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Abstract: The growing demand for electric vehicles (EV) in the last decade and the most recent

European Commission regulation to only allow EV on the road from 2035 involved the necessity to

design a cost-effective and sustainable EV charging station (CS). A crucial challenge for charging

stations arises from matching fluctuating power supplies and meeting peak load demand. The overall

objective of this paper is to optimize the charging scheduling of a hybrid energy storage system

(HESS) for EV charging stations while maximizing PV power usage and reducing grid energy costs.

This goal is achieved by forecasting the PV power and the load demand using different deep learning

(DL) algorithms such as the recurrent neural network (RNN) and long short-term memory (LSTM).

Then, the predicted data are adopted to design a scheduling algorithm that determines the optimal

charging time slots for the HESS. The findings demonstrate the efficiency of the proposed approach,

showcasing a root-mean-square error (RMSE) of 5.78% for real-time PV power forecasting and 9.70%

for real-time load demand forecasting. Moreover, the proposed scheduling algorithm reduces the

total grid energy cost by 12.13%.

Keywords: scheduling optimization; HESS; PV power; load demand; RNN; LSTM; GRU; cost reduction

1. Introduction

Transport contributes over 20% of greenhouse gases [1]. Road transport constitutes
77% of overall transport emissions in the European Union (EU) [2]. It makes land-based
travel a significant threat to the environment. One of the most planned policies in the
transport sector focuses on promoting EV to decrease carbon emissions [2]. With the
combined efforts of various policies and initiatives, the global EV fleet of 4 million in
2016 is expected to reach an estimated 70 million by 2025 [3,4]. However, in this new era,
the infrastructure needed to support the operation of EV, especially charging stations, has
yet to be ready to meet the increasing demand. Moreover, it must be accounted for that
most people may not switch to EV just because of the environmental aspect [3]. The main
drawbacks of EV are that they need to be charged frequently and have longer charging
times [3]. It is necessary to have a fast and cost-effective charging infrastructure to address
these drawbacks and enhance the acceptance of EV [3]. However, demand scheduling
to achieve a cost-effective solution is challenged due to uncertainty in demand. Hence,
demand forecasting is an essential approach to overcoming this problem.

Furthermore, traditional vehicle energy sources are conventional fossil fuels, which
combine two crucial negative aspects. They are present on the earth in a limited quantity,
and they release greenhouse gases when they are burned [5]. EV provide alternative
energy sources with renewable energy sources (RES), which have unlimited availability
and emit no greenhouse gases. Thus, it requires the use of RES to have truly sustainable
road transport. The extensively adopted form of RES by many countries worldwide is solar
power (or PV power) [6]. PV power production is projected to represent approximately
20% to 25% of global generating capacity by 2050 and become one of the fundamental
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energy sources [7]. Despite the numerous benefits of solar power generation, its integration
into the power system faces challenges due to its variable and fluctuating nature, leading
to uncertainties within the power sector [8]. To address this challenge and integrate solar
energy into CSs, the use of an energy storage system (ESS) is necessary [9]. In terms
of efficiency, lifetime, reliability, and economic viability, the synergistic combination of
different ESSs, called hybrid energy storage systems (HESS), outperforms a single ESS,
demonstrating enhanced overall performance [10], thus being more suitable for large-scale
RES systems. In order to have a flexible and smart management of HESS, forecasting
upcoming solar energy generation and load demand is required [11].

Recent studies provide valuable insights into potential solutions in this domain. For the
sake of comprehensiveness, related research in ESSs and HESS is briefly mentioned, and
we examine their characteristics, advantages, and disadvantages. HESS offer a novel way
to boost the resilience and reliability of renewable energy (RE) systems, as they merge the
advantages of various energy storage technologies [12]. Nevertheless, designing an ideal
HESS is challenging due to the complexities of system design, simulations, and optimization
techniques. Selecting the best hybridization and control strategies also poses challenges,
primarily due to a lack of industry standards and practical issues such as high costs, short
lifespan, and emissions [13]. One of the most recently used ESSs in HESS is the redox flow
battery (RFB) known for its high capacity and long life [13].

HESS technology faces multiple optimization problems, i.e., sizing, capacity, and power
distribution, since it is still an emerging technology. Thus, several optimization techniques
such as genetic algorithms (GA) and ant colony optimization (ACO) were adopted in the
literature to fix these issues (see Table 1) [14–18]. In [14], the authors propose an optimal
charge-scheduling algorithm for EV based on day-ahead PV power forecasts in order to
minimize the total charging costs. In [15], an optimization model and energy management
schemes for microgrids to increase the efficiency of EV are suggested. In [16], the authors
propose a 24-h-ahead operational timeline at an hourly resolution model, integrating RE
to minimize costs. In [17], the authors propose a combination of genetic algorithms (GA)
and dynamic programming (DP) to create charge/discharge schedules for ESSs within the
context of time-of-use pricing and RE integration. In [18], the authors present real-time
energy management for optimally managing battery charging/discharging operations in a
grid-connected microgrid and minimizing power costs.

Several studies have been conducted on PV power forecasting, and different machine
learning (ML) algorithms have been implemented. For example, the authors in [19] found
that the use of an LSTM network with a larger number of time steps and a more extensive
network was more proficient in capturing long-term trends, outperforming traditional ML
models. Meanwhile, in [6], the authors concluded that a univariate model using historical
PV power data was sufficient for one-step forecasting, while multistep forecasting required
a multivariate model incorporating historical meteorological variables and PV output data.
Moreover, the model struggled with fluctuations, indicating optimal performance under
stable weather conditions.

Load demand has not been frequently studied in recent years, mainly due to the lack
of datasets and more especially real datasets. In [20], the authors constructed models with
varying input features, discovering that a model incorporating load demand data, calendar
features, and weather features yielded the highest accuracy. However, postprocessing was
needed to handle constraints in the data. Meanwhile, the study [21] found that LSTM
networks outperformed autoregressive integrated moving average (ARIMA) models for
predicting charging loads. The drawback of that study was the lack of data during holidays
and semester breaks. Lastly, the paper [22] compared the following algorithms: artificial
neural networks (ANN), RNN, gated recurrent unit (GRU), and LSTM, and proved a single-
hidden-layer GRU outperformed others in predicting EV load demand and providing
insight into weekly consumption patterns.
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Table 1. Recent studies on optimization techniques.

Ref. Optimization
Technique

Objectives Constraints Pros Cons

[14] AI-based opti-
mization

Optimize EV
charging in
PV-powered
stations

Accurate predic-
tion of PV power,
charging station
capacity

Cost reduction,
grid load manage-
ment

Implementation complex-
ity, limited consideration
for grid constraints,
and user behavior as-
sumptions.

[15] Mixed-integer lin-
ear programming
(MILP)

Efficiently man-
age energy re-
sources, and cost
minimization

Charging and
discharging power
limits, battery SOC
constraints

Cost optimization,
realistic representa-
tion

High computational re-
sources

[16] Ant colony opti-
mization (ACO)

Optimizing
RES usage
and electricity
purchasing

Battery SoC limits Low purchasing
cost

N/A

[17] Genetic algo-
rithms (GA)
and dynamic
programming
(DP)

Optimize the
charge/discharge
schedules of
ESSs to mini-
mize electricity
expenses

ESS capacity,
charge/discharge
limit

Flexibility Computational complex-
ity, dependency on accu-
rate prediction.

[18] Particle swarm
optimization
(PSO)

Optimize battery
energy control in
a grid-connected
microgrid to
reduce electricity
costs

battery SoC limits,
charging and dis-
charging rate

Real-time energy
management, a dy-
namic penalty
function

The algorithm’s effec-
tiveness depends on the
choice of parameters such
as population size, inertia
weight, and learning
factors.

N/A: not available

In this paper, we propose a three-stage-based approach to find an optimal charging
schedule for an HESS to achieve a clean, cost-effective, sustainable, and efficient EV charg-
ing station. To the best of our knowledge, no comprehensive study in the existing literature
has yet considered a multistage approach that addresses the challenges associated with solar
energy, demand uncertainty, HESS charging scheduling, and cost reduction simultaneously.

1. In the first and second stages, the PV power and load demand are forecasted to provide
vital insights into the upcoming energy status for optimal energy management.

2. In the third stage, a scheduling algorithm is implemented based on the outputs of the
previous stages to predict the best times for charging the HESS, while maximizing the
PV power utilization and minimizing the grid energy costs.

The remainder of this paper is structured as follows: Section 2 defines the overall
proposed approach. Section 3 is devoted to the PV power forecasting. It starts with
the analysis and the preprocessing of the real used PV power dataset. Then, the different
adopted DL algorithms are detailed, and their results are discussed. Section 4 is dedicated to
the load demand prediction. Multiple DL algorithms were implemented to forecast the load
demand in real-time and for the day-ahead, and then the findings were evaluated. Section 5
presents our proposed charging scheduling algorithm. First, the principal is outlined.
Then, comprehensive experimental simulations are conducted to analyze several scenarios,
for example high demand and high solar power. For each case, three configurations
are implemented to assess the performance of our proposal: a baseline configuration
(i.e., without predicted data), our proposal, and our proposed algorithm using real data
instead of forecasted data. Finally, Section 6 concludes the paper and suggests areas for
further research.
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2. Proposed Approach

This research is part of the OMEI project (a national German project). The overall goal
of this project is to build two distinct EV charging stations. Each charging station contains
the following main components, as illustrated in Figure 1:

1. A HESS made up of a lithium battery with a capacity equal to 220 kW and a metal-free
redox flow battery with a capacity equal to 400 kW. The topology used in our HESS is
a DC-DC converter. The battery with a high capacity is mainly used to meet the load
demand, and the second battery is used as a support. In our system, the utilization of
renewable energy (i.e., especially PV energy) to charge the HESS is a high priority.

2. The sources of energy used in our system are PV energy and grid energy. In each
charging station, a PV field is built. The grid is used to provide energy to our system
when the PV is not sufficient to meet the demand.

3. Three charging connectors: these are the terminal connections that are linked to the
EV and the charging cable. In our system, we have two fast charging cables and one
normal charging cable.

Figure 1. Charging station overall architecture.

The proposed approach for the optimal charging scheduling of the HESS is illustrated
in Figure 2. It is composed of two main steps. First, the prediction of the PV power and the
load demand, and second, the determination of the optimal time to charge the HESS based
on the forecasted data and the “Germany grid price”, which is the actualized electricity
prices for the day-ahead electricity market in Germany.

Figure 2. The proposed approach for optimal HESS charging scheduling comprises two primary

blocks: “Time Series Forecasting” and “HESS Scheduling and Energy Balance”. The first block fore-

casts PV power and load demand; the second block leverages these forecasts to determine the optimal

time and amount for charging the HESS using the “HESS scheduling algorithm”. Subsequently,

the “Energy balance algorithm” employs this defined time and amount to facilitate real-time, optimal

energy management.

3. PV Power Forecasting

A real dataset was used to forecast the PV power. The forecasting process involved
the following steps: data preprocessing, model structure definition, and hyperparameters
for training and validation precision. A grid search-based cross-validation was adopted to
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assess the model performance. Two types of univariate forecasting were used to evaluate
our proposal: the first was one-step (15 min, real-time) forecasting, and the second was
multistep (one-day) forecasting.

3.1. Data

The real PV dataset was collected from a PV field located in Bavaria, Germany.
The dataset included power measurements in watts, recorded every 15 min from
1 January 2017 to 31 December 2021, as highlighted in Figure 3. The plot also includes the
mean of the produced PV power, calculated weekly (week of the year) and monthly over
time. The yearly periodicity of power generation creates a clear pattern in the plot. This
cycle is mainly due to annual changes in the amount of received solar radiation. Typically,
PV power generation is the highest in summer and the lowest in winter.

Figure 3. PV power generation from 2017 to 2021.

3.2. Data Pre-Processing

The voltage and readings are sensitive owing to the PV characteristic of the solar
cell [23]. These solar equipment problems, electrical noise [24], collection system errors,
and software system problems may cause certain data outliers. Outliers in a forecasting
model might lead to significant forecasting errors. Therefore, data preprocessing is cru-
cial for optimizing training, computing cost, and model correctness [25]. The different
preprocessing steps involved were as follows:

1. First, duplicate data entries in the dataset, which had the same datetime index and
identical power values, were removed from the dataset. Furthermore, the dataset
was further analyzed by month and week of the year. During that analysis, outliers
were identified and removed. The missing values were estimated using mean im-
putation [26,27], which employs a time-based average. This approach filled in the
missing values by averaging data from the preceding year with a similar date. It was
a feasible strategy because of the similar value of PV power generation at the same
time intervals over the years.

2. Second, the dataset was split into a training dataset (80%) and a test dataset (20%).
The training set included PV power data at 15 min intervals from January 2017 to
December 2020, while the testing set covered January 2021 to December 2021. Ad-
ditionally, time series cross-validation was implemented during the model training
phase to ensure a robust model evaluation and mitigate the risk of bias associated
with specific years, such as 2017 or 2021, when external conditions might have influ-
enced patterns.

3. Third, two prominent scaling methods, z-score normalization and min-max scaling,
were compared using the test dataset [8,19]. The outperforming min-max scaling was
utilized. The min-max scaler was fitted using only the training data to prevent data
leakage. Using both training and test datasets could introduce reference points from
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the test set, potentially influencing the values of the training data and causing data
leakage [28].

4. Fourth, the sliding-data-window approach was adopted to generate input–target
pairs [29], thereby framing the forecasting procedure as a supervised learning task [30].
A fixed-size window slid throughout the PV power time series data; the window size
was a sliding window specifying the value for the input. The PV power at the forecast
horizon was used as the target, as illustrated in Figure 4. In this work, different
window sizes for PV power forecasting were examined, and the one with the lowest
mean squared error (MSE) was selected. For one-step forecasting, a window size of
96 was selected to predict the horizon number 1. On the other hand, for multistep
forecasting, a multi-input multioutput (MIMO) strategy [31] was utilized. A window
size of 288 was used with a 96-h forecasting horizon. PV power generation is strongly
influenced by daily patterns, such as sunrise and sunset times; by using a daily
window size period, the model can capture these daily cycles and learn the underlying
patterns in PV power generation.

5. Lastly, numerous zero (nighttime) values in the dataset cause data sparsity and make
forecasting challenging. Some research handles this data sparsity by working only
on daytime values [6,32]. We handled this issue by trying different scaling methods
and activation functions. Min-max scaling with a sigmoid activation function on the
dense layer of the model further improved the performance in handling night values.

Figure 4. Illustration of the sliding-window approach for single-step and multistep forecasting.

3.3. Model Training and Validation

The RNN, LSTM, GRU, and BiLSTM deep learning algorithms were utilized for
both one-step and multistep forecasting, while EDLSTM was adopted exclusively for
multistep forecasting. RNNs are NNs designed to work with sequential data [33]. They
can model temporal behavior and dependencies among data points linked in time or
space [34]. However, training an RNN to capture long-term dependencies is difficult due
to the exploding and vanishing gradient problems [35]. The LSTM units are designed to
address this problem [36]. A GRU has recently followed LSTM as a simpler alternative
with fewer parameters [37,38]. These two RNN enhancements were proven to overcome
the gradient problem by capturing long-term dependency. The BiLSTM is an extended
version of standard LSTM [39]. An LSTM model processes data in only one direction,
namely, from the earlier parts of a data sequence to the later ones. BiLSTM simultaneously
takes into account data before and after the current point [40]. EDLSTM or sequence-to-
sequence (seq2seq) architectures [41] were introduced as an efficient solution for sequence-
to-sequence problems [41]. Moreover, many recent research studies have demonstrated the
effectiveness of the RNN, LSTM, GRU, BiLSTM, and EDLSTM DL algorithms [13,33,35]
compared to traditional ML models [19,42] or statistical models [32] in tasks related to PV
power forecasting. In our work, we opted for these algorithms to predict the PV power
using the past PV power data. Each deep learning model contains several hyperparameters.
The optimal architecture of NNs, including the appropriate number of layers and neurons in
each hidden layer, is not dictated by fixed theoretical guidelines but relies on a combination
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of problem-specific requirements, trial and error, and adaptive learning processes [43].
Hyperparameter tuning was performed to fairly compare architectures and identify the
optimal one for enhancing model performance and generalization capabilities [44]. The
grid search technique [45] was employed to find the optimal hyperparameters for each
deep learning model based on the training data. Grid search is a method that involves
testing various combinations of hyperparameters and selecting the best parameters for a
given model [45]. In addition to identifying the best hyperparameters, the model’s validity
was confirmed by conducting a time series cross-validation, ensuring its robustness and
reliability [44].

Cross-validation is a resampling procedure based on splitting the data into more
than one training and testing subsets [46]. Then, the forecasters’ overall performance
is obtained by looking at the forecasting accuracy measures over all the testing subsets.
In this paper, the increasing-rolling-window cross-validation method [47] was implemented.
The reasoning behind this choice was to keep the temporal relationship between folds
while preventing data leakage. In this cross-validation technique, a fivefold process is
implemented, where the training starts with the first fold and finishes by predicting the
next fold. The length of the training data grows with each split, and the size of the test
data remains the same. In the following step, the test fold and training fold from the
previous step are used in the training process, and the next fold is for the testing. This
procedure is repeated until the test data have reached the final fifth split. Early stopping
was systematically incorporated to prevent overfitting in training, which set a maximum
of 100 epochs. The Adam algorithm was utilized as the optimizer for all models. This
choice was made because Adam is designed to be robust and ideal for various nonconvex
optimization problems in ML [48]. All the employed ML models utilized MSE as the loss
function to minimize. The hyperparameters that resulted in the best average performance
metric across all folds were chosen.

Figure 5 illustrates the comprehensive procedure for assessing a chosen deep learning
model with ideal hyperparameters [49]. Initially, we divided the flow-based dataset into
training and testing (holdout) datasets. We employed a holdout validation strategy to
evaluate the performance of our forecasting model. With this approach, a portion of the
dataset, known as the holdout or test set, was reserved for later use in assessing the model’s
performance. The holdout set remained untouched and was completely independent of
the model’s training and tuning processes. This prevented the model from introducing
bias. Next, the model’s validation was carried out based on the predetermined set of
hyperparameters, utilizing a time series cross-validation on the training set. We significantly
reduced the risk of overfitting during hyperparameter selection by using early stopping.

Table 2 shows the hyperparameter sets of the built-in deep learning models, which
were based on the training datasets. The final model was trained using the selected hyper-
parameters on the entire training set. Moreover, dropouts were applied for regularization.
Dropout [50] is a method for network regularization that randomly deactivates certain
neurons, along with their connections, during the training process. The optimal tuning
parameters, which are specific to real-time forecasting and the provided dataset, are de-
tailed in Table 3. The same initial configuration as for real-time forecasting was applied
for day-ahead forecasting. However, each model type was separately optimized through
a trial-and-error method to obtain the most accurate results. Table 3 provides the final
parameters for the day-ahead forecasting.
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Figure 5. Time series cross-validated grid search [44].

Table 2. Hyperparameters of the grid search.

Hyperparameters Values

Hidden unit 20, 32, 40, 64, 128
Batch size 64, 128, 256
Learning rate 0.1, 0.001, 0.0001
Layer 1, 2
Activation function relu, tanh

Table 3. Model parameters for PV power forecasting.

Forecasting Model Epoch Configuration

Real-time

RNN 31 • Units 20, 20; dense Unit 8, 1;
• Dropout 0.1;
• Learning rate 0.001;
• Batch size = 128

LSTM 65
GRU 49
BiLSTM 74

Day-ahead

RNN 41 • Units 32, 32;
• Dense 8, 1; 20, 1 (EDLSTM);
• Dropout 0.2;
• Learning rate 0.001;
• Batch size = 192

LSTM 21
GRU 32
BiLSTM 23
EDLSTM 33

3.4. Results

In the evaluation of time series forecasting models, common performance metrics such as
mean absolute error (MAE) and root-mean-square error (RMSE) are widely employed [24,51,52].
These metrics provide insights into the accuracy of forecasts. Real-time and day-ahead
forecasting evaluation results for the holdout test set are presented in Tables 4 and 5,
respectively. The findings indicate that all four algorithms are capable of providing reliable
real-time forecasting, so assessing their performance based on MSE, MAE, and RMSE
values presents a challenge in determining a clear superiority among them [53]. However,
it is important to highlight that the RMSE results were derived from the scaled 0–1 version
of the power data, which originally ranges from 0 to 1558.4 watts. Therefore, even minor
differences in RMSE can translate into meaningful accuracy differences when applied to
the original power values. LSTM and GRU showed more accurate results in MAE and
RMSE, among other models. Although LSTM performed marginally better than GRU in
terms of accuracy, it also came at the cost of complexity due to more parameters and a
gating mechanism [38]. For day-ahead forecasting, EDLSTM performed better than the
other models with a lower RMSE.
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The current PV power forecasting literature has explored various methods, from sim-
ple models to advanced deep techniques. RMSE is commonly used, ranging from 5.34% to
21% [54–56]. However, accuracy varies based on the dataset, forecast horizon, data reso-
lution, and inputs. Univariate forecasting techniques have demonstrated a high accuracy
in one-step or very short-term predictions but struggle in multistep forecasts. To enhance
accuracy, integrating exogenous data is crucial. This includes meteorological data [52],
numerical weather prediction [54], and seasonal parameters (month of the year and day of
the month) [32,57]. Furthermore, some models have demonstrated a remarkable perfor-
mance across diverse weather conditions, encompassing both ideal, sunny scenarios and
nonideal conditions marked by rain, wind, or fog, as demonstrated by [32,58]. Furthermore,
transforming 15 min interval data to an hourly average can create a smoother signal that is
easier for algorithms to learn [32]. However, a 15 min interval is a widely adopted standard
in modern intelligent meter technologies [27].

A noteworthy gap in the existing literature is the limited exploration of day-ahead
forecasting for solar power output, extending as far as 96 steps into the future, using deep
learning techniques without the inclusion of any exogenous data. This poses a unique
challenge, as such models exclusively rely on historical power output data to predict
future values. Moreover, the ability to forecast solar power output without depending on
meteorological data holds paramount significance, particularly in regions where such data
are not readily available.

Table 4. Performance of real-time forecasting.

Models MSE (%) MAE (%) RMSE (%)

RNN 0.34 2.47 5.88
LSTM 0.33 2.28 5.78
GRU 0.33 2.30 5.79
BiLSTM 0.34 2.36 5.85

Table 5. Performance of day-ahead forecasting.

Models MSE (%) MAE (%) RMSE (%)

RNN 1.46 6.58 12.12
LSTM 1.38 5.94 11.78
GRU 1.39 6.22 11.81
BiLSTM 1.71 6.58 13.08
EDLSTM 1.37 6.06 11.71

Comparison of Seasonal Point Forecast

Figure 6 illustrates the real-time forecasted PV power for a day from the major seasons
observed in the region: summer and fall. These days were randomly chosen from a test
dataset that was not exposed to the models during the training phase. It is clear that the
observations and the forecasting are in good agreement.

The summer day is represented by 22 July 2021. The graph has a semicircular power
distribution. The peak power during the day is higher compared to the day from other
seasons. In this instance, the forecasting models demonstrate good performance, as their
forecasting closely matches the actual values. However, BiLSTM and RNN underpredict
during peak times. The fall day is represented by 28 October 2021. It can be noticed
that for most parts, the forecasts from LSTM, GRU, RNN, and BiLSTM closely match the
actual values, though at the peak, some inaccuracy can be noticed with the RNN, GRU,
and BiLSTM forecasts. The RNN model overpredicts, especially during peak output and
times before PV power is available. The GRU model slightly overpredicts.
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Figure 6. Real-time PV power forecast.

To maintain consistency with real-time seasonal point forecasting, the same seasonal
representation days are exhibited in day-ahead forecasting. The results across different
seasons indicate that all models track the overall daily trend, as shown in Figure 7. However,
when a substantial power fluctuation occurs, as seen in the fall plot where the power exceeds
1000 on certain days and drops below 200 on other days within the same week, accurate
forecasting becomes challenging for all models. The findings of EDLSTM are the closest to
the actual pattern.

Figure 7. Day-ahead PV power forecast.

4. Load Demand Forecasting

The overall objective of this section was to forecast the load demand inside multiple
charging stations. Starting with the preprocessing of the dataset, different DL algorithms,
i.e., RNN, LSTM, GRU, BiLSTM, and EDLSTM were implemented. Our model was assessed
based on two multivariate forecast strategies, i.e., one-step and multi-input–multioutput.

4.1. Dataset Description

The real-load-demand dataset was collected from several charging stations located
in Germany. This dataset consists of 26,948 charging sessions that were recorded from
27 October 2020 to 11 November 2022. The raw data of each single charging session include
the start and finish times of the charging process, charging location, charging connector
type, and energy consumed in kWh. Figure 8 summarizes the charging data based on
locations. Five main locations were identified in the load demand dataset: countryside,
highway, inner city, near the highway, and outside the city. According to the line plot, we
notice a high demand either in the inner city or on the highways. In those locations, the box
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plot shows that the charging session duration is similar; however, the amount of energy
consumed is relatively higher on highways than in the inner city.

Figure 8. Load demand by location. The line plot represents the number of charging sessions.

The demand profile for each location follows an increasing trend pattern for all loca-
tions (see Figure 9); this can be explained by the growing number of EV. These graphs show
a great demand during the weekend, especially for the inner-city location.

Figure 9. Load demand profile for the different locations. White and black dots correspond to

Saturdays and Sundays, respectively. The red dots illustrate the public holidays in Germany, and the

line plot denotes the remaining weekdays.

Figure 10 illustrates the impact of location and time of the day on charging duration.
Most drivers prefer charging their EV in CSs located on highways and in the inner city in
the afternoon, from 15 min to 30 min.

4.2. Data Preprocessing

Load demand data may contain outliers due to various factors, such as sudden
changes in weather conditions, temporary equipment malfunctions, or fluctuations in the
grid power.
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Figure 10. Charging duration: 0–15 min, 30–60 min, 60–120 min, 120+ min.

The first step in the dataset preprocessing consisted of using the interquartile range
(IQR) method to eliminate the outliers in the load demand dataset. This process involved
cleaning the datasets by determining the 3rd quartile (Q3, 75th percentile) [24] and the
subsequent calculation of the threshold using Equation (1):

Threshold = Quartile3 + 1.5xIQR (1)

Any load demand value exceeding the threshold set by Equation (1) was considered
an outlier and was removed. A total of 0.7054% of the data was eliminated using the IQR
method. Furthermore, all zero values were removed, accounting for 12.14% of the data.

Second, the dataset was resampled, i.e., the charge consumed in one minute of a
charging session was calculated based on the charging start and end times. Then, if there
were several charging sessions from different locations at the same minute, they were
aggregated. After that, the charging load was sorted by sampling times, creating a 15 min
time series dataset, matching the PV power intervals, and aligning with modern meter
technologies [27].

The third step of the preprocessing process consisted of the selection of features,
carried out using a correlation matrix [59,60]. The following parameters were used as
inputs: charging location, charging connector type, load demand, charging start time,
and elapsed time. To account for the influence of daily and yearly patterns on charging
behavior, calendar features for the “quarter-hour” and “time of year” were derived from
the charging start datetime. The charging start datetime was transformed into seconds
using the timestamp method, denoted as timestampss [61]. The converted value was then
utilized to represent the time of year. The “quarter-hour” feature, denoted as DT, captured
the 15 min interval within a day when a charging session started. DT served to illuminate
cyclic charging activity variations within a day. For instance, it helped to capture the
pattern during specific times of the day, such as 7–8 PM (postwork hours). This feature
helped us understand when charging demand was generally higher or lower during the
day. Similarly, the “time of year” feature aided in capturing seasonal trends in our charging
station data. By recognizing particular periods, such as the Christmas season, where
charging activities tend to increase or decrease, these features can help capture these trends
and compare them across different years. Neural networks do not directly understand
time-based features due to the cyclic nature of time data [62]. Therefore, quarter-hour
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and time of year were encoded using a sine and cosine transformation, as described by
Equations (2) and (3) [20,61,63]:

DTsin/cos =

{

sin(DT ∗ 2π ∗
1
96 )

cos(DT ∗ 2π ∗
1

96 )
(2)

Yearsin/cos =

{

sin(timestamps ∗ (2 ∗ np.pi/year))

cos(timestamps ∗ (2 ∗ np.pi/year))
(3)

The categorical features, such as location and charging connector type, were trans-
formed into one-hot-encoded vectors, which are K-dimensional vectors where one element
is set to 1, and the rest are set to 0 [64]. Table 6 describes the different input features.

Table 6. Input layer features. C: categorical, N: numerical.

Feature Type Description

DTsin/cos N Cyclic time of day in 15 min intervals of charging start time.
Yearsin/cos N Cyclic time of year of charging start time.
Location C The location of the charging session.
Charging connector C Connector type used in the charging session.
Elapsed time N The passage of time
Load demand N Energy consumption (kWh) during charging.

The fourth step in the preprocessing process was the split of the dataset into a training
dataset (80%) and a testing dataset (20%).

Lastly, all features were normalized using the min-max scaling method, and a sliding
window approach with multiple inputs was used to generate input–target pairs, building
upon the outlined procedure and extending it beyond the univariate PV power genera-
tion forecasting.

4.3. Model Training and Validation

The RNN, LSTM, GRU, and BiLSTM models DL algorithms were implemented for
one-step forecasting, while RNN, LSTM, EDLSTM, BiLSTM, and GRU models were used
for multistep forecasting. Aggregated data (encompassing all locations) and each location
apart were separately analyzed for one-step forecasting. In order to assess the performance
of the model, the part of the data that denoted the test set was held out. The rest of the
data served as the training set, with 20% of it being used as a validation set to test various
hyperparameter configurations with a trial-and-error method [20]. The configuration with
the highest performance was selected as the final set of parameters. The configuration
of the adopted models is indicated in Table 7. These models were trained on the entire
training set before being evaluated on the holdout test set. The batch size was set to 192,
and the learning rate was defined as 0.001 for all models. Dropout is a neural network
regularization technique where units are randomly deactivated during training to prevent
overfitting and improve generalization [50]. Dropout regularization and early stopping
strategies were employed to prevent overfitting during training, with a fixed number of
epochs set to 100. Initially, the model was trained for 100 epochs, but signs of overfitting
were noticed. To address this, dropout regularization and early stopping techniques were
incorporated. Dropouts helped prevent the model from relying too much on specific parts
during training. Simultaneously, the early stopping technique, combined with dropouts,
intervened when the model’s performance on a separate validation dataset started to
decline while training continued to improve, indicating potential overfitting.
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Table 7. Model parameters for load demand forecasting.

Forecasting Level Model Epoch Configuration

Real-time

All locations

RNN 35 Unit 30, dropout 0.0

LSTM 47
Unit 20, 20; dropout 0.2GRU 35

BiLSTM 30

Highway

RNN 43 Unit 20, dropout 0.0

LSTM 53
Unit 20, 20; dropout 0.2GRU 32

BiLSTM 41

Countryside

RNN 57 Unit 20, dropout 0.0

LSTM 48
Unit 20, 20; dropout 0.2GRU 41

BiLSTM 46

Inner city

RNN 66 Unit 20, dropout 0.0

LSTM 55
Unit 20, 20; dropout 0.2GRU 38

BiLSTM 51

Near the highway

RNN 63 Unit 20, dropout 0.0

LSTM 50
Unit 20, 20; dropout 0.2GRU 35

BiLSTM 36

Outside the city

RNN 60 Unit 20, dropout 0.0

LSTM 37
Unit 20, 20; dropout 0.2GRU 50

BiLSTM 45

Day-ahead All locations

RNN 40 Unit 40, dropout 0.0

LSTM 30
Unit 40, 40; dropout 0.2GRU 30

BiLSTM 35

EDLSTM 30 Unit 40, 40; dense 10;
dropout 0.2

4.4. Results

The results of the real-time forecasting are presented in Table 8 and entail a couple of
interesting findings.

• LSTM and GRU had the lowest RMSE for all locations. It is worth noticing that the
GRU-based model did better with fewer epochs than the LSTM model most of the
time, indicating that it was more efficient because it required less memory and fewer
training parameters.

• Forecasts using individual data were more accurate than those based on aggregated
data. The accuracy of individual data varied by location. Locations such as the inner
city and the countryside achieved better results than other places. This may be due
to the charging duration. As illustrated in Figure 10, drivers in the inner city and in
the countryside tend to charge their EVs for a longer time, creating a steady two-hour
(eight steps) charging pattern. This stability simplifies the prediction for the next steps.

The highway had the worst accuracy among the other locations. This can be explained
by the following three effects:
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1. The highway demonstrated the highest number of EV charging sessions, as depicted
in Figure 8, even though the data for the highway were collected over a shorter period
of time compared to the other locations, as shown in Figure 9.

2. The fluctuations of the highway daily demand ranged from 0 to 1400 kWh (see
Figure 9), which made it more challenging to accurately predict the demand compared
to other locations, where the variability was much less.

3. Charging sessions might show more variability due to the low frequency of long-term
charging on the highway, as indicated in Figure 10. This high number of charging
sessions could be due to higher traffic volumes or more transient populations. The pro-
posed model provided more accurate forecasting results for each location apart and a
longer charging duration.

Table 8. Performance of real-time forecasting based on holdout test data.

Level Models MSE (%) MAE (%) RMSE (%)

All
locations

RNN 0.99 7.03 9.95
LSTM 0.95 6.72 9.79
GRU 0.95 6.70 9.70
BiLSTM 1.03 6.77 10.17

Highway

RNN 0.77 5.29 8.81
LSTM 0.77 5.17 8.78
GRU 0.76 5.15 8.75
BiLSTM 0.78 5.17 9.81

Near the
highway

RNN 0.66 3.59 8.15
LSTM 0.65 3.40 8.07
GRU 0.61 3.47 7.83
BiLSTM 0.64 3.71 8.04

Inner
city

RNN 0.51 4.44 7.20
LSTM 0.55 4.28 7.42
GRU 0.51 4.40 7.18
BiLSTM 0.55 4.41 7.48

Countryside

RNN 0.54 4.06 7.35
LSTM 0.51 3.75 7.18
GRU 0.51 3.89 7.19
BiLSTM 0.51 4.00 7.20

Outside
the city

RNN 0.67 3.15 8.19
LSTM 0.66 3.19 8.15
GRU 0.63 3.03 7.97
BiLSTM 0.64 3.33 8.02

To visually assess the forecasting result, Figure 11 displays the actual (original) and
forecasted demand for a day across six locations: all locations, highway, countryside, inner
city, near the highway, and outside the city. The day was randomly chosen from a test
dataset that had not been exposed to the models during the training phase. It is clear that
the observations and the predicted demands match.

For the day-ahead forecasting, 96 steps of 15 min intervals were predicted.
Table 9 presents the findings for the day-ahead forecasting using the holdout test set.
EDLSTM, GRU, and BiLSTM outperformed the other models with a lower RMSE. However,
the BiLSTM required a longer training time than other high-performing models such as the
GRU and encoder-decoder LSTM. It can be attributed to BiLSTM’s more complex structure,
which consists of two LSTM networks.
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Figure 11. Real-time demand forecast.

Furthermore, Figure 12 illustrates the forecasted results from 9 September 2022 to
14 September 2022. This time frame was selected to cover the period of real-time demand
forecasting. The plot reveals that all models exhibited a more accurate forecasting pattern
for lower-energy demand. However, when it came to high-demand power, the encoder–
decoder LSTM and GRU models outperformed the other models in terms of performance.

Table 9. Performance of day-ahead forecasting based on holdout test data.

Level Models MSE (%) MAE (%) RMSE (%)

All locations

RNN 2.06 9.65 14.38
LSTM 2.17 9.99 14.73
GRU 1.90 9.68 13.91
BiLSTM 2.00 9.81 14.14
Encoder–decoder LSTM 2.04 9.95 14.29
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Figure 12. Day-ahead demand forecast.

5. HESS Scheduling Optimization

5.1. Principle of the HESS Scheduling Algorithm

The overall goal of the scheduling approach was to determine the best time to charge
the HESS while prioritizing the use of PV power and minimizing the amount of energy
consumed by the grid. It was developed for a 24 h scheduling period with a resolution
of 15 min. Figure 13 illustrates the flowchart of the proposed approach. It is composed of
two main phases: the “HESS Scheduling”, or the offline phase, and the “Energy Balancing”,
or the online phase.

The inputs of the first phase are the day-ahead prediction of PV power data, load
demand data, and grid price data. The principle of the HESS scheduling is depicted in
Algorithm 1. It runs through the forecasted day to identify the time slots of high-PV
production and low-cost grid energy. As a result, it calculates the optimal charging amount
of grid energy for these predetermined time slots.

In the second phase, the predicted time slots and charging amounts are combined with
real data, i.e., PV power, load demand, and grid prices to balance the energy flow of the
day in order to ensure optimal energy management. The principle of “Energy Balancing”
is given in Algorithm 2.

Figure 13. Proposed HESS scheduling approach.
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Algorithm 1 Scheduling algorithm

1: Input:

• Grid price, forecasted PV power and forecasted load demand data
• Constraints information for grid and HESS

2: Output:

• Optimal charging time
• Amount of grid energy to charge the HESS

3: begin
4: Define S as set of times when PV exceeds demand
5: Define G as set of cheapest time
6: Define P as set of purchase amount on cheapest time
7: while i to end of the day do Find first time when PV energy exceeds demand
8: if PV exceeds demand then
9: Add time to S

10: Calculate the required energy from i to the time in S.
11: To calculate the required energy, for each time step, subtract PV power from

demand, then sum up all the calculated energy
12: Sum all of them to find total required energy till the time.
13: if SoC in time i is greater equal than required energy then
14: Call energy balance function
15: Update the system status
16: else
17: while SoC in time i is less than required energy do
18: Find the cheapest time between i and the time in S
19: Add the cheapest time to set of G
20: Calculate the required energy (load demand − PV power) from i to

cheapest time
21: Call energy balance function considering the purchases
22: Update the system status
23: end while
24: end if
25: else
26: Calculate required energy till for the remaining day
27: if SoC in time i is greater equal than required energy then
28: Call energy balance function
29: Update the system status
30: else
31: while SoC in time i is less than required energy do
32: Find next cheapest time
33: Add time to set of G
34: Call energy balance function considering the purchases
35: Update the system status
36: end while
37: end if
38: end if
39: end while
40: end
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Algorithm 2 Energy balancing algorithm

1: Input:

• Initial SoC, grid price, demand, PV energy, purchases’ times and amounts
• Constraints information for grid and HESS

2: Output:

• System status per 15 min interval

3: begin
4: for Every time step do
5: Define temp_soc = soc
6: Grid energy = 0
7: if time step matches with purchase time then
8: Update grid energy with purchase considering battery limit
9: Update temp_soc

10: if PV energy >= demand then
11: Update temp_soc considering battery limit
12: else if temp_soc >= demand - PV then
13: Update temp_soc considering battery limit
14: else
15: Update grid considering battery limit
16: temp_soc = 0
17: end if
18: end if
19: Update soc = temp_soc
20: Store remaining and initial SoC, demand, PV energy, grid energy, and price with

time in system status
21: end for
22: return System status, initial SoC
23: end

The proposed algorithm thoroughly achieved the following key features:

• Energy efficiency: PV power was the main used energy source to meet the demand,
and excess PV energy was stored in the HESS.

• Optimization of battery charge/discharge profile: Unlike fully charging or deeply
discharging the battery [65], our approach charged the battery with only the required
amount of energy needed to maximize solar energy utilization and reduce costs, based
on the generated PV power, low energy cost, and battery constraints [65]. This ap-
proach inherently contributes to the battery’s overall lifespan by avoiding extreme
stress [66]. Furthermore, maintaining a certain discharge limit in the battery can
provide a buffer for potential urgent situations where higher energy is unexpect-
edly needed.

• Cost minimization: Cost minimization was applied first by prioritizing PV power
consumption and second by using the grid during the cheapest electricity price time
through the following steps of the “Scheduling Algorithm”:

1. Prioritizing PV power consumption: When PV energy generation exceeds de-
mand (Lines 4–23), denoted as set S, it calculates the total required energy to
meet the demand from the current time until the time in set S (Lines 10–12).
If the HESS’s state of charge (SoC) at the current time is sufficient to meet the
required energy, the algorithm balances the energy utilization and updates the
system status (Lines 13–15). If the SoC is insufficient, the algorithm finds the
cheapest time (set G) between the current time and the time in S. It calculates
another required energy between the current time and the cheapest time in G.
Then, the second required energy amount is subtracted from the first required
energy amount to find the amount to be purchased from the grid at the cheapest
time in G (Lines 17–23).
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2. Optimizing grid usage when PV generation is below demand: In scenarios where
PV generation does not exceed demand until the end of the day (Lines 25–37),
the algorithm calculates the total required energy for the remaining day (Line 26).
If the SoC at the current time can fulfill this required energy, the energy balance
is achieved (Lines 27–29). If not, the algorithm identifies the next cheapest times
for energy purchases (Lines 31–36).

• Real-time data: The system was developed and tested using real-time datasets to
represent a realistic scenario.

• Single algorithm: The system employed a single algorithm for scheduling throughout
the day instead of separate algorithms for daytime and nighttime [67]. This provided
a more practical approach, considering seasonal changes in daylight hours.

5.2. Simulation Setup

The grid data used in this paper originated from the real-world context of Germany’s
electricity market, obtained from the ENTSO-E Transparency Platform [68]. This dataset
includes actual grid prices, denoted in units of EUR/MWh, and provides prices for every
15 min throughout every day. While calculating the cost, the grid price unit was converted
from EUR/MWh to EUR/kWh.

The system configuration was as follows:

• The total battery capacity was 620 kWh.
• The battery charge and discharge limit was 20 percent of the total capacity.
• The maximum grid energy for each time slot was 200 kWh.
• The initial battery state of charge (SoC) was 124 kWh, which was a discharge limit.

5.3. Simulation Results

To assess the performance of our proposal, three different simulations were launched:

1. Baseline simulation or energy balancing simulation: in this case, the simulation ran
without predicted data.

2. Simulation with forecasted data: this case corresponded to our proposal.
3. Simulation with perfect forecasted data: instead of using predicted data as inputs

for the scheduling algorithm, real data were adopted.

Our goal was to have results as close as possible to the “Simulation with perfect
forecasted data” as it represented the ideal solution.

Several scenarios were implemented.

5.3.1. Scenario 1: High-Load Demand

For the high-demand scenario, we selected the date of 18 September 2022. We ran the
three simulations. The findings, highlighted in Figure 14, demonstrated two things. First,
our proposal (Figure 14b) reduced the consumption of grid energy. Second, the graphs of
the “Simulation with forecasted data” followed the same pattern as the “Simulation with
perfect forecasted data”. We also observed that the grid usage spiked when the grid energy
prices were too low.

We calculated in Table 10 the total grid energy cost and the number of grid uses. Our
proposal reduced the costs by 22.4% and the grid dependability by 11% compared to the
“Baseline simulation”.

Table 11 presents the optimal charging time for the HESS from the grid and the amount
of grid energy to be consumed. From these results, it is clear that our approach is directly
in line with the ideal simulation.
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Table 10. Scenario 1: total grid energy cost.

Simulation Total Cost Number of Grid Uses

Baseline 228.42 63
Algorithm with forecasted data 177.21 56
Algorithm with perfect forecast 134.10 47

Table 11. Scenario 1: the optimal time and the amount of grid energy (in kWh) to charge the HESS.

Simulation: Algorithm with Forecasted Data

Time 00:00 00:15 00:30 00:45 02:45 3:15 10:45 11:45 12:45 13:45 16:00

Amount 8.35 6.96 7.64 39.16 6.17 101.88 35.04 67.14 82.07 200 200

Simulation: Algorithm with Perfect Forecast

Time 00:00 00:15 00:45 3:15 09:45 10:45 11:45 12:45 13:45 16:00

Amount 13.86 17.82 59.80 105.05 200 58.26 200 200 200 200

Figure 14. Scenario 1: high-load demand simulation results
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5.3.2. Scenario 2: High-PV-Power Production

For this scenario, we selected the day of 22 July 2022. The simulation was conducted
separately for three configurations, and the results are displayed in Figure 15.

Table 12 presents the defined optimal charging times for the HESS using the grid
for both cases: the forecasted data and the perfect forecast data. The findings in Table 13
demonstrate that the proposed algorithm achieved a significant 12.76% reduction in grid
energy cost compared to the baseline simulation. Furthermore, the proposed system
successfully reduced grid dependence by 13.46%.

Table 12. Scenario 2: the optimal time and the amount of energy (kWh) to charge the HESS.

Simulation: Algorithm with Forecasted Data

Time 00:00 00:15 00:30 00:45 03:15 04:00 04:15 05:00 10:45 11:45 13:45

Amount 1.85 1.75 1.99 20.84 7.30 2.75 8.21 200 67.66 83.04 200

Simulation: Algorithm with Perfect Forecast

Time 00:00 00:15 00:30 00:45 05:00 13:45 18:00

Amount 9 9 1.44 90 200 192 200

Table 13. Scenario 2: high PV power—configuration comparison.

Simulation Total Cost Number of Grid Uses

Baseline 582.58 52
Algorithm with forecasted data 502.40 45
Algorithm with perfect forecast 468.82 33

5.3.3. Scenario 3: Intensified High PV Power

In addition to the original high PV power (scenario 2), a further analysis was con-
ducted to examine the algorithm’s performance under even more extreme solar conditions.
For this purpose, the PV power data were multiplied by two, representing an intensified PV
power. The “simulation using an algorithm with forecasted data” was repeated using these
multiplied PV power data. This further analysis allowed for a more comprehensive un-
derstanding of the algorithm’s adaptability to varying PV power conditions and provided
insights into its PV power usage efficiency.

As depicted in Figure 16, the algorithm exhibited a notable behavior during that
simulation. Specifically, it refrained from purchasing energy from the grid during periods
of excess solar energy. In contrast, in the high-PV-power scenario (Scenario 2), the algorithm
did not prefer grid energy purchases at 14:15. Additionally, as seen in Table 14, in this
extreme solar condition (Scenario 3), the algorithm purchased 82.20 kWh of energy from the
grid when the grid electricity was cheap at 5:00. This is in contrast to Scenario 2, where it
purchased 200 kWh of grid energy at 5:00. The reason for this behavior is that the algorithm
anticipated excess PV energy during the day and consequently, it seemed unnecessary to
buy 200 kWh from the grid. Instead, it only charged the battery with the energy required to
meet the demand until the excess PV energy became available.

This comparison demonstrates the algorithm’s ability to prioritize and maximize the
utilization of PV energy over grid energy when excess PV energy is available. The algo-
rithm’s intelligent prioritization strategy significantly improves the use of PV power and
minimizes the reliance on grid energy.
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Figure 15. Scenario 2: high PV power simulation results

Furthermore, we quantified the algorithm’s energy efficiency using the widely recog-
nized self-consumption rate (SCR) metric. The SCR measures how efficiently PV energy
is used, considering the fraction used for meeting load demand needs and charging an
HESS in relation to the total PV energy generated [69]. The SCR is calculated using the
Equation (4).

SCR =
Ep,d + Ep,b

Ep,v
(4)

where Ep,d represents the direct use of PV generation to meet the load demand in kilowatt-
hours (kWh). Ep,b denotes the PV production utilized for charging the HESS in kWh,
and Ep,v represents the total PV generation in kWh [69].
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We compared the efficiency of the charging schedule from Scenario 2 with Scenario 3,
keeping the input conditions constant at double the solar power, typical demand, and elec-
tricity costs. The SCR for Scenario 2 was 74.33%, while for Scenario 3, it was 80.36%.
This analysis allowed us to assess the effectiveness of the enhanced charging schedule in
Scenario 3 for maximizing solar energy utilization compared to the original scheduling in
Scenario 2.

Table 14. Scenario 3: the optimal time and the amount of energy (kWh) to charge the HESS.

Simulation: Algorithm with Forecasted Data

Time 00:00 00:15 00:30 00:45 03:15 04:00 04:15 05:00 10:45 11:45

Amount 1.75 1.72 1.98 20.84 7.30 2.75 8.21 82.20 0 0

Figure 16. Scenario 3: intensified high PV power.

5.3.4. Scenario 4: Monthly Analysis

For the monthly analysis, each day was simulated separately, and the total cost as well
as the grid consumption were calculated monthly. As shown in Table 15, our proposed
model consistently reduced the grid energy cost compared to the baseline model, with an
average equal to 12.13% every month. The highest cost reduction was observed in October,
with a reduction of 16%. This could be attributed to the relatively higher grid prices in
October compared to other months. Conversely, the lowest cost reduction occurred in
August, at a rate of 10.12%.

Our proposed charging scheduling algorithm was evaluated under three distinct
scenarios. The time slots 00:00, 00:15, and 00:30 were identified as crucial for charging
the HESS from the grid across the three scenarios. The most important improvement
was observed in the first scenario (i.e., the high-load demand), demonstrating a cost
reduction of 22.4% and a decrease in grid dependency by 11%. This reduction in cost
during high-demand periods could be attributed to the system’s reliance on the grid.
Therefore, minimizing the use of expensive grid power had a more positive impact on
overall costs.

There are several reasons that impact the cost reduction; one of the important factors
that influences the cost reductions achieved through our energy management system is the
limit on the power that can be purchased from the grid. Our system was constrained to a
maximum of 200 kWh from the grid. This limit has a direct influence on the cost savings we
can realize. When the demand for power is high or renewable generation is low, our system
has to rely more heavily on grid power. Once the 200 kWh limit is reached, the system
might need to resort to more expensive or less efficient options, leading to smaller cost
reductions. Conversely, on days with low power demand or high renewable generation,
the system can operate well within the grid power limit, leading to larger cost reductions.
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Another important factor is the energy storage capacity of our system, represented by
the battery limit that influences the cost minimization process. The battery’s capacity
determines the amount of power that can be stored during periods of excess generation or
low demand, which can then be used during high-demand periods or when generation
is low. Hence, the larger the battery capacity, the greater the potential for cost savings,
as more power can be stored and used later, reducing reliance on more expensive grid
power. In the next section, we discuss the main findings of our paper and explore possible
directions for future research.

Table 15. Scenario 3: month analysis.

Total Cost Number of Grid Uses
June (21.06.2022–30.06.2022)

Baseline 2484.26 400
Algorithm with forecasted data 2165.53 303
Algorithm with perfect forecast 1992.09 190
July

Baseline 12,263.50 1669
Algorithm with forecasted data 10,877.06 1395
Algorithm with perfect forecast 10,124.34 946
August

Baseline 16,083.30 1641
Algorithm with forecasted data 14,452.38 1243
Algorithm with perfect forecast 14,093.80 977
September

Baseline 14,930.79 1581
Algorithm with forecasted data 13,037.64 1308
Algorithm with perfect forecast 12,556.51 1009
October

Baseline 8381.63 1845
Algorithm with forecasted data 7029.69 1435
Algorithm with perfect forecast 6866.35 1236
November (01.11.2022–10.11.2022)

Baseline 1867.26 542
Algorithm with forecasted data 1650.11 466
Algorithm with perfect forecast 1637.46 413

6. Conclusions

This paper presented a comprehensive, multistage approach to determining the opti-
mal time for charging an HESS at EV charging stations. This approach addressed major
challenges in energy management systems, including forecasting PV power and charging
load demand and ensuring a cost- and resource-efficient use of HESS. To achieve optimal
scheduling for the HESS, a three-stage strategy was proposed. In the first stage, we executed
univariate PV power forecasting using various DL models for real-time and day-ahead
forecasting. The motivation for forecasting PV power was to obtain day-ahead PV power
data for the subsequent day in order to identify times of PV power excess. This enabled
us to prepare an HESS that considered these times and more efficiently used PV power.
For 15 min ahead forecasts, LSTM and GRU models demonstrated superior performance in
terms of RMSE with 5.78% and 5.79%, respectively. For day-ahead forecasting, the encoder–
decoder LSTM network performed better, with an RMSE of 11.71%. The forecasting results
aligned with industry standards for real-time and day-ahead scenarios. Accordingly, the er-
ror was generally around 5–7% for one-to-two-hour forecasting [56–58] and should not
exceed a 20% RMSE for forecasting one to many hours [70,71].
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In the second stage, multivariate load demand forecasting was applied using the same
models as in stage one for real-time and day-ahead forecasting for aggregated locations
and each location apart. The reason to implement this stage was to predict the upcoming
load demand and define the optimal HESS charging time to meet the demand. Moreover,
we analyzed the effect of location characteristics on forecasting. The result demonstrated
that the proposed algorithm performed better in every location with longer charging times
and fewer charging sessions, such as the inner city and countryside. The worst result was
on highways. Moreover, in aggregated locations, the GRU model reached a 9.70% RMSE
score for real-time forecasting, and a 13.91% RMSE for day-ahead forecasting.

In the final stage, a scheduling algorithm was developed to account for energy changes
in load demand and PV power throughout the day. In order to anticipate these changes
in advance, the most accurate forecasting results from the first two stages were utilized in
the optimal energy management algorithm. This allowed the system to determine the best
times for charging while maximizing PV power utilization and minimizing grid energy
costs. Experimental results of the proposed system demonstrated an average cost reduction
of 12.13%, providing an efficient and cost-effective solution for energy management systems
in charging stations. Moreover, the system reduced grid dependency by 19.9% compared
to systems that did not employ predictive scheduling.

Although this study has significantly contributed to the field, there are several promis-
ing directions for future research. These future considerations are particularly relevant for
each segment of this paper, encompassing solar forecasting, demand forecasting, and opti-
mal HESS scheduling. In demand forecasting, it would be beneficial to consider additional
features such as weather and temperature that could indirectly influence driver behavior
and affect the charging pattern. Further analysis can be performed using different versions
of the models implemented in this work, such as those incorporating attention mechanisms
or ensemble models that combine the strengths of multiple individual models. Furthermore,
experimenting with different lengths of the forecast horizon, extending from two days to
one week, might yield valuable findings.
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The following abbreviations are used in this manuscript:

BiLSTM Bidirectional long short-term memory

EDLSTM Encoder–decoder long short-term memory

EV Electric vehicles

GRU Gated recurrent unit

HESS Hybrid energy storage systems

LSTM Long short-term memory

MAE Mean absolute error

MIMO Multi-input multioutput

MSE Mean squared error

NN Neural network
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PV Photovoltaic

RNN Recurrent neural network

RMSE Root-mean-square error

SoC State of charge

SCR Self-consumption rate
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