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Zusammenfassung

Die vorliegende kumulative Dissertation untersucht den Einsatz des Konjugierten Gradienten
(„Conjugate Gradient (CG)“) auf dessen Tauglichkeit für die Optimierung von künstlichen
neuronalen Netzwerken („Neural Network (NN)“). Das zentrale Forschungsinteresse liegt in der
Evaluation der Eignung von CG, insbesondere im Vergleich zu gängigen Optimierungsverfahren
erster Ordnung, wie dem Stochastische Gradientenabstieg („Stochastic Gradient Descent (SGD)“)
und dessen Varianten.

Der Optimierungsalgorithmus über den CG ist eine numerische Optimierungsmethode der zwei-
ten Ordnung. Ein NN besteht grundsätzlich aus mehreren Schichten: Einer Eingabeschicht, einer
beliebigen Anzahl versteckter Schichten und einer Ausgabeschicht. Die Aktivierungsfunktionen
der versteckten Schichten sind jeweils nichtlinear. Je nach Anforderung der Problemstellung
kann die Ausgabeschicht ebenfalls nichtlinear sein. Wenn die Topologie eines NN eine versteck-
te Schicht aufweist, wird es als flach bezeichnet. Ab zwei versteckten Schichten ist es ein tiefes
NN. Je mehr sequentiell verkettete versteckte Schichten in der Topologie eines NN vorhanden
sind, umso tiefer ist es.

Die Arbeit zielt darauf ab, CG im Kontext verschiedener NN-Architekturen, sowohl in der Tiefe
als auch in der Breite, zu bewerten. Im Rahmen dieser Bewertung werden tiefe NNs mit flachen
NNs verglichen, wobei die Anzahl der trainierbaren Parameter zwischen den beiden Typen
gleich bleibt.

Üblicherweise werden Algorithmen erster Ordnung, wie SGD, Root Mean Square Propagation
(RMSprop), oder Abwandlungen davon, wie Adam, eingesetzt, um NNs auf eine vorgegebene
Trainingsmenge zu trainieren. Einer der Nachteile dieser numerischen Optimierungsmethoden
erster Ordnung ist, dass sie keine Konvergenz der Fehlerfunktion garantieren können. Sie
werden vor allem wegen ihrer Einfachheit in der Implementierung eingesetzt und, obwohl
vergleichsweise viele Optimierungsschritte dafür notwendig sind, dennoch für die jeweilige
Problemstellung akzeptable Ergebnisse vorweisen können. Auf den Einsatz von verschiedenen
Optimierungsverfahren zweiter Ordnung wird in der Literatur weitestgehend verzichtet.

Aufgrund des Nischendaseins dieser Algorithmen, verschiebt sich der Fokus der aktuellen For-
schung weg von der eigentlichen Optimierung der NNs auf deren Topologie und Regularisierung
sowie ebenfalls auf die Größe und Struktur der Datensätze. Im Zuge der weiteren Annahme,
dass SGD als Optimierer eingesetzt wird, werden die NNs immer tiefer, folglich die Anzahl der
sequentiellen Nichtlinearitäten erhöht. Die lange Verkettung der Schichten verursacht zuneh-
mend das Problem des Vanishing Gradient, was bedeutet, dass der Gradient der Fehlerfunktion
bei der Backpropagation umso kleiner wird, je weiter sich der Gradient vom Ausgang der NNs
entfernt, bis er schließlich so klein ist, dass ein sinnvoller Optimierungsschritt unmöglich wird.
(Das Gegenteil, eine multiplikative Explosion des Gradienten, ist ebenso denkbar mit ähnlich
negativen Auswirkungen auf die Optimierung.)

CG kann dieses Problem zwar nicht lösen, optimiert aber flachere NNs zu einem im Vergleich
niedrigeren Fehlerwert, was bedeutet, dass die tiefen NNs für die Problemstellung überdimen-
sioniert waren und die Repräsentationskapazität kleinerer NNs ausreichend wären.
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Zusammenfassung

Ein kritischer Punkt bei der Anwendung von CG ist die Maschinengenauigkeit. In Experimenten
wird bestätigt, dass CG grundsätzlich in der Lage ist, kleine neuronale Netzwerke mit wenigen
Tausend trainierbaren Parametern, aber auch mit mehreren Millionen, so zu optimieren, dass
die Fehlerfunktion superlineare Konvergenz aufweist. Nachteilig ergibt sich, dass vor allem
bei wachsender Nichtlinearität der zu lösenden künstlich erzeugten Datensätze, CG zu keiner
Lösung kommt, wenn die üblicheMaschinengenauigkeit von 32-Bit den Berechnungen zugrunde
liegt. Der Trend geht zu noch geringerer Präzision; es wird vermehrt die 16-Bit-Genauigkeit für
das Training verwendet. Als Grund wird die kürzere Rechenzeit und kleinerer Speicherbedarf
angeführt. Für CG ist das keine Alternative, da im 32-Bit-Raum, die Richtungssuche („line-
search“) schon bei leicht nichtlinearenDatensätzen keineOptimierungsrichtung finden kann und
vorzeitig abbricht. Wird die Optimierung mit 64-Bit-Fließkommazahlen durchgeführt, profitiert
CG bei moderat nichtlinearen Datensätzen superlinear. Bei stark nichtlinearen Problemen
zeigt sich die superlineare Konvergenz zwar nicht, die erreichten Fehlerwerte durch CG sind
allerdings immer niedriger als die von RMSprop [vgl. HBH22b, in Kapitel 4].

Ein weiterer zentraler Aspekt der Arbeit ist die Initialisierung der trainierbaren Parameter der
NNs: Gewichtsmatrix und Biasvektor. Üblicherweise werden die trainierbaren Parameter aus
einer zuvor definierten Wahrscheinlichkeitsverteilung gezogen. Für den experimentellen Test
der Hypothese werden kontrolliert künstliche Datensätze erzeugt, deren Lösung bekannt ist und
die als Trainingsdaten dienen. Initiale Experimente zeigen, dass die zufälligeWahl der Parameter
unterschiedliches Verhalten von ansonsten identischen NNs und Trainingseinstellungen erzeugt.
So ist insbesondere SGD nicht in der Lage, eine zufriedenstellende Lösung für manche der
zufällig initialisierten NNs zu finden.

Für die nichtlineare Aktivierungsfunktion Sigmoid gilt, dass sie sich in einem begrenzten
Intervall linear verhält. Ein NN mit einer solchen nichtlinearen Schicht ist demnach ähnlich
einem linearen NN für kleine Werte der Aktivierungsfunktion, die in dieses Intervall fallen.
Diese Eigenschaft kann ausgenutzt und die Initialparameter können statt zufällig, durch vorige
Verarbeitung durch Singulärwertzerlegung („Singular Value Decomposition (SVD)“), gesetzt
werden. Experimentell ziehen alle getesteten Optimierungsalgorithmen einen Vorteil daraus
und zeigen um Größenordnungen niedrigere Fehlerwerte. Insbesondere gilt das für CG, der in
den durchgeführten Rechenexperimenten die NNs zu den niedrigsten Fehlerwerten optimiert
und zusätzlich dafür eine wesentlich kleinere Anzahl an Optimierungsschritten benötigt als
die Vergleichsoptimierer [vgl. BHH19b, in Kapitel 2]. Die Vorverarbeitung der Daten für SVD-
Initialisierung der trainierbaren Parameter ist zu bevorzugen.

Es stellt sich die Frage, ob tiefe NNs eine höhere Repräsentationskapazität haben als solche
mit wenigen bzw. nur einer nichtlinearen Schicht. Hierfür werden von verschieden tiefen NNs
künstliche Daten erzeugt, deren Lösung bekannt ist, also deren Fehlerwert für das jeweilige
erzeugende Referenz-NN genau null ist. NNs mit verschiedenen Tiefen sollen diese Trainings-
daten abbilden können und werden darauf mit unterschiedlichen Optimierungsalgorithmen
trainiert. Überraschenderweise sind die flachen NNs, im Hinblick auf den Fehlerwert, besser
in der Lage, die Datensätze abzubilden, als die tiefen NNs mit der gleichen Anzahl an trainier-
baren Parametern. Dabei ist es unerheblich, ob ein tiefes oder flaches NN die Trainingsdaten
erzeugt. Bei Experimenten, in denen die sonstigen Testvariablen (Initialisierung, Anzahl der
Parameter, Aktivierungsfunktion, Datensatz, etc.) identisch vorgegeben sind, zeigt sich, dass vor
allem die Wahl des Optimierungsalgorithmus ausschlaggebend für den erreichten Fehlerwert
ist. Die Optimierung durch CG konvergiert in allen Durchläufen gegen den jeweils kleinsten
Fehlerwert [vgl. BHH19a, in Kapitel 1].

Ein zentrales Experiment untersucht die Repräsentationsfähigkeit von modernen NNs unter-
schiedlicher Tiefe. Untersucht werden Transformer-Encoder auf verschiedenen Datensätzen
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der Bildklassifikation. Eine Transformer-Encoder-Schicht besteht unter anderem aus der Self-
Attention-Funktionalität und einem Multilayer-Perzeptron („Multi-Layer Perceptron (MLP)“).
Üblicherweise ist die Self-Attention über mehrere Heads verteilt. Ein Head ist für sich individu-
ell und operiert parallel zu den anderen Heads (ähnlich den Filtern in „Convolutional Neural
Networks (CNNs)“). Die Anzahl der Heads gibt die Breite der Schicht vor. Die Tiefe entsteht
durch die sequentielle Verkettung mehrerer Transformer-Encoder-Schichten. Untersucht wird
das Verhältnis von Tiefe und Breite, also die Anzahl der Schichten mit der Anzahl der Heads
pro Schicht.

Ein wichtiges Maß, um die Generalisierungsmöglichkeit von NNs a priori abzuschätzen, ist
die Angabe der Über- bzw. Unterbestimmtheit. Ein Gleichungssystem ist dann unterbestimmt,
wenn die Anzahl der Lösungen unendlich ist, es also mehr Parameter als Gleichungen gibt.
Falls es mehr Gleichungen als Parameter gibt, ist das System überbestimmt. Die beiden Mög-
lichkeiten äußern sich so, dass im unterbestimmten Fall das NN ein sehr gutes Ergebnis auf
der Trainingsmenge erzeugt, aber ein beliebig schlechtes auf der Testmenge. Das System ist
überangepasst an die Trainingdaten („overfitting“) und kann die Testdaten nur mit großem Feh-
ler vorhersagen. Ein überbestimmtes System dagegen zeichnet im Normalfall ein konsistentes
Bild auf der Trainingsmenge und der Testmenge, was das bevorzugte Ergebnis ist [vgl. HBH22a,
in Kapitel 3].

Der Vorteil von breiten, flachen NNs zeigt sich nicht nur mit Experimenten auf aktuellen Trans-
former-Architekturen, sondern auch in konventionellen Bildklassifikationsmodellen wie CNNs.
Die Linearisierung über die Taylorentwicklung der Konvolutionsschichten und der jeweili-
gen Identitätsfunktionen zum Überspringen der Nichtlinearitäten („Residual Connections“)
ermöglicht es, tiefe, sequentielle Schichten zu parallelisieren. Eine Reihe von 6,912 Rechenexpe-
rimenten zeigt, dass die Tiefe der NN keine höhere Güte aufweist; die parallelisierten (flach,
aber breit) NNs zeigen im Durchschnitt wenig Overfitting und überdurchschnittlich oft zwar
einen höheren Fehlerwert für die Trainingsmenge, allerdings einen niedrigeren Fehlerwert bei
der Testmenge als deren sequentiellen Pendants [vgl. BHH23, in Kapitel 5]. Die Optimierung
wird von RMSprop übernommen; wobei die CG eine weitere Verbesserung versprechen könnte.

Zusammenfassend untersucht die vorliegende kumulative Dissertation die Anwendung des
konjugierten Gradienten (CG) zur Optimierung künstlicher neuronaler Netzwerke (NNs) und
vergleicht diese Methode mit verbreiteten Optimierungsverfahren erster Ordnung, insbesondere
dem Stochastischem Gradientenabstieg (SGD).

Die in den Arbeiten präsentierten Forschungsergebnisse zeigen, dass CG in der Lage ist, sowohl
kleinere als auch sehr große Netzwerke effektiv zu optimieren. Allerdings kann die Maschinen-
genauigkeit bei 32-Bit-Berechnungen zu Problemen führen, beste Ergebnisse werden erst in
64-Bit-Fließkommazahlen erreicht. Die Forschung betont auch die Bedeutung der Initialisierung
der NN-Parameter und zeigt, dass eine Initialisierung mittels Singulärwertzerlegung zu deutlich
geringeren Fehlerwerten führt. Überraschenderweise erzielen flachere NNs bessere Ergebnisse
als tiefe NNs mit einer vergleichbaren Anzahl an trainierbaren Parametern, unabhängig vom
jeweiligen NN, das die künstlichen Daten erzeugt. Es zeigt sich auch, dass flache, breite NNs,
sowohl in Transformer-, als auch in CNN-Architekturen oft besser abschneiden als ihre tieferen
Gegenstücke. Insgesamt empfehlen die Forschungsergebnisse eine Neubewertung der bisherigen
Präferenz für extrem tiefe NNs und betonen das Potential von CG als Optimierungsmethode.
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Summary

This cumulative dissertation examines the application of the Conjugate Gradient (CG) for its
suitability for optimizing artificial Neural Networks (NNs). The central research interest lies
particularly in the comparison of CG with common first-order methods like Stochastic Gradient
Descent (SGD) and its variants.

The CG optimization algorithm is a second-order numerical optimization method. A NN gener-
ally consists of several consecutive layers an input layer, an arbitrary number of hidden layers,
and an output layer. The activation functions of the hidden layer are nonlinear. Depending on
the problem statement and requirements, the output layer’s activation function might also be
nonlinear. If the topology of a NN exhibits one hidden layer, it is called a shallow NN. From
two hidden layers on, it is a deep NN. The deeper the NN is, the more sequential hidden layers
are present in its topology.

This dissertation aims to evaluate CG in the context of various NN architectures, both in their
width and in their depth. As part of this evaluation, deep NNs are compared with shallow NNs,
while the number of trainable parameters between the two instance types is kept equal.

Typically, first-order algorithms, such as SGD, Root Mean Square Propagation (RMSprop), or
derivatives thereof, such as Adam, are used to train NNs on a given training set. One of the
disadvantages of these first-order numerical optimization methods is that they cannot guarantee
convergence of the error function. Their main advantage is their ease of implementation. They
can still show acceptable results for the respective problem, although a relatively large number
of optimization steps are required. The use of various second-order optimization methods is
largely neglected in the literature.

Due to the niche existence of these algorithms, the focus of current research is shifting away
from the actual optimization of NNs to their topology, regularization, and the size and structure
of datasets. Following the assumption that SGD is used as an optimizer, NNs are becoming
deeper, thus increasing the number of sequential nonlinearities. The long chaining of hidden
layers increasingly causes the problem of vanishing gradient, which means that the gradient
of the error function in backpropagation increasingly becomes smaller. This effect multiplies
the further away the gradient is from the output of the respective NN until it finally becomes
so small that a meaningful optimization step turns impossible. (The opposite, a multiplicative
explosion of the gradient, is also conceivable with similar adverse effects on optimization.)

Although, CG cannot solve this particular issue, it optimizes shallower NNs to a lower error
value in comparison to SGD. Effectively, the deep NNs were over-parameterized for the problem,
and the representational capacity of smaller NNs would have been sufficient in this instance.

Machine precision is a crucial point in applying CG. Experiments confirm that CG is generally
able to optimize small NNs with a few thousand trainable parameters, but also larger ones
with several million parameters, such that the error function exhibits superlinear convergence.
When using the default machine precision in common frameworks of 32 bits, CG sometimes
fails to find the next optimization direction. The trend towards lower machine precisions,
like 16 bits or even lower, is common and generally recommended. The shorter computation
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Summary

time and smaller memory footprint are cited as the reasons. This is not a valid route for CG
and problems designed to be increasingly nonlinear, as the line-search method cannot find an
optimization direction in 32-bit space and aborts prematurely. For strongly nonlinear problems,
the convergence of the error function is not superlinear anymore, however, the error values
achieved by CG are consistently lower than those of RMSprop [see HBH22b, in Chapter 4].

Another central aspect of the dissertation is the initialization of the NNs’ trainable parameters:
weight matrix and bias vector. Typically, the trainable parameters are drawn from a prede-
fined probability distribution. For the experimental test of the hypothesis, controlled artificial
datasets are generated, whose solutions are known and which serve as training data. Preceding
experiments show that the random choice of parameters causes different behavior in otherwise
identical NNs and training settings. For example, SGD is not able to find a satisfactory solution
for some of the randomly initialized NNs.

The nonlinear activation function sigmoid is linear in a limited interval. A NN with this
activation function behaves therefore similar to a linear NN for small values of the activation
function that fall into this interval. This property can be exploited, and the initial parameters
can be set instead of randomly, by preprocessing the datasets with Singular Value Decomposition
(SVD). Experimentally, all tested optimization algorithms benefit from this setting and show
orders of magnitude lower error values. CG is particularly efficient, producing the lowest
error values in the experiments and benefiting from a substantially lower number of required
optimization steps [see BHH19b, in Chapter 2]. Data preprocessing by SVD for initialization is
to be preferred.

The question arises whether deep NNs have a higher representational capacity than those with
few or only one nonlinear layer. For this purpose, artificial datasets are generated by NNs with
various depths, whose solution is known, i.e., whose error value for the respective generating
NN instance is exactly zero. NNs with different depths are trained and evaluated on these
datasets with different optimization algorithms. Surprisingly, the shallow NNs are better able to
map the datasets in terms of the error value than the deeper NNs. For consistency, the number
of trainable parameters is kept equal. Surprisingly, the shallow NNs are better able to map
the datasets in terms of the error value than the deeper NNs, keeping the number of trainable
parameters equal. It is irrelevant whether a shallow or deep NN generates the training data. In
experiments in which the other test variables (initialization, number of parameters, activation
function, dataset, etc.) are identically configured, it is shown that the choice of the optimization
algorithm is decisive for the achieved error value. The optimization by CG converges in all runs
to the smallest error value [see BHH19a, in Chapter 1].

A central experiment investigates the representation capacity of modern NNs of different
depths. The focus is on Transformer-Encoders for their performance on various well-known
image classification datasets. A Transformer-encoder layer consists mainly of the self-attention
functionality and aMulti-Layer Perceptron (MLP). The self-attention is typically distributed over
multiple heads. Each head is individual and operates in parallel to the other heads—similar to the
filters in Convolutional Neural Networks (CNNs). The number of heads defines the width of the
layer. The depth is generated by the sequential concatenation of multiple Transformer-encoder
layers. The ratio of depth to width, i.e., the number of layers versus the number of heads per
layer, is investigated.

A key measure to estimate the generalization ability of NNs is the indication of overdetermination
or underdetermination. An equation system is underdetermined if the number of solutions is
infinite, i.e., if there are more parameters than equations. If there are more equations than
parameters, the system is overdetermined. The two possibilities manifest themselves in such
a way that in the underdetermined case, the NN produces a very good result on the training
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set, but an arbitrarily high error value for the test set. The system is overfitting to the training
data and fails to predict the test data. An overdetermined system, on the other hand, usually
behaves similarly on the training and test set, which is the preferred situation [see HBH22a,
in Chapter 3].

The advantage of wide, shallow NNs is not only shown experimentally on modern Transformer
architectures but also in conventional image classification models such as CNNs. Linearization
with the Taylor expansion of the convolutional layers and the respective identity function to
skip the nonlinearities (residual connections) enables deep, sequential layers to be parallelized.
A series of 6,912 computational experiments show that the deeper NNs do not generally exhibit
better performance. The parallelized (shallow but wide) NNs tend not to overfit on average.
Above average, in comparison to their deep counterparts, they show a higher error value on the
training set but a lower error value on the test set [see BHH23, in Chapter 5]. The optimization
is done with RMSprop, however, CG could promise further improvement.

In summary, this cumulative dissertation investigates the application of the conjugate gradient
method CG for the optimization of artificial neural networks (NNs) and compares this method
with common first-order optimization methods, especially the stochastic gradient descent (SGD).

The presented research results show that CG can effectively optimize both small and very large
networks. However, the default machine precision of 32 bits can lead to problems. The best
results are only achieved in 64-bits computations. The research also emphasizes the importance
of the initialization of the NNs’ trainable parameters and shows that an initialization using
singular value decomposition (SVD) leads to drastically lower error values. Surprisingly, shallow
but wide NNs, both in Transformer and CNN architectures, often perform better than their
deeper counterparts. Overall, the research results recommend a re-evaluation of the previous
preference for extremely deep NNs and emphasize the potential of CG as an optimization
method.
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Chapter 1

Representational Capacity of Deep Neural
Networks: A Computing Study

Abstract There is some theoretical evidence that deep neural networks with multiple hidden
layers have a potential for more efficient representation of multidimensional mappings than
shallow networks with a single hidden layer. The question is whether it is possible to exploit this
theoretical advantage for finding such representations with help of numerical training methods.
Tests using prototypical problems with a known mean square minimum did not confirm this
hypothesis. Minima found with the help of deep networks have always been worse than those
found using shallow networks. This does not directly contradict the theoretical findings—it is
possible that the superior representational capacity of deep networks is genuine while finding
the mean square minimum of such deep networks is a substantially harder problem than with
shallow ones.

1.1 Introduction

At present, there is a strong revival of interest in layered neural networks. Although the basic
structures and algorithms are similar to those developed in the eighties of the past century, there
are some shifts in the focus. The most important of them is the emphasis on large networks
with more than one hidden layer. The current interest wave is motivated by numerous reports
about positive computing experience with such multi-layer networks for very large mapping
tasks. Typical applications are corpus-based semantics and Computer Vision (CV) (e.g. [Ber+16]).
In particular the former is characterized by a strong under-determination of model parameters—
there are substantially more parameters than labeled training examples. There are some review
works on deep learning, summarizing both the success stories and the theoretical justifications
for the success. This paper takes the extensive work by Lecun et al. [LBH15] as a frequent
reference.

The term deep networks will be used in the sense of deep learning, denoting networks with
more than one hidden layer. Networks with a single hidden layer will be referred to as shallow
networks.

Besides some experimental findings of representational efficiency of deep neural networks, there
are also several attempts for theoretical justifications. They state essentially the following: deep
networks exhibit larger representation capacity than shallow networks. That is, they are capable
of approximating a broader class of functions with the same number of parameters. [Mon+14]

To compare the representation capacity of deep and shallow networks, several interesting results
have been published. Bengio et al. [Ben+03] have investigated a class of algebraic functions that
can be represented by a special structure of deep networks (alternating summation and product
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layers). They showed that for a certain type of deep networks the number of hidden units
necessary for a shallow representation would grow exponentially while in a deep network it
grows only polynomial. Montufar et al. [Mon+14] have used a different approach for evaluating
the representational capacity. They investigated how many different linear hyperplane regions
of input space can be mapped to an output unit. They derived statements for the maximum
number of such hyperplanes in deep networks, showing that this number grows exponentially
with the number of hidden layers. The activation units used have been Rectified Linear Unit
(ReLU) and softmax units. It is common to these findings that they do not make statements about
arbitrary functions. The result of [Ben+03] is valid for algebraic functions representable by the
given deep network architecture, but not for arbitrary algebraic terms. Montufar et al. [Mon+14]
have derived the maximum number of representable hyperplanes, but it is not guaranteed, that
this maximum can be attained for an arbitrary function to be represented. In other words,
there are function classes that can be efficiently represented by a deep network, while other
functions cannot. This is not unexpected: knowing that some 𝑁1 dimensional function is to be
identified from 𝑁2 training examples (which is equivalent to satisfying 𝑁 = 𝑁1 × 𝑁2 equations),
it cannot be generally represented by less than 𝑁 parameters although cases representable by
fewer parameters exist. Another familiar analogy is that of algebraic terms. Some of them can
be made compact by the distributive law, others cannot.

This finding can be summarized in the following way. There exist mappings that can be
represented by deep neural networks more economically than by shallow ones. These mappings
are characterized by multiple usages of intermediary (or hidden) concepts. This may be typical
for cognitive mappings, so that deep networks may be adequate for cognitive tasks.

Various studies are claiming the superiority of deep networks based on positive computing
experience. Most of them concern particular architectures such as networks using convolutional
layers (e.g., [Goo+14]). This network type has a strong justification for image recognition since
the convolutional layers are closely related to spacial operators known to be important for
image processing. It is then logical to expect that a network with an appropriate number of
such layers is superior to a shallow network that offers only the possibility of using a single
convolutional layer followed directly by the final processing to the output.

A few works address the issue of the representational capacity of fully connected deep net-
works. Erhan et al. [Erh+09] is aware of problems with convergence properties of optimization
algorithms for deep networks, but claim their superiority to shallow networks on test sets.
Their particular focus is to show the usefulness of unsupervised pre-training of some layers,
rather than the comparison of the representational capacity so that the choice of test problems
makes it not fully appropriate for clarifying the representational capacity of deep and shallow
networks.

• Their study compares networks with different total numbers of network parameters
(weights and biases) so that the comparison is favorable for deeper networks having more
parameters.

• First-order optimization methods with fixed learning rates are used so that the danger of
influencing the results by a poor convergence of the optimization method is serious.

• Some problems are under-determined, that is, having fewer constraints than parameters.
In this case, the minimum of the training set error may be expected to be zero not only
for a single optimum solution but also for large subsets of the parameter space.

For an objective review of deep and shallow networks, it is important to:

• use sufficiently determined problems (i.e., having more constraints than parameters),
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• use optimization methods that can be expected to reliably converge at least to local
minima,

• compare shallow and deep networks with identical or nearly identical numbers of free
network parameters

A comparison following these principles is the goal of this study.

1.2 Attainable Representational Capacity

Even if some class of functions has a superior representational capacity, it is not guaranteed
that this capacity can be fully exploited—the additional necessary component is an algorithm
that is capable of attaining the functional fit.

In terms of shallow and deep networks, it would be necessary to have algorithms that exploit
the assumed superior capacity of deep networks in fitting them to a set of training examples
in an efficient way. This efficiency would have to be sufficient not to lose the representational
advantage. In practical terms, the usefulness of a network type consists of both a representational
capacity and the algorithm efficiency. So, a high capacity potential and a poorly converging
algorithm may result in low exploitable capacity.

In the concrete case of mean square minimization, the numerical efficiency of the optimizing
algorithm for a given problem is the key parameter. For strictly convex minimization tasks, the
usual measure of the potential efficiency is the condition number of the Hessian matrix (i.e., the
matrix of the second derivatives of the error function with regard to the network parameters 𝑊,
with 𝑊𝑖 being the parameters of the 𝑖-th hidden layer). This condition number is defined as the
ratio of the largest and the smallest eigenvalue of the Hessian. Unfortunately, this objective
measure cannot be applied for our comparison, for two reasons:

• The error function is not convex at points far away from the minimum.

• Even at the points where the error function is convex, some eigenvalues are very close to
zero, corresponding to search directions which have no or very small effect on the error
function.

The condition number is then near to infinity. These directions result from redundancies
inherent to the neural networks. This is the case, for example, due to the rotational
invariance of the hidden layers at the points of nearly linear activation. Then, the
mapping 𝑊𝑖+1𝑊𝑖 is identical with 𝑊𝑖+1𝐻−1𝐻𝑊𝑖, for any non-singular square matrix 𝐻 of
the dimension corresponding to the width of the 𝑖-th hidden layer. So, the neural network
constitutes the same mapping with the matrices 𝑊𝑖 and 𝑊𝑖+1 as with 𝐻𝑊𝑖 and 𝑊𝑖+1𝐻−1.

For the lack of theoretical alternatives, the only possibility is to assess the efficiency of particular
problems experimentally. To make reliable conclusions from the experiments, it is important
to use reliable optimization methods whose results are as little as possible subject to random
disturbances of the solution path. This is why a widespread numerical optimization procedure
with well-defined convergence properties, the Conjugate Gradient (CG) method, has been used
in addition to the optimization methods usual in the neural network community.

The problems were generated so that they have a known MSE minimum equal to zero (see Sec-
tion 1.3), attainable by a particular network architecture (shallow or deep). Since it is hardly
possible to generate over-determined problems that have a zero minimum for both a shallow
and a deep network, cross-validation has been used. A pair of zero minimum problems have
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been generated, one (𝑃𝑠) with a zero minimum for shallow network 𝑁𝑠, and another (𝑃𝑑) with a
zero minimum for deep network 𝑁𝑑. Both network architectures have the same dimensions
of input and output vectors, and hidden layer sizes such that the overall numbers of network
parameters are close to each other (the completely identical parameter numbers are difficult to
reach).

Both problems, 𝑃𝑠 and 𝑃𝑑, are fitted by shallow network 𝑁𝑠 and deep network 𝑁𝑑. Comparing
the minima reached allows conjectures about the attainable representational capacity of shallow
and deep networks.

The scope of this study is only fully connected networks. There seems to be no doubt that specific
deep architectures such as those using convolution networks (mimicking spatial operators in
image processing) are optimal for specific problems. So, a comparison of deep and shallow
networks with such special architectures would make sense only in such specific application
settings.

1.3 Test Problems with a Known Minimum

To assess the performance of training algorithms, it is desirable to use test problems with a
known optimum. A construction method is presented in this section. Many statements about the
performance of deep learning are based on computing experience with practical problems from
various application domains. In the very most cases, the problem is fitting the deep network to
real data. This implies that the real minimum is not known—the size of real problems makes it
impossible to figure out. This may distort the performance evaluation. Reaching “acceptable” or
even “the best known” results from the application problem view lets the unanswered question
how far we are from the real optimum. It cannot be excluded that all methods find solutions far
away from the optimum and the statements about the algorithms are to a large degree arbitrary.
To clarify this aspect, this investigation will make use of problems with a known minimum.
Such problems can be generated in the following way:

A network with a set of arbitrary (e.g., random) weights 𝑤0 is generated. Furthermore, a set
of random input vectors 𝑈 for a mapping to be fitted is produced. These inputs, applied to the
network 𝑓 (𝑢, 𝑤), result in a set of output vectors 𝑌.

𝑦𝑖 = 𝑓 (𝑢𝑖, 𝑤0) , 𝑖 = 1, … , 𝑛 (1.1)

The pairs
(𝑢𝑖, 𝑦𝑖) , 𝑖 = 1, … , 𝑛 (1.2)

constitute the training set to be fitted. The least-squares objective function

𝐸 =
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑓 (𝑢𝑖, 𝑤) )
2

(1.3)

has an obvious minimum of zero. This minimum may not be unique in terms of the parameter
vector 𝑤. So, the success of the fitting is measured only via a minimum value of 𝐸 reached. The
random weights are generated from a uniform distribution:

𝑤𝑖 ∈ (
−𝑤𝑓

√𝑛 + 1
,

𝑤𝑓

√𝑛 + 1
) , 𝑖 = 1, … , 𝑛 (1.4)
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Table 1.1: Overview of test problems.

Problem Input Output Data size # hidden layers # nodes
(per hidden layer)

# parameters # constraints

𝐴1 100 50 80 1 20 3,070 4,000
𝐴3 100 50 80 3 16 3,010 4,000
𝐴5 100 50 80 5 14 3,004 4,000

𝐵1 300 150 240 1 60 27,210 36,000
𝐵3 300 150 240 3 49 27,149 36,000
𝐵5 300 150 240 5 43 27,111 36,000

𝐶1 1,000 500 800 1 200 300,700 400,000
𝐶3 1,000 500 800 3 164 300,784 400,000
𝐶5 1,000 500 800 5 144 300,164 400,000

with 𝑛 being the number of unit inputs from the preceding layer. There is a predefined factor
𝑤𝑓 for controlling the degree of saturation within the network. The division by the square root
of 𝑛 + 1 has the goal of reaching an identical standard deviation of the weighted sum (including
the bias) going as input to the nonlinear unit.

1.4 Optimization Methods

Neural networks were optimized by several methods implemented in the popular framework
Keras [Cho+15] with the TensorFlow backend1 [Aba+15]: Stochastic Gradient Descent (SGD)
and Root Mean Square Propagation (RMSprop) were selected because of their widespread use, as
well as Adadelta [Zei12].

These methods are first-order and there is a widespread opinion in the neural network com-
munity that second-order methods are not superior to the first-order ones. However, there
are strong theoretical and empirical arguments in favor of the second-order methods from
numerical mathematics (see, e.g. [BHH19b]). To make sure that the results in favor of shallow
or deep networks are not biased by deficiencies of the optimization methods used, second-order
methods should not be neglected. So, the CG method (see, e.g. [Pre+92]), as implemented in
SciPy [OPJ+01], has also been included. This implementation uses the line search method based
on the step length conditions of Wolfe [Wol69]. It exploits the derivative information and has
excellent convergence properties for smooth functions.

Since the Keras-to-SciPy-to-Keras interface requires a custom-built bridge for information flow
between the frameworks, fast GPU-enhanced execution is not possible and the run-time can’t
be evaluated comparably.

The performance of the optimization methods has been compared by the number of gradient
calls (epochs in Keras). All these methods have been used with Keras’ and SciPy’s default
settings.

1 The actual version was 2.0.0-beta0.
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1.5 Computing Results

A series of computing experiments have been carried out to assess the relationship between
attainable representational capacities of shallow and deep networks. The comparison is by
using identical mapping problems (defined by input/output pairs) and observing the errors
of both network architectures. To provide a reasonable meaning to the mean square figures
attained and to make the results comparable, all problems have been deliberately defined to
have a minimum at zero, according to the scheme of Section 1.3. To justify the use of the hidden
layer as a feature extractor, its width should be smaller than the minimum of the input and
output sizes. The dimensions have been chosen so that the full regression is under-determined
(as typical for the application class mentioned above), but the relatively narrow hidden layer
makes it slightly over-determined. So the effect of overfitting, harmful for generalization, is
excluded.

1.5.1 Data Generation

Three problem sizes denoted as 𝐴, 𝐵, and 𝐶 have been used. These classes are characterized by
their input and output dimensions as well as by the size of the training set. For every class, a
shallow network with a single hidden layer and two deep networks with three and five hidden
layers have been generated. The problem of size class 𝑋 ∈ {𝐴, 𝐵, 𝐶} with 𝑖 hidden layers is
denoted by 𝑋𝑖. The concrete network sizes, parameter numbers, and numbers of constraints
are given in Table 1.1. The numbers of constraints are imposed by the reference outputs to
be fitted. It is the product of the output dimension and the training set size. Comparing the
number of constraints with the number of parameters defines the extent of over-determination
or under-determination of the problem (e.g., a problem with more constraints than parameters
is over-determined).

Hidden layer units are symmetric sigmoid functions rescaled to have a unity derivative at 𝑥 = 0,
defined by

𝑠 (𝑥) = 1
1 + 𝑒−𝑥

(1.5)

and
𝑓 (𝑥) = 2𝑠 (2𝑥) − 1 = 2

1 + 𝑒−2𝑥
− 1 (1.6)

For every individual network architecture, fifteen different random parametrizations with
corresponding training sets have been generated, all with a known mean square error minimum
of zero.

1.5.2 Optimization Results

The results for the optimizationmethods for problem size class 𝐵 are given in Table 1.3. The focus
of this table is on showing the performance on shallow and deep networks for all optimization
methods. Besides to the optimum of the error function 𝐹𝑜𝑝𝑡, the error value at the initial random
parameter set is shown to illustrate the extent of the error improvement. The number of
iterations is fixed to 2,000 for Keras-methods while it is determined by the stopping rule for the
CG. However, the maximum number of iterations for the CG is also set to 2,000.

The first three blocks of the table show the optimization results for shallow and deep networks
individually. Each network is optimized to fit the training set generated for this network
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Table 1.2: Results for all given problems and their ratio between shallow and deep networks.

Shallow
setting

Deep
setting

Data deep –
NN shallow (×10−3)

Data shallow –
NN deep (×10−3)

Ratio
Deep/Shallow

𝐴1
𝐴3 0.038 5.368 140.5
𝐴5 0.035 11.353 320.5

𝐵1
𝐵3 0.075 4.415 59.2
𝐵5 0.070 9.629 138.1

𝐶1
𝐶3 0.182 4.663 25.7
𝐶5 0.148 9.777 66.1

architecture. The error optimum is known to be zero under of the principles of Table 1.2. These
optima set the baseline for those reached by the cross-checks in the following rows.

The following four blocks represent the cross-check itself. The column Network denotes the
network architecture used for the applied optimization. The column Source points to the
architecture for which the training set has been generated, with a known error optimum of zero.
For the training runs presented in these rows, the optimum is not known. It is only known that
it would be zero for the architecture given in the column Source, but not necessarily also for the
architecture of the column Network, used for the fitting.

For example, for the first of these sixteen rows, the network architecture trained is 𝐵1 (i.e., a
shallow net with a single hidden layer). It is optimized to fit the training set for which it is
known that a zero error can be reached by the architecture 𝐵3 (i.e., a deep net with three hidden
layers).

The column Ratio to CG displays how many times the error function value attained by the Keras
methods was higher than that reached by the CG.

The column Deep/Shallow shows the ratio of the following error function values for the deep
network and the shallow network.

Additionally, Table 1.2 shows mean square minima for all size classes using the Keras optimiza-
tion method RMSprop. This table elucidates the development of the performance (Mean Square
Error (MSE)) with shallow and deep networks for varying network sizes. Each row shows the
performance of a pair of a shallow and a deep network with a comparable number of parameters.
The average performance of a shallow network for a problem for which a zero error minimum
is known to be attainable by a deep network is given in the column Data deep – NN shallow.
The average performance of a deep network for a problem for which a zero error minimum is
known to be attainable by a shallow network is given in the column Data shallow – NN deep.
The ratio of both average performances is shown in the column Ratio Deep/Shallow.

The following can be observed:

• The MSE attained by shallow networks for problems having a zero MSE for some deep
network are essentially lower than in the opposite situation.

• The difference tends to slightly decrease with the problem size.

• The by far weakest method was SGD, while the best was the CG. Adadelta and RMSprop
were performing between them both, with RMSprop sometimes approaching the CG
performance.
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Table 1.3: Detailed results for problems of size 𝐵.
Network Source Algorithm # iterations 𝐹init

(×10−3)

𝐹opt
(×10−3)

Ratio
to CG

Ratio
Deep/Shallow

𝐵1 𝐵1

Adadelta 2,000 332.2 6.748 578.43
RMSprop 2,000 332.2 0.098 8.40
SGD 2,000 332.2 90.402 7,748.77
CG 821 332.2 0.012

𝐵3 𝐵3

Adadelta 2,000 143.3 6.446 173.67
RMSprop 2,000 143.3 0.243 6.54
SGD 2,000 143.3 50.485 1,360.22
CG 2,200 143.3 0.037

𝐵5 𝐵5

Adadelta 2,000 83.8 4.915 41.04
RMSprop 2,000 83.8 0.277 2.31
SGD 2,000 83.8 33.233 277.51
CG 1,490 83.8 0.120

𝐵1 𝐵3

Adadelta 2,000 235.8 2.577 70.41
RMSprop 2,000 235.8 0.075 2.04
SGD 2,000 235.8 45.396 1,240.02
CG 420 235.8 0.037

𝐵1 𝐵5

Adadelta 2,000 206.7 1.594 52.44
RMSprop 2,000 206.7 0.070 2.29
SGD 2,000 206.7 32.404 1,065.83
CG 333 206.7 0.030

𝐵3 𝐵1

Adadelta 2,000 237.8 28.331 6.75 11.0
RMSprop 2,000 237.8 4.415 1.05 59.2
SGD 2,000 237.8 118.896 28.34 2.6
CG 1,072 237.8 4.195 114.6

𝐵5 𝐵1

Adadelta 2,000 208.6 44.980 5.32 28.2
RMSprop 2,000 208.6 9.629 1.14 138.1
SGD 2,000 208.6 136.118 16.11 4.2
CG 2,125 208.6 8.451 278.0
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1.6 Discussion

• The difference between the performance with a shallow network on one hand and deep
network, on the other hand, grows with the performance of the optimization method:
the difference is relatively small for the worst-performing SGD and very large for the
best-performing CG.

1.6 Discussion

The computing experiments seem to essentially show the superiority of shallow networks
in attaining low mean square minima for given mapping problems. This is not necessarily
a contradiction to the theoretical results expecting the contrary. It is still possible that the
representational capacity of deep networks is superior, while it is difficult to exploit this capacity
by fitting the mapping with the help of numerical algorithms.

Shallow networks have been superior for all test problems and all optimizing algorithms.
However, it is interesting to observe that the gap, although always large, was relatively smaller
for weakly performing optimization methods (SGD and Adadelta) as well as for large networks.

A possible hypothesis explaining the both might be that the gap is low if the optimizing method
fails to search for the minimum efficiently, approaching the performance of some kind of random
search. This can result either from the weakness of the method itself or from the difficulty
of the problem. Even sophisticated methods such as the conjugate gradient have growing
difficulties with growing problem size. These difficulties may have to do with the machine
precision necessary for stopping rules (testing for zero gradient) or with the number of iterations
available.

So, the CG provides a theoretical guarantee for finding a minimum for an exactly quadratic
problem of dimension 𝑞 in 𝑞 steps. This is a huge number of iterations for our test problems (and
other real-world ones). In addition to this, our problems are far from being exactly quadratic
(they may even be non-convex), which further increases the computing requirements. This
makes clear that the adequacy of every optimization method decreases with the problem size.
This still does not explain why deep networks should be more favorable if the optimization
method is not adequate to the problem—at best, it may be argued that the search is then close
to the random search, which might be indifferent to the functional parametrization optimized.
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Chapter 2

Singular Value Decomposition and Neural
Networks

Abstract Singular Value Decomposition (SVD) constitutes a bridge between the linear algebra
concepts and multi-layer neural networks—it is their linear analogy. Besides of this insight, it
can be used as a good initial guess for the network parameters, leading to substantially better
optimization results.

2.1 Motivation

The utility of multi-layer neural networks is frequently being explained by their capability of
extracting meaningful features in their hidden layers. This view is particularly appropriate for
large size applications such as corpus-based semantics analyses where the number of training
examples is too low for making the problem fully determined in terms of a direct mapping from
the input to the output space.

This capability of feature extraction is mostly implicitly attributed to using nonlinear units in
contrast to a linear mapping. The prototype of such linear mapping is linear regression, using
multiplication of an input pattern by a regression matrix to get an estimate of the output pattern,
omitting the possibility of using a sequence of two (or more) matrices corresponding to the use
of a hidden layer of linear units. This possibility is usually considered to be obsolete with the
argument that a product of two matrices is also a matrix and the result is thus equivalent to
using a single matrix.

This argument, although superficially correct, hides the possibility of using a matrix of deliber-
ately chosen low rank, which leads to the correct treatment of under-determined problems.

A key to understanding the situation is Singular Value Decomposition (SVD). In the following,
it will be shown that SVD can be interpreted as a linear analogy of a neural network with
one hidden layer and that it can be used for generating a good initial solution for optimizing
nonlinearmulti-layer neural networks. Saxe et. al [SMG14] support this theory from the opposite
direction: they showed empirically that the optimized results from a nonlinear network are
very similar to the results coming from an SVD. McCloone et al. [McL+98] have an interesting
approach on how to support optimization by SVD in various network architectures (namely
Multi-Layer Perceptron (MLP) and RBF networks). However, our interest is in pointing out
the direct relationship between SVD and a shallow multi-layer neural network with a low
dimensional hidden layer. The low dimensionality of the hidden layer has the function of
feature extraction.

The work of Xue et al. [XLG13] is decreasing the number of parameters within a neural network
significantly by replacing a layer’s weight matrix by two layers which weight matrices are
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constructed using SVD. Similar to our approach, this results effectively in initializing the two
layers using the resulting matrices from SVD (2.1). Still, it is used to decrease the model size
rather than showing that this initialization is already good guess for finding the (near-) optimal
solution.

2.2 Singular Value Decomposition

SVD is a powerful concept of linear algebra. It is a decomposition of an arbitrary matrix 𝐴 of
size 𝑚 × 𝑛 into three factors:

𝐴 = 𝑈𝑆𝑉 𝑇 (2.1)

where 𝑈 and 𝑉 are orthonormal and 𝑆 is of identical size as 𝐴, consisting of a diagonal matrix

𝐷0 and a zero matrix. For 𝑚 < 𝑛, it is [𝑆0 0], for 𝑚 > 𝑛 it is [𝑆0 0]
𝑇
. In the further discussion,

only the case of 𝑚 < 𝑛 will be considered as the opposite case is analogous.

SVD is then simplified to

𝐴 = 𝑈𝑆𝑉 𝑇 = 𝑈 [𝑆0 0] [𝑉0 𝑉𝑥]
𝑇
= 𝑈𝑆0𝑉 𝑇

0 (2.2)

by omitting redundant zero terms. This form is sometimes called economical.

For the economical form (2.2), the decomposition with 𝑟 = min (𝑚, 𝑛) has 𝑚𝑟 + 𝑟 + 𝑛𝑟 =
(𝑚 + 𝑛 + 1) 𝑟 nonzero parameters. The orthonormality of 𝑈 and 𝑉 imposes 2𝑟 unity norm con-
straints, and 𝑟 (𝑟 − 1) orthogonality constraints, resulting in a total number of

2𝑟 + 𝑟 (𝑟 − 1) = 𝑟2 + 𝑟 (2.3)

constraints.

The number of free parameters amounts to

(𝑚 + 𝑛 + 1) 𝑟 − 𝑟2 − 𝑟 (2.4)

which is
(𝑚 + 𝑛 + 1)𝑚 − 𝑚2 − 𝑚 = 𝑚𝑛, for 𝑚 < 𝑛 (2.5)

and, analogically,
(𝑚 + 𝑛 + 1) 𝑛 − 𝑛2 − 𝑛 = 𝑚𝑛, for 𝑚 > 𝑛 (2.6)

So, the economical form of SVD possesses the same number of free parameters as the original
matrix 𝐴.

The number of nonzero singular values in 𝑆0 is equal to the rank 𝑟 of matrix 𝐴. An interesting
case arises if the matrix𝐴 is not full rank, that is, if 𝑟 < min (𝑚, 𝑛). Then, some diagonal elements
of 𝑆0 are zero. Reordering the diagonal elements of 𝑆0 (and, correspondingly the columns of 𝑈
and 𝑉0) so that its nonzero elements are in the field 𝑆1 and zero elements in 𝑆2, the decomposition
further collapses to

𝐴 = 𝑈𝑆0𝑉 𝑇
0 = [𝑈1 𝑈2] [

𝑆1 0
0 𝑆2

] [𝑉1 𝑉2]
𝑇
= 𝑈1𝑆1𝑉 𝑇

1 (2.7)
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Then, with the help of orthogonality of 𝑈1 and 𝑉1, the matrix can be decomposed into the sum

𝐴 = 𝑈𝑆𝑉 𝑇 =
𝑟

∑
𝑘=1

𝑠𝑘𝑢𝑘𝑣𝑇𝑘 (2.8)

An important property of SVD is its capability for a matrix approximation by a matrix of lower
rank. In analogy to the partitioning the singular values with the help of 𝑆1 and 𝑆2 to nonzero
and zero ones, they can be partitioned to large and small ones. Selecting the ̂𝑟 largest singular
values makes (2.8) to an approximation �̂� of matrix 𝐴. This approximation has the outstanding
property of being that with the minimum 𝐿2 matrix norm of the difference �̂� − 𝐴

‖�̂� − 𝐴‖2 (2.9)

out of all matrices of rank ̂𝑟.

The 𝐿2 matrix norm of 𝑀 is defined as an induced norm by the 𝐿2 vector norm, so that it is
defined as

‖𝑀‖2 = max
𝑥

‖𝑀𝑥‖2
‖𝑥‖2

(2.10)

In many practical cases, a relatively small number ̂𝑟 leads to approximations very close to
the original matrix. Equation 2.8 shows that this property can be used for an economical
representation of a 𝑚 × 𝑛 matrix 𝐴 by only ̂𝑟 (𝑚 + 𝑛 + 1) numerical values. The optimum
approximation property is shown below to be relevant for the mapping approximation discussed
below.

A further important application of SVD is an explicit formula for a matrix pseudo-inverse.
Pseudo-inverse 𝐴+ is the analogy of an inverse matrix for the case of non-square matrices, with
the property

𝐴𝐴+𝐴 = 𝐴 (2.11)

It can be easily computed with the help of SVD:

𝑋+ = 𝑉𝑆𝑇inv𝑈
𝑇 (2.12)

with 𝑆inv being a matrix of the same dimension as 𝑆 with inverted non-zero elements 1
𝑠𝑖𝑖

on the
diagonal.

2.3 SVD and Linear Regression

One of the applications of the pseudo-inverse (2.11) is a computing scheme for least squares.
The linear regression problem is specified by input/output column vector pairs (𝑥𝑖, 𝑦𝑖), seeking
the best possible estimates

̂𝑦𝑖 = 𝐵𝑥𝑖 + 𝑎 (2.13)

in the sense of least squares.

The bias vector 𝑎 can be received by extending the input patterns 𝑥𝑖 by a unity constant. For
simplicity, it will be omitted in the ongoing discussion.
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The solution amounts to solving the equation

𝑌 = 𝐵𝑋 (2.14)

with matrices 𝑌 and 𝑋 made of the corresponding column vectors. The optimum is found
with the help of the pseudo-inverse 𝑋+ of 𝑋. In the over-determined case (typical for linear
regression), the least squares solution is

𝐵 = 𝑌𝑋+ = 𝑌𝑋 𝑇(𝑋𝑋 𝑇)
−1

(2.15)

In the under-determined case, there is an infinite number of solutions with zero approximation
error. The following solution has the minimum matrix norm of 𝐵:

𝐵 = 𝑌𝑋+ = 𝑌(𝑋 𝑇𝑋)
−1
𝑋 𝑇 (2.16)

Both (2.15) and (2.16) use the pseudo-inverse that can be easily computed with help of SVD
according to (2.12).

2.4 SVD and Mappings of a Given Rank

Both the full SVD (2.1) and its reduced rank form (2.7) are products of a dense matrix 𝑈, a partly
or fully diagonal matrix 𝑆, and a dense matrix 𝑉 𝑇. This suggests the possibility of viewing them
as a product of two dense matrices 𝑈 𝑆 and 𝑉 𝑇, or 𝑈 and 𝑆𝑉 𝑇. All these matrices are full rank,
even if the original matrix 𝐵 was not due to the under-determination.

The product 𝑈 𝑆 and 𝑉 𝑇 is the sequence of two linear mappings. The latter matrix maps the
𝑛-dimensional input space to an intermediary space of dimension ̂𝑟, the former the intermediary
space to the 𝑚-dimensional output space. Since 𝑛 > ̂𝑟 and 𝑚 > ̂𝑟, the intermediary space
represents a bottleneck similar to a hidden layer of a neural network. The orthogonal columns
of 𝑉 can be viewed as hidden features compressing the information in the input space. This
relationship to neural networks be followed in Section 2.3.

The reasons to search for such a compressed mapping are different for the over-determined and
the under-determined problems.

2.4.1 Over-determined Problems

Suppose for an over-determined problem with input matrix 𝑋 and output matrix 𝑌, the best
linear solution is sought. The columns of 𝑋 and 𝑌 correspond to the training examples. The
least-square-optimum solution is the linear regression

𝑦 = 𝐵𝑥 + 𝑎 (2.17)

with matrix 𝐵 from (2.15). The bias vector 𝑎 can be received by extending the matrix 𝑋 by a
unit row and applying the pseudo-inversion of such an extended matrix. The last column of
such an extended regression matrix corresponds to the column bias vector 𝑎.

The linear regression matrix is 𝑚 × 𝑛 for input dimension 𝑛 and output dimension 𝑚, its SVD is
as in (2.1).
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With more than 𝑛 independent training examples, the regression matrix 𝐵 and also the matrix 𝑆
are full rank with singular values on the diagonal of 𝑆.

There may be reasons for assuming that there are random data errors, without which the rank
of 𝐵would not be full. This would amount to the assumption that some of the training examples
are, in fact, linearly dependent or even identical and only the random data errors make them
different. To ensure correct generalization, it would then be appropriate to assume a lower rank
of the regression matrix. This will suggest using the approximating property of SVD with a
reduced singular value set. Leaving out the components with small singular values may be
equivalent to removing the data noise. Taking a matrix 𝑆mod with ̂𝑟 largest singular values while
zeroing the remaining ones (see, e.g., [TB97]) results in a matrix according to (2.7):

𝐵mod = 𝑈mod𝑆mod𝑉 𝑇
mod (2.18)

that has the least matrix 𝐿2 norm
‖𝐵 − 𝐵mod‖2 (2.19)

out of all existing matrices 𝐵mod with rank ̂𝑟. The 𝐿2 matrix norm is induced by the 𝐿2 vector
norm, as defined in Equation 2.10. The definition (2.10) of the 𝐿2 matrix norm has an implication
for the accuracy of the forecasts with help of 𝑅 and 𝑅mod:

‖𝐵 − 𝐵mod‖2 = max
𝑥

‖(𝐵 − 𝐵mod) 𝑥‖2
‖𝑥‖2

= max
𝑥

‖𝑦 − 𝑦mod‖2
‖𝑥‖2

(2.20)

The vector norm of the forecast error equal to the square root of the mean square error is
obviously minimal for a given norm of the input vector. In other words, the modified, reduced-
rank regression matrix has the least maximum forecast deviation from the original regression
matrix relative to the norm of the input vector 𝑥.

2.4.2 Under-determined Problems

A different situation is if the linear regression is under-determined. This is frequently the case in
high-dimensional applications such as CV and corpus-based semantics—the number of training
examples may be substantially lower than the dimensions of the input. The training examples
span a subspace of the input vector space. Using this training information, new patterns can
only be projected onto this subspace. The projection operator, using the same definition of the
input matrix 𝑋 as above, is given as:

�̂� = 𝑋𝑋+𝑥 = 𝑋(𝑋 𝑇𝑋)
−1
𝑋 𝑇𝑥 (2.21)

This can be viewed as a pattern-specific weighting of training examples by a weight vector 𝑤𝑥

�̂� = 𝑋𝑤𝑇
𝑥 (2.22)

To recall the corresponding output, the same weight vector can be used:

̂𝑦 = 𝑌𝑤𝑇
𝑥 = 𝑌𝑋+𝑥 = 𝑌(𝑋 𝑇𝑋)

−1
𝑋 𝑇𝑥 (2.23)
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This is equivalent to solving the regression problem

𝑌 = 𝑅𝑋 (2.24)

with help of the pseudo-inverse (see, e.g., [Koh89]) of 𝑋, which is (2.16) in the under-determined
case.

The regression matrix 𝑅 is, as usual, of size 𝑚 × 𝑛. If the input dimension 𝑚 exceeds the number
of training examples the regression matrix 𝑅 solving Equation 2.24 is not full rank. Its SVD
will exhibit some zero singular values and can be reduced, without a loss of information, to a
reduced form:

𝐵red = 𝑈red𝑆red𝑉 𝑇
red (2.25)

2.5 SVD and Linear Networks

Before establishing the relationship between SVD and nonlinear neural networks, let us consider
hypothetical multi-layer networks with linear units of the form 𝑔 (𝑥) = 𝑥 in the hidden layer.

Suppose a network with one hidden layer of predefined size 𝑝 is used to represent a mapping
from input 𝑥 to output 𝑦. Suppose now that the best linear mapping from input 𝑥 to output 𝑦 is

𝑦 = 𝐵𝑥 (2.26)

The best approximation with a rank limitation to ̂𝑟 and is, according to (2.7):

𝑦 = 𝑈1𝑆1𝑉 𝑇
1 𝑥 (2.27)

This expression can be viewed as a network with one linear hidden layer of width 𝑝 = ̂𝑟. The
weight matrix between the input and the hidden layers is

𝑉 𝑇
1 (2.28)

and that between the hidden and the output layers is

𝑈1𝑆1 (2.29)

This network has the property of being the best approximation of the mapping from the input
to the output between all networks of this size with orthonormal (in the hidden layer) and
orthogonal (in the output layer) weight vectors.

This optimality is not strictly guaranteed to be reached if relaxing the orthogonality constraints.
The difference between the orthogonal and the non-orthogonal solutions depends on the ratio
between the input and the output widths, and on the relative width of the hidden layer in the
following way.

How serious this optimality gap may be can be assessed observing the fraction of the number
of orthogonality constraints to the number of parameters. If this fraction is small, the number
of independent parameters is close to the number of all parameters and the influence of the
orthogonality constraints is small.
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With hidden layer size 𝑟 (equal to the rank of the linear mapping), the total number of constraints
is 𝑟2 + 𝑟. With 𝑚 < 𝑛 and 𝑛 = 𝑞𝑚, 𝑞 ≥ 1, the total number of parameters is (𝑚 + 𝑞𝑚 + 1) 𝑟. The
fraction, and its approximation for realistic values of 𝑟 ≫ 1 is then

𝑟2 + 𝑟
(𝑚 + 𝑞𝑚 + 1) 𝑟

= 𝑟 + 1
𝑚 + 𝑞𝑚 + 1

≈ 𝑟
(1 + 𝑞)𝑚

(2.30)

This fraction decreases with the ratio 𝑚
𝑟 (the degree of feature compression by the network) and

the ratio 𝑞. Since both ratios will usually be large in practical problems of the mentioned domain,
the distance to the optimality after relaxing the orthogonality constraints can be expected to be
small.

2.6 SVD and Initializing Nonlinear Neural Networks

Most popular hidden units possess a linear or nearly linear segment. A sigmoid unit

𝑠 (𝑥) = 1
1 + 𝑒−𝑥

(2.31)

is nearly linear around the point 𝑥 = 0 where its derivative is equal to 0.25. Rescaling this unit
to the symmetric form

𝑓 (𝑥) = 2𝑠 (2𝑥) − 1 = 2
1 + 𝑒−2𝑥

− 1 (2.32)

we obtain a nonlinear function the derivative of which is unity around 𝑥 = 0, plotted in
Figure 2.1.

Its relative deviation from the linear function 𝑔 (𝑥) = 𝑥 is below ten percent for 𝑞|𝑥| < 0.58 (see
Fig. 2.2). So, a neural network with one hidden layer using the sigmoid activation function (2.1)
behaves like a linear network for small activation values of the hidden layer.

This fact can be used for finding a good initial guess of parameters of a nonlinear neural network
with a single hidden layer. The in-going weights into the hidden and output layers are (2.28)
and (2.29), respectively.
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2.7 Computing Experiments

A series of computing experiments have been carried out to assess the real efficiency of using
SVD as a generator of the initial state of neural network parameters. To provide a meaningful
interpretation of the mean square figures attained, all problems have been deliberately defined
to have a minimum at zero. To justify the use of the hidden layer as a feature extractor, its width
should be smaller than the minimum of the input and output sizes. The dimensions have been
chosen so that the full regression would be under-determined (as typical for the application
types mentioned above), but the use of a hidden layer with a smaller width makes it slightly
over-determined. So, the effect of overfitting, harmful for generalization, is excluded.

The software used for SVD computation was the Python module SciPy [OPJ+01]. Neural
networks were optimized by several methods implemented in the popular framework
Keras [Cho+15]: SGD, selected because of its widespread use, as well as Adadelta and RMSprop,
which seem to be the most efficient ones for the problems considered. Typical Keras-methods
are first order and there is a widespread opinion in the neural network community that second-
order methods are not superior to the first order ones. However, there are strong theoretical
and empirical arguments in favor of the second-order methods from numerical mathematics. So
the CG method, as implemented in SciPy, has also been applied. Since the SciPy/Keras interface
failed to work for this method1, efficient Keras-based network evaluation procedures could not
be used. So, for the largest problems, the CG method had to be omitted.

The performance of the optimization methods has been compared with the help of the number
of gradient calls. All methods have been used with the default settings of Keras and SciPy.

Three problem sizes denoted as 𝐴, 𝐵, and 𝐶 have been used. Using different size classes will
make it possible to discern possible dependencies on the problem size if there are any. The
largest size of class 𝐶 is still substantially below that of huge networks such as VGG-19 [SZ15]
used in image classification. The computing effort for making method comparison with such
huge sizes would be excessive for the goals of this study. However, we believe the size is
sufficient for showing trends relevant for very large network sizes.

The three size classes are characterized by their input and output dimensions as well as by
the size of the training set. The concrete network sizes, parameter numbers, and numbers
of constraints (output values to be reached times the number of training examples) are given
in Table 2.1. The column “# constraints” shows the number of constraints imposed by the
reference outputs to be fitted. It is the product of the output dimension and the training set
size. Comparing the number of constraints with the number of parameters defines the over-
determination or the under-determination of the problem (e.g., a problem with more constraints
than parameters is over-determined).

The results for the different size classes are given in Table 2.2. For each network architecture,
three different parametrizations with corresponding training sets have been generated, all with
a known mean square error minimum of zero. For every variant, an SVD has been computed
and used to determine the network initialization. For comparison, five different random network
initializations have been generated. The results below are geometric means of minima reached
(means from three optimization runs for SVD initializations, and means from 3 ⋅ 5 = 15 runs for
random initializations).

The results of four optimization methods are given in the randomly initialized variant and in
the variant initialized with help of the SVD solution.

1Since we use TensorFlow as Keras’ backend execution engine, the resulting computation graph would have been
cut into two different executions for each optimization step which causes a too high computational overhead.
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Table 2.1: Test problem definitions

Type # input # output # hidden # training # parameters # constraints

𝐴 100 50 20 80 3,070 4,000
𝐵 300 150 60 240 27,210 36,000
𝐶 1,000 50 200 800 300,700 400,000

Table 2.2: Mean square minima reached by various optimization methods with random and
SVD-based initial parameter sets

Algorithm Init. size class A size class B size class C

# iter. 𝐹opt × 10−3 # iter. 𝐹opt × 10−3 # iter. 𝐹opt × 10−3

SVD — — 10.200 — 10.559 — 10.814
SGD Random 2,000 30.361 2,000 90.402 2,000 177.095
RMSprop Random 2,000 0.040 2,000 0.096 2,000 0.260
Adadelta Random 2,000 1.290 2,000 6.748 2,000 31.076
CG Random 637 0.002 821 0.012 — —

SGD SVD 2,000 1.779 2,000 4.145 2,000 7.254
RMSprop SVD 2,000 0.030 2,000 0.085 2,000 0.248
Adadelta SVD 2,000 0.062 2,000 0.511 2,000 2.086
CG SVD 316 0.000 233 0.021 — —

The first row, labeled with algorithm “SVD”, shows the minima reached by the SVD solution
without any subsequent optimization. It is obvious that the SVD-based initialization is pretty
good. Its mean square error minimum is substantially better than the weakest Keras-method
SGD with random initialization. For the largest problem size class, SVD without optimization
is also superior to Adadelta with random initialization.

An SVD-based initialization with a subsequent optimization lets SGD reach an acceptable
minimum, with even better results using Adadelta. The best Keras-method, RMSprop, was
clearly inferior to the CG, although CG stopped the optimization substantially earlier that the
fixed iteration number of RMSprop. For both these methods, the improvement by SVD-based
initialization was weak (for CG only in the number of iterations). This is not unexpected: good
optimization methods are able to find the representations similar to the SVD by themselves,
solving a closely related problem with a different numerical procedure.

2.8 Conclusion and Discussion

SVD constitutes a bridge between the linear algebra concepts and multi-layer neural networks—
it is their linear analogy. Besides this insight, it can be used as a good initial guess for the
network parameters. The quality of this initial guess may be, for large problems, better than
weakly performing (but widely used) methods such as SGD ever reach.

It has to be pointed out that as long as the network uses nonlinear hidden units, simply using
this initial guess as ultimate network parameters makes little sense: it would be preferable to
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make the units linear, and use the SVD matrices directly to represent the desired input-output
mapping.

Unfortunately, there seems to be no analogous generalization for networks with multiple hidden
layers. With a hidden layer sequence of monotonically decreasing width (for example, from the
input towards the output) it would be possible to proceed iteratively, by successively adding
hidden layers of decreasing width.

The procedure would start by defining the first hidden layer 𝑧1 (the one with the largest
dimension) and initializing its weights with the help of SVD. Then, the following iterations
over the desired number of hidden layers would be performed:

1. Analyzing the mapping between the output of the last hidden layer considered and the
output layer 𝑧𝑖 → 𝑦 (with 𝑧0 = 𝑥) using SVD.

2. Finding an initial guess of parametrization for the incoming weights to 𝑧𝑖+1.

3. Optimizing the weights of such extended nonlinear network by some appropriate opti-
mization method.

This is a formal generalization of the procedure for the network with a single hidden layer 𝑧1,
as presented above.

However, it is difficult to find a founded justification for this procedure, as it is equally difficult
to find a founded justification for using multiple fully connected hidden layers at all—although
there seems to be empirical evidence in favor of this. Of course, there are good justifications
for using special architectures such as convolutional networks, which are motivated, e.g., by
spatial operators in image processing.
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Chapter 3

Number of Attention Heads vs. Number of
Transformer-encoders in Computer Vision

Abstract Determining an appropriate number of attention heads on one hand and the number
of transformer-encoders, on the other hand, is an important choice for Computer Vision (CV)
tasks using the Transformer architecture. Computing experiments confirmed the expectation
that the total number of parameters has to satisfy the condition of overdetermination (i.e., num-
ber of constraints significantly exceeding the number of parameters). Then, good generalization
performance can be expected. This sets the boundaries within which the number of heads and
the number of transformers can be chosen. If the role of context in images to be classified can
be assumed to be small, it is favorable to use multiple transformers with a low number of heads
(such as one or two). In classifying objects whose class may heavily depend on the context
within the image (i.e., the meaning of a patch being dependent on other patches), the number
of heads is equally important as that of transformers.

3.1 Introduction

Architecture based on the concept of Transformers became a widespread and successful neural
network framework. Originally developed for Natural Language Processing (NLP), it has been
recently also used for applications in CV [Dos+21].

The key concept of a Transformer is (self-) attention. The attention mechanism picks out
segments (or words, tokens, image patches, etc.) in the input data that are building relevant
context for a given segment. This is done by means of segment weights assigned according to
the similarity between the segments. The similarity assignment can be done within multiple
attention heads. Each of these attention heads evaluates similarity in its own way, using its own
similarity matrices. All these matrices are learned through fitting to training data. In addition
to similarity matrices, a transformer (-encoder) adds the results of attention heads and processes
this sum through a nonlinear perceptron whose weights are also learned. Transformer layers
are usually stacked so that the output of one transformer layer is the input of the next one.
Among the most important choices for implementing a transformer-based processing system
are

1. the number of attention heads per transformer-encoder and

2. the number of transformer-encoders stacked.

The user has to select these numbers and the result substantially depends on them but it is
difficult to make recommendations for these choices. Following the general recommendation to
avoid underdetermined configurations (where the number of parameters exceeds the number
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of constraints) and thus overfitting leading to poor generalization, there are still two above-
mentioned numbers to configure: approximately the same number of network parameters
can be reached by taking more attention heads in fewer transformer-encoders or vice versa.
The decision in favor of one of these alternatives may be substantial for the success of the
application. The goal of the present work is to investigate the effect of both numbers on learning
performance with the help of several CV applications.

3.2 Parameter structure of a multi-head transformer

The parameters of a multi-head transformer (in the form of only encoders and no decoders)
consist of:

1. matrices transforming token vectors to their compressed form (value in the transformer
terminology);

2. matrices transforming token vectors to the feature vectors for similarity measure (key
and query), used for context-relevant weighting;

3. matrices transforming the compressed and context-weighted form of tokens back to the
original token vector length;

4. parameters of a feedforward network with one hidden layer;

All these matrices can be concatenated (e.g., column-wise) to a single parameter-vector. Each
transformer-encoder contains the same number of parameters. The total parameter count is
thus proportional to the number of transformer-encoders. Varying the number of heads affects
the parameter count resulting from the transformation matrices of the attention mechanism,
the remaining ones being the parameters of the feedforward network. The total parameter
count is thus less than proportional to the number of heads.

3.3 Measuring the degree of overdetermination

Fitting a parameterized structure to a data set can be viewed as an equation system. 𝑀 outputs
to be fitted for 𝐾 training examples constitute 𝑀𝐾 equations. 𝑃 free parameters whose values
are sought for the best fit correspond to 𝑃 variables. Consequently, we have a system of 𝑀𝐾
equations with 𝑃 variables. Since it is not certain that these equations can be satisfied, it is more
appropriate to speak about constraints instead of equations. In the case of linear constraints,
there are well-known conditions for solvability. Assuming mutual linear independence of
constraints, this system has a unique solution if𝑀𝐾 = 𝑃. The solution is then exactly determined.
With 𝑀𝐾 < 𝑃, the system has an infinite number of solutions—it is underdetermined. In the
case of 𝑀𝐾 > 𝑃, the system is overdetermined and cannot be exactly solved—the solution is
only approximate. One such solution is based on the least-squares, i.e., minimizing the Mean
Square Error (MSE) of the output fit. Usually, the real system on which the training data have
been measured is assumed to correspond to a model (e.g., a linear one) with additional noise.
The noise may reflect measurement errors but also the inability of the model to describe the
reality perfectly. It is desirable that the assumed model is identified as exactly as possible while
fitting the parameters to the noise in the training set is to be avoided. The latter requirement is
justified by the fact that novel patterns not included in the training set will be loaded by different
noise values than those from the training set. This undesirable fitting to the training set noise is
frequently called overfitting. For exactly determined or underdetermined configurations, the fit
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to the training set outputs including the noise is perfect and thus overfitting is unavoidable. For
overdetermined configurations, the degree of overfitting depends on the ratio of the number of
constraints to the number of parameters. This ratio can be denoted as

𝑄 = 𝑀𝐾
𝑃

(3.1)

For a model with a parameter structure corresponding to the real system, it can be shown
that the proportion of noise to which the model is fitted is equal to 1/𝑄. With increasing the
number of training cases, this number is diminishing, with a limit of zero. Asymptotically, the
MSE corresponds, in the case of white Gaussian noise, to the noise variance. In other words,
overfitting decreases with a growing number of training cases. The dependency of MSE on the
number of training samples is

𝐸 = 𝜎2 (1 − 1
𝑄
) = 𝜎2 (1 − 𝑃

𝑀𝐾
) (3.2)

The genuine goal of parameter fitting is to receive a model corresponding to the real system
so that novel cases are correctly predicted. The prediction error consists of an imprecision
of the model and the noise. For a linear regression model, the former component decreases
with the size of the training set since the term (𝑋 ′𝑋)−1 determines the variability of estimated
model parameters (with 𝑋 being the input data matrix) develops with 𝑐1/𝐾. The prediction is a
linear combination of model parameters that amount on average to a constant 𝑐2. The noise
component is inevitable—its level is identical to that encountered in the training set (if both sets
are representative of the statistical population). The resulting dependency is, with constants 𝑃
and 𝑀,

𝐸 = 𝑐2𝜎2(𝑋 ′𝑋)−1 + 𝜎2

=
𝑐1𝑐2𝜎2

𝐾
+ 𝜎2

= 𝑃
𝑀

𝑐1𝑐2𝜎2

𝑄
+ 𝜎2

= 𝜎2 ( 𝑐
𝑄
+ 1)

(3.3)

The shape of dependencies of training and test set MSE is exemplified in Figure 3.1a. The
coefficient of determination on the 𝑥-axis varies as the number of training samples grows. The
output dimension 𝑀 and the number of model parameters 𝑃 are kept constant.

In summary, the MSEs for both the training set and for the novel cases converge to the same level
determined by the variance of noise if the number of training samples grows. The condition for
this is that the model structure is sufficiently expressive to capture the input/output dependence
of the real system. With nonlinear systems, these laws can be approximately justified by
means of linearization. Additionally, nonlinear systems such as layered neural networks exhibit
dependencies between the parameters, the best known of which are the permutations of hidden
layer units. In the Transformer architecture, another source of redundancy are the similarity
matrices of the attention mechanism. This makes the number of genuinely free parameters
𝑃 (as used above) to be below the total number of parameters. However, the number of free
parameters is difficult to assess and thus the total number can be used for a rough estimate (or
as an upper bound). Systems with 𝑄 > 1 are certain to be overdetermined while those with
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Figure 3.1: Training and test set MSE in dependence on determination ratio.

𝑄 < 1 are not necessarily underdetermined. Nevertheless, the ratio 𝑄 is the best we have in
practice.

Figure 3.1a corresponds to the situation where the parameter set is kept constant while the size
of the training set varies. Frequently, the situation for choice is inverse. There is a fixed training
set and an appropriate parameter set is to be determined. Varying (in particular, reducing) the
parameter set (and maybe also the model architecture) will probably violate the condition of
the model being sufficiently expressive to capture the properties of the real system. Reducing
the parameter set represents an additional source of estimation error—the model would not be
able to be perfectly fitted to training data even in the case of zero noise. Then, the training and
test set MSE will develop with an additional term growing with ratio 𝑄 (and decreasing 𝑃). The
shape of this term is difficult to assess in advance without knowledge of the real system. The
typically encountered dependence is depicted in Figure 3.1b (with arbitrary scaling of the MSE).

3.4 Computing results

To show the contribution of the number of heads and that of the number of transformer-
encoders, a series of model fitting experiments has been performed, for several CV classification
tasks. The data sets used have been popular collections of images, frequently used for various
benchmarks. The data sets have been chosen particularity for their match of determination
ratio for the experimental networks. Bigger data sets are deliberately left out. For every task, a
set of tasks with various pairs (ℎ, 𝑡), the number of heads being ℎ and the number of transformer-
encoders being 𝑡, have been optimized. Some combinations with high numbers of both heads
and transformer-encoders had too many parameters and have thus been underdetermined. The
consequence has been a poor test set performance. In the following, a cross-section of the
results is presented:

• four transformer-encoders and any number of attention heads;

• four attention heads and any number of transformer-encoders.

These cross-sections contain mostly overdetermined configurations with acceptable general-
ization properties. The performance has been measured by mean categorical cross-entropy
on training and test sets (further referred to as loss). The 𝑥-axis of Figures 3.1 to 3.6 is the
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Figure 3.2: Training and test set losses of model
variants for dataset MNIST.
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Figure 3.3: Training and test set losses of model
variants for dataset CIFAR-100.

determination ratio 𝑄 of (Equation (3.1)), in logarithmic scale (so that the value 100 corresponds
to 𝑄 = 1). This presentation makes the dependence of the generalization performance (as seen
in the convergence of the training and the test set cross-entropy) on the determination ratio clear.
This ratio grows with the decreasing number of parameters, that is, with the decreasing number
of heads if the number of transformer-encoders is kept to four and the decreasing number of
transformer-encoders if the number of heads is kept to four. The rightmost configuration is
that with a single head or a single transformer-encoder, respectively, followed to the left with
two heads or two transformer-encoders, etc..

The optimization was done exclusively with single precision (float32) over a fixed number of
100 epochs by AdamW [LH19] with a learning rate of 10−3 and a weight decay of 10−4. For
consistency, the batch size was set to 256 for all experiments.

As a simple regularization during training, standard image augmentation techniques were
applied: random translation by a factor of (0.1, 0.1), random rotation by a factor of 0.2, and
random cropping to 80 %.

The patches are flattened and their absolute position is added in embedded form to each patch
before entering the first encoder.

All experiments were individually conducted on one Tesla V100-SXM3-32GB GPU for a total
number of 60 GPU days.

3.4.1 Dataset MNIST

The MNIST [LeC+98] dataset consists of pixel images of digits. All pairs (ℎ, 𝑡) with number of
heads ℎ ∈ {1, 2, 4, 8} and number of transformer-encoders 𝑡 ∈ {1, 2, 4, 8} have been optimized.
The results in the form of loss depending on the determination ratio 𝑄 are given in Figure 3.2.

The gray-scale images were resized to 32 × 32 and the patch size was set to 2. All internal
dimensions (keys, queries, values, feedforward, and model size) are set to 64.

The cross-entropies for the training and the test sets are fairly consistent, due to the determina-
tion ratio 𝑄 > 1. The results are substantially more sensitive to the lack of transformer-encoders:
the rightmost configurations with four heads but one or two transformer-encoders have a poor
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performance. By contrast, using only one or two heads leads only to a moderate performance
loss. In other words, it is more productive to stack more transformer-encoders than to use many
heads. This is not surprising for simple images such as those of digits. The context-dependency
of image patches can be expected to be rather low and to require only a simple attention
mechanism with a moderate number of heads.

3.4.2 Dataset CIFAR-100

The dataset CIFAR-100 [Kri09] is a collection of images of various object categories such as
animals, household objects, buildings, people, and others. The objects are labeled into 100
classes. The training set consists of 50,000, the test set of 10,000 samples. With 𝑀 = 100 and
𝐾 = 50 000, the determination coefficient 𝑄 is equal to unity (100 on the plot x-axis) for 5 million
free parameters (𝑀 × 𝐾). The results are given in Figure 3.3. All pairs (ℎ, 𝑡) with number of
heads ℎ ∈ {1, 2, 4, 8, 16, 32} and number of transformer-encoders 𝑡 ∈ {1, 2, 4, 8, 16, 32} have been
optimized.

The colored images were up-scaled to 64 × 64 and the patch size was set to 8. All internal
dimensions (keys, queries, values, feedforward, and model size) are set to 128.

The cross-entropies for the training and the test sets converge to each other for about 𝑄 > 4,
with a considerable generalization gap for 𝑄 < 1. This can be expected taking theoretical
considerations mentioned in Section 3.3 into account. The results are more sensitive to the lack
of transformer-encoders than to that of heads. How far a high number of transformer-encoders
would be helpful, cannot be assessed because of getting then into the region of 𝑄 < 1. With
this training set size, a reduction of some transformer parameters such as key, query, and value
width would be necessary.

3.4.3 Dataset CUB-200-2011

The training set of the dataset CUB-200-2011 [Wah+11] (birds) used for the image classification
task consists of 5,994 images of birds of 200 species. All pairs (ℎ, 𝑡) with number of heads ℎ ∈
{1, 2, 4, 8} and number of transformer-encoders 𝑡 ∈ {1, 2, 4, 8} have been optimized (Figure 3.4).

The colored images were resized to 128 × 128 and the patch size was set to 8. All internal
dimensions (keys, queries, values, feedforward, and model size) are set to 32.

The cross-entropies for the training and the test sets are mostly consistent due to the high
determination ratio 𝑄. There are relatively small differences between small numbers of heads
and transformer-encoders. Both categories seem to be comparable. This suggests, in contrast
to the datasets treated above, a relatively large contribution of context to the classification
performance—multiple heads are as powerful as multiple transformer-encoders. This is not
unexpected in the given domain: the habitat of the bird in the image background may constitute
a key contribution to classifying the species.

3.4.4 Dataset places365

The training set of dataset places365 [Zho+18] consists of 1,803,460 images of various places in
365 classes (Figure 3.5). Pairs (ℎ, 𝑡) with number of heads ℎ ∈ {1, 2, 4, 8, 16, 32} and number of
transformer-encoders 𝑡 ∈ {1, 2, 4, 8, 16, 32} have been optimized.
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Figure 3.5: Training and test set losses of model
variants for dataset places.

The colored images were resized to 128 × 128 and the patch size was set to 16. All internal
dimensions (keys, queries, values, feedforward, and model size) are set to 32.

The cross-entropies for the training and the test sets are parallel. Surprisingly, test set losses
are lower than those for the training set. This can be caused by an inappropriate test set
containing only easy-to-classify samples. The reason for this training to test consistency is
the very high determination ratio 𝑄 (over 1,000). This would allow even larger numbers of
transformer-encoders and heads without worry about generalization, with a corresponding
high computing expense.

There are hardly any differences between variants with varying heads and those varying
transformer-encoders. With a given total number of parameters (and thus a similar ratio 𝑄),
both categories seem to be equally important. It can be conjectured that there is a relatively
strong contribution of context to the classification performance can be assumed.

3.4.5 Dataset imagenet

The training set of the popular imagenet [KSH12] dataset contains 1,281,167 images of 1,000
different classes of current everyday objects (like airplanes, cars, different types of animals, etc.)

For this dataset, the pairs (ℎ, 𝑡) with number of heads ℎ ∈ {1, 2, 4, 8} and number of transformer-
encoders 𝑡 ∈ {1, 2, 4, 8} have been optimized.

Analog to the places experiment, the colored images were resized to 128 × 128 and the patch
size was set to 16. All internal dimensions (keys, queries, values, feedforward, and model size)
are set to 64.

For this experiment, it can be seen in the determination ratios in Figure 3.6 that it behaves
similarly to the dataset places (in Figure 3.5). Again, the test loss is consistently lower than
the training loss. The lowest cross-entropies are comparable which means, analog to places,
that increasing the number of attention heads and the number of transformer-encoder layers is
beneficial to the performance. Compared to the other experiments, the determination ratio is
very high (103 to 104) which means that the number of parameters in the classification network
is too small and even larger stacks of transformer-encoders with more attention heads could
decrease the loss even further.
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Figure 3.6: Training and test set losses of model variants for dataset imagenet.

Looking at the varying number of attention heads, it can be seen that their number has a low
impact on the performance.

3.5 Conclusions

Determining the appropriate number of self-attention heads on one hand and, on the other
hand, the number of transformer-encoder layers is an important choice for CV tasks using the
Transformer architecture.

A key decision concerns the total number of parameters to ensure good generalization perfor-
mance of the fitted model. The determination ratio 𝑄, as defined in Section 3.3, is a reliable
measure: values significantly exceeding unity (e.g., 𝑄 > 4) lead to test set loss similar to that of
the training set. This sets the boundaries within which the number of heads and the number of
transformer-encoders can be chosen.

Different CV applications exhibit different sensitivity to varying and combining both numbers.

• If the role of context in images to be classified can be assumed to be small, it is favorable
to “invest” the parameters into multiple transformer-encoders. With too few transformer-
encoders, the performance will rapidly deteriorate. Simultaneously, a low number of
attention heads (such as one or two) is sufficient.

• In classifying objects whose class may heavily depend on the context within the image
(i.e., the meaning of a patch being dependent on other patches), the number of attention
heads is equally important as that of transformer-encoders.

This seems to be consistent with other experiments like [Li+22] where the optimal number of
attention heads depends on the dataset.

Future work Although this study provides a systematic comparison between the number of
attention heads and number of consecutive transformer-encoders, the sheer number of different
hyperparameters is still underrepresented. The hyperparameters in this study were chosen for
the task at hand, e.g. the patch size was chosen accordingly to the input image size. However,
the patch size is on its own a crucial hyperparameter which might lead to different results if
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chosen differently. Any of the listed hyperparameters in the experiments (Section 3.4) need the
same systematic analysis as the current study. This is left out for future work.
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Chapter 4

Training Neural Networks in Single vs.
Double Precision

Abstract The commitment to single-precision floating-point arithmetic is widespread in the
deep learning community. To evaluate whether this commitment is justified, the influence
of computing precision (single and double precision) on the optimization performance of the
Conjugate Gradient (CG) method (a second-order optimization algorithm) and Root Mean Square
Propagation (RMSprop) (a first-order algorithm) has been investigated. Tests of neural networks
with one to five fully connected hidden layers and moderate or strong nonlinearity with up
to 4 million network parameters have been optimized for Mean Square Error (MSE). The
training tasks have been set up so that their MSE minimum was known to be zero. Computing
experiments have disclosed that single-precision can keep up (with superlinear convergence)
with double-precision as long as line search finds an improvement. First-order methods such
as RMSprop do not benefit from double precision. However, for moderately nonlinear tasks,
CG is clearly superior. For strongly nonlinear tasks, both algorithm classes find only solutions
fairly poor in terms of mean square error as related to the output variance. CG with double
floating-point precision is superior whenever the solutions have the potential to be useful for
the application goal.

4.1 Introduction

In the deep learning community, the use of single precision computing arithmetic (the float32
format) became widespread. This seems to result from the observation that popular first-order
optimization methods for deep network training (steepest gradient descent methods) do not
sufficiently benefit from a precision gain if the double-precision format is used. This has even
led to a frequent commitment to hardware without the capability of directly performing double-
precision computations. For convex minimization problems, the second-order optimization
methods are superior to the first-order ones in convergence speed. As long as convexity is given,
their convergence is superlinear—the deviation from the optimum in decimal digits decreases as
fast as or faster than the number of iterations. This is why it is important to assess whether and
how far the accuracy of the second-order methods can be improved by using double precision
computations (that are standard in many scientific and engineering solutions).

4.2 Second-order optimization methods: factors depending on
machine precision

Second-order optimization methods are a standard for numerical minimization of functions
with a single local minimum. A typical second-order method is the CG algorithm [FR64].
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(There are also attempts to develop dedicated second-order methods, e.g., Hessian-free opti-
mization [Mar10].) In contrast to the first-order methods, it modifies the actual gradient in a
way such that the progress made by previous descent steps is not spoiled in the actual step. The
algorithm is stopped if the gradient norm is smaller than some predefined small constant. CG
has the property if previous descent steps have been optimal in their descent direction, that is if
a precise minimum has been reached in this direction. This is reached by a one-dimensional
optimization subroutine along the descent direction, called line search. Line search successively
maintains three points along this line, the middle of which has a lower objective function value
than the marginal ones. The minimization is done by shrinking the interval embraced by the
three points. The stopping rule of line search consists in specifying the width of this interval at
which the minimum has been reached with sufficient precision. The precision at which this can
be done is limited by the machine precision. Second-order methods may suffer from insufficient
machine precision in several ways related to the imprecision of both gradient and objective
function value computation:

• The lack of accuracy of the gradient computation may lead to distorted descent direction.

• It may also lead to a premature stop of the algorithm since the vanishing norm can be
determined only with limited precision.

• It may lead to wrong embracing intervals of line search (e.g., with regard to the inequalities
between the three points).

• It may also lead to a premature stop of line search if the interval width reduction no
longer succeeds.

There are two basic parameters to control the computation of the CG optimization: There is
a threshold for testing the gradient vector for being close to zero. This parameter is usually
set at a value close to the machine precision, for example, 10−7 for single-precision and 10−14
for double-precision. The only reason to set this parameter to a higher value is to tolerate
a less accurate solution for economic reasons. Another threshold defines the width of the
interval embracing the minimum of line search. Following the convexity arguments presented
in [Pre+92], this threshold should not be set to a lower value than a square root of machine
precision to prevent useless line search iterations hardly improving the minimum. Its value
is above 10−4 for single precision and 3 × 10−8 for double precision [Pre+92]. There may be
good reasons to use even higher thresholds: low values lead to more line search iterations per
one gradient iteration. Under overall constraints of computing resources such as limiting the
number of function calls, it may be more efficient to accept a less accurate line search minimum,
gaining additional gradient iterations. The experiments have shown that the influence of the
tolerance parameter is surprisingly low. There is a weak preference for large tolerances. This is
why the tolerance of 10−1 has been used for both single and double precision in the following
experiments. The actual influence in the typical neural network optimization settings can be
evaluated only experimentally. To make the results interpretable, it is advantageous to use
training sets with known minimums. They can be generated in the following way:

1. Define a neural network with specified (e.g., random) weights.

2. Define a set of input values.

3. Determine the output values resulting from the forward pass of the defined network.

4. Set up a training set consisting of the defined input values and the corresponding computed
results.

This training set is guaranteed to have a minimum error of zero.
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4.3 Controlling the extent of nonlinearity

It can be expected that the influence of machine precision depends on the problem. The most
important aspect is the problem size. Beyond this, the influence can be different for relatively
easy problems close to convexity (nearly linear mappings) on one hand and strongly non-convex
problems (nonlinear mappings). This is why it is important to be able to generate problems
with different degrees of non-convexity. The tested problems are feedforward networks with
one, two, or five consecutive hidden layers, and a linear output layer. The bias is ignored in all
layers. All layers are fully connected. For the hidden layers, the symmetric sigmoid with unity
derivative at 𝑥 = 0 has been used initially as the activation function:

2
1 + 𝑒−2𝑥

− 1 (4.1)

Both input pattern values and network weights used for the generation of output patterns are
drawn from the uniform distribution. The distribution of input values is uniform on the interval
⟨𝑎, 𝑏⟩ = ⟨−1, 1⟩ whose mean value is zero and variance is

𝑏3 − 𝑎3

3 (𝑏 − 𝑎)
= 1

3
(4.2)

To control the degree of nonlinearity during training data generation, the network weights are
scaled by a factor 𝑐 so that they are drawn from the uniform distribution ⟨−𝑐, 𝑐⟩. The variance
of the product of an input variable 𝑥 and its weight 𝑤 is
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(4.3)

For large 𝑁, the sum of 𝑁 products 𝑤𝑖𝑥𝑖 converges to the normal distribution with variance 𝑁 𝑐2
9

and standard deviation √𝑁 𝑐
3 . This sum is the argument of the sigmoid activation function of the

hidden layer. The degree of nonlinearity of the task can be controlled by a normalized factor 𝑑
such that 𝑐 = 𝑑

√𝑁
, resulting in the standard deviation 𝑑

3 of the sigmoid argument. In particular, it
can be evaluated which share of activation arguments is larger than a certain value. Concretely,
about twice the standard deviation or more is expected to occur in 5 % of the cases.

If a sigmoid function of the form Equation (4.1) is directly used, its derivative is close to zero with
values of input argument 𝑥 approaching 2. For normalizing factor 𝑑 = 2, the derivative is lower
than 0.24 at 5 % of the cases, compared to the derivative of unity for 𝑥 = 0. For normalizing
factor 𝑑 = 4, the derivative is lower than 0.02 at 5 % of the cases. The vanishing gradient problem
is a well-known obstacle to the convergence of the minimization procedure. The problem can
be alleviated if the sigmoid is supplemented by a small linear term defining the guaranteed
minimal derivative.

(1 − ℎ) ( 2
1 + 𝑒−2𝑥

− 1) + ℎ𝑥 (4.4)
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For such sigmoid without saturation with ℎ = 0.05, the derivatives are more advantageous: For
normalizing factor 𝑑 = 2, the derivative is lower than 0.28 at 5 % of the cases, compared to the
derivative of unity for 𝑥 = 0. For normalizing factor 𝑑 = 4, the derivative is lower than 0.07 at
5 % of the cases.

This activation function Equation (4.4) is used for the strongly nonlinear training scenarios.

4.4 Comparison with RMSprop

In addition to comparing the performance of the CG algorithm (as a representative of second-
order optimization algorithms) with alternative computing precisions, it is interesting to know
how competitive the CG algorithm is compared with other popular algorithms (mostly first-
order). Computing experiments with the packages TensorFlow/Keras [Aba+15; Cho+15] and vari-
ous default optimization algorithms suggest a clear superiority of one of them: RMSprop [Hin12].
In fact, this algorithm was the only one with performance comparable to CG. Other popular
algorithms such as Stochastic Gradient Descent (SGD) were inferior by several orders of magni-
tude. This makes a comparison relatively easy: CG is to be contrasted to RMSprop. RMSprop
modifies the simple fixed-step-length gradient descent by adding a scaling factor √𝑑𝑡 ,𝑖 depending
on the iteration 𝑡 and the network parameter element index 𝑖.

𝑤𝑡+1,𝑖 = 𝑤𝑡 ,𝑖 −
𝑐

√𝑑𝑡 ,𝑖

𝜕𝐸 (𝑤𝑡 ,𝑖)
𝜕𝑤𝑡 ,𝑖

𝑑𝑡 ,𝑖 = 𝑔𝑑𝑡−1,𝑖 + (1 − 𝑔) (𝜕
𝐸 (𝑤𝑡−1,𝑖)
𝜕𝑤𝑡−1,𝑖

)
2 (4.5)

This factor corresponds to the weighted norm of the derivative sequence of the given parameter
vector element. In this way, it makes the steps of parameters with small derivatives larger than
those with large derivatives. If the convex error function is imagined to be a “bowl”, it makes a
lengthy oval bowl more circular and thus closer to a normalized problem. It is a step toward
the normalization done by CG but only along the axes of individual parameters, not their linear
combinations.

4.5 Computing results

The CG method [Pre+92] with Brent line search has been implemented in C and applied to
the following computing experiments. It has been verified by form published in [NW06]
(implemented in the scientific computing framework SciPy [Vir+20]), with line search algorithm
from [Wol69].

All training runs are optimized with a limit of 3,000 epochs for tasks with up to four million
parameters. Smaller tasks had around 30,000, 300,000, and 1 million parameters. The configura-
tion of the reported largest networks with one or five hidden layers can be seen in Table 4.1.
The mentioned epoch limit cannot be satisfied exactly since the CG algorithm always stops
after a complete conjugate gradient iteration and thus a complete line search could consist of
multiple function/gradient calls. The number of gradient calls is generally variable per one
optimization iteration, however, during the experiments they were always evaluated as often as
forward passes.
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Table 4.1: The two different network configurations with four million parameters.

Name # Inputs # Outputs # Hidden Layers Hidden Layer Size # parameters

4mio-1h
4,000 2,000

1 680 4,080,000
4mio-5h 5 510 4,100,400

The concept of an epoch in both types of experiments corresponds to one optimization step
through the full training data with exactly one forward and one backward pass. For CG, the
number of forward/backward passes can vary independently and the number of equivalent
epochs is adapted accordingly: a forward pass alone (as used in line search) counts as one
equivalent epoch while forward and backward pass (as used in gradient computations) counts
as two. This is conservative with regard to the CG computing expense. The ratio between the
computing expense for a backward pass and that for a forward pass are varying in dependence
on the number of hidden layers: it is one with no hidden layer and approaches two with the
number of hidden layers growing. With this definition, CG can be handicapped by up to 33 %
in the following reported results. In the further text, epochs refer to equivalent epochs.

Using higher machine precision with first-order methods, including RMSprop, brings about
no significant effect. Rough steps in the direction of the gradient, modified by equally rough
scaling coefficients, whose values are strongly influenced by user-defined parameters such as 𝑔
in (Equation (4.5)) do not benefit from high precision. In none of our experiments with both
precisions, there was a discernible advantage by double-precision. This is why the following
comparison is shown for

• single and double precision CG method and

• single precision RMSprop.

To assess the optimization performance, statistics over large numbers of randomly generated
tasks would have to be performed. However, resource limitations of the two implementation
frameworks do not allow such a consequent approach for large networks with at least millions of
parameters. And it is just such large networks for which the choice of the optimization method
is important. This is why several tasks of progressively growing size have been generated
for networks with depths of one, two, and five hidden layers, one for each combination of
size and depth. Every task has been run with single and double precision. In the following,
only the results for the largest network size are reported since no significant differences have
been observed for smaller networks. The networks with two hidden layers behave like a
compromise between a single hidden layer and five hidden layers and are thus also omitted
from the presentation.

To interpret the differences between such attempts, random influences affecting even such
well-defined algorithms as CG are to be taken into account. The convexity condition can be (and
frequently is) violated so that better algorithms may be set to a suboptimal search path for some
time. For the final result to be viewed as better, the difference must be significant. Intuitively,
differences by an order of magnitude or more can be taken as significant while factors of three,
two, or less are not so—they may turn to the opposite if provided some additional iterations.

To make the minimum MSE reached practically meaningful, the results are presented as a
quotient 𝑄 of the finally attained MSE and the training set output variance. In this form, the
quotient corresponds to the complement of the well-known coefficient of determination 𝑅2,
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Figure 4.1: The largest one/five-hidden-layer networks (four million parameters) with moderate
nonlinearity, loss progress (in log scale) in dependence on the number of epochs.

which is the ratio of the variability explained by the model to the total variability of output
patterns. The relationship between both is

𝑄 = MSE
Var (𝑦)

= 1 − 𝑅2 (4.6)

If 𝑄 is, for example, 0.01, the output can be predicted by the trained neural network model with
an MSE corresponding to 1 % of its variance.

4.5.1 Moderately nonlinear problems

Networks with weights generated with nonlinearity parameter 𝑑 = 2 (see Section 4.3) can be
viewed as moderately nonlinear.

Optimization results with shallow (single-hidden-layer) neural networks have shown that the
minimumMSE (known to be zero due to the task definitions) can be reached with a considerable
precision of 10−6 to 10−20 even for the largest networks. While double-precision computation
is not superior to single precision for smaller networks (in a range of one order of magnitude),
the improvements for the networks with one and four million parameters are in the range of
two to six orders of magnitude. The optimization progress for the largest network, comparing
the dependence on the number epoch equivalents for single and double-precision arithmetic is
shown in Figure 4.1a.

With both precisions, CG exhibits superlinear convergence property: between epochs 1,000
and 6,000, the logarithmic plot is approximately a straight line. So every iteration leads to an
approximately fixed multiplicative gain of precision of the minimum actually reached. The
single-precision computation, however, stops after 2,583 epochs (156 iterations) because line
search can’t find a better result given the low precision boundary. In other words, the line search
in single precision is less efficient. This would be an argument in favor of double precision.

For the network with a single hidden layer, the CG algorithm is clearly superior to RMSprop.
The largest network attains a minimum error precision better by five orders of magnitude, and
possibly more when increasing the number of epochs. The reason is the superlinear convergence
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of CG obvious from (Figure 4.1a). It is interesting that in the initial phase, RMSprop descends
faster, quickly reaching the level that is no longer improved in the following iterations.

However, with a growing number of hidden layers, the situation changes. For five hidden layers,
single-precision computations lag behind by two orders of magnitude. The reason for this lag
is different from that observed with the single-hidden-layer tasks: the single-precision run
is prematurely stopped after less than five CG iterations, because of no improvement in the
line search. This is why the line of the loss for single-precision CG can hardly be discerned
in Figure 4.1b. By contrast, the double-precision run proceeds until the epoch limit is reached
(655 iterations).

As seen in Figure 4.1b, the superlinear convergence property with the double-precision computa-
tion is satisfied at least segment-wise: a faster segment until about 1,000 epoch equivalents and
a slower segment from epoch 4,000. Within each segment, the logarithmic plot is approximately
a straight line. (Superlinearity would have to be rejected if the precision gain factors would be
successively slowing down, particularly within the latter segment.)

For RMSprop, a lag behind the CG can be observed with five hidden layers, but the advance of
CG is minor—one order of magnitude. However, the plot suggests that CG has more potential
for further improvement if provided additional resources. Once more, RMSprop exhibits fast
convergence in the initial optimization phase followed by weak improvements.

4.5.2 Strongly nonlinear problems

Mapping tasks generated with nonlinearity parameter 𝑑 = 4 imply strong nonlinearities in the
sigmoid activation functions with 5 % of activations having an activation function derivative of
less than 0.02. With a linear term avoiding saturation (Equation (4.4)), this derivative grows
to 0.07, a still very low value compared to the unity derivative in the central region of the
sigmoid. With CG, the parameter optimization of networks of various sizes with one hidden
layer and two hidden layers shows no significant difference between single and double-precision
computations. The attainable accuracy of the minimum has been, as expected, worse than for
moderately nonlinear tasks but still fairly good: almost 10−5 for a single hidden layer and 10−2
for two hidden layers.

The relationship between both CG and RMSprop is similar for single-hidden-layer networks
(Figure 4.2a)—CG is clearly more efficient. The attainable precision of error minimum is, as
expected, worse than for moderately nonlinear tasks.

For five hidden layers, a similar phenomenon as for moderately nonlinear tasks can be observed:
the single-precision computation stops prematurely because line search fails to find an improved
value (see Figure 4.2b). The minimum reached is in the same region as the initial solution.

The convergence of both algorithms (CG and RMSprop) is not very different with five hidden
layers—superiority of CG is hardly significant. Here, the superlinear convergence of CG is
questionable. The reason for this may be a lack of convexity of the MSE with multiple hidden
layers and strongly nonlinear relationships between input and output. It is important to point
out that the quality of the error minimum found is extraordinarily poor: the MSE is about 10 %
of the output variance. This is 30 % in terms of standard deviation, which may be unacceptable
for many applications.
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Figure 4.2: The largest one/five-hidden-layer networks (four million parameters) with strong
nonlinearity, loss progress (in log scale) in dependence on the number of epochs.

4.6 Summary and discussion

With the CG optimization algorithm, double precision computation is superior to single-
precision in two cases:

1. For tasks relatively close to convexity (single-hidden-layer networks with moderate
nonlinearity), the optimization progress with double-precision seems to be faster due
to a smaller number of epochs necessary to reach a line search minimum with a given
tolerance. This allows the algorithm to perform more CG iterations with the same
number of epochs. However, since both single and double precision have the superlinear
convergence property, the gap can be bridged by allowing slightly more iterations with
single precision to reach a result equivalent to that of double precision.

2. For difficult tasks with multiple hidden layers and strong nonlinearities, a more serious
flaw of single-precision computation occurs: a premature stop of the algorithm because
of failing to find an objective function improvement by line search. This may lead to
unacceptable solutions.

In summary, it is advisable to use double precision with the second-order methods.

The CG optimization algorithm (with double precision computation) is superior to the first-order
algorithm RMSprop in the following cases:

1. Tasks with moderate nonlinearities. The advance of CG is large for shallow networks and
less pronounced for deeper ones. Superlinear convergence of CG seems to be retained
also for the latter group.

2. Tasks with strong nonlinearities modeled by networks with a single hidden layer. Also
here, superlinear convergence of CG can be observed.

For tasks with strong nonlinearities and multiple hidden layers, both CG and RMSprop (which
has been by far the best converging method from those implemented in the popular Tensor-
Flow/Keras frameworks) show very poor performance. This is documented by the square error
attained, whose minimum is known to be zero in our training examples. In practical terms,
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such tasks can be viewed as “unsolvable” because the forecast error is too large in relation to
the output variability—the model gained does not really explain the behavior of the output.

The advance of RMSprop, if any, in some of the strongly nonlinear cases is not very significant
(factors around two). By contrast, for tasks with either moderate nonlinearity or shallow
networks, the CGmethod is superior. In these cases, the advance of CG is substantial (sometimes
several orders of magnitude). So in the typical case where the extent of nonlinearity of the task
is unknown, CG is the safe choice.

It has to be pointed out that tasks with strong nonlinearities in individual activation functions
are, strictly speaking, intractable by any local optimization method. Strong nonlinearities sum
up to strongly non-monotonous mappings. But square errors of non-monotonous mappings
are certain to have multiple local minima with separate attractors. For large networks of
sizes common in today’s data science, the number of such separate local minima is also large.
This reduces the chance of finding the global minimum to a practical impossibility, whichever
optimization algorithms are used. So the cases in which the CG shows no significant advantage
are just those “hopeless” tasks.

Next to the extent of nonlinearity, the depth of the network is an important category where the
alternative algorithms show different performances. The overall impression that the advance
of the CG method over RMSprop shrinks with the number of hidden layers, that is, with the
depth of the network, may suggest the conjecture that it is not worth using CG with necessarily
double-precision arithmetic for currently preferred deep networks [Hea18].

However, the argument has to be split into two different cases:

1. networks with fully connected layers

2. networks containing special layers, in particular convolutional ones.

In the former case, the question is how far it is useful to use multiple fully connected hidden
layers at all. Although there are theoretical hints that in some special tasks, deep networks with
fully connected layers may provide a more economical representation than those with shallow
architectures [Mon+14] or [DB11], the systematic investigation of [BHH19a] has disclosed
no usable representational advantage of deep networks. In addition to it, deep networks are
substantially harder to train and thus exploit their representational potential. This can also be
seen in the results presented here. Networks with five hidden layers, although known to have a
zero error minimum, have not been able to be trained to a square error of less than 10 % of the
output variability. Expressed in standard deviation, the standard deviation of the output error is
more than 30 % of the standard deviation of the output itself. These 30 % do not correspond to
noise inherent to the task (whose error minimum is zero on the training set) but to the error
caused by the inability of local optimization methods to find a global optimum. This is a rather
poor forecast. In the case of the output being a vector of class indicators, the probability of
frequently confusing the classes is high. In this context, it has to be pointed out that no exact
methods exist for finding a global optimum of nonconvex tasks of sizes typical for data science
with many local minima. The global optimization of such tasks is an NP-complete problem
with solution time exponentially growing with the number of parameters. This documents the
infeasibility of tasks with millions of parameters.

Limitation to fully connected networks The conjectures of the present work cannot
be simply extrapolated to networks containing convolutional layers—this investigation was
concerned only with fully connected networks. The reason for this scope limitation is that it is
difficult to select a meaningful prototype of a network with convolutional layers, even more one
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with a known error minimum—the architectures with convolutional layers are too diversified
and application-specific. So the question is which optimization methods are appropriate for
training deep networks with multiple convolutional layers but a low number of fully connected
hidden layers (maybe a single one). This question cannot be answered here, but it may be
conjectured that convolutional layers are substantially easier to train than fully connected ones,
for two reasons:

1. Convolutional layers have only a low number of parameters (capturing the dependence
within a small environment of a layer unit).

2. The gradient with regard to convolutional parameters tends to be substantially larger
than that of fully connected layers since it is a sum over all unit environments within the
convolutional layer. In other words, convolutional parameters are “reused” for all local
environments that make their gradient grow.

This suggests a meaningful further work: to find some sufficiently general prototypes of net-
works with convolutional layers and to investigate the performance of alternative optimization
methods on them, including the influence of machine precision for the second-order methods.
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Chapter 5

Make Deep Networks Shallow Again

Abstract Deep neural networks have a good success record and are thus viewed as the best
architecture choice for complex applications. Their main shortcoming has been, for a long time,
the vanishing gradient which prevented the numerical optimization algorithms from acceptable
convergence. A breakthrough has been achieved by the concept of residual connections—an
identity mapping parallel to a conventional layer. This concept is applicable to stacks of layers
of the same dimension and substantially alleviates the vanishing gradient problem. A stack
of residual connection layers can be expressed as an expansion of terms similar to the Taylor
expansion. This expansion suggests the possibility of truncating the higher-order terms and
receiving an architecture consisting of a single broad layer composed of all initially stacked
layers in parallel. In other words, a sequential deep architecture is substituted by a parallel
shallow one. Prompted by this theory, we investigated the performance capabilities of the
parallel architecture in comparison to the sequential one. The Computer Vision (CV) datasets
MNIST and CIFAR10 were used to train both architectures for a total of 6,912 combinations
of varying numbers of convolutional layers, numbers of filters, kernel sizes, and other meta
parameters. Our findings demonstrate a surprising equivalence between the deep (sequential)
and shallow (parallel) architectures. Both layouts produced similar results in terms of training
and validation set loss. This discovery implies that a wide, shallow architecture can potentially
replace a deep network without sacrificing performance. Such substitution has the potential to
simplify network architectures, improve optimization efficiency, and accelerate the training
process.

5.1 Introduction

Deep neural networks (i.e., networks with many nonlinear layers) are widely considered to be
the most appropriate architecture for mapping complex dependencies such as those arising in
Artificial Intelligence tasks. Their potential to map intricate dependencies has advanced their
widespread use.

For example, the study [Mei+23] compares the first deep convolutional network for image
classification with two sequential convolutional layers LeNet [LeC+89] to its deeper evolution
VGG16 [SZ15] with 13 sequential convolutional layers. While the performance gain in this
comparison was significant, further increasing the depth resulted in very small performance
gains. Adding three additional convolutional layers to VGG16 improved the validation error
slightly from 25.6 % to 25.5 % on the ILSVRC-2014 competition dataset [Rus+15], while increasing
the number of trainable parameters from 138M to 144M.

However, training these networks remains a significant challenge, often navigated through
numerical optimization methods based on the gradient of the loss function. In deeper networks,
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the gradient can significantly diminish particularly for parameters distant from the output,
leading to the well-documented issue known as the “vanishing gradient”.

A breakthrough in this challenge is the concept of residual connections: using an identity
function parallel to a layer [He+16]. Each residual layer consists of an identity mapping copying
the layer’s input to its output and a conventional weighted layer with a nonlinear activation
function. This weighted layer represents the residue after applying the identity. The output of
the identity and the weighted layer are summed together, forming the output of the residual
layer. The identity function plays the role of a bridge—or “highway” [SGS15]—transferring the
gradient w.r.t. layer output into that of the input with unmodified size. In this way, it increases
the gradient of layers remote from the output.

The possibility effectively training deep networks led to the widespread use of such residual con-
nection networks and to the belief that this is the most appropriate architecture type [MLP17].
However, extremely deep networks such as ResNet-1000 with ten times more layers than
ResNet-101 [He+16] often demonstrate a performance decline.

Although there have been suggestions for wide architectures like EfficientNet [TL19], these are
still considered “deep” within the scope of this paper.

This paper questions the assumption that deep networks are inherently superior, particularly
considering the persistent gradient problems. Success with methods like residual connections
can be mistakenly perceived as validation of the superiority of deep networks, possibly hindering
exploration into potentially equivalent or even better-performing “shallow” architectures.

To avoid such premature conclusions, we examine in this paper the relative performance of
deep networks over shallow ones, focusing on a parallel or “shallow” architecture instead of
a sequential or “deep” one. The basis of the investigation is the mathematical decomposition
of the mapping materialized by a stack of convolutional residual networks into a structure
that suggests the possibility of being approximated by a shallow architecture. By exploring
this possibility, we aim to stimulate further research, opening new avenues for AI architecture
exploration and performance improvement.

5.2 Decomposition of stacked residual connections

A layer of a conventional multilayer perceptron can be thought of as a mapping 𝑦 = 𝐹ℎ (𝑥).
With the residual connection concept [He+16], this mapping is modified to

𝑦 = 𝐼𝑥 + 𝐹ℎ (𝑥) (5.1)

For the ℎ-th hidden layer, the recursive relationship is

𝑧ℎ = 𝐼𝑧ℎ−1 + 𝐹ℎ (𝑧ℎ−1) (5.2)

For example, the second and the third layers can be expanded to

𝑧2 = 𝐼𝑧1 + 𝐹2 (𝑧1) (5.3)

and
𝑧3 = 𝐼𝑧2 + 𝐹3 (𝑧2)

= 𝐼 (𝐼 𝑧1 + 𝐹2 (𝑧1)) + 𝐹3 (𝐼 𝑧1 + 𝐹2 (𝑧1))
= 𝐼 𝑧1 + 𝐹2 (𝑧1) + 𝐹3 (𝐼 𝑧1 + 𝐹2 (𝑧1))

(5.4)
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5.2 Decomposition of stacked residual connections

In the operator notation, it is

𝑧ℎ = 𝑧ℎ−1 + 𝐹ℎ ∗ 𝑧ℎ−1 = (𝐼 + 𝐹ℎ) ∗ 𝑧ℎ−1 (5.5)

For linear operators, the recursion up to the final output vector 𝑦 can be explicitly expanded [see
Hry+23, Section 6.7.3.1]

𝑦 = 𝐼 ∗ 𝑥 +
𝐻
∑
ℎ=1

𝐹ℎ ∗ 𝑥 +
𝐻
∑
ℎ=1

𝐻
∑

𝑘=1,𝑘>ℎ
𝐹𝑘 ∗ 𝐹ℎ ∗ 𝑥⋯ (5.6)

with all combinations of operator triples, quadruples, etc. up to the product of all 𝐻 layer
operators.

Typically, these layer mappings are not linear due to their activation functions such as sigmoid,
tanh, or ReLU. As a result, it does not satisfy the condition 𝐹ℎ (𝑥 + 𝑧) = 𝐹ℎ (𝑥) + 𝐹ℎ (𝑧). However,
their gradient is a linear operator. In a multilayer perceptron with a residual connection, the
error gradient w.r.t. the output of the ℎ-th layer is

𝜕𝐸
𝜕𝑧ℎ

= (
𝐻
∏
𝑘=ℎ+1

𝜕𝑧𝑘
𝜕𝑧𝑘−1

) 𝜕𝐸
𝜕𝑧𝐻

= (
𝐻
∏
𝑘=ℎ+1

(𝐼 + 𝑊 𝑇
𝑘 ∇𝐹𝑘))

𝜕𝐸
𝜕𝑧𝐻

(5.7)

The error gradient w.r.t. the weights is, for both standard layers and those with residual connec-
tion

𝜕𝐸
𝜕𝑊ℎ

= ∇𝐹ℎ
𝜕𝐸
𝜕𝑧ℎ

𝑧𝑇ℎ−1 (5.8)

and w.r.t. biases
𝜕𝐸
𝜕𝑏ℎ

= ∇𝐹ℎ
𝜕𝐸
𝜕𝑧ℎ

(5.9)

This shows that the expansion given in Equation (5.6) is valid for an approximation linearized
with the help of the local gradient. In particular, it is valid around the minimum.

In an analogy to Taylor expansion, it can be hypothesized that the first two terms

𝑦 = 𝐼 ∗ 𝑥 +
𝐻
∑
ℎ=1

𝐹ℎ ∗ 𝑥 (5.10)

may be a reasonable approximation of the whole mapping in Equation (5.6).

In terms of implementation as neural networks, the stack of layers with residual connections
(as exemplified in Figure 5.1) could be approximated by the parallel architecture such as that
illustrated in Figure 5.2.

Of course, this hypothesis has to be confirmed by tests on real-world problems. If acceptable, it
would be possible to substitute a deep residual network of 𝐻 sequential layers with a “shallow”
network with a single layer consisting of 𝐻 individual modules in parallel, summing their
output vectors. Each of these modules would be equivalent to one layer in the deep architecture.
The main objective is not to prove that both networks are nearly equivalent with the same
parameter set, as this is unlikely to be the case. Rather, the goal is to demonstrate that both
shallow and deep architectures can effectively learn and attain comparable performances on
the given task. The consequence would be that the shallow architecture can reach the same
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Figure 5.1: Overview of the sequential architecture with four consecutive convolutional layers
with eight filters each and their skip connections.
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Figure 5.2: Overview of the parallelized architecture of Figure 5.1 with four convolutional layers
with eight filters each and one skip connection.
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performance as the deep one, with the same number of parameters. This may be relevant for
the preferences in setting up neural networks for particular tasks since shallow networks suffer
less from numerical computing problems such as vanishing gradient.

5.3 Setup of computing experiments

The analysis of Section 5.2 suggests that the expressive power of a network architecture in
which stacked residual connection layers of a deep network are reorganized into a parallel
operation in a single, broad layer, may be close to that of the original deep network. This
hypothesis is to be tested on practically relevant examples.

It is important to point out that residual connection layers are restricted to partial stacks of
equally sized layers (otherwise the unity mapping could not be implemented). A typical use of
such networks is image classification where an image is processed by consecutive layers of size
equal to the (possibly reduced) pixel matrix. The output of this network is usually a vector of
class probabilities that differ in dimensionality from that of the input image. This is the reason
for one or more non-residual layers at the output and some preprocessing non-residual layers
at the input.

Residual connections can be used for any stack of layers of the same dimensions. However,
in domains such as image processing, the layers are mostly of the convolutional type. This is
a layer concept in which the same, relatively small weight matrix, is applied to the neighbor
environment of every position in the input. They are implementing a local operator (such as
edge detection) shifted over the extension of the image. The following benchmark applications
are using convolutional layers.

Filters are a concept in convolutional layers which consist of a multiplicity of such convolution
operators. Each filter convolves individually with the input matrix for generating the output.
Multiple filters in a layer operate independently from each other, building a parallel structure.
The computing experiments reported here were done both with and without multiple filters.
The possibility of making the consecutive layer stack parallel concerns only the middle part
with residual connections of identically sized layers.

For the experiments, the two well-known image classification datasets MNIST [LeC+98] and
CIFAR10 [Kri09] were used. MNIST contains black and white images of handwritten digits
(0–9) while CIFAR10 contains color images of exclusively ten different mundane objects like
“horse”, “ship”, or “dog”. They contain 60,000 (MNIST) and 50,000 (CIFAR10) training examples.
Their respective preconfigured test split of each 10,000 examples are used as validation sets.
While CIFAR10 is evenly distributed among all classes, MNIST is roughly evenly distributed
with a standard deviation of 322 for the training set and 59 for the validation set. We took no
special treatment for this small class imbalance.

A series of computing experiments of all the following possible architectures were run:

• Number of convolutional layers: 1, 2, 4, 8, 16, 32

• Number of filters per convolutional layer: 1, 2, 4, 8, 16, 32

• Kernel size of a filter: 1 × 1, 2 × 2, 4 × 4, 6 × 6, 8 × 8, 16 × 16

• Activation function of each convolutional layer: sigmoid, ReLU
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Figure 5.1 shows the sequential architecture with depth 4 and 8 filters per convolutional layer.
For comparison, the parallelized version is shown in Figure 5.2. The sizes of the filters’ kernels
are not shown because they don’t interfere with the layout.

The images are resized to 32 × 32 pixels to match the varying kernel sizes. For the summation
of the skip connection and the convolutional layer to work out, they need to have the same
dimensionality. Therefore, for preprocessing, the images are linearly mapped to match the
convolutional layers’ output dimensions. To keep the architecture simple and reduce the
possibility of additional side effects, the input is flattened into a one-dimensional vector before
the dense classification layer with ten linear output units. These linear layers are initialized
with the same set of fixed random values throughout all experiments.

The same configuration setup was used for the number of parallel filters per layer. Parallel
filters are popular means of extending a straightforward convolution layer architecture: instead
of each layer being a single convolution of the previous layer, it consists of multiple convolution
filters in parallel. In all well-performing image classifiers based on convolutional layers, multiple
filters are used [Fuk80; KSH12; SZ15].

Throughout all experiments, the parameters of the layers at the same depths were always
initialized with the same random values with a fixed seed. For example, the two layers labeled
𝐴 in Figures 5.1 and 5.2 started their training from the same parameter set.

The categorical cross-entropy loss was employed as the loss function due to its suitability for
multi-label classification problems. This loss served also as the main assessment of the training
performance. An alternative would have been the most popular (and the most meaningful
from the application point of view) metric: classification accuracy. However, it would be a
methodological fault to use a metric that is different from the loss function that is genuinely
optimized. The relationship between cross-entropy loss and classification accuracy is loaded
with random effects and is frequently not even monotonic. This justifies the selection of
cross-entropy loss for performance review.

The batch size was set to 512. The datasets were not shuffled between epochs or experiments,
leading to identical batches throughout all experiment runs.

As the optimizer, Root Mean Square Propagation (RMSprop) [Hin12] was chosen with a fixed
learning rate. All experiments were duplicated for the learning rates 10−2, 10−3, 10−4, and 10−5.
Different learning rates had only a marginal effect on the results. The figures and tables show
the results obtained with a learning rate of 10−4.

Each experiment ran for 100 epochs, which resulted in 11,800 optimization steps for MNIST,
and 9,800 steps for CIFAR10. The 6,912 experiments were run individually on NVIDIA Tesla
V100 GPUs for a total run time of 79 days. The results are reported for kernel size 16 × 16
which showed the best average classification performance although not significantly different.

5.4 Computing experiments

5.4.1 With a single filter

The losses after the 100 epochs for the training set (T ) and the validation set (V ) are given
in Figure 5.3. The performance of both architectures can be observed by the points on the red
(sequential architecture) and blue (parallel variant) points. The solid lines represent the training
loss and the dashed lines the validation loss.
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Figure 5.3: Sequential vs. parallel architecture: loss dependence on the number of residual
convolutional layers (with a single filter per layer) for the two datasets MNIST (left)
and CIFAR10 (right)
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Figure 5.4: Sequential vs. parallel architecture: loss dependence on the number of filters (with
16 convolutional layers) for the two datasets MNIST (left) and CIFAR10 (right)

Due to their identical layout and equal random initialization, training the two networks with
one convolutional layer and one filter each resulted consequently in equal loss values.

It can be observed that both architectures perform similarly, in particular for the largest depths
of 16 and 32. For MNIST, the shallow, parallel architecture slightly outperforms the original,
sequential one, while the relationship is inverse for the CIFAR10 dataset.

5.4.2 With multiple filters

A single-filter architecture is themost transparent one but it is scarcely used. It is mostly assumed
that more filters are necessary to reach the desired classification performance. Therefore,
experiments with multiple (1 to 32) filters per convolutional layer are included.

Same as before, the results after training for 100 epochs are shown in Figures 5.4a and 5.4b.
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Table 5.1: Overdetermination ratios for both datasets and different model sizes based on the
number of filters per convolutional layer

Overdetermination ratio 𝑄
#filters #parameters MNIST CIFAR10

1 14k 41.771 34.804
2 37k 16.256 13.545
4 106k 5.630 4.691
8 344k 1.743 1.453
16 1.2M 0.495 0.412
32 4.5M 0.132 0.110

They show an interesting development for CIFAR10: the training loss decreases by raising the
number of filters while the validation loss largely increases for more than four filters. The
validation loss considerably deteriorates for the sequential architecture. (The results for MNIST
are similar for the training set but less interpretable for the validation set.)

The reason for the distinct picture on CIFAR10 is to be sought in relationships between con-
straints imposed by the task and the number of free trainable parameters [Hry+23, Chapter 4].
A task with 𝐾 = 50,000 training examples constitutes equally many constraints (resulting from
the goal to accurately match the target values) for each output value. For 10 classes, there are
𝑀 = 10 such output values whose reference values are to be correctly predicted by the classifier.
This creates 𝐾𝑀 constraints (here: 50,000 × 10 = 500,000). For the mapping represented by the
network, there are 𝑃 free (i.e., mutually independent) parameters to make the mapping satisfy
the constraints.

• With 𝑃 = 𝐾𝑀, the system is perfectly determined and could be solved exactly.

• With 𝑃 > 𝐾𝑀, the system is underdetermined. A part of the parameters is set to arbitrary
values so that novel examples from the validation set receive arbitrary predictions.

• With 𝑃 < 𝐾𝑀, the system is overdetermined, and not all constraints can be satisfied. This
may be useful if the data are noisy, as it is not desirable to fit to noise.

An appropriate characteristic is the overdetermination ratio 𝑄 from [HBH22a] defined as

𝑄 = 𝐾𝑀
𝑃

(5.11)

The number of genuinely free parameters is difficult to figure out. It can only be approximated
by the total number of parameters, keeping in mind that the number of actually free parameters
can be lower.

In training a model by fitting to data, the presence of the noise has to be considered. The model
should reflect the underlying genuine laws in the data but not the noise. Fitting to the latter is
undesirable and is the substance of the well-known phenomenon of overfitting. It was shown
in [Hry+23, Chapter 4] that fitting to the additive noise and thus the influence of training set
noise to the model prediction is reduced to the fraction 1/𝑄. In other words, it is useful to keep
the overdetermination ratio 𝑄 significantly over 1.
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This supplementary information for the plotted variants is given in Table 5.1. Acceptable values
of the overdetermination ratio 𝑄 are given with filter counts of 1, 2, and 4. This is consistent
with the finding that overfitting did not take place in single-filter architectures presented
in Section 5.4.1.

For 8 filters or more, 𝑄 is close to 1 or even below it. In this group, the validation loss can grow
arbitrarily although the training loss is reduced. This is the result of arbitrarily assigned values
of underdetermined parameters.

Altogether, the parallel architecture shows better performance on the validation set despite the
slightly inferior loss on the training set. This can be attributed rather to the random effects of
underdetermined parameters than to the superiority of one or other architecture. In this sense,
both architectures can be viewed as approximately equivalent concerning their representational
capacity.

5.4.3 Trade-off of the number of filters and the number of layers

As an additional view to the relationship between the depth and the width of the network,
a group of experiments is analyzed in which the product of the number of filters (𝐹) and the
number of convolution layers (𝐶) are kept constant. In this way, also “intermediary” architectures
between deep and shallow ones are captured. For example, an architecture with 32 filters and a
single convolutional layer has a ratio of 1/32 while the ratio with one filter and 32 layers is 32/1.
For 16 layers with each 8 filters, it is 16/8 = 2.

For the product of 32, there are the following combinations of 𝐶 × 𝐹: 1 × 32, 2 × 16, 4 × 8, 8 × 4,
16 × 2 and 32 × 1. In Figure 5.5, they are ordered along their depth-width ratio 𝐶/𝐹: 1/32, 2/16, 4/8,
8/4, 16/2, and 32/1. These architectures are represented by the red curves.

As a reference, the blue curve shows their shallow counterparts. Those are all single-layer
architectures. They differ only in the number of parameters, consistent with their sequential
counterparts represented by the red curve. The difference in the number of parameters is due
to the different sizes of the classification layer following the residual connection sequence. This
classification layer is broader for more filters as its input is larger the more filters there are.

Both the training and validation losses increase with the depth-width ratio, indicating the
superiority of the shallow architectures. However, it is important to note that this comparison
may not be completely fair due to the inherent difference in parameter numbers. Specifically,
variants with higher depth-width ratios have a diminishing number of parameters resulting
from their smaller number of filters.

In Figures 5.5a and 5.5b, it can be observed that the training loss for flattened alternatives is
slightly larger compared to the other architectures. However, the validation loss for flattened
alternatives is smaller, albeit to a moderate extent.

In summary, the deep variants can certainly not be viewed as superior in overall terms. Both
architectures are roughly equivalent, as long as the number of parameters is equal.

5.5 Statistics of experiments

In addition to experiment runs selected for the presentation in the previous sections, statistics
over all 6,912 runs, partitioned into some categories, may be useful to complete the performance
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Figure 5.5: Sequential vs. parallel architecture: loss dependence on the ratio of the numbers of
layers and filters (product of the number of layers and the number of filters is fixed
at 32) for the two datasets MNIST (left) and CIFAR10 (right)

Table 5.2: Mean training and validation loss for sequential and parallel architectures and various
determination ratios 𝑄 intervals

𝑄 ∈ [0, 1) 𝑄 ∈ [1, 3) 𝑄 ∈ [3, 10) 𝑄 ∈ [10,∞)
train val train val train val train val

MNIST
sequential 0.00013 0.05201 0.01702 0.12449 0.03620 0.11743 0.11246 0.13550
parallel 0.00009 0.07551 0.02679 0.11468 0.05238 0.11467 0.13310 0.14900

CIFAR10
sequential 0.25326 2.03107 0.72510 1.31691 1.07333 1.34721 1.58608 1.65354
parallel 0.52658 1.32386 0.88701 1.24884 1.17085 1.34227 1.63449 1.68879

picture. Of course, averaging hundreds to thousands of experiments does not guarantee to
reflect all theoretical expectations succinctly; it can only confirm rough trends.

This statistical summary is presented in Table 5.2. The losses for training and validation as well
as for sequential and parallel architectures are partitioned into intervals of overdetermination
ratio to show the different behavior.

According to the theory, with a growing overdetermination ratio, the discrepancy between
training and validation loss becomes smaller. On the other hand, larger overdetermination
ratios imply smaller numbers of free network parameters. Sometimes, this leads to increased
losses from the diminished representation capacity of the network. For ratios smaller than 1, the
validation loss may arbitrarily grow because of underdetermined parameters fitted to training
data noise (overfitting). This arbitrary growth may be more or less articulated, depending mostly
on random factors. However, there is always a considerable risk of such poor generalization.

As observed in the individual experiments presented, small discrepancies between training and
validation loss are reached for overdetermination ratios larger than 3 for CIFAR10 and larger
than 10 for MNIST. These small discrepancies testify to good generalization capability, expected
for large overdetermination ratios.
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5.6 Conclusion

With 𝑄 < 1, the validation loss deteriorates for CIFAR10 data if compared with the 𝑄 of the
higher interval. This is the effect of arbitrary parameter values caused by underdetermination.

To summarize, there is a slight advance of shallow architectures for the validation set (five out
of eight categories), and deep architectures are better on the training set. The training and
validation losses are mostly closer together for the parallel architecture.

5.6 Conclusion

It is stated in Section 5.2 that a deep residual connection network can be approximately expanded
into a sum of shorter (i.e., less deep) sequences of different orders. Truncating the expansion
to the first two terms results in a shallow architecture with a single layer. This suggests a
hypothesis that the representational capacity of such a shallow architecture may be roughly as
large as that of the original deep architecture. If validated, this hypothesis could open avenues
to bypass issues typically associated with deep architectures.

Subsequent computational experiments conducted on two widely recognized image classifi-
cation tasks, MNIST and CIFAR10, seem to confirm this theoretically founded expectation.
The performance of both architectures (in configurations with identical numbers of network
parameters) is close to each other, with a slight advance of shallow architectures in terms of
loss on the validation set.

While the deep architecture performed marginally better on the training set, the cause of its
underperformance on the validation set remains an open question. It is plausible that the deep
architecture’s ability to capture abrupt nonlinearities may also make it prone to overfitting to
noise. In contrast, the shallow network, due to its inherent smoothness, might exhibit a higher
tolerance towards training set noise.

In conclusion, our results suggest a potential parity in the performance of deep and shallow
architectures. It is important to note that the optimization algorithm utilized in this study
is a first-order one, which lacks guaranteed convergence properties. Future research could
explore the application of more robust second-order algorithms, which, while not commonly
implemented in prevalent software packages, could yield more pronounced results. This work
serves as a preliminary step towards reevaluating architectural decisions in the field of neu-
ral networks, urging further exploration into the comparative efficacy of shallow and deep
architectures.
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