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Abstract

Code injection attacks like the one used in the high-profile 2017 Equifax breach, have
become increasingly common, ranking at the top of OWASP’s list of critical web application
vulnerabilities. The injection attacks can also target embedded applications running on
processors like ARM and Xtensa by exploiting memory bugs and maliciously altering the
program’s behavior or even taking full control over a system. Especially, ARM’s support of
low power consumption without sacrificing performance is leading the industry to shift
towards ARM processors, which advances the attention of injection attacks as well.

In this thesis, we are considering web applications and embedded applications (running on
ARM and Xtensa processors) as the target of injection attacks. To detect injection attacks
in web applications, taint analysis is mostly proposed but the precision, scalability, and
runtime overhead of the detection depend on the analysis types (e.g., static vs dynamic,
sound vs unsound). Moreover, in the existing dynamic taint tracking approach for Java-
based applications, even the most performant can impose a slowdown of at least 10–20%
and often far more. On the other hand, considering the embedded applications, while some
initial research has tried to detect injection attacks (i.e., ROP and JOP) on ARM, they suffer
from high performance or storage overhead. Besides, the Xtensa has been neglected though
used in most firmware-based embedded WiFi home automation devices.

This thesis aims to provide novel approaches to precisely detect injection attacks on both
the web and embedded applications. To that end, we evaluate JavaScript static analysis
frameworks to evaluate the security of a hybrid app (JS & native) from an industrial partner,
provide RIVULET – a tool that precisely detects injection attacks in Java-based real-world
applications, and investigate injection attacks detection on ARM and Xtensa platforms
using hardware performance counters (HPCs) and machine learning (ML) techniques.

To evaluate the security of the hybrid application, we initially compare the precision,
scalability, and code coverage of two widely-used static analysis frameworks—WALA and
SAFE. The result of our comparison shows that SAFE provides higher precision and better
code coverage at the cost of somewhat lower scalability. Based on these results, we analyze
the data flows of the hybrid app via taint analysis by extending the SAFE’s taint analysis
and detected a potential for injection attacks of the hybrid application.

Similarly, to detect injection attacks in Java-based applications, we provide Rivulet which
monitors the execution of developer-written functional tests using dynamic taint tracking.
Rivulet uses a white-box test generation technique to re-purpose those functional tests to
check if any vulnerable flow could be exploited. We compared Rivulet to the state-of-the-art
static vulnerability detector Julia on benchmarks and Rivulet outperformed Julia in both
false positives and false negatives. We also used Rivulet to detect new vulnerabilities.
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Moreover, for applications running on ARM and Xtensa platforms, we investigate ROP1

attack detection by combining HPCs and ML techniques. We collect data exploiting real-
world vulnerable applications and small benchmarks to train the ML. For ROP attack
detection on ARM, we also implement an online monitor which labels a program’s execution
as benign or under attack and stops its execution once the latter is detected. Evaluating
our ROP attack detection approach on ARM provides a detection accuracy of 92% for the
offline training and 75% for the online monitoring. Similarly, our ROP attack detection on
the firmware-only Xtensa processor provides an overall average detection accuracy of 79%.

Last but not least, this thesis shows how relevant taint analysis is to precisely detect injection
attacks on web applications and the power of HPC combined with machine learning in the
control flow injection attacks detection on ARM and Xtensa platforms.

1ROP represents both ROP and JOP
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Chapter 1

Introduction

In the high-profile 2017 Equifax attack, millions of individuals’ private data was stolen,
costing the firm nearly one and a half billion dollars in remediation efforts [130]. This attack
leveraged a code injection exploit in Apache Struts (CVE-2017-5638) and is just one of over
9,711 similar code injection exploits discovered in recent years in popular software [100].
Code injection vulnerabilities have been exploited in repeated attacks on US election sys-
tems [143, 51, 95, 24], in the theft of sensitive financial data [132], and in the theft of millions
of credit card numbers [78]. In the past several years, code injection attacks have persistently
ranked at the top (#1 until 2021) of the Open Web Application Security Project’s (OWASP)
top ten most dangerous web flaws [105]. SQL injection and cross-site scripting (XSS) attacks
are the most widely used injection attacks in web applications.

The injection attack is also targeting the fast-growing mobile and internet of things (IoT)
applications by exploiting memory bugs and maliciously altering the program’s behavior
or even taking full control over a system. Memory exploitation can be done by writing new
machine code into the vulnerable program’s memory or by reusing existing code. The latter
is imperative when a protection technique known as W ⊕ X [1] is applied, which stipulates
that memory is either writable or executable (but not both). Return-oriented programming
(ROP) [25] is a code-reuse injection attack technique that exploits a software vulnerability
by chaining existing gadgets (small snippets of code ending in a return opcode) together
in arbitrary ways. The Advanced RISC Machine (ARM) and a highly customizable and
configurable Tensilica Xtensa processors which are widely used in many Internet of Things
(IoT) and embedded devices are now becoming a more appealing target of ROP attacks
to acquire the capability to control a system’s behavior. In general, injection attack has a
broad application area that can be damaging even for applications that are not traditionally
considered critical targets, such as personal websites, because attackers can use them as
footholds to launch more complicated attacks.

In a code injection attack, an adversary crafts a malicious input that gets interpreted by the
application as code rather than data or overflows the stack buffer to divert the control flow
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of the system in case of the code-reuse injection attacks. To catch such injection exploits,
researchers have proposed different approaches depending on the platforms where the
injections are applied. In this thesis, we are considering the injection attacks detection on
web applications and embedded applications running on ARM or Xtensa processors.

To detect the code injection exploits on web applications such as SQL injection and cross-site
scripting (XSS), taint analysis is a typical technique that is mostly proposed. Taint analysis
detects security vulnerabilities [157, 140], by analyzing how user input originated from
untrusted sources flows throughout the application. As a result, it has attracted much
attention from both the research community and industry. However, appropriate (precise
and scalable) security analysis tools are required to correctly evaluate the security of web
applications. Besides, depending on the size and complexity of the vulnerable applications
static or dynamic analysis can be applied, and considering the existing dynamic taint
analysis approaches for java-based applications, most of them have prohibitive runtime
overheads: even the most performant can impose a slowdown of at least 10–20% and often
far more [32, 17, 76, 45]. Although black-box fuzzers can be connected with taint tracking to
detect vulnerabilities in the lab, it is difficult to use these approaches on stateful applications
or those that require structured inputs [77, 58].

Similarly, to detect the injection attacks that exploit memory bugs on embedded applications
(e.g., ROP and its sibling jump-oriented programming (JOP) [22]) some techniques have been
proposed for the applications running on ARM. The techniques try to enforce control flow
integrity (CFI) via dynamic binary instrumentation (DBI) [65, 112] or the ARM CoreSight
debugger [83, 84, 85, 103, 102], supplemented with meta-data collected by static analysis.
However, the techniques that use dynamic instrumentation suffer from high performance
overhead while those that use the ARM CoreSight debugger suffer from high storage
overhead. Besides, the hardware monitor that uses the hardware debugger could drop
traces given a sufficiently high branch rate since the monitor requires more time to process
a trace than the rate at which branches occur on the target processor [41]. Therefore
investigating whether another line of defense can detect ROP attacks on ARM accurately
and precisely with low performance and storage overhead is advisable. Similarly, although
Xtensa is also vulnerable to ROP attacks, it has only been investigated rudimentary. Hence
investigation of ROP attack detection mechanisms on this platform is also interesting since
Xtensa is used in almost every firmware-based embedded WiFi home automation device.

In this thesis, we propose novel approaches to detect injection attacks on different platforms
precisely with low performance and/or storage overhead. In general, we answer the
following research questions: RQ1. How to precisely detect code injection attacks on
web applications using taint analysis? RQ2. How HPC combined with machine learning
techniques can detect injection (control flow) attacks on embedded applications running on
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ARM or Xtensa processors? Our work comprises the following three published papers [168,
60, 104] and one submitted paper [170] each of which contributes to the precise detection of
the injection attacks as presented in this thesis:

To answer the RQ1, we considered static analysis for security evaluation of a complex
hybrid app (JavaScript and native) provided by an industrial partner, and dynamic taint
tracking combined with existing tests for injection attacks detection on Java-based web
applications.

Static Security Evaluation [168]: To precisely detect injection attacks on the hybrid indus-
trial application, we initially compare the precision, scalability and code coverage of two
widely-used JavaScript static analysis frameworks—WALA [121, 142] and SAFE [82, 116].
The reason behind the comparison is to choose the analysis tool that can precisely evaluate
the security of the web application with tolerable scalability as security analysis mainly
depends on the precision of the points-to analysis approach. Moreover, as the hybrid
app is very complex with large code size, we choose static analysis to cover all possible
flows and prevent the runtime overhead of the dynamic analysis. Since WALA and SAFE
use different ways of intermediate representations, the comparison of the analyzers is not
straightforward. Thus, we integrate WALA’s analysis into SAFE to extract appropriate
elements for the comparison. After that, we select objects and global variables of the user
program that are registered for the same source location in both analyzers. To appropriately
evaluate the precision of the analyzers, we first select all equivalent user objects and variable
references. Then, we compute the average points-to set sizes over all fields (i.e., pointer
keys) of the selected user objects and variable references. The precision evaluation using the
hybrid app and other 12 benchmarks [74, 168] results in 1.073 and 1.93 average points-to
set sizes for SAFE and WALA, respectively. We also evaluate their scalability and code
coverage by measuring the analysis time and the number of object fields having non-empty
points-to set size, respectively. For all benchmarks WALA requires less time to finish the
analysis, indicating that it is relatively more scalable but it gives lower coverage. The
evaluation indicates that SAFE provides higher precision and better code coverage at the
cost of tolerable lower scalability. Hence, as the precision of the points-to analysis has a
higher impact on the security evaluation, we choose SAFE for our security analysis of the
hybrid app.

The hybrid industrial app is structured in the form of Node.js modules that reside in
different paths of the project and cannot be analyzed by SAFE directly, as it requires all code
to be present in one directory. Thus, we contribute simplePack, a source code transformation
tool that bundles module dependencies in a way that is more suitable for static analysis. We
compare simplePack to Browserify [5] by measuring the precision and recall of their bundled
programs’ static callgraph in WALA. The evaluation shows that simplePack displays better
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precision and recall overall. The hybrid app, built on a middleware platform, includes more
than 300 modules and contains more than 230,000 lines of code, which makes a direct whole
program static analysis almost impossible. Hence we modeled the platform functions in
SAFE and removed parts of the code not relevant to the main task of the app while keeping
its major semantics and features.

Then, we extended the SAFE’s taint analysis to detect code injection attacks due to any
untrusted flow including objects containing tainted fields rather than only tainted primitive
values. We also model the JSON.stringify function, which acts as an input sanitizer by
changing the input value or object to a non-executable JSON string. Note that this func-
tion just acts as a prototypical sanitizer to evaluate whether our approach can support
sanitization. Which function may act as a sanitizer depends heavily on the semantics of
the sink. Security evaluation of four independently executed programs of the hybrid app
using our extended SAFE’s taint analysis approach detected untrusted (tainted) objects at
the sink for the two tests. For the other two, the untrusted user input was not detected
at the sink since the tainted value was sanitized before reaching the sink. In general, the
evaluation of the hybrid app using the more precise points-to analysis of SAFE and its
extended taint analysis manifests that there is a potential for injection attacks, as tainted
objects may reach the sink without being sanitized. However, we could not exploit these
vulnerabilities because the hybrid app uses a strong attack protection mechanism on the
server-side. The detailed approach and result of our evaluation are published in our SAC’19
paper [168] which constitutes Chapter 3 of this thesis.

RIVULET [60]: Our key idea to detect injection attacks on the Java-based vulnerable
applications is to use dynamic taint tracking before deployment to amplify developer-
written tests to check for injection vulnerabilities. These integration tests typically perform
functional checks. Our approach re-executes these existing test cases, mutating values that
are controlled by users (e.g., parts of the test’s HTTP requests) and detecting when these
mutated values result in real attacks. To our knowledge, this is the first approach that
combines dynamic analysis with existing tests to detect injection attacks.

Key to our test amplification approach is a white-box context-sensitive input generation
strategy. For each user-controlled value, state-of-the-art testing tools generate hundreds of
attack strings to test the application [109, 108, 77]. By leveraging the context of how that
user-controlled value is used in security-sensitive parts of the application, we can trivially
rule out most of the candidate attack strings for any given value, reducing the number of
values to check by orders of magnitude. Our testing-based approach borrows ideas from
both fuzzing and regression testing, and is language agnostic.

When applied to the version of Apache Struts exploited in the 2017 Equifax attack, Rivulet
quickly identifies the vulnerability, leveraging only the tests that existed in Struts at that
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time. We compared RIVULET to the state-of-the-art static vulnerability detector Julia on
benchmarks, finding that RIVULET outperformed Julia in both false positives and false
negatives. We also used Rivulet to detect new vulnerabilities. The detail of our work is well
expressed in our ICSE 2020 paper [60] and it covers Chapter 4 of this thesis.

To answer the RQ2, we separately investigate the injection attack detection on ARM and
Xtensa platforms.

Injection Attack Detection on ARM [170]: To detect ROP and JOP attacks on ARM, we
combined the HPC and machine learning techniques. Note that the myriad of HPC events
on ARM differs from x86, as well as the execution model (e.g., there is no dedicated return
opcode on ARM). The HPCs count the occurrence of certain hardware events in the ARM
processor when executing a program, but it has not been investigated whether the events for
normal and ROP attack executions differ significantly enough to enable automatic detection.
We create a machine learning model of the behavior on ARM-based Raspberry Pi machines
to address this question empirically.

Our machine learning approach computes models for runtime monitoring. The offline
training examines several machine learning techniques and generates a set of classification
models from HPC training data collected during benign executions and attacks. On top of
previous work, we developed a tracer that starts the recording of HPC events of executions
with injected code only when the actual attack commences (i.e., the first gadget of the exploit
executes), which improves the classifier’s accuracy by 12%. The runtime monitor contains
a modified program loader, a kernel module and a classifier. The program loader configures
the CPU using the tool perf as to track the set of HPCs required for the trained classifier,
the kernel module computes the delta of these HPCs each time an interrupt occurs and
feeds these values to the machine learning-based classifier, which labels the recent program
execution as an attack or benign.

To obtain an optimal classification model our approach trains models using multiple ma-
chine learning approaches. Of eight machine learning techniques examined, the optimal
classification model of offline training – SVM with a RBF kernel – displays 92% and 91%
accuracy for Raspberry Pi 4 and Pi 3, respectively. Leveraging this optimal classifier we
evaluate ROP attack detection via runtime monitoring on Raspberry Pi using 15 exploits
(based on four ROP attack variants) of real-world vulnerable applications. The detection of
these attacks at runtime provides 75% accuracy, and we will elaborate on possible technical
reasons for that difference. The detail of our ROP attack detection approach and evaluation
result on the ARM platform has been submitted as a conference paper to COMPSAC2023
and constitutes Chapter 5 of this thesis.
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Injection Attack Detection on Xtensa [104]: we present the first detection of ROP, and
its variant Jump-oriented programming (JOP), in a firmware-only environment (based on
the Xtensa platform) using hardware performance counters (HPCs). Our approach depends
on the variations in the HPC micro-architectural events triggered by ROP and normal
program execution. We implemented attack scenarios using instrumented programs and
exploits that perform operations similar to those in known microprocessor benchmark
programs. Recorded micro-architectural events were used to train machine learning binary
classifiers. The learned model identifies relevant HPCs, which could serve as predictors
of ROP/JOP execution even in configurations where features non-typical to conventional
processors, like instruction memory and data memory, are available. Our evaluation results
also indicate a high precision, recall, and accuracy of the classifier predictions. The result of
our investigation is published in SAC’22 [104] and is presented in Chapter 6 of this thesis.

Last but not least, this doctoral thesis deals with injection attack detection on web appli-
cations using taint analysis and detection of ROP and JOP attacks combining HPC and
machine learning on ARM and Xtensa processors. We choose SAFE which provides a precise
points-to-analysis approach to evaluate the security of a JavaScript-based industrial hybrid
app by extending its taint analysis. For the detection of Java-based applications, we provide
RIVULET, which combines the power of human developers’ test suites and automated
dynamic taint analysis. Similarly, for applications running on ARM and Xtensa platforms,
we investigated the detection and prevention of ROP and JOP attacks by combining HPC
and machine learning. So, this thesis shows how relevant taint analysis is for injection attack
detection on web applications and the power of HPC combined with machine learning in
the control flow injection detection on ARM and Xtensa platforms.
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1.1 Thesis contributions
This section summarizes the major contributions of this thesis as follows:

1. Security evaluation of an industrial hybrid app from a partner company using static
taint analysis which contains the following sub-contributions.

• A comparison of JavaScript static analyzers (WALA’s and SAFE’s) points-to
analysis using equivalent user-defined objects.

• A framework-agnostic module bundler suitable for static analysis, which we
compare against the off-the-shelf bundler Browserify.

• Security analysis of the hybrid industrial app by extending the SAFE’s taint
analysis to support tainted complex objects rather than tainted primitive values.

2. Revealing injection vulnerabilities by leveraging existing tests for java based web ap-
plications using dynamic taint analysis. This covers the following sub-contributions.

• A technique for re-using functional test cases to detect security vulnerabilities in
java based applications using dynamic analysis

• Context-sensitive mutational input generators for SQL, OGNL, and XSS that
handle complex, stateful applications

• Embedded attack detectors to verify whether rerunning a test with new inputs
leads to valid attacks.

3. Detecting and preventing ROP attacks using machine Learning and HPC on ARM
platforms covering the following sub-contributions.

• Control-flow attack detection on the ARM platform using HPCs and machine
learning techniques consisting of offline training and runtime monitoring.

• A debugger (tracer) that selectively records the actual attack section of a program
subject to a control flow attack to improve the classification model.

• Creation of a benchmark of 15 exploits (of four ROP variants) for the ARM
platform (i.e., Raspberry Pi) from 8 real-world vulnerable applications leveraged
for the offline training and online monitoring.

• An evaluation of eight machine learning techniques to find the optimal classifica-
tion model for ROP attack detection on ARM platform.

4. Detecting ROP attacks on firmware-only embedded devices using machine learning
and HPCs. This includes the following sub-contributions.

• Show how ROP and JOP attacks could be orchestrated on Xtensa processors
• Present the first practical work on detecting ROP and JOP attacks in a firmware-

only embedded system using HPC and Machine learning.
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1.2 Publications
This thesis covers the following previously published papers in proceedings of peer-
reviewed international conferences:

1. Gebrehiwet B. Welearegai, Max Schlueter, and Christian Hammer. Static security
evaluation of an industrial web application. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pages 1952–1961, 2019.

In this paper we propose a novel approach to compare the precision, scalability
and code coverage of two widely-used static analysis frameworks—WALA and
SAFE—together with simplePack, which analyzer-agnostically bundles dependent
modules, enabling a fair comparison. Then we analyze the data flows of a hybrid
app (from a partner company) by extending SAFE’s taint analysis. This paper forms
Chapter 3 of the thesis.

2. Katherine Hough, Gebrehiwet Welearegai, Christian Hammer, and Jonathan Bell.
Revealing injection vulnerabilities by leveraging existing tests. In Proceedings of the
International Conference on Software Engineering(ICSE), 2020.

This paper describes a new approach for detecting injection vulnerabilities in ap-
plications by harnessing the combined power of human developers’ test suites and
automated dynamic analysis. Chapter 4 provides more detail on this work.

3. Gebrehiwet B. Welearegai, Chenpo Hu, and Christian Hammer. Detecting and Pre-
venting ROP Attacks using Machine Learning on ARM. Submitted to 47th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE, 2023

In this paper, we investigate whether ROP attack detection and prevention based
on hardware performance counters (HPC) and machine learning can be effectively
transferred to the ARM architecture. The detail of the this paper is presented in
Chapter 5 of this thesis.

4. Adebayo Omotosho, Gebrehiwet B. Welearegai, and Christian Hammer. Detecting
return-oriented programming on firmware-only embedded devices using hardware perfor-
mance counters. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, pages 510–1519, 2022

we present the first detection of ROP, and its variant Jump-oriented programming
(JOP), in a Xtensa based firmware-only environment using hardware performance
counters (HPCs). This paper forms Chapter 6 of the thesis.
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Publication not covered in this thesis:

1. Gebrehiwet B. Welearegai and Christian Hammer. Idea: Optimized automatic sanitizer
placement. Engineering Secure Software and Systems: 9th International Symposium,
ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings 9. Springer International
Publishing, 2017.

This paper is an extension of my master’s thesis which is published while doing my
PhD study. The paper presents an optimized automatic sanitizer placement to support
the developers who face the burden of sanitizer placement.

1.3 Thesis Outline
The rest of this thesis is structured as follows: Chapter 2 provides definitions of the concepts
introduced above and lays the foundation for the remaining chapters. In particular, injection
attack approaches (XSS, SQL, ROP, JOP) and the platforms (Web, ARM, Xtensa) where the
analyses are performed. Moreover, different analysis techniques such as pointer analysis,
taint analysis, and machine learning are explained.

The main body is composed of Chapters 3, 4 and 6 which are the result of published research
and Chapter 5 which contains the contents of a submitted research work. At the high-level
Chapter 3 and 4 mainly focuses on the detection of injection attacks (such as XSS and SQL)
on web applications whereas Chapter 5 and 6 focus on the detection of control flow injection
attacks (such as ROP and JOP) on embedded applications running on ARM and Xtensa
processors, respectively.

In particular, Chapter 3 presents the evaluation of JavaScript static analysis frameworks and
the security evaluation of a real-world hybrid application using the selected precise static
analysis framework during the comparison of the tools. Chapter 4 presents an injection
attack detection approach combining the power of human developers’ test suites and
automated dynamic analysis.

Chapter 5 examines how to detect control flow injection attacks (ROP and JOP) on ARM
processors using hardware performance counters (HPCs) and machine learning. Online
monitoring based on an optimal model generated by offline training is used to detect the
control flow injection attacks. Chapter 6 also presents the ROP and JOP attack detection
using HPC and machine learning but now focuses on Firmware-Only Embedded Device
Using Xtensa processors.

Last but not least, Chapter 7 presents the related works of injection attack detection on
different platforms. Chapter 8 and 9 provides the conclusion and future research direction
of this thesis, respectively.
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Chapter 2

Background

2.1 Injection Attacks
Injection vulnerabilities allow an attacker to supply untrusted input to a program, which
gets processed by an interpreter as part of a command or query which alters the course of
execution of that program. Injection attacks come in a variety of flavors, as attackers may
be able to insert different kinds of code into the target application.

SQL Injection (SQLI) is the most classic type of injection attack where attackers can control
the contents of an SQL statement. For instance, consider this Java-like code snippet that
is intended to select and then display the details of a user from a database: execQuery
("SELECT * from Users where name = '" + name + "'");. If an attacker can
arbitrarily control the value of the name variable, then they may perform a SQL injection
attack. For instance, the attacker could supply the value name = "Bob' OR '1'='1"

which, when joined to the query string will produce where name = 'Bob' OR '1'='1

', which would result in all rows in this user table being selected. SQLI attacks may result
in data breaches, denial of service attacks, and privilege escalations.

Remote Code Execution (RCE) attacks are a form of injection attacks where an attacker
can execute arbitrary code on an application server using the same system-level privileges
as the application itself. Command injection attacks are a particularly dangerous form of
RCE where an attacker may directly execute shell commands on the server. Other RCE
attacks may target features of the application runtime that parse and execute code in other
languages such as J2EE EL [106] or OGNL [151, 152].

Cross-site Scripting (XSS) attacks are similar to RCE, but result in code being executed
by a user’s browser, rather than on the server. XSS attacks occur when a user can craft a
request that inserts arbitrary HTML, JavaScript code, or both into the response returned
by the server-side application. Such an attack might hijack a user’s session (allowing the
attacker to impersonate the user on that website), steal sensitive data, or inject key loggers.
Server-side XSS attacks may be reflected or persistent. Reflected XSS attacks are typically used
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in the context of a phishing scheme, where a user is sent a link to a trusted website with the
attack embedded in the link. Persistent XSS attacks occur when a payload is stored in the
host system (e.g., in a database) and is presented to users who visit the compromised site.

Code reuse attacks are another form of injection attacks that exploit memory bugs by
maliciously altering the program’s behavior in applications written in low-level languages
like C or C++. The code reuse attack can even take full control over the control-flow of the
applications. The memory exploitation can be done directly by injecting a new machine
code into the vulnerable program’s memory. However, direct injection is not mostly possible
since a protection technique known as W

⊕
X [1], which ensures that memory is either

writable or executable (but not both), is applied. Hence, attackers can use existing code
in the code or libc section of the stack to indirectly inject code and divert the program’s
control flow. Return-into-libc (RILC) [133] is a relatively simple code-reuse attack in which
an adversary uses a buffer overflow to overwrite part of the stack with return addresses and
parameters for a list of functions within libc. By doing so control is sent to the beginning
of an existing libc function, such as system(). To achieve greater expressiveness, return-
oriented programming (ROP) [25] was introduced to exploit software vulnerability by
chaining existing gadgets (small snippets of code ending in ret) together in arbitrary ways.
Section 2.7 presents a detailed explanation of how ROP attack works on ARM platforms.

2.2 Points-to Analysis
A points-to analysis is a static code analysis that attempts to determine the possible values of
a pointer or heap reference in a program. There are several pointer analysis algorithms, but
the most common pointer analysis algorithms are Andersen [7] and Steensgaard [145]. The
Andersen-style pointer analysis is expressed as subset constraints. In contrast, Steensgaard-
style pointer analysis uses equality constraints. Specifically, it treats every input program
statement as an indication that some points-to-sets should be unified, i.e., become one [136].
The Andersen-style analysis is slower but more precise than Steensgaard-style. Table 2.1
illustrates the constraints of both algorithms. In the table entries loc(x) and pts(x) indicate
the location (address) of x and points-to-set of x, respectively.

TABLE 2.1: Andersen and Steensgaard constraints

Constraint Andersen Steensgaard
Type

Assignment
Constraint Meaning Constraint Meaning

Base a = &b a ⊇ {b} loc(b)∈pts(a) a= {b} loc(b)∈pts(a)
Simple a=b a⊇b pts(a)⊇pts(b) a=b pts(a)=pts(b)

Complex a = *b a⊇*b
∀v∈pts(b).

a = *b
∀v∈pts(b).

pts(a)⊇ pts(v) pts(a)= pts(v)

Complex *a = b *a⊇b
∀v∈pts(a).

a = *b
∀v∈pts(a).

pts(v)⊇ pts(b) pts(v)= pts(b)
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1 //u r l==ht tps : / / . . . # name=<s c r i p t>a l e r t (” xss ” )</s c r i p t>
2 var u r l = document .URL
3 var pos = u r l . indexOf ( ”name=” ) +5
4 document . wri te ( u r l . subs t r ing ( pos , u r l . length ) )
5

FIGURE 2.1: Taint analysis example

A points-to analysis algorithm can be either flow-sensitive or flow-insensitive. The flow-
sensitive analysis takes into account the order in which the statements in the program
may be executed. The program is handled as a sequence of statements and the memory
location where pointer expression may refer to is computed for each statement, i.e., it is
statement level analysis. On the other hand, the flow-insensitive analysis does not take into
account the order rather the program is handled as a set of statements. Hence, it computes
the memory locations where pointer expressions may refer to, at any time in the program
execution, i.e., it is program level analysis.

2.3 Taint Analysis
Taint analysis emerged as a useful technique for discovering security vulnerabilities in web
applications [157]. Security taint analysis is an information-flow analysis that automatically
detects flows of untrusted user input to security-sensitive computations (integrity viola-
tions) or flows of private information into computations that expose it to public observers
(confidentiality violations) [140]. The starting point of taint analysis is typically a data
source API call. For instance, consider the code sample in Figure 2.1 which is vulnerable to
a DOM-based XSS attack. The variable name could contain malicious JavaScript code in
a script tag that is then executed by document.write. Considering document.URL as a
source and document.write as a sink, the taint analysis raises an alarm that untrusted
user input is flowing into a sink. An application developer can endorse untrusted inputs
via sanitization1 functions, which the taint analysis needs to consider, in order to reduce the
number of false positives.

2.4 JavaScript Static Analysis Frameworks
Static analysis mechanisms automatically derive certain properties from a program without
executing it. Currently, there are some frameworks that analyze JavaScript2 applications
statically such as TAJS [70], JSAI [74], WALA [121], SAFE [82, 116]. However, reviewing the
scientific literature WALA and SAFE are the most commonly used frameworks.

1A set of transformation functions that render attacks harmless, such as: ”escape all quotation marks in user
input”.

2JavaScript analyses usually support a subset of a standard called ECMAScript (ES), ES5 is now common,
ES6 still new.
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WALA provides soundy [90] flow-insensitive static analysis for both Java bytecode and
JavaScript. However, JavaScript’s ability to create and delete properties at runtime presents
a great challenge for scalable and precise points-to analysis. Although WALA provides
correlation tracking [142], improving points-to analysis scalability and precision via smart
handling of for-in loops, scalability remains a problem for inter-procedural, finite, distributive
subset (IFDS)-based analyzers. Therefore, WALA intentionally introduced a new unsound
but more scalable static analysis that constructs a field-based (FB) call graph [48], i.e., uses
one abstraction for all instances of each property in the whole program. To further improve
the pointer analysis scalability and to eliminate calls to eval, [128] proposed a dynamic
analysis. However, the coverage of the dynamic analysis may not be sufficient as the
analysis observes only one program execution at a time.

SAFE [82] is a flow- and context-sensitive static analysis framework that provides both
formal specification and its open-source implementation for JavaScript. Analysis scalability
is greatly improved by using loop sensitivity (LSA) [114] that handles loops more precisely,
which turns out to be a determining factor in terms of analysis precision as well. It also
supports the with statement [113], rewriting it to semantically equivalent code when it
does not contain any dynamically generated code. Recently, SAFE 2.0 [116] supports
pluggability (ability to select analysis techniques at runtime), extensibility (APIs for adding
new phases) and debuggability (HTML and console debugging), improving user-friendliness.
In contrast WALA’s source code repository is huge and complex. SAFE is able to analyze
most ES53codes precisely. To analyze object properties more precisely, SAFE uses recency
abstraction [16, 115] which performs strong updates on recently allocated objects and weak
updates on joined old objects.

2.5 Node.js Platform
Node.js is an open-source, cross-platform JavaScript runtime environment, built on Chrome’s
V8 JavaScript engine, for executing JavaScript server-side code [35]. It uses an event-driven,
non-blocking (asynchronous ) I/O model that makes it lightweight and efficient. The node
package manager (npm) is used to install modules and manage code dependencies from the
command line. Node.js has built-in and user-defined JavaScript modules. Modules struc-
ture a program into separate sub-programs to simplify the development and maintenance
of complex applications. Each module has its own scope and cannot pollute the namespace
of other modules.

Figure 2.2 illustrates how modules are used in Node.js. Module A.js exports a function
constructor and is required by the main module main.js. In main.js we instantiate a new
object from A and call the method foo on it. The require function has diverse semantics,

3However, not all of ES5 is currently supported (e.g. getter/setters are not modeled).
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1 // main . j s
2 var A = requi re ( ” ./A. j s ” ) ;
3 var a = new A( ) ;
4 a . foo ( 2 ) // => f a l s e
5

(A) main module

1 // A. j s
2 funct ion A( ) {
3 t h i s . foo = funct ion ( x ) {
4 return x === 0 ; } ;
5 }
6 module . exports = A;
7

(B) dependent module

FIGURE 2.2: Node.js program example consisting of two modules that reside
in the same directory.

e.g., loading built-in modules in Node.js or recursively searching through directories for
modules installed by npm.

2.6 Industrial Hybrid App Setup
For our security analysis and evaluation of the static analyzers, we use a real-world industry
application which is structured into Node.js modules. This section provides an overview of
a practical Node.js based hybrid web app developed by ApproLogic GmbH that is used
for our static analysis. The application is structured into Node.js modules and makes calls
to middleware platform functions that are attached to the module scope during execution.
Figure 2.3 shows an overview of the module dependencies in the hybrid app from the
LoginController slice4. The Platform module represents the middleware platform and consists
of several modules. The hybrid app includes more than 300 modules and contains more
than 230,000 lines of code. The platform functions perform many interactions with built-in
library functions such as jQuery, Lodash and Backbone.js.

2.7 Return-Oriented Programming on ARM
As explained in Section 2.1, the ROP attack is a code-reuse attack in which an adversary
generally leverages a buffer overflow to overwrite parts of the stack in order to divert the
program’s control flow to existing executable code sections of the program.

The core idea of ROP on ARM is to exploit the presence of gadgets (small instruction
sequences) that induce some well-defined behavior, such as returning using pop or branching
using blx instructions [39]). Figure 2.4 presents two gadgets, one ending in pop and another

4The other controllers are: RegisterController, SigninController and AssistanceController
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FIGURE 2.3: Module dependence graph of the ApproLogic hybrid app. The
nodes represent modules and the dashed edges represent require dependen-

cies.

1 mov r0 , r4 ;
2 pop { r4 , pc } ;
3

(A) pop based gadget

1 mov r0 , r7 ;
2 blx r3 ;
3

(B) branch based gadget

FIGURE 2.4: Gadget examples in ARM platform

ending in blx. In the first gadget the first instruction moves the value in register r4 to register
r0 (which is used as the first argument of a function call), subsequently the values on the top
of the stack are popped to registers r4 and pc, which alters control flow depending on the
value loaded to pc. Similarly, the instruction blx r3 in the second gadget changes the flow
of the program to the address in r3. Selecting such gadgets (e.g., with the help of gadget
discovery tools such as ROPgadget5) and chaining them together properly, an adversary
can build complex exploits to induce arbitrary behavior in the target program to a malicious
end.

2.7.1 ROP Variants on ARM
There are several ROP variants on ARM but we explain here the most common ROP variants
which are used in this thesis to increase the diversity of the training and testing set of the
machine learning techniques.

Return-to-Zero-Protection (Ret2ZP) Ret2ZP[14, 66] attack allows an adversary to control

5https://github.com/JonathanSalwan/ROPgadget
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the argument registers r0-r3 from the stack and direct the control flow (CF) into a library
function. This attack is similar to the Ret2LibC [174] attack on the x86 system which
overwrites a ret-address on the stack with the LibC function address to perform the attack.
The Ret2ZP attack first of all places the LibC function arguments and the LibC function
address onto the stack. Then the CF is redirected to the vulnerable code sequence (VCS)
which moves the arguments from the stack to the argument registers, and moves the LibC
function address from the stack to the PC, redirecting CF to the LibC function.

Return-to-mprotect (Ret2mP) mprotect() is a function which takes 3 arguments to set the
access rights (READ—WRITE—EXECUTE) to a memory area. The arguments are

1. A starting address of the memory area to change

2. Length of the memory area to change

3. The new mask of permissions for that memory area (READ—WRITE—EXECUTE is
0x07)

Stack Pivoting With stack pivoting, an adversary can create a fake stack in another memory
area (such as in the heap), so that the adversary can take control of the code and command
execution. E.g., the stack can be pivoted by controlling data pointed to by SP, so that each
ret-instruction results in increasing SP and transferring execution to the next gadget address
chained by the adversary. In order to enrich the diversity of the data gathered for machine
learning, a ROP attack with stack pivoting on a real-life application is also implemented in
this thesis.

Jump-oriented programming (JOP) According to the differences in the (control-flow ma-
nipulating) last instruction, ROP attacks can be classified into ret-based ROP and jmp-based
ROP or jump-oriented programming (JOP). Since ARM does not provide a ret opcode, the
pop instruction, which moves a return address from the stack into the pc is used instead,
i.e., gadgets ending in pop(...,pc) can be used to perform a ROP attack. Conversely, JOP uses
gadgets ending in a blx r instruction, where r represents a general-purpose register that
stores a gadget’s address. Figure 2.4 contains pop-based and branch (blx) based gadgets for
ROP and JOP attack variants, respectively. The other attacks explained above (i.e., Ret2ZP,
Ret2mP and Stack Pivoting) can also be generalized into ROP and/or JOP attacks based on
the gadgets they used to create the attack exploit. The comparison of ROP and JOP attacks
on the x86 platform was initially presented by Bletsch et al. [23]. For the ARM platform, we
have designed our own model, which is presented in Section 5.3.1

2.8 Xtensa Architecture and Registers
The Xtensa processor architecture is a Harvard architecture with instruction and data mem-
ory separate that provide fast simultaneous access to both memories. The Xtensa processor
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TABLE 2.2: Registers in Call0 and Windowed Register ABI

Registers Call0 ABI Windowed Register ABI
a0 Return address Return address
a1 0 or (sp) Stack Pointer (callee-saved) Stack pointer
a2 - a7 Function Arguments Incoming arguments
a7 Callee’s stack-frame pointer (optional)
a12 - a15 Callee-saved
a15 Stack-Frame Pointer (optional)

architecture targets embedded system-on-a-chip applications, and the Instruction Set Ar-
chitecture (ISA) specifies a 32-bit RISC-like architecture expressly designed for embedded
applications. The Xtensa core ISA is implemented as 24-bit instructions, providing about a
25% reduction in code size compared with 32-bit ISAs [27]. Instructions can be represented
as 16 or 24 bits, which results in high code density and also means that any byte is a valid
jump target. The instructions provide access to the entire processor hardware and support
special functions, such as a single-instruction compare and branch, which reduces the number
of instructions required to implement various applications. Xtensa has three distinguishing
features and the first is extensibility. This addition of architectural enhancements allows easy
and efficient extension of the processor architecture with application-specific instructions.
The second is configurability, which supports creating custom processor configurations that
make it easy to specify whether (or how much) pre-designed functionality is required for
a particular product. The third is retargetability, which allows mapping of the architecture
onto hardware to meet the different speed, area, and power targets in different processes.
These features make Xtensa unique and in demand for embedded systems design. Xtensa
supports 16 address registers a0 to a15, where the functionality of these registers differs
slightly depending on the application binary interface (ABI) in use. An ABI is a set of rules de-
scribing what happens when a function is being invoked, how its parameters are processed,
and defining the stack layout for the function call. Xtensa supports two ABIs: Call0 ABI and
the Windowed Register ABI, for which Table 2.2 presents the registers and their functions.
The Call0 ABI works with all Xtensa processors, and it has a better context switch time than
the Windowed Register ABI. ROP and JOP attack orchestration on both ABIs are similar [86]
despite the differences in register usage.

The Xtensa architecture also has a 32-bit program counter, which – similar to x86 and
in contrast to ARM – cannot be directly accessed. Generally, Xtensa’s instruction format
follows the pattern:

mnemonic <dest reg >, <operand 1>,<operand 2>

The destination register dest reg stores the result of the operation specified by the opcode
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mnemonic on the first operand 1 and second operand 2 operand. Xtensa’s instruction set is
very flexible and not all of the instruction set requires all of the fields in this template. More
specific details about Xtensa LX hardware instruction set architecture can be found in [28].

2.9 Hardware Performance Counters (HPCs)
HPCs, which have been available in modern processors (such as ARM, AMD, and Intel)
for more than a decade [38], monitor and measure events that occur at the CPU level
during process execution related to instructions (e.g., cycles, instruction retired), memory
accesses (e.g., cache misses or hits, main memory misses or hits), etc. Intel introduced
the performance monitoring unit (PMU) [37] which supports the monitoring of two kinds
of HPCs, counters of architectural hardware performance events and counters of non-
architectural hardware performance events. Architectural hardware performance events
are the same in different processors. However, the non-architectural hardware performance
events might differ based on the processor, i.e., they are specific to the micro-architecture,
such as branch prediction, cache and translation look-aside buffer (TLB).

In order to obtain HPC information, initially the HPCs must be configured according to
the events of interest. Then, polling or sampling can be used to read the HPC values at
runtime [38]. When polling is used the HPCs can be read at any instant whereas for event-
based sampling the occurrence of events triggers reading HPCs. The event-based sampling
is enabled through Performance Monitoring Interrupt (PMI) in most CPUs. The PMI can
be generated after a certain number of events are occurred [38]. For instance, the HPC can
be configured with a certain threshold. Then once a counter exceeds that threshold, it will
result in the generation of a PMI. At each PMI, the numbers of arithmetic, cycles, call and
return instructions are read [38].

Though the initial purpose of HPCs was for debugging, they have also been used in
several other applications, such as detecting program modification at a low cost [165, 91]
and vulnerability research [117]. They have also been used extensively in non-embedded
processors for malware detection with good detection accuracy [177, 3, 92].

Profiling tools, such as Linux’s perf6, allow HPC data to be obtained using several methods,
but that flexibility comes at the expense of yielding different counter values for the same
application due to the multi-process environment and the non-determinism of HPCs [38].

There are no HPC standards and they are therefore manufacturer dependent; on a different
microprocessor, even with different models of the same processor family, HPCs may have
different names, numbers, and functions. Even though modern processors can record a
large number of events at a time, only a fraction of these events can be monitored at a time.
The number of events that can be monitored is determined by the number of available

6https://en.wikipedia.org/wiki/Perf (Linux)

https://en.wikipedia.org/wiki/Perf%5f(Linux)
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HPCs which is usually fewer than the overall number of possible events. For example,
both the ARM and Xtensa processors we used in this thesis can monitor only 8 HPC events
simultaneously. .

2.10 Machine Learning
Machine learning is a collection of methods that enable computers to automate data-driven
model building and programming through a systematic discovery of statistically significant
patterns in the available data [20]. Machine learning algorithms build a mathematical model
based on sample data, known as ”training data”, in order to make predictions or decisions
without being explicitly programmed to do so. Machine learning algorithms are used in a
wide variety of applications, such as email filtering, Malware detection and other similar
tasks which can not be easily solved using conventional algorithms.

Machine learning algorithms are often categorized as supervised or unsupervised. In
supervised learning input examples and their desired outputs are given to learn a general
rule that maps inputs to outputs, i.e., the system is able to provide targets for any new
input after sufficient training. Whereas in unsupervised learning, no labels are given to
the learning algorithm, leaving it on its own to find structure in its input. Unsupervised
learning can be used to discover hidden patterns in data or it can be a means to feature
learning.

2.10.1 Types of Machine Learning Methods
The supervised learning supports various algorithm types

• K neighbors: It is an algorithm that stores all available cases and classifies new cases by
a majority vote of k neighbors.

• Boosting: a family of machine learning algorithms that convert weak learners to strong
ones.

• Decision trees: uses a tree-like model of decisions and their possible consequences.
Decision trees often perform well on imbalanced data sets because their hierarchical
structure allows them to learn signals from both classes.

• Naı̈ve Bayes: It is a classification technique based on Bayes’ theorem with an assump-
tion of independence between predictors, i.e., the presence of a particular feature
in a class is unrelated to the presence of any other feature. It is frequently used in
imbalanced dataset problems.

• Support Vector Machine (SVM): constructs a hyperplane or set of hyperplanes for
classification, regression, or other tasks. In handling a binary classification task,
SVM is one of the methods reported to give a high accuracy in predictive modeling
compared to the other techniques such as Discriminant Analysis [161].
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Chapter 3

Static Security Evaluation of an
Industrial Web Application

3.1 Overview
JavaScript is the most widely-used programming language for client-side web applications,
powering over 95% of today’s websites1. In spite of its popularity, it also introduces various
errors, vulnerabilities, and ample challenges for program analysis: large-scale libraries,
asynchronous event flows via user inputs, interaction between iframes, and new analysis
domains like MVC frameworks and hybrid applications [148].

Researchers have proposed several static program analysis techniques to help JavaScript
developers overcome some difficulties. Static analysis is challenging and imprecise due
to dynamic language constructs like run-time code generation and heavy use of first-
class functions [122]. Widely used static analysis frameworks like WALA [121, 142] and
SAFE [82, 114, 116] represent the state of the art, however, little research assesses their
strengths and weaknesses. [80] report the number of callees per call site of these frame-
works but concentrate on the scalability gain of combining WALA and SAFE rather than
their comparison. A recently released major rewrite of SAFE that aims at a more pluggable,
extensible and debuggable framework (SAFE 2.0 [116]2) raises the question which frame-
work to leverage for static security analysis (including injection attack detection), which
was the motivation for a thorough comparative analysis of WALA and SAFE.

Recently JavaScript’s popularity also rose for server-side and desktop applications due
to Node.js, an open-source, cross-platform runtime environment for executing JavaScript
on the server-side3. Node.js programs are structured into modules, and can also be used
in browsers by bundling up the module dependencies using Browserify [5], Webpack and
CommonJS Everywhere. All these bundlers follow a similar pattern in how they package

1https://w3techs.com/technologies/details/cp-javascript/all/all
2From now onwards SAFE represents the version SAFE 2.0.
3https://en.wikipedia.org/wiki/Node.js

https://w3techs.com/technologies/details/cp-javascript/all/all
https://en.wikipedia.org/wiki/Node.js
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modules, but none of these are suitable for static analysis. Recently WALA and SAFE
included direct support for Node.js modules, but their solutions are analysis-specific and
thus not suitable for comparison. For example, the model in WALA is relatively complete
(except for the native core modules), but SAFE’s very preliminary. Hence, it is indispensable
to have an analysis-agnostic bundler suitable for any static analysis framework for a fair
comparison.

JavaScript- and Node.js-based applications can be vulnerable to various injection attacks [144].
Thus, security analyses like a taint analysis [157] are indispensable to detect potential injec-
tion vulnerabilities. The state of the art reports dynamic, static and hybrid taint analysis
approaches [166, 126]. However, none of them are implemented in SAFE, which we selected
for our security analysis after comparing the precision and scalability trade-off with WALA.
SAFE supports taint analysis via a prototype implementation [123], but only reports tainted
primitive type arguments such as strings that reach a sensitive sink, but not object type
arguments, which our industrial hybrid app makes use of. Hence, it requires improving the
SAFE’s taint analysis to precisely detect potential injection vulnerabilities of the industrial
app.

In this thesis, we present a thorough comparison of SAFE and WALA, introduce simplePack
to bundle module dependencies suitably for static analysis, extend the taint analysis in
SAFE, and analyze the security of a real-world industrial app using extended SAFE’s taint
analysis.

To extract appropriate elements for comparison of the analyses, we integrate WALA’s
analysis into SAFE and select objects and global variables of the user program that are
registered for the same source locations in both analyzers. We compute the average points-
to set sizes over all object fields (i.e., pointer keys) to evaluate the precision of both analyzers.
We also evaluate their scalability and code coverage by measuring the analysis time and
number of non-empty object fields (i.e., fields determined to point to an allocation site,
e.g., for function objects), respectively. Our evaluation illustrates that SAFE provides
higher precision and code coverage than WALA, but is less scalable. However, SAFE’s
lower scalability usually does not outweigh the gains in precision and code coverage. Our
evaluation also shows that SAFE covers more code (determines receivers of function calls),
which may also be responsible for the higher runtimes. Hence, we choose SAFE for our
security analysis of the industrial app.

The hybrid industrial app is structured in the form of Node.js modules that reside in
different paths of the project and cannot be analyzed by SAFE directly, as it requires all code
to be present in one directory. Thus, we contribute simplePack, a source code transformation
tool that bundles module dependencies in a way that is more suitable for static analysis.
We compare simplePack to Browserify by measuring the precision and recall of their bundled
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programs’ static callgraph in WALA. The evaluation shows that simplePack displays better
precision and recall overall. The hybrid app, built on a middleware platform, includes more
than 300 modules and contains more than 230,000 lines of code, which makes a direct whole
program static analysis almost impossible. Hence we modeled the platform functions in
SAFE and remove parts of the code not relevant to the main task of the app while keeping
its major semantics and features.

We analyze the security of the hybrid app by extending SAFE’s taint analysis to identify
tainted objects flowing to sinks. We also model the JSON.stringify function, which acts as an
input sanitizer by changing the input value or object to a non-executable JSON string. Note
that this function just acts as a prototypical sanitizer to evaluate whether we can support
sanitization in our analysis. Which function may act as a sanitizer depends heavily on the
semantics of the sink and is beyond the scope of this research. We evaluate the analysis on
four components of the hybrid app and our taint analysis identifies the tainted parameter
object due to the existence of tainted primitive property in the objects’ property hierarchy.
In contrast, tainted values passed through the JSON.stringify function before reaching a sink
are correctly not reported as an illegal data flow.

3.2 Contributions
The major contributions of this thesis presented in this chapter are:

• A comparison of WALA’s and SAFE’s points-to analysis using equivalent user-defined
objects.

• A framework-agnostic module bundler suitable for static analysis, which we compare
against the off-the-shelf bundler Browserify.

• A static security analysis for a hybrid industrial app. To that end we model native
platform functions and the sanitizer JSON.stringify directly in SAFE, and extended the
SAFE’s taint analysis to support tainted complex objects rather than tainted primitive
values.

3.3 Motivating Example
The context- and loop-sensitivity, and the coverage of modeled functions have a magnif-
icent effect on the precision of static analysis frameworks. The context-sensitive analysis
distinguishes the different calling paths of a procedure expressed using k-CFA (Control Flow
Analysis) such that k represents the depth of distinguished call hierarchies. Similarly, the
loop-sensitive analysis distinguishes each iteration of loops with determinate loop condi-
tions by using loop contexts expressed as k-LSA (Loop Sensitive Analysis) where k indicates
the number of distinguished iterations in the analysis. The three programs in Figure 3.1 and
their analysis results in Table 3.1 illustrate the effect of context- and loop-sensitivity as well
as the model coverage on the precision of the analysis. For the context-sensitivity example
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1 function f1(v) {
2 return f2(v);
3 };
4 function f2(v) {
5 return v; }
6 var o1 = {};
7 var o2 = {};
8 var x = {};
9 x.p = f(o1);

10 x.q = f(o2);
11

(A) context-sensitivity

1 var x={};
2 for (var i=0;i<3;i++){
3 x[i]=i;
4 }
5

(B) loop-sensitivity

1 var TopString = (45).toString
(12);

2 var TopNum = Date.now()\right)
3

(C) model-functions

FIGURE 3.1: Examples to illustrate context-sensitivity, loop sensitivity and
modeled functions

TABLE 3.1: Points-to analysis result of program examples in Figure 3.1.
Columns with keys and avgPts headings represent the number of pointer

keys and average points-to set size respectively.

program
1-CFA and 0-LSA 2-CFA, 3-LSA

SAFE WALA SAFE
examples keys avgPts keys avgPts keys avgPts

a. 21 1.19 17 1.18 19 1.0
b. 2 1.0 3 2.67 5 1.0
c. 5 1.0 3 1.33 5 1.0

(Figure 3.1a), the number of pointer keys and average points-to set size in SAFE using 2-CFA
is reduced (i.e., points-to analysis become more precise) since the redundant old allocation
sites, which are created due to weak updates4, are minimized when context-sensitivity is
increased. Particularly, using 1-CFA, the old allocation site of argument v in function f2

points to objects o1 and o2. But if we use 2-CFA or more the old allocation does not exist
and the recent allocation points-to o2. Therefore, increasing the context-sensitivity leads
to more precise points-to analysis as the weak updates are the main source of imprecision.
However, WALA does not support context-sensitivity greater than 1-CFA for JavaScript.
Similarly, loop-sensitivity, which is not supported in WALA except for correlation tracking
for for-in loops [142], is supported in SAFE and increases the precision by differentiating the
pointers that depend on the iteration number. For instance, the x[i] pointer in Figure 3.1b
varies and points to a different value at each iteration when 3-LSA or more is used. Finally,
the difference in the number of pointer keys for the example in Figure 3.1c is due to the fact
that implicit primitive type conversion is modeled in SAFE but not in WALA.

4SAFE uses recency abstraction which performs strong updates on recently allocated objects and weak updates
on joined old objects.
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3.4 Methodology
In this section, we describe how the average points-to set is computed for programs analyzed
using SAFE or WALA. Moreover, we explain how the SAFE’s taint analysis is extended to
detect tainted objects reaching the sinks and how simplePack bundles Node.js modules into
a single bundled JavaScript file.

3.4.1 Average Points-to Set Computation
This section presents the general initial setup and the average points-to set computation
approach of both static analyzers, i.e., SAFE and WALA.

Initial Setup

WALA uses a flow-insensitive Andersen-style pointer analysis approach to compute the
points-to set of each pointer or heap reference for the whole program. In contrast, SAFE
supports flow-sensitive points-to analysis and the heap state is different from statement to
statement. Hence, we take the heap status at the exit statement of the top-level function as
the state to compare the average points-to sets.

To have a more appropriate comparison, we integrate the WALA analysis result into SAFE
following the approach of [80], i.e., we added the WALA project to SAFE’s and create
a PointerAnalysis object of the whole program using the JSCallGraphBuilderUtil class in
WALA. Then by traversing over the InstanceKeys of the PointerAnlysis object we map the
InstancesKeys’ source locations to their creation sites. Similarly, by iterating over SAFE’s
control flow graph (CFG), we compute the mapping of source locations to SAFE’s object
allocation sites. Finally, we only consider the source locations present in both maps and take
the InstanceKeys objects with their corresponding allocation site in SAFE.

As the set of the modeled built-in JavaScript functions in WALA and SAFE are not the same,
we only consider user-defined program object locations. Additionally, the representation of
local variables and lexical variables differs between WALA and SAFE, and does not provide
similar numbers and types of pointers. Hence, only the user-defined global variables, user
objects and argument objects are selected as appropriate candidates for our average points-
to comparison. For instance, the global objects o1, o2 and x in Figure 3.1a have the same
source locations in both analyzers and they are selected for the points-to comparison. The
argument and function prototype objects are compared and selected in a similar fashion.

Average Points-to Set Computation in SAFE

To compute the average points-to set in SAFE, we take the heap at the exit statement of the
top-level function. Since SAFE uses recency-abstraction for allocations in the heap, we
compute an average effect of the old and recent objects of an allocation site to make it more
comparable to WALA that does not rely on recency-abstraction. Afterwards, we iterate
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over all user and global allocation site objects, and compute the average points-to set of
all properties. However, only user-defined properties are considered while iterating over
the global object. Additionally, the length property and properties that points-to undefined
are ignored in all objects. The length property indicates the number of arguments and
is not relevant. The points-to set for properties that point to undefined is zero in WALA
and can falsely increase the precision impact of other pointers that point to more than one
object. Hence, we ignore properties that point to undefined in both analyzers. However,
the number of undefined properties are separately computed to estimate the percentage of
JavaScript constructs that are not modeled in SAFE and WALA.

Average Points-to Set Computation in WALA

In WALA, we compute the heap from the points-to set of the InstanceKeys and select the
heap objects which have a corresponding object in SAFE. The source location is used for
filtering. After identifying the relevant objects, we iterate over all properties of each object
to compute the average points-to set. In addition to the properties of these objects, the
user-defined global variables and the callee function pointer variables are also considered.
Because, unlike SAFE, WALA does not include the callee property in the arguments object.
The same as in SAFE, the pointers pointing to zero (undefined) are computed separately to
extract the percentage of unmodeled JavaScript constructs (functions).

3.4.2 Taint analysis
In this section, we extend SAFE’s taint analysis technique, which models the sources of
untrusted user inputs with the abstract value string5 prototype value (see Figure 3.2),
propagates it during the analysis and finally checks whether a tainted value might be used
at the sink. In SAFE’s existing taint analysis, the arguments of the sink functions are checked
whether they are tainted (strTop) or not. However, this does not work for objects that contain
tainted values in their property hierarchy, rather only for primitive values. Yet, finding only
primitive argument values passed to a sink is rare. We did not encounter such a situation
when analyzing the hybrid app from our industry partner.

To illustrate our contribution, let us consider the code in Figure 3.3. SAFE identifies taint
flow only in sink1 but not in sink2 and sink3. In our implementation, we recursively iterate
over the properties of the sink’s argument objects and search for tainted values (strTop).
Accordingly, we can find the taint flow to sink2 and sink3.

Some of the controllers in the hybrid app use JSON.stringfy to change the input data into
a non-executable JSON string. However, this function is not currently modeled in SAFE.
To analyze applications containing this function we extended SAFE’s model such that our
taint analysis approach correctly indicates that tainted value is not flowing to sink4, i.e., it

5string represents the top string value (strTop) in the lattice, not a regular string value. Other lattices could in
principle be embedded into SAFE’s to enable disambiguating more taint sources.



3.4. Methodology 27

1 #Document.prototype: {
2 [[Class]]: "Document",
3 [[Extensible]]: true,
4 [[Prototype]]: #Node.prototype,
5 "write": <#Document.prototype.write, F, T, T>,
6 "URL": <string, F, T, T>
7 },
8

FIGURE 3.2: Modeling untrusted user input example

1 var url = strTop (tainted)
2 var input = {user: "user1", url: url}
3 var card = { header: headers, data: input}
4 sink1(url)
5 sink2(input)
6 sink3(card)
7 var sanitizedValue = JSON.stringfy(card)
8 sink4(sanitizedValue)
9

FIGURE 3.3: Tainted object flowing to sink

supports the sanitization of JSON objects using JSON.stringfy. The implementation of the
taint analysis and the analyzer comparison is available on Github6

3.4.3 SimplePack
Browsers do not support CommonJS7 module syntax. Hence, there have been many ongoing
efforts to make the utilities available in npm accessible to the browser. Browserify is one of
the most popular tools able to bundle CommonJS modules for the browser by concatenating
the modules in a single file.

Although Browserify bundles CommonJs modules for browsers, the bundles are not well
suited for static analysis. Moreover, none of the aforementioned static analysis frameworks
supported programs written in CommonJS module syntax at the time that we started
this research effort. Figure 3.4 depicts the Browserify bundle program for the example in
Figure 2.2. Although the bundle produced by Browserify works for browsers, it is not well
suited for static analysis. The main problems with the analysis of Browserify bundles are:

1. Flow-insensitive points-to analysis will determine that the inner function may invoke
module functions in any order.

2. At least one level of call-string sensitivity is needed to distinguish between different
required modules, as a require call will first invoke the inner function.

6https://github.com/ghiwet/safe/tree/ subdirectories taint, walaPointsTo, safePointsTo
7CommonJS is a project with the goal of specifying an ecosystem for JavaScript outside the browser
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1 (function outer (modules, cache, entry) { function inner (name)
{

2 if (!cache[name]) {
3 if (!modules[name]) throw "MODULE_NOT_FOUND";
4 var m = cache[name] = {exports:{}};
5 modules[name][0].call(m.exports, function(x){
6 var id = modules[name][1][x];
7 return inner(id ? id : x);
8 },m,m.exports);
9 }

10 return cache[name].exports;
11 }
12 inner(entry);
13 return inner;
14 })
15 ({1:[function(require,module,exports){
16 ... // code of A.js here
17 },{}],2:[function(require,module,exports){
18 ... // code of main.js here
19 },{"./A.js":1}]},{},2);
20

FIGURE 3.4: Simplified Browserify bundle for the Node.js module example
in Figure 2.2

3. The additional function calls by the inner function renders the call graph overly
complex and thus also requires a more context-sensitive static analysis.

Hence, we introduce simplePack, which bundles CommonJS modules in a more suitable
way for static analysis frameworks. In our approach we concatenate the module functions
and transform the require calls into the module functions to outer function calls, i.e., there
is no inner function. Figure 3.5 illustrates the simplePack bundle for the same example in
Figure 2.2.

In our implementation, we first compute the set of module dependencies by walking the
dependency graph. In Node.js, the package module-deps resolves dependencies using node’s
module lookup algorithm. The AST of the empty program and for each module dependency
is computed using the package esprima, which computes a SpiderMonkey AST. Then a
module is wrapped in a function declaration and its AST is traversed using the estraverse
package. During traversal every require call that has a string literal as argument8 is replaced
by a function call to that module. The potentially modified AST is added to the program.
In the end, a function call to the entry module is added to the program and source code is

8Dynamically computed arguments are currently not supported and were not required for our analyses.
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1 function _mod_A(module) {
2 var exports = module.exports;
3 function A() {
4 this.foo = function (x) { return x === 0; };
5 }
6 module.exports = A;
7 return module.exports;
8 }
9 function _mod_main(module) {

10 var exports = module.exports;
11 var A = _mod_A({ exports: {} });
12 var a = new A();
13 a.foo(2) // => false
14 return module.exports;
15 }
16 _mod_main({ exports: {} });
17

FIGURE 3.5: Simplified simplePack bundle for the Node.js module example
in Figure 2.2

generated for it using the escodegen package. Our implementation is available on GitHub9.

Algorithm 1: Pseudo Code for simple Pack
input : an entry module file
output : a bundle for file

1 modules← Compute set of module dependencies for file;
2 programast← Compute AST of an empty program;
3 foreach mod ∈ modules do
4 ast← Compute AST for module mod;
5 fun←Wrap ast in a function declaration;
6 Traverse fun and replace every require call by a function call to that module;
7 Add fun to programast;
8 end
9 Add function call to the entry module of programast;

10 program← Generate source code from programast;

3.5 Evaluation
In this section, we evaluate the precision, scalability and code coverage trade-off of the
static analyzers WALA and SAFE by comparing their average points-to set size and time
taken for the analysis. Additionally, we evaluate the precision of our extended SAFE’s taint
analysis and the precision and recall of our Node.js modules bundler tool called simplePack

9https://github.com/MaxSchlueter/bundler
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3.5.1 Points-to Analysis Comparison:
This section presents the evaluation of WALA’s and SAFE’s static program analyzers
answering three research questions. First, we describe the research questions, evaluation
methods and subjects (benchmarks). Then, we discuss the results of the analyses.

Research Questions:

We present the research question as follows:

RQ1. Precision: For the object properties (pointers keys) of each subject, to how many
object locations or values do they point to on average? An analyzer that results in a lower
average points-to value is more precise (provided that both analyses are sound).

RQ2. Scalability: How much time does it take to analyze a subject and how many subjects
are fully analyzed within a given timeout? An analyzer that finishes the analysis of a subject
in less time is more scalable.

RQ3. Coverage: How many pointer keys whose value is not undefined10 does each
analyzer identify for each subject? An analyzer that results in a higher number provides
better coverage (unless it is less precise) as the points-to set is undefined when its pointer
refers to an API function or object that is not modeled in the analysis.

Evaluation Methodology and subjects:

To answer these research questions we performed experiments using the WALA and SAFE
2.0 analyzers. For evaluation subjects, we used a version of the hybrid app from our industry
partner and two benchmark sets from different categories [74, 167]: addon (i.e., plugins for
the Firefox browser) and standard (i.e., from SunSpider and V8 browser benchmark suites).
Each category of our benchmarks contains seven subjects [74, 167]. For all experiments,
WALA used a 1-CFA sound propagation-based (PB) analysis with correlation tracking.
SAFE analyzer uses 20-CFA and (10,5)-LSA, 10-length and 5-depth (to distinguish nested
loops) loop strings, with recency abstraction for the hybrid app and the addon benchmark
category. For the standard benchmark category, SAFE used 20-CFA and 0-LSA because
loops are very complex and the analysis does not terminate in the given timeout with
loop-sensitivity. WALA does not handle loops in any particular fashion except for for-in
loops, which do not appear in these benchmarks. In the version of the industrial partner’s
app we replaced libraries like Lodash and jQuery by equivalent JavaScript code, and
Promises by regular callbacks. We also removed certain code that is independent of the
core functionality. Also, there is no model for platform-specific APIs that are written in a
language other than JavaScript. This allows fair comparison but may miss certain security
issues. These restrictions can be lifted by extending the analysis in future work.

10In WALA undefined is called zero.
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TABLE 3.2: Precision and scalability comparison of analyzers. SLOC denotes
the subjects’ line of code without comments. The value under precision
indicates the average points-to set whereas the values under the scalability
are time of analysis in seconds. Entries marked χ denote that the analyzers

do not finish analysis within the timeout of 10 minutes.

Subject (SLOC)
Precision Scalability

SAFE WALA SAFE WALA
hybrid-app (1221) 1.005 1.48 117 2.35

ad
do

n

odesk-job-watcher (154) 1.012 2.04 4.25 1.76
chess (222) 1.02 1.34 8.4 2.1

coffee-pods-deals (358) 1.006 1.46 2.5 2.3
pinpoints (537) 1.02 1.44 3.55 2.58
tryagain (590) 1.004 1.29 5.85 1.56

less-spam-please (745) 1.028 1.29 11.2 2.6
live-pagerank (865) 1.03 1.29 62 3.2

st
an

da
rd

access-nbody (170) 1.0 1.03 12.15 1.7
crypto-sha1 (177) 1.0 1.085 24.5 1.8

splay (201) 1.17 1.13 133 7.20
richards (285) 1.48 5.79 206 2.8
3d-cube (343) 1.11 3.97 380 4.88

3d-raytrace (408) χ 1.31 χ 1.23
cryptobench (1297) χ χ χ χ

We conducted the experiments on a MacBook Pro with 2.9 GHz Intel Core i7 processor and
16GB RAM

Result and Discussion:

In this section, we discuss the precision, scalability and coverage result of the two analyzers.
Table 3.2 depicts the precision and scalability evaluation result of the hybrid app, addon and
standard subject categories.

Precision: To compare the precision of the two analyzers, we measure the average points-
to set size of object properties over all user-defined locations (objects) and global variables.
Although we consider only user-defined objects and global variables, we expect the results
to be representative for the whole program. For all subjects that finish execution within
the timeout, SAFE provides lower average points-to set size than WALA. For the odesk-job-
watcher, richards and 3d-cube subjects, WALA’s average points-to set size exceeds SAFE’s by
a factor of two. Considering the average points-to set size over the benchmark categories,
SAFE computes 1.017 for the addon and 1.15 for the standard category. In contrast, WALA
determines 1.45 for addon and 2.6 for standard. Last but not least, the average points-to set
size over all subjects is 1.073 for SAFE and 1.93 for WALA. This demonstrates that SAFE
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TABLE 3.3: Coverage and % of undefined pointers comparison of analyzers.
The % of undefined measures the percentage of pointers pointing to unmod-
eled API functions or objects, SLOC denotes the subjects’ line of code without
comments, and the entries marked χ denote that the analyzers do not finish

analysis within the timeout of 10 minutes.

Subject (SLOC)
Coverage % of undefined

SAFE WALA SAFE WALA
hybrid-app (1221) 2391 2835 0% 0%

ad
do

n

odesk-job-watcher (154) 159 112 0% 12.5%
chess (222) 265 135 0.4% 1.2%

coffee-pods-deals (358) 313 287 0.6% 1.7%
pinpoints (537) 440 339 0.9% 3%
tryagain (590) 503 555 1.4% .54%

less-spam-please (745) 725 623 0.8% 11.4%
live-pagerank (865) 818 702 0.6% 4.2%

st
an

da
rd

access-nbody (170) 195 150 11.51% 3.23%
crypto-sha1 (177) 226 59 0.04% 7.8%

splay (201) 156 20601 0% 0%
richards (285) 339 491 0% 0%
3d-cube (343) 1865 3252 0% 0%

3d-raytrace (408) χ 564 χ 2.5%
cryptobench (1297) χ χ χ χ

provides more precise analysis than WALA. The improved precision of SAFE is due to its
support for flow-sensitivity, context-sensitivity and loop-sensitivity in its analyses

Scalability: We evaluated the scalability of both analyzers by measuring the analysis time
in seconds. For all subjects, WALA requires less time to finish analysis, indicating that it is
more scalable. Analysis of 3d-raytrace in SAFE did not terminate within the given timeout
although it did in WALA. The scalability of the WALA analysis is due to its flow-insensitive
points-to analysis approach. However, there is a cost in terms of precision which may be
more relevant for security analysis.

Coverage: To compare the coverage of the analyzers, we counted the number of object
properties for each subject. Properties pointing to non-undefined values, and those pointing
to undefined are counted separately. Table 3.3 shows the coverage evaluation representing
the pointer keys pointing to undefined in percentage with respect to the total pointer keys.
For the majority of the subjects, SAFE computes higher non-undefined and lower undefined
pointers, indicating that it models more API functions. The model coverage and the loop
sensitivity has enormous effect on the number of pointers. In some cases, the number of
non-undefined pointers is higher in WALA due to heap cloning, which creates different
objects based on the context, for the same object locations. However, this happened only for
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around 30 % of the subjects. Therefore, this indicates that in general SAFE provides better
coverage.

Threats to Validity: The following are identified as threats to validity.

• The subjects used for our analysis may not be representative for other JavaScript
applications.

• The analysis is based only on the user program and does not consider local variables
(as these are specific to the analyzer’s intermediate representation), which might
deviate the average points-to set size over the whole application.

To generalize the comparison of both analyzers, we have listed some of the comparison
features in Table 3.4.

3.5.2 Taint Analysis
In this section, we evaluate our taint analysis by investigating whether it identifies objects
containing tainted values and considers sanitization using JSON.stringify. This evaluation
aims to know how relevant our extended SAFE’s taint analysis is in detecting potential
injection vulnerabilities.

For the evaluation, we use the hybrid app. The hybrid app contains different controllers for
login (configuration setup and automatic login using saved credentials) , signin (login by
entering user credentials), register and assistance. All these controllers take user input and
interact with the internet using HTTPS requests and post APIs. Hence, we took the program
slice of each controller (i.e. all the code that can influence its computation) bundling all
modules related to the respective controller’s semantics, creating four separate programs to
evaluate our taint analysis on. The user inputs at the respective controllers’ form fields are
considered a source of tainted value and the HTTPS request and post APIs are considered
to be sinks. We use the abstract value @StrTop to simulate a tainted value.

Table 3.5 illustrates the result of the four program slices of the hybrid app, which all have
more than 4,000 lines of code (without comments, SLOC). The result indicates that the

TABLE 3.4: Feature comparison of SAFE and WALA

Features SAFE WALA
Flow-sensitivity Flow-sensitive Flow-insensitive

Context-sensitivity Any number 0 or 1-CFA
Loop-sensitivity Any number Only for-in

Precision Relatively precise Imprecise
Code Complexity Easier to understand Complex to understand
Soundiness [90] Sound Sound(PB) and unsound(FB)

Scalability Less scalable More scalable
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FIGURE 3.6: Precision and recall in percent for simplePack and Browserify
bundles

tainted value is identified at the sink in both the login and signin program slices. Note that
the application is still safe due to the way the tainted input is sent to the database in the
platform code, which we verified by manual inspection. For the register and assistance
program slices, no tainted value is identified at the sink. Upon manual investigation, we
found that JSON.stringify is used to endorse the input before reaching the sink (i.e., we
modeled JSON.stringify in SAFE in a way that can also simulate a sanitizer). When we
remove this call to JSON.stringify, our taint analysis approach identifies the tainted input
at the sink in both cases. Our manual investigation shows that the depth of the tainted
properties in the parameter object is one or higher in all slices, which means that it could
not be identified using SAFE’s existing taint analysis. However, our extended taint analysis
identifies the tainted objects.

3.5.3 SimplePack
To evaluate simplePack, we compare the static call graph (CG) of a bundled program to the
dynamic one. This is done for programs transformed by simplePack and by Browserify. The

TABLE 3.5: Taint analysis result of four program slices from the real-world
hybrid app.

program (SLOC) Tainted Sanitized min−depth
login (4788) yes no 1
signin (4890) yes no 1

register (4501) no yes 2
assistance (4730) no yes 2
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dynamic CG is constructed by a Jalangi211[131] analysis records all the functions that are
invoked at a call site in one execution of the program. A further restriction in this evaluation
is that only user-defined functions in the code are considered as call site targets. The static
CG is constructed in WALA and conservatively approximates all the functions that can be
invoked at some call site. The most precise static CG is the union of the dynamic CGs over
all (potentially infinitely many) possible program executions.

The static and dynamic CGs are compared by computing the average precision and recall of
all the call sites covered by the dynamic CG as in [48]. For a given call site the precision is
the percentage of ”true” function targets and recall is the percentage of correctly identified
true targets with respect to all targets. For the evaluation we use five Node.js programs
based on five different packages obtained from npm considering the list of most-depended
packages. The selected packages have at least one module dependency, can be transformed
by Browserify and simplePack and the resulting bundles are executed in node v0.12.x.
Packages with dependency cycles or dynamic requires are excluded12.

The average precision and recall of the bundles produced by simplePack and Browserify
are depicted in Figure 3.6. Precision and recall are very high for the simplePack bundles of
mkdirp, md5 and promise, achieving 100% recall and over 90% precision. The Browserify
bundles for mkdirp and promise also achieve 100% recall but have lower precision measures
than in simplePack. Recall and precision are particularly low for the md5 Browserify bundle
when compared to the one by simplePack. The precision and recall measures for the mkdirp
and optimist bundles are quite low and the Browserify bundles seem to be far better than
their corresponding simplePack bundles. A recall measure less than 100% means that
some call sites or function targets are missing in the static CG computed by WALA. Thus,
the static analysis done by WALA for these bundles is unsound. Recall is at 65% for the
minimatch simplePack bundle and at 69% for the corresponding Browserify bundle. Upon
manual inspection we found that WALA was unable to resolve the same call sites and
function targets in the Bundler bundle as in the corresponding Browserify bundle. Three
unresolved call sites and their subsequent function calls lead to a low recall measure.

11https://github.com/Samsung/jalangi2
12This only happened for one package encountered in the list of most-depended packages and never for our

industry application.
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Chapter 4

Revealing Injection Vulnerabilities by
Leveraging Existing Tests

4.1 Overview
In the high-profile 2017 Equifax attack, millions of individuals’ private data was stolen,
costing the firm nearly one and a half billion dollars in remediation efforts [130]. This attack
leveraged a code injection exploit in Apache Struts (CVE-2017-5638) and is just one of over
9,711 similar code injection exploits discovered in recent years in popular software [100].
Code injection vulnerabilities have been exploited in repeated attacks on US election sys-
tems [143, 51, 95, 24], in the theft of sensitive financial data [132], and in the theft of millions
of credit card numbers [78]. In the past several years, code injection attacks have persistently
ranked at the top of the Open Web Application Security Project (OWASP) top ten most
dangerous web flaws [105]. Injection attacks can be damaging even for applications that are
not traditionally considered critical targets, such as personal websites, because attackers can
use them as footholds to launch more complicated attacks.

In a code injection attack, an adversary crafts a malicious input that gets interpreted by the
application as code rather than data. These weaknesses, ”injection flaws”, are so difficult to
detect that rather than suggesting testing as a defense, OWASP suggests that developers try
to avoid using APIs that might be targeted by attackers altogether or enforce site-wide input
filtering. Consider again the Equifax hack: the underlying weakness that was exploited was
originally introduced in 2011 and sat undetected in production around the world (not just
at Equifax) for six years [99, 10]. While some experts blame Equifax for the successful attack
— a patch had been released two months prior to the attack, but was not applied — one
really has to ask: how is it possible that critical vulnerabilities go unnoticed in production
software for so long?

With the exception of safety-critical and similar ”high-assurance” software, general best
practices call for developers to extensively test their applications, to perform code reviews,
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and perhaps to run static analyzers to detect potentially weak parts of their software.
Unfortunately, testing is a never-ending process: how do developers know that they’ve
truly tested all input scenarios? To catch code injection exploits just-in-time, researchers
have proposed deploying dynamic taint tracking frameworks, which track information
flows, ensuring that untrusted inputs do not flow into sensitive parts of applications, e.g.,
interpreters [138, 55, 147, 127, 17, 93]. However, these approaches have prohibitive runtime
overheads: even the most performant can impose a slowdown of at least 10–20% and often
far more [32, 17, 76, 45]. Although black-box fuzzers can be connected with taint tracking to
detect vulnerabilities in the lab, it is difficult to use these approaches on stateful applications
or those that require structured inputs [77, 58]. While some static analysis tools have seen
recent developer adoption [52, 101, 18], statically detecting code injection vulnerabilities
is challenging since static analysis tools must perform interprocedural data flow analysis
[139, 158, 141, 13].

Our key idea is to use dynamic taint tracking before deployment to amplify developer-
written tests to check for injection vulnerabilities. These integration tests typically perform
functional checks. Our approach re-executes these existing test cases, mutating values that
are controlled by users (e.g., parts of each of the test’s HTTP requests) and detecting when
these mutated values result in real attacks. To our knowledge, this is the first approach that
combines dynamic analysis with existing tests to detect injection attacks.

Key to our test amplification approach is a white-box context-sensitive input generation
strategy. For each user-controlled value, state-of-the-art testing tools generate hundreds
of attack strings to test the application [109, 108, 77]. By leveraging the context of how that
user-controlled value is used in security-sensitive parts of the application, we can trivially
rule out most of the candidate attack strings for any given value, reducing the number of
values to check by orders of magnitude. Our testing-based approach borrows ideas from
both fuzzing and regression testing, and is language agnostic.

We implemented this approach in the JVM, creating a tool that we call RIVULET. RIVULET

Reveals Injection VUlnerabilities by Leveraging Existing Tests, and does not require access
to application source code, and runs in commodity, off-the-shelf JVMs, integrating directly
with the popular build automation platform Maven.

Like any testing-based approach, RIVULET is not guaranteed to detect all vulnerabilities.
However, RIVULET guarantees that every vulnerability that it reports meets strict criteria
for demonstrating an attack. We found that RIVULET performed as well as or better than a
state-of-the-art static vulnerability detection tool [139] on several benchmarks. RIVULET

discovers the Apache Struts vulnerability exploited in 2017 Equifax hack within minutes.
When we ran RIVULET with the open-source project Jenkins, RIVULET found a previously
unknown cross-site scripting vulnerability, which was confirmed by the developers. On
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the educational project iTrust [56], RIVULET found 5 previously unknown vulnerabilities.
Unlike the state-of-the-art static analysis tool that we used, Julia [139], RIVULET did not
show any false positives.

Using dynamic analysis to detect injection vulnerabilities before deployment is hard, and
we have identified two key challenges that have limited past attempts: (1) Unlike static
analysis, dynamic analysis requires a representative workload to execute the application
under analysis; and (2) For each potential attack vector, there may be hundreds of input
strings that should be checked.

4.2 Contributions
RIVULET addresses the challenges mentioned above, making the following key contribu-
tions:

• A technique for re-using functional test cases to detect security vulnerabilities by
modifying their inputs and oracles

• Context-sensitive mutational input generators for SQL, OGNL, and XSS that handle
complex, stateful applications

• Embedded attack detectors to verify whether rerunning a test with new inputs leads
to valid attacks

RIVULET is publicly available under the MIT license [62, 61].

4.3 Motivating Example
Injection vulnerabilities , such as SQL injection and cross-site scripting (XSS), enable attack-
ers to insert different kinds of code into the target applications. Developers defend their
software from such injection attacks through input validation and sanitization. Broadly,
validation is a set of whitelisting techniques, such as: ”only accept inputs that match a
limited set of characters,” while sanitization is a set of transformations that render attacks
harmless, such as: ”escape all quotation marks in user input.” Ideally, each user-controlled
1@Override
2public void doGet(HttpServletRequest request, HttpServletResponse response) throws IOException {
3 String name = request.getParameter(”name”);
4 response.setContentType(”text/html”);
5 String escaped = StringEscapeUtils.escapeHtml4(name);
6 String content = ”<a href=\”%s\”>hello</a>”;
7 try(PrintWriter pw = response.getWriter()) {
8 pw.println(”<html><body>”);
9 pw.println(String.format(content, escaped));

10 pw.println(String.format(content, name));
11 pw.println(”</body></html>”);
12 }
13}

LISTING 4.1: Two example XSS vulnerabilities. An untrusted user input from
an HTTP request flows into the response to the browser on lines 9 and 10.
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input (also referred to as a ”tainted source”) that can reach critical methods that may result
in code execution (also referred to as a ”sensitive sink”) will be properly sanitized, validated,
or both. Reaching such an ideal state is non-trivial [169, 89]. Hence, the key challenge in
detecting these vulnerabilities is to detect flows from tainted sources to sensitive sinks that
have not been properly sanitized.

Listing 4.1 shows a simplified example of two genuine cross-site scripting (XSS) vulner-
abilities. XSS vulnerabilities allow an attacker to inject client-side scripting code into the
output of an application which is then sent to another user’s web browser. Lines 9 and 10
show a parameter provided by the user flowing into the response sent back to the browser
without proper sanitization. In the first case (line 9), the vulnerability occurs despite an
attempt to sanitize the user’s input (using the Apache Commons-Language library function
escapeHtml4), and in the second case (line 10), there is no sanitization at all.

In either case, providing the input string javascript:alert('XSS'); for the parameter
"name" will result in JavaScript code executing in the client’s browser if they click on the
link. The chosen sanitizer escapes any HTML characters in the input string (i.e., preventing
an injection of a <script> tag), but is insufficient for this case, as an attacker need only
pass the prefix javascript: in their payload to cause code to execute when the user
clicks on this link (many XSS attack payloads do not include brackets or quotes for this
reason [109]).

To fix this vulnerability, the developer needs to apply a sanitizing function that prevents
the insertion of JavaScript code. Static analysis tools, such as the state-of-the-art Julia
platform [139], typically assume that library methods pre-defined as sanitizers for a class
of attack (e.g., XSS sanitizers) eliminate vulnerabilities for the data flows that they are
applied to. In our testing-based approach, sanitizer methods do not need to be annotated
by users. Instead we test whether a flow is adequately sanitized by attempting to generate
a counterexample (i.e., a malicious payload that produces a successful injection attack).

4.4 Methodology
Generating tests that expose the rich behavior of complicated, stateful web applications
can be quite difficult. For instance, consider a vulnerability in a health records application
that can only be discovered by logging in to a system, submitting some health data, and
sending a message to a healthcare provider. Fuzzers have long struggled to generate inputs
that follow a multi-step workflow like this example [77, 58]. Instead, RIVULET begins by
executing the existing, ordinary test suite that developers have written, which does not need
to have any security checks included in it: in this healthcare messaging example, an existing
test might simply check that the workflow completes without an error. As we show in our
evaluation (§5.4), even small test suites can be used by RIVULET to detect vulnerabilities.
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3. Attack Detection1. Candidate Test Detection
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FIGURE 4.1: High-Level Overview of RIVULET. RIVULET detects vulner-
abilities in three phases. Key to our approach is the repeated execution
of developer-provided test cases with dynamic taint tracking. First, each
developer-provided test is executed using taint tracking to detect which tests
expose potentially vulnerable data flows. HTTP requests made during a
test are intercepted and parsed into their syntactic elements which are then
tainted with identifying information. Then, source-sink flows observed dur-
ing test execution are recorded and passed with contextual information to
a rerun generator. The rerun generator creates rerun configurations using
the supplied flow and contextual information, and executes these reruns,
swapping out developer-provided inputs for malicious payloads. Source-
sink flows observed during test re-execution are passed to an attack detector
which verifies source-sink flows that demonstrate genuine vulnerabilities.

Figure 4.1 shows a high-level overview of RIVULET’s three-step process to detect injection
vulnerabilities in web applications. First, RIVULET uses dynamic taint tracking while
running each test to observe data flows from ”sources,” untrusted system inputs controlled
by a potentially malicious actor, to ”sinks,” sensitive parts of an application that may
be vulnerable to injection attacks. These source-sink flows do not necessarily represent
vulnerabilities: it is possible that a sanitizer function correctly protects the application.
Hence, when a source-sink flow is observed, RIVULET generates malicious payloads based
on contextual information of the sink method. Then, tests are re-executed and those
untrusted source values are replaced with generated payloads, probing for weak or missing
sanitizers. Lastly, specialized logic based on the type of vulnerability, e.g., XSS, is used as
an oracle to determine whether a re-execution demonstrates a successful attack, thereby
transforming a functional test into a security test.

In this way, source-sink flows are verified as vulnerable only if a successful attack can be
demonstrated using a concrete exploit. This standard produces few false positives. Test
reruns enable our technique to consider input sanitization and validation without requiring
sanitization and validation methods to be explicitly specified or modeled. Verifying whether
a sanitizer or validator is correct in all cases is a hard problem and beyond the scope of this
work. However, if a system sanitizes or validates input improperly before it flows into a
sink method, then one of the malicious payloads may be able to demonstrate a successful
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attack, causing the flow to be verified. Our implementation of RIVULET (described in
§4.5) automatically detects SQL injection, remote code execution, and cross-site scripting
vulnerabilities: developers do not need to specify any additional sources or sinks in order
to find these kinds of vulnerabilities. Section 4.5 describes, in detail, the specific strategy
that RIVULET uses to find these kinds of vulnerabilities.
4.4.1 Detecting Candidate Tests
RIVULET co-opts existing, functional test cases to test for security properties by mutating
user-controlled inputs and adding security-based oracles to detect code that is vulnerable
to injection attacks. We assume that developers write tests that demonstrate typical appli-
cation behavior, and our approach relies on automated testing to detect weak or missing
sanitization. This assumption is grounded in best practices for software development: we
assume that developers will implement some form of automated functional testing before
scrutinizing their application for security vulnerabilities. RIVULET detects candidate tests
by executing each test using dynamic taint tracking, identifying tests that expose poten-
tially vulnerable source-sink flows, each of which we refer to as a violation. By leveraging
developer tests, our approach can detect vulnerabilities that can only be revealed through
a complex sequence of actions. These vulnerabilities can be difficult for test generation
approaches to detect, but are critical when dealing with stateful applications [77].

In this model, developers do not need to write test cases that demonstrate an attack —
instead, they need only write test cases that expose an information flow that is vulnerable to
an attack. For instance, consider a recent Apache Struts vulnerability (CVE-2017-9791) that
allowed user-provided web form input to flow directly into the Object-Graph Navigation
Language (OGNL) engine. Struts includes a sample application for keeping track of the
names of different people, this application can be used to demonstrate this vulnerability
by placing an attack string in the ”save person” form. To detect this vulnerability, we do
not need to observe a test case that uses an attack string in the input, instead, we need only
observe any test that saves any string through this form in order to observe the insecure
information flow. Once this is detected, RIVULET, can then re-execute and perturb the test
case, mutating the value of the form field, eventually demonstrating the exploit.

4.4.2 Rerun Generation and Execution
The next phase in RIVULET’s vulnerability detection process is to re-execute each test,
perturbing the inputs that the server received from the test case in order to add malicious
payloads. A significant challenge to our approach is in the potentially enormous number of
reruns that RIVULET needs to perform in order to test each potentially vulnerable source-
sink flow. If an application has thousands of tests, each of which may have dozens of
potentially vulnerable flows, it is crucial to limit the number of times that each test needs
to be perturbed and re-executed. Unfortunately, it is typical to consider over 100 different
malicious XSS payloads for each potentially vulnerable input [109, 77], and other attacks
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may still call for dozens of malicious payloads.

Instead, RIVULET uses a white-box, in situ approach to payload generation in order to
drastically reduce the number of reruns needed to evaluate a source-sink flow. Successful
injection attacks often need to modify the syntactic structure of a query, document or
command from what was intended by the developer [146]. By looking at the placement of
taint tags (representing each source) within structured values that reach sink methods, i.e.,
the syntactic context into which untrusted values flow, the number of payloads needed to
test a flow can be limited to only those capable of disrupting that structure from the tainted
portions of the value.

For instance, when an untrusted value reaches a sink method vulnerable to SQL injec-
tion attacks, developers usually intend for the value to be treated as a string or numeric
literal. Consider the following SQL query: SELECT * FROM animals WHERE name

= '%Tiger%'; where the word Tiger is found to be tainted. In order to modify the
structure of the query, a payload must be able to end the single-quoted string literal contain-
ing the tainted portion of the query. Payloads which do not contain a single-quote would
be ineffective in this context, e.g., payloads that aim to end double-quoted string literals,
and do not need to be tested when evaluating this flow. RIVULET uses a similar approach
for generating payloads for other kinds of attacks, as we will describe in § 4.5.2.

4.4.3 Attack Detection
The attack detector component provides the oracle for each modified test (removing any
existing assertions), determining if the new input resulted in a successful attack on the
system under test. There is a natural interdependence between payload generation and
attack detection. Attack detection logic must be able to determine the success of an attack
using any of the payloads that could be generated by RIVULET. Likewise, generated
payloads should aim to trigger a successful determination from the detection logic. This
relationship can be used not only to guide payload generation, but also to enable stricter
(and simpler to implement) criteria for determining what constitutes a successful attack.
Specifically, it is not necessary to recognize all possible successful attacks, but instead, only
those generated by the system. Furthermore, this reduces the difficulty of formulating an
appropriate detection procedure, particularly for certain types of attacks. RIVULET’s attack
detectors inspect both the taint tags and concrete values of data that reaches sensitive sinks.

4.5 Implementation
Our implementation of RIVULET for Java is built using the Phosphor taint tracking frame-
work [17], and automatically configures the popular build and test management platform
Maven to perform dynamic taint tracking during the execution of developer-written tests,
generate malicious payloads based on source-sink flows observed during test execution,
and execute test reruns. Developers can use RIVULET by simply adding a single maven
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extension to their build configuration file: RIVULET and Maven automatically configure
the rest. Out of the box, RIVULET detects cross-site scripting, SQL injection, and OGNL
injection vulnerabilities without any additional configuration. Phosphor propagates taint
tags by rewriting Java bytecode using the ASM bytecode instrumentation and analysis
framework [110], and does not require access to application or library source code. We chose
Phosphor since it is capable of performing taint tracking on all Java data types, ensuring
that RIVULET is not limited in its selection of source and sink methods to only methods that
operate on strings.

4.5.1 Executing Tests with Dynamic Tainting
RIVULET’s approach for dynamic taint tracking within test cases is key to its success. Taint
tracking allows data to be annotated with labels (or ”taint tags”), which are propagated
through data flows as the application runs. It is particularly critical to determine where
these tags are applied (the ”source methods”) and how they correspond to the actual input
that could come from a user, since it is at these same source methods that RIVULET injects
malicious values when rerunning tests.

Many approaches to applying taint tracking to HTTP requests in the JVM use high-level Java
API methods as taint sources, such as ServletRequest.getParameter() for param-
eters or, for cookies, HttpServletRequest.getCookies() [139, 96, 33, 54]. However,
these approaches can be brittle: if a single source is missed or a new version of the appli-
cation engine is used (which adds new sources), there may be false negatives. Moreover,
since application middleware (between the user’s socket request and these methods) per-
forms parsing and validation, mutating these values directly could result in false positives
when replaying and mutating requests. If RIVULET performed its injection after the mid-
dleware parses the HTTP request from the socket (i.e., as a user application reads a value
from the server middleware), RIVULET might generate something that could never have
passed the middleware’s validation. For instance, if performing a replacement on the
method getCookies(), RIVULET might try to generate a replacement value NAME=alert
(String.fromCharCode(88,88,83)), which could never be a valid return value from
this method source, since HTTP cookies may not contain commas [97].

Instead of using existing Java methods as taint sources, RIVULET uses bytecode instru-
mentation to intercept the bytes of HTTP requests directly as they are read from sockets.
Intercepted bytes are then buffered until a full request is read from the socket. Requests
read from the socket are parsed into their syntactic elements, e.g., query string, entity-body,
and headers. Each element then passes through a taint source method which taints the
characters of the element with the name of the source method, the index of the character in
the element, and a number assigned to the request that was parsed. The original request is
then reconstructed from the tainted elements and broken down back into bytes which are
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passed to the object that originally read from the socket. This technique allows a tainted
value to be traced back to a range of indices in a syntactic element of a specific request. Thus,
this tainting approach enables precise replacements to be made during test re-executions.

We have integrated RIVULET with the two most popular Java HTTP servers, Tomcat [11]
and Jetty [153], using bytecode manipulation. RIVULET modifies components in Tomcat
and Jetty which make method calls to read bytes from a network socket to instead pass the
receiver object (i.e., the socket) and arguments of the call to the request interceptor. The
interceptor reads bytes from any socket passed to it, parses the bytes into a request and
taints the bytes based on their semantic location within the parsed request. It would be easy
to add similar support to other Java web servers, however, Tomcat and Jetty are the most
popular platforms by far.

4.5.2 Rerun Generation
RIVULET uses an easy-to-reconfigure, predefined set of sink methods, which we enumerate
by vulnerability type below. When a sink method is called, the arguments passed to the
call are recursively checked for taint tags, i.e., arguments are checked, the fields of the
arguments are checked, the fields of the fields of arguments checked, and so on until to a
fixed maximum checking depth is reached. If a tainted value is found during the checking
process, a source-sink flow is recorded. When RIVULET finishes checking the arguments of
the call, it passes contextual information and flow information to a generator that handles
the type of vulnerability associated with the sink method that was called. The contextual
information consists of the receiver object of the sink method call and the arguments of the
call. The flow information consists of the source information contained in the labels of the
tainted values that were found and a description of the sink method that was called.

Rerun generators create rerun configurations identifying the test case that should be rerun,
the detector that should be used to determine whether a successful attack was demonstrated
by the rerun, the original source-sink flow that the rerun is trying to verify, and at least one
replacement. Replacements define a replacement value, information used to identify the
source value that should be replaced (target information), and possibly a ”strategy” for
how the source value should be replaced. A replacement can either be built as a ”payload”
replacement or a ”non-payload” replacement.

Payload replacements are automatically assigned target information and sometimes a
strategy based on flow information. For example, the labels on a tainted value that reached
some sink might show that the value came from indices 6−10 of the second call to the source
getQueryString(). One payload replacement built off of that flow information would
direct that the second time getQueryString() is called that its return value should be
replaced using a strategy that replaces only indices six through ten with a replacement
value. Payload replacements are how malicious payloads are normally specified, thus
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every rerun is required to have at least one of them. Non-payload replacements are useful
for specifying secondary conditions that an attack may need in order to succeed, such as
changing the ”Content-Type” header of a request.

SQL Injection. The rerun generator for SQL injection uses all java.sql.Statement
and java.sql.Connection methods that accept SQL code as sinks, and considers three
primary SQL query contexts in which a tainted value may appear: literals, comments,
LIKE clauses. Tainted values appearing in other parts of the query are treated similarly
to unquoted literals. Tainted values appearing in LIKE clauses are also considered to be
in literals, thus cause both the payloads for tainted literals and tainted LIKE clauses to
be generated. If a tainted value appears in a literal, the generator first determines the
”quoting” for the literal. A literal can be either unquoted (like a numeric literal might be),
single-quoted, double-quoted, or backtick-quoted (used for table and column identifiers in
MySQL). Payloads for tainted literals are prefixed by a string that is based on the quoting of
the literal in order to attempt to end the literal. The quoting can also be used to determine
an appropriate ending for payloads. If a tainted value appears in a comment, the generator
first determines the characters used to end and start the type of comment the value appears
in. Payloads for tainted comments are prefixed by the end characters for the comment and
ended with the start characters for the comment. If a tainted value appears in a LIKE clause,
the generator creates payloads containing SQL wildcard characters.

RIVULET generates 2–5 SQL injection payloads for a tainted value in a particular context
out of 20 unique payloads that could be generated for the same tainted value across all
of the contexts considered by the SQL injection rerun generator. If wildcard payloads for
LIKE clause are not generated then only 2–3 payloads are generated per context. This is
a reduction from Kieżun et al.’s Ardilla, which uses 6 SQL injection patterns and does not
consider tainted backtick-quoted values, comments, or LIKE clauses [77].

Cross-Site Scripting. RIVULET uses special sink checking logic for XSS, checking data as it is
sent over-the-wire to the browser. The overloaded variants of SocketChannel.write()
are used as sink methods for XSS attacks. In order to give the XSS generator all of the HTML
content for a single response at once, RIVULET stores the bytes written to a socket until a
full response can be parsed from the bytes. If the parsed response contains HTML content
and the HTML in the response’s entity-body contains a tainted value, then that HTML is
passed to the XSS rerun generator.

The XSS rerun generator parses HTML content into an HTML document model using the
Jsoup library [71]. This model is traversed, generating payloads for each tainted value
encountered. The XSS rerun generator considers 5 primary HTML document contexts in
which a tainted value may appear: tag names, attribute names, attribute values, text or data
content, and comments. Different payloads are capable of introducing a script-triggering



4.5. Implementation 47

mechanism into the document’s structure depending on the context. RIVULET also addresses
context-specific issues like the quoting of attribute values or whether content is contained
in an element which causes the tokenizer to leave the data state during parsing [173].

The XSS generator also considers whether a tainted value was placed in a context that would
already be classified as an embedded script or the address of an external script. Furthermore,
if a tainted value appears in a context that would be classified as an embedded script then
the generator also determines whether the tainted value is contained within a string literal,
template literal, or comment.

RIVULET generates 3–7 XSS payloads for a tainted value in a particular context out of over
100 unique payloads that could be generated for the same tainted value across all of the
contexts considered by the XSS rerun generator. By comparison, OWASP’s ”XSS Filter
Evasion Cheat Sheet” features 152 unique payloads for cross-site scripting attacks [109] and
Ardilla uses 106 patterns for creating cross-site scripting attacks [77].

Command and OGNL Injection. The command injection rerun generator creates payloads
with common UNIX commands like ls, considering java.lang.ProcessBuilder and
java.lang.Runtime methods as sinks.

The OGNL injection rerun generator creates payloads that facilitate attack detection. It can
be difficult to specify generic criteria for detecting any OGNL injection attack because the
language is designed to allow users to execute ”non-malicious” code. OGNL expressions
can modify Java objects’ properties, access Java objects’ properties and make method
calls [151]. Applications using OGNL can limit the code that user specified expressions can
execute by whitelisting or blacklisting certain patterns [152]. The evaluation of improperly
validated OGNL expressions can enable a user to execute arbitrary code. The OGNL rerun
generator uses payloads that we collected from the Exploit Database [47] and simplified to
integrate more tightly with RIVULET’s attack detection mechanism.

Rerun Execution. Rerun configurations created by the rerun generators specify test cases
that should be re-executed. Values are replaced when they are assigned a label at a source
method and the information on the label being assigned to the value meets the criteria
specified by one of the current rerun configuration’s replacements. Replacements may
dictate a strategy for replacing the original value; strategies can specify ways of combining
an original value with a replacement value, a way of modifying the replacement value,
or both. For example, a strategy could specify that only a certain range of indices in the
original value should be replaced, that the replacement value should be percent encoded,
or both. RIVULET automatically converts values to ensure that the type of a replacement
value is appropriate (e.g., converting between a string and a character array).



48 Chapter 4. Revealing Injection Vulnerabilities by Leveraging Existing Tests

4.5.3 Attack Detection
Rerun configurations specify which vulnerability-specific attack detector should be used to
check flows during a test re-execution.

SQL Injection. Our approach for detecting SQL injection attack builds on Halfond et al.’s
”syntax-aware evaluation” model, which calls for checking that all parts of SQL queries
except for string and numeric literals come from trusted sources [55]. We determine a
SQL injection attack to be successful if a tainted SQL keyword not contained in a literal
or comment is found within a query that reached a sink vulnerable to SQL injection.
Alternatively, an attack is deemed successful if a sink-reaching query contains a LIKE

clause with an unescaped tainted wildcard character (i.e., % or ˙) as the system could be
vulnerable to a SQL wildcard denial-of-service attack [108]. The attack detector for SQL
injection uses ANTLR, a parser generation tool [150] and JSqlParser, a SQL statement parser
that supports multiple SQL dialects [72], to parse SQL statements that reach sink methods
vulnerable to SQL injection attacks.

Cross-Site Scripting. The World Wide Web Consortium’s (W3C’s) Recommendation for
HTML 5.2 specifies mechanisms which can trigger the execution of embedded or external
scripts: ”processing of script elements,” ”navigating to javascript: URLs,” ”event handlers,”
”processing of technologies like SVG that have their own scripting features” [172]. Only
the syntactic components of an HTML document that are capable of activating a script-
triggering mechanism are vulnerable to script injections. As such, we determine the success
of an XSS attack by checking these vulnerable components.

RIVULET intercepts and buffers the bytes of HTTP responses until a full response can be
parsed from the bytes. Then, the parsed document is checked for components that could
activate a script-triggering mechanism. Depending on the mechanism potentially activated
by the component, a portion of the component is then classified as either an embedded script
or the address of an external script. The following rules are used to identify embedded and
external scripts in the response: (1) The inner content of every ”script” tag is classified as an
embedded script. (2) The HTML entity decoded value of every ”src” attribute specified for a
”script” tag is classified as an external script’s address. (3) The HTML entity decoded value
of every ”href” attribute specified for a ”base” tag is classified as an external script’s address
because of its potential impact on elements in the document using relative URLs. (4) The
HTML entity decoded value of every event handler attribute, e.g., ”onload,” specified for
any tag is classified as an embedded script. (5) The HTML entity decoded value of every
attribute listed as having a URL value in W3C’s Recommendation for HTML 5.2 [172], e.g.,
the ”href” attribute, is examined. If the decoded value starts with ”javascript:”, then the
portion of the decoded value after ”javascript:” is classified as an embedded script.
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Embedded scripts are checked for values successfully injected into non-literal, non-commented
portions of the script. To do so, the portions of the script that are not contained in JavaScript
string literals, template literals, or comments are checked for a predefined target string. This
target string is based on the malicious payload being used in the current test re-execution,
e.g., alert is an appropriate target string for the payload <script>alert(1)</script

>, but other payloads may have more complicated target strings. If the target string is found
in the non-literal, non-commented portions of the script and it is tainted, then the attack is
deemed successful. Since the target string must be tainted to be deemed a successful attack,
a vulnerability will be reported only if an attacker could inject that target string into the
application.

External script addresses are checked for successfully injected URLs that could potentially
be controlled by a malicious actor. The start of each address is checked for a predefined
target URL. The target URL is based on the malicious payload being used in the current test
re-execution. If the target URL is found at the start of an address and is tainted, then the
attack is deemed successful.

The XSS attack detector stores bytes written to a socket by calls to SocketChannel.write
() until a full response can be parsed (using Jsoup [71]) from the bytes stored for a particular
socket. The rules described above are then applied to the document model parsed from
the entity-body. The embedded script checks are also performed using ANTLR [150]
and a simplified grammar for JavaScript to identify string literals, template literals, and
comments.

Command and OGNL Injection. A command injection attack is determined to be suc-
cessful if any tainted value flows into a sink vulnerable to command injection (such as
ProcessBuilder.command() and Runtime.exec()). Additionally, if a call is made
to ProcessBuilder.start(), the detector will deem an attack successful if the ”com-
mand” field of the receiver object for the call is tainted. This relatively relaxed standard
is a product of a lack of legitimate reasons for allowing untrusted data to flow into these
sinks and the severity of the security risk that doing so presents. This approach could be
fine-tuned to perform more complicated argument parsing (similar to the XSS detector),
however, in practice, we found it sufficient, producing no false positives on our evaluation
benchmarks. We use a similar tactic to test for successful OGNL injection attacks since the
OGNL payloads generated by RIVULET are crafted to perform command injection attacks.

4.5.4 Limitations
Our approach is not intended to be complete; it is only capable of detecting vulnerabilities
from source-sink flows that are exposed by a test case. Hence, RIVULET requires applications
to have existing test cases, although we believe that this is a fair assumption to make, and in
our evaluation, show that RIVULET can detect a real vulnerability even when presented with
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TABLE 4.1: Comparison of RIVULET and Julia [139] on third-party bench-
marks. For each vulnerability type in each benchmark suite we show the total
number of test cases (for both true and false alarm tests). For RIVULET and
Julia, we report the number of true positives, false positives, true negatives,
false negatives, and analysis time in minutes. Times are aggregate for the

whole benchmark suite.

# Test Cases RIVULET Julia

Suite Type True Alarm False Alarm TP FP TN FN Time TP FP TN FN Time

RCE 444 444 444 0 444 0 444 0 444 0
Juliet SQL 2, 220 2, 220 2, 220 0 2, 220 0 2, 220 0 2, 220 0

XSS 1, 332 1, 332 1, 332 0 1, 332 0
25

1, 332 0 1, 332 0
33

RCE 126 125 126 0 125 0 126 20 105 0
OWASP SQL 272 232 272 0 232 0 272 36 196 0

XSS 246 209 246 0 209 0
3

246 19 190 0
15

Securibench-Micro
SQL 3 0 3 0 0 0 3 0 0 0
XSS 86 21 85 0 21 1

1
77 14 7 9

1

SQL 132 10 132 0 10 0 132 0 10 0
WavSep

XSS 79 7 79 0 7 0
2

79 6 1 0
2

a very small test suite (for Apache Struts). This limitation could be mitigated by integrating
our approach with an automatic test generation technique. Vulnerabilities caused by a
nondeterministic flow are hard for RIVULET to detect, even if the flow occurs during the
original test run, because the flow may fail to occur during the re-execution of the test.
RIVULET does not detect XSS attacks which rely on an open redirection vulnerability [154].
More generally, RIVULET can only detect attacks that we have constructed generators and
detectors for, but this is primarily a limitation of RIVULET’s implementation, and not its
approach. We note that even static analysis tools can only claim soundness to the extent
that their model holds in the code under analysis: in our empirical evaluation of a sound
static-analysis tool, we found that the static analyzer missed several vulnerabilities (§4.6.1).

Since Phosphor is unable to track taint tags through code outside of the JVM, RIVULET

is also unable to do so. As a result, RIVULET cannot detect persistent XSS vulnerabilities
caused by a value stored in an external database, but it can detect one caused by a value
stored in Java heap memory. We plan to propose extensions to Phosphor to overcome
this limitation, building off of work demonstrating the feasibility of persisting taint tags
in databases in the Android-based TaintDroid system [149]. At present, RIVULET can
only detect vulnerabilities that result from explicit (data) flow, and not through implicit
(control) flows, or side-channels such as timing [124], a limitation shared by most other
tools, including Julia [139]. Experimental support for implicit flow tracking in Phosphor
may lift this limitation in the future. Despite these limitations, we have found RIVULET to
be effective at detecting injection vulnerabilities.

4.6 Evaluation
We performed an empirical evaluation of RIVULET, with the goal of answering several
research questions:
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RQ1: How does RIVULET perform in comparison to a state-of-the-art static analysis tool?

RQ2: Does RIVULET scale to large projects and their test suites?

RQ3: How significantly does RIVULET’s contextual payload generation reduce the number
of reruns needed?

To answer these questions, we applied both RIVULET and the state-of-the-art static analysis
tool Julia [139] to several suites of vulnerability detection benchmarks. These curated
benchmarks are intentionally seeded with vulnerabilities, allowing us to compare RIVULET

and Julia in terms of both precision and recall. We were also able to use one of these
benchmarks to compare RIVULET against six commercial vulnerability detection tools.
These benchmarks allow us to evaluate the efficacy of RIVULET’s attack generators and
detectors, but since they are micro-benchmarks, they do not provide much insight into how
RIVULET performs when applied to real, developer-provided test suites. To this end, we
also applied RIVULET to three larger applications and their test suites.

We conducted all of our experiments on Amazon’s EC2 infrastructure, using a single
”c5d.4xlarge” instance with 16 3.0Ghz Intel Xeon 8000-series CPUs and 32 of RAM, running
Ubuntu 16.04 ”xenial” and OpenJDK 1.8.0 222. We evaluated Julia by using the JuliaCloud
web portal, using the most recent version publicly available as of August 16, 2019. When
available (for Juliet-SQLI, Juliet-XSS and all of OWASP), we re-use results reported by the
Julia authors [139]. When we executed it ourselves, we confirmed our usage of Julia through
personal communication with a representative of JuliaSoft, and greatly thank them for their
assistance.

4.6.1 RQ1: Evaluating RIVULET on Benchmarks
In order to evaluate the precision and recall of RIVULET and Julia, we turn to third-party
vulnerability detection benchmarks, specifically NIST’s Juliet Benchmark version 1.3 [98],
OWASP’s Benchmark version 1.2 [107], Livshits’ securibench-micro [88], and the Appli-
cation Vulnerability Scanner Evaluation Project’s WAVSEP version 1.5 [31]. Each of these
benchmarks contains test cases with vulnerabilities that are representative of real vulnera-
bilities found in various applications. From these tests, we can collect the number of true
positives and false negatives reported by each tool. The benchmarks also contain test cases
with variants of those vulnerabilities that are not vulnerable, allowing us to also collect the
number of false positives and true negatives reported by each tool.

Each benchmark consists of a series of web servlets (and in some cases, also non-servlet
applications) that are tests well-suited for analysis by a static analyzer like Julia. However,
RIVULET requires executable, JUnit-style test cases to perform its analysis. Each servlet is
designed to be its own standalone application to analyze, and they are not stateful. Hence,
for each benchmark, we generated JUnit test cases that requested each servlet over HTTP,
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passing along some default, non-malicious parameters as needed. Where necessary, we
modified benchmarks to resolve runtime errors, mostly related to invalid SQL syntax in the
benchmark. We ignored several tests from securibench-micro that were not at all suitable to
dynamic analysis (some had infinite loops, which would not result in a page being returned
to the user), and otherwise included only tests for the vulnerabilities targeted by RIVULET

(RCE, SQLI and XSS). Most of these benchmarks have only been analyzed by static tools,
and not executed, and hence, such issues may not have been noticed by prior researchers.

Table 4.1 presents our findings from applying both RIVULET and Julia to these benchmarks.
RIVULET had near perfect recall and precision, identifying every true alarm test case as a
true positive but one, and every false alarm test case as a true negative. In three interesting
Securibench-Micro test cases, the test case was non-deterministically vulnerable: with some
random probability the test could be vulnerable or not. In two of these cases, RIVULET

eventually detected the vulnerability after repeated trials (the vulnerability was exposed
with a 50% probability and was revealed after just several repeated trials). However, in the
case that we report a false negative (simplified and presented in Listing 4.2), the probability
of any attack succeeding on the test was just 1/232, and RIVULET could not detect the
vulnerability within a reasonable time bound. We note that this particularly difficult case
does not likely represent a significant security flaw, since just like RIVULET, an attacker can
not control the probability that their attack would succeed. This test case likely represents
the worst-case pathological application that RIVULET could encounter.

In comparison, Julia demonstrated both false positives and false negatives. Many of the
false positives were due to Julia’s lack of sensitivity for multiple elements in a collection,
resulting in over-tainting all elements in a collection. We confirmed with JuliaSoft that the
tool’s false negatives were not bugs, and instead generally due to limitations in recovering
exact dynamic targets of method calls when the receiver of a method call was retrieved
from the heap, causing it to (incorrectly) assume a method call to not be a sink. Listing 4.3
shows an example of one such case, where Julia reports a vulnerability on Line 3 but not on
Line 6 since it is unable to precisely determine the dynamic target of the second println.
Unlike the very tricky non-deterministic case that RIVULET struggled to detect, we note that
this form of data flow is not uncommon, and this limitation may significantly impact Julia’s
ability to detect XSS vulnerabilities in applications that pass the servlet’s PrintWriter
between various application methods.

void doGet(HttpServletRequest req, HttpServletResponse resp) {
Random r = new Random();
if (r .nextInt () == 3)

resp.getWriter() . println(req.getParameter(”name”));
}

LISTING 4.2: Simplified code of the vulnerability RIVULET misses. r.
nextInt() returns one of the 232 integers randomly.
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We also collected execution times to analyze each entire benchmark for both tools. For
RIVULET, we report the total time needed to execute each benchmark (including any
necessary setup, such as starting a MySQL server), and for Julia, we report the execution
time from the cloud service. Despite its need to execute thousands of JUnit tests, RIVULET

ran as fast or faster than Julia in all cases. Most of RIVULET’s time on these benchmarks
was spent on the false positive tests, which act as a ”worst case scenario” for its execution
time: if RIVULET can confirm a flow is vulnerable based on a single attack payload, then it
need not try other re-run configurations for that flow. However, on the false positive cases,
RIVULET must try every possible payload (in the case of XSS, this is up to 7, although it may
also try different encoding strategies for each payload, depending on the source).

Unfortunately, it is not possible to report a direct comparison between RIVULET and any
commercial tools (except for Julia) due to licensing restrictions. However, the OWASP
benchmark is distributed with anonymized results from applying six proprietary tools
(Checkmarx CxSAST, Coverity Code Advisor, HP Fortify, IBM AppScan, Parasoft Jtest, and
Veracode SAST) to the benchmark, and we report these results in comparison to RIVULET.
Table 4.2 presents these results (each commercial tool is anonymized), showing the true
positive rate and false positive rate for each tool. RIVULET outperforms each of these
commercial static analysis tools in both true positive and false positive detection rates.

4.6.2 RQ2: RIVULET on Large Applications
While the benchmarks evaluated in § 4.6.1 are useful for evaluating the potential to detect
vulnerabilities, they are limited in that they are micro-benchmarks. They help us make
general claims about how RIVULET might perform when applied to an arbitrary application.
However, since each micro-benchmark is designed to be easily executed (and indeed, we
automatically generated tests to execute them), it is not possible to judge how RIVULET

performs when using existing, developer-written, test cases on real applications.

To provide more detailed results on how RIVULET performs on larger, real applications, we
applied it to three different open-source Java web applications and their existing JUnit test
suites. iTrust is an electronic health record system iteratively developed over 25 semesters
by students at North Carolina State University [56, 67]. We evaluated iTrust version 1.23,

1private PrintWriter writer;
2void doGet(HttpServletRequest req, HttpServletResponse resp) {
3 resp.getWriter() . println(req.getParameter(”dummy”));
4 //XSS reported on line above
5 this .writer = resp.getWriter() ;
6 this .writer. println(req.getParameter(”other”));
7 //No XSS reported on line above
8}

LISTING 4.3: Example of a false negative reported by Julia
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TABLE 4.2: Comparison between RIVULET and different vulnerability de-
tection tools on the OWASP benchmark. For each vulnerability type, we
report the true positive rate and false positive rate for the tool. Each SAST-0*
tool is one of: Checkmarx CxSAST, Coverity Code Advisor, HP Fortify, IBM

AppScan, Parasoft Jtest, and Veracode SAST.

RCE SQL XSS

Tool TPR FPR TPR FPR TPR FPR

SAST-01 35% 18% 37% 13% 34% 25%
SAST-02 67% 42% 94% 62% 67% 42%
SAST-03 59% 35% 82% 47% 49% 22%
SAST-04 72% 42% 83% 51% 66% 40%
SAST-05 62% 57% 77% 62% 41% 25%
SAST-06 100% 100% 100% 90% 85% 45%
RIVULET 100% 0% 100% 0% 100% 0%

TABLE 4.3: Results of executing RIVULET on open-source applications. For
each application we show the number of lines of Java code (as measured by
cloc [36]) the number of test methods, and the time it takes to run those
tests with and without RIVULET. For each vulnerability type, we show the
number of potentially vulnerable flows detected by RIVULET (Flows), the
naive number of reruns that would be performed without RIVULET’s contex-
tual payload generators (Rerunsn), the actual number of reruns (Reruns), the
number of reruns succeeding in exposing a vulnerability (Crit), and the num-
ber of unique vulnerabilities discovered (Vuln). There were no SQL-related

flows.

Time (Minutes) RCE XSS

Application LOC Tests Baseline RIVULET Flows Rerunsn Reruns Crit Vuln Flows Rerunsn Reruns Crit Vuln

iTrust 80, 002 1, 253 6 239 0 0 0 0 0 124 117, 778 5, 424 289 5
Jenkins 185, 852 9, 330 85 1, 140 0 0 0 0 0 534 294, 489 13, 562 9 1
Struts Rest-Showcase 152, 582 15 0.3 5 53 2, 609 2, 609 4 1 9 6, 254 228 0 0
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the most recent version of iTrust1 — a newer ”iTrust2” is under development, but has
far less functionality than iTrust1 [56]. A prior version of iTrust was also used in the
evaluation of Mohammadi et al.’s XSS attack testing tool, although the authors were unable
to provide a detailed list of the vulnerabilities that they detected or the specific version
of iTrust used [96]. We also assessed a recent revision, 8349cebb, of Jenkins, a popular
open-source continuous integration server [69], using its test suite. Struts is an open-source
web application framework library which is used to build enterprise software [9]. Struts
is distributed with sample applications that use the framework, as well as JUnit tests for
those applications. We evaluated RIVULET with one such sample application (rest-showcase),
using Struts version 2.3.20 1, which is known to have a serious RCE vulnerability.

Table 4.3 presents the results of this experiment, showing for each project the number of
tests, and then for each injection category the number of vulnerable flows, reruns executed,
reruns that succeeded in finding a vulnerability, and the number of unique vulnerabilities
found. RIVULET reported no false positives. We briefly discuss the vulnerabilities that
RIVULET detected in each application below.

In iTrust, RIVULET detected five pages with XSS vulnerabilities, where a user’s submitted
form values were reflected back in the page. While these values were in only five pages,
each page had multiple form inputs that were vulnerable, and hence, RIVULET reported a
total of 289 different rerun configurations that demonstrate these true vulnerabilities. There
were no flows into SQL queries in iTrust: while iTrust uses a MySQL database, it exclusively
accesses it through correct use of the preparedStatement API, which is designed to
properly escape all parameters. We reported all five vulnerabilities to the iTrust developers
and submitted a patch.

We also submitted iTrust to the Julia cloud platform for analysis, which produced 278
XSS injection warnings. We did not have adequate resources to confirm how many of
these warnings are false positives, but did check to ensure that Julia included all of the XSS
vulnerabilities that RIVULET reported. We describe one example that we closely investigated
and found to be a false positive reported by Julia. The vulnerability consists of a page with
a form that allows the user to filter a list of hospital rooms and their occupants by filtering
on three criteria. After submitting the form, the criteria submitted by the user are echoed
back on the page without passing through any standard sanitizer, hence Julia raises an alert.
While RIVULET did not alert that there was a vulnerability on this page, it did observe the
same potentially vulnerable data flow, and generated and executed rerun configurations
to test it (not finding it to be vulnerable). We carefully inspected this code to confirm that
RIVULET’s assessment of these flows was correct, and found that the filter criteria would
only be displayed on the page if there were any rooms that matched those criteria. The only
circumstances that an exploit could succeed here would be if an administrator had defined
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a hospital or ward named with a malicious string — in that case, that same malicious string
could be used in the filter. While perhaps not a best practice, this does not represent a
serious risk — an untrustworthy administrator could easily do even more nefarious actions
than create the scenario to enable this exploit.

In Jenkins, RIVULET detected a single XSS vulnerability, but that vulnerability was exposed
by multiple test cases, and hence, RIVULET created 9 distinct valid test rerun configurations
that demonstrated the vulnerability. We contacted the developers of Jenkins who confirmed
the vulnerability, assigned it the identifier CVE-2019-10406, and patched it. Jenkins does
not use a database, and hence, had no SQL-related flows. We did not observe flows from
user-controlled inputs to command execution APIs. Jenkins’ slower performance was
caused primarily by its test execution configuration, which calls for every single JUnit test
class to execute in its own JVM, with its own Tomcat server running Jenkins. Hence, for
each test, a web server must be started, and Jenkins must be deployed on that server. This
process is greatly slowed by load-time dynamic bytecode instrumentation performed by
RIVULET’s underlying taint tracking engine (Phosphor), and could be reduced by hand-
tuning Phosphor for this project.

In Struts, RIVULET detected a command injection vulnerability, CVE-2017-5638, the same
used in the Equifax attack (this vulnerability was known to exist in this revision). Again,
multiple tests exposed the vulnerability, and hence RIVULET generated multiple rerun
configurations that demonstrate the vulnerabilities. In this revision of struts, a request
with an invalid HTTP Content-Type header can trigger remote code execution, since that
header flows into the OGNL expression evaluation engine (CVE-2017-5638), and RIVULET

demonstrates this vulnerability by modifying headers to include OGNL attack payloads.
The struts application doesn’t use a database, and hence, had no SQL-related flows.

The runtime for RIVULET varied from 5 minutes to about 19 hours. It is not unusual for
automated testing tools (i.e., fuzzers) to run for a full day, or even several weeks [79], and
hence, we believe that even in the case of Jenkins, RIVULET’s performance is acceptable.
Moreover, RIVULET’s test reruns could occur in parallel, dramatically reducing the wall-
clock time needed to execute it.

4.6.3 RQ3: Reduction in Reruns
This research question evaluates RIVULET’s reduction in the number of reruns needed to test
whether a given source-sink flow is vulnerable to an attack compared to a naive approach.
To do so, we considered the number of payloads that a more naive attack generator such
as Ardilla [77] or Navex [4] might create for each class of vulnerability, and then estimate
the number of reruns needed. To estimate the number of payloads used for XSS testing,
we referred to the OWASP XSS testing cheat sheet, which has 152 distinct payloads [109].
We assume that for RCE testing, the naive generator would generate the same 12 payloads
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that RIVULET uses (RIVULET does not use context in these payloads). We assume that the
naive generator will also consider multiple encoding schemes for each payload (as RIVULET

does). Hence, to estimate the number of reruns created by this naive generator, we divide
the number of reruns actually executed by the total number of payloads that RIVULET could
create, and then multiply this by the number of payloads that the naive generator would
create (e.g., Reruns/7 ∗ 152 for XSS).

Table 4.3 shows the number of reruns generated by this naive generator as Rerunsn. As
expected, RIVULET generates far fewer reruns, particularly with its XSS generator, where it
generated 22x fewer reruns for Jenkins than the naive generator would have. Furthermore,
given that RIVULET took 19 hours to complete on Jenkins, prior approaches that do not use
RIVULET’s in situ rerun generation would be infeasible for the project. Hence, we conclude
that RIVULET’s context-sensitive payload generators are quite effective at reducing the
number of inputs needed to test if a source-sink flow is vulnerable to attack.

4.6.4 Threats to Validity
Perhaps the greatest threat to the validity of our experimental results comes from our
selection of evaluation subjects. Researchers and practitioners alike have long struggled
to establish a reproducible benchmark for security vulnerabilities that is representative
of real-world flaws to enable a fair comparison of different tools [79]. Thankfully, in the
context of injection vulnerabilities, there are several well-regarded benchmarks. To further
reduce the threat of benchmark selection, we used four such benchmarks (Juliet, OWASP,
Securibench-Micro and WavSep). Nonetheless, it is possible that these benchmarks are not
truly representative of real defects — perhaps we overfit to the benchmarks. However, we
are further encouraged because these benchmarks include test cases that expose the known
limitations of both RIVULET and Julia: for RIVULET, the benchmark suite contains vulner-
abilities that are exposed only non-deterministically, and for Julia, the benchmark suite
contains tests that are negatively impacted by the imprecision of the static analysis. To aid
reproducibility of our results, we have made RIVULET (and scripts to run the benchmarks)
available under the MIT open source license [61, 62].

To demonstrate RIVULET’s ability to find vulnerabilities using developer-written tests, we
were unable to find any appropriate benchmarks, and instead evaluate RIVULET on several
open-source projects. It is possible that these projects are not representative of the wider
population of web-based Java applications or their tests. However, the projects that we
selected demonstrate a wide range of testing practices: Jenkins topping in with 9, 330 tests,
and Struts with only 15, showing that RIVULET can successfully find vulnerabilities even in
projects with very few tests. We are quite interested in finding industrial collaborators so
that we can apply RIVULET to proprietary applications as well, however, we do not have
any such collaborators at this time.
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Chapter 5

Detecting and Preventing ROP Attacks
using Machine Learning on ARM

5.1 Overview
The Advanced RISC Machine (ARM) processor is a modern processor being widely used in
many everyday devices such as smartphones, thermostats, refrigerators, and smartwatches.
ARM claims that more than 200 billion ARM processors have been shipped by 20211.
Moreover, since ARM supports low power consumption without sacrificing performance,
industry is shifting towards ARM processors, as observed in a comprehensive analysis
of ARM and x86 processors by Gupta et. al (2021) [53]. Hence, due to the fast growth
of mobile technologies and the internet-of-things (IoT) [125], ARM is becoming a more
appealing target for control flow attacks aiming to acquire the capability to control a
system. A popular method to that end is code injection, where an attacker exploits memory
bugs as to maliciously altering the program’s behavior or even taking full control over a
system. Memory exploitation can be done by writing new machine code into the vulnerable
program’s memory or by reusing existing code. The latter is imperative when a protection
technique known as W ⊕ X [1] is applied, which stipulates that memory is either writable
or executable (but not both). Return-into-libc (RILC) [133] is a relatively simple code-reuse
attack where a call stack is manipulated such that control is transferred to the beginning
of an existing libc function, such as system(). For maximum expressiveness [57], return-
oriented programming (ROP) [25] was introduced, which exploits a software vulnerability
by chaining existing gadgets (small snippets of code ending in a return opcode) together in
arbitrary ways. Moreover, Checkoway et. al. [30] show that ROP attacks can be mounted
even without using return instructions, on both the x86 and ARM architectures.

To detect and protect against code-reuse attacks on ARM (e.g., ROP and its sibling jump
oriented programming (JOP) [22]) some techniques have been proposed that try to enforce
control flow integrity (CFI) via dynamic binary instrumentation (DBI) [65, 112] or the

1https://www.arm.com/blogs/blueprint/200bn-arm-chips
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ARM CoreSight debugger [83, 84, 85, 103, 102], supplemented with meta-data collected by
static analysis. Most of them rely on a shadow call stack (SCS) [111] for stateful backward
edge protection (i.e, to detect ROP), while using a range of different static forward-edge
policies such as branch-table (generated from CFG) and branch regulation (BR) [75] (i.e., to
detect JOP). However, the techniques that use dynamic instrumentation suffer from high
performance overhead while those that use the ARM CoreSight debugger suffer from high
storage overhead. Besides, the hardware monitor that uses the hardware debugger could
drop traces given a sufficiently high branch rate since the monitor requires more time to
process a trace than the rate at which branches occur on the target processor [41]. Another
limitation of using debugger traces to detect CRA attacks is that the hardware debugger
can be used by an attacker to circumvent the security of the system. If the attacker can
access the debug interface, he could use it to tamper with code and data memory, or even
disable the hardware monitor by tampering with the tracing mechanism [41]. Therefore
investigating whether another line of defense can detect ROP attacks on ARM accurately
and precisely with low performance and storage overhead is advisable.

The ARM processor provides hundreds of hardware events related to instructions that can
be monitored during process execution using hardware performance counters (HPC) [38].
On x86 there exist research that tries to detect ROP attacks by investigating the characteristics
of hardware events during an attack using HPCs and machine learning [117, 43]. However,
to the best of our knowledge there is no corresponding research for ARM. Hence it is
important to investigate whether such a technique can detect code reuse attacks, such as
ROP and JOP, on ARM-based applications.

In this thesis, we evaluate the suitability of a combination of HPC and machine learning
techniques to detect and prevent ROP and JOP attacks on the ARM platform. Note that the
myriad of HPC events on ARM differ from x86, as well as the execution model (e.g., there is
no dedicated return opcode on ARM). The HPCs count the occurrence of certain hardware
events on the ARM processor when executing a program, but it has not been investigated
whether the events for normal and ROP attack executions differ significantly enough to
enable automatic detection. Hence, we create a machine learning model of the behavior on
ARM-based Raspberry Pi machines to address this question empirically.

Our machine learning approach computes models for runtime monitoring. The offline training
examines several machine learning techniques and generates a set of classification models
from HPC training data collected during benign executions and attacks. To that end, we
developed a novel tracer that commences recording of HPC events in executions with ROP
attacks only when this attack actually starts (i.e., the first gadget of the exploit executes),
which improves the classifier’s accuracy by 12% over recording the program’s complete
execution as previous work. The runtime monitor contains a modified program loader, a kernel
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module and a classifier. The program loader configures the CPU using the tool perf as to
track the set of HPCs required for the trained classifier, the kernel module computes the
delta of these HPCs each time an interrupt occurs and feeds these values to the machine
learning-based classifier, which labels the recent program execution as an attack or benign.

To obtain an optimal classification model our approach trains models using multiple ma-
chine learning approaches. Of eight machine learning techniques examined, the optimal
classification model trained – SVM with a RBF kernel – displays a 92% and 91% accuracy
for Raspberry Pi 4 and Pi 3, respectively. Leveraging this optimal classifier we evaluate ROP
attack detection via runtime monitoring on Raspberry Pi using 15 exploits (based on four
ROP attack variants) of real-world vulnerable applications. The detection of these attacks at
runtime provides 75% accuracy, and we will elaborate on possible technical reasons for this
difference.

Finally, we compared the detection accuracy of ROP vs JOP as well as Raspberry Pi 3 vs.
Pi 4 (using dedicated models for each processor), which only yield insignificant differences
when using dedicated models for each type. The latter is in sync with x86, where even
switching inside the same processor family resulted in a significant decline of the detection
rate [117].

5.2 Contributions
The major contributions of this thesis presented in this chapter revolve around investigating
how well a promising line of defense against code-reuse attacks on the x86 platform transfers
to the ARM platform:

• In order to evaluate how well control-flow attacks can be detected on the ARM
platform using HPCs and machine learning techniques, we implemented a runtime
monitor containing a modified program loader, kernel module and a classifier imple-
mented in the kernel space to synchronize with the unmaskable kernel interrupts that
trigger HPC reading.

• A novel debugger (tracer) that selectively records the actual attack section of a program
subject to a control flow attack, in order to improve the classification model during
the offline training.

• Compilation of a benchmark of 15 exploits (of four ROP variants) for the ARM plat-
form (i.e., Raspberry Pi) from 8 real-world vulnerable applications. This benchmark
is leveraged for offline training and online monitoring. Given existing ROP exploits
are predominantly for x86 processors generating exploits for ARM processors is a
complex, mostly manual task.

• A comparison of eight machine learning techniques to identify the optimal classifica-
tion model.
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• An evaluation of the ROP attack detection’s accuracy and performance overhead
considering various evaluation criteria.

5.3 Methodology
The methodology we use to detect and prevent ROP attacks on ARM platforms is based on
learning the behavior of micro-architectural events in the CPU, combining HPC readings
and machine learning techniques. Figure 5.1 shows our approach to detect and prevent
ROP attacks. It starts with creating exploits for different real-world vulnerable applications
on the ARM platform. Subsequently, we collect and pre-process the required training data
by profiling both ROP attack and benign executions and reading the HPC values using
the kernel’s perf event profiler. Next, we apply machine learning techniques to train a
set of models that detect and prevent ROP attacks in terms of binary classification of the
programs’ executions into benign or under attack/ROP based on the data collected from the
HPCs. The offline training phase determines a combination of events that characterize ROP
and, benign executions. After finding the model that provides the best combination of HPC
events for attack detection, we use our online monitoring technique to detect and prevent
the ROP attacks in a real-time execution setting.

At a high level we re-evaluate the approach of HadROP [117] and EigenROP [43] in the
sense that we also leverage HPCs and machine learning to detect ROP attacks. However,
we are investigating this approach’s applicability to the ARM platform (with its growing
prevalence) due to its peculiar instruction set (no explicit ret instruction) and dedicated
set of HPC events. Moreover, we train several machine learning classifiers and choose the
optimal algorithm based on its performance. In addition, we selectively record the actual
micro-architectural events of the ROP attack section only, rather than of the entire ROP
attack execution, which increases our classifier’s accuracy from 80% to 92%. Finally, unlike
EigenROP our machine learning approach follows supervised learning and the online
monitoring section also differs from HadROP’s approach in its program loader and classier
implementation. All the steps of our approach are explained in detail below.

5.3.1 ROP Exploit Creation on ARM
In this section, we present how to create ROP exploits for vulnerable real-world applications
on the ARM platform, as a sufficient set of ROP-affected malicious executions is required
to train a stable classifier. Although ROP attacks on ARM are not a new idea, exploits of
real-world vulnerable applications are hard to find. The first challenge entails installing and
compiling vulnerable applications originally developed for x86 on the ARM platform and
reproducing exploits known from x86, i.e. finding proper ARM gadgets and chaining these
gadgets together into an ARM-specific exploit. The exiting ROP detection approaches [83,
84, 85, 103, 102] for ARM use not more than five (3 ROP and 2 JOP) simple example attacks
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FIGURE 5.1: Our approach to detect and prevent ROP attacks

based on shellcodes provided by shell-storm 2, which exploit programs that are by no means
real-world.

In general, the exploit creation process for ARM is challenging as we need to customize an
available ROP attack for a different platform. Hence, we first need to locate the vulnerable
code in the program, i.e., the size of the buffer vulnerable to a buffer overflow attack which
determines the position of the return address on the stack succeeding the buffer. Then, we
use ROPgadget to identify gadgets that can be chained to perform the ROP attack types we
need. Finally, we create the ROP exploit (payload) by exhausting the buffer with random
values (e.g, ”AAA...”) until we reach the return address and overwriting the return address
with the address of the first gadget. The subsequent values (usually return addresses of
further gadgets) must be carefully selected such that the gadgets are chained in the order
given by ROPgadget to accomplish the intended attack.

Moreover, to increase the diversity of the training and testing data set, we implemented
several ROP attack variants (Ret2ZP [66], JOP [22], Ret2mP [160] and Stack pivoting [118]),
which, based on the types of gadgets used to create gadgets chains, can be generalized into
ROP (gadget chains ending in POP) and JOP (gadget chains ending in BLX) attacks. More
generally, Figure 5.2 shows how we modeled the ROP and JOP attack exploits creation on
ARM platforms using pop-based and blx-based gadgets. In ROP, gadget addresses are loaded
into the program counter (PC) register using POP. In JOP, control flow (CF) is driven using

2http://www.shell-storm.org/
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(A) ROP model (B) JOP model

FIGURE 5.2: ROP vs JOP

a special dispatcher gadget that executes the gadget chain. A register that points to the
gadget address list is used as the virtual program counter. In both variants, to provide
arguments to a function, the contents of function argument registers (i.e., r0-r3) must be
assigned before CF is redirected to the desired function. For instance, if we want to open
the system’s shell the register r0 must point to the address of “/bin/sh” before CF is directed
to the address of the system function. Overall, we developed 15 exploits (8 ROP and 7 JOP)
attacking 8 real-world vulnerable applications.

5.3.2 Data Collection on Arm using HPCs
Data collection on the ARM processor is a most challenging process since there is no tool
available that can directly and continuously collect and store the relevant data separately
from the program to be executed. So we had to modify existing profiling tools such as perf
and the Linux kernel module on ARM to enable the recording of HPC data. Furthermore,
we developed a program that traces the ROP program and records only the actual ROP
section, i.e., starts just before the execution of the first ROP gadget.

To record HPC data via perf the interrupt handlers of the performance monitoring unit (PMU)
in the ARM processor must be modified. The interrupt handlers then regularly poll the
HPC counters, which contain the frequencies of the hardware events since the previous
interrupt, as attributes for model training. We leverage the kernel message log (printk()) to
store that data for offline training.

Tracer tool to record only the ROP part

During a ROP attack, the stack is overwritten by the adversary with a chain of gadgets
pointing to existing executable binary code. However, the program execution exhibits regu-
lar behavior until the first gadget is invoked, as the actual ROP attack, which manipulates
the program’s control flow, starts at that time. To gather HPC data only for the actual ROP
process, we implemented a tracer tool that reads configuration data from a file, including
the first gadget’s address (to set a breakpoint), the path to the vulnerable application and
the ROP attack’s payload.
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The tracer acts like a debugger, injecting a trap instruction via the ptrace API, which suspends
the target process at the beginning of a ROP chain. In summary, the tracer performs the
following steps to exclusively record the ROP behavior: First, it suspends the program and
replaces it with a forked child process. Then, it injects the trap (i.e., a synchronous interrupt
caused by an exceptional condition, in our case a breakpoint) and runs the vulnerable
program until the breakpoint is reached, indicating that the actual ROP execution is about
to begin. Thus perf record is triggered to record the HPC data for the remainder of the
program’s execution.

In order to virtualize the HPC readings to each process and thus remove noise from
concurrently executing processes we apply the -p option to perf record. However since only
a certain number of HPC events can be recorded at any time, we sample them in smaller
batches and train the machine learning algorithms with the combined data in order to select
the most relevant HPC event types (features) for ROP detection.

5.3.3 Offline Learning using HPC Data
The offline model learning phase on a high level follows the approach of HadROP [117].
Apart from considering ARM instead of x86, we are also evaluating a number of machine
learning techniques beyond a SVM. Training data is gathered by recording the HPC features
based on a given set of ROP attacks and benign program executions. Using feature selection
techniques we derive the best classification model for online ROP attack detection via
the learned classifiers. To determine the models, we use several machine learning (ML)
techniques that classify the feature vectors into malicious (ROP attack) and benign. The
feature vectors comprise the deltas of the HPC counts per sampling period of a particular
program run. The sampling period needs to be fixed before the collection of training data
starts and cannot be changed subsequently.

The model generated using the offline training is expected to contain a small subset of a
large number of available HPC events by applying feature selection techniques that select
the most meaningful HPC events for ROP detection. The problem with feature selection is
that the measurements of HPC events during the data collection phase are noisy for several
reasons: The complexity of the CPU and non-determinism of the HPC specification renders
reproducing HPC events across multiple sub-sampling runs difficult. Moreover, context
switching might trigger additional events since HPCs are saved to the process control block.

Despite this problem, the feature selection technique helps determine a small subset of
HPC event types supported by Raspberry Pi that best matches the expected results from
an in principle large number of events (in our case 51). Note that feature selection is
imperative as the selected number of event types must also adhere to the constraints of
the target CPU. For instance, on Raspberry Pi, perf cannot sample more than 8 event types
simultaneously. To resolve this issue we sample using subset batches of the events and
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combine them (synchronized according to time) for offline learning and feature selection in
order to determine the most suitable combination of HPC events.

Model Selection Methods: We train eight ML classifiers by providing two sets of feature
vectors, collected from ROP and benign program runs. Moreover, parameters like an error
penalty C, which allows more or fewer mis-classifications, are given as input parameters.
Choosing the appropriate parameters that result in an optimal model is not trivial. Hence,
we select the optimal parameters through a dynamic oscillating search [137].

Our model selection approach uses k-fold cross-validation to optimize the selection. Cross-
validation is a statistical method re-sampling procedure to evaluate and compare machine
learning algorithms by splitting data into two segments: one segment for training the
machine learning model, and the other segment to validate it. Typically, the training and
validation data sets must cross-over in successive rounds such that each data point can be
validated against. These evaluation results guide the dynamic oscillating search, which
determines the next set of potentially optimal features and parameters. Iterating this process
results in optimal parameters, e.g., for SVM in an error penalty and optimal hyper-plane,
based on a subset of HPC event types of appropriate size. Considering the bias-variance
trade-off in k-fold cross-validation, we choose k = 10 as the model selection method as
recommended by Kohavi et al. [81].

5.3.4 Online Kernel Monitor
Figure 5.3 presents our online monitoring process using the machine learning model, which
consists of a modified program loader, a kernel module and a classifier. The program loader
configures the CPU using Linux’s perf tool to track the set of HPCs that are relevant for
the trained model to classify an execution as ROP or benign. Moreover, it notifies the CPU
to raise an interrupt every N clock cycles. At each interrupt the kernel module computes
the deltas of the HPC count values and feeds those to the classifier, which is implemented
in the kernel space to synchronize with the readings of the HPCs during each interrupt.
Whenever the classifier determines that a ROP attack behavior occurred, the process can be
suspended or other defensive actions, such as notifying security personnel, can be taken.
As HPCs are updated in hardware, the performance overhead of online monitoring stems
only from handling the interrupt, reading the counters, and evaluating the classifier.

Program Loader

We modified the routine that starts a program (program loader). Concretely, we modified
the libc start main function, which calls the main function of a program, to configure the
HPCs selected for classification. In particular, we are adding the perf record command, which
samples these HPC events, before the call to the main function of the program. The perf
record command uses the frequency N and selected features (HPC events) of the optimal
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FIGURE 5.3: Our online monitoring approach to detect and prevent ROP
attacks

classification model as input in addition to the target program to be runtime monitored. To
use this modified program loader we leverage the environmental variable LD PRELOAD.
LD PRELOAD contains one or more paths to shared libraries, or shared objects, that will be
loaded before any other shared library including the C runtime library (libc.so). However, in
order not to end up calling the modified loader recursively we need to unset LD PRELOAD
after configuring the HPCs.

Kernel module

The kernel module contains a modification of perf’s interrupt handler to recognize the
configuration specific to the classifier. Note that interrupts produced by HPCs are recog-
nized as non-maskable interrupts, which must be handled by the kernel and cannot be
ignored (masked). The interrupt handler extracts the delta (change of counts) readings of
the selected3 HPC events at each interrupt and passes it as an array to the monitor that
contains the classifier, which in turn performs the classification and redacts the execution
based on the output of the classifier.

3HPC events selected by feature selection to provide the optimal classification model
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The classifier

During offline training, several machine learning techniques are evaluated (see section 5.4).
Given that the SVM provides the best classification model we use that model for online
monitoring. LibSVM determined the best HPC events that characterize ROP attacks during
offline training. However, we cannot directly use LibSVM for online monitoring since
the kernel module, which extracts the HPC readings during the interrupt, is not correctly
synchronized with user space, which would call LibSVM’s svm-predict function. Due to the
lacking synchronization most of the HPC readings would be missed due to delays in the
user space actions such as extracting the model file and performing the SVM prediction
calculations. Hence, we decided to implement the SVM prediction (classifier) directly in
kernel space. Yet, there are two problems with implementing the SVM’s prediction in the
kernel module.

1. Reading the SVM model file in the non-maskable interrupt context

2. Using floating point arithmetic in the kernel module

The kernel space does not support reading files in the interrupt context. Hence we cannot
read the relevant classification inputs directly from the optimal classification model file.
Since this data is static, we extract the relevant data from the model file and store it into
arrays and/or variables before online monitoring.

Moreover, the kernel module is unable to support floating point arithmetics [21, ch. 5],
which prohibits implementing the SVM prediction formula directly. Hence, we opted
for solving this problem using fixed-point arithmetic4. For instance, considering the SVM
prediction formula for the RBF kernel given below, we need to use fixed-point arithmetic
to represent e, γ and the support vector coefficients (ai), which usually have floating point
values. The bound nSV in the formula represents the number of support vectors.

y =
nSV∑
1

ai ∗ e−γ∗|X−Xi| + b

With both of these issues solved the classifier can now receive HPC readings from the
interrupt handler and predict the class of the program execution. Based on the output of
the classifier the online monitor can then decide what to do with the running application. If
the behavior of a ROP attack is detected the monitor can suspend the process or notify the
responsible body (e.g. security personnel) about the issue.

4https://en.wikipedia.org/wiki/Fixed-point arithmetic
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TABLE 5.1: Accuracy evaluation of ROP attacks using different frequencies
on Raspberry Pi 3 and Pi 4. We also show the optimal C and γ that provide

the best accuracy for each frequency.

Frequencies
Pi 3 model B Pi 4 Model B

Cost (C) Gamma (γ) Accuracy Cost (C) Gamma (γ) Accuracy
3000 4 0.000031 0.89 4 0.000031 0.87
4000 64 0.000488 0.91 256 0.000488 0.91
5000 4 0.000122 0.85 256 0.000488 0.89
6000 4 0.000031 0.80 256 0.000488 0.88
7000 16 0.000031 0.82 64 0.000488 0.87
8000 256 0.000031 0.82 256 0.000122 0.84
9000 4 0.000031 0.82 256 0.000031 0.92

TABLE 5.2: Precision, recall and accuracy evaluation of ROP attacks using
different machine learning techniques for Raspberry Pi 3 and Pi 4.

Model Name
Pi 3 model B (4000Hz) Pi 4 Model B (4000Hz) Pi 4 Model B (9000Hz)

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy
KNeighbors 0.89 0.87 0.89 0.72 0.81 0.78 0.87 0.95 0.91

AdaBoost 0.85 0.96 0.90 0.80 0.97 0.89 0.84 0.90 0.88
GradientBoosting 0.88 0.96 0.92 0.88 0.97 0.92 0.86 0.93 0.90

DecisionTree 0.82 0.96 0.88 0.85 0.97 0.91 0.87 0.83 0.85
RandomForest 0.83 0.96 0.89 0.85 0.94 0.90 0.88 0.90 0.90

ExtraTrees 0.85 0.96 0.90 0.85 0.97 0.92 0.87 0.96 0.92
LinearDiscriminant 0.70 0.98 0.79 0.72 0.98 0.84 0.85 0.98 0.92

SVM RBF 0.87 0.98 0.91 0.82 0.98 0.90 0.85 0.98 0.92

5.4 Evaluation
Our evaluation environment consists of Raspberry Pi 4 Model B and Raspberry Pi 3 Model
B with kernel version 5.4. The evaluation comprises multiple experiments to obtain the
parameters that provide an optimal model of ROP attack classification, to measure the
accuracy of ROP attack detection and of the performance overhead of online monitoring.

5.4.1 Optimal Model Selection and Accuracy of Offline Training
To find the optimal model during offline training, we perform many experiments with
varying sampling frequencies, several machine learning techniques and their classification
parameters on both Raspberry Pi 3 and Pi 4.

Accuracy evaluation with respect to different frequencies

In order to reduce the space for the sampling rate we conducted initial experiments with
only one ML technique [117]. Table 5.1 shows the classification accuracy of SVM models for
different frequencies. The cost (C) and gamma (γ) parameters that provide the best accuracy
for their respective frequencies are also provided. The experiments use the crossover value
k = 10. The result of this evaluation shows that data collected by HPC recording with a
frequency of 4,000 Hz on Raspberry Pi 3 provides the best accuracy, which is 91%, and
on Raspberry Pi 4 data collected by recording with a frequency of 9,000 Hz provides the
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best, which is 92%, but the recording with 4,000 Hz on Raspberry Pi 4 also provides similar
results, i.e., it is 91%. However, this does not mean we always get the same results each
time we collect data with these frequencies due to the non-deterministic behavior of HPC
readings. The HPC readings vary at each execution for the same application even with the
same frequency. Although the frequencies that provide the best model vary, we observe that
there is no significant difference between Raspberry Pi 3 and Pi 4 in the offline classification
accuracy.

Accuracy evaluation with respect to different machine learning techniques

With the reduced set of sampling rates, we then evaluate our offline training with respect
to multiple machine learning techniques, the result of which is provided in Table 5.2. In
addition to the accuracy, we also evaluate the recall and precision of the models obtained
using the frequencies 4,000 Hz on Raspberry Pi 3, and 4,000 Hz and 9,000 Hz on Raspberry
Pi 4. Note that recall indicates the percentage of feature vectors (FV) correctly classified as
ROP attack of all FVs of ROP attacks. Similarly precision indicates the percentage of the FVs
correctly predicted as ROP attack in all FVs classified as ROP. So both the recall and precision
provided in Table 5.2 are with respect to the ROP attacks. In contrast, accuracy measures
the overall classification accuracy for both ROP and benign executions. The training data
used in all experiments is also balanced, i.e., we use the same number of ROP and normal
feature instances as input to the machine learning techniques.

As we observe from the result, our evaluation indicates that the detection accuracy of the
optimal model using an SVM kernel is at least in the top two. For instance, considering
the Raspberry Pi 4 ExtraTrees, LinearDiscriminant and SVM RBF kernel provide the best
accuracy which is 92%. However if we also take the recall both LinearDiscriminant and
SVM RBF kernel have a higher value than ExtraTrees though somehow less in precision.
Similarly if we consider Raspberry Pi 3 GradientBoosting provides the best accuracy of 92%
whereas SVM RBF kernel provides 91%. However the SVM RBF kernel provides better
recall than GradientBoosting with almost similar precision. From these results on both
Raspberry Pi 3 and Pi 4 we conclude that the model obtained using the SVM RBF kernel is
optimal for online monitoring. All subsequent experiments are thus based on a SVM with
RBF kernel only.

Accuracy evaluation with respect to ROP and JOP

We further evaluated the classification accuracy between ROP and JOP attacks to understand
how different attack types affect the behavior of the HPC values. Table 5.3 provides the
accuracy of both ROP and JOP attacks using different frequencies on both Raspberry Pi
3 and Pi 4. On Raspberry Pi 3 the models from ROP attacks yield higher accuracy than
from JOP attacks for frequencies 3 kHz and 5 kHz. In contrast, considering 8 kHz and
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TABLE 5.3: Accuracy evaluation of ROP vs JOP attacks using different fre-
quencies on Pi3 and Pi4.

Frequency
Pi3 model B Pi4 Model B

ROP JOP ROP JOP
3000 0.89 0.85 0.85 0.90
4000 0.86 0.87 0.89 0.82
5000 0.84 0.81 0.85 0.84
6000 0.83 0.87 0.80 0.85
7000 0.81 0.82 0.83 0.82
8000 0.81 0.85 0.82 0.84
9000 0.85 0.85 0.85 0.87

6 kHz the model from JOP attacks has higher accuracy than from ROP attacks. For the other
frequencies the accuracy is similar for both variants. Similarly on Raspberry Pi 4 the model
from ROP attacks provided higher accuracy than from JOP attacks for 4 kHz but for 3 kHz
and 6 kHz frequencies the model from JOP provided higher accuracy than the model from
ROP attacks. For the other frequencies there is not much difference. These results indicate
that we can not generalize that one attack type is more detectable than the other, i.e., it
depends on the frequencies and even may vary when recording it again even with the same
frequency.

HPC events providing the best classification model

As we observe from the offline training evaluation, we got a classification accuracy of 92%
on Pi 4 and 91% on Pi 3. The selected HPC events that provide these results for the Pi 4
are: branch-misses, branch-load-misses, ld spec. Similarly, the selected HPC events for Pi 3 are:
cache-misses, branch-misses, cid write retired/. It is interesting to note that the occurrence of
ROP attacks impact the count of these three HPC events but significantly of the others, as
our feature selection process could have chosen up to eight HPCs for simultaneous tracking.
These HPC events will also be used for online monitoring, i.e., to detect and prevent the
ROP attacks.

5.4.2 Accuracy of Online Monitoring
To evaluate the detection and prevention accuracy of our online monitoring, we used
three real-world vulnerable applications (php, dnstracer, mcyrpt), which were not used for
training the model. Since we have benign as well as both ROP and JOP attacks for these
applications, we have a total of 9 tests, out of which 7 are consistently detected correctly,
i.e., the ROP and JOP attacks in mcyrpt go undetected more often than not. Note that since
HPC values are nondeterministic those detected at one time may not be detected another
time and vice-versa. Moreover, since the HPC recording during an execution of a program
provides many feature instances there is a high possibility that instances are predicted
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TABLE 5.4: Performance overhead evaluation of real-world applications on
Pi 3 and Pi 4.

Application vulnerability slowdown Pi 3 slowdown Pi 4
Crashmail 1.6 8.7% 4.6%
Pms 0.42 11% 9%
Php 5.3.5 CVE-2011-1938 4% 11%
Netperf 2.6.0 7.6% 9%
Wifirix 5.4% 5%
Dnstracer 1.8.1 CVE-2017-9430 5% 4%
Mcrypt 2.6.8 CVE-2012-4409 3% 2.6%
Nethack 3.4.0 CVE-2012-4409 5.6% 4.3%

wrongly during the attack and benign executions. To minimize this, we have to look for
the optimal maximum number that instances are predicted 1 (ROP attack) consecutively
to determine that a real attack has started. In our case we used 10, i.e, if 10 consecutive
instances are predicted as 1 we assume there is an attack and the program execution will
be suspended, otherwise we assume that a false prediction of the instances has occurred
and consider the execution as benign. Hence the ROP and JOP attacks of mcyrpt are being
mostly undetected probably since their exploit has small gadget chains relative to the others.
In general, we have also tested our online monitoring with small hand-crafted ROP attack
examples and the detection accuracy of our online monitoring is around 75%, on average.

5.4.3 Performance Overhead of the Online Monitoring
The performance overhead of runtime monitoring is measured by comparing the time of
execution for the ROP attacks with and without the usage of the runtime monitor. Table 5.4
shows the performance overhead (slowdown in %) of 8 real-world vulnerable applications
on Raspberry Pi 3 and Pi 4. For most of them, the slowdown is higher on Raspberry Pi 3 than
in Pi 4 but for Php 5.3.5 and Netperf 2.6.0 we got a higher overhead on Raspberry Pi 4 than
on Raspberry Pi 3. However, the execution time of both applications is still smaller in the
Raspberry Pi 4 than on Raspberry Pi 3 if we consider it separately even with the application
of the online monitor. For instance, the execution time for Php 5.3.5 on Raspberry Pi 3 is
1.5s whereas on Raspberry Pi 4 it is 0.5s with the application of the runtime monitor. In
general, the overhead evaluation using these 8 applications shows that our implementation
of the online monitoring provides a slowdown in the range of 2.6% –11%. On average
the slowdown is 6.3%, on Raspberry Pi 3, and 6.2% on Raspberry Pi 4, indicating that the
performance overhead is almost identical on both.
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Chapter 6

Detecting ROP Attacks on
Firmware-Only Embedded Devices
Using HPCs

6.1 Overview
The Internet of Things (IoT) and embedded devices make use of dedicated commercial
off-the-shelf microprocessors and many of these devices largely depend on firmware with
a C-language codebase and software development kit [6]. As expected, the battle of wits
between the engineers creating offensive and those inventing defensive strategies is a never-
ending one, and attackers are increasingly and desperately bug hunting these devices using
memory corruption techniques such as buffer overflows and heap corruption, which are
common in C applications, to find a way to evade device security. Frequently, attackers
technically use an approach called Return-Oriented Programming (ROP) [30], one of the
most dangerous security exploit techniques to take advantage of software weaknesses
such as buffer overruns (e.g., in the C language), overwriting the call stack, and gaining
control over the program’s control flow [164]. Omitting the need to inject malicious binary
code, the attackers meticulously select and execute multiple tiny sequences of machine
instructions (called gadgets) that are already in memory [134, 44]. The attacker will construct
a payload based on the addresses of the selected gadgets and corrupt the stack such that
the return address of the topmost stack frame points to the first gadget. Since each ROP
gadget ends in a return instruction, gadgets can be chained together to build complex
exploits by ensuring that the next return address on the stack points to the succeeding
gadget. The major challenge to preventing ROP is that the gadget’s instructions are located
in the executable memory area of the original program and therefore ROP can circumvent
mitigation mechanisms such as data execution prevention and coarse-grained address space
layout randomization. A popular variant of ROP is Jump Oriented Programming (JOP) that
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involves chaining gadgets ending in a jump instruction and controlling the control flow via
a special gadget called the dispatcher gadget [23].

Most of the existing ROP countermeasure techniques focus on x86 or other architectures
e.g in [40, 64, 94, 42], processors for embedded devices like the Xtensa core have only
been investigated rudimentary. Xtensa is a Tensilica processor platform manufactured
by Cadence®, with highly customizable and configurable processors that found wide
application in HiFi audio and voice digital signal processors. The Tensilica core family
includes the Xtensa LX and NX processors, and different versions of the core have been
adopted by vendors like Microsoft, AMD, and Espressif [159, 171]. Millions of IoT devices
(including industrial IoT devices, e.g., eModGATE1 and Moduino X Series2) and embedded
systems using ESP 32 (LX6) and its predecessor ESP 8266 (LX106)—which are economical
and low-power systems on a chip—are based on Xtensa core. Firmware-only devices
are characterized by deterministic interrupt-driven tasks due to a lack of a scheduler (no
OS). The firmware is typically stored in rewritable, nonvolatile memory (flash), without
fine-grain privilege separation and execution isolation available in a conventional OS [34].
Usually, they are supported by manufacturer header files, and the absence of third parties
drivers/firmware is believed to add trust and control [59]. However, this restricted the
use of custom security, and being resource-constrained(e.g low memory/storage), it is
challenging to deploy a sophisticated solution against memory corruption attacks on them.

Motivation: First, ROP attacks on Xtensa are not well documented, even though the chips
are present in almost every WiFi-based home automation device. However, there exist
some records of buffer overflow vulnerabilities exploitation leading to ROP. For example,
on Expressif’s ESP8266 (with Xtensa LX106 core) based on FreeRTOS in Expressif’s IoT
development framework, the attack has resulted in bypassing network credentials and
making the devices perform unintended operations [156]. A similar memory exploitation
attack with the common vulnerabilities and exposure number CVE-2019-12588 has also been
used to crash Xtensa (LX106 and LX6) WiFi devices causing a denial of service to legitimate
users, to name but a few [50].

Second, micro-controller devices are often resource-constrained but there are very few
studies on ROP in IoT platforms without operating systems but firmware, that runs directly
from flash memory. Likewise, almost all of the previous works on ROP detection using
HPCs have primarily considered devices with a full-blown configuration, where it is possible
to inspect the usual suspects – several cache level events, return misses directly along
with all other available hardware events [117, 37] that are usually either not available or
inapplicable in embedded platforms. Also, the most recent low-level detection study on

1https://iot-industrial-devices.com/category/esp32/
2https://moduino.techbase.eu/

https://iot-industrial-devices.com/category/esp32/ 
https://moduino.techbase.eu/ 
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micro-controller we found proposed the use of control flow integrity but they did not
include any implementation or result to support the feasibility of the approach [94]. In
contrast, we investigate an alternative cost-effective approach using HPC events on a
low-configuration Xtensa processor.

These shortcomings, together with the danger that IoT devices may not receive security
updates as frequently and lastingly as personal computers or mobile devices, serve as the
basis for this research.

This thesis presents the first detection of ROP, and its variant Jump-oriented programming
(JOP), in a firmware-only environment combining machine learning predictive capability
with the HPCs. Our approach depends on the variations in the HPC micro-architectural
events triggered by ROP and normal program execution. We implemented attack scenarios
using instrumented programs and exploits that perform operations similar to those in
known microprocessor benchmark programs. Recorded micro-architectural events are
used to train machine learning binary classifiers. The learned model identifies relevant
HPCs, which could serve as predictors of ROP/JOP execution even in configurations where
features non-typical to conventional processors, like instruction memory and data memory,
are available. we also evaluate our approach and the results indicate a high precision, recall,
and accuracy of the classifier predictions.

6.2 Contributions
The major contributions of this thesis covered in this chapter are:

• Show how ROP and JOP attacks could be orchestrated on Xtensa processors
• Present the first practical work on detecting ROP and JOP attacks in a firmware-only

embedded system using HPC and Machine learning.
• Identify HPC events that distinguish ROP and benign program executions on Xtensa.

6.3 Threat model:
Our focus is on preventing attacks that exploit memory corruption in firmware or applica-
tion functions through buffer flows and that result in a ROP or JOP execution on bare-metal
Xtensa. We assume that the device has limited hardware functionalities but is protected
using a machine-learning classifier based on the HPC that we present. The attacker is also
assumed to be able to access the device either physically or through a network connection.
Since we are interested in the attack that takes place when executing firmware from the
flash memory, the attacker uses a payload to execute gadget instructions that are at the static
address range. In practice, gadgets in the Xtensa Boot ROM are mapped to the static range,
irrespective of the platform being used. When an attacker exploits vulnerable firmware
functions, our approach is aimed at feeding the captured HPC events from the attacker’s
execution to the machine-learned classifier to predict ROP or JOP behavior.
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6.4 Methodology
In this section, we demonstrate how the ROP and JOP attacks work on Firmware-Only
embedded devices that use Xtensa processors and provide the first insight approach to
detect these attacks using HPCs and machine learning.

6.4.1 Xtensa Assemblies and Gadgets
Xtensa ABI Assemblies

In section 2.8 the background of Xtensa architecture is explained and we see that Xtensa
supports two application binary interfaces (ABIs): Call0 ABI and the Registered Windowed
ABI. However, in this thesis, our principal target is the Call0 ABI processor configuration,
which has been hit by some memory corruption attacks in recent years. We, therefore,
briefly present the Call0 ABI assembly to demonstrate ROP and JOP attacks on this ABI
configuration to provide a foundational understanding of Xtensa architectural behavior.
To this end, we leverage the configurability feature of the Xtensa processor. We created,
built, and installed a configuration for CALL0 ABI using Xtensa Xplorer version 8.0.10.3000
running on Windows 10. Xtensa Xplorer’s Integrated Development Environment is based
on Eclipse and comes with a pre-installed Software Development Kit for processor configu-
rations and programming. We then compiled a simple helloworld.c program to illustrate the
call0ABI assembly. The corresponding assembly is shown in Listing 6.1.

It is worth noting that some instructions in the Call0ABI use the .n suffix, which is the Xtensa
processors’ optional code density feature that provides 16-bit versions of some commonly
used instructions. Technically, the compiler and the assembler use narrow instructions
where possible to achieve better code density [28]. In line 1, the stack is decremented
by 16 bytes (space allocation), and in line 2, the return address is saved to the top of the
stack*(a1+0) . At the end of the assembly, the reverse is done before ret.n, i.e. the return
address is restored into a0 in line 7, and the stack is incremented by 16 bytes (space
deallocation) in line 8. These two steps are similar in almost all Xtensa assemblies and
will serve as the basis for chaining gadgets.

The Xtensa assembly language opcodes used throughout this thesis will be limited to a
small subset of the entire Xtensa instruction set. Our interest covers mainly the return (ret),
jump (jx), call (callx), load (l32i and l32r), store (s32i), move (mov), add (add), and
subtract instructions (sub).

Xtensa Gadgets

ROP and JOP gadgets in Xtensa usually end with a ret and jx instructions respectively,
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1 main:
2 60000bcc: addi a1, a1, -16
3 60000bcf: s32i.n a0, a1, 0
4 60000bd1: l32r a2, 60000904 (600007b8 <_clib_rodata_end>)
5 60000bd4: call0 60000c0c <printf>
6 60000bd7: movi.n a2, 0
7 60000bd9: l32i.n a0, a1, 0
8 60000bdb: addi a1, a1, 16
9 60000bde: ret.n

10

LISTING 6.1: Call0 ABI assembly

1 6000a383: 1148 l32i.n a12, a1, 4
2 6000a385: 4149 l32i.n a13, a1, 8
3 6000a387: 4128 l32i.n a14, a1, 12
4 6000a389: 3108 l32i.n a0, a1, 0
5 6000a38b: 30c112 addi a1, a1, 16
6 6000a38e: f00d ret.n
7

LISTING 6.2: Return gadget

although it is also possible to use codes ending with an indirect callx and branch instruc-
tions to an address stored in a register. For gadgets discovery, we extended the xrop tool3 to
extract and return valid Xtensa gadgets ending with the preferred instruction types. From
our programs we extract and design Turing complete gadgets that perform data movement,
arithmetic operations, branching, and function calls. The programs are compiled with
Xtensa Xplorer, which outputs executable and linkable format binaries supported by the
Xtensa LX7 board. Assuming the stack has been overwritten and preloaded with attacker-
controlled addresses and values, it is, e.g., possible to use the return gadget in Listing 6.2 to
load arbitrary values from the stack at a1+4, a1+8 and a1+12 into the registers a12, a13,
and a14 respectively before returning to the designated address.

Xtensa gadgets support very limited direct operations on memory addresses. Therefore,
gadgets’ addresses must either be loaded into a register from another register or the stack.
One of the most common instructions in Xtensa binaries allowing direct memory operands
is l32r, which can directly load the address of a string literal from memory. Thus, gadgets
used for exploits are usually longer and with more side effects on registers, when compared
to ARM. For instance, an equivalent of the gadget in Listing 6.2 in ARM could be as short
as:

0x00010578 : pop(r3, r4, r5, pc)

3https://github.com/jsandin/xrop

https://github.com/jsandin/xrop
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1 60000210: 0338 l32i.n a3, a1, 0
2 60000212: 7149 s32i.n a4, a1, 28
3 60000214: 0003a0 jx a3
4

LISTING 6.3: Jump gadget

1 60000e01: 4108 l32i.n a0, a1, 16
2 60000e03: 0e4d mov.n a4, a14
3 60000e05: 0000c0 callx0 a0

LISTING 6.4: Call gadget

An example of a jump gadget, which loads the content of the address stored in a1+0 into a3
and jumps to it is given in Listing 6.3.

Other types of instructions that can be used as gadgets are the branch gadgets and the call
gadgets, an example of the latter, which performs an indirect call operation to a subroutine
address in a register is shown in Listing 6.4. The l32i instruction loads an address from
the stack at a1+16 into a0 and then jumps via a procedure call to that address.

6.4.2 Xtensa ROP Attack Process
Usually, more than one gadget is required to perform a complex exploit, the general process
of chaining ROP gadgets is shown in Figure 6.1, which represents a stack that grows
downwards (the buffer grows in the opposite direction) from a higher memory address to a
lower memory address. The figure has two sections – the code section (memory region that
is non-writable but executable), and the stack section (memory region that is writable but
not executable). The code section contains the executable gadgets while the stack section
stores the addresses of these gadgets (plus potential values to be read into registers by
gadgets). Since we are exploiting a buffer overflow vulnerability to hijack the program’s
control flow via ROP, the gadgets’ addresses must be placed behind the buffer starting at
the current stack frame’s return address. Let us assume that we have a function that is not
performing a bounds check and that the function is using an unsafe C function like gets or
strcpy to initialize a 16 bytes buffer variable. We can exploit this function by feeding it a
payload that overflows the buffer and writes to the stack the addresses of gadget1 (@address
of gadget1), gadget2 (@address of gadget2), and gadget3 (@address of gadget3) respectively.
In this example, these addresses will be 20 bytes, 24 bytes, and 28 bytes, respectively, from
the beginning of the buffer. More importantly, the address of the first gadget (@address of
gadget1) overwrites the return address in a0 and the stack pointer a1 becomes the gadgets
counter i.e the number of times a1 is incremented is equivalent to the number of gadgets
executed. This whole process is depicted in Figure 6.1. Each gadget executes, increments the
stack pointer, and returns to the address on the top of the stack until all the gadgets in the
ROP payload have been executed. The order of execution of the instructions after the control
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gadget3:
60000c19:   s32i.n a2, a1, 16
60000c1b:   l32i.n a2, a1, 16
60000c1d:   s32i.n a2, a1, 0
60000c1f:   l32i.n a2, a1, 0
60000c21:   l32i.n a0, a1, 4
60000c23:   addi a1, a1, 32
60000c26:   ret.n 

gadget2:
60000c2d:   s32i.n a2, a1, 16
60000c2f:   s32i.n a3, a1, 20
60000c31:   l32i.n a3, a1, 20
60000c33:   l32i.n a2, a1, 16
60000c35:   add.n a2, a2, a3
60000c37:   l32i.n a0, a1, 0
60000c39:   addi a1, a1, 32
60000c3c:   ret.n

gadget1:
60000c45:   l32r a2, 60000944 (600007f8 
<_clib_rodata_end>)
60000c48:   call0 60000c80 <printf>
60000c4b:   movi.n a2, 0
60000c4d:   l32i.n a0, a1, 0
60000c4f:   addi a1, a1, 16
60000c52:   ret.n 
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FIGURE 6.1: Xtensa ROP attack process.

flow is hijacked is labeled from 1 to 6. In the end, the execution of these gadgets prints a
string, adds the contents of two registers and initializes a register with a value from another
register. If these gadgets were functions, it would be important not to use the starting
address at the beginning of a function because this would result in infinitely returning
to the same function – we do not want the ret to chain a gadget to itself repeatedly but
to other meaningful gadgets. Essentially in Xtensa, the instructions occupying the first 5
bytes of every function reserve space for the function on the stack. This characteristic is
the foundation of gadget chaining and simulating ROP behavior in Xtensa. Therefore, we
always skip these instructions and addresses when crafting a payload for a ROP attack.

Besides, as shown in Figure 6.1, the actual gadgets normally reside in non-consecutive
locations (as indicated by the dotted lines between them) in the code section of the memory,
while the gadget’s addresses could be in a consecutive location on the stack. Some garbage
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FIGURE 6.2: Xtensa JOP attack process.

addresses may be included as part of the actual gadget addresses on the stack which solely
serve the purpose of address padding so that each gadget address is positioned at the
top of the stack. Likewise, within the executable gadgets, some instructions exist as side
effects, meaning they are not part of the intended exploit but they can also alter register
states. Examples of such instructions were in the previous gadgets presented e.g line 2 of
both Listing 6.3 and Listing 6.4 were unintended.

6.4.3 Xtensa JOP Attack Process
JOP uses gadgets ending with an indirect jump to an address in a register as demonstrated
in Listing 6.3. However, the steps involved differ, as jump gadgets cannot be redirected
to the stack with a return instruction, so to logically connect gadgets, we adopted the JOP
model from [23]. That approach recommends that a dispatcher gadget is needed to link
all jump gadgets, i.e., a trampoline gadget that relays from one jump gadget (also called
functional gadget) to the next. In that scheme, the dispatcher gadget may maintain a dispatch
table, which stores the JOP gadget addresses that should be executed sequentially, and each
gadget must always point back to the dispatcher after execution. Figure 6.2 shows how
these iterative steps can be implemented for JOP in Xtensa, and the label 1 to 8 represents
the order of execution of instructions once JOP is initiated. Similar to ROP, a vulnerable
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1 60001525: addi.n a15, a15, 4
2 60001527: add.n a1, a1, a15
3 60001529: l32i.n a3, a1, 0
4 6000152b: sub a1, a1, a15
5 6000152e: jx a3

LISTING 6.5: A dispatcher gadget

1 60001555: l32r a2, 600010ac
2 60001558: call0 60001688 <printf>
3 6000155b: jx a14

LISTING 6.6: A functional gadget

function not performing bounds checking can be used to launch the sequence, in that the
return address of the vulnerable function is overwritten to point to the first jump gadget or
the dispatcher, depending on the intent of the attack. An example of a dispatcher gadget in
Xtensa is shown in Listing 6.5, this dispatcher gadget increases the value of a15 – a regular
register leveraged as an instruction pointer – by a constant (4), then points the stack pointer
(a1) to the next address, loads the new address into a3, and jumps to this next functional
gadget every time it is executed. This means that the dispatcher gadget can compute the
addresses and jump to each of the functional gadgets jx_gadget1, jx_gadget2, . . . ,
respectively.

An example of a gadget that could serve as a functional gadget is shown in Listing 6.6. The
functional gadget loads the address of a string literal into a2, prints the string, and jumps
back to the dispatcher gadget at a14. Unlike ROP, the addresses of JOP gadgets (other than
the first) do not have to be placed on the stack, as they can be computed by the dispatcher
gadget, in which case there is no need to retrieve the addresses of the executed instructions
from the stack.

6.4.4 ROP Attack Detection Using HPC and Machine Learning
As explained in section 2.9 HPC can be used for vulnerability detection besides being used
for debugging. Hence, in this section, we explain how HPC is used to detect the ROP and
JOP attacks for the firmware-only embedded device programs on the Xtensa processor with
the help of machine learning classier.

In Xtensa the performance monitoring library allows a total of 8 events to be monitored
simultaneously and it can be accessed by using the xt_perfmon API. Xtensa LX7 has 30
main events with a total of 125 masks or sub-events, which represent the microarchitectural
state triggered by any given running program. The available HPC events on Xtensa are
shown in Table 6.1, and it should be noted that the labels and arrangement of the HPCs are
random. Also, there are two prominent sources of noise generally associated with HPC
readings. Those are related to the program design – noise caused by other internal or external
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TABLE 6.1: List of available HPCs on Xtensa

Label HPC: XTPERF CNT . . . Interpretation
F1 COMMITTED INSN Instructions committed
F2 BRANCH PENALTY Branch penalty cycles
F3 MULTIPLE LS Multiple Load or Store
F4 INSN LENGTH Instruction length counters
F5 CYCLES Count cycles
F6 PREFETCH Prefetch events
F7 INSN Successfully completed instructions
F8 PIPELINE INTERLOCKS Pipeline interlocks cycles
F9 D ACCESS U1 Data memory accesses (load, store, S32C1I, etc; load-store unit 1)
F10 D ACCESS U2 Data memory accesses (load, store, S32C1I, etc; load-store unit 2)
F11 D ACCESS U3 Data memory accesses (load, store, S32C1I, etc; load-store unit 3)
F12 D STORE U1 Data memory store instruction (load-store unit 1)
F13 D STORE U2 Data memory store instruction (load-store unit 2)
F14 D STORE U3 Data memory store instruction (load-store unit 3)
F15 D LOAD U1 Data memory load instruction (load-store unit 1)
F16 D LOAD U2 Data memory load instruction (load-store unit 2)
F17 ICACHE MISSES ICache misses penalty in cycles
F18 DCACHE MISSES DCache misses penalty in cycles
F19 OUTBOUND PIF Outbound PIF transactions
F20 OVERFLOW Overflow of counter n-1 (assuming this is counter n)
F21 D STALL Data-related GlobalStall cycles
F22 I STALL Instruction-related and other GlobalStall cycles
F23 BUBBLES Hold and other bubble cycles
F24 I TLB Instruction TLB Accesses (per instruction retiring)
F25 EXR Exceptions and pipeline replays
F26 IDMA iDMA counters
F27 D TLB Data TLB accesses
F28 I MEM Instruction memory accesses (per instruction retiring)
F29 INBOUND PIF Inbound PIF transactions
F30 D LOAD U3 Data memory load instruction (load-store unit 3)

instructions and programs – and the HPC access – noise caused by the reading of the HPCs.

The effect of these noises can be reduced by reading the right HPCs at the right place and
correctly. Usually, not all of the instructions in a program under attack are malicious but
only a fraction. Other instructions that are not affected by the attack are regarded as noise.
To address this problem, we performed experiments by instrumenting code in which the
approximate position of the start of the attack marks the beginning of the ROP or JOP,
and the codes preceding and succeeding these executions are marked as benign as shown
in Figure 6.3. In ROP, for instance, the benign section exhibits the actual behavior of the
program. The behavior of the vulnerable section might be normal or malicious depending
on whether it is exploited or not. HPC recorder records the microarchitectural events count.
Targeting the HPC readings close to where the ROP execution is initiated allows us to have
a more fine-grained and accurate HPC measurement which helps a classifier to correctly
predict ROP or JOP behavior with high precision.

Hence, after collecting the data from the HPC measurement, we trained it using machine
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FIGURE 6.3: Instrumented code flow

learning (ML) to select an optimal model and detect the ROP and JOP attacks more accu-
rately using the optimal model. We use 10-fold cross-validation for the training, i.e., 10%
of the data is used for testing, which is a standard procedure to ensure the validity of the
learned classifier. The detailed evaluation and comparison of the ROP attack detection
using the machine learning technique is presented in section 6.5.3.

6.5 Evaluation
In this section, we discuss the research questions, the evaluation methodology, the experi-
ment set-up, and the evaluation of the ROP and JOP attacks classifier. .

6.5.1 Research Questions and Evaluation Methodology
Research Questions: We present the research question as follows:

RQ1: What are the top HPCs in terms of indicating ROP and JOP behavior on Xtensa? We
do not intend to use all HPC events even if we could, but only a minimal number that
results in a good prediction. Using fewer HPC events means requiring fewer resources for
detection.

RQ2: At what precision and recall can a classifier predict unusual behavior caused by
ROP/JOP attacks within a running firmware code using the HPC events? In reality, the
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HPC data for positive attacks scenarios is just a small fraction of the actual application data.
In addition, we prefer detecting the malicious behavior as soon as possible (before the end
of the program’s execution), therefore, a classifier that can predict malicious behavior with
a high true positive rate from the HPC events is desired.

Evaluation Methodology

Answering the first research question requires reading the right HPCs at the right place and
correctly, i.e, we start reading the HPC events when the actual ROP and JOP attacks start by
instrumenting the code to illustrate the start and end of the real attacks. A program would
usually run multiple times as normal and malicious, and the machine learning classification
method we use allows us to assign binary labels to the HPCs associated with the different
executions. Also, we discovered that constant noise values were automatically added to our
readings by accessing the HPC, these noise values were accounted for in both the benign
and ROP execution. Our instrumented program contains different numbers of consecutive
push-pop for ROP exploits and jump for JOP exploits.

To answer the second research question, the Xtensa ROP-JOP attacks classifier is evaluated
using the following standard ML classification metrics – precision and recall. The metrics
are defined as follows, where TP, FP, TN, FN refer to true positive, false positive, true
negative, and false negative respectively.

Precision: This measures the accuracy of the positive predictions and for this, we want to
know how many of the classified characteristics, recorded as HPC belong to the positive
class. This metric is computed as:

Precision =
TP

TP + FP
(6.1)

Recall: This is also known as true positive rate or sensitivity it is the ratio of positive
instances that are correctly predicted as ROP or JOP by the classifier and it is computed as:

Recall =
TP

TP + FN
(6.2)

6.5.2 Experimental Setup
The experimental setup consists of an Xtensa LX7 processor configuration designed with
Xtensa Xplorer version 8.0.10.3000. This configuration runs on a Xilinx Zynq XCZ7020-
1CLG484C4 System on Chip (SoC) Module attached to a TE0703-065 carrier board. A Tincan

4https://wiki.trenz-electronic.de/display/PD/TE0720+Resources
5https://wiki.trenz-electronic.de/display/PD/TE0703+Resources

https://wiki.trenz-electronic.de/display/PD/TE0720+Resources
https://wiki.trenz-electronic.de/display/PD/TE0703+Resources
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Flyswatter26 debugger, which provides an external Joint Test Action Group (JTAG) standard
interface is connected to the carrier board for direct debugging of the programs. An SoC
module is necessary because we experimented with the latest Xtensa processor generation,
which was not available on the market at the time of carrying out this research. The
embedded hardware configuration used is also minimal as not all of the features available
in high-end IoT systems were available.

Programs and input

We train our model on breadth-first search (BFS) algorithm-based programs, in which we
instrumented six versions of attack codes using varying ROP chains. This decision was
based on observations from our several experiments that merging and training with data
from different programs introduces unwanted statistical bias, which negatively affects
model convergence. Therefore, in these six programs P1, . . . , P6, with a ROP chain length of
1, . . . , 6 are exploited, respectively. The programs were written in the C language, compiled
using the Xtensa C compiler xt-xcc, and they run directly on the Xtensa processor. xt
-xcc uses the GNU preprocessor, assembler, and linker but in addition, it provides a
superior and smaller compiled code [26]. Malicious modification is made to the programs
by the addition of an extra function call that simulates attacks such as buffer overflow and
return-to-libc [133]. To flout the LIFO mechanism of the stack so that the program’s control
flow is hijacked, we corrupted the stack and modeled the payload to not just include gadget
addresses to divert the control flow but also potential function arguments. Our design is
mainly targeted at buffer overflow attacks to exploit memory corruption vulnerabilities
because it is the most commonly used method, even in IoT devices [119, 46, 19]. The
aftermath of the attacks then launches a ROP/JOP sequence that results in the execution
of codes and functions in the programs that were originally never invoked. In Fig. 6.4, the
execution time overhead in the training programs appears to increase when there are more
frequent indirect calls to functions consisting of a few instructions. This instrumentation
impact is similar to what was obtained for the ARM embedded benchmark used in [94].

To benchmark our model, we use a blend of 10 programs listed in Table 6.2, each running
with a different set of inputs and payloads. Similar programs can be found in the CTuning
suite7 and MiBenchmark8.The total size of the 10 programs is ≈ 2.74 MB. In Table 6.2, ET1,
ET2, Ovd, #Rop, and O notation represents the original execution time, execution time with
HPC measurement, instrumentation overhead, the length of the rop/jop chain, and the
time complexity of the programs, respectively. The maximum and minimum overhead
recorded of 1.34% and 0.74%, respectively, look reasonable. We do not directly compare

6https://www.tincantools.com/product/flyswatter2
7http://ctuning.org/
8https://vhosts.eecs.umich.edu/mibench/

https://www.tincantools.com/product/flyswatter2
http://ctuning.org/
https://vhosts.eecs.umich.edu/mibench/
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FIGURE 6.4: Training programs running time on Xtensa

these programs’ performance because they differ in input and runtime complexities, our
main goal is to see how the ML model will perform against random programs like these.

6.5.3 Data and model selection:
To find the optimal model for the attack detection, we first recorded the events that were
triggered during multiple executions of the exploited programs for ROP and JOP attacks,
respectively. The HPC data was recorded at 5 frequencies (≈ 10 * 212 to 50 * 212), which
allows us to sample data from a wide corpus of cycles, and thus provides a sufficient dataset
that best represents the behavior of the programs under attack. On Xtensa, the frequency
parameter is expected to be a multiple of 212 to prevent round-off errors. We started at ≈ 10
* 212 because this frequency has been used to validate the integrity of program control flow
via HPC with some promising results [91]. For any given program, the higher the frequency
chosen, the lower the noise effect, as well as the number of HPC sample size recorded. Our
data shape is (6061, 30), containing 6061 rows of event counts and 30 features. The support
vector ML (SVM) algorithm is preferred because it excels for data in high dimension spaces
and it is relatively memory efficient. SVM is an excellent binary classifier if data is balanced
but because the positive cases are less than the negative cases, with about a factor of 7, we
use a weighted SVM. The weighted SVM modifes the SVM penalty parameter Ci to fit the
model for each instance i, so that the weight wi is proportional to the class distribution. We
use 10-fold cross-validation, which is a standard procedure to ensure the validity of the
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TABLE 6.2: Benchmark programs

Program ET1 (µs ) ET22(µs ) Ovd(%) #Rop O notation
DFS 4421664 4481007 1.34 2 O(V + E)
Kruskal 2273937 2297769 1.05 3 O(E logE)
RabinKarp 642475 647202 0.74 4 O(mn)
Huffman 2343248 2368711 1.09 5 O(n log n)
Mergesort 933301 941449 0.87 6 O(n log n)
LCS 677565 688501 1.61 1 O(mn)
Prim 1577938 1596889 1.20 2 O(E log V )
BinaryS 507317 511553 0.83 4 O(log n)
FloydWarshall 1748544 1765759 0.93 5 O(n3)
BellmanFord 1448642 1460045 0.79 6 O(V E)

learned classifier. The model performance measured by the mean of the ROCAUC score is
0.94, which is well above 0.5, this means the classifier has a predictive ability.

We conducted the ML experiments on a MacBook Pro with a 2.9 GHz Intel Core i7 processor
and 16GB RAM.

6.5.4 Discussion
In this section, we discuss our findings and their contribution to the research questions.

Important HPC events: Of the 30 main HPC events in Table 6.1, feature engineering
found that the readings for events F1, F3, F4, and F7 are the same values irrespective of the
number of times a program executes either as benign or attacked code. An explanation for
the similarities in the HPC values could be that the low-level events (masks) in these main
events being accounted for occurred at almost the same count rate. Therefore, F1, F3, F4, and
F7 serve as the pivot for the permutation with the remaining events, together with all the
sub-events, to determine which events are dependent on them. Notwithstanding, the HPC
values recorded are reproducible for any given program, the reasons for the deterministic
nature of some of the counted and recorded events could be the result of (a) running the
programs on a bare board with no operating system or kernel and (b) there are no running
background services, which reduces the effect of interference in the readings.

The distribution of the 8 candidate HPC events (used in our final SVM model) in the benign
and attack code is represented in Fig. 6.5 by violin plots, which are combinations of box-and-
whisker plots and probability density functions (PDF). The violin plot shows the density
and distribution of the readings for each of the 8 selected HPC events. -1 and 1 represent
HPC events in the benign and attack executions respectively. Fig. 6.5a, Fig. 6.5b, Fig. 6.5c,
Fig. 6.5d, Fig. 6.5e, Fig. 6.5f, Fig. 6.5g and Fig. 6.5h are the distributions for F1, F2, F5, F8,
F12, F15, F25 and F27 respectively. While at a glance some features such as F2, F12, F15,
and F27 might look close for both the benign and ROP runs, dropping them degrades the
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model’s performance (the overall recall falls from 70% to 58%.) However, it may of course
be possible, in the future, to use fewer than 8 HPC events, but our interest at the moment
is to identify the best events that Xtensa’s 8 performance counter registers could monitor
simultaneously, and which could give a strong indication of ROP/JOP execution on an
embedded system running a firmware. In the sequel we give an overview of the selected
HPC events:

• F1 in Xtensa is equivalent to the number of retired instructions and it is the number of
instructions reaching the W stage without being killed at a given sampling interval.

• F2 relates to the number of branch penalty instruction events in a given sampling
interval.

• F5 distribution appears to cover two and three PDF regions in the benign and ROP-
affected run respectively.

• F8 relates to the number of stalls in the pipeline in a sampling interval.
• F12 records the number of stored instructions events (such as store misses and cached

store) from the data memory in a sampling interval.
• F15 records the number of the load instruction events (such as load misses and cache

load) from the data memory in a sampling interval.
• F25 can record, for example, the number of the exceptions, interrupts, and replays

resulting from TBL misses, load and store errors, illegal instructions, etc.
• F27 records the number of lookups to the data translation lookaside buffer (TLB)

More elaborated explanation of the selected HPC events is found in Appendix A.1

Model performance metrics: Our classifier is trained to predict if illegal instructions
using returns and jumps have been exploited and this is put to test against some benchmark
programs. The model is fed with HPC data of these programs running on the bare-metal
Xtensa (on the FPGA).

Fig. 6.6a and Fig. 6.6b show the individual precision and recall of the classifier. In Fig. 6.6a
the precision peaked for floydwarshall, and bellmanford where a higher number of illegal
instructions was executed. While it is intuitive that the metrics improve with the increase in
returns/jumps, we found this not to be always true if the exploited programs are different.
That is why BinaryS with 4 rop/jop violations has lower precision (0.85) than Prim (1.00)
and LCS (0.94) with 1 and 2 violations, respectively. We verified this and the metrics actually
increase with more returns/jumps exploitation in the same program. DFS has the lowest
precision of 0.32, however, this is not a problem as long as the recall is high, this is based
on the premise that in reality, the positive case is rare, and hence the percentage of the
positive instances that are correctly detected should be optimized. The recall for DFS is
almost twice as high, 0.60. The top three recall values are for huffman (0.84), prim (0.83)
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FIGURE 6.5: Box-and-whisker plots of the event counts for the benign (-1)

and ROP executions (1)

and bellmanford (0.78), these are very interesting because it means that almost all of the
ROP instances are correctly detected. However, BinaryS has a low recall of about 0.30. We
examined this and it appears the BinaryS, which is already fast with O(n log n) running
time, also ran on a small input array of length 12. From Table 6.2 it appears that, even
with the instrumentation overhead, it still runs fast. It appears that the complexity of the
program did affect the capability of the classifier. However the overall detection average
accuracy of 0.79 is significant.

Threats to Validity We identify the following potential threats to validity:

• Examples of ROP/JOP exploit code for non-standard processors are not easy to find
in practice, and therefore the instrumented programs used for our training may not be
representative of all ROP programs’ behaviors on Xtensa. Notwithstanding, the size
of our data together with the results obtained could reasonably justify the reliability
of our model in detecting attacks initiated through a buffer overflow, which is the
most exploited vulnerability.
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FIGURE 6.6: Evaluation on benchmark programs

• Our ROP/JOP exploits do not consider specific attack cases such as accessing a shell,
which might be the final intention of the attacker even though it may not be available
in the context of embedded/IoT devices, which often only contain firmware.
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Chapter 7

Related Work

JavaScript static analysis frameworks. TAJS [70], JSAI [74], WALA [121, 142, 48, 128], and
SAFE [82, 116, 114] are JavaScript static analysis frameworks among which WALA and
SAFE are most commonly used in research projects according to citation numbers. WALA
provides soundy flow-insensitive static analysis supporting correlation tracking [142] to
improve the analysis’s scalability and precision. Additionally, WALA introduced a new
unsound but more scalable static analysis that performs field-based (FB) call graph [48].
SAFE [116] is a flow- and context-sensitive scalable static analysis framework which sup-
ports loop-sensitivity analysis (LSA) [114]. LSA enhances the analysis precision in loops
improving analysis scalability of JavaScript applications. The current version SAFE 2.0 [116]
supports pluggability, extensibility and debuggability which makes it more user-friendly than
WALA and SAFE 1.0. SAFE leverages a recency abstraction [16, 115], which performs strong
updates on recently allocated objects and weak updates on joined old objects.

Points-to Analysis Comparison. The average points-to set size analysis is a convenient way
to evaluate the precision of static analysis frameworks. For instance, Wei et. al. [167] used
the average points-to comparison to systematically select a precise context-sensitivity type
(call-site, object, and parameter) per function. A context-sensitivity type that provides the
smallest average points-to set size is selected for each function. This motivated us to evaluate
the precision and scalability trade-off between WALA and SAFE using average points-to
set sizes. However, both frameworks follow different points-to analysis approaches and
leverage different data structure representations, which makes the comparison non-trivial.
Hence, we use the approach followed by [80] to integrate the WALA analysis results into
SAFE. This simplifies the selection of comparable objects. [80] also evaluates the precision
of WALA’s FB, SAFE and their combinations based on the average number of callees of the
call sites. In contrast, we use the object properties and their points-to set to evaluate the
precision of WALA’s PB and SAFE. The object properties include the callees and other fields
which broadens our analysis scope. Moreover, unlike the related work, which integrates
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WALA with SAFE 1.0, we integrate WALA with the latest, written completely from scratch,
version SAFE 2.0 to identify the comparable objects in both analyzers.

Static Taint analysis. SAFE’s existing taint analysis [123] forms the basis of our approach.
However, it does not support primitive arguments reaching the sinks, nor sanitizers. In
contrast, our analysis supports object arguments. Additionally, we modeled JSON.stringify,
and our analysis correctly identifies when the tainted user input is sanitized using this func-
tion. Taint analysis is well-established for security purposes. In the domain of JavaScript,
however, due to its dynamic nature, there is only limited related work [8] leveraging static
analysis: [73] and [127] present dynamic analyses to detect illicit taint flows, which can
only assert security for the given program execution. [166] leverage a combination of static
and dynamic analysis to identify security vulnerabilities due to data integrity violations
in JavaScript codes in websites. Again, the dynamic analysis component may miss certain
security-relevant facts. Skoruppa et al. [15] detect security violations in an online voting
client written in JavaScript via pure static analysis with WALA. None of these approaches,
though, analyzes module-based code based on node.js, which increases complexity signif-
icantly. Besides, we are the first to assess the precision and scalability of different static
analysis frameworks precisely. This allows us to scale the analysis to even more complex
language features, which we are actively pursuing at the time of this writing.

Dynamic Taint Tracking. Dynamic taint tracking has been proposed as a runtime approach
to detect code injection attacks in production applications, as a sort of last line of defense
[138, 55, 147, 127, 17, 93]. However, these approaches are generally not adopted due to
prohibitive runtime overhead: even the most performant can impose a slowdown of at
least 10–20% and often far more [32, 17, 76, 45]. Although prior work has used the term test
amplification to refer to techniques that automatically inject exceptions or system callbacks in
existing tests [176, 175, 2], we believe that RIVULET is the first to use dynamic taint tracking
to amplify test cases.

Testing for Injection Vulnerabilities. A variety of automated testing tools have been
proposed to detect injection vulnerabilities before software is deployed. These tools differ
from black-box testing tools in that they assume that the tester has access to the application
server, allowing the tool to gather more precise feedback about the success of any given
attack. Kieżun et al.’s Ardilla detects SQL injection and XSS vulnerabilities in PHP-based
web applications through a white-box testing approach [77]. Ardilla uses symbolic execution
to explore different application states, then for each state, uses dynamic taint tracking to
identify which user-controlled inputs flow to sensitive sinks, generating attack payloads
for those inputs from a dictionary of over 100 attack strings. Similar to Ardilla, Alhuzali
et al.’s Navex automatically detects injection vulnerabilities in PHP code using concolic
execution to generate sequences of HTTP requests that reach vulnerable sinks [4]. RIVULET
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improves on these approaches by leveraging the context of the complete value flowing
into each vulnerable sink, allowing it to focus its payload generation to exclude infeasible
attack strings. The naive rerun generator that we used as a comparison in our experiments
roughly represents the number of attack strings that Ardilla would have tested, showing that
RIVULET provides a significant reduction inputs tested. Unlike these systems’ automated
input generators, RIVULET uses developer-provided functional tests to perform its initial
exploration of the application’s behavior, a technique that we found to work quite well. If a
more robust concolic execution tool were available for Java, it would be quite interesting
to apply a similar approach to RIVULET, which could reduce our reliance on developer-
provided test cases to discover application behavior.

Other tools treat the application under test as a black-box, testing for vulnerabilities by
generating inputs and observing commands as they are sent to SQL servers, or HTML as it
is returned to browsers. Mohammadi et al. used a grammar-based approach to generate
over 200 XSS attack strings, however, our context-sensitive approach considers the location
of taint tags within the resulting document, allowing RIVULET to select far fewer payloads
for testing [96]. Simos et al. combined a grammar-based approach for generating SQL
injection attack strings with a combinatorial testing methodology for testing applications
for SQL injection vulnerabilities [135]. Thomé et al.’s evolutionary fuzzer generates inputs
to trigger SQL injection vulnerabilities using a web crawler [155]. Others have considered
mutation-based approaches to detect SQL injection [12] and XML injection vulnerabilities
[68]. In contrast, RIVULET uses data flow information to target only inputs that flow to
vulnerable sinks.

While our work considers injection vulnerabilities that are triggered through code that runs
on a web server, other work focuses on injection vulnerabilities that exist entirely in code
that runs in client browsers. Lekies et al. deployed a taint tracking engine inside of a web
browser, traced which data sources could flow into vulnerable sinks, and then generated
XSS attacks based on the HTML and JavaScript context surrounding each value at the sink
[87]. RIVULET also uses taint tracking to generate attack payloads, expanding this approach
to generate SQL and RCE injection attacks, and uses existing test cases to expose non-trivial
application behavior.

A variety of static taint analysis approaches have also been used to detect injection vulnera-
bilities [139, 158, 141, 13]. The most recent and relevant is Julia, which uses an interproce-
dural, flow-sensitive and context-sensitive static analysis to detect injection vulnerabilities
[139]. Compared to a dynamic approach like RIVULET, static approaches have the advantage
of not needing to execute the code under analysis. However, in the presence of reflection,
deep class hierarchies, and dynamic code generation (all of which are often present in large
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Java web applications), static tools tend to struggle to balance between false positives and
false negatives. In our benchmark evaluation, we found that RIVULET outperformed Julia.

While RIVULET uses specialized input generation and attack detection to find code injection
vulnerabilities, a variety of fuzzers use taint tracking to instead find program crashes.
For instance, BuzzFuzz uses taint tracking to target input bytes that flow to a sink and
replace those bytes with large, small, and zero-valued integers [49]. VUzzer takes a similar
approach, but records values that inputs are compared to in branches and uses those same
values as inputs (e.g., if it sees if(taintedData[49] == 105)... it would try value
105 in taintedData byte 49) [120]. Similarly, TaintScope uses fuzzing to detect cases where
fuzzed inputs flow through checksum-like routines and uses a symbolic representation of
these checksum bytes when generating new inputs in order to pass input validation [162].
RIVULET’s key novelties over existing taint-based fuzzers are its context-sensitive input
generation which enables the creation of complex, relevant attacks and its attack detectors
which report injection vulnerabilities rather than just program crashes.

Gadgets discovering and chaining. Several tools have been developed for gadgets
discovering and chaining to build ROP attacks on various architectures. ROPgadget1,
Ropper2 and xrop3 are some of the tools that are used for gadget discovery and are still
in active development. Each of them supports the ELF/PE/Mach-O format on the x86, x64,
ARM, PowerPC, SPARC, and MIPS architectures. In addition to gadget discovery, both
ROPGadget and Ropper support chaining gadgets on x86 and x64 to build ROP exploits
automatically. To the best of our knowledge, xrop is the only available automated tool
for generating gadgets on the Xtensa processor, but it does have it’s limitations and it
is not supported by the popular Capstone-Engine4 which is the multi-architecture and
multi-platform disassembler used by many of the publicly available gadget tools. Our
gadgets compilation in Xtensa platform is based on xrop with additional gadgets discovery
options as discussed in Section 6.4.1.

ROP Attack Detection on x86.

Recently, several hardware-based ROP defense tools such as HDROP [178], SIGDROP [163],
HadROP [117], ROPSentry [37] were proposed for x86. They use heuristics or machine
learning models which leverage branch misprediction events that occur at return instruc-
tions. HDROP utilizes HPCs such as mispredicted return events to defend against ROP
exploits. However, it requires the instrumentation of source code to insert checkpoints and
provides substantially high overhead. Later on, SIGDROP was proposed, which has strict
policies to leverage HPC to efficiently capture and extract the signatures to detect ROP

1https://github.com/JonathanSalwan/ROPgadget
3https://github.com/jsandin/xrop
4https://www.capstone-engine.org
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attacks. However, the policies can be bypassed by a determined adversary, for example, by
inserting one redundant call-ret paired gadget without causing any misprediction at the
return instruction.

The most closely related solution to our work, HadROP [117] was proposed by Pfaff et
al., which uses machine learning techniques to generate a kernel module that detects and
prevents ROP attacks at runtime using HPC as input data. However, our solution focuses
on the more challenging ARM architecture, which is leading the market and capable of
outperforming x86 [53]. We also feed much larger data sets from real-world applications
into the offline learning technique than HadROP. Unlike HadROP, we also evaluated our
SVM model with respect to seven other machine learning techniques.

Das et al. proposed ROPSentry [37], a defense framework, which can detect ROP by
analyzing the ROP exploits and spraying attacks using hardware events and reduces the
performance overhead by an adaptive and a return miss-based sampling technique, i.e.,
fetching HPC values at every return miss. But similar to HadROP, ROPSentry is only
available for x86, not for ARM.

ROP attack detection on ARM. As explained earlier, most ROP detection approaches are
based on x86. However, there are also initial results on the ARM platform. The work of
Huage et. al. [65] is one of the earlier ROP attack detection approaches using dynamic
binary instrumentation (DBI), which, however, induces a high performance overhead. To
overcome this limitation Lee et. al. [83] proposed a meta-data driven approach that uses the
ARM CoreSight traces supplemented with offline binary analysis to generate meta-data
information missed in the debug traces. Then using the information from the meta-data
and the debug traces they apply the shadow call stack (SCS) [111] approach to verify the
integrity of the direct and indirect call/jump instructions and detect ROP attacks. However,
since this needs high memory/storage overhead they tried to improve it in their later
papers [84, 85] by instrumenting the binary in the way CoreSight debugger traces provide
full information required for the control flow verification. These papers support ROP
attack detection using the SCS [111] approach and JOP attack detection using the Branch
Regulation (BR) [75] approach. More recently CFVerifier [102] was proposed to overcome
the storage overhead caused by the meta-data in [83] by maintaining table entries only for
branch instructions instead of every instruction.

Unfortunately, it has been shown [41] that these detection approaches can be circumvented
via advanced attacks such as print-oriented programming [29] attacks, counterfeit object-
oriented programming [129], or data-oriented programming [63], which are not directly
related to the branch integrity. Besides, most of the approaches use the ARM CoreSight
debugger based hardware monitor which could drop traces given a sufficiently high branch
rate since the monitor requires more time to process a trace than the rate at which branches
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occur on the target processor [41]. Another limitation of using debugger traces to detect
CRA attacks is that the hardware debugger can be used by an attacker to circumvent the
security of the system. If the attacker can access the debug interface, he could use it to
tamper with the code and data memory, or even disable the hardware monitor by tampering
with the tracing mechanism [41]. Moreover, most of these papers use Branch Regulation
(BR) analysis, which provides only partial indirect branch protection since indirect branches
to any address within the current function are allowed. This leaves BR somewhat vulnerable
to unintended branches since it allows CRAs which do not cross function boundaries. In
contrast, the HPC and machine learning-based approach does not use an external hardware
debugger and cannot drop traces during the monitoring. Besides, it does not use any
meta-data that leads to storage overhead. Moreover, since it is using machine learning it is
not specific to a set of given attack types or branch regulations. To the best of our knowledge
we are the first to investigate ROP attack detection via HPCs and machine learning on the
ARM platform.

ROP on Xtensa. To the best of our knowledge, only one article by Kai et. al. [86] proposes
a basic ROP attack on the Xtensa processor by chaining simple functions considered as
gadgets. In contrast, our thesis implements ROP and JOP attacks using compiled gadgets
on the Xtensa LX7 architecture. Moreover, we are the first to design JOP attacks using
a dispatcher gadget compatible with the Xtensa processor. Kai et. al. [86] showed that
Xtensa can be attacked by chained gadgets irrespective of the ABI in use. The authors
additionally proposed a linked list approach to chain gadgets for Xtensa’s Call0 ABI. Since
the approaches to attacking either ABI are similar, we used the default ABI in our thesis to
demonstrate ROP/JOP on Xtensa. Their paper is also different in that it did not cover attack
detection. Although based on a different method, a similar platform to ours is used in [94]
that proposes a solution called FPGA CFI for bare-metal ARM embedded devices. Their
approach targets devices that read firmware instructions directly from the flash memory
but unlike our work, ROP detection was not included in their work. Additionally, CFI
solutions’ memory requirements and overheads are generally considered impractical to
secure resource-constrained embedded devices [163].
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Chapter 8

Conclusion

Despite many efforts to reduce their incidence in practice, code injection attack remains
common, and was ranked #1 until 2021 on OWASP’s most recent list of critical web appli-
cation vulnerabilities [105]. Even after 2021, it is ranked in the top #3. Moreover, due to
the fast growth of mobile technology and internet-of-things (IoT) [125] injection attacks
such as ROP and its sibling JOP are also getting high attention in modern ARM and Xtensa
Processors. Especially, the ARM’s support of low power consumption without sacrificing
performance is leading industries to shift towards ARM processors [53], which advances
the attention of the attacks too.

In this thesis, we present different static and dynamic analysis approaches to provide precise
code injection attack detection and prevention solutions for the attacks on real-world web
applications and embedded applications based on ARM and Xtensa processors.

• Static Security Evaluation of an Industrial Web Application: In this work, we ana-
lyzed the security of a real-world hybrid app from our partner company by selecting
a more precise static analysis framework and extending its taint analysis approach.
To select the best analysis framework, we performed a thorough comparison of SAFE
and WALA by integrating the analysis result of WALA into SAFE and computing the
average points-to-set of pointers (object properties) considering user-defined objects,
global variables and other comparable elements only. The average points-to-set anal-
ysis result indicates SAFE is very precise at the cost of some scalability. SAFE also
provides better model coverage. For static analyses, precision is often more crucial
than scalability (as long as it finishes execution in a given timeframe), especially for
security-related analysis. Hence, based on the result of our comparison analysis, we
selected SAFE to analyze the real-world hybrid app. Finally, to analyze the security
of the hybrid app, we took some of its program slices with independent sources
and performed taint analysis by simulating tainted values as @StrTop in SAFE. Since
the existing taint analysis in SAFE supports only primitive values, we extend it to
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identify tainted objects as well. As the result, our extended taint analysis tool correctly
identified the flow of tainted values from sources to sinks in the hybrid app.

• Revealing Injection Vulnerabilities by Leveraging Existing Tests: We have pre-
sented a new approach to automatically detect injection attack vulnerabilities on web
applications before the software is released by amplifying existing application tests
with dynamic taint tracking. Rivulet applies novel, context-sensitive, input generators
to efficiently and effectively test applications for injection vulnerabilities. On four
benchmark suites, Rivulet had nearly perfect precision and recall, detecting every
true vulnerability (except for one pathological case) and raising no false alarms. Us-
ing developer-provided integration tests, Rivulet found six new vulnerabilities and
confirmed one old vulnerability in three large open-source applications. Rivulet is
publicly available under the MIT license [62], and an artifact containing RIVULET
and the experiments described in this thesis is also publicly available [61].

• Detecting and Preventing ROP Attacks using Machine Learning on ARM: This
addresses the practicability of detecting and preventing ROP attacks using HPCs and
machine learning on the ARM processor. First, we crafted several real-life exploits us-
ing ROP attacks from selected vulnerable programs, which provided HPC data about
the execution behavior of these vulnerable programs. For the ROP attack executions,
a small debugger tool called “tracer” was implemented to record only the real ROP
attack execution part, i.e., after the first ROP gadget starts execution. The SVM RBF
kernel is used for offline training and online monitoring of our ROP attack detection
approach, as when the detection accuracy of the offline training is evaluated with re-
spect to 7 additional machine learning techniques, it is consistently in the very top, i.e.,
it provides 92% detection accuracy and no one provides more than that. The detection
accuracy and performance overhead of the online monitoring is also evaluated and it
provides around 75% detection accuracy with an average 6.2% slowdown overhead.
Last but not least, our ROP attack detection and prevention approach using HPC and
machine learning techniques demonstrates that the characteristics of the hardware
events on ARM processors can be used to investigate whether or not an attack is in
progress.

• Detecting ROP on Firmware-Only Embedded Device Using HPCs: We have been
able to demonstrate the possibilities of how the Xtensa Call0 ABI processor configu-
ration could be attacked using gadgets from an executable linkable format binary of
user programs. We extracted valid gadgets, demonstrated gadget chaining scenarios
for return- and jump-oriented programming, and carried out experiments with these
attack scenarios on a minimal Xtensa hardware configuration running as a bare-metal
embedded system. Our hardware configuration is minimal and targeted for low
configuration embedded/IoT devices running instructions from the flash memory.
Furthermore, we experimented with the available hardware performance counter
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events and trained a support vector machine classifier based on these HPCs to detect
ROP and JOP readings in our test programs. By evaluating the model on unseen
HPC data, we obtained high precision and recall. We also identified some HPCs
which could help in predicting the execution of these kinds of code reuse attacks. Our
validation results prove the feasibility of the SVM and HPC detection methods for
ROP or JOP on Xtensa from a functional perspective, thereby validating the capacity
of this technique to detect code reuse behavior on a firmware-only Xtensa processor.
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Chapter 9

Future Work

In this section, we explain the potential extensions points

9.1 Extend the Scope of the Static Analysis tools Comparison
In this thesis, we have only compared WALA and SAFE to select a static analysis framework
for JavaScript that precisely analyze the security of a real-world hybrid application since
most of the scientific literature we had reviewed use these frameworks. However, it
would be nice extending the scope of the framework evaluation to include other analysis
frameworks such as TAJS to make the comparison more robust.

9.2 RIVELUT with Automatic Test Generation and Implicit Flow
Our tool RIVELUT is capable of detecting vulnerabilities from source-sink flows that are
exposed by a test case. Hence, Rivulet requires applications to have existing test cases.
Although we believe that this is a fair assumption to make, and in our evaluation, show that
Rivulet can detect a real vulnerability even when presented with a very small test suite (for
Apache Struts). Our approach can be extended with an automatic test generation technique
to mitigate this limitation. Moreover, at present, RIVULET can only detect vulnerabilities
that result from explicit (data) flow, and not through implicit (control) flows. This limitation
can be mitigated in the future by supporting implicit flow tracking in Phosphor, which is
used as a base taint analysis framework for RIVELUT.

9.3 Increase the Training Data set for ROP Attack Detection
Even though our ROP attack detection approach on ARM using HPC and machine learning
has provided good detection accuracy in the offline training, the online detection accuracy
has somehow decreased, potentially due to the fixed-point arithmetics we resorted to [21],
and the size of training data. The machine learning classifier was trained based on data
collected from 10 exploits from 5 real-world vulnerable applications and this might not be
representative of all possible exploits. Hence to detect the ROP attack during the online
monitoring more precisely, our approach can be extended by collecting more training data
so that a more appropriate model is generated.
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Similarly, for training our ROP/JOP attacks detection on Xtensa we collected the data
from small instrumented programs which may not be representative of all ROP programs’
behaviors on Xtensa. For future work, we recommend training the machine learning using
data collected from more realistic ROP/JOP attacks.
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Appendix

A.1 HPC Events Selected in Xtensa
F1 in Xtensa is equivalent to the number of retired instructions and it is the number of
instructions reaching the W stage without being killed at a given sampling interval. At
the W stage, the effect of an instruction on the architectural state is irreversible. The wider
PDF region of the ROP infected run, which is at the same time above the third quartile of
the benign run, is abnormal. The median of the ROP run also lies above the boxplot of the
benign run, meaning that the two HPC data belong to a different group. The ROP run HPC
values occur frequently in one PDF region and this is as a result of the execution of small
gadgets performing little tasks and leading to slightly more/faster-committed instructions
per interval.

F2 relates to the number of branch penalty instruction events in a given sampling interval.
The pipeline will be stalled if more branch instructions are executed than they are taken. All
of the branch instructions in the benign programs were correctly executed while the mali-
cious program executes only a few selected branch instructions to accomplish its malicious
intention. The boxplots look like they are slightly in the same range and symmetrical but
the PDF region of the ROP-affected run shows the HPC values occur more frequently and
this can be attributed to the more mispredicted branches.

F5 distribution appears to cover two and three PDF regions in the benign and ROP-affected
run respectively. For the ROP-affected run, the median is almost identical to the third
quartile which is why they overlap, this is likely because of a large proportion of low values
of F5 events. The ROP-run skipped some instructions and this could be responsible for the
very low variance in this HPC.

F8 relates to the number of stalls in the pipeline in a sampling interval. In Xtensa, the number
of interlocks refers to the number of R-stage holds arising from register dependencies and
interlock-specific instructions. Register dependencies are low because gadgets skip several
normal instructions. The median of the ROP-affected run is also unsurprisingly outside the
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box of the benign run and the boxes’ variance shows that this pipeline delay varies more in
the benign run than in the ROP-affected run.

F12 records the number of stored instructions events (such as store misses and cached store)
from the data memory in a sampling interval. The ROP run has significantly more variance
and inverted PDF and this is likely caused by a reference to data not in the data memory.

F15 records the number of the load instruction events (such as load misses and cache load)
from the data memory in a sampling interval. The data memory, unlike the instruction
memory, is both readable and writeable. The normal run distribution have slightly more
variance than the ROP-affected run, however, the PDF is an indication that the ROP-run
performs data manipulation operations and load data operation more frequently.

F25 can record, for example, the number of the exceptions, interrupts, and replays resulting
from TBL misses, load and store errors, illegal instructions, etc. It is not surprising that
despite the median being the same for the two boxes, the ROP-affected run is severely
skewed and the unusual PDF width shows that the majority of the F25 HPC readings are in
one region. This implies that the error handling by this HPC occurs more frequently in the
ROP-affected run.

F27 records the number of lookups to the data translation lookaside buffer (TLB). Unlike
the von-Neumann architecture, the Harvard architecture can have separate memory access
hardware - instruction TLB and data TLB. Data TLB hit helps to reduce the data access time
from the data memory. This HPC for the two runs appears to be in the same group but the
PDF is irregular with a high-frequency region for the ROP run, this is because each data
TLB miss leads to a computationally expensive page table lookup for the physical addresses
of data.



105

Bibliography

[1] W ∧ x (”write xor execute”).

[2] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. Systematic
execution of android test suites in adverse conditions. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, pages 83–93,
New York, NY, USA, 2015. ACM.

[3] Manaar Alam, Sayan Sinha, Sarani Bhattacharya, Swastika Dutta, Debdeep
Mukhopadhyay, and Anupam Chattopadhyay. Rapper: Ransomware prevention via
performance counters. arXiv preprint arXiv:2004.01712, 2020.

[4] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and V. N. Venkatakrishnan. Navex:
Precise and scalable exploit generation for dynamic web applications. In Proceedings
of the 27th USENIX Conference on Security Symposium, SEC’18, pages 377–392, Berkeley,
CA, USA, 2018. USENIX Association.

[5] Tim Ambler and Nicholas Cloud. Browserify. In JavaScript Frameworks for Modern Web
Dev, pages 101–120. Springer, 2015.

[6] Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. Internet of things: A survey
on the security of iot frameworks. Journal of Information Security and Applications, 38:8–
27, 2018.

[7] Lars Ole Andersen. Program analysis and specialization for the C programming language.
PhD thesis, University of Cophenhagen, 1994.

[8] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. A survey of dynamic analysis and test
generation for javascript. ACM Computing Surveys (CSUR), 50(5):1–36, 2017.

[9] Apache Foundation. Apache struts. https://struts.apache.org, 2019.

[10] Apache Foundation. Apache struts release history. https://struts.apache.

org/releases.html, 2019.

[11] Apache Foundation. Apache tomcat. https://tomcat.apache.org, 2019.

https://struts.apache.org
https://struts.apache.org/releases.html
https://struts.apache.org/releases.html
https://tomcat.apache.org


106 BIBLIOGRAPHY

[12] Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. Automated
testing for sql injection vulnerabilities: An input mutation approach. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014, pages
259–269, New York, NY, USA, 2014. ACM.

[13] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 259–269, New York, NY, USA, 2014. ACM.

[14] Itzhak Zuk Avraham. Non-executable stack arm exploitation research paper. Revision,
1:2010–2011, 2010.

[15] Michael Backes, Christian Hammer, David Pfaff, and Malte Skoruppa.
Implementation-level analysis of the javascript helios voting client. In Proceedings of
the 31st Annual ACM Symposium on Applied Computing, pages 2071–2078, 2016.

[16] Gogul Balakrishnan and Thomas Reps. Recency-abstraction for heap-allocated stor-
age. In International Static Analysis Symposium, pages 221–239. Springer, 2006.

[17] Jonathan Bell and Gail Kaiser. Phosphor: Illuminating Dynamic Data Flow in Com-
modity JVMs. In ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 83–101, New York, NY, USA, October
2014. ACM.

[18] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines
of code later: using static analysis to find bugs in the real world. Commun. ACM,
53:66–75, February 2010.

[19] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M Koruyeh, Nael Abu-Ghazaleh,
Chengyu Song, and Mathias Payer. Specrop: Speculative exploitation of {ROP}
chains. In 23rd International Symposium on Research in Attacks, Intrusions and Defenses
({RAID} 2020), pages 1–16, 2020.

[20] Parth Bhavsar, Ilya Safro, Nidhal Bouaynaya, Robi Polikar, and Dimah Dera. Machine
learning in transportation data analytics. In Data analytics for intelligent transportation
systems, pages 283–307. Elsevier, 2017.

[21] Kaiwan N Billimoria. Linux Kernel Programming: A comprehensive guide to kernel
internals, writing kernel modules, and kernel synchronization. Packt Publishing Ltd, 2021.



BIBLIOGRAPHY 107

[22] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented pro-
gramming: a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, pages 30–40, 2011.

[23] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented pro-
gramming: a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, pages 30–40, 2011.

[24] Steve Bousquet. Criminal charges filed in hacking of florida elections
websites. http://www.miamiherald.com/news/politics-government/

article75670177.html, 2016.

[25] Erik Buchanan, Ryan Roemer, Stefan Savage, and Hovav Shacham. Return-oriented
programming: Exploitation without code injection. Black Hat, 8, 2008.

[26] Cadence. Xtensa® c and c++ compiler user’s guide, 2018.

[27] Cadence. Xtensa® microprocessor programmer’s guide, 2018.

[28] Cadence. Xtensa® instruction set architecture, 2019.

[29] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. {Control-Flow} bending: On the effectiveness of {Control-Flow} integrity. In
24th USENIX Security Symposium (USENIX Security 15), pages 161–176, 2015.

[30] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Ho-
vav Shacham, and Marcel Winandy. Return-oriented programming without returns.
In Proceedings of the 17th ACM conference on Computer and communications security,
pages 559–572, 2010.

[31] Shay Chen. The web application vulnerability scanner evaluation project. https:
//code.google.com/archive/p/wavsep/, 2014.

[32] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace: Efficient flow
tracing with dynamic binary rewriting. In 11th IEEE Symposium on Computers and
Communications, ISCC ’06, Washington, DC, USA, 2006. IEEE.

[33] Erika Chin and David Wagner. Efficient character-level taint tracking for java. In
Proceedings of the 2009 ACM Workshop on Secure Web Services, SWS ’09, pages 3–12,
New York, NY, USA, 2009. ACM.

[34] Ang Cui, Michael Costello, and Salvatore J Stolfo. When firmware modifications
attack: A case study of embedded exploitation. In 20th Annual Network & Distributed
System Security Symposium, pages 1–13, 2013.

http://www.miamiherald.com/news/politics-government/article75670177.html
http://www.miamiherald.com/news/politics-government/article75670177.html
https://code.google.com/archive/p/wavsep/
https://code.google.com/archive/p/wavsep/


108 BIBLIOGRAPHY

[35] Ryan Dahl. Node.js.

[36] Al Daniel. cloc: Count lines of code. https://github.com/AlDanial/cloc,
2019.

[37] Sanjeev Das, Bihuan Chen, Mahintham Chandramohan, Yang Liu, and Wei Zhang.
Ropsentry: Runtime defense against rop attacks using hardware performance coun-
ters. Computers & Security, 73:374–388, 2018.

[38] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security. In 2019 IEEE Symposium on Security and Privacy (SP), pages
20–38. IEEE, 2019.

[39] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Return-oriented programming without returns on arm. Technical report, Technical
Report HGI-TR-2010-002, Ruhr-University Bochum, 2010.

[40] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Ropdefender: A detection
tool to defend against return-oriented programming attacks. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, pages 40–51,
2011.

[41] Ruan De Clercq and Ingrid Verbauwhede. A survey of hardware-based control flow
integrity (cfi). arXiv preprint arXiv:1706.07257, 2017.

[42] Christian DeLozier, Kavya Lakshminarayanan, Gilles Pokam, and Joseph Devietti.
Hurdle: Securing jump instructions against code reuse attacks. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 653–666, 2020.

[43] Mohamed Elsabagh, Daniel Barbara, Dan Fleck, and Angelos Stavrou. Detecting rop
with statistical learning of program characteristics. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy, pages 219–226, 2017.

[44] Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. Strict virtual call integrity
checking for c++ binaries. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pages 140–154. ACM, 2017.

[45] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In OSDI’10, Berkeley, CA, USA, 2010.
USENIX Association.

https://github.com/AlDanial/cloc


BIBLIOGRAPHY 109

[46] K Virgil English, Islam Obaidat, and Meera Sridhar. Exploiting memory corruption
vulnerabilities in connman for iot devices. In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 247–255. IEEE, 2019.

[47] Exploit Database. Offensive Security’s Exploit Database Archive. https://www.
exploit-db.com, 2019.
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Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller,
and Dimitrios Vardoulakis. In defense of soundiness: A manifesto. Commun. ACM,
58(2):44–46, January 2015.

[91] Corey Malone, Mohamed Zahran, and Ramesh Karri. Are hardware performance
counters a cost effective way for integrity checking of programs. In Proceedings of the
sixth ACM workshop on Scalable trusted computing, pages 71–76, 2011.

[92] Ganapathy Mani, Vikram Pasumarti, Bharat Bhargava, Faisal Tariq Vora, James
MacDonald, Justin King, and Jason Kobes. Decrypto pro: Deep learning based
cryptomining malware detection using performance counters. In 2020 IEEE Interna-
tional Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pages
109–118. IEEE, 2020.

[93] Wes Masri and Andy Podgurski. Using dynamic information flow analysis to detect
attacks against applications. In Proceedings of the 2005 Workshop on Software Engineering
for Secure Systems&Mdash;Building Trustworthy Applications, SESS ’05, pages 1–7, New
York, NY, USA, 2005. ACM.
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