
Constrained Planarity Algorithms in
Theory and Practice

Simon Dominik Fink

Universitätsdissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

in der Wissenschaftsdisziplin
Theoretische Informatik

eingereicht an der
Fakultät für Informatik und Mathematik

der Universität Passau

Datum des Rigorosums: 12. Dezember 2023

This work is licensed under a Creative Commons License:
Attribution 4.0 International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
http://creativecommons.org/licenses/by/4.0/

Betreuer
Prof. Dr. Ignaz Rutter
Universität Passau

Gutachter
Prof. Dr. Ignaz Rutter
Universität Passau

Prof. Dr. Jens M. Schmidt
Universität Rostock

Published online at the
Institutional Repository of the University of Passau:
https://doi.org/10.15475/cpatp.2024

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15475/cpatp.2024

0Acknowledgments

Meine Promotionszeit war hauptsächlich von Corona und dem eingehenden Social
Distancing mit Lehre, Besprechungen und Konferenzen via Zoom geprägt. Das
hat die vier Jahre als Doktorand sicher nicht einfacher gemacht, dafür haben mich
einige besondere Menschen durch diese Zeit begleitet und umso mehr unterstützt –
dafür möchte ich Danke sagen.

Zuallererst danke ich meinem Doktorvater Ignaz Rutter, dass er mir gegen Ende
meines Masterstudiums das interessante und facettenreiche Forschungsgebiet der
Theoretischen Informatik gezeigt und es mir zugetraut hat, in dem mir bis dahin
weitestgehend unbekannten Feld des Graphenzeichnens zu promovieren. Als Be-
treuer stand Ignaz’ Tür immer offen für anregende Gespräche und Diskussionen
und so war hilfreiches Feedback zum neuesten Aufschrieb des nächsten Beweises
nie weit entfernt. Gleichzeitig trat er als sehr nahbarer Chef auf, der spontan auch
mal im Mitarbeiter-Büro zum Prokrastinieren vorbei kommt oder abends auf ein
Bierchen einlädt.
Als nächstes möchte ich meinen Kolleginnen und Kollegen danken: Matthias

Pfretzschner, Miriam Münch, Patricia Bachmann, Peter Stumpf und Sandhya T. P.
Besonders in meiner Anfangszeit hat Peter mir geholfen, mich mit den formellen
Eigenheiten des Themengebiets zurechtzufinden. Später kam immer mehr Matthias
dazu und damit eine Zusammenarbeit, auf der viele der praktischen Aspekte dieser
Arbeit fußen. Egal wie die Massen-Mitarbeiter-Haltung im viel zu kleinen Büro
aussah, ob zusammen mit Peter und Miriam oder später zusammen mit Matthias
und Patricia eine Tür weiter, es herrschte immer eine sehr gute Stimmung und ich
werde unsere gemeinsame Zeit vermissen. Ein herzliches Dankeschön geht auch
an alle weiteren Ko-Autoren für die gute Zusammenarbeit an gemeinsamen Papern.
Dass die Universität Passau so familiär und dadurch für mich über viele Jahre wie
ein zweites Zuhause gewesen ist, verdankt sie den vielen herzlichen Menschen im
Vorder- und Hintergrund. Auch dafür möchte ich Danke sagen und hoffe, dass sich
die kommenden Generationen hier ebenso wohlfühlen wie ich.

Außerdem danken möchte ich allen Freunden und Mit-(Ex-)Fachschaftlern, allen
voran Jonas, die mich während meiner wunderbaren Zeit in Passau begleitet haben.
Ohne euch wären das sicher nicht die bisher interessantesten zehn Jahre meines
Lebens geworden. Vielen Dank auch an alle Korrekturleser – die verbliebenen
Rechtschreibfehler sind euch gewidmet.

iii

Ganz besonders dankenmöchte ich meiner Familie, die mir das Studium in Passau
erst ermöglicht und mich von Bachelor über Master bis zur Promotion durchgehend
unterstützt hat: Danke, dass ihr mir immer Halt und Kraft gebt und ich mich
jederzeit und in jeder Situation auf euch verlassen kann. Insbesondere danken
möchte ich Andi, der mir gerade in schwierigen Zeiten den Rücken freigehalten
hat und immer an meiner Seite war.

iv

0Contents
Acknowledgments iii

Contents v

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 4

2 Preliminaries 9

I Constrained Planarity in Theory 15

3 The Hierarchy of Constrained Planarity Problems 17
3.1 Problem Definitions . 17

4 Planarity 23
4.1 PC-trees . 24
4.2 Planarity of Biconnected Graphs 28

5 Partially Embedded Planarity 33
5.1 Partially Embedded Planarity . 34
5.2 Linear-Time Implementation . 51
5.3 Conclusion . 56

6 Synchronized Planarity 57
6.1 Technical Contribution . 58
6.2 Related Work . 60
6.3 The Synchronized Planarity Problem 61
6.4 Applications . 79
6.5 Related NP-hard Problems . 96
6.6 Comparison with the Fulek-Tóth Algorithm 100
6.7 Conclusion . 101

v

7 Maintaining Triconnected Components under Node Expansion 103
7.1 Skeleton Decompositions . 106
7.2 Extended Skeleton Decompositions 111
7.3 Node Expansion in Extended Skeleton Decompositions 114
7.4 Applications . 122
7.5 Conclusion . 127

II Constrained Planarity in Practice 129

8 Experimental Comparison of PC-Trees and PQ-Trees 131
8.1 The PC-Tree Update . 132
8.2 Our Implementations . 134
8.3 Evaluation . 149
8.4 Testing Planarity and Generating Embeddings 163
8.5 Conclusion . 167

9 Engineering the Synchronized Planarity Algorithm 169
9.1 Related Work . 170
9.2 Clustered Planarity in Practice . 173
9.3 Engineering Synchronized Planarity 178
9.4 Further Analysis . 185
9.5 Conclusion . 191

10 Conclusions 195

Bibliography 199

List of Publications 215

vi

1 Introduction

In the digital age, networks are ubiquitous and permeate every facet of modern
life. From social interactions to technological infrastructures, networks illustrate
the complex interactions of entities and ideas. The mathematical abstraction of a
network is known as a graph, a concept that forms the foundation for modeling and
analyzing these multifaceted relationships. Graphs provide a versatile language
for representing interconnections, whether they depict social networks, biological
pathways, computer networks, or abstract relationships between concepts. How-
ever, the raw data represented by a graph can be challenging to interpret when not
presented visually. This is where the field of graph drawing emerges, a discipline
dedicated to making graphs visually comprehensible while faithfully representing
their structure.
Studies show that one of the main aspects that negatively affect the readability

of a graph visualization are crossings between edges [PAC02; War+02]. In this
sense, it would be optimal to have a drawing that is entirely free of such crossings.
We call a graph planar if it admits an embedding into the plane that has no edge
crossings. Planarity is a well-studied concept that facilitates beautiful mathematical
structures [BL76; HT73b], allows for more efficient algorithms [Had75], and serves
as a cornerstone in the context of network visualization [Pat13].
Yet, in many practical graph drawing applications, we often not only seek an

arbitrary drawing that maximizes legibility, but also want to encode additional
information via certain aspects of the underlying layout. Examples are hierarchical
drawings like organizational charts, where we encode a hierarchy among vertices
by placing them on predefined levels, clustered drawings, where we group vertices
by enclosing them in a common region, and animated drawings, where dynamic
changes to a graph are shown in steps while keeping a static part fixed. Examples
for clustered drawings are UML diagrams, where classes are grouped according to
the package they are contained in, computer networks, where devices are grouped
according to their subnetwork, and integrated circuits, where certain components
should be placed close to each other.
It is thus not surprising that various generalizations and extensions of the Pla-

narity problem have been studied, see for example [Brü21; DaL15; Sch13]. In the
field of constrained planarity we study whether a graph admits a planar drawing
that satisfies a given set of constraints. This includes the problems Level Pla-

1

Chapter 1 Introduction

(a) (b) (c) (d)

Figure 1.1: Examples of constrained planarity problems: (a) Level Planarity, (b) Clus-
tered Planarity, (c) Partially Embedded Planarity, (d) SEFE-2.

narity [Brü21; JLM98] and Clustered Planarity [BR16a; FCE95; Len89], which
model the aforementioned hierarchical and clustered drawings, respectively; see
Figures 1.1 (a) and 1.1 (b). Animated visualizations of dynamic graphs are for
example modeled by Partially Embedded Planarity [Ang+15b; Cha+15; Pat06],
where we are already given a planar drawing and want to extend it with new edges,
or Simultaneous Embedding with Fixed Edges (SEFE-2) [BKR13; Bra+07; Rut20],
where we seek planar drawings of two graphs that coincide on some shared part
but have no prescribed embedding; see Figures 1.1 (c) and 1.1 (d). In the last years,
the family of constrained planarity problems received a lot of attention in the field
of graph drawing. Efficient algorithms were discovered for many of them, while a
few others turned out to be NP-complete; see [Sch13] and [DaL15] for an overview.
Interestingly, the problems Clustered Planarity and SEFE-2 could not be sorted
into either group for a long time, eluding both efficient solutions as well as a proof
of NP-hardness. While the former was solved only recently [FT22], the complexity
of the latter is still open.

In contrast to the extensive theoretical considerations and the direct motivation
by applications, only very few of the found algorithms (many of which have a
linear or at most quadratic asymptotic running time) have been implemented and
evaluated in practice. This also contrasts the wide variety of implementations
available for the different linear-time algorithms for ordinary, i.e., unconstrained
planarity [Pat13], which have also been thoroughly assessed in terms of their
practical running time [Boy+04a; FMR06]. This lack of implementations for existing
constrained planarity algorithms might be in parts due to the high complexity of
some of them, for example for (Radial) Level Planarity [Brü21].

1.1 Contribution

The goal of this thesis is to advance the research on both theoretical as well as
practical aspects of constrained planarity. On the theoretical side, we consider

2

Contribution Section 1.1

two types of constrained planarity problems. The first type are problems that
individually constrain the rotations of vertices, that is they restrict the counter-
clockwise cyclic orders of the edges incident to vertices. As long as these constraints
concern either all or none of the edges incident to a vertex (i.e. they are not partial),
the problem is usually solvable in linear time [Ang+10; GKM08; Sch13]. We give
a simple linear-time algorithm for the problem Partially Embedded Planari-
ty, which also generalizes to further constrained planarity variants of this type.
While a linear-time solution has been known before for this problem [Ang+10], our
approach is far simpler and also allows to directly model other planarity variants
constraining rotations.
The second type of constrained planarity problem concerns more involved pla-

narity variants that come down to the question whether there are embeddings
of one or multiple graphs such that the rotations of certain vertices are in sync
in a certain way. Clustered Planarity and the SEFE-2 variant known as Con-
nected SEFE-2, where the subgraph that is shared by all graphs is connected, are
well-known problems of this type. Both are generalized by our Synchronized
Planarity problem, for which we give a quadratic algorithm. Through reductions
from various other problems, we provide a unified modelling framework for al-
most all known efficiently solvable constrained planarity variants that also directly
provides a quadratic-time solution to all of them.
For both algorithms, a key ingredient for reaching a solution is the usage of

the right data structure for the problem at hand. Starting on the conceptual level,
appropriate data structures are what allows us to model the respective problem in
a manageable way in the first place. For example, they give us the tools to describe
decompositions into smaller parts as well as describing all choices we have when we
seek a planar embedding. Furthermore, the operations these data structures provide
for their efficient manipulation are essential for achieving our desired asymptotic
running times. Finally, efficient implementations of these data structures also form
a cornerstone of practical implementations. In this sense, data structures form the
bridge from theoretical to practical solutions, and we will extensively consider both
these sides in this thesis. The first important data structure for planar graphs is the
SPQR-tree, which succinctly describes all planar embeddings as well as information
on the connectivity of the graph. From their inception onward, SPQR-trees form an
important tool in handling dynamic changes to graph. We extend the portfolio of
dynamic operations on SPQR-trees to the expansion of vertices, which also allows
us to further improve the running time of our Synchronized Planarity algorithm.
To do so, we give an alternative, axiomatic definition of the SPQR-tree, which
makes it easier to reason about its structure.

3

Chapter 1 Introduction

A further data structure that is even more central to this work is the PC-tree,
which describes certain sets of cyclic orders. Analogous to the global description of
all planar embeddings of a graph through SPQR-trees, PC-trees can be used to locally
describe the possible cyclic orders of edges around vertices in planar embeddings.
This makes it a key component for our algorithms, as it allows us to test planarity
while also respecting further constraints, and to communicate constraints arising
from the surrounding graph structure between vertices with synchronized rotation.
Bridging over to the practical side, we resolve several issues with the description
of PC-trees that seem to have prevented prior practical realization. This allows us
to present the first correct implementation of PC-trees. We also describe further
improvements, which allow us to outperform all implementations of alternative
data structures (out of which we only found very few to be fully correct) by at least
a factor of 4. We show that this yields a simple and competitive planarity test that
can also yield an embedding to certify planarity.

We also use our PC-tree implementation to implement our quadratic algorithm
for solving Synchronized Planarity. Here, we show that our algorithm greatly
outperforms previous attempts at solving related problems like Clustered Pla-
narity in practice. We also engineer its running time and show how degrees of
freedom in the theoretical algorithm can be leveraged to yield an up to tenfold
speed-up in practice.
Altogether, we add crucial instruments to the algorithmic toolbox for treating

constrained planarity problems both in theory and in practice. This is accompanied
by improvements to the underlying data structures both on the theoretical as well
as the practical side. Based on this, we provide a greatly simplified linear-time
solution for various constrained planarity problems that restrict individual vertex
rotations. For more involved planarity variants that require the synchronization of
rotations between vertices, we describe a quadratic-time solution. This allows us
to model a great variety of constrained planarity variants, for which we by means
of our implementation also provide a practical solution.

1.2 Outline
Themain content of this thesis is divided into a theoretical and a practical part. In the
theoretical Part I we introduce two new algorithms for solving constrained planarity
problems, show their correctness and analyze their asymptotic running time. In
the practical Part II we develop an implementation of a core data structure that
both algorithms rely upon and then implement and engineer one of our algorithms
based on this. Both parts together are framed by preliminaries in Chapter 2 as well
as a conclusion in Chapter 10. In the following, we briefly outline the contents of
both parts.

4

Outline Section 1.2

Part I – Constrained Planarity in Theory

This part is concerned with the theoretical description and analysis of solutions
to constrained planarity problems. First, we will give an overview over the most
important variants of constrained planarity and their relationship in Chapter 3. In
the following Chapter 4, we give an exposition of the basic algorithm for standard
(i.e., unconstrained) planarity and the PC-tree data structure it relies upon. We
will use both in the remainder of this part, where we develop our solutions to the
Partially Embedded Planarity and Synchronized Planarity problems.

Partially Embedded Planarity

In the Partially Embedded Planarity problem, we are given a graph 𝐺 together
with a topological drawing of a subgraph 𝐻 of 𝐺 , that is, a drawing of 𝐻 where
vertices are represented by points and edges are represented by Jordan curves
between their endpoints. We want to test whether the drawing can be extended to a
topological drawing of the whole graph such that no two edges cross; see Figure 1.2.

Figure 1.2: The edges added in
an instance of Partially Em-
bedded Planarity.

Angelini et al. [Ang+10; Ang+15b] gave a linear-
time algorithm for solving this problem in 2010.
While their paper constitutes a significant result,
the algorithm described therein is highly complex:
it uses several layers of decompositions accord-
ing to connectivity of both 𝐺 and 𝐻 , its descrip-
tion spans more than 30 pages, and can hardly be
considered implementable. In Chapter 5, we give
an independent linear-time algorithm that works
along the well-known vertex-addition planarity test by Booth and Lueker [BL76;
Boo75] (or rather its generalization by Haeupler and Tarjan [HT08]). The key in-
sight here is that the constraints arising from the partial drawing can be formulated
as constraints to the rotations of individual vertices. We modify the PC-tree, which
is the underlying data structure of the planarity test for representing all planar
drawing possibilities, in a natural way to also respect the restrictions given by
the prescribed drawing of the subgraph 𝐻 . The testing algorithm and its proof of
correctness only require small adaptations from the comparatively much simpler
generic planarity test, of which several implementations exist. If the test succeeds,
an embedding can be constructed using the same approaches as for the generic
planarity test [Chi+85].

5

Chapter 1 Introduction

Synchronized Planarity

Many more involved variants of constrained planarity come down to the question
whether there are embeddings of one or multiple graphs such that the rotations
of certain vertices are in sync in a certain way. This is for example the case in
Clustered Planarity, where the order in which edges “leave” a cluster (via its
boundary line) needs to line up with the order in which they “enter” the cluster. To
formulate this in terms of synchronized vertex rotations, we can split the graph in
two at each cluster boundary, in each half contracting the other side of the cluster
boundary into a single vertex; see Figure 1.3. Now, the rotations of the two vertices
that are obtained from the same cluster boundary need to be in sync.

Figure 1.3: Equivalent in-
stances of Clustered- and
Synchronized Planarity.

In Chapter 6, we introduce the problem Syn-
chronized Planarity to model this synchronization.
Roughly speaking, its input is a loop-free multi-graph
together with synchronization constraints that match
pairs of vertices of equal degree by providing a bijec-
tion between their edges. Synchronized Planarity
then asks whether the graph admits a crossing-free
embedding in the plane such that the orders of edges
around synchronized vertices are consistent. We show,
on the one hand, that Synchronized Planarity can
be solved in quadratic time and, on the other hand,
that it serves as a powerful modeling language that
lets us easily formulate several constrained planarity problems as instances of Syn-
chronized Planarity. In particular, we use this to improve the running time for
Clustered Planarity from𝑂 ((𝑛 +𝑑)8) [FT22] to𝑂 ((𝑛 +𝑑)2), where 𝑛 is the num-
ber of vertices and 𝑑 is the total number of crossings between cluster borders and
edges. For Connected SEFE-2, we improve the running time from 𝑂 (𝑛16) [FT22]
to 𝑂 (𝑛2).

Maintaining Triconnected Components under Node Expansion

The last chapter of Part I is dedicated to a data structure that is, in itself, inde-
pendent of our algorithmic applications. The SPQR-tree data structure models
the decomposition of a biconnected graph into triconnected components, which
describe the sets of vertices that cannot be separated by the removal of at most
two vertices. From their inception onwards, they have always had a strong rela-
tion to dynamic algorithms maintaining information, e.g., on planar embeddings

6

Outline Section 1.2

and connectivity, under edge insertion and, later on, also deletion. In Chapter 7,
we study the problem of dynamically maintaining an SPQR-tree while expand-
ing vertices into arbitrary biconnected graphs; see Figure 1.4. This allows us to

v

Figure 1.4: Expanding vertex 𝑣.

efficiently merge two SPQR-trees by identifying
the edges incident to two vertices with each other.
We do this working along an axiomatic definition,
thereby lifting the SPQR-tree to a stand-alone data
structure that can be modified independently from
the graph it might have been derived from. Mak-
ing changes to this structure, we can now observe

how the graph represented by the SPQR-tree changes, instead of having to rea-
son which updates to the SPQR-tree are necessary after a change to the repre-
sented graph.
Using efficient expansions and merges of SPQR-trees allows us to further im-

prove the running time of the Synchronized Planarity algorithm from 𝑂 (𝑚2)
to 𝑂 (𝑚 · 𝛥), where𝑚 is the number of edges and 𝛥 is the maximum degree of a
vertex involved in a synchronization constraint. This also reduces the time for solv-
ing several related constrained planarity problems, e.g. for Clustered Planarity
from𝑂 ((𝑛 + 𝑑)2) to𝑂 (𝑛 + 𝑑 · 𝛥), where 𝑑 is the total number of crossings between
cluster borders and edges and 𝛥 more specifically denotes the maximum number
of edge crossings on a single cluster border.

Part II – Constrained Planarity in Practice
This part is concerned with the practical implementation of solutions to constrained
planarity problems. Its first half focuses on implementing the PC-tree as core
component to many constrained planarity algorithms. On this foundation, we
describe and engineer an implementation of our quadratic algorithm for the Syn-
chronized Planarity problem in the second half.

Experimental Comparison of PQ- and PC-Trees

PQ-trees and PC-trees are data structures that represent sets of linear and cyclic
orders, respectively, subject to constraints that specific subsets of elements have to
be consecutive. While equivalent to each other, PC-trees are conceptually much sim-
pler than PQ-trees; updating a PC-tree so that a set of elements becomes consecutive
requires only a single operation, whereas PQ-trees use an update procedure that
is described in terms of nine transformation templates that have to be recursively
matched and applied.

7

Chapter 1 Introduction

Despite these theoretical advantages, for a long time no practical PC-tree imple-
mentation was available. This might be due to the original description by Hsu and
McConnell [HM03] in some places only sketching the details of the implementation.
In Chapter 8, we describe two alternative implementations of PC-trees. For the first
one, we follow the approach by Hsu and McConnell, fill in the necessary, previously
missing details and also propose improvements on the original algorithm. For the
second one, we use a different technique for efficiently representing the tree using
a Union-Find data structure. In an extensive experimental evaluation we compare
our implementations to a variety of other implementations of PQ-trees that are
available on the web as part of academic and other software libraries. Our results
show that both PC-tree implementations beat their closest fully correct competitor,
the PQ-tree implementation from the OGDF library [Chi+14; Lei97], by a factor
of 2 to 4, showing that PC-trees are not only conceptually simpler but also faster in
practice. Moreover, we find the Union-Find-based implementation, while having
a slightly worse asymptotic running time in theory, to be twice as fast as the one
based on the description by Hsu and McConnell. Finally, we show the positive
effects this greatly improved performance has on the planarity testing algorithms
that strongly rely on PC-trees.

Engineering the Synchronized Planarity Algorithm

Despite substantial prior theoretical progress on constrained planarity problems,
only very few of the found solutions have been put into practice and evaluated
experimentally. In Chapter 9, we describe our implementation of the quadratic-
time algorithm for solving the problem Synchronized Planarity introduced
in Chapter 6. Our experimental evaluation on an existing benchmark set shows
that even our baseline implementation outperforms all competitors by at least an
order of magnitude. We systematically investigate the degrees of freedom in the
implementation of the Synchronized Planarity algorithm for larger instances and
propose several modifications that further improve the performance. Altogether,
this allows us to solve instances with up to 100 vertices in milliseconds and instances
with up to 100 000 vertices within a few minutes.

8

2 Preliminaries

We expect basic familiarity with fundamental graph-theoretic as well as algorithmic
concepts [Cor+22; Die17]. A gentle introduction to many of the following concepts
related to planarity can also be found in Chapter 1 of the Handbook of Graph
Drawing andVisualization [Pat13]. The purpose of these preliminaries is to establish
our terminology, give formal definitions for the notation we use and to introduce
some lesser-known concepts used in this thesis.

Sets. A partition of a base set 𝑋 is a grouping of its elements into non-empty
subsets, the cells, so that every element is contained in exactly one cell. We use𝐴 ·∪𝐵
to denote the union of two disjoint sets 𝐴, 𝐵. For a bijection or matching 𝜙 , we call
𝜙 (𝑥) the partner of an element 𝑥 . When considering running times, we assume
a set implementation allowing constant-time insertion and removal of elements,
such as doubly-linked lists with pointers stored with the elements.

Linear and Cyclic Orders. Let 𝑋 be a ground set. Two linear orders 𝛼 , 𝛽
of 𝑋 are equivalent, denoted by 𝛼 ∼ 𝛽 , if there exist linear orders 𝛼1, 𝛼2 such
that 𝛼 = 𝛼1𝛼2 and 𝛽 = 𝛼2𝛼1. That is, two orders are equivalent if one is a rotation
of the other. A cyclic order 𝜎 is an equivalence class of ∼. Given a linear order 𝛼 ,
we write [𝛼] := {𝛽 | 𝛼 ∼ 𝛽} for the corresponding cyclic order. For an order 𝜎 , we
use 𝜎 to denote its reversal.

Let 𝐴 be a subset of 𝑋 with ∅ ≠ 𝐴 ⊆ 𝑋 , let 𝛼 be a linear order of 𝑋 and let 𝜎 be a
cyclic order of 𝑋 . The set 𝐴 is consecutive in 𝛼 if 𝛼 = 𝛼1𝛼2𝛼3, such that 𝛼2 is a linear
order of𝐴 and 𝛼1𝛼3 is a linear order of the elements in𝑋 \𝐴. The set𝐴 is consecutive
in a cyclic order 𝜎 if there exists a linear order 𝛽 ∈ 𝜎 such that𝐴 is consecutive in 𝛽 .
Now let 𝜎 be a cyclic order such that𝐴 is consecutive in 𝜎 and let 𝑎 ∉ 𝑋 . We denote
by 𝜎 [𝐴] the cyclic order of 𝐴 that is obtained from 𝜎 by removing the elements
of 𝑋 \𝐴. We denote by 𝜎 [𝐴→ 𝑎] the cyclic order of (𝑋 \𝐴) ∪ {𝑎} obtained from 𝜎

by replacing the elements of 𝐴 with the single element 𝑎.
Let 𝜎, 𝜏 be cyclic orders of 𝑋1, 𝑋2 with 𝑋1 ∩ 𝑋2 = {ℓ}. The merge of 𝜎 and 𝜏 ,

denoted by 𝜎 ⊗ℓ 𝜏 is the cyclic order that is obtained by merging the two orders
at ℓ . More precisely, let 𝜎 = [𝛼ℓ] and 𝜏 = [ℓ𝛽], then 𝜎 ⊗ℓ 𝜏 = [𝛼𝛽]. Note that this
yields 𝜎 = (𝜎 ⊗ℓ 𝜏) [𝑋2 → ℓ]. If one side only contains the single element ℓ , the
merge will effectively remove ℓ from the other side, i.e., [𝛼ℓ] ⊗ℓ [ℓ] = [𝛼].

9

Chapter 2 Preliminaries

e

f
g

d

a

b

c n

o

p

k

m

h

i

(a) g

e

f

a

b

c

d

n

o

p

k

m

h

i

(b)

Figure 2.1: (a) A PC-tree 𝑇 on the set 𝑋 = {𝑎, . . . , 𝑝}. Small black disks are P-nodes,
larger white disks are C-nodes with their up-to-reversal fixed rotation indicated. The red
arrow indicates the currently shown cyclic order, which follows the alphabet. (b) A planar
drawing of a graph 𝐺 with a vertex 𝑣 marked in blue and the edges incident to 𝑣 identified
with 𝑋 . The rotation of 𝑣 indicated by the red arrow coincides with the cyclic order from (a).
Moreover, 𝑇 represents all possible rotations of 𝑣 in any planar drawing of 𝐺 , that is 𝑇 is
the embedding tree of 𝑣.

PQ- and PC-Trees. A PC-tree 𝑇 is a tree without degree-2 vertices whose inner
nodes are partitioned into P-nodes and C-nodes; see Figure 2.1 (a). Edges incident to
C-nodes have a cyclic order that is fixed up to reversal, whereas edges incident to
P-nodes can be reordered arbitrarily. Traversing the tree according to fixed orders
around the inner nodes determines a cyclic order of the leaves 𝑋 of the tree. Any
cyclic order of 𝑋 that can be obtained from 𝑇 after arbitrarily reordering the edges
around P-nodes and reversing orders around C-nodes is an admissible order of 𝑋 .
In this way a PC-tree represents a set of cyclic orders of 𝑋 ; see Figure 2.1. Further
examples of PC-trees are given in Figure 4.1 in Section 4.1, where we also discuss
this data structure in more detail. The main operation of PC-trees is the update,
which modifies the tree to restrict its admissible orders to those where the leaves of
a set 𝐴 called restriction are consecutive. This operation is discussed in more detail
in Section 4.1 and Chapter 8.
Rooted PC-trees have initially been studied by Booth and Lueker under the

name PQ-tree (also referring to C-nodes as Q-nodes) [BL76], where a leaf used
as root indicates where the cyclic order is cut into a linear one. There is a linear-
time equivalence between the rooted PQ-trees and the unrooted PC-trees [Hsu01].
For theoretical purposes, we thus do not distinguish them and use both terms
interchangeably. We will preferably use the term PC-tree and only use the term
PQ-tree when it is more suitable for historic reasons, e.g. when used in the name
of a known problem. Still, there are several practical differences between both data
structures, which we discuss in more detail in Chapter 8.

10

Preliminaries Chapter 2

(a)

(c)
(d)

(b)

Figure 2.2: A planar graph (a), its SPQR-tree (b) and the corresponding skeletons (c).
Rigids are highlighted in red, parallels in green, and series in blue. The embedding tree of
the vertex marked in blue (d). Small black disks are P-nodes, larger white disks are C-nodes.

Graphs. In the context of this work, when referring to a graph 𝐺 = (𝑉 , 𝐸), we
usually mean a loop-free multi-graph with vertices𝑉 and (possibly parallel) edges 𝐸.
We set 𝑛 = |𝑉 | and𝑚 = |𝐸 | and use 𝑛+𝑚 to describe the size of a graph. For a vertex
𝑣, we denote its open neighborhood (excluding 𝑣 itself) by 𝑁 (𝑣). A star consists of
a center vertex connected to its pairwise-nonadjacent ray vertices. In a multi-star,
there may be multiple parallel edges between the center and each ray vertex. A
(𝑘-)wheel is a (𝑘-)cycle, where each node is also connected to an additional central
node. An st-ordering is an ordering of the vertices of graph such that the very first
and last vertices, usually called 𝑠 and 𝑡 , respectively, are adjacent and moreover,
each vertex except for 𝑠 and 𝑡 has a neighbor which comes earlier in the ordering,
and a neighbor which comes later [ET76]. When considering implementations,
we assume a graph representation that allows efficient manipulation, such as an
adjacency list with doubly-linked lists. This allows inserting vertices and edges
in constant time. An edge can be deleted in constant time, while a vertex can be
deleted in time linear in its degree.

Connectivity. A separating 𝑘-set is a set of 𝑘 vertices whose removal increases
the number of connected components. Separating 1-sets are called cut-vertices,
while separating 2-sets are called separation pairs. A connected graph is biconnected
if it does not have a cut-vertex. A biconnected graph is triconnected if it does not
have a separation pair. Maximal biconnected subgraphs are called blocks. A cut-
vertex may be incident to multiple blocks and a block may be incident to multiple
cut-vertices. This adjacency of biconnected components in a connected component
yields a bipartite acyclic graph called the block-cut-tree or BC-tree for short. A
vertex that is not a cut-vertex and thus resides within a unique block is called
block-vertex.

Each separation pair divides the graph into bridges, the maximal subgraphs which
cannot be disconnected by splitting the vertices of the separation pair. Splitting

11

Chapter 2 Preliminaries

f0 f1

f2

f3 f4

f6
f5

C1

C2

C3

C5

f0

C1 C2 C5

f1

C4

f2 f6 f5

C3 C4

f3 f4

(a) (b)

Figure 2.3: Embedding of a disconnected graph (a) with its component–face tree (b).

a vertex 𝑣 introduces a further copy 𝑣′ of 𝑣 such that 𝑣 and 𝑣′ are non-adjacent
and reassigns some of the edges of 𝑣 to 𝑣′. Hopcroft and Tarjan [HT73b] defined a
graph decomposition into triconnected components, also called SPQR-tree [DT96a],
where the components come in three shapes: bonds consist of two pole vertices
connected by multiple parallel edges, polygons consist of a simple cycle, and rigids,
whose embeddings are unique up to reflection; see Figure 2.2. Each edge of these
components is either real, representing a single edge of the original graph, or virtual,
representing a subgraph. Each virtual edge has a separation pair as its endpoints
and is matched with a virtual edge in another component with equivalent endpoints,
yielding a tree structure of the triconnected components. This decomposition can
be computed in linear time [GM00]. SPQR-trees are discussed in more detail in
Chapter 7.

Planar Drawings and Embeddings. A (topological) drawing 𝛤 of a graph 𝐺 =

(𝑉 , 𝐸) maps each vertex to a distinct point in ℝ2 and each edge to a Jordan arc
in ℝ2 that connects its two endpoints in such a way that the points of vertices are
only contained in arcs for which they are an endpoint. A drawing is planar if no
two edges share an interior point. The graph 𝐺 is planar if a planar drawing of 𝐺
exists. A planar drawing 𝛤 partitions the remainder of ℝ2 into faces; the connected
components of ℝ2 \ 𝛤 . The single unbounded face is called the outer face.
Two planar drawings 𝛤1, 𝛤2 are equivalent, if there exists an ambient isotopy

that transforms 𝛤1 into 𝛤2, i.e., there exists a continuous map 𝐹 : ℝ2 × [0, 1] → ℝ2

where each of the maps 𝐹𝑡 (𝑥) := 𝐹 (𝑥, 𝑡) is a homeomorphism of ℝ2 such that 𝐹0
is the identity and 𝐹1 maps 𝛤1 to 𝛤2. An equivalence class of planar drawings is
called an (combinatorial) embedding. For an embedding E, we use E(𝑣) to denote
the cyclic order of the edges 𝐸 (𝑣) incident to 𝑣 as given by E. We also call E(𝑣)

12

Preliminaries Chapter 2

the rotation of 𝑣; see Figure 2.1 (b). For a connected graph 𝐺 an embedding E
can be described by a rotation system, which describes the rotation E(𝑣) of each
vertex 𝑣, together with a designated outer face. Every embedding of a biconnected
planar graph can be obtained from an arbitrary embedding by, in the SPQR-tree,
flipping its rigids and reordering the parallel edges in its bonds [HT73b]. If 𝐺
is not connected, we need additional information about the relative positions of
the connected components. The relative position of a connected component 𝐶1
in relation to another connected component 𝐶2 is the face of 𝐶2 that contains 𝐶1.
Note that the set of faces of 𝐶2 depends on the rotation system of 𝐶2. The relative
positions of all connected components, given a rotation system for each one, can
be encoded by a component–face tree [Ang+15b], an example of which is show
in Figure 2.3. The component–face tree consists of one vertex for each connected
component and one vertex for each face. Two vertices are adjacent if the respective
connected component and face are incident.
An embedding tree is a PC-tree that describes all possible rotations of a block-

vertex in any embedding [BL76]; see Figures 2.1 (a) and 2.2 (d). Embedding trees
are discussed in more detail in Section 7.4.1. A linear-time algorithm that computes
an embedding tree as a byproduct of a planarity test is given in Section 4.2.

13

Part I

Constrained Planarity in Theory

3 The Hierarchy of Con-
strained Planarity Problems

In this chapter, we introduce several important variants of constrained planarity
and discuss their relationships, building on the work of Schaefer [Sch13] and
Da Lozzo [DaL15]. Schaefer [Sch13, Figure 2] introduces a hierarchy on the variants
of constrained planarity that have been studied in the past. Da Lozzo gives an
extended version of this figure, incorporating updates up to 2015 [DaL15, Figure 0.1].
A version of this hierarchy updated to match the current state is given in Figure 3.1.
In the figure, arrows indicate that the target problem either generalizes the source
problem or solves it via a reduction. See Chapter 6 and especially Section 6.4 for
the new relations and the problem Synchronized Planarity marked in blue. In
the 2015 version of Da Lozzo, the problems Strip, Clustered and Synchronized
Planarity as well as (Connected) SEFE-2 still formed a frontier of problems with
unknown complexity, separating efficiently solvable problems from those that are
NP-hard. Since then many of these problems were settled in P, especially due to
the Clustered Planarity solution from 2019 by Fulek and Tóth [FT22]. The
problems Partially PQ-constrained Planarity and strict 1-Fixed Constrained
Planarity were initially solved on general graphs through our Synchronized
Planarity reduction; see Section 6.4. The only problem from this hierarchy that
remains with an unknown complexity is SEFE-2.
To provide a central up-to-date source for information on the various related

constrained planarity variants, we made the hierarchy from Figure 3.1 together
with definitions of the shown problems and their reductions available online at
constrained-planarity.github.io. Following a collaborative model, future updates
and modifications to the information presented there can easily be contributed
via GitHub.

3.1 Problem Definitions

In this section, we will give definitions and a short background for the most im-
portant problems from Figure 3.1. Furthermore, we will highlight our changes to
the hierarchy, which are indicated in blue in the figure. See the works by Schae-
fer [Sch13] and Da Lozzo [DaL15] for full definitions of the remaining problems as
well as the reductions between them.

17

https://constrained-planarity.github.io/
https://github.com/constrained-planarity/constrained-planarity.github.io

Chapter 3 The Hierarchy of Constrained Planarity Problems

P

NPC

Upward

Partial
Rotation
(with flips)

Clustered
level (cl)

Outer

ec-planar

SEFE-3

Radial
Level

Strip

?

Book ⟨α, β, γ⟩-
drawings

T -level

Proper
T -level

Partitioned
2-page

SEFE

T -level Partitioned
T -coherent
3-page

Partitioned
T -coherent
2-page

(C-SEFE-2)

SEFE-2

Streamed
Backbone

Partial
Planarity

Proper
Clustered
Level

Synchronized

MaxSEFE

Partial
rotation

Partially
Embedded

Weak
realizability

Standard

Strip
(Embedded)

Upward
(Embedded)

ec-planar
with free edges
(Partially FPQ-
constrained)

Clustered

Partitioned
3-Page

Streamed
Planarity

Clustered
Level

Level

Strict 1-Fixed
Constrained
Planarity

Figure 3.1: The hierarchy of constrained planarity problems. Figure based on the work
by Schaefer [Sch13] and Da Lozzo [DaL15]. Changes discussed in this thesis are indicated
in blue.

18

Problem Definitions Section 3.1

3.1.1 Partially Embedded Planarity

In Partially Embedded Planarity, the undirected graph𝐺 = (𝑉 , 𝐸) is accompa-
nied by a prescribed subgraph 𝐻 for which a planar embedding H is given. The
triplet (𝐺,𝐻,H) is often called partially embedded graph (PEG). We call a planar
embedding G of 𝐺 an extension of the embeddingH of 𝐻 if the restriction of G to
𝐻 coincides withH . The problem Partially Embedded Planarity asks whether
such an extension exists for a PEG; see Figures 1.1 (c) and 5.1. Angelini et al. give a
linear-time algorithm for testing this [Ang+15b]. We give an independent, simpler
linear-time algorithm in Chapter 5. Schaefer shows that Partially Embedded
Planarity can be reduced to SEFE-2, while we give a reduction to the Clustered
Planarity problem in Section 6.4.3, which lies further up in the hierarchy of
Figure 3.1.

3.1.2 Level Planarity

In Level Planarity, the directed graph 𝐺 = (𝑉 , 𝐸) is equipped with a function
𝛾 : 𝑉 → {1, 2, . . . , 𝑘} with 𝑘 ∈ ℕ such that for every edge (𝑢, 𝑣) ∈ 𝐸 it is𝛾 (𝑢) < 𝛾 (𝑣).
The level graph is called proper if it is𝛾 (𝑢)+1 = 𝛾 (𝑣) for every edge. With𝑉𝑖 = 𝛾−1(𝑖)
we denote all vertices on level 𝑖 . A level-planar drawing maps all vertices 𝑣 ∈ 𝑉𝑖 of
a level 𝑖 to a point on the line 𝑦 = 𝑖 and represents each edge as y-monotone curve
such that no two edges cross; see Figure 1.1 (a). A level graph is level planar if it
admits a level-planar drawing. Jünger et al. give a linear-time algorithm for testing
level planarity [JLM98].

Radial Level Planarity is a generalization of Level Planarity, where levels
are not represented by axis-parallel lines, but by concentric circles. Equivalently,
this can be seen as drawing the horizontal levels on a standing cylinder instead
of in the plane. Testing level planarity can be reduced to the radial variant by
introducing an edge from the lowest to the highest level, at which the cylinder can
be cut to transform a radial solution back into the plane [Sch13]. Bachmaier et al.
give a linear-time algorithm for testing radial level planarity [BBF05]. Schaefer
shows that Level Planarity can be reduced to Radial Level Planarity, which
can in turn be reduced to Clustered Planarity [Sch13]. We give an alternative
reduction using fewer clusters in Section 6.4.4.
Strip Planarity is a variant of Level Planarity where levels are not rep-

resented by horizontal lines but horizontal strips, which allow their contained
vertices to be slightly shifted vertically. Angelini et al. [Ang+16; DaL15] remark
that it coincides with the case of the Atomic Embeddability problem where the
host graph is a path. See Sections 6.2 and 6.4.1 for more details on this problem

19

Chapter 3 The Hierarchy of Constrained Planarity Problems

and our quadratic-time solution to it. Angelini et al. give a cubic-time algorithm
for Strip Planarity if the combinatorial embedding of the underlying graph is
fixed [Ang+16].

3.1.3 Partially (F)PQ-constrained Planarity
In Partially PQ-constrained Planarity, we are given a graph 𝐺 = (𝑉 , 𝐸)
together with a PQ-tree𝑇 (𝑣) for each of its vertices 𝑣 ∈ 𝑉 , where the leaves 𝐿(𝑇 (𝑣))
are a (not necessarily strict) subset of the edges 𝐸 (𝑣) incident to 𝑣. We seek an
embedding E where, for each vertex 𝑣, the order of incident edges E(𝑣) is admissible
by its PQ-tree 𝑇 (𝑣); see Figure 6.11. Gutwenger et al. [GKM08] give a linear-time
algorithm for a non-partial variant of the problem on general graphs, that is where
all incident edges need to be leaves of the PQ-tree, under the name EC-Planarity.
They also extend the restrictions to so-called FPQ-trees, which also contain F-nodes
that are similar to Q-nodes but have an entirely fixed rotation without allowing
flips. Schaefer [Sch13] discusses even further restricted variants where for each
vertex, all incident edges are restricted by a single P- or F-node (Partial Rotation)
or by a single P- or Q-nodes (Partial Rotation with flips). Bläsius and Rutter give
a linear-time algorithm for Partially PQ-constrained Planarity on biconnected
graphs [BR16b]. They also note that their algorithm can easily be extended to the
case of FPQ-trees. Note that this makes the problem equivalent to EC-Planarity
with Free Edges as presented by Gutwenger et al. [GKM08]. We give a solution
that can also handle this case in quadratic time on general graphs in Section 6.4.7.

3.1.4 Clustered Planarity
In Clustered Planarity, the embedding has to respect a laminar family of clusters,
that is every vertex is part of some (hierarchically nested) cluster and an edge may
only cross a cluster boundary if it connects a vertex from the inside of the cluster
with one from the outside [BR16a; Len89]; see Figures 1.1 (b) and 6.6. Formally,
we equip the undirected graph 𝐺 = (𝑉 , 𝐸) with a cluster hierarchy 𝑇 , which is a
rooted tree with the vertices𝑉 as leaves. Each inner node 𝜇 of𝑇 represents a cluster
encompassing all leaves𝑉𝜇 of the subtree rooted at 𝜇. A clustered-planar drawing is
a planar drawing of 𝐺 that also maps every cluster 𝜇 to a simply connected closed
region 𝑅𝜇 such that

1. 𝑅𝜇 encloses exactly the vertices in 𝑉𝜇 ,

2. no two cluster region boundaries intersect, and

3. no edge intersects the boundary of a cluster more than once.

20

Problem Definitions Section 3.1

A cluster graph is clustered-planar if it admits a clustered-planar drawing.
Lengauer [Len89] studied and solved this problem as early as 1989 in the setting

where the clusters are connected. Feng et al. [FCE95], who coined the term Clus-
tered Planarity, rediscovered this algorithm and asked the general question
where disconnected clusters are allowed. This question remained open for 30 years.
In that time, polynomial-time algorithms were found for many special-cases [AD19;
Cor+08; Ful+15; Gut+02], see [BR16a] for an overview, before Fulek and Tóth [FT22]
found an𝑂 ((𝑛 + 𝑑)8) solution in 2019, where 𝑑 is the number of crossings between
a cluster-border and an edge leaving the cluster. We give more details on this in
Sections 6.2 and 6.6.

3.1.5 Partitioned 2-page Book Embedding
In the Partitioned T -coherent 2-page Book Embedding problem, we are given
a PC-tree𝑇 consisting of only P-nodes and leaves𝑉 together with two sets 𝐸1, 𝐸2 ⊆(︁𝑉
2
)︁
. We seek an order 𝜎 of 𝑉 such that 𝜎 is admissible by 𝑇 and for no pair of

edges from the same set 𝐸𝑖 (with 𝑖 ∈ {1, 2}) the endpoints alternate in 𝜎 [Ang+12].
Conceptionally, the problem asks whether the vertices 𝑉 can be placed along the
spine of a book such that their order is admissible by 𝑇 and that the edges of 𝐸1
and 𝐸2 can be drawn planarly on two separate pages. The case where𝑇 is trivial (i.e.,
consists of a single inner P-node) is called Partitioned 2-page Book Embedding
and can be solved in linear time [ABD12; HN09; HN18].

3.1.6 Simultaneous Embedding with Fixed Edges (SEFE-2)
In SEFE-2, we are given two graphs that share some vertices and edges and we want
to embed both graphs individually such that their common parts are embedded the
same way [BKR13; Bra+07; Rut20]; see Figures 1.1 (d) and 6.10. More general vari-
ants of SEFE are often NP-complete, e.g., SEFE-3 with three given graphs [Gas+06],
even if all share the same common part [ADN15; Sch13]. In contrast, more restricted
variants are often efficiently solvable, e.g., when the shared graph is biconnected,
a star, a set of cycles, or has a fixed embedding [Ang+12; Ang+15b; BR15]. The
case where the shared graph is connected, which is called Connected SEFE-2, was
shown to be equivalent to the Partitioned T -coherent 2-page Book Embedding
problem [Ang+12] and to be reducable to Clustered Planarity [AD16], all of
which were recently shown to be efficiently solvable [FT22]. We give a quadratic
solution in Section 6.4.6. In contrast to these results, the complexity of the gen-
eral SEFE-2 problem with two graphs sharing an arbitrary common graph is still
unknown.

21

4 Planarity

This chapter is based on joint work with Ignaz Rutter and Sandhya T. P. which is
currently under review [8].

In this chapter, we will give an overview over the core concepts underlying the
vertex-addition planarity test by Booth and Lueker [BL76; Boo75]. Our exposition
follows the more general approach by Haeupler and Tarjan [HT08]. The test
incrementally inserts the vertices of the graph in an order that ensures that the
not-yet inserted vertices form a connected subgraph. This allows us to assume
that at every step, by the Jordan Arc Theorem, all edges to not inserted vertices
have to lie on the outer face of the already inserted subgraph. We will only care
about the possible cyclic orders of such edges on the outer face, disregarding the
different planar embeddings that yield these orders. To insert the next vertex, all
edges connecting it to already inserted vertices need to be consecutive on the outer
face, as otherwise further edges to not-yet inserted vertices would be enclosed.
We use PC-trees to efficiently represent the set of possible edge orders on the
outer face and to restrict it to only those orders that have a certain subset of edges
consecutive. We describe this data structure in the following Section 4.1 in more
detail, while explaining the details of the planarity test based on it in Section 4.2
following thereafter.
Note that the initial idea for this planarity test was given by Lempel, Even and

Cederbaum [LEC67], albeit with a quadratic running time. A linear-time implemen-
tation was made possible by the PQ-trees described by Booth and Lueker [BL76;
Boo75], together with a linear-time algorithm for finding the required st-ordering
given a decomposition into biconnected components [ET76]. This planarity test
was later generalized by Haeupler and Tarjan [HT08] to directly work on non-
biconnected graphs using the PC-trees devised by Hsu and McConnell [HM03;
HM04]. For the sake of simplicity, we will describe the Haeupler and Tarjan test
using PC-trees only on biconnected graphs here, as it can easily be generalized
to non-biconnected graphs using a decomposition into their biconnected compo-
nents. We will later show how the planarity test can be adapted to also directly
test non-biconnected graphs in Section 5.1.4. We refer to the book chapter by
Patrignani [Pat13] for a more detailed overview over the history of planarity tests.

23

Chapter 4 Planarity

A comparison how the test and PQ-trees by Booth and Lueker differ from the
concepts we present here can also be found there as well as in Chapter 8, although
these differences are insignificant for this algorithm.

4.1 PC-trees
Recall that PC-trees represent cyclic orders of a base set 𝑋 , where a PC-tree 𝑇
is an unrooted tree with leaves 𝑋 and inner nodes of degree at least 3, each of
which is either a P-node or a C-node. Examples of PC-trees are given in Figure 4.1,
where P-nodes are denoted by small circles whereas C-nodes are denoted by larger
double circles. While the edges incident to a P-node can be rearranged without
any restriction, the edges incident to a C-node come with a cyclic order that is
fixed up to reversal. Any embedding of a PC-tree 𝑇 that respects this constraint
induces a cyclic order of its leaves that we call an admissible order of 𝑇 . The set of
all admissible orders of 𝑇 is denoted by 𝜔 (𝑇). We define the special null-tree to be
the PC-tree with 𝜔 (𝑇) = ∅. We refer to the set of all leaves of 𝑇 as 𝐿(𝑇) = 𝑋 . Note
that a P-node with three neighbors allows the same permutations as a C-node of
the same degree. We thus assume P-nodes to have degree at least 4. We consider
a PC-tree trivial if it consists of a single inner P-node (with at least four leaves).
Otherwise, it consists of a single C-node with at least two leaves, or it contains at
least two inner nodes, all of which have degree at least 3.
Let ∅ ≠ 𝐴 ⊊ 𝐿(𝑇). We now want to classify when 𝐴 is consecutive in every

admissible order of 𝑇 , that is whether 𝑇 allows for any cyclic order that has 𝐴 non-
consecutive. An edge 𝑒 of 𝑇 is consistent with 𝐴 if one of the two subtrees obtained
by removing 𝑒 contains only leaves from 𝐴. We denote by 𝐴(𝑒) ⊆ 𝐴 the leaves of
this subtree. For two consistent edges 𝑒, 𝑒′ of 𝑇 , we define 𝑒 ≺ 𝑒′ if 𝐴(𝑒) ⊆ 𝐴(𝑒′).
This gives a partial order on the consistent edges of 𝐴. We denote by 𝐸 (𝑇,𝐴) the
set that contains all maximal elements of this partial order; see Figure 4.1 (b). We
call 𝐴 consecutive (with respect to 𝑇) if 𝐸 (𝑇,𝐴) either consists of a single edge or
is a consecutive set of edges around a 𝐶-node. Observe that 𝐴 is consecutive if an
only if 𝐴 is consecutive in every order 𝜎 ∈ 𝜔 (𝑇).

In our applications, we need the following basic operations of PC-trees: Merge,
Split, Update, and Intersect; see also Figure 4.1. We now describe each of these
in more detail.

Merge Let𝑇1,𝑇2 be two PC-trees whose respective leaf sets have size at least 2 and
that share exactly one leaf ℓ ; see Figure 4.1 (c). The Merge of𝑇1,𝑇2, denoted as
𝑇1⊗ℓ𝑇2, is the PC-tree𝑇 obtained by identifying the two copies of ℓ in𝑇1 and𝑇2

24

PC-trees Section 4.1

1

5

6

7

8

2

3

4

5

1

6

7

8

2

3

4

2

5

8

7

ℓ

3

ℓ

6

1

4
(a) (b) (c)

5

1

6

7

8

2

3

4(d)

µ
µ′

µ′′

Figure 4.1: (a) A PC-tree 𝑇 on the set 𝐿(𝑇) = {1, . . . , 8} with only P-nodes as inner nodes.
The red leaves belong to a set 𝐴 and their terminal path is highlighted in red. (b) The
PC-tree 𝑇 +𝐴 ensuring that the edges in 𝐴 are consecutive. Here, 𝐸 (𝑇,𝐴) consists of the
three edges marked in red incident to C-node 𝜇. (c) The PC-trees 𝑇 ′ = (𝑇 + 𝐴) [𝐴 → ℓ]
(left) and 𝑇 ′′ = (𝑇 +𝐴) [𝐴𝑐 → ℓ] (right) showing the split of the previous tree and how 𝜇 is
split into two parts 𝜇′ and 𝜇′′ of the respective trees. (d) The PC-tree𝑇 ′ ⊗ℓ 𝑇 ′′ showing the
merge of the previous two trees.

and smoothing the resulting degree-2 node ℓ into an edge 𝑥𝑦, where 𝑥,𝑦 are
the two neighbors of ℓ in 𝑇1 and 𝑇2, respectively; see Figure 4.1 (d). Formally,
we have 𝜔 (𝑇) = {𝜎1 ⊗ℓ 𝜎2 | 𝜎𝑖 ∈ 𝜔 (𝑇𝑖) for 𝑖 ∈ {1, 2}. The orders 𝜎1 ∈ 𝜔 (𝑇1)
and 𝜎2 ∈ 𝜔 (𝑇2) corresponding to a 𝜎 ∈ 𝜔 (𝑇) can be obtained by undoing
the merge that created 𝑇 from 𝑇1 and 𝑇2 while maintaining the embedding
of 𝑇 that corresponds to 𝜎 . Observe that the leaves of each input tree are
consecutive in the tree resulting from the merge, i.e., 𝐿(𝑇𝑖) is consecutive
with respect to 𝑇 for 𝑖 = 1, 2. Furthermore, any PC-tree can be obtained by
merging trees with a single inner node.

We also extend the definition of Merge to the case where one tree, say 𝑇2,
consists only of a single leaf ℓ . In this case, analogously to cyclic orders, we
simply remove ℓ from 𝑇1.

Split Let 𝑇 be a PC-tree and let set 𝐴 with ∅ ≠ 𝐴 ⊊ 𝐿(𝑇) be consecutive with
respect to𝑇 . The operation Split separates𝑇 into two new PC-trees𝑇 ′ and𝑇 ′′
representing the admissible orders of 𝐴𝑐 = 𝐿(𝑇) \𝐴 and 𝐴, respectively, in𝑇 ;
see also Figure 4.1 (c). The two trees have leaves 𝐿(𝑇 ′) = 𝐴𝑐 ∪ {𝑎} and
𝐿(𝑇 ′′) = 𝐴∪ {𝑎}, where 𝑎 ∉ 𝐿(𝑇) is a new leaf that represents the position of
the split-off subtree in each of the resulting halves. The PC-tree𝑇 ′ is obtained
by replacing the edges in 𝐸 (𝑇,𝐴) by the single new leaf 𝑎 and removing
the subtrees containing the leaves in 𝐴. Symmetrically, the PC-tree 𝑇 ′′ is
obtained by replacing the edges in 𝐸 (𝑇,𝐴𝑐) with 𝑎 and removing the subtrees

25

Chapter 4 Planarity

(a) After step (2).

µF

µM

µE

(b) After step (3).

c

(c) Final PC-tree after step (4).

Figure 4.2: Visualization of the updates to the terminal path made to ensure a set of leaves
is consecutive. The full subtrees with only leaves that should be made consecutive are
shown in black, empty subtrees are shown in white. The terminal path is the horizontal
line with gray nodes.

containing the leaves in 𝐴𝑐 . This yields trees 𝑇 ′,𝑇 ′′ with 𝜔 (𝑇 ′) = {𝜎 [𝐴 →
𝑎] | 𝜎 ∈ 𝜔 (𝑇)} and 𝜔 (𝑇 ′′) = {𝜎 [𝐴𝑐 → 𝑎] | 𝜎 ∈ 𝜔 (𝑇)}. To refer to one of
the resulting trees, we will borrow this notation and write 𝑇 [𝐴 → 𝑎] and
𝑇 [𝐴𝑐 → 𝑎] for the trees 𝑇 ′ and 𝑇 ′′, respectively.

Update Let𝑇 be a PC-tree and let 𝐴 ⊆ 𝐿(𝑇) be a set of leaves. The operation Up-
date, denoted as𝑇+𝐴, produces a new PC-tree𝑇 ′with𝜔 (𝑇 ′) = {𝜎 ∈ 𝜔 (𝑇) | 𝐴
is consecutive in 𝜎}. We also call the set 𝐴 a restriction (of the admissible
orders of𝑇 to those where 𝐴 is consecutive). The procedure has the property
that the leaf set 𝐴 is consecutive with respect to the resulting tree 𝑇 ′. We
call a restriction impossible if there is no admissible order of 𝐿 where the
leaves in 𝑅 are consecutive, i.e.,𝑇 +𝐴 is the null-tree. Note that leaf sets with
|𝐴| ∈ {0, 1, |𝐿(𝑇) | − 1, |𝐿(𝑇) |} are always consecutive and thus do not require
changes to 𝑇 . Otherwise, the required changes are made by the following
steps initially described by Hsu and McConnell [HM03; HM04].

(1) Determine the edges of𝑇 that are consistent with neither𝐴 nor 𝐿(𝑇) \𝐴;
see Figures 4.1 (a) and 4.2. If these edges do not form a path, the so-called
terminal path, then 𝑇 does not represent any cyclic order where 𝐴 is
consecutive, and we return the null-tree.

(2) Reorder the edges around the nodes on the terminal path so that all
subtrees that have all their leaves in𝐴, which we will call full, lie on one
side and all subtrees with leaves in 𝐿(𝑇) \𝐴, which we will call empty,
lie on the other side; see Figure 4.2 (a). If this is not possible, then this

26

PC-trees Section 4.1

is due to a C-node around which edges consistent with 𝐴 and edges
consistent with 𝐿(𝑇) \𝐴 alternate. It follows that 𝑇 does not represent
a cyclic order where 𝐴 is consecutive, and we return the null-tree.

(3) Split each P-node 𝜇 on the terminal path twice, once to move all edges
to full subtrees adjacent to 𝜇 to a new P-node 𝜇𝐹 and a second time
to move all edges to empty subtrees to a new P-node 𝜇𝐸 . Add edges
to the new nodes, making the remainder of 𝜇 adjacent to 𝜇𝐹 , 𝜇𝐸, and
up to two edges of the terminal path; see Figure 4.2 (b). Convert this
remaining part into a C-node 𝜇𝑀 and choose its embedding such that
the two terminal edges are not adjacent to each other if it has degree
4, and flip it so that all full subtrees again lie on the same side of the
terminal path.

(4) Contract all nodes of the terminal path (which are now all C-nodes)
into a single, central C-node. Finally, smooth degree-2 vertices and
remove degree-1 vertices that are not leaves of the original tree 𝑇 ; see
Figure 4.2 (c).

Hsu and McConnell [HM03; HM04] show that each of these steps can be
implemented to run in time proportional to |𝐴| plus the length of the terminal
path. This leads to amortized linear time in the size of the set𝐴 as all terminal
edges disappear through the update. We will describe how this procedure
can be implemented efficiently in greater detail in Chapter 8.

Intersect Let 𝑇1,𝑇2 be two PC-trees with the same set of leaves. Then the op-
eration Intersect produces a new PC-tree 𝑇 with 𝜔 (𝑇) = 𝜔 (𝑇1) ∩ 𝜔 (𝑇2).
Booth [Boo75] describes a linear-time algorithm for computing the intersec-
tion of two PQ-trees; the same algorithm can be applied for PC-trees [Pfr20].
The general idea is to convert 𝑇1 into a set of consecutivity constraints and
to then update 𝑇2 with these sets so that it represents only the orders that
are represented by both trees. The key to achieve linear running time is to
contract maximal subtrees that are already consecutive in both trees into
single nodes.

Note that, unlike for cyclic orders, where splitting and merging are converse
operations, the same does not always hold for PC-trees. Figure 4.1 (d) shows an
example where a merge following a split does not yield the initial PC-tree. In this
example, only certain orders 𝜎1 ∈ 𝜔 (𝑇 ′) and 𝜎2 ∈ 𝜔 (𝑇 ′′) can be merged to an
admissible order of the original 𝑇 . We call such pair, that is where 𝜎1 ⊗ℓ 𝜎2 ∈ 𝜔 (𝑇)
holds, compatible. The following lemma shows in which case split and merge are
converse operations on PC-trees and when orders for a split tree are compatible.

27

Chapter 4 Planarity

▶ Lemma 4.1. Let𝑇 be a PC-tree with a consecutive set 𝐴, let𝑇 ′ = 𝑇 [𝐴→ ℓ] and
𝑇 ′′ = 𝑇 [𝐴𝑐 → ℓ] and let 𝜎1 ∈ 𝜔 (𝑇 ′) and 𝜎2 ∈ 𝜔 (𝑇 ′′). If 𝐸 (𝑇,𝐴) is a single edge 𝑒 ,
then 𝑇 = 𝑇 ′ ⊗ℓ 𝑇 ′′ and 𝜎1 ⊗ℓ 𝜎2 ∈ 𝜔 (𝑇), that is any pair of 𝜎1 and 𝜎2 is compatible.
Otherwise, 𝐸 (𝑇,𝐴) is a set of edges consecutive around a C-node 𝜇 of 𝑇 , and we
have 𝑇 ≠ 𝑇 ′ ⊗ℓ 𝑇 ′′ and 𝜔 (𝑇) ⊊ 𝜔 (𝑇 ′ ⊗ℓ 𝑇 ′′). In this case, 𝜎1 and 𝜎2 are compatible
if and only if they induce the same flip of the split halves of 𝜇 in 𝑇 ′ and 𝑇 ′′. If 𝜎1 is
not compatible with 𝜎2, it is instead compatible with 𝜎2. ◀

Proof. If 𝐸 (𝑇,𝐴) is a single edge 𝑒 , tree 𝑇 is split by splitting 𝑒 . It can thus be
reobtained by merging at 𝑒 again, that is 𝑇 = 𝑇 ′ ⊗ℓ 𝑇 ′′. As the embeddings that 𝜎1
and 𝜎2 induce on 𝑇 ′ and 𝑇 ′′, respectively, can also be joined at 𝑒 to obtain an
embedding of 𝑇 , we always have 𝜎1 ⊗ℓ 𝜎2 ∈ 𝜔 (𝑇).
Otherwise, 𝐸 (𝑇,𝐴) is a set of edges consecutive around a C-node 𝜇 of 𝑇 . Split-

ting𝑇 into two trees𝑇 ′,𝑇 ′′ also splits 𝜇 into two respective C-nodes 𝜇′, 𝜇′′, where 𝜇′′
is incident to the edges in 𝐸 (𝑇,𝐴) plus ℓ and 𝜇′ gets the remaining edges of 𝜇 plus
another copy of ℓ ; see Figure 4.1 (d). Merging𝑇 ′ and𝑇 ′′ now does not yield𝑇 again,
as 𝜇′ and 𝜇′′ are still separate C-nodes connected by the edge ℓ in 𝑇 ∗ = 𝑇 ′ ⊗ℓ 𝑇 ′′.
We have 𝜔 (𝑇 ∗) ⊋ 𝜔 (𝑇) as 𝜇′ and 𝜇′′ can be flipped independently and thus in total
allow four different orders for their incident edges in 𝑇 ∗, while 𝜇 in 𝑇 only allows
two. The embeddings 𝜎1 and 𝜎2 induce on𝑇 ′ and𝑇 ′′ can thus only be merged to an
embedding of 𝑇 if the rotations of 𝜇′ and 𝜇′′ they induce can be merged to form an
admissible rotation of 𝜇. As the C-nodes have two admissible embeddings, either 𝜎1
and 𝜎2 are compatible or 𝜎1 and 𝜎2 are compatible. ■

4.2 Planarity of Biconnected Graphs

To test planarity for a graph 𝐺 = (𝑉 , 𝐸), we will iteratively insert the vertices of
the graph in a certain order, that is in each step 𝑖 ∈ {1, . . . , 𝑛} we grow the set 𝑉𝑖 =
{𝑣1, . . . , 𝑣𝑖} ⊆ 𝑉 of already-inserted vertices. At each step, we partition the edges
of 𝐺 into three types: Embedded edges have both endpoints in 𝑉𝑖 , half-embedded
have exactly one endpoint in𝑉𝑖 and unembedded edges have both endpoints in𝑉 \𝑉𝑖 .
When inserting vertex 𝑣𝑖 into the graph, its incident unembedded edges become
half-embedded and its incident half-embedded edges become embedded. We denote
by𝐺𝑖 the subgraph of𝐺 induced by𝑉𝑖 , and by𝐺+𝑖 the graph that is obtained from𝐺𝑖

by adding each half-embedded edge 𝑒 = 𝑢𝑣 with 𝑢 ∈ 𝑉𝑖 as half-edge that is only
incident to 𝑢. If the context is clear, we refer to half-embedded edges simply as
half-edges.

28

Planarity of Biconnected Graphs Section 4.2

The central idea of the planarity test is to use a vertex order that has 𝐺 [𝑉 \𝑉𝑖]
connected at each step 𝑖 ∈ {1, . . . , 𝑛}. By the Jordan curve theorem, this ensures
that all half-embedded edges must be embedded in the same face of 𝐺+𝑖 , without
loss of generality, the outer face. We will for now assume 𝐺 to be biconnected
and use an st-ordering 𝑣1, . . . , 𝑣𝑛 of its vertices, as this ensures that both 𝐺 [𝑉𝑖] and
𝐺 [𝑉 \𝑉𝑖] are connected. Observe that a planar embedding of𝐺 determines a planar
embedding of each 𝐺+𝑖 . Let 𝛺 (𝐺+𝑖) denote the set of all embeddings of 𝐺+𝑖 with
all half-edges on the outer face. For an embedding E ∈ 𝛺 (𝐺+𝑖) of a connected
graph 𝐺+𝑖 , let 𝜔 (E) be its cyclic order of half-edges on the outer face. We define
𝜔 (𝐺+𝑖) = {𝜔 (E) | E ∈ 𝛺 (𝐺+𝑖)} to be the set of all such orders.

To test the planarity of a biconnected graph 𝐺 given an st-ordering 𝑣1, . . . , 𝑣𝑛 of
its vertices, we compute PC-trees 𝑇1, . . . ,𝑇𝑛 satisfying the invariant 𝜔 (𝐺+𝑖) = 𝜔 (𝑇𝑖)
for all 𝑖 ∈ {1, . . . , 𝑛}. The tree 𝑇1 consists of a single P-node with leaves 𝐸 (𝑣1).
Given a PC-tree 𝑇𝑖 , the next PC-tree 𝑇𝑖+1 is obtained as follows. Conceptually, we
make the half-edges 𝐹 that lead from 𝐺+𝑖 to 𝑣𝑖+1 consecutive in 𝑇𝑖 and replace them
by a single edge leading to a new P-node with leaves 𝐸 (𝑣𝑖+1) \ 𝐹 . Formally, we first
turn 𝑣𝑖+1 into a PC-tree 𝑆 consisting of a single P-node with leaves 𝐸 (𝑣𝑖+1). We make
the edges 𝐹 between 𝐺+𝑖 and 𝑣𝑖+1 consecutive in both 𝑇𝑖 and 𝑆 using the Update
operation. We split the resulting PC-tree𝑇𝑖 +𝐹 into trees𝑇 𝐹 = (𝑇𝑖 +𝐹) [𝐹 𝑐 → ℓ] and
𝑇 ′ = (𝑇𝑖 + 𝐹) [𝐹 → ℓ], where𝑇 𝐹 describes the order of half-edges 𝐹 leading from𝐺+𝑖
to 𝑣𝑖+1 and 𝑇 ′ describes the order of the remaining half-edges of 𝐺+𝑖 . Similarly,
we split 𝑆 + 𝐹 into 𝑆𝐹 = (𝑆 + 𝐹) [𝐹 𝑐 → ℓ] and 𝑆′ = (𝑆 + 𝐹) [𝐹 → ℓ], where 𝑆𝐹
describes the order of half-edges 𝐹 leading from 𝑣𝑖+1 to 𝐺+𝑖 and 𝑆′ describes the
order of the remaining half-edges of 𝑣𝑖+1. Note that 𝐿(𝑆𝐹) = 𝐿(𝑇 𝐹) = 𝐹 ∪ {ℓ} and
𝐿(𝑆′) ∩ 𝐿(𝑇 ′) = {ℓ}. Furthermore, 𝐿(𝑆′) ∪ 𝐿(𝑇 ′) contains all half-embedded edges
that are present after step 𝑖 + 1 plus ℓ , that is 𝐿(𝑆′) ∪ 𝐿(𝑇 ′) = 𝐿(𝑇𝑖+1) ∪ {ℓ}. Finally,
we merge trees 𝑆′ and 𝑇 ′ at ℓ to obtain 𝑇𝑖+1 with 𝜔 (𝑇𝑖+1) = 𝜔 (𝑇 ′ ⊗ℓ 𝑆′).

A full proof of correctness of this approach is folklore, albeit not being explicitly
given in the extended abstract by Haeupler and Tarjan [HT08]. As our proof of
Lemma 5.2 includes such a proof (in the context of partially embedded planarity),
we will only sketch its outline here.

▶ Lemma 4.2. For every step 𝑖 ∈ {1, . . . , 𝑛} of the algorithm, it holds that𝜔 (𝐺+𝑖) =
𝜔 (𝑇𝑖). ◀

Proof sketch. The proof works by induction on the number of steps, where the
statement trivially holds for the first step. Assuming that 𝜔 (𝐺+𝑖) = 𝜔 (𝑇𝑖) holds for
step 𝑖 , the statement for the next step 𝑖 + 1 can be shown by arguing both inclusions
separately.

29

Chapter 4 Planarity

E⊕

E ′⊕

τ2σ
vi+1

Vi

τ1

(a)

E⊕

E ′⊕

τ2σ
vi+1

F

τ1

Ti

(b)

E⊕

E ′⊕

vi+1

σ σ2
σ1

σF
ℓ

ℓ ℓ

Ti+FTi+FTi+FTi+F

µµµµ

(c)

Figure 4.3: (a)A drawing E⊕ of𝐺+𝑖+1 and the drawing E′⊕ of𝐺+𝑖 it contains. (b) The PC-tree
𝑇𝑖 representing all planar embeddings of 𝑉𝑖 . Relevant orders of half-edges are marked in
blue. (c) The PC-tree 𝑇𝑖 + 𝐹 with a C-node 𝜇.

To show 𝜔 (𝐺+𝑖+1) ⊆ 𝜔 (𝑇𝑖+1), take an order 𝜎 ∈ 𝜔 (𝐺+𝑖+1) and let E ∈ 𝛺 (𝐺+𝑖+1)
be a corresponding embedding with 𝜔 (E) = 𝜎 . Let E′ be the embedding of 𝐺+𝑖
obtained by deleting 𝑣𝑖+1; see Figure 4.3 (a). It can easily be shown that E′ ∈ 𝛺 (𝐺+𝑖)
and we have, thanks to 𝐺𝑖 being connected, 𝜏1 = 𝜔 (E′) ∈ 𝜔 (𝐺+𝑖) and, by the
inductive hypothesis, 𝜏1 ∈ 𝜔 (𝑇𝑖). All edges in 𝐹 must be consecutive in 𝜏1 and
we thus have 𝜏1 ∈ 𝜔 (𝑇𝑖 + 𝐹). Using the rotation 𝜏2 of 𝑣𝑖+1 in E we can then show
𝜎 = 𝜏1 [𝐹 → ℓ] ⊗ℓ 𝜏2 [𝐹 → ℓ] ∈ 𝜔 ((𝑇𝑖 + 𝐹) [𝐹 → ℓ] ⊗ℓ (𝑆 + 𝐹) [𝐹 → ℓ]) = 𝜔 (𝑇𝑖+1);
see Figure 4.3 (b).
To conversely show 𝜔 (𝐺+𝑖+1) ⊇ 𝜔 (𝑇𝑖+1), take an order 𝜎 ∈ 𝜔 (𝑇𝑖+1) and let 𝜎1 ∈ 𝑇 ′

and 𝜎2 ∈ 𝑆′ be compatible orders such that 𝜎 = 𝜎1 ⊗ℓ 𝜎2; see Figure 4.3 (c). We can
find an order 𝜎𝐹 ∈ 𝜔 (𝑇 𝐹) ∩ 𝜔 (𝑆𝐹) of 𝐹 ∪ {ℓ} such that 𝜏1 = 𝜎1 ⊗ℓ 𝜎𝐹 not only lies
(by construction) in 𝜔 (𝑇 ′ ⊗ℓ 𝑇 𝐹), but also in 𝜔 (𝑇𝑖 + 𝐹) ⊆ 𝜔 (𝑇𝑖) due to Lemma 4.1.
By the inductive hypothesis, we have 𝜏1 ∈ 𝜔 (𝐺+𝑖) and there exists an embedding
E′ ∈ 𝛺 (𝐺+𝑖) with 𝜔 (E′) = 𝜏1. Furthermore, we always have 𝜏2 = 𝜎2 ⊗ℓ 𝜎𝐹 ∈
𝜔 (𝑆 +𝐹) ⊆ 𝜔 (𝑆) as 𝐸 (𝑆 +𝐹, 𝐹) is a single edge. This is because in 𝑆 , the leaves 𝐹 are
all adjacent to the same P-node (which is the only inner node of 𝑆). We choose 𝜏2 as
rotation for 𝑣𝑖+1 and add it to E′ to obtain a planar embedding E of𝐺+𝑖+1. We can show
that this results in 𝜔 (E) = 𝜏1 [𝐹 → ℓ] ⊗ℓ 𝜏2 [𝐹 → ℓ] = 𝜎1 ⊗ℓ 𝜎2 = 𝜎 ∈ 𝜔 (𝐺+𝑖+1). ■

Note that if none of the steps fails due to an impossible update, this means that
we found (implicit) planar embeddings for all considered subgraphs. Finding a
non-null PC-tree 𝑇𝑛−1 then suffices to show planarity, as in the last step we would
make all leaves of this tree consecutive (which is always possible) and replace them
with 𝑣𝑛 , which has no further half-edges to not-yet inserted vertices. We note that
𝑇𝑛−1 describes all planar embeddings of𝐺 [𝑉 \ {𝑣𝑛}], that is, it is the embedding tree
of 𝑣𝑛 . Conversely, if the process fails at any step, this is due to a subgraph having no

30

Planarity of Biconnected Graphs Section 4.2

Algorithm 1: Test a biconnected graph 𝐺 for planarity.
1 𝑣1, . . . , 𝑣𝑛 ← st-Order(𝐺);
2 𝑇1 ← single P-node with leaves 𝐸 (𝑣1);
3 for 𝑖 in 1, . . . , 𝑛 − 2 do
4 𝑆 ← single P-node with leaves 𝐸 (𝑣𝑖+1);
5 𝐹 ← edges between 𝐺𝑖 and 𝑣𝑖+1 in 𝐺 ;
6 𝑆′← (𝑆 + 𝐹) [𝐹 → ℓ];
7 𝑇 ′← (𝑇𝑖 + 𝐹) [𝐹 → ℓ];
8 𝑇𝑖+1 ← 𝑆′ ⊗ℓ 𝑇 ′;
9 return true if no Update returned the null tree, and false otherwise;

planar embedding in which all edges to the next vertex are consecutive, meaning
that the graph is non-planar. Algorithm 1 illustrates this algorithm in pseudo code.
Hsu and McConnell show (as Booth and Lueker already did for PQ-trees [BL76;
Boo75]) that the PC-tree updates can be done in amortized linear time [HM03;
HM04]. As a decomposition into biconnected components as well as corresponding
st-orderings can be found in linear time [ET76; HT73a], the overall planarity test
thus runs in linear time [BL76; HT08].
Chiba et al. [Chi+85] show that an embedding can be constructed by storing

for each step one admissible order of 𝜔 (𝑇 𝐹) ∩ 𝜔 (𝑆𝐹) for the edges in 𝐹 , although
special care must taken as some of these orders may be reversed in later steps.
This is the case when one order depends on the flip of a split C-node 𝜇𝐹 , whose
other half 𝜇′ (which remains part of the PC-tree in the next step) gets flipped in
a later step. Still, this issue can be resolved by keeping track of such flips and we
can generate an embedding along the planarity test in linear time [Chi+85]. To
summarize, we have the following theorem.

▶ Theorem 4.3 (Booth and Lueker [BL76], Chiba et al. [Chi+85]). Planarity of
a biconnected graph can be tested in linear time. A corresponding planar embedding
can be constructed at the same time. This extends to general graphs using a
decomposition into biconnected components. ◀

31

5 Partially Embedded Planarity

This chapter is based on joint work with Ignaz Rutter and Sandhya T. P. which is
currently under review [8].

In the partial representation extension problem, the input consists of a graph 𝐺 ,
and a representation H of a subgraph 𝐻 ⊆ 𝐺 . The question is whether there
exists a representation G of 𝐺 whose restriction to 𝐻 coincides with H . The
complexity of the problem strongly varies with the type of representation that
is considered. For planar straight-line drawings, the problem was shown to be
NP-hard [Pat06], and in fact recently turned out to be ∃ℝ-complete [LMM18]. For
various other classes of representations, a plethora of algorithmic and complexity
results have been established in recent years. For example, Klavík et al., who
coined the term partial representation extension, solved the problem for interval
representations [KKV11] in quadratic time, which they later improved to linear
[Kla+16]. Shortly afterwards, Angelini et al. [Ang+10; Ang+15b] gave a linear-time
algorithm for extending planar topological drawings. Since then, the problem
has been studied for a variety of different types of intersection representations,
e.g., proper and unit interval graphs [Kla+17], permutation graphs [Kla+12], circle
graphs [CFK19], contact representations of geometric objects [Cha+14], trapezoid
graphs [KW17] and rectangular duals [Cha+21]. In the context of drawings, the
problem has also been studied for orthogonal drawings [ART21].
We focus on the case of planar topological drawings, for which Angelini et

al. [Ang+15b] gave a linear-time algorithm. Their paper first gives a combinatorial
characterization for yes-instances of Partially Embedded Planarity. The au-
thors show that it is necessary and sufficient for a yes-instance to respect both the
cyclic edge orders around vertices and the relative positions of different connected
components defined byH . In particular, for a biconnected graph𝐺 , these “compat-
ibility constraints” set out byH can be individually verified on the nodes of the
SPQR-tree of 𝐺 [DT96b; Pat13]. This procedure can also be used to individually
test each block of a connected graph. However, it is also necessary to verify certain
compatibility constraints between the different blocks. Similarly, the authors show
that in the disconnected case, Partially Embedded Planarity can be solved by
testing each connected component and verifying the compatibility of the relative
positions for the different components. This characterization leads to a polynomial-

33

Chapter 5 Partially Embedded Planarity

time algorithm by progressively decomposing the input graph into its connected,
biconnected, and triconnected components, while also verifying the compatibility
constraints. In order to improve the running time to linear, the authors first give a
linear-time algorithm that solves Partially Embedded Planarity for biconnected
graphs. This algorithm uses complex subprocedures that handle more restricted
subcases. For the connected and disconnected cases, they then show that the addi-
tional compatibility constraints can also be tested in linear time. While their work
constitutes a significant result, the algorithm described therein is highly complex,
its description spans more than 30 pages. Even when the graph 𝐻 that comes with
a fixed drawing is connected; i.e., the embedding is uniquely determined by the
rotation system of 𝐺 , it uses a decomposition of 𝐺 first into its biconnected, and
then into its triconnected components. When 𝐻 is not connected, these algorithms
are applied for each face of 𝐻 . The resulting algorithm is thus highly technical
and relies on a large number of non-trivial subprocedures and data structures. It is
therefore not surprising that no implementation is available to date.
In this chapter, we propose an alternative solution for the problem, which is

independent of the work of Angelini et al. The algorithm itself straightforwardly
extends the well-known vertex-addition planarity test of Booth and Lueker [BL76]
(or rather its generalization by Haeupler and Tarjan [HT08] that is presented in
Chapter 4). The core of our approach is a modification of the underlying data
structure, the PC-tree, that allows it to additionally handle the constraints that stem
from the partial drawing. Altogether, this yields a strongly simplified algorithm
that relies on depth-first search together with a single non-trivial data structure.

An extensive summary of the underlying vertex-addition planarity test is given
in Chapter 4. This chapter is organized as follows. Section 5.1 contains the descrip-
tion of our algorithm for Partially Embedded Planarity as well as its proof of
correctness. The following Section 5.2 gives the necessary details for a linear-time
implementation of our algorithm. Even including the extensive summary of the
basic concepts used, the description of our approach is roughly only half as long
as the work by Angelini et al. [Ang+15b] while at the same time being far less
technical.

5.1 Partially Embedded Planarity
Recall that in the Partially Embedded Planarity problemwe are given an instance
(𝐺,𝐻,H) where𝐺 is a graph with a subgraph 𝐻 andH is an embedding of 𝐻 . We
seek a planar embedding G of 𝐺 whose restriction to 𝐻 coincides withH . In their
solution, Angelini et al. [Ang+15b, Lemma 3.9] ensure this condition by enforcing

34

Partially Embedded Planarity Section 5.1

A

B C

D

E

Figure 5.1: A positive instance of Partially Embedded Planarity. The graph𝐻 is shown
with bold, black edges. The graph 𝐺 −𝐻 is divided into 5 bridges 𝐴, 𝐵,𝐶, 𝐷 and 𝐸. Bridges
𝐵 and 𝐶 have all their attachments in a single block and are thus not restricted to a face.
Bridges 𝐴, 𝐷, and 𝐸 have attachments in different blocks and are thus restricted to a face.
Adding the dashed edge to𝐻 would turn the instance negative, as the attachments of bridge
𝐸 would no longer share a face.

that (i) around each vertex 𝑣 of 𝐻 the cyclic order of the edges of 𝐻 is the same
in G and inH and (ii) for each (directed) facial cycle ofH , the vertices of 𝐻 that
are embedded left and right of it coincide in G and inH . It is the second condition,
also referred to as having correct relative positions, that is relatively complicated
to handle efficiently. Note that, if𝐺 is connected, the embedding of 𝐺 and also the
induced relative positioning of the connected components of 𝐻 can be expressed
solely in terms of the rotation system of 𝐺 . Angelini et al. [Ang+15b, Theorem
4.14] give a simple reduction from the case of a non-connected 𝐺 to solving the
different connected components of𝐺 independently. We thus limit our attention to
the case where 𝐺 is connected.
Consider two components 𝐶1,𝐶2 of 𝐻 connected by a path 𝑝 in 𝐺 −𝑉 (𝐻). The

fact that 𝑝 does not contain any vertices of 𝐻 except for its endpoints already
ensures that 𝐶1,𝐶2 are embedded on the same side of any facial cycle of any other
component of H . It remains to ensure that 𝐶2 is embedded in the correct face
of 𝐶1 and vice versa. Thanks to the connectivity of 𝐺 , ensuring this for each pair
𝐶1,𝐶2 of components of 𝐻 connected by a path 𝑝 in 𝐺 − 𝑉 (𝐻) is sufficient to
ensure correct relative positions. Note that not only 𝑝 has to be in a certain face
of H , but this also applies to the whole connected component of 𝐺 −𝑉 (𝐻) that
contains 𝑝 , which we call an 𝐻 -bridge. Formally, an 𝐻 -bridge 𝐵 is either a single
edge 𝑒 ∈ 𝐸 (𝐺) \ 𝐸 (𝐻) with both end-vertices in 𝐻 or a connected component 𝐵 of
𝐺 − 𝑉 (𝐻); see Figure 5.1. The attachments of a connected component 𝐵 are the
vertices of𝐻 whose removal disconnects 𝐵 from the remaining graph or, in the case
of a single edge 𝐵, its endpoints. Note that each 𝐻 -bridge of 𝐺 has to lie in exactly

35

Chapter 5 Partially Embedded Planarity

one face ofH as it contains no vertices of 𝐻 . If an𝐻 -bridge 𝐵 has attachments in at
least two distinct blocks of 𝐻 , then that face is uniquely determined; see [Ang+15b,
Section 2.3] and Figure 5.1. Thus, we can color each edge 𝑒 ∈ 𝐸 (𝐺) \ 𝐸 (𝐻) with
the unique face 𝑓 (𝑒) ofH in which 𝑒 must be embedded, or 𝑒 is uncolored as this
face is arbitrary and we set 𝑓 (𝑒) = ⊥. Angelini et al. give a simple algorithm that
computes this coloring in linear time [Ang+15b, Lemma 2.2].

To ensure correct relative positions, we now need to ensure that at every vertex
all edges to incident𝐻 -bridges are embedded in the correct face ofH . Furthermore,
we need to respect the cyclic order of incident edges of 𝐻 as given in H , where
the angles between these edges correspond to faces of H . We will express both
requirements as constraints on the rotation of the vertex, interpreting the face
assignment as a coloring.

Let 𝑣 be a vertex of𝐺 . A color constraint 𝐶𝑣 = (𝐹𝑣, 𝑅𝑣,𝑈𝑣, 𝜌𝑣, 𝑓) for 𝑣 partitions the
edges incident to 𝑣 into a set 𝐹𝑣 = 𝐸 (𝑣) ∩𝐸 (𝐻) of fixed edges, a set 𝑅𝑣 = {𝑒 ∈ 𝐸 (𝑣1) \
𝐸 (𝐻) | 𝑓 (𝑒) ≠ ⊥} of restricted edges, and a set𝑈𝑣 = {𝑒 ∈ 𝐸 (𝑣1)\𝐸 (𝐻) | 𝑓 (𝑒) = ⊥} of
unrestricted edges. The fixed edges have a fixed counter-clockwise order 𝜌𝑣 = H(𝑣),
in which we want to insert the remaining edges to find a rotation for 𝑣. For our
purposes, we need to additionally constrain where the restricted edges can be
inserted. For each fixed edge ℎ, H defines a face 𝑓𝑣 (ℎ) which is incident to ℎ in
counter-clockwise direction around 𝑣. A valid cyclic order 𝜎 of the edges incident
to 𝑣 is obtained by arbitrarily inserting the restricted and unrestricted edges of 𝑣
into 𝜌𝑣 in such a way that, for each restricted edge 𝑒 with (in counter-clockwise
order) preceding fixed edge ℎ, 𝑓 (𝑒) = 𝑓𝑣 (ℎ) holds. If 𝐹𝑣 = ∅, any order of 𝑅𝑣 ∪𝑈𝑣 is
valid. Figure 5.2 shows an example of a color-constraint, where for example the
restricted edge 𝑒 with label 5 and the fixed edge ℎ with label 4 have 𝑓 (𝑒) = 𝑓𝑣 (ℎ)
represented through the purple color.
In the following Sections 5.1.1 and 5.1.2, we show how such constraints can

also be represented using augmented PC-trees and how our operations work on
these PC-trees. In Section 5.1.3 following thereafter, we describe how these PC-
trees can be used to test Partially Embedded Planarity on biconnected graphs.
Section 5.1.4 shows how to lift this requirement and also test non-biconnected
instances.

5.1.1 Color-Constrained PC-Trees
To test Partially Embedded Planarity using the PC-tree-based planarity test
described in Section 4.2, we introduce a variant of the PC-tree that can also en-
code these color-constraints from the graph. A color-constrained PC-tree has three
different types of nodes:

36

Partially Embedded Planarity Section 5.1

12
3

4

5

6

7
8

9

10

11

12
13

(a)

12

3

4

5

6

7 8
9

10

11
12

13

(b)

12
3

4

5

6

7
8

9

10

11

12
13

(c)

Figure 5.2: Example of vertex with a color-constraint. The fixed edges are fat and black,
their fixed counter-clockwise order is also indicated by arrows. The faces following the fixed
edges are indicated by colored angles. Each restricted edge is drawn using the respective
color of its face, it may be inserted into an arbitrary angle of the same color. (a) and (b)
show two different valid cyclic orders orders around 𝑣. The order in (c) is not valid, since
the orange edge with label 9 is in the blue angle between 10 and 12.

• C-nodes, which behave exactly as in the case of normal PC-tree,

• fixed C-nodes, for which the order of their incident edges is completely fixed
and may not even be reversed, and finally

• color-constrained P-nodes, which are P-nodes with a color-constraint as de-
fined for graph vertices above.

When the context is clear, we refer to the latter simply as P-nodes. Note that an
ordinary P-node 𝜇 is a special case of a color-constrained P-node with a color-
constraint where 𝐹𝜇 = 𝑅𝜇 = ∅. Similarly, a color-constrained P-node with a
color-constraint where 𝑅𝜇 = 𝑈𝜇 = ∅ is equivalent to a fixed C-node.
As with usual PC-trees, choosing a valid cyclic order of the edges incident to

each inner node of a color-constrained PC-tree 𝑇 determines a cyclic order of its
leaf set 𝐿(𝑇). Therefore also a color-constrained PC-tree 𝑇 represents a set 𝜔 (𝑇)
of cyclic order of its leaves. To use such trees in the vertex-addition planarity test,
we extend the different operations of PC-trees to also respect the color-constraints
and provide updated definitions of the functions we used in our generic planarity
testing algorithm. The operations Merge and Split as described in Section 4.1 can
be easily implemented in an analogous fashion to PC-trees. The main operation of
interest is the Update operation, which given a color-constrained PC-tree 𝑇 and
a subset 𝐴 ⊆ 𝐿(𝑇) of its leaves produces a color-constrained PC-tree 𝑇 ′ = 𝑇 + 𝐴
with 𝜔 (𝑇 ′) = {𝜎 ∈ 𝜔 (𝑇) | 𝐴 is consecutive in 𝜎}. We describe this operation
in Section 5.1.2.

37

Chapter 5 Partially Embedded Planarity

The biggest difference between usual and color-constrained PC-trees concerns
the operation Intersect. In contrast to usual PC-trees, given two color-constrained
PC-trees 𝑇1,𝑇2 on the same set of leaves there generally does not exist a color-
constrained PC-tree 𝑇 with 𝜔 (𝑇) = 𝜔 (𝑇1) ∩ 𝜔 (𝑇2). For example, if both color-
constrained PC-trees consist of a single P-node but with different fixed edges
incident, both fixed orders can be interleaved arbitrarily in the intersection, which
cannot be represented using a color-constrained PC-tree. This operation is however
not strictly needed for the planarity test. Instead, we will only test whether 𝜔 (𝑇1) ∩
𝜔 (𝑇2) ≠ ∅ in the context of the planarity test. Conceptually, such a test can be
performed using an approach similar to the intersection of ordinary PC-trees and
checking for each inner node of the resulting tree whether they allow for at least
one common order. Lemma 5.7 shows how to efficiently conduct such a test.

5.1.2 Update Procedure
The Update procedure on color-constrained PC-trees is based on the same steps
as the update on ordinary PC-trees, although we need to make some modifications
to account for the constraints. These modifications can be summarized as follows.
The labeling in step (1) works the same as on regular PC-trees. The reordering
in step (2) now also needs to respect fixed C-nodes and the order of fixed edges
around P-nodes. When splitting nodes in step (3), we need to correctly distribute
the constraints across the new nodes and edges resulting from the split. Especially,
splitting a node may separate restricted edges from fixed edges and thus also from
the angles they want to be embedded in, making the split impossible. Lastly, the
contractions in step (4) need to respect fixed C-nodes when merging C-nodes and
they need to correctly re-assign the edge constraints when contracting degree-2
nodes. In the following, we will focus only on which changes need to be made
to obtain the correct result and defer the details on how these changes can be
implemented in amortized linear time to Lemma 5.6.
In step (2) we need to ensure that the full fixed edges (i.e. the incident fixed

edges leading to full subtrees) are consecutive in the cyclic order of fixed edges.
Furthermore, we need to ensure that both of the at most two terminal fixed edges
are directly adjacent to this block of full fixed edges, or adjacent to each other if
the block is empty. Finally, we need to check that all P-nodes and all fixed C-nodes
have their fixed full edges on the same side of the terminal path. If any of these
checks fails, we abort and report an invalid restriction. We will ensure that all
restricted full edges are consecutive with the fixed ones in the next step.
When splitting a color-constrained P-node with fixed edges in step (3), we also

need tomaintain the constraint information and especially ensure that the split parts

38

Partially Embedded Planarity Section 5.1

(a)

(b)
(c)

(d)

(e)
(f)

(g)

(h)

(i)

Figure 5.3: Splitting three different color-constrained P-nodes (a), (d), and (g). The first
step ((b), (e), and (h)) splits off the incident full (black) subtrees, the second step ((c), (f),
and (i)) splits off the empty (white) subtrees. All splits up to (f) have fixed edges on both
sides. The split in (h) splits off only unrestricted edges, while split (i) splits off unrestricted
and restricted edges. Only the C-node created in (f) is not fixed, as the reversal of its shown
rotation is also admissible.

still allow the same relative positions with regard to each other. This especially
means that the new edges connecting them need to have the right restrictions
assigned. We will describe how to do this when splitting off the full edges 𝐹 to 𝜇𝐹 ,
splitting off the empty ones from the resulting node 𝜇′ to 𝜇𝐸 works analogously.1
We make a case distinction based on whether both 𝜇𝐹 and 𝜇′ receive at least one
fixed edge; see Figure 5.3. If this is the case, edge 𝑎 between 𝜇𝐹 and 𝜇′ is fixed at
both ends and the orders of the fixed edges are set to 𝜌𝜇′ = 𝜌𝜇 [(𝐹 ∩ 𝐹𝜇) → 𝑎] and
𝜌𝜇𝐹 = 𝜌𝜇 [(𝐹 𝑐 ∩ 𝐹𝜇) → 𝑎]. All fixed edges retain their color, while 𝑎 is assigned the
color that followed 𝐹 before the split at 𝜇′ and the color that preceded 𝐹 at 𝜇𝐹 . We
need to check that each of the nodes still has at least one appropriate angle for every
restricted edge, or abort and report an impossible restriction otherwise. If one of
𝜇𝐹 , 𝜇′ received no fixed edges, we assume without loss of generality that 𝜇𝐹 receives
all fixed edges as the converse case works analogously. Here, we set 𝜌𝜇𝐹 = 𝜌𝜇 and
𝜌𝜇′ = ∅, leaving the coloring of fixed edges as-is. The restriction of edge 𝑎 is set
according to which edges 𝜇′ retained2; see Figure 5.3. If there are restricted edges
of more than one color at 𝜇′, we abort and report an impossible restriction. If there

1 Note that in a linear-time implementation, we cannot process all incident empty edges. In
Lemma 5.6, we show that instead splitting off the terminal path edges maintains the time bound.

2 Again, the counters we use to make this distinction in constant time are described in Section 5.2.

39

Chapter 5 Partially Embedded Planarity

are restricted edges of exactly one color 𝑐 at 𝜇′, we set the edge 𝑎 to be restricted
to 𝑐 at 𝜇𝐹 and to be unrestricted at 𝜇′. If there are no restricted edges at 𝜇′, 𝑎 is
unrestricted at both its ends.
If the middle node 𝜇𝑀 resulting from the two splits has degree 4, we need to

restrict its order of incident edges such that the terminal path edges are non-adjacent,
i.e., the full and empty nodes are on different sides of the terminal path. Note that
for a degree-4 node, there are at most two such admissible orders, which are the
reverse of each other. If both are allowed by 𝜇𝑀 (which currently is still a color-
constrained P-node), we convert 𝜇𝑀 to an ordinary C-node with one of the two
orders, otherwise to a fixed C-node with the single possible order; see Figure 5.3.

Finally, we need to ensure that all middle nodes always have the empty and full
subtrees, respectively, on the same side of the terminal path. This is done by the
contractions of adjacent C-nodes along the terminal path in step (4). The C-node
resulting from this is fixed if and only if at least one of its constituent C-nodes
was fixed.

▶ Lemma 5.1. For a color-constrained PC-tree 𝑇 and a subset 𝐿 of its leaves,
there exists a color-constrained PC-tree 𝑇 ′ = 𝑇 + 𝐿 with 𝜔 (𝑇 ′) = {𝜏 ∈ 𝜔 (𝑇) |
𝐿 is consecutive in 𝜏}. ◀

Proof. We will show that the tree 𝑇 ′ we obtained by applying our modified Up-
date procedure satisfies this condition. Note that 𝑇 ′ can be converted into an
ordinary PC-tree, which we will refer to as Project(𝑇 ′), by converting all color-
restricted P-nodes into ordinary P-nodes (dropping their color constraints) and
converting all fixed C-nodes into ordinary C-nodes (possibly now also allowing
reversal of their orders). As our modified update make the same changes to the tree
structure as in the normal update operation we have Project(𝑇 ′) = Project(𝑇) +𝐿
if the restriction is possible. As the projection only allows additional orders, we
have 𝜔 (𝑇 ′) ⊆ 𝜔 (Project(𝑇 ′)) = 𝜔 (Project(𝑇) + 𝐿), in particular, 𝐿 is always
consecutive in 𝑇 ′.
To show the claimed equivalence of admissible orders, we first show that if

𝜏 ∈ 𝜔 (𝑇) and 𝐿 is consecutive in 𝜏 then 𝜏 ∈ 𝜔 (𝑇 ′). Note that the restriction must be
possible and𝑇 ′ thus cannot be the null-tree, as an impossible restrictionwould imply
that there is no 𝜏 ∈ 𝜔 (𝑇) where 𝐿 is consecutive. As we have 𝜏 ∈ 𝜔 (Project(𝑇)+𝐿)
it is also 𝜏 ∈ 𝜔 (Project(𝑇 ′)) due to the above equivalence and it remains to show
that 𝜏 satisfies the color-constraints of 𝑇 ′. To do this, we will apply the changes
made by the update procedure to 𝑇 while maintaining its embedding given by 𝜏 to
obtain an admissible embedding of 𝑇 ′. First, observe that for all terminal nodes the
incident full and empty subtrees with a fixed ordering are respectively consecutive
and on different sides of the terminal path, as we would have otherwise returned a

40

Partially Embedded Planarity Section 5.1

null-tree in step (2). Now consider one of the two splits applied in step (3). Note
that the split-off set 𝐴 needs to be consecutive in the embedding induced on the
current P-node 𝜇 by order 𝜏 as otherwise 𝐿 would not be consecutive in 𝜏 . Thus, the
edges in 𝐴 can be reassigned to a new P-node 𝜇′ adjacent to 𝜇 in place of 𝐴 while
maintaining the order of 𝐴. Note that if 𝐴 contains no fixed edges, all edges of 𝐴
were embedded in a single angle. If there are no fixed but restricted edges in𝐴, they
all need to have the same color which coincides with the color restricting the edge
that replaces 𝐴. The conversion of 𝜇𝑀 into a C-node after the two splits can also be
done while maintaining the embedding, as the only disallowed rotations of 𝜇𝑀 are
those that do not have full and empty subtrees on different sides of the terminal
path. Finally, contracting all C-nodes on the terminal path cannot contradict the
embedding as we already ensured that all full and empty subtrees are on the correct
sides of the terminal path.

Conversely, we need to show that if 𝜏 ∈ 𝜔 (𝑇 ′) then also 𝜏 ∈ 𝜔 (𝑇). From our initial
considerations it follows that we have 𝜏 ∈ 𝜔 (Project(𝑇 ′)) = 𝜔 (Project(𝑇) + 𝐿)
and it again remains to show that 𝜏 satisfies the colors constraints of 𝑇 . To do this,
we undo the changes made by the update procedure that turned 𝑇 into 𝑇 ′ while
maintaining its embedding given by 𝜏 to obtain an admissible embedding of 𝑇 .
As all changes only restrict the number of admissible embeddings, undoing them
cannot turn an admissible embedding invalid. ■

5.1.3 Testing Biconnected Partially Embedded Graphs
We now show how to combine color-constrained PC-trees with the vertex-addition
planarity test from Section 4.2 to test biconnected instances of Partially Embedded
Planarity. Let (𝐺,𝐻,H) be a partially embedded graph where 𝐺 is biconnected.
Let 𝑣1, . . . , 𝑣𝑛 again be an st-ordering of the vertices of𝐺 . Recall that for 𝑖 = 1, . . . , 𝑛
we have 𝑉𝑖 = {𝑣1, . . . , 𝑣𝑖}, 𝐺𝑖 = 𝐺 [𝑉𝑖] and 𝐺+𝑖 is the graph obtained from 𝐺 [𝑉𝑖]
by adding all half-embedded edges as half-edges. Also recall that the st-ordering
ensures that both 𝐺 [𝑉𝑖] and 𝐺 [𝑉 \𝑉𝑖] are connected. We set 𝐻𝑖 = 𝐻 [𝑉𝑖 ∩𝑉 (𝐻)],
define𝐻+𝑖 to be the graph obtained from𝐻𝑖 by adding all half-embedded fixed edges
as half-edges, and defineH+𝑖 as the restriction ofH to 𝐻+𝑖 . LetH⊕𝑖 be a topological
drawing ofH+𝑖 inside a disk whose boundary visits the non-vertex endpoints of
the half-edges according to their order on the outer face.
Now consider an embedding G that is a solution for (𝐺,𝐻,H) and for a 𝑖 ∈
{1, . . . , 𝑛} a partial solution G+𝑖 that is a restriction of G to 𝐺+𝑖 . Analogously to
H⊕

𝑖
, we define G⊕

𝑖
to be a topological drawing of G+𝑖 on a disk with all half-edges

ending at its boundary. Note that each face of G⊕
𝑖
[𝐻+𝑖], which is the restriction of

G⊕
𝑖
to 𝐻+𝑖 , corresponds to a distinct face of 𝐻⊕

𝑖
. The embedding G+𝑖 that is a partial

solution satisfies the following three properties:

41

Chapter 5 Partially Embedded Planarity

E⊕

E ′⊕

τ2σ
vi+1

F

τ1

Ti

(a)

E⊕

E ′⊕

vi+1

σ σ2
σ1

σF
ℓ

ℓ ℓ

Ti+FTi+FTi+FTi+F

µµµµ

(b)

E⊕

E ′⊕

vi+1

σ σ2
σ1

σF
ℓ

ℓ ℓ

µµµµ

µµµµ

Ti+FTi+FTi+FTi+F

′′′′
µµµµ

FFFF

(c)

Figure 5.4: (a) Copy of Figure 4.3 (b). The PC-tree𝑇𝑖 representing all planar embeddings of
𝑉𝑖 . Relevant orders of half-edges are marked in blue. (b) Copy of Figure 4.3 (c). The PC-tree
𝑇𝑖 + 𝐹 with a C-node 𝜇. (c) Splitting 𝑇𝑖 + 𝐹 tree also splits 𝜇 into 𝜇′ in (𝑇𝑖 + 𝐹) [𝐹 → ℓ] and
𝜇𝐹 in (𝑇𝑖 + 𝐹𝑐) [𝐹𝑐 → ℓ]. The edges incident to 𝜇𝐹 are those in 𝐸 (𝑇𝑖 , 𝐹). If the bold edges of
𝑣𝑖+1 are considered fixed, they fix the flip of 𝜇𝐹 and thus also of 𝜇 and 𝜇′.

(E1) All half-edges lie on the outer face.

(E2) Drawing G⊕
𝑖
[𝐻+𝑖] coincides withH⊕𝑖 .

(E3) Each edge 𝑒 ∈ 𝐸 (𝐺+𝑖) \ 𝐸 (𝐻) with 𝑓 (𝑒) ≠ ⊥ is embedded in a face of G⊕
𝑖
[𝐻+𝑖]

that corresponds to 𝑓 (𝑒) inH .

We are interested in the embeddings of𝐺+𝑖 that satisfy these conditions. Let𝛺H (𝐺+𝑖)
be the set of all embeddings of𝐺+𝑖 that satisfy properties (E1)–(E3), and let𝜔H (𝐺+𝑖) =
{𝜔 (E) | E ∈ 𝛺H (𝐺+𝑖)} contain all orders of half-edges on the outer face from these
embeddings. Note that any planar embedding G+𝑛 (which does not contain any
half-edges) that satisfies these properties, or especially property (E2), is a solution
for the partially embedded graph. Thus, these properties are necessary for all
considered subgraphs, but also sufficient for the full graph. We are now ready to
describe our algorithm.

To test an instance (𝐺,𝐻,H) of partially embedded planarity, we compute color-
constrained PC-trees 𝑇1, . . . ,𝑇𝑛 satisfying the invariant 𝜔H (𝐺+𝑖) = 𝜔 (𝑇𝑖) for all
𝑖 ∈ {1, . . . , 𝑛}. The tree 𝑇1 consist of a single P-node 𝜇 with leaves 𝐸 (𝑣1) and
constraints copied from 𝑣1.
Given a color-constrained PC-tree 𝑇𝑖 , the next color-constrained PC-tree 𝑇𝑖+1 is

obtained as follows. We turn 𝑣𝑖+1 into a color-constrained PC-tree 𝑆 that consists of
a single P-node with leaves 𝐸 (𝑣𝑖+1) and constraints copied from 𝑣𝑖+1. Now, we make
the edges 𝐹 between𝐺𝑖 and 𝑣𝑖+1 consecutive in𝑇𝑖 and 𝑆 using the Update operation.
We again split the resulting 𝑇𝑖 + 𝐹 into 𝑇 𝐹 and 𝑇 ′ as in the unconstrained setting,
where 𝑇 𝐹 describes the order of half-edges 𝐹 leading to 𝑣𝑖+1 and 𝑇 ′ describes the

42

Partially Embedded Planarity Section 5.1

order of the remaining half-edges. Similarly, we split 𝑆 + 𝐹 into 𝑆𝐹 and 𝑆′, where 𝑆𝐹
describes the order of half-edges 𝐹 leading from 𝑣𝑖+1 to𝑉𝑖 and 𝑆′ describes the order
of the remaining half-edges.
There are two important differences to the ordinary planarity algorithm. First,

the orders of half-edges around 𝑣𝑖+1 are not only constrained by𝑇 𝐹 , but also by 𝑣𝑖+1,
that is by the color-constrained PC-tree 𝑆𝐹 . We need to check that 𝑇 𝐹 and 𝑆𝐹 allow
for at least one common order of 𝐹 , that is whether 𝜔 (𝑇 𝐹) ∩ 𝜔 (𝑆𝐹) ≠ ∅ as the
order of edges in 𝐹 entering 𝑣𝑖+1 is the reversal of the order in which they leave𝐺+𝑖 .
Second, if 𝑋 = 𝐸 (𝑇𝑖 + 𝐹, 𝐹) is a set of edges that are consecutive around a C-node 𝜇
of 𝑇𝑖 + 𝐹 , the constraints of 𝑣𝑖+1 may fix the order of 𝑋 around 𝜇 and thus the flip
of 𝜇; see Figure 5.4 (c). Note that splitting𝑇𝑖 then splits 𝜇 into a C-node 𝜇𝐹 in𝑇 𝐹 and
a C-node 𝜇′ in 𝑇 ′, both incident to the leaf ℓ introduced by the split. Both 𝜇𝐹 and 𝜇′

need to be fixed if the order of 𝑋 around 𝜇 is fixed by 𝑣𝑖+1. We detect and handle
this case as follows. After finding one order in 𝜔 (𝑇 𝐹) ∩ 𝜔 (𝑆𝐹) in the intersection
test, we check whether the intersection also contains a second order where 𝜇𝐹 is
flipped the other way. If this is not the case, 𝑣𝑖+1 fixes 𝜇 and we accordingly fix the
flip of 𝜇′ in the copy 𝑇 ′′ of 𝑇 ′; otherwise we set 𝑇 ′′ to be equal to 𝑇 ′. Finally, we
merge the trees 𝑆′ and 𝑇 ′′ at ℓ as before to obtain 𝑇𝑖+1.

In our algorithm and especially its following proof of correctness, we use three
assumptions regarding the trees generated by the algorithm:

(T1) If the instance is positive, for each step 𝑖 , the leaves 𝐹 can be made consecutive
in 𝑇𝑖 and 𝑆 .

(T2) The graph 𝐺+𝑖 that 𝑇𝑖 represents is connected.

(T3) The leaves 𝐹 are all adjacent to the same P-node in 𝑆 .

Note that these three assumptions are trivially satisfied in the biconnected case
we currently investigate. Furthermore note that we have 𝐿(𝑇𝑛) \ 𝐹 = ∅ in the last
step of our algorithm, a situation which will also appear more often throughout the
algorithm in the non-biconnected case. This no problem though, as we will never
assume 𝐿(𝑇𝑛) \ 𝐹 ≠ ∅ in our proof of correctness.

▶ Lemma 5.2. For every step 𝑖 ∈ {1, . . . , 𝑛} of the algorithm, 𝜔H (𝐺+𝑖) = 𝜔 (𝑇𝑖)
holds. ◀

Proof. We prove this by induction on the number of steps. For step 𝑖 = 1, observe
that 𝑇1 by construction allows the same rotations as 𝑣1. Thus, 𝜔H (𝐺+1) = 𝜔 (𝑇1)
holds. For the inductive step, assume that 𝜔H (𝐺+𝑖) = 𝜔 (𝑇𝑖) holds for step 𝑖 . We will
show the statement for the next step 𝑖 + 1 by arguing both inclusions separately.

43

Chapter 5 Partially Embedded Planarity

Direction ⊆. We first show 𝜔H (𝐺+𝑖+1) ⊆ 𝜔 (𝑇𝑖+1). Let 𝜎 ∈ 𝜔H (𝐺+𝑖+1) and
let E ∈ 𝛺H (𝐺+𝑖+1) be a corresponding embedding with 𝜔 (E) = 𝜎 . Let E′ be
the embedding of 𝐺+𝑖 obtained by deleting 𝑣𝑖+1 together with its incident half-
edges from E, turning incident ordinary edges to half-edges; see Figure 4.3 (a).
As E ∈ 𝛺H (𝐺+𝑖+1), it satisfies properties (E1)–(E3). Note that due to property (E1),
𝑣𝑖+1 must be on the outer face if it has half-edges. If it has none, we have 𝑖 + 1 = 𝑛,
𝐺+𝑖+1 contains no half-edges, and we can thus choose an arbitrary face incident to
𝑣𝑛 to be the outer one. Removing 𝑣𝑖+1 and turning its incident edges into half-edges
thus leaves all half-edges on the same face, that is the outer one, and E′ thus
satisfies property (E1). As E satisfies property (E2), its restriction E′ also does so.
Regarding property (E3), we consider three different types of faces ofH that are
present in E⊕. Faces that are not incident to 𝑣𝑖+1, together with all edges of 𝐺 − 𝐻
they contain, remain unchanged in E′⊕, thus these edges still satisfy property (E3).
Faces that are incident to 𝑣𝑖+1 and no vertex from 𝑉𝑖 are incident to the border of
E⊕ and only contain half-edges with 𝑣𝑖+1 as endpoint. These faces together with
all their contained edges are removed in E′⊕ and these edges can thus not violate
property (E3). Lastly, consider the set F of faces that are incident to 𝑣𝑖+1 as well as
a vertex from 𝑉𝑖 . At most two of these may also be incident to the border of E⊕,
while the remaining ones are closed by 𝑣𝑖+1 in E⊕. Note that in case 𝑣𝑖+1 ∉ 𝑉 (𝐻),
we have |F | = 1 as 𝑣𝑖+1 and its incident edges must lie entirely within one face
ofH . In either case, all faces of F are also present in E′⊕. The edges between 𝑣𝑖+1
and 𝑉𝑖 turn into half-edges, the half-edges only incident to 𝑣𝑖+1 are removed, while
the half-edges incident to 𝑉𝑖 are retained. As the assignment of these (half-)edges
to faces remains unchanged, property (E3) is satisfied also in this last case.

As all three properties are satisfied in E′, we thus have E′ ∈ 𝛺H (𝐺+𝑖). As
𝐺𝑖 is connected by assumption (T2) (the st-ordering ensures this), we can define
𝜏1 = 𝜔 (E′). Similarly, let 𝜏2 be the order of edges (including half-edges) incident
to 𝑣𝑖+1 in E; see Figure 5.4 (a). As all half-edges are on the outer face of E and E′,
𝐹 is consecutive both in 𝜏2 and in 𝜏1. Observe that 𝜏1 [𝐹] = 𝜏2 [𝐹]. Since E can be
obtained by combining E′ with 𝑣𝑖+1 embedded according to 𝜏2, 𝜎 can be obtained by
merging 𝜏1 and 𝜏2 at 𝐹 , that is 𝜎 = 𝜎1 ⊗ℓ 𝜎2 for 𝜎1 = 𝜏1 [𝐹 → ℓ] and 𝜎2 = 𝜏2 [𝐹 → ℓ];
see Figure 5.4 (b).

As E′ ∈ 𝛺H (𝐺+𝑖) we have 𝜏1 ∈ 𝜔H (𝐺+𝑖) and, by the inductive hypothesis,
𝜏1 ∈ 𝜔 (𝑇𝑖). All edges in 𝐹 must be consecutive in 𝜏1 and we thus have 𝜏1 ∈ 𝜔 (𝑇𝑖 +𝐹).
As 𝜎1 = 𝜏1 [𝐹 → ℓ], it follows that 𝜎1 ∈ 𝜔 (𝑇 ′) with 𝑇 ′ = (𝑇𝑖 + 𝐹) [𝐹 → ℓ]. Note that
we have 𝜏2 ∈ 𝜔 (𝑆) by construction of 𝑆 . As above, all edges in 𝐹 must be consecutive
in 𝜏2 and thus 𝜏2 ∈ 𝜔 (𝑆 + 𝐹). As 𝜎2 = 𝜏2 [𝐹 → ℓ], it follows that 𝜎2 ∈ 𝜔 (𝑆′) with
𝑆′ = (𝑆 + 𝐹) [𝐹 → ℓ]. Recall that 𝑇𝑖+1 = 𝑇 ′′ ⊗ℓ 𝑆′ where either 𝑇 ′′ = 𝑇 ′ or 𝑇 ′′ is

44

Partially Embedded Planarity Section 5.1

obtained from 𝑇 ′ by fixing the flip of the C-node 𝜇′ adjacent to ℓ . If 𝑇 ′ = 𝑇 ′′ we
directly have 𝜎 = 𝜎1 ⊗ℓ 𝜎2 ∈ 𝜔 (𝑇 ′ ⊗ℓ 𝑆′) = 𝜔 (𝑇 ′′ ⊗ℓ 𝑆′) = 𝜔 (𝑇𝑖+1) as claimed due to
𝜎1 ∈ 𝜔 (𝑇 ′) and 𝜎2 ∈ 𝜔 (𝑆′). Otherwise, we have 𝜔 (𝑇 ′ ⊗ℓ 𝑆′) ⊇ 𝜔 (𝑇 ′′ ⊗ℓ 𝑆′) and to
show 𝜎1 ⊗ℓ 𝜎2 ∈ 𝜔 (𝑇 ′′ ⊗ℓ 𝑆′) it suffices to show 𝜎1 ∈ 𝜔 (𝑇 ′′). That is, the flip that 𝜎1
induces on 𝜇′ coincides with the flip of 𝜇 dictated by 𝑣𝑖+1; see Figure 5.4 (b). Note
that the former is the same as the flip of 𝜇 induced by 𝜏1, while the latter is the
same as the flip of 𝜇𝐹 induced by 𝜏2 [𝐹 𝑐 → ℓ]. As 𝜏1 [𝐹 𝑐 → ℓ] = 𝜏2 [𝐹 𝑐 → ℓ] and the
projection of 𝜏1 does not change the flip of 𝜇 it induces, both flips have to be the
same. This concludes the proof for 𝜔H (𝐺+𝑖+1) ⊆ 𝜔 (𝑇𝑖+1).

Direction ⊇. Conversely, we show 𝜔H (𝐺+𝑖+1) ⊇ 𝜔 (𝑇𝑖+1). Let 𝜎 ∈ 𝜔 (𝑇𝑖+1) and
recall that, with 𝑇 ′ = (𝑇𝑖 + 𝐹) [𝐹 → ℓ] and 𝑆′ = (𝑆 + 𝐹) [𝐹 → ℓ], we have 𝜔 (𝑇𝑖+1) ⊆
𝜔 (𝑇 ′ ⊗ℓ 𝑆′), where equality holds if we did not fix the flip of 𝜇′. Let 𝜎1 ∈ 𝑇 ′ and
𝜎2 ∈ 𝑆′ be compatible orders such that 𝜎 = 𝜎1⊗ℓ𝜎2; see Lemma 4.1 and Figure 5.4 (b).
With 𝑇 𝐹 = (𝑇𝑖 + 𝐹 𝑐) [𝐹 𝑐 → ℓ] and 𝑆𝐹 = (𝑆 + 𝐹 𝑐) [𝐹 𝑐 → ℓ], let 𝜎𝐹 ∈ 𝜔 (𝑇 𝐹) ∩ 𝜔 (𝑆𝐹)
be an order of 𝐹 ∪{ℓ} where the induced flip of 𝜇𝐹 in𝑇 𝐹 coincides with the flip of 𝜇′
induced by 𝜎1 in 𝑇 ′. Such an order has to exist as the intersection test either found
orders for both flips of 𝜇𝐹 or otherwise the flip of 𝜇′ was fixed to the one of 𝜇𝐹 . We
set 𝜏1 = 𝜎1 ⊗ℓ 𝜎𝐹 and 𝜏2 = 𝜎2 ⊗ℓ 𝜎𝐹 , see Figures 5.4 (a) and 5.4 (b). If 𝐸 (𝑇𝑖, 𝐹) is a
single edge, we directly get 𝜏1 ∈ 𝜔 (𝑇 ′ ⊗ℓ 𝑇 𝐹) = 𝜔 (𝑇𝑖 + 𝐹) ⊆ 𝜔 (𝑇𝑖) due to Lemma 4.1
as 𝜎1 ∈ 𝜔 (𝑇 ′) and 𝜎𝐹 ∈ 𝜔 (𝑇 𝐹). Otherwise, 𝜏1 ∈ 𝜔 (𝑇𝑖 + 𝐹) only holds if the induced
flips of 𝜇′ and 𝜇𝐹 correspond to the same flip of 𝜇. As we chose 𝜎𝐹 to satisfy this, we
also get 𝜏1 ∈ 𝜔 (𝑇𝑖) in this case. Furthermore, we always have 𝜏2 ∈ 𝜔 (𝑆 + 𝐹) ⊆ 𝜔 (𝑆)
as 𝐸 (𝑆 + 𝐹, 𝐹) is a single edge. This is because it follows from assumption (T3) that
the leaves 𝐹 are all adjacent to the same P-node in 𝑆 (which is in this case the only
inner node of 𝑆).

By the inductive hypothesis, we have 𝜏1 ∈ 𝜔H (𝐺+𝑖) and there exists an embedding
E′ ∈ 𝛺H (𝐺+𝑖) with 𝜔 (E′) = 𝜏1. We choose 𝜏2 as rotation for 𝑣𝑖+1 and add it to E′ to
obtain an embedding E of 𝐺+𝑖+1. Doing so, we effectively complete the half-edges
of E′ that are in 𝐹 by connecting them to 𝑣𝑖+1 and insert the remaining edges
of 𝑣𝑖+1 as new half-edges. Regarding the orders of these edges, recall that 𝐹 is
consecutive but oppositely ordered in 𝜏1 and 𝜏2. This ensures that E is planar
and has all half-edges on the outer face, that is property (E1) is satisfied. Since
(𝜎1 ⊗ℓ 𝜎𝐹) [𝐹 → ℓ] = 𝜎1 and similarly (𝜎2 ⊗ℓ 𝜎𝐹) [𝐹 → ℓ] = 𝜎2, we thus get

𝜔 (E) = 𝜏1 [𝐹 → ℓ] ⊗ℓ 𝜏2 [𝐹 → ℓ]
= ((𝜎1 ⊗ℓ 𝜎𝐹) [𝐹 → ℓ]) ⊗ℓ ((𝜎2 ⊗ℓ 𝜎𝐹) [𝐹 → ℓ])
= 𝜎1 ⊗ℓ 𝜎2 = 𝜎,

45

Chapter 5 Partially Embedded Planarity

as order of half-edges on the outer face. To show 𝜎 ∈ 𝜔H (𝐺+𝑖+1), it remains to show
properties (E2) and (E3). Both are satisfied in E′ by the inductive hypothesis and
in the 𝜎2-induced embedding of 𝑣𝑖+1 by construction. For their combination, we
distinguish two cases depending on whether 𝑣𝑖+1 is part of 𝐻 or not. If 𝑣𝑖+1 ∉ 𝑉 (𝐻),
it must lie entirely within one face ofH . Note that in this case, also all edges incident
to 𝑣𝑖+1 are not in 𝐻 and thus must lie within this same face ofH . In particular, this
holds for the edges in 𝐹 . If 𝑓 (𝑒) = ⊥ for one 𝑒 ∈ 𝐹 , this holds for all edges incident
to 𝑣𝑖+1 and property (E3) cannot be violated by any of the added edges. Otherwise,
property (E3) holding for E′ already ensures that 𝑒 is embedded in face 𝑓 (𝑒). As 𝑣𝑖+1
lies in the interior of the face 𝑓 (𝑒), all its remaining edges are thus also embedded
in the same, correct face, and property (E3) is satisfied. As 𝑣𝑖+1 ∉ 𝑉 (𝐻), adding it
does not affect the restriction to 𝐻 considered by property (E2), which is thus also
left satisfied. Thus, all three properties are satisfied if 𝑣𝑖+1 ∉ 𝑉 (𝐻).
Now consider the case 𝑣𝑖+1 ∈ 𝑉 (𝐻). Note that all edges of 𝐺 − 𝑉 (𝐻) present

in E′⊕ still lie in the same face, leaving property (E3) unchanged. Consider the
newly-inserted half-edges of 𝐺 − 𝑉 (𝐻) that lie in a newly-created face incident
to 𝑣𝑖+1 as well as the border of E⊕, but not to 𝑉𝑖 . For these edges, the order chosen
by 𝜏2 ∈ 𝜔 (𝑆) ensures that property (E3) is satisfied. The remaining newly-inserted
half-edges lie in one of the at most two faces incident to 𝑣𝑖+1, 𝑉𝑖 and (two distinct
segments of) the border of E⊕, which we call boundary faces. Here, we distinguish
whether 𝐹 contains an edge that is also in 𝐻 . If this is not the case, all edges of 𝐹
lie in the same face of H , which is also the single boundary face. Note that for
any edge, the faces incident to the left and right of its one end need to be the same
than the faces incident to the left and right, respectively, of its other end. This
ensures that both 𝑉𝑖 and 𝑣𝑖+1 agree on the face in which 𝐹 should be embedded
and property (E3) is satisfied. If 𝐹 contains at least one edge that is also part of 𝐻 ,
inserting 𝑣𝑖+1 may close some faces of H . Note that all edges contained in these
faces satisfy property (E3) in E′⊕ and also do so in E⊕, where their incident segment
of the border of E′⊕ was effectively contracted into a single point. These faces
may contain no newly-inserted half-edges, and all old half-edges are completed
to 𝑣𝑖+1. In contrast to this, the up to two boundary faces may contain half-edges
completed by 𝑣𝑖+1 as well as old half-edges of 𝑉𝑖 that were not yet completed and
newly-inserted half-edges originating from 𝑣𝑖+1. The boundary face is also incident
to at least one edge that is both in 𝐹 and in 𝐻 , which ensures that 𝑣𝑖+1 and 𝑉𝑖 agree
on the face in which to embed all these edges, satisfying property (E3).

Regarding property (E2), note that the construction of the rotation for 𝑣𝑖+1 ensures
that the constraints ofH are respected for this newly-inserted vertex. The relative
position of 𝑣𝑖+1 with regard to 𝑉𝑖 is only relevant if both are not connected inH𝑖 ,
that is if 𝐹 contains no edges of 𝐻 . In this case, all edges in 𝐹 are restricted to

46

Partially Embedded Planarity Section 5.1

be embedded in the face shared by 𝑣𝑖+1 and 𝑉𝑖 . hence, in this case property (E3)
ensures the correct relative positions and thus property (E2). As all three properties
are satisfied, we get 𝜎 ∈ 𝜔H (𝐺+𝑖+1) for both 𝑣𝑖+1 ∉ 𝑉 (𝐻) and 𝑣𝑖+1 ∈ 𝑉 (𝐻). This
concludes the proof of 𝜔H (𝐺+𝑖+1) ⊇ 𝜔 (𝑇𝑖+1). ■

Again, we can apply this process until we obtain a color-constrained PC-tree𝑇𝑛−1
or conclude that the instance is negative otherwise. Note that we here also need to
perform the last step of the algorithm to also check that the constraints of 𝑣𝑛 are
respected. In case of success, an embedding of the tested graph can be generated
using the same approach as for the ordinary planarity test [Chi+85]. Interestingly,
the interactions between the two halves of a split C-node, which we need to
explicitly handle by fixing the one half if the other one is implicitly fixed, are also
one of the main concerns of the embedding algorithm by Chiba et al. [Chi+85].
In the following subsection, we will show how our algorithm can be extended to
non-biconnected graphs. We defer the details of a linear-time implementation to
Section 5.2.

▶ Theorem 5.3. An instance (𝐺,𝐻,H) of Partially Embedded Planarity with
a biconnected graph 𝐺 is positive if and only if our algorithm performs all steps
𝑖 = 1, . . . , 𝑛without an update yielding the null-tree or a failing intersection test. ◀

5.1.4 Non-Biconnected Instances
The ordinary planarity test from Section 4.2 can be applied to non-biconnected
graphs by simply processing each biconnected component independently. This
approach unfortunately cannot directly be applied for Partially Embedded Pla-
narity, as we also need to account for the constraints of cut-vertices. Instead
of relying on an involved preprocessing step, we extend our testing algorithm to
directly handle non-biconnected inputs.
When applying the planarity test to a non-biconnected instance, we can no

longer assume 𝑣1, . . . , 𝑣𝑛 to be an st-ordering that ensures that both 𝐺 [𝑉𝑖] and
𝐺 [𝑉 \𝑉𝑖] are connected for every 𝑖 = 1, . . . , 𝑛. We will retain the property that at
least 𝐺 [𝑉 \𝑉𝑖] is connected by using a leaf-to-root ordering of a DFS-tree [HT08].
Thus, we can still assume all half-edges to lie on the outer face. But, at every step
of the algorithm, we may now have multiple distinct connected components in 𝐺+𝑖 ,
each represented by their own PC-tree. When inserting a next vertex 𝑣𝑖+1, this
may now cause previously distinct connected components to merge. Note that this
may happen independently of whether 𝑣𝑖+1 is a cut-vertex in𝐺 when 𝑣𝑖+1 separates
multiple subtrees in the DFS-tree. We handle this case by incrementally merging the
components𝐶1, . . . ,𝐶𝑘 of𝐺+𝑖 that are adjacent to 𝑣𝑖+1 as follows. We consider 𝑣𝑖+1 as

47

Chapter 5 Partially Embedded Planarity

(a)

r

v

(b) 3
32

2

1

4
5 5

6

7

7

8

8

8

9

9

9

9

9

(c)

Figure 5.5: (a) An instance of Partially Embedded Planarity with 𝐻 -bridges colored
according to the face they have to be embedded in. (b) A DFS tree on the underlying
graph 𝐺 with tree-edges directed away from the root 𝑟 . (c) The color-constrained PC-tree
𝑆0 of vertex 𝑣, also indicating the directions of incident edges. The numbers indicate an
order in which the incident blocks can be processed. Due to the restricted edges, blocks 3
and 2 need to be removed before blocks 7 and 8, respectively, can be made consecutive. Due
to the fixed edges, block 7 needs to be processed before block 8. The given order of blocks
with fixed edges is obtain by starting at block 4. Note that the currently shown rotation
does not have block 2 consecutive.

initial component 𝐶0 = {𝑣𝑖+1} and observe that the union of all components yields
the component𝐶 = 𝐶0∪𝐶1∪ . . .∪𝐶𝑘 of 𝑣𝑖+1 in𝐺+𝑖+1. We compute color-constrained
PC-trees 𝑆1, . . . , 𝑆𝑘 satisfying the invariant 𝜔 (𝑆 𝑗) = 𝜔H (𝐺 [𝐶0 ∪ · · · ∪ 𝐶 𝑗]+) for
𝑗 = 1, . . . , 𝑘 . Note that it is 𝜔 (𝑆𝑘) = 𝜔H (𝐺 [𝐶0 ∪ · · · ∪ 𝐶𝑘]+) = 𝜔H (𝐶) at the end
of the iteration. We obtain tree 𝑆0 with 𝜔 (𝑆0) = 𝜔H (𝐺 [𝐶0]+) similar to before by
converting 𝑣𝑖+1 into a single P-node and copying its constraints. We use T to map
from components to their already computed color-constrained PC-trees, setting
T [𝐶] = 𝑆𝑘 every time we have processed all 𝑘 components incident to a vertex 𝑣𝑖+1.
To combine the color-constrained PC-tree T [𝐶 𝑗+1] of the next component 𝐶 𝑗+1
with the current tree 𝑆 𝑗 into the next tree 𝑆 𝑗+1, we use the same process as we used
for combining 𝑇𝑖 with 𝑆 into 𝑇𝑖+1 in our test for biconnected instances. Note that
while we now run the process on different trees, it can be easily shown that they
still satisfy assumptions (T2) and (T3).
It is assumption (T1), that is that the leaves 𝐹 can always be made consecutive

in T [𝐶 𝑗+1] and 𝑆 𝑗 if the instance is positive, which needs additional consideration.
Even if the instance is positive, the update may now fail if the constraints of 𝑣𝑖+1
require us to nest some incident blocks and we process an outer block before the
nested one. Such nesting may be enforced by the fixed order of edges ofH or by
the color-constraints around 𝑣𝑖+1; see Figure 5.5. Fortunately, we can circumvent
this issue as the nested blocks in positive instances need to have a certain structure.
Consider a cut-vertex 𝑣𝑖+1 with an incident block 𝐶 𝑗+1. When processing 𝐶 𝑗+1, the
component has no further half-edges except those leading to 𝑣𝑖+1. We add no new

48

Partially Embedded Planarity Section 5.1

half edges to 𝑆 𝑗 and remove all leaves 𝐹 without replacement after making them
consecutive. Thus, no part of T [𝐶 𝑗+1] is present in 𝑆 𝑗 and we have 𝐿(𝑆 𝑗+1) ⊊ 𝐿(𝑆 𝑗).
This is facilitated by our definition of the merge operation on PC-trees, where
merging with a PC-tree that only consists of a single leaf effectively removes the
leaf from the other tree. Recall that we never assumed 𝐹 𝑐 to be non-empty during
the proof of Lemma 5.2, thus this does not affect the correctness of our algorithm.
If a block now needs to be nested at 𝑣𝑖+1, it may not have further half-edges except
for those leading to 𝑣𝑖+1 for the instance to be positive. Thus, processing any nested
block before the block is nested within, that is using an inside-out nesting order,
ensures any nested blocks are always processed and removed first and the edges
of their containing blocks can afterwards be made consecutive. Lemma 5.8 shows
how such an order can be found in time linear in the degree of 𝑣𝑖+1.

▶ Lemma 5.4. Let𝐶1, . . . ,𝐶𝑘 be the connected components of𝐺+𝑖 that are incident
to 𝑣𝑖+1, ordered according to their inside-out nesting enforced by the constraint
of 𝑣𝑖+1. For every step 𝑗 ∈ {0, . . . , 𝑘}, 𝜔 (𝑇 𝑗

𝑖
) = 𝜔H (𝐺 [𝐶0 ∪ · · · ∪𝐶 𝑗]+) holds. ◀

Proof. The correctness of the statement can be shown analogously to the correctness
of Lemma 5.2. To be able to apply this proof, we still need to show that its three
underlying assumptions (T1)–(T3) still hold for the new trees we use. Processing the
blocks in an inside-out nesting order ensures that, in a yes-instance, blocks that need
to be nested are processed before the blocks they are nested within and this process
removes all half-edges to the corresponding blocks. This ensures that the half-edges
to the outer blocks coming later in the order can also be made consecutive, that
is assumption (T1) is fulfilled. As the component 𝐶 𝑗+1 that T [𝐶 𝑗+1] represents is
a block incident to 𝑣𝑖+1, it is also connected and thus T [𝐶 𝑗+1] satisfies (T2). The
fact that the leaves 𝐹 are all adjacent to the same P-node in 𝑆 𝑗 , that is that 𝑆 𝑗
satisfies assumption (T3), can be shown as follows. The assumption holds per
construction for 𝑆0. For any later step 𝑗 with tree 𝑆 𝑗 , note that the leaves 𝐹 we make
consecutive were already present in 𝑆0, but they where never part of a set we made
consecutive in an earlier step. As the PC-tree update only modifies leaves that are
made consecutive, the leaves in 𝐹 are thus all still incident to the same P-node they
were incident to in 𝑆0. ■

We can now use these adaptions within the algorithm from the previous section
to also test connected but not necessarily biconnected instances. Algorithm 2
illustrates this in pseudocode. There, we use vertexOrder to obtain a suitable vertex
ordering that leaves 𝐺 [𝑉 \𝑉𝑖] connected, e.g. by returning the reversed discovery
order of a DFS run. Method vertexToTree converts a single vertex together with
its color-constraints into a color-constrained PC-tree and method blockOrder

49

Chapter 5 Partially Embedded Planarity

Algorithm 2: Testing a (not necessarily biconnected) graph𝐺 for planarity.
1 𝑣1, . . . , 𝑣𝑛 ← vertexOrder(𝐺);
2 T ← empty map from connected component to PC-tree;
3 T [{𝑣1}] ← vertexToTree(𝑣1);
4 for 𝑖 in 1, . . . , 𝑛 − 1 do
5 𝑆0 ← vertexToTree(𝑣𝑖+1);
6 𝐶1, . . . ,𝐶𝑘 ← blockOrder(𝑣𝑖+1);
7 for 𝑗 in 1, . . . , 𝑘 do
8 𝐹 𝑗 ← edges between 𝐶 𝑗 and 𝑣𝑖+1;
9 𝑆′𝑗 ← (𝑆 𝑗−1 + 𝐹 𝑗) [𝐹 𝑗 → ℓ]; 𝑆𝐹𝑗 ← (𝑆 𝑗−1 + 𝐹 𝑗) [𝐹 𝑐𝑗 → ℓ];

10 if 𝐹 𝑗 ≠ 𝐿(T [𝐶 𝑗]) then
11 𝑇 ′← (T [𝐶 𝑗] + 𝐹 𝑗) [𝐹 𝑗 → ℓ]; 𝑇 𝐹 ← (T [𝐶 𝑗] + 𝐹 𝑗) [𝐹 𝑐𝑗 → ℓ];
12 if 𝜔 (𝑇 𝐹) ∩ 𝜔 (𝑆𝐹

𝑗
) = ∅ then

13 return false

14 if 𝑆𝐹𝑗 fixes C-node 𝜇𝐹 of 𝑇 𝐹 in the intersection then
15 𝑇 ′′← 𝑇 ′ with fixed respective C-node 𝜇′;
16 else
17 𝑇 ′′← 𝑇 ′;
18 𝑆 𝑗 ← 𝑆′𝑗 ⊗ℓ 𝑇 ′′;
19 else
20 remove the common leaf 𝑒 𝑗 from both 𝑆𝐹𝑗 and 𝑆′𝑗 ;
21 if 𝜔 (T [𝐶 𝑗]) ∩ 𝜔 (𝑆𝐹𝑗) = ∅ then return false;
22 𝑆 𝑗 ← 𝑆′𝑗 ; // without 𝑒 𝑗

23 T [{𝑣𝑖} ∪𝐶1 ∪ . . . ∪𝐶𝑘] ← 𝑆𝑘 ;
24 return true if no Update returned the null tree, and false otherwise;

50

Linear-Time Implementation Section 5.2

yields an inside-out nesting order of the incident blocks. See the following sections
for details on how this can be implemented in to run in linear time. To obtain the
following result for general instances, we also apply the reduction by Angelini et
al. [Ang+15b, Theorem 4.14] that ensures that 𝐺 is connected.

▶ Theorem 5.5. An instance (𝐺,𝐻,H) of Partially Embedded Planarity is
positive if and only if our algorithm, for each step 𝑖 = 1, . . . , 𝑛, processes all incident
components 𝐶1, . . . ,𝐶𝑘 without an update yielding the null-tree or an intersection
test failing. ◀

5.2 Linear-Time Implementation
In this section, we show how the different parts of our algorithm for testing Par-
tially Embedded Planarity can be implemented to run in linear time. Recall that
we assume the usual representation of a graph using doubly-linked adjacency lists.
We further assume each vertex and edge has a label whether it is contained in 𝐻

and that the rotation system ofH is given as a separate doubly-linked adjacency
list. Additionally, each edge 𝑒 of 𝐻 has pointers to objects representing the incident
faces at both sides, which we will use as values of 𝑓𝑣 (𝑒) and 𝑓𝑢 (𝑒) for the endpoints
𝑢, 𝑣 of 𝑒 . Conversely, the face objects have, for each connected component incident
to the face, a pointer to one of their incident edges in the component. Note that
we assume that this data structure represents a planar embedding, i.e., we have no
cyclically nested faces and components.

For our color-constrained PC-trees we assume a suitable implementation of the
underlying PC-tree data structure, which especially allows merging C-nodes in
constant time as required for an amortized-linear Update [HM03; HM04]; see also
Section 8.2. For a linear-time implementation of Update, the PC-trees need to be
rooted. As a consequence, Merge can only be performed in constant time if the
leaf ℓ at which we merge is (incident to) the root of at least one of the two trees.
Fortunately, the planarity test of Haeupler and Tarjan, on which our algorithm is
based, ensures this property [HT08].

Similar to our graph representation, we use a second doubly-linked list to store
fixed edges and their cyclic order in the color-constrained PC-trees. To keep track
of the colors of the angles following fixed edges and of the restricted edges around
a node, we equip each fixed edge (representing its following angle) and restricted
edge with a pointer to a shared counter for their node. All objects of the same color
at the same node have a pointer to the same counter, which separately counts angles
and edges. Note that we do not maintain an index of the colors present at a node,
but only an unordered list of all counters present at the node. A counter of a certain

51

Chapter 5 Partially Embedded Planarity

color can thus only be accessed by linearly searching through the counter list, or
in constant time via an object of the appropriate color. This is no problem though,
as this structure now easily allows decrementing the respective counter when
removing an angle or edge from a node. To create new nodes (e.g. when splitting),
we keep a single global array with one entry per color that temporary allows
looking up counters by color (and subsequently incrementing them appropriately),
but only for the currently created node. The counters now allow us to recognize
the case when removing the last angle or edge of a color from a node without
negatively affecting the asymptotic running time of the Update operation.

▶ Lemma 5.6. MethodUpdate on color-constrained PC-trees can be implemented
to run in amortized time linear in |𝐴|. ◀

Proof. As the base update procedure for ordinary PC-trees has an amortized running
time linear in the number of full leaves [HM03; HM04], we want to show the same
also holds for our modified version. Note that to meet the linear time bound, we
can only spend a linear amount of time on the full neighbors for each full or partial
node, while me may not process all their empty neighbors.

Recall that we leave the labeling in step (1) unchanged. The consecutivity check
of step (2) can be implemented by keeping, for each P-node, a linked list of full fixed
edges, and checking the predecessor and successor of every such edge after the
labeling is complete. For each list, at most one edge may have a non-full predecessor
and at most one a non-full successor for the full fixed edges to be consecutive. This
also allows us to check that both of the at most two terminal fixed edges are directly
adjacent to this block of full fixed edges, or the other partial fixed edge if the block
is empty. Similarly, we can check that all P-nodes and fixed C-nodes have their
fixed full edges on the same side of the terminal path.

In step (3), we initialize and update the angle and restricted edge color counters
appropriately during the splits. These counters then allow us to efficiently detect
when a restricted edge got separated from all angles it could be embedded in or
whether one of the split halves received no restricted edges. The second split
that separates all empty edges is equivalent to splitting off the at most 2 partial
neighbors together with the edge leading to the newly-created P-node with all
full neighbors, and can thus be implemented in constant time without processing
empty edges. After both splits, checking the admissible orders of 𝜇𝑀 and changing
its type appropriately can be done in constant time as it has degree at most 4. The
contractions in step (4) can then, thanks to the constant-time Merge of C-nodes,
be done in time linear in the length of the terminal path. ■

52

Linear-Time Implementation Section 5.2

In addition to Update, we also use a restricted form of the Intersect method in
our planarity test. Fortunately, this test for a non-empty intersection can easily be
implemented in linear time.

▶ Lemma 5.7. The test whether 𝜔 (𝑇 𝐹) ∩ 𝜔 (𝑆𝐹) ≠ ∅ can be implemented to run
in time linear in the number of leaves of 𝑆𝐹 and 𝑇 𝐹 . ◀

Proof. In our implementation, we use that both trees originate from an instance
of Partially Embedded Planarity, or, more precisely, that the trees that 𝑇 𝐹 and
𝑆𝐹 stem from satisfy property (E3) and assumption (T3), respectively. On the one
hand, this means that 𝑇 𝐹 already ensures that all restricted edges are embedded
in the right angles, i.e., faces. On the other hand, 𝑆𝐹 consists of a single P-node.
Furthermore, all fixed edges of 𝑆𝐹 are also fixed in 𝑇 𝐹 and have the same incident
faces. Similarly, the restricted edges are the same in both trees and they also have
the same colors. Thus, the only way to have an empty intersection is if the rotation
of the fixed edges of 𝑆𝐹 is not admissible by 𝑇 𝐹 . We can test this by temporarily
removing all non-fixed leaves from 𝑇 𝐹 and checking whether the fixed order of 𝑆𝐹
is admissible by the resulting tree. This can easily be checked in linear time, e.g.
using an approach similar to the intersection of ordinary PC-trees. ■

Recall that as second modification to the general planarity test, we need to check
whether the intersection with the constraints of 𝑣𝑖+1 fixes the flip of a C-node 𝜇
of 𝑇𝑖 that is incident to the edges in the set 𝑋 = 𝐸 (𝑇𝑖 + 𝐹, 𝐹). More precisely, we
check whether the intersection with 𝑆𝐹 fixes the split-off half 𝜇𝐹 of 𝜇 in 𝑇 𝐹 and we
therefore also need to fix the other half 𝜇′ in 𝑇 ′. This can be checked in linear time
by performing the test from Lemma 5.7 twice, once fixing 𝜇𝐹 to its one flip and
once to its other flip. We report an empty intersection if both tests fail, fix the flip
of 𝜇′ accordingly if only one of the two test runs succeeds, and leave 𝜇′ unmodified
otherwise. Both 𝜇𝐹 and 𝜇′ can easily be identified as they are incident to the leaf ℓ
introduced by the split.
The last building block we need for our linear-time algorithm is a procedure

to find the order we use in Section 5.1.4. Recall that if the added vertex 𝑣𝑖+1 is
a cut-vertex, we need to take special care about its required nesting of incident
blocks, as we need to process nested blocks before the blocks they are nested in.
Note that 𝑣𝑖+1 is a cut-vertex if and only if there is at least one component that
has no further half-edges except those leading to 𝑣𝑖+1, and each such component
corresponds to a block around 𝑣𝑖+1. In this case, the components with remaining
half-edges together with the half-edges of 𝑣𝑖+1 leading to later vertices form an
additional block 𝐵𝑟 , as they are all connected via the unembedded, connected graph
𝐺 [𝑉 \𝑉𝑖]. We will ensure that this block comes last in our generated order.

53

Chapter 5 Partially Embedded Planarity

▶ Lemma 5.8. In time linear in the degree of vertex 𝑣𝑖+1 we can find an order
𝐶1, . . . ,𝐶𝑘 of the blocks incident to 𝑣𝑖+1 such that, whenever the constraints of 𝑣𝑖+1
require a block 𝐶𝑎 to be nested within a block 𝐶𝑏 , we have 𝑎 < 𝑏. Furthermore, 𝐶𝑘

contains all components with remaining half-edges together with the half-edges
of 𝑣𝑖+1 leading to later vertices. ◀

Proof. We will process all blocks without fixed edges first (except for 𝐵𝑟), as these
cannot force other blocks to be nested within them. Note that in a yes-instance, a
block can only contain restricted edges with different colors if it also contains fixed
edges with appropriate incident angles, as the edges could otherwise not be made
consecutive. It remains to generate the order of blocks with fixed edges, where the
prescribed order of fixed edges 𝜌𝑣𝑖+1 may force blocks to be nested. To do so, we will
process the fixed edges in the order of 𝜌𝑣𝑖+1 and keep a stack of blocks for which
we have seen some, but not all fixed edges. When encountering the last edge from
a block, we remove the block and append it to the processing order of blocks. Note
that in a yes-instance, two different blocks may not alternate and we can report a
negative instance when we encounter a fixed edge of a block that is within, but not
at the top of the stack.
It remains to ensure that the block 𝐵𝑟 with the half-edges of 𝑣𝑖+1 can be put

last in the order, which we do by appropriately choosing the edge from which we
start the processing of fixed edges in their cyclic order 𝜌𝑣𝑖+1 . If 𝐵𝑟 contains a fixed
edge incident to 𝑣𝑖+1, we start processing the cyclic order 𝜌𝑣𝑖+1 with the fixed edge
following thereafter. This already ensures that 𝐵𝑟 is the last block returned from the
stack-based algorithm. If 𝐵𝑟 contains no fixed but a restricted edge 𝑒 incident to 𝑣𝑖+1,
we start processing from an arbitrary fixed edge following an angle with the same
color as 𝑒 . We then append 𝐵𝑟 and note that the choice of first fixed edge ensures
that the we still have an appropriately-colored angle available when processing 𝐵𝑟
as last block. Lastly, if 𝐵𝑟 has only unrestricted edges incident to 𝑣𝑖+1, we can start
the processing of fixed edges at any point. ■

Altogether, this now allows us to show implement our full algorithm in linear time.

▶ Theorem 5.9. An instance (𝐺,𝐻,H) of Partially Embedded Planarity can
be tested in time linear in the size of 𝐺 . ◀

Proof. Our linear-time algorithm for testing Partially Embedded Planarity on
general instances works in the following steps. As preprocessing, we first apply
two simple linear-time algorithms of Angelini et al. that allow us to process each
connected component of𝐺 separately and that compute the color constraints 𝑓 (𝑒)

54

Linear-Time Implementation Section 5.3

for each edge of an 𝐻 -bridge [Ang+15b, Theorem 4.14 and Lemma 2.2]. We then
run the algorithm described in Section 5.1.4 on each connected component of 𝐺 .
Haeupler and Tarjan [HT08, Section 4] describe how the DFS can be implemented
to at the same time yield the separate blocks incident to a vertex 𝑣𝑖+1 together with
the edges connecting them to 𝑣𝑖+1. We sort and process the incident blocks using the
approach from Lemma 5.8. In the resulting order, we apply the modified algorithm
from Section 5.1.3, using the amortized linear-time Update from Lemma 5.6. There,
we use the intersection check from Lemma 5.7 and, if necessary, fix the respective
C-node of the tree 𝑇 ′ representing the added block. Note that this is not needed if
the current block has no further half-edges, as we can simply remove the respective
subtree in this case. Further note that the DFS also ensures that the leaf ℓ at
which we merge is the root of 𝑇 ′, which allows it to be finally attached to 𝑆′ in
constant time, see [HT08]. This concludes the linear-time implementation of our
algorithm. ■

Similar to the linear-time Partially Embedded Planarity solution by An-
gelini et al. [Ang+15b], the linear-time EC-Planarity solution of Gutwenger et
al. [GKM08] also relies on decompositions that allow them to verify constraints
in each individual skeleton of the SPQR-tree. Alternatively, both EC-Planarity
and the equivalent (non-partial) (F)PQ-constrained Planarity can be solved in
linear time via a reduction to Partially Embedded Planarity using the so-called
ec-expansion [GKM08; Sch13]. Our simplified approach can also be used to di-
rectly solve both problems in linear time without the need for a decomposition or
reduction. In both problems, the rotation constraints for each vertex are directly
given in the input and no longer need to be computed from a prescribed embedding
first. In this case, we only have FPC-trees as constraints, that is color-constrained
PC-trees that only consist of C-nodes and P-nodes with either only unrestricted or
only fixed edges (where the latter are called F-nodes), but never restricted edges.
Note that we need to handle the intersection test slightly differently, as the fixed
edges no longer need to be the same in both trees as edges can now have different
restrictions at their endpoints. Fortunately, the intersection of two FPC-trees is
still an FPC-tree. It can be found by using the intersection procedure for regular
PC-trees while temporarily interpreting F-nodes as C-nodes. Subsequently, any
C-node that stems from one or more F-nodes is converted back to an F-node that
respects the flip of all its initial F-nodes (or we report an empty intersection if the
initial F-nodes do not agree on this flip). We can thus perform the intersection test
in linear time and obtain the following corollary.

▶ Corollary 5.10. EC-Planarity and (F)PQ-constrained Planarity can be
solved in linear time. ◀

55

Chapter 5 Partially Embedded Planarity

5.3 Conclusion
In this chapter, we have given a linear-time solution for the problem Partially
Embedded Planarity. Our algorithm straightforwardly extends the well-known
vertex-addition planarity test of Haeupler and Tarjan [HT08]. The core of our
approach is the modification of its underlying data structure, the PC-tree, to also
respect the constraints that stem from the partial drawing. These constraints are
derived from the insight that for an extension of the fixed partial drawing, it is
necessary and sufficient to respect the fixed vertex rotations as well as embed
certain edges in predefined faces between the fixed edges. These constraints can
then be naturally translated from the rotations of individual vertices to the PC-trees
that represent all planar embeddings of connected components. Switching in these
color-constrained PC-trees in the planarity test then requires us to handle two very
specific situations more carefully than in the unconstrained setting. We uncovered
the assumptions that the unconstrained planarity test makes in these cases and
showed how they can be fixed in the constrained setting, which also provides
valuable insights into the workings of the generic test.

In comparison to the previous decomposition-based approach by Angelini et
al. [Ang+15b], this yields a strongly simplified algorithm that relies on depth-first
search together with a single non-trivial data structure. This also allows us to
directly model other planarity variants constraining vertex rotations without the
need for a prior reduction or decomposition. The description of our algorithm,
even when also including the extensive description of its well-known underlying
concepts, is roughly half as long as the description of the algorithm by Angelini et
al. [Ang+15b], while at the same time being far less technical.

An interesting question for future work is whether our algorithm can be extended
to handle constraints to vertex rotations in the form of arbitrary color-constrained
PC-trees that in particular were not derived from an instance of Partially Embed-
ded Planarity. The main complication here is that in this case, similar to using
arbitrary FPC-trees as constraints in Corollary 5.10, the constraints on an edge no
longer need to be the same at both its endpoints.

56

6 Synchronized Planarity

This chapter is based on joint work with Thomas Bläsius and Ignaz Rutter, which
also appeared at ESA 2021 [3] and in the ACM Transactions on Algorithms [1]. In
comparison to these versions, Sections 6.4 and 6.5 were extended to show various further
applications and related NP-hard problems.

Many variants of constrained planarity come down to the question whether
there are embeddings of one or multiple graphs such that the rotations of certain
vertices are in sync in a certain way. Consider for example the problem Clustered
Planarity (see Section 3.1.4), where the order in which edges “leave” a cluster
(via its boundary curve) needs to line up with the order in which they “enter” the
cluster. To formulate this in terms of synchronized vertex rotations, we can split
the graph into two halves at each cluster boundary: one where we contract the
inside of the cluster into a single vertex and one where we contract the outside
into a single vertex. Now, the rotations of the two vertices that where obtained
from the same cluster boundary need to be in sync. The graph resulting from these
separate contractions of each side of a cluster boundary is called CD-tree [BR16a];
see Figure 6.6. A similar construction can also be applied to Level- and Strip
Planarity, where the order of edges leaving a horizontal level or strip needs to be
the same as the order in which they enter the next one. For the SEFE-2 problem, it
directly suffices to find embeddings of both exclusive graphs where the rotations
of shared edges are the same as long as the shared graph is connected [BKR17;
JS09]; see Figure 6.10. In the Atomic Embeddability problem [FT22], we want to
embed a graph without crossings onto a 3-dimensional molecule structure, given a
prescribed mapping of vertices to atoms of the molecules. Here, the order in which
edges enter a “pipe” connecting two atoms also needs to line up with the order in
which they leave it at the other end.

Inspired by these observations, we introduce a new planarity variant. Syn-
chronized Planarity has a loop-free multi-graph together with two types of
synchronization constraints as input. Each Q-constraint consists of a subset of
vertices together with a fixed reference rotation for each of these vertices. The
Q-constraint is satisfied if and only if either all these vertices have their reference
rotation or all these vertices have the reversed reference rotation. Vertices appearing

57

Chapter 6 Synchronized Planarity

in Q-constraints are called Q-vertices and all remaining vertices are P-vertices.3
A P-constraint between two P-vertices 𝑢 and 𝑣 defines a bijection between the
edges incident to 𝑢 and 𝑣. It is satisfied if and only if 𝑢 and 𝑣 have the opposite
rotation under this bijection. We require that the P-constraints form a matching,
that is, no vertex appears in more than one P-constraint. The decision problem
Synchronized Planarity now asks whether the given graph can be embedded
such that all Q- and all P-constraints are satisfied.
Synchronized Planarity serves as a powerful modeling language that lets

us express various other planarity variants using simple linear-time reductions.
We provide such reductions for Clustered Planarity, Atomic Embeddability,
Partially PQ-constrained Planarity, and Simultaneous Embedding with
Fixed Edges with a connected shared graph (Connected SEFE-2) and many other
constrained planarity variants. Our main contribution is an algorithm that solves
Synchronized Planarity, and thereby all the above problems, in quadratic time.
This chapter is organized as follows. In Section 6.1 we give an intuition of the

vertex rotation constraints that formed the main obstacle of Clustered Planarity
in the past, while discussing previous work on solving this problem in Section 6.2.
The main Section 6.3 introduces the Synchronized Planarity problem together
with our quadratic solution to it. In Section 6.4 we show how Synchronized
Planarity can be used to solve various other problems. We discuss related NP-
hard problems in Section 6.5 and give a detailed comparison of our solution to the
algorithm by Fulek and Tóth [FT22] in Section 6.6.

6.1 Technical Contribution
Our result has an impact on several planarity variants that have been studied previ-
ously. Before discussing this individually in the context of previous publications,
we point out a common difficulty that has been a major barrier for all of them and
briefly sketch how we resolve it.
Consider the following constraint on the rotation of a single vertex. Assume

its incident edges are grouped and we only allow orders where no two groups
alternate, that is, if 𝑒1, 𝑒2 are in one group and 𝑒3, 𝑒4 are in a different group, then
the cyclic subsequence 𝑒1, 𝑒3, 𝑒2, 𝑒4 and its inverse are forbidden. Such restrictions
have been called partition constraints before [BR16a], and they naturally emerge at
cut-vertices where each incident 2-connected component forms a group. A single

3 The names are based on PQ-trees, where Q- and P-nodes have fixed and arbitrary rotation,
respectively. To be consistent with previous publications, we continue to use the naming based
on PQ-trees instead of the (equivalent) PC-trees.

58

Technical Contribution Section 6.2

partition constraint is not an issue by itself, but it becomes difficult to deal with
in combination with further restrictions. In the context of the above example this
would, e.g., be a third group 𝑒5, 𝑒6 that must also be non-alternating with the former
two. This is why cut-vertices and disconnected clusters are a major obstacle for
SEFE-2 [BKR17] and Clustered Planarity [BR16a], respectively.
The same issues appear for Synchronized Planarity, when we have a cut-

vertex 𝑣 that is involved in P-constraints, that is, its rotation has to be synchronized
with the rotation of a different vertex 𝑢. We deal with these situations as follows,
depending on whether 𝑢 is also a cut-vertex or not. If not, it is rather well under-
stood which embedding choices impact the rotation of 𝑢 and we can propagate this
from 𝑢 to 𝑣.4 This breaks the synchronization of 𝑢 and 𝑣 down into the synchro-
nization of smaller embedding choices, a well-known technique that has been used
before [BR16b; GKM08]. If 𝑢 is also a cut-vertex, we are forced to actually deal with
the embedding choices emerging at cut-vertices. This is done by “encapsulating”
the restrictions on the rotations of 𝑢 and 𝑣 that are caused by the fact that they
are cut-vertices. All additional restrictions coming from embedding choices in the
2-connected components are pushed away by introducing additional P-constraints.
After this, the cut-vertices 𝑢 and 𝑣 have very simple structure, which can be re-
solved by essentially joining them together. This procedure is formally described
in Section 6.3.3 and illustrated in Figures 6.2 and 6.3.
This solution can be seen as a combinatorial perspective on the recent break-

through result by Fulek and Tóth [FT22], who resolved the cut-vertex issue by
applying an idea coming from Carmesin’s work [Car17c]. While Carmesin works
with 2-dimensional simplicial complexes, Fulek and Tóth achieve their result by
transferring Carmesin’s idea to the setting of topological graphs on surfaces and
combining it with tools from their work on thickenability [AFT19; FT22]. Our work
transfers the problem back to an entirely combinatorial treatment of topological
graphs in the plane. This further simplification allows us to clearly highlight the
key insights that make the algorithm tick and at the same time provides access to a
wide range of algorithmic tools for speeding up the computations. The key insights
are that the “encapsulation” applies cuts that are respected by all embeddings, that
is the constraints we drop are enforced by the resulting graph, see Section 6.3.1, and
that each operation not only works towards decreasing the global maximum degree,
but also makes clearly-visible progress local to the affected area, see Section 6.3.7.
Two main tools which we employ to achieve the running time of our algorithm are
the PQ-tree in the form of embedding trees and the SPQR-tree. Using further tools
from the planar graphs toolbox, a version of the SPQR-tree that can be maintained
under dynamic graph updates [Epp+98] can be used to speed up our algorithm
even further, see Section 6.3.8 and Chapter 7.

4 We can also do this if 𝑣 is not a cut-vertex.

59

Chapter 6 Synchronized Planarity

6.2 Related Work
Clustered Planarity was first considered by Lengauer [Len89] and later redis-
covered by Feng et al. [FCE95]. In both cases, the authors give polynomial-time
algorithms for the case that each cluster induces a connected graph. The complex-
ity of the general problem that allows disconnected clusters has been open for 30
years. In that time, many special cases have been shown to be polynomial-time
solvable [AD19; Cor+08; Ful+15; Gut+02] before Fulek and Tóth [FT22] recently
settled Clustered Planarity in P. The core ingredient for this is their𝑂 (𝑚8)-time
algorithm for the Atomic Embeddability problem. It has two graphs 𝐺 and 𝐻

as input. Roughly speaking, 𝐻 describes a 3-dimensional molecule structure with
atoms represented by spheres and connections (a.k.a. pipes) represented by cylin-
ders. The other graph 𝐺 comes with a map to the molecule structure that maps
each vertex to the surface of an atom such that two adjacent vertices lie on the
same atom or on two atoms connected by a pipe. Atomic Embeddability then
asks whether 𝐺 can be embedded onto the molecule structure according to the
given mapping such that no edges cross.

Atomic Embeddability has been introduced as a generalization of the Thicken-
ability problem that appears in computational topology [AFT19]. It can be shown
that Atomic Embeddability and Thickenability (and actually also Synchro-
nized Planarity, as discussed in Section 6.6) are linear-time equivalent [FT22].
Thus, the above 𝑂 (𝑚8)-time algorithm for Atomic Embeddability also solves
Thickenability and Synchronized Planarity. In a series of preprints from 2017,
Carmesin [Car17a; Car17b; Car17c] gives a Kuratowski-style characterization of
Thickenability [Car17a], which he claims yields a quadratic-time algorithm as a
byproduct [Car17c]. While it is believable that the running time of his algorithm is
polynomial, the correctness of the claimed running time has not been confirmed
since. We thus consider the self-contained 𝑂 (𝑚8)-algorithm by Fulek and Tóth
published in 2019, which is seen as an improvement over the algorithm by Carmesin,
as state of the art. A detailed comparison of their solution to Atomic Embeddability
and our solution to Synchronized Planarity is given in Section 6.6.

To finally solve Clustered Planarity, Fulek and Tóth [FT22] use the reduction
of Cortese and Patrignani [CP18] to Independent Flat Clustered Planarity,
which they then reduce further to Thickenability. The last reduction to Thick-
enability is based on a combinatorial characterization of Thickenability by
Neuwirth [Neu68], which basically states that multiple graphs have to be embedded
consistently, that is, such that the rotation is synchronized between certain vertex
pairs of different graphs. Via the reduction from Connected SEFE-2 to Clustered
Planarity given byAngelini andDa Lozzo [AD16], the above result extends to Con-

60

The Synchronized Planarity Problem Section 6.3

nected SEFE-2, which was a major open problem in the context of simultaneous
graph representations [BKR13]. We flatten this chain of reductions by giving
a simple linear reduction from each of the problems Connected SEFE-2, Clus-
tered Planarity, and Atomic Embeddability to Synchronized Planarity in
Section 6.4, yielding quadratic-time algorithms for all of them. Moreover, the
problem Partially PQ-constrained Planarity, for which we also give a linear
reduction to Synchronized Planarity, has been solved in polynomial time before,
but only for biconnected graphs [BR16b] and in the non-partial setting where
either all or none of the edges of each vertex are constrained [GKM08]. Similarly,
Row-Column Independent NodeTrix Planarity has been solved in polynomial
time for biconnected graphs [LRT21], while our solution works on general graphs.

6.3 The Synchronized Planarity Problem
An instance of the problem Synchronized Planarity is a tuple 𝐼 = (𝐺,P,Q,𝜓),
where

1. 𝐺 = (𝑃 ∪𝑄, 𝐸) is a (loop-free) multi-graph with P-vertices 𝑃 and Q-vertices𝑄 ,

2. Q is a partition of 𝑄 ,

3. 𝜓 is a mapping that assigns a rotation to each Q-vertex, and

4. P is a set of triples (𝑢, 𝑣, 𝜑𝑢𝑣), where𝑢 and 𝑣 are P-vertices of the same degree,
𝜑𝑢𝑣 is a bijection between their incident edges, and each P-vertex occurs at
most once in P.

We call the triples 𝜌 = (𝑢, 𝑣, 𝜑𝑢𝑣) in P pipes. Pipes are not directed and we identify
(𝑢, 𝑣, 𝜑𝑢𝑣) and (𝑣,𝑢, 𝜑𝑣𝑢) with 𝜑𝑣𝑢 = 𝜑−1𝑢𝑣 . We also define deg(𝜌) = deg(𝑢) = deg(𝑣).
If two P-vertices are connected by a pipe, we call them matched; all other P- and
Q-vertices are unmatched.
The planar embedding E of 𝐺 satisfies the cell 𝑋 ∈ Q if it is either E(𝑣) =

𝜓 (𝑣) for all 𝑣 ∈ 𝑋 or E(𝑣) = 𝜓 (𝑣) for all 𝑣 ∈ 𝑋 . We say that the embedding
satisfies the Q-constraints if it satisfies all cells, that is, vertices in the same cell
of the partition Q are consistently oriented. The embedding E satisfies the pipe
𝜌 = (𝑢, 𝑣, 𝜑𝑢𝑣) if 𝜑𝑢𝑣 (E(𝑢)) = E(𝑣), that is, they have opposite rotations under the
bijection 𝜑𝑢𝑣 . We say that the embedding satisfies the P-constraints if it satisfies all
pipes. The embedding E is called valid if it satisfies the P-constraints and the Q-
constraints. The problem Synchronized Planarity asks whether a given instance
𝐼 = (𝐺,P,Q,𝜓) admits a valid embedding E of 𝐺 .

61

Chapter 6 Synchronized Planarity

In the context of Synchronized Planarity, we assume that the embedding tree
of a vertex does not allow rotations that would result in a Q-vertex 𝑣 having any
other rotation than its default ordering𝜓 (𝑣) or its reverse𝜓 (𝑣). To ensure this, we
can subdivide each edge incident to 𝑣 and connect each pair of two of the new nodes
if the edges they subdivide are consecutive in the cyclic order𝜓 (𝑣) [GKM08]. Note
that this generates a 𝑘-wheel with center 𝑣 and that there are exactly two planar
rotations of the center of a wheel, which are the reverse of each other. Further note
that the resulting graph still has 𝑂 (𝑚) edges. We always generate the embedding
trees based on the graph where each Q-vertex in𝐺 is temporarily replaced with its
respective wheel.

In the following Section 6.3.1 wewill first discuss the high-level insight that allows
us to solve this problem efficiently. In Sections 6.3.2 to 6.3.5, we will subsequently
describe the concrete operations that use this insight to stepwise reduce the degree
of individual pipes until they become trivial. Sections 6.3.6 and following consider
how long this process takes until all pipes are removed and how and in what time
the resulting pipe-free instance can be solved.

6.3.1 Splits and Joins of Graphs and Embeddings
Let𝐺 = (𝑉 , 𝐸) be a graph. We call a partition𝐶 = (𝑋,𝑌) of𝑉 into two disjoint cells
a cut of𝐺 . The edges 𝐸 (𝐶) that have their endpoints in different cells are called cut
edges. The split of 𝐺 at 𝐶 = (𝑋,𝑌) is the disjoint union of the two graphs obtained
from two copies of𝐺 by contracting𝑋 and 𝑌 to a single vertex 𝑥 and 𝑦, respectively
(keeping possible multi-edges); see Figure 6.1. Note that the edges incident to
𝑥 and 𝑦 are exactly the cut edges, yielding a natural bijection 𝜑𝑥𝑦 between them.
Conversely, given two graphs𝐺1 = (𝑉1, 𝐸1),𝐺2 = (𝑉2, 𝐸2) and vertices 𝑥 ∈ 𝑉1,𝑦 ∈ 𝑉2
together with a bijection 𝜑𝑥𝑦 between their incident edges, their join along 𝜑𝑥𝑦 is
the graph𝐺 = (𝑉 , 𝐸), where𝑉 = 𝑉1 ∪𝑉2 \ {𝑥,𝑦} and 𝐸 contains all edges of 𝐸1 ∪ 𝐸2
that are not incident to 𝑥 or 𝑦. Furthermore, for each edge 𝑒 = 𝑢𝑥 ∈ 𝐸1 incident to
𝑥 , the set 𝐸 contains an edge 𝑢𝑣, where 𝑣 is the endpoint of 𝜑𝑥𝑦 (𝑒) distinct from 𝑦;
see Figure 6.1. Observe that split and join are inverse operations.
We say that a planar embedding E of a graph 𝐺 respects a cut 𝐶 = (𝑋,𝑌) if and

only if for a topological planar drawing 𝛤 of 𝐺 with embedding E there exists a
closed curve 𝛾 such that (i) 𝛾 separates 𝑋 from 𝑌 , (ii) 𝛾 crosses each edge in 𝐸 (𝐶)
in exactly one point, and (iii) 𝛾 does not cross any edge in 𝐸 \ 𝐸 (𝐶); see Figure 6.1.
We say that 𝛾 represents 𝐶 in 𝛤 .

If E respects𝐶 , a split of𝐺 at𝐶 preserves E as follows. Let𝐺1 and𝐺2 be the graphs
resulting from splitting 𝐺 at 𝐶 and let 𝑥 ∈ 𝑉1 and 𝑦 ∈ 𝑉2 be such that 𝜑𝑥𝑦 identifies
their incident edges. Let 𝛤 be a topological planar drawing with embedding E and
let 𝛾 be a curve in 𝛤 that represents𝐶 in 𝛤 . We obtain a planar drawing 𝛤1 of𝐺1 by

62

The Synchronized Planarity Problem Section 6.3

x y
V2V1

V
join

split
XY

γ

Figure 6.1: Joining and splitting two graphs at 𝑥 ∈ 𝑉1 and 𝑦 ∈ 𝑉2. The bijection 𝜑𝑥𝑦
between their incident edges is shown as follows: the two bold edges at the bottom are
mapped to each other. The other edges are mapped according to their order following the
arrow upwards (i.e. clockwise for 𝑥 and counter-clockwise for 𝑦).

contracting to a single point the side of 𝛾 that contains 𝑉2, that is, by removing 𝑉2
and connecting the resulting half-edges to a new vertex in place of 𝑉2. Similarly, a
planar drawing 𝛤2 of𝐺2 is obtained by contracting the𝑉1-side of 𝛾 to a single point.
We denote by E1 and E2 the corresponding combinatorial embeddings of𝐺1 and𝐺2.
Note that by construction for each vertex of 𝑉1 \ {𝑥} the rotations in E and E1
coincide, and the same holds for vertices of 𝑉2 \ {𝑦} in E and E2. Moreover, the
rotations E1(𝑥) and E2(𝑦) are determined by the order in which the edges of 𝐸 (𝐶)
cross 𝛾 , and therefore they are oppositely oriented, that is, 𝜑𝑥𝑦 (E1(𝑥)) = E2(𝑦). We
call embeddings E1 and E2 with this property compatible with 𝜑𝑥𝑦 .
Conversely, we can join arbitrary embeddings E1 of 𝐺1 and E2 of 𝐺2 that are

compatible with 𝜑𝑥𝑦 by assuming that 𝑥 and 𝑦 lie on the outer face, removing 𝑥

and 𝑦 from the embeddings, and connecting the resulting half-edges according
to 𝜑𝑥𝑦 . The result is a planar embedding E where for each vertex 𝑣 ∈ 𝑉𝑖 \ {𝑥,𝑦} we
have E(𝑣) = E𝑖 (𝑣) for 𝑖 = 1, 2.

▶ Lemma 6.1. Let 𝐺 = (𝑉 , 𝐸) be a planar graph and let (𝑋,𝑌) be a cut of 𝐺 such
that 𝑋 and 𝑌 induce connected subgraphs of𝐺 . Then every planar embedding of𝐺
respects (𝑋,𝑌). ◀

Proof. Let E be a planar embedding of𝐺 . Since𝑋 and𝑌 induce connected subgraphs,
it follows that no proper subset of 𝐸 (𝑋,𝑌) is a cut. Therefore, (𝑋,𝑌) corresponds
to a simple cycle 𝐶★ in the dual graph 𝐺★ with respect to E [Die17, Proposition
4.6.1], which in turn implies that E respects (𝑋,𝑌). ■

▶ Lemma 6.2. Every planar embedding of a bipartite graph 𝐺 = (𝐴 ∪ 𝐵, 𝐸)
respects (𝐴, 𝐵). ◀

Proof. Let E be a planar embedding of 𝐺 . By [DLR90, Lemmas 3–5] we can aug-
ment 𝐺 and its embedding E by additional edges in

(︁𝐴
2
)︁
∪

(︁𝐵
2
)︁
to a graph 𝐺′ with

planar embedding E′ such that 𝐴 and 𝐵 induce connected subgraphs. The fact
that E respects the cut (𝐴, 𝐵) then follows from Lemma 6.1. ■

63

Chapter 6 Synchronized Planarity

6.3.2 High-Level Algorithm

We give an algorithm for solving Synchronized Planarity for graphs with 𝑛

vertices and𝑚 edges in 𝑂 (𝑚2) time. Without loss of generality, we assume that
𝐺 has no isolated vertices and thus𝑚 ∈ 𝛺 (𝑛). Furthermore, we assume the input
graph𝐺 to be planar. Our approach hinges on three main ingredients. The first are
the three operations EncapsulateAndJoin, PropagatePQ, and SimplifyMatch-
ing, each of which can be applied to pipes that satisfy certain conditions. If an
operation is applicable, it produces an equivalent instance 𝐼 ′ of Synchronized
Planarity in linear time. Secondly we show that if none of the operations is
applicable, then 𝐼 has no pipes, and we give a simple linear-time algorithm for
computing a valid embedding in this case. The third ingredient is a non-negative
potential function 𝜙 for instances of Synchronized Planarity. We show that it
is upper-bounded by 2𝑚, and that each of the three operations decreases it by at
least 1.

Our algorithm is therefore extremely simple; namely, while the instance still has
a pipe, apply one of the operations to decrease the potential. Since the potential
function is initially bounded by 2𝑚, at most 2𝑚 operations are applied, each taking
𝑂 (𝑚) time. We will show that the resulting instance without pipes has size 𝑂 (𝑚2)
and can be solved in linear time, thus the total running time is 𝑂 (𝑚2).

Conversion of small-degree P-vertices

The main difficulty in Synchronized Planarity stems from matched P-vertices.
However, P-vertices of degree up to 3 behave like Q-vertices in the sense that their
rotations are unique up to reversal. Throughout this chapter, we implicitly assume
that P-vertices of degree less than 4 are converted into Q-vertices, also converting a
pipe of degree less than 4 into a Q-constraint with the auxiliary operation Convert-
Small described in the following. We therefore assume without loss of generality
that P-vertices, and in particular pipes, have degree at least 4.

Vertices of degree 3 have only two distinct rotations, which are the reverse of each
other. Vertices of degree less than 3 have a unique rotation, which coincides with
its reverse. We thus define operation ConvertSmall(𝑢, 𝐼) to convert a P-vertex
𝑢 with deg(𝑢) < 4 into a Q-vertex, resulting in an instance 𝐼 ′ = (𝐺′,P′,Q′,𝜓 ′)
where 𝐺′ = (𝑃 ′ ∪ 𝑄′, 𝐸). If 𝑢 is unmatched, we set 𝑃 ′ = 𝑃 \ {𝑢}, P′ = P, and
𝑄′ = 𝑄 ∪ {𝑢} and give 𝑢 it its own cell in Q′ = Q ∪ {{𝑢}}. We fix an arbitrary
order 𝜓 ′(𝑢) and let 𝜓 ′ coincide with 𝜓 for all other vertices. If the P-vertex 𝑢 is
matched with another P-vertex 𝑣, we can convert both of them to Q-vertices setting
𝑃 ′ = 𝑃 \ {𝑢, 𝑣}, 𝑄′ = 𝑄 ∪{𝑢, 𝑣}, and P′ = P \ {(𝑢, 𝑣, 𝜑𝑢𝑣)}. We also put both together

64

The Synchronized Planarity Problem Section 6.3

in a cell in Q′ = Q ∪ {{𝑢, 𝑣}}, again setting𝜓 ′(𝑢) as before, but now also defining
𝜓 ′(𝑣) = 𝜑𝑢𝑣 (𝜓 ′(𝑢)). Note that this enforces that matched vertices 𝑢 and 𝑣 have
opposite rotations under the bijection 𝜑𝑢𝑣 . All other P-vertices and their pipes
remain unaffected. Previous Q-vertices already in 𝑄 are also unaffected.

▶ Lemma 6.3. Applying ConvertSmall to a P-vertex 𝑢 with deg(𝑢) < 4 yields
an equivalent instance in constant time. ◀

Proof. We first show that the conversion preserves a valid embedding E of 𝐼 . It
is E(𝑢) = 𝜓 ′(𝑢) or E(𝑢) = 𝜓 ′(𝑢). If 𝑢 is unmatched, it is the only Q-vertex in its
cell and thus E also satisfies the Q-constraints of 𝐼 ′. Otherwise, 𝑢 is matched with
P-vertex 𝑣 and as E satisfies the pipe 𝑢𝑣 it is 𝜑𝑢𝑣 (E(𝑢)) = E(𝑣). If E(𝑢) = 𝜓 ′(𝑢), we
get𝜓 ′(𝑣) = 𝜑𝑢𝑣 (𝜓 ′(𝑢)) = 𝜑𝑢𝑣 (E(𝑢)) = E(𝑣), satisfying the new Q-constraint. The
case of E(𝑢) = 𝜓 ′(𝑢) follows analogously. As the underlying graph and all other
pipes remain unchanged, E is valid embedding of 𝐼 ′.
Conversely, assume that E′ is a valid embedding for 𝐼 ′. If 𝑢 is the sole vertex in

its cell, converting 𝑢 to a P-vertex will not affect the validity of the embedding (and
also not allow new embeddings as deg(𝑢) < 4). If 𝑢 shares its cell with vertex 𝑣, it
is either E′(𝑢) = 𝜓 ′(𝑢) and E′(𝑣) = 𝜓 ′(𝑣) or it is E′(𝑢) = 𝜓 ′(𝑢) and E′(𝑣) = 𝜓 ′(𝑣).
Inserting𝜓 ′(𝑣) = 𝜑𝑢𝑣 (𝜓 ′(𝑢)) as chosen shows the constraint 𝜑𝑢𝑣 (E(𝑢)) = E(𝑣) of
pipe𝑢𝑣 is satisfied. Since the underlying graph, all other pipes, and all Q-constraints
remain unchanged, E′ is valid embedding of 𝐼 .
This concludes the proof of correctness of ConvertSmall. As all affected vertices

have degree at most 3, the time required to execute the operation is constant. ■

6.3.3 The EncapsulateAndJoin Operation
The purpose of the EncapsulateAndJoin operation is to communicate embedding
restrictions between two cut-vertices matched with each other in two steps: First
we encapsulate the cut-vertices into their own independent star components, also
disconnecting their incident blocks from each other. In the second step, we join the
stars. Figures 6.2 and 6.3 show an example.

For an instance 𝐼 = (𝐺,P,Q,𝜓) of Synchronized Planarity, let 𝜌 = (𝑢, 𝑣, 𝜑𝑢𝑣)
be a pipe matching two cut-vertices 𝑢, 𝑣 of two (not necessarily distinct) connected
components 𝐶𝑢,𝐶𝑣 of 𝐺 . Operation EncapsulateAndJoin(𝜌, 𝐼) can be applied
resulting in an instance 𝐼 ′ = (𝐺′,P′,Q′,𝜓 ′) using the following two steps. We
first preprocess both cut-vertices to encapsulate them into their own separate star
components. Let𝐶1, . . . ,𝐶𝑘 be the connected components of𝐶𝑢−𝑢. We split𝐶𝑢 along
the cuts (𝑉 (𝐶𝑖),𝑉 \𝑉 (𝐶𝑖)) for 𝑖 = 1, . . . , 𝑘 . We denote the vertices resulting from the

65

Chapter 6 Synchronized Planarity

C1

C2C3

C4

u

(a)

u4
u′
4

u′
3

u3

u

C3

C4

u′
2

u2
C2

u′
1

u1
C1

(b)

Figure 6.2: A matched cut-vertex (a) and the result of encapsulating it (b).

(a) (b) (c)

Figure 6.3: Two (encapsulated) matched cut-vertices (a). Depending on the mapping 𝜑 ,
any bipartite graph can result from joining them. For example, the graph in (b) can result,
which is isomorphic to the square grid graph shown in (c).

split along (𝑉 (𝐶𝑖),𝑉 \𝑉 (𝐶𝑖)) as𝑢𝑖 and𝑢′𝑖 , where𝑢𝑖 results from contracting𝑉 \𝑉 (𝐶𝑖)
and 𝑢′𝑖 results from contracting 𝑉 (𝐶𝑖). Note that, after all splits, 𝑢 is the center of a
star 𝐶′𝑢 with ray vertices 𝑢′1, . . . , 𝑢′𝑘 . We add the pipes (𝑢𝑖, 𝑢′𝑖 , 𝜑𝑢𝑖𝑢′𝑖) for 𝑖 = 1, . . . , 𝑘 ;
see Figure 6.2. The same procedure is also applied to 𝑣, resulting in an intermediate
instance 𝐼 ∗. In the second step, we join the distinct connected components𝐶′𝑢 and𝐶′𝑣
at 𝑢 and 𝑣 along the mapping 𝜑𝑢𝑣 of 𝜌 into a component 𝐶𝑢𝑣 . We also remove the
pipe 𝜌 from 𝐼 ∗; all other parts of the instance remain unchanged. Figure 6.3 shows
a possible result of joining two stars.

▶ Lemma 6.4. Applying EncapsulateAndJoin to a pipe 𝜌 yields an equivalent
instance in 𝑂 (deg(𝜌)) time. ◀

Proof. We will first show that the first step yields an equivalent intermediate
instance 𝐼 ∗. By Lemma 6.1, a valid embedding of 𝐶𝑢 respects each of the cuts
(𝑉 (𝐶𝑖),𝑉 \𝑉 (𝐶𝑖)) for 𝑖 = 1, . . . , 𝑘 , yielding a planar embedding for 𝐶′𝑢 . The same
holds for 𝐶𝑣 and 𝐶′𝑣 . As all other connected components remain unaffected, we
can thus obtain a planar embedding E∗ of 𝐼 ∗ from a valid embedding E of the
corresponding instance 𝐼 . By construction, it is E∗(𝑢𝑖) = E∗(𝑢′𝑖) for 𝑖 = 1, . . . , 𝑘 ,
that is, each new pipe (𝑢𝑖, 𝑢′𝑖 , 𝜑𝑢𝑖𝑢′𝑖) is satisfied and E∗ is a valid embedding of 𝐼 ∗.

66

The Synchronized Planarity Problem Section 6.3

Conversely, if E∗ is a valid embedding of 𝐼 ∗, we can join 𝑢𝑖 with 𝑢′𝑖 for 𝑖 = 1, . . . , 𝑘
to obtain a valid planar embedding E of 𝐼 , as the pipe (𝑢𝑖, 𝑢′𝑖 , 𝜑𝑢𝑖𝑢′𝑖) ensures that E

∗

is compatible with 𝜑𝑢𝑖𝑢′𝑖 . The same applies to 𝐶𝑣 .
Now consider the instance 𝐼 ′ resulting from the second step. If E∗ is a valid

embedding for 𝐼 ∗, it satisfies the pipe (𝑢, 𝑣, 𝜑𝑢𝑣) and we can join the embedding at 𝑢
and 𝑣 via 𝜑𝑢𝑣 to obtain a planar embedding E′ of 𝐺′. Since the rotations of vertices
different from 𝑢, 𝑣 are unaffected, E′ is valid for 𝐼 ′. Conversely, assume that E′ is a
valid embedding for 𝐼 ′. Note that joining two stars at their centers yields a bipartite
graph consisting of the ray vertices of the former stars. Thus 𝐶𝑢𝑣 is bipartite, and
by Lemma 6.2 every embedding respects the cut of the bipartition. Thus, we can
split E′ and obtain a valid embedding of 𝐼 ∗.
As the operation affects exactly the edges incident to 𝑢 and 𝑣 and potentially

creates a new structure with size proportional to their number, its running time is
linear in the degree of the affected pipe. ■

Observe that this operation replaces a pipe by multiple pipes of smaller degrees.
Furthermore, all new pipes introduced by the operation have a block-vertex as
endpoint. Through multiple applications of EncapsulateAndJoin we can thus
remove all cut-vertex-to-cut-vertex pipes. Note that EncapsulateAndJoin can
yield an arbitrary bipartite component. If the component is non-planar, we abort
and report a no-instance in our algorithm.

6.3.4 The PropagatePQ Operation
The operation PropagatePQ communicates embedding restrictions of a block
across a pipe. These restrictions are represented by the embedding tree of the
matched P-vertex of interest. Both endpoints of the pipe are replaced by copies
of this tree. To ensure that both copies are embedded in a compatible way, we
synchronize their inner nodes using pipes and Q-constraints; see Figure 6.4.
For an instance 𝐼 = (𝐺,P,Q,𝜓) of Synchronized Planarity, let 𝑢 be a block-

vertex matched by a pipe 𝜌 = (𝑢, 𝑣, 𝜑𝑢𝑣). Operation PropagatePQ(𝑢, 𝐼) can be
applied as follows, resulting in an instance 𝐼 ′ = (𝐺′,P′,Q′,𝜓 ′). We turn the PQ-tree
T𝑢 into a tree 𝑇𝑢 by interpreting Q-nodes as Q-vertices and P-nodes as P-vertices.
To construct 𝐺′ from 𝐺 , we replace 𝑢 with 𝑇𝑢 by reconnecting the incident edges
of 𝑢 to the respective leaves of 𝑇𝑢 . We also replace 𝑣 by a second copy 𝑇 ′𝑢 of 𝑇𝑢 by
reconnecting an edge 𝑒 incident to 𝑣 to the leaf of𝑇 ′𝑢 that corresponds to 𝜑𝑣𝑢 (𝑒). For
a vertex 𝛼 of𝑇𝑢 we denote the corresponding vertex of𝑇 ′𝑢 by 𝛼′. For an edge 𝛼𝛽 of𝑇𝑢
we define 𝜑𝑇𝑢𝑇 ′𝑢 (𝛼𝛽) = 𝛼′𝛽′. For each Q-vertex 𝛼 of𝑇𝑢 , we define𝜓 ′(𝛼) according to
the rotation of the corresponding Q-node in T𝑢 . For the Q-vertex 𝛼′ of𝑇 ′𝑢 , we define

67

Chapter 6 Synchronized Planarity

u v

ρ

(a)

Tu Tu T ′
u

α

β
γ

ϵ

δ

α

β
γ

ϵ

δ
α′

β′
γ′

ϵ′

δ′

(b)

Figure 6.4:A block-vertex𝑢 matched with vertex 𝑣 (a); the bijection 𝜑𝑢𝑣 maps the bold edge
of𝑢 to the bold edge of 𝑣, the remaining edges aremapped according to their order, clockwise
around 𝑢 and counter-clockwise around 𝑣. The result of applying PropagatePQ(𝑢, 𝐼) (b).
Note that the second inserted tree 𝑇 ′𝑢 is mirrored with respect to 𝑇𝑢 . Q-vertices and -nodes
are drawn as squares while P-vertices and -nodes are drawn as disks.

𝜓 ′(𝛼′) = 𝜑𝑇𝑢𝑇 ′𝑢 (𝜓 ′(𝛼)). For all other Q-vertices of 𝐼 ,𝜓 ′ coincides with𝜓 . We define
the partition Q′ = Q ∪ {{𝛼, 𝛼′} | 𝛼 is a Q-vertex of 𝑇𝑢}. For each P-vertex 𝛼 of 𝑇𝑢 ,
we define a pipe 𝜌𝛼 = (𝛼, 𝛼′, 𝜑𝛼𝛼 ′) with 𝜑𝛼𝛼 ′ (𝑒) = 𝜑𝑇𝑢𝑇 ′𝑢 (𝑒) for each edge 𝑒 incident
to 𝛼 . Finally, we define the matching P′ = (P \ {𝜌}) ∪ {𝜌𝛼 | 𝛼 is a P-vertex of 𝑇𝑢}.

▶ Lemma 6.5. Applying PropagatePQ to a block-vertex 𝑢 yields an equivalent
instance. If the embedding tree T𝑢 is known, operation PropagatePQ runs in
𝑂 (deg(𝑢)) time. ◀

Proof. First we show that PropagatePQ preserves a valid embedding E of 𝐼 . To
define an embedding E′ for 𝐼 ′, we substitute 𝑢 and 𝑣 in E by suitably embedded
trees 𝑇𝑢 and 𝑇 ′𝑢 . The tree inserted at 𝑢 represents all the possible rotations of 𝑢,
including E(𝑢) and the insertion can therefore be done without introducing cross-
ings. As E fulfills the P-constraint of the pipe 𝑢𝑣, we know that E(𝑢) = 𝜑𝑣𝑢 (E(𝑣)).
Therefore, the same holds for inserting the mirrored copy 𝑇 ′𝑢 of 𝑇𝑢 instead of 𝑣.
Thus, the resulting embedding E′ is planar. Note that the mirror embedding of 𝑇𝑢
is obtained by reversing the rotation of each inner vertex of 𝑇𝑢 . Therefore, for each
inner vertex 𝛼 of 𝑇𝑢 it holds that E′(𝛼) = 𝜑𝛼 ′𝛼 (E′(𝛼′)). Thus, all the new pipes are
satisfied. Similarly, for each inner Q-vertex 𝛼 of𝑇𝑢 the rotation in E′ is either𝜓 ′(𝛼)
or𝜓 ′(𝛼). As the rotation of 𝛼′ in E′ is mirrored, the new Q-constraints are satisfied.
Since all other P- and Q-constraints remain satisfied, E′ is a valid embedding for 𝐼 ′.

Conversely, assume that E′ is a valid embedding for 𝐼 ′. We obtain an embedding E
of 𝐼 by contracting 𝑇𝑢 and 𝑇𝑣 into single vertices 𝑢 and 𝑣, respectively. Clearly, E is
a planar embedding. All Q-constraints of 𝐼 and also all pipes except for 𝜌 remain
satisfied. It remains to show that also pipe 𝜌 is satisfied. For each vertex 𝛼 of 𝑇𝑢

68

The Synchronized Planarity Problem Section 6.3

it holds that E′(𝛼) = 𝜑𝛼 ′𝛼 (E′(𝛼′)), as E′ in particular fulfills all new Q- and P-
constraints of 𝐼 ′. Therefore, the cyclic order of the leaves of 𝑇𝑢 is the reverse of the
order of the leaves of 𝑇 ′𝑢 . This means that E(𝑢) = 𝜑𝑣𝑢 (E(𝑣)), that is, 𝜌 is satisfied.
This concludes the proof of correctness of PropagatePQ. Note that the opera-

tion affects exactly the edges incident to 𝑢 and 𝑣 and that the size of an embedding
tree is linear in the degree of the represented vertex. Thus, the running time of the
operation is linear in the degree of the affected vertices, given that the embedding
tree T𝑢 is known. ■

Note that the tree𝑇 ′𝑢 inserted instead of 𝑣may not be compatible with the rotations
of 𝑣. In this case, the component becomes non-planar, potentially causing the later
generation of an embedding tree to fail. To detect this early, we can also compute
the embedding tree T𝑣 of 𝑣 and intersect T𝑢 with T𝑣 in linear time [Boo75; Pfr20]
before the insertion. The effect this has on the practical running time is discussed in
Section 9.3.2. Either way, if the generation of an embedding tree or the intersection
of two embedding trees fails, we can immediately report a no-instance.

Note that if T𝑢 is trivial, applying PropagatePQ yields an unchanged instance.
To make progress in this case, we instead use the operation SimplifyMatching
described in the following section. Further observe that if T𝑢 consists of a single
Q-node, PropagatePQ effectively replaces the affected pipe by two Q-vertices in
the same partition cell. Assuming T𝑢 to be non-trivial, the degrees of all P-vertices
in 𝑇𝑢 and 𝑇 ′𝑢 are strictly smaller than the degree of 𝑢. Thus, by repeatedly applying
PropagatePQ to vertices with non-trivial embedding tree, we eventually arrive at
an equivalent instance where all matched block-vertices have a trivial embedding
tree.

6.3.5 The SimplifyMatching Operation

The remaining operation is SimplifyMatching, which is used to resolve pipes
where one side has no restrictions to be communicated to the other side. This is the
case when one of the two matched vertices is a pole of a bond that allows arbitrary
rotation. We distinguish three cases: (i) bonds where one pole can always mimic
the rotation of the other, (ii) bonds where the pipe synchronizes one pole with the
other (similar to the toroidal instances of Fulek and Tóth [FT22]), and (iii) bonds
that link two distinct pipes.
For an instance 𝐼 = (𝐺,P,Q,𝜓) of Synchronized Planarity, let 𝑢 be a block-

vertex of 𝐺 whose embedding tree is trivial and that is matched by a pipe 𝜌 . Then,
its embedding is determined by exactly one triconnected component 𝜇, which

69

Chapter 6 Synchronized Planarity

is a bond.5 Thus 𝑢 is the pole of bond 𝜇, and we call the vertex 𝑣 that is the
other pole of 𝜇 the partner of 𝑢. If 𝑣 is unmatched or a block-vertex with a trivial
embedding tree, the operation SimplifyMatching(𝑢, 𝐼) can be applied, resulting
in an instance 𝐼 ′ = (𝐺′,P′,Q′,𝜓 ′) as follows. Note that, if the embedding tree of 𝑣
is trivial, the rotation of both vertices is exclusively determined by the embedding
of their bond 𝜇. Thus, there are bijections 𝛿𝑢 and 𝛿𝑣 between the edges incident
to 𝑢 and 𝑣, respectively, and the virtual edges within the bond. Thereby 𝜇 induces a
bijection 𝛿𝑣𝑢 = 𝛿−1𝑢 ◦ 𝛿𝑣 (and conversely 𝛿𝑢𝑣 = 𝛿−1𝑣𝑢) between the edges incident to 𝑣
and the edges incident to 𝑢 in this case. Further note that, due to the temporary
replacement of Q-vertices by wheels when computing the embedding trees, 𝑣 cannot
be a Q-vertex, as that would make the PQ-tree of 𝑢 contain a Q-node.

(i) If 𝑣 is an unmatched P-vertex (Figure 6.5 (i)), 𝐼 ′ is obtained from 𝐼 by remov-
ing 𝜌 .

(ii) If 𝜌 matches 𝑢 with 𝑣, it connects the two poles of the bond 𝜇 (Figure 6.5
(ii)). Note that, as 𝑣 is matched, it must have a trivial embedding tree for
SimplifyMatching to be applicable. We now check that the bijection 𝛿𝑣𝑢
induced by 𝜇 is compatible with the bijection 𝜑𝑢𝑣 given by the pipe. Let
𝜋 = 𝜑𝑢𝑣 ◦ 𝛿𝑣𝑢 be a permutation of the edges incident to 𝑣. If all cycles of 𝜋 ,
that is the sequences obtained by repeatedly applying 𝜋 to an element until
reaching the initial element again, have the same length, 𝐼 ′ is obtained from
𝐼 by removing 𝜌 .6 Otherwise, 𝐼 is a negative instance and we set 𝐼 ′ to a trivial
no-instance.

(iii) If 𝑣 is matched with a P-vertex 𝑣′ ≠ 𝑢 via pipe 𝜌′ = (𝑣, 𝑣′, 𝜑𝑣𝑣′), let 𝑢′ be
the other endpoint of 𝜌 = (𝑢,𝑢′, 𝜑𝑢𝑢′). Again, as 𝑣 is matched, it must have
trivial embedding tree for SimplifyMatching to be applicable. Note that, as
𝑢 and 𝑣 are partners with trivial embedding trees, they must have the same
degree. We remove 𝜌 and 𝜌′ and add the new pipe 𝜌∗ = (𝑢′, 𝑣′, 𝜑𝑢′𝑣′) with
𝜑𝑢′𝑣′ = 𝜑𝑣𝑣′ ◦ 𝛿𝑢𝑣 ◦ 𝜑𝑢′𝑢 ; see Figure 6.5 (iii).

▶ Lemma 6.6. Applying SimplifyMatching to a block-vertex 𝑢 with a trivial
embedding tree yields an equivalent instance in 𝑂 (deg(𝑢)) time. ◀

5 This is because a second bond would cause another P-node in the embedding tree, a rigid would
cause a Q-node and polygons do not affect the embedding trees [BR16b, Section 2.5].

6 If all cycles of 𝜋 have the same length, 𝜋 is order preserving and it is 𝜋 (𝑂) = 𝑂 for any cyclic
order 𝑂 ; see [BR16b, Lemma 2.2].

70

The Synchronized Planarity Problem Section 6.3

u v
ρ

(i)

ρ

u v

(ii)

ρ ρ′

ρ∗

u vu′ v′

(iii)

Figure 6.5: The three cases of the SimplifyMatching operation. In case (i) and case (ii), the
pipe 𝜌 is removed. In case (iii) the pipes 𝜌, 𝜌 ′ are replaced by pipe 𝜌★.

Proof. First we show that if E is a valid embedding of 𝐼 , then it is also a valid
embedding of 𝐼 ′. This clearly holds in case (i), where 𝐼 ′ is simply obtained from 𝐼

by removing a pipe.
It remains to investigate case (ii) and case (iii). In the latter case, let 𝑢′ be the

vertex to which 𝑢 is matched and let 𝑣′ ≠ 𝑢 be the vertex to which 𝑣 is matched.
We want to show that E satisfies the constraint E(𝑣′) = 𝜑𝑢′𝑣′ (E(𝑢′)) of the newly
added pipe 𝜌∗ = (𝑢′, 𝑣′, 𝜑𝑢′𝑣′), where we chose 𝜑𝑢′𝑣′ = 𝜑𝑣𝑣′ ◦𝛿𝑢𝑣 ◦𝜑𝑢′𝑢 . By assumption
the pipes 𝜌, 𝜌′ are satisfied by E, that is E(𝑢) = 𝜑𝑢′𝑢 (E(𝑢′)) and E(𝑣′) = 𝜑𝑣𝑣′ (E(𝑣)).
Moreover, as both 𝑢 and 𝑣 have a trivial embedding tree, the bijections 𝛿𝑢, 𝛿𝑣 are
defined as before. Thus 𝛿𝑢 (E(𝑢)) and 𝛿𝑣 (E(𝑣)) define cyclic orders of the virtual
edges of 𝜇. Since the embedding is planar, 𝛿𝑢 (E(𝑢)) = 𝛿𝑣 (E(𝑣)). This yields
E(𝑣) = 𝛿𝑢𝑣 (E(𝑢)) and thus

E(𝑣′) = 𝜑𝑣𝑣′ (E(𝑣)) = 𝜑𝑣𝑣′ (𝛿𝑢𝑣 (E(𝑢))) = 𝜑𝑣𝑣′ (𝛿𝑢𝑣 (E(𝑢)))
= 𝜑𝑣𝑣′ (𝛿𝑢𝑣 (𝜑𝑢′𝑢 (E(𝑢′)))) = 𝜑𝑣𝑣′ ◦ 𝛿𝑢𝑣 ◦ 𝜑𝑢′𝑢 (E(𝑢′)) = 𝜑𝑢′𝑣′ (E(𝑢′)) .

In particular, this means that 𝜌∗ is satisfied and therefore E is valid.
In case (ii), we consider the permutation 𝜋 = 𝜑𝑢𝑣 ◦ 𝛿𝑣𝑢 . Analogously to E(𝑣) =

𝛿𝑢𝑣 (E(𝑢)), it is E(𝑢) = 𝛿𝑣𝑢 (E(𝑣)), and since E satisfies 𝜌 , we find that 𝜋 (E(𝑣)) =
𝜑𝑢𝑣 ◦ 𝛿𝑣𝑢 (E(𝑣)) = 𝜑𝑢𝑣 (E(𝑢)) = E(𝑣). All cycles of 𝜋 have the same length [BR16b,
Lemma 2.2] and therefore 𝐼 ′ is obtained from 𝐼 by removing 𝜌 and, in particular, E
is a valid embedding of 𝐼 ′.

Conversely, assume that E′ is a valid embedding for 𝐼 ′. To obtain a valid embed-
ding E of 𝐼 , we modify the embedding E′ by changing the order of the virtual edges
of the bond 𝜇 with poles 𝑢 and 𝑣 in such a way that the removed pipes are satisfied.
Since, compared to E′, we only change the embedding of a bond, E is guaranteed
to be planar. The details depend on which case of the operation applies.

If 𝑣 is unmatched in 𝐼 , we change the embedding of 𝜇 such that E(𝑢) = 𝜑𝑢′𝑢 (E(𝑢′)).
This is possible since there is a bijection between the edges incident to 𝑢 and the
virtual edges of 𝜇. The new embedding E satisfies 𝜌 and, since 𝑣 is unmatched, also
all other pipes of 𝐼 remain satisfied.

71

Chapter 6 Synchronized Planarity

In case (ii), 𝑣 is matched with 𝑢 and we consider the above permutation 𝜋 .
As E′ is a valid embedding, 𝐼 ′ results from 𝐼 by removing 𝜌 and we know that
all cycles of 𝜋 have the same length. There exists a cyclic order 𝜎 of the edges
incident to 𝑣 with 𝜋 (𝜎) = 𝜎 [BR16b, Lemma 2.2]. We change the embedding of 𝜇
such that E(𝑣) = 𝜎 and, to retain planarity, E(𝑢) = 𝛿𝑣𝑢 (E(𝑣)). This satisfies 𝜌
as 𝜑𝑢𝑣 (E(𝑢)) = 𝜑𝑢𝑣 (𝛿𝑣𝑢 (E(𝑣))) = 𝜑𝑢𝑣 (𝛿𝑣𝑢 (E(𝑣))) = 𝜋 (E(𝑣)) = E(𝑣) and thus E
is valid.
In case (iii), 𝑣 is matched with 𝑣′ ≠ 𝑢. We obtain E from E′ by setting E(𝑢) =

𝜑𝑢′𝑢 (E(𝑢′)) and E(𝑣) = 𝜑𝑣′𝑣 (E(𝑣′)). This satisfies 𝜌 and 𝜌′, and to verify the
planarity of E it suffices to show that E(𝑣) = 𝛿𝑢𝑣 (E(𝑢)). Since 𝜌∗ is satisfied by
E′ and E differs from E′ only at 𝑢 and 𝑣, we know that E(𝑣′) = 𝜑𝑢′𝑣′ (E(𝑢′)) =
𝜑𝑣𝑣′ ◦ 𝛿𝑢𝑣 ◦ 𝜑𝑢′𝑢 (E(𝑢′)). This is equivalent to 𝜑𝑣′𝑣 (E(𝑣′)) = 𝛿𝑢𝑣 (𝜑𝑢′𝑢 (E(𝑢′))). By
the definitions of E(𝑢) and E(𝑣), this yields E(𝑣) = 𝛿𝑢𝑣 (E(𝑢)), that is E is planar.
This concludes the proof of correctness of SimplifyMatching. The updates to

the matching P can be done in constant time, while the updates to the bijection 𝜑

and the check for cycle lengths require 𝑂 (deg(𝑢)) time. ■

6.3.6 Reduced and Pipe-Free Instances
With our exposition of the fundamental operations complete, we now study how
to solve instances where none of those operations can be applied. We call such
instances reduced.

▶ Lemma 6.7. An instance is reduced if and only if it contains no pipes. ◀

Proof. Obviously, a pipe-free instance is reduced. Conversely, consider a reduced
instance 𝐼 . Assume, for the sake of contradiction, that 𝐼 contains a pipe. We now
show that this implies that one of the operations is applicable, that is, 𝐼 is not
reduced.

First assume that 𝐼 contains no matched cut-vertices and thus all matched vertices
are block-vertices. If there is a matched P-vertex with a non-trivial embedding
tree, PropagatePQ can be applied. Otherwise, all matched P-vertices are block-
vertices with trivial embedding trees and SimplifyMatching can be applied. A
contradiction.
Second, let 𝑢 be a matched cut-vertex of maximum degree that is matched to a

vertex 𝑣 by a pipe 𝜌 . If 𝑣 is also a cut-vertex, we can apply EncapsulateAndJoin.
If 𝑣 is a block-vertex with a non-trivial embedding tree, we can applyPropagatePQ.
Therefore, 𝑣 must be a block-vertex with a trivial embedding tree. Nowwe can apply
SimplifyMatching unless the partner pole 𝑣′ of 𝑣 is matched and either a cut-vertex

72

The Synchronized Planarity Problem Section 6.3

or a block-vertex with a non-trivial embedding tree. If 𝑣′ is a matched block-vertex
with a non-trivial embedding tree, we can apply PropagatePQ. If 𝑣′ is a matched
cut-vertex we have deg(𝑢) = deg(𝑣) < deg(𝑣′), contradicting the maximality of
deg(𝑢). The last inequality follows from the fact that deg(𝑣) ≤ deg(𝑣′) already
holds in the block of𝐺 that contains 𝑣 and 𝑣′, but as 𝑣′ is a cut-vertex, it has at least
one neighbor outside that block. ■

To solve instances without pipes in linear time, note that a planar embedding of
such an instance is valid if and only if it satisfies the Q-constraints. As Q-vertices
only have a binary choice for their rotation, it is relatively easy to synchronize them
via a 2-SAT formula. Linear-time algorithms follow from, e.g., [BR16b], and can
also be obtained from techniques similar to those used by Fulek and Tóth [FT22] for
cubic graphs. For the sake of completeness, we present a self-contained solution.

▶ Lemma 6.8. An instance of Synchronized Planarity without pipes can be
solved in 𝑂 (𝑚) time. A valid embedding can be computed in the same time, if
it exists. ◀

Proof. We replace each Q-vertex by a wheel of the respective degree. Note that
each such wheel is triconnected and entirely contained in a single rigid tricon-
nected component. We now use the decomposition in triconnected components
to represent all possible planar embeddings. As the wheel-replacements yield an
instance that is linear in the size of the initial instance, this decomposition can be
done in 𝑂 (𝑚) time. If at least one of the rigids has no planar embedding, we abort
and report a non-planar instance. It remains to restrict the possible embeddings of
the rigids so that all Q-constraints are satisfied.
To do so, we construct an instance of 2-SAT, where each solution corresponds

to a planar embedding E that is a valid solution for 𝐼 . For every Q-vertex 𝑣 the
Boolean variable 𝑥𝑣 is true if the rotation of 𝑣 in E is equal to the default rotation
of 𝑣 (i.e. if E(𝑣) = 𝜓 (𝑣)) and false otherwise (i.e. if E(𝑣) = 𝜓 (𝑣)). Additionally, for
every Q-constraint cell𝑄 ∈ Q we add a boolean variable 𝑥𝑄 , and for every Q-vertex
𝑣 ∈ 𝑄 we add the constraint (𝑥𝑣 ∨¬𝑥𝑄) ∧ (¬𝑥𝑣 ∨𝑥𝑄). This ensures that the rotations
of the Q-vertices are consistent within their cell and thus satisfy the Q-constraints.
We still need to ensure that the 2-SAT instance allows only planar embeddings. For
each rigid 𝜇, we fix one of its two planar embeddings as its default embedding E𝜇
and add another boolean variable 𝑥𝜇 , indicating whether E𝜇 or E𝜇 shall be used
in E. Due to the wheel replacement, each Q-vertex 𝑣 is entirely contained in its
rigid 𝜇, which can be found in constant time using one of the incident edges. For
every Q-vertex 𝑣 we now add one of the following two constraints with regard to its

73

Chapter 6 Synchronized Planarity

rigid 𝜇: either 1) (𝑥𝑣∨¬𝑥𝜇)∧ (¬𝑥𝑣∨𝑥𝜇) if𝜓 (𝑣) = E𝜇 (𝑣), or 2) (𝑥𝑣∨𝑥𝜇)∧ (¬𝑥𝑣∨¬𝑥𝜇)
if𝜓 (𝑣) = E𝜇 (𝑣). This ensures that the rotation of every Q-vertex is consistent with
the planar embedding of its rigid.
In the resulting 2-SAT instance, we have a Boolean variable for each Q-vertex,

Q-constraint and rigid, and four constraints for each Q-vertex. The constructed
2-SAT formula thus has size 𝑂 (𝑚) and can be solved in linear time [APT79]. If it
has no solution, we report an invalid instance and abort. Otherwise, we can use 𝑥𝜇
to decide whether E𝜇 should be mirrored or not. Choosing any planar embedding
for each bond, i.e. a permutation of the parallel virtual edges between the two poles,
this yields a planar embedding E that is a valid solution for 𝐼 . ■

6.3.7 Finding a Reduced Instance
As mentioned above, we exhaustively apply the operations EncapsulateAndJoin,
PropagatePQ, and SimplifyMatching. We claim that this algorithm terminates
and yields a reduced instance after a linear number of steps. The key idea is that
the operations always make progress by either reducing the number of pipes, or
by splitting pipes into pipes of smaller degree. This suggests that, eventually, we
arrive at an instance without pipes. However, there are two caveats. First, the
encapsulation in the first step of EncapsulateAndJoin creates new pipes and
thus has the potential to undo progress. Second, the smaller pipes resulting from
splitting a pipe with PropagatePQ might cause further growth of the instance,
potentially causing a super-linear number of steps.

We resolve both issues by using a more fine-grained measure of progress in the
form of a potential function. To overcome the first issue, we show that for each
application of EncapsulateAndJoin, the progress that is undone in the first step
is outweighed by the progress made through the following join in the second step.
Similarly, for the second issue, we show that the sum of the parts is no bigger than
the whole when splitting pipes.
As P-vertices of degree 3 or less are converted to Q-vertices (see Section 6.3.2),

we use deg*(𝑢) = deg*(𝑣) = deg*(𝜌) = max{deg(𝑥) − 3, 0} to denote the number
of incident edges that keep a P-vertex 𝑢 (and also the other endpoint 𝑣 of its pipe
𝜌 = (𝑢, 𝑣, 𝜑𝑢𝑣)) from becoming converted to a Q-vertex. We also partition the set of
all pipes P into the two cells P𝐶𝐶 and P𝐵 = P \ P𝐶𝐶 , where P𝐶𝐶 contains all pipes
where both endpoints are cut-vertices. We define the potential of an instance 𝐼 as
𝛷 (𝐼) = ∑︁

𝜌∈P𝐵 deg*(𝜌) +
∑︁

𝜌∈P𝐶𝐶 (2 deg*(𝜌) − 1).
We show that the operations always decrease this potential. To analyze the

potential change of PropagatePQ and EncapsulateAndJoin, we need the fol-
lowing technical lemma for bounding the sum of the degrees of multiple smaller
pipes replacing a single bigger pipe.

74

The Synchronized Planarity Problem Section 6.3

▶ Lemma 6.9. Let 𝑘 ≥ 2, 𝑑1 ≥ 𝑑2 ≥ . . . ≥ 𝑑𝑘 ≥ 1 and 𝑐 ≥ 0 be integers. Let
𝑗 = |{𝑖 | 𝑑𝑖 ≥ 3}| and let ℓ = |{𝑖 | 𝑑𝑖 = 2}|. If 3 ≤ 𝑐 + ℓ + 2 𝑗 , then 𝑘 +∑︁𝑘

𝑖=1max{𝑑𝑖 −
3, 0} ≤ 𝑐 − 3 +∑︁𝑘

𝑖=1 𝑑𝑖 . If 4 ≤
∑︁𝑘

𝑖=1 𝑑𝑖 , then
∑︁𝑘

𝑖=1max{𝑑𝑖 − 3, 0} ≤ −4 +
∑︁𝑘

𝑖=1 𝑑𝑖 . ◀

Proof. Observe that the𝑑𝑖 are ordered non-increasing and thus𝑑𝑖 ≥ 3 for 𝑖 = 1, . . . , 𝑗
and 𝑑𝑖 < 3 for 𝑖 = 𝑗 + 1, . . . , 𝑘 . More specifically, it is 𝑑 𝑗+1, . . . , 𝑑 𝑗+ℓ = 2 and
𝑑 𝑗+ℓ+1, . . . , 𝑑𝑘 = 1. This yields

∑︁ 𝑗+ℓ
𝑖= 𝑗+1 𝑑𝑖 = 2 · ℓ and ∑︁𝑘

𝑖= 𝑗+ℓ+1 𝑑𝑖 = 𝑘 − ℓ − 𝑗 and we can
also avoid the “max” using

∑︁𝑘
𝑖=1max{𝑑𝑖 − 3, 0} =

∑︁ 𝑗

𝑖=1(𝑑𝑖 − 3) = −3 𝑗 +
∑︁ 𝑗

𝑖=1 𝑑𝑖 . We
now start at 3 ≤ 𝑐 + ℓ + 2 𝑗 , which can be rewritten as 𝑘 − 3 𝑗 ≤ 𝑐 − 3+ 2ℓ + (𝑘 − ℓ − 𝑗).
Adding

∑︁ 𝑗

𝑖=1 𝑑𝑖 on both sides and using the above observations yields

𝑘+
𝑘∑︁
𝑖=1

max{𝑑𝑖−3, 0} = 𝑘−3 𝑗+
𝑗∑︁

𝑖=1
𝑑𝑖 ≤ 𝑐−3+

𝑗+ℓ∑︁
𝑖= 𝑗+1

𝑑𝑖+
𝑘∑︁

𝑖= 𝑗+ℓ+1
𝑑𝑖+

𝑗∑︁
𝑖=1

𝑑𝑖 = 𝑐−3+
𝑘∑︁
𝑖=1

𝑑𝑖 .

Note that inserting 𝑐 = 𝑘 − 1 in the first formula yields the second formula. It
remains to show that in this case 3 ≤ 𝑐 + ℓ + 2 𝑗 or the equivalent 4 ≤ 𝑘 + ℓ + 2 𝑗
follow from 4 ≤ ∑︁𝑘

𝑖=1 𝑑𝑖 . If 𝑘 ≥ 4, the inequality obviously always holds. If 𝑘 = 3, it
must be 𝑗 ≥ 1 or ℓ ≥ 1 as the sum is at least 4. If 𝑘 = 2, it must be 𝑗 ≥ 1 or ℓ ≥ 2 as
the sum is at least 4. ■

▶ Lemma 6.10. For an instance 𝐼 = (𝐺,P,Q,𝜓) of Synchronized Planarity
and an instance 𝐼 ′ = (𝐺′,P′,Q′,𝜓 ′) that results from application of either Encap-
sulateAndJoin, PropagatePQ or SimplifyMatching to 𝐼 , the following three
properties hold:

(i) The potential reduction 𝛥𝛷 = 𝛷 (𝐼) −𝛷 (𝐼 ′) is at least 1.

(ii) The number of nodes added to the graph satisfies 𝛥𝑉 = |𝑉 (𝐺′) | − |𝑉 (𝐺) | ≤
2 · 𝛥𝛷 + 12.

(iii) If the operation replaces a connected component 𝐶 by one or multiple
connected components, then each such component 𝐶′ satisfies 𝛥𝐸 (𝐶) =

|𝐸 (𝐶′) | − |𝐸 (𝐶) | ≤ 2 · 𝛥𝛷 . ◀

Proof. We analyze the effects of EncapsulateAndJoin, PropagatePQ, and Sim-
plifyMatching on the measures 𝛥𝛷 , 𝛥𝑉 and 𝛥𝐸 (𝐶) and show that the found
changes satisfy the claimed bounds.
Operation EncapsulateAndJoin(𝜌, 𝐼) in the first step encapsulates both cut-

vertices 𝑢, 𝑣 into their own star components. For each block incident to 𝑢, this
introduces two new vertices that are connected by a new pipe. Let 𝑑1 ≥ 𝑑2 ≥ . . . ≥

75

Chapter 6 Synchronized Planarity

𝑑𝑘−1 ≥ 𝑑𝑘 ≥ 1 be the degrees of the 𝑘 ≥ 2 ray vertices of 𝑢 after the encapsulation.
As one end of the added pipes is a block-vertex, the potential is increased by∑︁𝑘

𝑖=1max{𝑑𝑖 − 3, 0}. The ray vertices around 𝑣 increase the potential and number
of vertices likewise, where 𝑑′1 ≥ 𝑑′2 ≥ . . . ≥ 𝑑′

𝑘 ′−1 ≥ 𝑑′
𝑘 ′ ≥ 1 are the degrees of

the 𝑘′ ≥ 2 ray vertices of 𝑣 after the encapsulation. Using
∑︁𝑘

𝑖=1 𝑑𝑖 =
∑︁𝑘 ′

𝑖=1 𝑑
′
𝑖 =

𝐷 it is deg(𝜌) = deg(𝑣) = deg(𝑢) = 𝐷 and deg*(𝜌) = deg*(𝑣) = deg*(𝑢) =

max{𝐷 − 3, 0} = 𝐷 − 3 as 𝑢 and 𝑣 are P-vertices of the same degree greater then
three. In the second step, since 𝜌 connects two cut-vertices, removing 𝜌 together
with its endpoints reduces the potential by 2 deg*(𝜌) − 1 and we thus get 𝛥𝛷 =

2 · (𝐷 − 3) − 1 −∑︁𝑘
𝑖=1max{𝑑𝑖 − 3, 0} −

∑︁𝑘 ′
𝑖=1max{𝑑′𝑖 − 3, 0}.

As 𝐷 ≥ 4, we know from the second formula of Lemma 6.9 that
∑︁𝑘

𝑖=1max{𝑑𝑖 −
3, 0} ≤ (∑︁𝑘

𝑖=1 𝑑𝑖)−4 = 𝐷−4 and also∑︁𝑘 ′
𝑖=1max{𝑑′𝑖 −3, 0} ≤ 𝐷−4. Using this inequal-

ity in the formula above yields 𝛥𝛷 = 2𝐷 − 7 −∑︁𝑘
𝑖=1max{𝑑𝑖 − 3, 0} −

∑︁𝑘 ′
𝑖=1max{𝑑′𝑖 −

3, 0} ≥ 2𝐷 − 7 − (𝐷 − 4) − (𝐷 − 4) = 1 as claimed by (i).
As the encapsulation generates two vertices for each block and the join removes

two vertices, we have 𝛥𝑉 = 2𝑘 + 2𝑘′ − 2. Lemma 6.9 with 𝑐 = 3 yields 𝑘 ≤
𝐷 −∑︁𝑘

𝑖=1max{𝑑𝑖 − 3, 0} and 𝑘′ ≤ 𝐷 −∑︁𝑘 ′
𝑖=1max{𝑑′𝑖 − 3, 0} independently from the

values of ℓ and 𝑗 . Now claim (ii) holds as

𝛥𝑉 ≤ 2 ·
(︄
𝐷 −

𝑘∑︁
𝑖=1

max{𝑑𝑖 − 3, 0} + 𝐷 −
𝑘 ′∑︁
𝑖=1

max{𝑑′𝑖 − 3, 0} − 1
)︄
= 2 · (𝛥𝛷 + 6).

In the first step of EncapsulateAndJoin, two new components with deg(𝑢) =
deg(𝑣) = 𝐷 edges each are added, which are then pairwise combined in the second
step. This yields a new component with 𝐷 edges total, which is no bigger than the
prior components of 𝑢 or 𝑣 (which contained at least the 𝐷 edges incident to 𝑢 or 𝑣).
Thus, claim (iii) holds.7

Operation PropagatePQ(𝑢, 𝐼) replaces the pipe 𝜌 having block-vertex 𝑢 as one
endpoint by one pipe for each inner P-node of the non-trivial embedding tree T𝑢 of
𝑢. If T𝑢 only consists of a single Q-node, we are removing a pipe without adding any
new pipes, nodes, or edges, thus properties (i)−(iii) are trivially satisfied. Otherwise,
let 𝑑1 ≥ 𝑑2 ≥ . . . ≥ 𝑑𝑘−1 ≥ 𝑑𝑘 be the degrees of the 𝑘 ≥ 2 inner vertices of
T𝑢 . The tree T𝑢 has deg(𝑢) leaves and thus (∑︁𝑘

𝑖=1 𝑑𝑖) + deg(𝑢) = 2 · |𝐸 (T𝑢) | =
2 · (|𝑉 (T𝑢) | − 1) = 2 · (𝑘 + deg(𝑢) − 1) or, equivalently, deg(𝑢) =

(︂∑︁𝑘
𝑖=1(𝑑𝑖 − 2)

)︂
+ 2.

7 Note that due to Lemma 6.1, we could also apply the Join part of the EncapsulateAndJoin
operation instead PropagatePQ on pipes where both endpoints are block-vertices. At this
point, we can see that this modified approach would violate claim (iii), breaking our running
time analysis. We also analyze the effect this has on the practical running time in Section 9.3.2.

76

The Synchronized Planarity Problem Section 6.3

As 𝑢 is a P-vertex with degree at least 4, deg*(𝑢) = deg(𝑢) − 3 =
(︂∑︁𝑘

𝑖=1(𝑑𝑖 − 2)
)︂
− 1.

As T𝑢 contains no vertices of degree 2, it is 𝑑𝑖 ≥ 3 for 𝑖 = 1, . . . , 𝑘 . As the added pipes
all have one endpoint in the biconnected component of𝑢, the potential is reduced by
𝛥𝛷 = deg*(𝑢)−∑︁𝑘

𝑖=1max{𝑑𝑖−3, 0} =
(︂∑︁𝑘

𝑖=1(𝑑𝑖 − 2)
)︂
−1−

(︂∑︁𝑘
𝑖=1(𝑑𝑖 − 3)

)︂
= 𝑘−1 ≥ 1,

which shows (i).
Moreover, we replace the two endpoints of 𝜌 each by the inner nodes of T𝑢 ,

yielding 𝛥𝑉 = 2𝑘 −2 additional nodes. Note that 𝛥𝑉 = 2𝑘 −2 = 2 ·𝛥𝛷 < 2 ·𝛥𝛷 +12
as claimed by (ii).
As each inner node except for the root has one edge connecting it to its parent,

we also add 𝛥𝐸 (𝐶) = 𝑘 − 1 additional edges to each component. Observe that
𝛥𝐸 (𝐶) = 𝑘 − 1 < 2𝑘 − 2 = 2 · 𝛥𝛷 as claimed by (iii).
Operation SimplifyMatching always removes at least one pipe 𝜌 ∈ P𝐵 and

thus decreases the potential by at least deg*(𝜌). If two pipes 𝜌, 𝜌′ are replaced by
their transitive shortcut (i.e. case (iii) of SimplifyMatching applies), this adds a
new pipe 𝜌∗. If at least one endpoint of 𝜌∗ is a block-vertex, the potential change
is 𝛥𝛷 = 2 deg*(𝜌) − deg*(𝜌). Otherwise, both endpoints are cut-vertices and 𝜌∗

belongs to P𝐶𝐶 , yielding a potential change of 𝛥𝛷 = 2 deg*(𝜌) − (2 deg*(𝜌) −1) = 1.
As no vertices or edges are added or removed 𝛥𝑉 = 𝛥𝐸 (𝐶) = 0, which is less
than 𝛥𝛷 . ■

With this lemma, we know that each step decreases the potential by at least 1
without growing the graph too much. The following shows an upper bound on the
potential.

▶ Lemma 6.11. For Synchronized Planarity instance 𝐼 we have𝛷 (𝐼) < 2𝑚. ◀

Proof. Each pipe 𝜌 matching two vertices𝑢 and 𝑣 contributes at most 2 deg*(𝜌)−1 <

deg(𝑢) + deg(𝑣) to the potential. Since each vertex is part of at most one pipe, the
sum of all potentials is bounded by

∑︁
𝑣∈𝑉 deg(𝑣) = 2𝑚. ■

This can be used to bound the size of instances resulting from applying multiple
operations consecutively and finally to bound the time required to find a solution
for an instance.

▶ Theorem 6.12. Synchronized Planarity can be solved in 𝑂 (𝑚2) time. ◀

Proof. By Lemma 6.10 the potential function decreases with each applied oper-
ation. Therefore, by Lemma 6.11, after 𝑘 ≤ 2𝑚 operations a reduced instance
𝐼 ′ = (𝐺′,P′,Q′,𝜓 ′) is reached. We claim that the resulting graph 𝐺′ = (𝑉 ′, 𝐸′) has
|𝑉 ′| ≤ |𝑉 | + 4 · |𝐸 | + 12 · 𝑘 vertices and each connected component 𝐶′ of 𝐺′ has
|𝐸 (𝐶′) | ≤ 5 · |𝐸 | edges.

77

Chapter 6 Synchronized Planarity

Let 𝛥𝛷𝑖 for 𝑖 ∈ {1, . . . , 𝑘} be the potential reduction caused by the 𝑖th applied
operation. According to Lemma 6.10, this operation also added 𝛥𝑉𝑖 ≤ 2 · 𝛥𝛷𝑖 + 12
vertices to the graph. By Lemma 6.11 we have

∑︁𝑘
𝑖=1 𝛥𝛷𝑖 ≤ 𝛷 (𝐼) < 2|𝐸 | and thus

|𝑉 ′| = |𝑉 | + ∑︁𝑘
𝑖=1 𝛥𝑉𝑖 ≤ |𝑉 | + 4 · |𝐸 | + 12 · 𝑘 . Additionally, if the 𝑖th operation

replaces a connected component 𝐶𝑖−1 by one or multiple connected components,
then each such component𝐶𝑖 satisfies |𝐸 (𝐶𝑖) | − |𝐸 (𝐶𝑖−1) | ≤ 2 ·𝛥𝛷𝑖 . Each connected
component𝐶1 of the initial graph𝐺 has at most |𝐸 | edges. Using the same argument
as above, we obtain |𝐸 (𝐶′) | ≤ |𝐸 | + 4 · |𝐸 |.
As𝑚 ∈ 𝛺 (𝑛), this shows that the resulting instance has 𝑂 (𝑚) vertices and each

connected component has𝑂 (𝑚) edges. Computing the embedding trees for a single
connected component on demand can thus be done in 𝑂 (𝑚) time. In addition to
this computation, each of the 𝑘 operations takes time linear in the degree of the
vertex it is applied to, which also is in𝑂 (𝑚). Thus, each operation takes𝑂 (𝑚) time
and, in total, it takes 𝑂 (𝑚2) time to reach a reduced instance. As the size of this
reduced instance is also in 𝑂 (𝑚2), using Lemma 6.8 for finding a solution for the
reduced instance can be done in 𝑂 (𝑚2) time. ■

6.3.8 Generating embedding trees efficiently
Amajor bottleneck for the running time is that embedding trees need to be obtained
each time beforePropagatePQ or SimplifyMatching can be applied, which takes
time linear in the size of the affected component by first performing a planarity
test (see Section 4.2) or computing an SPQR-tree (see Section 7.4.1 and [BR16b,
Section 2.5]). We note that, using the fully-dynamic data structure by Eppstein
et al. [Epp+98], the SPQR-tree can also be maintained throughout all operations
instead of recomputing it each time. Observe that SimplifyMatching does not
change the graph structure and EncapsulateAndJoin does not modify edges
within biconnected components, but only generates new, small components whose
SPQR-trees can also be computed efficiently. Thus, the only operation that invali-
dates a pre-computed SPQR-tree is PropagatePQ. Using the dynamic SPQR-tree,
the expansion of vertices into (embedding) trees used in PropagatePQ can be
implemented by a sequence of edge deletions as well as vertex and edge insertions,
each happening in amortized 𝑂 (

√
𝑚) time [Epp+98]. Given the SPQR-tree, the

embedding tree of a vertex can be computed in time linear in its degree [BR16b].
Thus, this reduces the time needed to apply an operation from 𝑂 (𝑚) – dominated
by the embedding tree computation – to linear in the maximum pipe degree 𝛥 for
the operation itself plus the square-root factor for the SPQR-tree updates, that is
𝑂 (𝛥 ·

√
𝑚). The overall running time of our algorithm can thereby be reduced to

𝑂 (𝑚 · 𝛥 ·
√
𝑚). Note that unfortunately the recent improvements by Holm and

78

Applications Section 6.4

Rotenberg are not applicable here, as they maintain triconnectivity in an only
incremental setting [HR20b], while maintaining only planarity information in the
fully-dynamic setting [HR20a]. In Chapter 7 we will describe a version of the
SPQR-tree that allows for efficient dynamic updates that cover all changes made by
our operations. This allows us to further reduce the running time of each individual
operation to 𝑂 (𝛥) and the running time of the whole Synchronized Planarity
algorithm to 𝑂 (𝑚 · 𝛥).

6.4 Applications
In this section we discuss several problems that can be solved efficiently by reducing
them to Synchronized Planarity. For constrained planarity problems, we can
often assume the input to be simple and planar and thus the number of edges
𝑚 is linear in the number of vertices 𝑛. In these cases we give the running time
depending on 𝑛 instead of𝑚.

First, in Sections 6.4.1 and 6.4.2, we will show how Synchronized Planarity can
be used to solve the Atomic Embeddability and Clustered Planarity problems.
In Sections 6.4.3 to 6.4.5 we consider problems further up in the hierarchy, namely
Partially Embedded and Level Planarity as well as variations thereof. A reduc-
tion for Connected SEFE-2 is given in Section 6.4.6. The following Sections 6.4.7
and 6.4.8 treat constraints to rotations in the form of PQ-trees. A reduction for a
variation of the NodeTrix Planarity Problem is given in Section 6.4.9. Finally,
Section 6.4.10 shows that Synchronized Planarity can also be extended to handle
pipes where the rotations of the endpoints need to be exactly the same and not the
reverse of each other. We apply this to solve restricted instances of a constrained
planarity variant where multiple PQ-trees hierarchically constrain the rotation of
individual vertices.

6.4.1 Atomic Embeddability
Recall from Section 6.2 that Atomic Embeddability has two graphs as input. One
graph represents a molecule structure with atoms and pipes between them, the
other graph is mapped onto that structure such that edges connect vertices on a
single atom or vertices on neighboring atoms through the corresponding pipe.
▶ Theorem 6.13. Atomic Embeddability can be solved in 𝑂 (𝑚2) time. ◀

Proof. As observed by Fulek and Tóth [FT22, Observation 1], Atomic Embeddabili-
ty can be equivalently viewed as follows. For each atom consider the graph on that
atom together with, for each incident pipe, one virtual vertex that is incident to all

79

Chapter 6 Synchronized Planarity

a

b

c d

e f

g

h

i

j

k

(a)

a

aa

b
c

e

c
c d

d

e
e

f

f

g
g

g

h
i j

j

k k

k

(b)

Figure 6.6: An instance of Clustered Planarity (a) and its CD-tree representation (b),
where each skeleton is shown with a gray background and the virtual vertices are shown
as colored disks.

edges that would normally go through this pipe to a neighboring atom. Note that
each pipe has two virtual vertices corresponding to it, one on each of its incident
atoms. Then an instance of Atomic Embeddability is positive if and only if all
these graphs can be embedded in the plane such that every pair of virtual vertices
corresponding to the same pipe have opposite rotation. This directly reduces
Atomic Embeddability to Synchronized Planarity. ■

6.4.2 Clustered Planarity
To reduce Clustered Planarity to Synchronized Planarity, we use the CD-
tree [BR16a]; see also Figure 6.6. Each node of the CD-tree corresponds to a graph,
called its skeleton. Some vertices of a skeleton are virtual vertices. Each virtual vertex
corresponds to exactly one virtual vertex in a different skeleton, called its twin, and
there is a bijection between the edges incident to a virtual vertex and its twin. The
tree structure of the CD-tree comes from these correspondences between twins,
that is, the CD-tree has an edge between two nodes if and only if their skeletons
have virtual vertices that are twins of each other. It is known that a clustered
graph is c-planar if and only if the skeletons of all nodes in its CD-tree can be
embedded such that every virtual vertex and its twin have opposite rotation [BR16a,
Theorem 1].8 As the CD-tree has linear size and can be computed in linear time, this
yields a linear reduction from Clustered Planarity to Synchronized Planarity.

▶ Theorem6.14. Clustered Planarity can be solved in𝑂 ((𝑛+𝑑)2) time, where𝑑
is the number of crossings between an edge and a cluster boundary. ◀

8 The theorem originally requires “the same” instead of “opposite” rotations. As the CD-tree is
acyclic, the embedding of a nested cluster can easily be mirrored without affecting any other
parts of the instance, and both formulations can be seen as equivalent.

80

Applications Section 6.4

Proof. We use the disjoint union of all skeletons of the CD-tree and match each
virtual vertex with its twin using a pipe. We can assume that the underlying graph
of a Clustered Planarity instance has no multi-edges and it must be planar to
be cluster-planar, thus its number of edges satisfies𝑚 ∈ 𝑂 (𝑛 + 𝑑) and the running
time of our algorithm is 𝑂 ((𝑛 + 𝑑)2). ■

Interestingly, the reduction from Clustered Planarity to Synchronized Pla-
narity to some degree also works in the other direction: Consider the graph
obtained by contracting each connected component of a Synchronized Planari-
ty instance into a single vertex and interpreting its pipes as edges between the
contracted vertices. If this graph is simple and acyclic, we can interpret it as the
CD-tree of an instance of Clustered Planarity, using the contracted connected
components as skeletons where pipe endpoints are interpreted as virtual vertices.
Unfortunately, this duality does not necessarily hold for all instances generated
during a run of our Synchronized Planarity algorithm. Once an application
of PropagatePQ inserts a PQ-tree with two P-nodes, we get two parallel pipes
between the same components and thus an illegal multi-edge in the CD-tree. More-
over, this multi-edge might develop into a cycle of pipes requiring an application
of the toroidal case of SimplifyMatching, as shown in Figure 6.7. This makes it
improbable that our operations could also be directly applied to the Clustered
Planarity instance without reducing to Synchronized Planarity first.

6.4.3 Partially Embedded Planarity

Schaefer [Sch13] provides a reduction of Partially Embedded Planarity to
SEFE-2, where the shared graph corresponds to the preembeded graph. One exclu-
sive graph additionally contains the unembedded edges, while the other triangulates
the preembeded graph to fix its embedding. The generated SEFE-2 instance has a
connected shared graph if the preembeded graph is connected, thus only allowing
some of the instances obtained via the reduction to be solved by Synchronized Pla-
narity. To use Synchronized Planarity for all Partially Embedded Planarity
instances, we provide an alternative reduction to Clustered Planarity. For an
instance (𝐺,𝐻,H) of Partially Embedded Planarity, let 𝛿𝐻 = |𝐸 (𝐻) | · 𝛥 (𝐻)
where 𝛥 (𝐻) is the maximum degree of a vertex in 𝐻 .

▶ Theorem 6.15. Partially Embedded Planarity can be reduced to Clustered
Planarity in time 𝑂 (|𝐺 | + 𝛿𝐻). The resulting number of clusters is in 𝑂 (|𝐻 |) and
the total number of cluster-boundary edge crossings is in 𝑂 (|𝐺 | + 𝛿𝐻). ◀

81

Chapter 6 Synchronized Planarity

a

b

c

d
e

f
h

i

g

(a)

e hb

f

i
c

d

g
a

d
f

a
c

i
g

e
d b

a
gh

ih
cb

e
f

(b)

d

a
f

c

i

g

e hb

f
ic

d
g
a

e
bd
a

gh

i
c
h

b

e
f

(c)

d

a
f

c

i

g

e hb

f
ic

d
g
a

e
bd
a

gh

i
c
h

b

e
f

(d)

g a

i c
f

d

h
b

g
a
d

e

i
c

h
be

f(e)

Figure 6.7: (a) An instance of Clustered Planarity and (b) its CD-tree representation,
which can also be interpreted as instance of Synchronized Planarity. (c) The result
of applying PropagatePQ to each of the three pipes of this instance. (d) The result of
furthermore applying the transitive case of SimplifyMatching three times. (e) The same
instance as in (d) with a different layout, ignoring the middle component. Another two
applications of the transitive case of SimplifyMatching, followed by an application of the
toroidal case make the instance pipe-free.

82

Applications Section 6.4

Cv

Cv,f

f

fCv
Wv

v

(a)

(b) (c)
f

Figure 6.8: (a) The wheel𝑊𝑣 and cluster 𝐶𝑣 (dashed) replacing a vertex 𝑣 in the reduction
from Partially Embedded Planarity to Clustered Planarity. (b) Vertex 𝑣 before the
replacement. Bold gray edges represent edges from 𝐻 whose embedding is fixed. The
four incident faces of H are shaded in different colors. Edges with a colored tip are the
beginning of a path that needs to be embedded in a face of the same color. (c) The clusters
used to represent the faces ofH around 𝑣. The blue cluster 𝐶𝑣,𝑓 restricts two edges to lie
within face 𝑓 , which is incident three times.

83

Chapter 6 Synchronized Planarity

Proof. Let (𝐺,𝐻,H) be an instance of Partially Embedded Planarity, for which
we will construct an equivalent instance 𝐼 = (𝐺′,𝑇) of Clustered Planarity.
Angelini et al. [Ang+15b, Theorem 4.14] show that we can assume𝐺 to be connected
without loss of generality. We convert each vertex 𝑣 of 𝐻 into a wheel𝑊𝑣 using its
embedding fromH , adding all wheels and the edges of 𝐻 between the wheels to
𝐺′; see Figure 6.8 (a). The vertices of wheel𝑊𝑣 are added to a new cluster 𝐶𝑣 ∈ 𝑇 .
Furthermore, we add all edges and vertices that are exclusive to𝐺 to𝐺′, replacing
any edge endpoint 𝑣 that is in𝐻 with a degree-1 vertex𝑢 ∈ 𝐶𝑣 . Note that contracting
all clusters in a solution of this instance 𝐼 yields a plane graph that is isomorphic to
𝐺 and whose embedding respects the rotations ofH .

It remains to ensure the correct relative positions of the connected components
of H [Ang+15b, Lemma 2.1]. As explained in Section 5.1, it suffices to ensure
that the edges 𝐸 (𝐺) \ 𝐸 (𝐻) are embedded in the right faces of H . We will once
again use clusters to ensure this. For each wheel 𝑊𝑣 replacing a vertex 𝑣, we
subdivide the edges on the outside of the wheel. Each subdivision vertex 𝑢 incident
to face 𝑓 ofH incident to 𝑣 is added to a cluster 𝐶𝑣,𝑓 ⊂ 𝐶𝑣 ; see Figure 6.8 (c). Note
that faces appearing multiple times around a single vertex would now cause the
instance to turn non-clustered-planar. To remedy this, we connect all subdivision
vertices belonging to the same face by adding edges within the respective cluster
in a clockwise order to the inside of the wheel, planarizing and adding to the
respective cluster any crossings with the wheel produced by this. As faces appearing
multiple times around a single vertex must be non-alternating (they may only be
nested within each other), inserting the edges following the nesting from inside
to outside ensures that the added edges do not cross each other but only parts of
the wheel. Finally, any degree-1 vertex 𝑢 replacing the endpoint 𝑣 ∈ 𝐻 of an edge
𝑒 ∈ 𝐸 (𝐺) \ 𝐸 (𝐻) that must be embedded in face 𝑓 is added to the cluster 𝐶𝑣,𝑓 .

A Partially Embedded Planarity solution can easily be converted to a solution
of the corresponding Clustered Planarity instance by performing the conversion
while maintaining the embedding. Observe that all created clusters are connected
when ignoring the degree-1 endpoints of edges from 𝐸 (𝐺) \ 𝐸 (𝐻), which makes it
easy to enclose the connected vertices in a region. For an edge 𝑒 ∈ 𝐸 (𝐺) \ 𝐸 (𝐻)
with an original endpoint 𝑣 ∈ 𝐻 that was replaced with a degree-1 vertex 𝑣′, we can
place 𝑣′ sufficiently close to the wheel𝑊𝑣 replacing 𝑣 to be within the region of𝐶𝑣 . If
𝑒 is restricted to be embedded in a face 𝑓 , all sides of the wheel incident to 𝑓 have a
subdivision vertex that is in𝐶𝑣,𝑓 by construction. As we have a valid embedding, 𝑒 is
contained in 𝑓 and we can place 𝑣′ sufficiently close to such subdivision vertex such
that it lies within the region 𝐶𝑣,𝑓 . Conversely, a Clustered Planarity solution
can be converted to a Partially Embedded Planarity solution by contracting all
clusters replacing vertices of𝐻 back into single vertices. As the resulting embedding

84

Applications Section 6.4

clearly respects the rotations ofH , we focus on the relative positions, that is, on the
edges that have a prescribed face they need to be embedded in. Note that, for each
such edge originally connected to a vertex 𝑣 ∈ 𝐻 , only one endpoint 𝑣′ lies within
𝐶𝑣 . This especially means that 𝑣′ has to lie outside of𝑊𝑣 (but within the region of
𝐶𝑣). Additionally, if 𝑒 is restricted to lie within face 𝑓 , 𝑣′ has to lie within the region
of𝐶𝑣,𝑓 . As it cannot lie within𝑊𝑣 , it follows that 𝑣′ shares a face with a vertex 𝑥 that
subdivides an outer edge of wheel𝑊𝑣 and also lies within 𝐶𝑣,𝑓 . Contracting 𝑣′ into
𝑥 first, we see that 𝑒 will be embedded within 𝑓 when contracting 𝐶𝑣 , satisfying its
constraint. This can be done for each such edge, which shows that the obtained
Clustered Planarity instances also ensures correct relative positions.
The planarization adds 𝑂 (𝛿𝐻) vertices of degree 4 as we have 𝑂 (𝛥 (𝐻)) such

vertices subdividing any edge of 𝐺 . The planarization can be performed in 𝑂 (𝛿𝐻)
time, while the remaining reduction runs in time linear in 𝐺 . This procedure
generates one cluster for each vertex of 𝐻 plus at most one cluster for each edge of
𝐻 (or more specifically, for each face of H) incident to a vertex of 𝐻 . Each edge
𝑒 = 𝑢𝑣 of 𝐺 crosses at most 4 cluster boundaries, namely those of the clusters
𝐶𝑣,𝐶𝑢 as well as 𝐶𝑣,𝑓 and 𝐶𝑢,𝑓 if it needs to be embedded in face 𝑓 . The wheels
together with their edges subdivided by the planarization contribute at most𝑂 (𝛿𝐻)
additional crossings. ■

6.4.4 (Radial) Level and Strip Planarity

Schaefer [Sch13] shows that Radial Level Planarity (and thereby also Level Pla-
narity) reduces to Clustered Planarity using a construction using one cluster
per vertex. As this creates many crossings between edges and cluster boundaries,
which are a main factor in the practical running time of Synchronized Planarity,
we provide an alternative reduction that uses far less clusters.

▶ Theorem 6.16. Proper Radial Level Planarity can be reduced to Clustered
Planarity in linear time, with the number of clusters linear in the number of levels
and the number of crossings between edges and cluster boundaries linear in the
number of vertices. ◀

Proof. Let (𝐺,𝛾) be an instance of proper Radial Level Planarity, for which we
will construct an equivalent instance 𝐼 = (𝐺′,𝑇) of Clustered Planarity. First,
we split each level 𝐿𝑖 into two levels 𝐿𝑢𝑖 , 𝐿𝑙𝑖 as follows; see also Figure 6.9. Each
vertex 𝑣 ∈ 𝐿𝑖 is split into two halves 𝑣𝑢 and 𝑣𝑙 , connected by an edge. The edges of 𝑣
leading to a higher level are assigned to 𝑣𝑢 , while those leading to a lower level are

85

Chapter 6 Synchronized Planarity

Li

Li+1

Li−1

v

(a)

Li

Lu
i−1

Ll
i

Lu
i

Ll
i+1

vu

vl

Ci

(b)

vu

vi

vi+1

Lu
i

Ll
i+1

(c)

Figure 6.9: (a) The input instance of Level Pla-
narity and (b) the resulting Clustered Planari-
ty instance obtained by splitting levels and ver-
tices. (c) A level-planar drawing in which the sets
𝐶𝑖 and 𝐺 \ 𝐶𝑖+1 were contracted into vertices 𝑣𝑖
and 𝑣𝑖+1, respectively.

assigned to 𝑣𝑙 . As the new edges ensure the order of vertices on 𝐿𝑢𝑖 equals the order
of the corresponding vertices on 𝐿𝑙𝑖 , this yields an equivalent instance of Radial
Level Planarity.
We now convert this to an instance of Clustered Planarity by, for each level

𝑖 = 1, . . . , 𝑘 + 1, interpreting the levels 𝐿𝑙1, . . . , 𝐿𝑙𝑖 together with 𝐿𝑢1 , . . . , 𝐿𝑢𝑖−1 as cluster
𝐶𝑖 . For 𝑖 = 1, . . . , 𝑘 , 𝐶𝑖 is a child of 𝐶𝑖+1. A drawing that is a solution to the Radial
Level Planarity instance can easily be converted to a solution of the Clustered
Planarity instance by routing the boundary of cluster𝐶𝑖 between the levels 𝐿𝑙𝑖 and
𝐿𝑢𝑖 and closing the curve to encompass all vertices on lower levels; see Figure 6.9 (b).
Therefore, the order of split edges on a cluster boundary will equal the vertex order
on the corresponding levels.

For the converse, we will use the order in which edges cross the boundary of 𝐶𝑖

in a clustered-planar drawing as order of the corresponding vertices on levels 𝐿𝑙𝑖
and 𝐿𝑢𝑖 . Contracting cluster 𝐶𝑖 into a vertex 𝑣𝑖 and 𝐺 \𝐶𝑖+1 into a vertex 𝑣𝑖+1 (while
maintaining the order of edges crossing the respective cluster boundaries) yields a
drawing with vertices 𝐿𝑢𝑖 ∪𝐿𝑙𝑖+1∪ {𝑣𝑖, 𝑣𝑖+1}; see Figure 6.9 (c). Further contracting 𝐿𝑢𝑖
into 𝑣𝑖 and 𝐿𝑙𝑖+1 into 𝑣𝑖+1, we can obtain a radial level-planar drawing only consisting
of parallel edges between 𝑣𝑖 and 𝑣𝑖+1. We can now iteratively decontract the vertices
of 𝐿𝑢𝑖 and 𝐿𝑙𝑖+1, using the same y-coordinate between 𝑣𝑖 and 𝑣𝑖+1 for vertices on
the same level. In this way, we obtain a radial level-planar drawing for the edges
connecting level 𝐿𝑖 to level 𝐿𝑖+1. Doing this for every level, the order of the vertices
on level 𝐿𝑙𝑖 will match the order of the respective vertices on level 𝐿𝑢𝑖 . Thus, we
can combine the individual drawing to obtain a radial level-planar drawing of the
whole instance. ■

86

Applications Section 6.4

Strip Planarity [Ang+16; DaL15] is a variant of Level Planarity where levels
are not represented by horizontal lines but horizontal strips, which allow their
contained vertices to be slightly shifted vertically. The authors of the problem note
that it coincides with the Atomic Embeddability problem when its host graph is a
path [Ang+16; DaL15]. As Atomic Embeddability is equivalent to Synchronized
Planarity, Strip Planarity instances can be directly solved by the algorithm for
Synchronized Planarity.

6.4.5 Clustered Level Planarity
In a 2004 paper, Bachmaier and Forster [FB04] study the combination of Clustered
and Level Planarity. They pose the additional requirement of cluster boundaries
being convex in the resulting drawing, which is why we refer to this variant as
Convex Clustered Level Planarity. Bachmaier and Forster showed that Convex
Clustered Level Planarity is solvable in linear time if the instance is proper
(edges only connect adjacent levels) and level-connected (each cluster contains an
edge between any pair of adjacent levels it spans). Angelini et al. [Ang+15a] gave
a quadratic algorithm for the non-level-connected but proper case and show that
the non-proper case is NP-complete. We are not aware of further work on Convex
Clustered Level Planarity or a version of it not requiring cluster convexity.
We will give linear-time reduction of Clustered Level Planarity not requiring
cluster convexity to Synchronized Planarity when the input is biconnected
and has a single source. The resulting instance has the same asymptotic size as
the instance stemming only from the clustering, showing that Clustered Level
Planarity can be solved in the same time as Clustered Planarity in this case.

▶ Theorem 6.17. Single-source biconnected Clustered Level Planarity can be
reduced to Synchronized Planarity in linear time. The resulting instance has
𝑂 (𝑛) pipes of maximum degree 𝑂 (𝑛2). ◀

Proof. Brückner and Rutter [BR23b] introduced the so-called LP-tree, a variant of
the SPQR-tree that describes all level-planar embeddings of a biconnected graph
with a single source. It uses the same types of node and also maintains the property
that “embedding choices consist of arbitrarily permuting parallel edges between
two poles or choosing the flip of a skeleton whose embedding is unique up to
reflection” [BR23b]. The only difference between an SPQR- and an LP-tree is that
the rigid nodes of the LP-tree are not necessarily triconnected, but still have a
prescribed embedding which may only be mirrored. Thanks to their high similarity,
LP-trees can be used as drop-in replacement for SPQR-trees in various algorithms,
translating them from a planar to a level planar setting [BR23b]. This also applies

87

Chapter 6 Synchronized Planarity

to the algorithm for deriving embedding trees from an SPQR-tree, which can easily
be ported to LP-trees: We still translate an occurrence of a vertex in an LP-tree
rigid node to a Q-node in its embedding PQ-tree, and an occurrence in a parallel
node in the LP-tree to a P-node in the PQ-tree. These embedding trees can now be
used to constrain the rotations of their vertices, e.g., in an instance of Partially
PQ-constrained Planarity. This instance is not yet equivalent to the input
Level Planarity instance, as we additionally need to ensure that all vertices in a
non-triconnected rigid node are flipped consistently (as there is no triconnected
graph minor that ensures this). Using the Synchronized Planarity reduction
of Partially PQ-constrained Planarity this can easily be ensured by putting
the Q-nodes stemming from the same LP-tree rigid node into the same partition
cell. Note that the underlying graph does ensure that the rotations of P-nodes that
represent the poles of the same parallel node of the LP-tree (which represents a part
of a parallel node of the SPQR-tree) line up; see [BR16b, Section 4.1] and [BR23b,
Section 3.2]. Thus, the restrictions from the leveling can be translated to PQ-trees
constraining vertex rotations plus a partition of Q-nodes, where all Q-nodes in the
same set need to be flipped consistently.
As the reduction from Clustered- to Synchronized Planarity leaves the

vertices of the input graph unchanged, we can annotate the obtained Synchro-
nized Planarity instance with the rotation-constraining embedding trees obtained
from the Level Planarity instance. This yields an instance of PQ-constrained
Synchronized Planarity where each solution simultaneously corresponds to a
solution of both of the input Clustered and Level Planarity instances. Reducing
this back to Synchronized Planarity using Theorem 6.20 adds one pipe to each
vertex in the input graph. As the reduction of clusters also adds 𝑂 (𝑛) pipes of
maximum degree 𝑂 (𝑛2), the resulting instance is not asymptotically larger. The
LP-tree required for the reduction can be found in linear time [BR23b]. ■

6.4.6 Connected SEFE-2

For two graphs 𝐺 1 and 𝐺 2 , SEFE-2 is equivalent to finding a pair of planar em-
beddings that induce the same (i.e. consistent) cyclic edge orders and the same
(i.e. consistent) relative positions on their shared graph 𝐺 = 𝐺 1 ∩ 𝐺 2 [BKR17;
JS09]. Our algorithm can be used to provide the synchronization for the first
half of this requirement, which is sufficient for instances with a connected shared
graph [BKR13].

▶ Theorem 6.18. Connected SEFE-2 can be solved in 𝑂 (𝑛2) time. ◀

88

Applications Section 6.4

G 1 G G 2

(a)

I

(b)

Figure 6.10: An instance of Connected SEFE-2 𝐺 = 𝐺 1 ∩ 𝐺 2 (a) and the equivalent
Synchronized Planarity instance 𝐼 (b).

Proof. We add both 𝐺 1 and 𝐺 2 to the Synchronized Planarity instance and
also add a bond with poles 𝑏 1 and 𝑏 2 for each vertex 𝑥 ∈ 𝐺 . The parallel edges
of the bond correspond to the edges incident to 𝑥 in 𝐺 . We add further degree-1
vertices so that we can match 𝑥 1 (i.e. vertex 𝑥 in𝐺 1) with 𝑏 1 and 𝑥 2 with 𝑏 2 ; see
Figure 6.10. The Synchronized Planarity algorithm can then be used to obtain
embeddings E1 and E2 for𝐺 1 and𝐺 2 , respectively. As pipes reverse the order of
incident edges, a solution for the Synchronized Planarity instance will have one
of the two graphs mirrored with respect to the graph shared with the other, that is,
the solution for the SEFE-2 instance is E1, E2. ■

6.4.7 Partially (F)PQ-constrained Planarity

Another problem that investigates the enforcement of rotation constraints in planar
embeddings is Partially PQ-constrained Planarity [BR16b]. Here, each vertex
in the graph can be annotated with a PQ-tree that limits the rotations of (some of)
its incident edges.

▶ Theorem 6.19. Partially PQ-constrained Planarity can be solved in𝑂 (𝑚2)
time. ◀

Proof. Instances of Partially PQ-constrained Planarity can be converted to
equivalent instances of Synchronized Planarity by, for each vertex 𝑣, adding
its PQ-tree 𝑇𝑣 to the graph, converting Q-nodes to Q-vertices similarly to Propa-
gatePQ. Afterwards, for each inserted tree 𝑇𝑣 , we add a cap-vertex 𝑐𝑣 and connect
all leaves of 𝑇𝑣 to 𝑐𝑣 . To be able to match the cap-vertices with the vertices in the
original graph, further degree-1 vertices are connected to the cap-vertices until

89

Chapter 6 Synchronized Planarity

a
b
c
d

e
f

g
h

i

k

ℓ m

c

d
e

f
g

h

v1
v′1

T ′(v1)

Ga b

Figure 6.11: The equivalent Synchronized Planarity instance for an instance of Par-
tially PQ-constrained Planarity, where the PQ-tree 𝑇 ′(𝑣1) (left) restricts the order of
the edges {𝑎, . . . , ℎ} around the vertex 𝑣1 in𝐺 (right). The cap-vertex 𝑣′1 was added together
with two degree-1 vertices.

their degree matches the respective node in the original graph; see Figure 6.11.
Adding a pipe matching 𝑐𝑣 with 𝑣 then ensures that the rotation of any vertex 𝑣 is
compatible with the PQ-tree 𝑇𝑣 it was annotated with. ■

Note that previous algorithms are geared towards biconnected instances and
cannot handle cut-vertices of degree more than 5, while this approach works for
general graphs. While the linear-time algorithm for Partially PQ-constrained
Planarity by Bläsius and Rutter is restricted to biconnected graphs [BR16b],
this allows us to solve general instances. Bläsius and Rutter also note that their
algorithm can easily be extended to the case of FPQ-trees, which also contain
F-nodes having an entirely fixed rotation without allowing flips. Note that this
makes the problem equivalent to EC-Planarity with Free Edges as presented by
Gutwenger et al. [GKM08]. We can also handle F-nodes in our reduction by placing
all of them in the same partition cell as Q-vertices. If the vertices in this cell now
have the wrong flip in a solution, we can simply mirror the embedding and thus
ensure that all F-nodes have their single correct rotation.

6.4.8 (F)PQ-Constrained Synchronized Planarity

We now present a variant of Synchronized Planarity that also allows con-
straints as given in PQ-constrained Planarity for pipes. That is, we are given
an instance 𝐼 of Synchronized Planarity and, for each pipe 𝜌 = (𝑣,𝑢, 𝜑𝑣𝑢), a
PQ-tree 𝑇 (𝜌) where the leaves 𝐿(𝑇 (𝜌)) are the edges 𝐸 (𝑣) incident to its one end-
point 𝑣. We seek an embedding E as solution for 𝐼 where additionally, for each
pipe 𝜌 , the order E(𝑣) of edges incident to its respective endpoint is admissible
by its PQ-tree 𝑇 (𝜌). We show that this problem can be solved by reducing it back
to Synchronized Planarity, expressing the additional constraints as we did for

90

Applications Section 6.4

a

b

c

d

e
f

g

h i j

k
l

m

n

o

p
q

r

(a)

a

b

c

d

e f

g

k l

n

o

r

(b)

h i j k l

m
n
o
p

d qr

g
πT

πL

πB

πR

χ

(c)

Figure 6.12: An instance of Row-Column Independent NodeTrix Planarity (a) and
its equipped frame graph, where all clusters were contracted to single vertices (b). The
Synchronized Planarity gadget used for representing the middle adjacency matrix (c).

PQ-constrained Planarity. Note that the variant of this problem where the
PQ-trees only constrain some of the incident edges is shown to be NP-complete in
Section 6.5.3.

▶ Theorem 6.20. PQ-constrained Synchronized Planarity can be reduced to
Synchronized Planarity in linear time using 𝑂 (𝑚) pipes of total degree 𝑂 (𝑚).

◀

Proof. For each pipe 𝜌 = (𝑣,𝑢, 𝜑𝑣𝑢), we insert two copies of its PQ-tree 𝑇 (𝜌) into
the graph, synchronizing their inner nodes using pipes and partition cells as we did
during the insertion of PropagatePQ. Similar to the previous section, we connect
all leaves of the first copy of the PQ-tree to a new cap-vertex 𝑣′ and the leaves of
the other copy to new cap-vertex 𝑢′. Finally, we replace 𝜌 by pipes 𝜌𝑣 = (𝑣, 𝑣′, 𝜑𝑣,𝑣′)
and 𝜌𝑢 = (𝑢,𝑢′, 𝜑𝑢,𝑢′) where the bijections 𝜑𝑣,𝑣′ and 𝜑𝑢,𝑢′ are given naturally by the
correspondence of leaves to incident edges. Note that this still ensures that the
rotations of 𝑢 and 𝑣 are synchronized, but now they also need to respect the orders
prescribed by the inserted PQ-tree. For each vertex 𝑣, we created 𝑂 (deg(𝑣)) new
pipes with a total degree in 𝑂 (deg(𝑣)). Furthermore, the replacement can be done
in 𝑂 (deg(𝑣)) time. Thus, we obtain an equivalent instance in linear time using
𝑂 (𝑚) pipes of total degree 𝑂 (𝑚). ■

This reduction can easily be adapted to also handle FPQ-trees using the same
approach as in the previous Section 6.4.7.

91

Chapter 6 Synchronized Planarity

6.4.9 NodeTrix Planarity
For the problem NodeTrix Planarity, we are given a graph together with a
flat clustering (i.e., a partition) of its vertices and seek a planar representation of
the graph where each cluster is replaced by an adjacency matrix of its contained
vertices [HFM07]. Thus, edges within the same cluster are represented by an
entry in the respective adjacency matrix. Edges between different clusters shall be
drawn planarly such that they connect the borders of the adjacency matrices of
their endpoints, ending exactly at the border of a row or column representing the
respective endpoint. We only consider the “fixed sides scenario”, where the input
specifies for each edge endpoint whether it should lie on the top, bottom, left or
right of the matrix. This problem is NP-complete in the general case, but linear-time
solvable if the order of vertices (i.e. rows and columns) for each adjacency matrix is
fixed [DaL+18]. We consider the relaxation Row-Column Independent NodeTrix
Planarity, where the order of the rows need not match the order of the columns.
Liotta et al. [LRT21] show that this problem can be solved in quadratic time if the
graph obtained by contracting each cluster into a single vertex is biconnected. Using
Synchronized Planarity, the problem can also be solved without this restriction.

▶ Theorem 6.21. Row-Column Independent NodeTrix Planarity can be
solved in 𝑂 (𝑛2) time. ◀

Proof. We construct a Synchronized Planarity gadget for representing each
adjacency matrix similarly to Liotta et al. [LRT21], as shown in Figure 6.12. The
only difference is that we can use pipes to directly synchronize the orders of the
rows (i.e. the rotation of 𝜋𝐿 and 𝜋𝑅) and columns (i.e. the rotation of 𝜋𝑇 and 𝜋𝐵) on
both sides. The gadget center vertices 𝜒 are Q-vertices in the same partition cell,
so that after solving the Synchronized Planarity instance, we can mirror the
embedding if necessary so that 𝜋𝑅 is consistently right of 𝜋𝐿 . ■

The solution for biconnected instances by Liotta et al. [LRT21] works via a
reduction to the more general problem 1-Fixed Constrained Planarity. Later
in the following section, we will show that the 1-Fixed Constrained Planarity
instances considered by Liotta et al. can also be reduced to Synchronized Pla-
narity, albeit using a more involved reduction than in this section.

92

Applications Section 6.4

6.4.10 Synchronized Planarity with Twisted Pipes and 1-Fixed
Constrained Planarity

Finally, we present an extension of Synchronized Planarity that also allows some
pipes to be designated as twisted pipes where the endpoints no longer have to have
opposing rotations under their bijection, but the exact same rotation. While this
kind of pipe may sound more natural, it is actually far less natural in terms of the
splits and joins from Section 6.3.1 that motivate the correctness of our algorithm.
This is because the two vertices obtained from splitting a graph at a cut need
to have opposing, not the same rotations, for the two graphs to be joined again;
see Figure 6.1.

▶ Theorem 6.22. Synchronized Planarity with Twisted Pipes can be solved
in 𝑂 (𝑚2) time. ◀

Proof. We will show how the individual operations need to be adapted to also apply
to twisted pipes. The correctness and running time will follow analogously to
the base algorithm without twisted pipes. First, consider the operation Simpli-
fyMatching. In the ‘terminal’ case (i), the pipe is simply removed as one of its
endpoint admits any rotation. The same can be done in case of a twisted pipe, simply
using the reversed rotation for the unconstrained endpoint when constructing an
embedding. In the ‘toroidal’ case (ii), we check whether the permutation induced
by the pipe before its removal is order preserving. The order has to be preserved
as traversing the pipe leads to a first order reversal and subsequently traversing
the edges of the parallel reverses the order once again. If the pipe is twisted, the
order reversals no longer cancel each other out and we need to check for an order
reversing permutation 𝜋 with 𝜋 (𝑂) = 𝑂 for any order𝑂 instead. Bläsius and Rutter
[BR16b, Lemma 2.3] show that a permutation is order reversing if and only if all
its permutation cycles have length 2, except for at most two cycles with length 1.
If this holds for the permutation induced by the twisted pipe, it can simply be
removed; otherwise we return a trivial no-instance. In the transitive case (iii), two
pipes matching the poles of a parallel with other vertices are replaced by a single
direct pipe. If exactly one of the removed pipes is twisted, so is the replacement
pipe. If both removed pipes are twisted, the replacement pipe is not twisted. Again,
the order of the edges in the parallel is unconstrained except for the pipes that we
removed and can thus be chosen to satisfy the twisted pipes.
If operation PropagatePQ is applied on a twisted pipe, the resulting pipes

synchronizing the inner P-nodes of the inserted PQ-trees are also twisted. The
default rotations of inner Q-nodes are no longer flipped on one side, making them
the same in both copies. This ensures that contracting the two trees individually

93

Chapter 6 Synchronized Planarity

in a solution yields two vertices with the exact same and not reversed rotations.
Finally, for operation EncapsulateAndJoin, we will resolve the twistedness of the
pipe connecting two cut-vertices after their encapsulation, allowing their join to
proceed as usual. Observe that we can mirror the embedding of a single connected
component in a solution if the component contains no Q-vertices and we switch all
its pipes from being non-twisted to twisted and vice-versa. We mirror an arbitrary
one of the two stars generated by the encapsulation, marking all pipes from its rays
to blocks as twisted and marking its pipe to the other cut-vertex non-twisted. This
yields an equivalent instance in which the two cut-vertices matched by a usual
pipe can be joined as usual. ■

We can now use this notion of twisted pipes to also solve restricted cases of
the problem 1-Fixed Constrained Planarity [LRT21] introduced by Liotta et
al., which is related to the Simultaneous FPQ-Ordering problem introduced by
Bläsius and Rutter [BR16b] and generalizes Partially PQ-constrained Planari-
ty. The only previous solution to this problem can only handle biconnected graphs
and runs in quadratic time, while our solution can handle arbitrary graphs, albeit
only with certain constraints. In 1-Fixed Constrained Planarity we are given a
planar graph 𝐺 = (𝑉 , 𝐸) together with, for every vertex 𝑣 ∈ 𝑉 , a so-called 1-fixed
constraint 𝐶 (𝑣), that is a 1-fixed instance of Simultaneous FPQ-Ordering. An
instance of Simultaneous FPQ-Ordering [BR16b] consists of a DAG 𝐷 = (𝑁,𝐴)
with nodes 𝑁 = {𝑇1, . . . ,𝑇𝑘}, each one being a FPQ-tree. Each arc from a node𝑇𝑗 to
a node 𝑇𝑖 has an injective mapping 𝜙 : 𝐿(𝑇𝑗) → 𝐿(𝑇𝑖). A solution to Simultaneous
FPQ-Ordering consists of cyclic orders 𝜎1, . . . , 𝜎𝑘 such that 𝜎𝑖 is admissible by 𝑇𝑖
for 𝑖 ∈ {1, . . . , 𝑘} and for each arc (𝑇𝑖,𝑇𝑗 , 𝜙), 𝜙 (𝜎 𝑗) is a suborder of 𝜎𝑖 (which is
conversely also denoted as 𝜎𝑖 extending 𝜙 (𝜎 𝑗)). Bläsius and Rutter [BR16b] slightly
extend this by also allowing so-called reversing arcs, where it instead has to hold
that 𝜙 (𝜎 𝑗) is a suborder of 𝜎𝑖 .

In 1-Fixed Constrained Planarity, the 1-fixed constraint𝐶 (𝑣) for any vertex 𝑣
of graph 𝐺 has a single source node, which is a FPQ-tree whose leaves correspond
to the edges incident to 𝑣. A solution to the problem consists of a planar embedding
of 𝐺 together with a solution for each constraint 𝐶 (𝑣), where the cyclic order 𝜎1 of
the single source node 𝑇1 of 𝐶 (𝑣) is the rotation of 𝑣. The constraints in 1-Fixed
Constrained Planarity need to satisfy two properties: First, every node whose
FPQ-tree contains a P-node has at most 2 parents. Second, the interactions between
P-nodes of different FPQ-trees connected in the DAG has to be limited in a sense
defined by the concept of fixedness. For two inner nodes 𝜇𝑖, 𝜇 𝑗 of FPQ-trees 𝑇𝑖,𝑇𝑗 ,
respectively, we say that 𝜇𝑖 is fixed by 𝜇 𝑗 (and conversely that 𝜇 𝑗 fixes 𝜇𝑖) if there
are leaves 𝑥,𝑦, 𝑧 ∈ 𝐿(𝑇𝑗) such that (i) deleting 𝜇 𝑗 from 𝑇𝑗 pairwise disconnects 𝑥,𝑦,

94

Applications Section 6.4

and 𝑧, and (ii) deleting 𝜇𝑖 from𝑇𝑖 pairwise disconnects 𝜙 (𝑥), 𝜙 (𝑦), and 𝜙 (𝑧). Bläsius
and Rutter [BR16b] show that for any arc (𝑇𝑖,𝑇𝑗 , 𝜙) and any inner node node 𝜇 𝑗 of
𝑇𝑗 , we can assume the FPQ-tree𝑇𝑖 to contain exactly one node 𝜇𝑖 that is fixed by 𝜇 𝑗 ,
making the instance normalized.
In our 1-fixed instance of Simultaneous FPQ-Ordering, every P-node 𝜇𝑖 of a

FPQ-tree 𝑇𝑖 is conversely fixed by at most one P-node 𝜇 𝑗 of a child 𝑇𝑗 of 𝑇𝑖 .9 This
means that every P-node fixes at most two P-nodes in its (up to two) parents while
being fixed by at most one P-node in a child. Unfortunately, this synchronization
of one P-node with up to three different other P-nodes is hard to model using pipes.
For our reduction to Synchronized Planarity, we will add a further restriction
requiring a P-node that is fixed by a P-node of a child to fix at most one P-node in
a parent. We call this variant strict 1-Fixed Constrained Planarity. Thanks to
these restrictions, it is now easy to reduce the problem to Synchronized Planari-
ty, as every P-node needs synchronization with at most two other nodes. We note
that all applications described by Liotta et al. [LRT21] yield instances that are strict.

▶ Theorem 6.23. Strict 1-Fixed Constrained Planarity can be reduced to
Synchronized Planarity with Twisted Pipes in linear time. ◀

Proof. We copy the graph 𝐺 underlying the 1-Fixed Constrained Planarity
instance into the Synchronized Planarity instance I. We will translate each
constraint 𝐶 (𝑣) constraining a vertex 𝑣 in 𝐺 into further components modeling the
constraint, which we can then synchronize with 𝑣 via a pipe. For each FPQ-tree
𝑇𝑖 in 𝐶 (𝑣) we add two copies 𝑇 ′𝑖 ,𝑇 ′′𝑖 to I, turning P- and Q-nodes into P- and Q-
vertices, respectively, and keeping the default rotations of the latter. For each leaf
ℓ of 𝑇𝑖 , we identify the respective leaves ℓ′, ℓ′′ of 𝑇 ′𝑖 ,𝑇 ′′𝑖 with each other. For each
tree, this yields one connected component which contains two copies of each inner
node. In a planar embedding, these two copies will have a reversed rotation due
to the graph structure that connects them. The only exception to this is the single
source𝑇1 of𝐶 (𝑣), for which we only add one copy𝑇 ′′1 and connect all its leaves to a
single new node 𝑣′. Again, the rotation of 𝑣′ will correspond to an admissible order
of 𝑇1 in any planar embedding.
It remains to model the arcs of 𝐶 (𝑣) through pipes and Q-constraints. Recall

that because we can assume 𝐶 (𝑣) to be normalized, each inner node of a FPQ-tree
fixes exactly one inner node of each of its (at most two) parents. Due to the 1-

9 Note that we here use the older definition of (1-)fixedness on normalized instances as given
in [BR16b], which is not as generic as the newer definition not requiring normalization from
[LRT21]. While the later one is easier to compute for arbitrary instances, the former one is more
restrictive, making it easier to work with when solving instances. Any instance can be made
normalized while maintaining its fixedness, making both definitions equivalent.

95

Chapter 6 Synchronized Planarity

fixedness, each inner P-node of a FPQ-tree is also fixed by at most one P-node of
one of its children. For each node 𝜇𝑖 of tree 𝑇𝑖 , we have a copy 𝜇′ that can be used
for synchronization with a node of one parent of 𝑇𝑖 and a copy 𝜇′′ (with reversed
rotation) that can either be used for synchronization with a node of the one child
or of the other parent of 𝑇𝑖 . We will first handle the case of nodes with at most
one parent. To handle Q-nodes fixing Q-nodes, we simply add both to the same
partition cell to synchronize their rotations. To handle Q-nodes fixing P-nodes (or
vice-versa), we replace the Q-node with a wheel and synchronize its center with
the P-node. We turn one of the vertices on the rim of the wheel into a Q-node
synchronizing the flip of the wheel with the partition cell of the former Q-node.
To handle P-nodes fixing P-nodes, we match both by a pipe. For nodes with two
parents but no children, we will handle the synchronization with the first parent
as before using 𝜇′. For the second parent, we will also use the same approach, but
now synchronize with 𝜇′′, which has no other pipe as 𝜇𝑖 is not fixed by another
P-node of a child of𝑇𝑖 in our strict instance. Finally, we add a pipe between 𝑣 and 𝑣′.
Traversing this pipe and then the edges from 𝑣′ to 𝑇 ′′1 will reverse the order twice,
making the rotation of 𝑣 the same as the order of leaves of 𝑇 ′′1 in any solution to
the Synchronized Planarity instance. We mark all remaining pipes as twisted
depending on whether the corresponding arc is reversing or not. ■

6.5 Related NP-hard Problems

Having seen various applications of Synchronized Planarity for efficiently solv-
ing problems that lie “above” in the hierarchy of Figure 3.1, we will now have a look
at further problems “below” Synchronized Planarity in this hierarchy. First, we
will position our problem directly above many of the problems in the NP-complete
section of the hierarchy by reducing it to SEFE-2. Afterwards, we will show that
Synchronized Planarity is in a sense close to being NP-complete by showing
that further increasing its modeling capacities by allowing multiple pipes per vertex
or by adding partial pipe constraints makes the problem NP-complete.

6.5.1 Reduction to SEFE-2

To complement the reductions from the previous section giving polynomial-time
solutions for other problems, we give a reduction of Synchronized Planarity
to the problem SEFE-2, whose complexity is yet unknown. In a sense, this makes

96

Related NP-hard Problems Section 6.5

v

u2

u1

u3

ρ1

ρ2

ρ3

r u2

u1

u3

µ

vr urv

u2

u1

u3

vµ uµ

(a)

(b)

(c)

Figure 6.13: (a) A P-vertex 𝑣 that is endpoint of 𝑘 = 3 pipes 𝜌1, 𝜌2, 𝜌3 with other endpoints
𝑢1, 𝑢2, 𝑢3. (b) The binary tree 𝑇 with leaves 𝑢1, 𝑢2, 𝑢3, root 𝑟 and an inner node 𝜇. (c) The
replacement for the pipes 𝜌1, 𝜌2, 𝜌3.

Synchronized Planarity the direct “interface” between the SEFE-2 problem in
the “unknown complexity” region of our hierarchy and most of the problems in
the “efficiently solvable” (P) region in Figure 3.1.

▶ Theorem 6.24. Synchronized Planarity can be reduced to SEFE-2 in lin-
ear time. ◀

Proof. We subdivide each edge twice, moving the resulting middle segments to one
exclusive graph and the begin and end segments to the shared graph, which thus,
for each vertex, contains a star of the same degree. The other exclusive graph then
encodes the constraints of all pipes and partition cells as follows. For each pipe,
the shared edges incident to its endpoints are connected according to the bijection
of the pipe. The edges incident to all Q-vertices in the same partition cell are
connected to form a triconnected component, respecting the rotations enforced by
the Q-vertices. The bonds in the second exclusive graph now ensure that all pipes
are respected, while the rigids ensure that the rotations of Q-vertices are respected
and in sync. Note that the shared graph only contains stars in the resulting SEFE-2
instance, thus we do not need to consider relative positions. ■

6.5.2 Multi-Synchronized Planarity

In the generalization 𝑘-Synchronized Planarity, each P-vertex can be endpoint
of at most 𝑘 pipes (each in turn still having exactly 2 endpoints). Note that 1-Syn-
chronized Planarity is the equivalent to the problem as we studied it up to now,

97

Chapter 6 Synchronized Planarity

while solving 0-Synchronized Planarity is equivalent to solving a pipe-free, i.e.,
reduced instance using Lemma 6.8. We first show that allowing values of 𝑘 greater
than 2 does not increase the complexity of the problem.
▶ Lemma 6.25. 𝑘-Synchronized Planarity can be reduced to 2-Synchronized
Planarity in polynomial time. ◀

Proof. Let 𝑣 be a P-vertex that is endpoint of the 𝑘 ≥ 3 pipes 𝜌1, . . . , 𝜌𝑘 with other
endpoints𝑢1, . . . , 𝑢𝑘 , respectively; see Figure 6.13. Let𝑇 be a rooted binary tree with
leaves 𝑢1, . . . , 𝑢𝑘 where all inner nodes (including the root) have degree at most 3.
For each inner node 𝜇 of 𝑇 , we add a bond with poles 𝑣𝜇, 𝑢𝜇 connected by deg(𝑣)
edges, each corresponding to one edge incident to 𝑣. Additionally, for each node 𝜇
with parent 𝜈 , we add one pipe matching 𝑣𝜇 with𝑢𝜈 , deriving the bijections from the
correspondence of edges of the bond to edges incident to 𝑣. For the root node 𝑟 of𝑇 ,
we add a pipe matching 𝑣𝑟 with 𝑣. For each leaf 𝑢𝑖 with parent 𝜈 in𝑇 , we add a pipe
matching 𝑢𝜈 with 𝑢𝑖 . Finally, remove the pipes 𝜌1, . . . , 𝜌𝑘 . Note that this leaves 𝑣
with only with one pipe while only introducing new vertices and pipes such that
one vertex is part of at most two pipes; see Figure 6.13. Furthermore, we only
replaced one pipe of each 𝑢𝑖 with a single other one. Thus, exhaustively applying
this process yields an equivalent 2-Synchronized Planarity instance. ■

Now we will show that 2-Synchronized Planarity (and thus also 𝑘-Synchro-
nized Planarity for 𝑘 > 1) is NP-complete, even if either the total number of
pipes or the maximum degree of pipes is very limited.
▶ Theorem6.26. 2-Synchronized Planarity is NP-complete, even if the instance
contains only two pipes. ◀

Proof. Obviously, 𝑘-Synchronized Planarity can be solved using a guess and
verify approach, guessing an embedding and verifying in polynomial time its
planarity and that all constraints are satisfied. Angelini et al. [ADN15] show that
the NP-hard problem Betweenness [Opa79] can be reduced to SEFE-3 with a star as
shared graph; see also the summary in [Rut20]. We will reduce this class of SEFE-3
instances to instances of 2-Synchronized Planarity, showing the NP-hardness
of the problem. Note that to find a solution for such a SEFE-3 instance, as the star
used as shared graph is connected, it suffices to find planar embeddings of the three
exclusive graphs which have consistent rotations for the center of the star [BKR17;
JS09]. To do so, we will add the three exclusive graphs separately to an instance of
2-Synchronized Planarity and synchronize their three centers using two pipes.
A solution for the resulting 2-Synchronized Planarity instance now corresponds
to a solution to the SEFE-3 instance, which corresponds to a solution for the input
Betweenness instance. ■

98

Related NP-hard Problems Section 6.5

Using a recent result from joint work with Rutter and Pfretzschner [5], we can
also show that the case of restricted pipe degrees is NP-hard.

▶ Corollary 6.27. 2-Synchronized Planarity is NP-complete, even if the in-
stance contains only pipes of degree 4. ◀

Proof. It can be shown that SEFE with a variable 𝑘 is NP-complete, even if the
shared graph is connected and has maximum degree 4 [5]. Similar to Theorem 6.26
it suffices to ensure consistent rotations for such instances [BKR17; JS09], which
can easily be done using separate exclusive graphs with vertices synchronized by
pipes. Using Lemma 6.25, we can turn the resulting 𝑘-Synchronized Planarity
instance into an instance of 2-Synchronized Planarity. ■

6.5.3 Partially FPQ-Constrained Synchronized Planarity
In Section 6.4.7, we showed that partial PQ-constraints to vertices as in Partially
PQ-constrained Planarity can be expressed in terms of Synchronized Pla-
narity. In Section 6.4.8, we showed that the same can be done with PQ-constraints
to pipes, as long as all incident edges are part of the constraint. We now show that
in contrast, partial PQ-constraints to pipes turn the problem NP-complete. The
problem Partially PQ-constrained Synchronized Planarity generalizes PQ-
constrained Synchronized Planarity and also allows the PQ-trees constraining
rotations of pipe endpoints to only constrain some, but not all of the incident edges.

▶ Theorem 6.28. Partially PQ-constrained Synchronized Planarity is
NP-complete. ◀

Proof. Again, the problem can easily be solved using a guess and verify approach,
showing containment in NP. To show NP-hardness, we use a reduction from the
NP-hard problem Betweenness [Opa79]. In an instance (𝑋,𝐶) of this problem, we
seek a linear order 𝜎 of a base set 𝑋 such that for each triple (𝑥,𝑦, 𝑧) ∈ 𝐶 ⊂ 𝑋 3,
𝑦 lies between 𝑥 and 𝑧 in 𝜎 . Note that the ordering of 𝑥 and 𝑧 is arbitrary and the
elements 𝑥,𝑦, and 𝑧 need not be consecutive. As Synchronized Planarity works
with cyclic orders instead of linear orders, we will add a separator element ℓ to 𝑋
and work with the resulting set 𝑋 ′. We start building a corresponding instance of
Partially PQ-constrained Synchronized Planarity by adding a bundle of |𝑋 ′|
edges, each one corresponding to a different element of 𝑋 ′. From this bundle we
will build a chain by, for each constraint (𝑥,𝑦, 𝑧) ∈ 𝐶 , adding a further bundle
of |𝑋 ′| edges and synchronizing one of the endpoints of the chain with one of the
endpoints of the newly inserted bundle. This pipe has a constraint consisting of a
single Q-node with leaves [ℓ, 𝑥,𝑦, 𝑧], effectively allowing the positions of 𝑥 and 𝑧 to

99

Chapter 6 Synchronized Planarity

be swapped with regard to 𝑦 but ensuring that 𝑦 is between 𝑥 and 𝑧 when cutting
the cyclic order at ℓ . Note that due to the pipes, in a solution to the generated
instance, all bundles have the same order of edges and the fixed rotations of all
Q-nodes are respected. Thus, we can obtain a linear order that is a solution to (𝑋,𝐶)
from any solution to our generated instance by cutting the cyclic order that is the
rotation of any one of the vertices in the built chain at ℓ . Conversely, it is easy to see
that appending ℓ and interpreting a linear order that is a solution to Betweenness
as cyclic yields valid rotations for the Partially PQ-constrained Synchronized
Planarity instance. ■

6.6 Comparison with the Fulek-Tóth Algorithm

We want to point out that there are many parallels between our algorithm for
solving Synchronized Planarity and Fulek and Tóth’s solution to Atomic Em-
beddability. First note that both problems are linear-time equivalent, a reduction
in the one direction has been given in the previous section. To reduce from Syn-
chronized Planarity to Atomic Embeddability, all connected components can
be turned into atoms, subdividing pipes that loop back to the same component
with a trivial atom. It remains to encode the Q-constraints, which can be done
by converting all Q-vertices to wheels and synchronizing the centers for all Q-
vertices in the same partition cell with pipes to one additional atom per cell. Using
a triconnected graph for this atom ensures that exactly two flips are possible and
all Q-vertices in the cell are flipped the same way.

The algorithm of Fulek and Tóth relies on seven basic operations:

• Suppress eliminates pipes with degree two or less,

• Delete removes certain edges when all affected components are subcubic,

• Split splits an atom into its connected components, and

• Detach splits unmatched cut-vertices.

• Enclose encloses a cut-vertex inside its own atom,

• Contract joins two neighboring atoms (under certain conditions), and

• Stretch encodes the fact that a subset of edges incident to a vertex must be
consecutive by splitting the vertex into two.

100

Conclusion Section 6.7

Fulek and Tóth carefully orchestrate these operations into two large subroutines,
which they then iteratively use to globally reduce the maximum degree of cut-
vertices that correspond to pipes. Eventually all such cut-vertices have small degree
and the problem can be solved directly as each part of the instance is either subcubic
or what they call toroidal.
Our algorithm only uses four basic operations: ConvertSmall, Encapsulate-

AndJoin, SimplifyMatching, and PropagatePQ. These operations can be ap-
plied in an arbitrary order to reach a reduced instance, which can then be solved
directly.

In direct comparison, our operation ConvertSmall handles all the cleanup (and
more) that Fulek and Tóth achieve with Suppress and Delete. Further, in our
context, the operation Split is not needed, since we do not differentiate between
connected components and atoms, and Detach is not needed since we handle
unmatched cut-vertices in our base case algorithm rather than during the reduc-
tion phase.
Our operation EncapsulateAndJoin replaces multiple calls to Enclose and

Contract as a much more targeted solution. The former also encompasses the
stretching of local branches in Carmesin’s work [Car17c]. Our operation and
the conditions under which it can (and must be) applied clearly expose the key
insight that also stands behind the algorithm of Fulek and Tóth, and which we have
formalized in Lemma 6.2: Any planar embedding of the bipartite graph resulting
from contracting two stars at their centers respects the cut made for splitting both
stars. Furthermore, there are parallels between Contract and case (iii) of Simpli-
fyMatching (i.e. when a bond links two distinct pipes).10 Finally, thanks to the
use of PQ- and SPQR-trees, PropagatePQ can be seen as a much more focused
replacement of multiple iterations of Stretch. An example for how the operations
relate can be seen in Figure 11 of the paper by Fulek and Tóth [FT22], where an
instance on which SimplifyMatching and then PropagatePQ can (and clearly
should) be applied, is first Contracted twice in Step (iv.a) and then Stretched in
(a possibly later iteration of) Step (v.c) of their Subroutine 2.

To conclude, our approach makes it clear to see where progress is made, uncov-
ering important ideas that are not obvious in the global degree-reduction approach
employed by Fulek and Tóth.

6.7 Conclusion
In this chapter, we give a quadratic-time algorithm for Synchronized Planarity,
which improves the previous 𝑂 (𝑚8)-time algorithm for the linear-time equiva-
lent problem Atomic Embeddability [FT22]. Similar to Goldberg and Tarjan’s

10 Contract could also be used instead of PropagatePQ between two block-vertices of distinct
connected components, although this would break our running time analysis; see Section 9.3.2.

101

Chapter 6 Synchronized Planarity

push-relabel algorithm, it relies on few and simple operations that can be ap-
plied in an arbitrary order. They also highlight where and how progress is made
and thereby clearly expose key ideas that also underlie the algorithm for Atomic
Embeddability.

The applications of Synchronized Planarity include solving Clustered Pla-
narity, Connected SEFE-2, Partially PQ-constrained Planarity, Row-Column
Independent NodeTrix Planarity and various other constrained planarity vari-
ants in quadratic time, thanks to linear-time reductions to Synchronized Planari-
ty for all of them. For Clustered Planarity, this improves over the previously
fastest algorithms via the 𝑂 (𝑚8)-time algorithm for Atomic Embeddability. In
the case of Connected SEFE-2 the reduction used by Fulek and Tóth [FT22] in-
cludes a quadratic blowup and therefore yields an 𝑂 (𝑛16)-time algorithm. Our
direct linear-time reduction leads to a quadratic algorithm. Partially PQ-con-
strained Planarity and Row-Column Independent NodeTrix Planarity were
only solved for biconnected instances. Our algorithms achieve the same quadratic
running time, but work for all instances. Altogether, we show that almost all con-
strained planarity variants for which efficient solutions are known can be solved via
a reduction to Synchronized Planarity; see Figure 3.1. Many of these reductions
are very natural, showing that Synchronized Planarity serves as a useful tool
when modelling or solving constrained planarity problems.

While our algorithm efficiently solves Connected SEFE-2, the complexity of
the general SEFE-2 problem, where the shared graph is not necessarily connected,
remains unknown. Jünger and Schulz showed that SEFE-2 is equivalent to finding a
pair of planar embeddings that induce the same (i.e. consistent) cyclic edge orders
and the same (i.e. consistent) relative positions on the common graph [BKR17;
JS09]. Our algorithm can be used to provide the synchronization for the first half of
this requirement, which is sufficient for instances with a connected shared graph.
It would be interesting to investigate whether Synchronized Planarity can be
extended, e.g. using cycle bases of the shared graph [BKR17; BR15], to also ensure
consistent relative positions in the common graph and thus solve instances where
the shared graph is not connected.

102

7 Maintaining Triconnected Com-
ponents under Node Expansion

This chapter is based on joint work with Ignaz Rutter, which also appeared at EuroCG
2023 [9] and CIAC 2023 [6].

The SPQR-tree is a data structure that represents the decomposition of a graph at
its separation pairs, that is the pairs of vertices whose removal disconnects the graph.
The components obtained by this decomposition are called skeletons. SPQR-trees
form a central component of many graph visualization techniques and are used for,
e.g., planarity testing and variations thereof [DT96b; HR20a] and for computing
embeddings and layouts [Gut10; Wei02]; see [Mut03] for a survey of graph drawing
applications. Outside of graph visualization they are used in the context of, e.g.,
minimum spanning trees [BM89; DT96b], triangulations [BKK97], and crossing
optimization [Gut10; Wei02]. They also have multiple applications outside of graph
theory and even computer science, e.g. for creating integrated circuits [CHH99;
Zha+13], business processes modelling [VVK09], electrical engineering [FOO05],
theoretical physics [MS12] and genomics [Fed+17].
Initially, SPQR-trees were devised by Di Battista and Tamassia for incremen-

tal planarity testing [DT89; DT96b]. As such, even in their initial form, SPQR-
trees already allowed dynamic updates in the form of edge addition. Their use
was quickly expanded to other on-line problems [DT90; DT96a] and to the fully-
dynamic setting, which allows insertion and deletion of vertices and edges in𝑂 (

√
𝑛)

time [Epp+96], where 𝑛 is the number of vertices in the graph. The original descrip-
tions of SPQR-trees by Di Battista and Tamassia were first published in 1989 [DT89]
and 1990 [DT90] and are based on ideas by Bienstock and Monma [BM89; BM90],
while the corresponding full versions were published in 1996 [DT96a; DT96b].
In the meantime, the algorithms for incrementally maintaining triconnectivity
and planarity information were already improved by Westbrook [Wes92] and La
Poutré [Pou92; Pou94], obtaining an amortized running time of 𝑂 (𝛼 (𝑞, 𝑛)) for 𝑞
operations where 𝛼 is the inverse Ackermann function. Recently, Holm and Roten-
berg describe a fully-dynamic algorithm for maintaining planarity information in
𝑂 (log3 𝑛) time per operation [HR20a; HR20b]. See also there for a short overview
over more recent usages of SPQR-trees.
In this chapter, we consider an incremental setting where we allow a single

operation that expands a vertex 𝑣 into a connected graph𝐺𝜈 . This expansion can for

103

Chapter 7 Maintaining Triconnected Components under Node Expansion

example be the join of a Synchronized Planarity pipe as described in Section 6.3.1
or the operation PropagatePQ from Section 6.3.4, which replaces a vertex with a
PQ-tree (where Q-nodes are represented by wheels). The approach of Eppstein et
al. [Epp+96] allows this in𝑂 ((deg(𝑣) + |𝐺𝜈 |) ·

√
𝑛) time by only representing parts of

triconnected components. We improve this to 𝑂 (deg(𝑣) + |𝐺𝜈 |) using an algorithm
that is much simpler and explicitly yields full triconnected components, which will
become important for our applications later. In addition, our approach also allows
to efficiently merge two SPQR-trees as follows. Given two biconnected graphs
𝐺1,𝐺2 containing vertices 𝑣1, 𝑣2, respectively, together with a bijection between
their incident edges, we construct a new graph𝐺 by replacing 𝑣1 with𝐺2 − 𝑣2 in𝐺1,
identifying edges using the given bijection. Given the SPQR-trees of 𝐺1 and 𝐺2,
we show that the SPQR-tree of 𝐺 can be found in 𝑂 (deg(𝑣1)) time. For example,
this allows an even more efficient join of Synchronized Planarity pipes when
both endpoints are block-vertices. To summarize, we present a data structure that
supports the following operations: InsertGraphSPQR expands a single vertex in
time linear in the size of the expanded subgraph, MergeSPQR merges two SPQR-
trees in time linear in the degree of the replaced vertices, IsPlanar indicates whether
the currently represented graph is planar in constant time, and Rotation yields
one of the two possible planar rotations of a vertex in a triconnected skeleton in
constant time. Furthermore, our data structure can be adapted to yield consistent
planar embeddings for all triconnected skeletons and to test for the existence of
three disjoint paths between two arbitrary vertices with an additional factor of 𝛼 (𝑛)
for all operations, where 𝛼 is the inverse Ackermann function.
The main idea of our approach is that the subtree of the SPQR-tree affected by

expanding a vertex 𝑣 has size linear in the degree of 𝑣, but may contain arbitrarily
large skeletons. In a “non-normalized” version of an SPQR-tree, the affected cycle
(‘S’) skeletons can easily be split to have a constant size, while we develop a custom
splitting operation to limit the size of triconnected (‘R’) skeletons. This limits the
size of the affected structure to be linear in the degree of 𝑣 and allows us to perform
the expansion efficiently.

In addition to the description of this data structure, the technical contribution of
our work is twofold: First, we develop an axiomatic definition of the decomposition
at separation pairs, putting the SPQR-tree as “mechanical” data structure into focus
instead of relying on and working along a given graph structure. As a result, we
can deduce the represented graph from the data structure instead of computing
the data structure from the graph. This allows us to make more or less arbitrary
changes to the data structure (respecting its consistency criteria) and observe how
the graph changes, instead of having to reason which changes to the graph require
which updates to the data structure.

104

Maintaining Triconnected Components under Node Expansion Chapter 7

Problem
Running Times

before basic improved
Atomic Embeddability /
Synchronized Planarity

𝑂 (𝑚8) [FT22] 𝑂 (𝑚2) 𝑂 (𝑚 · 𝛥)

Clustered Planarity 𝑂 ((𝑛 + 𝑑)8) [FT22] 𝑂 ((𝑛 + 𝑑)2) 𝑂 (𝑛 + 𝑑 · 𝛥)
Connected SEFE-2 𝑂 (𝑛16) [FT22] 𝑂 (𝑛2) 𝑂 (𝑛 · 𝛥)

bicon: 𝑂 (𝑛2) [BR16b]
Partially
PQ-constrained
Planarity

bicon: 𝑂 (𝑚) [BR16b] 𝑂 (𝑚2) 𝑂 (𝑚 · 𝛥)

Strip Planarity 𝑂 (𝑛8) [Ang+16; FT22] 𝑂 (𝑛2) 𝑂 (𝑛 · 𝛥)
fix-e.: 𝑂 (𝑛2) [Ang+16]

Table 7.1: The best known running times for various constrained planarity problems
before Synchronized Planarity was published; using the basic algorithm as described
in Chapter 6; and using the improved version with the speed-up from this chapter. Running
times prefixed with “bicon” only apply for certain problem instances which expose some
form of biconnectivity, while the “fix-e” time only applies in the fixed embedding case.
The variables 𝑛 and𝑚 refer to the number of vertices and edges of the problem instance,
respectively. The variable 𝑑 refers to the number of edge-cluster boundary crossings
in Clustered Planarity instances, while 𝛥 refers to the maximum pipe degree in the
corresponding Synchronized Planarity instances. This is bounded by the maximum
number of edges crossing a single cluster border or the maximum vertex degree in the
input instance, depending on the problem.

105

Chapter 7 Maintaining Triconnected Components under Node Expansion

Second, we explain how our data structure can be used to improve the running
time of the algorithm for solving Synchronized Planarity from Chapter 6 from
𝑂 (𝑚2) (see Theorem 6.12) to 𝑂 (𝑚 · 𝛥), where 𝛥 is the maximum pipe degree (i.e.
the maximum degree of a vertex with synchronization constraints that enforce its
rotation to be the same as that of another vertex). This speed-up also pertains to
further constrained planarity variants; see Table 7.1 for an overview of the resulting
improvements. Among them is the notorious Clustered Planarity, where we
improve the running time from 𝑂 ((𝑛 + 𝑑)2) (see Theorem 6.14) to 𝑂 (𝑛 + 𝑑 · 𝛥),
where 𝑑 is the total number of crossings between cluster borders and edges and 𝛥
is the maximum number of edge crossings on a single cluster border.
The expansion that is central to this work is formally defined as follows. Let

𝐺𝛼 ,𝐺𝛽 be two graphs where𝐺𝛼 contains a vertex 𝑢 and𝐺𝛽 contains |𝑁 (𝑢) | marked
vertices, together with a bijection 𝜙 between the neighbors of 𝑢 and the marked
vertices in 𝐺𝛽 . With 𝐺𝛼 [𝑢 →𝜙 𝐺𝛽] we denote the graph that is obtained from the
disjoint union of 𝐺𝛼 ,𝐺𝛽 by identifying each neighbor 𝑥 of 𝑢 with its respective
marked vertex 𝜙 (𝑥) in 𝐺𝛽 and removing 𝑢; see Figure 7.4 for an example. We also
say that𝐺𝛼 [𝑢 →𝜙 𝐺𝛽] is a modified version of𝐺𝛼 , where the vertex𝑢 was expanded
into 𝐺𝛽 . Note that the expansion generalizes the join from Section 6.3.1.
This chapter is structured as follows. We describe the skeleton decomposition

and show how it relates to the SPQR-tree in Section 7.1. The following Section 7.2
extends this data structure by the capability of splitting triconnected components.
In Section 7.3, we use this to ensure the affected part of the SPQR-tree is small
when we replace a vertex with a new graph. Section 7.4 shows how our results
can be used to reduce the time required for solving Synchronized Planarity,
Clustered Planarity and related constrained planarity variants.

7.1 Skeleton Decompositions
A skeleton structure S = (G, origV, origE, twinE) that represents a graph𝐺S = (𝑉 , 𝐸)
consists of a set G of disjoint skeleton graphs together with three total, surjective
mappings twinE, origE, and origV that satisfy the following conditions:

• Each skeleton 𝐺𝜇 = (𝑉𝜇, 𝐸real𝜇
·∪ 𝐸virt𝜇) in G is a multi-graph where each edge

is either in 𝐸real𝜇 and thus called real or in 𝐸virt𝜇 and thus called virtual.

• Bijection twinE : 𝐸virt → 𝐸virt matches all virtual edges in 𝐸virt =
⋃︁

𝜇 𝐸
virt
𝜇

such that twinE(𝑒) ≠ 𝑒 and twinE2 = id.

• Surjection origV :
⋃︁

𝜇 𝑉𝜇 → 𝑉 maps all skeleton vertices to graph vertices.

• Bijection origE :
⋃︁

𝜇 𝐸
real
𝜇 → 𝐸 maps all real edges to the graph edge set 𝐸.

106

Skeleton Decompositions Section 7.1

Note that each vertex and each edge of each skeleton is in the domain of exactly
one of the three mappings. As the mappings are surjective, 𝑉 and 𝐸 are exactly
the images of origV and origE. For each vertex 𝑣 ∈ 𝐺S , the skeletons that contain
an allocation vertex 𝑣′ with origV(𝑣′) = 𝑣 are called the allocation skeletons of 𝑣.
Furthermore, let 𝑇S be the graph where each node 𝜇 corresponds to a skeleton 𝐺𝜇

of G. Two nodes of 𝑇S are adjacent if their skeletons contain a pair of virtual edges
matched with each other. We call a skeleton structure a skeleton decomposition if it
satisfies the following conditions:

1 (bicon) Each skeleton is biconnected.

2 (tree) Graph 𝑇S is simple, loop-free, connected and acyclic, i.e., a tree.

3 (orig-inj) For each skeleton 𝐺𝜇 , the restriction origV |𝑉𝜇 is injective.

4 (orig-real) For each real edge 𝑢𝑣, the endpoints of origE(𝑢𝑣) are origV(𝑢) and
origV(𝑣).

5 (orig-virt) Let 𝑢𝑣 and 𝑢′𝑣′ be two virtual edges with 𝑢𝑣 = twinE(𝑢′𝑣′). For their
respective skeletons 𝐺𝜇 and 𝐺′𝜇 (where 𝜇 and 𝜇′ are adjacent in 𝑇S), it is
origV(𝑉𝜇) ∩ origV(𝑉𝜇′) = origV({𝑢, 𝑣}) = origV({𝑢′, 𝑣′}).

6 (subgraph) The allocation skeletons of any vertex of 𝐺S form a connected
subgraph of 𝑇S .

Figure 7.1 shows an example of S, 𝐺S , and 𝑇S . We call a skeleton decomposition
with only one skeleton 𝐺𝜇 trivial. In this case, 𝐺𝜇 is isomorphic to 𝐺S , and origE
and origV are actually bijections between the edges and vertices of both graphs.

To model the decomposition into triconnected components, we define the opera-
tions SplitSeparationPair and its converse, JoinSeparationPair, on a skeleton
decomposition S = (G, origV, origE, twinE); see also Figure 7.2. For SplitSepara-
tionPair, let𝑢, 𝑣 be a separation pair of skeleton𝐺𝜇 and let (𝐴, 𝐵) be a non-trivial bi-
partition of the bridges between𝑢 and 𝑣.11 ApplyingSplitSeparationPair(S, (𝑢, 𝑣),
(𝐴, 𝐵)) yields skeleton decomposition S′ = (G′, origV′, origE′, twinE′) as follows.
In G′, we replace 𝐺𝜇 by two skeletons 𝐺𝛼 ,𝐺𝛽 , where 𝐺𝛼 is obtained from 𝐺𝜇 [𝐴] by
adding a new virtual edge 𝑒𝛼 between 𝑢 and 𝑣. The same respectively applies to 𝐺𝛽

with 𝐺𝜇 [𝐵] and 𝑒𝛽 . We set twinE′(𝑒𝛼) = 𝑒𝛽 and twinE′(𝑒𝛽) = 𝑒𝛼 . Note that origV
maps the endpoints of 𝑒𝛼 and 𝑒𝛽 to the same vertices. All other skeletons and their
mappings remain unchanged.

11 Recall that bridges are the maximal subgraphs which cannot be disconnected by removing or
splitting the vertices of a corresponding separation pair. Note that a bridge might consist out of
a single edge between 𝑢 and 𝑣 and that each bridge includes the vertices 𝑢 and 𝑣.

107

Chapter 7 Maintaining Triconnected Components under Node Expansion

u
(a)

(b)

(d)

(c)

Figure 7.1: Different views on the skeleton decomposition S. (a) The graph 𝐺S with a
vertex 𝑢 marked in blue. (b) The skeletons of G. Virtual edges are drawn in gray with their
matching twinE being shown in orange. The allocation vertices of 𝑢 are marked in blue.
(c) The tree 𝑇S . The allocation skeletons of 𝑢 are marked in blue. (d) The embedding tree
of vertex 𝑢 as described in Section 7.4.1. P-nodes are shown as white disks, C-nodes are
shown as large double disks. The leaves of the embedding tree correspond to the edges
incident to 𝑢.

split(,)

join(e1, e2) e1

(a) (b)
e2

Figure 7.2: (a) A skeleton decomposition that represents graph𝐺S from Figure 7.1 (a) with
the two allocation vertices of graph vertex𝑢 marked in blue. (b) The result of applying Split-
SeparationPair to separate the bridges highlighted in green from those in red. Applying
the converse operation JoinSeparationPair on the resulting edges yields the original
skeleton.

For JoinSeparationPair, consider virtual edges 𝑒𝛼 , 𝑒𝛽 with twinE(𝑒𝛼) = 𝑒𝛽 and
let 𝐺𝛽 ≠ 𝐺𝛼 be their respective skeletons. Applying JoinSeparationPair(S, 𝑒𝛼)
yields a skeleton decomposition S′ = (G′, origV′, origE′, twinE′) as follows. In G′,
we merge𝐺𝛼 with𝐺𝛽 to form a new skeleton𝐺𝜇 by identifying the endpoints of 𝑒𝛼
and 𝑒𝛽 that map to the same vertex of 𝐺S . Additionally, we remove 𝑒𝛼 and 𝑒𝛽 . All
other skeletons and their mappings remain unchanged.
The main feature of both operations is that they leave the graph represented

by the skeleton decomposition unaffected while splitting a node or contracting an
edge in 𝑇S , which can be verified by checking the individual conditions.

▶ Lemma7.1. ApplyingSplitSeparationPair or JoinSeparationPair on a skele-
ton decomposition S yields a skeleton decomposition S′ with an unchanged repre-
sented graph 𝐺S′ = 𝐺S . ◀

108

Skeleton Decompositions Section 7.1

Proof. We first check that all conditions still hold in the skeleton decomposition S′
returned by SplitSeparationPair. As (𝐴, 𝐵) is a non-trivial bipartition, each set
contains at least one bridge. Together with 𝑒𝛼 (and 𝑒𝛽), this bridge ensures that 𝐺𝛼

(and 𝐺𝛽) remain biconnected, satisfying condition 1 (bicon). The operation splits
a node 𝜇 of 𝑇S into two adjacent nodes 𝛼, 𝛽 , whose neighbors are defined exactly
by the virtual edges in 𝐴, 𝐵, respectively. Thus, condition 2 (tree) remains satisfied.
The mappings origV′, origE′ and twinE′ obviously still satisfy conditions 3 (orig-inj)
and 4 (orig-real). We duplicated exactly two nodes, 𝑢 and 𝑣 of adjacent skeletons𝐺𝛼

and 𝐺𝛽 . Because 3 (orig-inj) holds for 𝐺𝜇 , 𝐺𝛼 and 𝐺𝛽 share no other vertices that
map to the same vertex of 𝐺S′ . Thus, condition 5 (orig-virt) remains satisfied.
Condition 6 (subgraph) could only be violated if the subgraph of 𝑇S′ formed by

the allocation skeletons of some vertex 𝑧 ∈ 𝐺S′ was no longer connected. This
could only happen if only one of 𝐺𝛼 and 𝐺𝛽 were an allocation skeleton of 𝑧, while
the other has a further neighbor that is also an allocation skeleton of 𝑧. Assume
without loss of generality that𝐺𝛼 and the neighbor𝐺𝜈 of𝐺𝛽 , but not𝐺𝛽 itself, were
allocation skeletons of 𝑧. Because 𝐺𝜈 and 𝐺𝛽 are adjacent in 𝑇S′ there are virtual
edges 𝑥𝑦 = twinE′(𝑥′𝑦′) with 𝑥𝑦 ∈ 𝐺𝛽 and 𝑥′𝑦′ ∈ 𝐺𝜈 . The same virtual edges are
also present in the input instance, only with the difference that 𝑥𝑦 ∈ 𝐺𝜇 and 𝜇

(instead of 𝛽) and 𝜈 are adjacent in 𝑇S . As the input instance satisfies condition
5 (orig-virt), it is 𝑧 ∈ origV(𝑉𝜈) ∩ origV(𝑉𝜇) = origV({𝑥,𝑦}) = origV({𝑥′, 𝑦′}). As
origV({𝑥,𝑦}) = origV′({𝑥,𝑦}), this is a contradiction to𝐺𝛽 not being an allocation
skeleton of 𝑧.
Finally, the mapping origE remains unchanged and the only change to origV is

to include two new vertices mapping to already existing vertices. Due to condition
4 (orig-real) holding for both the input and the output instance, this cannot affect
the represented graph 𝐺S′ .

Now consider the skeleton decomposition S′ returned by JoinSeparationPair.
Identifying distinct vertices of distinct connected components does not affect their
biconnectivity, thus condition 1 (bicon) remains satisfied. The operation effectively
contracts and removes an edge in𝑇S , which does not affect𝑇S′ being a tree satisfying
condition 2 (tree). Note that condition 2 (tree) holding for the input instance also
ensures that 𝐺𝛼 and 𝐺𝛽 are two distinct skeletons. As the input instance also
satisfies condition 5 (orig-virt), there are exactly two vertices in each of the two
adjacent skeletons𝐺𝛼 and𝐺𝛽 , where origV maps to the same vertex of 𝐺S . These
two vertices must be part of the twinE pair making the two skeletons adjacent, thus
they are exactly the two pairs of vertices we identify with each other. Thus, origV |𝑉𝜇
is still injective, satisfying condition 3 (orig-inj). As we modify no real edges and no
other virtual edges, the mappings origV′ and origE′ obviously still satisfy condition
4 (orig-real). As the allocation skeletons of each graph vertex form a connected

109

Chapter 7 Maintaining Triconnected Components under Node Expansion

subgraph, joining two skeletons cannot change the intersection with any of their
neighbors, leaving 5 (orig-virt) satisfied. Finally, contracting a tree edge cannot lead
to any of the subgraphs of 6 (subgraph) becoming disconnected, thus the condition
also remains satisfied. Again, no changes were made to origE, while condition
5 (orig-virt) makes sure that origV mapped the two pairs of merged vertices to the
same vertex of 𝐺S . Thus, the represented graph 𝐺S′ remains unchanged. ■

This gives us a second way of finding the represented graph by exhaustively
joining all skeletons until there is only one left, obtaining the unique trivial skeleton
decomposition:
▶ Lemma7.2. Exhaustively applying JoinSeparationPair to a skeleton decompo-
sitionS = (G, origV, origE, twinE) yields a trivial skeleton decompositionS′ = (G′,
origV′, origE′, twinE′) where 𝑇S′ consists of a single node 𝜇 and origE′ and origV′
define an isomorphism between 𝐺′𝜇 and 𝐺S′ . ◀

Proof. As all virtual edges arematched, and thematched virtual edge always belongs
to a different skeleton (condition 2 (tree) ensures that𝑇S is loop-free), we can always
apply JoinSeparationPair on a virtual edge until there are none left. As 𝑇S is
connected, this means that the we always obtain a tree with a single node, that
is an instance with only a single skeleton. As a single application of JoinSepara-
tionPair preserves the represented graph, any chain of multiple applications also
does. Note that origE′ is a bijection and the surjective origV′ is also injective on
the single remaining skeleton due to condition 3 (orig-inj), thus it also globally is a
bijection. Together with condition 4 (orig-real), this ensures that any two vertices 𝑢
and 𝑣 of 𝐺′𝜇 are adjacent if and only if origV′(𝑢) and origV′(𝑣) are adjacent in 𝐺S′ .
Thus origV′ is an edge-preserving bijection, that is an isomorphism. ■

A key point about the skeleton decomposition and especially the operation Split-
SeparationPair is that they model the decomposition of a graph at separation
pairs. This decomposition was formalized as SPQR-tree by Di Battista and Tamas-
sia [DT96a; DT96b] and is unique for a given graph [HT73b; Mac37]. Angelini
et al. [ABR14] describe a decomposition tree that is conceptually equivalent to
our skeleton decomposition. They also present an alternative definition for the
SPQR-tree as a decomposition tree satisfying further properties. We adopt this defi-
nition as follows, not requiring planarity of triconnected components and allowing
virtual edges and real edges to appear within one skeleton (i.e., having leaf Q-nodes
merged into their parents).
▶ Definition 7.3. A skeleton decomposition S where any skeleton in G is either
a polygon, a bond, or triconnected (“rigid”), and two skeletons adjacent in 𝑇S are
never both polygons or both bonds, is the unique SPQR-tree of 𝐺S . ◀

110

Extended Skeleton Decompositions Section 7.2

The main difference between the well-known ideas behind decomposition trees
and our skeleton decomposition is that the latter allow an axiomatic access to the
decomposition at separation pairs. For the skeleton decomposition, we employ a
purely functional, “mechanical” data structure instead of relying on and working
along a given graph structure. In our case, the represented graph is deduced from
the data structure (i.e. the SPQR-tree) instead of computing the data structure from
the graph.

7.2 Extended Skeleton Decompositions

Note that most skeletons, especially polygons and bonds, can easily be decomposed
into smaller parts. The only exception to this are triconnected skeletons which
cannot be split further using the operations we defined up to now. This is a problem
when modifying a vertex that occurs in triconnected skeletons that may be much
bigger than the direct neighborhood of the vertex. To fix this, we define a further
set of operations that allow us to isolate vertices out of arbitrary triconnected com-
ponents by replacing them with a (“virtual”) placeholder vertex. This placeholder
then points to a smaller component that contains the actual vertex, see Figure 7.3.
Modification of the edges incident to the placeholder is disallowed, which is why
we call them “occupied”.

Formally, the structures needed to keep track of the components split in this
way in an extended skeleton decomposition S = (G, origV, origE, twinE, twinV) are
defined as follows. Skeletons now have the form𝐺𝜇 = (𝑉𝜇 ·∪𝑉 virt

𝜇 , 𝐸real𝜇
·∪𝐸virt𝜇

·∪𝐸occ𝜇).
Bijection twinV : 𝑉 virt → 𝑉 virt matches all virtual vertices 𝑉 virt =

⋃︁
𝜇 𝑉

virt
𝜇 , such

that twinV(𝑣) ≠ 𝑣, twinV2 = id. The edges incident to virtual vertices are contained
in 𝐸occ𝜇 and thus considered occupied; see Figure 7.3 (b). Similar to the virtual edges
matched by twinE, any two virtual vertices matched by twinV induce an edge
between their skeletons in 𝑇S . Condition 2 (tree) also equally applies to those
edges induced by twinV, which in particular ensures that there are no parallel
twinE and twinV tree edges in 𝑇S . Similarly, the connected subgraphs of condition
6 (subgraph) can also contain tree edges induced by twinV. All other conditions
remain unchanged, but we add two further conditions to ensure that twinV is
consistent:

7 (stars) For each 𝑣𝛼 , 𝑣𝛽 with twinV(𝑣𝛼) = 𝑣𝛽 , it is deg(𝑣𝛼) = deg(𝑣𝛽). All edges
incident to 𝑣𝛼 and 𝑣𝛽 are occupied and have distinct endpoints (except for 𝑣𝛼
and 𝑣𝛽). Each occupied edge is adjacent to exactly one virtual vertex.

111

Chapter 7 Maintaining Triconnected Components under Node Expansion

v

Gµ

u

(a)

vvα

vβ

Gα

Gβ

uα uβ

(b)

Figure 7.3: (a) A triconnected skeleton𝐺𝜇 with a highlighted vertex 𝑣 incident to two gray
virtual edges. (b) The result of applying IsolateVertex to isolate 𝑣 out of the skeleton. The
red occupied edges in the old skeleton𝐺𝛼 form a star with center 𝑣𝛼 , while the red occupied
edges in 𝐺𝛽 connect all neighbors of 𝑣 to form a star with center 𝑣𝛽 ≠ 𝑣. The centers 𝑣𝛼
and 𝑣𝛽 are virtual and matched with each other. Neighbor 𝑢 of 𝑣 was split into vertices 𝑢𝛼
and 𝑢𝛽 .

8 (orig-stars) Let 𝑣𝛼 and 𝑣𝛽 again be two virtual vertices matched with each other
by twinV. For their respective skeletons 𝐺𝛼 and 𝐺𝛽 (where 𝛼 and 𝛽 are adja-
cent in𝑇S), we have origV(𝑉𝛼) ∩ origV(𝑉𝛽) = origV(𝑁 (𝑣𝛼)) = origV(𝑁 (𝑣𝛽)).

Both conditions together yield a bijection 𝛾𝑣𝛼𝑣𝛽 between the neighbors of 𝑣𝛼 and
the neighbors of 𝑣𝛽 , as origV is injective when restricted to a single skeleton (con-
dition 3 (orig-inj)) and deg(𝑣𝛼) = deg(𝑣𝛽). Operations SplitSeparationPair and
JoinSeparationPair can also be applied to an extended skeleton decomposition,
yielding an extended skeleton decomposition without modifying twinV. To ensure
that conditions 7 (stars) and 8 (orig-stars) remain unaffected by both operations,
SplitSeparationPair can only be applied to non-virtual vertices.
The operations IsolateVertex and Integrate now allow us to isolate vertices

out of triconnected components and integrate them back in, respectively. For
IsolateVertex, let 𝑣 be a non-virtual vertex of skeleton 𝐺𝜇 , such that 𝑣 has no
incident occupied edges. Applying IsolateVertex(S, 𝑣) on an extended skeleton
decomposition S yields an extended skeleton decomposition S′ = (G′, origV′,
origE′, twinE′, twinV′) as follows. Each neighbor𝑢 of 𝑣 is split into two non-adjacent
vertices 𝑢𝛼 and 𝑢𝛽 , where 𝑢𝛽 is incident to all edges connecting 𝑢 with 𝑣, while
𝑢𝛼 keeps all other edges of 𝑢. We set origV′(𝑢𝛼) = origV′(𝑢𝛽) = origV(𝑢). This
creates an independent, star-shaped component with center 𝑣, which we move to
skeleton 𝐺𝛽 , while we rename skeleton 𝐺𝜇 to 𝐺𝛼 . We connect all 𝑢𝛼 to a single
new virtual vertex 𝑣𝛼 ∈ 𝑉 virt

𝛼 using occupied edges, and all 𝑢𝛽 to a single new
virtual vertex 𝑣𝛽 ∈ 𝑉 virt

𝛽
using occupied edges; see Figure 7.3. Finally, we set

twinV′(𝑣𝛼) = 𝑣𝛽 , twinV′(𝑣𝛽) = 𝑣𝛼 , and add 𝐺𝛽 to G′. All other mappings and
skeletons remain unchanged.

112

Extended Skeleton Decompositions Section 7.2

For Integrate, consider two virtual vertices 𝑣𝛼 , 𝑣𝛽 with twinV(𝑣𝛼) = 𝑣𝛽 and
the bijection 𝛾𝑣𝛼𝑣𝛽 between the neighbors of 𝑣𝛼 and 𝑣𝛽 . An application of Inte-
grate(S, (𝑣𝛼 , 𝑣𝛽)) yields an extended skeleton decomposition S′ = (G′, origV′,
origE′, twinE′, twinV′) as follows. We merge both skeletons into a skeleton𝐺𝜇 (also
replacing both in G′) by identifying the neighbors of 𝑣𝛼 and 𝑣𝛽 according to 𝛾𝑣𝛼𝑣𝛽 .
Furthermore, we remove 𝑣𝛼 and 𝑣𝛽 together with their incident occupied edges. All
other mappings and skeletons remain unchanged.

▶ Lemma 7.4. Applying IsolateVertex or Integrate on an extended skeleton
decomposition S = (G, origV, origE, twinE, twinV) yields an extended skeleton
decomposition S′ = (G′, origV′, origE′, twinE′, twinV′) with 𝐺S′ = 𝐺S . ◀

Proof. We first check that all conditions still hold in the extended skeleton decom-
position S′ returned by IsolateVertex. Condition 1 (bicon) remains satisfied, as
the structure of 𝐺𝛼 remains unchanged compared to 𝐺𝜇 and the skeleton 𝐺𝛽 is
a bond. As we are again splitting a node of 𝑇S , condition 2 (tree) also remains
satisfied. Due to the neighbors of 𝑣𝛽 and 𝑣𝛼 mapping to the same vertices of 𝐺S′ ,
conditions 3 (orig-inj), 4 (orig-real), and 5 (orig-virt) remain satisfied. Conditions
7 (stars) and 8 (orig-stars) are satisfied by construction.

Lastly, condition 6 (subgraph) could only be violated if the subgraph of𝑇S′ formed
by the allocation skeletons of some vertex 𝑧 ∈ 𝐺S′ was no longer connected. This
could only happen if only one of 𝐺𝛼 and 𝐺𝛽 were an allocation skeleton of 𝑧, while
the other has a further neighbor 𝐺𝜈 that is also an allocation skeleton of 𝑧. Note
that in any case, 𝜈 is adjacent to 𝜇 in 𝑇S and 𝜇 must be an allocation skeleton of 𝑧,
thus it is 𝑧 ∈ origV(𝐺𝜈) ∩ origV(𝐺𝜇). Depending on the adjacency of 𝜈 , it is either
origV(𝐺𝜈) ∩ origV(𝐺𝜇) = origV′(𝐺𝜈) ∩ origV(𝐺𝛼) or origV(𝐺𝜈) ∩ origV(𝐺𝜇) =
origV′(𝐺𝜈) ∩ origV(𝐺𝛽), as 𝜈 is not modified by the operation and both S and S′
satisfy 5 (orig-virt) and 8 (orig-stars). This immediately contradicts the skeleton of
{𝛼, 𝛽}, that is adjacent to 𝜈 , not being an allocation skeleton of 𝑧.
Finally, the mapping origE remains unchanged and the only change to origV

is to include some duplicated vertices mapping to already existing vertices. Due
to condition 4 (orig-real) holding for both the input and the output instance, this
cannot affect the represented graph 𝐺S′ .
Now consider the extended skeleton decomposition S′ returned by Integrate.

Themerged skeleton is biconnected, as we are effectively replacing a single vertex by
a connected subgraph, satisfying 1 (bicon). The operation effectively contracts and
removes an edge in 𝑇S , which does not affect 𝑇S′ being a tree, satisfying condition
2 (tree). Note that condition 2 (tree) holding for the input instance also ensures
that 𝑣𝛼 and 𝑣𝛽 belong to two distinct skeletons. As the input instance satisfies
condition 5 (orig-virt), the vertices in each of the two adjacent skeletons where

113

Chapter 7 Maintaining Triconnected Components under Node Expansion

origV maps to the same vertex of 𝐺S are exactly the neighbors of the matched 𝑣𝛼
and 𝑣𝛽 . Thus, origV |𝑉𝛼 is still injective, satisfying condition 3 (orig-inj). As we
modify no real or virtual edges, the mappings origV′, origE′ and twinE′ obviously
still satisfy conditions 4 (orig-real) and 5 (orig-virt). Finally, contracting a tree edge
cannot lead to any of the subgraphs of 6 (subgraph) becoming disconnected, thus
the condition also remains satisfied. Conditions 7 (stars) and 8 (orig-stars) also
remain unaffected, as we simply remove an entry from twinV.
Again, no changes were made to origE, while condition 8 (orig-stars) makes sure

that origV mapped each pair of merged vertices to the same vertex of 𝐺S . Thus,
the represented graph 𝐺S′ remains unchanged. ■

Furthermore, as Integrate is the converse of IsolateVertex and has no precon-
ditions, any changes made by IsolateVertex can be undone at any time to obtain
a (non-extended) skeleton decomposition, and thus possibly the SPQR-tree of the
represented graph.

▶ Remark 7.5. Exhaustively applying Integrate to an extended skeleton de-
composition S = (G, origV, origE, twinE, twinV) yields a extended skeleton de-
composition S′ = (G′, origV′, origE′, twinE′, twinV′) where twinV′ = ∅. Thus,
S′ is equivalent to a (non-extended) skeleton decomposition S′ = (G′, origV′,
origE′, twinE′). ◀

7.3 Node Expansion in Extended Skeleton
Decompositions

We now introduce the dynamic operation that changes the represented graph by
expanding a single vertex 𝑢 into an arbitrary connected graph 𝐺𝜈 . This is done by
identifying |𝑁 (𝑢) | marked vertices in 𝐺𝜈 with the neighbors of 𝑢 via a bijection 𝜙

and then removing 𝑢 and its incident edges. We use the “occupied stars” from the
previous section to model the identification of these vertices, allowing us to defer
the actual insertion to an application of Integrate. We need to ensure that the
inserted graph makes the same “guarantees” to the surrounding graph in terms
of connectivity as the vertex it replaces, that is all neighbors of 𝑢 (i.e. all marked
vertices in 𝐺𝜈) need to be pairwise connected via paths in 𝐺𝜈 , even without using
any other neighbor of 𝑢 (i.e. any other marked vertex). Without this requirement,
a single vertex could e.g. also be split into two non-adjacent halves, which could
break a triconnected component apart. Thus, we require𝐺𝜈 to be biconnected when
all marked vertices are collapsed into a single vertex. Note that this also ensures

114

Node Expansion in Extended Skeleton Decompositions Section 7.3

v

Gµ

(a)

Gν

(b) (c)

Figure 7.4: Expanding a skeleton vertex 𝑣 into a graph𝐺𝜈 in the SPQR-tree of Figure 7.5 (b).
(a) The single allocation skeleton 𝐺𝜇 of 𝑢 with the single allocation vertex 𝑣 of 𝑢 from
Figure 7.5 (b). The neighbors of 𝑣 are marked in orange. (b) The inserted graph 𝐺𝜈 with
orange marked vertices. Note that the graph is biconnected when all marked vertices are
collapsed into a single vertex. (c) The result of applying InsertGraph(S, 𝑢,𝐺𝜈 , 𝜙) followed
by an application of Integrate on the generated virtual vertices 𝑣 and 𝑣′.

that the old graph can be restored by contracting the vertices of the inserted graph.
For the sake of simplicity, we require vertex 𝑢 from the represented graph to have
a single allocation vertex 𝑣 ∈ 𝐺𝜇 with origV−1(𝑢) = {𝑣} so that we only need to
change a single allocation skeleton 𝐺𝜇 in the skeleton decomposition. As we will
make clear later on, this condition can be established easily.
Formally, let 𝑢 ∈ 𝐺S be a vertex that only has a single allocation vertex 𝑣 ∈

𝐺𝜇 (and thus only a single allocation skeleton 𝐺𝜇). Let 𝐺𝜈 be an arbitrary, new
graph containing |𝑁 (𝑢) | marked vertices, together with a bijection 𝜙 between
the marked vertices in 𝐺𝜈 and the neighbors of 𝑣 in 𝐺𝜇 . We require 𝐺𝜈 to be
biconnected when all marked vertices are collapsed into a single node. Operation
InsertGraph(S, 𝑢,𝐺𝜈 , 𝜙) yields an extended skeleton decomposition S′ = (G′,
origV′, origE′, twinE′, twinV′) as follows, see also Figure 7.4. We interpret 𝐺𝜈 as
skeleton and add it to G′. For each marked vertex 𝑥 in 𝐺𝜈 , we set origV′(𝑥) =
origV(𝜙 (𝑥)). For all other vertices and edges in 𝐺𝜈 , we set origV′ and origE′ to
point to new vertices and edges forming a copy of 𝐺𝜈 in GS′ . We connect every
marked vertex in 𝐺𝜈 to a new virtual vertex 𝑣′ ∈ 𝐺𝜈 using occupied edges. We also
convert 𝑣 to a virtual vertex, converting its incident edges to occupied edges while
removing parallel edges. Finally, we set twinV′(𝑣) = 𝑣′ and twinV′(𝑣′) = 𝑣.

▶ Lemma 7.6. Applying InsertGraph(S, 𝑢,𝐺𝜈 , 𝜙) on an extended skeleton de-
composition S yields an extended skeleton decomposition S′ with 𝐺S′ isomorphic
to 𝐺S [𝑢 →𝜙 𝐺𝜈]. ◀

Proof. Condition 1 (bicon) remains satisfied, as the structure of 𝐺𝜇 remains un-
changed and the resulting 𝐺𝜈 is biconnected by precondition. Regarding 𝑇S , we
are attaching a degree-1 node 𝜈 to an existing node 𝜇, thus condition 2 (tree) also
remains satisfied. As all vertices of 𝐺𝜈 except for the vertices in 𝑁 (𝑣′) got their

115

Chapter 7 Maintaining Triconnected Components under Node Expansion

new, unique copy assigned by origV′ and origV′(𝑁 (𝑣′)) = origV(𝑁 (𝑣)), condition
3 (orig-inj) is also satisfied for the new 𝐺𝜈 . As we updated origE alongside origV
and𝐺𝜈 contains no virtual edges, conditions 4 (orig-real) and 5 (orig-virt) remain sat-
isfied. As 𝜈 is a leaf of𝑇S with 𝜇 being its only neighbor, origV′(𝑁 (𝑣′)) ⊂ origV(𝑉𝜇),
and𝐺𝜈 is the only allocation skeleton for all vertices in𝐺𝜈 \𝑁 (𝑣′), condition 6 (sub-
graph) remains satisfied. Conditions 7 (stars) and 8 (orig-stars) are satisfied by
construction. Finally, the mappings origE′ and origV′ are by construction updated
to correctly reproduce the structure of 𝐺𝜈 in 𝐺S′ . ■

On its own, this operation is not of much use though, as graph vertices only rarely
have a single allocation skeleton. Furthermore, our goal is to dynamically maintain
SPQR-trees, while this operation on its own will in most cases not yield an SPQR-
tree. To fix this, we introduce the full procedure InsertGraphSPQR(S, 𝑢,𝐺𝜈 , 𝜙)
that can be applied to any graph vertex 𝑢 and that, given an SPQR-tree S, yields the
SPQR-tree of 𝐺S [𝑢 →𝜙 𝐺𝜈]. It consists of three preparations steps, the insertion
of 𝐺𝜈 , and two further clean-up steps:

1. Apply SplitSeparationPair to each polygon allocation skeleton of 𝑢 with
more than three vertices, using the neighbors of the allocation vertex of 𝑢 as
separation pair.

2. For each rigid allocation skeleton of 𝑢, move the contained allocation vertex
𝑣 of 𝑢 to its own skeleton by applying IsolateVertex(S, 𝑣).

3. Exhaustively apply JoinSeparationPair to any pair of allocation skeletons
of 𝑢 that are adjacent in 𝑇S . Due to condition 6 (subgraph), this yields a
single component 𝐺𝜇 that is the sole allocation skeleton of 𝑢 with the single
allocation vertex 𝑣 of 𝑢. Furthermore, the size of 𝐺𝜇 is linear in deg(𝑢).

4. Apply InsertGraph to insert𝐺𝜈 as skeleton, followed by an application of
Integrate to the virtual vertices {𝑣, 𝑣′} introduced by the insertion, thus
integrating 𝐺𝜈 into 𝐺𝜇 .

5. Apply SplitSeparationPair to all separation pairs in𝐺𝜇 that do not involve
a virtual vertex. These pairs can be found in linear time, e.g. by temporarily
duplicating all virtual vertices and their incident edges and then computing
the SPQR-tree.12

12 Later, in Theorem 7.10, we use wheels to replace virtual vertices, which also ensures this.

116

Node Expansion in Extended Skeleton Decompositions Section 7.3

(a)

v

(b)

Figure 7.5: The preprocessing steps of InsertGraphSPQR being applied to the SPQR-tree
of Figure 7.1 (b). (a) The state after step 2, after all allocation skeletons of 𝑢 have been split.
(b) The state after step 3, after all allocation skeletons of 𝑢 have been merged into a single
one.

6. Finally, exhaustively apply Integrate and also apply JoinSeparationPair
to any two adjacent polygons and to any two adjacent bonds to obtain the
SPQR-tree of the updated graph.

The basic idea behind the correctness of this procedure is that splitting the
newly inserted component according to its SPQR-tree in step 5 yields biconnected
components that are each either a polygon, a bond, or “almost” triconnected. The
latter (and only those) might still contain virtual vertices and all their remaining
separation pairs, which were not split in step 5, contain one of these virtual vertices.
This, together with the fact that there still may be pairs of adjacent skeletons where
both are polygons or both are bonds, prevents the instance from being an SPQR-tree.
Both issues are resolved in step 6: The adjacent skeletons are obviously fixed by
the JoinSeparationPair applications. To show that the removal of virtual vertices
by the Integrate applications makes the remaining components triconnected, we
need the following lemma.

▶ Lemma 7.7. Let 𝐺𝛼 be a triconnected skeleton containing a virtual vertex 𝑣𝛼
matched with a virtual vertex 𝑣𝛽 of a biconnected skeleton 𝐺𝛽 . Furthermore, let
𝑃 ⊆

(︁𝑉 (𝐺𝛽)
2

)︁
be the set of all separation pairs in 𝐺𝛽 . An application of Integrate

(S, (𝑣𝛼 , 𝑣𝛽)) yields a biconnected skeleton𝐺𝜇 whose separation pairs are precisely

𝑃 ′ = {{𝑢, 𝑣} ∈ 𝑃 | 𝑣𝛽 ∉ {𝑢, 𝑣}}. ◀

Proof. We partition the vertices of 𝐺𝜇 into sets 𝐴, 𝐵, and 𝑁 depending on whether
the vertex stems from 𝐺𝛼 , 𝐺𝛽 , or both, respectively. The set 𝑁 thus contains
the neighbors of 𝑣𝛼 , which were identified with the neighbors of 𝑣𝛽 . We will

117

Chapter 7 Maintaining Triconnected Components under Node Expansion

show by contradiction that 𝐺𝜇 contains no separation pairs except for those in 𝑃 ′.
Thus, consider a separation pair 𝑢, 𝑣 ∈ 𝐺𝜇 not in 𝑃 ′. First, consider the case
where 𝑢, 𝑣 ∈ 𝐴 ∪ 𝑁 . Observe that removing 𝑢, 𝑣 in this case leaves 𝐵 connected.
Thus, we can contract all vertices of 𝐵 into a single vertex, reobtain 𝐺𝛼 and see
that 𝑢, 𝑣 is a separation pair in 𝐺𝛼 . This contradicts the precondition that 𝐺𝛼 is
triconnected. Now consider the case where 𝑢, 𝑣 ∈ 𝐵 ∪ 𝑁 . Analogously to above, we
find that 𝑢, 𝑣 is a separation pair in 𝐺𝛽 that does not contain 𝑣𝛽 , a contradiction to
{𝑢, 𝑣} ∉ 𝑃 ′. Finally, consider the remaining case where, without loss of generality,
𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵. Since {𝑢, 𝑣} is a separation pair, 𝑢 has two neighbors 𝑥,𝑦 that lie
in different connected components of 𝐺𝜇 − {𝑢, 𝑣} and therefore also in different
components of (𝐺𝜇 − {𝑢, 𝑣}) − 𝐵 which is isomorphic to 𝐺𝛼 − {𝑢, 𝑣𝛼 }. This again
contradicts 𝐺𝛼 being triconnected. ■

▶ Theorem7.8. Applying InsertGraphSPQR(S, 𝑢,𝐺𝜈 , 𝜙) to an SPQR-treeS yields
an SPQR-tree S′ in 𝑂 (|𝐺𝜈 |) time with 𝐺S′ isomorphic to 𝐺S [𝑢 →𝜙 𝐺𝜈]. ◀

Proof. As all applied operations leave the extended skeleton decomposition valid,
the final extended skeleton decomposition S′ is also valid. The purpose of the
preprocessing steps 1 to 3 is to ensure that the preconditions of InsertGraph are
satisfied and the affected component is not too large. All rigids split in step 2
remain structurally unmodified in the sense that edges only changed their type,
but the graph and especially its triconnectedness remains unchanged. step 4 per-
forms the actual insertion and yields the desired represented graph according to
Lemma 7.6. It thus remains to show that the clean-up steps turn the obtained
extended skeleton decomposition into an SPQR-tree. Applying Integrate exhaus-
tively in step 6 ensures that the extended skeleton decomposition is equivalent to a
non-extended one (Remark 7.5). Recall that a non-extended skeleton decomposition
is an SPQR-tree if all skeletons are either polygons, bonds or triconnected and
two adjacent skeletons are never both polygons or both bonds (Definition 7.3).
step 6 ensures that the second half holds, as joining two polygons (or two bonds)
with JoinSeparationPair yields a bigger polygon (or bond, respectively). Before
step 6, all skeletons that are not an allocation skeleton of 𝑢 are still unmodified
and thus already have a suitable structure, i.e., they are either polygons, bonds
or triconnected. Furthermore, the allocation skeletons of 𝑢 not containing virtual
vertices also have a suitable structure, as their splits were made according to the
SPQR-tree in step 5. It remains to show that the remaining skeletons, that is those
resulting from the Integrate applications in step 6, are triconnected. Note that in
these skeletons, step 5 ensures that every separation pair consists of at least one
virtual vertex, as otherwise the computed SPQR-tree would have split the skeleton.
Further note that, for each of these virtual vertices, the matched partner vertex

118

Node Expansion in Extended Skeleton Decompositions Section 7.3

is part of a structurally unmodified triconnected skeleton that was split in step 2.
Lemma 7.7 shows that applying Integrate does not introduce new separation pairs
while removing two virtual vertices if one of the two sides is triconnected. We can
thus exhaustively apply Integrate and thereby remove all virtual vertices and all
separation pairs, obtaining triconnected components. This shows that the criteria
for being an SPQR-tree are satisfied and, as InsertGraph expanded 𝑢 to 𝐺𝜈 in the
represented graph, we now have the unique SPQR-tree of 𝐺S [𝑢 →𝜙 𝐺𝜈].
All operations we used can be performed in time linear in the degree of the

vertices they are applied on. For the bipartition of bridges that is the input to
SplitSeparationPair, it is sufficient to describe each bridge via its edges incident
to the separation pair instead of explicitly enumerating all vertices in the bridge.
Thus, the applications of SplitSeparationPair and IsolateVertex in steps 1 and 2
touch every edge incident to 𝑢 at most once and thus take𝑂 (deg(𝑢)) time. Further-
more, they yield skeletons that have a size linear in the degree of their respective
allocation vertex of 𝑢. As the subtree of 𝑢’s allocation skeletons has size at most
deg(𝑢), the JoinSeparationPair applications of step 3 also take at most𝑂 (deg(𝑢))
time. It follows that the resulting single allocation skeleton of 𝑢 has size𝑂 (deg(𝑢)).
The applications of InsertGraph and Integrate in step 4 take time linear in the
number of identified neighbors, which is 𝑂 (deg(𝑢)). Generating the SPQR-tree of
the inserted graph in step 5 (where all virtual vertices where replaced by wheels)
can be done in time linear in the size of the inserted graph [GM00; HT73b], that
is𝑂 (|𝐺𝜈 |). Applying SplitSeparationPair according to all separation pairs identi-
fied by this SPQR-tree can also be done in𝑂 (|𝐺𝜈 |) time in total. Note that there are
at most deg(𝑢) edges between the skeletons that existed before step 4 and those
that were created or modified in steps 4 and 5, and these are the only edges that
might now connect two polygons or two bonds. As these tree edges have one
endpoint in the single allocation skeleton of 𝑢, the applications of Integrate and
JoinSeparationPair in step 6 run in 𝑂 (deg(𝑢)) time in total. Furthermore, they
remove all pairs of adjacent polygons and all pairs of adjacent bonds. This shows
that all steps take 𝑂 (deg(𝑢)) time – except for step 5, which takes 𝑂 (|𝐺𝜈 |) time.
As the inserted graph contains at least one vertex for each neighbor of 𝑢, the total
running time is in 𝑂 (|𝐺𝜈 |). ■

▶ Corollary 7.9. Let S1,S2 be two SPQR-trees together with vertices 𝑢1 ∈ 𝐺S1,
𝑢2 ∈ 𝐺S2 , and let 𝜙 be a bijection between the edges incident to 𝑢1 and the edges
incident to 𝑢2. Operation MergeSPQR(S1,S2, 𝑢1, 𝑢2, 𝜙) yields the SPQR-tree of the
graph𝐺S1 [𝑢1 →𝜙 (𝐺S2−𝑢2)], i.e. the union of both graphs where the edges incident
to 𝑢1, 𝑢2 were identified according to 𝜙 and 𝑢1, 𝑢2 removed, in time 𝑂 (deg(𝑢1)) =
𝑂 (deg(𝑢2)). ◀

119

Chapter 7 Maintaining Triconnected Components under Node Expansion

Proof. OperationMergeSPQR works similarly to themore general InsertGraphSPQR,
although the running time is better because we already know the SPQR-tree for
the graph being inserted. We apply steps 1 to 3 on both decompositions to ensure
that both 𝑢1 and 𝑢2 have sole allocation vertices 𝑣1 and 𝑣2, respectively. To prop-
erly handle parallel edges, we subdivide all edges incident to 𝑢1, 𝑢2 (and thus also
the corresponding real edges incident to 𝑣1, 𝑣2) and then identify the subdivision
vertices of each pair of edges matched by 𝜙 . By deleting vertices 𝑣1 and 𝑣2 and sup-
pressing the subdivision vertices (that is, removing them and identifying each pair
of incident edges) we obtain a skeleton 𝐺𝜇 that has size 𝑂 (deg(𝑢1)) = 𝑂 (deg(𝑢2)).
Finally, we apply steps 5 and 6 to 𝐺𝜇 to obtain the final SPQR-tree. Again, as the
partner vertex of every virtual vertex in the allocation skeletons of 𝑢 is part of
a triconnected skeleton, applying Integrate exhaustively in step 6 yields tricon-
nected skeletons. As previously discussed, the preprocessing and clean-up steps
run in time linear in degree of the affected vertices, thus the overall running time
is 𝑂 (deg(𝑢1)) = 𝑂 (deg(𝑢2)) in this case. ■

7.3.1 Maintaining Planarity and Vertex Rotations
Expanding a vertex of a planar graph using another planar graph using Insert-
GraphSPQR (or merging two SPQR-trees of planar graphs using Corollary 7.9) can
yield a non-planar graph. This is, e.g., because the rigids of both graphs might
require incompatible orders for the neighbors of the replaced vertex. The aim of this
section is to efficiently detect this case, that is a planar graph turning non-planar by
an expansion. To check a general graph for planarity, it suffices to check the rigids in
its SPQR-tree for planarity [DT96b]. Thus, if a graph becomes non-planar through
an application of InsertGraphSPQR, this will be noticeable from the triconnected
allocation skeletons of the replaced vertex. To be able to immediately report if the
instance became non-planar, we need to maintain a rotation, that is a cyclic order
of all incident edges, for each vertex in a triconnected skeleton. We do not track the
direction of the orders, that is we only store the order up to reversal. As discussed
later, the exact orders can also be maintained with a slight overhead.

▶ Theorem 7.10. SPQR-trees support the following operations:

• InsertGraphSPQR(S, 𝑢,𝐺𝜈 , 𝜙): expansion of a single vertex𝑢 in time𝑂 (|𝐺𝜈 |),

• MergeSPQR(S1,S2, 𝑢1, 𝑢2, 𝜙): merging of two SPQR-trees in time𝑂 (deg(𝑢1)),

• IsPlanar: queries whether the represented graph is planar in time 𝑂 (1), and

• Rotation(𝑢): queries for one of the two possible rotations of vertices 𝑢 in
planar triconnected skeletons in time 𝑂 (1). ◀

120

Node Expansion in Extended Skeleton Decompositions Section 7.3

Proof. Note that the flag IsPlanar together with the Rotation information can
be computed in linear time when creating a new SPQR-tree and that expanding
a vertex or merging two SPQR-trees cannot turn a non-planar graph planar. We
make the following changes to the operations InsertGraphSPQR and MergeSPQR
to maintain the new information. After a triconnected component is split in step 2
we now introduce further structure to ensure that the embedding is maintained
on both sides. The occupied edges generated around the split-off vertex 𝑣 (and
those around its copy 𝑣′) are subdivided and connected cyclically according to
Rotation(𝑣). Instead of “stars”, we thus now generate occupied “wheels” that
encode the edge orders in the embedding of the triconnected component. When
generating the SPQR-tree of the modified subgraph in step 5, we also generate a
planar embedding for all its triconnected skeletons. If no planar embedding can be
found for at least one skeleton, we report that the resulting instance is non-planar
by setting IsPlanar to false. Otherwise, after performing all splits indicated by
the SPQR-tree, we assign Rotation by generating embeddings for all new rigids.
Note that for all skeletons with virtual vertices, the generated embedding will
be compatible with the one of the neighboring triconnected component, that is,
the rotation of each virtual vertex will line up with that of its matched partner
vertex, thanks to the inserted wheel. Finally, before applying Integrate in step 6,
we contract each occupied wheel into a single vertex to re-obtain occupied stars.
The creation and contraction of wheels adds an overhead that is at most linear in
the degree of the expanded vertex and the generation of embeddings for the rigids
can be done in time linear in the size of the rigid. Thus, this does not affect the
asymptotic running time of both operations. ■

▶ Corollary 7.11. The data structure from Theorem 7.10 can be adapted to also
provide the exact rotations with matching direction for every vertex in a rigid.
Furthermore, it can support queries whether two vertices 𝑣1, 𝑣2 are connected by at
least three vertex-disjoint paths via 3Paths(𝑣1, 𝑣2) in𝑂 ((deg(𝑣1) + deg(𝑣2)) ·𝛼 (𝑛))
time, where 𝛼 is the inverse Ackermann function. These adaptions change the
running time of InsertGraphSPQR to𝑂 (deg(𝑢) · 𝛼 (𝑛) + |𝐺𝜈 |), that of MergeSPQR
to 𝑂 (deg(𝑢1) · 𝛼 (𝑛)), and that of Rotation(𝑢) to 𝑂 (𝛼 (𝑛)). ◀

Proof. The exact rotation information for Rotation can be maintained by using
Union-Find [TL84] to keep track of the rigid a vertex belongs to and synchronizing
the reversal of all vertices within one rigid when two rigids are merged by Inte-
grate as follows. We create a Union-Find set for every vertex in a triconnected
component and apply Union to all vertices in the same rigid. Next to the pointer
indicating the representative in the Union-Find structure, we store a boolean flag

121

Chapter 7 Maintaining Triconnected Components under Node Expansion

indicating whether the rotation information for the current vertex is reversed with
regard to rotation of its direct representative. To find whether a Rotation needs
to be flipped, we accumulate all flags along the path to the actual representative
of a vertex by using an exclusive-or. As Rotation(𝑢) thus relies on the Find
operation, its amortized running time is 𝑂 (𝛼 (𝑛)). When merging two rigids with
Integrate, we also perform a Union on their respective representatives (which we
need to Find first), making Integrate(S, (𝑣𝛼 , 𝑣𝛽)) run in 𝑂 (deg(𝑣𝛼) + 𝛼 (𝑛)). We
also compare the Rotation of the replaced vertices and flip the flag stored with the
vertex that does not end up as the representative if they do not match. In total, this
makes InsertGraphSPQR run in𝑂 (deg(𝑢) · 𝛼 (𝑛) + |𝐺𝜈 |) time as there can be up to
deg(𝑢) split rigids. Furthermore, MergeSPQR now runs in 𝑂 (deg(𝑢1) · 𝛼 (𝑛)) time.
Maintaining the information which rigid a skeleton vertex is contained in can

then also be used to answer queries whether two arbitrary vertices are connected by
three disjoint paths. This is exactly the case if they are part of the same rigid, appear
as poles of the same bond or are connected by a virtual edge in a polygon. This can
be checked by enumerating all allocation skeletons of both vertices, which can be
done in time linear in their degree. As finding each of the skeletons may require a
Find call, the total running time for this is in 𝑂 ((deg(𝑣1) + deg(𝑣2)) · 𝛼 (𝑛)). ■

7.4 Applications
In this section, we show how extended skeleton decompositions and their dynamic
operation InsertGraphSPQR can be used to improve the running time of the algo-
rithm from Chapter 6 for solving Synchronized Planarity and how this transfers
to other constrained planarity variants. Recall that in Synchronized Planarity,
we are given a matching on some of the vertices of a graph and seek a planar em-
bedding where the rotations of matched vertices coincide under a given bijection.
The synchronization constraints resulting from the matching of two vertices, which
must have the same degree, are called pipe. The algorithm for solving Synchro-
nized Planarity works by removing an arbitrary pipe each step, using one of three
operations depending on the graphs around the matched vertices; see the overview
in Figure 7.6. Some of these operations require embedding trees, which describe all
possible rotations of a single vertex in a planar graph and are used to communicate
embedding restrictions between vertices with synchronized rotation. Without our
optimizations, computing an embedding tree requires time linear in the size of the
concerned biconnected component, that is 𝑂 (𝑚). Once their embedding trees are
available, each of the at most 𝑂 (𝑚) executed operations runs in time linear in the
degree of the pipe it is applied on, that is in 𝑂 (𝛥) time (see Lemmas 6.4 to 6.6).

122

Applications Section 7.4

Thus, being able to generate these embedding trees without an overhead over the
operation that uses them by maintaining the SPQR-trees they can be derived from
is our main contribution towards the speed-up of the Synchronized Planarity al-
gorithm. Our experimental evaluation of the Synchronized Planarity algorithm
also shows that its main bottleneck in practice is the generation of embedding trees
(see Chapter 9), indicating that these improvements can also help in achieving a
significant practical speed-up.

7.4.1 Embedding Trees

Recall that the embedding tree T𝑣 for vertex 𝑣 of a biconnected graph𝐺 is a PC-tree
that describes the possible cyclic orders or rotations of the edges incident to 𝑣

in all planar embeddings of 𝐺 [BL76; BR16b]; see Figure 7.1 (d). To generate the
embedding tree we use the observation about the relationship of SPQR-trees and
embedding trees described by Bläsius and Rutter [BR16b, Section 2.5]: There is a
bijection between the P- and C-nodes in the embedding tree of 𝑣 and the bond and
triconnected allocation skeletons of 𝑣 in the SPQR-tree of 𝐺 , respectively.

▶ Lemma 7.12. Let S be an SPQR-tree with a planar represented graph 𝐺S . The
embedding tree for a vertex 𝑣 ∈ 𝐺S can be found in time 𝑂 (deg(𝑣)). ◀

Proof. We use the rotation information from Theorem 7.10 and furthermore main-
tain an (arbitrary) allocation vertex for each vertex in 𝐺S . To compute the em-
bedding tree of a vertex 𝑣 starting at the allocation vertex 𝑢 of 𝑣, we will explore
the SPQR-tree by applying the twinE mapping on one of the edges incident to 𝑢
and then finding the next allocation vertex of 𝑣 as one endpoint of the obtained
edge. If 𝑢 has degree 2, it is part of a polygon skeleton that does not induce a node
in the embedding tree. We thus move on to its neighboring allocation skeletons
and will also similarly skip over any other polygon skeleton we encounter. If 𝑢
has degree 3 or greater, we inspect two arbitrary incident edges: if they lead to
the same vertex, 𝑢 is the pole of a bond, and we generate a P-node. Otherwise it
is part of a triconnected component, and we generate a C-node. We now iterate
over the edges incident to 𝑢, in the case of a triconnected component using the
order given by the rotation of 𝑢. For each real edge, we attach a corresponding
leaf to the newly generated node. The graph edge corresponding to the leaf can
be obtained from the origE mapping. For each virtual edge, we recurse on the
respective neighboring skeleton and attach the recursively generated node to the
current node. As𝑢 can only be part of deg(𝑢) many skeletons, which form a subtree

123

Chapter 7 Maintaining Triconnected Components under Node Expansion

of 𝑇S , and the allocation vertices of 𝑢 in total only have 𝑂 (deg(𝑢)) many virtual
and real edges incident, this procedure yields the embedding tree of 𝑢 in time linear
in its degree. ■

7.4.2 Synchronized Planarity
We now show how we reduce the running time of solving Synchronized Planari-
ty. We do so by generating an SPQR-tree upfront, maintaining it throughout all
applied operations, and deriving any needed embedding tree from the SPQR-tree.

▶ Theorem 7.13. Synchronized Planarity can be solved in time𝑂 (𝑚 ·𝛥), where
𝑚 is the number of edges and 𝛥 is the maximum degree of a pipe. ◀

Proof. Recall that the algorithm from Chapter 6 works by splitting (i.e., removing
and replacing by smaller ones) the pipes representing synchronization constraints
until they are small enough to be trivial. It does so by exhaustively applying the
three operations EncapsulateAndJoin, PropagatePQ and SimplifyMatching
depending on the graph structure around the pairs of synchronized vertices. As
mentioned in the proof of Theorem 6.12, all operations run in time linear in the
degree of the pipe they are applied on if the used embedding trees are known, and
𝑂 (𝑚) operations are sufficient to solve a given instance. Our modification is that
we maintain an SPQR-tree for each biconnected component and then generate the
needed embedding trees on-demand using Lemma 7.12.
Operation EncapsulateAndJoin generates a new bipartite component repre-

senting how the edges of the blocks incident to two synchronized cut-vertices are
matched with each other. The size of this component is linear in the degree of the
synchronized vertices. Thus, we can freshly compute the SPQR-tree for the gener-
ated component in linear time, which also does not negatively impact the running
time. The only other change made by this operation is that both cut-vertices are
split up according to their incident blocks; see Figure 7.6 (a). As this does not affect
the SPQR-trees of the blocks, there are no further updates necessary.

PropagatePQ takes the non-trivial embedding tree of one synchronized vertex 𝑣
and inserts copies of the tree in place of 𝑣 and its partner, respectively. Synchroniza-
tion constraints on the inner vertices of the inserted trees are used to ensure that the
trees are embedded in the same way; see Figure 7.6 (b). We use InsertGraphSPQR
to also insert the embedding tree into the respective SPQR trees, representing
C-nodes using wheels. When propagating into a cut-vertex we also need to check
whether two or more incident blocks merge. We form equivalence classes on the
incident blocks, where two blocks are in the same class if 1) the two subtrees
induced by their respective edges share at least two nodes, or 2) both induced

124

Applications Section 7.4

(a)

(b)

(c)

Figure 7.6: Schematic representation of the three operations fromChapter 6 used for solving
Synchronized Planarity. Matched vertices are shown as bigger disks, the matching
(i.e., the pipes) is indicated by the orange dotted lines. (a) Two cut-vertices matched with
each other (left), the result of splitting off (“encapsulating”) their incident blocks (middle)
and the bipartite graph resulting from joining both cut-vertices (right). (b) A matched
non-cut-vertex with a non-trivial embedding tree (left) that is propagated to replace both
the vertex and its partner (right). Constraints that only synchronize a binary decision (e.g.
because they correspond to a C-node in the embedding tree) are shown as same-colored
squares. (c) Three different cases of matched vertices with trivial embedding trees (blue)
and how their pipes can be removed or replaced (red).

subtrees share a C-node that has degree at least 2 in both subtrees. Blocks in the
same equivalence class will end up in the same biconnected component as follows:
We construct the subtree induced by all edges in the equivalence class and add a
single further node for each block in the class, connecting all leaves to the node
of the block the edges they represent lead to. We compute the SPQR-tree for this
biconnected graph and then merge the SPQR-trees of the individual blocks into
it by applying Corollary 7.9. As InsertGraphSPQR (and similarly all MergeSPQR
applications) runs in time linear in the size of the inserted embedding tree, which
is asymptotically bounded by the degree of the vertex it represents, this does not
negatively impact the running time of the operation.

Operation SimplifyMatching can be applied if the graph around a synchronized
vertex 𝑣 allows arbitrary rotations of 𝑣, that is if the embedding tree of 𝑣 is trivial

125

Chapter 7 Maintaining Triconnected Components under Node Expansion

(which we can check in 𝑂 (deg(𝑣)) time). In this case, the pipe can be removed
without modifying the graph structure; see Figure 7.6 (c). As this operation makes
no changes to the graph, no updates to the SPQR-trees are necessary. ■

Furthermore, as we now no longer need to iterate over whole biconnected
components to generate the embedding trees, we are also no longer required to
ensure those components do not grow to big. We can thus also directly contract
pipes between two distinct biconnected components using Corollary 7.9 instead
of having to insert embedding trees using PropagatePQ. This may improve the
practical running time, as PropagatePQ might require further operations to clean
up the generated pipes, while the direct contraction entirely removes a pipe without
generating new ones.

7.4.3 Other Constrained Planarity Variants

The speed-ups for Connected SEFE-2, Partially PQ-constrained Planari-
ty, Row-Column Independent NodeTrix Planarity, and Strip Planarity in
Table 7.1 follow directly by combining their linear reductions to Synchronized
Planarity from Section 6.4 with the improved running time for Synchronized
Planarity from Theorem 7.13. For Clustered Planarity, we provide a more
detailed analysis.

▶ Corollary 7.14. Clustered Planarity can be solved in time in 𝑂 (𝑛 + 𝑑 · 𝛥),
where 𝑑 is the total number of crossings between cluster borders and edges and 𝛥
is the maximum number of edge crossings on a single cluster border. ◀

Proof. Note that in a planar graph without multi-edges, the number of edges is
linear in the number of vertices. We apply the reduction from Clustered Planari-
ty to Synchronized Planarity as described in Section 6.4.2. We then generate an
SPQR-tree for every component of the obtained instance with size in 𝑂 (𝑛 + 𝑑) in
linear time. The instance contains one pipe for every cluster boundary, where the
degree of a pipe corresponds to the number of edges crossing the respective cluster
boundary. Thus, the potential described in Section 6.3.7, which sums up the degrees
of all pipes with a constant factor depending on the endpoints of each pipe, is in
𝑂 (𝑑). Each operation applied when solving the Synchronized Planarity instance
runs in time 𝑂 (𝛥) (the maximum degree of a pipe) and reduces the potential by at
least 1. Thus, a reduced instance without pipes, which can be solved in linear time,
can be reached in 𝑂 (𝑑 · 𝛥) time. ■

126

Conclusion Section 7.5

7.5 Conclusion
In this chapter, we have shown how to dynamically maintain an SPQR-tree while
expanding vertices into arbitrary biconnected graphs in time linear in the size of
the inserted graphs. We also showed how to efficiently merge two SPQR-trees
when identifying the edges incident to two vertices with each other. We did this
working along an axiomatic definition lifting the SPQR-tree to a stand-alone data
structure that can be modified independently from the graph it might have been
derived from. Making changes to this structure, we can now observe how the graph
represented by the SPQR-tree changes, instead of having to reason which updates
to the SPQR-tree are necessary after a change to the represented graph.
Using efficient expansions and merges allowed us to improve the running time

of the Synchronized Planarity algorithm from 𝑂 (𝑚2) to 𝑂 (𝑚 · 𝛥), where 𝛥 is
the maximum pipe degree. This also reduced the time for solving several related
constrained planarity problems, e.g. for Clustered Planarity from 𝑂 ((𝑛 + 𝑑)2)
to 𝑂 (𝑛 + 𝑑 · 𝛥), where 𝑑 is the total number of crossings between cluster borders
and edges and 𝛥 is the maximum number of edge crossings on a single cluster
border. Our experimental evaluation of the Synchronized Planarity algorithm
also shows that its main bottleneck in practice is the generation of embedding trees
(see Chapter 9), indicating that these improvements can also help in achieving a
significant practical speed-up.

In future work, one may investigate whether IsolateVertex could be generalized
to not only remove single vertices, but also split triconnected components “in the
middle”, that is following an edge-cut. This could allow for the reverse operation of
the expansion, that is efficient contraction of individual subgraphs, although special
care needs to be taken as the contraction might affect the triconnectivity of rigids.
A further question we leave for future work is whether our data structure can be
combined with that of Holm and Rotenberg [HR20a; HR20b] to allow for efficient
edge and vertex insertion as well as deletion together with subgraph expansion.

127

Part II

Constrained Planarity in Practice

8 Experimental Comparison
of PC-Trees and PQ-Trees

This chapter is based on joint work with Matthias Pfretzschner and Ignaz Rutter,
which appeared at ESA 2021 [4] where it received the “Best Paper Award”. It also
appeared in the ACM Journal of Experimental Algorithmics [2], distinguished with
the “Reproducible Computation Mark”. Our source code is available at github.com/N-
Coder/pc-tree and also archived at softwareheritage.org as swh:1:snp:47991f983dd72e5
d71486774696f5e02493c3807.

PQ-trees represent linear orders of a ground set subject to constraints that require
specific subsets of elements to be consecutive. Similarly, PC-trees do the same for
cyclic orders subject to consecutivity constraints. PQ-trees were developed by Booth
and Lueker [BL76] to solve the consecutive ones problem, which asks whether the
columns of a Boolean matrix can be permuted such that the 1s in each row are
consecutive. PC-trees are a more recent generalization introduced by Shih and
Hsu [SH99] to solve the circular consecutive ones problem, where the 1s in each
row only have to be circularly consecutive.
Though PQ-trees represent linear orders and PC-trees represent cyclic orders,

Haeupler and Tarjan [HT08] show that in fact PC-trees and PQ-trees are equivalent,
i.e., one can use one of them to implement the other without affecting the asymptotic
running time. The main difference between PQ-trees and PC-trees lies in the update
procedure. The update procedure takes as input a PQ-tree (a PC-tree)𝑇 and a subset
𝑈 of its leaves and produces a new PQ-tree (PC-tree) 𝑇 ′ that represents exactly
the linear orders (cyclic orders) represented by 𝑇 where the leaves in 𝑈 appear
consecutively. The update procedure for PC-trees consists only of a single operation
that is applied independently of the structure of the tree. By contrast, the update
of the PQ-tree is described in terms of a set of nine template transformations that
have to be recursively matched and applied [BL76].
PQ-trees have numerous applications, e.g., in planarity testing [BL76; SH99],

recognition of interval graphs [BL76] and genome sequencing [Ben59]. PC-trees
have been adopted more widely, e.g., for constrained planarity testing problems
[BR16b; BR17; Brü21] due to their simpler update procedure. Despite their wide
applications and frequent use in theoretical algorithms, few PQ-tree implementa-
tions and even fewer PC-tree implementations are available. Table 8.1 in Section 8.3
shows an overview of all PC- and PQ-tree implementations that we are aware of,
though not all of them are working.

131

https://github.com/N-Coder/pc-tree
https://github.com/N-Coder/pc-tree
https://www.softwareheritage.org/
https://archive.softwareheritage.org/swh:1:snp:47991f983dd72e5d71486774696f5e02493c3807
https://archive.softwareheritage.org/swh:1:snp:47991f983dd72e5d71486774696f5e02493c3807

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

In this chapter we describe the first correct and generic implementations of
PC-trees. We refer to Section 4.1 for an introduction to PC-trees. Section 8.1 in
this chapter contains a more detailed, practice-oriented overview of the update
procedure for applying a new restriction to a PC-tree. In Section 8.2, we describe
the main challenge when implementing PC-trees and how our two implementations
take different approaches at solving it. In Section 8.3, we present an extensive ex-
perimental evaluation, where we compare the performance of our implementations
with the implementations of PC-trees and PQ-trees from Table 8.1. Our experiments
show that PC-trees following Hsu and McConnell’s original approach beat their
closest competitor, the PQ-tree implementation from the OGDF library [Chi+14]
by roughly a factor 2 in terms of running time. Our second implementation using
Union-Find is another 50 % faster than this first one, thus beating the OGDF imple-
mentation by a factor of up to 4. In Section 8.4, we shortly evaluate the effects this
has on the planarity testing algorithms which strongly rely on PC-trees.

8.1 The PC-Tree Update
In this section, we will elaborate on what is necessary for implementing the high-
level update from Section 4.1 efficiently. While PC-trees have no designated root
nodes and are thus conceptually unrooted, in practice they are usually still rooted
at an arbitrary inner node or leaf to simplify implementation.
When applying a restriction 𝑅 to a PC-tree 𝑇 with leaf set 𝐿, let a leaf 𝑥 ∈ 𝐿 be

full if 𝑥 ∈ 𝑅 and empty otherwise. We call an edge terminal if the two subtrees
separated by the edge both contain at least one empty and at least one full leaf.
Exactly the endpoints of all terminal edges need to be “synchronized”, that is have
their incident edges ordered in a compatible way, to ensure that all full leaves are
consecutive. Hsu and McConnell [HM03; HM04] show that restriction 𝑅 is possible
if and only if the terminal edges form a path and all nodes of this path can be
flipped so that all full leaves are on one side and all empty leaves are on the other.
Recall that this path is called the terminal path, the two nodes at the ends of the
terminal path are the terminal nodes. Figure 8.1 (a) illustrates the terminal path,
while Figure 8.1 (b) shows the final result of updating the PC-tree. The changes
made by the update are illustrated by Figure 4.2 in Section 4.1.

We now discuss how to efficiently find the terminal edges, and thus the subtrees
with mixed full and empty leaves in step (1) of the algorithm from Section 4.1. To
do so, Hsu and McConnell extend the categorization of the leaves as either full or
empty to the inner nodes of the tree as follows; see also Figure 8.1 (a). An inner
node is full, if all but one of its adjacent subtrees, that is the separate trees created
by removing the node, have only full leaves. An inner node is partial, if it has at

132

The PC-Tree Update Section 8.1

1

2

3

45
6

7

8

9

10

11
12 13

14

15

1

2

3

65
9

7

8

4

10

11
12 15

14

13

t1

t2

t1

t2

→

(a)

1

2

3

65
9

7

8

4

10

11
12 15

14

13

c

(b)

Figure 8.1: (a) Two equivalent PC-Trees with their nodes colored according to the restric-
tion {4, 8, 10, 11, 12, 15}. C-nodes are represented by big double circles and the P-nodes are
represented by small circles. The thick edges represent the terminal path with terminal
nodes 𝑡1 and 𝑡2. The white nodes represent empty nodes, the black nodes represent full
nodes and the gray nodes represent partial nodes. As the restriction is possible, all full
leaves of the tree on the left can be made consecutive, as shown on the right. Furthermore all
nodes that must be modified lie on a path. (b) Updated PC-tree with new central C-node 𝑐 .

least one full neighbor and two or more non-full neighbors. Otherwise, that is
without a full neighbor, an inner node is empty. Then, an edge is terminal if and
only if it lies on a path between two partial nodes [HM03; HM04]. Note that the
terminal path may contain empty nodes, but cannot contain full nodes, because no
full node can be on a path between partial nodes.
Hsu and McConnell incrementally compute this labeling as follows. All inner

nodes are initially considered empty, while the leaves are labelled full or empty
according to their containment in 𝑅. An inner node turns partial once it has at
least one full neighbor. A partial node turns full once all but one of its neighbors
are full.13 Assigning the labels and subsequently finding the terminal edges can be
done by two bottom-up traversals of the tree, first choosing an arbitrary node of
the tree as root. In the following section, we discuss in greater detail how these
steps can be implemented.

We summarize the update steps in the following, more fine-granular description
of Hsu and McConnell’s algorithm for updating the PC-tree [HM04, Algorithm
32.2]. We split step (1) from the high-level description of Section 4.1 to separately
represent the two traversals needed to find the terminal path. Note that step (1)
was originally merged with step (2) to form the first step in Hsu and McConnell’s
description. We adopted step (4) being split in two from this original description.

13 Note that all neighbors can only be full if the restriction makes all leaves consecutive, a case
which is trivially excluded.

133

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

Algorithm for Applying Restrictions

To add a new restriction 𝑅 to a PC-tree 𝑇 and compute the updated PC-tree 𝑇 + 𝑅:

(1a) Label all partial and full nodes by searching the tree bottom-up from all
full leaves.

(1b) Find the terminal path by walking the tree upwards from all partial nodes
in parallel.

(2) Perform flips of C-nodes and modify the cyclic order of edges incident to
P-nodes so that all full nodes lie on one side of the path.

(3) Split each node on the path into two nodes, one incident to all edges to full
nodes and one incident to all edges to empty nodes.

(4a) Delete the edges of the path and replace them with a new C-node 𝑐 , adjacent
to all split nodes, whose cyclic order preserves the order of the nodes on
this path.

(4b) Contract all edges from 𝑐 to adjacent C-nodes, and contract any node that
has only two neighbors.

8.2 Our Implementations
The main challenge posed to the data structure for representing the PC-tree is that,
in step (4b), it needs to be able to merge arbitrarily large C-nodes in constant time
for the overall algorithm to run in linear time. This means that, whenever C-nodes
are merged, updating the pointer to a persistent C-node object on every incident
edge would be too expensive. Hsu and McConnell (see [HM04, Definition 32.1])
solve this problem by using C-nodes that, instead of having a permanent node
object, are only represented by the doubly-linked list of their incident half-edges,
which we call arcs. This complicates various details of the implementation, like
finding the parent pointer of a C-node, which are only superficially covered in
the initial work of Hsu and McConnell [HM03]. These issues are in part remedied
by the so called block-spanning pointers introduced in the later published book
chapter [HM04], which are related to the pointer borrowing strategy introduced by
Booth and Lueker [BL76]. These block-spanning pointers link the first and last arc
of a consecutive block of full arcs (i.e. the arcs to full neighbors) around a C-node
and can be accompanied by temporary C-node objects, see the blue dashed arcs in
Figures 8.2, 8.6 (c) and 8.6 (d) for an example. Whenever a neighbor of a C-node

134

Our Implementations Section 8.2

y y

x

v

x

v

(a)

y y

x x

m n m n

u uv v

(b)

Figure 8.2: (a) A newly created block 𝑥 of size one growing by one as the neighboring arc
𝑣 becomes full and is appended. (b) Two blocks that share a common neighbor 𝑥 being
merged once 𝑥 becomes full. The block-spanning pointers are shown as blue, dashed
half-arcs.

becomes full, either a new block is created for the corresponding arc of the C-node
(Figure 8.2 (a) left), an adjacent block grows by one arc (Figure 8.2 (a) right), or the
two blocks that now became adjacent are merged (Figure 8.2 (b)).

Using this data structure, Hsu and McConnell show that the addition of a single
new restriction 𝑅 takes 𝑂 (𝑝 + |𝑅 |) time, where 𝑝 is the length of the terminal path,
and that applying restrictions 𝑅1, . . . , 𝑅𝑘 takes𝛩 (|𝐿 |+

∑︁𝑘
𝑖=1 |𝑅𝑖 |) time [HM03; HM04].

Especially for steps (1a) and (1b), they only sketch the details of the implementation,
making it hard to directly put it into practice. In the following subsections, we fill
in the necessary details for these steps and also refine their running time analysis,
showing that step (1a) can be done in𝑂 (|𝑅 |) time and step (1b) can be done in𝑂 (𝑝)
time. Using the original procedures by Hsu and McConnell, steps (2) and (3) can be
done in 𝑂 (|𝑅 |) time and steps (4a) and (4b) can be done in 𝑂 (𝑝) time.
For our first implementation, which we call HsuPC, we directly implemented

these steps in C++, using the data structure without permanent C-node objects
as described by Hsu and McConnell; see Figure 8.3 (a). During the evaluation, we
realized that traversals of the tree are expensive. This is plausible, as they involve a
lot of pointer-dereferencing to memory segments that are not necessarily close-by,
and therefore lead to cache misses. To avoid additional traversals for clean-up
purposes, we store information that is valid only during the update procedure with
a timestamp. Furthermore, we found that keeping separate objects for arcs and
nodes and the steps needed to work around the missing C-node objects pose a
non-negligible overhead.
To remove this overhead, we created a second version of our implementation,

which we call UFPC, using a Union-Find tree [TL84] for representing C-node
objects: Every C-node is represented by an entry in the Union-Find tree and every

135

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

(a)(b)

Figure 8.3: Visualization of the data structures used by HsuPC (left) and UFPC (right)
for representing the PC-tree. In-memory objects are shown with solid lines while pointers
are represented by dashed arrows. (a) HsuPC: The orange circle represents a P-node
object, the outwards-facing orange arrows are the arc objects representing its outgoing
incident half-edges. The arc objects for the reverse direction are shown in gray and each
arc has a pointer to its twin (the blue and grey dashed arrows). Furthermore, each arc
knows its predecessor and successor around its node (the red dashed arrows). Each arc
leaving a P-node has a reference to the P-node object and each non-root P-node object has
a reference to the arc leading to its parent (the green arrows). Note that for C-nodes, the
green arrows are null-pointers as no node object exists. The parent P-node of the current
P-node is partially shown at the top. (b) UFPC: A selected P-node object is highlighted in
orange. It has pointers to its parent (upwards), siblings (left and right) and first and last
child (downwards left and right). Note that if the parent is a C-node, the parent pointer
instead points into the Union-Find structure.

incident child edge stores a reference to this entry. Whenever two C-nodes are
merged, we apply union to both entries and only keep the object of the entry that
survives. This leads to every lookup of a parent C-node object taking amortized
𝑂 (𝛼 (|𝐿 |)) time, where 𝛼 is the inverse Ackermann function. Although this makes
the overall running time super-linear, the experimental evaluation in Section 8.3
shows that this actually improves the performance in practice. As a second change,
the UFPC no longer requires separate arc and node objects, allowing us to use a
more lightweight doubly-linked tree consisting entirely of nodes that store pointers
to their parent node, left and right sibling node, and first and last child node; see
Figure 8.3 (b). Edges are represented implicitly by the child node whose parent is
the other end of the edge. Note that of the five stored pointers, a lookup in the
Union-Find data structure is only needed for resolving the parent of a node.
We use the Union-Find data structure from the OGDF [Chi+14] and plan to

136

Our Implementations Section 8.2

merge our UFPC implementation into the OGDF. Furthermore, both our C++
implementations should also be usable stand-alone with a custom Union-Find
implementation. The source code for both implementations, our evaluation harness
and the code for generating all test data are available on GitHub (see Table 8.1).

In the following, we describe further details in which our implementations differ
from the description given by Hsu and McConnell and explain the corrections
needed for a working implementation. Section 8.2.1 describes how the labeling
procedure (step (1a)) can be properly implemented. Note that the technical com-
plications involving arcs and block-spanning pointers only concern the missing
C-node objects of HsuPC. UFPC uses direct references to adjacent C-nodes in-
stead of arcs and does not need to maintain block-spanning pointers. Thus, those
parts can be greatly simplified for our second implementation, but we still give the
full details in our description using the perspective of the HsuPC data structure.
The same holds for Section 8.2.2, where we give a corrected algorithm for enumer-
ating the terminal path (step (1b)). Section 8.2.3 then describes the generic steps
needed to detect impossible restrictions. Lastly, Section 8.2.4 explains the differing
update procedure of UFPC (steps (4a) and (4b)), while the update procedure of
HsuPC follows Hsu and McConnell’s original description.

8.2.1 Efficiently Labeling and Finding Partial Nodes
In our description of the labeling step, we follow the general procedure of Hsu
and McConnell [HM04], which uses a bottom-up traversal of the tree, starting at
the full leaves. Algorithm 3 gives the pseudo-code for this procedure. Initially, all
inner nodes are considered empty. Recall that arcs only have a reference to their
target node if it is a P-node. We thus need to be careful when following edges
as there might not exist an object for the (C-)node at the other end of the edge.
To implement the traversal, we keep a queue of unprocessed arcs pointing from
full nodes to non-full neighbors. Furthermore, each P-node object stores a list
of incoming arcs from full neighbors. At the start of the traversal, the queue is
initialized with the incident arcs of all full leaves. If the arc at the front of the queue
has a reference to its target node object (via its twin arc; see Figure 8.3 (a)), this has
to be a P-node (as only these are represented by actual objects) and we can simply
append the incoming arc to the P-node’s list of full children. Recall that each full
node has exactly one non-full neighbor. Thus, if this list reaches a size one smaller
than the P-node’s degree, we mark it as full and enqueue the pointer to the single
non-full neighbor of the P-node. Usually, this non-full neighbor is the parent of
the P-node, so we directly enqueue the parent arc if it is not null and the parent is
not yet full. The other case, when the now-full P-node is the root or when a parent

137

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

Algorithm 3: Label full and partial nodes given a set of consecutive leaves 𝑅.

LabelNodes(𝑅):
1 𝑄 ← {}; // A queue of unprocessed arcs.
2 for 𝑙 ∈ 𝑅 do
3 label leaf 𝑙 as full;
4 add the single incident arc of 𝑙 to queue 𝑄 ;
5 while 𝑄 is not empty do
6 remove next arc 𝑎 from 𝑄 ;
7 mark the twin arc of 𝑎 as leading to a full node;
8 if 𝑎 has a reference to its target node 𝑢 then // 𝑢 must be a P-node
9 add 𝑎 to 𝑢’s list of full neighbors 𝐹𝑢 and mark 𝑢 as partial;

10 if |𝐹𝑢 | = deg(𝑢) − 1 then // P-node became full
11 mark 𝑢 as full;
12 if 𝑢 has a parent arc that is not full then
13 add 𝑢’s parent arc to 𝑄 ; // optimization for the common case
14 else
15 search through all arcs incident to 𝑢 to find the single

non-full arc 𝑓 ;
16 add 𝑓 to 𝑄 ;

17 else // manage blocks at C-node
18 create/append/merge the full blocks adjacent to 𝑎, yielding a full

block 𝑏;
19 if both ends of 𝑏 are adjacent to a single non-full arc 𝑓 then
20 mark 𝑏 (as proxy for the missing C-node object) as full;
21 add 𝑓 to 𝑄 ; // C-node became full
22 else
23 mark 𝑏 (as proxy for the missing C-node object) as partial;

138

Our Implementations Section 8.2

1

2

3 6

5

4

Figure 8.4: The PC-tree with six leaves represent-
ing the restrictions {{1, 2}, {2, 3}, {4, 5}, {5, 6}}, which
consists of two adjacent C-nodes. Up to reversal and
cyclic shifting, it only has the two admissible orders
[1, 2, 3, 4, 5, 6] and [1, 2, 3, 6, 5, 4].

has become full before its child P-node, is missing in the description by Hsu and
McConnell. Here, we need to search all incident arcs for the single arc pointing to
a non-full node, and queue this arc instead. As the total number of searched arcs is
bounded by the number of full leaves, this does not affect the overall running time.
If the arc at the front of the queue does not have a reference to a (P-)node, we

need to maintain (i.e., create/append/merge) the block-spanning pointers around
the respective C-node 𝑥 . We will also use the full blocks managing these block-
spanning pointers as proxy objects for partial C-nodes. The merging of full blocks
is illustrated in Figure 8.2, see the book chapter by Hsu and McConnell [HM04]
for more details. If the new endpoints of the C-node’s full block are now adjacent
to the same arc pointing to a non-full neighbor, the C-node is full and we queue
the arc to this neighbor 𝑧. Note that similar to the case of P-nodes, this node is
most often but not necessarily (e.g., if the root became full) the parent arc. Still,
there is no explicit search required, as we already know the arc to the only non-full
neighbor. Once the queue runs empty, the labeling is complete. The partial nodes
are now represented by the non-full P-nodes that have full neighbors (but at least
two non-full neighbors) and the full blocks around non-full C-nodes (i.e., where
both endpoints are not adjacent to the same arc).

Finally, let us make a further minor correction regarding the original description.
In their definition of the data structure Hsu and McConnell note that “no two C
nodes are adjacent, so each of these edges [incident to a C-node] has one end that
identifies a neighbor of the C node, and another end that indicates that the end
is incident to a C node, without identifying the C node” [HM04, page 32-10]. See
Figure 8.4 for a simple counterexample where two C-nodes are indeed adjacent.
Hsu and McConnell use this property within their planarity test and after they
test whether the endpoints of a full block of a C-node 𝑥 are adjacent to the same
arc leading to a neighbor 𝑧: “if 𝑥 passes this test, it is full, and the full-neighbor
counter of 𝑧 is incremented” [HM04, page 32-11]. According to their argumentation,
𝑧 has to be a P-node as no two C nodes are adjacent, which is incorrect. Still, the
important information is not the type of the nodes, but that the neighbor 𝑥 of the

139

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

1

2

3

45
6

7

8

9

10

11
12 13

14

15

t1

t2

r

(a)

t1

a

r

t2

4
6

7

8

9

10

11
12 13

15

5

3

2

1

14
(b)

Figure 8.5: Two examples of a PC-tree with root 𝑟 . (a) An I-shaped terminal path where 𝑡2
is both apex and terminal node. (b) An A-shaped terminal path where two ascending paths
join in the apex 𝑎.

non-full node 𝑧 became full and we thus need to queue the arc from 𝑥 to 𝑧. Thus,
our queue-based approach also correctly handles the case where a chain of multiple
adjacent C-nodes becomes full in a cascading fashion.

8.2.2 Efficiently Finding the Terminal Path

Hsu and McConnell show that an edge is terminal if and only if it lies on a path in
the tree between two partial nodes. This allows them to conduct parallel searches,
starting at every partial node and extending ascending paths through their ancestors
at the same rate [HM04]. Whenever an already processed node is encountered,
expansion of the current path is stopped and the path is instead merged into
the path of the already processed node. Once all paths have met, the search can
be terminated. There are two possible structures for the finished terminal path,
assuming the restriction is possible. Let the apex be the highest node on the terminal
path, i.e., the lowest node that is an ancestor of all other nodes on the terminal path.
The two cases can now be differentiated based on the position of the apex, which
in turn depends on the position of the root node:

I-Shaped: If the apex lies on one of the ends of the terminal path and is therefore
a terminal node at the same time, the terminal path extends from the other
endpoint of the path upwards to the apex, as shown in Figure 8.5 (a). In this

140

Our Implementations Section 8.2

case, every node on the terminal path has exactly one child on the terminal
path, except for the lower terminal node 𝑡1. This also covers the special case
where there is only a single terminal node 𝑡1 = 𝑡2.

A-Shaped: If the apex does not lie on one of the ends of the terminal path, two
ascending paths join in the apex, as shown in Figure 8.5 (b). In this case, the
apex 𝑎 has two children on the terminal path, the terminal nodes 𝑡1 and 𝑡2
have none, and all other nodes on the terminal path have exactly one child
that is also on the terminal path.

The apex can be found using a bottom-up traversal, this time starting from all
partial nodes found during the labeling step. As before, traversing a P-node can be
done easily, but again as C-nodes have no object registered with their incident arcs,
finding their parent arc can be difficult. To do so, Hsu and McConnell distinguish
two cases depending on whether they arrived at the C-node via an arc from a
partial or empty node, or via an arc from a full node. We note that the parallel
searches can never actually ascend to another node coming from a full node, as a
full node cannot be part of the terminal path. Thus, we focus exclusively on the
case where we arrived at a C-node from a partial or empty neighbor. Here, Hsu
and McConnell “look at the two neighbors of the child edge in the cyclic order, and
one of them must be the parent edge.” [HM04, page 32-12]. This is only correct in
the first case of the four cases shown in Figure 8.6, as the parent arc may lie behind
a full block adjacent to the incoming arc or the current node may be the apex of
the terminal path.
Algorithm 4 shows our corrected procedure for finding the parent arc for any

given arc 𝑎. It either returns said arc, detects that we can stop ascending or aborts
the algorithm as the restriction is impossible. If the parent arc of an empty C-node
is part of an I-shaped terminal path, it has to lie next to the incoming terminal path
arc 𝑎, otherwise the empty neighbors would be non-consecutive and the restriction
thus impossible; see Figure 8.6 (a) and lines 11 to 14 of Algorithm 4. If the parent arc
of a partial C-node is part of an I-shaped terminal path, it has to lie on the opposite
side of the full block adjacent to the incoming terminal path arc 𝑎 for the restriction
to be possible; see Figure 8.6 (c) and lines 17 and 21. If this arc is not the parent arc, it
may still be part of the terminal path if the current node is the apex of an A-shaped
terminal path as shown in Figures 8.6 (b) and 8.6 (d), see also line 15 as well as lines
18 and 22. Note that in this case, the second incoming terminal path arc will only
be found at a later iteration, as we cannot identify the shape or position of the apex
beforehand. If we neither find a parent arc nor a second incoming arc, ascending
through the current node would make the current restriction impossible as full

141

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

Algorithm 4: Process an arc 𝑎 on the terminal path to either return the
parent of its target node, detect that we can stop ascending and return null,
or abort the algorithm as the restriction is impossible.

FindParentArc(𝑎):
1 if 𝑎 has a reference to its target node 𝑢 then // 𝑢 must be a P-node
2 if 𝑢 is full then

// we already ascended too far
3 else if 𝑢 has a parent arc then
4 return parent arc of 𝑢;
5 else

// we reached the root and cannot ascend further
6 else // C-node
7 𝑎1, 𝑎2 ← the two arcs adjacent to 𝑎;
8 𝑏1, 𝑏2 ← the full blocks ending at 𝑎1, 𝑎2 or null;
9 if 𝑏1 = null then
10 if 𝑏2 = null then // no blocks adjacent

// we can ascend if parent arc is adjacent to 𝑎; see Fig. 8.6 (a)
11 if 𝑎1 leads to parent then
12 return 𝑎1;
13 else if 𝑎2 leads to parent then
14 return 𝑎2;
15 else

// no parent nearby, we cannot ascend further; see Fig. 8.6 (b)
16 else if parent arc is at other side of 𝑏2 then
17 return parent arc adjacent to 𝑏2 similar to above; // see Fig. 8.6 (c)
18 else

// no parent nearby, we cannot ascend further; see Fig. 8.6 (d)
19 else if 𝑏2 = null then
20 if parent arc is at other side of 𝑏1 then
21 return parent arc adjacent to 𝑏1; // see Fig. 8.6 (c)
22 else

// no parent nearby, we cannot ascend further; see Fig. 8.6 (d)
23 else if 𝑏1 = 𝑏2 then

// the C-node is full and we ascended too far
24 else // two different full blocks adjacent
25 raise impossible restriction;

26 return null; // we cannot ascend further

142

Our Implementations Section 8.2

(a) An empty C-node
that is part of a possibly
I-shaped terminal path.

(b) An empty C-node
that is apex of an
A-shaped terminal
path.

(c) A partial C-node
that is part of a possibly
I-shaped terminal path.

(d) A partial C-node
that is apex of an
A-shaped terminal
path.

Figure 8.6: Different cases of the terminal path crossing a C-node. Empty, partial, and full
nodes are drawn in white, gray, and black, respectively. The thicker, green nodes and edges
are part of the terminal path, the blue dashed half-arcs depict the block-spanning pointers.
The edges are oriented towards the root node. In case (c), the node can be a final node of the
terminal path, i.e. a terminal node. Thus there may be zero, one or two incident terminal
edges. In cases (b), (c), and (d), the node can also be the root, i.e. lacking a parent arc.

and empty leaves could then not be separated on different sides of the terminal
path. We can thus simply stop ascending at any C-node for which we did not find
a parent (line 26). Similarly, we stop ascending if we arrive at a full node (which
cannot be part of the terminal path) or the root node (lines 2, 5 and 23).
To now correctly enumerate the terminal path, we again use a queue of unpro-

cessed arcs; see Algorithm 5. We initialize the queue with the parent arcs of all
partial nodes found in the labeling step, which is easy to do for partial P-nodes; see
lines 15 to 23 of Algorithm 5. For partial C-nodes, we can check for a parent arc
that is adjacent to the respective full block, see Figure 8.6 (c) and line 6. If we are
unable to find a parent for the current partial node, we store it both as apex and as
highest point of a stopped search path (lines 12 and 14).
We process the queue arc by arc, using FindParentArc from Algorithm 4 to

find the parent arc of each dequeued arc (lines 24, 25, and 31). Recall that we never
process an arc twice by merging the respective search paths once we encounter
an already processed arc (lines 26 and 27). If we are unable to find a parent for the
current arc, we store it as highest arc of a stopped search path (line 43). We report
an impossible restriction if multiple search paths stopped early, as the terminal
path would then be disconnected. This is handled by the SetApex method in lines
12, 21, and 45; see Section 8.2.3 for more details on impossible restrictions. We
also stop processing if there is only one arc left in the queue and we have not yet

143

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

Algorithm 5: Enumerate the terminal path as a list of predecessors of
the apex.

EnumerateTP():
1 apex← null; // A partial P-node or block of a partial C-node in case of an

I-shaped apex, a pair of terminal path arcs pointing to the same node in
case of an A-shaped apex.

// The chain of predecessors of the apex forms the terminal path. Property
partial-predecessor indicates the highest partial node on the terminal path
below, and that an arc is part of the terminal path.

2 foreach arc 𝑎 do 𝑎.predecessor← null; 𝑎.partial-predecessor← null;
3 highest← null; // The node, block or arc at which a search path stopped.

Knows the highest partial node on said path as its partial-predecessor.
4 𝑄 ← {}; // A queue of unprocessed arcs.
// Initialize 𝑄 with partial nodes

5 foreach block 𝑏 at a partial C-node do
6 if the parent arc 𝑝 of the C-node lies directly before or after 𝑏 then
7 if 𝑝.partial-predecessor ≠ null then
8 raise impossible restriction; // see Fig. 8.7 (a) and Sec. 8.2.3
9 𝑝.partial-predecessor← 𝑏;

10 add 𝑝 to queue 𝑄 ;
11 else
12 SetApex(𝑏); // I- or A-shaped
13 𝑏.partial-predecessor← 𝑏;
14 highest← 𝑏;

15 foreach partial P-node 𝑢 do
16 𝑝 ← parent of 𝑢;
17 if 𝑝 ≠ null then
18 𝑝.partial-predecessor← 𝑢;
19 add 𝑝 to queue 𝑄 ;
20 else
21 SetApex(𝑢); // I- or A-shaped
22 𝑢.partial-predecessor← 𝑢;
23 highest← 𝑢;

// continued on next page...

144

Our Implementations Section 8.2

// Main Routine: Process Queue
24 while 𝑄 is not empty do
25 remove next arc 𝑎 from 𝑄 ;
26 if 𝑎 was already visited then
27 continue;
28 if 𝑄 reached length 0 and highest = null then

// search paths already converged, we are extending above apex
29 highest← 𝑎;
30 break;

31 𝑝 ← FindParentArc(𝑎);
32 if 𝑝 ≠ null then
33 if 𝑝.predecessor = null then
34 if 𝑝.partial-predecessor ≠ null then
35 raise impossible restriction; // see Fig. 8.7 (b) and Sec. 8.2.3
36 𝑝.predecessor← 𝑎;
37 𝑝.partial-predecessor← 𝑎.partial-predecessor;
38 add 𝑝 to 𝑄 ;
39 else
40 SetApex((𝑎, 𝑝.predecessor)); // A-shaped
41 else
42 if highest = null then
43 highest← 𝑎;
44 else
45 SetApex((𝑎, highest)); // A-shaped

46 if apex = null then
// I-shaped, the apex is the highest partial node

47 SetApex(highest.partial-predecessor);

145

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

(a) (b) (c)

Figure 8.7: Examples of impossible restrictions where the parent arc would be used by
two different paths. (a) A partial C-node with two full blocks next to its parent edge.
(b) A partial C-node with one full block and one terminal path edge next to its parent edge.
(c) An empty C-node with two terminal path edges next to its parent edge.

stopped a search path at a highest point (for which we could not find a parent
arc); see lines 28 to 30. In this case, all parts of the parallel search have already
converged into a single ascending path and we are extending the terminal path
above the actual apex.
The apex will be the node that has two incident terminal edges in case of an A-

shaped terminal path, or the highest partial node in case of an I-shaped terminal path.
The first case can be identified by checking whether a node has two predecessors
on the terminal path; see lines 33 and 40. The backtracking needed in the second
case can be done in constant time (lines 46 and 47) by storing the highest partial
predecessor for each processed arc (lines 9, 13, 18, 22, and 37).
Observe that the number of arcs on the terminal path is proportional to the

length 𝑝 of the terminal path. Furthermore, we only check a constant number
of neighbors of each arc and any highest arc requiring backtracking is at most 𝑝
nodes above the actual apex. Thus, the overall running time of our search for the
terminal path is in 𝑂 (𝑝) if the restriction is possible. Note that this slightly refines
the analysis of Hsu and McConnell [HM04], who sometimes scan the full children
of a node and thus have a running time in 𝑂 (𝑝 + |𝑅 |).

8.2.3 Efficiently Detecting Impossible Restrictions
Recall that a restriction is possible if and only if (1) all terminal edges form a path
and (2) all nodes on the terminal path can be flipped or rearranged such that their
empty and full children are consecutive while separated by the terminal edges. The
only way to violate the first property is when a node has more than two incident
terminal edges. P-nodes can detect directly when this case occurs, while a C-node
with more than two incident terminal edges leads to multiple stopped search paths,

146

Our Implementations Section 8.2

Algorithm 6: Set a P-node, full block around a C-node, or a pair of arcs 𝑜
to be the apex or report an invalid restriction.

SetApex(𝑜):
1 if 𝑜 is a pair of arcs (𝑎, 𝑏) then // validate an A-shaped apex
2 if 𝑎 or 𝑏 point to a P-node then
3 if 𝑎 and 𝑏 do not point to the same P-node then
4 raise impossible restriction;
5 else // C-node
6 if 𝑎 and 𝑏 do not lie next to each other // see Figure 8.6 (b)
7 or 𝑎 and 𝑏 do not lie next to the same full block // see Figure 8.6 (d)
8 then
9 raise impossible restriction; // see Figure 8.7 (c)

10 if apex is a P-node then
11 if 𝑜 is the pair of arcs pointing to apex then
12 apex← 𝑜 ;
13 else
14 raise impossible restriction;
15 else if apex is a block at a C-node then
16 if 𝑜 is the pair of arcs that lie before and after apex then
17 apex← 𝑜 ;
18 else
19 raise impossible restriction;
20 else if apex is a pair of arcs then
21 raise impossible restriction;
22 else // apex = null
23 apex← 𝑜 ;

147

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

as the parent edge of a C-node is only found when it is next to the incoming terminal
path edge. This is detected by our algorithm when calling SetApex multiple times
with different highest arcs.

As P-nodes allow arbitrary arrangements of their children, only C-nodes can
violate the second property by either having multiple distinct full blocks, by having
a full block that is not adjacent to all incident terminal edges, or by having no
full block and two or more non-adjacent terminal edges. All these cases lead to a
disconnected terminal path and thus multiple stopped search paths. In our pseudo-
code there is one exception to this: Two full blocks or terminal path edges before
and after the parent edge of a C-node could both independently use the parent
edge for ascending; see Figure 8.7. We detect this situation with two full blocks,
one full block and one terminal path edge, and two terminal paths in lines 8 and
35 of Algorithm 5 and line 9 of Algorithm 6, respectively. Here, we use the node
property partial-predecessor, which is also used to efficiently find the apex when
we extended an I-shaped terminal path too far, to detect that an edge has already
been used for another path.
Finally, note that our pseudo-code may identify the same node as apex twice

if it is a partial node for which we could not find a parent arc and it also is apex
of an A-shaped terminal path, i.e., has two predecessors on the terminal path; see
lines 11 and 16 of Algorithm 6. Otherwise, we report an impossible restriction once
we encounter a second apex (or highest arc, i.e. stopped search path) as shown in
Algorithm 6.

8.2.4 Deletion and Contraction
Deleting and inserting new edges is simple when using the arc-based tree represen-
tation described by Hsu and McConnell. When using a doubly-linked tree structure
similar like the one used by UFPC, no explicit edge objects exists and they are
instead encoded by the child-parent relationship of the nodes. This means that for
the deletions and contractions in steps (4a) and (4b) of the overall update procedure,
the child-parent relationship needs to be set immediately and correctly for every
change and cannot easily be updated later, as done by Hsu and McConnell. Thus,
UFPC uses a different approach for these two steps, which is conceptually closer
to our initial description of step (4) in Section 4.1. First, when creating the central
node, we need to make sure that we directly assign it its neighbors. This is trivial
if the apex is a C-node and thus can simply be reused as is. Otherwise, we create
a new C-node and add up to four neighbors: the apex’ first child on the terminal
path, a newly created P-node that was reassigned as parent of all full children of the
apex, the second child on the terminal path, and finally the apex with all its empty

148

Evaluation Section 8.3

children remaining. Here, neighbors that do not exist are left out, e.g., when the
apex has no full or empty children or the terminal path is I-shaped. Furthermore,
the root of the tree is either among the full or the empty children and thus the node
that is still connected to the root needs to be installed as parent of the new central
node. Second, we iteratively contract a child of the central node that is part of the
terminal path into the central node. C-nodes can again be simply merged, while a
P-node 𝑥 needs to be split into a full and an empty node. P-node 𝑥 is then replaced
by the full node and the empty node with the other terminal path neighbor of 𝑥 in
between, if the latter exists.

8.3 Evaluation
In this section, we experimentally evaluate our PC-tree implementations by com-
paring the running time for applying a restriction with that of various PQ- and
PC-tree implementations that are publicly available. In the following we describe
our methods for generating test cases, our experimental setup and report our results.

8.3.1 Test Data Generation
To generate PQ-trees and restrictions on them, we use the planarity test by Booth
and Lueker [BL76], one of the initial applications of PQ-trees. This test incre-
mentally processes vertices one by one according to an 𝑠𝑡-ordering. Running the
planarity test on a graph with 𝑛 vertices applies 𝑛 − 1 restrictions to PQ-trees of
various sizes. Since not all implementations provide the additional modification
operations necessary to implement the planarity test, we rather export, for each
step of the planarity test, the current PQ-tree and the restriction that is applied to it
as one instance of our test set. We note that the use of 𝑠𝑡-orderings ensures that the
instances do not require the ability of PC-trees to represent cyclic instead of linear
orders, which makes them good test cases for comparing PC-trees and PQ-trees.
In this way, we create one test set SER-POS consisting of only PQ-trees with

possible restrictions by exporting the instances from running the planarity test
on a randomly generated biconnected planar graph for each vertex count 𝑛 from
1000 to 20 000 in steps of 1000 and each edge count𝑚 ∈ {2𝑛, 3𝑛 − 6}.14 Altogether,

14 Note that simple graphs with more than 3𝑛 − 6 edges are always non-planar, while connected
graphs with only 𝑛 edges are always planar. Furthermore maximal planar graphs, i.e., those with
exactly 3𝑛 − 6 edges, have an up to mirroring unique planar embedding. Thus, we chose 2𝑛 edges
as a natural middle ground between being trivially planar and having no embedding choices.

149

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

(a) (b)

(c) (d)

Figure 8.8: Distribution of tree and restriction size for the data sets (a) SER-POS, (b)
SER-IMP, (c) DIR-PLAN, and (d) MAT-POS. The colors indicate how many instances
each cell contains. Please note the different axis and color scales.

this test set contains 199 831 instances, whose distribution with regards to tree size,
restriction size, and terminal path length is shown in Figures 8.8 (a) and 8.9 (a).

To guard against overly permissive implementations, we also create a small test
set SER-IMP of impossible restrictions. It is generated in the same way, by adding
randomly chosen edges to the graphs from above until they become non-planar. In
this case the planarity test fails with an impossible restriction at some point; we
include these 3800 impossible restrictions in the set; see Figures 8.8 (b) and 8.9 (b).
As most of the available implementations have no simple means to store and

load a PQ-/PC-tree, we serialize each test instance as a set of restrictions that create
the tree, together with the additional new restriction. When running a test case,
we first apply all the restrictions to reobtain the tree, and then measure the time to
apply the new restriction from the test case. The prefix SER- in the name of both
sets emphasizes this serialization.

150

Evaluation Section 8.3

(a) (b)

(c) (d)

Figure 8.9: Distribution of terminal path length and restriction size for the data sets (a)
SER-POS, (b) SER-IMP, (c) DIR-PLAN, and (d) MAT-POS.

To be able to conduct a more detailed comparison of the most promising im-
plementations, we also generate a third test set with much larger instances. As
deserializing a PC- or PQ-tree is very time-consuming, we directly use the respec-
tive implementations in the planarity test by Booth and Lueker [BL76], thus calling
the set DIR-PLAN. We generated 10 random planar graphs with 𝑛 vertices and
𝑚 edges for each 𝑛 ranging from 100 000 to 1 000 000 in steps of 100 000 and each
𝑚 ∈ {2𝑛, 3𝑛 − 6}, yielding 200 graphs in total. The planarity test then yields one
possible restriction per node. As we only want to test large restrictions, we filter
out restrictions with less than 25 full leaves, resulting in DIR-PLAN containing
564 300 instances; see Figures 8.8 (c) and 8.9 (c).
In order to evaluate additional test cases that stem from a different application,

we also create a fourth test set MAT-POS containing instances of the consecutive
ones problem. To this end, we generate 1000 matrices in {0, 1}𝑚×𝑛 with𝑚,𝑛 chosen

151

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

uniformly at random from the interval [10, 500]. We pick a random range of cells
as the consecutive block of ones in each row and then shuffle the columns of the
matrix, which yields a yes-instance of the consecutive ones problem. We also add a
zero column to each matrix to ensure that the PC- and PQ-trees represent the same
admissible orders. In total, the set MAT-POS contains 249 080 restrictions whose
distribution is shown in Figures 8.8 (d) and 8.9 (d).

8.3.2 Experimental Setup
Table 8.1 gives an overview of all implementations we are aware of, although not
all implementations could be considered for the evaluation. The three existing
implementations of PC-trees we found are incomplete and unusable (Luk&Zhou)
or tightly intertwined with a planarity test in such a way that we were not able
to extract a generic implementation of PC-trees (Hsu, Noma). We further exclude
two PQ-tree implementations as they either crash or produce incorrect results
on almost all inputs (GTea) or have an excessively poor running time (TryAlgo).
Among the remaining PQ-tree implementations only two correctly handle all
our test cases (OGDF, SageMath). Several other implementations have smaller
correctness issues: After applying a fix to prevent segmentation faults in a large
number of cases for BiVoC, the remaining implementations crash (BiVoC, GraphSet,
Zanetti, Gregable) and/or produce incorrect results (Reisle, JGraphEd, Zanetti) on a
small fraction of our tests; compare the last column of Table 8.1. We nevertheless
include them in our evaluation. We changed the data structure responsible for
mapping the input to the leaves of the tree for BiVoC and Gregable from std::map to
std::vector to make them competitive. Moreover, BiVoC, Gregable and GraphSet
use a rather expensive cleanup step that has to be executed after each update
operation. As this could probably largely be avoided by the use of timestamps, we
do not include the cleanup time in their reported running times. For SageMath the
initial implementation turned out to be quadratic, which we improved to linear by
removing an unnecessary recursion. As Zanetti turned out to be a close competitor
to our implementation in terms of running time, we converted the original Java
implementation to C++ to allow a fair comparison (CppZanetti). This decreased the
running time by one third while still producing the exact same results. All other
non-C++ implementations were much slower or had other issues, making a direct
comparison of their running times within the same language environment as our
implementations unnecessary. Further details on the implementations are given at
the end of this section.

152

Evaluation
Section

8.3
Table 8.1: Implementations considered for the evaluation. Implementations that are entirely unusable as they are incomplete or
crash/produce incorrect results on almost all inputs (marked with −) and those where no generic PC-/PQ-tree implementation
could be extracted (marked with n.a.) could not be evaluated. Correct implementations are marked with ✓and implementations
that are functional, but do not always produce correct results are marked with ✗. These two categories are included in our
experimental evaluation. The last column shows the number of errors for the 203 630 restrictions in the sets SER-POS and
SER-IMP and the 1000 matrices in the set MAT-POS.

Name Type Context Language Correct Errors URL
HsuPC PC-Tree our impl., based on

[HM04]
C++ ✓ 0 https://github.com/N-Coder/

pc-tree/tree/HsuPCSubmodule

UFPC PC-Tree our impl. using
Union-Find

C++ ✓ 0 https://github.com/N-Coder/
pc-tree

Luk&Zhou PC-Tree student course
project

C++ − − https://github.com/kwmichaelluk/
pc-tree

Hsu
[Hsu03]

PC-Tree planarity test proto-
type

C++ n.a. − http://qa.iis.sinica.edu.tw/
graphtheory

Noma
[Boy+04b]

PC-Tree planarity test evalua-
tion

C++ n.a. − https://www.ime.usp.br/~noma/sh

OGDF
[Lei97]

PQ-Tree planarity testing C++ ✓ 0 https://ogdf.github.io

Gregable PQ-Tree biclustering C++ ✗ 1 https://gregable.com/2008/11/
pq-tree-algorithm.html

BiVoC
[GMM06]

PQ-Tree automatic layout of
biclusters

C++ ✗ 73 https://bioinformatics.cs.vt.edu/
~murali/papers/BiVoC

Reisle PQ-Tree student project C++ ✗ 252 https://github.com/creisle/pq-trees

153

https://github.com/N-Coder/pc-tree/tree/HsuPCSubmodule
https://github.com/N-Coder/pc-tree/tree/HsuPCSubmodule
https://github.com/N-Coder/pc-tree
https://github.com/N-Coder/pc-tree
https://github.com/kwmichaelluk/pc-tree
https://github.com/kwmichaelluk/pc-tree
http://qa.iis.sinica.edu.tw/graphtheory
http://qa.iis.sinica.edu.tw/graphtheory
https://www.ime.usp.br/~noma/sh
https://ogdf.github.io
https://gregable.com/2008/11/pq-tree-algorithm.html
https://gregable.com/2008/11/pq-tree-algorithm.html
https://bioinformatics.cs.vt.edu/~murali/papers/BiVoC
https://bioinformatics.cs.vt.edu/~murali/papers/BiVoC
https://github.com/creisle/pq-trees

C
hapter

8
Experim

entalC
om

parison
ofPC

-Trees
and

PQ
-Trees

Table 8.1: Implementations considered for the evaluation (continued).

Name Type Context Language Correct Errors URL
GraphSet
[EFK09]

PQ-Tree visual graph editor C++ ✗ 1551 http://graphset.cs.arizona.edu

Zanetti
[Zan12]

PQR-Tree∗ extension of PQ-
Trees

Java ✗ 728 https://github.com/jppzanetti/
PQRTree

CppZanetti PQR-Tree∗ our C++ conversion
of Zanetti

C++ ✗ 728 https://github.com/N-Coder/
pc-tree#installation

JGraphEd
[Har04]

PQ-Tree visual graph editor Java ✗ 11 https://www3.cs.stonybrook.edu/
~algorith/implement/jgraphed/
implement.shtml

GTea
[CH17]

PQ-Tree visual graph theory
tool

Java − − https://github.com/rostam/GTea

TryAlgo PQ-Tree consecutive-ones
testing

Python − − https://tryalgo.org/en/
datastructures/2017/12/15/pq-trees

SageMath PQ-Tree interval graph detec-
tion

Python ✓ 0 https://doc.sagemath.org/html/en/
reference/graphs/sage/graphs/pq_
trees.html

∗ PQR-Trees are a variant of PQ-Trees that can also represent impossible restrictions, replacing any node that would make a restriction
impossible by an R-node (again allowing arbitrary permutation). To make the implementations comparable, we abort early whenever an
impossible restriction is detected and an R-node would be generated.

154

http://graphset.cs.arizona.edu
https://github.com/jppzanetti/PQRTree
https://github.com/jppzanetti/PQRTree
https://github.com/N-Coder/pc-tree#installation
https://github.com/N-Coder/pc-tree#installation
https://www3.cs.stonybrook.edu/~algorith/implement/jgraphed/implement.shtml
https://www3.cs.stonybrook.edu/~algorith/implement/jgraphed/implement.shtml
https://www3.cs.stonybrook.edu/~algorith/implement/jgraphed/implement.shtml
https://github.com/rostam/GTea
https://tryalgo.org/en/data structures/2017/12/15/pq-trees
https://tryalgo.org/en/data structures/2017/12/15/pq-trees
https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/pq_trees.html
https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/pq_trees.html
https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/pq_trees.html

Evaluation Section 8.3

Environment

Each experiment was run on a single core of a Intel Xeon E5-2690v2 CPU (3.00
GHz, 10 Cores, 25 MB Cache) with 64 GiB of RAM, running Linux Kernel version
5.10. Implementations in C++ were compiled with GCC 10.2.1 and optimization
-O3 -march=native -mtune=native. Java implementations were executed on
OpenJDK 64-Bit Server VM 11.0.14 and Python implementations were run with
CPython 3.9.2. For the Java implementations we ran each experiment several times,
only measuring the last one to remove startup-effects and to facilitate optimization
by the JIT compiler. We used OGDF version 2020.02 (Catalpa) to generate the graphs
fromwhich we derive our test data. We did not analyze the memory consumption of
the implementations, as in theory the linear running time also bounds the memory.
Furthermore, the size of the used data structures only differs by a small constant
factor. In practice, the use of various different libraries also makes it hard to compare
the actual amount of memory used.

Details About Evaluated Implementations

BiVoC, Gregable In the implementations of BiVoC and Gregable, we improved
the mapping from the input to the tree’s leaves by replacing std::map with
std::vector, as suggested in the code’s comments. As a result, this mapping
now takes constant time. The Bubble method of BiVoC caused segmenta-
tion faults due to undefined behavior, because a set iterator is dereferenced
and incremented after its corresponding element has been removed. We re-
solved this issue for our evaluation. Still, the method qNextChild of BiVoC
sometimes caused program hangs due to undefined behavior, when the past-
the-end iterator of an empty set is incremented. In the Gregable repository,
the author notes that the code “is known to be buggy on some rare inputs. A
believed to be correct, but harder to use version of this code can be found
as a library within BiVoC”. In our tests, Gregable produced a segmentation
fault in the reduce-step on one input, while BiVoC failed for 73 instances.
Figure 8.10 shows an example where Gregable’s implementation produces an
invalid PQ-tree.

GraphSet In the implementation of GraphSet, we removed the entanglement with
Microsoft Foundation Classes by replacing its data structures with their
corresponding variants from the standard library. We were unable to get
GraphSet’s Bubble method to work for our tests. Instead, we used the
approach from their quadratic-time variant of Booth and Lueker’s planarity
test, where they traverse the entire tree before each reduction in order to find

155

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

0 1 2 3 4 5 6 7



0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1
1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0(a)

7

5

0 1 2

63 4(b)

5 63 4

(c)

Figure 8.10: (a) A matrix with the consecutive ones property. (b) The state of Gregable’s
PQ-tree data structure before applying the last restriction of the matrix. Q-nodes are
depicted as rectangles, P-nodes as small circles. (c) The state of the data structure after
applying the last restriction {4,5} to the former tree. The new Q-node created in Template
P6 is erroneously chosen as the new root node of the tree. Therefore, the tree loses all
other leaves.

and prepare the pertinent subtree. Still, GraphSet produced segmentation
faults due to null pointer dereferencing in Template Q3 and several invalid
writes when accessing already freed memory.

TryAlgo In June 2020, the authors of the TryAlgo implementation noted on their
website that they “have problems implementing this data structure, and can-
not provide at this point a correct implementation in tryalgo”. Furthermore,
they note that “the current implementation has a complexity in the order
of 𝑛 ∗𝑚, however an implementation in 𝑂 (𝑛 +𝑚 + 𝑠) is possible”. As we
thus assumed their implementation to be neither correct nor linear-time, we
excluded it from our evaluation.

SageMath The main routine set_contiguous of the PQ-tree of SageMath re-
cursively traverses the tree starting from its root as follows: It first calls
set_contiguous recursively on all children of the current node, then calls
flatten, calls set_contiguous recursively on all children again and then
proceeds to sort the children depending on whether they are full, partial, or
empty. The flatten function for removing degree-2 nodes is implemented
to recurse itself on all children in the subtree, making the running time of
set_contiguous quadratic in the tree size. We modified the implementa-
tion to only flatten the current level and dropped the second recursive call
to set_contiguous, improving the running time to linear in the tree size
without generating incorrect results.

156

Evaluation Section 8.3

6

4

3

0 1 2

5
(a)

6

43

0 1 2

54

(b)

Figure 8.11: (a) The PQR-tree [0 1 2 (3 (4 5)) 6] not containing any R-nodes with its
root Q-node depicted as rectangle and the two P-nodes depicted as small circles. (b) The
result of Zanetti’s implementation applying the restriction {3,4} to the former tree, the
tree [[3 4 5] 0 1 2 6] which clearly represents a different set of restrictions.

Zanetti We found that Zanetti’s data structures became inconsistent after some
restrictions, which was also already independently reported on GitHub.15
This happened mostly after restrictions having a terminal path length of
greater than 1. As the restrictions generated when serializing a PC-tree only
have very short terminal paths and the inconsistency is usually only found
when modifying the same area of the tree again, only few of these cases
surfaced in our tests on SER-POS. Only when applying multiple bigger
restrictions consecutively, these issues surfaced more often, i.e., at some
point during the planarity test for close to all graphs with𝑚 = 2𝑛 and also
some of the graphs with𝑚 = 3𝑛 − 6. We also found a second, independent
issue, where Zanetti’s implementation generates C-nodes with their children
in the wrong order. An example where this happens is shown in Figure 8.11.

As Zanetti’s Java implementation still has a very good running time in prac-
tice, we decided to port its Java code to C++ to be able to perform a direct
comparison with the other C++ implementations. As the implementation uses
almost no Java-specific features, the conversion mostly involved replacing
Java Object variables with C pointers and Java utility classes with their C++
stdlib equivalents. The only non-trivial change was that, because Zanetti
stores the Union-Find information directly in the nodes and not in an external
array, we had to implement reference counting for Zanetti’s tree nodes to
ensure that the lifetime of nodes which are no longer part of the tree, but still
referenced in the Union-Find data structure, is handled properly. We made
sure that both the Java and the C++ version not only produced equivalent

15 https://github.com/jppzanetti/PQRTree/issues/2

157

https://github.com/jppzanetti/PQRTree/issues/2

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

output, but actually keep the same PQR-tree state in memory. Where both
implementations differ is that Java immediately reports inconsistencies of
the data structure, e.g., by throwing a NullPointerException, whereas the
SIGSEGFAULT of C++ might not be immediately triggered. This generates
a few more data points with an invalid result, where the Java implementation
already crashed.

8.3.3 Results

Our experiments turn out that SageMath, even with the improvements mentioned
above, is on average 30 to 100 times slower than all other implementations.16 For
the sake of readability, we scale our plots to focus on the other implementations.
As the main application of PC-/PQ-trees is applying possible restrictions, we first
evaluate on the dataset SER-POS. Figure 8.12 shows the running time for individ-
ual restrictions based on the size of the restriction (i.e., the number of full leaves)
and the overall size of the tree. Figure 8.12 (a) clearly shows that for all imple-
mentations the running time is linear in the size of the restriction. Figure 8.12 (b)
suggests that the running time of Reisle and GraphSet does not solely depend on
the restriction size, but also on the size of the tree. To verify this, we created for
each implementation a heatmap that indicates the average running time depending
on both the tree size and the restriction size, shown in Figure 8.13 (a). The diagonal
pattern shown by SageMath, Reisle, and GraphSet confirms the dependency on the
tree size. All other implementations exhibit vertical stripes, which shows that their
running time does not depend on the tree size. Finally, Figure 8.13 (b) shows the
running time compared to the terminal path length. As expected, all implemen-
tations show a linear dependency on the terminal path length, with comparable
results to Figure 8.12 (a).

Figure 8.14 (a) shows the performance on the dataset MAT-POS depending on
the restriction size. The ranking of the implementations is similar to the results
on SER-POS; only OGDF performs noticeably worse on MAT-POS. Note that
Figure 8.8 (d) shows that this dataset contains more larger restrictions, which
effectively result in rather short terminal paths (see Figures 8.9 (a) and 8.9 (d)). As
the rows get darker towards their end in Figure 8.8 (d), the restrictions originating
from the consecutive ones matrices exhibit a correlation between restriction size
and tree size. Thus, the running time of every implementation would exhibit a linear
dependence on the tree size on this dataset. We therefore focus on the test cases
generated using the planarity test for a more detailed analysis of the performance.

16 Part of this might be due to the overhead of running the code with CPython. As the following
analysis shows, SageMath also has other issues, allowing us to safely exclude it.

158

Evaluation Section 8.3

(a) (b)

Figure 8.12: Running time for SER-POS restrictions depending on (a) restriction size and
(b) tree size. The solid lines show the arithmetic mean for the respective implementation.
Note the different scales on the y-axis.

(a) (b)

Figure 8.13: (a) A heatmap showing the average running time of SER-POS restrictions,
depending on both the size of the restriction and the size of the tree. The color scale is based
on the maximum running time of each respective implementation, where darker colors
indicate longer running times. (b) Running time for SER-POS restrictions depending on
the terminal path length.

159

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

(a) (b)

Figure 8.14: Running time for MAT-POS restrictions depending on (a) restriction size
and (b) tree size for all implementations.

(a) (b)

Figure 8.15: Running time for SER-IMP restrictions depending on (a) restriction size
and (b) tree size for all implementations.

160

Evaluation Section 8.4

Figure 8.15 shows the performance on the dataset SER-IMP. The performance
is comparable with that on SER-POS. Noteworthy is that Zanetti performs quite
a bit worse, which is due to its implementation not being able to detect failure
during a labeling step. It always performs updates until a so-called R-node would
be generated. Altogether, the data from SER-POS and MAT-POS shows that
the implementations GraphSet, OGDF, Zanetti, HsuPC and UFPC are clearly
superior to the others. In the following, we conduct a more detailed comparison of
these implementations by integrating them into a planarity test and running them
on much larger instances, i.e., the data set DIR-PLAN. In addition to an update
method, this requires a method for replacing the now-consecutive leaves by a P-
node with a given number of child leaves. Adding the necessary functionality would
be a major effort for most of the implementations, which is why we only adapted the
most efficient implementations to run this set. We also exclude GraphSet from this
experiment; the fact that it scales linearly with the tree size causes the planarity test
to run in quadratic time (see also Section 8.3.2). Figure 8.16 again shows the running
time of individual restrictions depending on the restriction size. Curiously, Zanetti
produces incorrect results for nearly all graphs with 𝑚 = 2𝑛 in Figure 8.16 (a).
As the initial tests already showed, the implementation has multiple flaws; one
major problem is already described in an issue on GitHub, while we give a small
example of another independent error in Figure 8.11. Both plots show that HsuPC
is more than twice as fast as OGDF and that UFPC is again close to two times
faster than HsuPC. Zanetti’s running time is roughly the same as that of HsuPC,
while converting its Java code to C++ brings the running time down close to that
of UFPC.

As OGDF is the slowest, we use it as baseline to calculate the speed-up of the other
implementations. Figure 8.17 (a) shows that the running time improvement for all
three implementations is the smallest for small restrictions, quickly increasing to
the final values of roughly 0.4 times the running time of OGDF for HsuPC and 0.25
for both CppZanetti and UFPC. Figure 8.17 (b) shows the speed-up depending on
the length of the terminal path. For very short terminal paths (which are common
in our datasets), both implementations are again close; but already for slightly
longer terminal paths UFPC quickly speeds up to being roughly 20 % faster than
CppZanetti. This might be because creating the central node in step (4a) is more
complicated for UFPC, as the data structure without edge objects does not allow
arbitrarily adding and removing edges (which is easier for HsuPC) and allowing
cyclic restrictions forces UFPC to also pay attention to various special cases (which
are not necessary for PQ-trees).

161

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

(a) (b)

Figure 8.16: Running time of individual restrictions of DIR-PLAN with OGDF, Zanetti
and our implementations for graphs of size (a)𝑚 = 2𝑛 and (b)𝑚 = 3𝑛 − 6. Please note the
different scales on the x-axis.

(a) (b)

Figure 8.17: Median performance increase depending on (a) the size of the restriction
and (b) the terminal path length, with OGDF as baseline. The shaded areas show the
interquartile range.

162

Testing Planarity and Generating Embeddings Section 8.4

8.4 Testing Planarity and Generating Embeddings
To put the 4-fold speed-up of UFPC over OGDF into context, we compared the
OGDF implementations of the planarity test by Booth and Lueker and the one
by Boyer and Myrvold on our graph instances. The OGDF Boyer and Myrvold
implementation was roughly 50 % faster than the one based on Booth and Lueker’s
algorithm. Replacing the PQ-trees, which are the core part of the latter, by an
implementation that is 4 times faster, might make this planarity test run faster
than the one by Boyer and Myrvold. In order to make a fair comparison between
the different planarity tests, we also need to take into account the embedding
generation, which our PC-tree based planarity test not yet provides.

Chiba et al. [Chi+85] show how an embedding can be constructed along a run of
the planarity test by Booth and Lueker; see Theorem 4.3. Recall that the planarity
test by Booth and Lueker requires a decomposition into biconnected components
and works along an st-ordering (see Chapter 4). To avoid the practical overhead of
computing both, we instead prefer to implement the more recent generalization of
the planarity test by Haeupler and Tarjan [HT08]. This test works along a reversed
DFS-order, which is easier to compute than an st-ordering, and can also handle
non-biconnected components, alleviating the need for a prior decomposition into
biconnected components. In return for this advantages, the algorithm is slightly
more complicated and now also needs to allow for merging multiple PC-trees at
an inserted vertex (see Section 5.1.4). Unfortunately, the embedder by Chiba et al.
[Chi+85] is not directly able to handle this [Fre22]. Instead, we turn to an approach
for generating embeddings from an entirely different family of planarity tests.

The left-right planarity test as described by Brandes [Bra09] also works along a
DFS-tree, but processes individual edges instead of inserting whole vertices. The
test labels each back-edge as “left” or “right” depending on whether it returns to
the tree in respectively counter-clockwise or clockwise direction in an implicitly
generated planar embedding. Note that storing the order of incoming back-edges
in relation to their outgoing tree-edge as done by Chiba et al. [Chi+85] in the
Booth and Lueker planarity test also implicitly yields such labeling, depending
on whether a back-edge appears before or after its tree-edge in the stored order
[Feu23]. Even more, these orders obtained from PC-trees are equivalent to the
LR Ordering described by Brandes [Bra09, Definition 7]. Based on these stored
orders (after ensuring their flips are consistent [Chi+85; Fre22]), we can thus use the
approach described by Brandes to obtain a planar embedding from an LR Ordering
[Bra09, Lemma 8 and Algorithm 6].
Based on these observations, we implement our UFPC based embedder as

follows. We implement the planarity test as suggested by Haeupler and Tarjan
[HT08]. We store and track the flips of orders of consecutive edges as described by

163

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

Chiba et al. [Chi+85] independently for each PC-tree, using the implementation
described by Frey [Fre22]. Instead of incrementally constructing an embedding
from the obtained LR Ordering as suggested by Brandes [Bra09, Algorithm 6], we
directly generate the embedding by sorting the adjacency lists using an appropriate
comparison function based on the positions in the LR Ordering together with a
linear-time radix sort. See the work by Feulner [Feu23] for details on this.

Set-Up

We build upon the evaluation by Feulner [Feu23] comparing this Haeupler-Tarjan-
style planarity test and embedder with the Boyer-Myrvold implementation of the
OGDF [BM99; Boy+04a; Chi+14]. We also add the PQ-tree-based Booth-Lueker im-
plementation [BL76] from the OGDF to the comparison. Additionally, we compare
a variant of our Haeupler-Tarjan implementation, where instead of a global radix
sort that generates the embedding, we use one call to the C++ std::sort method for
each vertex. Note that this increases the asymptotic running time from linear to
𝑂 (𝑛 +𝛥 log𝛥), where 𝛥 is the maximum vertex degree. We run these comparisons
on random connected, biconnected and triconnected graphs with 𝑛 ∈ {100 000,
200 000, . . ., 1 000 000} vertices and𝑚 ∈ {1.5𝑛, 2𝑛, 2.5𝑛, 3𝑛 − 6} edges, generating
5 instances via the respective OGDF generator for each such combination. For
each combination of parameters, we also generate 5 random connected but not
biconnected graphs with a prescribed number 𝑏 ∈ {5, 10, 25, 50, 100, 250, 500, 1000}
of blocks. In this instance set, the size of each block is also chosen randomly, which
leads to these graphs having slightly fewer than the aimed-for number of edges
and a higher variation of densities.

Results

Figure 8.18 (a) shows the clearly-linear absolute running times of the OGDF im-
plementation of the state-of-the-art Boyer-Myrvold (BM) embedder on our sets
of (bi-/tri-)connected graphs. In the relation to this, the remaining plots of Fig-
ure 8.18 show the relative running times of the other algorithms. The Booth-Lueker
algorithm (BL) is clearly slower than the Boyer-Myrvold, with a visible additional
overhead when also generating an embedding. This overhead is not visible when
generating an embedding using the Boyer-Myrvold implementation, indicating that
it always generates an embedding even when this is not requested. The speed-up
of our Haeupler-Tarjan (HT) embedder implementation over the Boyer-Myrvold
one ranges between one quarter and one third, depending on the density of the
graph. Using the super-linear std::sort instead of radix sort for HT seems to be
very slightly slower.

164

Testing Planarity and Generating Embeddings Section 8.4

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Size 1e6

0

1s

2s

3s

4s

5s

6s

7s

Ru
nt

im
e

Set
connected
biconnected
triconnected

Density
1.50
1.75
2.00
2.25
2.50
2.75

(a)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Size 1e6

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

BL E
BL T
BM E
BM T
HT E
HT E'
HT T

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Size 1e6

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

(c)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Size 1e6

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

(d)

Figure 8.18: (a) Running time of the OGDF Boyer-Myrvold embedder BM E on our sets
of (bi-/tri-)connected graphs. The remaining plots show the running time of all algorithms
compared to that of BM E on the set of (b) connected, (c) biconnected, and (d) triconnected
graphs. Algorithms are abbreviated by the authors’ initials, appending T for planarity tests
and E for embedders. Algorithm HT E’ uses the super-linear std::sort instead of radix
sort. The x-axis denotes the graph size as sum of numbers of vertices and edges, lines show
medians, shaded areas show interquartile ranges.

165

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

0.0 0.5 1.0 1.5 2.0
Size 1e6

0

1s

2s

3s

4s

5s

6s

7s

8s

Ru
nt

im
e

Algorithm
BL E
BL T
BM E
BM T
HT E
HT E'
HT T
Density
1.6
1.8
2.0
2.2

(a)
0.0 0.5 1.0 1.5 2.0

Size 1e6

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

(b)

Figure 8.19: (a) Absolute and (b) relative running time of all algorithms on the set of
connected but not biconnected graphs.

Figure 8.19 shows the running times on the remaining set of connected but not
biconnected graphs. Here, the random graph generator chooses a random size for
each block, using the requested sizes only as an upper bound and yielding more
diverse albeit slightly smaller graph sizes. This also leads to the relative running
times varying more, although they all still clearly follow the same trend as in the
other data sets. Interestingly, the super-linear HT E’ now seems to be faster than
the radix-sort-based linear HT E.
All three implementations correctly classified all graphs we tested. To guard

against overly-permissive implementations yielding false-positive results, we also
tested them on further random non-planar graphs. Although the running time here
strongly depends on the order in which the graphs is processed, our implementation
is consistently much faster than BM on these graphs; see Figure 8.20. This might
be in parts due to BM being able to report Kuratowski subdivisions for non-planar
graphs [CMS07].

To summarize, this short evaluation shows that our planarity test implementation
based on the Haeupler-Tarjan algorithm is clearly the fastest among the three OGDF-
based implementations we compared. Using a slight variation of this approach with
a super-linear asymptotic running time yields faster practical running times on one
out of four evaluated graph sets. This shows that there may still be some speed-up
to gain from further engineering this approach. Still, to obtain decisive updated
ranking, one would also need to take into account other potentially more efficient
implementations of these algorithms (see for example [Boy+04a; FMR06]) and a
much larger set of test instances taken from more, different sources. We leave such
a much larger in scale evaluation for future work.

166

Conclusion Section 8.5

0 50000 100000 150000 200000 250000 300000
Size

0

100ms

200ms

300ms

400ms

500ms

600ms

700ms

Ru
nt

im
e

Algorithm
BL E
BL T
BM E
BM T
HT E
HT E'
HT T
Density
1.68
1.74
1.80
1.86
1.92
1.98

(a)
0 50000 100000 150000 200000 250000 300000

Size

0

100ms

200ms

300ms

400ms

500ms

600ms

Ru
nt

im
e

Algorithm
BL E
BL T
BM E
BM T
HT E
HT E'
HT T
Density
1.92
1.98
2.04
2.10
2.16
2.22

(b)

Figure 8.20: Absolute running time of all algorithms on sets of random non-planar bicon-
nected (a) and triconnected (b) graphs.

8.5 Conclusion

In this chapter we have presented the first fully generic and correct implementa-
tions of PC-trees. One implementation follows the original description of Hsu and
McConnell [HM03; HM04], which contains several subtle mistakes in the descrip-
tion of the labeling and the computation of the terminal path. This may be the
reason why no fully generic implementation has been available so far. We give a
corrected version that also includes several small simplifications.
Furthermore, we provided a second, alternative implementation, using Union-

Find [TL84] to replace many of the complications of Hsu and McConnell’s original
approach. Technically, this increases the running time to𝑂 ((|𝑅 | +𝑝) ·𝛼 (|𝐿 |)), where
𝛼 is the inverse Ackerman function. In contrast, our evaluations show that the
Union-Find-based approach is even faster in practice, despite the worse asymptotic
running time.

Our experimental evaluation with a variety of other implementations reveals that
surprisingly few of them are fully correct. Only two other implementation correctly
handle all our test cases. The fastest of them is the PQ-tree implementation of
OGDF, which our Union-Find-based PC-tree implementation beats by roughly a
factor of 4. Interestingly, the Java implementation of PQR-trees by Zanetti achieves
a similar speed-up once ported to C++. However, Zanetti’s Java implementation
is far from correct and it is hard to say whether it is possible to fix it without
compromising its performance.
Altogether, our results show that PC-trees are not only conceptually simpler

than PQ-trees but also perform well in practice, especially when combined with

167

Chapter 8 Experimental Comparison of PC-Trees and PQ-Trees

Union-Find. Based on this, we implemented a planarity test and embedder follow-
ing the approach by Haeupler and Tarjan [HT08]. In our short evaluation, this
implementation is one quarter to one third faster than the OGDF implementation
of the state-of-the art algorithm by Boyer and Myrvold [BM99]. This shows that,
roughly 20 years after this state-of-art was established [Boy+04a], the ranking of
planarity testing algorithms is in need of a re-evaluation. We leave such a detailed
evaluation, also comparing other potentially more efficient implementations and a
larger set of test instances, for future work.
Another direction for future work are PC-tree-based tests for constrained pla-

narity variants. Our implementation of PC-trees can be used as base for implement-
ing the Level Planarity test by Brückner and Rutter [Brü21, Section 5] as well as
the Partially Embedded Planarity we present in Chapter 5.

168

9 Engineering the Synchro-
nized Planarity Algorithm

This chapter is based on joint work with Ignaz Rutter, which appeared at ALENEX
2024 [7]. Our source code is available at github.com/N-Coder/syncplan and also
archived at softwareheritage.org as swh:1:snp:0dae4960cc1303cc3575cf04924e19d664f8
ad87.

The problem Synchronized Planarity not only generalizes many constrained
planarity variants, among them in particular Level and Clustered Planarity as
well as variants of SEFE, but also has a comparatively simple quadratic-time solution,
which is discussed in Chapter 6. Akin to the Goldberg and Tarjan push-relabel
algorithm [GT88], it uses few and simple operations that can be applied in arbitrary
order. Through reductions from many other problems (see Figures 3.1 and 9.1 for an
overview), an implementation would also allow to solve other constrained planarity
problems for which no practical solution is available. This wide area of possible
applications and the fact that the algorithm offers several degrees of freedom make
it an ideal starting point for algorithm engineering.

In this chapter, we describe our implementation of the Synchronized Planari-
ty algorithm, which we evaluate by comparing its results and running times to
those of two existing implementations for the Clustered Planarity problem. We
complement the theoretical running time analysis from Chapter 6 with practical
measurements, highlighting which parts of the algorithm take the most time. Based
on this, we engineer the algorithm by analyzing how to best employ the degrees
of freedom present in the algorithm and by proposing algorithmic improvements
to overcome performance bottlenecks. Section 9.1 gives an overview of previous
practical approaches to constrained planarity problems. In Section 9.2 we describe
our implementation of Synchronized Planarity and evaluate its performance in
comparison with the two other available Clustered Planarity implementations.
We tune the running time of our implementation to make it practical on even large
instances in Section 9.3. We analyze the effects of our engineering in greater detail
in Section 9.4.

169

https://github.com/N-Coder/syncplan
https://www.softwareheritage.org/
https://archive.softwareheritage.org/swh:1:snp:0dae4960cc1303cc3575cf04924e19d664f8ad87
https://archive.softwareheritage.org/swh:1:snp:0dae4960cc1303cc3575cf04924e19d664f8ad87

Chapter 9 Engineering the Synchronized Planarity Algorithm

ec-planar

Radial
Level

Strip

Proper
T -level

Partitioned
2-page

Level

Proper
Clustered
Level

Partial
rotation

Partially
Embedded Strict 1-Fixed

Constrained
Planarity

Partially FPQ-
constrained

Strip
(Embedded)

Partitioned
T -coherent
2-page

(Con SEFE-2)

SynchronizedClustered SEFE-2

Figure 9.1: Constrained planarity variants related to Synchronized Planarity, updated
selection from [DaL15]. Problems and reductions marked in blue are used for generating
test instances.

9.1 Related Work

Surprisingly, in contrast to their intense theoretical consideration, constrained
planarity problems have only received little practical attention so far. Of all variants,
practical approaches to Clustered Planarity were studied the most, although all
implementations predate the first generic polynomial-time solution and thus either
have an exponential worst-case running time or cannot solve all instances. Chimani
et al. [Chi+08] studied the problem of finding maximal clustered-planar subgraphs
in practice using an Integer Linear Program (ILP) together with a branch-and-cut
algorithm. A later work [CK12] strengthened the ILP for the special case of testing
Clustered Planarity, further improving the practical running time. The work by
Gutwenger et al. [GMS14] takes a different approach by using a Hanani-Tutte-style
formulation of the problem based on the work by Schaefer [Sch13]. Unfortunately,
their polynomial-time testing algorithm cannot solve all instances and declines to
make a decision for some instances. The Hanani-Tutte-approach solved instances
with up to 60 vertices and 8 clusters in up to half a minute, while the ILP approach
only solves roughly 90 % of these instances within 10 minutes [GMS14].
The only other constrained planarity variant for which we could find experi-

mental results is Partitioned 2-page Book Embedding. Angelini et al. [ABD12]
describe an implementation of the SPQR-tree-based linear-time algorithm by Hong
and Nagamochi [HN09], which solves instances with up to 100 000 vertices and
two clusters in up to 40 seconds. Unfortunately, their implementation is not pub-

170

Related Work Section 9.1

licly available. For (Radial) Level Planarity, prototypical implementations were
described in the dissertations by Leipert [Lei98] and Bachmaier [Bac04], although
in both cases neither further information, experimental results, nor source code is
available. The lack of an accessible and correct linear-time implementation may
be due to the high complexity of the linear-time algorithms [Brü21]. Simpler al-
gorithms with a super-linear running time have been proposed [Ful+12; HH07;
Ran+01]. For these, we could only find an implementation by Estrella-Balderrama
et al. [EFK10] for the quadratic algorithm by Harrigan and Healy [HH07]. Unfortu-
nately, this implementation has not been evaluated experimentally and we were
also unable to make it usable independently of its Microsoft Foundation Classes
GUI, with which it is tightly intertwined.
We are not aware of further practical approaches for constrained planarity

variants. Note that while the problems Partitioned 2-page Book Embedding and
Level Planarity have linear-time solutions, they are much more restricted than
Synchronized Planarity (see Figure 9.1) and have no usable implementations
available. We thus focus our comparison on solutions to the Clustered Planarity
problem which, besides being a common generalization of both other problems,
fortunately also has all relevant implementations available.

171

C
hapter

9
Engineering

the
Synchronized

Planarity
A
lgorithm

Dataset # Vertices Density Components Clusters/Pipes 𝑑

C-OLD 1643 ≤59 (17.2) 0.9–2.2 (1.4) =1 ≤19 (4.2) ≤256 (34.0)
C-NCP 13 834 ≤500 (236.8) 0.6–2.9 (1.9) ≤48 (21.7) ≤50 (16.8) ≤5390 (783.3)
C-MED 5171 ≤103 (311.6) 0.9–2.9 (2.3) ≤10 (5.1) ≤53 (16.1) ≤7221 (831.8)
C-LRG 5096 ≤105 (15 214.1) 0.5–3.0 (2.4) ≤100 (29.8) ≤989 (98.8) ≤2 380 013 (44 788.7)
SEFE-LRG 1008 ≤104 (3800.0) 1.1–2.4 (1.7) =1 ≤20 000 (7600.0) ≤113 608 (34 762.4)
SP-LRG 1587 ≤105 (25 496.6) 1.3–2.5 (2.0) ≤100 (34.5) ≤20 000 (1467.4) ≤139 883 (9627.5)

Table 9.1: Statistics for our different datasets, values in parentheses are averages. Column # shows the number of instances while
column 𝑑 shows the total number of cluster-border edge crossings or the total degree of all pipes, depending on the underlying
instances.

C-OLD C-NCP C-MED
ILP HT HT-f SP[d] ILP HT HT-f SP[d] ILP HT HT-f SP[d]

Y 732 792 792 792 181 1327 1534 1535 953 762 2696 5170
N 800 851 851 851 946 6465 6463 12 308 0 85 85 0

ERR 0 0 0 0 5214 0 0 0 1263 0 0 0
TO 111 0 0 0 7502 6051 5846 0 2955 4324 2390 1

Table 9.2: Counts of the results ‘yes’, ‘no’, ‘error’, and ‘timed out’ on C-OLD, C-NCP and C-MED.

172

Clustered Planarity in Practice Section 9.2

9.2 Clustered Planarity in Practice
In this section, we shortly describe our C++ implementation of the Synchro-
nized Planarity algorithm from Chapter 6 and compare its running time and
results on instances derived from Clustered Planarity with those of the two
existing implementations by Chimani et al. [Chi+08; CK12] and by Gutwenger et
al. [GMS14]. We base our implementation on the graph data structures provided by
the OGDF [Chi+14] and, as only other dependency, use the PC-tree implementation
UFPC described in the previous Chapter 8 for the embedding trees.

We consider a pipe feasible if it can be removed by applying any one of the three
operations. The algorithm for Synchronized Planarity makes no restriction on
how the next feasible pipe should be chosen. Moreover, it can be shown that if a
pipe is not feasible, then this is directly caused by a close-by pipe with endpoints
of higher degree (see Lemma 6.7 in Section 6.3.6). For now, we will use a heap to
always use a pipe of maximum degree that is thus feasible.
The operations used for solving Synchronized Planarity heavily rely on

(bi-)connectivity information while also making changes to the graph that may
affect this information. As recomputing the information before each step would
pose a high overhead, we maintain this information in the form of a BC-forest (i.e.
a collection of BC-trees). To generate the embedding trees needed by the Prop-
agatePQ and SimplifyMatching operations, we implement the Booth-Lueker
algorithm for testing planarity [BL76; Pat13] using PC-trees. We use that, after pro-
cessing all vertices of a biconnected component, the resulting PC-tree corresponds
to the embedding tree of the vertex that was processed last; see Section 4.2.

9.2.1 Evaluation Set-Up
We compare our implementation of Synchronized Planarity with the Clus-
tered Planarity implementations ILP by Chimani et al. [Chi+08; CK12] and
HT by Gutwenger at al. [GMS14] (not to be confused with the Haeupler-Tarjan
planarity test from Section 8.4). Both are written in C++ and are part of the OGDF.
The ILP implementation by Chimani et al. [Chi+08; CK12] uses the ABACUS ILP
solver [Elf+01] provided with the OGDF. We refer to our Synchronized Planarity
implementation processing pipes in descending order of their degree as SP[d]. We
use the embedding it generates for yes-instances as certificate to validate all positive
answers. For the Hanani-Tutte algorithm, we give the running times for the modes
with embedding generation and verification (HT) and the one without (HT-f)
separately. Note that HT-f only checks an important necessary, but not sufficient
condition and thus may falsely classify negative instances as positive, see [GMS14,

173

Chapter 9 Engineering the Synchronized Planarity Algorithm

Figure 3] and [Ful+15, Figure 16] for examples where this is the case. Variant HT
tries to verify a positive answer by generating an embedding, which works by
incrementally fixing parts of a partial embedding and subsequently re-running the
test. This process may fail at any point, in which case the algorithm can make no
statement about whether the instance is positive or negative [GMS14, Section 3.3].
We note that, in any of our datasets, we neither found a case of HT-f yielding a
false-positive result nor a case of a HT verification failing. The asymptotic running
time of HT-f is bounded by 𝑂 (𝑛6) and the additional verification of HT adds a
further factor of 𝑛 [GMS14].

We combine the Clustered Planarity datasets that were previously used for
evaluations on HT and ILP to form the set C-OLD [Chi+08; CK12; GMS14]. We
apply the preprocessing rules of Gutwenger at al. [GMS14] to all instances and
discard instances that become trivial, non-planar or cluster-connected, since the
latter are easy to solve [Cor+08]. This leaves 1643 instances; see Table 9.1. To create
the larger dataset C-NCP, we used existing methods from the OGDF to generate
instances with up to 500 vertices and up to 50 clusters. This yields 15 750 instances,
13 834 out of which are non-trivial after preprocessing. As this dataset turned out to
contain only 10 % yes-instances, we implemented a new clustered-planar instance
generator that is guaranteed to yield yes-instances. We use it on random planar
graphs with up to 1000 vertices to generate 6300 clustered-planar instances with
up to 50 clusters. Out of these, 5171 are non-trivial after preprocessing and make
up our dataset C-MED. We provide full details on the generation of our dataset at
the end of this section.

We run our experiments on Intel Xeon E5-2690v2 CPUs (3.00 GHz, 10 Cores, 25
MB Cache) with a memory usage limit of 6 GB. As all implementations are single-
threaded, we run multiple experiments in parallel using one core per experiment.
This allows us to test more instances while causing a small overhead which affects
all implementations in the same way. The machines run Debian 11 with a 5.10
Linux Kernel. All binaries are compiled statically using gcc 10.2.1 with flags -O3
-march=native and link-time optimization enabled. We link against slightly mod-
ified versions of OGDF 2022.02 and the PC-tree implementation UFPC described
in Chapter 8. The source code of our implementation and all modifications are
available at github.com/N-Coder/syncplan,17 while our dataset is on Zenodo
with DOI 10.5281/zenodo.7896021.

17 It is also archived at Software Heritage with ID swh:1:snp:0dae4960cc1303cc3575cf04924e1
9d664f8ad87.

174

https://github.com/N-Coder/syncplan
https://doi.org/10.5281/zenodo.7896021
https://doi.org/10.5281/zenodo.7896021
https://archive.softwareheritage.org/swh:1:snp:0dae4960cc1303cc3575cf04924e19d664f8ad87;origin=https://github.com/N-Coder/syncplan
https://archive.softwareheritage.org/swh:1:snp:0dae4960cc1303cc3575cf04924e19d664f8ad87;origin=https://github.com/N-Coder/syncplan

Clustered Planarity in Practice Section 9.2

a

b

c

d

u v

(a) (b)

Figure 9.2: (a) Converting the subtree {𝑎, 𝑏, 𝑐, 𝑑} with root 𝑎 (shown in orange) into a
cluster will separate vertices 𝑢 and 𝑣, as the edge 𝑏𝑑 (dashed) will also be part of the cluster.
(b) A clustered-planar graph with two clusters (in addition to the root cluster) that HT
classifies as “nonCPlanarVerified”.

Details on Dataset Generation

The dataset C-OLD is comprised of the datasets P-Small, P-Medium, P-Large
by Chimani and Klein [CK12] together with PlanarSmallR (a version of PlanarS-
mall [Chi+08] with preprocessing applied), PlanarMediumR and PlanarLargeR
by Gutwenger et al. [GMS14]. The preprocessing reduced the dataset of Chimani
and Klein [CK12] to 64 non-trivial instances, leading to dataset C-OLD containing
1643 instances in total.

The OGDF library can generate an entirely random clustering by selecting
random subsets of vertices. It can also generate a random clustered-planar and
cluster-connected clustering on a given graph by running a depth-first search that
is stopped at random vertices, forming new clusters out of the discovered trees.
To generate non-cluster-connected but clustered-planar instances, we temporarily
add the edges necessary to make a disconnected input graph connected. For the
underlying graphs of C-NCP, we use the OGDF to generate three instances for
each combination of 𝑛 ∈ {100, 200, 300, 400, 500} nodes,𝑚 ∈ {𝑛, 1.5𝑛, 2𝑛, 2.5𝑛, 3𝑛 −
6} edges, and 𝑑 ∈ {10, 20, 30, 40, 50} distinct connected components. For each
input graph, we generate six different clusterings, three entirely random and three
random clustered-planar, with 𝑐 ∈ {3, 5, 10, 20, 30, 40, 50} clusters. This yields 15 750
instances, 13 834 out of which are non-trivial after preprocessing.
It turns out that roughly 90% of these instances are not clustered-planar (see

Table 9.2), even though half of them are generated by a method claiming to only
generate clustered-planar instances. This is because the random DFS-subtree used
for clusters by the OGDF only ensures that the generated cluster itself, but not its
complement are connected. Thus, if the subgraph induced by the selected vertices

175

Chapter 9 Engineering the Synchronized Planarity Algorithm

0 20 40 60 80 100 120 140 160
Cluster-Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min
Mode
ILP
HT
HT-f
SP[d]
Result
Y
N

(a) (b)

Figure 9.3: Median running times on dataset C-OLD (a) together with the underlying
scatter plot (b). For each algorithm, we show running times for yes- and no-instances
separately. Markers show medians of bins each containing 10% of the instances. Shaded
regions around each line show inter-quartile ranges.

contains a cycle, this cycle may separate the outside of the cluster; see Figure 9.2 (a).
To reliably generate yes-instances, we implemented a third method for generating
random clusterings. We first add temporary edges to connect and triangulate the
given input graph. Afterwards, we also generate a random subtree and contract
it into a cluster. Each visited vertex is added to the tree with a probability set
according to the desired number of vertices per cluster. To ensure the non-tree
vertices remain connected, we only add vertices to the tree whose contraction
leaves the graph triangulated, i.e., that have at most two neighbors that are already
selected for the tree. We convert the selected random subtrees into clusters and
contract them for the next iterations until all vertices have been added to a cluster.

As we do not need multiple connected components to ensure the instance is not
cluster-connected for our Clustered Planarity instance generator, we used fewer
steps for the corresponding parameter, but extended the number of nodes up to
1000 for C-MED. The underlying graphs are thus comprised of three instances for
each combination of 1 ≤ 𝑛 ≤ 1000 nodes with 0 ≡ 𝑛 mod 100 (i.e. 𝑛 is a multiple of
100),𝑚 ∈ {𝑛, 1.5𝑛, 2𝑛, 2.5𝑛, 3𝑛 − 6} edges, and 𝑑 ∈ {1, 10, 25, 50} distinct connected
components. For each input graph, we generate three random clustered-planar
clusterings with an expected number of 𝑐 ∈ {3, 5, 10, 20, 30, 40, 50} clusters. This
yields 6300 instances which are guaranteed to be clustered-planar, 5171 out of
which are non-trivial after preprocessing and make up our dataset C-MED.

176

Clustered Planarity in Practice Section 9.2

0 1000 2000 3000 4000 5000 6000
Cluster-Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

Mode
ILP
HT
HT-f
SP[d]
Result
Y
N

(a) (b)

Figure 9.4:Median running times (a) and scatter plot (b) on dataset C-NCP.

9.2.2 Results
Table 9.2 shows the results of running the different algorithms. The dataset C-OLD
is split in roughly equal halves between yes- and no-instances and all algorithms
yield the same results, except for the 111 instances for which the ILP ran into
our 5-minute timeout. The narrow inter-quartile ranges in Figure 9.3 show that
the running time for HT and SP[d] clearly depends on the number of crossings
between cluster boundaries and edges in the given instance, while it is much more
scattered for ILP. Still, all instances with less than 20 such crossings could be solved
by ILP. For HT, we can see that the verification and embedding of yes-instances
has an overhead of at least an order of magnitude over the non-verifying HT-f .
The running times for HT on no-instances as well as the times for HT-f on any
type of instance are the same, showing that the overhead is solely caused by the
verification while the base running time is always the same. For the larger instances
in this test set, SP[d] is an order of magnitude faster than HT-f . For SP[d], we
also see a division between yes- and no-instances, where the latter can be solved
faster, but also with more scattered running times. This is probably due to the fact
that the test can fail at any (potentially very early) reduction step or when solving
the reduced instance. Furthermore, we additionally generate an embedding for
positive instances, which may cause the gap between yes- and no-instances.

The running times on dataset C-NCP are shown in Figure 9.4. The result counts
in Table 9.2 show that only a small fraction of the instances are positive. With
only up to 300 cluster-edge crossings these instances are also comparatively small.
The growth of the running times is similar to the one already observed for the
smaller instances in Figure 9.3. HT-f now runs into the timeout for almost all
yes-instances of size 200 or larger, and both HT and HT-f time out for all instances
of size 1500 and larger. The ILP only manages to solve very few of the instances,

177

Chapter 9 Engineering the Synchronized Planarity Algorithm

0 1000 2000 3000 4000 5000 6000
Cluster-Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

Mode
ILP
HT
HT-f
SP[d]
Result
Y
N

(a) (b)

Figure 9.5: Median running times (a) and scatter plot (b) on dataset C-MED.

often reporting an “undefined optimization result for c-planarity computation” as
error; see Table 9.2. The algorithms all agree on the result if they do not run into
a timeout or abort with an error, except for one instance that HT classifies as
negative while SP[d] found a (positive) solution and also verified its correctness
using the generated embedding as certificate. This is even though the Hanani-Tutte
approach by Gutwenger et al. [GMS14] should answer “no” only if the instance
truly is negative. Figure 9.2 (b) shows a minimal minor of the instance for which
the results still disagree.
The running times on dataset C-MED with only positive instances shown in

Figure 9.4 are in accordance with the previous results. We now also see more
false-negative answers from the HT approach, which points to an error in its
implementation; see also Table 9.2. The plots clearly show that our approach is
much faster than all others. As the Synchronized Planarity reduction fails at
an arbitrary step for negative instances, the running times of positive instances
form an upper bound for those of negative instances. As we also see verifying
positive instances to obtain an embedding as far more common use-case, we focus
our following engineering on this case.

9.3 Engineering Synchronized Planarity
In this section, we study how degrees of freedom in the Synchronized Planari-
ty algorithm can be used to improve the running times on yes-instances. The
algorithm makes little restriction on the order in which pipes are processed, which
gives great freedom to the implementation for choosing the pipe it should process
next. In Section 9.3.1 we investigate the effects of deliberately choosing the next
pipe depending on its degree and whether removing it requires generation of an

178

Engineering Synchronized Planarity Section 9.3

embedding tree. As mentioned by the original description of the Synchronized
Planarity algorithm, there are two further degrees of freedom in the algorithm,
both concerning pipes where both endpoints are block-vertices. The first one is that
if both endpoints additionally lie in different connected components, we may apply
either PropagatePQ or (EncapsulateAnd)Join to remove the pipe. Joining the
pipe directly removes it entirely instead of splitting it into multiple smaller ones,
although at the cost of generating larger connected components. The second one is
for which endpoint of the pipe to compute an embedding tree when applying Prop-
agatePQ. Instead of computing only one embedding tree, we may also compute
both at once and then use their intersection. This preempts multiple following
operations propagating back embedding information individually for each newly-
created smaller pipe. We investigate the effect of these two decisions in Section 9.3.2.
Lastly, we investigate an alternative method for computing embedding trees in
Section 9.3.3, where we employ a more time-consuming algorithm that in return
yields embedding trees for all vertices of a biconnected component simultaneously
instead of just for a single vertex.

0 10ms 20ms 30ms 40ms 50ms
Enc.AndJoin Propagate Simplify Emb. Trees Solve Red. Embed

Figure 9.6: Average time spent on different operations for SP[d] on C-MED.

To gain an initial overview over which parts could benefit the most from im-
provements, Figure 9.6 shows how the running time is distributed across different
operations, averaged over all instances in C-MED. It shows that with more than
20ms, that is roughly 40% of the overall running time, a large fraction of time is
spent on generating embedding trees, while the actual operations contribute only
a minor part of roughly 18 % of the overall running time. 27 % of time is spent on
solving and embedding the reduced instance and 15 % is spent on undoing changes
to obtain an embedding for the input graph. Thus, the biggest gains can probably be
made by reducing the time spent on generating embedding information in the form
of embedding trees. We use this as rough guideline in our engineering process.

Dataset Generation

To tune the running time of our algorithm on larger instances, we increased the
size of the generated instances by a factor of 100 by changing the parameters of
our own cluster-planar instance generator to 𝑛 ∈ {100, 500, 1000, 5000, 10 000,

179

Chapter 9 Engineering the Synchronized Planarity Algorithm

102 103 104 105 106

Number of Cluster-Border Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a)
102 103 104 105 106

Number of Cluster-Border Edge Crossings

0%

10%

20%

30%

40%

50%

60%

70%

Ti
m

ed
-o

ut
 In

st
an

ce
s

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]

SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 9.7: C-LRG median absolute running times (a) and fraction of timeouts (b). Each
marker again corresponds to a bin containing 10 % of the instances.

50 000, 100 000}, 𝑑 ∈ {1, 10, 100}, 𝑐 ∈ {3, 5, 10, 25, 50, 100, 1000} for dataset C-LRG.
This yields 6615 instances, out of which 5096 are non-trivial after preprocessing;
see Table 9.1.

In addition to the Clustered Planarity dataset we also generate a dataset that
uses the reduction from Connected SEFE-2. We do so by generating a random
connected and planar embedded graph as shared graph. Each exclusive graph
contains further edges which are obtained by randomly splitting the faces of the
embedded shared graph until we reach a desired density. For the shared graphs, we
generate three instances for each combination of 𝑛 ∈ {100, 500, 1000, 2500, 5000,
7500, 10 000} nodes and𝑚 ∈ {𝑛, 1.5𝑛, 2𝑛, 2.5𝑛} edges. For 𝑑 ∈ {0.25, 0.5, 0.75, 1},
we then add (3𝑛 − 6 −𝑚) · 𝑑 edges to each exclusive graph, i.e., the fraction 𝑑 of
the number of edges that can be added until the graph is maximal planar. We also
repeat this process three times with different initial random states for each pair of
shared graph and parameter 𝑑 . This leads to the dataset SEFE-LRG containing
1008 instances.

We also generate a dataset of Synchronized Planarity instances by taking a
random planar embedded graph and adding pipes between vertices of the same
degree, using a bijection that matches their current rotation. The underlying graphs
are comprised of three instances for each combination of 𝑛 ∈ {100, 500, 1000,
5000, 10 000, 50 000, 100 000} nodes,𝑚 ∈ {1.5𝑛, 2𝑛, 2.5𝑛} edges, and 𝑑 ∈ {1, 10, 100}
distinct connected components. Note that we do not include graphs that would have
no edges, e.g., those with 𝑛 = 100 and 𝑑 = 100. For each input graph, we generate
three random Synchronized Planarity instances with 𝑝 ∈ {0.05𝑛, 0.1𝑛, 0.2𝑛}
pipes. This leads to the dataset SP-LRG containing 1587 instances.
Altogether, our six datasets contain 28 339 instances in total. For the test runs

on these large instances, we increase the timeout to 1 hour. Figure 9.7 (a) shows

180

Engineering Synchronized Planarity Section 9.3

102 103 104 105

Number of Cluster-Border Edge Crossings

8
10

9
10

1

1 1
10

1 2
10

Re
la

tiv
e

Ru
nt

im
e

SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]

(a)
102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[d]

(b)

Figure 9.8: Relative running times when (a) sorting by pipe degree or applicable operation
and (b) when handling pipes between block-vertices via intersection or join. Note the
different scales on the y-axis.

the result of running our baseline variant SP[d] of the Synchronized Planarity
algorithm (together with selected further variants of the algorithm from subsequent
sections) on dataset C-LRG. Note that, because the dataset spans a wide range of
instance sizes and thus the running times also span a range of different magnitudes,
the plot uses a log scale for both axes. Figure 9.7 (b) shows the fraction of runs that
timed out for each variant.

9.3.1 Pipe Ordering
To be able to deliberately choose the next pipe, we keep a heap of all pipes in
the current instance, where the ordering function can be configured. Note that
the topmost pipe from this heap may not be feasible, in which case we will give
priority to the close-by pipe of higher degree that blocks the current pipe from
being feasible; see Lemma 6.7 for how to find this pipe. We compare the baseline
variant SP[d] sorting by descending (i.e. largest first) degree with the variant SP[a]
sorting by ascending degree, and SP[r] using a random order. Note that for these
variants, the ordering does not depend on which operation is applicable to a pipe
or whether this operation requires the generation of an embedding tree. To see
whether making this distinction affects the running time, we also compare the
variants SP[d+c], which prefers to process pipes on which EncapsulateAndJoin
can be applied, and SP[d-c], which defers such pipes to the very end, processing
pipes requiring the generation of embedding trees first.
To make the variants easier to compare, Figure 9.8 (a) shows running times

relative to that of the baseline SP[d]. Note that we do not show the median of the
last bin, in which up to 70 % of the runs timed out, while this number is far lower for
all previous bins; see Figure 9.7 (b). Figure 9.8 (a) shows that the median running

181

Chapter 9 Engineering the Synchronized Planarity Algorithm

times differ by less than 10% between these variants. The running time of SP[r]
seems to randomly alternate between being slightly slower and slightly faster than
SP[d]. SP[d] is slightly slower than SP[a] for all bins except the very first and very
last, indicating a slight advantage of processing small pipes before bigger ones on
these instances. Interestingly, SP[d] is also slower than both SP[d+c] and SP[d-c]
for all bins. The fact that these two variants have the same speed-ups indicates
that EncapsulateAndJoin should not be interleaved with the other operations,
while it does not matter whether it is handled first or last. Still, the variance in
relative running times is high and none of the variants is consistently faster on a
larger part of the instances (see Section 9.4.2 for a more in-depth analysis of this).
To summarize, the plots show a slight advantage for not interleaving operation
EncapsulateAndJoin with the others or sorting by ascending degree, but this
advantage is not significant in the statistical sense; see Section 9.4.2. We keep SP[d]
as the baseline for our further analysis.

9.3.2 Pipes with two Block-Vertex Endpoints
Our baseline always processes pipes where both endpoints are block-vertices by
applying PropagatePQ or SimplifyMatching based on the embedding tree of
an arbitrary endpoint of the pipe. Alternatively, if the endpoints lie in different
connected components, such pipes can also be joined directly by identifying their
incident edges as in the second step of EncapsulateAndJoin. This directly re-
moves the pipe entirely instead of splitting into further smaller pipes, although it
also results in larger connected components. We enable this joining in variant SP[d
b]. As a second alternative, we may also compute the embedding trees of both
block-vertices and then propagate their intersection. This preempts the multiple
following operations propagating back embedding information individually for
each newly-created smaller pipe. We enable this intersection in variant SP[d i].
Variant SP[d bi] combines both variants, preferring the join and only intersecting
if the endpoints are in the same connected component. We compare the effect
of differently handling pipes with two block-vertex endpoints in variants SP[d
b], SP[d i] and SP[d bi] with the baseline SP[d], which computes the embedding
tree for an arbitrary endpoint and only joins pipes where both pipes are cut-vertices.
Figure 9.8 (b) shows that SP[d b] (and similarly SP[d bi]) is faster by close to

25% on instances with less than 1000 cluster-border edge crossings, but quickly
grows 5 times slower than SP[d] for larger instances. This effect is also visible in
the absolute values of Figure 9.7 (a). This is probably caused by the larger connected

182

Engineering Synchronized Planarity Section 9.3

102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d]
SP[s]

(a)
102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 9.9: Relative running times for (a) SPQR-tree batched embedding tree generation
and (b) for different variants thereof.

components (see the last column of Table 9.3), which make the computation of
embedding trees more expensive. Only inserting an embedding tree instead of the
whole connected component makes the embedding information of the component
directly available in a compressed form without the need to later process the
component in its entirety again. Figure 9.8 (b) also shows that SP[d i] is up to a
third slower than SP[d], indicating that computing both embedding trees poses
a significant overhead while not yielding sufficiently more information to make
progress faster. We also evaluated combinations of the variants from this section
with the different orderings from the previous section, but observed no notable
differences in running time behavior. The effects of the variants from this section
always greatly outweigh the effects from the different orderings. To summarize,
as the plots only show an advantage of differently handling pipes between block-
vertices for small instances, but some strong disadvantages especially for larger
instances, we keep SP[d] as our baseline.

9.3.3 Batched Embedding Tree Generation
Our preliminary analysis showed that the computation of embedding trees con-
sumes a large fraction of the running time (see Figure 9.6), which cannot be reduced
significantly by using the degrees of freedom of the algorithm studied in the previ-
ous two sections. To remedy the overhead of recomputing embedding trees multiple
times we now change the algorithm to no longer process pipes one-by-one, but to
process all pipes of a biconnected component in one batch. This is facilitated by an
alternative approach for generating embedding trees not only for a single vertex,
but for all vertices of a biconnected component. The embedding tree of a vertex
𝑣 can be derived from the SPQR-tree using the approach described by Bläsius et
al. [BR16b, Section 2.5] (see also Section 7.4.1): Each occurrence of 𝑣 in a “parallel”

183

Chapter 9 Engineering the Synchronized Planarity Algorithm

skeleton of the SPQR-tree corresponds to a (PC-tree) P-node in the embedding tree
of 𝑣, each occurrence in a “rigid” to a (PC-tree) C-node. This derivation can be
done comparatively quickly, in time linear in the degree of 𝑣. Thus, once we have
the SPQR-tree of a biconnected component available, we can apply all currently
feasible PropagatePQ and SimplifyMatching operations in a single batch with
little overhead. The SPQR-tree computation takes time linear in the size of the
biconnected component, albeit with a larger linear factor than for the linear-time
planarity test that yields only a single embedding tree. In a direct comparison with
the planarity test, this makes the SPQR-tree the more time-consuming approach.
We enable the batched embedding tree computation based on SPQR-trees in

variant SP[s]. Figures 9.7 (a) and 9.9 (a) show that for small instances, this yields a
slowdown of close to a third. Showing a behavior inverse to SP[d b], SP[s] grows
faster for larger instances and its speed-up even increases to up to 4 times as fast as
the baseline SP[d]. This makes SP[s] the clear champion of all variants considered
so far. We will thus use it as baseline for our further evaluation, where we combine
SP[s] with other, previously considered flags.

9.3.4 SPQR-Batch Variations
Figure 9.9 (b) switches the baseline between the two variants shown in Figure 9.9 (a)
and additionally contains combinations of the variants from Section 9.3.2 with the
SPQR-batch computation. As in Figure 9.8 (b), the intersection of embedding trees
in SP[s i] is consistently slower, albeit with a slightly smaller margin. The joining
of blocks in SP[s b] also shows a similar behavior as before, starting out 25 % faster
for small instances and growing up to 100% slower for larger instances. Again,
this is probably because too large connected components negatively affect the
computation of SPQR-trees. Still, the median of SP[s b] is consistently faster than
SP[d]. Different to before, SP[s bi] is now faster than SP[s b], making it the best
variant for instances with up to 5000 cluster-border edge crossings. This is probably
because in the batched mode, there is no relevant overhead for obtaining a second
embedding tree, while the intersection does preempt some following operations.
To summarize, for instances up to size 5000, SP[s bi] is the fastest variant, which
is outperformed by SP[s] on larger instances. This can also be seen in the absolute
running times in Figure 9.7 (a), where SP[s] is more than an order of magnitude
faster than SP[d b] on large instances.

184

Further Analysis Section 9.4

9.4 Further Analysis
In this section, we provide further in-depth analysis of the different variants from
the previous section and also analyze their performance on the remaining datasets
to give a conclusive judgement. To gain more insights into the runtime behavior,
we measured the time each individual step of the algorithm takes when using
the different variants. An in-depth analysis of this data is given in Section 9.4.1,
where Figure 9.10 also gives a more detailed visualization of per-step timings. The
per-step data corroborates that the main improvement of faster variants is greatly
reducing the time spent on the generation of embedding trees, at the cost of slightly
increased time spent on the solve and embed phases.
To further verify our ranking of variants’ running times from the previous sec-

tions, we also used a statistical test to check whether one variant is significantly
faster than another. The results presented in Section 9.4.2 corroborate our previous
results, showing that pipe ordering has no significant effect while the too large con-
nected components and batched processing of pipes using SPQR-trees significantly
change the running time.
The results of the remaining datasets SEFE-LRG and SP-LRG are presented

in Section 9.4.3 and mostly agree with the results on C-LRG, with SP[d b] clearly
being the slowest and SP[s] being the fastest on large instances. Themain difference
is the magnitude of the overhead generated by large connected components for
variants with flag [b].

9.4.1 Detailed Runtime Profiling
Table 9.3 shows the per-step running time information aggregated for variants
studied in the previous section. Figure 9.10 in greater detail shows how the run-
ning time spent is split on average across the different steps of the algorithm
(Figure 9.10 (a)) and then also further drills down on the composition of the indi-
vidual steps that make the instance reduced (Figure 9.10 (b)), solve the reduced
instance (Figure 9.10 (d)), and then derive a solution and an embedding for the input
instance by undoing all changes while maintaining the embedding (Figure 9.10 (e)).
For variants that use the SPQR-tree for embedding information generation, we
also analyze the time spent on the steps of this batch operation (Figure 9.10 (c)).
Note that we do not have these measurements available for runs that timed out. To
ensure that the bar heights still correspond to the actual overall running times in
the topmost plot, we add a bar corresponding to the time consumed by timed-out
runs on top. This way, ordering the bars by height yields roughly the same order
of variants as we already observed in Figure 9.7 (a).

185

Chapter 9 Engineering the Synchronized Planarity Algorithm

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

1.67min

3.33min

5min

6.7min

8.3min

Ti
m

e

(a) Algorithm Step
Timeouts
Reduce from Cluster
Make Reduced
Solve Red.
Embed
Verify

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

50s

1.67min

2.5min

3.33min

Ti
m

e

(b) Step of Make Reduced
EncapsulateAndJoin
JoinBlocks
Propagate(block)
Propagate(cut)
Simplify(terminal)
Simplify(transitive)
ET: Propagate(block)
ET: Propagate(cut)
ET: Simplify(terminal)
ET: Simplify(transitive)
Batch SPQR

SP[s b]
SP[s bi]

SP[s i]
SP[s]

0

10s

20s

30s

40s

50s

1min

Ti
m

e

(c) Step of Batch SPQR
Compute SPQR
Propagate(block)
Propagate(cut)
Simplify(terminal)
Simplify(transitive)
ET: Propagate(block)
ET: Propagate(cut)
ET: Simplify(terminal)
ET: Simplify(transitive)

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

1s

2s

3s

Ti
m

e

(d) Step of Solve Red.
MakeWheels
Compute SPQR
Derive SAT
Solve SAT
Embed SPQR
Apply Embedding

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

5s

10s

15s

20s

25s

Ti
m

e

(e) Step of Embed
Undo Reduction
Undo ConvertSmall
Undo MakeWheel
Undo Encapsulate
Undo Join(blocks)
Undo Join(cuts)
Undo Join(small)
Undo Propagate
Undo Simplify

Figure 9.10: The average running time of our different Synchronized Planarity variants.

186

Further Analysis Section 9.4

Mo
de

To
tal
Tim

e
Ma
ke
Re
du
ced

So
lve

Re
du
ced

Em
be
d

En
c.A

nd
-Jo
in

Pr
op
ag
ate

Sim
pli
fy

Co
mp

ute
Em

b.

Tr
ee

Un
do
Sim

pli
fy

#S
im
pli
fy

Op
era
tio
ns

Ma
x.
Bic
on
.

Siz
e

SP[d] 142.68 133.08 0.82 8.78 0.25 5.00 13.79 91.34 5.64 1811 2780
SP[d b] 197.17 194.72 0.99 1.46 0.63 1.36 1.53 186.18 0.42 652 13 021
SP[s] 86.57 57.75 1.25 27.56 0.57 9.84 22.38 7.61 18.03 2696 2890
SP[s b] 93.07 79.25 3.55 10.26 2.92 4.29 12.74 46.31 5.46 1421 22 965
SP[s bi] 81.32 68.90 3.09 9.32 2.51 3.79 11.52 41.16 4.84 1448 23 284

Table 9.3: Average values for different variants of SP on dataset C-LRG. All values,
except for the counts in the last two columns, are running times in seconds. The first
data column shows the average total running time, followed by how this is split across
the three phases. The following four columns show the composition of the running time
of the “Make Reduced” step. The last three columns detail information about the “Undo
Simplify” step in the “Embed” phase, and the maximum size of biconnected components in
the reduced instance.

Figure 9.10 (b) clearly shows that the majority of time during the reduce step
is spent on generating embedding information, either in the form of directly com-
puting embedding trees (bars prefixed with “ET”) or by computing SPQR trees.
This can also be seen by comparing column “Make Reduced” in Table 9.3 with
column “Compute Emb Tree”. Only for the fastest variants, those with flag [s] and
without [b], the execution of the actual operations of the algorithm becomes more
prominent over the generation of embedding information in Figure 9.10 (c). Here,
the terminal case of the SimplifyMatching operation (described in the bottom
left part of Figure 7.6) now takes the biggest fraction of time, and actually also a
bigger absolute amount of time than for the other, slower variants with flag [b]
enabled. This is probably because, instead of being joined as with flag [b] enabled,
here pipes between block-vertices are split by PropagatePQ into multiple smaller
pipes, which then need to be removed by SimplifyMatching. This leads to the
variants without [b] needing, on average, roughly two to three times as many
SimplifyMatching applications as those with [b]; see Table 9.3.
The larger biconnected components caused by [b] may also be the reason why

the insertion of wheels takes a larger amount of time for variants with [b] in the
solving phase shown in Figure 9.10 (d). When replacing a cut-vertex by a wheel, all
incident biconnected components with at least two edges incident to the cut-vertex
get merged. Updating the information stored with the vertices of the biconnected
components is probably consuming the most time here, as undoing the changes by

187

Chapter 9 Engineering the Synchronized Planarity Algorithm

contracting the wheels is again very fast. Other than the “MakeWheels” part, most
time during the solving phase is spent on computing SPQR trees, although both is
negligible in comparison to the overall running time.
The running times of the embedding phase given in Figure 9.10 (e) show an

interesting behavior as they increase when the “Make Reduced” phase running
time decreases, indicating a potential trade-off to be made; see also the “Embed”
column in Table 9.3. As the maximum time spent on the “Make Reduced” phase is
still slightly larger, variants where this phase is faster while the embedding phase is
slower are still overall the fastest. The biggest contribution of running time in the
latter phase is the undoing of SimplifyMatching operations, whichmeans copying
the embedding of one endpoint of a removed pipe to the other. The time spent
here roughly correlates with the time spent on applying the SimplifyMatching
operations in the first place (see Table 9.3).
To summarize, the per-step data corroborates that the main improvement of

faster variants is greatly reducing the time spent on the generation of embedding
trees, at the cost of slightly increased time spent on the solve and embed phases.
Flags [s] and [b] have the biggest impact on running times, while flag [i] and the
processing order of pipes do not seem to have a significant influence on the overall
running time. While the variants with [s] clearly have the fastest overall running
times, there is some trade-off between the amounts of time spent on different phases
of the algorithm when toggling the flag [b].

9.4.2 Statistical Significance

To test whether one variant is (in the statistical sense) significantly faster than
another, we use the methodology proposed by Radermacher [Rad20, Section 3.2]
for comparing the performance of graph algorithms. For a given graph 𝐺 and two
variants of the algorithm described by their respective running times 𝑓𝐴 (𝐺), 𝑓𝐵 (𝐺)
on𝐺 , we want to know whether we have a likelihood at least 𝑝 that the one variant
is faster than the other by at least a factor 𝛥. To do so, we use the binomial sign test
with advantages as used by Radermacher [Rad20], where we fix two values 𝑝 ∈ [0, 1]
and 𝛥 ≥ 1, and study the following hypothesis given a random graph 𝐺 from our
dataset: Inequality 𝑓𝐴 (𝐺) · 𝛥 < 𝑓𝐵 (𝐺) holds with probability 𝜋 , which is at least 𝑝 .
The respective null hypothesis is that the inequality holds with probability less
than 𝑝 . Note that this is an experiment with exactly two outcomes (the inequality
holding or not), which we can independently repeat on a sequence of 𝑛 graphs and
obtain the number of instances 𝑘 for which the inequality holds. Using the binomial
test, we can check the likelihood of obtaining at most 𝑘 successes by drawing 𝑛
times from a binomial distribution with probability 𝑝 . If this likelihood is below a

188

Further Analysis Section 9.4

given significance level 𝛼 ∈ [0, 1], that is the obtained result is unlikely under the
null hypothesis, we can reject the null hypothesis that the inequality only holds
with a probability less than 𝑝 .

Fixing the significance level to the commonly-used value 𝛼 = 0.05, we still
need to fix values for 𝑝 and 𝛥 to apply this methodology in practice. We will use
three different values for 𝑝 ∈ [0.25, 0.5, 0.75], corresponding to the advantage on a
quarter, half, and three quarters of the dataset. To obtain values for 𝛥, we will split
our datasets evenly into two halves Gtrain and Gverify, using the Gtrain to obtain an
estimate for 𝛥 and Gverify to verify this value. For a given value of 𝑝 , we set 𝛥′ to the
largest value such that 𝑓𝐴 (𝐺) ·𝛥′ < 𝑓𝐵 (𝐺) holds for 𝑝 · |Gtrain | instances. To increase
the likelihood that we can reject the null hypothesis in the verification step on
Gverify, we will slightly discount the obtained value of 𝛥′, using 𝛥 = min(1, 𝑐 · 𝛥′)
instead with 𝑐 set to 0.75.

SP
[d

 b
]

SP
[d

 i]

SP
[r]

SP
[a

]

SP
[d

]

SP
[d

+c
]

SP
[d

-c
]

p = 0.25

SP[d b]

SP[d i]

SP[r]

SP[a]

SP[d]

SP[d+c]

SP[d-c]

3.5

4.8 1.1 1 1 1 1

5.1 1.2 1 1 1 1

4.8 1.2 1 1 1 1

5.1 1.2 1 1 1 1

5.1 1.3 1 1 1 1

SP
[d

 b
]

SP
[d

 i]

SP
[r]

SP
[a

]

SP
[d

]

SP
[d

+c
]

SP
[d

-c
]

p = 0.5

1.8

2.3 1

2.5 1 1 1

2.4 1

2.6 1 1 1

2.7 1 1 1 1 1

SP
[d

 b
]

SP
[d

 i]

SP
[r]

SP
[a

]

SP
[d

]

SP
[d

+c
]

SP
[d

-c
]

p = 0.75

1

1

1.1

1.1 1

1.1 1

1.2 1

Figure 9.11: Advantages of variants without flag [s] on C-LRG instances of size at least
5000. Blue cell backgrounds indicate significant values, while in cells withwhite background,
we were not able to reject the null-hypothesis with significance 𝛼 = 0.05. Empty cells
indicate that the fraction where the one algorithm is better than the other is smaller than 𝑝 .

Applying this methodology, Figure 9.11 compares the pairwise advantages of the
variants from Sections 9.3.1 and 9.3.2. We see that SP[d i] and especially SP[d b]
are significantly slower than the other variants: for the quarter of the dataset with
the most extreme differences, the advantage rises up to a 5-fold speed-up for other
variants, while slight advantages still persist when considering three quarters of
instances. Conversely, not even on a quarter of instances are SP[d i] and SP[d b]
faster than other variants. Comparing the remaining variants with each other, we
see that each variant has at least a quarter of instances where it is slightly faster
than the other variants, but always with no noticeable advantage, that is 𝛥 = 1.
This is not surprising as the relative running times are scattered evenly above and
below the baseline in Figure 9.8 (a). For half of the dataset, SP[d-c] is still slightly

189

Chapter 9 Engineering the Synchronized Planarity Algorithm

faster than other variants, while no variant from Section 9.3.1 is faster than another
for at least three quarters of instances. To summarize, our results here corroborate
the findings from Sections 9.3.1 and 9.3.2, with SP[d i] and SP[d b] as the clearly
slowest variants. While there is no clear winner among the other variants, at least
SP[d-c] is slightly faster than the others on half of the dataset, but still has no
noticeable advantage.

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.25

SP[d]

SP[s b]

SP[s bi]

SP[s i]

SP[s]

3.5 1

4.4 1.1 1 1

4.5 1.6 1.3

5.3 2 1.6 1.1
SP

[d
]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.5

1.5

1.8 1

2.3 1.1 1

3 1.4 1.1 1

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.75

1

1 1

1.2

1.6 1 1

(a)

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.25

SP[d]

SP[s b]

SP[s bi]

SP[s i]

SP[s]

1 1 1

1.4 1.3 1.2

1.6 1 1.5 1.4

1 1

1 1 1

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.5

1 1

1 1 1

1 1 1.2 1

1

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]
p = 0.75

1

1 1 1 1

(b)

Figure 9.12: Advantages of variants with flag [s] on C-LRG instances of size at least
5000 (a) and at most 5000 (b).

Figures 9.12 (a) and 9.12 (b) compare the pairwise advantages of the variants
from Sections 9.3.3 and 9.3.4 (see also Figure 9.9 (b)) for instances with more and
less than 5000 cluster-border edge crossings, respectively. For the larger instances
of Figure 9.12 (a), the variants with flag [s] outperform SP[d] on at least 75 % of
instances, with advantages as high as a factor of 5 on at least a quarter of instances.
Furthermore, SP[s] outperforms the variants with additional flags [b] and [i] on

190

Conclusion Section 9.5

at least half of all instances. Considering 75 % of all instances, the only significant
result is that SP[s bi] outperforms SP[s b] but with no advantage, i.e. 𝛥 = 1. For
the smaller instances of Figure 9.12 (b), the comparison looks vastly different. Here,
SP[s bi] outperforms all other variants on at least 75 % of instances, although its
advantage is not large, with only up to 1.6 even on the most extreme quarter of the
dataset. Furthermore, variants SP[d] and SP[s b] outperform variants SP[s i] and
SP[s] on half of the dataset, but again with no noticeable advantage, that is 𝛥 = 1.
To summarize, our results are again in accordance with those from Sections 9.3.3
and 9.3.4, where for large instances variant SP[s] is the fastest, whereas for smaller
instances SP[s bi] is superior.

9.4.3 Other Problem Instances
Running the same evaluation on the datasets SEFE-LRG and SP-LRG yielded
absolute running times with roughly the same orders of magnitude as for C-LRG,
see the left plots in Figures 9.13 to 9.15 (but note that the plots show different ranges
on the x-axis while having the same scale on the y-axis). The right plots in the
figures again detail the running times relative to SP[d]. For SP-LRG, the relative
behavior is similar to the one observed on C-LRG. The two major differences
concern variants with flag [b]. Variant SP[d b(i)] is not faster than SP[d] on small
instances and also sooner grows slower on large instances. Similarly, SP[s b(i)]
is not much faster than SP[d] on small instances, and its speed-up over SP[d] for
larger instances has a dent where it returns to having roughly the same speed as
SP[d] around size 1000. On a large scale, this behavior indicates that the slowdown
caused by large connected components is even worse in dataset SP-LRG. For
SEFE-LRG, the instances are less evenly distributed in terms of their total pipe
degree, as the total pipe degree directly corresponds to the vertex degrees in the
SEFE-2 instance. Regarding the relative running time behavior, we still see that
SP[d bi] is much slower and SP[s (i)] much faster than SP[d]. For the remaining
variants, the difference to SP[d] is much smaller than in the two other datasets.
This indicates that the size of connected components does not play an as important
role in this dataset as before.

9.5 Conclusion
In this chapter, we described the first practical implementation of Synchronized
Planarity, which generalizes many constrained planarity problems such as Clus-
tered Planarity and Connected SEFE-2. We evaluated it on more than 28 000
instances stemming from different problems. Using the quadratic algorithm from
Chapter 6, instances with 100 vertices are solved in milliseconds, while we can still

191

Chapter 9 Engineering the Synchronized Planarity Algorithm

102 103 104 105 106

Number of Cluster-Border Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a)
102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 9.13: Absolute (a) and relative (b) running times with regard to SP[d] for C-LRG.

101 102 103 104 105

Total Pipe Degree

1ms

10ms

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a)
101 102 103 104

Total Pipe Degree

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 9.14: Absolute (a) and relative (b) running times with regard to SP[d] for SP-LRG.

103 104 105

Total Pipe Degree

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a)
103 104

Total Pipe Degree

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 9.15: Absolute (a) and relative (b) running times with regard to SP[d] for SEFE-
LRG.

192

Conclusion Section 9.5

solve most instances with up to 100 000 vertices within minutes. This makes our
implementation at least an order of magnitude faster than all other Clustered Pla-
narity implementations, which corroborates its theoretical guarantees in practice.
Analyzing our running times in more detail, we find the generation of embedding
information in the form of embedding trees to be by far the most time-consuming,
while the actual operations of the algorithm that reduce and solve the instance are
comparatively fast. We apply algorithm engineering and use the various degrees
of freedom of the algorithm to speed up computation times by up to an order of
magnitude. The main result here is that the batched computation of embedding
information we devise using SPQR-trees produces a major speed-up. Tuning some
other variables produces a speed-up only in parts of the algorithm while slowing
down others, which shows that further speed-ups may be more challenging to
achieve and that trade-offs may have to be made. One possible approach could
be implementing the dynamically-maintained SPQR-tree described in Chapter 7,
which also yields a further theoretical speed-up. As contribution towards future
work in the field of graph drawing, we also see that our implementation can be
used as reference for the implementation of more specialized, but potentially faster
constrained planarity algorithms, which proved challenging in the past [Brü21].

193

10 Conclusions

In this thesis, we studied theoretical as well as practical aspects of constrained
planarity. The theoretical Part I introduced two new algorithms for solving the
Partially Embedded and Synchronized Planarity problems and, through given
reductions, many other constrained variants planarity variants they generalize.
In the practical Part II, we presented and engineered our implementation of the
PC-tree as data structure that both algorithms rely upon and, based on this, also
the implementation of our quadratic Synchronized Planarity solution. While
the individual chapters close with their individual conclusions and topic-specific
outlooks, we here want to give an overarching summary with a superordinate
perspective on the work. At the very beginning of the thesis, we started with an
updated overview over the most important variants of constrained planarity and
their relationship in Chapter 3, also highlighting the contributions in this thesis. We
publish the contents of this chapter as a website at constrained-planarity.github.io,
with the possibility to collaboratively keep the information updated with the results
of future research. In Chapter 4, we gave an extensive explanation of the basic
algorithm for standard (i.e., unconstrained) planarity and the PC-tree data structure
it relies upon.
On a high level, this PC-tree data structure is a central concept that pertains to

all further parts of this thesis. In Chapter 5, the PC-tree forms the central part of
our linear-time solution for the problem Partially Embedded Planarity based on
the vertex-addition planarity test of Haeupler and Tarjan [HT08]. Augmenting the
PC-tree to also encode the further constraints stemming from Partially Embedded
Planarity allows us to solve this problem with an only slightly-adapted variant of
the standard planarity test. In Chapter 6, we gave a quadratic-time algorithm for
resolving the synchronization of vertex rotations modeled by Synchronized Pla-
narity. Here, being able to succinctly describe and “communicate” all restrictions
a component has on the rotations of a vertex in the form of an embedding PC-tree
is a key ingredient to the efficiency of our algorithm. For both solutions, this
reliance on local orders described by PC-trees contrasts previous algorithms, which
mainly focus on the global perspective on embedding possibilities in the form of
the SPQR-tree [ADP09; Ang+12; Ang+15b; Cor+08; HN09]. Instead, our solutions
step-by-step process local embedding choices in the form of PC-trees to obtain
simple and efficient algorithms.

195

constrained-planarity.github.io

Chapter 10 Conclusions

While we focused on the dynamic maintenance of SPQR-trees in Chapter 7, we
also directly applied this result to more efficiently obtain the embedding PC-trees
central to our algorithm from Chapter 6. Without having to make changes to the
Synchronized Planarity algorithm itself, this allowed us to improve its asymp-
totic running time even further. Our experimental evaluation of this algorithm in
Chapter 9 showed that also in practice, the main effort is not applying the different
operations we describe, but generating the embedding PC-trees they rely on. To be
able do so in the first place, we needed to develop an appropriate implementation of
the PC-tree data structure, which we described in Chapter 8. Here, we showed that,
among different available alternatives, the choice of the most efficient in-memory
representation as well as better implementation of operations has great effects
on the practical performance of the data structure. These improvements directly
pertain to the algorithms that rely on the data structure, which we showed on the
example of planarity test implementations. In this thesis, the PC-tree data structure
thus spans theory, from the conceptual modelling and through allowing efficient
algorithms, to practice, where it is key to good performance.
Interestingly, we also found some gaps between the possibilities of theoreti-

cal and practical considerations. While using Union-Find in our second PC-tree
implementation entails an asymptotic slow-down in theory, this lead to a factor
two speed-up in practice. Furthermore, while our analysis of the running time of
Synchronized Planarity already predicted the generation of embedding trees
to be a major effort,18 it is also indifferent to the different ways in which we can
obtain these embedding trees in practice. Counterintuitively, using a method with
a higher constant factor in its linear running time here leads to a better practical
running time. In this case, this is because computing global embedding choices in
the form of an SPQR-tree in a sense parallelizes multiple computations of individual
local embedding choices in the form of PC-trees.
To summarize, we add crucial instruments to the algorithmic toolbox for treat-

ing – that is especially modeling and solving – constrained planarity problems
both in theory and in practice: On the one hand, we provide a linear-time solu-
tion to problems that individually constrain the rotations of vertices of the graph.
Here, we use adapted PC-trees to represent all planar embedding possibilities of
a subgraph growing step by step while respecting given additional constraints.
On the other hand, we provide a quadratic-time solution to many more-involved
constrained planarity variants by modelling their constraints as synchronization
between vertex rotations. Here, we use PC-trees to communicate the restrictions

18 This also includes the problems due to too-big connected components resulting from joining
pipes with two block-vertices as endpoints.

196

of rotations between the two vertices involved in a synchronization constraint.
In our solution, this is combined with two further operations that each work to
reduce the complexity of individual constraints. As all three operations can be
applied in arbitrary order, this yields a simple and efficient algorithm akin to the
Goldberg-Tarjan push-relabel algorithm [GT88]. Albeit especially in comparison to
our first algorithm, we found this property of the second algorithm to not only be
of advantage. The algorithm incrementally modifies the structure of the instance
to obtain a solution instead of generating a representation of possible solutions.
While the resulting instance clearly does represent a solution, it is hard to see how
it correlates with the input instance. Future work may attempt to better understand
this relationship between input and solution together with the high-level changes
made by the individual operations the algorithm applies. This includes seeking
obstructions in the form of a Kuratowski-style characterization of e.g. Clustered
Planarity, similar to previous results for Partially Embedded Planarity [JKR13]
or the detection and extension of partial representations of interval graphs [KS18;
LB62]. We believe that such insights can be crucial to solving further, yet-unsolved
constrained planarity variants. Foremost among them is of course the SEFE-2
problem, but this also applies to further problem variants and combinations such
as dynamic, partial or simultaneous Clustered- and Synchronized Planarity.

197

10Bibliography

[ABD12] Patrizio Angelini, Marco Di Bartolomeo, and Giuseppe Di Battista. Imple-
menting a Partitioned 2-Page Book Embedding Testing Algorithm. In:
Proceedings of the 20th International Symposium on Graph Drawing (GD’12).
Ed. by Walter Didimo and Maurizio Patrignani. Vol. 7704. Lecture Notes in
Computer Science. Springer, 2012, 79–89. doi: 10.1007/978-3-642-36763-2_8
(see pages 21, 170).

[ABR14] Patrizio Angelini, Thomas Bläsius, and Ignaz Rutter. Testing Mutual Du-
ality of Planar Graphs. International Journal of Computational Geometry
& Applications 24:4 (2014), 325–346. doi: 10.1142/S0218195914600103 (see
page 110).

[AD16] Patrizio Angelini and Giordano Da Lozzo. SEFE = C-Planarity? The Com-
puter Journal 59:12 (2016), 1831–1838. doi: 10.1093/comjnl/bxw035 (see
pages 21, 60).

[AD19] Patrizio Angelini and Giordano Da Lozzo. Clustered Planarity with Pipes.
Algorithmica 81:6 (2019), 2484–2526. doi: 10.1007/s00453-018-00541-w (see
pages 21, 60).

[ADN15] Patrizio Angelini, Giordano Da Lozzo, and Daniel Neuwirth.Advancements
on SEFE and Partitioned Book Embedding problems. Theoretical Com-
puter Science 575 (2015), 71–89. doi: 10.1016/j.tcs.2014.11.016 (see pages 21,
98).

[ADP09] Patrizio Angelini, Giuseppe Di Battista, and Maurizio Patrignani. Finding a
Minimum-depth Embedding of a Planar Graph in 𝑶 (𝒏4) Time. Algo-
rithmica 60:4 (2009), 890–937. doi: 10.1007/s00453-009-9380-6 (see page 195).

[AFT19] Hugo A. Akitaya, Radoslav Fulek, and Csaba D. Tóth. Recognizing Weak
Embeddings of Graphs. ACM Transactions on Algorithms 15:4 (2019), 1–27.
doi: 10.1145/3344549 (see pages 59, 60).

[Ang+10] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kra-
tochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing Planarity of Par-
tially Embedded Graphs. In: Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’10). Ed. by Moses Charikar. SIAM,
2010, 202–221. doi: 10.1137/1.9781611973075.19 (see pages 3, 5, 33).

199

https://doi.org/10.1007/978-3-642-36763-2_8
https://doi.org/10.1142/S0218195914600103
https://doi.org/10.1093/comjnl/bxw035
https://doi.org/10.1007/s00453-018-00541-w
https://doi.org/10.1016/j.tcs.2014.11.016
https://doi.org/10.1007/s00453-009-9380-6
https://doi.org/10.1145/3344549
https://doi.org/10.1137/1.9781611973075.19

[Ang+12] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani,
and Ignaz Rutter.Testing the simultaneous embeddability of two graphs
whose intersection is a biconnected or a connected graph. Journal of
Discrete Algorithms 14 (2012), 150–172. doi: 10.1016/j.jda.2011.12.015 (see
pages 21, 195).

[Ang+15a] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
and Vincenzo Roselli. The importance of being proper: (In clustered-
level planarity and T-level planarity). Theoretical Computer Science 571
(2015), 1–9. doi: 10.1016/j.tcs.2014.12.019 (see page 87).

[Ang+15b] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kra-
tochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing Planarity of Par-
tially Embedded Graphs. ACM Transactions on Algorithms 11:4 (2015),
32:1–32:42. doi: 10.1145/2629341 (see pages 2, 5, 13, 19, 21, 33–36, 51, 55, 56,
84, 195).

[Ang+16] Patrizio Angelini, GiordanoDa Lozzo, GiuseppeDi Battista, and Fabrizio Frati.
Strip Planarity Testing for Embedded Planar Graphs. Algorithmica 77:4
(2016), 1022–1059. doi: 10.1007/s00453-016-0128-9 (see pages 19, 20, 87, 105).

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time
algorithm for testing the truth of certain quantified boolean formulas.
Information Processing Letters 8:3 (Mar. 1979), 121–123. issn: 0020-0190. doi:
10.1016/0020-0190(79)90002-4 (see page 74).

[ART21] Patrizio Angelini, Ignaz Rutter, and Sandhya T. P. Extending Partial Or-
thogonal Drawings. Journal of Graph Algorithms and Applications 25:1
(2021), 581–602. doi: 10.7155/jgaa.00573 (see page 33).

[Bac04] Christian Bachmaier. Circle planarity of level graphs. PhD thesis. Univer-
sity of Passau, Germany, 2004. url: http://www.opus-bayern.de/uni-passau
/volltexte/2004/38/index.html (see page 171).

[BBF05] Christian Bachmaier, Franz-Josef Brandenburg, and Michael Forster. Radial
Level Planarity Testing and Embedding in Linear Time. Journal of
Graph Algorithms and Applications 9:1 (2005), 53–97. doi: 10.7155/jgaa.00100
(see page 19).

[Ben59] S. Benzer. On the Topology of The Genetic Fine Structure. Proceedings
of the National Academy of Sciences 45:11 (1959), 1607–1620. doi: 10.1073/pn
as.45.11.1607 (see page 131).

[BKK97] Therese C. Biedl, Goos Kant, and Michael Kaufmann. On Triangulating
Planar Graphs Under the Four-Connectivity Constraint. Algorithmica
19:4 (1997), 427–446. doi: 10.1007/PL00009182 (see page 103).

200

https://doi.org/10.1016/j.jda.2011.12.015
https://doi.org/10.1016/j.tcs.2014.12.019
https://doi.org/10.1145/2629341
https://doi.org/10.1007/s00453-016-0128-9
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.7155/jgaa.00573
http://www.opus-bayern.de/uni-passau/volltexte/2004/38/index.html
http://www.opus-bayern.de/uni-passau/volltexte/2004/38/index.html
https://doi.org/10.7155/jgaa.00100
https://doi.org/10.1073/pnas.45.11.1607
https://doi.org/10.1073/pnas.45.11.1607
https://doi.org/10.1007/PL00009182

[BKR13] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous
Embedding of Planar Graphs. In: Handbook of Graph Drawing and Visual-
ization. Ed. by Roberto Tamassia. Chapman and Hall/CRC, 2013. Chap. 11,
349–381. isbn: 9781584884125. eprint: 1204.5853. url: https://cs.brown.edu
/people/rtamassi/gdhandbook/chapters/simultaneous.pdf (see pages 2, 21,
61, 88).

[BKR17] Thomas Bläsius, Annette Karrer, and Ignaz Rutter. Simultaneous Embed-
ding: Edge Orderings, Relative Positions, Cutvertices. Algorithmica 80:4
(2017), 1214–1277. doi: 10.1007/s00453-017-0301-9 (see pages 57, 59, 88, 98,
99, 102).

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones
Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algo-
rithms. Journal of Computer and System Sciences 13:3 (1976), 335–379. doi:
10.1016/S0022-0000(76)80045-1 (see pages 1, 5, 10, 13, 23, 31, 34, 123, 131,
134, 149, 151, 164, 173).

[BM89] Daniel Bienstock and Clyde L. Monma. Optimal enclosing regions in
planar graphs. Networks 19:1 (1989), 79–94. doi: 10.1002/net.3230190107
(see page 103).

[BM90] Daniel Bienstock and Clyde L. Monma. On the complexity of embedding
planar graphs to minimize certain distance measures. Algorithmica 5:1
(1990), 93–109. doi: 10.1007/bf01840379 (see page 103).

[BM99] John Boyer and Wendy Myrvold. Stop Minding Your p’s and q’s: A Sim-
plified 𝑶 (𝒏) Planar Embedding Algorithm. In: Proceedings of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99). SODA ’99.
Baltimore, Maryland, USA: Society for Industrial and Applied Mathematics,
1999, 140–146. isbn: 0898714346 (see pages 164, 168).

[Boo75] Kellogg S. Booth. PQ-tree algorithms. PhD thesis. University of California,
Berkeley, 1975. eprint: https://dl.acm.org/doi/book/10.5555/908019 (see
pages 5, 23, 27, 31, 69).

[Boy+04a] John M. Boyer, Pier Francesco Cortese, Maurizio Patrignani, and Giuseppe
Di Battista. Stop Minding Your P’s and Q’s: Implementing a Fast and
Simple DFS-Based Planarity Testing and Embedding Algorithm. In:
Proceedings of the 11th International Symposium on Graph Drawing (GD’04).
Springer Berlin Heidelberg, 2004, 25–36. doi: 10.1007/978-3-540-24595-7_3
(see pages 2, 164, 166, 168).

201

1204.5853
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/simultaneous.pdf
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/simultaneous.pdf
https://doi.org/10.1007/s00453-017-0301-9
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1002/net.3230190107
https://doi.org/10.1007/bf01840379
https://dl.acm.org/doi/book/10.5555/908019
https://doi.org/10.1007/978-3-540-24595-7_3

[Boy+04b] John M. Boyer, Cristina G. Fernandes, Alexandre Noma, and José C. de Pina.
Lempel, Even, and Cederbaum Planarity Method. In: Proceedings of the
3rd Workshop on Experimental and Efficient Algorithms (WEA’04). Springer
Berlin Heidelberg, 2004, 129–144. doi: 10.1007/978-3-540-24838-5_10 (see
page 153).

[BR15] Thomas Bläsius and Ignaz Rutter. Disconnectivity and relative positions
in simultaneous embeddings. Computational Geometry. Theory and Appli-
cations 48:6 (2015), 459–478. doi: 10.1016/j.comgeo.2015.02.002 (see pages 21,
102).

[BR16a] Thomas Bläsius and Ignaz Rutter. A New Perspective on Clustered Pla-
narity as a Combinatorial Embedding Problem. Theoretical Computer
Science 609 (2016), 306–315. doi: 10.1016/j.tcs.2015.10.011 (see pages 2, 20,
21, 57–59, 80).

[BR16b] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-Ordering with Ap-
plications to Constrained Embedding Problems. ACM Transactions on
Algorithms 12:2 (2016), 16:1–16:46. doi: 10.1145/2738054 (see pages 20, 59,
61, 70–73, 78, 88–90, 93–95, 105, 123, 131, 183).

[BR17] Guido Brückner and Ignaz Rutter. Partial and Constrained Level Pla-
narity. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’17). Ed. by Philip N. Klein. SIAM, 2017, 2000–2011. doi:
10.1137/1.9781611974782.130 (see page 131).

[BR23b] Guido Brückner and Ignaz Rutter. An SPQR-tree-like embedding rep-
resentation for level planarity. en. Journal of Computational Geometry
(2023), Vol. 14 No. 1 (2023). doi: 10.20382/JOCG.V14I1A3 (see pages 87, 88).

[Bra+07] Peter Braß, Eowyn Cenek, Christian A. Duncan, Alon Efrat, Cesim Erten,
Dan Ismailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph S. B. Mitchell.
On simultaneous planar graph embeddings. Computational Geometry.
Theory and Applications 36:2 (2007), 117–130. doi: 10.1016/j.comgeo.2006.05
.006 (see pages 2, 21).

[Bra09] Ulrik Brandes. The left-right planarity test. 2009. url: https://www.uni-k
onstanz.de/algo/publications/b-lrpt-sub.pdf (see pages 163, 164).

[Brü21] Guido Brückner. Planarity Variants for Directed Graphs. PhD thesis.
Karlsruhe Institute of Technology, Germany, 2021. url: https://nbn-resolvin
g.org/urn:nbn:de:101:1-2021080405022988868936 (see pages 1, 2, 131, 168,
171, 193).

[Car17a] Johannes Carmesin. Embedding Simply Connected 2-Complexes in 3-
Space – I. A Kuratowski-type characterisation. 2017. arXiv: 1709.04642
(see page 60).

202

https://doi.org/10.1007/978-3-540-24838-5_10
https://doi.org/10.1016/j.comgeo.2015.02.002
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1145/2738054
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.20382/JOCG.V14I1A3
https://doi.org/10.1016/j.comgeo.2006.05.006
https://doi.org/10.1016/j.comgeo.2006.05.006
https://www.uni-konstanz.de/algo/publications/b-lrpt-sub.pdf
https://www.uni-konstanz.de/algo/publications/b-lrpt-sub.pdf
https://nbn-resolving.org/urn:nbn:de:101:1-2021080405022988868936
https://nbn-resolving.org/urn:nbn:de:101:1-2021080405022988868936
https://arxiv.org/abs/1709.04642

[Car17b] Johannes Carmesin. Embedding Simply Connected 2-Complexes in
3-Space – II. Rotation systems. 2017. arXiv: 1709.04643 (see page 60).

[Car17c] Johannes Carmesin. Embedding Simply Connected 2-Complexes in
3-Space – V. A Refined Kuratowski-Type Characterisation. 2017. arXiv:
1709.04659v3 (see pages 59, 60, 101).

[CFK19] Steven Chaplick, Radoslav Fulek, and Pavel Klavík. Extending partial rep-
resentations of circle graphs. Journal of Graph Theory 91:4 (2019), 365–394.
doi: 10.1002/jgt.22436 (see page 33).

[CH17] Alex William Cregten and Hannes Kristján Hannesson. Implementation
of a planarity testing method using PQ-Trees. Tech. rep. Reykjavík
University, 2017. url: https://skemman.is/bitstream/1946/29618/1/Planarity
_testing_with_PQTrees.pdf (see page 154).

[Cha+14] Steven Chaplick, Paul Dorbec, Jan Kratochvíl, Mickaël Montassier, and Juraj
Stacho.Contact Representations of Planar Graphs: Extending a Partial
Representation is Hard. In: Proceedings of the 40th Workshop on Graph-
Theoretic Concepts in Computer Science (WG’14). Ed. by Dieter Kratsch and
Ioan Todinca. Vol. 8747. Lecture Notes in Computer Science. Springer, 2014,
139–151. doi: 10.1007/978-3-319-12340-0_12 (see page 33).

[Cha+15] Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra
Mutzel, and Marcus Schaefer. Drawing Partially Embedded and Simulta-
neously Planar Graphs. Journal of Graph Algorithms and Applications 19:2
(2015), 681–706. doi: 10.7155/jgaa.00375 (see page 2).

[Cha+21] Steven Chaplick, Philipp Kindermann, Jonathan Klawitter, Ignaz Rutter, and
Alexander Wolff. Extending Partial Representations of Rectangular
Duals with Given Contact Orientations. In: Proceedings of the 12th Con-
ference on Algorithms and Complexity (CIAC’21). Ed. by Tiziana Calamoneri
and Federico Corò. Vol. 12701. Lecture Notes in Computer Science. Springer,
2021, 340–353. doi: 10.1007/978-3-030-75242-2_24 (see page 33).

[CHH99] Zhi-Zhong Chen, Xin He, and Chun-Hsi Huang. Finding double Euler
trails of planar graphs in linear time [CMOS VLSI circuit design].
In: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science (FOCS’99). IEEE, 1999. doi: 10.1109/sffcs.1999.814603 (see page 103).

[Chi+08] Markus Chimani, Carsten Gutwenger, Mathias Jansen, Karsten Klein, and
Petra Mutzel.ComputingMaximumC-Planar Subgraphs. In: Proceedings
of the 16th International Symposium on Graph Drawing (GD’08). Ed. by Ioannis
G. Tollis and Maurizio Patrignani. Vol. 5417. Lecture Notes in Computer
Science. Springer, 2008, 114–120. doi: 10.1007/978-3-642-00219-9_12 (see
pages 170, 173–175).

203

https://arxiv.org/abs/1709.04643
https://arxiv.org/abs/1709.04659v3
https://doi.org/10.1002/jgt.22436
https://skemman.is/bitstream/1946/29618/1/Planarity_testing_with_PQTrees.pdf
https://skemman.is/bitstream/1946/29618/1/Planarity_testing_with_PQTrees.pdf
https://doi.org/10.1007/978-3-319-12340-0_12
https://doi.org/10.7155/jgaa.00375
https://doi.org/10.1007/978-3-030-75242-2_24
https://doi.org/10.1109/sffcs.1999.814603
https://doi.org/10.1007/978-3-642-00219-9_12

[Chi+14] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau,
Karsten Klein, and Petra Mutzel. The Open Graph Drawing Framework
(OGDF). In: Handbook of Graph Drawing and Visualization. Ed. by Roberto
Tamassia. Chapman and Hall/CRC, 2014. Chap. 17, 543–569. url: https://cs
.brown.edu/people/rtamassi/gdhandbook/chapters/ogdf .pdf (see pages 8,
132, 136, 164, 173).

[Chi+85] Norishige Chiba, Takao Nishizeki, Shigenobu Abe, and Takao Ozawa. A
linear algorithm for embedding planar graphs using PQ-trees. Journal
of Computer and System Sciences 30:1 (Feb. 1985), 54–76. doi: 10.1016/0022-0
000(85)90004-2 (see pages 5, 31, 47, 163, 164).

[CK12] Markus Chimani and Karsten Klein. Shrinking the Search Space for Clus-
tered Planarity. In: Proceedings of the 20th International Symposium on
Graph Drawing (GD’12). Ed. by Walter Didimo and Maurizio Patrignani.
Vol. 7704. Lecture Notes in Computer Science. Springer, 2012, 90–101. doi:
10.1007/978-3-642-36763-2_9 (see pages 170, 173–175).

[CMS07] Markus Chimani, PetraMutzel, and JensM. Schmidt.Efficient Extraction of
MultipleKuratowski Subdivisions. In: Proceedings of the 15th International
Symposium on Graph Drawing (GD’07). Springer Berlin Heidelberg, 2007,
159–170. doi: 10.1007/978-3-540-77537-9_17 (see page 166).

[Cor+08] Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Pa-
trignani, and Maurizio Pizzonia. C-Planarity of C-Connected Clustered
Graphs. Journal of Graph Algorithms and Applications 12:2 (2008), 225–262.
doi: 10.7155/jgaa.00165 (see pages 21, 60, 174, 195).

[Cor+22] Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. Fourth Edition. MIT Press, 2022, 1332.
isbn: 9780262046305 (see page 9).

[CP18] Pier Francesco Cortese andMaurizio Patrignani.Clustered Planarity = Flat
Clustered Planarity. In: Proceedings of the 26th International Symposium
on Graph Drawing (GD’18). Ed. by Therese C. Biedl and Andreas Kerren.
Vol. 11282. LNCS. Springer, 2018, 23–38. doi: 10.1007/978-3-030-04414-5_2
(see page 60).

[DaL+18] Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Maurizio Pa-
trignani. Computing NodeTrix Representations of Clustered Graphs.
Journal of Graph Algorithms and Applications 22:2 (2018), 139–176. doi: 10.7
155/jgaa.00461 (see page 92).

[DaL15] Giordano Da Lozzo. Planar Graphs with Vertices in Prescribed Re-
gions:models, algorithms, and complexity. PhD thesis. Roma Tre Uni-
versity, 2015. url: http://www.dia.uniroma3.it/~dalozzo/files/phd-thesis-gio
rdano-dalozzo.pdf (see pages 1, 2, 17–19, 87, 170).

204

https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/ogdf.pdf
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/ogdf.pdf
https://doi.org/10.1016/0022-0000(85)90004-2
https://doi.org/10.1016/0022-0000(85)90004-2
https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1007/978-3-540-77537-9_17
https://doi.org/10.7155/jgaa.00165
https://doi.org/10.1007/978-3-030-04414-5_2
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.7155/jgaa.00461
http://www.dia.uniroma3.it/~dalozzo/files/phd-thesis-giordano-dalozzo.pdf
http://www.dia.uniroma3.it/~dalozzo/files/phd-thesis-giordano-dalozzo.pdf

[Die17] Reinhard Diestel.GraphTheory. 5th edition. Graduate Texts inMathematics.
Springer, 2017. isbn: 3662536218. doi: 10.1007/978- 3- 662- 53622- 3 (see
pages 9, 63).

[DLR90] Giuseppe Di Battista, Wei-Ping Liu, and Ivan Rival. Bipartite Graphs, Up-
ward Drawings, and Planarity. Information Processing Letters 36:6 (1990),
317–322. doi: 10.1016/0020-0190(90)90045-Y (see page 63).

[DT89] G. Di Battista and R. Tamassia. Incremental planarity testing. In: Pro-
ceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS’89). IEEE, 1989, 436–441. doi: 10.1109/sfcs.1989.63515 (see page 103).

[DT90] Giuseppe Di Battista and Roberto Tamassia. On-line graph algorithms
with SPQR-trees. In: Proceedings of the 17th International Colloquium on
Automata, Languages and Programming (ICALP’90). Springer, 1990, 598–611.
doi: 10.1007/bfb0032061 (see page 103).

[DT96a] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of tri-
connected components with SPQR-trees. Algorithmica 15:4 (1996), 302–
318. doi: 10.1007/bf01961541 (see pages 12, 103, 110).

[DT96b] Giuseppe Di Battista and Roberto Tamassia. On-Line Planarity Testing.
SIAM Journal on Computing 25:5 (Oct. 1996), 956–997. doi: 10.1137/s0097539
794280736 (see pages 33, 103, 110, 120).

[EFK09] Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov.
Graph Simultaneous Embedding Tool, GraphSET. In: Proceedings of the
16th International Symposium on Graph Drawing (GD’08). Ed. by Ioannis G.
Tollis and Maurizio Patrignani. Vol. 5417. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, 169–180. doi: 10.1007/978-3-642-00219-9
_17 (see page 154).

[EFK10] Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov.
GraphSET, a tool for simultaneous graph drawing. Software: Practice
and Experience 40:10 (2010), 849–863. doi: 10.1002/spe.958 (see page 171).

[Elf+01] Matthias Elf, Carsten Gutwenger, Michael Jünger, and Giovanni Rinaldi.
Branch-and-Cut Algorithms for Combinatorial Optimization and
Their Implementation in ABACUS. In: Computational Combinatorial
Optimization: Optimal or Provably Near-Optimal Solutions. Ed. by Michael
Jünger and Denis Naddef. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, 157–222. isbn: 978-3-540-45586-8. doi: 10.1007/3-540-45586-8_5 (see
page 173).

[Epp+96] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer.
Separator Based Sparsification. Journal of Computer and System Sciences
52:1 (1996), 3–27. doi: 10.1006/jcss.1996.0002 (see pages 103, 104).

205

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/0020-0190(90)90045-Y
https://doi.org/10.1109/sfcs.1989.63515
https://doi.org/10.1007/bfb0032061
https://doi.org/10.1007/bf01961541
https://doi.org/10.1137/s0097539794280736
https://doi.org/10.1137/s0097539794280736
https://doi.org/10.1007/978-3-642-00219-9_17
https://doi.org/10.1007/978-3-642-00219-9_17
https://doi.org/10.1002/spe.958
https://doi.org/10.1007/3-540-45586-8_5
https://doi.org/10.1006/jcss.1996.0002

[Epp+98] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer.
Separator-Based Sparsification II: Edge and Vertex Connectivity. SIAM
Journal on Computing 28:1 (1998), 341–381. doi: 10.1137/S0097539794269072
(see pages 59, 78).

[ET76] Shimon Even and Robert Endre Tarjan. Computing an st-numbering.
Theoretical Computer Science 2:3 (Sept. 1976), 339–344. doi: 10.1016/0304-39
75(76)90086-4 (see pages 11, 23, 31).

[FB04] Michael Forster and Christian Bachmaier. Clustered Level Planarity. In:
Proceedings of the 30th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM’04). Ed. by Peter van Emde Boas, Jaroslav Pokorný,
Mária Bieliková, and Julius Stuller. Vol. 2932. Lecture Notes in Computer
Science. Springer, 2004, 218–228. doi: 10.1007/978-3-540-24618-3_18 (see
page 87).

[FCE95] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for Clustered
Graphs. In: Proceedings of the 3rd Annual European Symposium on Algorithms
(ESA’95). Ed. by Paul G. Spirakis. Vol. 979. LNCS. Springer, 1995, 213–226.
doi: 10.1007/3-540-60313-1_145 (see pages 2, 21, 60).

[Fed+17] Marcus Fedarko, Jay Ghurye, Todd Treagen, and Mihai Pop. Metagenome-
Scope: Web-Based Hierarchical Visualization of Metagenome Assem-
bly Graphs. In: Proceedings of the 25th International Symposium on Graph
Drawing (GD’17). Ed. by Fabrizio Frati and Kwan-Liu Ma. (Poster). Springer,
2017, 630–632. doi: 10.1007/978-3-319-73915-1 (see page 103).

[Feu23] Tim-Florian Feulner. Deriving Embeddings and Triconnectivity from
the Haeupler-Tarjan Planarity Test. BA thesis. University of Passau, 2023
(see pages 163, 164).

[FMR06] Hubert De Fraysseix, Patrice Ossona De Mendez, and Pierre Rosenstiehl.
Trémaux trees and planarity. International Journal of Foundations of Com-
puter Science 17:05 (2006), 1017–1029. doi: 10.1142/S0129054106004248 (see
pages 2, 166).

[FOO05] D. Franken, J. Ochs, and K. Ochs. Generation of wave digital structures
for networks containing multiport elements. IEEE Transactions on Cir-
cuits and Systems I: Regular Papers 52:3 (2005), 586–596. doi: 10.1109/tcsi.200
4.843056 (see page 103).

[Fre22] Valentin Frey. Planarity Testing and Embedding based on theHaeupler-
Tarjan Algorithm: Implemention and Experiments. BA thesis. Univer-
sity of Passau, 2022 (see pages 163, 164).

206

https://doi.org/10.1137/S0097539794269072
https://doi.org/10.1016/0304-3975(76)90086-4
https://doi.org/10.1016/0304-3975(76)90086-4
https://doi.org/10.1007/978-3-540-24618-3_18
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/978-3-319-73915-1
https://doi.org/10.1142/S0129054106004248
https://doi.org/10.1109/tcsi.2004.843056
https://doi.org/10.1109/tcsi.2004.843056

[FT22] Radoslav Fulek and Csaba D. Tóth. Atomic Embeddability, Clustered
Planarity, and Thickenability. Journal of the ACM 69:2 (2022), 13:1–13:34.
doi: 10.1145/3502264. arXiv: 1907.13086v1 [cs.CG] (see pages 2, 6, 17, 21,
57–60, 69, 73, 79, 101, 102, 105).

[Ful+12] Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Šte-
fankovič. Hanani–Tutte, Monotone Drawings, and Level-Planarity.
In: Thirty Essays on Geometric Graph Theory. Springer New York, 2012, 263–
287. doi: 10.1007/978-1-4614-0110-0_14 (see page 171).

[Ful+15] Radoslav Fulek, Jan Kynčl, IgorMalinović, andDömötör Pálvölgyi.Clustered
Planarity Testing Revisited. The Electronic Journal of Combinatorics 22:4
(2015). doi: 10.37236/5002 (see pages 21, 60, 174).

[Gas+06] Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and
Michael Schulz. Simultaneous Graph Embeddings with Fixed Edges. In:
Graph-Theoretic Concepts in Computer Science. Springer Berlin Heidelberg,
2006, 325–335. doi: 10.1007/11917496_29 (see page 21).

[GKM08] Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity Testing
and Optimal Edge Insertion with Embedding Constraints. Journal of
Graph Algorithms and Applications 12:1 (2008), 73–95. doi: 10.7155/jgaa.00160
(see pages 3, 20, 55, 59, 61, 62, 90).

[GM00] Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of
SPQR-Trees. In: Proceedings of the 8th International Symposium on Graph
Drawing (GD’00). Ed. by Joe Marks. Vol. 1984. LNCS. Springer, 2000, 77–90.
doi: 10.1007/3-540-44541-2_8 (see pages 12, 119).

[GMM06] Gregory A. Grothaus, Adeel Mufti, and T. M. Murali.Automatic layout and
visualization of biclusters. Algorithms for Molecular Biology 1:1 (2006), 15.
doi: 10.1186/1748-7188-1-15 (see page 153).

[GMS14] Carsten Gutwenger, Petra Mutzel, and Marcus Schaefer. Practical Expe-
rience with Hanani-Tutte for Testing c-Planarity. In: Proceedings of
the 16th Workshop on Algorithm Engineering and Experiments (ALENEX’14).
Ed. by Catherine C. McGeoch and Ulrich Meyer. Society for Industrial and
Applied Mathematics, 2014, 86–97. doi: 10.1137/1.9781611973198.9 (see
pages 170, 173–175, 178).

[GT88] Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the
maximum-flow problem. Journal of the ACM 35:4 (1988), 921–940. doi:
10.1145/48014.61051 (see pages 169, 197).

207

https://doi.org/10.1145/3502264
https://arxiv.org/abs/1907.13086v1
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.37236/5002
https://doi.org/10.1007/11917496_29
https://doi.org/10.7155/jgaa.00160
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1186/1748-7188-1-15
https://doi.org/10.1137/1.9781611973198.9
https://doi.org/10.1145/48014.61051

[Gut+02] Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel, Meri-
jam Percan, and René Weiskircher. Advances in C-Planarity Testing of
Clustered Graphs. In: Proceedings of the 10th International Symposium on
GraphDrawing (GD’02). Ed. by StephenG. Kobourov andMichael T. Goodrich.
Vol. 2528. LNCS. Springer, 2002, 220–235. doi: 10.1007/3-540-36151-0_21
(see pages 21, 60).

[Gut10] Carsten Gutwenger. Application of SPQR-trees in the planarization
approach for drawing graphs. PhD thesis. Technische Universität Dort-
mund, 2010. url: https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/d
iss_gutwenger.pdf (see page 103).

[Had75] F. Hadlock. Finding a Maximum Cut of a Planar Graph in Polynomial
Time. SIAM Journal on Computing 4:3 (1975), 221–225. doi: 10.1137/0204019
(see page 1).

[Har04] Jon Harris. JGraphEd –A Java Graph Editor and GraphDrawing Frame-
work. Tech. rep. Carleton University, School of Computer Science, Comp
5901 Directed Studies, 2004. url: http://citeseerx.ist.psu.edu/viewdoc/summ
ary?doi=10.1.1.188.5066&rank=1 (see page 154).

[HFM07] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. NodeTrix: a
Hybrid Visualization of Social Networks. IEEE Transactions on Visual-
ization and Computer Graphics 13:6 (2007), 1302–1309. doi: 10.1109/tvcg.200
7.70582 (see page 92).

[HH07] Martin Harrigan and Patrick Healy. Practical Level Planarity Testing
and Layout with Embedding Constraints. In: Proceedings of the 15th
International Symposium on Graph Drawing (GD’07). Ed. by Seok-Hee Hong,
Takao Nishizeki, andWuQuan. Vol. 4875. Lecture Notes in Computer Science.
Springer, 2007, 62–68. doi: 10.1007/978-3-540-77537-9_9 (see page 171).

[HM03] Wen-Lian Hsu and Ross M. McConnell. PC trees and circular-ones ar-
rangements. Theoretical Computer Science 296:1 (2003), 99–116. doi: 10.101
6/S0304-3975(02)00435-8 (see pages 8, 23, 26, 27, 31, 51, 52, 132–135, 167).

[HM04] Wen-Lian Hsu and Ross M. McConnell. PQ Trees, PC Trees, and Planar
Graphs. In: Handbook of Data Structures and Applications. Ed. by Dinesh P.
Mehta and Sartaj Sahni. Chapman and Hall/CRC, 2004. Chap. 32. doi: 10.120
1/9781420035179.ch32. url: https://www.cs.colostate.edu/~rmm/pc2.pdf (see
pages 23, 26, 27, 31, 51, 52, 132–135, 137, 139–141, 146, 153, 167).

[HN09] Seok-Hee Hong and Hiroshi Nagamochi. Two-page book embedding
and clustered graph planarity. Tech. rep. TR[2009-004]. Dept. of Applied
Mathematics and Physics, University of Kyoto, 2009. url: https://citeseerx.is
t.psu.edu/doc/10.1.1.361.1233 (see pages 21, 170, 195).

208

https://doi.org/10.1007/3-540-36151-0_21
https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/diss_gutwenger.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/diss_gutwenger.pdf
https://doi.org/10.1137/0204019
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.5066&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.5066&rank=1
https://doi.org/10.1109/tvcg.2007.70582
https://doi.org/10.1109/tvcg.2007.70582
https://doi.org/10.1007/978-3-540-77537-9_9
https://doi.org/10.1016/S0304-3975(02)00435-8
https://doi.org/10.1016/S0304-3975(02)00435-8
https://doi.org/10.1201/9781420035179.ch32
https://doi.org/10.1201/9781420035179.ch32
https://www.cs.colostate.edu/~rmm/pc2.pdf
https://citeseerx.ist.psu.edu/doc/10.1.1.361.1233
https://citeseerx.ist.psu.edu/doc/10.1.1.361.1233

[HN18] Seok-Hee Hong and Hiroshi Nagamochi. Simpler algorithms for testing
two-page book embedding of partitioned graphs. Theoretical Computer
Science 725 (2018), 79–98. doi: 10.1016/j.tcs.2015.12.039 (see page 21).

[HR20a] Jacob Holm and Eva Rotenberg. Fully-dynamic Planarity Testing in
Polylogarithmic Time. In: Proceedings of the 52nd Annual ACM Sympo-
sium on Theory of Computing (STOC’20). Ed. by Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy.
Vol. abs/1911.03449. ACM, 2020, 167–180. doi: 10.1145/3357713.3384249 (see
pages 79, 103, 127).

[HR20b] Jacob Holm and Eva Rotenberg. Worst-Case Polylog Incremental SPQR-
trees: Embeddings, Planarity, and Triconnectivity. In: Proceedings of
the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20).
Society for Industrial and Applied Mathematics, 2020, 2378–2397. doi: 10.11
37/1.9781611975994.146 (see pages 79, 103, 127).

[Hsu01] Wen-Lian Hsu. PC-Trees vs. PQ-Trees. In: Proceedings of the 7th Annual
International Conference on Computing and Combinatorics (COCOON’01).
Ed. by Jie Wang. Vol. 2108. Lecture Notes in Computer Science. Springer,
2001, 207–217. doi: 10.1007/3-540-44679-6_23 (see page 10).

[Hsu03] Wen-Lian Hsu. An Efficient Implementation of the PC-Tree Algorithm
of Shih & Hsu’s Planarity Test. Tech. rep. Institute of Information Science,
Academia Sinica, 2003. url: http://iasl.iis.sinica.edu.tw/webpdf/paper-2003-
PLANAR_implementation.pdf (see page 153).

[HT08] Bernhard Haeupler and Robert Endre Tarjan. Planarity Algorithms via
PQ-Trees (Extended Abstract). Electronic Notes in Discrete Mathematics 31
(2008), 143–149. doi: 10.1016/j.endm.2008.06.029 (see pages 5, 23, 29, 31, 34,
47, 51, 55, 56, 131, 163, 168, 195).

[HT73a] John Edward Hopcroft and Robert Endre Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Communications of the ACM 16:6
(June 1973), 372–378. doi: 10.1145/362248.362272 (see page 31).

[HT73b] John Edward Hopcroft and Robert Endre Tarjan. Dividing a Graph into
Triconnected Components. SIAM Journal on Computing 2:3 (1973), 135–
158. doi: 10.1137/0202012 (see pages 1, 12, 13, 110, 119).

[JKR13] Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-type theorem
for planarity of partially embedded graphs. Computational Geometry
46:4 (May 2013), 466–492. issn: 0925-7721. doi: 10.1016/j.comgeo.2012.07.005
(see page 197).

209

https://doi.org/10.1016/j.tcs.2015.12.039
https://doi.org/10.1145/3357713.3384249
https://doi.org/10.1137/1.9781611975994.146
https://doi.org/10.1137/1.9781611975994.146
https://doi.org/10.1007/3-540-44679-6_23
http://iasl.iis.sinica.edu.tw/webpdf/paper-2003-PLANAR_implementation.pdf
http://iasl.iis.sinica.edu.tw/webpdf/paper-2003-PLANAR_implementation.pdf
https://doi.org/10.1016/j.endm.2008.06.029
https://doi.org/10.1145/362248.362272
https://doi.org/10.1137/0202012
https://doi.org/10.1016/j.comgeo.2012.07.005

[JLM98] Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level Planarity Test-
ing in Linear Time. In: Proceedings of the 6th International Symposium on
Graph Drawing (GD’98). Ed. by Sue Whitesides. Vol. 1547. Lecture Notes in
Computer Science. Springer, 1998, 224–237. doi: 10.1007/3-540-37623-2_17
(see pages 2, 19).

[JS09] Michael Jünger andMichael Schulz. Intersection Graphs in Simultaneous
Embedding with Fixed Edges. Journal of Graph Algorithms and Applica-
tions 13:2 (2009), 205–218. doi: 10.7155/jgaa.00184 (see pages 57, 88, 98, 99,
102).

[KKV11] Pavel Klavík, Jan Kratochvíl, and Tomás Vyskocil. Extending Partial Repre-
sentations of Interval Graphs. In: Proceedings of the 8th Annual Conference
on Theory and Applications of Models of Computation (TAMC’11). Ed. by Mit-
sunori Ogihara and Jun Tarui. Vol. 6648. Lecture Notes in Computer Science.
Springer, 2011, 276–285. doi: 10.1007/978-3-642-20877-5_28 (see page 33).

[Kla+12] Pavel Klavík, Jan Kratochvíl, Tomasz Krawczyk, and Bartosz Walczak. Ex-
tending Partial Representations of Function Graphs and Permutation
Graphs. In: Proceedings of the 20th Annual European Symposium on Algo-
rithms (ESA’12). Ed. by Leah Epstein and Paolo Ferragina. Vol. 7501. Lecture
Notes in Computer Science. Springer, 2012, 671–682. doi: 10.1007/978-3-642-
33090-2_58 (see page 33).

[Kla+16] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh, and Tomáš Vyskočil.
Extending Partial Representations of Interval Graphs. Algorithmica
78:3 (2016), 945–967. doi: 10.1007/s00453-016-0186-z (see page 33).

[Kla+17] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria
Saumell, and Tomás Vyskocil. Extending Partial Representations of
Proper and Unit Interval Graphs. Algorithmica 77:4 (2017), 1071–1104.
doi: 10.1007/s00453-016-0133-z (see page 33).

[KS18] Pavel Klavik and Maria Saumell.Minimal Obstructions for Partial Rep-
resentations of Interval Graphs. The Electronic Journal of Combinatorics
25:4 (Dec. 2018). issn: 1077-8926. doi: 10.37236/5862 (see page 197).

[KW17] Tomasz Krawczyk and Bartosz Walczak. Extending Partial Represen-
tations of Trapezoid Graphs. In: Proceedings of the 43rd Workshop on
Graph-Theoretic Concepts in Computer Science (WG’17). Ed. by Hans L. Bod-
laender and Gerhard J. Woeginger. Vol. 10520. Lecture Notes in Computer
Science. Springer, 2017, 358–371. doi: 10.1007/978-3-319-68705-6_27 (see
page 33).

[LB62] C. Lekkeikerker and J. Boland. Representation of a finite graph by a set
of intervals on the real line. Fundamenta Mathematicae 51:1 (1962), 45–64.
issn: 1730-6329. doi: 10.4064/fm-51-1-45-64 (see page 197).

210

https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.7155/jgaa.00184
https://doi.org/10.1007/978-3-642-20877-5_28
https://doi.org/10.1007/978-3-642-33090-2_58
https://doi.org/10.1007/978-3-642-33090-2_58
https://doi.org/10.1007/s00453-016-0186-z
https://doi.org/10.1007/s00453-016-0133-z
https://doi.org/10.37236/5862
https://doi.org/10.1007/978-3-319-68705-6_27
https://doi.org/10.4064/fm-51-1-45-64

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. Theory of Graphs (1967). Ed. by P. Rosenstiehl, 215–232 (see
page 23).

[Lei97] Sebastian Leipert. PQ-Trees, An Implementation as Template Class in
C++. Tech. rep. University of Cologne, 1997. url: http://e-archive.informati
k.uni-koeln.de/id/eprint/259 (see pages 8, 153).

[Lei98] Sebastian Leipert. Level planarity testing and embedding in linear time.
PhD thesis. Universität zu Köln, 1998 (see page 171).

[Len89] Thomas Lengauer. Hierarchical Planarity Testing Algorithms. Journal
of the ACM 36:3 (1989), 474–509. doi: 10.1145/65950.65952 (see pages 2, 20,
21, 60).

[LMM18] Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The Complexity
of Drawing a Graph in a Polygonal Region. In: Proceedings of the 26th
International Symposium on Graph Drawing (GD’18). Ed. by Therese Biedl and
Andreas Kerren. Vol. 11282. Lecture Notes in Computer Science. Springer,
2018, 387–401. doi: 10.1007/978-3-030-04414-5_28 (see page 33).

[LRT21] Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini. Simultaneous FPQ-
ordering and hybrid planarity testing. Theoretical Computer Science
(2021). doi: 10.1016/j.tcs.2021.05.012 (see pages 61, 92, 94, 95).

[Mac37] Saunders Mac Lane. A structural characterization of planar combinato-
rial graphs. Duke Mathematical Journal 3:3 (1937), 460–472. doi: 10.1215/S0
012-7094-37-00336-3 (see page 110).

[MS12] A. von Manteuffel and C. Studerus. Reduze 2 - Distributed Feynman
Integral Reduction. 2012. arXiv: 1201.4330 (see page 103).

[Mut03] Petra Mutzel. The SPQR-Tree Data Structure in Graph Drawing. In:
Proceedings of the 30th International Colloquium on Automata, Languages
and Programming (ICALP’03). Ed. by Jos C. M. Baeten, Jan Karel Lenstra,
Joachim Parrow, and Gerhard J. Woeginger. Vol. 2719. LNCS. Springer, 2003,
34–46. doi: 10.1007/3-540-45061-0_4 (see page 103).

[Neu68] L. Neuwirth. An Algorithm for the Construction of 3-Manifolds from
2-Complexes. Mathematical Proceedings of the Cambridge Philosophical
Society 64:3 (1968), 603–614. doi: 10.1017/S0305004100043279 (see page 60).

[Opa79] J. Opatrny. Total Ordering Problem. SIAM Journal on Computing 8:1 (Feb.
1979), 111–114. doi: 10.1137/0208008 (see pages 98, 99).

[PAC02] Helen C. Purchase, Jo-Anne Allder, and David Carrington. Graph Layout
Aesthetics in UML Diagrams: User Preferences. Journal of Graph Al-
gorithms and Applications 6:3 (2002), 255–279. doi: 10.7155/jgaa.00054 (see
page 1).

211

http://e-archive.informatik.uni-koeln.de/id/eprint/259
http://e-archive.informatik.uni-koeln.de/id/eprint/259
https://doi.org/10.1145/65950.65952
https://doi.org/10.1007/978-3-030-04414-5_28
https://doi.org/10.1016/j.tcs.2021.05.012
https://doi.org/10.1215/S0012-7094-37-00336-3
https://doi.org/10.1215/S0012-7094-37-00336-3
https://arxiv.org/abs/1201.4330
https://doi.org/10.1007/3-540-45061-0_4
https://doi.org/10.1017/S0305004100043279
https://doi.org/10.1137/0208008
https://doi.org/10.7155/jgaa.00054

[Pat06] Maurizio Patrignani. On Extending a Partial Straight-line Drawing.
International Journal of Foundations of Computer Science 17:5 (2006), 1061–
1070. doi: 10.1142/S0129054106004261 (see pages 2, 33).

[Pat13] Maurizio Patrignani. Planarity Testing and Embedding. In: Handbook of
Graph Drawing and Visualization. Ed. by Roberto Tamassia. Chapman and
Hall/CRC, 2013. Chap. 1, 1–42. url: https://cs.brown.edu/people/rtamassi/g
dhandbook/chapters/planarity.pdf (see pages 1, 2, 9, 23, 33, 173).

[Pfr20] Matthias Pfretzschner. A Linear-Time Implementation of PC-trees. BA
thesis. University of Passau, 2020. url: https://www.fim.uni-passau.de/filea
dmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/ba-p
fretzschner.pdf (see pages 27, 69).

[Pou92] J. A. La Poutré. Maintenance of triconnected components of graphs.
In: Proceedings of the 19th International Colloquium on Automata, Languages
and Programming (ICALP’92). Springer, 1992, 354–365. doi: 10.1007/3-540-5
5719-9_87 (see page 103).

[Pou94] Johannes A. La Poutré. Alpha-algorithms for incremental planarity
testing (preliminary version). In: Proceedings of the 26th Annual ACM
Symposium on Theory of Computing (STOC’94). ACM Press, 1994. doi: 10.114
5/195058.195439 (see page 103).

[Rad20] Marcel Radermacher. Geometric Graph Drawing Algorithms - Theory,
Engineering and Experiments. PhD thesis. Karlsruher Institut für Tech-
nologie (KIT), 2020. 227 pp. doi: 10.5445/IR/1000117664 (see page 188).

[Ran+01] Bert Randerath, Ewald Speckenmeyer, Endre Boros, Peter L. Hammer, Alexan-
der Kogan, Kazuhisa Makino, Bruno Simeone, and Ondrej Cepek. A Satisfi-
ability Formulation of Problems on Level Graphs. Electronic Notes in
Discrete Mathematics 9 (2001), 269–277. doi: 10.1016/S1571-0653(04)00327-0
(see page 171).

[Rut20] Ignaz Rutter. Simultaneous Embedding. In: Beyond Planar Graphs. Ed. by
Seok-Hee Hong and Takeshi Tokuyama. Springer Singapore, 2020. Chap. 13,
237–265. doi: 10.1007/978-981-15-6533-5_13 (see pages 2, 21, 98).

[Sch13] Marcus Schaefer. Toward a Theory of Planarity: Hanani-Tutte and
Planarity Variants. Journal of Graph Algorithms and Applications 17:4
(2013), 367–440. doi: 10.7155/jgaa.00298 (see pages 1–3, 17–21, 55, 81, 85,
170).

[SH99] Wei-Kuan Shih and Wen-Lian Hsu. A new planarity test. Theoretical Com-
puter Science 223:1-2 (1999), 179–191. doi: 10.1016/s0304-3975(98)00120-0
(see page 131).

212

https://doi.org/10.1142/S0129054106004261
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/planarity.pdf
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/planarity.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/ba-pfretzschner.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/ba-pfretzschner.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/ba-pfretzschner.pdf
https://doi.org/10.1007/3-540-55719-9_87
https://doi.org/10.1007/3-540-55719-9_87
https://doi.org/10.1145/195058.195439
https://doi.org/10.1145/195058.195439
https://doi.org/10.5445/IR/1000117664
https://doi.org/10.1016/S1571-0653(04)00327-0
https://doi.org/10.1007/978-981-15-6533-5_13
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.1016/s0304-3975(98)00120-0

[TL84] Robert E. Tarjan and Jan van Leeuwen.Worst-case Analysis of Set Union
Algorithms. Journal of the ACM 31:2 (Mar. 1984), 245–281. issn: 1557-735X.
doi: 10.1145/62.2160 (see pages 121, 135, 167).

[VVK09] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process
structure tree. Data and Knowledge Engineering 68:9 (2009), 793–818. doi:
10.1016/j.datak.2009.02.015 (see page 103).

[War+02] ColinWare, Helen Purchase, Linda Colpoys, andMatthewMcGill.Cognitive
Measurements of Graph Aesthetics. Information Visualization 1:2 (June
2002), 103–110. doi: 10.1057/palgrave.ivs.9500013 (see page 1).

[Wei02] Rene Weiskircher. New applications of SPQR-trees in graph drawing.
en. PhD thesis. Universität des Saarlandes, 2002. doi: 10.22028/D291-25752
(see page 103).

[Wes92] Jeffery Westbrook. Fast incremental planarity testing. In: Proceedings of
the 19th International Colloquium on Automata, Languages and Programming
(ICALP’92). Springer, 1992, 342–353. doi: 10.1007/3-540-55719-9_86 (see
page 103).

[Zan12] João Paulo Pereira Zanetti.Complexidade de construção de árvores PQR.
MA thesis. Universidade Estadual de Campinas, Instituto de Computação,
2012. url: http://bdtd.ibict.br/vufind/Record/CAMP_0b551865d78ef032289f
17f95e3ccee7 (see page 154).

[Zha+13] Ye Zhang, Wai-Shing Luk, Hai Zhou, Changhao Yan, and Xuan Zeng. Lay-
out decomposition with pairwise coloring for multiple patterning
lithography. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’13). Ed. by Jörg Henkel. IEEE, 2013, 170–177.
doi: 10.1109/ICCAD.2013.6691115 (see page 103).

213

https://doi.org/10.1145/62.2160
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.22028/D291-25752
https://doi.org/10.1007/3-540-55719-9_86
http://bdtd.ibict.br/vufind/Record/CAMP_0b551865d78ef032289f17f95e3ccee7
http://bdtd.ibict.br/vufind/Record/CAMP_0b551865d78ef032289f17f95e3ccee7
https://doi.org/10.1109/ICCAD.2013.6691115

10List of Publications

Articles in Refereed Journals
[1] Synchronized Planarity with Applications to Constrained Planarity

Problems. ACM Transactions on Algorithms (2023). doi: 10.1145/3607474
(see page 57). Joint work with Thomas Bläsius and Ignaz Rutter.

[2] Experimental Comparison of PC-Trees and PQ-Trees. Journal of Ex-
perimental Algorithmics (2023). doi: 10.1145/3611653 (see page 131). Joint
work with Matthias Pfretzschner and Ignaz Rutter.

Articles in Refereed Conference Proceedings
[3] Synchronized Planarity with Applications to Constrained Planarity

Problems. In: Proceedings of the 29th Annual European Symposium on
Algorithms (ESA’21). Ed. by Petra Mutzel, Rasmus Pagh, and Grzegorz
Herman. Vol. 204. Leibniz International Proceedings in Informatics. Schloss
Dagstuhl – Leibniz Center for Informatics, 2021, 19:1–19:14. doi: 10.423
0/LIPIcs.ESA.2021.19 (see page 57). Joint work with Thomas Bläsius and
Ignaz Rutter.

[4] Experimental Comparison of PC-Trees and PQ-Trees. In: Proceedings
of the 29th Annual European Symposium on Algorithms (ESA’21). Ed. by
Petra Mutzel, Rasmus Pagh, and Grzegorz Herman. Vol. 204. Leibniz In-
ternational Proceedings in Informatics. Schloss Dagstuhl – Leibniz Center
for Informatics, 2021, 43:1–43:13. doi: 10.4230/LIPIcs.ESA.2021.43 (see
page 131). Joint work with Matthias Pfretzschner and Ignaz Rutter.

[5] Parameterized Complexity of Simultaneous Planarity. In: Proceed-
ings of the 31st International Symposium on Graph Drawing (GD’23). Ed. by
Michael A. Bekos and Markus Chimani. Vol. 14466. Lecture Notes in Com-
puter Science. Springer-Verlag, 2023, 82–96. doi: 10.1007/978-3-031-49275-
4_6 (see page 99). Joint work with Matthias Pfretzschner and Ignaz Rutter.

215

https://doi.org/10.1145/3607474
https://doi.org/10.1145/3611653
https://doi.org/10.4230/LIPIcs.ESA.2021.19
https://doi.org/10.4230/LIPIcs.ESA.2021.19
https://doi.org/10.4230/LIPIcs.ESA.2021.43
https://doi.org/10.1007/978-3-031-49275-4_6
https://doi.org/10.1007/978-3-031-49275-4_6

[6] Maintaining Triconnected Components Under Node Expansion. In:
Proceedings of the 13th Conference on Algorithms and Complexity (CIAC’23).
Ed. by Marios Mavronicolas. Vol. 13898. Lecture Notes in Computer Science.
Springer-Verlag, 2023, 202–216. doi: 10.1007/978-3-031-30448-4_15 (see
page 103). Joint work with Ignaz Rutter.

[7] Constrained Planarity in Practice – Engineering the Synchronized
Planarity Algorithm. In: Proceedings of the SIAM Symposium on Algo-
rithm Engineering and Experiments (ALENEX’24). Ed. by Rezaul Chowd-
hury and Solon P. Pissis. 2024, 1–14. doi: 10.1137/1.9781611977929.1 (see
page 169). Joint work with Ignaz Rutter.

Further Articles
[8] ASimple Partially EmbeddedPlanarity Test Based onVertex-Addition.

In: currently under review. 2023 (see pages 23, 33). Joint work with Ignaz
Rutter and Sandhya T. P..

[9] Maintaining Triconnected Components Under Node Expansion. In:
Proceedings of the 39th European Workshop on Computational Geometry
(EuroCG’23). 2023. url: https://dccg.upc.edu/eurocg23/wp-content/upload
s/2023/05/Booklet_EuroCG2023.pdf#page=159 (see page 103). Joint work
with Ignaz Rutter.

Poster
[10] odgf-python – A Python Interface for the Open Graph Drawing

Framework. In: Proceedings of the 31st International Symposium on Graph
Drawing (GD’23). to appear. 2023. Joint work with Andreas Strobl.

216

https://doi.org/10.1007/978-3-031-30448-4_15
https://doi.org/10.1137/1.9781611977929.1
https://dccg.upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf#page=159
https://dccg.upc.edu/eurocg23/wp-content/uploads/2023/05/Booklet_EuroCG2023.pdf#page=159

	Acknowledgments
	Contents
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Preliminaries
	I Constrained Planarity in Theory
	3 The Hierarchy of Constrained Planarity Problems
	3.1 Problem Definitions

	4 Planarity
	4.1 PC-trees
	4.2 Planarity of Biconnected Graphs

	5 Partially Embedded Planarity
	5.1 Partially Embedded Planarity
	5.2 Linear-Time Implementation
	5.3 Conclusion

	6 Synchronized Planarity
	6.1 Technical Contribution
	6.2 Related Work
	6.3 The Synchronized Planarity Problem
	6.4 Applications
	6.5 Related NP-hard Problems
	6.6 Comparison with the Fulek-Tóth Algorithm
	6.7 Conclusion

	7 Maintaining Triconnected Components under Node Expansion
	7.1 Skeleton Decompositions
	7.2 Extended Skeleton Decompositions
	7.3 Node Expansion in Extended Skeleton Decompositions
	7.4 Applications
	7.5 Conclusion

	II Constrained Planarity in Practice
	8 Experimental Comparison of PC-Trees and PQ-Trees
	8.1 The PC-Tree Update
	8.2 Our Implementations
	8.3 Evaluation
	8.4 Testing Planarity and Generating Embeddings
	8.5 Conclusion

	9 Engineering the Synchronized Planarity Algorithm
	9.1 Related Work
	9.2 Clustered Planarity in Practice
	9.3 Engineering Synchronized Planarity
	9.4 Further Analysis
	9.5 Conclusion

	10 Conclusions
	Bibliography
	List of Publications

