.e., three) which are not split. The second period contains four blocks. The second and last

blocks are malicious and produce two and three queries metadata, respectively. The last block of
this period simulates the consolidation of user’s knowledge by splitting two of the queries

metadata into four queries metadata. This last block produces a total of five queries metadata.
Finally, the last period contains two blocks where the second produces a total of five queries
metadata. The query metadata 𝑄𝑀19 is produced and not split, whereas the queries metadata

6.6. ARCHETYPE-BASED GENERATION OF QUERY METADATA SEQUENCES 91

Algorithm 6.6: Part 3: Generation of a sequence for the DA archetype & mHealth
1 Function da_sequence_mhealth(𝑝𝑒_𝑠𝑡, 𝑛𝑢_𝑝𝑒, 𝑝𝑒_𝑑𝑢, 𝑚𝑎_𝑏𝑙, 𝑔𝑟_𝑎𝑡, 𝑚𝑎_𝑞𝑢, 𝑃𝑚𝑎𝑙, 𝑃𝑐𝑜𝑛𝑠,

𝑚𝑎_𝑠𝑝)
2 𝑐𝑢_𝑝𝑒 ← 𝑝𝑒_𝑠𝑡
3 𝑛𝑏𝑟_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 ← 0
4 𝑆𝑄𝑔𝑒𝑛𝑢𝑖𝑛𝑒, 𝑆𝑄𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← ∅, ∅
5 foreach 1,… , 𝑛𝑢_𝑝𝑒 do
6 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 ← 1
7 𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑙𝑜𝑐𝑘 ← 𝑈(|𝑔𝑟_𝑎𝑡| + 1,𝑚𝑎_𝑏𝑙)
8 𝑐𝑢_𝑝𝑒 ← 𝑐𝑢_𝑝𝑒 + 𝑝𝑒_𝑑𝑢 + 1
9 foreach 1,… , 𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑙𝑜𝑐𝑘 do

10 if 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 ≤ |𝑔𝑟_𝑎𝑡| ∨ (𝑟𝑎𝑛𝑑() < 𝑃𝑚𝑎𝑙 ∧ 𝑛𝑏𝑟_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 > 0) then
11 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 ← 𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝 + 1

// Algorithm 6.2
12 𝑏𝑙𝑘 ← 𝑔𝑢_𝑔𝑒𝑛𝑢𝑖𝑛𝑒_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ(𝑐𝑢_𝑝𝑒, 𝑝𝑒_𝑑𝑢, 𝑔𝑟_𝑎𝑡𝑖𝑑𝑥_𝑔𝑟𝑜𝑢𝑝)
13 … // Creates a query metadata 𝑄𝑀 similarly to Algorithm 6.1
14 𝑆𝑄𝑔𝑒𝑛𝑢𝑖𝑛𝑒 ← 𝑆𝑄𝑔𝑒𝑛𝑢𝑖𝑛𝑒 ∪ 𝑄𝑀
15 else
16 𝑛𝑒𝑤_𝑄𝑀𝑠 ← ∅
17 𝑛𝑏𝑟_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 ← 𝑛𝑏𝑟_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 + 1
18 𝑏𝑙𝑘 ← 𝑑𝑎_𝑔𝑒𝑛𝑢𝑖𝑛𝑒_𝑏𝑙𝑜𝑐𝑘_𝑚ℎ𝑒𝑎𝑙𝑡ℎ(𝑐𝑢_𝑝𝑒, 𝑝𝑒_𝑑𝑢,𝑚𝑎_𝑞𝑢)
19 foreach 𝐴𝑃 ∈ 𝐴𝑃𝑏𝑙𝑘 do
20 … // Like line 13, but considering the attributes in 𝐴𝑃
21 𝑛𝑒𝑤_𝑄𝑀𝑠 ← 𝑛𝑒𝑤_𝑄𝑀𝑠 ∪ 𝑄𝑀
22 if 𝑟𝑎𝑛𝑑() ≥ 𝑃𝑐𝑜𝑛𝑠 then
23 𝑛𝑒𝑤_𝑄𝑀𝑠 ← 𝑑𝑎_𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑏𝑙𝑒_𝑞𝑢𝑒𝑟𝑖𝑒𝑠(𝑛𝑒𝑤_𝑄𝑀𝑠,𝑚𝑎_𝑠𝑝, 𝑃𝑐𝑜𝑛𝑠)
24 𝑆𝑄𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑆𝑄𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ∪ 𝑛𝑒𝑤_𝑄𝑀𝑠
25 return 𝑆𝑄𝑔𝑒𝑛𝑢𝑖𝑛𝑒, 𝑆𝑄𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠, 𝑛𝑏𝑟_𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑄𝑀15 & 𝑄𝑀16 and 𝑄𝑀17 & 𝑄𝑀18 simulate the consolidation. We observe that none of the
blocks are overlapping other blocks. Consequently, none of the produced queries metadata are
exploiting the mHealth inference channel. In the following, we explain how the query metadata

sequence is built for Orange4Home.

Orange4Home

Considering our second strategy, the sequence of queries metadata is generated with the
function 𝑑𝑎_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚ℎ𝑒𝑎𝑙𝑡ℎ of Algorithm 6.5, presented in the previous section. The

initialization of genuine blocks and the malicious blocks for Orange4Home follow the same logic
than the GU archetype (see Section 15) and the OA archetype (see Section 12). Similarly to

mHealth, the malicious blocks set the interval 𝑜𝑠 to a non-null value. Therefore, assuming that
the set of attributes to reference 𝐴𝑃 and the block interval 𝑙𝑖 are initialized w.r.t. the

Equation 6.6.1. Then, 𝑜𝑠 is randomly chosen according to the Equation 6.6.3.

∃ 𝑜𝑠 ∈ 𝒯∶ 𝑜𝑠 d 𝑙𝑖 ∧ Δ(𝑜𝑠) ≥ 15 s ∧ ∑
∀𝑎∈𝐴𝑃

𝑑𝑝𝑎(𝑜𝑠, 𝑓𝑞𝑎) ≥ 20 (6.6.3)

92 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

con
diti

on_
ext

con
diti

on_
id_e

xt

coo
kto

p_t
otal

_en
ergycup

boa
rd3
doo

r
frid

ge_
cur

ren
t

hea
ter1

_tem
per

atur
e

hea
ter2

_tem
per

atur
ehum

idit
yligh
t3lum

inos
ityshu
ttershu
tter

1shu
tter

2
shu

tter
s_vo

ltag
etv_s

tatu
s

win
d_s

pee
d_e

xtwin
dow

period₁ period₂

0 5 6

9.
75 10

12
.5 13

16
.5 17

19
.8

6.
75

9.
25

13
.5

16
.2

1 2 3 4 5 6 7 8 9 10

Figure 6.8: Sequence generated considering the Orange4Home case study.

Such a query metadata sequence is depicted in Figure 6.8. Here, for this example, we have
defined: two periods; a single group of attributes: {humidity, luminosity}; the remaining settings
are similar to the mHealth visualization for the deceptive attacker archetype. We observe that a
total of ten queries metadata are generated. We observe that for the first and second period, the
first and last block, respectively, select the defined group of attributes. In the first period the
second block is malicious and produces two queries metadata which are further split in two,
thus resulting in four queries metadata. In the second period, the first block is genuine and,

since the last block already selects the defined group, it selects random attributes. The second
block is malicious and produces three queries metadata which are not split. Consequently, we
observe that here also the sequence of queries metadata contains both queries metadata which
exploits and inference channel and queries metadata originating from genuine blocks. In the

following section, we present the parameters value associated to each archetype.

6.7 Parameters value of query metadata sequences

We provide to the generator different parameters values, according to the archetype for which
we want to generate query metadata sequences. Some of those parameters are set once for each
archetype, while others are set differently for each evaluation. In the former group we find the
duration of periods in a sequence (𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛), as well as the time at which the first period
starts (𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡), on the generation timeline. Those two parameters are independent from
the archetypes properties. Their respective values are defined according to the setting of the

evaluations for which query metadata sequences are generated. In the latter group, we find the
remaining parameters which are set according to the archetypes properties. Unless otherwise

stated, the parameters are common to all the evaluations presented in this chapter. In the
following, we describe the value we associate to each parameter, according to the definitions we

have proposed.

• One-time Attacker (OA): This archetype issues a single query metadata. The generator
has to create a single block over a single period to produce a single query metadata

6.7. PARAMETERS VALUE OF QUERY METADATA SEQUENCES 93

(𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 = 1, 𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘 = 1, 𝑚𝑎𝑥_𝑞𝑢𝑒𝑟𝑦 = 1). It performs an inference attack by
itself (𝑃𝑚𝑎𝑙 = 1), without performing any consolidation (𝑃𝑐𝑜𝑛𝑠 = 0,𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡 = 0). No group
of attributes is defined since only a single period is considered (𝑔𝑟𝑜𝑢𝑝𝑠_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 = ∅).

• Genuine User (GU): This archetype issues multiple queries following the same query model.
The generator produces queries metadata over multiple periods (𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 > 1). In
each period, at least one block is generated (𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘 ≥ 1). The nature of this archetype
leads groups of attributes (|𝑔𝑟𝑜𝑢𝑝𝑠_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠| > 1) being regularly selected. The number
of periods, of blocks, and the groups are set w.r.t. the need of each evaluation. We assume
that, since the GU archetype knows the individual’s data they need, they issue periodically
a single query metadata asking for the same pattern of data (i.e., the same set of attributes
values during a time interval). Consequently, each block contains only a single query
metadata corresponding to this pattern of data (𝑚𝑎𝑥_𝑞𝑢𝑒𝑟𝑦 = 1) without performing any
consolidation (𝑃𝑐𝑜𝑛𝑠 = 0, 𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡 = 0). The genuine nature of this archetype implies that
no queries metadata lead to an inference attack (𝑃𝑚𝑎𝑙 = 0).

• Deceptive Attacker (DA): This last archetype issues queries regularly selecting attributes to
create noise hiding attacks. Since this regularity is less important than the GU archetype, a
smaller number of groups of attributes is periodically queried (|𝑔𝑟𝑜𝑢𝑝𝑠_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠| ≥ 1).
While the query metadata sequence of this archetype is composed of both genuine and
malicious blocks, we consider that theymostly aim to perform attacks (𝑃𝑚𝑎𝑙 = 0.75). The DA
archetype performs attacks by issuing multiple queries metadata (𝑚𝑎𝑥_𝑞𝑢𝑒𝑟𝑦 ≥ 2) while
performing potential consolidation of their user’s knowledge (𝑃𝑐𝑜𝑛𝑠 = 0.25, 𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡 ≥ 2).
Here, the number of periods, of blocks, maximum queries metadata, maximum split, and
the groups are set on the basis of each evaluation.

Guided by the values associated to those archetypes, we leverage our generator to produce
sequences of queries metadata adapted to our two case studies. Those generated data enable

evaluating RICE-Sy. Therefore, by focusing on the generation of query metadata sequences for
the deceptive attacker archetype, we demonstrate how:

• A malicious block is initialized to produce multiple queries metadata. This completes
the requirement (II), and partially covers the requirement (III) by showing that, whereas
the periods enable creating multiple independent queries metadata, the malicious block
enables creating multiple queries metadata which, all combined, exploit an inference
channel.

• Queries metadata originating from a malicious block are split in order to produce consolid-
able queries metadata. This completes the requirement (III) by demonstrating how queries
metadata produced from a malicious block are processed to simulate an attacker gathering
data points related to the same attribute, query by query.

• The properties of the sequence are influenced by the archetype. Here all the concept
introduced in Section 6.4 are leveraged. The requirement (IV) is completed by considering
the three archetypes we have defined.

Our proposed generator enables the creation of datasets suitable for the evaluation of RICE-Sy.
This contribution produces sequences of queries metadata associated to multiple users, by

considering both our two case studies mHealth and Orange4Home as inference channels, and
three archetypes of querying behaviors which guide the creation of realistic queries metadata.

94 CHAPTER 6. GENERATOR: ARCHETYPES & QUERY METADATA SEQUENCES

All the symbols defined in the formalization of this contribution are compiled in Table 6.1. In
the following section, we discuss how our contribution can be improved to consider more divers

query metadata sequences.

6.8 Discussion

As described in Definition 6.1.1, we assume that users following the GU archetype never
perform any inference attack. Yet, a user with a genuine intent may query sensor data in such a
way that, from the perspective of RICE-Sy, they exploit an inference channel, even if this user
isn’t aware of the existence of the inference channel. This specific situation is problematic since
it leads to detect the query issued by a truly genuine user as being an inference attack. However,
this problem is not specific to the detection system we propose, indeed it has been identified in
other works [152, 146]. Since we can not determine the true intent of users from their queries
only, this stays an open problem. We chose to ignore this case by enforcing the genuine status of

blocks generated for the GU archetype.
Moreover, we assume that all users follow a single archetype which does not change in time.
While this assumption is strong, the change of archetype has no impact on the evaluation of
RICE-Sy. The three archetypes have been defined in order to guide the generation of relevant
query metadata sequences. Considering the DA archetype, one may modify the generator of

queries metadata so that the parameters 𝑃𝑚𝑎𝑙 and 𝑃𝑐𝑜𝑛𝑠 change in time, for instance between each
period. A sequence may be generated for a user which starts by following a GU archetype (i.e.,
𝑃𝑚𝑎𝑙 = 0 and 𝑃𝑐𝑜𝑛𝑠 = 0), then switch slowly to the DA archetype (i.e., by incrementing 𝑃𝑚𝑎𝑙 and
𝑃𝑐𝑜𝑛𝑠 for a given or random value). To do so, the generator must receive a parameter describing

how the values of those parameters change during the generation.
While our assumption that users follow a single archetype during the whole generated sequence
is quite strong, to the best of our knowledge, no study of how users change their behavior in
time has been proposed in the scientific literature. Moreover, it does impact the evaluation of
RICE-Sy, since the detection is not impacted by the order in which a user issues queries to DBsen.
Hence, regardless of the changing querying behaviors, RICE-Sy has to detect IAISDs w.r.t. to its
known inference channels. In the following section, we provide a conclusion about the query

metadata generator proposed in this chapter.

6.9 Conclusion

Our third contribution, i.e., the query metadata generator, formalizes how to generate queries
metadata used to evaluate RICE-Sy. Due to the lack of existing datasets for the task of detecting

IAISDs, we show how to generate suitable data based on our proposed model RICE-M. To
produce realistic sequences of queries, we have identified querying behaviors by analyzing
inference attack strategies and the nature of sensor databases from which sensor data are

queried. Then, based on those behaviors, we have define the three querying archetypes that
users follow: the one-time attacker, the genuine employee, and the deceptive attacker. We were
able to propose a dataset generator which leverages our query metadata generator by producing

sequences of queries for each archetype. Finally, we have demonstrated the validity of the
generated datasets by providing visualizations of sequences for each archetype and each case

study.
The dataset obtained via the generation of query metadata sequences for the three considered

archetypes meet the five requirements we consider:

6.9. CONCLUSION 95

• (I): Via the generation of sequences of queries metadata associated to multiple users within
a dataset. Therefore, we can determine the ratio of users following each archetype.

• (II): By using the concept of block and status of a block, we generate single query metadata,
or groups of queries metadata, which lead, or not, to an inference attack. Hence, we can
produce query metadata sequences which contain only queries metadata performing an
attack, only queries metadata which do not exploit an inference channel, or any given
combination originating from genuine or malicious blocks.

• (III): Besides the status, using the concept of block enables producing situation where either
a single query metadata, multiple queries metadata without consolidation, or multiple
queries metadata with consolidation are generated. Thereby, we are able to generate query
metadata sequences simulating a diversity of approaches followed by users to query a
sensor database.

• (IV): Finally, a sequence of queries metadata specific to each archetype is generated consid-
ering the specific properties such as the regularity of some selected attributes, the quantity
of queries issued during a period, the combination of status affected to the generated
blocks, the quantity and approaches of queries metadata produced from blocks, etc. As a
result, rather than generating query metadata sequences with random properties, we have
sequences of queries metadata following interesting and more realistic behaviors that both
honest and attackers can use.

In the following chapter, we leverage our query metadata generator to evaluate the detection
capabilities of RICE-Sy.

Chapter 7

Evaluation of the conceptual optimizations

Based on the generator presented in the previous chapter, we leverage in this chapter the
generated queries metadata sequences to evaluate RICE-M based inference detection System
(RICE-Sy). We consider as our two metrics: the detection time of a query and the size of the

Consolidated Query History Log (ConsQHL). To do so, we present four evaluations which enable
to observe how the metrics are impacted by: (i) our conceptual optimizations (ii) the query

emission order (iii) different consolidation settings and (iv) different quantities of users issuing a
fixed total amount of queries.

This chapter is structured as follows: we start by presenting the two metrics considered to
evaluating RICE-Sy in Section 7.1. We provide in Section 7.2, a technical overview of the
prototype of RICE-Sy, and the generator. In Section 7.3, we present the objective of each

evaluation, as well as the settings of the measurements and the datasets. Then, we present the
obtained results and provide an analysis leading to conclusions. Finally, we conclude this

chapter and discuss in Section 7.5, the observation and conclusion obtained in all the
evaluations.

7.1 Metrics: Detection overhead and ConsQHL size

To protect individuals, RICE-Sy delays the time at which users receive their answer to detect if a
query leads or not to an Inference Attack Involving Sensor Data (IAISD). In the following, we
refer to this delay as the overhead of RICE-Sy. It corresponds to the time taken by the workflow
illustrated in Figure 5.9 of Chapter 5, i.e., the elapsed time between the reception of a query

metadata representation ❶ and the notification that this query metadata leads or not to an attack
❽. The overhead of RICE-Sy results from the sum of the computation time of each of its

modules. Users aim to regularly query sensor data when they are produced, in order to update
their knowledge about individuals (e.g., the performed human activities). For instance, the

employees of an external company frequently query the sensor data of the service customers to
calibrate sensors based on the freshest generated data. To preserve its quality of service, the data
controller has to let authorized users (i.e., the employees) access data efficiently while preserving

its customers’ privacy. This entail reducing RICE-Sy overhead as much as possible.
As depicted in Figure 5.9, both the consolidation and detection module receive as input a set of
MKUs originating from the processed queries and the ConsQHL. The overhead of the detection
depends on the quantity of MKUs provided by the processed query metadata, and the MKUs
originating from the ConsQHL. When considering RICE-Sy without the filtering modules, the

whole ConsQHL is considered for each query metadata. With the filtering modules, their
respective computation time depends on the number of MKUs stored in the ConsQHL. The size

96

7.2. IMPLEMENTATION OF RICE-SY & THE GENERATOR 97

of the ConsQHL impacts the overhead in both settings, more than the number of MKUs in the
processed query metadata.

Therefore, to observe at which scale detecting IAISDs via our system deteriorates the quality of
service of the protected sensor database, we consider the following two metrics: the overhead of
RICE-Sy and the size of the ConsQHL. In the following section, we present the implementation

of both RICE-Sy and our generator, that we leverage to perform those measurements.

7.2 Implementation of RICE-Sy & the Generator

The prototype of RICE-Sy is implemented as a Python package. It relies on the probabilistic
logic programming language ProbLog 2 [48] to model and reason on the inference channels

modeled from our case studies: mHealth and Orange4Home. This language has logical
mechanisms similar to the Prolog language to reason about truth values and allows the

definition of probabilistic distributions over atoms. Besides its capability to model logical goals,
the choice of ProbLog is motivated by the possibility of modeling the inferrable knowledge of
our inference channels (e.g., the random variable 𝑋𝑖 using annotated disjunction). Moreover, we
plan in the future to integrate in the reasoning process, probabilistic dependencies related to
profile data, similarly to what Chen et al. [31] have proposed, in order to consider inference

channels using the Distributed Dependency Strategy [163] on profile and sensor databases [106].
Our implementation follows the workflow depicted in Figure 5.9:

• The ConsQHL is implemented as a Python module interacting with a MySQL database.
Timestamps in MKUs and frequencies used in the inference channel representation has
been modeled using the datetime and timedelta classes from the standard library of
Python. It ensures a coherent representation of temporal information between the database,
the modules implemented in Python, and the one interacting with the ProbLog API.

• The Query Based Filtering (QBF) and Search Set Filtering (SSF) modules are both im-
plemented as methods which run filtering queries and convert MKUs from the database
representation to the one used in Python modules.

• The detection module is implemented as a Python module which prepares a ProbLog
program according to the query metadata and the ConsQHL of the user. It relies on the
Python API of ProbLog to run the program and to obtain the detection output. It converts
MKUs into the ProbLog representation we have defined.

• The consolidation module is implemented as multiple Python functions and thus only
manipulates the Python representation of MKUs.

The generator is implemented as a Python package which implements some of the concepts
introduced in Section 6.4 and the algorithms presented in Section 6.6. Moreover, it defines a
function per archetype to generate query metadata sequences according to their respective

parameters values, see Section 6.7. In the remainder of this chapter, we describe the evaluations
performed on RICE-Sy, using the generator, as well as the resulting observations according to

our two metrics.

7.3 Evaluations of RICE-Sy

The overall objectives of the evaluations is to observe for both mHealth and Orange4home:

98 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

• How the conceptual optimizations presented in Section 5.2.5 of Chapter 5 reduce the
overhead of RICE-Sy

• How specific querying settings impact the overhead of RICE-Sy

To obtain those observations, we perform four main evaluations structured as follow: we start by
describing the goal of the experiment; we present the generated datasets and the parameters
values set specifically for this experiment; we describe the obtained results and analyze them
w.r.t. the two main objective described above. For each evaluation, 10 datasets are generated
using the same parameters values. Using the same values still produce different sequences of
queries, e.g., the blocks select different attributes, start at different timestamp, or have different

duration, and so on. This enables us to validate that our observation are not specific to an
instance of an experiment dataset. In the remainder of this chapter, we will often display the
results obtained for a single dataset to display the size of the ConsQHL (which is specific to a

dataset). We will explicitly state when the observation are common to all datasets or not.
Moreover, the one time attacker (OTA) archetype is used in Chapter 6 to introduce the

generation of malicious queries in a simple setting. Since we aim to evaluate how the metrics
evolve when multiple queries are issued, we do not consider for our experiments this archetype

that issues a single query, see Definition 6.1.2. Instead, we leverage sequences of queries
generated for the regular working user (GE) and the deceptive attacker (DA) archetypes. We use
three VMware virtual machines to perform the evaluations. The first and second one both run
on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and 15Gi of RAM. The third virtual runs
on an Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz and 15Gi of RAM. The following sections

are organized as follow:

7.3.1 We start by observing the impact that our proposed optimizations have on RICE-Sy, con-
sidering a single user following the GE and the DA archetypes.

7.3.2 We study how the order in which queries are issued impacts the overhead.

7.3.3 We determine which impact different settings of consolidating queries have on our two
metrics.

7.3.4 We observe how the quantity of users issuing queries impact our system when we consider
a fixed amount of queries.

7.3.1 Monitoring the impact of the filtering modules

When processing the query issued by a user, the consolidation and the detection modules have
to consider both MKUs originating from the ConsQHL and the query metadata. The default
approach is to consider the whole ConsQHL of the user. Yet, this results in a large quantity of
MKUs to process, which increases the overhead of RICE-Sy. We propose to use two filtering

modules as conceptual optimization: QBF is placed before the consolidation module, and SSF is
placed before the detection module. The objective of this evaluation is to assess how those
filtering modules improve the overhead of RICE-Sy. We only consider this metric, since the

filtering modules do not impact the size of the ConsQHL.

Measurement settings To be able to perform this comparative analysis, we measure the
computation time of each module composing RICE-Sy, with and without enabling the filtering
modules. To eliminate the variation of overhead resulting from a ConsQHL containing MKUs of
multiple users, we consider a single user. Since we monitor how the overhead evolves w.r.t. the

7.3. EVALUATIONS OF RICE-SY 99

size of the ConsQHL, we do not consider the OTA archetype which issues only a single query.
The single user follows the GE or the DA archetypes. The measurements are performed on the

first virtual machine, see Section 7.3.

Datasets setting In addition to the parameter values presented in Section 6.7, we define the
parameter values used for this evaluation. When a generated dataset contains multiple users,
one may want to set the start of the period to the same value, thus simulating users that start to

interact with the sensor database at the same time. Otherwise, this value may be defined
specifically for each user. In this evaluation a single user is considered. The start of the period
(𝑝𝑒𝑟𝑖𝑜𝑑_𝑠𝑡𝑎𝑟𝑡) is arbitrarily set to the time at which the dataset is generated. This time is shared

by all datasets generated in this evaluation. The duration of the periods needs to be set
according to the maximum quantity of blocks to generate, as well as the duration of the

inference channel constraint TSW, to ensure that both genuine and malicious blocks may be
defined in a period. We chose a maximum number of blocks (𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘) set to three to enable
having at least two blocks dedicated to the groups of attributes (if two groups are defined) and
at least one block remaining to produce genuine or malicious queries. Based on this maximum
number, we searched the duration of period which enables to generate sequences for both case

studies and both archetypes. Using a single duration enables us to have sequences of
approximately similar size. All periods have the same duration (𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) set to 100

seconds. For the DA archetype, the maximum number of split (𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡) is always set to three
to simulate consolidation, without having too many small MKUs being created. For each case
study, we associate a group of attributes for the two considered archetypes. As a remainder, a
group of attributes, defined in Section 6.4.5, depicts attributes that are often queried by a user
(i.e., during each period). This enable simulating a regular behavior. The groups are defined
based on the semantic of the attributes names, to represent plausible recurrent queries. We
define a single group for the DA archetype since it does not mainly focus on issuing regular

queries. For mHealth, two groups of three attributes are defined for the GE archetype and one
group of two attributes for the DA archetype. For Orange4Home, two groups of two attributes
are defined for the GE archetype and one group of two attributes for the DA archetype. The last
parameter is the number of periods (𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑). Its value is set to 50 periods to generate

query metadata sequences long enough to enable observing how the overhead evolves in
presence of increasing quantities of MKUs in a user’s ConsQHL. Yet, since the DA archetype
produces more queries than the GE for mHealth, only 20 periods are considered in this case.

This enables generating balanced sequences of queries.

100 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

0 20 40 60 80 100 120
Number of processed queries

0

1

2

3

4

5

6

7

Se
co

nd
s

Overhead of RICE-Sy and the detection module
RICE-Sy (without)
Detection (without)
RICE-Sy (with)
Detection (with)

10 15

0.1

0.2

0.3

0 20 40 60 80 100 120
Number of processed queries

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Se
co

nd
s

Overhead of the consolidation module
Consolidation (with)
Consolidation (without)

0 20 40 60 80 100 120
Number of processed queries

0.00

0.02

0.04

0.06

0.08

0.10

Se
co

nd
s

Overhead of the other modules
QBF Consolidation SSF Detection

(a) mHealth

0 20 40 60 80 100 120
Number of processed queries

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Se
co

nd
s

Overhead of RICE-Sy and the detection module
RICE-Sy (without)
Detection (without)
RICE-Sy (with)
Detection (with)

0 20 40 60 80 100 120
Number of processed queries

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Se
co

nd
s

Overhead of the consolidation module
Consolidation (with)
Consolidation (without)

0 20 40 60 80 100 120
Number of processed queries

0.00

0.02

0.04

0.06

0.08

Se
co

nd
s

Overhead of the other modules
QBF Consolidation SSF Detection

(b) Orange4Home

Figure 7.1: Evolution of the overhead considering a single user following the GE archetype. Median of measurements
performed over 10 datasets using the same parameters.

7.3. EVALUATIONS OF RICE-SY 101

GE: Results & Observations The results depicted in Figure 7.1 correspond to the median of
the measurements performed over the 10 datasets generated for the GE archetype and our two
case studies. They both share the same plot layout. The top plot in Figure 7.1a and Figure 7.1b
show how the overhead (in seconds) of RICE-Sy, and of the detection module, evolves for each
processed query metadata. It compares the overhead when the filtering modules are disabled
(the top curves, denoted by without in the legend) or are enabled (the bottom curves, denoted by
with). The zoom insert is used to show that a total of four curves are depicted. The bottom left
plot compares the overhead of the consolidation module, with (top) and without (bottom) the
filtering enabled. The y axis is scaled to enable the comparison of both overhead. Since in the
top plot, the overhead with the filtering enabled cannot be observed precisely, the bottom right
plot depicts the overhead of each module with the filtering enabled. For each query metadata,
the sum of those overheads corresponds to the overhead displayed as RICE-Sy (with) on the top
plot. We observe that for both case studies: the overhead of RICE-Sy follows the overhead of the
detection module, and that the overhead of RICE-Sy increases in an exponential fashion. Due to
the increasing computation time without the filtering modules, to ensure that each evaluation
can be conducted within a reasonable time frame for the 10 generated datasets, we stop an

evaluation once the difference of overhead is sufficiently visible. We explain the difference of
overhead between mHealth and Orange4Home by the constraint of the required attributes. For

mHealth, the detection module checks if MKUs satisfying the TSW and referencing the 21
attributes exists in the search set. For Orange4Home, the module checks for the MKUs satisfying

the TSW and the SSW, no matter the referenced attributes. This difference is especially
highlighted when the search set increases, e.g., when the filtering modules are disabled.

Moreover, the more a user issues queries, the larger their ConsQHL is. Then, with the SSF
disabled, the size of the search set is directly defined by the size of a user ConsQHL. We observe
that for the consolidation module, when the QBF is disabled the overhead grows linearly. Now

focusing on the overhead of each module with the filtering, we observe once again that the
detection module has the largest overhead, followed by the SSF. We explain the difference of

overhead between the two filtering modules by the difference of considered selection conditions.
For each MKU in the query metadata, QBF retrieves the intersecting MKUs referencing the same

attribute. Instead, for each MKU returned by the consolidation module, SSF retrieves the
intersecting MKUs referencing a different attribute. Consequently, independently from the
number of MKUs in the processed query metadata, SSF extracts from the ConsQHL a larger
quantity of information than QBF. For mHealth (respectively Orange4Home), the median
detection of RICE-Sy is 2.03 s (resp. 1.31 s) without the filtering modules and 0.11 s (resp.

0.12 s) with the modules enables. The proposed conceptual optimization reduce the overhead of
RICE-Sy by 94% (resp. 90%). To further analyze the results, in the following we consider the

measurements obtained for the DA archetype.

102 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

|Q
HL

| [
#M

KU
]

Size of the QHL
With
Without

0 25 50 75 100 125 150 175
Number of processed queries

0

2

4

6

8

Se
co

nd
s

Overhead of RICE-Sy and the detection module
RICE-Sy (without)
Detection (without)
RICE-Sy (with)
Detection (with)

10 15

0.1

0.2

0.3

0 25 50 75 100 125 150 175
Number of processed queries

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Se
co

nd
s

Overhead of the consolidation module
Consolidation (with)
Consolidation (without)

0 25 50 75 100 125 150 175
Number of processed queries

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Se
co

nd
s

Overhead of the other modules
QBF Consolidation SSF Detection

(a) mHealth

0 20 40 60 80 100 120 140 160
Number of processed queries

0

25

50

75

100

125

150

175

|Q
HL

| [
#M

KU
]

Size of the QHL
With
Without

0 20 40 60 80 100 120 140 160
Number of processed queries

0

2

4

6

8

10

12

Se
co

nd
s

Overhead of RICE-Sy and the detection module
RICE-Sy (without)
Detection (without)
RICE-Sy (with)
Detection (with)

0 20 40 60 80 100 120 140 160
Number of processed queries

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Se
co

nd
s

Overhead of the consolidation module
Consolidation (with)
Consolidation (without)

0 20 40 60 80 100 120 140 160
Number of processed queries

0.00

0.05

0.10

0.15

0.20

Se
co

nd
s

Overhead of the other modules
QBF Consolidation SSF Detection

(b) Orange4Home

Figure 7.2: Evolution of the overhead considering a single user following the DA archetype. Measurements performed
over the first dataset, among the 10 generated for mHealth, and the 10 generated for Orange4Home. Attacks are shown
as vertical dotted bar.

7.3. EVALUATIONS OF RICE-SY 103

DA: Results & Observations For our second archetype, we consider in Figure 7.2 the
measurements of a single dataset, among the 10 generated for the DA archetype and for each
inference channel, vertical dotted lines are plotted whenever a query metadata leading to an

inference is processed. This enables us to correlate the detection of attacks and the perturbation
in the overhead of RICE-Sy or the ConsQHL size. Moreover, focusing on a single dataset enables

displaying in the top left plot, how this second metric evolves for each processed query
metadata. Besides those changes, both Figure 7.2a and Figure 7.2b show the same information,

order, and colors as for the GE archetype.
We observe that, for the 10 datasets, the ConsQHL size (denoted |𝐶𝑜𝑛𝑠𝑄𝐻𝐿|) evolves either

linearly or stagnates. In presence of a vertical line, this stagnation is explained by the fact that
MKUs originating from a query metadata leading to an attack is not inserted into the ConsQHL,

since we assume that the data controller does not answer the user with the query result.
Consequently, the query metadata is not added to the user’s knowledge. We observe in both
Figure 7.2a and Figure 7.2b that this stagnation occurs even when vertical lines are missing.
This comes from the usage of queries consolidating knowledge in the DA archetype. When

issuing the last query metadata produced by a genuine block simulating consolidation, its MKUs
are consolidated with MKUs in the ConsQHL. The consolidated MKUs are inserted in the

ConsQHL, in place of the MKUs used for the consolidation. Hence, the size of the ConsQHL
stays the same in those situations. We observe that, like for GE in Figure 7.1, the overhead of

RICE-Sy is drastically higher without the filtering modules enabled. Yet, we observe in
Figure 7.2b that when a query metadata leads to an attack (e.g., for the processed query

metadata >150), the overhead with the disabled filtering drops significantly. This stems from
the fact that in the implemented prototype, once the detection module finds a subset of MKUs
satisfying the patterns and constraints of an inference channel, it stop the search and notify the

data controller (e.g., the processed query metadata 100 in Figure 7.2b). When processing a
genuine queries, the module has to check each subset of the search set to verify if the query does
not provide new user’s knowledge leading to an attack (e.g., the processed query metadata 99 in
Figure 7.2b). We observe that the difference in overhead between the consolidation module is
less pronounced compared to the GE archetype but remains discernible. This observation is

shared among the 10 databases. This variation is caused by the presence of consolidable queries
produced by malicious blocks. In the case of the GE archetype, the QBF fails to extract any

MKUs from the ConsQHL, resulting in no computation required for the consolidation module.
However, when QBF is disabled, the module must process the entire ConsQHL. Conversely, for

the DA archetype, QBF successfully extracts MKUs from the ConsQHL, necessitating
computation by the consolidation module. Without the filtering module, the consolidation
module still needs to traverse the entire ConsQHL. We also notice that the overhead of the

detection module continues to be the most important one, followed by the overhead of the SSF.
Finally, we observe that when queries leading to attacks are processed, the overhead of the

detection module reaches approximately 200ms, for less than 100ms when processing queries
which does not lead to attacks (e.g., the GE archetype). We explain this difference by the nature
of the archetype. Indeed, for the DA, a malicious block produces either multiple queries which
are not consolidable or multiple queries which are consolidable. The search set of the detection

module contains more MKUs when processing the last query metadata of such block. For
mHealth (respectively Orange4Home), the median detection of RICE-Sy is 1.09 s (resp. 2.10 s)
without the filtering modules and 0.15 s (resp. 0.16 s) with the modules enables. The proposed

conceptual optimization reduce the overhead of RICE-Sy by 86% (resp. 92%).

Via this first evaluation, we validate that the conceptual optimizations we propose reduce the
overhead of RICE-Sy by ≈ 90%, when considering queries issued by a single user for both of our

104 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

case studies.

7.3.2 How the query issuing order impacts RICE-Sy?

Assessing the influence of the query order requires a sequence of multiple queries, in which
certain queries can be rearranged freely on the emission timeline. The DA archetype enables to
consider the ordering of queries metadata generated from both genuine and malicious blocks.
Moreover, by considering the possibility to incorporate consolidation, those different emission
orders may enable attackers to degrade the data controller quality of service by increasing the
overhead of RICE-Sy. The objective of this evaluation is to determine if the order in which the

same sequence of queries is processed has a significant impact on both metrics.

Measurements & Datasets setting To do so, we measure the size of the ConsQHL (as the
number of stored MKUs), and the overhead of RICE-Sy (as the sum of the overhead of the QBF,
consolidation, SSF, and detection modules). To eliminate the variation of overhead resulting

from a ConsQHL containing MKUs of multiple users, we consider a single user. We consider a
single user and only the DA archetype, since it enables to consider the order impact for both
genuine and malicious sequence of queries. The measurements are performed on the first

virtual machine, see Section 7.3, in parallel to the first evaluation. Our requirement matches the
datasets generated in the previous evaluation, for the DA archetypes. Hence, we reuse them here.
For each dataset, we perform the measurements three times by modifying the emission time of
queries leading to an attack. From one iteration to the other, we preserve the order in which
queries produced by the same malicious blocks are issued to obtain comparable curves. For

instance, between two version of a dataset, one may have a malicious block temporally placed at
a different time than the same block, in the other version. In both versions, the queries produced
by those two blocks selects the same attributes, but data points generated at different time. Since
we ensure that between versions the queries produced by the same block are emitted in the same
order, it ensures that the query metadata which is detected as an attack is the same. The same

quantity of MKUs is thus inserted into the ConsQHL in between each version.

7.3. EVALUATIONS OF RICE-SY 105

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

|Q
HL

| [
#M

KU
]

3 iterations for the dataset n°1
Iteration 1
Iteration 2
Iteration 3

0 25 50 75 100 125 150 175
Number of processed queries

0.10

0.15

0.20

0.25

0.30

0.35

Se
co

nd
s

Iteration 1
Iteration 2
Iteration 3

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

|Q
HL

| [
#M

KU
]

Iteration 1

0 25 50 75 100 125 150 175
Number of processed queries

0.10

0.15

0.20

0.25

0.30

Se
co

nd
s

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

|Q
HL

| [
#M

KU
]

Iteration 2

0 25 50 75 100 125 150 175
Number of processed queries

0.10

0.15

0.20

0.25

0.30

Se
co

nd
s

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

|Q
HL

| [
#M

KU
]

Iteration 3

0 25 50 75 100 125 150 175
Number of processed queries

0.10

0.15

0.20

0.25

0.30

0.35

Se
co

nd
s

(a) mHealth

0 25 50 75 100 125 150
Number of processed queries

0

25

50

75

100

125

150

175

|Q
HL

| [
#M

KU
]

3 iterations for the dataset n°1
Iteration 1
Iteration 2
Iteration 3

0 25 50 75 100 125 150
Number of processed queries

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Se
co

nd
s

Iteration 1
Iteration 2
Iteration 3

0 25 50 75 100 125 150
Number of processed queries

0

25

50

75

100

125

150

175

|Q
HL

| [
#M

KU
]

Iteration 1

0 25 50 75 100 125 150
Number of processed queries

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Se
co

nd
s

0 25 50 75 100 125 150
Number of processed queries

0

25

50

75

100

125

150

175

|Q
HL

| [
#M

KU
]

Iteration 2

0 25 50 75 100 125 150
Number of processed queries

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Se
co

nd
s

0 25 50 75 100 125 150
Number of processed queries

0

25

50

75

100

125

150

175

|Q
HL

| [
#M

KU
]

Iteration 3

0 25 50 75 100 125 150
Number of processed queries

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Se
co

nd
s

(b) Orange4Home

Figure 7.3: Impact of varying three time the order in which queries are issued by the DA archetype. Measurements of the
first dataset, among the 10 generated for mHealth and Orange4home. Attacks are shown as vertical dotted bar.

106 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

1 2 3

mHealth 0.1510 s 0.1461 s 0.1508 s
Orange4Home 0.1648 s 0.1587 s 0.1582 s

Table 7.1: Median overhead for mHealth and Orange4Home, according to the three iterations.

Results & Observations The results depicted in Figure 7.3 correspond to measurements
performed for the first dataset among the 10 generated for mHealth, and the 10 generated for
Orange4Home. For both inference channels, the layout of Figure 7.3a and Figure 7.3b depicts
for all and each iteration of the same sequence: the evolution of the size of the ConsQHL above;
and the evolution of the overhead below. Focusing on a single dataset enables displaying the
queries leading to an inference attack for each iteration. We observe that while queries are

processed, the size of the ConsQHL has some variation between two iterations. This is comes
from the fact that the same malicious queries, consolidable or not, are issued in-between

different numbers of genuine queries from one iteration to the other. Consequently, the number
of MKUs inserted in the ConsQHL depends on the order in which they are processed. As

compiled in Table 7.1, the median overhead of RICE-Sy has only small variation between each of
the three iterations depicted in Figure 7.3. Those limited variations are observed for the 10

datasets. They can be explained by the described variation of the size of the ConsQHL.

Through this second evaluation, we conclude that for the same sequence of queries issued by the
DA archetype, the order in which queries produced by malicious blocks are issued have no
significant impact on the two metrics we consider. mHealth and Orange4Home have an

overhead median difference of 1% and 5%, respectively. To determine the limits of RICE-Sy,
besides the archetypes, we have to focus on extreme cases. In the following, we discuss a

situation where a user issues divers quantities of consolidable queries.

7.3.3 How the consolidation impacts RICE-Sy

We have observed in the first evaluation that the consolidation module has the smallest overhead
in RICE-Sy. Yet, a user may issue large quantities of consolidable queries which result in an

increase of the consolidation overhead. The objective of this evaluation is to investigate in which
of those cases the overhead of RICE-Sy increases significantly. For readability purpose, in the
remainder of this section, we use the formulation “consolidable queries” to describe queries

having MKUs that are consolidable.

Measurements & Datasets setting We first measure the evolution of our two metrics for five
versions of the same GE query metadata sequence. Each version contains the queries produced
by the same blocks, but with different probabilities of generating consolidable queries (i.e., 0,
0.25, 0.5, 0.75, and 1). The initial queries are thus similar, only the number of split queries

changes. Each version contains more and more consolidable queries than the previous version.
We consider only the GE archetype to eliminate the variation which stems from having queries
leading to inference attacks. The measurements are performed on the third virtual machine, see
Section 7.3. We reuse the parameter values defined in the first evaluations for the GE archetype.

7.3. EVALUATIONS OF RICE-SY 107

0 50 100 150 200 250 300
Number of processed queries

0

50

100

150

200

250

300

350

|Q
HL

| [
#M

KU
]

Size of the QHL
0
0.25
0.5
0.75
1

25 50 75
75

100

125

0 50 100 150 200 250 300
Number of processed queries

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Se
co

nd
s

Overhead of RICE-Sy
0
0.25
0.5
0.75
1

0 50 100 150 200 250 300
Number of processed queries

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Se
co

nd
s

Overhead of the consolidation module
0
0.25
0.5
0.75
1

0 50 100 150 200 250 300
Number of processed queries

0.00

0.02

0.04

0.06

0.08

0.10

Se
co

nd
s

Overhead of the other modules
0 QBF
0 SSF
0.25 QBF
0.25 SSF
0.5 QBF
0.5 SSF
0.75 QBF
0.75 SSF
1 QBF
1 SSF

(a) mHealth

0 50 100 150 200 250 300
Number of processed queries

0

50

100

150

200

250

300

|Q
HL

| [
#M

KU
]

Size of the QHL
0
0.25
0.5
0.75
1

25 50 75

75

100

0 50 100 150 200 250 300
Number of processed queries

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Se
co

nd
s

Overhead of RICE-Sy
0
0.25
0.5
0.75
1

0 50 100 150 200 250 300
Number of processed queries

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

Se
co

nd
s

Overhead of the consolidation module
0
0.25
0.5
0.75
1

0 50 100 150 200 250 300
Number of processed queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Se
co

nd
s

Overhead of the other modules
0 QBF
0 SSF
0.25 QBF
0.25 SSF
0.5 QBF
0.5 SSF
0.75 QBF
0.75 SSF
1 QBF
1 SSF

(b) Orange4Home

Figure 7.4: Impact of varying probabilities of consolidation for the GE archetype. Measurements of the first dataset,
among the 10 generated for mHealth and Orange4home.

108 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

0 50 100 150 200 250 300 350
|QHL| [#MKU]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
ac

ce
ss

Access to MKUs in the ConsQHL
0
0.25
0.5
0.75
1

(a) mHealth

0 50 100 150 200 250 300
|QHL| [#MKU]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n
ac

ce
ss

Access to MKUs in the ConsQHL
0
0.25
0.5
0.75
1

(b) Orange4Home

Figure 7.5: Mean access to MKUs in the ConsQHL for varying probabilities of consolidation considering the GE archetype.
Measurements of the first dataset, among the 10 generated for mHealth and Orange4home.

7.3. EVALUATIONS OF RICE-SY 109

0 0.25 0.5 0.75 1

mHealth 0.0992 s 0.1054 s 0.1053 s 0.1090 s 0.1102 s
Orange4Home 0.1145 s 0.1171 s 0.1210 s 0.1175 s 0.1256 s

Table 7.2: Median overhead for mHealth and Orange4Home, according to different probabilities
of blocks consolidation.

0.25 0.5 0.75 1

mHealth 0.4661 0.7642 1.2602 1.5501
Orange4Home 0.2937 0.8152 1.2343 1.4917

Table 7.3: Mean access to MKUs for mHealth and Orange4Home, according to different probabil-
ities of blocks consolidation.

Results & Observations Figure 7.4 depicts the results for the first dataset for mHealth, and for
Orange4Home. All the other 9 datasets produce similar result. For both inference channels, the
layout of Figure 7.4a and Figure 7.4b is identical to the first evaluation: the ConsQHL size is

displayed on the top left plot, the overhead of RICE-Sy is on the top right plot, the overhead of
the consolidation module is on the bottom left plot, and the last plot depicts the overhead of all

modules (without the consolidation). Each curve (from left to right) is labeled using the
probability of consolidation (from 0 to 1) used for the version of the dataset. Since a higher

probability produces more queries, each version of the same initial dataset (i.e., the one with the
probability equals to zero) has different number of queries.

We observe that for the initial version of the dataset, the size of ConsQHL continuously increases
whereas it stagnates in the other versions, as depicted in the zoomed embedded plot. Here, the
explanation is similar to the one provided in the analysis of the first evaluation. We observe that
the final size of the ConsQHL is equal for all versions. This is expected, since they all stem from
the same sequence of queries. After being consolidated, they produce the same set of MKUs. As
depicted by Table 7.2 for our two case studies, we see that no matter the version, the median

overhead of all modules is not significantly impacted by the density of consolidable queries. We
explain this as a side effect of issuing consolidated queries in the order they are generated. By
doing so, each query metadata can be consolidated as soon as possible by RICE-Sy. mHealth and

Orange4Home have an overhead median difference of 5% and 3%, respectively. Those
differences are observed among the 10 datasets. Consequently, the density of consolidable
queries has no significant impact on RICE-Sy when their MKUs are consolidated upon

processing the query metadata.
In Section 5.2.3, we explained that performing consolidation before the detection allows for
storing consolidated MKUs in the ConsQHL. By doing so, the system can efficiently manage
consolidated MKUs and avoid redundant computations related to consolidation. The more a
stored MKU is accessed when processing queries, the more unnecessary consolidation can be

avoided, leading to improved efficiency and performance. To observe the impact of this
optimization, the number of accesses to consolidated MKUs was measured for the 10 datasets
previously generated, with respect to the density of consolidable queries. Figure 7.5 presents the
results for the first dataset of mHealth and Orange4Home, and similar trends were observed for
the other datasets. Both Figure 7.5a and Figure 7.5b show the median access to MKUs that have

been consolidated at least once. The x-axis represents the size of the ConsQHL, which is
considered comparable since each version of the dataset results in the same final size. Each
curve is labeled using the probability of consolidation (ranging from 0 to 1) used for the

110 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

respective version of the dataset. The observation is that, for both case studies (mHealth and
Orange4Home), when the density of consolidation is higher (i.e., more consolidable queries are
present), the average access to consolidated MKUs increases. As the probability of consolidation
increases from 0.25, 0.5, 0.75, to 1, Table 7.3 shows that the mean access stabilizes at different
values for both mHealth and Orange4Home datasets. This demonstrates that the gain of storing
consolidated MKUs in the ConsQHL is increased when users issue queries that lead the QBF

and/or SSF modules to extract MKUs, that result from consolidations performed when
processing previous queries. By leveraging the stored consolidated MKUs, the system can

significantly reduce redundant computations and improve overall performance when dealing
with consolidable queries.

To further study the impact of the consolidation, we consider another extreme case in which a
GE archetype issues a query metadata sequence containing mainly non consolidable queries,

with few queries triggering the consolidation of large quantities of MKUs stored in the
ConsQHL. This setting enables showing how RICE-Sy behaves when the consolidation does not
append for each processed query metadata, but rather at once, when processing a triggering

query metadata. While this extreme case can be shown for Orange4Home, it isn’t as important
as for mHealth, since no large triggering query metadata can be generated without selecting less
than 20 data points. For both case studies, we should observe an increase of the overhead from
QBF and the consolidation module. The overhead of both SSF and the detection module should

not be drastically impacted, since the search set is consolidated thus containing the same
quantity of MKUs than the triggering query metadata. The measurements and datasets settings
are similar to the one previously described. The difference is that from the initial dataset, we

generate four versions of this dataset in which we have one, two, three, and four queries,
respectively. The emission time of those additional queries are equally distributed over the

initial version. For instance, in the version containing three new queries, the first one is issued
after the first third of the initial queries. It contains an MKU per attribute referenced in the first
third, having a temporal duration spanning all MKUs in the group of queries. We called those
queries, trigger query metadata in the following. The measurements are also performed on the

third virtual machine.

7.3. EVALUATIONS OF RICE-SY 111

0 20 40 60 80 100
Number of processed queries

0

50

100

150

200

250

|Q
HL

| [
#M

KU
]

Size of the QHL
0
1
2
3
4

0 20 40 60 80 100
Number of processed queries

0

1

2

3

4

5

6

Se
co

nd
s

Overhead of RICE-Sy
0
1
2
3
4

0 20 40 60 80 100
Number of processed queries

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Se
co

nd
s

Overhead of the consolidation module
0
1
2
3
4

0 20 40 60 80 100
Number of processed queries

0.00

0.01

0.02

0.03

0.04

0.05

Se
co

nd
s

Overhead of the other modules
0 QBF
0 SSF
1 QBF
1 SSF
2 QBF
2 SSF
3 QBF
3 SSF
4 QBF
4 SSF

(a) mHealth

0 20 40 60 80 100
Number of processed queries

0

50

100

150

200

250

|Q
HL

| [
#M

KU
]

Size of the QHL
0
1
2
3
4

0 20 40 60 80 100
Number of processed queries

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Se
co

nd
s

Overhead of RICE-Sy
0
1
2
3
4

0 20 40 60 80 100
Number of processed queries

0.0000

0.0002

0.0004

0.0006

0.0008

Se
co

nd
s

Overhead of the consolidation module
0
1
2
3
4

0 20 40 60 80 100
Number of processed queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Se
co

nd
s

Overhead of the other modules
0 QBF
0 SSF
1 QBF
1 SSF
2 QBF
2 SSF
3 QBF
3 SSF
4 QBF
4 SSF

(b) Orange4Home

Figure 7.6: Impact of varying the number of query metadata triggering the consolidation for the GE archetype. Measure-
ments of the first dataset, among the 10 generated for mHealth.

112 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

Results & Observations The layout of Figure 7.6 is identical to Figure 7.4. Each curve is
labeled with the quantity of added queries triggering the consolidation. Considering the size of
the ConsQHL first, for each version of the dataset we observe the peaks corresponding to the
query metadata triggering the consolidation. Those peaks are also visible for the overhead of

RICE-Sy and each of its modules. The triggering queries cause a maximum increase of overhead
reaching 6.32 s for mHealth in Figure 7.6a, compared to 1.43 s for Orange4Home in Figure 7.6b.
This is related to the limitation of our second case study, presented in the previous paragraph.
Even if each trigger query metadata contains MKUs with temporal interval overlapping a large
quantity of MKUs in the ConsQHL, the overhead of both filtering modules stays in the same
order of magnitude as in the previous evaluation. For mHealth, the SSF module has a median
overhead of 18ms in Figure 7.6a, versus ≈ 24ms in Figure 7.4a. We observe that for mHealth,
the highest overhead of the consolidation module is nearly doubled in presence of triggering
queries (i.e., equal to 8ms), than compared to the previous evaluation when consolidation is

performed as soon as possible (i.e., equal to 4ms). Even in those extreme cases, the overhead of
this module stays negligible compared to other modules, since the overhead of RICE-Sy increases
from 0.10 s to 6.32 s for the two highest peaks. We explain those two observations, discovered in

the 10 datasets, by the fact that they exploit the optimization related to the indexing of the
MySQL database and the iterative algorithm implemented in Python, compared to the usage of
ProbLog in the detection module. The overhead of the detection, and thus RICE-Sy, “explodes”
when processing the trigger query metadata. When processing the trigger query metadata, the
SSF retrieves a large quantity of MKUs, compared to the non-trigger query metadata. The search

set of the module increases significantly. Yet, in this specific context, the overhead of the
detection module is even higher than the one observed in the first evaluation, when the filtering
modules are disabled, e.g., Figure 7.1. We explain this difference by the presence, in the search
set, of MKUs originating from the trigger query metadata. Those MKUs temporally intersect all
the other MKUs in the search set, thus drastically increasing the possible combination of subsets

to check to determine if the query metadata leads or not to an inference attack.

Via this third evaluation, we conclude that, whatever the density of issued consolidable queries,
when the consolidation module consolidates MKUs as soon as possible, i.e., when the query

metadata is processed, its impact on the overhead of RICE-Sy is not significant. In both
experiments, since the overhead of the consolidation module is always the least important, we
keep a strong control on the generation of consolidable queries and the time at which they are
emitted to illustrate a normal and an extreme case. A less controlled sequence of consolidable
queries can be achieved by merging two sequences of queries generated for the same inference
channel, and with the same period duration. The resulting sequence of queries contains both
blocks producing consolidable queries, according to the parameters values used to generate the
initial sequences, as well as consolidation which stemms from the intersection of blocks that

where not generated to produce consolidable queries in their respective initial sequence. Yet, a
user can disrupt the system by issuing a query built in a way to increase importantly the query
metadata search set and then increase the query processing time. This user can be considered as
a disrupter which does not perform IAISD, but rather aims to worsen the data controller quality
of service. Focusing on query metadata sequences issued by the same user enables us to make
controlled observations. In a real situation, multiple users interact with sensor databases. In the
following, we analyze the impact of multiple users issuing the same queries as a single user.

7.3.4 How multiple users impact RICE-Sy for a fixed number of queries

When a user issues a query to the sensor database, the query metadata is processed by RICE-Sy.
According to the results of the detection, our system updates the ConsQHL dedicated to this

7.3. EVALUATIONS OF RICE-SY 113

user to keep track of their knowledge. Hence, issuing the same queries by a single user, or a set
of users results in the same ConsQHL content. The objective of this evaluation is to assess how
issuing a fixed quantity of queries by different number of users impacts the performance of

RICE-Sy, and to observe the impact of the filtering process in the two settings.

Measurements & Datasets setting To be able to perform this comparative analysis, we
measure the computation time of the detection and the consolidation modules, with and

without the filtering modules enabled. Since we monitor how the overhead evolves w.r.t. the size
of the ConsQHL, we do not consider the OTA archetype. For each inference channel, and each
considered archetype, we generate a first dataset containing 50 periods. All the other parameters
are set using the same values than the first evaluation, see Section 7.3.1. Then, a new version of
the dataset is generated by randomly assigning the initial queries to five, ten, and twenty users

of the same archetype. The measurements are performed on the second virtual machine.

114 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

0 20 40 60 80 100 120
Number of processed queries

0

50

100

150

200

250

300

350

400

|Q
HL

| [
#M

KU
]

single
5
10
20

0 20 40 60 80 100 120
Number of processed queries

0

2

4

6

8

Se
co

nd
s

single
single RICE-Sy (with)
single RICE-Sy (without)

0 20 40 60 80 100 120
Number of processed queries

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Se
co

nd
s

5
5 RICE-Sy (with)
5 RICE-Sy (without)

0 20 40 60 80 100 120
Number of processed queries

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Se
co

nd
s

10
10 RICE-Sy (with)
10 RICE-Sy (without)

0 20 40 60 80 100 120
Number of processed queries

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Se
co

nd
s

20
20 RICE-Sy (with)
20 RICE-Sy (without)

(a) mHealth

0 20 40 60 80 100 120
Number of processed queries

0

50

100

150

200

250

300

|Q
HL

| [
#M

KU
]

single
5
10
20

0 20 40 60 80 100 120
Number of processed queries

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Se
co

nd
s

single
single RICE-Sy (with)
single RICE-Sy (without)

0 20 40 60 80 100 120
Number of processed queries

0.1

0.2

0.3

0.4

0.5

0.6

Se
co

nd
s

5
5 RICE-Sy (with)
5 RICE-Sy (without)

0 20 40 60 80 100 120
Number of processed queries

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Se
co

nd
s

10
10 RICE-Sy (with)
10 RICE-Sy (without)

0 20 40 60 80 100 120
Number of processed queries

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Se
co

nd
s

20
20 RICE-Sy (with)
20 RICE-Sy (without)

(b) Orange4Home

Figure 7.7: Impact of varying the number of users following the GE archetype for a fix quantity of queries. Measurements
of the first dataset, among the 10 generated for mHealth and Orange4home.

7.3. EVALUATIONS OF RICE-SY 115

GE: Results & Observations The results shown in Figure 7.7 correspond to the measurements
realized on the first datasets generated for mHealth, and for Orange4Home, considering the GE
archetype. Both Figure 7.7a and Figure 7.7b share the same layout. The top plot displays how
the size of the ConsQHL evolves for each processed query metadata. Each curve is labeled by the
quantity of users in the version of the dataset (i.e., from left to right: a single user, 5, 10, and 20

users). The bottom plots compare, for each of those version, the overhead of RICE-Sy, with
(bottom curve) and without (top curve) the filtering modules enabled. The y axis scale is

adapted between the first bottom plot and the other bottom plots. This enables us to determine
the order of magnitude between the versions with a single user and the version with multiple
ones, as well as comparing the overhead for the three latter bottom plots. We observe that for
both case studies, the size of the ConsQHL evolves in a similar fashion, up to a final size which is
equal between each version. Since all the considered queries originate here from genuine blocks,
dividing them among different quantities of users still lead to the same MKUs being inserted in

the ConsQHL. The only difference between the versions is that those MKUs are affected to
different users in the ConsQHL. We explain the small differences w.r.t. how the size changes

between versions, by the quantity of MKUs associated to each query metadata. For instance, in
Figure 7.7a from approximately processed query metadata number 5 to 45, the version of the
dataset with 20 users has a higher size of the ConsQHL. Those queries are associated to more
MKUs than the queries issued, during the same order interval, in the other the versions. As a
reminder, the difference of overhead that we observe for a single user, without the filtering

module, between mHealth and Orange4Home is explained in Section 7.3.1. Focusing now on the
version with a single user, we observe the same positive reduction of the overhead than in the
first evaluation in Section 7.3.1, considering the GE archetype. When we consider more user, we
observe that for both case studies the overhead without the filtering modules drops significantly
compared to the version with a single user. When dividing the same quantity of MKUs between
more and more user, we reduce the size of ConsQHL affected to each user. Considering a single
user, for mHealth (respectively Orange4Home), the median detection of RICE-Sy is 2.23 s (resp.
1.60 s) without the filtering modules and 0.11 s (resp. 0.13 s) with the modules enables. This

corresponds the observation of our first evaluation. Then, when five, ten, and twenty users are
considered, the filtering modules reduce the overhead by 55%, 32%, and 12% (resp. 61%, 42%,
24%). The order of magnitude of the decrease is observed for each of the 10 generated datasets.

116 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

600

|Q
HL

| [
#M

KU
]

single
single
5
10
20

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

600

|Q
HL

| [
#M

KU
]

5
single
5
10
20

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

600

|Q
HL

| [
#M

KU
]

10
single
5
10
20

0 25 50 75 100 125 150 175
Number of processed queries

0

100

200

300

400

500

600

|Q
HL

| [
#M

KU
]

20
single
5
10
20

0 25 50 75 100 125 150 175
Number of processed queries

0

2

4

6

8

10

12

14

Se
co

nd
s

single
single RICE-Sy (with)
single RICE-Sy (without)

0 25 50 75 100 125 150 175
Number of processed queries

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Se
co

nd
s

5
5 RICE-Sy (with)
5 RICE-Sy (without)

0 25 50 75 100 125 150 175
Number of processed queries

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Se
co

nd
s

10
10 RICE-Sy (with)
10 RICE-Sy (without)

0 25 50 75 100 125 150 175
Number of processed queries

0.10

0.15

0.20

0.25

0.30

0.35

Se
co

nd
s

20
20 RICE-Sy (with)
20 RICE-Sy (without)

(a) mHealth

0 25 50 75 100 125 150
Number of processed queries

0

20

40

60

80

100

120

140

160

|Q
HL

| [
#M

KU
]

single
single
5
10
20

0 25 50 75 100 125 150
Number of processed queries

0

20

40

60

80

100

120

140

160

|Q
HL

| [
#M

KU
]

5
single
5
10
20

0 25 50 75 100 125 150
Number of processed queries

0

20

40

60

80

100

120

140

160

|Q
HL

| [
#M

KU
]

10
single
5
10
20

0 25 50 75 100 125 150
Number of processed queries

0

20

40

60

80

100

120

140

160

|Q
HL

| [
#M

KU
]

20
single
5
10
20

0 25 50 75 100 125 150
Number of processed queries

0

1

2

3

4

5

6

Se
co

nd
s

single
single RICE-Sy (with)
single RICE-Sy (without)

0 25 50 75 100 125 150
Number of processed queries

0.1

0.2

0.3

0.4

0.5

Se
co

nd
s

5
5 RICE-Sy (with)
5 RICE-Sy (without)

0 25 50 75 100 125 150
Number of processed queries

0.10

0.15

0.20

0.25

0.30

0.35

Se
co

nd
s

10
10 RICE-Sy (with)
10 RICE-Sy (without)

0 25 50 75 100 125 150
Number of processed queries

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Se
co

nd
s

20
20 RICE-Sy (with)
20 RICE-Sy (without)

(b) Orange4Home

Figure 7.8: Impact of varying the number of users following the DA archetype for a fix quantity of queries. Measurements
of the first dataset, among the 10 generated for mHealth and Orange4home. Attacks are shown as vertical dotted bar.
The bottom plots display the overhead with and without the filtering modules.

7.4. DISCUSSION 117

DA: Results & Observations The results shown in Figure 7.8 correspond to measurements
realized on the first dataset generated for mHealth, and the first generated for Orange4Home,
considering the DA archetype. Both Figure 7.8a and Figure 7.8b share the same layout. The four
top plots display how the size of the ConsQHL evolves for each processed query metadata. To
visualize queries leading to attacks as vertical bar, each plot focuses on a specific version of the
dataset. From left to right, the main curve corresponds to the version with a single user, with 5
users, 10 users, and 20 users. Similarly to the previous results, the bottom plots compare the

overhead of RICE-Sy, with (bottom curve) and without (top curve) the filtering modules enabled.
Focusing first on mHealth, we see in Figure 7.8a that the size of the ConsQHL evolves quite
differently for the DA archetype than for the GE archetype. The final size of the ConsQHL is

here not equal between each version of the dataset. This comes from the presence of
consolidation and queries leading to attacks in the initial sequence of query metadata. When
distributing them among multiple users, two consolidable queries may be associated to two

distinct users. The corresponding MKUs are not consolidated in the ConsQHL. Likewise, if two
queries are produced by the same malicious block, then when a single user issues them, the

second query metadata is detected as leading to an attack. The ConsQHL is not updated with
the MKUs of this query metadata. Yet, if those two queries are divided between two distinct

users, then none are detected as leading to an attack. The ConsQHL is thus updated with more
MKUs than for the single user. This division of the queries explains why each version of the
dataset does not contain the same number of queries leading to an attack, or contains attacks
emitted at different times. Considering now Orange4Home, Figure 7.8b depicts the stagnation
already observed in presence of queries leading to attacks. We observe that between the version
with one and five users, the distribution of the queries is drastically different, thus leading to
curves increasing at different times. Finally, we remark that the overhead of RICE-Sy follows our
previous observations w.r.t. the presence of attacks and multiple users. Without the filtering
modules enabled, and when processing large quantities of MKUs, the overhead of RICE-Sy is
noticeably lower when processing queries leading to attacks. This difference becomes less

important when more users are considered. It is caused by the reduction of MKUs associated to
each user. For mHealth (respectively Orange4Home), the median detection of RICE-Sy is 1.69 s
(resp. 1.62 s) without the filtering modules and 0.15 s (resp. 0.16 s) with the modules enables.
Then, when five, ten, and twenty users are considered, the filtering modules reduce the overhead
by 57%, 37%, and 18% (resp. 43%, 26%, 18%). Similarly to GE, this decreasing trend is also

observed in the 10 datasets.

Via this last evaluation, we conclude that for a fixed quantity of MKUs, increasing the quantity
of users issuing queries automatically improves the overhead of RICE-Sy. In the following, we

discussing the impact of our observations.

7.4 Discussion

The results obtained enable us to observe that the conceptual optimizations drastically reduce
the overhead of RICE-Sy, at the level of each user. We observe that considering the proposed

archetypes (i.e., DA and GE), the order in which queries are issued has no significant impact on
RICE-Sy. Likewise, huge quantities of consolidable queries have no significant impact when

queries are issued in an order allowing RICE-Sy to consolidate MKUs for each query metadata.
We observe that when a user issues a query from which is extracted a large number of MKUs

with time interval overlapping the interval of MKUs stored in the ConsQHL, the overhead of the
consolidation module stays negligible. However, when processing those queries, the search set

of the detection growths sharply compared to the other queries.

118 CHAPTER 7. EVALUATION OF THE CONCEPTUAL OPTIMIZATIONS

Considering the DA archetype, it seems unrealistic that such a user issues a new query to mainly
select data points that they had already obtained. Besides being redundant, it would not be a
discrete strategy, since the administrator of RICE-Sy would easily see a drop in the size of the

ConsQHL, or a peak in the system overhead. The purpose of those queries may not be to
perform an IAISD, but rather to perturb RICE-Sy, forcing it to use more computing resources
than usual, or to prevent the system to process queries of other users. In such a situation, a
user’s objective may be to disrupt the quality of service of the data controller via RICE-Sy. To

prevent the peaks observed in Figure 7.6, the SSF module builds the search set, with only MKUs
originating from the ConsQHL which were not used during the consolidation. In presence of a
disrupting query metadata, the SSF module would not add any new MKUs to the search set. The
detection module would only consider the output of the consolidation module, thus preventing

the sharp increase of the overhead.
The last observation is that, when an equal quantity of queries is divided among an increasing
number of users, the overhead of RICE-Sy decrease the more users are considered. Yet, over

time, RICE-Sy likely receives queries from new users or known users. The size of the ConsQHL
affected to each user will grow for each query metadata. It is crucial to have the filtering

modules as a mean to amortize the resulting increase of overhead. Indeed, while the trend is
light, we observe in both Figure 7.1 and Figure 7.2 that the overhead of the QBF and SSF module

increases query after query. After a long time, this overhead may become higher than the
detection module. Next, we conclude this chapter by providing a summary of the observations

obtained via our evaluations.

7.5 Conclusion

In this chapter, we have presented the evaluation of RICE-M based inference detection System
(RICE-Sy) based on the generator proposed in Chapter 6. We have considered two metrics the
overhead of RICE-Sy (i.e., the time elapsed between the reception of a query and the notification
sent to the data controller) and the size of the ConsQHL. We have performed the following five

evaluations which aim to:

• Determine the impact of our conceptual optimizations. We observe that the conceptual
optimization we propose in Section 5.2.5 enables to reduce the overhead of RICE-Sy by
≈ 90% for both the GE and DA archetype, and our two case studies having different data
prerequisites.

• Study the impact of the order in which queries are issued, considering the DA archetype.
We observe that the order in which malicious queries are issued has no significant impact
(i.e., ≤ 5%) on the global overhead, for both case studies.

• Observe in which situation the consolidation impacts significantly RICE-Sy. We observe
that, when consolidable queries are issued in the order they are generated, the density
of consolidable queries creates a variation of overhead ≤ 5%, for both case studies. In an
extreme case where a large chunk (i.e., 250 as depicted in Figure 7.6a for the ConsQHL
size plot) of MKUs are consolidated at once, we observe peaks of overhead. Yet, this is not
caused by the overhead of the consolidation module. It is the SSF module which creates a
search set containing redondant information.

• Discover how issuing the same metrics divided between multiple users impacts our metrics.
We observe that for an equal quantity of queries divided among different users, the more
users are considered, the smaller the overhead become. The conceptual optimizations are

7.5. CONCLUSION 119

still efficient in this situation since they still decrease the overhead by 24% and 18%, for
the GE and the DA archetype, when queries are divided between 20 users.

The observations validate the efficiency of the proposed conceptual optimizations and
demonstrates the feasibility of detecting IAISDs at query-time using RICE-Sy. While the

conceptual optimizations reduce the overhead of our system, they are not enough to guarantee
that after a long period of detection, the overhead of RICE-Sy does not become larger and larger.
In the following chapter, we conclude this thesis by providing a summary of our contributions

and the short and long term future works.

Chapter 8

Conclusion and perspectives

In the era of rapid technological advancement, sharing personal information with organizations
has become a necessity for individuals to engage in modern society. The collection and storage
of data relies heavily on customer consent, enabling organizations to offer personalized services,
for instance. Yet, a growing number of individuals express concerns about the potential misuse
of their shared data. To guarantee the privacy right of individuals, organizations must take the

role of data controllers, in order to safeguard customer data from potential attacks and
unauthorized disclosures. While Access Control (AC) mechanisms are commonly employed to
protect information from unauthorized direct access, but used alone they cannot avoid indirect

access to sensitive data, leaving individuals vulnerable to inference attacks. The surge in
personal sensor data from wearable and non-wearable devices has led to new services offering
valuable insights into various aspects of individuals’ lives. However, the use of data mining

algorithms for legitimate purposes also raises the risk of breaching privacy by inferring sensitive
information from sensor data. The challenge lies in striking a balance between legitimate access
to sensor data and detecting authorized inference of non-sensitive personal data that can be

leveraged to perform further inferences breaching individuals’ privacy. To address this critical
privacy threat, we have proposed the development of a system detecting those non-sensitive

inference referred to as Inference Attack Involving Sensor Data (IAISD).

8.1 Summary of the contributions

The work presented in this thesis is divided into three main contributions:

1. The Raw sensor data based Inference ChannEl Model (RICE-M)

2. The RICE-M based inference detection System (RICE-Sy)

3. The query metadata sequences generator

We have first proposed a two-parts model which formalizes the representation of user’s
knowledge derived from querying the sensor database as a collection of metadata units called

Metadata Knowledge Unit (MKU). Through two case studies, namely mHealth and Orange4Home,
we have demonstrated how diverse data prerequisites, related to sliding windows, and varying

sensor deployment environments, wearable sensors and ambient sensors, can be effectively
modeled using this framework. Furthermore, we have presented the second part of our model,
which focuses on modeling inference channels based on the condition of disclosure implied by
constraints of data mining algorithms, and the inferrable knowledge that a user gains when

120

8.1. SUMMARY OF THE CONTRIBUTIONS 121

performing an IAISD. Similar to the first part, we have showcased the applicability and
expressiveness of RICE-M by providing model illustrations for our two case studies. This

demonstrates the capability of our model to effectively capture and represent the intricacies of
these scenarios, emphasizing its versatility in addressing different inference-related challenges.
In summary, RICE-M contributes to formalizing the representation of user knowledge as query

metadata and enables the modeling of inference channels based on data prerequisites,
exemplifying its potential through our case studies.

We have then proposed our Inference Detection System (InfDS) which formalizes the process of
detecting IAISDs using the queries metadata extracted from queries issued to the sensor

database managed by a data controller. Both the user’s knowledge and the inference channels
are represented based on RICE-M. We have demonstrated how our system tracks information

queried by users and reason about query metadata representations. The central aspect of
RICE-Sy lies in its implementation of IAISD detection during query-time. Through a rigorous
formalization, we have described how the system functions and outlined its workflow, and

provide examples to introduce and justify each module composing RICE-Sy. Furthermore, we
have illustrated the theoretical time complexity of each algorithm that formalizes the individual
modules. In summary, our contributions encompass the formalization of RICE-Sy as a system
capable of detecting IAISDs during query processing, by utilizing the metadata representation

proposed by RICE-M.
To evaluate RICE-Sy, we have proposed a query generator which formalizes the process of

generating MKUs. Due to the lack of existing datasets for detecting IAISDs, we have
demonstrated how to generate suitable data based on our proposed model. To produce realistic
query sequences, we have analyzed inference attack strategies and the nature of sensor databases
from which sensor data are queried, identifying different querying behaviors. Based on this
analysis, we have defined three querying archetypes followed by users: the one-time attacker,

the Genuine User (GU), and the Deceptive Attacker (DA). We have then created a dataset
generator that leverages our query generator to produce sequences of queries for each archetype.
We have validated the generated datasets by providing visualizations of sequences for each

archetype and case study, and demonstrate that the measured distributions of archetypes in the
datasets match those used for their generation. In summary, our query generator produces query

metadata sequences that satisfy the necessary requirements for evaluating RICE-Sy.
We have conducted the evaluation of RICE-Sy by utilizing two metrics, namely the overhead (i.e.,
the time elapsed between query reception and notification sent to the data controller) and the
size of the Consolidated Query History Log (ConsQHL). We have performed the following four

evaluations, resulting in multiple observations:

• Determine the impact of conceptual optimizations: We have observed that the conceptual
optimization we have proposed significantly reduce the overhead of RICE-Sy by approxi-
mately 90%, for both the GE and the DA archetypes, across the our two case studies having
different data prerequisites.

• Study the impact of query order for the DA archetype: We have determined that the order
in which malicious queries are issued has no significant impact, as the observed difference
of overhead is within 5% for both mHealth and Orange4Home.

• Observe significant consolidation impacts onRICE-Sy: It is observed thatwhen consolidable
queries are issued in the order they are generated, the variation in overhead remains within
5% for both case studies. In an extreme case where a large number ofMKUs are consolidated
at once, occasional peaks of overhead occur. However, this is not caused by the overhead of

122 CHAPTER 8. CONCLUSION AND PERSPECTIVES

the consolidation module itself, but rather by one of the filtering module creating a search
space containing redundant information.

• Explore the impact of fixed queries divided between multiple users: We have noticed
that, for an equal quantity of queries divided among different users, the more users are
considered, the smaller the overhead becomes. The conceptual optimizations remain
effective in this situation, reducing the overhead by 24% and 18% for the GE and DA
archetypes, respectively, when queries are divided between 20 users.

In summary, the evaluation provides insights into the performance of RICE-Sy, its sensitivity to
query order, and the impact of consolidable queries and fixed queries issued by different

amount of users. The results validate the efficiency of the proposed conceptual optimizations
and showcase the feasibility of detecting IAISDs at query-time using RICE-Sy. In the following

section, we present the research perspectives that we found relevant to pursue, in order to
enable the preliminary version of RICE-Sy to be used in a real world setting.

8.2 Future research perspectives

In environments where both profile and sensor data are collected and exchanged, it is important
to protect individuals’ privacy by detecting personal information obtained from sensor data. In
this thesis, we have investigated this problem and proposed, to the best of our knowledge, the
first system that tackles the detection of IAISDs. Our contributions are limited to assumptions
which must be challenged and results that needs to be further improved, in both the short and

long term.
In the following, we describe research directions related to: (i) The generalization of modeled
constraints (ii) A trust-less interaction with RICE-Sy (iii) The optimization of RICE-Sy (iv) The

detection based on fuzzy goals (v) The detection considering both profile and sensor data.

8.2.1 Short term research directions

The two short term directions are both related to the generalization of RICE-M, via the
incorporation of new data prerequisites and the anonymization of individuals’ identities to

prevent privacy breach when considering RICE-Sy as non-trusted entity.

Beyond the sliding window data constraint

This thesis has been dedicated to the examination of two critical constraints associated with
sliding windows, specifically Timestamp based Sliding Window (TSW) and Sequence based
Sliding Window (SSW), due to their extensive utilization in the scientific literature. Our
exploration of these prerequisites has been guided by two case studies: “mHealth” and

“Orange4Home”. It is important to acknowledge that other references employing data mining
algorithms on sensor data rely on other data prerequisites, notably Aggregation and Sampling

techniques, see Section 2.1.4. An important research direction is to extend RICE-M to take into
account these new prerequisites. For instance, aggregation techniques rely on aggregation

functions to compute selected data points directly. A query such as SELECT f(𝑎1), y(𝑎2) FROM
data_stream WHERE INTERVAL (𝑡𝑏, 𝑡𝑒) applies aggregation functions 𝑓 and 𝑦 to data points

generated within a specified interval for two attributes. To define patterns and constraints for
inference channels effectively, MKUs need to capture those new metadata. To incorporate this

type of data prerequisite in RICE-M, the challenge is to identify a generic representation
covering the large quantity existing functions (e.g., AVG, MIN, etc.). To do so, we can study the

8.2. FUTURE RESEARCH PERSPECTIVES 123

references compiled in Table 2.1 to determine a common set of used aggregation functions and
to observe how are specified their usage (e.g., what are the functions parameters?). On the other
hand, sampling techniques empower users to determine data point sampling from a selected set
of sensors. A query like SELECT 𝑎1, 𝑎2 FROM data_stream WHERE INTERVAL (𝑡𝑏, 𝑡𝑡) AND SAMPLE
0.75 exemplifies this, specifying data points for two attributes within an interval with a 0.75
sampling probability. The challenge is similar to the first data prerequisite, since different

sampling functions are used. One should also study the references in Table 2.1. At the system
level, MKUs capturing aggregation-based metadata should only be consolidated with MKUs
having the same aggregation functions applied to the same attributes. Similarly, for sampling,
only metadata from queries employing the same sampling method can be consolidated, affecting

the precision of the resulting metadata.

Trust-less interactions with RICE-Sy

The primary purpose of RICE-Sy is to detect non-sensitive personal information inferred by
users. Our system operates under the assumption that the data controller provides identities of
individuals within the environment where queried sensors are deployed. These identities may
be represented by any value as long as they uniquely identify individuals. This ensures that
RICE-Sy can reason about metadata related to sensor data produced for the same individuals.
Furthermore, when notifying the data controller, RICE-Sy includes the inferred data and the
corresponding individuals’ identities linked to that information. This assumption implicitly

entails that the data controller trusts RICE-Sy with sharing such sensitive information about its
customers.

Sharing the identities of individuals with RICE-Sy discloses: (i) The fact that an individual’s
data is collected from different data streams. (ii) The physical observations collected for a

specific individual. (iii) The linkage of an individual to other individuals, but only in
environments with multiple inhabitants. The first set of information does not provide any

details about the true identity of individuals or their physical locations, as it depends on how
the data controller represents the data, either as one data stream per sensor or one data stream
for multiple wearable or ambient sensors. However, in the case of ambient sensors, RICE-Sy

might be able to deduce partially the type of environment an individual resides in (e.g., home,
office) based on the selected attributes. This could lead to attribute disclosure if individuals have
not consented to sharing this information with RICE-Sy. Furthermore, this information, when
combined with external knowledge, might lead to re-identification of individuals. For example,
if the physical observations correspond to usual ambient sensors deployed in a smart-home, and
an individual is linked to a large number of other individuals in the same environment, external
public census datasets could be leveraged to identify a family with the same number of people,
potentially leading to re-identification. This risk arises when a single data stream provides data

produced by ambient sensors deployed in an area with multiple individuals.
To mitigate this risk, the strong assumption of sharing identities can be relaxed while still

allowing the system to detect inferences. The data controller may share with RICE-Sy only the
unique identifier of the selected data stream. In this setting, RICE-Sy can still consider the data
that originates from the same data stream and detect inferences accordingly. When an inference
is detected, RICE-Sy notifies the data controller with the identifier of the data stream. The data
controller can then determine for which individuals’ the user obtained information. However, if
the mHealth attributes are divided among two data streams, RICE-Sy cannot detect inferences

performed by combining data selected from distinct streams.
Via our two case studies, we have considered environment with a single individual. In mHealth,
only wearable sensors are considered. In Orange4Home, only a single individual inhabits the

124 CHAPTER 8. CONCLUSION AND PERSPECTIVES

smart-home. The disclosure (iii) cannot happen in this setting. However, case studies such as
smart-building with multiple dwellers are common in the literature and needs to be considered.
An essential research direction is to determine how the data controller can share information

with an instance of RICE-Sy, without leading to the disclosures (ii) and (iii). For example,
attribute names may need to be obfuscated to prevent RICE-Sy from inferring the type of

environment based on the semantics of the names. The challenge is that this transformation
must be synchronized with the inference channels’ descriptions to enable correct reasoning by

RICE-Sy.

8.2.2 Long term research directions

The three long term directions are all related to RICE-Sy. The objective is first to reduce the
overhead of our system via more comprehensive optimizations than the conceptual ones we
have proposed. The second direction focuses on performing a fuzzy detection, rather than a

logical one, to capture how the users’ belief evolve when querying the sensor database. Finally,
we propose to study how the inferences detected by RICE-Sy can be incorporated to a usual IC

mechanism protecting a profile data.

Reducing the overhead beyond conceptual optimizations

Optimizing RICE-Sy with conceptual optimizations seems unlikely to yield more improvements
due to high frequency of the metadata query to process. During the evaluation of our system, we

have observed in Section 7.3.1 of the previous chapter, that those optimizations reduce the
overhead by up to 94%. For mHealth (respectively Orange4Home), the median detection time
reaches 0.11 s (resp. 0.12 s) for the GE archetype and 0.15 s (resp. 0.16 s) for the DA archetype.
While those enhancements are significant, to utilize RICE-Sy at query-time, the detection needs
to be performed under an acceptable time. According to Grzesik et al. [76], selection queries on
time series databases are executed in 80ms on average. In order to ensure that RICE-Sy does not
impact data availability, we assume that the average detection time must take at most as long as

the query execution itself.
To reach this objective, we have presented a set of preliminary architectural optimizations [105].

We demonstrate the possible improvement of the detection time via two mechanisms that
reduce the volume of data process by RICE-Sy. The first approach aims at partitioning the

ConsQHL into smaller search space based on logical criteria, so that when RICE-Sy processes a
query the two filtering modules only process a part of the ConsQHL thus reducing the
computation time. The second approach focuses on reducing the number of detection

performed at query-time. In fact, based on the premise that most of the users of such database
systems are not potential attackers, the query-time detection should concern only users

identified as suspicious. The results we present for those two optimizations were obtained
before the extension and evaluation of RICE-Sy, to consider the Sequence based Sliding Window
(SSW) data prerequisite via our second case study Orange4Home. Consequently, the datasets
used in those experiments are not obtained via the metadata-based query sequences generator

presented in Chapter 6. The preliminary evaluations provide us with insights about the
relevance of improving the overhead of RICE-Sy.

The two optimizations demonstrate the potential of RICE-Sy to reach acceptable detection times
in the context of a high frequency of queries to process. However, the efficiency of the first

optimization relies mainly on the precision of the profiling system. Classifying users based on
their querying behavior is pertinent since the system has access to those information.

Considering only those information is not sufficient to discriminate between a user with a
genuine intent and a malicious user. For instance, from the perspective of RICE-Sy, when a user

8.2. FUTURE RESEARCH PERSPECTIVES 125

has queried enough knowledge to exploit an inference channel, an attack is detected even so the
user is not aware of an existing dependency. Although this limitation is inherent to InfDSs

which model both knowledge of users and inference channels, profiling users based on more
features than the one from the querying behavior can limit the wrong decision performed in

such situations. Furthermore, in paradigms such as Edge or Fog Computing, devices are
deployed near sensors to provide limited power and storage capacity [107]. An instance of our

system deployed on those devices has to cope with those limitation. Another interesting
research direction is to consider other relevant metrics such as the memory usage and the energy

consumption of RICE-Sy.

Beyond logical reasoning

In RICE-M, inference channel constraints are represented as logical goals over users’ knowledge.
To perform an IAISD, attackers must obtain precise metadata as described by these constraints.
For example, in the mHealth case study, 21 attribute data points must be queried within a 2 s
time interval. In Orange4Home, a minimum of 20 data points during a 15 s common time

interval is required. However, attackers may achieve a high level of certainty with slightly less
data, like 1.75 s in mHealth or 18 data points in Orange4Home. Reasoning with logical goals

results in a binary attack detection, lacking a quantified risk assessment. Estimating risk based
on user queries is challenging. Ideally, performing this estimation requires running assumed
mining algorithms, comparing outputs with input sensor data, and determining inference

probability. This approach faces two main limitations: (i) Matching deployed algorithms with
user settings requires costly maintenance and external expertise. The data controller has to

maintain multiple data mining models in parallel (i.e., one per considered inference channel).
Moreover, to estimate a user’s belief using models, each of them must be trained and tuned
similarly to the user’s model(s) that we supposed to be used. (ii) Running all algorithms for
detection with previous user queries introduces significant computational overhead. To

determine the information that the user obtain by using the model, the system must determine
with which previous queries the new query can be combined, and how. Then, each possible set
of data points must checked for each suitable models, i.e., models having data prerequisites

satisfied by the identified set of data. While as precise as possible, this approach is unrealistic
w.r.t. the ressources that needs to be deployed by each data controller. Moreover, quantitatively
determining the distribution of probabilities of inferrable knowledge is crucial. Obtaining the
exact distribution is unrealistic too, due to the quantity of data points that need to be tracked,
for each user, by the detection system. On the other hand, RICE-M simplifies the process by

defining inference channel descriptions, reducing maintenance efforts. By reasoning on
metadata representation rather than exact data points, the InfDS processes less information,
lowering memory burden and computational overhead during IAISD detection. A research

direction associated to this challenge is to determine how to reason on exact users’ knowledge
using fuzzy inference channels constraints, while keeping RICE-Sy as low cost as possible. To
tackle this problem, a possible approach is to consider the solutions proposed in the domain of

fuzzy logic programming languages [88]. In RICE-M, the inference channels describe the
constraint that must be satisfied by a user’s history to perform an inference with a strong

certainty. Fuzzy logic could be leveraged to determine dynamically, i.e., for each new issued
query, how far a user is not satisfy all constraints of an inference channel. For instance, mHealth

requires data points related to 21 physical observations to be queried for a common time
interval having a duration of at least 2 s. When a user has queried the required data points,

except for only one attribute, they may be able to infer the personal information with a certainty
of 80%. The challenge of this direction is to quantity how each gained metadata (i.e., the queried

126 CHAPTER 8. CONCLUSION AND PERSPECTIVES

attribute, the temporal duration, etc.) influence the user’s certainty. A first way to tackle this
problem would be to analyze how the output (i.e., the distribution of probabilities) of mHealth

and Orange4Home evolve when considering different quantities of queried data points.

Reasoning on profile databases and sensor databases

Detecting IAISDs is relevant when the non-sensitive personal information obtained can be
combined with non-sensitive profile data to infer a sensitive profile data. To prevent such

attacks, one has to reason on the existing dependencies that an attacker can leverage, both from
databases containing sensor data and profile data. The first faced issue is how to achieve a
semantic matching between attributes of distinct databases. The same information could be
coded differently in two distinct databases (e.g., in one database the first and last name of an
individual are stored as a single attribute while in the second database the first name and the
last name are represented as two distinct attributes). This issue is known as the record linkage

problem [36, 155] in the literature and is well studied. Furthermore, when databases are
managed by distinct services, the inference detection task can be delegated to a centralized

system [104]. This generates an additional issue, the external inference detection system needs
to have access to (i) the database schema to be able to build a data model that captures all the
data dependencies among attributes, which implies disclosing the database structures and

attributes. It also requires (ii) that the user’s knowledge is managed at the external inference
detection system level. Detecting inferences in this case leads to disclosing data at the instance
level. An alternative way to enforce detection without disclosing database schemas and instance
information would be to enforce the detection at the side of each service. A relevant research

direction is to study how to detect and prevent inference attacks exploiting non-sensitive
personal data inferred from sensor databases. To do so, one may consider the distributed

detection systems proposed by Rafik et al. [134] for the multi-base context. This work extend the
centralized solution proposed by Lachat et al. [104]. Rafik et al. propose a solution where data
controllers are collaborating to detect inference attacks performed by common users having
authorized access to databases managed by different data controller. They communicate via a
peer-to-peer network to share information for the distributed detection. The detection is not
performed by a centralized system. Instead, each application creates and manages locally its
own SIM and its own SIG. Their solution requires that each data controller knows what the

semantic similarities are that exist between their own database and the databases of the other
controllers. They cooperate to build a distributed GIG, while protecting their own privacy and
the privacy of their customers. The data controllers are able to locally detect inferences thanks
to a local detection system. Upon receiving the query of an authorized entity, a data controller
performs two actions: (i) It checks locally if the selected attribute leads or not to an inference on
its own database. (ii) It informs the other applications about the queried information, via the
P2P network, in order to let them keep track of the knowledge obtained by the entity and to

detect inference attacks using linkage dependencies. Rafik et al.’s solution can be consider as a
starting point in which to integrate RICE-Sy. The main difficulty of this direction is to determine
how to incorporate an inferrable knowledge detected by RICE-Sy in the model leveraged locally
by each data controller (e.g., the SIG). The first challenge is to determine how to identify sensor
data and profile data that are related to the same individual. While RICE-M keeps track of the

individuals’ identities, the data controllers may not trust the RICE-Sy instance. This
corresponds to the short term direction presented previously (i.e., trust-less interactions with
RICE-Sy). The second challenge is to define how the inferrable knowledge obtained by a user
may be incorporated into the data controller local model. Assuming that this model represents
profile data as random variables (e.g., like with the SIG), a direction is to consider incorporate

8.3. PUBLICATIONS 127

the inferrable knowledge detected by RICE-Sy as a soft evidence [120] on the corresponding
random variable. This evidence is then taken into account to perform the detection of inference

as described in Section 3.3.2 of Chapter 3 for the work of Chen et al. [31].

8.3 Publications

Journal

• Paul Lachat et al. “Detecting Inference Attacks Involving Raw Sensor Data: A Case Study”.
In: Sensors 22.21 (21 Jan. 2022), p. 8140. doi: 10.3390/s22218140

• Paul Lachat et al. “Detecting Inference Attacks Involving Sensor Data in a Multi-Database
Context: Issues & Challenges”. In: Internet Technology Letters 5.6 (2022), e387. doi:
10.1002/itl2.387

Conference

• Sad Rafik et al. “Towards a Distributed Inference Detection System in a Multi-Database
Context”. In: 2022 IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC). 2022 IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC). June 2022, pp. 1550–1554. doi: 10.1109/COMPSAC54236.2022.00246

• Paul Lachat, Veronika Rehn-Sonigo, and Nadia Bennani. “Towards an Inference Detection
System Against Multi-database Attacks”. In: New Trends in Databases and Information
Systems. Ed. by Jérôme Darmont, Boris Novikov, and Robert Wrembel. Communications
in Computer and Information Science. Cham: Springer International Publishing, 2020,
pp. 199–209. doi: 10.1007/978-3-030-54623-6_18

https://doi.org/10.3390/s22218140
https://doi.org/10.1002/itl2.387
https://doi.org/10.1109/COMPSAC54236.2022.00246
https://doi.org/10.1007/978-3-030-54623-6_18

Bibliography

[1] A Face Is Exposed for AOL Searcher No. 4417749 - The New York Times. Nov. 15, 2022. url:
https://web.archive.org/web/20221115102520/https://www.nytimes.com/2006/
08/09/technology/09aol.html (visited on 05/24/2023).

[2] Abbas Acar et al. “WACA: Wearable-Assisted Continuous Authentication”. In: 2018 IEEE
Security and Privacy Workshops (SPW). 2018 IEEE Security and Privacy Workshops (SPW).
May 2018, pp. 264–269. doi: 10.1109/SPW.2018.00042.

[3] Reza Akhavian and Amir H. Behzadan. “Smartphone-Based Construction Workers’ Ac-
tivity Recognition and Classification”. In: Automation in Construction 71 (Nov. 1, 2016),
pp. 198–209. doi: 10.1016/j.autcon.2016.08.015.

[4] Hande Alemdar et al. “ARAS Human Activity Datasets in Multiple Homes with Multiple
Residents”. In: 2013 7th International Conference on Pervasive Computing Technologies for
Healthcare and Workshops. 2013 7th International Conference on Pervasive Computing
Technologies for Healthcare and Workshops. May 2013, pp. 232–235. doi: 10.4108/icst.
pervasivehealth.2013.252120.

[5] James F. Allen. “Maintaining Knowledge about Temporal Intervals”. In: Communications
of the ACM 26.11 (Nov. 1, 1983), pp. 832–843. doi: 10.1145/182.358434.

[6] TheodorosAnagnostopoulos et al. “Environmental ExposureAssessmentUsing Indoor/Out-
door Detection on Smartphones”. In: Personal and Ubiquitous Computing 21.4 (Aug. 1,
2017), pp. 761–773. doi: 10.1007/s00779-017-1028-y.

[7] Davide Anguita et al. “A Public Domain Dataset for Human Activity Recognition Using
Smartphones”. In: (2013). issn: 978-2-87419-081-0.

[8] Damla Arifoglu and Abdelhamid Bouchachia. “Activity Recognition and Abnormal
Behaviour Detection with Recurrent Neural Networks”. In: Procedia Computer Science.
14th International Conference on Mobile Systems and Pervasive Computing (MobiSPC
2017) / 12th International Conference on Future Networks and Communications (FNC
2017) / Affiliated Workshops 110 (Jan. 1, 2017), pp. 86–93. doi: 10.1016/j.procs.2017.
06.121.

[9] Siddharth Arora et al. “High Accuracy Discrimination of Parkinson’s Disease Participants
from Healthy Controls Using Smartphones”. In: 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). May 2014, pp. 3641–3644. doi:
10.1109/ICASSP.2014.6854280.

[10] Imran Ashraf, Soojung Hur, and Yongwan Park. “Enhancing Performance of Magnetic
Field Based Indoor Localization Using Magnetic Patterns from Multiple Smartphones”.
In: Sensors 20.9 (9 Jan. 2020), p. 2704. doi: 10.3390/s20092704.

128

https://web.archive.org/web/20221115102520/https://www.nytimes.com/2006/08/09/technology/09aol.html
https://web.archive.org/web/20221115102520/https://www.nytimes.com/2006/08/09/technology/09aol.html
https://doi.org/10.1109/SPW.2018.00042
https://doi.org/10.1016/j.autcon.2016.08.015
https://doi.org/10.4108/icst.pervasivehealth.2013.252120
https://doi.org/10.4108/icst.pervasivehealth.2013.252120
https://doi.org/10.1145/182.358434
https://doi.org/10.1007/s00779-017-1028-y
https://doi.org/10.1016/j.procs.2017.06.121
https://doi.org/10.1016/j.procs.2017.06.121
https://doi.org/10.1109/ICASSP.2014.6854280
https://doi.org/10.3390/s20092704

BIBLIOGRAPHY 129

[11] Yusra Asim et al. “Context-Aware Human Activity Recognition (CAHAR) in-the-Wild
Using Smartphone Accelerometer”. In: IEEE Sensors Journal 20.8 (Apr. 2020), pp. 4361–
4371. doi: 10.1109/JSEN.2020.2964278.

[12] Sara Atske. Americans and Privacy: Concerned, Confused and Feeling Lack of Control Over
Their Personal Information. Pew Research Center: Internet, Science & Tech. Nov. 15, 2019.
url: https://web.archive.org/web/20230524004828/https://www.pewresearch.
org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-
feeling-lack-of-control-over-their-personal-information/ (visited on 05/24/2023).

[13] Sangwon Bae et al. “Detecting Drinking Episodes in Young Adults Using Smartphone-
based Sensors”. In: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous
technologies 1.2 (June 2017), p. 5. doi: 10.1145/3090051.

[14] Serkan Ballı, Ensar Arif Sağbaş, and Musa Peker. “A Mobile Solution Based on Soft
Computing for Fall Detection”. In: Mobile Solutions and Their Usefulness in Everyday Life.
Ed. by Sara Paiva. EAI/Springer Innovations in Communication and Computing. Cham:
Springer International Publishing, 2019, pp. 275–294. doi: 10.1007/978-3-319-93491-
4_14.

[15] Oresti Banos et al. “Design, Implementation and Validation of a Novel Open Framework
for Agile Development of Mobile Health Applications”. In: BioMedical Engineering OnLine
14.2 (Aug. 13, 2015), S6. doi: 10.1186/1475-925X-14-S2-S6.

[16] Mohammad Mahdi Bejani and Mehdi Ghatee. “Convolutional Neural Network With
Adaptive Regularization to Classify Driving Styles on Smartphones”. In: IEEE Transactions
on Intelligent Transportation Systems 21.2 (Feb. 2020), pp. 543–552. doi: 10.1109/TITS.
2019.2896672.

[17] Abderrahmen Belfkih, Claude Duvallet, and Bruno Sadeg. “A Survey on Wireless Sensor
Network Databases”. In: Wireless Networks 25.8 (Nov. 1, 2019), pp. 4921–4946. doi:
10.1007/s11276-019-02070-y.

[18] Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. “Deep Learning for AI”. In: Communi-
cations of the ACM 64.7 (June 21, 2021), pp. 58–65. doi: 10.1145/3448250.

[19] Joachim Biskup. “Dynamic Policy Adaptation for Inference Control of Queries to a
Propositional Information System”. In: Journal of Computer Security 20.5 (Jan. 1, 2012),
pp. 509–546. doi: 10.3233/JCS-2012-0450.

[20] Joachim Biskup. “Inference-Proof Monotonic Query Evaluation and View Generation Re-
considered”. In: Data and Applications Security and Privacy XXXIV. Ed. by Anoop Singhal
and Jaideep Vaidya. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 79–99. doi: 10.1007/978-3-030-49669-2_5.

[21] Vincent D. Blondel et al. “Fast Unfolding of Communities in Large Networks”. In: Journal
of Statistical Mechanics: Theory and Experiment 2008.10 (Oct. 2008), P10008. doi: 10.1088/
1742-5468/2008/10/P10008.

[22] Felix Bölz et al. “HUMMUS: A Linked, Healthiness-Aware, User-centered and Argument-
Enabling RecipeData Set for Recommendation”. In:Proceedings of the 17th ACMConference
on Recommender Systems. RecSys ’23. New York, NY, USA: Association for Computing
Machinery, Sept. 14, 2023, pp. 1–11. doi: 10.1145/3604915.3609491.

[23] A. G. Bonomi et al. “Aspects of Activity Behavior as a Determinant of the Physical Activity
Level”. In: Scandinavian Journal of Medicine & Science in Sports 22.1 (Feb. 2012), pp. 139–
145. doi: 10.1111/j.1600-0838.2010.01130.x.

https://doi.org/10.1109/JSEN.2020.2964278
https://web.archive.org/web/20230524004828/https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://web.archive.org/web/20230524004828/https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://web.archive.org/web/20230524004828/https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://doi.org/10.1145/3090051
https://doi.org/10.1007/978-3-319-93491-4_14
https://doi.org/10.1007/978-3-319-93491-4_14
https://doi.org/10.1186/1475-925X-14-S2-S6
https://doi.org/10.1109/TITS.2019.2896672
https://doi.org/10.1109/TITS.2019.2896672
https://doi.org/10.1007/s11276-019-02070-y
https://doi.org/10.1145/3448250
https://doi.org/10.3233/JCS-2012-0450
https://doi.org/10.1007/978-3-030-49669-2_5
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1145/3604915.3609491
https://doi.org/10.1111/j.1600-0838.2010.01130.x

130 BIBLIOGRAPHY

[24] Hendrio Bragança et al. “A Smartphone Lightweight Method for Human Activity Recog-
nition Based on Information Theory”. In: Sensors 20.7 (7 Jan. 2020), p. 1856. doi: 10.
3390/s20071856.

[25] A. Brodsky, C. Farkas, and S. Jajodia. “Secure Databases: Constraints, Inference Channels,
and Monitoring Disclosures”. In: IEEE Transactions on Knowledge and Data Engineering
12.6 (Nov. 2000), pp. 900–919. doi: 10.1109/69.895801.

[26] Tânia Carvalho et al. “Survey on Privacy-Preserving Techniques for Microdata Publica-
tion”. In: ACM Computing Surveys (Mar. 28, 2023). doi: 10.1145/3588765.

[27] Fernando E. Casado et al. “Walking Recognition in Mobile Devices”. In: Sensors 20.4 (4
Jan. 2020), p. 1189. doi: 10.3390/s20041189.

[28] Abdelberi Chaabane, Gergely Acs, and Mohamed Ali Kaafar. “You Are What You Like!
Information Leakage Through Users’ Interests”. In: NDSS Symposium 2012 - 19th Annual
Network and Distributed System Security Symposium. Feb. 5, 2012, p. 1.

[29] Hao Chen, Seung Hyun Cha, and Tae Wan Kim. “A Framework for Group Activity
Detection and Recognition Using Smartphone Sensors and Beacons”. In: Building and
Environment 158 (July 1, 2019), pp. 205–216. doi: 10.1016/j.buildenv.2019.05.016.

[30] Xihui Chen et al. “Active Re-identification Attacks on Periodically Released Dynamic
Social Graphs”. In: Computer Security – ESORICS 2020: 25th European Symposium on
Research in Computer Security, ESORICS 2020, Guildford, UK, September 14–18, 2020,
Proceedings, Part II. Berlin, Heidelberg: Springer-Verlag, Sept. 14, 2020, pp. 185–205. doi:
10.1007/978-3-030-59013-0_10.

[31] Yu Chen and Wesley W. Chu. “Protection of Database Security via Collaborative Inference
Detection”. In: IEEE Transactions on Knowledge and Data Engineering 20.8 (Aug. 2008),
pp. 1013–1027. doi: 10.1109/TKDE.2007.190642.

[32] Girija Chetty, Matthew White, and Farnaz Akther. “Smart Phone Based Data Mining
for Human Activity Recognition”. In: Procedia Computer Science. Proceedings of the
International Conference on Information and Communication Technologies, ICICT 2014,
3-5 December 2014 at Bolgatty Palace & Island Resort, Kochi, India 46 (Jan. 1, 2015),
pp. 1181–1187. doi: 10.1016/j.procs.2015.01.031.

[33] Belkacem Chikhaoui and Frank Gouineau. “Towards Automatic Feature Extraction for
Activity Recognition from Wearable Sensors: A Deep Learning Approach”. In: 2017 IEEE
International Conference on Data Mining Workshops (ICDMW). 2017 IEEE International
Conference on Data Mining Workshops (ICDMW). Nov. 2017, pp. 693–702. doi: 10.1109/
ICDMW.2017.97.

[34] Daeseon Choi et al. “Private Attribute Inference from Facebook’s Public Text Metadata:
A Case Study of Korean Users”. In: Industrial Management & Data Systems 117.8 (Jan. 1,
2017), pp. 1687–1706. doi: 10.1108/IMDS-07-2016-0276.

[35] Kah Meng Chong. “Privacy-Preserving Healthcare Informatics: A Review”. In: ITM Web
of Conferences 36 (2021), p. 04005. doi: 10.1051/itmconf/20213604005.

[36] Peter Christen. “A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication”. In: IEEE Transactions on Knowledge and Data Engineering 24.9 (Sept.
2012), pp. 1537–1555. doi: 10.1109/TKDE.2011.127.

https://doi.org/10.3390/s20071856
https://doi.org/10.3390/s20071856
https://doi.org/10.1109/69.895801
https://doi.org/10.1145/3588765
https://doi.org/10.3390/s20041189
https://doi.org/10.1016/j.buildenv.2019.05.016
https://doi.org/10.1007/978-3-030-59013-0_10
https://doi.org/10.1109/TKDE.2007.190642
https://doi.org/10.1016/j.procs.2015.01.031
https://doi.org/10.1109/ICDMW.2017.97
https://doi.org/10.1109/ICDMW.2017.97
https://doi.org/10.1108/IMDS-07-2016-0276
https://doi.org/10.1051/itmconf/20213604005
https://doi.org/10.1109/TKDE.2011.127

BIBLIOGRAPHY 131

[37] Shanice Clarke, Luis G. Jaimes, andMiguel A. Labrador. “mStress: AMobile Recommender
System for Just-in-Time Interventions for Stress”. In: 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC). 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC). Jan. 2017, pp. 1–5. doi: 10.1109/
CCNC.2017.8015367.

[38] Consumer Electronic Sensors Market Size, Share | Industry Report 2022. 2022. url: https:
//web.archive.org/web/20230603145142/https://www.grandviewresearch.com/
industry-analysis/consumer-electronic-sensors-market (visited on 05/24/2023).

[39] Matthew Crain. “The Limits of Transparency: Data Brokers and Commodification”. In:
New Media & Society 20.1 (Jan. 1, 2018), pp. 88–104. doi: 10.1177/1461444816657096.

[40] Federico Cruciani et al. “Personalizing Activity Recognition With a Clustering Based
Semi-Population Approach”. In: IEEE Access 8 (2020), pp. 207794–207804. doi: 10.1109/
ACCESS.2020.3038084.

[41] Julien Cumin.Orange4Home: ADataset of Routine Daily Activities in an InstrumentedHome –
Amiqual4Home. May 12, 2017. url: http://amiqual4home.inria.fr/en/orange4home/
(visited on 11/22/2023).

[42] Julien Cumin et al. “A Dataset of Routine Daily Activities in an Instrumented Home”. In:
Ubiquitous Computing and Ambient Intelligence. Ed. by Sergio F. Ochoa, Pritpal Singh, and
José Bravo. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2017, pp. 413–425. doi: 10.1007/978-3-319-67585-5_43.

[43] Julien Cumin et al. “Human Activity Recognition Using Place-Based Decision Fusion
in Smart Homes”. In: Modeling and Using Context. Ed. by Patrick Brézillon, Roy Turner,
and Carlo Penco. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2017, pp. 137–150. doi: 10.1007/978-3-319-57837-8_11.

[44] Julien Cumin et al. “Inferring Availability for Communication in Smart Homes Using
Context”. In: 2018 IEEE International Conference on Pervasive Computing and Communica-
tions Workshops (PerCom Workshops). 2018 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops). Mar. 2018, pp. 1–6.
doi: 10.1109/PERCOMW.2018.8480091.

[45] George Danezis et al. Privacy and Data Protection by Design - from Policy to Engineering.
2014. doi: 10.2824/38623.

[46] Alberto Calatroni Daniel Roggen. OPPORTUNITY Activity Recognition. UCI Machine
Learning Repository, 2010. doi: 10.24432/C5M027.

[47] Delan Devakumar et al. “Racism and Discrimination in COVID-19 Responses”. In: The
Lancet 395.10231 (Apr. 11, 2020), p. 1194. doi: 10.1016/S0140-6736(20)30792-3.

[48] Anton Dries et al. “ProbLog2: Probabilistic Logic Programming”. In: Machine Learning
and Knowledge Discovery in Databases. Ed. by Albert Bifet et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2015, pp. 312–315. doi: 10.1007/978-
3-319-23461-8_37.

[49] Cynthia Dwork. “Differential Privacy”. In: Automata, Languages and Programming. Ed. by
Michele Bugliesi et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2006, pp. 1–12. doi: 10.1007/11787006_1.

[50] Markus Ebner et al. “Recognition of Typical Locomotion Activities Based on the Sensor
Data of a Smartphone in Pocket or Hand”. In: Sensors 20.22 (22 Jan. 2020), p. 6559. doi:
10.3390/s20226559.

https://doi.org/10.1109/CCNC.2017.8015367
https://doi.org/10.1109/CCNC.2017.8015367
https://web.archive.org/web/20230603145142/https://www.grandviewresearch.com/industry-analysis/consumer-electronic-sensors-market
https://web.archive.org/web/20230603145142/https://www.grandviewresearch.com/industry-analysis/consumer-electronic-sensors-market
https://web.archive.org/web/20230603145142/https://www.grandviewresearch.com/industry-analysis/consumer-electronic-sensors-market
https://doi.org/10.1177/1461444816657096
https://doi.org/10.1109/ACCESS.2020.3038084
https://doi.org/10.1109/ACCESS.2020.3038084
http://amiqual4home.inria.fr/en/orange4home/
https://doi.org/10.1007/978-3-319-67585-5_43
https://doi.org/10.1007/978-3-319-57837-8_11
https://doi.org/10.1109/PERCOMW.2018.8480091
https://doi.org/10.2824/38623
https://doi.org/10.24432/C5M027
https://doi.org/10.1016/S0140-6736(20)30792-3
https://doi.org/10.1007/978-3-319-23461-8_37
https://doi.org/10.1007/978-3-319-23461-8_37
https://doi.org/10.1007/11787006_1
https://doi.org/10.3390/s20226559

132 BIBLIOGRAPHY

[51] Günther Eibl andDominik Engel. “Influence of Data Granularity on SmartMeter Privacy”.
In: IEEE Transactions on Smart Grid 6.2 (Mar. 2015), pp. 930–939. doi: 10.1109/TSG.
2014.2376613.

[52] Jihane el Mokhtari et al. “Coupling of Inference and Access Controls to Ensure Privacy
Protection”. In: International Journal of Safety and Security Engineering 11 (Oct. 31, 2021),
pp. 529–535. doi: 10.18280/ijsse.110504.

[53] ENISA Threat Landscape 2020 - Insider Threat. ENISA. 2020. url: https://web.archive.
org/web/20230603135508/https://www.enisa.europa.eu/publications/insider-
threat/ (visited on 07/04/2023).

[54] Aghil Esmaeili Kelishomi et al. “Mobile User Indoor-Outdoor Detection through Physical
Daily Activities”. In: Sensors 19.3 (3 Jan. 2019), p. 511. doi: 10.3390/s19030511.

[55] Labiba Gillani Fahad, Syed Fahad Tahir, and Muttukrishnan Rajarajan. “Feature Selection
and Data Balancing for Activity Recognition in Smart Homes”. In: 2015 IEEE International
Conference on Communications (ICC). 2015 IEEE International Conference on Communi-
cations (ICC). June 2015, pp. 512–517. doi: 10.1109/ICC.2015.7248373.

[56] Hongqing Fang, Raghavendiran Srinivasan, and Diane Cook. “Feature Selections for
Human Activity Recognition in Smart Home Environments”. In: International Journal
of Innovative Computing, Information and Control 8 (May 1, 2012), pp. 3525–3535. issn:
349-419.

[57] Csilla Farkas and Sushil Jajodia. “The Inference Problem: A Survey”. In: ACM SIGKDD
Explorations Newsletter 4.2 (Dec. 1, 2002), pp. 6–11. doi: 10.1145/772862.772864.

[58] Müge Fazlioglu. IAPP-EY Annual Privacy Governance Report 2021. 2021. doi: 10.2139/
ssrn.4227244. preprint.

[59] Anna Ferrari et al. “On the Personalization of Classification Models for Human Activity
Recognition”. In: IEEE Access 8 (2020), pp. 32066–32079. doi: 10.1109/ACCESS.2020.
2973425.

[60] Fitness Trackers | Shop Fitbit. 2020. url: https://web.archive.org/web/20230704031747/
https://www.fitbit.com/global/us/products/trackers (visited on 05/24/2023).

[61] Denis Foo Kune and Yongdae Kim. “Timing Attacks on PIN Input Devices”. In: Proceedings
of the 17th ACM Conference on Computer and Communications Security. CCS ’10. New
York, NY, USA: Association for Computing Machinery, Oct. 4, 2010, pp. 678–680. doi:
10.1145/1866307.1866395.

[62] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model Inversion Attacks That
Exploit Confidence Information and Basic Countermeasures”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. CCS ’15. New York,
NY, USA: Association for Computing Machinery, Oct. 12, 2015, pp. 1322–1333. doi:
10.1145/2810103.2813677.

[63] Lorenzo Frigerio et al. “Differentially Private Generative Adversarial Networks for Time
Series, Continuous, and Discrete Open Data”. In: ICT Systems Security and Privacy Pro-
tection. Ed. by Gurpreet Dhillon et al. IFIP Advances in Information and Communi-
cation Technology. Cham: Springer International Publishing, 2019, pp. 151–164. doi:
10.1007/978-3-030-22312-0_11.

[64] Biying Fu et al. “Fitness Activity Recognition on Smartphones Using Doppler Measure-
ments”. In: Informatics 5.2 (2 June 2018), p. 24. doi: 10.3390/informatics5020024.

https://doi.org/10.1109/TSG.2014.2376613
https://doi.org/10.1109/TSG.2014.2376613
https://doi.org/10.18280/ijsse.110504
https://web.archive.org/web/20230603135508/https://www.enisa.europa.eu/publications/insider-threat/
https://web.archive.org/web/20230603135508/https://www.enisa.europa.eu/publications/insider-threat/
https://web.archive.org/web/20230603135508/https://www.enisa.europa.eu/publications/insider-threat/
https://doi.org/10.3390/s19030511
https://doi.org/10.1109/ICC.2015.7248373
https://doi.org/10.1145/772862.772864
https://doi.org/10.2139/ssrn.4227244
https://doi.org/10.2139/ssrn.4227244
https://doi.org/10.1109/ACCESS.2020.2973425
https://doi.org/10.1109/ACCESS.2020.2973425
https://web.archive.org/web/20230704031747/https://www.fitbit.com/global/us/products/trackers
https://web.archive.org/web/20230704031747/https://www.fitbit.com/global/us/products/trackers
https://doi.org/10.1145/1866307.1866395
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1007/978-3-030-22312-0_11
https://doi.org/10.3390/informatics5020024

BIBLIOGRAPHY 133

[65] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. “Mining Data
Streams: A Review”. In: ACM SIGMOD Record 34.2 (June 1, 2005), pp. 18–26. doi: 10.
1145/1083784.1083789.

[66] João Gama. “A Survey on Learning from Data Streams: Current and Future Trends”. In:
Progress in Artificial Intelligence 1.1 (Apr. 1, 2012), pp. 45–55. doi: 10.1007/s13748-011-
0002-6.

[67] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer Science & Business Media, Dec. 6, 2012. 289 pp. isbn: 978-3-642-59830-2.

[68] Daniel Garcia-Gonzalez et al. “A Public Domain Dataset for Real-Life Human Activity
Recognition Using Smartphone Sensors”. In: Sensors 20.8 (8 Jan. 2020), p. 2200. doi:
10.3390/s20082200.

[69] General Data Protection Regulation. 2016. url: https : / / web . archive . org / web /
20230425072253/https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
(visited on 05/24/2023).

[70] Armin Gerl et al. “LPL, Towards a GDPR-Compliant Privacy Language: Formal Definition
and Usage”. In: Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXVII.
Ed. by Abdelkader Hameurlain and Roland Wagner. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2018, pp. 41–80. doi: 10.1007/978-3-662-57932-9_2.

[71] Lise Getoor et al. “Learning Probabilistic Relational Models”. In: Relational Data Mining.
Ed. by Sašo Džeroski and Nada Lavrač. Berlin, Heidelberg: Springer, 2001, pp. 307–335.
doi: 10.1007/978-3-662-04599-2_13.

[72] Martin Gjoreski et al. “Classical and Deep Learning Methods for Recognizing Human
Activities and Modes of Transportation with Smartphone Sensors”. In: Information Fusion
62 (Oct. 1, 2020), pp. 47–62. doi: 10.1016/j.inffus.2020.04.004.

[73] Global Companies Collecting Personal Data by Region 2021. Statista. 2023. url: https:
//web.archive.org/web/20230719145505/https://www.statista.com/statistics/
1172965/firms-collecting-personal-data/ (visited on 05/24/2023).

[74] Imad Gohar et al. “Person Re-Identification Using Deep Modeling of Temporally Cor-
related Inertial Motion Patterns”. In: Sensors 20.3 (3 Jan. 2020), p. 949. doi: 10.3390/
s20030949.

[75] Lukasz Golab andM. Tamer Zsu.Data StreamManagement. Morgan&Claypool Publishers,
May 2010. 80 pp. isbn: 978-1-60845-272-9.

[76] Piotr Grzesik and Dariusz Mrozek. “Comparative Analysis of Time Series Databases in the
Context of Edge Computing for Low Power Sensor Networks”. In: Computational Science
– ICCS 2020 12141 (May 25, 2020), pp. 371–383. doi: 10.1007/978-3-030-50426-7_28.

[77] Marco Guarnieri, Srdjan Marinovic, and David Basin. “Securing Databases from Proba-
bilistic Inference”. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
2017 IEEE 30th Computer Security Foundations Symposium (CSF). Aug. 2017, pp. 343–
359. doi: 10.1109/CSF.2017.30.

[78] Peeyush Gupta et al. “SmartBench: A Benchmark for Data Management in Smart Spaces”.
In: Proceedings of the VLDB Endowment 13.12 (July 1, 2020), pp. 1807–1820. doi: 10.
14778/3407790.3407791.

https://doi.org/10.1145/1083784.1083789
https://doi.org/10.1145/1083784.1083789
https://doi.org/10.1007/s13748-011-0002-6
https://doi.org/10.1007/s13748-011-0002-6
https://doi.org/10.3390/s20082200
https://web.archive.org/web/20230425072253/https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://web.archive.org/web/20230425072253/https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://doi.org/10.1007/978-3-662-57932-9_2
https://doi.org/10.1007/978-3-662-04599-2_13
https://doi.org/10.1016/j.inffus.2020.04.004
https://web.archive.org/web/20230719145505/https://www.statista.com/statistics/1172965/firms-collecting-personal-data/
https://web.archive.org/web/20230719145505/https://www.statista.com/statistics/1172965/firms-collecting-personal-data/
https://web.archive.org/web/20230719145505/https://www.statista.com/statistics/1172965/firms-collecting-personal-data/
https://doi.org/10.3390/s20030949
https://doi.org/10.3390/s20030949
https://doi.org/10.1007/978-3-030-50426-7_28
https://doi.org/10.1109/CSF.2017.30
https://doi.org/10.14778/3407790.3407791
https://doi.org/10.14778/3407790.3407791

134 BIBLIOGRAPHY

[79] Abdul Hakim et al. “Smartphone Based Data Mining for Fall Detection: Analysis and
Design”. In: Procedia Computer Science. 2016 IEEE International Symposium on Robotics
and Intelligent Sensors, IRIS 2016, 17-20 December 2016, Tokyo, Japan 105 (Jan. 1, 2017),
pp. 46–51. doi: 10.1016/j.procs.2017.01.188.

[80] Brian A. Harris-Kojetin et al. Statistical Policy Working Paper 22: Report on Statistical
Disclosure Limitation Methodology. Research Report. U.S. Federal Committee on Statistical
Methodology, 2005.

[81] Alexander Hart et al. “Using Smartphone Sensor Paradata and Personalized Machine
Learning Models to Infer Participants’ Well-being: Ecological Momentary Assessment”.
In: Journal of Medical Internet Research 24.4 (Apr. 28, 2022), e34015. doi: 10.2196/34015.

[82] Mohammed Mehedi Hassan et al. “A Robust Human Activity Recognition System Using
Smartphone Sensors and Deep Learning”. In: Future Generation Computer Systems 81
(Apr. 1, 2018), pp. 307–313. doi: 10.1016/j.future.2017.11.029.

[83] Peter Hevesi et al. “Monitoring Household Activities and User Location with a Cheap,
Unobtrusive Thermal Sensor Array”. In: Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp ’14. New York, NY, USA:
Association for Computing Machinery, Sept. 13, 2014, pp. 141–145. doi: 10 . 1145 /
2632048.2636084.

[84] Walt Hickey. How Americans Like Their Steak. FiveThirtyEight. May 16, 2014. url: https:
//fivethirtyeight.com/features/how-americans-like-their-steak/ (visited on
11/05/2023).

[85] Ivan Homoliak et al. “Insight Into Insiders and IT: A Survey of Insider Threat Taxonomies,
Analysis, Modeling, and Countermeasures”. In: ACM Computing Surveys 52.2 (Apr. 2,
2019), 30:1–30:40. doi: 10.1145/3303771.

[86] M. Shamim Hossain and Ghulam Muhammad. “Emotion Recognition Using Secure Edge
and Cloud Computing”. In: Information Sciences 504 (Dec. 1, 2019), pp. 589–601. doi:
10.1016/j.ins.2019.07.040.

[87] Hongsheng Hu et al. “Membership Inference Attacks on Machine Learning: A Survey”.
In: ACM Computing Surveys 54 (11s Sept. 9, 2022), 235:1–235:37. doi: 10.1145/3523273.

[88] Pascual Julián Iranzo and Clemente Rubio Manzano. “BOUSI~PROLOG - A Fuzzy Logic
Programming Language for Modeling Vague Knowledge and Approximate Reasoning”.
In: International Conference on Fuzzy Computation. Vol. 2. SCITEPRESS, Oct. 24, 2010,
pp. 93–98. doi: 10.5220/0003079200930098.

[89] Vijay S. Iyengar. “Transforming Data to Satisfy Privacy Constraints”. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’02. New York, NY, USA: Association for Computing Machinery, July 23, 2002,
pp. 279–288. doi: 10.1145/775047.775089.

[90] Adel Jebali, Salma Sassi, and Abderrazak Jemai. “Inference Control in Distributed Envi-
ronment: A Comparison Study”. In: Risks and Security of Internet and Systems. Ed. by Slim
Kallel et al. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2020, pp. 69–83. doi: 10.1007/978-3-030-41568-6_5.

[91] Adel Jebali et al. “Secure Data Outsourcing in Presence of the Inference Problem: A
Graph-Based Approach”. In: Journal of Parallel and Distributed Computing 160 (Feb. 1,
2022), pp. 1–15. doi: 10.1016/j.jpdc.2021.09.006.

https://doi.org/10.1016/j.procs.2017.01.188
https://doi.org/10.2196/34015
https://doi.org/10.1016/j.future.2017.11.029
https://doi.org/10.1145/2632048.2636084
https://doi.org/10.1145/2632048.2636084
https://fivethirtyeight.com/features/how-americans-like-their-steak/
https://fivethirtyeight.com/features/how-americans-like-their-steak/
https://doi.org/10.1145/3303771
https://doi.org/10.1016/j.ins.2019.07.040
https://doi.org/10.1145/3523273
https://doi.org/10.5220/0003079200930098
https://doi.org/10.1145/775047.775089
https://doi.org/10.1007/978-3-030-41568-6_5
https://doi.org/10.1016/j.jpdc.2021.09.006

BIBLIOGRAPHY 135

[92] Jinyuan Jia and Neil Zhenqiang Gong. “Defending Against Machine Learning Based
Inference Attacks via Adversarial Examples: Opportunities and Challenges”. In: Adaptive
Autonomous Secure Cyber Systems. Ed. by Sushil Jajodia et al. Cham: Springer International
Publishing, 2020, pp. 23–40. doi: 10.1007/978-3-030-33432-1_2.

[93] Mahdi Khosravy et al. “Model Inversion Attack by Integration of Deep Generative Models:
Privacy-Sensitive Face Generation From a Face Recognition System”. In: IEEE Transactions
on Information Forensics and Security 17 (2022), pp. 357–372. doi: 10.1109/TIFS.2022.
3140687.

[94] Sunder Ali Khowaja, Bernardo Nugroho Yahya, and Seok-Lyong Lee. “Hierarchical Clas-
sification Method Based on Selective Learning of Slacked Hierarchy for Activity Recogni-
tion Systems”. In: Expert Systems with Applications 88 (Dec. 1, 2017), pp. 165–177. doi:
10.1016/j.eswa.2017.06.040.

[95] Jong Wook Kim et al. “A Survey Of Differential Privacy-Based Techniques and Their
Applicability to Location-Based Services”. In: Computers & Security 111 (Dec. 1, 2021),
p. 102464. doi: 10.1016/j.cose.2021.102464.

[96] Yong-JoongKim et al. “IntegratingHiddenMarkovModels Based onMixture-of-Templates
and k-NN2 Ensemble for Activity Recognition”. In: 2016 23rd International Conference on
Pattern Recognition (ICPR). 2016 23rd International Conference on Pattern Recognition
(ICPR). Dec. 2016, pp. 1636–1641. doi: 10.1109/ICPR.2016.7899871.

[97] Itzik Klein. “Smartphone Location Recognition: A Deep Learning-Based Approach”. In:
Sensors 20.1 (1 Jan. 2020), p. 214. doi: 10.3390/s20010214.

[98] J Kolter and Matthew Johnson. “REDD: A Public Data Set for Energy Disaggregation
Research”. In: Artif. Intell. 25 (Jan. 1, 2011).

[99] Jacob Kröger. “The Privacy-Invading Potential of Sensor Data”. In: SSRN Electronic Journal
(June 9, 2022). doi: 10.2139/ssrn.4362987.

[100] Jacob Kröger. “Unexpected Inferences from Sensor Data: A Hidden Privacy Threat in
the Internet of Things”. In: Internet of Things. Information Processing in an Increasingly
Connected World. Ed. by Leon Strous and Vinton G. Cerf. IFIP Advances in Information
andCommunication Technology. Cham: Springer International Publishing, 2019, pp. 147–
159. doi: 10.1007/978-3-030-15651-0_13.

[101] Yasuhiko Kubota et al. “Physical Activity and Lifetime Risk of Cardiovascular Disease
and Cancer”. In: Medicine & Science in Sports & Exercise 49.8 (Aug. 2017), p. 1599. doi:
10.1249/MSS.0000000000001274.

[102] Lucia Kvapilova et al. “Continuous Sound Collection Using Smartphones and Machine
Learning to Measure Cough”. In: Digital Biomarkers 3.3 (2019), pp. 166–175. doi: 10.
1159/000504666.

[103] Emiro De-La-Hoz-Franco et al. “Sensor-Based Datasets for Human Activity Recognition
– A Systematic Review of Literature”. In: IEEE Access 6 (2018), pp. 59192–59210. doi:
10.1109/ACCESS.2018.2873502.

[104] Paul Lachat, Veronika Rehn-Sonigo, and Nadia Bennani. “Towards an Inference Detection
System Against Multi-database Attacks”. In: New Trends in Databases and Information
Systems. Ed. by Jérôme Darmont, Boris Novikov, and Robert Wrembel. Communications
in Computer and Information Science. Cham: Springer International Publishing, 2020,
pp. 199–209. doi: 10.1007/978-3-030-54623-6_18.

https://doi.org/10.1007/978-3-030-33432-1_2
https://doi.org/10.1109/TIFS.2022.3140687
https://doi.org/10.1109/TIFS.2022.3140687
https://doi.org/10.1016/j.eswa.2017.06.040
https://doi.org/10.1016/j.cose.2021.102464
https://doi.org/10.1109/ICPR.2016.7899871
https://doi.org/10.3390/s20010214
https://doi.org/10.2139/ssrn.4362987
https://doi.org/10.1007/978-3-030-15651-0_13
https://doi.org/10.1249/MSS.0000000000001274
https://doi.org/10.1159/000504666
https://doi.org/10.1159/000504666
https://doi.org/10.1109/ACCESS.2018.2873502
https://doi.org/10.1007/978-3-030-54623-6_18

136 BIBLIOGRAPHY

[105] Paul Lachat et al. “Detecting Inference Attacks Involving Raw Sensor Data: A Case Study”.
In: Sensors 22.21 (21 Jan. 2022), p. 8140. doi: 10.3390/s22218140.

[106] Paul Lachat et al. “Detecting Inference Attacks Involving Sensor Data in a Multi-Database
Context: Issues & Challenges”. In: Internet Technology Letters 5.6 (2022), e387. doi: 10.
1002/itl2.387.

[107] Mohammed Laroui et al. “Edge and Fog Computing for IoT: A Survey on Current Research
Activities & Future Directions”. In: Computer Communications 180 (Dec. 1, 2021), pp. 210–
231. doi: 10.1016/j.comcom.2021.09.003.

[108] Kangjae Lee and Mei-Po Kwan. “Physical Activity Classification in Free-Living Condi-
tions Using Smartphone Accelerometer Data and Exploration of Predicted Results”. In:
Computers, Environment and Urban Systems 67 (Jan. 1, 2018), pp. 124–131. doi: 10.1016/
j.compenvurbsys.2017.09.012.

[109] Jiexing Li, Yufei Tao, and Xiaokui Xiao. “Preservation of Proximity Privacy in Publish-
ing Numerical Sensitive Data”. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’08. New York, NY, USA: Association for
Computing Machinery, June 9, 2008, pp. 473–486. doi: 10.1145/1376616.1376666.

[110] Xiao Li et al. “PSDRNN: An Efficient and Effective HAR Scheme Based on Feature Ex-
traction and Deep Learning”. In: IEEE Transactions on Industrial Informatics 16.10 (Oct.
2020), pp. 6703–6713. doi: 10.1109/TII.2020.2968920.

[111] Jie Lian et al. “EchoSpot: Spotting Your Locations via Acoustic Sensing”. In: Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5.3 (Sept. 14, 2021),
113:1–113:21. doi: 10.1145/3478095.

[112] Gaoyang Liu et al. “SocInf: Membership Inference Attacks on Social Media Health Data
With Machine Learning”. In: IEEE Transactions on Computational Social Systems 6.5 (Oct.
2019), pp. 907–921. doi: 10.1109/TCSS.2019.2916086.

[113] Jinyi Liu et al. “WiPhone: Smartphone-based Respiration Monitoring Using Ambient
Reflected WiFi Signals”. In: Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 5.1 (Mar. 30, 2021), 23:1–23:19. doi: 10.1145/3448092.

[114] Xiangyu Liu et al. “When Good Becomes Evil: Keystroke Inference with Smartwatch”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. CCS ’15. New York, NY, USA: Association for Computing Machinery, Oct. 12,
2015, pp. 1273–1285. doi: 10.1145/2810103.2813668.

[115] MiguelMartínez delHorno, LuisOrozco-Barbosa, and IsmaelGarcía-Varea. “A Smartphone-
Based Multimodal Indoor Tracking System”. In: Information Fusion 76 (Dec. 1, 2021),
pp. 36–45. doi: 10.1016/j.inffus.2021.05.001.

[116] Alban Maxhuni et al. “Unobtrusive Stress Assessment Using Smartphones”. In: IEEE
Transactions on Mobile Computing 20.6 (June 2021), pp. 2313–2325. doi: 10.1109/TMC.
2020.2974834.

[117] Javier E. Meseguer et al. “DrivingStyles: A Smartphone Application to Assess Driver
Behavior”. In: 2013 IEEE Symposium on Computers and Communications (ISCC). 2013 IEEE
Symposium on Computers and Communications (ISCC). July 2013, pp. 000535–000540.
doi: 10.1109/ISCC.2013.6755001.

[118] Fen Miao et al. “Identifying Typical Physical Activity on Smartphone with Varying
Positions and Orientations”. In: BioMedical Engineering OnLine 14.1 (Apr. 13, 2015), p. 32.
doi: 10.1186/s12938-015-0026-4.

https://doi.org/10.3390/s22218140
https://doi.org/10.1002/itl2.387
https://doi.org/10.1002/itl2.387
https://doi.org/10.1016/j.comcom.2021.09.003
https://doi.org/10.1016/j.compenvurbsys.2017.09.012
https://doi.org/10.1016/j.compenvurbsys.2017.09.012
https://doi.org/10.1145/1376616.1376666
https://doi.org/10.1109/TII.2020.2968920
https://doi.org/10.1145/3478095
https://doi.org/10.1109/TCSS.2019.2916086
https://doi.org/10.1145/3448092
https://doi.org/10.1145/2810103.2813668
https://doi.org/10.1016/j.inffus.2021.05.001
https://doi.org/10.1109/TMC.2020.2974834
https://doi.org/10.1109/TMC.2020.2974834
https://doi.org/10.1109/ISCC.2013.6755001
https://doi.org/10.1186/s12938-015-0026-4

BIBLIOGRAPHY 137

[119] Jalal Mostafa et al. “SciTS: A Benchmark for Time-Series Databases in Scientific Ex-
periments and Industrial Internet of Things”. In: Proceedings of the 34th International
Conference on Scientific and Statistical Database Management. SSDBM ’22. New York, NY,
USA: Association for Computing Machinery, Aug. 23, 2022, pp. 1–11. doi: 10.1145/
3538712.3538723.

[120] Ali Ben Mrad et al. “An Explication of Uncertain Evidence in Bayesian Networks: Likeli-
hood Evidence and Probabilistic Evidence”. In: Applied Intelligence 43.4 (Dec. 1, 2015),
pp. 802–824. doi: 10.1007/s10489-015-0678-6.

[121] Debadyuti Mukherjee et al. “EnsemConvNet: A Deep Learning Approach for Human
Activity Recognition Using Smartphone Sensors for Healthcare Applications”. In: Multi-
media Tools and Applications 79.41 (Nov. 1, 2020), pp. 31663–31690. doi: 10.1007/s11042-
020-09537-7.

[122] Arvind Narayanan and Vitaly Shmatikov. How To Break Anonymity of the Netflix Prize
Dataset. Nov. 22, 2007. doi: 10.48550/arXiv.cs/0610105. url: http://arxiv.org/
abs/cs/0610105 (visited on 05/24/2023). preprint.

[123] Anubhav Natani, Abhishek Sharma, and Thinagaran Perumal. “Sequential Neural Net-
works for Multi-Resident Activity Recognition in Ambient Sensing Smart Homes”. In:
Applied Intelligence 51.8 (Aug. 1, 2021), pp. 6014–6028. doi: 10.1007/s10489-020-02134-
z.

[124] Tobias Nef et al. “Evaluation of Three State-of-the-Art Classifiers for Recognition of
Activities of Daily Living from Smart HomeAmbient Data”. In: Sensors (Basel, Switzerland)
15.5 (May 21, 2015), pp. 11725–11740. doi: 10.3390/s150511725.

[125] Amir Noury and Morteza Amini. “An Access and Inference Control Model for Time Series
Databases”. In: Future Generation Computer Systems 92 (Mar. 1, 2019), pp. 93–108. doi:
10.1016/j.future.2018.09.057.

[126] Rafael Garcia Oresti Banos. MHEALTH Dataset. UCI Machine Learning Repository, 2014.
doi: 10.24432/C5TW22.

[127] Primal Pappachan et al. “Don’t Be a Tattle-Tale: Preventing Leakages through Data
Dependencies on Access Control Protected Data”. In: Proceedings of the VLDB Endowment
15.11 (July 1, 2022), pp. 2437–2449. doi: 10.14778/3551793.3551805.

[128] Yangheran Piao, Kai Ye, and Xiaohui Cui. “Privacy Inference Attack Against Users in
Online Social Networks: A Literature Review”. In: IEEE Access 9 (2021), pp. 40417–40431.
doi: 10.1109/ACCESS.2021.3064208.

[129] Meikel Poess et al. “Analysis of TPCx-IoT: The First Industry Standard Benchmark for
IoT Gateway Systems”. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE). 2018 IEEE 34th International Conference on Data Engineering (ICDE). Apr. 2018,
pp. 1519–1530. doi: 10.1109/ICDE.2018.00170.

[130] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. “Measuring Mem-
bership Privacy on Aggregate Location Time-Series”. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4.2 (June 12, 2020), 36:1–36:28. doi:
10.1145/3392154.

[131] X. Qian et al. “Detection and Elimination of Inference Channels in Multilevel Relational
Database Systems”. In: Proceedings 1993 IEEE Computer Society Symposium on Research in
Security and Privacy. Proceedings 1993 IEEE Computer Society Symposium on Research
in Security and Privacy. May 1993, pp. 196–205. doi: 10.1109/RISP.1993.287632.

https://doi.org/10.1145/3538712.3538723
https://doi.org/10.1145/3538712.3538723
https://doi.org/10.1007/s10489-015-0678-6
https://doi.org/10.1007/s11042-020-09537-7
https://doi.org/10.1007/s11042-020-09537-7
https://doi.org/10.48550/arXiv.cs/0610105
http://arxiv.org/abs/cs/0610105
http://arxiv.org/abs/cs/0610105
https://doi.org/10.1007/s10489-020-02134-z
https://doi.org/10.1007/s10489-020-02134-z
https://doi.org/10.3390/s150511725
https://doi.org/10.1016/j.future.2018.09.057
https://doi.org/10.24432/C5TW22
https://doi.org/10.14778/3551793.3551805
https://doi.org/10.1109/ACCESS.2021.3064208
https://doi.org/10.1109/ICDE.2018.00170
https://doi.org/10.1145/3392154
https://doi.org/10.1109/RISP.1993.287632

138 BIBLIOGRAPHY

[132] Xiaolei Qian and T.F. Lunt. “A Semantic Framework of the Multilevel Secure Relational
Model”. In: IEEE Transactions on Knowledge and Data Engineering 9.2 (Mar. 1997), pp. 292–
301. doi: 10.1109/69.591453.

[133] Jing Qiu et al. “A Survey on Access Control in the Age of Internet of Things”. In: IEEE
Internet of Things Journal 7.6 (June 2020), pp. 4682–4696. doi: 10.1109/JIOT.2020.
2969326.

[134] Sad Rafik et al. “Towards a Distributed Inference Detection System in a Multi-Database
Context”. In: 2022 IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC). 2022 IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC). June 2022, pp. 1550–1554. doi: 10.1109/COMPSAC54236.2022.00246.

[135] Daniele Ravì et al. “A Deep Learning Approach to On-Node Sensor Data Analytics for
Mobile or Wearable Devices”. In: IEEE Journal of Biomedical and Health Informatics 21.1
(Jan. 2017), pp. 56–64. doi: 10.1109/JBHI.2016.2633287.

[136] RDC - Confidentiality Training - Disclosure. Jan. 14, 2019–. url: https://web.archive.
org/web/20230719150828/https://www.cdc.gov/rdc/b4confidisc/training/
Confident413.htm (visited on 07/13/2023).

[137] Charissa Ann Ronao and Sung-Bae Cho. “Human Activity Recognition with Smartphone
Sensors Using Deep Learning Neural Networks”. In: Expert Systems with Applications 59
(Oct. 15, 2016), pp. 235–244. doi: 10.1016/j.eswa.2016.04.032.

[138] Farida Sabry et al. “Towards On-Device Dehydration Monitoring Using Machine Learning
from Wearable Device’s Data”. In: Sensors 22.5 (5 Jan. 2022), p. 1887. doi: 10.3390/
s22051887.

[139] Ensar Arif Sağbaş, Serdar Korukoglu, and Serkan Balli. “Stress Detection via Keyboard
Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques”. In:
Journal of Medical Systems 44.4 (Feb. 17, 2020), p. 68. doi: 10.1007/s10916-020-1530-z.

[140] P. Samarati. “Protecting Respondents Identities in Microdata Release”. In: IEEE Transac-
tions on Knowledge and Data Engineering 13.6 (Nov. 2001), pp. 1010–1027. doi: 10.1109/
69.971193.

[141] Mokhtar Sellami, Mohand-Said Hacid, andMohamedMohsen Gammoudi. “A FCA Frame-
work for Inference Control in Data Integration Systems”. In: Distributed and Parallel
Databases 37.4 (Dec. 1, 2019), pp. 543–586. doi: 10.1007/s10619-018-7241-5.

[142] Ahmad Shahi, Brendon J. Woodford, and Hanhe Lin. “Dynamic Real-Time Segmentation
and Recognition of Activities Using a Multi-feature Windowing Approach”. In: Trends
and Applications in Knowledge Discovery and Data Mining. Ed. by U. Kang et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2017, pp. 26–38.
doi: 10.1007/978-3-319-67274-8_3.

[143] Anshul Sharma et al. “Early Transportation Mode Detection Using Smartphone Sensing
Data”. In: IEEE Sensors Journal 21.14 (July 2021), pp. 15651–15659. doi: 10.1109/JSEN.
2020.3009312.

[144] Seyed Vahab Shojaedini and Mohamad Javad Beirami. “Mobile Sensor Based Human
Activity Recognition: Distinguishing of Challenging Activities by Applying Long Short-
Term Memory Deep Learning Modified by Residual Network Concept”. In: Biomedical
Engineering Letters 10.3 (Aug. 2020), pp. 419–430. doi: 10.1007/s13534-020-00160-x.

https://doi.org/10.1109/69.591453
https://doi.org/10.1109/JIOT.2020.2969326
https://doi.org/10.1109/JIOT.2020.2969326
https://doi.org/10.1109/COMPSAC54236.2022.00246
https://doi.org/10.1109/JBHI.2016.2633287
https://web.archive.org/web/20230719150828/https://www.cdc.gov/rdc/b4confidisc/training/Confident413.htm
https://web.archive.org/web/20230719150828/https://www.cdc.gov/rdc/b4confidisc/training/Confident413.htm
https://web.archive.org/web/20230719150828/https://www.cdc.gov/rdc/b4confidisc/training/Confident413.htm
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.3390/s22051887
https://doi.org/10.3390/s22051887
https://doi.org/10.1007/s10916-020-1530-z
https://doi.org/10.1109/69.971193
https://doi.org/10.1109/69.971193
https://doi.org/10.1007/s10619-018-7241-5
https://doi.org/10.1007/978-3-319-67274-8_3
https://doi.org/10.1109/JSEN.2020.3009312
https://doi.org/10.1109/JSEN.2020.3009312
https://doi.org/10.1007/s13534-020-00160-x

BIBLIOGRAPHY 139

[145] Raphael Spreitzer. “PIN Skimming: Exploiting the Ambient-Light Sensor in Mobile
Devices”. In: Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices. SPSM ’14. New York, NY, USA: Association for Computing Machinery,
Nov. 7, 2014, pp. 51–62. doi: 10.1145/2666620.2666622.

[146] Jessica Staddon. “Dynamic Inference Control”. In: Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery. DMKD ’03. New
York, NY, USA: Association for Computing Machinery, June 13, 2003, pp. 94–100. doi:
10.1145/882082.882103.

[147] Marcin Straczkiewicz, Peter James, and Jukka-Pekka Onnela. “A Systematic Review of
Smartphone-Based Human Activity Recognition Methods for Health Research”. In: npj
Digital Medicine 4.1 (1 Oct. 18, 2021), pp. 1–15. doi: 10.1038/s41746-021-00514-4.

[148] T.-A. Su and G. Ozsoyoglu. “Controlling FD and MVD Inferences in Multilevel Relational
Database Systems”. In: IEEE Transactions on Knowledge and Data Engineering 3.4 (Dec.
1991), pp. 474–485. doi: 10.1109/69.109108.

[149] Priyank Sunhare, Rameez R. Chowdhary, and Manju K. Chattopadhyay. “Internet of
Things and Data Mining: An Application Oriented Survey”. In: Journal of King Saud
University - Computer and Information Sciences 34 (6, Part B June 1, 2022), pp. 3569–3590.
doi: 10.1016/j.jksuci.2020.07.002.

[150] Latanya Sweeney. “K-Anonymity: AModel for Protecting Privacy”. In: International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10.5 (Oct. 1, 2002), pp. 557–570.
doi: 10.1142/S0218488502001648.

[151] “The Best Smart Home Devices to Help Aging in Place”. In: The New York Times (Mar. 30,
2023). issn: 0362-4331.

[152] Tyrone S. Toland, Csilla Farkas, and Caroline M. Eastman. “The Inference Problem:
Maintaining Maximal Availability in the Presence of Database Updates”. In: Computers &
Security 29.1 (Feb. 1, 2010), pp. 88–103. doi: 10.1016/j.cose.2009.07.004.

[153] Nick Tsalis et al. “A Taxonomy of Side Channel Attacks on Critical Infrastructures and
Relevant Systems”. In: Critical Infrastructure Security and Resilience: Theories, Methods,
Tools and Technologies. Ed. by Dimitris Gritzalis, Marianthi Theocharidou, and George
Stergiopoulos. Advanced Sciences and Technologies for Security Applications. Cham:
Springer International Publishing, 2019, pp. 283–313. doi: 10.1007/978-3-030-00024-
0_15.

[154] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. “Recognizing Detailed Human
Context in the Wild from Smartphones and Smartwatches”. In: IEEE Pervasive Computing
16.4 (Oct. 2017), pp. 62–74. doi: 10.1109/MPRV.2017.3971131.

[155] Dinusha Vatsalan, Peter Christen, and Vassilios S. Verykios. “A Taxonomy of Privacy-
Preserving Record Linkage Techniques”. In: Information Systems 38.6 (Sept. 1, 2013),
pp. 946–969. doi: 10.1016/j.is.2012.11.005.

[156] Parvathy Venkatachalam and Sanjog Ray. “How Do Context-Aware Artificial Intelligence
Algorithms Used in Fitness Recommender Systems? A Literature Review and Research
Agenda”. In: International Journal of Information Management Data Insights 2.2 (Nov. 1,
2022), p. 100139. doi: 10.1016/j.jjimei.2022.100139.

[157] Robert-Andrei Voicu et al. “Human Physical Activity Recognition Using Smartphone
Sensors”. In: Sensors 19.3 (3 Jan. 2019), p. 458. doi: 10.3390/s19030458.

https://doi.org/10.1145/2666620.2666622
https://doi.org/10.1145/882082.882103
https://doi.org/10.1038/s41746-021-00514-4
https://doi.org/10.1109/69.109108
https://doi.org/10.1016/j.jksuci.2020.07.002
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1016/j.cose.2009.07.004
https://doi.org/10.1007/978-3-030-00024-0_15
https://doi.org/10.1007/978-3-030-00024-0_15
https://doi.org/10.1109/MPRV.2017.3971131
https://doi.org/10.1016/j.is.2012.11.005
https://doi.org/10.1016/j.jjimei.2022.100139
https://doi.org/10.3390/s19030458

140 BIBLIOGRAPHY

[158] Bao Wang, Linjie Gao, and Zhicai Juan. “Travel Mode Detection Using GPS Data and
Socioeconomic Attributes Based on a Random Forest Classifier”. In: IEEE Transactions on
Intelligent Transportation Systems 19.5 (May 2018), pp. 1547–1558. doi: 10.1109/TITS.
2017.2723523.

[159] Liang Wang et al. “Recognizing Multi-User Activities Using Wearable Sensors in a Smart
Home”. In: Pervasive and Mobile Computing. Knowledge-Driven Activity Recognition in
Intelligent Environments 7.3 (June 1, 2011), pp. 287–298. doi: 10.1016/j.pmcj.2010.
11.008.

[160] Gary Weiss. WISDM Smartphone and Smartwatch Activity and Biometrics Dataset. UCI
Machine Learning Repository, 2019. doi: 10.24432/C5HK59.

[161] Gary M. Weiss and Jeffrey W. Lockhart. “Identifying User Traits by Mining Smart Phone
Accelerometer Data”. In: Proceedings of the Fifth International Workshop on Knowledge Dis-
covery from Sensor Data. SensorKDD ’11. New York, NY, USA: Association for Computing
Machinery, Aug. 21, 2011, pp. 61–69. doi: 10.1145/2003653.2003660.

[162] Raymond K. Wong and B. S. Vidyalakshmi. “Privacy Leakage via Attribute Inference in
Directed Social Networks”. In: Information and Communications Security. Ed. by Kwok-Yan
Lam, Chi-Hung Chi, and Sihan Qing. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 333–346. doi: 10.1007/978-3-319-50011-9_26.

[163] Philip Woodall and Pearl Brereton. “A Systematic Literature Review of Inference Strate-
gies”. In: International Journal of Information and Computer Security 4.2 (Jan. 2010), pp. 99–
117. doi: 10.1504/IJICS.2010.034813.

[164] Yang Yang, Qiang Cao, and Hong Jiang. “EdgeDB: An Efficient Time-Series Database for
Edge Computing”. In: IEEE Access 7 (2019), pp. 142295–142307. doi: 10.1109/ACCESS.
2019.2943876.

[165] Qussai Yaseen and Brajendra Panda. “Insider Threat Mitigation: Preventing Unauthorized
Knowledge Acquisition”. In: International Journal of Information Security 11.4 (Aug. 1,
2012), pp. 269–280. doi: 10.1007/s10207-012-0165-6.

[166] Darren Yates and Md Zahidul Islam. “Data Mining on Smartphones: An Introduction and
Survey”. In: ACM Computing Surveys 55.5 (Dec. 3, 2022), 101:1–101:38. doi: 10.1145/
3529753.

[167] Darren Yates and Md. Zahidul Islam. “Readiness of Smartphones for Data Collection and
Data Mining with an Example Application in Mental Health”. In: Data Mining. Ed. by
Thuc D. Le et al. Communications in Computer and Information Science. Singapore:
Springer, 2019, pp. 235–246. doi: 10.1007/978-981-15-1699-3_19.

[168] Mingyang Zhang et al. “Indoor Localization Fusing WiFi With Smartphone Inertial
Sensors Using LSTM Networks”. In: IEEE Internet of Things Journal 8.17 (Sept. 2021),
pp. 13608–13623. doi: 10.1109/JIOT.2021.3067515.

[169] Xiao Zhang et al. “MoodExplorer: Towards Compound Emotion Detection via Smart-
phone Sensing”. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1.4 (Jan. 8, 2018), 176:1–176:30. doi: 10.1145/3161414.

[170] Beidi Zhao et al. “A Framework of Combining Short-Term Spatial/Frequency Feature
Extraction and Long-Term IndRNN for Activity Recognition”. In: Sensors 20.23 (23 Jan.
2020), p. 6984. doi: 10.3390/s20236984.

https://doi.org/10.1109/TITS.2017.2723523
https://doi.org/10.1109/TITS.2017.2723523
https://doi.org/10.1016/j.pmcj.2010.11.008
https://doi.org/10.1016/j.pmcj.2010.11.008
https://doi.org/10.24432/C5HK59
https://doi.org/10.1145/2003653.2003660
https://doi.org/10.1007/978-3-319-50011-9_26
https://doi.org/10.1504/IJICS.2010.034813
https://doi.org/10.1109/ACCESS.2019.2943876
https://doi.org/10.1109/ACCESS.2019.2943876
https://doi.org/10.1007/s10207-012-0165-6
https://doi.org/10.1145/3529753
https://doi.org/10.1145/3529753
https://doi.org/10.1007/978-981-15-1699-3_19
https://doi.org/10.1109/JIOT.2021.3067515
https://doi.org/10.1145/3161414
https://doi.org/10.3390/s20236984

BIBLIOGRAPHY 141

[171] Elena Zheleva and Lise Getoor. “To Join or Not to Join: The Illusion of Privacy in Social
Networks with Mixed Public and Private User Profiles”. In: Proceedings of the 18th Inter-
national Conference on World Wide Web. WWW ’09. New York, NY, USA: Association for
Computing Machinery, Apr. 20, 2009, pp. 531–540. doi: 10.1145/1526709.1526781.

[172] Yong Zhong et al. “A Systematic Survey of Data Mining and Big Data Analysis in Internet
of Things”. In: The Journal of Supercomputing 78.17 (Nov. 1, 2022), pp. 18405–18453. doi:
10.1007/s11227-022-04594-1.

[173] Xiaolu Zhou, Wei Yu, and William C. Sullivan. “Making Pervasive Sensing Possible:
Effective Travel Mode Sensing Based on Smartphones”. In: Computers, Environment and
Urban Systems 58 (July 1, 2016), pp. 52–59. doi: 10.1016/j.compenvurbsys.2016.03.
001.

https://doi.org/10.1145/1526709.1526781
https://doi.org/10.1007/s11227-022-04594-1
https://doi.org/10.1016/j.compenvurbsys.2016.03.001
https://doi.org/10.1016/j.compenvurbsys.2016.03.001

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivating example
	Problem statement
	Challenges and research questions
	Inference channels involving sensor data
	Sensor data queried from the database
	Monitoring queries to detect IAISDs
	Evaluating the system detecting IAISDs

	Contributions
	Thesis outline

	Background: Sensor data mining as inference channels
	Taxonomy of data mining approches
	Type of sensor deployment
	Type of sensor data
	Type of mined personal information
	Type of constraints
	Classified references

	Discussion
	Conclusion

	State of the art: The inference problem in databases
	Type of attributes
	Types of disclosure
	Identity disclosure
	Membership disclosure
	Attribute disclosure

	Inference attacks in databases
	Inference strategies in databases
	Approaches to prevent inferences in databases

	Taxonomy and classification of the inference detection system
	Positioning

	RICE-M: Raw sensor data based Inference ChannEl Model
	Case studies description: mHealth & Orange4Home
	mHealth case study
	Orange4Home case study

	Capturing information to constitute the user's knowledge
	Query parameters
	Query context

	Modeling the user's knowledge
	Modeling inference channels
	Concept definitions
	Constraints as filters for the user's knowledge

	Discussion
	Incorporating more constraints
	Logical constraints over the user's knowledge

	Conclusion

	RICE-Sy: RICE-M based inference detection System
	Generic workflow of RICE-Sy: The Reasoner & The Knowledge Storage
	The Reasoner module
	The detection module
	The consolidation of users' knowledge
	The consolidation module
	Filtering only the relevant subset of users' knowledge
	The filtering modules

	Complete workflow of RICE-Sy
	Discussion
	Incorporating more constraints
	Filtering module

	Conclusion

	Generator: Archetypes & Query metadata sequences
	Assumptions about users' querying behaviors
	Querying behaviors
	Archetypes

	Requirements for a suitable dataset
	Existing datasets
	Archetype-based generation: Definitions of concepts
	Timeline
	Periods
	Blocks
	Sequence of queries metadata
	Consolidation & Groups of attributes

	Workflow of the dataset generation
	Archetype-based generation of query metadata sequences
	The one-time attacker (OA)
	The genuine user (GU)
	The deceptive attacker (DA)

	Parameters value of query metadata sequences
	Discussion
	Conclusion

	Evaluation of the conceptual optimizations
	Metrics: Detection overhead and ConsQHL size
	Implementation of RICE-Sy & the Generator
	Evaluations of RICE-Sy
	Monitoring the impact of the filtering modules
	How the query issuing order impacts RICE-Sy?
	How the consolidation impacts RICE-Sy
	How multiple users impact RICE-Sy for a fixed number of queries

	Discussion
	Conclusion

	Conclusion and perspectives
	Summary of the contributions
	Future research perspectives
	Short term research directions
	Long term research directions

	Publications

	Bibliography

