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Abstract: Vanadium redox-flow batteries (VRFBs) have played a significant role in hybrid energy
storage systems (HESSs) over the last few decades owing to their unique characteristics and advan-
tages. Hence, the accurate estimation of the VRFB model holds significant importance in large-scale
storage applications, as they are indispensable for incorporating the distinctive features of energy
storage systems and control algorithms within embedded energy architectures. In this work, we
propose a novel approach that combines model-based and data-driven techniques to predict battery
state variables, i.e., the state of charge (SoC), voltage, and current. Our proposal leverages enhanced
deep reinforcement learning techniques, specifically deep q-learning (DQN), by combining q-learning
with neural networks to optimize the VRFB-specific parameters, ensuring a robust fit between the real
and simulated data. Our proposed method outperforms the existing approach in voltage prediction.
Subsequently, we enhance the proposed approach by incorporating a second deep RL algorithm—
dueling DQN—which is an improvement of DQN, resulting in a 10% improvement in the results,
especially in terms of voltage prediction. The proposed approach results in an accurate VFRB model
that can be generalized to several types of redox-flow batteries.

Keywords: energy storage; redox-flow battery; battery modeling; battery state variables; parameter
optimization; accurate estimation; voltage prediction; deep reinforcement learning; deep q-learning;
dueling deep q-networks

1. Introduction

In the past ten years, there has been a swift and significant increase in the global
number of electric vehicles [1]. This trend extends to Europe, where the number of electric
vehicles is projected to reach 4.8 million units by the end of 2028. Consequently, this rapid
expansion underscores the need to establish additional charging stations, all of which
will necessitate an energy storage system. Within the framework of the battery structure,
various types of energy storage technologies are employed for the storage of electrical
energy. Nevertheless, none can achieve power and energy densities simultaneously [2].
Given this constraint, there is a need to improve the performance of advanced storage
systems. Recently, hybrid energy storage systems have been gaining traction across various
application fields, with a special focus on power management for charging stations and
grid services. Hybrid energy storage systems involve combining two or more single ESSs
to obtain the benefits of each one and improve overall system performance, efficiency,
and lifespan. Over the past decade, redox-flow batteries have been gaining traction as a
sustainable option for stationary energy storage. Due to their scalability, versatile design,
extended lifecycle, minimal upkeep requirements, and robust safety mechanisms, they are
considered an exceptional solution for addressing large-scale energy storage challenges [3].
Among the types of RFBs, vanadium redox-flow batteries (VRFBs), developed in the 1980s,
are currently the most widely utilized flow batteries for large energy storage applications.
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This notable status is attributed to their effective electrochemical energy storage mecha-
nism, wherein electrical energy is stored and retrieved through electrochemical reactions
involving vanadium ions [4]. Their distinctive features, including independent scalability
of power and energy and a modular design, position them as an exceptionally fitting and
advantageous solution for deployment in stationary settings and applications [5]. Despite
their remarkable advantages, VRFBs have lower energy density compared to other battery
technologies, and their power density is also limited, constraining their sustainability for
certain high-power applications. Additionally, the elevated cost of vanadium electrolytes
has prompted the exploration of alternative, cost-effective batteries, such as those based on
zinc and iron [6]. Also, the persistent capacity decay, attributed to the low ionic selectivity
of membranes, has motivated the development of hybrid inorganic-organic membranes.
Therefore, the meticulous placement, integration, and control of VRFBs within the power
grid assume paramount importance for attaining optimal efficiency, protecting from instan-
taneous voltage drops, and prolonging the batteries’ lifespan [7]. Hence, simulation models
are employed proactively to predict the batteries’ behavior across various applications,
control strategies, and placement scenarios. Precisely predicting battery behavior with
limited input data holds significant appeal within embedded simulation architectures in
grid systems or integrated energy system analyses. To date, numerous battery modeling
methodologies have been extensively discussed in the literature, namely mathematical
models, electrochemical models, and electrical equivalent circuit models [8]. To optimize
battery simulation models, several studies have been conducted on VRFB state variables
and internal parameter estimation based on different approaches that can be mainly clas-
sified into three categories: linear and non-linear state observers [9–13] and algorithms
for parameter estimation [14–17], such as data-driven algorithms for the prediction of
battery state variables [18–25], as shown in Figure 1, which illustrates a simple and clear
categorization of these algorithms. Each approach has strengths and limitations.

Figure 1. Comprehensive categorization of estimation algorithms for VRFB systems.

Data-driven methods have recently been used for the prediction of battery variables,
with a focus on the estimation of the state of charge (SoC). These methods used deep neural
networks to achieve high accuracy. A backpropagation neural network was presented
in [18]. The authors introduced a backpropagation neural network optimized by the
Bayesian regularization algorithm. The findings indicate that the neural network enhanced
by the Bayesian regularization algorithm exhibits improved real-time prediction accuracy
for the SoC, demonstrating promising prospects for practical applications. Another BP
neural network was suggested for real-time predictions of the SoC and capacity [19]. The
authors used a probabilistic neural network for the classification of the capacity into three
levels, and then the SoC was determined by the capacity. The results showed that the
probabilistic neural network can classify the capacity with a high accuracy rate of 90% and is
a powerful tool for determining the capacity loss degree. In addition to the backpropagation
neural network, another type of neural network—long short-term memory—was suggested
for forecasting the battery state variables, as it is known for its ability to process time-series
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data using the sliding-window technique [20]. Furthermore, Transformers have been used
for battery SoC estimation, as they represent powerful deep learning techniques, yielding
a root-mean-square error (RMSE) of 1.107 (%) [23]. These diverse approaches have been
introduced to enhance our understanding and analysis of battery performance using basic
mathematical and optimization techniques. However, despite the existence of various
simulation models that can predict electrochemical behavior and control algorithms, one
crucial aspect often overlooked is optimizing the scope of the required input data. Moreover,
the current available VRFB models demonstrate limitations in accurately predicting the
battery state variables, especially the voltage [26,27]. Another deep neural network was
combined with a physics-constrained approach to model VRFBs [28]. The authors proposed
an approach that uses a physics-constrained deep neural network with an enhanced second
deep neural network to enhance the accuracy of voltage predictions in VRFBs.

Up until now, the methodologies mentioned previously have not successfully ad-
dressed the challenges we face in determining the optimal battery-specific parameters.
In our work, our objective goes beyond the mere estimation of battery state variables.
Our ambition is not confined to simple prediction; rather, we are driven to determine the
optimal internal battery-specific parameters that can ensure the good accuracy of the VRFB
simulation model. In addition, it should be noted that the existing models are specific
to VRFBs and lack validation with other types of redox-flow batteries. As a result, it is
necessary to integrate and use more advanced approaches that allow for the optimization of
the simulation while reducing the scope of the input data. In other words, it is necessary to
access and vary some specific parameters to optimize the overall simulation model. There-
fore, using reinforcement learning (RL) becomes imperative to elevate battery modeling, as
it empowers the system to make optimal decisions [29,30]. The inclusion of RL techniques
holds immense potential for enhancing the performance of battery models. By harnessing
RL-based modeling techniques, we can attain higher levels of accuracy and effectively
capture the complex interdependencies among the various input parameters and battery
behavior. In addition, RL algorithms possess the capability to extract valuable insights
and provide reliable predictions, even in the presence of incomplete or sparse data due to
their offline training [29,30]. In other words, we aim to optimize the battery simulation
model to accurately reflect overall battery system behavior using deep RL techniques. Our
intention in pursuing this optimization is to elevate the performance of the simulation
model, accomplished through the application of deep reinforcement learning algorithms.
To do so, our work expands on the work carried out in [26], which introduced a gray
and parameterized box of the VRFB model with a study of the effect of input parame-
ter variation on the accuracy of the battery simulation model using measurements of a
10 kW/100 kW VRFB. The work outlines a four-step process, as shown in Figure 2. First,
the raw data are extracted from the real measurements. Second, the data are preprocessed
using smoothing techniques. Third, the optimization process allows for model parameter
estimation and verification while reducing the errors between raw data and simulated
data using the least-squares sum (LSS) method. Lastly, the model is validated by testing
different configurations of power cycles.

Figure 2. Steps of the simulation model proposed in [26].
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A similar approach was presented in [27], with a focus on applying a suitable SoC con-
version method to the raw data from the 5 kW VRFB system used. Nevertheless, the model
was destined only for stationary applications of VRFBs. However, both aforementioned
studies have some limitations when predicting the battery state variables, especially the cell
voltage. In our work, we keep the mathematical representation of the simulation model,
and our focus is primarily on optimizing the overall process. Specifically, our objective is to
align the simulated data generated by a mathematical model with the raw data obtained
from real-world measurements. This will be achieved by employing deep reinforcement
learning techniques to vary and then determine the optimal battery-specific parameters. By
optimizing these parameters based on the input data, we aim to achieve a highly accurate
modeling approach for VRFBs, especially for voltage prediction.

So far, this work has suggested a novel approach that uses the deep reinforcement
learning technique to enhance the accuracy of the simulation model. We went beyond
applying deep learning and formulated and designed the modeling methodology as a
deep reinforcement learning (deep RL) system. This strategic choice empowered the agent
to learn and make optimal decisions, contributing to a more accurate representation of
the overall battery system. In other words, we structured the RL system to incorporate
the operating characteristics and chemical reaction attributes specific to VRFBs. This
consideration was embedded in the initiation of our custom environment within the RL
system, establishing a foundation that aligns with the intricacies of VRFB behavior. In
addition, our research builds upon the foundation laid by Dr. Zugschwert [26], who has
made significant strides in modeling and studying the effects of the scope of the input
data on the accuracy of the simulation model. However, her model exhibits limitations
in accurately predicting voltage. We aim to contribute to this field by introducing novel
methodologies that address and enhance the precision of voltage predictions.

The remainder of this paper is organized as follows. Section 2 introduces the simula-
tion model that forms the foundation of the proposed work, accompanied by an in-depth
exploration of the dataset we intend to utilize. Section 3 introduces the solution’s workflow
and presents our novel proposed approach, which focuses on learning VRFB-specific pa-
rameters based on a deep reinforcement learning approach. Section 4 outlines the results
of our proposal, assesses our solution, and discusses its performance. Finally, Section 5
concludes this paper.

2. Modeling of the Vanadium Redox-Flow Battery

In the present study, the modeling of a comprehensive VRFB system is based on a
mathematical model previously used in [26], by employing a differential-algebraic system
to simulate the VRFB system. In this section, we elaborate on the simulation model, which
is composed of three discrete components: the state of charge (SoC), voltage (U), and
power (P).

2.1. Determination of the State of Charge (SoC)

The SoC is defined in [26] and is expressed in Equation (1).

dSoC(t)
dt

= − I(t) + ILoss
CStor

(1)

where:

◦ I(t) refers to the current used for charging or discharging the battery.
◦ ILoss signifies the current losses resulting from internal processes within the VRFB,

such as shunt currents or vanadium permeation.
◦ CStor denotes the practical storage capacity of the battery system, measured in ampere-

hours (Ah), which typically differs from the theoretical storage capacity. The real
storage capacity reflects the actual amount of charge the battery can hold, accounting
for various factors that might affect its performance. These factors often make the real
storage capacity deviate from the ideal or theoretical value CTheo.
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◦ R represents the gas constant with a numerical value of 8.314 J Mol−1 K−1.

Thus, CStor in a VRFB is influenced by the composition of vanadium ions in the
electrolyte tanks, which is typically inaccessible during operational phases [31]. Various
VRFB models, as seen in [32–34], determine the total energy capacity based on measure-
ments. Some of these models adjust their equations to estimate not only theoretical but
also real values for the battery’s energy capacity. However, energy engineers and system
researchers often encounter challenges, as they may lack access to electrolyte analyzing
techniques. Even with available equipment, determining CStor during battery operation
remains imprecise. Consequently, Cstor is considered a part of the optimization process.

2.2. Determination of Cell Voltage (U)

The voltage-current behavior of a battery, denoted as U(I), is determined by combin-
ing the Nernst equation’s calculated open-circuit voltage with the voltage decrement due
to the internal ohmic resistance Ri. This resistance is used to compare and evaluate the
material performance, along with the current I(t), described by Equation (2). Note that the
current density is 500 mA/cm−2 at an SoC of 80%.

U(I) = NCellU′
0 −

NcellRT
zF

log
[ SoC2

(1 − SoC)2

]
− NCell I(t)Ri (2)

where:

◦ U′
0 is the formal cell potential, which applies when the concentrations of all vanadium

oxidation states are identical.
◦ F is a Faraday constant with a numerical value of 96,486 AsMol−1.
◦ z refers to the transferred electrons during the reaction.
◦ Ncell is the number of cells used to determine the battery voltage.

2.3. Calculation of Power (P)

The power balance of a battery is described by Equation (3).

P(t)DC,apl = U(I)I(t)− Ploss (3)

The DC power input, denoted as P(t)apl , serves the purpose of cycling the battery
by driving a current I(t), which, in turn, leads to an applied DC voltage U(I), along with
the total system losses, represented as Ploss. Hence, as P(t)apl is a control parameter of
the battery system, it is considered an external input parameter of the battery simulation
model. Ploss refers to the internal DC system losses of the battery excluding losses. Iloss
refers to the self-discharge current and it is also considered part of the estimation process.

2.4. Dataset Overview

The discussed VRFB simulation model is based on a mathematical system that involves
using different charging and discharging power cycles Papl . Our work is an expansion of
the work in [26], incorporating its dataset comprising measurements of complete cycles
at different AC power values Papl (1 kW, 2.5 kW, 5 kW, 7.5 kW, 10 kW), with an SoC
between 20% and 80% for both the discharging and charging processes. To take these
real measurements, the authors used a Cellcube FB 10-100 VRFB from Cellstrom GmbH,
which is an Austrian provider specializing in the provision of energy storage systems based
on vanadium redox-flow batteries [35], with a nominal power of 10 KW and a nominal
energy storage capacity of 100 KWh. The technical specifications indicated a maximum
DC efficiency of 80% and a self-discharge rate of 150 W. The VRFB operated within an
SoC range of 20 to 80%. According to the specifications extracted from the datasheet, the
reaction time was approximately 60 ms. Additionally, an active cooling system was in place
to keep the temperature within a safe operational range inside the container. The setup
included three separate hydraulic circuits, allowing for energy-efficient pump control. The



Batteries 2024, 10, 8 6 of 20

stacks were arranged in parallel, connected to a DC bus, and linked to three reversible
DC/AC inverters. Also, the battery container was separated into two sides, each with five
battery stacks. Beneath each container side, a tank contained the vanadium electrolytes.
The energy management system of the battery recorded the AC power, DC voltage, DC,
SoC, and temperature environment. Therefore, emphasizing the dataset, we utilized ten
.csv files, each containing recorded measurements, also known as raw data, for the chosen
power cycle for the charging or discharging process. Full charging and discharging cycles,
ranging between the open-circuit voltage limits of 1.29 V in the discharged state and 1.45 V
in the charged state, were recorded [26].

The measurements comprised recorded values for each second of the following:

◦ AC Power : This stands for “Alternating Current power”. It refers to the type of
electrical power where the direction of the electric current reverses periodically. It is
measured after the inverter and expressed in W.

◦ DC Voltage: This is recorded by the battery management system (BMS) and reaches
a maximum of 60 V when fully charged, decreasing to a minimum of 38 V during
controlled discharge when in a discharged state.

◦ DC : This stands for “Direct Current”, expressed in A.
◦ State of charge (SoC) : The SoC values were read out with the aid of the software and

used to control the battery during charging or discharging. The validation of the
open-circuit voltage used in the BMS is expressed as a %.

◦ Temperature : This refers to the temperature of the container or the electrolytes, ex-
pressed in °C.

Figure 3 visualizes the distribution of the raw data that was utilized for the charging
process, whereas Figure 4 visualizes it for the discharging process. As illustrated, the
dataset associated with the 1 kW power cycle exhibited larger dimensions compared to the
dataset of the other power cycles for both the charging and discharging phases, followed
by the 2.5 kW power cycle. This observation led us to select the 1 kW power cycle dataset
for the training process while reserving the other power cycle datasets for testing purposes.

Figure 3. Distribution of raw charging data.
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Figure 4. Distribution of raw discharging data.

3. Learning VRFB Parameters Using Deep Reinforcement Learning

This section delves into the solution’s realization using the deep reinforcement learning
algorithm and outlines the workflow and design phases.

3.1. Advancing to Deep Reinforcement Learning (Deep RL)

Reinforcement learning (RL) is a type of machine learning, unlike both supervised
learning and unsupervised learning. RL is primarily centered around goal-directed learning,
achieved through interactive experiences, making it distinct from traditional machine
learning approaches [29,30]. Deep RL merges deep learning (DL) and RL, enabling artificial
agents to acquire the capability to address problems involving sequential decision-making.
In the past decade, deep RL has achieved remarkable results on a range of problems,
especially optimization problems. It is considered a very fast-moving field, as it can
effectively address a diverse array of intricate decision-making challenges and extend a
machine’s capacity to tackle real-world problems with a level of intelligence akin to humans.
Figure 5 illustrates the general structure of the RL agent’s interaction loop. At each step t,
the agent is provided with a representation of the environment. State St selects an action
based on a policy, and the environment responds to this action and presents a new situation
or state to the agent. The environment, determined by the state/action pair, returns a
reward, a specific numerical value that the agent aims to maximize over time by making
optimal choices in its actions. The goal of the agent is to maximize the long-term rewards.
In general, the agent consists of a policy and a learning algorithm that iteratively refines
the policy to discover its optimal configuration. In the case of deep RL, the interaction loop
is presented in Figure 6, where deep neural networks are used to find approximations for
large, complex, and high-dimensional environments [30].

Figure 5. General structure of RL agent’s interaction loop.



Batteries 2024, 10, 8 8 of 20

Figure 6. General structure of deep RL agent’s interaction loop.

3.2. Markov Decision Process Formulation

We aim to determine the optimal VRFB-specific parameters that can ensure high accu-
racy of the reference simulation model [26]. Our solution involves varying and adjusting
the VRFB-specific parameters—Iloss, Ri, U′

0, and CStor—to find the best match or fit between
the raw data with the simulated data produced by resolving the simulation model. We
introduce a novel parameter-varying method using the deep q-learning algorithm. In the
following discussion, we focus on the learning phase and define the general DQN agent
that learns to determine the optimal battery-specific parameters. To this end, we train a
deep RL agent to automatically adjust the VRFB-specific parameters to obtain the optimal
values. In this context, the formulation of the RL problem is based on the Markov Decision
Process (MDP), which serves as a straightforward framework for addressing the challenge
of learning to accomplish a particular goal. Therefore, our goal is to determine the optimal
VRFB-specific parameters that can ensure the high accuracy of the simulation model. Here,
we define the important concepts of the MDP related to the DQN algorithm. Representing
and modeling the system as an MDP is a crucial aspect in the design of a problem related
to decision-making. Hence, throughout this work, we utilize the following elements:

◦ Environment : As our focus is on the VRFB, we consider the VRFB as the environment
for our RL system. It includes essential details about the battery, such as its internal
parameters and the extracted and preprocessed raw dataset.

◦ Agent : The agent uses the neural network to approximate the q-values through
interactions with the VRFB environment.

◦ State : The state s is a tensor that includes the raw data, the simulated data produced
by resolving the mathematical system, and the battery-specific parameters.

◦ Action Space : The action space reflects the adjustment and variation of the battery-
specific parameters. Hence, our action space is a discrete space. In this context, we
defined two different configurations of the action space. Initially, we outlined three
possible actions, each involving adjusting the parameters: increasing Iloss, Ri, U′

0, and
CStor; decreasing them, or maintaining them. Subsequently, we expanded our action
space to include nine distinct actions that refer to increasing, decreasing, or main-
taining them separately. This method enabled us to determine which configuration
produced better outcomes.

◦ Reward function : The agent learns the optimal battery-specific parameters that can
enhance the simulation model’s accuracy. Thus, we were inspired by and utilized the
reward function in [36]. We defined the following straightforward reward function
given by the equation to encourage faster convergence and facilitate the learning
process for the DQN agent.

r = λ(best_ERROR − ERROR) (4)

where :

◦ λ is a hyperparameter;
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◦ best_ERROR is the lowest error achieved so far during an episode;
◦ ERROR includes the errors for the different battery state variables (SoCerror, Uerror,

and Ierror) multiplied by the weights (wSoC, wU , and wI) for each variable, as described
in Equation (5).

ERROR = wSoC · |SoCerror|+ wU · |Uerror|+ wI · |Ierror| (5)

3.3. Training Algorithm for Deep Q-Network

Once we have formulated our MDP solution, we can present the whole DQN process
for learning and determining the optimal VRFB-specific parameters. Figure 7 illustrates the
general framework of the proposed method based on the DQN algorithm. At each step t,
the agent receives some representation of the battery environment, state st, comprising the
raw data (SoCRaw, URaw IRaw), simulated data (SoCSim, USim Isim), and battery parameters
(Iloss, Ri, U′

0, CStor). The agent is required to navigate the action space through the imple-
mentation of a policy, such as epsilon-greedy exploration. This exploration strategy allows
the agent to choose between taking a random action with a probability of ϵ or selecting an
action based on the value function with the highest value, determined with a probability
of 1 − ϵ. The agent selects an action (increase, decrease, or maintain the battery-specific
parameters), and the environment responds to this action and presents a new state st+1 to
the agent. Based on the state/action, a reward rt is provided that reflects its performance in
fitting the simulated data with the raw data. In this process, the agent utilizes the predicted
q-value, target q-value, and observed reward obtained from the data sample to calculate a
loss. This loss is then employed to train the q-network.

Figure 7. General framework of the proposed method based on the DQN algorithm.

To elaborate further, the training algorithm’s goal is to find the optimal action-value
function Q∗(s, a) that maximizes its expected return over the episode’s length.

The flowchart for training the DQN agent in our case is highlighted in Figure 8.
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Figure 8. Flowchart for training the DQN agent.

4. Results and Discussion
4.1. Training DQN Agent
4.1.1. Definition of the Gym Environment

For the implementation of our custom environment, we used OpenAI Gym. Ope-
nAI Gym provides an easy way to build environments for training RL agents [37]. The
environment Gym class contains four methods, as illustrated in Figure 9:

◦ Initialization Method : The first method is the initialization method, where we create
our environment class. We establish the action and state spaces and other initial battery
parameter values within this function.

◦ Step Method : This method is run every single time we take a step within our envi-
ronment involving taking and applying an action at to the environment. This method
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returns the next state/observation st+1; the actual determined reward rt; a Boolean
variable done, which refers to the end of the episode; and the set info, which con-
tains some additional information. In our case, we used the variable info to store the
battery-specific parameters Iloss, Ri, U′

0, and CStor.
◦ Render method : This method is used to visualize the current state. We used this

method to track and display the alignment between the simulated data and the raw
data during the episode.

◦ Reset method : Lastly, the reset method is where we reset the environment and obtain
the initial observations.

Figure 9. Methods of the battery environment class.

4.1.2. DQN Parameters

Table 1 illustrates the initial conditions and initial guesses used for solving the sim-
ulation model, as well as other relevant information used in the VRFB operating system.
In fact, we kept the same values described and proposed in [26], as they are related to the
same VRFB. For training the DQN agent, we considered the parameters for the neural
networks and the RL system‘s parameters described in Table 2.

Table 1. Initial values of VRFB parameters in the simulation model.

Initial Value

SoC (%) Charge: 20, Discharge: 80

CStor (As) 870,000

Iloss (A) 10.0

U0 (V) 1.375

Ri (mΩ) 0.75

No. of stacks 10

Nominal Voltage (V) 48

Temperature (°C) 21.85

No. of Cells 40

Table 2. DQN agent and neural network parameters.

Parameter Definition Value

num_layers Number of hidden layers used 2

num_units Number of units used to enhance the quality of training and prediction 256.2

Activation Function The non-linear activation function used for the NN ReLU

Replace The frequency with which the target network is updated 1000

Epsilon ϵ Level of probability randomness for each iteration 1.0

eps_min The ending value of Epsilon 0.1
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Table 2. Cont.

Parameter Definition Value

Decay_rate Reducing the Epsilon at each iteration 1 × 10−5

Gamma γ Discount factor 0.99

Batch_size Number of transitions sampled from the replay buffer 64

Learning_rate The learning rate of the Adam optimizer 0.001

4.1.3. Training Results

For the training phase, we trained the agent with the complete charging and dis-
charging cases of a power cycle of P = 1 KW for 2500 episodes for both configurations of
the action spaces. This means that only one power cycle at a time was selected to train
the model.

a. Optimizing the Learning Rate Selection for Training

Multiple iterations were performed to fine-tune the hyperparameters, including the
learning rate shown in Figure 10. Based on our observations, it can be deduced that
training the DQN agent with the learning rate set at 0.001 resulted in superior performance
compared to the other configurations in terms of cumulative reward and rapid learning.
Therefore, we chose to proceed with this value. The models were trained with the same
neural network architecture, discount rate, and learning rate. During training, we created
a model checkpoint each time we achieved a new highest cumulative reward within
an episode.

Figure 10. Exploring the learning rate’s influence on the training outcomes.

b. Choosing the Optimal Action Space

As previously discussed, we established and trained the DQN agent under two
distinct action space configurations. The provided figures showcase the outcomes of the
training process. Specifically, these figures display the accumulated average reward over
2500 episodes. Each episode consisted of 60 steps, indicating that the agent underwent
60 steps of action before resetting the environment and starting a new episode. Initially,
we set all weights to 1. Subsequently, through training with various weight values for the
battery state variables, we arrived at the following configuration to enhance the voltage
prediction: wSoC = 0.3, wU = 0.5, and wI = 0.2. With fewer actions in the three-action
space case, we aimed for a faster learning process. It is evident that the cumulative
reward produced by fewer actions achieved better learning performance compared to the
other configuration for both the charging and discharging processes, as demonstrated in
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Figures 11 and 12. We can see that the average reward increased over training episodes,
signifying effective learning by the DQN agent. In the three-action space case, the agent
achieved a higher cumulative reward compared to the other case. The increased reward
indicates that the agent is making progress in acquiring the desired task knowledge that
reflects learning the optimal VRFB parameters.

Hence, our agent demonstrates improved performance when we simultaneously vary
the parameters. Thus, the agent trained under the specific configuration of three valid
actions was used for the subsequent evaluation phase.

Figure 11. Cumulative reward for the charging process for both configurations of the action space.

Figure 12. Cumulative reward for the discharging process for both configurations of the action space.

4.2. Evaluation of the DQN Agent

Since the deep q-learning algorithm aims to find the optimal action-value function
Q∗(s, a),we need to verify and ensure that the trained model consistently produces higher
accumulated rewards over a certain period. To ensure that deep q-learning produces a
generalized model, we introduced the base DQN testing process.

4.2.1. DQN Agent Testing Process

The testing procedure in reinforcement learning differs from that in supervised or
unsupervised machine learning. Debugging RL algorithms is very hard. To test whether it
works well and the trained agent is good at its designated task, we need to apply the trained
model to a defined situation or scenario. We present the testing process we considered
to accomplish this in Figure 13. In addition, we defined the testing loop, as described by
Algorithm 1.
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Figure 13. Testing process of the DQN agent.

Algorithm 1 General testing loop of our DQN agent

Reset the environment and get state st
for episode =1, M do do

Reset the environment and get the initial state st
while True do

Predict the action at related to st
Execute a step s and get the next state st+1, reward rt , done, and info
Render the environment
if done then

Display optimal Iloss, Ri, U′
0, and CStor stored in the variable info

end if
end while

end for

As illustrated, the testing loop involves the prediction of the action, enabling the
optimal configuration of the battery-specific parameters based on what has already been
learned during the training phase. During each step, we rendered the environment to
visualize how well the simulated data aligned with the raw data each time we executed the
predicted action.

4.2.2. Testing Results and Evaluation

We assessed the performance of the trained DQN agent over a single episode contain-
ing 60 steps to evaluate its learning progress. The agent’s capabilities were tested using the
other power cycles. Table 3 presents the optimal values of the battery-specific parameters
for each evaluation scenario. We highlighted the calculated RMSE values for the VRFB state
variables between the simulated and raw data under the optimized parameter settings in
Table 4.

Table 3. Optimal parameters predicted by the DQN agent for the charging process.

Evaluation Power Ri (mΩ) U′
0 (V) ILoss (A) CStor (Ah)

2.5 kW 0.29 1.075 9.7 2415.83

5 kW 0.3 1.375 10.035 2416

7.5 kW 0.305 1.675 10.3 2417.5

10 kW 0.30 1.45 10.075 2416.88

As shown, we can conclude that the agent predicted the battery-specific parameters to
perfectly match the data of the SoC with an RMSE value as low as 0.111% during testing on
the 2.5 KW power cycle. Also, our agent predicted the optimal battery parameter values
that best matched the voltage data, achieving the lowest RMSE value of 1.114 V during
testing on the 10 KW power cycle.
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Table 4. Summary of test results assessing alignment between the raw and simulated data.

Evaluation Power VRFB State Variables RMSE MAE

2.5 kW
State of charge SoC (%) 0.1114 0.029

Voltage U (V) 1.923 1.8369
Current I (A) 0.312 0.1028

5 kW
State of charge SoC (%) 0.2407 0.0723

Voltage U (V) 1.8311 1.7832
Current I (A) 0.2231 0.1031

7.5 kW
State of charge SoC (%) 0.8394 0.244

Voltage U (V) 1.4741 1.468
Current I (A) 0.3741 0.068

10 kW
State of charge SoC (%) 0.5573 0.1498

Voltage U (V) 1.114 1.1204
Current I (A) 0.113 0.0139

RMSE: root-mean-square error; MAE: mean absolute error.

Although the RMSE values for the voltage were higher compared to the SoC, we were
able to improve the voltage prediction results in [26]. To illustrate these improvements,
Table 5 provides a comparative analysis between our approach and the reference model,
using the weighted least-squares similarity (WLSS) as the evaluation metric to align with
the metric used in [26]. The WLSS is defined by Equation (6).

W LSS(p) = (
LSS(p)

minLSS(p)
− 1)× 100% (6)

where p is the selected power cycle, LSS is taken from Equation (7), and minLSS is the
lowest LSS achieved so far.

LSS = SoCerror + Uerror + Ierror (7)

As evident from Table 5, it is crystal clear that we achieved superior performance
compared to the method outlined in [26], as the DQN agent facilitated a reduction in
the WLSS (%) for nearly all evaluation scenarios. As a result, our DQN agent achieved
an improvement of nearly 10% compared to the reference work. To provide a more
comprehensive illustration, Figure 14 demonstrates the results of fitting the simulated data
with the raw data while testing the DQN agent specifically on the 10 kW power cycle for
the state variables (SoC and voltage) for the charging process. Figure 15 demonstrates
the same results but for the discharging process. It is important to note that these figures
present the predicted state variable for each step of the episode.

Table 5. Summary of test results of our approach and the reference method for the charging process.

Approach Evaluation Power WLSS (%)

Model [26]

2.5 KW 187.58
5 KW 100.14

7.5 KW 7.9
10 KW 120.51

DQN Agent

2.5 KW 170.42
5 KW 87.51

7.5 KW 6.07
10 KW 90.41
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(a) (b)
Figure 14. Comparison of simulated and raw data using P = 10 KW for the charging process. (a) SoC
testing outcome for the charging process. (b) Voltage testing outcome for the charging process.

(a) (b)
Figure 15. Comparison of simulated and raw data using P = 10 KW for the discharging process.
(a) SoC testing outcome for the discharging process. (b) Voltage testing outcome for the discharg-
ing process.

4.2.3. Discussion

Based on Table 3 and the accompanying figures, it is evident that the DQN agent is
capable of predicting battery-specific parameters with the lowest RMSE and MAE values,
outperforming the results achieved in [26]. Nonetheless, there is room for improvement,
especially in the voltage prediction. In our pursuit of improving the results, we decided to
delve deeper into optimizing the DQN agent.

4.3. Enhancing the Performance of the DQN Agent

Several improvements of the deep q-network have been proposed in the litera-
ture [38,39]. Specifically, the Rainbow DQN incorporates a thorough analysis of six im-
pactful q-learning techniques [39]. These enhancements encompass double DQN, dueling
DQN, prioritized experience replay, multi-step learning, distributional DQN, and NoisyNet.
Among them, we chose to enhance our DQN by implementing the dueling DQN, as its
novelty lies in the q-network architecture, and its implementation is similar to the DQN [40].
Its linear layers split into value and advantage streams. The combination of these two
streams is achieved through a dedicated aggregating layer, resulting in the estimation of
the state-action value function Q. Figure 16 illustrates the cumulative reward achieved after
training the dueling DQN agent using parameters and configurations identical to those of
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the DQN agent. It is evident that the dueling DQN agent outperformed the DQN agent
and excelled in learning compared to the DQN agent, as it accumulated a higher reward.

Figure 16. Cumulative rewards for DQN and dueling DQN.

Therefore, we conducted a comparative analysis between the DQN agent and the
dueling DQN agent for predicting the VRFB voltage using a power cycle of 10 kW for the
charging process, as presented in Table 6, whereas Table 7 presents a similar comparison
for the SoC predictions using the same power cycle. Despite the marginal reduction in the
RMSE and MAE when employing the dueling DQN, it consistently outperformed the DQN
agent by accumulating higher rewards, thereby improving the performance of the DQN
agent by nearly 10%.

Table 6. Comparative analysis of voltage predictions.

Metric DQN Dueling DQN

RMSE [V] 1.114 1.1081

MAE [V] 1.1204 1.0914

Table 7. Comparative analysis of state-of-charge predictions.

Metric DQN Deuling DQN

RMSE [%] 0.5573 0.456

MAE [%] 0.1498 0.0932

5. Conclusions

This work is our contribution to the optimization and performance improvement
of the VRFB simulation model. In this process, we expanded the optimization of the
simulation model by varying its specific parameters. We advocated a deep q-network
agent to determine the optimal VRFB-specific parameters, reduce the required scope
of the input data, and enhance the accuracy of the simulation model. We allowed the
DQN agent to learn autonomously to determine the battery-specific parameters that can
ensure the best fit between the raw data and the simulated data produced by resolving
the battery’s mathematical system, thereby enhancing the simulation model’s accuracy.
These parameters are considered the optimal battery-specific parameters, as they were
predicted while testing the DQN agent in specific power cycles after its training and
learning processes.

In this paper, we began by presenting the context of our work, and then we walked
through the existing solution for modeling and optimizing the simulation of VRFB batteries.
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We introduced our proposed method in response to this problem. We showcased that our
proposed method exhibited good performance, achieving lower RMSE values of 0.111% for
the SoC and 1.114 V for the voltage. In addition, it outperformed the optimization results
of the method used in the prediction of battery state variables and the determination of
optimal battery parameters, especially voltage, in [26].

We illustrated this by testing multiple power cycles measured for a specific VRFB.
The testing results demonstrated that our trained DQN agent is robust and does not suffer
from overfitting to the training conditions. We then worked on improving our results by
applying the dueling DQN, resulting in a notable improvement of 10%. This optimized
simulation model can be generalized to other types of redox-flow batteries. In addition to
the outstanding performance of our learned VRFB parameters, our concept proved to be
simple and easy to adapt when the optimization goals need to be changed. In other words,
it is possible to change the target of change in the optimization process and we may just
adapt the reward function and let our RL agent train autonomously again.

There are several extension possibilities for this work, ranging from optimizing the
current results to extending the work with new concepts. To optimize the current results,
we suggest several ideas. The first would be to alternate the deep RL algorithms suggested
in Rainbow that combine several improvements of deep RL algorithms [39]. We only tried
the dueling deep q-network due to time limitations. The second would be to configure and
fine-tune the hyperparameters, as during this work, the hyperparameters of the deep RL
agent were not well exploited. We expect better performance with better hyperparameter
configuration and tuning.
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