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Introduction

Classical scheduling for parallel machines usually targets makespan minimization as unique
objective. Given a set of tasks, the tasks are scheduled such that the last task �nishes as early
as possible. The total execution time, that is the time elapsed between the beginning and the end
of processing of the entire set of jobs, is called the makespan. Jobs may have dependencies, and
one speaks of a task graph that has to be scheduled. As the dependencies have to be respected,
only some jobs can be scheduled, while others are beening processed. This considerably increases
the di�culty of the scheduling problem. It is well known that simple instances of this classical
optimization problem are already NP-hard even in the context of homogeneous resources [16].

These days, new technologies have been developed and computing resources have become
more accessible. Consequently, new platform structures have arisen, and we now have to deal
with large-scale heterogeneous platforms: a large number of di�erent speed processors, inter-
connected via communication links, is available for computation purposes. A recent form of
large-scale platform utilization is called cloud computing, where some well-chosen processing
units are rent for computation. Of course these new technologies also bring new parameters to
the scheduler. For example platform sizes have dramatically increased: heterogeneous clusters
of several hundreds or thousands of processors are not uncommon. It is only natural that with
such large orders of magnitude, processors come to crash down more likely while some applica-
tions may actually be running. Consequently, one of the new important parameters arising for
evaluation is reliability.

Also the application throughput becomes an important factor. Dealing with work�ows, you
are not only interested in the computation of one data set, but rather of hundreds of data sets.
It becomes an important criteria to determine how many data sets can be processed in a certain
time interval. Thus, simple makespan minimization is not su�cient anymore and one has to
cope with a large variety of new constraints: one may think of platform costs, quality of service,
energy consumption, reliability and so on.

Another recent trend, which is a natural consequence of the new optimization parameters, is
dealing with multi-criteria objectives. Here we aim at combining two or more parameters at once
in the optimization objective. For example we try to map an application on a set of processors
so as to achieve a good throughput but at the same time a high reliability. A crucial new
di�culty arises: how to combine objectives? There are two main tendencies. The �rst combines
all objectives into a single objective function and optimizes them simultaneously. This leads
to so called Pareto optimality, where an entire solution space is spanned. The other tendency
�xes one or more parameters beforehand and optimizes the last parameter. The motivation
for this approach is the following: frequently the di�erent parameters are antagonist and not
comparable. Fixing one parameter, one accepts a certain threshold for this parameter, which
enforces a constraint to get the best solution for another. In the previous example, we would
impose a throughput of, say, 100 frames per second, and then look for the most reliable solution
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ii INTRODUCTION

(which seems more natural than combining both parameters).

This thesis is situated in the domain of multi-criteria optimization problems for large-scale
heterogeneous platforms. More precisely we focus on streaming applications. In this work, we
consider three types of applications. The �rst type concerns applications like video on demand
(VOD), where requests are processed in a hierarchical network. The second type are linear work-
�ow applications, which include image processing applications like the JPEG encoder. Third,
we consider tree-shaped applications that occur in video surveillance or relational databases.
All these applications o�er multiple points for optimization and we opt for the optimization
technique where we �x one or several parameters to optimize the last one. Throughout this
thesis, we aim of characterizing the di�erent mapping problems, and to assess their complexity
from a theoretical point of view.

In the following we detail the structure and contributions of this work. The thesis is split
into three main parts, according to the di�erent application types, and to the corresponding
scheduling and mapping problems.

Replica Placement in Tree Networks

The �rst part is based on the applicative problems of VOD. The typical platform has hierarchical
shape. We discuss and compare several policies to place replicas in tree networks, subject to
server capacity, quality of service (QoS) and bandwidth constraints. The client requests are
known beforehand, while the number and location of the servers are to be determined. We give
an introduction to the subject in Chapter 1. In Section 1.1 we introduce the framework with
de�nitions and notations. The standard approach in the literature is to enforce that all requests
of a client be served by the closest server in the tree and we refer to this approach as Closest
policy. We introduce two new policies in Section 1.2. In the �rst policy, Upwards, all requests
from a given client are still processed by the same server, but this server can be located anywhere
in the path from the client to the root. In the second policy, the requests of a given client can be
processed by multiple servers and we name this policy Multiple. An overview of related work is
presented in Section 1.3. One major contribution of this part is to assess the impact of these new
policies on the total replication cost. Another important goal is to assess the impact of server
heterogeneity, both from a theoretical and a practical perspective. We study this mono-criterion
approach in Chapter 2. Upwards is NP-complete in the homogeneous case, whereas Multiple
can be solved in polynomial time. This latter result is quite unexpected, and we provide an
elegant algorithm to compute the optimal cost for this policy. Not surprisingly, all three policies
turn out to be NP-complete for heterogeneous platforms. We detail these complexity results in
Section 2.1.

In Chapter 3 we study the in�uence of QoS and bandwidth constraints on the solution.
Multiple with homogeneous nodes and QoS constraints becomes NP-complete (Section 3.1).
But we still provide a polynomial-time algorithm to solve Closest with QoS and bandwidth
constraints on this type of platform. In Sections 2.2 and 3.2, we formulate all problems as linear
programs.

On the practical side we design several heuristics, both for the mono-criterion optimization
(Section 2.3) as well as for the problem with QoS constraints (Section 3.3). In our experiments we
are able to emphasize the importance of the new access policies, as the number of solutions (and
their quality) increases using Upwards or even better Multiple. Owing to the linear programs,
we are able to assess the absolute performance of our heuristics in Sections 2.4 and 3.4.
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This work has been published in [A2, B5, B6, B7].

Pipeline Work�ow Applications

In the second part we focus on linear work�ow applications. A typical application class is
digital image coding, where images are processed in steady-state mode. These applications
can be expressed as pipeline graphs where a series of data sets (tasks) enter the input stage
and progress from stage to stage until the �nal result is computed. Each stage has its own
communication and computation requirements: it reads an input �le from the previous stage,
processes the data and outputs a result to the next stage. For each data set, initial data is input
to the �rst stage, and �nal results are output from the last stage. We introduce the precise
problem in Chapter 4.

Chapter 5 presents our complexity results. We focus on three antagonist optimization criteria
and their combination: the period, i.e., the inverse of the application throughput; the latency,
i.e., the response time; and the reliability, i.e., the probability that the computation will be
successful. Throughput can be minimized by cutting the pipeline into several parts in order
to increase parallelism. Latency is minimized by using faster processors, while reliability is
increased by replicating computations on a set of processors. However, replication increases
latency (additional communications, slower processors). The application fails to be executed
only if all the replicated processors fail during execution.

In Section 5.1, we concentrate on mono-criteria optimization and we assess the problem
complexity of all three criteria on di�erent platform types. We then tackle the bi-criteria opti-
mization in Section 5.2. The combination of period-latency is NP-complete on platforms with
di�erent speed processors, as period minimization already is NP-complete. Focusing on the com-
bination of reliability and latency, the problem is polynomial for Fully Homogeneous, NP-hard
for Fully Heterogeneous and remains an open problem for Communication Homogeneous.

Furthermore we examine a particular pipeline work�ow application in a case study (Chap-
ter 6): the JPEG encoder pipeline. We chose this application as it can be used with work�ows,
when encoding M-JPEG video streams. We provide several polynomial heuristics (Section 6.2
and we evaluate their behavior for period-latency optimization in Section 6.3. Our experiments
point out the correlation between e�ciency and platform parameters.

This work has been published in [A1, B2, B3, B4].

Query Streaming

The third part tackles the operator mapping problem for in-network stream processing. This
problem is kind of a combination of the previous two. We investigate the problem of request
dissemination in a tree of operators. The operators have to be mapped onto processors to
compute some data. At the same time, the processors perform downloads from servers to
update their data. The goal is to produce some �nal results at some desired rate. The latter
requirement can be considered as a QoS constraint. In practice, the execution of the operators on
the data stream is distributed over the network. Hence we have to determine where to perform
the computation of each operator such that the �xed application rate (QoS request) is respected.
Examples of in-network stream processing include the processing of data in a sensor network,
or of continuous queries on distributed relational databases.

In Chapter 8, we study the problem in a constructive scenario. Our aim is to provide the user
with a set of processors that should be bought or rented in order to ensure that the application
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achieves a minimum steady-state throughput, and with the objective of minimizing platform
cost. The problem turns out to be NP-hard even for the simplest instances (Section 8.2) and we
formulate the problem as integer linear program in Section 8.2.1. Furthermore we design a set of
mapping heuristics in Section 8.3. In Section 8.4 we evaluate the absolute performance of these
heuristics via extensive simulation and in comparison to the optimal linear program solution.
We are able to identify one heuristic which almost always produces optimal results and almost
always outperforms the other heuristics.

A follow-on of this work is the subject of Chapter 9, namely the extension to concurrent
applications. Instead of one single application, we consider in this chapter a set of applications
that have to be executed simultaneously in the network. Each application has its own throughput
requirement, i.e., its own QoS request. In Chapter 9, we abandon the constructive framework and
we deploy the applications on an existing target platform. This scenario is more realistic: with
one application for a single user, this user wants to build a platform dedicated to his/her needs;
on the contrary, with several applications from several users running concurrently, it is more
likely to share an existing set of resources for a common deployment. To improve performance,
di�erent operator trees may reuse common sub-expressions when operator trees share the same
subtrees. The framework is detailed in Section 9.1. We propose several di�erent optimization
problems. Their complexity analysis, presented in Section 9.2, classi�es all of them as NP-
hard. Another contribution is a set of polynomial heuristics, that is presented in Section 9.4.
We designed them for one of the optimization problems that we study more in detail. The
experiments in Section 9.5 consolidate the importance of the reuse of common subexpression for
the performance.

Part of this work has been published in [B1].
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Replica Placement in Tree Networks
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Chapter 1

Problem De�nition

This chapter deals with the general problem of replica placement in tree networks. Informally,
there are clients issuing requests to be satis�ed by servers. The clients are known (both their
position in the tree and their number of requests), while the number and location of the servers
are to be determined. A client is a leaf node of the tree, and its requests can be served by one or
several internal nodes. Initially, there are no replica; when a node is equipped with a replica, it
can process a number of requests, up to its capacity limit. Nodes equipped with a replica, also
called servers, can only serve clients located in their subtree (so that the root, if equipped with
a replica, can serve any client); this restriction is usually adopted to enforce the hierarchical
nature of the target application platforms, where a node has knowledge only of its parent and
children in the tree.

The rule of the game is to assign replicas to nodes so that some optimization function is
minimized. Typically, this optimization function is the total utilization cost of the servers. If
all the nodes are identical, this reduces to minimizing the number of replicas. If the nodes are
heterogeneous, it is natural to assign a cost proportional to their capacity (so that one replica
on a node capable of handling 200 requests is equivalent to two replicas on nodes of capacity
100 each). We call this optimization problem Replica Placement in the following.

In mono-criterion placement (Cf. Chapter 2), we focus on optimizing the total utilization
cost (or replica number in the homogeneous case). Chapter 3 whereas deals with the Replica
Placement as multi-criteria optimization problem. Additional constraints are introduced, in
order to guarantee some Quality of Service (QoS): requests must be served in limited time,
thereby prohibiting remote or hard-to-reach replica locations. Also, the �ow of requests through
a link in the tree cannot exceed some bandwidth-related capacity.

We point out that the distribution tree (clients and nodes) is �xed in our approach. This
key assumption is quite natural for a broad spectrum of applications, such as electronic, ISP, or
VOD service delivery [39, 22, 74, 46]. The root server has the original copy of the database but
cannot serve all clients directly, so a distribution tree is deployed to provide a hierarchical and
distributed access to replicas of the original data. On the contrary, in other, more decentral-
ized, applications (e.g., allocating Web mirrors in distributed networks), a two-step approach is
used: �rst determine a �good� distribution tree in an arbitrary interconnection graph, and then
determine a �good� placement of replicas among the tree nodes. Both steps are interdependent,
and the problem is much more complex, due to the combinatorial solution space (the number of
candidate distribution trees may well be exponential).

In most papers from the literature (see Section 1.3 for a survey of related work), all requests
of a client are served by the closest replica, i.e., the �rst replica found in the unique path from

3
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the client to the root in the distribution tree. This Closest policy is simple and natural, but may
be unduly restrictive, leading to a waste of resources. We introduce two di�erent approaches:

In the �rst one, we keep the restriction that all requests from a given client are processed
by the same replica, but we allow client requests to �traverse� servers so as to be processed by
other replicas located higher in the path (closer to the root). We call this approach the Upwards
policy. The trade-o� to explore is the following: the Closest policy assigns replicas at proximity
of the clients, but may need to allocate too many of them if some local subtree issues a great
number of requests. The Upwards policy will ensure a better resource usage, load-balancing the
process of requests on a larger scale; the possible drawback is that requests will be served by
remote servers, likely to take longer time to process them. Taking QoS constraints into account
would typically be more important for the Upwards policy.

In the second approach, we further relax access constraints and grant the possibility for a
client to be assigned several replicas. With this Multiple policy, the processing of a given client's
requests will be split among several servers located in the tree path from the client to the root.
Obviously, this policy is the most �exible, and likely to achieve the best resource usage. The
only drawback is the (modest) additional complexity induced by the fact that requests must
now be tagged with the replica server ID in addition to the client ID.

Our major contributions are as follows: i) the comparison of the three access policies, Closest ,
Upwards and Multiple; ii) we assess the impact of server heterogeneity, both from a theoretical
and a practical perspective; iii) we evaluate the in�uence of QoS and bandwidth constraints on
the solution.

1.1 Framework

This section is devoted to a precise statement of the Replica Placement optimization prob-
lem. We start with some de�nitions and notations. Next we outline the simplest instance of the
problem. Then we describe several types of constraints that can be added to the formulation.

1.1.1 De�nitions and Notations

We consider a distribution tree T whose nodes are partitioned into a set of clients C and a set
of nodes N . The set of tree edges is denoted as L. The clients are leaf nodes of the tree, while
N is the set of internal nodes. It would be easy to allow client-server nodes which play both
the rule of a client and of an internal node (possibly a server), by dividing such a node into two
distinct nodes in the tree, connected by an edge with zero communication cost.

A client i ∈ C is making ri requests per time unit to a database. For the sake of clarity, we
restrict the presentation to a single object type, hence a single database. We deal with several
object types in Section 10.2.1.

A node j ∈ N may or may not have been provided with a replica of the database. Nodes
equipped with a replica (i.e., servers) can process up to Wj requests per time unit from clients in
their subtree. In other words, there is a unique path from a client i to the root of the tree, and
each node in this path is eligible to process some or all the requests issued by i when provided
with a replica. We denote by Servers(i) ⊆ N this set of nodes. The price to pay to place a
replica at node j is scj .

Let r be the root of the tree. If j ∈ N , then children(j) is the set of children of node j. If
k 6= r is any node in the tree (leaf or internal), parent(k) is its parent in the tree. If l : k → k′ =
parent(k) is any link in the tree, then succ(l) is the link k′ → parent(k′) (when it exists). Let
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Ancestors(k) denote the set of ancestors of node k, i.e., the nodes in the unique path that leads
from k up to the root r (k excluded). If k′ ∈ Ancestors(k), then path[k → k′] denotes the set of
links in the path from k to k′; also, subtree(k) is the subtree rooted in k, including k.

We introduce more notations to describe our system in the following.

• Clients i ∈ C � Each client i (leaf of the tree) is sending ri requests per time unit. For
such requests, the required QoS (typically, a response time) is denoted qi, and we need to
ensure that this QoS will be satis�ed for each client.

• Nodes j ∈ N � Each node j (internal node of the tree) has a processing capacity Wj ,
which is the total number of requests that it can process per time-unit when it has a
replica. A cost is also associated to each node, scj , which represents the price to pay to
place a replica at this node. With a single object type it is quite natural to assume that
scj is proportional to Wj : the more powerful a server, the more costly. But with several
objects we may use non-related values of capacity and cost.

• Communication links l ∈ L � The edges of the tree represent the communication links
between nodes (leaf and internal). We assign a communication time comml on link l which
is the time required to send a request through the link.

1.1.2 Problem Instances

For each client i ∈ C, let Servers(i) ⊆ N be the set of servers responsible for processing at least
one of its requests. We do not specify here which access policy is enforced (e.g. one or multiple
servers), we defer this to Section 1.2. Instead, we let ri,j be the number of requests from client i
processed by server j (of course,

∑
j∈Servers(i) ri,j = ri). In the following, R is the set of replicas:

R = {j ∈ N| ∃i ∈ C , j ∈ Servers(i)} .

Constraints

Three main types of constraints are considered.

Server capacity � The problem is constrained by the fact that no server capacity can be
exceeded is present in all variants of the problem:

∀j ∈ R,
∑

i∈C|j∈Servers(i)

ri,j ≤Wj .

QoS � Some problem instances enforce a quality of service: the time to transfer a request from
a client to a replica server is bounded by a quantity qi. This translates into:

∀i ∈ C,∀s ∈ Servers(i),
∑

l∈path[i→s]

comml ≤ qi.

Note that it would be easy extend the QoS constraint so as to take the computation cost of
a request in addition to its communication cost. This former cost is directly related to the
computational speed of the server and the amount of computation (in �ops) in required
for each request.
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Link capacity � Some problem instances enforce a global constraint on each communication
link l ∈ L: ∑

i∈C,s∈Servers(i)|l∈path[i→s]

ri,s ≤ BWl.

In the multiple servers access policy with multiple objects, r
(k)
i,s represents the amount of

requests from client i processed by server s on object k. The single server case is obtained by
replacing Servers(i, k) by server(i, k) (the single server processing requests on k for client i), and

the r
(k)
i,s are simpli�ed to r

(k)
i .

Objective Function

The objective function for the Replica Placement problem is de�ned as:

Min
∑
s∈R

scs.

As already pointed out, it is frequently assumed that the cost of a server is proportional to
its capacity, so in some problem instances we let scs = Ws.

Simpli�ed Problems

We de�ne a few simpli�ed problem instances in the following, that can be divided into mono-
criteria objective and multi-criteria objective:

a) Mono-criterion optimization

Only server capacities � The problem without QoS and link capacities reduces to �nding a
valid solution of minimal cost, where �valid� means that no server capacity is exceeded.
We name this fundamental problem as Replica Cost.

Replica counting � We can further simplify the previous Replica Cost problem in the ho-
mogeneous case: with identical servers, the Replica Cost problem amounts to minimize
the number of replicas needed to solve the problem. In this case, the storage cost scj is
set to 1 for each node. We call this problem Replica Counting.

b) Optimizing multiple criteria

QoS=distance � We can simplify the expression of the communication time in the QoS con-
straint and only consider the distance (in number of hops) between a client and its server(s).
The QoS constraint is then

∀i ∈ C, ∀s ∈ Servers(i), d(i, s) ≤ qi

where the distance d(i, s) = |path[i→ s]| is the number of communication links between i
and s.

No link capacity � We may consider the problem assuming in�nite link capacity, i.e., not
bounding the total tra�c on any link in an admissible solution.

We nameReplica Cost with QoS the bi-criteria problem that simpli�esReplica Place-
ment to QoS=distance without link capacity. Its homogeneous counterpart is called Replica
Counting with QoS.
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1.2 Access Policies

In this section we review the usual policies enforcing which replica is accessed by a given client.
Consider that each client i is making ri requests per time-unit. There are two scenarios for the
number of servers assigned to each client:

Single server � Each client i is assigned a single server server(i), that is responsible for pro-
cessing all its requests.

Multiple servers � A client i may be assigned several servers in a set Servers(i). Each server
s ∈ Servers(i) will handle a fraction ri,s of the requests. Of course

∑
s∈Servers(i) ri,s = ri.

To the best of our knowledge, the single server policy has been enforced in all previous ap-
proaches. One objective of this work is to assess the impact of this restriction on the performance
of data replication algorithms. The single server policy may prove a useful simpli�cation, but
may come at the price of a non-optimal resource usage.

In the literature, the single server strategy is further constrained to the Closest policy. Here,
the server of client i is constrained to be the �rst server found on the path that goes from i
upwards to the root of the tree. In particular, consider a client i and its server server(i). Then
any other client node i′ residing in the subtree rooted in server(i) will be assigned a server in
that subtree. This forbids requests from i′ to �traverse� server(i) and be served higher (closer to
the root in the tree).

We relax this constraint in the Upwards policy which is the general single server policy. No-
tice that a solution to Closest always is a solution to Upwards, thus Upwards is always better
than Closest in terms of the objective function. Similarly, the Multiple policy is always better
than Upwards, because it is not constrained by the single server restriction.

The following sections illustrate the three policies. Section 1.2.1 provides simple examples
where there is a valid solution for a given policy, but none for a more constrained one. Sec-
tion 1.2.2 shows that Upwards can be arbitrarily better than Closest , while Section 1.2.3 shows
that Multiple can be arbitrarily better than Upwards. We conclude with an example showing
that the cost of an optimal solution of the Replica Counting problem (for any policy) can
be arbitrarily higher than the obvious lower bound⌈∑

i∈C ri

W

⌉
,

where W is the server capacity.

1.2.1 Impact of the Access Policy on the Existence of a Solution

We consider here a very simple instance of the Replica Counting problem. In this example
there are two nodes, s1 being the unique child of s2, the tree root (see Figure 1.1). Each node
can process W = 1 request.

• If s1 has one client child making 1 request, the problem has a solution with all three
policies, placing a replica on s1 or on s2 indi�erently (Figure 1.1(a)).
• If s1 has two client children, each making 1 request, the problem has no more solution with
Closest . However, we have a solution with both Upwards and Multiple if we place replicas
on both nodes. Each server will process the request of one of the clients (Figure 1.1(b)).
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s2

s1(a)

1

s2

s1(b)

1 1

(c)

s2

s1

2

W = 1

Figure 1.1: Access policies.

• Finally, if s1 has only one client child making 2 requests, only Multiple has a solution since
we need to process one request on s1 and the other on s2, thus requesting multiple servers
(Figure 1.1(c)).

This example demonstrates the usefulness of the new policies. The Upwards policy allows to
�nd solutions when the classical Closest policy does not. The same holds true forMultiple versus
Upwards. In the following, we compare the cost of solutions obtained with di�erent strategies.

1.2.2 Upwards versus Closest

In the following example, we construct an instance of Replica Counting where the cost of
the Upwards policy is arbitrarily lower than the cost of the Closest policy. We consider the tree
network of Figure 1.2, where there are 2n+2 internal nodes, each with Wj = W = n, and 2n+1
clients, each with ri = r = 1.

s2n+2

s2n+1

s1

1 1

s2n

1

W = n

Figure 1.2: Upwards versus Closest

With the Upwards policy, we place three replicas in s2n, s2n+1 and s2n+2. All requests can
be satis�ed with these three replicas.

When considering the Closest policy, �rst we need to place a replica in s2n+2 to cover its
client. Then,
• Either we place a replica on s2n+1. In this case, this replica is handling n requests, but
there remain n other requests from the 2n clients in its subtree that cannot be processed
by s2n+2. Thus, we need to add n replicas between s1..s2n.
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• Otherwise, n−1 requests of the 2n clients in the subtree of s2n+1 can be processed by s2n+2

in addition to its own client. We need to add n+ 1 extra replicas among s1, s2, . . . , s2n.

In both cases, we are placing n + 2 replicas, instead of the 3 replicas needed with the Up-
wards policy. This proves that Upwards can be arbitrary better than Closest on some Replica
Counting instances.

1.2.3 Multiple versus Upwards

In this section we build an instance of the Replica Counting problem where Multiple is
arbitrarily better than Upwards.

A

4n 2n− 1 2n n+ 1 2 2 2

1 2 nB C

W = 4n

Figure 1.3: Multiple versus Upwards, homogeneous platforms.

Consider the instance of Replica Counting represented in Fig. 1.3, with 3 + n nodes of
capacity W = 4n. The root A has n + 2 children nodes B,C and 1, ..., n. Node B has two
client children, one with 4n requests and the other with 2n− 1 requests. Node C has two client
children, one with 2n requests and the other with 2n + 1 requests. Each node numbered i has
a unique child, a client with 2 requests.

The Multiple policy assigns 3 replicas to A,B and C. B handles the 4n requests of its �rst
client, while the other client is served by A. C handles 2n requests from both of its clients,
and the 1 remaining request is processed by A. Server A therefore processes (2n− 1) + 1 = 2n
requests coming up from B and C. Requests coming from the n remaining nodes sum up to 2n,
thus A is able to process all of them.

For the Upwards policy, we need to assign replicas everywhere. Indeed, with this policy, C
cannot handle more than 2n+ 1 requests since it is unable to process requests from both of its
children, and thus A has (2n − 1) + 2n requests coming from B and C. It cannot handle any
of the 2n remaining requests, and thus each remaining node must process requests coming from
its own client. This leads to a total of n+ 3 replicas.

The performance factor is thus n+3
3 , which can be arbitrarily big when n becomes large.

1.2.4 Lower Bound for the Replica Counting Problem

Obviously, the cost of an optimal solution of the Replica Counting problem (for any policy)

cannot be lower than the obvious lower bound
⌈P

i∈C ri
W

⌉
, whereW is the server capacity. Indeed,
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this corresponds to a solution where the total request load is shared as evenly as possible among
the replicas.

W/n W/n W

sn

r

s1

Figure 1.4: The lower bound cannot be approximated for Replica Counting.

The following instance of Replica Counting shows that the optimal cost can be arbitrarily
higher than this lower bound. Consider Figure 1.4, with n+ 1 nodes of capacity Wj = W . The
root r has n+ 1 children, n nodes labeled s1 to sn, and a client with ri = W . Each node sj has
a unique child, a client with ri = W/n (assume without loss of generality that W is divisible

by n). The lower bound is
⌈P

i∈C ri
W

⌉
= 2W

W = 2. However, each of the three policies Closest ,

Upwards and Multiple will assign a replica to the root to cover its client, and will then need n
extra replicas, one per client of sj , 1 ≤ j ≤ n. The total cost is thus n + 1 replicas, arbitrarily
higher than the lower bound.

All the examples in Sections 1.2.1 to 1.2.4 give an insight of the combinatorial nature of the
Replica Placement optimization problem, even in its simplest variants Replica Cost and
Replica Counting.

1.3 Related Work

Early work on replica placement by Wolfson and Milo [76] has shown the impact of the write
cost and motivated the use of a minimum spanning tree to perform updates between the replicas.
In this work, they prove that the replica placement problem in a general graph is NP-complete,
even without taking into account storage costs. Thus they address the case of special topologies,
and in particular tree networks. They give a polynomial solution in a fully homogeneous case
and a simple model with no QoS and no server capacity. Their work uses the closest server
access policy (single server) to access the data.

Using this Closest policy, Cidon et al. [22] studied an instance of the problem with multiple
objects. In this work, the objective function has no update cost, but integrates a communication
cost. Communication cost in the objective function can be seen as a substitute for QoS. Thus,
they minimize the average communication cost for all the clients rather than ensuring a given
QoS for each client. They target fully homogeneous platforms since there are no server capacity
constraints in their approach. A similar instance of the problem has been studied by Liu et
al. [46], adding a QoS in terms of a range limit, and the objective being the Replica Counting
problem. In this latter approach, the servers are homogeneous, and their capacity is bounded.

Cidon et al. [22] and Liu et al. [46] both use the Closest access policy. In each case, the
optimization problems are shown to have polynomial complexity. However, the variant with
bidirectional links is shown NP-complete by Kalpakis et al. [39]. Indeed in [39], requests can be
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served by any node in the tree, not just the nodes located in the path from the client to the
root. The simple problem of minimizing the number of replicas with identical servers of �xed
capacity, without any communication cost nor QoS constraints, directly reduces to the classical
bin packing problem.

Kalpakis et al. [39] show that a special instance of the problem is polynomial, when consid-
ering no server capacities, but with a general objective function taking into account read, write
and storage costs. In their work, a minimum spanning tree is used to propagate the writes, as
was done in [76]. Di�erent methods can however be used, such as a minimum cost Steiner tree,
in order to further optimize the write strategy [40].

All papers listed above consider the Closest access policy. As already stated, most problems
are NP-complete, except for some very simpli�ed instances. Karlsson et al. [42, 41] compare
di�erent objective functions and several heuristics to solve these complex problems. They do not
take QoS constraints into account, but instead integrate a communication cost in the objective
function as was done in [22]. Integrating the communication cost into the objective function can
be viewed as a Lagrangian relaxation of QoS constraints.

Tang and Xu [68] have been one of the �rst authors to introduce actual QoS constraints in
the problem formalization. In their approach, the QoS corresponds to the latency requirements
of each client. Di�erent access policies are considered. First, a replica-aware policy in a general
graph is proven to be NP-complete. When the clients do not know where the replicas are (replica-
blind policy), the graph is simpli�ed to a tree (�xed routing scheme) with the Closest policy,
and in this case again it is possible to �nd a polynomial algorithm using dynamic programming.

To the best of our knowledge, there is no related work comparing di�erent access policies,
either on tree networks or on general graphs. Most previous works impose the Closest policy.
The Multiple policy is enforced by Rodolakis et al. [58] but in a very di�erent context. In
fact, they consider general graphs instead of trees, so they face the combinatorial complexity of
�nding good routing paths. Also, they assume an unlimited capacity at each node, since they
can add numerous servers of di�erent kinds on a single node. Finally, they include some QoS
constraints in their problem formulation, based on the round trip time (in the graph) required
to serve the client requests. In such a context, this (very particular) instance of the Multiple
problem is shown to be NP-hard.
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Chapter 2

Replica Placement Strategies

In this chapter we deal with the mono-criterion optimization of Replica Placement, where
we exclusively deal with server capacities.

One major contribution of this chapter is to assess the impact of server heterogeneity, both
from a theoretical and a practical perspective. In Section 2.1 we establish several complexity
results. Section 2.2 deals with the formulation for the Replica Placement problem in terms of
an integer linear program. In Section 2.3 we introduce several polynomial heuristics to solve the
Replica Placement problem with the di�erent access policies. These heuristics are compared
through simulations, whose results are analyzed in Section 2.4.

2.1 Complexity Results

In this section we aim at assessing the impact of the access policy on the problem with ho-
mogeneous versus heterogeneous servers. We consider a tree T = C ∪ N . Each client i ∈ C
has ri requests; each node j ∈ N has processing capacity Wj and storage cost scj = Wj . The
problem comes in two �avors, either the Replica Counting problem with homogeneous nodes
(Wj = W for all j ∈ N ), or the Replica Cost problem with heterogeneous nodes (servers with
di�erent capacities/costs).

In the single server version of the problem, we need to �nd a server server(i) for each client
i ∈ C. R is the set of replica, i.e., the servers chosen among the nodes in N . The only constraint
is that server capacities cannot be exceeded: this translates into∑

i∈C,server(i)=j

ri ≤Wj for all j ∈ N .

The objective is to �nd a valid solution of minimal storage cost
∑

j∈RWj . Note that with
homogeneous nodes, the problem reduces to �nd the minimum number of servers, i.e., to the
Replica Counting problem. As outlined in Section 1.2, there are two variants of the single
server version of the problem, namely the Closest and the Upwards strategies.

In the Multiple policy with multiple servers per client, for any client i ∈ C and any node
j ∈ N , ri,j is the number of requests from i that are processed by j (ri,j = 0 if j /∈ R, and∑

j∈N ri,j = ri for all i ∈ C). The capacity constraint now writes∑
i∈C

ri,j ≤Wj for all j ∈ R,

13
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Homogeneous Heterogeneous
(Replica Counting) (Replica Cost)

Closest polynomial [22, 46] NP-hard
Upwards NP-hard NP-hard
Multiple polynomial NP-hard

Table 2.1: Complexity results for the di�erent instances of the problem.

while the objective function is the same as for the single server version.

The decision problems associated with the previous optimization problems are easy to for-
mulate: given a bound on the number of servers (homogeneous version) or on the total storage
cost (heterogeneous version), is there a valid solution that meets the bound?

Table 2.1 captures the complexity results. The NP-completeness of the Upwards/Homogeneous
case comes as a surprise, since all previously known instances were shown to be polynomial, us-
ing dynamic programming algorithms. In particular, the Closest/Homogeneous variant remains
polynomial when adding communication costs [22] or QoS constraints [46], Cf. Chapter 3. We
provide an elegant algorithm to show the polynomial complexity of the Multiple/Homogeneous
problem.

Previous NP-completeness results involved general graphs rather than trees, and the combi-
natorial nature of the problem came from the di�culty to extract a good replica tree out of an
arbitrary communication graph. Here the tree is �xed, but the problem remains combinatorial
due to resource heterogeneity.

2.1.1 With Homogeneous Nodes and the Closest Strategy

Cidon at al. [22] proved that Replica Counting with the Closest strategy on homogeneous
nodes can be solved in polynomial time. They provide a dynamic programming algorithm, which
even allows to add communication costs in the objective function.

2.1.2 With Homogeneous Nodes and the Multiple Strategy

Theorem 2.1. The instance of the Replica Counting problem with the Multiple strategy can
be solved in polynomial time.

Proof. We outline below an optimal algorithm to solve the problem. The proof of optimality is
quite technical, so the reader may want to skip it at �rst reading. �

Algorithm for Multiple Servers

We propose a greedy algorithm to solve the Replica Counting problem. Let W be the total
number of requests that a server can handle.

This algorithm works in three passes: �rst we select the nodes which will have a replica
handling exactly W requests. Then a second pass allows us to select some extra servers which
are ful�lling the remaining requests. Finally, we need to decide for each server how many requests
of each client it is processing.

We assume that each node i knows its parent parent(i) and its children children(i) in the
tree. We introduce a new variable which is the �ow coming up in the tree (requests which are
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not already ful�lled by a server). It is denoted by �owi for the �ow between i and parent(i).
Initially, ∀i ∈ C �owi = ri and ∀i ∈ N �owi = −1. Moreover, the set of replicas is empty in the
beginning: repl = ∅.

Pass 1� We greedily select in this step some nodes which will process W requests and which
are as close to the leaves as possible. We place a replica on such nodes (see Algorithm 1).
Procedure pass1 is called with r (root of the tree) as a parameter, and it goes down the
tree recursively in order to compute the �ows. When a �ow exceeds W, we place a replica
since the corresponding server will be fully used, and we remove the processed requests
from the �ow going upwards.

At the end, if flowr = 0 or (flowr ≤ W and r /∈ repl), we have an optimal solution since
all replicas which have been placed are fully used and all requests are satis�ed by adding
a replica in r if flowr 6= 0. In this case we skip pass 2 and go directly to pass 3.

Otherwise, we need some extra replicas since some requests are not satis�ed yet, and the
root cannot satisfy all the remaining requests. To place these extra replicas, we go through
pass 2.

Algorithm 1: Procedure pass1

procedure pass1 (node s ∈ N )
begin

flows = 0;
for i ∈ children(s) do

if flowi == −1 then pass1(i); // Recursive call.
flows = flows + flowi;

end
if flows ≥W then flows = flows −W; repl = {s} ∪ repl;

end

Pass 2� In this pass, we need to select the nodes where to add replicas. To do so, while there
are too many requests going up to the root, we select the node which can process the
highest number of requests, and we place a replica there. The number of requests that a
node j ∈ N can eventually process is the minimum of the �ows between j and the root r,
denoted uflowj (for useful �ow). Indeed, some requests may have no server yet, but they
might be processed by a server on the path between j and r, where a replica has been
placed in pass 1. Algorithm 2 details this pass.

If we exit this pass with finish = −1, this means that we have tried to place replicas on
all nodes, but this solution is not feasible since there are still some requests which are not
processed going up to the root. In this case, the original problem instance had no solution.

However, if we succeed to place replicas such that flowr = 0, we have a set of replicas
which succeed to process all requests. We then go through pass 3 to assign requests to
servers, i.e., to compute how many requests of each client should be processed by each
server.

Pass 3� This pass is in fact straightforward, starting from the leaves and distributing the
requests to the servers from the bottom until the top of the tree. We decide for instance
to a�ect requests from clients starting to the left. Procedure pass3 is called with r (root
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Algorithm 2: Pass 2

while flowr 6= 0 do
freenode = N \ repl;
if freenode == ∅ then finish = −1; exit the loop;
// At each step, assign 1 replica and re-compute �ows.
child = children(r);uflowr = flowr;
while child! = ∅ do

remove j from child;
uflowj = min(flowj , uflowparent(j));
child = child ∪ children(j);

end
// The useful �ows have been computed, select the max.
maxu�ow=0;
for j ∈ freenode do

if uflowj > maxuflow then maxuflow = uflowj ; maxnode = j;
end
if maxuflow 6= 0 then

repl = repl ∪ {maxnode};
// Update the �ows upwards.
for j ∈ Ancestors(maxnode) ∪ {maxnode} do flowj = flowj −maxuflow;

end
else finish = −1; exit the loop;

end

of the tree) as a parameter, and it goes down the tree recursively (Cf. Algorithm 3). For
i ∈ C, r′i is the number of requests of i not yet a�ected to a server (initially r′i = ri). ws,i
is the number of requests of client i a�ected to server s ∈ N , and ws ≤ W is the total
number of requests a�ected to s. C(s) is the set of clients in subtree(s) which still have
some requests not a�ected. Initially, C(i) = {i} for i ∈ C, and C(s) = ∅ otherwise.
Note that a server which was computing W requests in pass 1 may end up computing fewer
requests if one of its descendants in the tree has earned a replica in pass 2. But this does
not a�ect the optimality of the result, since we keep the same number of replicas.

The proof in Section 2.1.2 shows the equivalence between the solution built by this algorithm
and any optimal solution, thus proving the optimality of the algorithm. The following example
illustrates the step by step execution of the algorithm.

Example

Figure 2.1(a) provides an example of network on which we are placing replicas with the Multiple
strategy. The network is thus homogeneous and we �x W = 10.

Pass 1 of the algorithm is quite straightforward to unroll, and Figure 2.1(b) indicates the
�ow on each link and the saturated replicas are the black nodes.

During pass 2, we select the nodes of maximum useful �ow. Figure 2.1(c) represents these
useful �ows; we see that node n4 is the one with the maximum useful �ow (7), so we assign it a
replica and update the useful �ows. All the useful �ows are then reduced down to 1 since there
is only 1 request going through the root n1. The �rst node of maximum useful �ow 1 to be
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Algorithm 3: Procedure pass3

procedure pass3 (node s ∈ N )
begin

ws = 0;
for i ∈ children(s) do

if C(i) = ∅ then pass3(i); // Recursive call.
C(s) = C(s) ∪ C(i);

end
if s ∈ repl then

for i ∈ C(s) do
if r′(i) ≤W− ws then C(s) = C(s) \ {i}; ws,i = r′i; ws = ws + r′i; r

′
i = 0;

end
if C(s) 6= ∅ then Let i ∈ C(s); x = W− ws; r′i = r′i − x; ws,i = x; ws = W;

end

end

selected is n2, which is set to be a replica of pass 2. The �ow at the root is then 0 and it is the
end of pass 2.

Finally, pass 3 a�ects the servers to the clients and decides which requests are served by which
replica (Figure 2.1(d)). For instance, the client with 12 requests shares its requests between n10

(10 requests) and n2 (2 requests). Requests are a�ected from the bottom of the tree up to the
top. Note that the root n1, even though it was a saturated replica of pass 1, has only 5 requests
to proceed in the end.

Proof of Optimality

Let Ropt be an optimal solution to an instance of the problem. The core of the proof consists
in transforming this solution into an equivalent canonical optimal solution Rcan. We will then
show that our algorithm is building this canonical solution, and thus it is producing an optimal
solution.

Each server s ∈ Ropt is serving ws,i requests of client i ∈ subtree(s) ∩ C, and

ws =
∑

i∈subtree(s)∩C

ws,i ≤W.

For each i ∈ C, ws,i = 0 if s ∈ N is not a replica, and,
∑

s∈Ancests(i)ws,i = ri.

We de�ne the �ow of node k, �owk, by the number of requests going through this node up
to its parents. Thus, for i ∈ C, flowi = ri, while for a node s ∈ N ,

flows =
∑

i∈children(s)

flowi − ws.

The total �ow going through the tree, tflow, is de�ned in a similar way, except that we do
not remove from the �ow the requests processed by a replica, i.e., tflows =

∑
i∈children(s) tflowi.

We thus have

tflows =
∑

i∈subtree(s)∩C

ri.
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Figure 2.1: Algorithm for the Replica Counting problem with the Multiple strategy.

These variables are completely de�ned by the network and the optimal solution Ropt.

A �rst lemma shows that it is possible to change request assignments while keeping an
optimal solution. The �ows need to be recomputed after any such modi�cation.

Lemma 2.1. Let s ∈ N ∩Ropt be a server such that ws <W.

• If tflows ≥ W, we can change the request assignment between replicas of the optimal
solution, in such a way that ws = W.
• Otherwise, we can change the request assignment so that ws = tflows.

Proof. First we point out that the clients in subtree(s) can all be served by s, and since Ropt is
a solution, these requests are served by a replica somewhere in the tree. We do not modify the
optimality of the solution by changing the ws,i, it just a�ects the �ows of the solution. Thus, for
a given client i ∈ subtree(s) ∩ C, if there is a replica s′ 6= s on the path between i and the root,
we can change the assignment of the requests of client i. Let x = max(ws′,i,W−ws). Then we
move x requests, i.e., ws′,i = ws′,i − x and ws,i = ws,i + x. From the de�nition of tflows, we
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obtain the result, if we move all possible requests to s until there are no more requests in the
subtree or until s is processing W requests. �

We now introduce a new de�nition, completely independent from the optimal solution but
related to the tree network. The canonical �ow is obtained by distinguishing nodes which receive
a �ow greater than W from the other nodes. We compute the canonical �ow cflow of the tree,
independently of the replica placement, and de�ne a subset of nodes which are saturated, SN .
We also compute the number of saturated nodes in subtree(k), denoted nsnk, for any node
k ∈ C ∪ N of the tree.

For i ∈ C, cflowi = ri and nsni = 0, and we then compute recursively the canonical �ows
for nodes s ∈ N . Let fs =

∑
i∈children(s) cflowi and xs =

∑
i∈children(s) nsni. If fs ≥ W then

s ∈ SN , cflows = fs −W and nsns = xs + 1. Otherwise, s is not saturated, cflows = fs and
nsns = xs.

We can deduce from these de�nitions the following results:

Proposition 2.1. A non saturated node always has a canonical �ow being less than W:
∀s ∈ N \ SN cflows <W

Lemma 2.2. For all nodes s ∈ C ∪ N , cflows = tflows − nsns ×W.

Corollary 2.1. For all nodes s ∈ C ∪ N , tflows ≥ nsns ×W.

Proof. Proposition 2.1 is trivial due to the de�nition of the canonical �ow.
Lemma 2.2 can be proved recursively on the tree.
• This property is true for the clients: for i ∈ C, nsni = 0 and tflowi = cflowi = ri.
• Let s ∈ N , and let us assume that the proposition is true for all children of s. Then,

∀j ∈ children(s) cflowj = tflowj − nsnj ×W.

� If s /∈ SN , nsns =
∑

j∈children(s) nsnj and

cflows =
∑

j∈children(s)

cflowj =
∑

j∈children(s)

(tflowj − nsnj ×W) = tflows − nsns ×W

� If s ∈ SN , nsns =
(∑

j∈children(s) nsnj

)
+ 1 and

cflows =
∑

j∈children(s)

cflowj −W =
∑

j∈children(s)

(tflowj − nsnj ×W)−W

= tflows − (nsns − 1)×W−W = tflows − nsns ×W

which proves the result. Corollary 2.1 is trivially deduced from Lemma 2.2 since cflow is a
positive function. �

We also show that it is always possible to move a replica into a free server which is one of
its ancestors in the tree, while keeping an optimal solution:

Proposition 2.2. Let Ropt be an optimal solution, and let s ∈ Ropt. If ∃s′ ∈ Ancestors(s) \Ropt
then R′opt = {s′} ∪Ropt \ {s} is also an optimal solution.

Proof. s′ can handle all requests which were processed by s since s ∈ subtree(s′). We just need
to rede�ne ws′,i = ws,i for all i ∈ C and then ws,i = 0. �
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We are now ready to transform Ropt into a new optimal solution, Rsat, by redistributing
the requests among the replicas and moving some replicas, in order to place a replica at each
saturated node, and a�ecting W requests to this replica. This transformation is done starting at
the leaves of the tree, and considering all nodes of SN . Nothing needs to be done for the leaves
(the clients) since they are not in SN .

Let us consider s ∈ SN , and assume that the optimal solution has already been modi�ed to
place a replica, and assign it W requests, on all nodes in subSN = SN ∩ subtree(s) \ {s}.

We need to di�erentiate two cases:
1. If s ∈ Ropt, we do not need to move any replica. However, if ws 6= W, we change the

assignment of some requests while keeping the same replicas in order to obtain a workload
of W on server s. We do not remove requests from the saturated servers of subSN which
have already been �lled. Corollary 2.1 ensures that tflows ≥ nsns×W, and (nsns−1)×W
requests should not move since they are a�ected to the nsns − 1 servers of subSN . There
are thus still more than W requests of clients of subtree(s) which can possibly be moved
on s using Lemma 2.1.

2. If s /∈ Ropt, we need to move a replica of Ropt and place it in s without changing the
optimality of the solution. We di�erentiate two subcases.
(a) If ∃s1 ∈ subtree(s) ∩ Ropt \ SN , then the replica placed on s1 can be moved in s by

applying Proposition 2.2. Then, if ws 6= W, we apply case 1 above to saturate the
server.

(b) Otherwise, all the replicas placed in subtree(s) are also in SN , and the �ow consumed
by the already modi�ed optimal algorithm is exactly (nsns−1)×W. It is easy to see
that the �ow (of the optimal solution) at s is exactly equal to the total �ow minus the
consumed �ow. Therefore, flows = tflows−(nsns−1)×W, and with the application
of Corollary 2.1, flows ≥W.
The idea now consists in a�ecting the requests of this �ow to node s by removing
work from the replicas upwards to the root, and rearrange the remaining requests to
remove one replica. The �ow flows is going upwards to be processed by some of the
nrs replicas in Ancestors(s)∩Ropt, denoted s1, ..., snrs , s1 being the closest node from
s. We can remove W of these requests from the �ow and a�ect them to a new replica
placed in s. Let wsk,s =

∑
j∈subtree(s)∩C wsk,j . We have

∑
k=1..nrs

wsk,s = flows. We
move these requests from sk to s, starting with k = 1. Thus, after the modi�cation,
ws1,s = 0. It is however possible that ws1 6= 0 since s1 may process requests which are
not coming from subtree(s). In this case, we are sure that we have removed enough
requests from sk, k = 2..nrs which can instead process requests still in charge of s1.
We can then remove the replica initially placed in s1.
This way, we have not changed the assignment on replicas in subSN , but we have
placed a replica in s which is processing W requests. Since we have at the same time
removed the �rst replica on the path from s to the root (s1), we have not changed
the number of replicas and the solution is still optimal.

Once we have applied this procedure up to the root, we have an optimal solution Rsat in
which all nodes of SN have been placed a replica and are processing W requests. We will
not change the assignment of these replicas anymore in the following. Free nodes in the new
solution are called F-nodes, while replicas which are not in SN are called PS-nodes, for partially
saturated.

In a next step, we further modify the Rsat optimal solution in order to obtain what we call
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the canonical solution Rcan. To do so, we change the request assignment of the PS-nodes: we
�saturate� some of them as much as we can and we integrate them into the subset of nodes SN ,
rede�ning the cflow accordingly. At the end of the process, SN = Rcan.

The cflow is still the �ow which has not been processed by a saturated node in the subtree,
and thus we can express it in a more general way:

cflows = tflows −
∑

s′∈SN∩subtree(s)

ws′

Note that this is totally equivalent to the previous de�nition while we have not modi�ed SN .

We also introduce a new �ow de�nition, the non-saturated �ow of s, nsflows, which counts
the requests going through node s and not served by a saturated server anywhere in the tree.
Thus,

nsflows = cflows −
∑

i∈children(s)∩C

∑
s′∈Ancestors(s)∩SN

ws′,i.

This �ow represents the requests that can potentially be served by s while keeping all nodes of
SN saturated.

Lemma 2.3. In a saturated optimal solution, there cannot exist a PS-node in the subtree of
another PS-node.

Proof. The non-saturated �ow is nsflows ≤ cflows since we further remove from the canonical
�ow some requests which are a�ected upwards in the tree to some saturated servers.

Let s ∈ Rsat \ SN be a PS-node. Its canonical �ow is cflows < W . It can potentially
process all the requests of the subtree which are not a�ected to a saturated server upwards or
downwards in the tree, thus nsflows requests. Since nsflows ≤ cflows < W , we can change
the request assignment to assign all these nsflows requests to s, removing eventually some work
from other non-saturated replicas upwards or downwards which were processing these requests.
Thus, the replica on node s is processing all the requests of subtree(s) which are not processed
by saturated nodes.

If there was a non saturated replica in subtree(s), it could thus be removed since all the
requests are processed by s. This means that a solution with a PS-node in the subtree of
another PS-node is not optimal, thus proving the lemma. �

At this point, we can move the PS-nodes as high as possible in Rsat. Let s be a PS-
node. If there is a free node s′ in Ancestors(s) then we can move the replica from s to s′ using
Proposition 2.2. Lemma 2.3 ensures that there are no other PS-nodes in subtree(s′).

All further modi�cations will only alter nodes which have no PS-nodes in their ancestors.
We de�ne N ′ = {s|Ancestors(s) \ SN = ∅}.

Let s ∈ N ′. nsflows = cflows −
∑

i∈children(s)∩C
∑

s′∈Ancestors(s)ws′,i since all ancestors of s
are in SN . Thus,

nsflows =
∑

s′∈subtree(s)\SN

ws′ .

By de�nition, ∀s ∈ N nsflows ≤ cflows. Moreover, if s /∈ SN , then nsflows = ws since
subtree(s) \ SN is reduced to s (no other PS-node under the PS-node s, from Lemma 2.3).
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We introduce a new �ow de�nition, the useful �ow, which intuitively represents the number
of requests that can possibly be processed on s without removing requests from a saturated
server.

uflows = min
s′∈Ancestors(s)∪{s}

{cflows′}

Lemma 2.4. Let s ∈ N ′. Then nsflows ≤ uflows.

Proof. Let s′ ∈ Ancestors(s). Since s ∈ N ′, s′ ∈ SN .

cflows′ ≥ nsflows′ =
∑

s′′∈subtree(s′)\SN

ws′′

But since s ∈ subtree(s′), subtree(s) \ SN ⊆ subtree(s′) \ SN , hence nsflows ≤ nsflows′ . Note
that nsflow is a non decreasing function (when going up the tree).

Thus, ∀s′ ∈ Ancestors(s) ∪ {s}, nsflows ≤ cflows′ , and by de�nition of the useful �ow,
nsflows ≤ uflows. �

Now we start the modi�cation of the optimal solution in order to obtain the canonical
solution. At each step, we select a node s ∈ N \ SN maximizing the useful �ow. If there are
several nodes of identical uflow, we select the �rst one in a depth-�rst traversal of the tree. We
will prove that we can a�ect uflows requests to this node without unsaturating any server of
SN. s is then considered as a saturated node, we recompute the canonical �ows (and thus the
useful �ows) and reiterate the process until cflowr = 0, which means that all the requests have
been a�ected to saturated servers.

Let us explain how to reassign the requests in order to saturate s with uflows requests. The
idea is to remove some requests from Ancestors(s) in order to saturate s, and then to saturate the
ancestors of s again, by a�ecting them some requests coming from other non saturated servers.

First, we note that uflows ≤ cflowr = nsflowr. Thus,

uflows ≤
∑

s′∈N\SN

ws′ = ws +
∑
s′∈PS

ws′

where PS is the set of non saturated nodes without s. Let x = uflows − ws. If x = 0, s is
already saturated. Otherwise, we need to reassign x requests to s. From the previous equation,
we can see that

∑
s′∈PS ws′ ≥ uflows − ws = x. There are thus enough requests handled by

non saturated nodes which can be passed to s.

The number of requests of subtree(s) ∩ C handled by Ancestors(s) is∑
s′∈Ancestors(s)

∑
i∈subtree(s)∩C

ws′,i = cflows − nsflows

by de�nition of the �ow. Or cflows−nsflows ≥ uflows−ws = x so there are at least x requests
that s can take from its ancestors.

Let a1 = parent(s), ..., ak = r be the ancestors of s. xj =
∑

i∈subtree(s)∩C waj ,i is the amount
of requests that s can take from aj . We choose arbitrary where to take the requests if

∑
j xj > x,

and do not modify the assignment of the other requests. We thus assume in the following that∑
j xj = x. Since these xj requests are coming from a client in subtree(s), we can assign them
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to s, and there are now only W−xj requests handled by aj , which means that aj is temporarily
unsaturated. However, we have given x extra requests to s, hence s is processing ws+x = uflows
requests.

We �nally need to reassign requests to aj , j = 1..k in order to saturate these nodes again,
taking requests out of nodes in PS (non saturated nodes other than s). This is done iteratively
starting with j = 1 and going up to the root ak. At each step j, we assume that aj′ , j

′ < j have
already been saturated again and we should not move requests away from them. However, we
can still eventually take requests away from aj′′ , j

′′ > j.

In order to saturate aj , we need to take:

• either requests from subtree(aj)∩C which are currently handled by aj′′ , j′′ > j, but without
moving requests which are already a�ected to s (i.e.,

∑
j′′>j xj′′);

• or requests from non saturated servers in subtree(aj), except requests from s and requests
already given to s that should not be moved any more (i.e.,

∑
j′<j xj′).

The number of requests that we can potentially a�ect to aj is therefore:

X =
∑

s′∈subtree(aj)\SN\{s}

ws′ +
∑

i∈subtree(aj)∩C

∑
s′∈Ancestors(aj)

ws′,i −
∑
j′<j

xj′ −
∑
j′′>j

xj′′

Let us show that X ≥ xj . Then we can use these requests to saturate aj again.

cflowaj = nsflowaj+
∑

i∈subtree(aj)∩C

∑
s′∈Ancestors(aj)

ws′,i = ws+X+
∑
j′<j

xj′+
∑
j′′>j

xj′′ = X+ws+x−xj

But cflowaj ≥ uflows and uflows − ws = x so

X = cflowaj − ws − x+ xj ≥ uflows − ws − x+ xj = xj

It is thus possible to saturate s and then keep its ancestors saturated. At this point, s
becomes a node of SN and we can recompute the canonical and non saturated �ows. We have
removed uflows requests which were processed by non saturated servers, so the cflow and
nsflow of all ancestors of s, including s, should be decreased by uflows.

In particular, at the root, cflowr = cflowr − uflows, which proves that the contribution of
s on cflowr is uflows.

In the last step of the proof, we show that the number of replicas in the modi�ed canonical
solution at the end of the iteration Rcan = SN has exactly the same number of replicas than
Rsat. In the saturated solution, each PS-node s is processing nsflows requests, while in the
canonical solution, it is uflows. However, at every step when adding a saturated node s, we
have uflows greater than any of the nsflows. It is thus easy to see that the number of nodes
in the canonical solution is less or equal to the number of nodes in the saturated solution. Since
the saturated solution is optimal, |Rcan| = |Rsat|, which completes the proof.

Our algorithm builds Rcan in polynomial time, which assesses the complexity of the problem.

2.1.3 With Homogeneous Nodes and the Upwards Strategy

Theorem 2.2. The instance of the Replica Counting problem with the Upwards strategy is
NP-complete in the strong sense.
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Figure 2.2: The platform used in the reduction for Theorem 2.2.

Proof. The problem clearly belongs to the class NP: given a solution, it is easy to verify in
polynomial time that all requests are served and that no server capacity is exceeded. To establish
the completeness in the strong sense, we use a reduction from 3-PARTITION [32]. We consider
an instance I1 of 3-PARTITION: given 3m positive integers a1, a2, . . . , a3m such that B/4 <
ai < B/2 for 1 ≤ i ≤ 3m, and

∑3m
i=1 ai = mB, can we partition these integers into m triples,

each of sum B? We build the following instance I2 of Replica Counting (see Figure 2.2):

• 3m clients ci with ri = ai for 1 ≤ i ≤ 3m.

• m internal nodes nj with Wj = scj = B for 1 ≤ j ≤ m.
- The children of n1 are all the 3m clients ci, and its parent is n2.
- For 2 ≤ j ≤ m, the only child of nj is nj−1. For 1 ≤ j ≤ m− 1, the parent of nj is nj+1

(hence nm is the root).

Finally, we ask whether there exists a solution with total storage cost mB, i.e., with a replica
located at each internal node. Clearly, the size of I2 is polynomial (and even linear) in the size
of I1.

We now show that instance I1 has a solution if and only if instance I2 does. Suppose �rst
that I1 has a solution. Let (ak1 , ak2 , ak3) be the k-triplet in I1. We assign the three clients ck1 ,
ck2 and ck3 to server nk. Because ak1 + ak2 + ak3 = B, no server capacity is exceeded. Because
the m triples partition the ai, all requests are satis�ed. We do have a solution to I2.

Suppose now that I2 has a solution. Let Ik be the set of clients served by node nk if there
is a replica located at nk: then

∑
i∈Ik ai ≤ B. The total number of requests to be satis�ed is∑3m

i=1 ai = mB, and there are at most m replicas of capacity B. Hence no set Ik can be empty,
and

∑
i∈Ik ai ≤ B for 1 ≤ k ≤ m. Because B/4 < ai < B/2, each Ik must be a triple. This

leads to the desired solution of I1. �

2.1.4 With Heterogeneous Nodes

Theorem 2.3. All three instances of the Replica Cost problem with heterogeneous nodes are
NP-complete.
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Figure 2.3: The platform used in the reduction for Theorem 2.3.

Proof. Obviously, the NP-completeness of the Upwards strategy is a consequence of Theorem 2.2.
For the other two strategies, the problem clearly belongs to the class NP: given a solution, it
is easy to verify in polynomial time that all requests are served and that no server capacity
is exceeded. To establish the completeness, we use a reduction from 2-PARTITION [32]. We
consider an instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am, does there
exist a subset I ⊂ {1, . . . ,m} such that

∑
i∈I ai =

∑
i/∈I ai. Let S =

∑m
i=1 ai. We build the

following instance I2 of Replica Cost (see Figure 2.3):

• m+ 1 clients ci with ri = ai for 1 ≤ i ≤ m and rm+1 = 1.

• m+ 1 internal nodes:
- m nodes nj , 1 ≤ j ≤ m, with Wj = scj = aj .
- A root node r with Wr = scr = S/2 + 1. - The only child of nj is cj . The parent of nj is
r. The parent of cn+1 is r.

Finally, we ask whether there exists a solution with total storage cost S + 1. Clearly, the size
of I2 is polynomial (and even linear) in the size of I1. We now show that instance I1 has a
solution if and only if instance I2 does. The same reduction works for both strategies, Closest
and Multiple.

Suppose �rst that I1 has a solution. We assign a replica to each node ni, i ∈ I, and one in the
root r. Client ci is served by ni if i ∈ I, and by the root r otherwise, i.e., if i /∈ I or if i = m+1.
The total storage cost is

∑
j∈IWj +Wr = S + 1. Because Wr = S/2 + 1 =

∑
i/∈I ri + rn+1, the

capacity of the root is not exceeded. Note that the server allocation is compatible both with the
Closest and Multiple policies. In both cases, we have a solution to I2.

Suppose now that I2 has a solution. Necessarily, there is a replica located in the root,
otherwise client cn+1 would not be served. Let I be the index set of nodes nj , 1 ≤ j ≤ n,
which have been allocated a replica in the solution of I2. For j /∈ I, there is no replica in node
nj , hence all requests of client cj are processed by the root, whose storage capacity is S/2 + 1.
We derive that

∑
j /∈I rj ≤ S/2. Because the total storage capacity is S + 1, the total storage

capacity of nodes in I is S/2. The proof is slightly di�erent for the two server strategies:

• For the Closest strategy, all requests from a client cj ∈ I are served by nj , hence
∑

j∈I rj ≤
S/2. Since

∑
j∈I rj +

∑
j /∈I rj = S, we derive

∑
j∈I rj =

∑
j /∈I rj = S/2, hence a solution

to I2.
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• For the Multiple strategy, consider a server j ∈ I. Let r′j be the number of requests from
client cj served by nj , and r

′′
j be the number of requests from cj served by the root r (of

course rj = r′j + r′′j ). All requests from a client cj , j /∈ I, are served by the root. Let
A =

∑
j∈I r

′
j , B =

∑
j∈I r

′′
j and C =

∑
j /∈I rj . The total storage cost is A+B + S/2 + 1,

hence A+B ≤ S/2. We have seen that C ≤ S/2. But A+B +C = S, hence B = 0, and
A = C = S/2, hence a solution to I2.

�

2.2 Linear Programming Formulation

In this section, we express theReplica Placement optimization problem in terms of an integer
linear program (LP). We derive a formulation for each of the three server access policies, namely
Closest , Upwards and Multiple. This is an important extension to a previous formulation due
to Karlsson et al. [42] as they restrict to the Closest access policy.

While there is no e�cient algorithm to solve integer linear programs (unless P=NP), this
formulation is extremely useful as it leads to an absolute lower bound: we solve the integer linear
program over the rationals, using standard software packages [17, 34]. Of course the rational
solution will not be feasible, as it assigns fractions of replicas to server nodes, but it will provide
a lower bound on the storage cost of any solution. This bound will be very helpful to assess the
performance of the polynomial heuristics that are introduced in Section 2.3.

2.2.1 Single Server

We start with single server strategies, namely the Upwards and Closest access policies. We need
to de�ne a few variables:

Server assignment

• xj is a boolean variable equal to 1 if j is a server (for one or several clients).

• yi,j is a boolean variable equal to 1 if j = server(i).

• If j /∈ Ancestors(i), we directly set yi,j = 0.

Link assignment

• zi,l is a boolean variable equal to 1 if link l ∈ path[i→ r] is used when client i accesses its
server server(i).

• If l /∈ path[i→ r] we directly set zi,l = 0.

The objective function is the total storage cost, namely
∑

j∈N scjxj . We list below the
constraints common to the Closest and Upwards policies: First there are constraints for server
and link usage:

• Every client is assigned a server:

∀i ∈ C,
∑

j∈Ancestors(i)

yi,j = 1
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• All requests from i ∈ C use the link to its parent:

zi,i→parent(i) = 1

• Let i ∈ C, and consider any link l : j → j′ = parent(j) ∈ path[i→ r]. If j′ = server(i) then
link succ(l) is not used by i (if it exists). Otherwise zi,succ(l) = zi,l. Thus:

∀i ∈ C,∀l : j → j′ = parent(j) ∈ path[i→ r],

zi,succ(l) = zi,l − yi,j′

Next there are constraints expressing that server capacities cannot be exceeded: ∀j ∈
N ,
∑

i∈C riyi,j ≤ Wjxj . Note that this ensures that if j is the server of i, there is indeed a
replica located in node j. Altogether, we have fully characterized the linear program for the
Upwards policy. We need additional constraints for the Closest policy, which is a particular case
of the Upwards policy (hence all constraints and equations remain valid).

We need to express that if node j is the server of client i, then no ancestor of j can be the
server of a client in the subtree rooted at j. Indeed, a client in this subtree would need to be
served by j and not by one of its ancestors, according to the Closest policy. A direct way to
write this constraint is

∀i ∈ C, ∀j ∈ Ancestors(i),

∀i′ ∈ C ∩ subtree(j),∀j′ ∈ Ancestors(j),

yi,j ≤ 1− yi′,j′

Indeed, if yi,j = 1, meaning that j = server(i), then any client i′ in the subtree rooted in j must
have its server in that subtree, not closer to the root than j. Hence yi′,j′ = 0 for any ancestor j′

of j.

There are O(s4) such constraints to write, where s = |C|+ |N | is the problem size. We can
reduce this number down to O(s3) by writing

∀i ∈ C,∀j ∈ Ancestors(i) \ {r},

∀i′ ∈ C ∩ subtree(j),

yi,j ≤ 1− zi′,j→parent(j)

2.2.2 Multiple Servers

We now proceed to the Multiple policy. We de�ne the following variables:

Server assignment

• xj is a boolean variable equal to 1 if j is a server (for one or several clients).

• yi,j is an integer variable equal to the number of requests from client i processed by node j.

• If j /∈ Ancestors(i), we directly set yi,j = 0.
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Link assignment

• zi,l is an integer variable equal to the number of requests �owing through link l ∈ path[i→
r] when client i accesses any of its servers in Servers(i)

• If l /∈ path[i→ r] we directly set zi,l = 0.

The objective function is unchanged, as the total storage cost still writes
∑

j∈N scjxj . But
the constraints must be modi�ed. First those for server and link usage:

• Every request is assigned a server:

∀i ∈ C,
∑

j∈Ancestors(i)

yi,j = ri

• All requests from i ∈ C use the link to its parent:

zi,i→parent(i) = ri

• Let i ∈ C, and consider any link l : j → j′ = parent(j) ∈ path[i→ r]. Some of the requests
from i which �ow through l will be processed by node j′, and the remaining ones will �ow
upwards through link succ(l):

∀i ∈ C,∀l : j → j′ = parent(j) ∈ path[i→ r],

zi,succ(l) = zi,l − yi,j′

The other constraints on server capacities are slightly modi�ed:

∀j ∈ N ,
∑
i∈C

yi,j ≤Wjxj

Note that this ensure that if j is the server for one or more requests from i, there is indeed a
replica located in node j. Altogether, we have fully characterized the linear program for the
Multiple policy.

2.2.3 A Mixed Integer LP-Based Lower Bound

The previous linear programs contain boolean or integer variables, because it does not make
sense to assign half a request or to place one third of a replica on a node. It has to be solved
in integer values if we wish to obtain an exact solution to an instance of the problem. This can
be done for each access policy, but due to the large number of variables, the problem cannot be
solved for platforms of size s = |C|+ |N | > 50. Thus we cannot use this approach for large-scale
problems.

However, we can still relax the constraints and solve the linear program assuming that all
variables take rational values. The optimal solution of the relaxed program can be obtained in
polynomial time (in theory using the ellipsoid method [60], in practice using standard software
packages [17, 34]), and the value of its objective function provides an absolute lower bound on
the cost of any valid (integer) solution. Of course the relaxation makes the most sense for the
Multiple policy, because several fractions of servers are assigned by the rational program. For
all practical values of the problem size, the rational linear program returns a solution in a few
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minutes. We tested up to several thousands of nodes and clients, and we always found a solution
within ten seconds.

However, we can obtain a more precise lower bound for trees with up to s = 400 nodes and
clients by using a rational solution of the Multiple instance of the linear program with fewer
integer variables. We treat the yi,j and zi,l as rational variables, and only require the xj to be
integer variables. These variables are set to 1 if and only if there is a replica on the corresponding
node. Thus, forbidding to set 0 < xj < 1 allows us to get a realistic value of the cost of a solution
of the problem. For instance, a server might be used only at 50% of its capacity, thus setting
x = 0.5 would be enough to ensure that all requests are processed; but in this case, the cost of
placing the replica at this node is halved, which is incorrect: while we can place a replica or not
but it is impossible to place half of a replica.

In practice, this lower bound provides a drastic improvement over the unreachable lower
bound provided by the fully rational linear program. The good news is that we can compute
the re�ned lower bound for problem sizes up to s = 400, using GLPK [34]. We used the re�ned
bound for all our experiments.

2.3 Heuristics for the Replica Cost Problem

In this section several heuristics for the Closest , Upwards and Multiple policies are presented.
As previously stated, our main objective is to provide an experimental assessment of the relative
performance of the three policies. All the eight heuristics described below have a worst case
quadratic complexity O(s2), where s = |C| + |N | is the problem size. Indeed, all heuristics
proceed by traversing the tree, and the number of traversals is bounded by the number of
internal nodes (and is much lower in practice).

The pseudo-code for the algorithms is provided in Appendix A.

2.3.1 Closest

The �rst two heuristics enforce the Closest policy through a top-down approach, whereas the
third heuristic uses a bottom-up approach.

1. Closest Top Down All (CTDA) � The basic idea is to perform a breadth-�rst traversal
of the tree. Every time a node is able to process the requests of all the clients in its subtree,
the node is chosen as a server, and we do not explore further that subtree. The corresponding
procedure (Algorithm 9) is called until no more servers are added in a tree traversal.

2. Closest Top Down Largest First (CTDLF) � The tree is traversed in breadth-�rst
manner similarly to CTDA, but we treat the subtree which contains the most requests �rst.
Also, the tree traversal is stopped each time a replica has been placed (and then the procedure
is called again).

3. Closest Bottom Up (CBU) � Still dealing with the Closest policy, this heuristic performs
a bottom-up traversal of the tree. A node is chosen as server if it can process all the requests of
the clients in its subtree. Algorithm 10 describes the recursive implementation.
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2.3.2 Upwards

We propose two heuristics for the Upwards policy, one using a top-down approach, the other
using a bottom-up approach.

4. Upwards Top Down (UTD) � The top down approach works in two passes. In the �rst
pass (see Algorithm 12), each node whose capacity is exhausted by the number of requests in its
subtree is chosen by traversing the tree in depth-�rst manner. When a server is chosen, we delete
as much clients as possible in non-increasing order of their ri-values, until the server capacity is
reached or no other client can be deleted. The delete-procedure is described in Algorithm 11. If
not all requests can be treated by the chosen servers, a second pass is started. In this procedure
(see Algorithm 13) servers with remaining requests are added.

5. Upwards Big Client First (UBCF) � The second heuristic for the Upwards policy works
in a completely di�erent way than all the other heuristics. The basic idea here is to treat all
clients in non-increasing order of their ri values. For each client we identify the server with
minimal available capacity that can treat all its requests (see Algorithm 14).

2.3.3 Multiple

6. Multiple Top Down (MTD) � The top-down approach for the Multiple policy is similar
to UTD, with one signi�cant di�erence: the delete-procedure (see Algorithm 15). For Upwards,
requests of a client have to be treated by a single server, and it may occur that after the delete-
procedure a server has still some capacity left to treat more requests, but all remaining clients
have a higher amount of requests than this leftover capacity. For Multiple, requests of a client
can be treated by multiple servers. So if at the end of the delete-procedure the server still has
some capacity, we delete this amount of requests from the client with the largest ri.

7. Multiple Bottom Up (MBU) � This heuristic is similar to MTD, except that we perform
a bottom-up traversal of the tree in the �rst pass, and that the clients are deleted in non-
decreasing order of their ri-values. Algorithm 16 describes the �rst pass (servers with exhausted
capacity). The second pass which adds extra servers if required is described in Algorithm 17.

8. Multiple Greedy (MG) � This last heuristic greedily allocates requests to servers in a
bottom-up traversal of the tree, thus always �nding a solution if there is one, but possibly at an
expensive cost.

2.4 Experiments

We have done some experiments to assess the impact of the di�erent access policies, and the
performance of the polynomial heuristics described in Section 2.3. We obtain an absolute lower
bound of the solution for each tree platform with the mixed integer linear program similar
described in Section 2.2. We outline the experimental plan in Section 2.4.1. Results are given
and commented in Section 2.4.2. In the following, we denote by s the problem size: s = |C|+|N |.
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Figure 2.4: Homogeneous case - Percentage of success.

2.4.1 Experimental Plan

The important parameter in our tree networks is the load, i.e., the total number of requests

compared to the total processing power: λ =
P
i∈C riP
j∈N Wi

. We have performed experiments on 30

trees for each of the nine values of λ selected (λ = 0.1, 0.2, ..., 0.9). The trees have been randomly
generated, with a problem size 15 ≤ s ≤ 400. When λ is small, the tree has a light request load,
while large values of λ imply a heavy load on the servers. We then expect the problem to have
a solution less frequently.

We have computed the number of solutions for each lambda and each heuristic. The number
of solutions obtained by the linear program indicates which problems are solvable. Of course we
cannot expect a result with our heuristics for the intractable problems.

To assess the performance of our heuristics, we have studied the relative performance of each
heuristic compared to the lower bound. For each λ, results are computed on the trees for which
the linear program has a solution. Let Tλ be the subset of trees with a solution. Then, the
relative performance for the heuristic h is obtained by 1

|Tλ|
∑

t∈Tλ
costLP (t)
costh(t) , where costLP (t) is

the lower bound cost returned by the linear program on tree t, and costh(t) is the cost involved
by the solution proposed by heuristic h. In order to be fair versus heuristics who have a higher
success rate, we set costh(t) = +∞ if the heuristic did not �nd any solution.

Experiments have been conducted both on homogeneous networks (Replica Counting

problem) and on heterogeneous ones (Replica Cost problem).
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2.4.2 Results

A solution computed by a Closest or Upwards heuristic always is a solution for the Multiple
policy, since the latter is less constrained. Therefore, we can mix results into a new heuristic for
the Multiple policy, called MixedBest (MB), which selects for each tree the best cost returned
by the previous eight heuristics. Since MG never fails to �nd a solution if there is one, MB will
neither fail either.

Figure 2.4 shows the percentage of success of each heuristic for homogeneous platforms. The
upper curve corresponds to the result of the linear program, and to the cost of the MG and MB
heuristics, which con�rms that they always �nd a solution when there is one. The UBU heuristic
seems very e�cient, since it �nds a solution more often than MTD and MBU, the other two
Multiple policies. On the contrary, UTD, which works in a similar way to MTD and MBU, �nds
less solutions than these two heuristics, since it is further constrained by the Upwards policy.
As expected, all the Closest heuristics �nd fewer solutions as soon as λ reaches higher values:
the bottom curve of the plot corresponds to CTDA, CTDLF and CBU, which all �nd the same
solutions. This is inherent to the limitation of the Closest policy: when the number of requests
is high compared to the total processing power in the tree, there is little chance that a server
can process all the requests coming from its subtree, and requests cannot traverse this server
to be served by a server located higher in the tree. These results con�rm that the new policies
have a striking impact on the existence of a solution to the Replica Counting problem.

Figure 2.5 represents the relative performance of the heuristics compared to the LP-based
lower bound. As expected, the hierarchy between the policies is respected, i.e., Multiple is
better than Upwards which in turn is better than Closest . Altogether, the use of the MixedBest
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heuristic MB allows to always pick up the best result, thereby resulting in a very satisfying
relative cost for the Multiple instance of the problem. The greedy MG should not be used for
small values of λ, but proves to be very e�cient for large values, since it is the only heuristic to
�nd a solution for such instances.

To conclude, we point out that MB always achieves a relative performance of at least 85%,
thus returning a replica cost within 17% of that of the LP-based lower bound. This is a very
satisfactory result for the absolute performance of our heuristics. Especially given the fact that
running all heuristics takes less than a minute, while the LP solution requires up to several
hours.

The heterogeneous results (see Figure 2.6 and Figure 2.7) are very similar to the homogeneous
ones, which clearly shows that our heuristics are not much sensitive to the heterogeneity of the
platform.
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Chapter 3

Multi-Criteria Optimization Problems

This chapter deals with Replica Placement including more criteria in the objective function.
More precisely, we study the problems Replica Placement with QoS and Replica Cost

with QoS and Bandwidth. In Section 3.1 we present the residual complexity results for the
di�erent instances. The formulation of Replica Placement with QoS as linear program is
subject of Section 3.2. We present several polynomial heuristics in Section 3.3 and the results
of our experimentations are detailed in Section 3.4.

3.1 Complexity Results

Table 3.1 gives an overview of complexity results of the di�erent instances of the Replica
Counting problem (homogeneous servers). Bold items indicate those results that we are ad-
dressing in particular in this chapter. Liu et al. [46] provided a polynomial algorithm for the
Closest policy with QoS constraints. In Chapter 2 we proved the NP-completeness of the Up-
wards policy without QoS. This was a surprising result, to be contrasted with the fact that the
Multiple policy is polynomial under the same conditions (Cf. Chapter 2).

3.1.1 Replica Counting with QoS

An important contribution of this chapter is the NP-completeness of the Multiple policy with
QoS constraints. As stated above, the same problem was polynomial without QoS, which gives
a clear insight on the additional complexity introduced by QoS constraints.

Theorem 3.1. Replica Counting with QoS and the Multiple strategy is NP-complete.

Proof. The problem clearly belongs to the class NP: given a solution, it is easy to verify in
polynomial time that all requests are served, that all QoS constraints are satis�ed and that no
server capacity is exceeded.

Table 3.1: Complexity results for the di�erent instances of Replica Counting. Bold items
denote the results treated in this chapter.

Homogeneous Homogeneous/QoS Hom./QoS/Bandwidth

Closest polynomial [22, 46] polynomial [46] polynomial
Upwards NP-hard NP-hard NP-hard
Multiple polynomial NP-hard NP-hard

35
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Figure 3.1: The platform used in the reduction for Theorem 3.1.

To establish the completeness, we use a reduction from 2-PARTITION-EQUAL [32]. We
consider an instance I1 of 2-PARTITION-EQUAL: given 2m positive integers a1, a2, . . . , a2m,
does there exist a subset I ⊂ {1, . . . , 2m} of cardinal m such that

∑
i∈I ai =

∑
i/∈I ai. Let

S =
∑2m

i=1 ai, W = S
2 and bi = S

2 − 2ai for 1 ≤ i ≤ 2m. We build the following instance I2 of
our problem (see Figure 3.1):

• Problem size: there are 5m− 1 clients ci and 3m− 1 internal nodes nj :

• Nodes: for 1 ≤ j ≤ 2m, node nj has capacity scj = Wj = W
- For 1 ≤ j ≤ 2m, the parent of node nj is node n2m+1

- For 2m+ 1 ≤ j ≤ 3m− 2, the parent of node nj is node nj+1

- Node n3m−1 is the root r of the tree.

• Clients:
- For 1 ≤ i ≤ 2m, client ci has ri = ai requests of QoS qi = 2, and its parent is node ni
- For 2m+ 1 ≤ i ≤ 4m, client ci has ri = bi−2m requests of QoS qi = m, and its parent is
node ni−2m

- For 4m + 1 ≤ i ≤ 5m − 1, client ci has ri = 1 request of QoS qi = 1 and its parent is
node ni−2m.

Finally, we ask whether there exists a solution with total storage cost (2m− 1)W , i.e., with
2m− 1 servers. Clearly, the size of I2 is polynomial (and even linear) in the size of I1. We now
show that instance I1 has a solution if and only if instance I2 does.

Suppose �rst that I1 has a solution. We assign a replica to each node ni, i ∈ I (by hypothesis
there are m of them), and one in each of the m− 1 top nodes n2m+1 to n3m−1. All m− 1 clients
with QoS 1 are served by their parent.
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For 1 ≤ i ≤ 2m there are tow cases:
- If i ∈ I, both clients ci and ci+2m are served by their parent ni. Node ni serves a total of
ai + bi = S

2 − ai ≤W requests.
- If i /∈ I, client ci is served by node n2m+1 and client ci+2m is served by one or several ancestors
of n2m+1, i.e., nodes n2m+2 to n3m−1. Node n2m+1, which also serves the unique request of
client c2m+1, serves a total of

∑
i/∈I ai + 1 = W requests. The m− 2 ancestors of n2m+1 receive

the load
∑

i/∈I bi = mS− 2S. They also serve m− 2 clients with a single request, hence a a total
load of (m− 2)S +m− 2 = (m− 2)W requests to distribute among them. This is precisely the
sum of their capacities, and any assignment will do the job.
Note that the allocation of requests to servers is compatible with all QoS constraints. All requests
with QoS 1 are served by the parent node. All requests with QoS 2, i.e., with value ai, are served
either by the parent node (if i ∈ I) or by the grandparent node (if i /∈ I). Altogether, we have
a solution to I2.

Suppose now that I2 has a solution with 2m−1 servers. Necessarily, there is a replica located
in each of the top m− 1 nodes n2m+1 to n3m−1, otherwise some request with QoS 1 would not
be served satisfactorily. Each of these nodes serves one of these requests, hence has remaining
capacity W − 1 = S

2 .
There remain m servers which are placed among nodes n1 to n2m. Let I be the set of indices

of those m nodes which have not received a replica. Necessarily, requests ai, with i ∈ I, are
served by node n2m+1, because of their QoS constraint. Hence

∑
i∈I ai ≤

S
2 . Next, all requests

ai and bi, with i ∈ I, are served by nodes n2m+1 to n3m−1, whose total remaining capacity is
(m− 1)S2 . There are (

∑
i∈I ai) + (mS

2 − 2
∑

i∈I ai) such requests, hence

m
S

2
−
∑
i∈I

ai ≤ (m− 1)
S

2
.

From this equation we derive that
∑

i∈I ai ≥
S
2 . Finally we have

∑
i∈I ai = S

2 , with |I| = m,
hence a solution to I2.

�

Remember that all three instances of the Replica Placement problem (heterogeneous
servers with the Closest , Upwards and Multiple policies) are already NP-complete without QoS
constraints (Cf. Chapter 2).

3.1.2 Replica Cost with QoS and Bandwidth

Theorem 3.2. The instance of Replica Cost with QoS and Bandwidth with the Closest
strategy can be solved in polynomial time.

Proof. We outline below an optimal algorithm, called ORP , to solve the problem. �

For our algorithm, we modify an optimal algorithm of Lin, Liu and Wu [46] for Replica
Cost with QoS with the Closest policy. To be able to use their algorithm Place-replica, we
have to modify the original platform: we transform the distribution tree T in a tree T ∗ by adding
a new root r+ as father of the original root r (see Figure 3.2(a)). r+ is connected to r via a link
l0, where BW(l0) = 0. As the bandwidth is limited to 0, no requests can pass above r, so that
this arti�cial transformation for computation purposes can be adapted to any tree-network. We
make this changing to be able to model whether the original root r is equipped with a replica
or not.
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Figure 3.2: Transformations.

A further, only formal transformation, consists in the suppression of clients from the tree and
hence the consideration of their parents as leaves in the following way: for every parent p who
has only leaf-children v1, .., vn, we assign the sum of the requests of the vj as its requests w(p),
i.e., w(p) =

∑
1≤j≤nw(vj). The associated QoS is set to (min1≤j≤n q(vj)) − 1. (Figures 3.2(b)

and 3.2(c) give an illustration). This transformation is possible, as we use the Closest policy
and hence all children have to be treated by the same server. From those parents who have some
leaf-children v1, .., vn, but also non-leaf children vn+1, .., vm, the clients can not be suppressed
completely. In this case the leaf-children v1, .., vn are compressed to one single client c with
requests w(c) =

∑
1≤j≤nw(vj) and QoS q(c) = min1≤j≤n q(vj). Once again this compression is

possible due to the restriction on the Closest access policy.

ORP works in two phases. In the �rst phase so called Contribution Functions are computed
which will serve in the second phase to determine the optimal replica placements. In the following
some new terms are introduced and then the two phases are described in detail.

Terminology

Working with a tree T ∗ with root r+, we note t(v) the subtree rooted by node v, and t′(v) =
t(v) − v, i.e., the forest of trees rooted at v's children. The i-th ancestor of node v, traversing
the tree up to the root, is denoted by a(v, i). See Figure 3.3 for an illustration.

Using these notations, we denote m(T ∗) the minimum cardinality set of replicas that has
to be placed in tree T such that all requests can be treated by a maximum processing capacity
of W (respecting QoS and bandwidth constraints). In the same manner m(t(v)) denotes the
minimum number of replicas that has to be placed in t′(v), such that the remaining requests on
node v are within W . For this purpose we de�ne a contribution function C. C(v, i) denotes the
minimum number of requests on node a(v, i) contributed by t(v) by placing m(t(v)) replicas in
t′(v) and none on a(v, j) for 0 ≤ j < i. The computation is presented below (Cf. Section 3.2).
But before we need a last notation. The set e(v, i) denotes the children of node v that have to
be equipped with a replica such that the remaining requests on node a(v, i) are within W , there
are exactly m(t(v)) replicas in t′(v) and none on a(v, j) for 0 ≤ j < i and the contribution t(v)
on a(v, i) is minimized. The computation formula is also given below.
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Phase 1: Bottom up computation of set e, amount m and contribution function C

The computation of e, m and C is a bottom up process, distinguishing two cases.

1. v is a leaf In this case we do not need e andm and we can directly compute the contribution
function. C(v, i) is w(v) when (i ≤ q(v) ∧ w(v) ≤ minBW path[v → a(v, i)]), and in�nity
otherwise.

We point out that there is no solution if any of the leaves has more requests than W or if
the bandwidth of any of the clients to its parent is not su�ciently high.

2. v is an internal node with children v1, . . . , vn
i = 0: If the contribution on v of its children, i.e., the incoming requests on v is bigger than the
processing capacity of inner nodes W , we know we have to place some replicas on the children
to bound the incoming requests on W . To �nd out which children have to be equipped with a
replica, we take a look at the C(vj , 1)-values of the children. The set e(v, 0) is used to store the
vj 's that are determined to be equipped with a replica. Hence the procedure is the following:

e(v, 0) = ∅;
while

∑
vj /∈e(v,0)C(vj , 1) > W do

add vj ∈ N with biggest C(vj , 1) to e(v, 0);

Note that the set N used in the procedure still corresponds to the set of internal nodes of the
original tree T . So we can add leaf nodes of T ∗ that are inner nodes in T , but we can not
add compressed client nodes. Note furthermore that there is no client that is added to e(v, 0).
Besides we remark that there is no valid solution within W and the present QoS and bandwidth
constraints, when all children vj ∈ N of v are equipped with a replica and the incoming requests
do not �t in W . Of course this holds also true in the case i > 0. Subsequently, the value of
m(t(v)) is determined easily: m(t(v)) =

∑
1≤j≤nm(t(vj)) + |e(v, 0)|. We remind that m(t(v))

indicates the minimum number of replicas that have to be placed in t′(v) to keep the number of
contributed requests inferior to W . Finally, the computation of the contribution function :

C(v, 0) =
∑

vj /∈e(v,0)

C(vj , 1).

v

t′(v)

r+

a(v, 1)

a(v, i)

Figure 3.3: Clari�cation of the terminology.
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Figure 3.4: Example

i > 0: Treating node v, we want to compute the contribution on a(v, i). As for i = 0, we start
computing the set e(v, i):

e(v, i) = ∅;
while

∑
vj /∈e(v,i)C(vj , i+ 1) > W do

add vj ∈ N with biggest C(vj , i+ 1) to e(v, i);

The computation of the contribution function follows a similar principle:

C(v, i) =

{∑
vj /∈e(v,i)C(vj , i+ 1), if |e(v, i)| = |e(v, 0)|

∞, otherwise
(3.1)

C(v, i) is set to ∞, when the number of |e(v, 0)| replicas placed among the children of v is not
su�cient to keep the contributed requests on a(v, i) within W .

Example of Phase 1 Consider the tree in Figure 3.4 and a processing capacity of inner nodes
�xed to W = 15. The tree has already been transformed. So nodes x and y are compressed
client-leaves (grey scaled in the �gure), whereas all other leaves correspond to servers (former
inner nodes, hence nodes that are within N ). We start with the computation of all C(v, i)-values
of all leaves. Leaf l for example has C(l, 0) = 3 as it holds 3 requests. As the link from l to
e has a bandwidth of 4, and the QoS is 2, the requests of l can ascent to node e and hence
the contribution of l's requests on node e, C(l, 1), is 3. In the same manner, C(l, 2), i.e., the
contribution of l's requests on node b is 3 as well. But then the QoS range is exceeded and hence
the requests of l can not be treated higher in the tree. Consequently the contributions on nodes
a and a+ (C(l, 3) and C(l, 4)) are set to in�nity.

Table 3.3 is used for the computation of e, m and C values of inner nodes. During the
computation process it is �lled by main columns, where one main column consists of all inner
nodes of the same level in the tree. So we start with node e. The contribution of its child
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l f x m n h i o p k y

C(v, 0) 3 4 3 2 5 8 7 4 12 3 8
C(v, 1) 3 4 3 2 5 8 ∞ 4 12 ∞ 8
C(v, 2) 3 ∞ ∞ 2 ∞ 8 ∞ 4 12 ∞ 8
C(v, 3) ∞ ∞ ∞ 2 ∞ ∞ ∞ 4 12 ∞ ∞
C(v, 4) ∞ ∞ ∞ ∞ ∞

Table 3.2: Computation of C(v, i)-values of leaves.

e g j b c d a a+

e(v, 0) ∅ ∅ {p} ∅ {g, i} {k} {b, c} {a}
m(t(v)) 0 0 1 0 2 2 6 7
C(v, 0) 3 7 4 9 11 12 12 ∞
e(v, 1) ∅ {n} {p} {e} {g, i} {k} {b, c, d}
C(v, 1) 3 ∞ 4 ∞ ∞ 12 ∞
e(v, 2) {l} {n} {p} {e, f} {g, i} {j, k}
C(v, 1) ∞ ∞ 4 ∞ ∞ ∞
e(v, 3) {l} {m,n} {o, p}
C(v, 1) ∞ ∞ ∞

Table 3.3: Computation of e, m and C for internal nodes.

l, C(l, 1), is 3. As it is the only child, we have that the contributed requests on e are less
than the processing capacity W = 15 and hence we do not need to place a replica on its child
l. Corresponding we get m(t(e)) = 0 and a contribution C(e, 0) = 3. e(e, 1) and C(e, 1)
are computed in the same manner, taking into account C(l, 2). Computing e(e, 2), i.e., the
nodes that have to be equipped with a replica if we want to minimize the contribution on node
a(e, 2) = a by placing replicas on the children of e but none on e up to a. For this purpose we
use C(l, 3), the contribution of l on a and remark that it is in�nity. Hence we have to equip
l with a replica, and as now the set e(e, 2) has a higher cardinality than e(e, 0), we know that
this solution is not optimal anymore and we set the contribution of C(e, 2) to in�nity (Eq. 3.1).
Taking a look at node j: In the computation of e(j, 0), we have a total contribution of its children
of 16, which exceeds the processing power of W = 15 (bandwidth and QoS are not restricting
here). Indeed we have to equip one of the children with a replica, and we choose the one with
the highest contribution on j: node p. Consequently, we get m(t(j)) = 1 as we have to place
one replica on the children. The contribution C(j, 0) consists in the 4 remaining contributed
requests of node o. Once we have �nished all computations for this level, we start with the
computations of the next level, which can be found in the next main column of the table.

Phase 2: Top down replica placement

The second phase uses the precomputed results of the �rst phase to decide about the nodes on
which to place a replica. The goal is to place m(T ∗) = m(t(r+)) replicas in t′(r+). Note that
this means that there is no replica on r+ and hence only the original tree T will be equipped
with replicas. If the number of contributed requests on node r is within W , we have a feasible
solution.

Phase 2 is a recursive approach. Starting with i = 0 on node v = r+, all nodes that are
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within e(v, i) are equipped with a replica. In this top down approach, i indicates the distance of
node v to its �rst ancestor up in the tree that is equipped with a replica and hence the set e(v, i)
denotes the set of children of v that have to be equipped with a replica in order to minimize the
contribution of v on a(v, i). Next the procedure is called recursively with the appropriate index
i. Algorithm 4 gives the pseudo-code for the top down placement phase, which is the same as
the one in [46].

Algorithm 4: Top down replica placement

procedure Place-replica (v, i)
if v ∈ C then
return

place a replica at each node of e(v, i);
for all c ∈ children(v) do
if c ∈ e(v, i) then
Place-replica(c,0);

else
Place-replica(c,i+1);

Example of Phase 2 We start with the results of Phase 1 (Cf. Table 3.2 and 3.3) and call then
the procedure Place-replica (Algorithm 4) with (a+, 0). a+ is not a leaf, so we place a replica on
its child a, as a ∈ e(a, 0) and then recall the procedure with (a, 0). This time we place replicas
on b and c and call the procedure with values (b, 0), (c, 0) and (d, 1). We have to increment i to
1 when we treat node d, as we already know that we will not equip d with a replica, and hence
the children of d might give their contribution directly to a. So we have to examine which of
the children of d have to be equipped with a replica, to minimize the contribution on a. This is
stored in the e(vj , 1)-values of all children vj of d. So every time we do not place a replica on a
node and descent to its children, we increase the distance-indicator i to the �rst replica that can
be found the way up to the root. At the end we get this set of replicas: R = {a, b, c, g, i, k, p}.

The recursive procedure call for the entire example is given in Table 3.1.2. PR(x,i) stands
for the call of Place-replica with parameters (x,i) and → x indicates that node x is equipped
with a replica.

Complexity of ORP

For each node v we have to compute e, m and C values. So the computation requires n log n,
if v has n children and if we sort the C values from all of v's children. We have to do at most
L sorting, where L is the maximum range limit among all nodes. So at all the computation
complexity for the values for one node is Ln log n, and we get a total complexity of LN logN ,
where N is the number of nodes in the tree.

Proof of Optimality

To prove optimality of our algorithm ORP , we use a recursion over levels. For this purpose we
apply a theorem introduced by Liu et al. [46] and presented below as Theorem 3.3. Liu et al.
used this theorem in order to prove the existence of an optimal solution on a homogeneous data
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PR(a+,0)

→ a
PR(a,0)

→ b,c
PR(b,0) PR(c,0) PR(d,1)

→ g,i → k
PR(e,1) PR(f,1) PR(g,0) PR(h,2) PR(i,0) PR(j,2) PR(k,0)

ret ret ret → p ret
PR(l,2) PR(m,1) PR(n,0) PR(o,3) PR(p,0)

ret ret ret ret ret

Table 3.4: Scheme on the recursive calls of the procedure Place-replica

grid tree under QoS constraints. As the theorem does not take into account if there are any
constraints like QoS or bandwidth, we can adopt it for our problem.

Theorem 3.3. Consider a data grid tree T , a node v in T with children v1, .., vn and a workload
W . There exists a replica set R so that |R| = m(T ), R minimizes the total workload due to R
from t′(v) on a(v, i) for i ≥ 1, and |R ∩ t′(vj)| = m(t(vj)).

In other words, Theorem 3.3 guarantees that for a tree T with �xed processing capacity W
there exists a replica set R whose cardinality is the minimum number of replicas that has to be
placed in t′(r) (where r is the root of T ), such that the remaining requests on r are within W .
Furthermore for a node v with children v1, ..., vn, due to R the workload on a ancestor a(v, i) of
v is minimized and the number of replicas that are placed in the subtree t′(vj) is minimal.

Proof. We can use the same arguments as Liu et al. as we did not change the de�nition of
m-values but the constraints on m. By de�nition of m(t(vj)), we know that this is the minimal
number of replicas that has to be placed in t′(vj) such that the contribution on vj is within W .
Hence |R ∩ t′(vj) can not be less than m(t(vj)) because otherwise the contribution on vj would
exceed W . On the other side in any optimal solution for t(vj), we can not place more replicas
in t′(vj) than m(t(vj)) and than one more on vj . The resulting contribution on a(v, i) decreases
at most when placing the replica on vj . �

Theorem 3.4. Algorithm ORP returns an optimal solution to the Replica Placement prob-
lem with �xed W , QoS and bandwidth constraints, if there exists a solution.

Proof. We perform an induction over levels to prove optimality. We consider any tree T ∗ of
height n+ 1 and start at level 0, which consists in the arti�cial root r+ (Cf. Figure 3.5).

level 0: Using Theorem 3.3, we know that there exists an optimal solution R0 for our tree (i.e.,
a set R of replicas whose cardinality is m(T ∗)) such that |R0 ∩ t′(r)| = m(t(r)). We have
m(T ∗) = m(t(r)) + |e(r+, 0)| by de�nition of e(r+, 0). Hence e(r+, 0) = {r} if and only if
r ∈ R0. This is exactly how the algorithm pursuits.

level i → i+1: We assume that we have placed the replicas from level 0 to level i (with Al-
gorithm 4) and that there exists an optimal solution Ri with these replicas. We further
suppose that for each node v in level i it holds |Ri ∩ t′(v)| = m(t(v)). Let us consider a
node v in level i with children v1, .., vn and we de�ne l := min{k ≥ 0|a(v, k) ∈ Ri}. In
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level 0

level i

level i+1

0

r+

r

v

v1 vj vn

t(v1) t(vj) t(vn)

a(v, l)

Figure 3.5: Induction over levels.

the next step of the algorithm we equip the elements of e(v, l) with a replica. We have
m(t(v)) =

∑
1≤j≤nm(t(vj)) + |e(v, 0)|, i.e., the minimal number of replicas in the subtrees

t′(vj) and the minimal number of replicas on the children of v that have to be placed
to keep the contributed requests on v within W . By de�nition of e(v, l) we have that
|{j ∈ {1, .., n}|vj ∈ Ri}| ≥ |e(v, l)| and we also have |e(v, l)| = |e(v, 0)| as the contribu-
tion C(v, l) is �nite and Ri a solution. For the inequality, there is even equality because
otherwise there would exist a j such that |t′(vj) ∩ Ri| < m(t(vj)), which is impossible.
With this equality, we can replace the children of v that are in Ri by the children of v
that are in e(v, l) creating a solution Ri+1. So Ri+1 is also an optimal solution, because
|Ri| = |Ri+1| (we did not change the nodes of the other levels) and the contribution of
t(v) on a(v, l) has at most decreased. Furthermore for every node v′ at level i+1 we have
|Ri+1 ∩ t′(v′)| = m(t(v′)).

So the last solution Rn that we get in the induction step n is optimal and it corresponds to
the solution that we obtain by our algorithm. �

3.2 Linear Programming Formulation for Replica Placement with

QoS

In this section we describe how to extend the mono-criteria linear programs presented in Sec-
tion 2.2 to Replica Placement with QoS. The core keeps the same, we only need to add
the additional constraints in the objective functions.



3.2. LINEAR PROGRAMMING FORMULATION FOR REPLICA PLACEMENT WITH QOS 45

3.2.1 Extension of the Mono-Criteria Linear Program

Single server

For the single server strategies, Closest and Upwards, we have to add the following constraints
ensuring that QoS claims are respected:

∀i ∈ C,∀j ∈ Ancestors(i), dist(i, j)yi,j ≤ qi,

where dist(i, j) = |path[i → j]|, the number of links needed to reach j from i. As stated
previously, we could take the computational time of a request into account by writing (dist(i, j)+
compj)yi,j ≤ qi, where compj would be the time to process a request on server j.

Multiple servers

In the case of theMultiple policy, the additional constraint for QoS requirements is the following:
QoS:

∀i ∈ C,∀j ∈ Ancestors(i), dist(i, j)yi,j ≤ qiyi,j

Note that it is also possible to further extend the linear programs to bandwidth constraints. In
this case we have to ensure that the bandwidth of any link cannot be exceeded. This can be
expressed as ∀l ∈ L,

∑
i∈C rizi,l ≤ BWl in the single server case, and as ∀l ∈ L,

∑
i∈C zi,l ≤ BWl

for multiple servers.

3.2.2 An Exact MIP-Based Solution for Multiple

In this section we prove that we are able to compute an optimal solution for Replica Place-
ment with QoS for Multiple using a mixed integer version of our linear program (MIP).

Theorem 3.5. The solution of the linear program detailed in Sections 2.2 and 3.2.1, when solved
with all variables being rationals except of the xi, is an achievable bound for the Multiple problem
with QoS constraints, and we can build an exact solution in polynomial time, based on the LP
solution.

Proof. Consider the solution of the LP program:

• ∀i ∈ C, xi ∈ {0, 1}
• ∀i ∈ C, ∀j ∈ N , yi,j ∈ Q
• ∀i ∈ C, ∀l ∈ L, zi,l ∈ Q
To prove that the lower bound obtained by this program is achievable, we are building an

integer solution where y′i,j and z
′
i,l are integer numbers, keeping the same xi and without breaking

any constraints.

In the following, for any variable y, byc is the integer part of y, and ỹ the fractional part:
y = byc+ ỹ, and ỹ < 1.

Let us consider a client i ∈ C such that ∃j ∈ N | ỹi,j > 0, i.e., yi,j is not an integer. We
consider j1 being the closest server to i not serving an integer number of requests of client i,
and more generally jk, k = 1..K the servers on the path from i to the root, such that ỹi,jk > 0.
We want to move bits of requests in order to obtain an integer value for yi,j1 . This elementary
transformation is called trans(i, j1). We consider the two following cases.
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First case: ∑
i′∈subtree(j1)∩C

yi′,j1 ≤Wj1 − (1− ỹi,j1)

In this case, there is enough space at server j1 to ful�ll an integer number of requests from
client i. Since the total number of requests of client i is an integer,

∑K
k=1 ỹi,jk is a non

null integer. Thus,
∑K

k=2 ỹi,jk ≥ 1− ỹi,j1 , and we can move down 1− ỹi,j1 bits of requests
from servers jk, k = 2..K to j1. No constraints will be violated since there is enough space
on the server. The move is done by changing the values of yi,jk and recalculating the zi,l
for l ∈ path[i→ r]. After such a transformation, yi,j1 is an integer variable.

Second case: If server j1 is already too full in order to add a fraction of requests from client i,
we need to exchange some requests with other clients. First, if there is some free space
on the server, we start by �lling completely server j1 with fractions of requests of client i
from servers jk, k = 2..K. We know there are such requests, otherwise yi,j1 would be
an integer. This transformation is similar as the one done in the �rst case. We now have∑

i′∈subtree(j1)∩C yi′,j1 = Wj1 . Let us denote by it, t = 1..T the clients it ∈ subtree(j1)∩C\{i}
such that ỹit,j1 > 0. Since Wj1 is an integer and ỹi,j1 > 0, we have

∑T
t=1 ỹit,j1 ≥ 1− ỹi,j1 ,

and also
∑K

k=2 ỹi,jk ≥ 1− ỹi,j1 . We can select in both sets 1− ỹi,j1 bits of requests which
will be exchanged, i.e., bits of requests from client it initially treated by j1 will be moved
on some servers jk, which are in Ancestors(j1), and the corresponding amount of requests
of i will be moved back on server j1.
In this case, we may break a QoS constraint since it is not sure that clients it can be
served higher than j1 in order to respect their QoS. However, we will see that in the
general transformation process, we prevent such cases to happen. Note that all other
constraints are still ful�lled. but just change the origin of these requests.

Once trans(i, j1) has been done, yi,j1 is an integer, and notice that only non-integer bits of
requests have been moved, so we have not a�ected any integer part of the solution and we have
decreased at least by one the number of non-integer variables in the solution.

Let us detail now the complete transformation algorithm, in order to obtain an integer
solution. Particular attention must be paid to respect the QoS at all time.

for j ∈ N taken in a bottom-up traversal order do
�nish=1;
while (�nish==1) do
C′ = {i′ ∈ C ∩ subtree(j) | ỹi′,j > 0};
if C′ == ∅ then �nish=0; else

i = Mini′∈C′ (qi′ − dist(i′, j));
trans(i, j);

end

end

end

We consider each server in a bottom-up order, so that we are sure that each time we perform
an elementary transformation, the server is the �rst one on the way from the client to the root
having a non integer number of requests. In fact, when transforming server j, each server in
subtree(j) has already been transformed, and thus have no fraction numbers of requests.
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Figure 3.6: Illustration of the transformation algorithm

In order to transform server j, we look at the set C′ of clients having a non-integer number
of requests processed at j. If the set is empty, there is nothing to transform at j. Otherwise, we
perform the elementary transformation with the client i which minimizes (qi′ − dist(i′, j)), for
i′ ∈ C′. This ensures that when we perform an elementary transformation as in the second case
above, the QoS constraint will be respected for all clients it, since we are moving their requests
into servers at distance at most d = qi − dist(i, j) from j, and their own QoS allows them to be
processed at a distance qit − dist(it, j) ≥ d. Figure 3.6 illustrates this phase of the algorithm.

At the end of the while loop, server j is processing only integer numbers of requests, and
thus we will not modify its requests a�ectation any more in the following.

The constraints are all respected at all step of the transformation, and we do not add or
remove any replica, so the solution has exactly the same cost than the initial LP-based solution,
and the transformed solution is fully integer. Moreover, this transformation algorithm works in
polynomial time, in the worst case in |N |+ |C|2 but most of the time it is much faster since the
transformations do not concern all clients simultaneously but only a few of them.

�

3.3 Heuristics for the Replica Placement Problem with QoS Con-

straints

In this section several heuristics including QoS constraints for the Closest , Upwards andMultiple
policies are presented1. As already pointed out, the quality of service is the number of hops
that requests of a client are allowed to traverse until they have to reach their server. All
heuristics described below have polynomial, and even worst-case quadratic, complexity O(s2),
where s = |C|+ |N | is the problem size.

In the following, we denote by inreqQoSj the amount of requests that reach an inner node j
within their QoS constraints, and by inreqj the total amount of requests that reach j (including
requests whose QoS constraints are violated).

1To ensure the reproducibility of our results, the code for all heuristics is available on the web:
http://graal.ens-lyon.fr/~vsonigo/code/replicaQoS/

http://graal.ens-lyon.fr/~vsonigo/code/replicaQoS/
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3.3.1 Closest

Closest Big Subtree First - CBS. Here we traverse the tree in top-down manner. We place a
replica on an inner node j if inreqQoSj ≤Wj . When the condition holds, we do not process any
other subtree of j. If this condition does not hold, we process the subtrees of j in non-increasing
order of inreqj . Once no further replica can be added, we repeat the procedure. We stop when
no new replica is added during a pass.

Closest Small QoS First - CSQoS. This heuristic uses a di�erent approach. We do not
execute a tree traversal. Instead, we sort all clients by non-decreasing order of qi. In case of tie,
clients are sorted by non-increasing order of ri. For each client, we look for the server that can
process its subtree (inreqQoSj ≤Wj) and which is the nearest to the root. If no server is found
for a client, we continue with the next client in the list. Once we reach a client in the list that is
already treated by an earlier chosen server, we delete all treated clients from the to-do list and
restart at the beginning of the remaining client list. The procedure stops either when the list is
empty or when the end of the list is reached.

3.3.2 Upwards

Upwards Small QoS Started Servers First - USQoSS. Clients are sorted by non-decreasing
order of qi (and non-increasing order of ri in case of tie). For each client i in the list we search
for an appropriate server: we take the next server on the way up to the root (i.e., an inner node
that is already equipped with a replica) which has enough remaining capacity to treat all the
client's requests. Of course the QoS-constraints of the client have to be respected. If there is no
server, we take the �rst inner node j that satis�es Wj ≥ ri within the QoS-range and we place
a replica in j. If we still �nd no appropriate node, this heuristic has no feasible solution.

Upwards Small QoS Minimal Requests - USQoSM. This heuristic processes the clients
in the same order as the previous one, but the choice of the appropriate server di�ers. Among
the nodes in the QoS-range of client i, the node j with minimal (Wj− inreqQoSj)-value is chosen
as a server if it can satisfy ri requests. Again it may happen that the heuristic cannot �nd a
feasible solution, whenever no inner node can be found for a client.

Upwards Minimal Distance - UMD. This heuristic requires two steps. In the �rst step,
so-called indispensable servers are chosen, i.e., inner nodes which have a client that must be
treated by this very node. At the beginning, all servers that have a child client with q = 1
will be chosen. This step guarantees that in each loop of the algorithm, we do not forget any
client. The criterion for indispensable servers is the following: for each client check the number
of nodes eligible as servers; if there is only one, this node is indispensable and chosen. The
second step of UMD chooses the inner node with minimal (Wj − inreqQoSj)-value as server (if
inreqQoSj > 0). Note that this value can be negative. Then clients are associated to this server
in order of distance, i.e., clients that are close to the server are chosen �rst, until the server
capacity Wj is reached or no further client can be found.

3.3.3 Multiple

Multiple Small QoS Close Servers First - MSQoSC. The main idea of this heuristic is
the same as for USQoSS, but with two di�erences. Searching for an appropriate server, we take
the �rst inner node on the way up to the root which has some remaining capacity. Note that
this makes the di�erence between close and started servers. If this capacity Wi is not su�cient
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Figure 3.7: Success of small trees with tight QoS constraints, q ∈ {1, 2}.

(client c has more requests, Wi < rc), we choose other inner nodes going upwards to the root
until all requests of the client can be processed (this is possible owing to the multiple-server
relaxation). If we cannot �nd enough inner nodes for a client, this heuristic will not return a
feasible solution.

Multiple Small QoS Minimal Requests - MSQoSM. In this heuristic clients are treated in
non-decreasing order of qi, and the appropriate servers j are chosen by minimal (Wj−inreqQoSj)-
value until all requests of clients can be processed.

Multiple Minimal Requests - MMR. This heuristic is the counterpart of UMD for the
Multiple policy and requires two steps. policy: servers Servers are added in the �indispensable�
step, either when they are the only possible server for a client, or when the total capacity of
all possible inner nodes for a client i is exactly ri. The server chosen in the second step is also
the inner node with minimal (Wj − inreqQoSj)-value, but this time clients are associated in
non-decreasing order of min(qi, d(i, r)), where d(i, r) is the number of hops between i and the
root of the tree. Note that the last client that is associated to a server, might not be processed
entirely by this server.

Mixed Best - MB. This heuristic uni�es all previous ones. For each tree, we select the best cost
returned by the other heuristics. Since each solution for Closest is also a solution for Upwards,
which in turn is a valid solution for Multiple, this heuristic provides a solution for the Multiple
policy.

3.4 Experimental Plan

In this section we evaluate the performance of our heuristics on tree platforms with varying
parameters. Through these experiments we want to assess the di�erent access policies, and the
impact of QoS constraints on the performance of the heuristics. We obtain an optimal solution
for each tree platform with the help of a mixed integer linear program (that we discussed in
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Figure 3.8: Success of big trees with tight QoS constraints, q ∈ {1, 2}.
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Figure 3.9: Success of small trees without QoS constraints, q = height + 1.
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Figure 3.10: Success of big trees without QoS constraints q = height + 1.

Section 3.2). We can compute the latter optimal solution for problem sizes up to 400 nodes and
clients, using GLPK [34].

Our experimental plan is similar to the one for experiments with mono-criteria heuristics in

Section 2.4. Remember the parameter for the load in our tree networks λ =
P
i∈C riP
j∈N Wj

, where

C is the set of clients in the tree and N the set of inner nodes. We tested our heuristics for
λ = 0.1, 0.2, ..., 0.9, each on 30 randomly generated trees of two heights: in a �rst series, trees
have a height between 4 and 7 (small trees). In the second series, tree heights vary between 16
and 21 (big trees). All trees have s nodes, where 15 ≤ s ≤ 400. To assess the impact of QoS
on the performance, we study the behavior (i) when QoS constraints are very tight (q ∈ {1, 2});
(ii) when QoS constraints are more relaxed (the average value is set to half of the tree height
height); and (iii) without any QoS constraint (q = height + 1).

We have computed the number of solutions for each λ and each heuristic. The number of
solutions obtained by the linear program indicates which problems are solvable. Of course we
cannot expect a result with our heuristics for intractable problems. To assess the performance
of our heuristics, we have studied the relative performance of each heuristic compared to the
optimal solution. This allows to compare the cost of the di�erent heuristics, and thus to compare
the di�erent access policies. Recall: For each λ, the cost is computed on those trees for which
the linear program has a solution. Let Tλ be the subset of trees with a LP solution. Then, the
relative performance for the heuristic h is obtained by 1

|Tλ|
∑

t∈Tλ
costLP (t)
costh(t) , where costLP (t) is the

optimal solution cost returned by the linear program on tree t, and costh(t) is the cost involved
by the solution proposed by heuristic h. In order to be fair versus heuristics that have a higher
success rate, we set costh(t) = +∞, if the heuristic did not �nd any solution.

Before we comment on our results in detail, we want to point out, that CBS outperforms
CSQoS in all experiments. That is why we will only consider CBS in the following, when
speaking of the Closest policy.

Figures 3.7 and 3.9 show the percentage of success of each heuristic for small trees, while
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Figure 3.11: Relative performance of small trees with tight QoS constraints, q ∈ {1, 2}.

the percentage of success for big trees is shown in Figures 3.8 and 3.10. A general overview of
all �gures shows that, as expected, the Closest policy has the poorest success rate for all its
heuristics, whereas the Multiple heuristics almost always �nd a solution when the LP �nds one.
In fact, MB and MSQoSC always �nd a solution when the LP does with the exception of the
con�guration (small trees, λ ≥ 0.5, q ∈ {1, 2}). In this case the success rate is slightly inferior.
The Upwards heuristic that �nds the most solutions is UDS, followed by USQoSS. In the case of
no QoS constraints (see Figures 3.9 and 3.10), the Closest heuristics outperform USQoSM and
MSQoSM for small values of λ. In general MSQoSM �nds fewer solutions than other Multiple
heuristics.

Figures 3.11 to 3.14 give an overview2 of our performance tests. The comparison between
Figure 3.11 and 3.13 shows the impact of QoS on the performance. The impact of the tree
sizes can be seen by comparing Figure 3.12 and 3.14. Globally, all the results show that QoS
constraints do not modify the relative performance of the three policies: with or without QoS,
Multiple is better than Upwards, which in turn is better than Closest , and their di�erence in
performance is not sensitive to QoS tightness or to tree sizes. This is an enjoyable result, that
could not be predicted a priori. The MB heuristic returns very good results, being relatively
close to the optimal in most cases. The best heuristic to use depends on the tightness of QoS
constraints. Thus, for Multiple, MSQoSM is the best choice for tight QoS constraints and small
λ (Figure 3.11).

Altogether we conclude, when QoS is very restricting and λ small, that MSQoSM is the best
choice. When QoS is less constrained, MMR is the best for λ up to 0.4. For big λ, MSQoSC is
to prefer, since it never performs poorly in this case. In the case of less restricting QoS values,
we choose MMR for λ up to 0.4 and then MSQoSC. Generally, when λ is high, MSQoSC never
performs poorly. Concerning the Upwards policy, USQoSS behaves the best for tight QoS, in
the other cases UMD achieves better results.

2The complete set of results can be found on the Web at
http://graal.ens-lyon.fr/~vsonigo/code/replicaQoS/

http://graal.ens-lyon.fr/~vsonigo/code/replicaQoS/
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Figure 3.12: Relative performance of small trees with medium QoS constraints, q = height/2.
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Figure 3.13: Relative performance of small trees without QoS constraints, q = height + 1.
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Figure 3.14: Relative performance of big trees with medium QoS constraints, q = height/2.
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Chapter 4

Problem De�nition

This part deals with another mapping problem, namely the mapping of work�ow applications
onto heterogeneous platforms. Instead of mapping replicas onto a tree network we concentrate
in this part on linear pipeline graph applications. As is well known, mapping applications
onto parallel platforms is a di�cult challenge. Several scheduling and load-balancing techniques
have been developed for homogeneous architectures (see [63] for a survey) but the advent of
heterogeneous clusters has rendered the mapping problem even more di�cult. Typically, such
clusters are composed of di�erent-speed processors interconnected either by plain Ethernet (the
low-end version) or by a high-speed switch (the high-end counterpart), and they constitute the
experimental platform of choice in most academic or industry research departments. Moreover,
in a distributed computing architecture, some processors may suddenly become unavailable, and
we are facing the problem of failure [3, 6].

In this context of heterogeneous platforms, a structured programming approach rules out
many of the problems which the low-level parallel application developer is usually confronted
to, such as deadlocks or process starvation. Moreover, many real applications draw from a
range of well-known solution paradigms, such as pipelined or farmed computations. High-level
approaches based on algorithmic skeletons [23, 57] identify such patterns and seek to make it
easy for an application developer to tailor such a paradigm to a speci�c problem. A library
of skeletons is provided to the programmer, who can rely on these already coded patterns to
express the communication scheme within its own application. Moreover, the use of a particular
skeleton carries with it considerable information about implied scheduling dependencies, which
we believe can help address the complex problem of mapping a distributed application onto a
heterogeneous platform.

In this part, we consider application work�ows that can be expressed as pipeline graphs.
Typical applications include digital image processing, where images have to be processed in
steady-state mode. A well known pipeline application of this type is for example JPEG encoding
(see http://www.jpeg.org/). In such work�ow applications, a series of data sets (tasks) enter the
input stage and progress from stage to stage until the �nal result is computed. Each stage has
its own communication and computation requirements: it reads an input �le from the previous
stage, processes the data and outputs a result to the next stage. For each data set, initial data
is input to the �rst stage, and �nal results are output from the last stage. The pipeline work�ow
operates in synchronous mode: after some latency due to the initialization delay, a new task is
completed every period. The period is de�ned as the longest cycle-time to operate a stage.

Each processor has a failure probability, which expresses the chance that the processor fails
during execution. Key metrics for a given work�ow are the throughput, the latency, and the
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failure probability. The throughput measures the aggregate rate of processing of data, and it is
the rate at which data sets can enter the system. Equivalently, the inverse of the throughput,
de�ned as the period, is the time interval required between the beginning of the execution of
two consecutive data sets. The latency is the time elapsed between the beginning and the end
of the execution of a given data set, hence it measures the response time of the system to
process the data set entirely. Note that it may well be the case that di�erent data sets have
di�erent latencies (because they are mapped onto di�erent processor sets), hence the latency is
de�ned as the maximum response time over all data sets. Intuitively, we minimize the latency
by assigning all stages to the fastest processor, but this may lead to an unreliable execution of
the application. Minimizing the latency is antagonistic to minimizing the period as well it is
antagonistic to minimizing the failure probability, and trade-o�s should be found between these
criteria. We focus on several bi-criteria approaches:

(i) minimizing the latency under period constraints, or the converse.
(ii) minimizing the failure probability under latency constraints, or the converse.

The problem of mapping pipeline skeletons onto parallel platforms has received some atten-
tion, and we survey related work in Section 4.3. We target heterogeneous clusters, and aim at
deriving optimal mappings for the following bi-criteria objective functions: (i) mappings which
minimize the period for a �xed maximum latency, or which minimize the latency for a �xed
maximum period; (ii) mappings which minimize the failure probability for a �xed maximum
latency, or which minimize the latency for a �xed maximum failure probability. We require the
mapping to be interval-based, i.e., a processor is assigned an interval of consecutive stages.

Each pipeline stage can be seen as a sequential procedure which may perform disc accesses
or write data in the memory for each task. This data may be reused from one task to another,
and thus the rule of the game is always to process the tasks in a sequential order within a stage.
Moreover, due to the possible local memory accesses, a given stage must be mapped onto a single
processor: we cannot process half of the tasks on a processor and the remaining tasks on another
without exchanging intra-stage information, which might be costly and di�cult to implement.
However, in order to improve reliability, we can replicate the computations for a given stage on
several processors, i.e., a set of processors performs identical computations on every data set.
Thus, in case of failure, we can take the result from a processor which is still working. In other
words, a processor that is assigned a stage will execute the operations required by this stage
(input, computation and output) for all the tasks fed into the pipeline. Note that replication of
computations is only allowed in order to improve reliability.

The optimization problem can be stated informally as follows: which stage to assign to which
(set of) processors?

This part is organized as follows: Chapter 4 introduces the framework (Section 4.1) and gives
some motivating examples (Section 4.2). Related work is subject of Section 4.3. Chapter 5 is
devoted to our complexity results. In Chapter 6 we present several polynomial time heuristics
for the latency-period approach that are exhaustively tested in a case study.

4.1 Framework

4.1.1 Applicative Framework

The application is expressed as a pipeline graph of n stages Sk, 1 ≤ k ≤ n, as illustrated on
Figure 4.1. Consecutive data sets are fed into the pipeline and processed from stage to stage,



4.1. FRAMEWORK 59

until they exit the pipeline after the last stage. Each stage executes a task. More precisely, the
k-th stage Sk receives an input from the previous stage, of size δk−1, performs a number of wk
computations, and outputs data of size δk to the next stage. This operation corresponds to the
k-th task and is repeated periodically on each data set. The �rst stage S1 receives an input
of size δ0 from the outside world, while the last stage Sn returns the result, of size δn, to the
outside world.

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

Figure 4.1: The application pipeline.

4.1.2 Target Platform

We target a platform (see Figure 4.2), with p processors Pu, 1 ≤ u ≤ p, fully interconnected as
a (virtual) clique.

We associate to each processor a failure probability 0 ≤ fpu ≤ 1, 1 ≤ u ≤ p, which is the
probability that the processor breaks down during the execution of the application. A set of
processors with identical failure probabilities is denoted Failure Homogeneous and otherwise
Failure Heterogeneous. We consider a constant failure probability as we are dealing with work-
�ows. These work�ows are meant to run during a very long time, and therefore we address the
question of whether the processor will break down or not at any time during execution. Indeed
the maximum latency will be determined by the latency of the datasets which are processed
after the failure.

There is a bidirectional link linku,v : Pu → Pv between any processor pair Pu and Pv, of
bandwidth bu,v. Note that we do not need to have a physical link between any processor pair.
Instead, we may have a switch, or even a path composed of several physical links, to interconnect
Pu and Pv; in the latter case we would retain the bandwidth of the slowest link in the path for
the value of bu,v.

sin

su

Pin soutPout

sv

bu,v
Pu Pv

bin,u
bv,out

Figure 4.2: The target platform.
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The speed of processor Pu is denoted as su, and it takes X/su time-units for Pu to execute X
�oating point operations. We also enforce a linear cost model for communications, hence it takes
X/b time-units to send (resp. receive) a message of size X to (resp. from) Pv. Communications
contention is taken care of by enforcing the one-port model [14]. In this model, a given processor
can be involved in a single communication at any time-step, either a send or a receive. However,
independent communications between distinct processor pairs can take place simultaneously.
The one-port model seems to �t the performance of some current MPI implementations, which
serialize asynchronous MPI sends as soon as message sizes exceed a few megabytes [59].

We consider three types of platforms:

• Fully Homogeneous platforms have identical processors (su = s for 1 ≤ u ≤ p) and inter-
connection links (bu,v = b for 1 ≤ u, v ≤ p);

• Communication Homogeneous platforms, with identical links but di�erent speed proces-
sors, introduce a �rst degree of heterogeneity;

• Fully Heterogeneous platforms constitute the most di�cult instance, with di�erent speed
processors and di�erent capacity links.

Finally, we assume that two special additional processors Pin and Pout are devoted to in-
put/output data. Initially, the input data for each task resides on Pin, while all results must be
returned to and stored in Pout.

4.1.3 Mapping Problem

The general mapping problem consists in assigning application stages to platform processors.
For the sake of simplicity, we can assume that each stage Sk of the application pipeline is
mapped onto a distinct processor (which is possible only if n ≤ p). However, such one-to-one
mappings may be unduly restrictive, and a natural extension is to search for interval mappings,
i.e., allocation functions where each participating processor is assigned an interval of consecutive
stages. Intuitively, assigning several consecutive tasks to the same processors will increase their
computational load, but may well dramatically decrease communication requirements. In fact,
the best interval mapping may turn out to be a one-to-one mapping, or instead may enroll only
a very small number of fast computing processors interconnected by high-speed links.

Interval mappings constitute a natural and useful generalization of one-to-one mappings (not
to speak of situations where p < n, where interval mappings are mandatory), and such mappings
have been studied by Subhlock et al. [66, 67].

Formally, we search for a partition of [1..n] intom ≤ p intervals Ij = [dj , ej ] such that dj ≤ ej
for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for 1 ≤ j ≤ m− 1 and ep = n.

The function alloc(j) returns the indices of the processors on which interval Ij is mapped.
There are kj = |alloc(j)| processors executing Ij , and obviously kj ≥ 1. Increasing kj increases
the reliability of the execution of interval Ij . We assume that alloc(0) = {in} and alloc(p+ 1) =
{out}, where Pin is a special processor holding the initial data, and Pout is receiving the results.

Period

Dealing with Fully Homogeneous and Communication Homogeneous platforms, the period can
be expressed as

P = max
1≤j≤m

{
δdj−1

b
+

∑ej
i=dj

wi

salloc(j)
+
δej
b

}
(4.1)
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On Fully Heterogeneous platforms we have to take into account the heterogeneous commu-
nication links. This leads to

P = max
1≤j≤m

{
δdj−1

bu,v
+

∑ej
i=dj

wi

salloc(j)
+
δej
bu,v

}

Note that we do not take failure probabilities into account, when we deal with period opti-
mization. Hence we have no replication of intervals here and each stage is only mapped onto a
single processor.

Reliability

The failure probability can be computed given the numberm of intervals and the set of processors
assigned to each interval:

FP = 1−
∏

1≤j≤m
(1−

∏
u∈alloc(j)

fpu). (4.2)

Latency

Dealing with Fully Homogeneous and Communication Homogeneous platforms, the latency is
obtained as

L =
∑

1≤j≤m

{
kj ×

δdj−1

b
+

∑ej

i=dj
wi

minu∈alloc(j)(su)

}
+
δn

b
. (4.3)

In equation (4.3), we consider the longest path required to compute a given data set. The
worst case is when the �rst processors involved in the replication fail during execution. A
communication to interval j must then be paid kj times since these are serialized (one-port
model). For computations, we consider the total computation time required by the slowest
processor assigned to the interval. For the �nal output, only one communication is required,
hence the δn/b. Note that in order to achieve this latency, we need a standard consensus protocol
to determine which of the surviving processors performs the outgoing communications [70].

A similar mechanism is used for Fully Heterogeneous platforms:

L =
∑

u∈alloc(1)

δ0
bin,u

+

∑
1≤j≤m

max
u∈alloc(j)


∑ej

i=dj
wi

su
+

∑
v∈alloc(j+1)

δej

bu,v


(4.4)

Remark that we have kj = 1, 1 ≤ j ≤ m, when we abstract from failures, in particular in
combination with period optimization.

Optimization problems

The optimization problem is to determine the best mapping, over all possible partitions into
intervals, and over all processor assignments. The objective can be to minimize either the
period, the latency or the failure probability, or a combination. We deal with the following
combinations:
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• Given a threshold period, what is the minimum latency that can be achieved? And the
counterpart: Given a threshold latency, what is the minimum period that can be achieved?
• Given a threshold latency, what is the minimum failure probability that can be achieved?
Similarly, given a threshold failure probability, what is the minimum latency that can be
achieved?

4.2 Motivating Examples

Before presenting complexity results in Chapter 5, we want to make the reader more sensitive
to the di�culty of the problem via some motivating examples.

We start with the mono-criterion interval mapping problem of minimizing the latency. For
Fully Homogeneous and Communication Homogeneous platforms the optimal latency is achieved
by assigning the whole pipeline to the fastest processor. This is due to the fact that mapping
the whole pipeline onto one single processor minimizes the communication cost since all commu-
nication links have the same characteristics. Choosing the fastest processor on Communication
Homogeneous platforms ensures the shortest processing time.

However, this line of reasoning does not hold anymore when communications become het-
erogeneous. Let us consider for instance the mapping of the pipeline of Figure 4.3 on the Fully
Heterogeneous platform of Figure 4.4. The pipeline consists of two stages, both needing the same
amount of computation (w = 2), and the same amount of communications (δ = 100). In this
example, a mapping which minimizes the latency must map each stage on a di�erent processor,
thus splitting the stages into two intervals. In fact, if we map the whole pipeline on a single
processor, we achieve a latency of 100/100 + (2 + 2)/1 + 100/1 = 105, either if we choose P1

or P2 as target processor. Splitting the pipeline and hence mapping the �rst stage on P1 and
the second stage on P2 requires to pay the communication between P1 and P2 but drastically
decreases the latency: 100/100 + 2/1 + 100/100 + 2/1 + 100/100 = 1 + 2 + 1 + 2 + 1 = 7.

100 100

w2 = 2w1 = 2

100
S1 S2

Figure 4.3: Example optimal with 2 intervals.

100

1

1

100

100

s1 = 1

s2 = 1

Pin

P1

Pout

P2

Figure 4.4: The pipeline has to be split into intervals to achieve an optimal latency on this
platform.

Unfortunately these intuitions cannot be generalized when tackling bi-criteria optimization,
where latency should be minimized respecting a certain failure threshold or the converse. We
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will prove in Lemma 5.1 that minimizing the failure probability under a �xed latency threshold
on Fully Homogeneous and Communication Homogeneous-Failure Homogeneous platforms still
can be done by keeping a single interval.

However, if we consider Communication Homogeneous-Failure Heterogeneous, we can �nd
examples in which this property is not true. Consider for instance the pipeline of Figure 4.5.
The target platform consists of one processor of speed 1 and failure probability 0.1, it is a slow
but reliable processor. On the other hand we have 10 fast and unreliable processors, of speed 100
and failure probability 0.8. All communication links have a bandwidth b = 1. If the latency
threshold is �xed to 22, the slow processor cannot be used in the replication scheme. Also, if
we use three fast processors, the latency is 3 ∗ 10 + 101/100 > 22. Thus the best one-interval
solution reaches a failure probability of (1 − (1 − 0.82)) = 0.64, which is very high. We can
do much better by using the slow processor on the slow stage, and then replicate ten times the
second stage on the fast processors, achieving a latency of 10 + 1/1 + 10 ∗ 1 + 100/100 = 22 and
a failure probability of 1− (1−0.1).(1−0.810) < 0.2. Thus the optimal solution does not consist
of a single interval in this case.

S2S1

w1 = 1 w2 = 100

10 1 0

Figure 4.5: Example optimal with 2 intervals.

4.3 Related Work

This work is an extension of the work of Subhlock and Vondran [66, 67] for pipeline applica-
tions on homogeneous platforms. We have extended their complexity results to heterogeneous
platforms.

Several papers consider the problem of mapping communicating tasks onto heterogeneous
platforms, but for a di�erent applicative framework. In [69], Taura and Chien consider applica-
tions composed of several copies of the same task graph, expressed as a DAG (directed acyclic
graph). These copies are to be executed in pipeline fashion. Taura and Chien also restrict to
mapping all instances of a given task type (which corresponds to a stage in our framework)
onto the same processor. Their problem is shown NP-complete, and they provide an iterative
heuristic to determine a good mapping. At each step, the heuristic re�nes the current clustering
of the DAG. Beaumont et al. [9] consider the same problem as Taura and Chien, i.e., with a
general DAG, but they allow a given task type to be mapped onto several processors, each exe-
cuting a fraction of the total number of tasks. The problem remains NP-complete, but becomes
polynomial for special classes of DAGs, such as series-parallel graphs. For such graphs, it is
possible to determine the optimal mapping owing to an approach based upon a linear program-
ming formulation. Due to complex mapping rules, the approach of [9] can only achieve optimal
throughput through very long periods: hence the simplicity and regularity of the schedule are
lost, while the latency is severely increased. On the contrary, the simpler mapping rules used in
this work allow for better period/latency trade-o�s.

Another important series of papers comes from the DataCutter project [27]. One goal of this
project is to schedule multiple data analysis operations onto clusters and grids, decide where
to place and/or replicate various components [12, 13, 64]. A typical application is a chain
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of consecutive �ltering operations, to be executed on a very large data set. The task graphs
targeted by DataCutter are more general than linear pipelines or forks, but still more regular
than arbitrary DAGs, which makes it possible to design e�cient heuristics to solve the previous
placement and replication optimization problems.

A recent paper [72] targets generalized work�ows structured as arbitrary DAGs, and considers
an instance of the bi-criteria optimization problem where the latency is optimized under a �xed
throughput constraint. Only completely homogeneous platforms are considered in [72]. It would
be very interesting (but also very challenging) to extend the heuristics of [72] to heterogeneous
frameworks, and to compare them with the heuristics that we speci�cally designed for pipeline
work�ows.

In the context of embedded systems, energy consumption is another important objective to
minimize. Three-criteria optimization (energy, latency and throughput) is discussed in [77].

The former related works dealt mostly with generalized applications which assume synthetic
workload and application pipelines. In our case-study (Chapter 6) we apply the bi-criteria
mapping problem to a concrete application pipeline in digital image encoding, the JPEG encoder.
In this domain, parallelization strategies have been considered beforehand, but the pipelined
nature of the applications has not been fully exploited yet.

Many authors, started from the blockwise independent processing of the JPEG encoder in
order to apply simple data parallelism for e�cient parallelization. This �ne-grain parallelization
opportunity is for instance exploited in [29, 62]. In addition, parallelization of almost all stages,
from color space conversion, over DCT to the Hu�man encoding has been addressed [4, 44].
Recently, with respect to the JPEG2000 codec, e�cient parallelization of wavelet coding has been
introduced [49]. All these works target the best speed-up with respect to di�erent architectures
and possible varying load situations. Optimizing the period and the latency is an important
issue when encoding a pipeline of multiple images, as for instance for Motion JPEG (M-JPEG).
To meet these issues, one has to solve in addition to the above mentioned work a bi-criteria
optimization problem, i.e., optimize the latency, as well as the period. The application of
coarse grain parallelism seems to be a promising solution. We propose to use an interval-
based mapping strategy allowing multiple stages to be mapped to one processor which allows
meeting the most �exible the domain constraints (even for very large pictures). Several pipelined
versions of the JPEG encoding have been considered. They rely mainly on pixel or block-
wise parallelization [30, 53]. For instance, Ferretti et al. [30] uses three pipelines to carry out
concurrently the encoding on independent pixels extracted from the serial stream of incoming
data. The pixel and block-based approach is however useful for small pictures only. Recently,
Sheel et al. [61] consider a pipeline architecture where each stage presents a step in the JPEG
encoding. The targeted architecture consists of Xtensa LX processors which run subprograms
of the JPEG encoder program. Each program accepts data via the queues of the processor,
performs the necessary computation, and �nally pushes it to the output queue into the next
stage of the pipeline. The basic assumptions are similar to our work, however no optimization
problem is considered and only runtime (latency) measurements are available. The schedule is
static and set according to basic assumptions about the image processing, e.g., that the DCT is
the most complex operation in runtime.



Chapter 5

Complexity Results

Dealing with mono-criterion optimization, we state that the di�culty of optimization highly de-
pends on the optimization parameter. Minimizing the latency or the failure probability is trivial,
while minimizing the period is NP-hard as soon as heterogeneity occurs. Quite interestingly,
this last result is a consequence of the fact that the natural extension of the chains-to-chains
problem [55] to di�erent-speed processors is NP-hard.

Minimizing bi-criteria problems is a lot harder. While we can still provide optimal polynomial-
time algorithms on homogeneous platforms, on heterogeneous platforms all problems are NP-
complete.

In the following we �rst concentrate on the mapping problems with mono-criteria optimiza-
tion and then pass to bi-criteria optimization.

5.1 Mono-criteria Problems

Table 5.1 gives an overview of the complexity of the di�erent instances of the mono-criteria
optimization problems.

5.1.1 Failure Probability

The problem of minimizing the failure probability can easily be solved for all types of platforms.

Theorem 5.1. Minimizing the failure probability can be done in polynomial time.

Proof. This can be seen easily from the formula computing the global failure probability: the
minimum is reached by replicating the whole pipeline as a single interval on all processors. This
is true for all platform types. �

Objective Fully Homogeneous Communication Homogeneous Fully Heterogeneous

P polynomial [66] NP-hard[10] NP-hard
L polynomial polynomial NP-hard [11]
FP polynomial polynomial polynomial

Table 5.1: Complexity results for the mono-criteria optimization problems.

65
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5.1.2 Latency

The problem of minimizing the latency is trivially of polynomial time complexity for Fully Ho-
mogeneous and Communication Homogeneous platforms. However the problem becomes harder
for Fully Heterogeneous platforms because of the �rst and last communications, which should be
mapped on fast communicating links to optimize the latency. Notice that replication can only
decrease latency so we do not consider any replication in this mono-criterion problem. However,
we need to �nd the best partition of stages into intervals.

Theorem 5.2. Minimizing the latency can be done in polynomial time on Communication Ho-
mogeneous platforms.

Proof. The latency is optimized when we suppress all communications. Also, replication is
increasing latency by adding extra communications. The minimum latency can be achieved by
mapping the whole interval onto the fastest processor j, resulting in the latency (

∑n
i=1 wi) /sj .

If a slower processor is involved in the mapping, the latency increases, following equation (4.3),
since part of the computations will take longer, and communications may occur.

�

In [11], Benoit et al. prove that minimizing the latency on Fully Heterogeneous platforms
is NP-hard. We provide two further results for the latency minimization problem for linear
pipeline graphs. First, if we relax the interval constraint, i.e., a set of non-consecutive stages can
be assigned to a same processor, then the problem becomes polynomial. We call such mappings
general mappings. Second, considering one-to-one mappings, where each stage is mapped onto
a di�erent processor, the problem is NP-hard.

Theorem 5.3. Minimizing the latency is polynomial on Fully Heterogeneous platforms for gen-
eral mappings.

Proof. We consider Fully Heterogeneous platforms and we want to minimize the latency.
Let us consider a directed graph with n.m+2 vertices, and (n−1)m2+2m edges, as illustrated

in Figure 5.1. Vi,u corresponds to the mapping of stage Si onto processor Pu. V0,in and V(n+1),out

represent the initial and �nal processors, and data must �ow from V0,in to V(n+1),out. Edges
represent the �ow of data from one stage to another, thus we have m2 edges for i = 0..n,
connecting vertex Vi,u to Vi+1,v for u, v = 1..m (except for the �rst and last stages where there
are only m edges).

V1,1 V2,1

e1,1,1

V0,in

e0,in,1

en,1,out
...

...

.
.
.

.
.
.

.
.
.

V1,2

V1,m

Vn+1,out

Vn,1

Vn,2

Vn,m

V2,1

V2,m

e0,in,m

e2,u,v en−1,u,v

Figure 5.1: Minimizing the latency.

Thus, a general mapping can be represented by a path from V0,in to V(n+1),out: if Vi,u is in the
path then stage Si is mapped onto Pu. Notice that a path can create intervals of non-consecutive
stages, thus this mapping is not interval-based.
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We assign weights to the edges to ensure that the weight of a path is the latency of the
corresponding mapping. Computation cost of stage Si on Pu is added on the m edges exiting
Vi,u, and thus ei,u,v = wi

su
. Communication costs are added on all edges: ei,u,v+ = δi

bu,v
if Pu 6= Pv.

Edges ei,u,u correspond to intra-interval communications, and thus there is no communication
cost to pay.

The mapping which realizes the minimum latency can be obtained by �nding a shortest path
in this graph going from V0,in to V(n+1),out. The graph has polynomial size and the shortest path
can be computed in polynomial time [25], thus we have the result in polynomial time, which
concludes the proof.

�

Now assuming the simplest mappings, where each stage Sk of the application pipeline is
mapped onto a distinct processor (which is possible only if n ≤ p), we obtain the following
result:

Theorem 5.4. Minimizing the latency is NP-hard on Fully Heterogeneous platforms for one-
to-one mappings.

Proof. The problem clearly belongs to NP. We use a reduction from the Traveling Salesman
Problem (TSP), which is NP-complete [32]. Consider an arbitrary instance I1 of TSP, i.e., a
complete graph G = (V,E, c), where c(e) is the cost of edge e, a source vertex s ∈ V , a tail
vertex t ∈ V , and a bound K: is there an Hamiltonian path in G from s to t whose cost is not
greater than K?

We build the following instance I2 of the one-to-one latency minimization problem: we
consider an application with n = |V | identical stages. All application costs are unit costs:
wi = δi for all i. For the platform, in addition to Pin and Pout we use m = n = |V | identical
processors of unit speed: si = 1 for all i. We simply write i for the processor Pi that corresponds
to vertex vi ∈ V .

We only play with the link bandwidths: we interconnect Pin and s, Pout and t with links
of bandwidth 1. We interconnect i and j with a link of bandwidth 1

c(ei,j)
. All the other links

are very slow (say their bandwidth is smaller than 1
K+n+3). We ask whether we can achieve a

latency L ≤ K ′, where K ′ = K + n+ 2. Clearly, the size of I2 is linear in the size of I1.

Because we have as many processors as stages, any solution to I2 will use all processors. We
need to map the �rst stage on s and the last one on t, otherwise the input/output cost already
exceeds K ′. We spend 2 time-units for input/output, and n time-units for computing (one unit
per stage/processor). There remain exactly K time-units for inter-processor communications,
i.e., for the total cost of the Hamiltonian path that goes from s to t. We cannot use any slow
link either. Hence we have a solution for I2 if and only if we have one for I1. �

5.1.3 Period

Minimizing the period on Fully Homogeneous platforms can be done in polynomial time [66].
As we learned before, the failure probability can be minimized easily for all types of platforms
and minimizing the latency can be done in polynomial time for Communication Homogeneous
platforms. However, it is not so easy to minimize the period on Communication Homogeneous
platforms, and in [10] Benoit and Robert prove that this problem is NP-hard.
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Objective Failure Fully Homogeneous Communication Homogeneous Fully Heterogeneous

P & L / polynomial [67] NP-hard NP-hard

FP & L hom. polynomial polynomial NP-hard
FP & L het. polynomial open NP-hard

Table 5.2: Complexity results for the di�erent instances of bi-criteria optimization

5.2 Bi-criteria Optimization

We give an overview of the complexity results for bi-criteria mapping problems in Table 5.2. As
already pointed out, we either consider period-latency optimization problems or the combination
of latency and failure probability.

5.2.1 Period and Latency

In [67], Subhlock et al. prove polynomiality of the bi-criteria mapping with period and latency
constraints on Fully Homogeneous platforms. Since the period minimization problem is NP-
hard for Communication Homogeneous platforms, all bi-criteria problems on Communication
Homogeneous or Fully Heterogeneous platforms are NP-hard.

5.2.2 Latency and Failure Probability

Preliminary Lemma

We start with a preliminary lemma which proves that there is an optimal solution of both
bi-criteria problems for latency and failure probability consisting of a single interval for Fully
Homogeneous platforms, and for Communication Homogeneous platforms with identical failure
probabilities.

Lemma 5.1. On Fully Homogeneous and Communication Homogeneous-Failure Homogeneous
platforms, there is a mapping of the pipeline as a single interval which minimizes the failure
probability under a �xed latency threshold, and there is a mapping of the pipeline as a single
interval which minimizes the latency under a �xed failure probability threshold.

Proof. If the stages are split into p intervals, the failure probability is expressed as

1−
∏

1≤j≤p
(1−

∏
u∈alloc(j)

fpu).

Let us start with the Fully Homogeneous case, and with Failure Heterogeneous for a most
general setting. We can transform the solution into a new one using a single interval, which
improves both latency and failure probability. Let k0 be the number of times that the �rst
interval is replicated in the original solution. Then a solution which replicates the whole interval
on the k0 most reliable processors realizes: (i) a latency which is smaller since we remove the
communications between intervals; (ii) a smaller failure probability since for the new solution
(1−

∏
u∈alloc(1) fpu) is greater than the same expression in the original solution (the most reliable

processors are used in the new one), and moreover the old solution even decreases this value by
multiplying it by other terms smaller than 1. Thus the new solution is better for both criteria.

In the case with Communication Homogeneous and Failure Homogeneous, we use a similar
reasoning to transform the solution. We select the interval with the fewest number of processors,
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denoted k. In the failure probability expression, there is a term in (1− fpk), and thus the global
failure probability is greater than 1−(1− fpk) which is obtained by replicating the whole interval
onto k processors. Since we do not want to increase the latency, we use the fastest k processors,
and it is easy to check that this scheme cannot increase latency (k ≤ k0 and the slowest processor
is not slower than the slowest processor of any intervals of the initial solution). Thus the new
solution is better for both criteria, which ends the proof.

We point out that Lemma 5.1 cannot be extended to Communication Homogeneous and
Failure Heterogeneous: instead, we can build counter examples in which this property is not
true, as illustrated in Section 4.2.

�

Fully Homogeneous Platforms

For Fully Homogeneous platforms, we consider that all failure probabilities are identical, since the
platform is made of identical processors. However, results can easily be extended for di�erent
failure probabilities. We have seen in Lemma 5.1 that the optimal solution for a bi-criteria
mapping on such platforms always consists in mapping the whole pipeline as a single interval.
Otherwise, both latency and failure probability would be increased.

Theorem 5.5. On Fully Homogeneous platforms, the solution to the bi-criteria problem of
minimizing latency and failure probability can be found in polynomial time using Algorithm 5 or
Algorithm 6.

Informally, the algorithms �nd the maximum number of processors k that can be used in
the replication set, and the whole interval is mapped on a set of k identical processors. With
di�erent failure probabilities, the more reliable processors are used.

Algorithm 5: Fully Homogeneous platforms: Minimizing FP for a �xed L
begin

Find k maximum, such that

k × δ0

b
+

∑
1≤j≤n wj

s
+
δn
b
≤ L

Replicate the whole pipeline as a single interval onto the k (most reliable) processors;
end

Algorithm 6: Fully Homogeneous platforms: Minimizing L for a �xed FP
begin

Find k minimum, such that
1− (1− fpk) ≤ FP

Replicate the whole pipeline as a single interval onto the k (most reliable) processors;
end

Proof. The proof of this theorem is based on Lemma 5.1. We prove it in the general setting of
heterogeneous failure probabilities. An optimal solution can be obtained by mapping the pipeline
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as a single interval, thus we need to decide the set of processors alloc used for replication. |alloc|
is the number of processors used.

The �rst problem can be formally expressed as follows:

Minimize 1− (1−
∏
u∈alloc fpu),

under the constraint
(5.1)

|alloc|δ0

b
+

∑
1≤i≤n wi

s
+
δn
b
≤ L

This leads to minimize
∏
u∈alloc fpu, and the constraint on the latency determines the maxi-

mum number k of processors which can be used:

k =
⌊
b

δ0

(
L − δn

b
−
∑

1≤i≤n wi

s

)⌋
In order to minimize

∏
u∈alloc fpu, we need to use as many processors as possible since fpu ≤ 1

for 1 ≤ u ≤ m.

If one of the most reliable processors is not used, we can exchange it with a less reliable one,
and thus increase the value of the product, so the formula is minimized when using the k most
reliable processors, which is represented in Algorithm 5.

The second problem is expressed below:

Minimize |alloc| δ0
b

+
P

1≤i≤n wi
s

+ δn
b
,

under the constraint
(5.2)

1− (1−
∏

u∈alloc
fpu) ≤ FP

Latency increases when |alloc| is large, thus we need to �nd the smallest number of processors
which satis�es constraint (4). As before, if one of the most reliable processors is not used, we
can exchange it and improve the reliability without increasing the latency, which might lead to
add fewer processors to the replication set for an identical reliability. Algorithm 6 thus returns
the optimal solution.

�

Remark Both algorithms (5 and 6) are optimal as well in the case of heterogeneous failure
probabilities. We add the most reliable processors to the replication scheme (thus increasing
latency and decreasing the failure probability) while L or FP are not reached.

Communication Homogeneous Platforms

For Communication Homogeneous platforms, we �rst consider the simpler case where all failure
probabilities are identical, denoted by Failure Homogeneous. In this case, the optimal bi-criteria
solution still consists of the mapping of the pipeline as a single interval.

Theorem 5.6. On Communication Homogeneous platforms with Failure Homogeneous, the so-
lution to the bi-criteria problem of minimizing latency and failure probability can be found in
polynomial time using Algorithm 7 or 8.
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Algorithm 7: Communication Homogeneous platforms - Failure Homogeneous: Minimiz-
ing FP for a �xed L
begin

Order processors in non-increasing order of sj ;
Find k maximum, such that

k × δ0

b
+

∑
1≤j≤n wj

sk
+
δn
b
≤ L

Replicate the whole pipeline as a single interval onto the fastest k processors;
// Note that at any time sk is the speed of
// the slowest processor used
// in the replication scheme.

end

Algorithm 8: Communication Homogeneous platforms - Failure Homogeneous: Minimiz-
ing L for a �xed FP
begin

Find k minimum, such that
1− (1− fpk) ≤ FP

Replicate the whole pipeline as a single interval onto the fastest k processors;
end

Informally, we add the fastest processors to the replication set while the latency is not
exceeded (or until FP is reached), thus reducing the failure probability and increasing the
latency.

Proof. In this particular setting, Lemma 5.1 still applies, so we restrict to mappings as a single
interval, and search for the optimal set of processors alloc which should be used.

The �rst problem is expressed as:

Minimize 1− (1− fp|alloc|),
under the constraint

(5.3)

|alloc|δ0

b
+

∑
1≤i≤n wi

minu∈alloc su
+
δn
b
≤ L

The failure probability is smaller when |alloc| is large, thus we need to add as many processors
as we can while satisfying the constraint. The latency increases when adding more processors,
and it depends of the speed of the slowest processors. Thus, if the |alloc| fastest processors
are not used, we can exchange a fastest processor with a used one without increasing latency.
Algorithm 7 thus returns an optimal mapping.

The other problem is similar, with the following expression:

Minimize |alloc| δ0
b

+
P

1≤i≤n wi
minu∈alloc su

+ δn
b
,

under the constraint
(5.4)
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1− (1− fp|alloc|) ≤ FP

We can thus �nd the smallest number of processors that should be used in order to satisfy
FP, and then use the fastest processors to optimize latency, which is done by Algorithm 8.

�

However, the problem is more complex when we consider di�erent failure probabilities (Fail-
ure Heterogeneous). It is also more natural since we have di�erent processors and there is no
reason why they would have the same failure probability. Unfortunately for Failure Hetero-
geneous, we can exhibit for some problem instances an optimal solution in which the pipeline
stages must be divided in several intervals. The complexity of the problem remains open, but
we conjecture it is NP-hard.

Fully Heterogeneous Platforms

For Fully Heterogeneous platforms the bi-criteria problem with latency and failure probability
constraints is NP-hard since the minimizing the latency on this kind of platform is already
NP-hard (see Section 5.1.2).

5.3 Linear Program Formulation
We present here an integer linear program to compute the optimal interval-based bi-criteria
mapping on Fully Heterogeneous platforms, respecting either a �xed latency or a �xed period.
We consider a framework of n stages and p processors, plus two �ctitious extra stages S0 and
Sn+1 respectively assigned to Pin and Pout. First we need to de�ne a few variables.

• For k ∈ [0..n+1] and u ∈ [1..p]∪{in, out}, xk,u is a boolean variable equal to 1 if stage Sk is
assigned to processor Pu; we let x0,in = xn+1,out = 1, and xk,in = xk,out = 0 for 1 ≤ k ≤ n.

• For k ∈ [0..n], u, v ∈ [1..p] ∪ {in, out} with u 6= v, zk,u,v is a boolean variable equal to 1
if stage Sk is assigned to Pu and stage Sk+1 is assigned to Pv: hence linku,v : Pu → Pv is
used for the communication between these two stages.

• If k 6= 0 then zk,in,v = 0 for all v 6= in and if k 6= n then zk,u,out = 0 for all u 6= out.

• For k ∈ [0..n] and u ∈ [1..p] ∪ {in, out}, yk,u is a boolean variable equal to 1 if stages Sk
and Sk+1 are both assigned to Pu; we let yk,in = yk,out = 0 for all k, and y0,u = yn,u = 0
for all u.

• For u ∈ [1..p], �rst(u) is an integer variable which denotes the �rst stage assigned to Pu;
similarly, last(u) denotes the last stage assigned to Pu. Thus Pu is assigned the interval
[�rst(u), last(u)]. Of course 1 ≤ �rst(u) ≤ last(u) ≤ n.

• Topt is the variable to optimize, so depending on the objective function it corresponds
either to the period or to the latency.

We list below the constraints that need to be enforced. For simplicity, we write
∑

u instead
of
∑

u∈[1..p]∪{in,out} when summing over all processors.

• First there are constraints for processor and link usage: every stage is assigned a processor,
i.e., ∀k ∈ [0..n+ 1],

∑
u xk,u = 1.
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• Every communication either is assigned a link or collapses because both stages are assigned
to the same processor: ∀k ∈ [0..n],

∑
u6=v zk,u,v +

∑
u yk,u = 1.

• If stage Sk is assigned to Pu and stage Sk+1 to Pv, then linku,v : Pu → Pv is used for this
communication: ∀k ∈ [0..n],∀u, v ∈ [1..p] ∪ {in, out}, u 6= v, xk,u + xk+1,v ≤ 1 + zk,u,v.

• If both stages Sk and Sk+1 are assigned to Pu, then yk,u = 1: ∀k ∈ [0..n],∀u ∈ [1..p] ∪
{in, out}, xk,u + xk+1,u ≤ 1 + yk,u.

• If stage Sk is assigned to Pu, then necessarily �rstu ≤ k ≤ lastu. We write this constraint
as: ∀k ∈ [1..n], ∀u ∈ [1..p], �rstu ≤ k.xk,u+n.(1−xk,u) and ∀k ∈ [1..n],∀u ∈ [1..p], lastu ≥
k.xk,u.

• Furthermore, if stage Sk is assigned to Pu and stage Sk+1 is assigned to Pv 6= Pu (i.e.,
zk,u,v = 1) then necessarily lastu ≤ k and �rstv ≥ k + 1 since we consider intervals. We
write this constraint as: ∀k ∈ [1..n−1], ∀u, v ∈ [1..p], u 6= v, lastu ≤ k.zk,u,v+n.(1−zk,u,v)
and ∀k ∈ [1..n− 1], ∀u, v ∈ [1..p], u 6= v, �rstv ≥ (k + 1).zk,u,v.

The latency of the schedule is bounded by L:

p∑
u=1

n∑
k=1

∑
t6=u

commk−1

bt,u
zk−1,t,u

+
wk

su
xk,u

+

 ∑
u∈[1..p]∪{in}

commn

bu,out
zn,u,out

 ≤ L
and t ∈ [1..p] ∪ {in, out}.

There remains to express the period of each processor and to constrain it by P: ∀u ∈ [1..p],

n∑
k=1


∑
t6=u

commk−1

bt,u
zk−1,t,u

+
wk

su
xk,u +

∑
v 6=u

commk

bu,v
zk,u,v

 ≤ P.
Finally, the objective function is either to minimize the period P respecting the �xed latency

L or to minimize the latency L with a �xed period P. So in the �rst case we �x L and set
Topt = P. In the second case P is �xed a priori and Topt = L. With this mechanism the
objective function reduces to minimizing Topt in both cases.
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Chapter 6

Case Study: Mapping the JPEG Encoder

Pipeline onto a Cluster of Workstations

In this chapter we study the mapping of a particular pipeline application: we focus on the
JPEG encoder (baseline process, basic mode). This image processing application transforms
numerical pictures from any format into a standardized format called JPEG. This standard was
developed almost 20 years ago to create a portable format for the compression of still images
and new versions are created until now (see http://www.jpeg.org/). Meanwhile, several parallel
algorithms have been proposed [50]. JPEG (and later JPEG 2000) is used for encoding still
images in Motion-JPEG (later MJ2). These standards are commonly employed in IP-cams and
are part of many video applications in the world of game consoles. Motion-JPEG (M-JPEG) has
been adopted and further developed to several other formats, e.g., AMV (alternatively known as
MTV) which is a proprietary video �le format designed to be consumed on low-resource devices.
The manner of encoding in M-JPEG and subsequent formats leads to a �ow of still image coding,
hence pipeline mapping is appropriate.

We consider the di�erent steps of the encoder as a linear pipeline of stages, where each stage
gets some input, has to perform several computations and transfers the output to the next stage.
The corresponding mapping problem can be stated informally as follows: which stage to assign
to which processor? We require the mapping to be interval-based, i.e., a processor is assigned
an interval of consecutive stages. Two key optimization parameters emerge. On the one hand,
we target a high throughput, or short period, in order to be able to handle as many images
as possible per time unit. On the other hand, we aim at a short response time, or latency, for
the processing of each image. These two criteria are antagonistic: intuitively, we obtain a high
throughput with many processors to share the work, while we get a small latency by mapping
many stages to the same processor in order to avoid the cost of inter-stage communications.

Compressed

Image Data

Source

Image Data
Scaling

YUV

Conversion

Block

Storage

Subsampling

FDCT Quantizer

Quantization

Table

Entropy

Encoder

Hu�man

Table

Figure 6.1: Steps of the JPEG encoding.
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6.1 Principles of JPEG Encoding

Here we brie�y present the mode of operation of a JPEG encoder (see [73] for further details).
The encoder consists in seven pipeline stages, as shown in Fig. 6.1. In the �rst stage, the image
is scaled to have a multiple of an 8x8 pixel matrix, and the standard even claims a multiple of
16x16. In the next stage a color space conversion is performed from the RGB to the YUV-color
model. The sub-sampling stage is an optional stage, which, depending on the sampling rate,
reduces the data volume: as the human eye can distinguish luminosity more easily than color, the
chrominance components are sampled more rarely than the luminance components. Admittedly,
this leads to a loss of data. The last preparation step consists in the creation and storage of
so-called MCUs (Minimum Coded Units), which correspond to 8x8 pixel blocks in the picture.
The next stage is the core of the encoder. It performs a Fast Discrete Cosine Transformation
(FDCT) (eg. [75]) on the 8x8 pixel blocks which are interpreted as a discrete signal of 64 values.
After the transformation, every point in the matrix is represented as a linear combination of
the 64 points. The quantizer reduces the image information to the important parts. Depending
on the quantization factor and quantization matrix, irrelevant frequencies are reduced. Thereby
quantization errors can occur, that are remarkable as quantization noise or block generation in
the encoded image. The last stage is the entropy encoder, which performs a modi�ed Hu�man
coding.

6.2 Heuristics

In this section several polynomial heuristics for Communication Homogeneous platforms are
presented. We restrict to such platforms because clusters made of di�erent-speed processors
interconnected by either plain Ethernet or a high-speed switch constitute the typical experi-
mental platforms in most academic or industry research departments. Moreover, this bi-criteria
problem is already NP-hard because of the period minimization problem. Note that it would
be much more di�cult to design e�cient heuristics for Fully Heterogeneous platforms since the
latency minimization problem also becomes NP-hard. In fact, it would become hard to predict
the latency of a mapping before the mapping is entirely known.

In the following, we denote by n the number of stages, and by p the number of processors.
Note that the code for all these heuristics can be found on the Web1.

6.2.1 Minimizing Latency for a Fixed Period

In the �rst set of heuristics, the period is �xed a priori, and we aim at minimizing the latency
while respecting the prescribed period. All the following heuristics sort processors by non-
increasing speed, and start by assigning all the stages to the �rst (fastest) processor in the list.
This processor becomes used.

• P1 2-Split mono: 2-Splitting mono-criterion � At each step, we select the used
processor j with the largest period and we try to split its stage interval, giving some stages
to the next fastest processor j′ in the list (not yet used). This can be done by splitting the
interval at any place, and either placing the �rst part of the interval on j and the remainder
on j′, or the other way round. The solution which minimizes max(period(j), period(j′)) is

1http://graal.ens-lyon.fr/~vsonigo/code/multicriteria/

http://graal.ens-lyon.fr/~vsonigo/code/multicriteria/
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chosen if it is better than the original solution. Splitting is performed as long as we have
not reached the �xed period or until we cannot improve the period anymore.

• P2 3-Split mono: 3-Splitting mono-criterion � At each step we select the used
processor j with the largest period and we split its interval into three parts. For this
purpose we try to map two parts of the interval on the next pair of fastest processors
in the list, j′ and j′′, and to keep the third part on processor j. Testing all possible
permutations and all possible positions where to cut, we choose the solution that minimizes
max(period(j), period(j′), period(j′′)).

• P3 3-Split bi: 3-Splitting bi-criteria � In this heuristic the choice of where to split is
more elaborated: it depends not only of the period improvement, but also of the latency
increase. Using the same splitting mechanism as in P2 3-Split mono, we select the
solution that minimizes maxi∈{j,j′,j′′}(

∆latency
∆period(i)). Here ∆latency denotes the di�erence

between the global latency of the solution before the split and after the split. In the same
manner ∆period(i) de�nes the di�erence between the period before the split (achieved by
processor j) and the new period of processor i.

6.2.2 Minimizing Period for a Fixed Latency

In this second set of heuristics, latency is �xed, and we try to achieve a minimum period while
respecting the latency constraint. As in the heuristics described above, �rst of all we sort
processors according to their speed and map all stages on the fastest processor. The approach
used here is the converse of the heuristics where we �x the period, as we start with an optimal
solution concerning latency. Indeed, at each step we downgrade the solution with respect to its
latency but improve it regarding its period.

• L1 2-Split mono: 2-Splitting mono-criterion � This heuristic uses the same method
as P1 2-Split mono, with a di�erent break condition. Here splitting is performed as
long as we do not exceed the �xed latency, still choosing the solution that minimizes
max(period(j), period(j′)).

• L2 2-Split bi: 2-Splitting bi-criteria � This variant of the splitting heuristic works
similarly to L1 2-Split mono, but at each step it chooses the solution which minimizes
maxi∈{j,j′}(

∆latency
∆period(i)) while the �xed latency is not exceeded.

6.3 Experimental Results

In this section we present a performance evaluation of our polynomial heuristics. Section 6.3.1
evaluates the heuristics in a general context, i.e., using randomly generated work�ow appli-
cations. Then Section 6.3.2 is dedicated to the evaluation of our heuristics for a real world
application, namely the JPEG encoder application pipeline.

6.3.1 General Experiments

Several general experiments have been conducted in order to assess the performance of the
heuristics described in Section 6.2. First we describe the experimental setting, then we report
the results, and �nally we provide a summary.
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Experimental Setting

We have generated a set of random applications with n ∈ {5, 10, 20, 40} stages and a set of
random Communication Homogeneous platforms with p = 10 or p = 100 processors. In all the
experiments, we �x b = 10 for the link bandwidths. Moreover, the speed of each processor
is randomly chosen as an integer between 1 and 20. We keep the latter range of variation
throughout the experiments, while we vary the range of the application parameters from one
set of simulations to the other. Indeed, although there are four categories of parameters to play
with, i.e., the values of comm, w, s and b, we can see from equations (4.1) and (4.3) that only the
relative ratios comm

b
and w

s
have an impact on the performance. Each experimental value reported

in the following has been calculated as an average over 50 randomly chosen application/platform
pairs. For each of these pairs, we report the performance of the six heuristics described in
Section 6.2.

We report four sets of experiments conducted both for p = 10 and p = 100 processors. For
each experiment, we vary some key application/platform parameter to assess the impact of this
parameter on the performance of the heuristics. The �rst two experiments deal with applications
where communications and computations have the same order of magnitude, and we study the
impact of the degree of heterogeneity of the communications, i.e., of the variation range of the
comm parameter:

• (E1): balanced communication/computation, and homogeneous communica-
tions. In the �rst set of experiments, the application communications are homogeneous,
we �x commi = 10 for i = 0..n. The computation time required by each stage is randomly
chosen between 1 and 20. Thus, communications and computations are balanced within
the application.

• (E2): balanced communications/computations, and heterogeneous communi-
cations. In the second set of experiments, the application communications are heteroge-
neous, chosen randomly between 1 and 100. Similarly to Experiment 1, the computation
time required by each stage is randomly chosen between 1 and 20. Thus, communications
and computations are still relatively balanced within the application.

The last two experiments deal with imbalanced applications: the third experiment assumes
large computations (large value of the w to comm ratio), and the fourth one reports results for
small ones (small value of the w to comm ratio):

• (E3): large computations. In this experiment, the applications are much more de-
manding on computations than on communications, making communications negligible
with respect to computation requirements. We choose the communication time between 1
and 20, while the computation time of each application is chosen between 10 and 1000.

• (E4): small computations. The last experiment is the opposite to Experiment 3 since
computations are now negligible compared to communications. The communication time
is still chosen between 1 and 20, but the computation time is now chosen between 0.01
and 10.

Results

Results for the entire set of experiments can be found on the Web at
http://graal.ens-lyon.fr/~vsonigo/code/multicriteria/.

In the following we only present the most signi�cant plots.

http://graal.ens-lyon.fr/~vsonigo/code/multicriteria/
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Figure 6.2: p = 10 - (E1) Balanced communications/computations, and homogeneous commu-
nications. 10 stages.

For each heuristic with a �xed period, we compute for a set of periods the resulting latency,
and we plot the latency as a function of the period. If a small period is chosen, the heuristic
may fail to �nd a feasible solution. In this case, there is no corresponding point in the plot and
the largest value of such period is reported in the failure thresholds table (see Table 6.1).

Similarly, the values of resulting period obtained for the heuristics with a �xed latency are
plotted, reporting the period as a function of the latency. In this case, the heuristic may fail to
�nd a solution if the �xed latency is too small, and latency thresholds are detailed in Table 6.1.

This way, both categories of heuristics can be plotted into the same �gure for a given exper-
imental setup, and all heuristics can be compared one to each other.

With p = 10 processors

For (E1) we see that all heuristics follow the same curve shape. they achieve small period times
at the price of long latencies and then seem to converge to a somewhat shorter latency. We
observe that the simplest splitting heuristics perform very well: P1 2-Split mono and L1 2-
Split mono achieve the best period, and P1 2-Split mono has the lower latency. L2 2-Split
bi performs poorly in comparison. P2 3-Split mono and L2 2-Split bi cannot keep up with
the other heuristics (but the latter achieves better results than the former). In the middle range
of period values, P3 3-Split bi achieves comparable latency values with those of P1 2-Split
mono.

For (E2), we see that P1 2-Split mono outperforms the other heuristics almost everywhere
with the following exception: with 40 stages and a large �xed period, P3 3-Split bi obtains
the better results. The period times of P1 2-Split mono and P3 3-Split bi are the best. We
observe that the competitiveness of P3 3-Split bi increases with the increase of the number of
stages. L1 2-Split mono achieves period values just as small as P1 2-Split mono but the
corresponding latency is higher and once again it performs better than its bi-criteria counterpart
L2 2-Split bi. The poorest results are obtained by P2 3-Split mono.
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Figure 6.7: p = 10 - (E3) Large computations. 20 stages.

The results of (E3) are much more scattered than in the other experiments (E1, E2 and E4)
and this di�erence even increases with rising n. When n = 5, the results of the di�erent heuristics
are almost parallel so that we can state the following hierarchy: P1 2-Split mono, P3 3-Split
bi, L1 2-Split mono, L2 2-Split bi and �nally P2 3-Split mono. P1 2-Split mono and P3
3-Split bi achieve very good results concerning period durations. On the contrary, P2 3-Split
mono exploses its period and latency times. P3 3-Split bi loses its second position for small
period times compared to L1 2-Split mono, but when period times are higher it recovers its
position in the hierarchy.

In (E4), P2 3-Split mono performs the poorest. Nevertheless the gap is smaller than in
(E3) and for high period times and n ≥ 20, its latency is comparable to those of the other
heuristics. For n ≥ 20, P3 3-Split bi achieves for the �rst time the best results. When n = 5,
L2 2-Split bi achieves the best latency, but the period values are not competitive with P1
2-Split mono and L1 2-Split mono, which obtain the smallest periods (for slightly higher
latency times).

In Table 6.1 the failure thresholds of the di�erent heuristics are shown. We denote by
failure threshold the largest value of the �xed period or latency for which the heuristic was not
able to �nd a solution. We state that P1 2-Split mono has the smallest failure thresholds
whereas P2 3-Split mono has the highest values. Surprisingly the failure thresholds (for
�xed latencies) of the heuristics L1 2-Split mono and L2 2-Split bi are the same, but their
performance di�ers enormously as stated in the di�erent experiments.

With p = 100 processors

Many results are similar with p = 10 and p = 100 processors, thus we only report the main
di�erences. In particular, the failure thresholds table is not included since it displays similar
results.

First we observe that both periods and latencies are lower with the increasing number of
processors. This is easy to explain, as all heuristics always choose fastest processors �rst, and
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Table 6.1: Failure thresholds with p = 10.
Exp. Heur. Number of stages Exp. Heur. Number of stages

5 10 20 40 5 10 20 40

E1 P1 3.0 3.3 5.0 5.0 E3 P1 50.0 70.0 100.0 250.0
P2 3.0 4.0 5.0 5.0 P2 50.0 90.0 250.0 400.0
P3 3.3 3.3 6.0 10.0 P3 100.0 140.0 300.0 650.0

L1 4.5 6.0 13.0 25.0 L1 140.0 270.0 500.0 1000.0
L2 4.5 6.0 13.0 25.0 L2 140.0 270.0 500.0 1000.0

E2 P1 9.7 10.0 11.0 11.0 E4 P1 2.2 2.3 2.3 2.3
P2 10.0 10.0 11.0 11.0 P2 2.4 2.7 3.0 4.0
P3 11.3 11.0 13.0 15.0 P3 2.8 2.7 3.0 4.0

L1 11.7 15.0 22.0 32.0 L1 3.0 4.0 7.0 11.0
L2 11.7 15.0 22.0 32.0 L2 3.0 4.0 7.0 11.0
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Figure 6.10: (E1) Extension to 100 processors, balanced communications/computations. 40
stages, hom. comms.

there is much more choice with p = 100. All heuristics keep their general behavior, i.e., their
curve characteristics. But the relative performance of some heuristics changes dramatically. The
results of P2 3-Split mono are much better, and we do get adequate latency times (compare
Figures 6.3 and 6.10). Furthermore the multi-criteria heuristics turn out to be much more
performing. An interesting example can be seen in Figure 6.11: all multi-criteria heuristics
outperform their mono-criterion counterparts, even L2 2-Split bi, which never had a better
performance than L1 2-Split mono when p = 10.

In the case of imbalanced communications/computations, we observe that all heuristics
achieve almost the same results (see Figure 6.12.) The performance of P3 3-Split bi de-
pends on the number of stages. In general, P1 2-Split mono is better than P3 when n ≤ 10,
but for n ≥ 20, P3 owns the second position after L2 2-Split bi and even performs best in the
con�guration small computations, n = 40 (see Figure 6.13).
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Comparison to the LP solution

In order to assess the absolute performance of our heuristics, we compared their solution to
the optimal solution returned by the linear program of Section 5.3. We took the 500 set of
parameters considered in (E2) with 40 stages, and set up a time limit to one hour to solve each
problem instance with the LP solver. Within this time limit, 94 instances (out of 500) were
solved for a �xed period, and only 8 for a �xed latency.

Comparing the solution returned by the heuristics to the optimal solution for those cases for
which we obtained results, the conclusion is that the 2-Split heuristic with �xed period (P1
behaves best, being on average at less than 5% of the optimal. In many cases, these heuristics
return the optimal solution, and otherwise their solution is close to the optimal. The 3-Split
heuristics (P2 and P3) are slightly behind, with 6%, thus still very competitive.

For L1 2-Split mono and L2 2-Split bi, we could not produce statistics because of the
low number of solved instances, but we found the optimal solution in 5 of the 8 cases. In the
three remaining cases, however, heuristic results are further from the optimal, leading to periods
up to 60% away from the optimal solution. The detailed values of the LP and the heuristics can
be found on the Web2.

Summary

Overall we conclude that the performance of bi-criteria heuristics versus mono-criterion heuristics
highly depends on the number of available processors. For a small number of processors, the
simple splitting technique which is used in P1 2-Split mono and L1 2-Split mono is very
competitive as it almost always minimizes the period with acceptable latency values. The bi-
criteria splitting L2 2-Split bi does not provide convincing results, and both 3-Split heuristics
do not achieve the expected performance. However, when increasing the number of available

2http://graal.ens-lyon.fr/~vsonigo/code/multicriteria/

http://graal.ens-lyon.fr/~vsonigo/code/multicriteria/
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Figure 6.14: LP solutions strongly depend on �xed initial parameters.

processors, we observe a signi�cant improvement of the behavior of bi-criteria heuristics. L2 2-
Split bi turns out to outperform the mono-criterion version. Finally, both 3-Splitting heuristics
perform much better and P3 3-Split bi �nds its slot.

To conclude, we point out that in most of the cases for which we are able to compute the
optimal solution thanks to the linear program, our heuristics are very close to this optimal
solution (or even returning the optimal), in particular for the heuristics with a �xed period.
Heuristics with a �xed latency are slightly further from the optimal. Note that this is a very
promising result, given that running all heuristics for all parameters takes less than one minute,
while the LP solver does not succeed to �nd the solution within one hour for most problem
instances.

6.3.2 Experiments and Simulations for the JPEG encoder

In the following experiments, we study the mapping of the JPEG application onto clusters of
workstations.

In�uence of �xed parameters

In the �rst test series, we examine the in�uence of �xed parameters on the solution of the linear
program. As shown in Figure 6.14, the division into intervals is highly dependant of the chosen
�xed value. The optimal solution to minimize the latency (without any additional constraints)
obviously consists in mapping the whole application pipeline onto the fastest processor. As
expected, if the period �xed in the linear program is not smaller than the latter optimal mono-
criterion latency, this solution is chosen. Decreasing the value for the �xed period imposes to
split the stages among several processors, until no more solution can be found.

Figure 6.14(a) shows the division into intervals for a �xed period. A �xed period of P = 330
is su�ciently high for the whole pipeline to be mapped onto the fastest processor, whereas
smaller periods lead to splitting into intervals. We would like to mention that for a period �xed
to 300, there exists no solution anymore. The counterpart (with �xed latency) can be found
in Figure 6.14(b). Note that the �rst two solutions �nd the same period, but for a di�erent
latency. The �rst solution has a high value for latency, which allows more splits, hence larger
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Figure 6.15: Bucket behavior of LP solutions.
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Figure 6.16: Behavior of the heuristics (comparing to LP solution). Fixed P = 310.

communication costs. Comparing the last lines of Figure 6.14(a) and (b), we state that both
solutions are the same, and we have P = L. Finally, expanding the range of the �xed values, a
sort of bucket behavior becomes apparent: Increasing the �xed parameter has in a �rst time no
in�uence, the LP still �nds the same solution until the increase crosses an unknown bound and
the LP can �nd a better solution. This phenomenon is shown in Figure 6.15.

Assessing heuristic performance

The comparison of the solution returned by the LP program, in terms of optimal latency re-
specting a �xed period (or the converse) with the heuristics is shown in Figures 6.16 and 6.17.
The implementation is fed with the parameters of the JPEG encoding pipeline and computes
the mapping on 10 randomly created platforms with 10 processors. On platforms 3 and 5, no
valid solution can be found for the �xed period.

We point out that all solutions, LP and heuristics, always keep the stages 4 to 7 together
(see Figure 6.14 for an example). As stage 5 (DCT) is the most costly in terms of computation,
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Figure 6.17: Behavior of the heuristics (comparing to LP solution). Fixed L = 370.

the interval containing these stages is responsible for the period of the whole application. Finally,
in the comparative study P1 2-Split mono always �nds the optimal latency for a �xed period
and we therefore recommend this heuristic for latency optimization. In the case of period
minimization for a �xed latency, then L1 2-Split mono is to use, as it always �nds the LP
solution in the experiments. This is a striking result, especially given the fact that the LP
integer program may require a long time to compute the solution (up to 11389 seconds in
our experiments), while the heuristics always complete in less than a second, and �nd the
corresponding optimal solution.

MPI simulations on a cluster

This last experiment performs a JPEG encoding simulation. All simulations are made on a
cluster of homogeneous Optiplex GX 745 machines with an Intel Core 2 Duo 6300 of 1,83Ghz.
Heterogeneity is enforced by increasing and decreasing the number of operations a processor has
to execute. The same holds for bandwidth capacities. For simplicity we use a MPI program
whose stages have the same communication and computation parameters as the JPEG encoder,
but we do not encode real images (hence the name simulation, although we use an actual
implementation with MPICH).

In this experiment the same random platforms with 10 processors and �xed parameters as
in the theoretical experiments are used. We measured the latency of the simulation, even for
the heuristics of �xed latency, and computed the average over all random platforms. Figure 6.18
compares the average of the theoretical results of the heuristics to the average simulative per-
formance, and the simulative behavior nicely mirrors the theoretical behavior.

Summary

We conclude that the general behavior of the heuristics in the special case of the JPEG encoder
pipeline mainly re�ects the observations made in the general case. The 2-Split technique seems
to be a very powerful mechanism for bi-criteria optimization with a small number of processors,
and always returns the optimal solution for the JPEG encoder.
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Chapter 7

Introduction

This part deals with a third mapping problem, which can be viewed as a combination of the pre-
vious two problems. We consider the execution of applications structured as trees of operators,
where the leaves of the tree correspond to basic data objects that are distributed over servers in
a distributed network. Each internal node in the tree denotes the aggregation and combination
of the data from its children, which in turn generates new data that is used by the node's parent.
The computation is complete when all operators have been applied up to the root node, thereby
producing a �nal result. We consider the scenario in which the basic data objects are constantly
being updated, meaning that the tree of operators must be applied continuously. The goal is
to produce �nal results at some desired rate. This problem is called stream processing [7] and
arises in several domains.

An important domain of application is the acquisition and re�nement of data from a set
of sensors [65, 48, 15]. For instance, [65] outlines a video surveillance application in which the
sensors are cameras located at di�erent locations over a geographical area. The goal of the
application could be to identify monitored areas in which there is signi�cant motion between
frames, particular lighting conditions, and correlations between the monitored areas. This can
be achieved by applying several operators (e.g., �lters, pattern recognition) to the raw images,
which are produced/updated periodically. Another example arises in the area of network moni-
toring [26, 71, 24]. In this case routers produce streams of data pertaining to forwarded packets.
More generally, stream processing can be seen as the execution of one of more �continuous
queries� in the relational database sense of the term (e.g., a tree of join and select operators).
A continuous query is applied continuously, i.e., at a reasonably fast rate, and returns results
based on recent data generated by the data streams. Many authors have studied the execution
of continuous queries on data streams [8, 45, 18, 56, 43].

In practice, the execution of the operators must be distributed over the network. In some
cases the servers that produce the basic objects may not have the computational capability to
apply all operators. Besides, objects must be combined across devices, thus requiring network
communication. Although a simple solution is to send all basic objects to a central compute
server, it often proves unscalable due to network bottlenecks. Also, this central server may
not be able to meet the desired target rate for producing results due to the sheer amount of
computation involved. The alternative is then to distribute the execution by mapping each
node in the operator tree to one or more servers in the network, including servers that produce
and update basic objects and/or servers that are only used for applying operators. One then
talks of in-network stream-processing. Several in-network stream-processing systems have been
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developed [2, 21, 37, 20, 51, 71, 19, 47]. These systems all face the same question: where should
operators be mapped in the network?

The operator-mapping problem for in-network stream processing was studied in [65, 54, 5].
Most relevant to our work is the recent work of Pietzuch et al. [54], in which the problem is
studied for an ad-hoc objective function that trades o� application delay and network bandwidth
consumption.

In Chapter 8 we study a more general objective function for a single application. We enforce
the constraint that the rate at which �nal results are produced, or throughput, is above a given
threshold. This corresponds to a Quality of Service (QoS) requirement, which is almost always
desirable in practice (e.g., up-to-date results of continuous queries must be available at a given
frequency). Basic objects may be replicated at multiple locations, i.e., available and updated at
these locations. In terms of the computing platform we consider a �constructive� scenario: either
the user can build the platform from scratch using o�-the-shelf components, or computing and
network units are rented by a cloud provider (e.g. [1]). Our goal is to construct a distributed
network dedicated to the given application, which minimizes the monetary cost while ensuring
that the desired throughput is achieved.

In Chapter 9 we address the operator-mapping problem for multiple concurrent in-network
stream-processing applications. Instead of one single application, as in Chapter 8, we focus on
multiple concurrent applications that contend for the servers. In this case each application has
its own QoS requirement and the goal is to meet them all. A clear opportunity for higher
performance with a reduced resource consumption is to reuse common sub-expression between
operator trees when applications share basic objects [52]. Furthermore we study the problem in
a �non-constructive� scenario, i.e., we are given a set of compute and network elements, and we
attempt to use as few resources as possible while meeting QoS requirements. We restrict our
study to trees of operators that are general binary trees and discuss relevant special cases (e.g.,
left-deep trees [38]). We consider target platforms that are either fully homogeneous, or with a
homogeneous network but heterogeneous servers, or fully heterogeneous.



Chapter 8

In-Network Stream Processing

In this chapter we consider the operator mapping problem for in-network stream processing of
single applications. Our aim is to provide the user a set of processors that should be bought
or rented in order to ensure that the application achieves a minimum steady-state throughput,
and with the objective of minimizing platform cost.

Our contributions are as follows: (i) we formalize the operator-placement problem; (ii) we
establish complexity results (all problems turn out to be NP-complete); (iii) we propose several
polynomial heuristics; (iv) we compare heuristics through extended simulations, and assess their
absolute performance.

8.1 Models

8.1.1 Application Model

We consider an application that can be represented as a set of operators N = {n1, n2, . . .}
arranged as a binary tree, as shown in Figure 9.1. Operations are initially performed on basic
objects, which are made available and continuously updated at given locations in a distributed
network. We denote the set of basic objects, which are leaves of the tree, by OB = {ob1, ob2, . . .}.
Several leaves may correspond to the same object, as illustrated in the �gure. Internal nodes
represent operator computations. For an operator ni we de�ne Leaf (i) as the index set of the
basic objects needed for the computation of ni, if any, Child(i) as the index set of the node's
children in N , if any, and Parent(i) as the index of the node's parent in N , if it exists. We have
the constraint that |Leaf (i)|+ |Child(i)| ≤ 2 because the tree is binary. All functions above are
extended to sets of nodes: f(I) = ∪i∈If(i), where I is an index set and f is Leaf , Child or
Parent . If |Leaf (i)| ≥ 1, then operator ni needs at least one basic object for its computation.
We call such an operator an al-operator (for �almost leaf�).

The application must be executed so that it produces �nal results, where each result is
generated by executing the whole operator tree once, at a target rate. We call this rate the
application throughput. Each operator ni ∈ N must compute (intermediate) results at a rate at
least as high as the target application throughput. Conceptually, a server executing an operator
consists of two concurrent threads that run in steady-state. One thread periodically downloads
the most recent copies of the basic objects corresponding to the operator's leaf children, if any.
For our example tree in Figure 8.1(a), n1 needs to download ob1 and ob2 while n2 downloads
only ob1 and n5 does not download any basic object. Note that these downloads may simply
amount to constant streaming of data from sources that generate data streams. Each download
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Figure 8.1: Examples of applications structured as a binary tree of operators.

has a prescribed cost in terms of bandwidth based on application QoS requirements (e.g., so that
computations are performed using su�ciently up-to-date data). A basic object obk has a size δk
(in bytes) and needs to be downloaded by the processors that use it with frequency fk. Therefore,
these basic object downloads consume an amount of bandwidth equal to ratek = δk × fk on
each network link and network card through which the object is communicated. Another thread
receives data from the operator's non-leaf children, if any, and performs some computation using
downloaded basic objects and/or data received from other operators. The operator produces
some output that needs to be passed to its parent operator. The computation of operator ni (to
evaluate the operator once) requires wi operations, and produces an output of size δi.

8.1.2 Platform Model

The target distributed network is a fully connected graph interconnecting a set of resources
R = P ∪ S, where P denotes compute servers, or processors for short, and S denotes data
servers, or servers for short. Servers hold and update basic objects, while processors apply
operators of the application tree. Each server Sl ∈ S (resp. processor Pu ∈ P) is interconnected
to the network via a network card with maximum bandwidth Bsl (resp. Bpu). We assume that
the same interconnect technology is used to connect all processors, and thus the link between
two distinct processors Pu and Pv is bidirectional and has bandwidth bp, while the network link
from a server Sl to a processor Pu has bandwidth bsl; on such links the server sends data and the
processor receives it. In addition, each processor Pu ∈ P is characterized by a compute speed
su. We denote the case in which all processors are homogeneous because only one type of CPUs
and network cards can be acquired (Bpu = Bp and su = s) Constr-Hom. Correspondingly,
we term the case in which the processors are heterogeneous with various compute speeds and
network card bandwidth Constr-LAN.

Resources operate under the full-overlap, bounded multi-port model [36], where a resource
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can be involved in computing, sending data, and receiving data simultaneously. In this model,
a resource Ru can be involved in computing, sending data, and receiving data simultaneously.
Note that servers only send data, while processors engage in all three activities. A resource R,
which is either a server or a processor, can be connected to multiple network links (since we
assume a clique network). The �multi-port� assumption states that resource R can send/receive
data simultaneously on multiple network links. The �bounded� assumption states that the total
transfer rate of data sent/received by resource R is bounded by its network card bandwidth.

8.1.3 Mapping Model and Constraints

Our objective is to purchase/rent a set of processors, and then to map operators, i.e., internal
nodes of the application tree, onto these processors. Additionally, if a tree node has at least
one leaf child, then it must continuously download up-to-date basic objects from the �xed set of
servers, which consumes bandwidth on its processor's network card. Each processor is in charge
of one or several operators. For each operator on processor Pu, while Pu computes for the t-th
�nal result, it sends to its parent (if any) the data corresponding to intermediate results for the
(t− 1)-th �nal result. It also receives data from its non-leaf children (if any) for computing the
(t + 1)-th �nal result. Recall that all three activities are concurrent. We assume that a basic
object can be replicated, in some out-of-band manner speci�c to the target application (e.g.,
via a distributed database infrastructure). In this case, a processor can choose among multiple
data sources when downloading a basic object. Conversely, if two operators require the same
basic object and are mapped to di�erent processors, they must both continuously download that
object (and incur the corresponding network overheads).

We denote the mapping of the operators in N onto the processors in P using an allocation
function a: a(i) = u if operator ni is assigned to processor Pu. Conversely, ā(u) is the index set
of operators mapped on Pu: ā(u) = {i | a(i) = u}. We also introduce new notations to describe
the location of basic objects. Processor Pu may need to download some basic objects from
some servers. We use DL(u) to denote the set of (k, l) couples where processor Pu downloads
object obk from server Sl. Each processor has to communicate and compute fast enough to
achieve the application throughput ρ. A communication occurs only when a child or the parent
of a given tree node and this node are mapped on di�erent processors. We have the following
constraints:

• Each processor Pu cannot exceed its computation capability:

∀Pu ∈ P,
∑
i∈ā(u)

ρ · wi
su
≤ 1 (8.1)

• Pu must have enough bandwidth capacity to perform all its basic object downloads and all
communication with other processors. The �rst term corresponds to basic object downloads, the
second term corresponds to inter-node communications when a tree node is assigned to Pu and
some of its children nodes are assigned to another processor, and the third term corresponds to
inter-node communications when a tree node is assigned to Pu and its parent node is assigned
to another processor:

∀Pu ∈ P,
∑

(k,l)∈DL(u)

ratek +
∑

j∈Child(ā(u))\ā(u)

ρ.δj+

∑
j∈Parent(ā(u))\ā(u)

∑
i∈Child(j)∩ā(u)

ρ.δi ≤ Bpu (8.2)
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• Server Sl must have enough bandwidth capacity to support all basic object downloads:

∀Sl ∈ S,
∑
Pu∈P

∑
(k,l)∈DL(u)

ratek ≤ Bsl (8.3)

• The link between server Sl and processor Pu must have enough bandwidth capacity to
support all possible object downloads from Sl to Pu:

∀Pu ∈ P,∀Sl ∈ S,
∑

(k,l)∈DL(u)

ratek ≤ bsl,u (8.4)

• The link between Pu and Pv must have enough bandwidth capacity to support all possible
communications between the nodes mapped on both processors. This constraint can be written
similarly to constraint (8.2) above, but without the cost of basic object downloads, and specifying
that Pu communicates with Pv:

∀Pu, Pv ∈ P

∑
j∈Child(ā(u))
∩ā(v)

ρ.δj +
∑

j∈Parent(ā(u))
∩ā(v)

∑
i∈Child(j)
∩ā(u)

ρ.δi ≤ bpu,v (8.5)

8.2 Complexity

Unsurprisingly, most operator mapping problems are NP-hard, because downloading objects
with di�erent rates on two identical servers is the same problem as 2-Partition [32]. Let us
consider the simplest problem class, i.e., mapping a fully homogeneous left-deep tree application
[38] (see Fig. 8.1(b)) without communication costs (δi = 0), with objects placed on a fully ho-
mogeneous set of servers, onto a fully homogeneous set of processors, LDT-Hom. The objective
function consists now in minimizing the number of used processors. It turns out that even this
problem is NP-hard, due to the combinatorial space induced by the mapping of basic objects
that are shared by several operators.

De�nition 8.1. The problem LDT-Hom consists in minimizing the number of processors used
in the application execution. K is the prescribed throughput that should not be violated. LDT-
Hom is the associated decision problem: given a number of processors N , is there a mapping
that achieves throughput K?

Theorem 8.1. LDT-Hom is NP-complete.

Proof. First, LDT-Hom belongs to NP. Given an allocation of operators to processors and the
download list DL(u) for each processor Pu, we can check in polynomial time that we use no
more than N processors, that the throughput of each enrolled processor respects K:

K × |ā(u)| w
s
≤ 1 ,

and that bandwidth constraints are respected.
To establish the completeness, we use a reduction from 3-Partition, which is NP-complete

in the strong sense [32]. We consider an arbitrary instance I1 of 3-Partition: given 3n positive
integer numbers {a1, a2, . . . , a3n} and a bound R, assuming that R

4 < ai <
R
2 for all i and that
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∑3n
i=1 ai = nR, is there a partition of these numbers into n subsets I1, I2, . . . , In of sum R? In

other words, are there n subsets I1, I2, . . . , In such that I1∪I2 . . .∪In = {1, 2, . . . , 3n}, Ii∩Ij = ∅
if i 6= j, and

∑
j∈Ii aj = R for all i (and |Ii| = 3 for all i). Because 3-Partition is NP-complete

in the strong sense, we can encode the 3n numbers in unary and assume that the size of I1 is
O(n+M), where M = maxi{ai}.

We build the following instance I2 of LDT-Hom:

• The object set is OB = {ob1, ..., ob3n}, and there are 3n servers each holding an object,
thus obi is available on server Si. The rate of obi is rate = 1 , and the bandwidth limit of
the servers is set to Bs = 1.

• The left-deep tree consists of |N | = nR operators with w = 1. Each object obi appears ai
times in the tree (the exact location does not matter), so that there are |N | leaves in the
tree, each associated to a single operator of the tree.

• The platform consists of n processors of speed s = 1 and bandwidth Bp = 3. All the link
bandwidths interconnecting servers and processors are equal to bs = bp = 1.

• Finally we ask whether there exists a solution matching the bounds 1/K = R and N = n.

The size of I2 is clearly polynomial in the size of I1, since the size of the tree is bounded by
3nM . We now show that instance I1 has a solution if and only if instance I2 does.

Suppose �rst that I1 has a solution. We map all operators corresponding to occurrences of
object obj , j ∈ Ii, onto processor Pi. Each processor receives three distinct objects, each coming
from a di�erent server, hence bandwidths constraints are satis�ed. Moreover, the number of
operators computed by Pi is equal to

∑
j∈Ii ai = R, and the required throughput it achieved

because KR ≤ 1. We have thus built a solution to I2.
Suppose now that I2 has a solution, i.e., a mapping matching the bound 1/K = R with

n processors. Due to bandwidth constraints, each of the n processors is assigned at most three
distinct objects. Conversely, each object must be assigned to at least one processor and there
are 3n objects, so each processor is assigned exactly 3 objects in the solution, and no object is
sent to two distinct processors. Hence, a processor must compute all operators corresponding
to the objects it needs to download, which directly leads to a solution of I1 and concludes the
proof. �

Note that this problem becomes polynomial if one adds the additional restriction that no
basic object is used by more than one operator in the tree. In this case, one can simply assign
operators to d|N | × w/se arbitrary processors in a round-robin fashion.

8.2.1 Linear Programming Formulation

In this section, we formulate the Constr optimization problem as an integer linear program
(ILP). We deal with the most general instance of the problem Constr-LAN.

Constants

We �rst de�ne the set of constant values that de�ne our problem. The application tree is de�ned
via parameters par and leaf , and the location of objects on servers is de�ned via parameter obj.
Other parameters are de�ned with the same notations as previously introduced: commi,wi for
operators, ratek for object download rates, and Bsl for server network card bandwidths. More
formally:



100 CHAPTER 8. IN-NETWORK STREAM PROCESSING

• par(i, j) is a boolean variable equal to 1 if operator ni is the parent of nj in the application
tree, and 0 otherwise.

• leaf(i, k) is a boolean variable equal to 1 if operator ni requires object obk for computation,
i.e., ok is a children of ni in the tree. Otherwise leaf(i, k) = 0.

• obj(k, l) is a boolean variable equal to 1 if server Sl holds a copy of object obk.

• commi,wi, ratek, Bsl are rational numbers.

The platform can be built using di�erent types of processors. More formally, we consider a
set C of processor speci�cations, which we call �classes�. We can acquire as many processors of
a class c ∈ C as needed, although no more than N processors are necessary overall. We denote
the cost of a processor in class c by costc. Each processor of class c has computing speed sc and
network card bandwidth Bpc. The link bandwidth between processors is a constant bp, while
the link between a server Sl and a processor is bsl. For each class, processors are numbered
from 1 to |N |, and Pc,u refers to the u-th processor of class c. Finally, ρ is the throughput that
must be achieved by the application:

• costc, sc, Bpc, bp, bsl are rational numbers;

• ρ is a rational number.

Variables

Now that we have de�ned the constants that de�ne our problem we de�ne unknown variables
to be computed:

• xi,c,u is a boolean variable equal to 1 if operator ni is mapped on Pc,u, and 0 otherwise.
There are |N |2.|C| such variables, where |C| is the number of di�erent classes of processors.

• dc,u,k,l is a boolean variable equal to 1 if processor Pc,u downloads object obk from server Sl,
and 0 otherwise. The number of such variables is |C|.|N |.|OB|.|S|.

• yi,c,u,i′,c′,u′ is a boolean variable equal to 1 if ni is mapped on Pc,u, ni′ is mapped on Pc′,u′ ,
and ni is the parent of ni′ in the application tree. There are |N |4.|C|2 such variables.

• usedc,u is a boolean variable equal to 1 if processor Pc,u is used in the �nal mapping, i.e.,
there is at least one operator mapped on this processor, and 0 otherwise. There are |C|.|N |
such variables.

Constraints

Finally, we must write all constraints involving our constants and variables. In the following,
unless stated otherwise, i, i′, u and u′ span set N ; c and c′ span set C; k spans set OB; and l
spans set S. First we need constraints to guarantee that the allocation of operators to processors
is a valid allocation, and that all required downloads of objects are done from a server that holds
the corresponding object.

• ∀i
∑

c,u xi,c,u = 1: each operator is placed on exactly one processor;

• ∀c, u, k, l dc,u,k,l ≤ obj(k, l): object obk can be downloaded from Sl only if Sl holds obk;
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• ∀c, u, k, l dc,u,k,l ≤
∑

i xi,c,u.leaf(i, k): if there is no operator assigned to Pc,u that requires
object k, then Pc,u does not need to download object k and dc,u,k,l = 0 for all server Sl.

• ∀i, k, c, u 1 ≥
∑

l dc,u,k,l ≥ xi,c,u.leaf(i, k): processor Pc,u must download object obk from
exactly one server if there is an operator ni mapped on this processor that requires obk for
computation.

The next set of constraints aim at properly constraining variable yi,c,u,i′,c′,u′ . Note that a
straightforward de�nition would be yi,c,u,i′,c′,u′ = par(i, j).xi,c,u.xi′,c′,u′ , i.e., a logical conjunction
between three conditions. Unfortunately, this de�nition makes our program non-linear as two
of the conditions are variables. Instead, for all i, c, u, i′, c′, u′, we write:

• yi,c,u,i′,c′,u′ ≤ par(i, j); yi,c,u,i′,c′,u′ ≤ xi,c,u; yi,c,u,i′,c′,u′ ≤ xi′,c′,u′ : y is forced to 0 if one of
the conditions does not hold.

• yi,c,u,i′,c′,u′ ≥ par(i, j).
(
xi,c,u + xi′,c′,u′ − 1

)
: y is forced to be 1 only if the three conditions

are true (otherwise the right term is less than or equal to 0).

The following constraints ensure that usedc,u is properly de�ned:

• ∀c, u usedc,u ≤
∑

i xi,c,u: processor Pc,u is not used if no operator is mapped on it;

• ∀c, u, i usedc,u ≥ xi,c,u: processor Pc,u is used if at least one operator ni is mapped to it.

Finally, we have to ensure that the required throughput is achieved and that the various
bandwidth capacities are not exceeded, following equations (1)-(5).

• ∀c, u
∑

i xi,c,u.ρ
wi
sc
≤ 1: the computation of each processor must be fast enough so that

the throughput is at least equal to ρ;

• ∀c, u
∑

k,l dc,u,k,l.ratek +
∑

i,i′,(c′,u′)6=(c,u) yi,c,u,i′,c′,u′ .ρ.commi′+∑
i,i′,(c′,u′) 6=(c,u) yi′,c′,u′,i,c,u.ρ.commi ≤ Bpc: bandwidth constraint for the processor net-

work cards;

• ∀l
∑

c,u,k dc,u,k,l.ratek ≤ Bsl: bandwidth constraint for the server network cards;

• ∀l, c, u
∑

k dc,u,k,l.ratek ≤ bsl: bandwidth constraint for links between servers and pro-
cessors;

• ∀c, u, c′, u′ with (c, u) 6= (c′, u′)
∑

i,i′ yi,c,u,i′,c′,u′ .ρ.commi′+
∑

i,i′ yi′,c′,u′,i,c,u.ρ.commi ≤ bp:
bandwidth constraint for links between processors.

Objective function

We aim at minimizing the cost of used processors, thus the objective function is

min
(∑

c,u usedc,u.costc

)
.

Altogether, we have provided an integer linear program formulation for the constructive
problem.
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8.3 Heuristics

In this section we propose several polynomial heuristics to solve the operator-placement problem.
The code for all of them is available on the web at http://graal.ens-lyon.fr/~vsonigo/code/
query-streaming/. Each heuristic works in two steps: (i) an operator placement heuristic
determines the number of processors that should be acquired, and decides which operators are
assigned to which processors; (ii) a server selection heuristic decides from which server each
processor downloads all needed basic objects.

Operator Placement Heuristics

Note that in most of these heuristics, only the most powerful processors and network cards are
acquired. However, these are later replaced by the cheapest ones that still ful�ll throughput
requirements. This is done just after the server selection step, as a third �downgrade� step, in a
view to minimizing cost.

Random � While there are some unassigned operators, the Random heuristic picks one of these
unassigned operators randomly, say op. It then acquires the cheapest possible processor that is
able to handle op while achieving the required application throughput. If there is no such pro-
cessor, then the heuristic considers op along with one of its children operators or with its parent
operator. This second operator is chosen so that it has the most demanding communication
requirements with op (in an attempt to reduce communication overhead). If no processor can
be acquired that can handle both operators together, then the heuristic fails. If the additional
operator had already been assigned to another processor, this last processor is sold back.

Comp-Greedy � The Comp-Greedy heuristic �rst sorts operators in non-increasing order of wi,
i.e., most computationally demanding operators �rst. While there are unassigned operators, the
heuristic acquires the most expensive processor available and assigns the most computationally
demanding unassigned operator to it. If this operator cannot be processed on this processor so
that the required throughput is achieved, then the heuristic uses a grouping technique similar to
that used by the Random heuristic (i.e., grouping the operator with its child or parent operator
with which it has the most demanding communication requirement). If after this step some
capacity is left on the processor, then the heuristic tries to assign other operators to it. These
operators are picked in non-increasing order of wi, i.e., trying to �rst assign to this processor
the most computationally demanding operator.

Comm-Greedy � The Comm-Greedy heuristic attempts to group operators to reduce commu-
nication costs. It picks the two operators that have the largest communication requirements.
These two operators are grouped and assigned to the same processor, thus saving costly com-
munication between both processors. There are three cases to consider: (i) both operators were
unassigned, in which case the heuristic simply acquires the cheapest processor that can handle
both operators; if no such processor is available then the heuristic acquires the most expensive
processor for each operator; (ii) one of the operators was already assigned to a processor, in
which case the heuristic attempts to accommodate the other operator as well; if this is not pos-
sible then the heuristic acquires the most expensive processor for the other operator; (iii) both
operators were already assigned on two di�erent processors, in which case the heuristic attempts

http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/
http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/
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to accommodate both operators on one processor and sell the other processor; if this is not
possible then the current operator assignment is not changed.

Subtree-Bottom-Up � This heuristic �rst acquires as many most expensive processors as there
are al-operators and assigns each al-operator to a distinct processor. The heuristic then tries
to merge the operators with their father on a single machine, in a bottom-up fashion (possibly
returning some processors). Consider a processor on which one or more operators have been
assigned. The heuristic �rst tries to allocate as many parent operators of the currently assigned
operators to this processor. If some parent operators cannot be assigned to this processor, then
one or more new processors are acquired. This mechanism is used until all operators have been
assigned to processors.

Object-Grouping � For each basic object, this heuristic counts how many operators need this
basic object. This count is called the �popularity� of the basic object. The al-operators are then
sorted by non-increasing sum of the popularities of the basic objects they need. The heuristic
starts by acquiring the most expensive processor and assigns to it the �rst al-operator. The
heuristic then attempts to assign to it as many other al-operators that require the same basic
objects as the �rst al-operator, taken in order of non-increasing popularity, and then as many
non al-operators as possible. This process is repeated until all operators have been assigned.

Object-Availability � This heuristic takes into account the distribution of basic objects on
the servers. For each object k the number avk of servers handling object ok is calculated. Al-
operators in turn are treated in increasing order of avk of the basic objects they need to download.
The heuristic tries to assign as many al-operators downloading object k as possible on a most
expensive processor. The remaining internal operators are assigned similarly to Comp-Greedy,
i.e., in decreasing order of wi of the operators.

Server Selection Heuristics

Once an operator placement heuristic has been applied, each al-operator is mapped on a proces-
sor, which needs to download basic objects required by the operator. Thus, we need to specify
from which server this download should occur. For the Random heuristic, once the mapping
of operators onto processors is �xed, we associate randomly a server to each basic object a
processor has to download.

For all other heuristics, we use a more sophisticated heuristic, using three loops. The �rst
loop assigns objects that are held exclusively by a single server. If not all downloads can be
guaranteed, the heuristic fails. The second loop associates as many downloads as possible to
servers that provide only one basic object type. The last loop �nally tries to assign the remain-
ing basic objects that must be downloaded. For this purpose, objects are treated in decreasing
order of nbP/nbS, where nbP is the remaining number of processors that need to download the
object, and nbS is the number of servers where the object still can be downloaded. In the deci-
sion process, servers are considered in decreasing order of the minimum between the remaining
bandwidth capacity of the servers network card, and the bandwidth of the communication link.

Once servers have been selected, processors are downgraded if possible: each processor is
replaced by a less expensive model that ful�lls the CPU and network card requirements of the
allocation.
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Table 8.1: Incremental costs for increases in processor performance or network card bandwidth
relative to a $7,548 base con�guration (based on data from the Dell Inc. web site, as of early
March 2008).

Processor Network Card

Performance Cost Ratio Bandwidth Cost Ratio
(GHz) ($) (GHz/$) (Gbps) ($) (Gbps/$)

11.72 7,548 + 0 1.55 ×10−3 1 7,548 + 0 1.32 ×10−4

19.20 7,548 + 1,550 1.93 ×10−3 2 7,548 + 399 2.51 ×10−4

25.60 7,548 + 2,399 2.38 ×10−3 4 7,548 + 1,197 4.57 ×10−4

38.40 7,548 + 3,949 3.12 ×10−3 10 7,548 + 2,800 9.66 ×10−4

46.88 7,548 + 5,299 3.43 ×10−3 20 7,548 + 5,999 14.76 ×10−4

8.4 Simulation Results

Simulation Methodology

All our simulations use randomly generated binary operator trees with at most N operators,
which we vary. All leaves correspond to basic objects, and each basic object is chosen randomly
among 15 di�erent types. For each of these 15 basic object types, we randomly choose a �xed
size. In simulations with small object sizes, in the δk ∈ [5, 30] MB range, whereas large object
sizes are in the δk ∈ [450, 530] MB range. The download frequency for basic objects is either low
(fk = 1/50s) or high (fk = 1/2s). Recall that the download rate for object ok is then computed
as ratek = δk × fk.

The computation amount wi for an operator ni (a non-leaf node in the tree) depends on
its children l and r (basic object or operator): wi = (δl + δr)α, where α is a constant �xed for
each simulation run, and δ is either the size of the basic object, or the amount of data sent
by the child operator. The same principle is used for the output size of each operator, setting
for all simulations δi = δl + δr. The application throughput ρ is �xed to 1 for all simulations.
Throughout the whole set of simulations we use the same server architecture: we dispose of 6
servers, each of them equipped with a 10 GB network card. The 15 di�erent types of objects
are randomly distributed over the 6 servers. We assume that servers and processors are all
interconnected by a 1 GB link. The rest of the platform can be purchased at the costs from
Table 8.1 (con�gurations of Intel's high-end, rack-mountable server, PowerEdge R900).

Results

We present hereafter results for several sets of experiments. The entire set of �gures can be found
on the web at http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/figures/.

High frequency - small object sizes In the �rst set of simulations, we study the behavior
of the heuristics when the download frequency is high (1/2s) and object sizes small (5-30MB).
Figures 8.2(a) and 8.2(b) show the cost as the number of nodes N in the tree varies, with a
�xed computation factor α. As expected, Random performs poorly and the platform chosen
for an application with around 100 operators or more exceeds a cost of $400,000Figure 8.2(a)),
Subtree-bottom-up achieves the best costs, and for an application with 100 operators it �nds
a platform for the price of $8,745. All Greedy heuristics exhibit similar performance, poorer

http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/figures/
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Figure 8.2: Simulation with high frequency and small object sizes.

than Subtree-bottom-up. Perhaps surprisingly, the heuristics that pay special attention to basic
objects, Object-Grouping and Object-Availability, perform poorly. With a larger value of α (cf.
Figure 8.2(b)) the operator tree size becomes a more limiting factor. For trees with more than 80
operators, almost no feasible mapping can be found. However, the relative performance of our
heuristics remains almost the same, with two notable features: a) Object-Grouping still �nds
some mappings for operator trees with up to 120 operators; b) Comp-Greedy and Object-Greedy
perform performs as well as and sometimes better than Subtree-bottom-up when the number of
operators increases.

Figure 8.2(d) shows the behavior of the heuristics whenN is �xed and the computation factor
α increases. Up to a threshold, the α parameter has no in�uence on the heuristics' performance.
When α reaches the threshold, the solution cost of each heuristic increases until α exceeds a
second threshold after which solutions can no longer be found. Depending on the number of
operators both thresholds have lower or higher values. In the case of small operator trees with
only 20 nodes, (see Figure 8.2(c)), the �rst threshold is for α=1.7 and the second at α=2.2
(vs. α=1.6 and α=1.8 for operator trees of size 60, as seen in Figure 8.2(d)). Subtree-bottom-
up behaves in both cases the best, whereas Random performs the poorest. Object-Grouping
and Object-Availability change their position in the ranking: for small trees Object-Grouping
behaves better, while for larger trees it is outperformed by Object-Availability. The Greedy
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heuristics are between Subtree-bottom-up and the object sensitive heuristics. When α is larger,
they at times outperform Subtree-bottom-up.
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Figure 8.3: Simulation with high frequency and big object sizes

High frequency - big object sizes With the same experimental setting but large object sizes
(450-530MB), the results are similar except that no feasible solution can be found as soon as
the trees exceed 45 nodes, Cf. Figures 8.3 (a)-(d). As for small object sizes, we plot two
types of �gures. Figure 8.3(a) shows results for a �xed α as the number of operators increases.
For trees bigger than 45 nodes, almost no feasible solution can be found, both for α smaller
than 1 and higher than 1. In general, Subtree-bottom-up still achieves the best costs, but at
times it is outperformed by Comm-Greedy. Subtree-bottom-up even fails in two cases (the
server selection does not succeed because of bandwidth limitation), while other heuristics �nd
a solution. (N=41 and N=42 in Figure 8.3(a)). The Subtree-bottom-up routine does achieve
the best result in terms of processors that have to be purchased. However, in these cases, the
server selection heuristic often fails since the operator-processor-mapping fails during the server
selection process. (Often the bandwidth of 1 GB between processor and server is not su�cient.)
In this experiment Comm-Greedy achieves the best costs among the Greedy heuristics, whereas
Random, Object-Availability and Object-Grouping still perform the poorest. When N is �xed,
we observe a behavior similar to that for small object sizes. The ranking (Subtree-bottom-up,
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Table 8.2: In�uence of the download rate on the platform cost, in $, when object sizes are small.

small object sizes big object sizes

N Comm-Greedy Obj-Greedy Subtree-b-up Comm-Greedy Obj-Greedy Subtree-b-up

115 7947 13547 8745 7548 13547 8745
116 15495 13547 7947 15096 13547 7548
117 7947 13547 7947 7548 13547 7548
118 15495 13547 7548 15096 13547 7548
119 15495 13547 8745 15096 13547 8745

Greedy, object sensitive, and �nally Random) remains unchanged (see Figures 8.3(c) and 8.3(d)).
When N = 20, Comp-Greedy outperforms Object-Greedy and Comm-Greedy �nds a feasible
solution only once (see Figure 8.3(c)). Object-Availability achieves better results than Object-
Grouping. Note that Object-Greedy does not �nd solutions for experiments with N = 40. In
the case of N = 40 (see Figure 8.3(d)), the ranking is unchanged but for the fact that Object-
Availability and Object-Grouping are swapped. Also, in this case, Object-Greedy never succeeds
to �nd a feasible solution, whereas Comm-Greedy achieves the second best results. Note that
the failure of Object-Greedy depends on the tree structure, and our results do not mean that
Object-Greedy fails for all trees of size higher than 20. In this case again, the solution found by
the heuristic for the operator mapping leads to the failure of the server selection process.

We conclude that a larger number of operators lead earlier to a general failure of the heuristics
when α increases.

Low frequency - small object sizes The behaviors of the heuristics with low download fre-
quencies (fk = 1/50s) are almost the same as for high frequency. In general the heuristics lead
to the same operator mapping, but in some cases the purchased processors have less powerful
network cards. (Cf. Table 8.2).

Low frequency - big object sizes Low frequency slightly improves the success rate of the
heuristics. Indeed, because of the lower frequency the links between servers and processors are
less congested, and hence the server selection is feasible in more scenarios.

In�uence of download rates on the solution In another set of experiments, we study the
in�uence of download rates on the solution. Recall that the download rate of a basic object
k is computed by ratek = fk × δk. A �rst result is that frequencies smaller than 1/10s have
no further in�uence on the solution. All heuristics �nd the same solutions for a �xed operator
tree.For frequencies between 1/2s and 1/10s, the solution cost changes. In general the cost
decreases, but for N = 160 the cost for the Object-Grouping heuristic increases. Furthermore,
the heuristic ranking remains: Subtree-bottom-up, followed by the Greedy family, followed by
the object sensitive ones, and Random. Interestingly, the costs of Object-Availability decrease
with the number of operators. In this case the number of operators that need to download a
basic object increases, and hence the privileged treatment of basic objects in order of availability
on servers becomes more important.

We also tested the importance of the number of basic object replications on the servers.
Initially we ran experiments on di�erent server con�gurations, with basic objects either not
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Figure 8.4: Comparisons of the heuristic and of the optimal LP solution on homogeneous plat-
forms.

replicated or replicated on all servers. However, we did not observe a signi�cant di�erence in
the results across di�erent server con�gurations. We conclude that the level of replication of
basic objects on servers may matter for application trees with speci�c structures and download
frequencies, but that in general we can consider that this parameter has little or no e�ect on the
heuristics' performance.

Comparison of the heuristics to a ILP solution on a homogeneous platform The last set
of experiments is dedicated to the evaluation of our heuristics versus a lower bound given by
the solution of our ILP. We use the commercial Cplex 11 solver to solve our linear program.
Unfortunately, the ILP is so enormous that, even when using only 5 possible groups of processors
and using trees with 30 operators, the ILP description �le could not be opened in Cplex. For
trees with 20 operators, Cplex returns the optimal solution, which consists in all cases in buying
a single processor. Therefore, we decided to compare the heuristic solution with the optimal
solution only in a homogeneous setting, in which there is only a single processor type. In
this case we can skip the downgrading step after the server allocation step. Both for α values
lower and higher than 1, Subtree-bottom-up �nds the optimal solution in most of the cases (see
Figures 8.4(a) and 8.4(b)). The same ranking of the heuristics holds in the homogeneous setting:
Subtree-bottom up, the Greedy family, followed by Object-Grouping, Object-Availability and
�nally Random. Focusing on the Greedy family, we observe that in most cases Comm-Greedy
achieves the best cost.

Summary of results

Results show that all our more sophisticated heuristics perform better than the simple ran-
dom approach. Unfortunately, the object sensitive heuristics, Object-Grouping and Object-
Availability, do not show the desired performance. We believe that in some situations these
heuristics could lead to good performance, but this is not observed on our set of random appli-
cation con�gurations. We have found that Subtree-bottom-up outperforms other heuristics in
most situations and also produces results very close to the optimal (for the cases in which we
were able to determine the optimal). There are some cases for which Subtree-bottom-up fails.
In such cases our results suggest that one should use one of our Greedy heuristics.



Chapter 9

Multiple Concurrent Applications

This chapter investigates the operator mapping problem for in-network stream-processing for
multiple concurrent applications, where the goal is to compute some �nal data at some desired
rate. As there are multiple applications, di�erent operator trees may share common subtrees.
Therefore, it may be possible to reuse some intermediate results in di�erent application trees.

We consider target platforms that are either fully homogeneous, or with a homogeneous net-
work but heterogeneous servers, or fully heterogeneous. Our speci�c contributions are twofold:
(i) we formalize operator mapping problems for multiple in-network stream-processing applica-
tions and give their complexity; (ii) we propose a number of algorithms to solve the problems
and evaluate them via extensive simulation experiments. One of the primary objectives of these
heuristics is to reuse intermediate results shared by multiple applications. Our quantitative com-
parisons of these heuristics in simulation demonstrates the importance of choosing appropriate
processors for operator mapping.

9.1 Framework

We study operator mapping for multiple trees of operators which should be executed concur-
rently. The models we use for applications, platform and mapping are quite similar to the ones
used in Chapter 8, with the following basic di�erences: First, the application model deals now
with several applications, where each application has its own QoS constraint. Second, in the
platform model we do not distinguish between servers and processors anymore. Basic objects
are situated at the processors in the platform and these processors can also be used for compu-
tation. As the computation platform already exists, we decide about the processors we use for
computation. So it may happen, that processors already own the basic objects that the mapped
operators need for their computations later on. For the convenience of the reader, we restate
the model in detail.

9.1.1 Application Model

We consider K applications, each needing to perform several operations organized as a binary
tree (see Figure 9.1). Operators are taken from the set OP = {op1, op2, . . .}, and operations are
initially performed on basic objects from the set OB = {ob1, ob2, . . .}. These basic objects are
made available and continuously updated at given locations in a distributed network. Operators
higher in the tree rely on previously computed intermediate results, and they may also require
to download basic objects periodically.

109
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Figure 9.1: Sample applications structured as binary trees of operators.

For an operator opp we de�ne objects(p) as the index set of the basic objects in OB that are
needed for the computation of opp, if any; and operators(p) as the index set of operators in OP
whose intermediate results are needed for the computation of opp, if any. We have the constraint
that |objects(p)|+ |operators(p)| ≤ 2 since application trees are binary. An application is fully
de�ned by the operator at the root of its tree. For instance, if we consider Fig. 9.1, we have
one application rooted on op3, and another application rooted on op5. Operator op1 needs to
download objects ob1 and ob2, while operator op2 downloads only object ob1 but also requires
an intermediate result from operator op1.

The tree structure of application k is de�ned with a set of labeled nodes. The i-th internal

node in the tree of application k is denoted as n
(k)
i , its associated operator is denoted as op(n(k)

i ),
and the set of basic objects required by this operator is denoted as ob(n(k)

i ).

• Node n
(k)
1 is the root node.

• Let opp = op(n(k)
i ) be the operator associated to node n(k)

i . Then node n
(k)
i has |operators(p)|

child nodes, denoted as n
(k)
2i , n

(k)
2i+1 if they exist.

• Finally, the parent of a node n
(k)
i , for i > 1, is the node of index bi/2c in the same tree.

The applications must be executed so that they produce �nal results, where each result
is generated by executing the whole operator tree once, at a target rate. Each application
has its application throughput, ρ(k), and the speci�cation of this target throughput is a QoS
requirement for each application. Each operator in the tree of the k-th application must compute
(intermediate) results at a rate at least as high as the target application throughput ρ(k). We
keep the concept that operator opp executes two concurrent threads in steady-state:

• It periodically downloads the most recent copies of the basic objects in objects(p), if any.
Note that these downloads may simply amount to constant streaming of data from sources
that generate data streams. Each download has a prescribed cost in terms of bandwidth
based on application QoS requirements (e.g., so that computations are performed using
su�ciently up-to-date data). A basic object obj has a size δj (in bytes) and needs to be

downloaded by the processors that use it for application k with frequency f
(k)
j . Therefore,
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these basic object downloads consume an amount of bandwidth equal to rate
(k)
j = δj×f (k)

j

on each network link and network card through which this object is communicated for ap-
plication k. Note that if a processor requires object obj for several applications with
di�erent update frequencies, it downloads the object only once at the maximum required

frequency ratej = maxk{rate
(k)
j }.

• It receives intermediate results computed by operators(p), if any, and it performs some
computation using basic objects it is continuously downloading, and/or data received from
other operators. The operator produces some output, which is either an intermediate result
which will be sent to another operator, or the �nal result of the application (root operator).
The computation of operator opp (to evaluate the operator once) requires wp operations,
and produces an output of size δp.

9.1.2 Platform Model

The target distributed network is a fully connected graph (i.e., a clique) interconnecting a set of
processors P. These processors can be assigned operators of the application tree and perform
some computation. Some processors also hold and update basic objects. Each processor Pu ∈ P
is interconnected to the network via a network card with maximum bandwidth Bpu. The
network link between two distinct processors Pu and Pv is bidirectional and has bandwidth
bpu,v(= bpv,u) shared by communications in both directions. In addition, each processor Pu ∈ P
is characterized by a compute speed su. As in Chapter 8, resources operate under the full-
overlap, bounded multi-port model [35]. The case in which some dedicated processors are only
providing basic objects but cannot be used for computations is obtained simply by setting their
compute speed to 0.

9.1.3 Mapping Model and Constraints

Our objective is to map internal nodes of application trees onto processors. As explained in
Section 8.1.1, if the operator associated to a node requires basic objects, the processor in charge
of this internal node must continuously download up-to-date basic objects, which consumes
bandwidth on its processor's network card. Each used processor is in charge of one or several
nodes, and the concurrent activities are almost the same as for single applications:

If there is only one node on processor Pu, while the processor computes for the t-th �nal
result it sends to its parent (if any) the data corresponding to intermediate results for the (t−1)-
th �nal result and also receives data from its children (if any) for computing the (t+ 1)-th �nal
result.

Note however that di�erent nodes can be assigned to the same processor. In this case, the
same overlap happens, but possibly on di�erent result instances (an operator may be applied for
computing the t1-th result while another is being applied for computing the t2-th). A particular
case is when several nodes with the same operator are assigned to the same processor. In this
case, computation is done only once for this operator, but it should occur at the highest required
rate among those of the corresponding applications.

Ditto in this mapping model, basic objects can be duplicated, and thus available and updated
at multiple processors. In this case, a processor can choose among multiple data sources when
downloading a basic object, or perform a local access if the basic object is available locally.
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We use a similar allocation function to the one in Chapter 8, a, to denote the mapping of the

nodes onto the processors in P: a(k, i) = u if node n
(k)
i is mapped to processor Pu. Conversely,

ā(u) is the index set of nodes mapped on Pu: ā(u) = {(k, i) | a(k, i) = u}. Also, we denote by
aop(u) the index set of operators mapped on Pu: aop(u) = {p | ∃(k, i) ∈ ā(u) opp = op(n(k)

i )}.
We introduce the following notations:

• Ch(u) = {(p, v, k)} is the set of (operator, processor, application) tuples such that proces-
sor Pu needs to receive an intermediate result computed by operator opp, which is mapped
to processor Pv, at rate ρ

(k); operators opp are children of aop(u) in the operator tree.

• Par(u) = {(p, v, k)} is the set of (operator, processor, application) tuples such that Pu
needs to send to Pv an intermediate result computed by operator opp at rate ρ

(k); p ∈ aop(u)
and the sending is done to the parents of opp in the operator tree.

• DL(u) = {(j, v, k)} is the set of (object, processor, application) tuples where Pu downloads
object obj from processor Pv at rate ρ

(k).

The formal de�nition of Ch(u) and Par(u) is as follows. We �rst de�ne two sets of tuples,
ACh(u) and APar(u), used to account for communications for the same data but for di�erent
applications:

ACh(u) =
{

(p, v, k) | ∃i, p′ p ∈ aop(v); p′ ∈ aop(u); p ∈ operators(p′); opp = op(n(k)
i ); opp′ = op(n(k)

bi/2c

}
APar(u) =

{
(p, v, k) | ∃i, p′ p ∈ aop(v); p′ ∈ aop(u); p ∈ operators(p′); opp = op(n(k)

i ); opp′ = op(n(k)
bi/2c

}
Then we determine which application has the higher throughput for redundant entries, where

arg max randomly chooses one application if there are equalities:

kchosen(p, v,X) = arg max
k∈K

{
ρ(k) | ∃(p, v, k) ∈ X

}
Finally, X(u) = {(p, v, kchosen(p, v,AX)) | opp ∈ OP, Pv ∈ P}. X stands for Ch or Par, and
we have thus thus fully de�ned Ch(u) and Par(u).

Given these notations, we can now express constraints for the application throughput: each
processor must compute and communicate fast enough to respect the prescribed throughput of
each application which is being processed by it. The computation constraint is expressed below.
Note that each operator is computed only once at the maximum required throughput.

∀Pu ∈ P
∑

p∈aop(u)

(
max

(k,i)∈ā(u) | op(n(k)
i )=opp

(
ρ(k)

) wp

su

)
≤ 1 . (9.1)

Communication occurs only when a child or the parent of a given node and this node are
mapped on di�erent processors. In other terms, we neglect intra-processor communications. An
operator computing for several applications may send/receive results to/from di�erent proces-
sors. If the parent/child nodes corresponding to the di�erent applications are mapped onto the
same processor, the communication is done only once, at the most constrained throughput. This
throughput, as well as the processors with which Pu needs to communicate, are obtained via
Ch(u) and Par(u). In these expressions v 6= u since we neglect intra-processor-communications.

Pu must have enough bandwidth capacity to perform all its basic object downloads, to
support downloads of the basic objects it may hold, and also to perform all communication
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with other processors, all at the required rates. This is expressed in Eq. 9.2. The �rst term
corresponds to basic object downloads; the second term corresponds to download of basic objects
from other processors; the third term corresponds to inter-node communications when a node is
assigned to Pu and its parent node is assigned to another processor; and the last term corresponds
to inter-node communications when a node is assigned to Pu and some of its children nodes are
assigned to another processor.

∀Pu ∈ P
∑

(j,v,k)∈DL(u)

rate
(k)
j +

∑
Pv∈P

∑
(j,u,k)∈DL(v)

rate
(k)
j +

∑
(p,v,k)∈Ch(u)

δpρ
(k) +

∑
(p,v,k)∈Par(u)

δpρ
(k) ≤ Bpu

(9.2)

Finally, we need to express the fact that the link between processor Pu and processor Pv
must have enough bandwidth capacity to support all possible communications between the nodes
mapped on both processors, as well as the object downloads between these processors. Eq. 9.3
is similar to Eq. 9.2, but it considers two speci�c processors:

∀Pu, Pv ∈ P
∑

(j,v,k)∈DL(u)

rate
(k)
j +

∑
(j,u,k)∈DL(v)

rate
(k)
j +

∑
(p,v,k)∈Ch(u)

δpρ
(k) +

∑
(p,v,k)∈Par(u)

δpρ
(k) ≤ bpu,v

(9.3)

9.1.4 Optimization Problems

The overall objective of the operator-mapping problem is to ensure that a prescribed throughput
per application is achieved while minimizing a cost function. Several relevant problems can be
envisioned.

Proc-Nb minimizes the number of processors enrolled for computations (processors that are
allocated at least one node);

Proc-Power minimizes the compute capacity and/or the network card capacity of proces-
sors enrolled for computations (e.g., a linear function of both criteria);

BW-Sum minimizes the sum of the bandwidth capacities used by the application;

BW-Max minimizes the maximum percentage of bandwidth used on all links (minimizing
the impact of the applications on the network for other users).

Di�erent platform types may be considered depending on the heterogeneity of the resources.
We consider the case in which the platform is fully homogeneous (su = s, Bpu = Bp and
bpu,v = bp), which we term Hom. The heterogeneous case in which network links can have
various bandwidths is termed Het.

Each combination of problems and platforms could be envisioned, but we will see that Proc-
Power on a Hom platform is actually equivalent to Proc-Nb. Proc-Nb makes more sense in
this setting, while Proc-Power is used for Het platforms only. Both types of platforms are
considered for the BW-Sum and BW-Max problems.

9.2 Complexity

Problem Proc-Nb is NP-hard in the strong sense. This is true even for a simple case: a Hom
platform and a single application (|K| = 1), that is structured as a left-deep tree, in which all
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operators take the same amount of time to compute and produce results of size 0, and in which
all basic objects have the same size. In fact, this is exactly the problem stated in Chapter 8 for
left-deep-trees and we can use the same reduction to 3-partition (see proof of Theorem 8.1). It
turns out that the same proof also holds for Proc-Power on a Hom platform.

The BW-Max problem is NP-hard because downloading objects with di�erent rates on two
processors is the same problem as 2-Partition, which is known to be NP-hard [32]. Here is a
sketch of the straightforward proof, which holds even in the case of a single application. Consider
an application in which all operators produce zero-size results, and in which each basic object is
used only by one operator. Consider three processors, with one of them holding all basic objects
but unable to compute any operator. The two remaining processors are able to compute all the
operators, and they are connected to the �rst one with identical network links. Such an instance
can be easily constructed. The problem is then to partition the set of operators in two subsets
so that the bandwidth consumption on the two network links in use is as equal as possible. This
is exactly the 2-Partition problem.

The BW-Sum problem is NP-hard because it can be reduced to the Knapsack problem, which
is NP-hard [32]. Here is a proof sketch for a single application. Consider the same application
as for the proof of the NP-hardness of BW-Max above. Consider two identical processors, A
and B, with A holding all basic objects. Not all operators can be executed on A and a subset
of them need to be executed on B. Such an instance can be easily constructed. The problem
is then to determine the subset of operators that should be executed on A. This subset should
satisfy the constraint that the computational capacity of A is not exceeded, while maximizing
the bandwidth cost of the basic objects associated to the operators in the subset. This is exactly
the Knapsack problem.

All these problems can be solved thanks to an integer linear program (see Section 9.3 for
the ILP formulations). However, they cannot be solved in polynomial time (unless P=NP).
Therefore, in the next section we describe polynomial-time heuristics for one of these problems.

9.3 Linear Programming Formulation

In this section, we give an integer linear program (ILP) formulation of the Proc-Power-Het,
BW-Sum-Het and BW-Max-Het problems, in terms of an integer linear program (ILP). These
are the most general versions of our operator-mapping problems. More restricted versions, e.g.,
with Hom platforms, can be solved using the same ILPs. We describe the input data to the
ILP, its variables, its constraints, and �nally its objective functions.

In all that follows, i and i′ are indices spanning nodes in set of nodes of an application tree;
p and p′ are indices spanning operators in OP; j is an index spanning objects in OB; u, u′, and
v are indices spanning processors in P; k is an application index spanning K.

9.3.1 Input Data

Parameters δi,wi for operators, rate
(k)
j for object download rates, and su, Bpu, bpu,v for proces-

sors and network elements, are rational numbers and de�ned in Section ??. ρ(k) is a rational
number that represents the throughput QoS requirement for application k. For convenience, we
also introduce families of boolean parameters: par, oper, and object, that pertain to application
trees; and obj, that pertain to location of objects on processors. We de�ne these parameters
hereafter:



9.3. LINEAR PROGRAMMING FORMULATION 115

• par(k, i, i′) is equal to 1 if internal node n(k)
i is the parent of n

(k)
i′ in the tree of application k,

and 0 otherwise.

• oper(k, i, p) is equal to 1 if op(n(k)
i ) = p, and 0 otherwise.

• object(k, i, j) is equal to 1 if node n
(k)
i needs object obj (i.e., p ∈ objects(op(n(k)

i ))), and 0
otherwise.

• obj(u, j) is equal to 1 if processor Pu owns a copy of object obj , and 0 otherwise.

9.3.2 Variables

• xk,i,u is a variable equal to 1 if node n
(k)
i is mapped on Pu, and 0 otherwise.

• dj,u,v,k is a variable equal to 1 if processor Pu downloads object obj for application k from
processor Pv, and 0 otherwise.

• yk,i,u,i′,u′ is a variable equal to 1 if n
(k)
i is mapped on Pu, n

(k)
i′ is mapped on Pu′ , and n

(k)
i

is the parent of n
(k)
i′ in the application tree.

• usedu is a variable equal to 1 if there is at least one node mapped to processor Pu, and 0
otherwise.

• xopk,p,u is a variable equal to 1 if opp of application k is mapped to processor Pu, and 0
otherwise.

• yopk,p,u,p′,u′ is a variable equal to 1 if opp of application k is mapped on processor Pu, opp′

of application k is mapped on processor Pu′ , and opp is a parent of opp′ in application k,
and 0 otherwise.

• Chu,p,v,k is a variable equal to 1 if (p, v, k) ∈ Ch(u), and 0 otherwise.

• Paru,p,v,k is a variable equal to 1 if (p, v, k) ∈ Par(u), and 0 otherwise.

• rhou,p is a rational variable equal to the throughput of opp if it is mapped on processor
Pu, and 0 otherwise.

• ratemaxj,u,v is a rational variable equal to the download rate of object obj by processor
Pu from processor Pv, and 0 otherwise.

9.3.3 Constraints

We �rst give constraints to guarantee that the allocation of nodes to processors is valid, and
that each required download is done from a server that holds the relevant object.

• ∀k, i
∑
u
xk,i,u = 1: each node is placed on exactly one processor;

• ∀j, u, v, k dj,u,v,k ≤ obj(v, j): object obj can be downloaded from processor Pv only if Pv
holds it;
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• ∀i, j, u, k 1 ≥
∑
v
dj,u,v,k ≥ xk,i,u.object(k, i, j): processor Pu must download object obj

from exactly one processor Pv if there is a node n
(k)
i mapped on processor Pu that requires

obj .

The next two constraints aim at properly de�ning variables y. Note that a straightforward
de�nition would be yk,i,u,i′,u′ = par(k, i, i′).xk,i,u.xk,i′,u′ , but this leads to a non-linear program.
Instead we write, for all k, i, u, i′, u′:

• yk,i,u,i′,u′ ≤ par(k, i, i′); yk,i,u,i′,u′ ≤ xk,i,u; yk,i,u,i′,u′ ≤ xk,i′,u′ : yk,i,u,i′,u′ is forced to be 0
if one of these three conditions does not hold.

• yk,i,u,i′,u′ ≥ par(k, i, j).
(
xk,i,u + xk,i′,u′ − 1

)
: yk,i,u,i′,u′ is forced to be 1 only if the three

conditions are true (otherwise the right term is lower than or equal to 0).

The following two constraints ensure that usedu is properly de�ned:

• ∀u usedu ≤
∑
k,i

xk,i,u: processor Pu is not used if no node is mapped to it;

• ∀k, i, u usedu ≥ xk,i,u: processor Pu is used if at least one node ni is mapped to it.

The following four constraints ensure that xopk,p,u and yopk,p,u are properly de�ned:

• ∀i, k, p, u xopk,p,u ≥ xk,i,u.oper(k, i, p): xop is forced to be 1 if operator opp of application
k is mapped on processor Pu;

• ∀k, p, u xopk,p,u ≤
∑
i
xk,i,u.oper(k, i, p): xop is forced to be 0 if operator opp of application

k is not mapped on processor Pu;

• ∀k, p, p′, u, u′, i, i′ yopk,p,u,p′,u′ ≤ xopk,p,u; yopk,p,u,p′,u′ ≤ xopk,p′,u′ ; yopk,p,u,p′,u′ ≤ par(k, i, i′);
yopk,p,u,p′,u′ ≤ oper(k, i, p); yopk,p,u,p′,u′ ≤ oper(k, i′, p′): yopk,p,u,p′,u′ is forced to be 0 if
one of these conditions does not hold;

• ∀k, p, p′, u, u′, i, i′ yopk,p,u,p′,u′ ≥ par(k, i, i′).oper(k, i, p).oper(k.i′, p′).(xopk,p,u+xopk,p′,u′−
1): yopk,p,u,p′,u′ is forced to be 1 only if all �ve conditions are true.

The next four constraints ensure that Chu,p,v,k and Paru,p,v,k are de�ned properly:

• ∀u, p, v, k Chu,p,v,k ≤
∑
p′
yopk,p′,u,p,v: in application k, if the parent operator of operator

opp, which is mapped on Pv, is not mapped on processor Pu, Ch is forced to be 0;

• ∀p′, u, p, v, k Chu,p,v,k ≥ yopk,p′,u,p,v: in application k, if operator opp of application k is
mapped to Pv and its parent operator in the application tree is mapped to Pu, Ch is forced
to be 1.

• ∀u, p, v, k Paru,p,v,k ≤
∑
p′
yopk,p′,v,p,u: in application k, if the parent operator of operator

opp, which is mapped to Pu, is not mapped to processor Pv, Par is forced to be 0;

• ∀p′, u, p, v, k Paru,p,v,k ≥ yopk,p′,v,p,u: in application k, if operator opp is mapped to Pu
and its parent operator in the application tree is mapped to Pv, Par is forced to be 1.
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The following two constraints ensure that the throughput QoS requirement of each application,
ρ(k), is met:

• ∀k, u, p rhou,p ≥ xopk,p,u.ρ
(k): the throughput of processor Pu, to which operator opp of

application k is mapped, has to satisfy the throughput QoS requirement of application k;

• ∀k, p, u, v ratemaxp,u,v ≥ dp,u,v,k.rate
(k)
p : the update rate of operator opp on processor Pu

has to satisfy the throughput QoS requirement of application k;

The following constraint ensures that the compute capacity of each processor is not exceeded
while meeting QoS throughput requirements:

• ∀u
∑
p
rhou,p

wp
su
≤ 1.

The following two constraints ensure that the bandwidth capacity of network elements are not
exceeded:

• Bandwidth constraint for the processor network cards:

∀u
∑
p,v,k

Chu,p,v,k.rhou,p.δp +
∑
p,v,k

Paru,p,v,k.rhou,p.δp+∑
j,v,k

dj,u,v,k.ratemaxj,u,v +
∑
j,v,k

dj,v,u,k.ratemaxj,v,u ≤ Bpu
(9.4)

• Bandwidth constraints for links between processors:

∀u, v
∑
p,k

Chu,p,v,k.rhou,p.δp +
∑
p,k

Paru,p,v,k.rhou,p.δp+∑
j,k

dj,u,v,k.ratemaxj,u,v +
∑
j,k

dj,v,u,k.ratemaxj,v,u ≤ bpu,v
(9.5)

9.3.4 Objective Function

We have to de�ne the objective function to optimize. We have a di�erent de�nition for each
problem:

Proc-Power-Het:

min

(∑
u,p

rhou,p
wp

su

)
. (9.6)

BW-Sum-Het:

min
∑
u,v,p,k

Chu,p,v,k.rhou,p.δp +
∑
u,v,p,k

Paru,p,v,k.rhou,p.δp+∑
u,v,j,k

dj,u,v,k.ratemaxj,u,v +
∑
u,v,j,k

dj,v,u,k.ratemaxj,v,u .
(9.7)

BW-Max-Het: For this problem we need to add one variable, bwmax, and |P|2 constraints:

∀u, v
∑
p,k

Chu,p,v,k.rhou,p.δp +
∑
p,k

Paru,p,v,k.rhou,p.δp+∑
j,k

dj,u,v,k.ratemaxj,u,v +
∑
j,k

dj,v,u,k.ratemaxj,v,u ≤ bwmax
(9.8)

and the objective becomes: min (bwmax).
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9.4 Heuristics

In this section we propose several polynomial heuristics1 for the Proc-Power problem, in which
we consider only the compute capacity of processors enrolled for computation. Two heuristics use
a random approach to process application nodes, while the others are based on tree traversals. As
for the choice of an appropriate resource for the current node, four di�erent processor selection
strategies are implemented (and shared by all heuristics). Two selection strategies are blocking
and two are non-blocking. Blocking means that once chosen for a given operator op1, a processor
cannot be reused later for another operator op2, and it is only possible to add relatives (i.e.,
father or children) of op1 to this processor. On the contrary, non-blocking strategies impose no
such restrictions. We start with a description of the four processor selection strategies, and then
we move to a brief overview of each heuristic.

Processor Allocation Strategies

(1) Fastest processor �rst (blocking) � Every time we have to chose a processor, the fastest
remaining (not already chosen) processor is chosen.

(2) Biggest network card �rst (blocking) � Every time we have to chose a processor, the
remaining processor with the biggest network card is chosen.

(3) Fastest remaining processor (non-blocking) � The actual amount of computation is sub-
tracted from the computation capability, and the processor with the most remaining computation
power is chosen.

(4) Biggest remaining network card (non-blocking) � In this strategy the current (already
assigned) communication volume is subtracted from the network card capacity to evaluate the
processor whose remaining communication capacity is the biggest. This processor is chosen.

Signi�cance of Node Reuse

Our heuristics, except RandomNoReuse (H1), are designed for node reuse. This means that we
try to bene�t from the fact that di�erent applications may have common subtrees, i.e., subtrees
composed of the same operators. Instead of recomputing the result for such a subtree, we aim at
reusing the result. For this purpose we try to add additional communications as can be seen in
Figure 9.2. The processor that computes the left op1 in application 1 sends its result not only to
the processor that computes op2, but also to the processor that computes op4. The operator op1

on the right of application 1 no longer has to be computed. In the same way, we save the whole
computation of the subtree rooted by op2 in application 2 when we add the communication
between op2 in application 1 and op3 in application 2.

We give hereafter a brief overview of each heuristic:

1To ensure the reproducibility of our results, the code for all heuristics is available on the web:
http://graal.ens-lyon.fr/~vsonigo/code/query-multiapp/.

http://graal.ens-lyon.fr/~vsonigo/code/query-multiapp/
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Figure 9.2: Example for the reuse of nodes. op1 is only computed once and its result is reused for
the computation of op2 and op4. op3 uses the result of op2 in application 1 for its computation.

H1: RandomNoReuse

The RandomNoReuse heuristic does not reuse any result. While there are unassigned op-
erators, RandomNoReuse randomly picks one of them. If the father is already mapped, it
tries to map the operator on the father's processor, or it tries the children's processors, if those
are already mapped. If none of these mappings is possible, RandomNoReuse chooses a new
processor according to the processor selection strategy, and maps the operator. If this is not
possible, RandomNoReuse fails.

H2: Random

The Random random heuristic is more sophisticated as it tries to reuse common results. If the
randomly chosen operator has not already been mapped, possibly for another application, we
use the same mechanism as in RandomNoReuse: �rst try to map the operator on its father's
processor or one of the children's, and in case of failure choose a new processor. But, if the
operator has already been mapped somewhere else in the forest, we try to add a link from the
already mapped operator to the father of the actual operator to reuse the common result. When
this is possible, we mark the whole subtree (rooted at the operator) as mapped. Otherwise, we
choose a new processor.

H3: TopDownBFS

The TopDownBFS heuristic performs a breadth-�rst-search (BFS) traversal of all applications.
We use an arti�cial root node to link all applications, i.e., all application roots become children
of the arti�cial root. For each operator, we check whether the operator has not been mapped yet
and whether its father has. In this case, TopDownBFS tries to map the operator on the same
processor as its father, and in case of success continues the BFS traversal. In the case where
the actual operator has already been mapped onto one or more processors, TopDownBFS
tries to add a communication link between the mapped operator and the father of the actual
operator: the mapped operator sends its result not only to its father but also to the father of



120 CHAPTER 9. MULTIPLE CONCURRENT APPLICATIONS

the actual operator. If none of these two conditions holds, or if the mapping was not possible,
TopDownBFS tries to map the operator onto a new processor. The processor is chosen ac-
cording to the processor selection strategy. When the mapping is successful, the BFS traversal
is continued, otherwise TopDownBFS fails.

H4: TopDownDFS

The TopDownDFS heuristic uses the same mechanism as TopDownBFS, but operators are
treated in depth-�rst-search (DFS) manner. Thus, each time a mapping of a node is successful,
the heuristic continues the DFS traversal of the current application tree.

H5: BottomUpBFS

As the TopDownDFS heuristic, the BottomUpBFS heuristic makes a BFS traversal of the
application forest. For this purpose we use the same mechanism of a new arti�cial root that
links all applications. For each operator, BottomUpBFS veri�es whether it has already been
mapped on a processor. In this case a communication link is added (if possible), connecting the
mapped operator and the father of the unmapped operator. If the operator is not yet mapped
and if it has some children, we try to map the operator to one of its children's processors. If
no such possibility is successful, or if the operator is at the bottom of a tree, BottomUpBFS
tries to map the operator onto a new processor (where the processor is chosen according to
the processor selection strategy). When the mapping is successful, the BFS traversal continues,
otherwise BottomUpBFS fails.

H6: BottomUpDFS

The BottomUpDFS heuristic is similar to BottomUpBFS, but instead of a BFS traversal,
it performs a DFS traversal of the application forest. This makes the heuristic a little bit more
complicated, as there are more cases to be considered. For each node we check if its operator
has already been mapped on a processor, and none of its children are. In this case we go up
in the tree until we reach the last node n1 such that there exists a node n2 somewhere else in
the forest which is already mapped, and such that op(n1) = op(n2). In this case we try to add
a communication between n2 and the father of n1 to bene�t from the calculated result. If the
children have already been mapped we simply try to map the operator to one of the children's
processors. If this is not possible or if the additional communication was not possible or again
if the operator has not been mapped anywhere in the forest, BottomUpDFS tries to map
the operator onto a new processor, according to the processor selection strategy. Otherwise
BottomUpDFS fails.

9.5 Experimental Results

We have conducted several experiments to assess the performance of the di�erent heuristics
described in Section 9.4. In particular, we are interested in the impact of node reuse on the
number of solutions found by the heuristics.
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9.5.1 Experimental Plan

Except for Experiment 1, all application trees are �xed to a size of at most 50 operators, and
except for Experiment 5, we consider 5 concurrent applications. The leaves in the tree correspond
to basic objects, and each basic object is chosen randomly among 10 di�erent types. The size δ
of each object type is also chosen randomly and varies between 3MB and 13MB. The download
frequencies of objects for each application, f , as well as the application throughput, ρ, are
chosen randomly such that 0 < f ≤ 1 and 1 ≤ ρ ≤ 2. The parameters for operators are also
chosen randomly. In all experiments (except Experiment 4), the computation amount wi for an
operator lies between 0.5MFlop/sec and 1.5MFlop/sec, and the output size of each operator δi
is randomly chosen between 0.5MB and 1.5MB.

Throughout most of our experiences we use the following platform con�guration (variants
will be mentioned explicitly when needed.) We dispose of 30 processors. Each processor is
equipped with a network card, whose bandwidth limitation varies between 50MB and 180MB.
We use the same range for computation power, i.e., CPU speeds of 50MIPS to 180MIPS. The
di�erent processors are interconnected via heterogeneous communication links, whose bandwidth
are between 60MB/s and 100MB/s. The 10 di�erent types of objects are randomly distributed
over the processors. Execution time and communication time are scaled units, thus execution
time is the ratio between computation amount and processor speed, while communication time
is the ratio between object size (or output size) and link bandwidth.

To assess performances, we study the relative performance of each heuristic compared to the
best solution found by any heuristic. This allows to compare the cost, in amount of resources
used, of the di�erent heuristics. The relative performance for the heuristic h is obtained by:

1
|runs|

∑|runs|
r=1 ah(r), where ah(r) = 0 if heuristic h fails in run r and ah(r) = costbest(r)

costh(r) . costbest(r)
is the best solution cost returned by one of the heuristics for run r, and costh(r) is the cost
involved by the solution proposed by heuristic h. Note that in the de�nition of the relative
performance we do account for the case when a heuristic fails on a given instance. The number
of runs is �xed to 50 in all experiments. 2

9.5.2 Results

Experiment 1: Number of Processors

In a �rst set of experiments, we test the in�uence of the number of available processors, varying
it from 1 to 70. Figure 9.3(a) shows the number of successes of the di�erent heuristics using se-
lection strategy 3 (biggest remaining network card). Between 1 and 20 processors, the number of
solutions steeply increases for TopDownDFS, TopDownBFS and BottomUpBFS and for higher
numbers of processors all three heuristics �nd solutions for most of the 50 runs. BottomUpDFS
�nds solutions when more than 30 processors are available. Random already �nds solutions
when only 20 processors are available, but for the runs with more than 30 processors, it �nds
fewer solutions than BottomUpDFS. RandomNoReuse is not successful at all, it does not �nd
any solution. To summarize, TopDownBFS �nds the most solutions, shortly followed by Top-
DownDFS and BottomUpBFS. Comparing the success rates of the di�erent selection strategies,
all heuristics �nd the most solutions using strategy 3, followed by strategy 4, strategy 2, and
�nally strategy 1. But the di�erences are small. More interesting is the relative performance
of the heuristics using the di�erent processor selection strategies in comparison to the number

2 The complete set of �gures summarizing all experimental results is available on the web at
http://graal.ens-lyon.fr/~vsonigo/code/query-multiapp/diagrams/.

http://graal.ens-lyon.fr/~vsonigo/code/query-multiapp/diagrams/
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of solutions. Figure 9.4(a) shows the relative performance using strategy 3. Comparing with
Figure 9.4(b), we can conclude that for the same number of successful runs, the performances
of the heuristics signi�cantly di�er according to the selected processor selection strategy. Using
strategy 3 (and also strategies 2 and 4), TopDownDFS performs better than TopDownBFS,
which performs better than BottomUpBFS. However, BottomUpBFS outperforms both Top-
Down heuristics when strategy 1 is used. The performance of BottomUpDFS and of the random
ones mirrors exactly the number of successful runs. As for the heuristics without reuse of com-
mon subtrees, we see that they do not �nd results until at least 35 processors are available
(strategy 3) or even 60 (strategy 2). Independently of the processor selection strategy, both
TopDown heuristics outperform all other heuristics in success and performance, but the results
are poor (see Figure 9.3(b)).
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Figure 9.3: Experiment 1: Increasing number of processors. Number of successful runs.

Experiment 2: Number of Applications

In this set of experiments we vary the number of applications, K. As the number of application
increases, all heuristics are less successful with strategies 1 and 2 than with strategies 3 and
4, and relative performance is poorer as well. Regardless of the strategy used, both TopDown
heuristics show a better relative performance than BottomUpBFS, with the only exception
using strategy 1 with a small number of applications (Figure 9.5(a)). BottomUpDFS and both
random heuristics perform poorly. For instance, BottomUpDFS only �nds solutions with up to
4 applications. The best strategy seems to be strategy 3 in combination with TopDownBFS for
more than 10 applications and TopDownDFS for less than 10 applications (see Figure 9.5(b)).

Experiment 3: Application Size

When increasing the application sizes, strategy 3 is the most robust. Up to application sizes of
40 operators, the other strategies are competitive, but for applications bigger than 40 operators
both TopDown heuristics and BottomUpBFS achieve the best relative performance and �nd
the most solutions. The success ranking of the three heuristics is the same, independently
of the strategy: TopDownBFS �nds more solutions than TopDownDFS, which, in turn, �nds
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Figure 9.4: Experiment 1: Increasing number of processors. Relative performance.
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Figure 9.5: Experiment 2: Increasing number of applications.

more solutions than BottomUpBFS. RandomNoReuse �nds solutions for applications with fewer
than 20 operators, BottomUpBFS up to 40 operators and Random up to 50 operators, but the
number of solutions from the latter is poor. As far as relative performance is concerned, both
TopDown heuristics achieve the best results for application sizes bigger than 20 using strategy 3.
BottomUpDFS is competitive when using strategy 1 for applications smaller than 40 operators
(compare Figures 9.6(a) and 9.6(b)). As for the heuristics without reuse of common subtrees,
they no longer �nd results when application sizes exceed 40 operators. TopDown heuristics
perform better, and the best strategy is one of the two non-blocking ones (3 or 4).

Experiment 4: Communication-to-Computation Ratio (CCR)

For this experimental set we introduce a new parameter, the CCR, which is the ratio between
the mean amount of communications and the mean amount of computations, where the com-
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Figure 9.6: Experiment 3: Relative performance for increasing application sizes.

munications correspond to the output sizes of operators (δi) and the computations to the com-
putational volume wi of the operators. When increasing the CCR, strategies 3 and 4 react very
sensitively. As can be seen in Figure 9.7(a), TopDownBFS, TopDownDFS and BottomUpBFS
have a 100% success rate for CCR ≤ 60, but then the success decreases drastically until no so-
lution is found at all for a CCR of 180 (using strategy 2, TopDownBFS still �nds 32 solutions).
BottomUpDFS is largely outperformed by Random, and RandomNoReuse fails completely. In
this experiment, strategy 2 seems to be the most successful processor selection strategy (see
Figure 9.7(b)). TopDownBFS achieves the best results, followed by BottomUpBFS for CCR
< 120, and by TopDownDFS for CCR > 120. Interestingly, the relative performances of the
heuristics using the di�erent strategies do not directly mirror their success rates. Compare
Figures 9.8(a) and 9.8(b): BottomUpBFS �nds fewer solutions using strategy 1 than 2, but
its relative performance using strategy 1 and CCR smaller than 80 is better than when using
strategy 2. Furthermore, TopDownBFS using strategy 1 always �nds the most solutions of all
heuristics, but its relative performance is only the best when the CCR becomes bigger than 120.
Also, TopDownDFS �nds fewer solutions than TopDownBFS and BottomUpBFS using strategy
2 and CCR= 30, but its relative performance is the best.

Experiment 5: Similarity of Applications

In this last experiment, we use only two applications for each run and the processing platform
is smaller, consisting of only 10 processors. We study the in�uence on our heuristics when
applications are very similar or completely di�erent. For this purpose we create applications that
di�er in more and more operators. Strategies 1 and 2 are more sensitive to application di�erences
and we observe the following ranking for the success of the heuristics: strategy 3 > strategy 4
> strategies 1 and 2, which have similar success rates (compare Figures 9.9(a) and 9.9(b).) The
ranking of the heuristics within the di�erent strategies is the same: TopDownBFS is the most
successful, followed by TopDownDFS and BottomUpBFS. BottomUpDFS and Random keep
the fourth place, while RandomNoReuse fails. TopDownBFS has the best relative performance
using the blocking strategies, whereas in the non-blocking cases TopDownDFS achieves the best
results, which is important as its success rate is slightly poorer. BottomUpBFS always ranks at
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Figure 9.7: Experiment 4: Communication-Computation Ratio CCR. Number of successful runs.
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Figure 9.8: Experiment 4: Communication-Computation Ratio CCR. Relative performance.

the third position.

Summary of Experiments

Our results show that a random approach for multiple applications is not feasible. Neglecting
the possibility to reuse results from common subtrees dramatically limits the success rate and
also the quality of the solution in terms of cost. The TopDown approach turns out to be the
best, whereupon in most cases BFS traversal achieves the best result. The BottomUp approach
is only competitive using a BFS traversal. The DFS traversal seems unable to reuse results
e�ciently (it often �nds itself with no bandwidth left to perform necessary communications.)
Furthermore we see a strong dependency of the processor selection strategy on solution quality.
The blocking strategies outperform the non-blocking strategies when the CCR is large. In the
other cases, TopDownBFS in combination with strategy 3 proves to be a solid combination.
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Figure 9.9: Experiment 5: Similarity of applications.



Conclusion and Perspectives

10.1 Conclusion

In this thesis we have studied multi-criteria optimization problems for large-scale heterogeneous
platforms, focusing on streaming applications. Within this application �eld, we chose three
particular application classes and investigated them from a theoretical and practical approach.
In the following we detail our contributions.

10.1.1 Replica Placement

In the �rst part of this thesis, we have introduced and extensively analyzed two important
new policies for the replica placement problem. The Upwards and Multiple policies are natural
variants of the standard Closest approach, and it may seem surprising that they have not already
been considered in the published literature.

On the theoretical side, we have fully assessed the complexity of the Closest , Upwards and
Multiple policies, both for homogeneous and heterogeneous platforms. Not surprisingly, all three
policies turn out to be NP-complete for heterogeneous nodes, which provides yet another example
of the additional di�culties induced by resource heterogeneity. Furthermore, we have proven the
NP-completeness of Multiple for Replica Placement with QoS on homogeneous platforms,
and we provided an optimal algorithm for the problem with QoS and bandwidth constraints on
homogeneous platforms with the Closest policy.

On the practical side, we have designed several heuristics for the Closest , Upwards and Mul-
tiple policies, and we have compared their performance. To evaluate the absolute performance of
our algorithms, we have compared the experimental results to the optimal solution of an integer
linear program (ILP), and these results turned out quite satisfactory. Using our mono-criteria
heuristics, the impact of the new policies is impressive: (i) the number of trees which admit a
solution is much higher with the Upwards and Multiple policies than with the Closest policy;
(ii) for those problems which have a solution with the Closest policy, the replica cost is much
lower for the other two policies. In our experiments with QoS constraints, we have assessed
the impact of QoS constraints on the di�erent policies, and we have discussed which heuristic
performed best depending upon problem instances, platform parameters and QoS tightness.

10.1.2 Pipeline Work�ow Applications

In the second part, we have studied a di�cult bi-criteria mapping problem onto Fully Hetero-
geneous platforms. We restricted ourselves to the class of applications which have a pipeline
structure, and we have studied the complexity of the problem.

We have assessed the complexity of trading between period and latency, as well as between
response time and reliability. These criteria are among the most important ones for a typical
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user. Indeed, in the context of large scale distributed platforms such as clusters or grids, failure
probability becomes a major concern [31, 33, 28], and the bi-criteria approaches tackled in this
part enable to provide robust solutions while ful�lling user demands (minimizing latency under
some reliability threshold, or the converse; minimizing period under a latency constraint, or the
converse). We have shown that the more heterogeneity in the target platforms, the more di�cult
the problems.

In particular, the bi-criteria optimization problem for latency and failure probability is poly-
nomial for Fully Homogeneous, NP-hard for Fully Heterogeneous and remains an open problem
for Communication Homogeneous. Regarding period-latency optimization, the problem is poly-
nomial as long as there is not any heterogeneity, hence it is NP-complete for Communication
Homogeneous and Fully Heterogeneous platforms.

We provided several e�cient polynomial heuristics for Communication Homogeneous plat-
forms, either to minimize the period for a �xed latency, or to minimize the latency for a �xed
period.

A typical application class, the digital image coding where images are processed in steady-
state mode, has been considered as proof-of-concept. We have provided a detailed study of the
bi-criteria mapping (minimizing period and latency) of the JPEG encoder application pipeline
on a cluster of workstations. Experimental evaluations have then been carried out on generalized
data sets and machine con�gurations, as well as for the JPEG encoder application.

The results of the general experiments show that the e�ciency highly depends on platform
parameters such as number of stages and number of available processors. Simple mono-criterion
splitting heuristics perform very well when there is a limited number of processors, whereas
bi-criteria heuristics perform much better when increasing the number of processors. Overall,
the introduction of bi-criteria heuristics was not fully successful for small clusters but turned
out to be mandatory to achieve good performance on larger platforms. Also, we have derived
an ILP formulation of the bi-criteria optimization problem, which enabled us to assess the
absolute performance of the heuristics. The results were quite satisfactory on those (not so
many) instances for which we could compute the optimal solution in reasonable time. Finally,
we observed that the 2-Split technique always returned the optimal solution for the JPEG
encoder.

At the moment we are working on the study of the interplay between throughput, latency
and reliability, a very challenging algorithmic problem. We plan to perform real-life experiments
on heterogeneous platforms, using an already-implemented skeleton library, in order to compare
the e�ective performance of the application for a given mapping (obtained with our heuristics)
against the theoretical performance of this mapping.

10.1.3 Complex Streaming Applications

In the third part of this work, we have studied the operator mapping problem of in-network
stream-processing applications onto a collection of heterogeneous processors. These stream-
processing applications come as a set of operator trees, that have to continuously download
basic objects at di�erent sites of the network and at the same time have to process this data to
produce some �nal result.

First we have formalized the operator-placement problem focusing on a �constructive� sce-
nario in which one aims at minimizing the rental cost of a platform that satis�es an application
throughput requirement. The complexity analysis showed that all problems are NP-complete,
even for the simpler cases.
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Second we have considered the problem for multiple concurrent applications under a non-
constructive scenario, in which a �xed set of computation and communication resources is avail-
able and the goal is to minimize a cost function. Four di�erent optimization problems were
identi�ed. All are NP-hard but can be formalized as integer linear programs.

In both cases we have proposed several polynomial heuristics and we evaluated these heuris-
tics via extensive simulations. For single applications we assessed the absolute performance of
our heuristics with respect to the optimal solution of the linear program for homogeneous plat-
forms and small problem instances. The Subtree-bottom-up heuristic almost always produces
optimal results and almost always outperforms the other heuristics. In the case of multiple con-
current applications our experiments showed the importance of node reuse across applications.
Reusing nodes leads to an important number of additional solutions, and also the quality of the
solutions improves considerably. We concluded that top-down traversals of the application trees
is more e�cient than bottom-up approaches, and in particular the combination of a top-down
traversal with a breadth-�rst search (i.e., our heuristic TopDownBFS) achieved good results
across the board.

10.2 Perspectives

In the following we detail possible extensions to the three investigated application classes.

10.2.1 Extensions for the Replica Placement Problem

In this work, we have considered a simpli�ed instance of the replica problem and we outline
two important generalizations, namely dealing with several objects, and changing the objective
function.

With Several Objects

In this work, we have restricted the study of the problem to a single object, which means that
all replicas are identical (of the same type). We can envision a system in which di�erent types of
objects need to be accessed. The clients are then having requests of di�erent types, which can

be served only by an appropriate replica. Thus, for an object of type k, client i ∈ C issues r(k)
i

requests for this object. To serve a request of type k, a node must be provided with a replica
of that type. Nodes can be provided with several replica types. A given client is likely to have

di�erent servers for di�erent objects. The QoS may also be object-dependent (q
(k)
i ).

To re�ne further, new parameters can be introduce such as the size of object k and the
computation time involved for this object. Nodes parameters become object-dependent too, in
particular the storage cost and the time required to answer a request.

The server capacity constraint must then be a sum on all the object types, while the QoS
must be satis�ed for each object type. The link capacity also is a sum on the di�erent object
types, taking into account the size of each object.

There remains to modify the objective function: we simply aim at minimizing the cost of
all replicas of di�erent types that have been assigned to the nodes in the solution to get the
extended replica cost for several objects.

Because the constraints add up linearly for di�erent objects, it is not di�cult to extend
the linear programming formulation of Section 2.2 to deal with several objects. Also, the three
access policies Closest , Upwards and Multiple could naturally be extended to handle several
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objects. However, designing e�cient heuristics for various object types, especially with di�erent
communication to computation ratios and di�erent QoS constraints for each type, is a challenging
algorithmic problem.

More Complex Objective Functions

Several important extensions of the problem consist in having a more complex objective function.
In fact, either with on or with several objects, we have restricted so far to minimizing the cost
of the replicas (and even their number in the homogeneous case). However, several other factors
can be introduced in the objective function:

Communication cost � This cost is the read cost, i.e., the communication cost required to
access the replicas to answer requests. It is thus a sum on all objects and all clients of the
communication time required to access the replica. If we take this criteria into account in
the objective function, we may prefer a solution in which replicas are close to the clients.

Update cost � The write cost is the extra cost due to an update of the replicas. An update
must be performed when one of the clients is modifying (writing) some of the data. In
this case, to ensure the consistency of the data, we need to propagate the modi�cation
to all other replicas of the modi�ed object. Usually, this cost is directly related to the
communication costs on the minimum spanning tree of the replica, since the replica which
has been modi�ed sends the information to all the other replicas.

Linear combination � A quite general objective function can be obtained by a linear combi-
nation of the three di�erent costs, namely replica cost, read cost and write cost. As all
three objectives are cost objectives, they can naturally be combined in a single objective
function (in contrast to the antagonist criteria that was subject of this work). Informally,
such an objective function would write

α
∑

servers, objects

replica cost + β
∑

requests

read cost + γ
∑

updates

write cost

where the application-dependent parameters α, β and γ would be used to give priorities
to the di�erent costs.

Note that the extension to QoS constraints would imply to return to our threshold tech-
nique, where we �x one parameter and optimize for the other.

Again, designing e�cient heuristics for such general objective functions, especially in the
context of heterogeneous resources, is a challenging algorithmic problem.

10.2.2 Extensions for Work�ow Applications

In future work, we could extend our heuristics to fully heterogeneous platforms, which appears
to be challenging, even for a mono-criterion optimization problem. Indeed, because all link
bandwidths are di�erent, it seems hard to predict communication times as long as the mapping
is not fully constructed. Thus, it is not easy to determine a strategy capable of simultaneously
load balance computations while keeping communications under a prescribed threshold.

A natural extension of this work would be to consider other widely used skeletons. For
example, when there is a bottleneck in the pipeline operation due to a stage which is both
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computationally-demanding and not constrained by internal dependencies (such as the FDCT
stage of the JPEG encoder), we can nest another skeleton in place of this stage. For instance a
farm or deal skeleton would allow to split the workload of the initial stage among several proces-
sors. Using such deal skeletons may be either the programmer's decision (explicit nesting in the
application code) or the result of the mapping procedure. Extending our mapping strategies to
automatically identify opportunities for deal skeletons, and implement these, is a di�cult but
very interesting perspective.

10.2.3 Extensions for Concurrent Streaming Applications

In this work we have restricted the study to single applications in a constructive scenario and to
multiple concurrent applications in non-constructive conditions. Of course, we can also extend
our results and heuristics for multiple applications within a constructive scenario.

As future work, we could develop heuristics for the other optimization problems de�ned
in Section 9.1.4. We could also envision a more general cost function wi,u (time required to
compute operator i onto processor u), in order to express even more heterogeneity. This would
lead to the design of more sophisticated heuristics. Also, we believe it would be interesting to
add a storage cost for objects downloaded onto processors, which could lead to new objective
functions. Finally, we could address more complicated scenarios with many (con�icting) relevant
criteria to consider simultaneously, some related to performance (throughput, response time),
some related to safety (replicating some computations for more reliability), and some related to
environmental costs (resource costs, energy consumption).

10.3 Final Remarks

It was both challenging and rewarding to devote three years to all these multi-criteria optimiza-
tion problems. Here are some general concluding remarks from the lessons learnt during this
thesis:

• As both applications and platforms get more complex, it is less likely that we �nd new
polynomial problem instances. Combining many performance-related, safety-oriented or
environment-aware objectives, we expect most problems to become NP-hard. On the the-
oretical side, we can hope for approximation algorithms, or at least for e�cient heuristics
whose absolute performance is assessed through an absolute ILP lower bound.

• Designing scheduling algorithms for platforms with heterogeneous communication links is
an order of magnitude harder than for homogeneous links. This is because we no longer
have an analytical estimation of the current cost of the objective function as long as the
whole mapping is not �nalized. We need new ideas and approaches here!

• Reliability issues arise in several contexts. Consider work-stealing approaches where dif-
ferent users suddenly reclaim loaned resources, according to probabilities that di�er across
user categories. This corresponds well to situations where failure-heterogeneous processors
are expected to crash with di�erent probability factors. It may be interesting to revisit
both research areas and combine existing results.
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Appendix A

Algorithms

Pseudo-code for Replica Placement heuristics

Algorithm 9: Procedure CTDA

procedure CTDA (root, replica)
Fifo �fo;
�fo.push(root);
while �fo 6= ∅ do

s = �fo.pop();
if s /∈ replica then

if Ws ≥ inreqs & inreqs > 0 then
replica = replica ∪ {s};
foreach a ∈ Ancestors(s) do inreqa = inreqa − inreqs;

else
foreach i ∈ children(s) do

if i ∈ N then �fo.push(i);
end

end

end

end

1



2 APPENDIX A. ALGORITHMS

Algorithm 10: Procedure CBU

procedure CBU (s ∈ N , replica)
if atBottom(s) || allChildrenTreated(s) then

treateds = true;
if Ws ≥ inreqs & inreqs > 0 then

/* node can treat all children's requests */
replica = replica ∪ {s};
foreach a ∈ Ancestors(s) do inreqa = inreqa − inreqs;

else
/* node cannot treat all children's requests, go up in the tree */
if Ancestors(s) 6= ∅ then call CBU (parent(s), replica);

end

else
foreach i ∈ children(s) do

/* not yet at the bottom of the tree, go down */
if i ∈ N & treatedi then call CBU (i, replica);

end

end

Algorithm 11: Procedure deleteRequests

procedure deleteRequests (s ∈ N , numToDelete)
clientList = sortDecreasing(clients(s));
foreach i ∈ clientList do

if ri ≤ numToDelete then
numToDelete = numToDelete - ri;
foreach a ∈ Ancestors(i) do inreqa = inreqa − ri;
children(parent(i)) = children(parent(i)) \ {i};
if numToDelete == 0 then return;

end

end

Algorithm 12: Procedure UTDFirstPass

procedure UTDFirstPass (s ∈ N , replica)
if inreqs ≥ Ws & inreqs > 0 then

replica = replica ∪ {s};
treateds = true;
deleteRequests(s, Ws);

end
foreach i ∈ children(s) do

if i ∈ N then UTDFirstPass (i, replica);
end
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Algorithm 13: Procedure UTDSecondPass

procedure UTDSecondPass (s ∈ N , replica)
if s /∈ replica& inreqs > 0 then

replica = replica ∪ {s};
deleteRequests(s, inreqs);

else
foreach i ∈ children(s) do

if i ∈ N & inreqi > 0 then UTDSecondPass (i, replica);
end

end

Algorithm 14: Procedure UBU

procedure UBU (s ∈ N , replica)
clientList = sortDecreasing(clients(s);
foreach i ∈ clientList do

V alidAncests = {a ∈ Ancestors(i)|Wa ≥ ri};
if V alidAncests 6= ∅ then

a = MinWj{j ∈ V alidAncests};
if a /∈ replica then replica = replica ∪ {a};
Wa = Wa − ri;

end
else return no solution;

end

Algorithm 15: Procedure deleteRequestsInMTD

procedure deleteRequestsInMTD (s ∈ N , numToDelete)
clientList = sortDecreasing(clients(s));
foreach i ∈ clientList do

if ri ≤ numToDelete then
numToDelete = numToDelete - ri;
foreach a ∈ Ancestors(i) do inreqa = inreqa − ri;
children(parent(i)) = children(parent(i)) \ {i};

else
ri = ri - numToDelete;
foreach a ∈ Ancestors(i) do inreqa = inreqa − ri;
return;

end

end
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Algorithm 16: Procedure MBUFirstPass

procedure MBUFirstPass (s ∈ N , replica)
if atBottom(s) || allChildrenTreated(s) then

treateds = true;
if Ws ≤ inreqs & inreqs > 0 then

/* node is exhausted by the requests of its clients */
replica = replica ∪ {s};
deleteRequestsInMBU(s, Ws);

else
/* node is not exhausted, go up the tree */
if Ancestors(s) 6= ∅ then call MBU (parent(s), replica);

end

else
/* not yet at the bottom of the tree, go down */
foreach i ∈ children(s) do

if i ∈ N & treatedi then call MBU (i, replica);
end

end

Algorithm 17: Procedure MBUSecondPass

procedure MBUSecondPass (s ∈ N , replica)
if s /∈ replica & inreqs > 0 then

replica = replica ∪ {s};
deleteRequestsInMBU(s, inreqs);

else
foreach i ∈ children(s) do

if i ∈ N & inreqi > 0 then UTDSecondPass (i, replica);
end

end
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Notations

Replica Placement in Tree Networks

Chapters 1 - 3

T = N ∪ L distribution tree T
N set of internal nodes (possible servers)
C set of leaf nodes (clients)
L set of tree edges (links)
ri requests of client i, i ∈ C
qi QoS requirement for requests of client i

Wj processing capacity of node j, j ∈ N
scj price to pay to place a replica at node j (storage cost)

Servers(i) ⊆ N set of nodes provided with a replica and treating the requests of client i
comml communication time on link l
BWl bandwidth of link l

r root of the tree
children(j) set of children of node j, j ∈ N
parent(k) parent of node k, k ∈ N ∪ C

succ(l) if link l connects node k to k′ = parent(k), succ(l) denotes the link that
connects k′ to parent(k′)

Ancestors(k) ancestors of node k, i.e., the nodes in the unique path that leads from k
up to the root r (k excluded)

path[k → k′] path from k to k′

R set of replicas

Problems

Replica Placement general problem
Replica Counting homogeneous nodes

Replica Cost heterogeneous nodes
Replica Counting with QoS homogeneous nodes, QoS constraints

Replica Cost with QoS heterogeneous nodes, QoS constraints
Replica Cost with QoS and Bandwidth homogeneous nodes, QoS and bandwidth constraints
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Section 3.1.2

T ∗ tree
r+ root
t(v) subtree rooted by node v

t′(v) = t(v)− v forest of trees rooted at v's children
a(v, i) i'th ancestor of node v, traversing the tree up to the root
m(T ∗) minimum cardinality set of replicas that has to be placed in tree T

W processing capacity of a node
m(t(v)) minimum number of replicas that has to be placed in t′(v)
C(v, i) minimum number of requests on node a(v, i) contributed by t(v) by

placing m(t(v)) replicas in t′(v) and none on a(v, j) for 0 ≤ j < i
e(v, i) children of node v that have to be equipped with a replica such that

the remaining requests on node a(v, i) are within W , there are exactly
m(t(v)) replicas in t′(v) and none on a(v, j) for 0 ≤ j < i and the contribution
t(v) on a(v, i) is minimized

Pipeline Work�ow Applications

Chapters 4 - 6

n number of stages
Sk stage k
δk data input for stage k
wk number of computations of stage k

p number of processors
Pu processor u
fpu failure probability of Pu
su speed of processor Pu

linku,v bidirectional link between Pu and Pv
bu,v bandwidth of link linku,v

L latency
P period
FP failure probability
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Concurrent Streaming Applications

Chapter 8

N set of operators
ni operator i
wi computation amount for ni
δi output size of ni

OB set of basic objects
obk object k
δk size of obk
fk frequency of obk

ratek bandwidth consumption for the download of obk
Leaf (i) index set of the basic objects needed for the computation of ni, if any

Child(i) the index set of ni's children in N , if any
Parent(i) the index of ni's parent in N , if any

P set of processors
S set of servers
R set of resources P ∪ S
Sl server l
Pu processor u
Bsl network card bandwidth of Sl
Bpu network card bandwidth of Pu
bp bandwidth between two processors
bsl bandwidth between Sl and a processor
su compute speed of Pu

a(i) = u allocation function, denotes that ni is assigned to Pu
ā(u) index set of operators mapped on Pu

DL(u) set of (k, l) couples where Pu downloads obk from Sl
ρ application throughput
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Chapter 9

K number of applications

OP set of operators
opp operator p

operators(p) the index set of operators in OP whose intermediate results are needed
for the computation of opp, if any

OB set of basic objects
obj object j

objects(p) index set of the basic objects in OB that are needed for the computation
of opp, if any

n
(k)
i i-th internal node in the tree of application k

op(n(k)
i ) associated operator to n

(k)
i

ob(n(k)
i ) set of basic objects required by op(n(k)

i )

δj size of obj

f
(k)
j download frequency of obj in application k

rate
(k)
j bandwidth consumption for the download of obj for application k

wp computation amount for opp
δp output size of opp

P set of processors
Pu processor u

Bpu network card bandwidth of Pu
bpu,v bandwidth of the network link between Pu and Pv

su compute speed of pu

a(k, i) = u allocation function, denotes that n
(k)
i is mapped on Pu

ā(u) index set of operators mapped on Pu

ρ(k) throughput of application k

Ch(u) = {(p, v, k)} set of (operator, processor, application) tuples such that processor Pu
needs to receive an intermediate result computed by operator opp, which

is mapped to processor Pv, at rate ρ
(k);

operators opp are children of aop(u) in the operator tree.
Par(u) = {(p, v, k)} set of (operator, processor, application) tuples such that Pu needs to

send to Pv an intermediate result computed by operator opp at rate ρ
(k);

p ∈ aop(u) and the sending is done to the parents of opp in the operator tree.
DL(u) = {(j, v, k)} set of (object, processor, application) tuples where Pu downloads

object obj from processor Pv at rate ρ
(k).



Zusammenfassung:

Diese Arbeit befasst sich mit dem Scheduling von Work�ow-Anwendungen in hetero-
genen Plattformen. In diesem Zusammenhang betrachten wir drei verschiedene Arten
von Anwendungen:
Platzierung von Replikaten in Baumnetzwerken� Das erste Schedulingproblem interes-
siert sich für die Platzierung von Replikaten in Baumnetzwerken. Ein Beispiel hierfür ist
die Platzierung von Replikaten in verteilten Datenbanksystemen, deren Verbindungs-
struktur baumartig organisiert ist. Die Platzierung soll unter mehreren Constraints
(Serverkapazitäten, sowie Dienstgüte und Bandbreitenbeschränkungen) durchgeführt
werden. Die Client-Anfragen sind im Voraus bekannt, während Anzahl und Platzierung
der Server erst zu ermitteln sind. Die in der Literatur gängige Strategie erzwingt, dass
alle Anfragen eines Clients vom nächstgelegenen Server im Baum behandelt werden.
Es werden zwei neue Verfahrensweisen vorgestellt und untersucht. Ein Hauptbeitrag
besteht in der Bewertung der Auswirkung der beiden neuen Strategien auf die globalen
Replikationskosten. Ein weiteres wichtiges Ziel ist die Behandlung von Heterogenität
aus theoretischer und praktischer Sicht. Es werden verschiedene Komplexitätsergeb-
nisse erarbeitet und mehrere e�ziente Polynomialzeit-Heuristiken für NP-vollständige
Instanzen des Problems vorgestellt.
Lineare Work�ow-Anwendungen� Als nächstes werden Work�ow-Anwendungen behan-
delt, welche als lineare Graphen dargestellt werden können. Ein Beispiel dieses Appli-
kationstyps ist die digitale Bildverarbeitung, in der Bilder einer Pipeline verarbei-
tet werden. Dabei sollen verschiedene gegensätzliche Kriterien optimiert werden, wie
zum Beispiel Durchsatz und Latenzzeit, beziehungsweise eine Kombination der beiden,
oder auch Latenzzeit und Ausfallsicherheit der Anwendung (d.h. die Wahrscheinlich-
keit, dass die Verarbeitung erfolgreich ist). Während für vollhomogene Plattformen
polynomiale Algorithmen gefunden werden können, wird das Problem NP-hart, sobald
heterogene Plattformen angestrebt werden. Ein ganzzahliges lineares Programm für
letzteres Problem wird vorgestellt. Des weiteren werden verschiedene e�ziente poly-
nomiale bi-kritäre Heuristiken präsentiert, deren relative E�zienz durch umfangreiche
Simulationen eruiert werden. In einer Fallstudie werden Simulationen und MPI-basierte
Auswertungen für die JPEG-Encoder-Pipeline auf einem Rechen-Cluster erstellt.
Komplexe Streaming-Anwendungen� Als letztes wird die Ausführung von Anwendun-
gen, die als Operator-Bäume strukturiert sind, untersucht. Konkret bedeutet dies, dass
ein oder mehrere Operator-Bäume in stationärem Zustand auf mannigfaltige Daten-
objekte angewendet werden, welche fortlaufend an verschiedenen Stellen im Netzwerk
aktualisiert werden. Ein erstes Ziel ist es, dem Benutzer eine Gruppe von Rechnern
vorzuschlagen, die gekauft oder gemietet werden sollen, so dass die Anwendung einen
minimalen stationären Durchsatz erzielt und gleichzeitig Plattformkosten minimiert
werden können. Später wird das Modell auf mehrere Anwendungen erweitert: verschie-
dene nebenläu�ge Anwendungen werden zeitgleich in einem Netzwerk ausgeführt und
es gilt sicherzustellen, dass alle Anwendungen ihren Durchsatz erreichen können. Ein
weiterer Beitrag dieser Arbeit ist die Erstellung einer Komplexitätsanalyse für unter-
schiedliche Instanzen des Grundproblems, sowie die Formulierung verschiedener Instan-
zen als lineare Programme. Als dritten Beitrag werden für beide Anwendungsmodelle
verschiedene Polynomialzeit-Heuristiken präsentiert. Ein Hauptziel der Heuristiken für
nebenläu�ge Anwendungen ist die Wiederverwertung von Zwischenergebnissen, welche
von mehreren Anwedungen geteilt werden.
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Résumé :
Les travaux présentés dans cette thèse portent sur le placement et l'ordonnancement
d'applications de �ux de données sur des plates-formes hétérogènes. Dans ce contexte,
nous nous concentrons sur trois types di�érents d'applications :
Placement de répliques dans les réseaux hiérarchiques� Dans ce type d'application,
plusieurs clients émettent des requêtes à quelques serveurs et la question est : où doit-
on placer des répliques dans le réseau a�n que toutes les requêtes puissent être traitées.
Nous discutons et comparons plusieurs politiques de placement de répliques dans des
réseaux hiérarchiques en respectant des contraintes de capacité de serveur, de qualité
de service et de bande-passante. Les requêtes des clients sont connues a priori, tandis
que le nombre et la position des serveurs sont à déterminer. L'approche traditionnelle
dans la littérature est de forcer toutes les requêtes d'un client à être traitées par
le serveur le plus proche dans le réseau hiérarchique. Nous introduisons et étudions
deux nouvelles politiques. Une principale contribution de ce travail est l'évaluation
de l'impact de ces nouvelles politiques sur le coût total de replication. Un autre but
important est d'évaluer l'impact de l'hétérogénéité des serveurs, d'une perspective à la
fois théorique et pratique. Nous établissons plusieurs nouveaux résultats de complexité,
et nous présentons plusieurs heuristiques e�caces en temps polynomial.
Applications de �ux de données� Nous considérons des applications de �ux de données
qui peuvent être exprimées comme des graphes linéaires. Un exemple pour ce type
d'application est le traitement numérique d'images, où les images sont traitées en
régime permanent. Plusieurs critères antagonistes doivent être optimisés, tels que le
débit et la latence (ou une combinaison) ainsi que la latence et la �abilité (i.e. la
probabilité que le calcul soit réussi) de l'application. Bien qu'il soit possible de trouver
des algorithmes polynomiaux simples pour les plates-formes entièrement homogènes,
le problème devient NP-di�cile lorsqu'on s'attaque à des plates-formes hétérogènes.
Nous présentons une formulation en programme linéaire pour ce dernier problème. De
plus nous introduisons plusieurs heuristiques bi-critères e�caces en temps polynomial,
dont la performance relative est évaluée par des simulations extensives. Dans une étude
de cas, nous présentons des simulations et des résultats expérimentaux (programmés
en MPI) pour le graphe d'application de l'encodeur JPEG sur une grappe de calcul.
Applications complexes de streaming� Considérons l'exécution d'applications organi-
sées en arbres d'opérateurs, i.e. l'application en régime permanent d'un ou plusieurs
arbres d'opérateurs à données multiples qui doivent être mis à jour continuellement à
di�érents endroits du réseau. Un premier but est de fournir à l'utilisateur un ensemble
de processeurs qui doit être acheté ou loué pour garantir que le débit minimum de
l'application en régime permanent soit atteint. Puis nous étendons notre modèle aux
applications multiples : plusieurs applications concurrentes sont exécutées en même
temps dans un réseau, et on doit assurer que toutes les applications puissent atteindre
leur débit requis. Une autre contribution de ce travail est d'apporter des résultats de
complexité pour des instances variées du problème. La troisième contribution est l'éla-
boration de plusieurs heuristiques polynomiales pour les deux modèles d'application.
Un objectif premier des heuristiques pour applications concurrentes est la réutilisation
des résultats intermédiaires qui sont partagés parmi di�érentes applications.

Mots-clés :
Placement de répliques, graphe d'application linéaire, traitement de �ux de données,
placement d'opérateurs, réseaux hiérarchiques, optimisation multi-critère, résultats de
complexité, heuristiques, programme linéaire, plates-formes hétérogènes.



Abstract:
The results summarized in this document deal with the mapping and scheduling of
work�ow applications on heterogeneous platforms. In this context, we focus on three
di�erent types of streaming applications:
Replica placement in tree networks� In this kind of application, clients are issuing
requests to some servers and the question is where to place replicas in the network
such that all requests can be processed. We discuss and compare several policies to
place replicas in tree networks, subject to server capacity, Quality of Service (QoS) and
bandwidth constraints. The client requests are known beforehand, while the number
and location of the servers have to be determined. The standard approach in the
literature is to enforce that all requests of a client be served by the closest server in
the tree. We introduce and study two new policies. One major contribution of this
work is to assess the impact of these new policies on the total replication cost. Another
important goal is to assess the impact of server heterogeneity, both from a theoretical
and a practical perspective. We establish several new complexity results, and provide
several e�cient polynomial heuristics for NP-complete instances of the problem.
Pipeline work�ow applications� We consider work�ow applications that can be ex-
pressed as linear pipeline graphs. An example for this application type is digital image
processing, where images are treated in steady-state mode. Several antagonist crite-
ria should be optimized, such as throughput and latency (or a combination) as well
as latency and reliability (i.e., the probability that the computation will be success-
ful) of the application. While simple polynomial algorithms can be found for fully
homogeneous platforms, the problem becomes NP-hard when tackling heterogeneous
platforms. We present an integer linear programming formulation for this latter prob-
lem. Furthermore, we provide several e�cient polynomial bi-criteria heuristics, whose
relative performances are evaluated through extensive simulation. As a case-study, we
provide simulations and MPI experimental results for the JPEG encoder application
pipeline on a cluster of workstations.
Complex streaming applications� We consider the execution of applications structured
as trees of operators, i.e., the application of one or several trees of operators in steady-
state to multiple data objects that are continuously updated at various locations in
a network. A �rst goal is to provide the user with a set of processors that should be
bought or rented in order to ensure that the application achieves a minimum steady-
state throughput, and with the objective of minimizing platform cost. We then extend
our model to multiple applications: several concurrent applications are executed at the
same time in a network, and one has to ensure that all applications can reach their
application throughput. Another contribution of this work is to provide complexity
results for di�erent instances of the basic problem, as well as integer linear program
formulations of various problem instances. The third contribution is the design of
several polynomial-time heuristics, for both application models. One of the primary
objectives of the heuristics for concurrent applications is to reuse intermediate results
shared by multiple applications.

Keywords:
Replica placement, pipeline, in-network stream processing, operator mapping, tree
networks, multi-criteria optimization, complexity results, heuristics, linear program,
heterogeneous platforms.
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