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Abstract
Increased usage and integration of state-of-the-art information technology in our
everyday work life aims at increasing the working e�ciency. Due to unhandy human-
computer-interaction methods this progress does not always result in increased
e�ciency, for mobile workers in particular. Activity recognition based contextual
computing attempts to balance this interaction de�ciency.

This work investigates wearable, on-body sensing techniques on their applicability
in the �eld of human activity recognition. More precisely we are interested in the
spotting and recognition of so-called manipulative hand gestures. In particular
the thesis focuses on the question whether the widely used motion sensing based
approach can be enhanced through additional information sources.

The set of gestures a person usually performs on a speci�c place is limited �
in the contemplated production and maintenance scenarios in particular. As a
consequence this thesis investigates whether the knowledge about the user's hand
location provides essential hints for the activity recognition process. In addition,
manipulative hand gestures � due to their object manipulating character � typically
start in the moment the user's hand reaches a speci�c place, e.g. a speci�c part
of a machinery. And the gestures most likely stop in the moment the hand leaves
the position again. Hence this thesis investigates whether hand location can help
solving the spotting problem.

Moreover, as user-independence is still a major challenge in activity recognition,
this thesis investigates location context as a possible key component in a user-
independent recognition system.

We test a Kalman �lter based method to blend absolute position readings
with orientation readings based on inertial measurements. A �lter structure is
suggested which allows up-sampling of slow absolute position readings, and thus
introduces higher dynamics to the position estimations. In such a way the position
measurement series is made aware of wrist motions in addition to the wrist position.
We suggest location based gesture spotting and recognition approaches. Various
methods to model the location classes used in the spotting and recognition stages
as well as di�erent location distance measures are suggested and evaluated.

In addition a rather novel sensing approach in the �eld of human activity
recognition is studied. This aims at compensating drawbacks of the mere motion
sensing based approach. To this end we develop a wearable hardware architecture
for lower arm muscular activity measurements. The sensing hardware based on force
sensing resistors is designed to have a high dynamic range. In contrast to preliminary
attempts the proposed new design makes hardware calibration unnecessary.

Finally we suggest a modular and multi-modal recognition system; modular with
respect to sensors, algorithms, and gesture classes. This means that adding or
removing a sensor modality or an additional algorithm has little impact on the rest
of the recognition system. Sensors and algorithms used for spotting and recognition
can be selected and �ne-tuned separately for each single activity. New activities can
be added without impact on the recognition rates of the other activities.

Keywords: Wearable computing � Contextual computing � Manipulative hand gestures �

Gesture spotting � Gesture recognition � Force sensing resistors � Muscular activity

recognition � Location sensing � Kalman �lter based sensor fusion � Location modeling





Zusammenfassung
Informationstechnologie wird zunehmend in unseren Arbeitsalltag integriert �
eine Entwicklung, die vor allem auch eine Steigerung der Arbeitsproduktivität
erwarten läÿt. Allerdings wird aufgrund ungeeigneter und ine�zienter Eingabe-
und Interaktionsmethoden die E�zienz nur bedingt erhöht. E�zienzprobleme
ergeben sich im besonderen bei Tätigkeiten, die die Benutzung mobiler Geräte
erfordern. Kontext-gesteuerter Mensch-Computer-Interaktion, aufbauend auf einer
detaillierten Erkennung der momentanen Aktivität des Benutzers, wird bescheinigt,
dieses De�zit ausgleichen zu können.

Die vorliegende Arbeit untersucht nun unau�ällig am Körper bzw. in der
Kleidung getragene Sensorsysteme auf ihre Anwendbarkeit zur Erkennung von
menschlichen Aktivitäten. Im Speziellen befasst sich die Arbeit mit so genannten
interaktiven Handgesten. Die Frage, ob der weit verbreitete, auf Bewegungssensoren
(hauptsächlich Beschleunigungs- und Gyroskopsensoren) basierende Ansatz mittels
zusätzlicher Sensorik verbessert werden kann, wird untersucht.

Die Menge der Gesten, die eine Person an einem bestimmten Ort für gewöhnlich
ausführt, ist endlich und klein � vor allem in den angedachten Szenarien industrielle
Serienproduktion und industrielle Wartung. Ausgehend von dieser Überlegung
untersucht die Arbeit, ob die Kenntnis des räumlichen Zustandes einer Person
essentielle Information für den Erkennungsprozess bereit stellt.

Interaktive Gesten starten und stoppen typischerweise in dem Moment, in dem
die Hand eine bestimmte Position erreicht bzw. verlässt; vor allem auch weil diese
interaktiven Gesten per se auf ein bestimmtes Objekt bezogen sein müssen, mit
dem Ziel dieses eben � in welcher Form auch immer � zu verändern bzw. mit
diesem zu interagieren. Diese Arbeit untersucht im Speziellen, ob die Erfassung
der Handposition dazu beitragen kann, das so genannte Spotting-Problem zu lösen,
also das Au�nden von Bereichen in den Sensorsignalen, die möglicherweise eine
relevante Aktivität beinhalten.

Weiters gilt personenunabhängige Erkennung als eines der schwerwiegenden
Probleme in der Gestenerkennung. Da räumliche Information an sich personenun-
abhängig sein muss, untersucht diese Arbeit auch, ob aufgrund der ortsbasierten
Erkennung ein höheres Maÿ an Personenunabhängigkeit erzielt werden kann.

Um absolute Positionsmessungen mit relativen Bewegungs- und Orientierungsmes-
sungen zu fusionieren, evaluiert diese Arbeit einen Kalman-Filter-basierten Ansatz.
Die entworfene Filterstruktur erlaubt es, die langsame Abtastfrequenz der Position-
sabschätzungen um den Faktor 70 zu steigern mit dem Ergebnis einer dynamischen
Positionstrajektorie. Die Positionstrajektorie dient damit nicht mehr ausschlieÿlich
der Positionsabschätzung sondern auch der Bewegungsabschätzung. Methoden zur
positionsbasierten Au�ndung und Erkennung von Handgesten werden vorgeschla-
gen und untersucht. Unterschiedliche Ansätze zur Modellierung von Ortsklassen
und den dazugehörigen Distanzmaÿen werden vorgestellt und evaluiert.

In weiterer Folge werden Kraft-sensitive Folienwiderstände (FSR) als neuer
Ansatz zur Erkennung von Aktivitäten untersucht. Mithilfe dieser Sensorik können
bestimmte Nachteile klassischer Bewegungssensoren ausgeglichen werden. Zu
diesem Zweck wird eine Sensorplattform zur Messung von Muskelaktivitäten des
Unterarmes entwickelt. Gegenüber früherer Systeme bietet diese Plattform einen



groÿen dynamischen Messbereich, ohne benutzerabhängige Kalibrierung notwendig
zu machen.

Das vorgestellte Erkennungssystem zielt auf Modularität durch Multimodalität
ab � modular einerseits im Bezug auf die verwendeten Sensormodalitäten bzw.
deren algorithmische Verarbeitung und andererseits im Bezug auf die Anzahl der
Aktivitätsklassen. Das Ziel ist es, die Erkennungsraten des Systems unabhängig
von der Anzahl der Klassen und unabhängig von der Sensorik und den Algorithmen
zu halten. Modelle für die Erkennung einzelner Klassen können darüber hinaus
unabhängig voneinander trainiert und optimiert werden.
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Chapter

1
Introduction

This chapter gives a brief statement on the
need for contextual and wearable computing and moreover on activity and gesture
recognition as one potential enabling technique. Some of the major challenges within
the �eld of gesture spotting and recognition from continuous data streams of on-body
sensors are described. Subsequently this thesis' approach to tackle these issues �
i.e. a multi-modal mixed motion-location-muscular activity sensing approach � is
fostered.

Moreover, this introductory chapter summarizes ongoing work from related
research areas, such are (continuous) activity and gesture recognition with various
sensing approaches, location awareness and indoor positioning approaches, and
contemplated context aware and wearable computing application scenarios.

Finally this chapter summarizes the thesis by means of contrasting the objectives
with the contributions and by means of outlining the subsequent chapters.



2 Chapter 1. Introduction

1.1 Status quo
The miniaturization of integrated electronic circuits has been proceeding for approx-
imately �ve decades and is still advancing. Among other things this miniaturization
resulted in a continuing downsizing of electronic computing devices and subsequently
in mobile and ubiquitous computing power. People's habits concerning both their
private and their professional lives are constantly changing towards a growing
employment of but also a growing dependence on this permanently available
computing power. This development does not necessarily result in increased
e�ciency; in some cases it may even result in the contrary, or at least it may feel
like it. Even more so due to the great limitations concerning the usability of current
human-computer-interaction (HCI) methods.

Among other strategies context-aware and wearable computing techniques are
trying to balance this interaction de�ciency. A context-aware device intends to
act according to pre-estimated, most probable, prospective user demands. In some
contemplated application areas wearable computing can be seen to a certain extent
as one possible manifestation of context-aware computing. Admittedly, wearable
computing systems solve complex context-aware computing tasks at present only
under laboratory conditions; hence wearable computing devices will not be wearable
for the short term whereas consumer electronic wearables will not comply wearable
computing paradigms � at least for the short term.

For hardware purposes the major challenges of wearable computing are unobtru-
siveness and more advanced sensing technologies. The ongoing progress in the �eld
of miniaturization of electronic devices, in particular the high integration of electro-
mechanical systems � see e.g. the advancing MEMS technology � will provide new
opportunities in the near future.

Energy consumption is of course a major issue. Currently mobile energy storage
solutions are the limiting factor when miniaturizing wearable devices both in size and
weight. E�orts made in the �eld of miniaturized power generators e.g. converting
body heat or kinetic energy into electrical energy � often referred to as energy
harvesters � attempt to solve this issue. Among other techniques advances in
nanotechnology will provide new chances in this area.

On the computing side proper recognition of what is currently going on in the
environment, i.e. high-level though on-line interpretation of raw sensor readings, is
one of the major challenges.

Social aspects and security and privacy challenges are besides these technical
questions major research topics in the �eld of wearable and contextual computing.

1.2 Wearable and contextual computing
As indicated in the previous section, wearable computers and wearable computing
are widely fostered by an increasing demand of or rather request for permanently
available personalized computing power.

Mobile and portable devices can satisfy this need only to a certain extent, byMobile
computing making a desktop-like computer available to the mobile user. These devices are

small scale versions of ordinary desktop computers, using quite similar interaction
concepts, e.g. a keyboard, a pointing device, menu-driven navigation. Thus, any
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interaction with such mobile devices demands full user attention.
The wearable computing [Man97] concept heads into other directions. It Wearable

computinginvestigates and fosters unobtrusive interaction [Rek01] between the user and non-
intrusive [Che08] and pro-actively [Ten00] behaving computing devices. The ulti-
mate goal is to let the user bene�t from a permanently available, ubiquitous [Wei99]
computing resource in a hands-free [HS95] and non-attentive manner.

To ful�ll this requirement the computing device needs to be aware of the user's Contextual
Computingstate and the state of the environment. In general this is referred to as context

sensing and context awareness [ST94, SAW94, Sch02]. In the literature various
de�nitions and interpretations of context, context sensing and context awareness
can be found. Schilit et al. e.g. state in [SAW94]

Context encompasses more than just the user's location, because other
things of interest are also mobile and changing. Context includes
lighting, noise level, network connectivity, communication costs, com-
munication bandwidth, and even the social situation [...].

In general context can be de�ned as pieces of information that describe the state
of the user and the user's environment. At best this description contains enough
information to form the basis for a correct and well-behaving decision making process
of the computing device.

As a consequence, context awareness is the ability of a computing device to solve
its given tasks considering these pieces of contextual information, or as de�ned by
Schilit et al. in [ST94]

Context-aware computing is the ability of a mobile user's applications to
discover and react to changes in the environment they are situated in.

The character of contextual information can vary. It can be of a physical nature,
e.g. user location, user activity, gestures, health state, physical state; or of a more
abstract nature, e.g. informational context, device availability, or even emotional
state and user intentions.

The wearable and contextual approach can bene�t several application areas. Applications

Frequently given examples (see also Section 1.5.4) are: support of daily routines,
maintenance and production assistance for mobile workers, assistance for mobile
worker trainees, sports activity monitoring, pervasive health-care, and information
services for rescue operators. Their commonness is the idea to provide just the right
information at just the right time [SSS08] or even to provide

the right information to the right person at the right place at the right
time in the right language at the right level of abstraction. [Sie01]

wearIT@work

The context of this work and the context of the presented case studies in
particular is a large research project, the wearIT@work project1 [LTGLH07, LHW07,
Mau07]. The major goal of the project is to investigate and foster the applicability

1Sponsored by the European Union under contract EC IP 004216
http://www.wearitatwork.com/
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of currently existing wearable computing techniques and concepts in industrial
environments.

WearIT@work is focusing among other scenarios on activity recognition in
industrial production and maintenance. The project envisions the development and
test of activity recognition systems for the tracking of complex car assembly and
aircraft maintenance tasks and designs and conducts test runs together with the
end user partners, e.g. the car manufacturer �koda and the aircraft manufacturer
EADS.

To this end the project explores wearable, on-body, and context sensing tech-
nologies and aims to encourage wearable solutions within an industrial environment
arguing that a wearable solution provides pro-active information delivery and
unobtrusive access to information technology infrastructure, i.e. pro-actively deliver
relevant information, e.g. display manual pages, display warnings in case of a missing
step or an unsafe situation, record the progress of the procedure for later veri�cation
or supporting and assessing trainees' progress. By providing this information in pro-
active, unobtrusive, and non-intrusive manner one can assure to leave the workers'
hands free and allow freedom of motion, not distracting them from their primary
task [Wit07, SRO+08].

Consequently, this work focuses on the recognition of so-called manipulative handObjective

gestures [JKS98] in conjunction with the tracking of car assembly and aircraft
manufacturing tasks. As stated above, the ultimate aim is to recognize what part of
a given maintenance or assembly procedure is executed by the worker at any given
point in time.

1.3 Problem definition
By the very de�nition of an assembly or maintenance task relevant activities areManipulative

hand gestures given by the interaction of the users hands or arms with prede�ned parts of some
machinery or other objects; we call such motion sequences manipulative hand
gestures. As a simple everyday example consider changing a wheel in a car. It
consists of taking o� the wheel cover, loosening the screws on the wheel, taking the
car-jack from the boot, attaching it to a proper location of the car, lifting the car
by turning a lever on the car-jack, unscrewing the wheel, taking it o� and so on.

In general any maintenance or assembly task can be decomposed into such a
sequence of simple activities. Moreover, each single activity is characterized by a
speci�c motion pattern of the hands or arms and a part of the machinery or objects �
in our case a speci�c part of a large stationary machinery, e.g. the car body or a
part of the aircraft � with which the user is interacting. Thus manipulative hand
gestures are characterized by two factors:

7 the motion of the hands or arms and
7 the object that is being manipulated.

Note that even if a tool is used, the manipulation still targets a speci�c part of
the machinery. Thus this work argues that in the envisioned scenarios with the
focus on manipulative gestures knowledge of the user's hand location is an essential
information because the user is interacting with objects at speci�c locations.
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Moreover, the number of gestures that can be performed at a speci�c location is
limited. Thus the search space of the gesture recognition system decreases in case
of a well-recognized location context.

Furthermore, this work aims at a speci�c recognition problem: the spotting of Gesture spotting

sporadic hand gesture events within a continuous data stream. Spotting aims at
retrieving the starts and stops of meaningful segments in a time series. To retrieve an
accurate recognition result, it is often required that only the data stream containing
exactly the gesture of interest is presented to the algorithm. Therefore the spotting
step is an essential or even crucial part in many activity and gesture recognition
problems.

A typical gesture spotting task within an industrial scenario is de�ned by a The NULL class

moderate set (in the range of ten to 100) of user actions which the system needs to
identify in a continuous stream of data. Between the relevant actions the workers
could perform arbitrary other activities; which means that a large body of arbitrary
non-relevant actions are mixed randomly with relevant gestures. We will refer to
these non-relevant events as NULL class events.

Spotting actions based on on-body sensor data is known to be a di�cult problem Problem
descriptionthat has so far not been solved satisfactorily. In general the major challenges in the

�eld of spotting and recognition of manipulative hand gestures by means of on-body
sensing are:

7 Ambiguity of individual sensor signals: In general most activities cannot be
unambiguously characterized with a single on-body sensing modality. For
example, since many activities are associated with characteristic arm motions,
motion sensors on the wrist have been widely used. However, many activities
contain similar motions. In fact, people tend to move their arms a lot so that
any motion is likely to occur randomly with a connection to a speci�c motion.

7 Measurement of pseudo-motions: Body-mounted motion sensors are prone
to deceptive measurement; consider e.g. slipping sensors or a sensor housing
accidentally touching an object. Due to this and the previous point,
distinguishing gestures based on very similar motion patterns by means of
motion sensors alone is not feasible.

7 Mixed motion and orientation information: In addition, acceleration sensors
measure a mixture of rotation and translation information, i.e. the sensor
signal contains a mixture of motion and orientation information that is di�cult
to separate with simple sensor setups. Moreover these sensors provide no
information about the palm and �nger activities.

7 High inter-user variability: People tend to perform activities and gestures in
a very individual way, which results in highly user-speci�c motion patterns.
What is more, these patterns may also vary over time, i.e. users perform
activities di�erently depending on various factors like grade of tiredness, mood,
stress factor and others.

7 High variability in event length: Human actions can signi�cantly vary in
length. This is true both within a certain activity class and between di�erent
classes. As a consequence obvious techniques such as �xed-size-sliding-
windows and correlations are often not applicable.

7 Lack of NULL class models: In activity spotting the NULL class can be
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vaguely described as all possible human actions other than the ones belonging
to the set we need to spot. Evidently, given the complexity of human actions,
useful models are di�cult to be derived. Thus the spotting system needs
to work with absolute thresholds for the similarity to the individual relevant
classes rather than with relative similarity between relevant classes and the
NULL class.

7 NULL class size: In many applications the relevant actions comprise only
a small amount of the overall measurement time. In industrial production
scenarios this fraction may be quite high, but in other scenarios, such as
monitoring household activities and daily life routines, this fraction may go
down to a couple of percent. This means that the system needs to be highly
selective � i.e. it needs to operate with high precision � to avoid a prohibitive
number of insertion errors.

1.4 Approach
Tracking of the user's hand location seems to be a promising approach to solve theLocation based

spotting spotting problem at least for the investigated scenario. In our case a manipulative
gesture typically starts the moment the user's hand reaches a speci�c part, i.e. a
speci�c position at the machinery; it should be �nished, the moment the hand is
moving away. Thus the location can be a strong indicator for the starts and stops
of a manipulative gesture.

We also add a novel activity sensing technique: force sensitive resistors (FSRs) forFSRs

the purpose of arm muscle monitoring. Motion sensors provide a signi�cant amount
of activity information but accelerometers tend to contain a mixture of motion and
orientation information that is di�cult to separate with simple sensor setups. In
addition they provide no information about the palm and �nger activity. Due to the
fact that palm and �nger motions are driven by muscles in the forearm, resulting
in signi�cant contraction and relaxation phases, muscles signi�cantly change their
shape during a certain gesture, which in turn results in mechanical pressure being
applied to the sensors, when mounted on the forearm.

FSRs have already been introduced to the wearable computing community. Still
there are some open questions concerning the sensing hardware itself, e.g. when
applying them for muscle activity monitoring. Hence this work will also deal
with FSR hardware questions and suggest a new wearable hardware platform for
distributed, wireless, multi-channel FSR sensing with linear characteristics.

In addition, this work focuses on user-independence. Current concepts andUser-
independence systems for gesture recognition based on motion sensing are often highly user-

dependent because of the individual ways humans perform gestures and activities.
Persuasive recognition results can only be achieved in highly experimental setups,
i.e. the subject is exactly instructed how to behave and how to perform a gesture or
an activity. Thus real-life variability of human gestures often cannot be reproduced
in such experiments. Variability in the way gestures are performed remains a major
challenge; and the state-of-the-art approaches to get a grip on it, are:

7 recording a training set with a representative number of gesture instances,
7 recording a training set with a representative number of subjects.
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7 providing additional information, i.e. contextual information to the recognition
system.

Additional information about the user's context should obviously increase the
performance of a recognition system; but with the obvious drawback of increasing
the complexity of the sensing system. However, the addition of location context
information should outperform any other contextual information source, due to its
user-independent nature: location information is evidently non-sensitive concerning
the di�erent ways a gesture can be performed.

In addition to the spotting approach this work aims at suggesting an approach Modularity

to solve the continuous gesture recognition problem in a modular manner, i.e.
the suggested approach aims at �exibility concerning the number of gestures and
concerning the sensing modalities and algorithms. Achieving modularity of the
recognition system with respect to sensors and algorithms allows to add, remove
or exchange a sensor modality or an additional processing step without impacting
on the rest of the recognition system. Modularity with respect to gesture classes is
achieved by means of a recognition architecture with independent spotting processes
for each gesture. Thus new activities can be added without impact on the recognition
systems for the old ones. Also, sensors and algorithms used for spotting can be
selected and �ne-tuned separately for each gesture.

As the modular recognition architectures proposed in this thesis result in highly Information
fusionparallel recognition result streams, this work also investigates how information from

the individual gesture spotting processes can be consistently and e�ciently combined
into a single recognition result. Thus di�erent strategies for information fusion will
be designed and evaluated.

1.5 Related work

1.5.1 Activity and gesture recognition
The main approaches to activity recognition and recognition of manipulative
gestures are video analysis, augmentation of the environment and wearable and
body-worn sensors. These sensing approaches are neither mutually exclusive nor
can one be said to be generally superior. Instead, the choice of a method or method
combination depends on a speci�c application.

1.5.1.1 Vision based activity and gesture recognition
In the �eld of video analysis Starner et al. [SSP98] work e.g. with probabilistic object Vision based

activity
recognitionrecognition methods to recognize non-manipulative hand gestures recorded with

body-worn cameras. A Hidden Markov Model (HMM) is used to assign sequences
of thus derived probabilities to either one out of two trained gesture classes. Non-
relevant gestures are included into training to model the NULL class. Yamato et
al. [YOI92] work with HMMs trained on discretized image sequence feature vectors
to recognize sport activities.

Vogler and Metaxas [VM98] present a work aiming at vision based recognition of Vision based
ASL recognitionAmerican sign language. They are using model based tracking of human body parts.

The thus derived arm orientations are used as input to HMMs modeling individual
signs. The arm motions are pre-segmented into time segments containing elementary
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motion subsegments by searching for minima in the velocity vector. Additional
work on vision based recognition of American sign language was also presented
in [LX96, SWP98, JS04, BHP+06, NSSKAA06].

Störring et al. [SMLG04] use skin color segmentation for the recognition ofVision based
interaction pointing hand gestures. The images are captured using a head mounted camera.

An on-body stereo camera is presented by de la Hamette and Tröster [dlHT08].
By means of recognizing �nger postures the authors create a stereo vision based
pointing and input device. Hasanuzzaman et al. [HAZ+04] present vision-based
gesture recognition for human robot interaction.

1.5.1.2 Environmental sensing approaches
Augmentation of the environment is extensively used in the area of everydayEveryday

activities activities and industrial maintenance tasks. Stikic et al. [SHvLS08] are comprising
acceleration sensors and radio-frequency identi�cation (RFID) tags for the use of
monitoring everyday household activities. Patterson et al. [PFKP05] solely use a
RFID reader integrated into a glove and RFID tagged household objects for the
recognition of everyday activities.

Switches incorporated in manipulated objects are used in [AMS02] to guideAssembly and
maintenance users when assembling furniture. A combination of body-worn and force sensing

resistors used as environmental sensors for the use of progress recognition in a
car assembly task is studied by Stiefmeier et al. [SLR+06]. RFIDs are also used
by Nicolai et al. [NSKW05] to tag an aircraft cabin area aiming at non-intrusive
assistance in aircraft maintenance. A body-worn RFID scanner is used for user
location identi�cation and thus allows conclusions on the worker's activity.

1.5.1.3 On-body approaches
In the �eld of body-worn sensing of human activities primarily acceleration sensorsBasic activities

and gyroscopes attached to the hands and arms have been shown to be a promising
sensing modality. Randell and Muller [RM00] are investigating the use of a single
body-worn bi-axial acceleration sensor for the recognition of basic activities like
sitting, walking, etc. They use a set of four features � RMS and integration in
�xed window size � as input to a preliminary trained neural network. Seon-Woo
and Mase [LM02] also use on-body acceleration and gyroscope sensors. In such a
way the authors set up a dead-reckoning system which is used to determine basic
activities like sitting, walking, and standing. The same activities are investigated
by Mäntyjärvi et al. [MHS01]. They are using two three-dimensional acceleration
sensors attached to the hips of the user. Features are extracted using principle
component analysis (PCA) and independent component analysis (ICA) methods
and a subsequent wavelet transform. The classi�cation stage is using neural
network techniques. Thigh-mounted acceleration sensors are used by Laerhoven and
Cakmakci [LC00] to recognize similar activities. The recognition of basic activities
such as sitting and standing plus three basic hand gestures namely shaking hands,
writing on a white-board, and writing on a keyboard are investigated by Kern et
al. [KSS03]. They investigate the recognition performance of di�erent on-body
positions of a three-dimensional acceleration sensor. Bao and Intille [BI04] work
with multiple bi-axial acceleration sensors to recognize everyday activities.

More complex gestures are being investigated by Stiefmeier et al. [Sti08, SRO+08,Gestures

SRT07b, SRT07a]. The authors investigate the use of upper body motion tracking



1.5. Related work 9

by means of a set of inertial measurement units for recognition of manipulative
gestures. As shown by Ward et al. [WLT06, War06] and [LWJ+04, SLP+03] body-
worn microphones and subsequent sound analysis can be useful for recognition of
manipulative gestures. In particular it provides information about those tasks that
actually cause a characteristic sound pattern but it has got limitations in noisy
environments, i.e. in a typical industrial assembly environment.

1.5.1.4 On-body approaches using pressure sensors
Junker et al. [Jun05, JLT04b] use force sensing resistors (FSRs) to recognize basic Gait analysis

walking modes. Bamber et al. [BBS+08] present a wireless wearable sensing platform
that can be integrated in an ordinary shoe for the use of gait analysis under real-life
conditions. The platform comprises among other sensing hardware four FSRs.

Kreil et al. [KOL08] present FSRs integrated into cycling tights for wearable sport Muscular activity
monitoringactivity monitoring. Lukowicz et al. [LHSS06] demonstrate the general feasibility

of using FSRs to monitor leg muscle activity. [AJL+06] shows that di�erent arm
actions such as holding a heavy object or making a �st produce distinct FSR signals.

Meyer et al. [MLT06] present a capacitive pressure sensor that can be integrated Textile pressure
sensinginto textiles.

1.5.1.5 Continuous activity and gesture recognition
Independent of the sensing modalities, the recognition from a continuous, unseg-
mented data stream is known to be a di�cult problem. It is particularly di�cult
in the so-called spotting scenario (see also Section 1.3) where the relevant activities
are mixed with a large number of arbitrary other actions. Any gesture or activity
recognition approach has to deal with that issue somehow. And in fact much work
has been done on the spotting problem in the activity and gesture recognition area.

Lee and Kim [LK98] describe continuous hand gesture spotting based on video Vision based

input. They use a threshold model using HMMs to segment motion data. Yoon et
al. [YSBY01] present a work on continuous gesture recognition from video data.
The recognition and tracking of the hand is based on skin color information. This
hand trajectory is furthermore used to continuously recognize hand gestures based
on both hand motion and hand location information. Activity segmentation in video
was also presented by Brand and Kettnaker [BK00].

Continuous recognition results are presented by Patterson [PFKP05] where Environmental
sensorsRFIDs are used to track which household objects the user interacts with.

Sound based spotting methods are used e.g. by Ward et al. [WLT06, War06].
Multi-modal

on-body
approaches

Amft et al. [AJT05] describe a detection system for eating gestures using a multi-
modal on-body sensor approach. Activity spotting is done by means of the SWAB
algorithm. Lester et al. [LCB06] describe an activity recognition system based on a
multi-modal sensor augmented cellphone platform.

A novel activity spotting method using motion sensors based on so-called closed On-body motion
sensorsmotions is investigated by Junker et al. [JLT04a, Jun05]. Zinnen et al. [ZLS07]

introduce a method for spotting hand gestures based on characteristic start and
stop patterns in the accelerometer signals.

Stiefmeier et al. [Sti08, SRO+08, SRT07b, SRT07a] present an approach to
continuously recognize manipulative hand gestures in industrial environments. It
is based on a discretization of the motion trajectories of the lower arms or the
hands, resulting in a motion trajectory alphabet. Spotting and recognition are then
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based on a string matching algorithm trained for this motion trajectory alphabet.
Minnen et al. [MIES07] also work with discretization of time series signals by
means of using the SAX algorithm proposed by Lin et al. [LKLC03, LWL07]. They
furthermore propose a method for unsupervised learning of multivariate discretized
time series patterns. The authors test the proposed method on data recorded with
wrist-worn motion sensors during di�erent dumbbell exercises.

1.5.1.6 Conclusion
Activity and gesture recognition is widely investigated both by computer vision
researchers and by the wearable computing community. Researchers focus primarily
on the continuous case as pre-segmented activities are e�ectively non-existing in real-
life. Nevertheless a general, user-independent solution for the spotting of sporadic
hand gestures is not available.

FSRs are well-known in the wearable computing community. Nonetheless the
monitoring of muscular activity for the use of recognizing complex gestures has so
far not been attempted.

1.5.2 Location awareness
Together with activity and gesture recognition location awareness is probably the
most explored issue in the context aware computing domain.

The use of an ultrasonic location systems for context aware computing has
been investigated in [HHS+02, WJH97, War98]. Performance of ultrasonic indoor
tracking, using the Cricket system [PCB00, PMBT01, BP03] has been investigated
by [SBGP04].

Helal et al. [HWL+03] e.g. investigate surveillance of and support for physically
challenged persons and elderly people, through remote monitoring and attention
capture or an automated guide for blind people. Liao et al. [LFK05] describe an
activity recognition approach based on GPS data. The activity models are de�ned in
Markov networks manner. The activities of interest are of the type dining out, being
at home, at work, shopping, visiting. The approach is evaluated in an experimental
manner using data, annotated by the users themselves.

Ashbrook et al. [AS03, AS02] describe an approach to model and predict user
location for various applications, which can be divided into two categories: single-
user and collaborative applications. Such applications are: location prediction
dependent reminder, location prediction dependent resource planning, meeting
suggestions and location dependent social networking. Nord et al. [NSP02] aim
at a friend �nder application.

1.5.2.1 Conclusion
Location awareness is a widely considered aspect in context aware computing.
Nonetheless the detailed tracking of hand locations by means of a solely wearable
sensing approach for the use of activity recognition has so far not been attempted.
In what manner hand location tracking can enhance activity and gesture recognition
and which enhancements can be expected are thus open questions.
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1.5.3 Indoor positioning systems
The following sections give a short summary on location systems and list available
implementations and techniques both commercial and non-commercial with the
focus on indoor applicability. More general overviews of automatic location sensing
techniques in the �eld of wearable computing can be found in [HB01, Hig03,
FHK+03, Tau02].

1.5.3.1 Ultra-wide-band
Ubisense is a commercial indoor location system using ultra-wide-band (UWB)
radio. The UWB technology has the following advantages:

7 it is independent of line of sight,
7 the range of a device can cover tens of meters,

The system is based on time-di�erence-of-arrival and angle-of-arrival measurements
between a network of base stations with known and static positions and moving
tags attached to the object under tracking control. An additional radio-frequency
(RF) channel provides wireless communication between base stations and tags. The
Ubisense framework scales for a large number of base stations and moving tags �
which is typically a major advantage of commercial location systems � and thus can
cover a huge indoor area such as a hospital or a factory ground.

1.5.3.2 RFID location systems
SpotON [HVBW01, HWB00] and LANDMARC [JLP06, NLLP03] are doing indoor
localization based on RFID tags. Basically LANDMARC is working with stationary
readers and stationary reference tags. The readers cycle through eight di�erent
ranges and thus result in an eightfold received signal strength indication (RSSI)
vector for each tag in range. Comparing the results of the moving devices with
those of the reference devices using a special distance measure results in the �nal
location estimation.

1.5.3.3 RSSI based location techniques
There are several implementations using this technique: Ekahau/NSC is using a
WLAN network to track tags equipped with WLAN access cards. It works on
the IEEE 802.11 wireless network standard. The localization is based on signal
strength measurements. These measurements are mapped to locations, i.e. each
location is assigned a so-called measurement �ngerprint. Commercial systems
similar to Ekahau are PanGo and AeroScout. Non-commercial implementations
working similar to Ekahau are RADAR, see e.g. [BP00], WILMA [BBC+03] and
NeBULa [FMPS06].

Nerguizian et al. [NDA04, NDA06] propose an approach that does not just learn
the RSSI �ngerprints of certain locations and combines them via optimization
techniques to estimate a location, but enhances the RSSI approach by means of
applying the measurements to an arti�cial neural network.

Chipcon CC2431: Texas Instruments and Chipcon have developed an on chip
location engine, see e.g. Chipcon CC2431. This location engine implements a
statistical location estimation algorithm that uses received signal strength values
from known reference nodes, such as stationary infrastructure nodes or other mobile
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neighbor nodes that use the same location engine. Moreover, nodes using this engine
parallelize the computational e�ort of the localization algorithm.

The LANDMARC system described in Section 1.5.3.2 also belongs to this
category.

1.5.3.4 Ultrasonic localization
Ultrasonic indoor positioning systems (UPS) are widely used for indoor loca-
tion [MRC05, SBGP04] and relative positioning [HKG+05].

Sonitor provides an ultrasonic based indoor location system that tracks people
on a room-level basis. It scales for a large number of tags and base stations.
Hexamite, the Bat system [ACH+01] and Cricket [Pri05] are the traditional
ultrasonic positioning systems. The implementations vary but in general these
systems rely on time-of-�ight measurements between base stations with known
positions and moving tags. Hazas et al. [HKG+05] use ultrasonic relative positioning
within a wireless sensor network. Hazas et al. [HW02, HH06] also investigate
a broadband ultrasonic system that outperforms the widely used narrow-band
UPS signi�cantly, though it also increases the complexity of the sensor system.
The presented broadband approach enhances the above mentioned narrow-band
ultrasonic systems by means of:

7 eliminated interference problems,
7 increased update rates and thus low latency positioning,
7 information encoding via ultrasound.

1.5.3.5 Powerline positioning
Patel et al. suggest in [PTA06] a �ngerprint based location technique using Powerline
infrastructure. The location approach works on sub-room level.

1.5.3.6 Infrared cameras
The infrared (IR) cameras of the Lukotronic system2 use active IR markers and
three IR row cameras to track these active markers in three-dimensional space. The
calculation of the resulting point is based on triangulation. The advantages are
great resolution (the accuracy depends on the elaborateness of the setup) and high
update rate. The disadvantages are a small angle of view (one triple camera system
is usable for a single standing person). This could be enhanced by using couples
of triple camera systems. Due to the small operation radius and despite the high
accuracy and the high update rate, it is not ideal for user tracking but it can be
used for tracking of body parts, e.g. in sport medicine or virtual reality.

1.5.3.7 Solar cells
Randall et al. [RAT04] present an indoor navigation approach based on ceiling
lighting and on-body solar cells.

1.5.3.8 Vision based user localization
Bauer et al. [BL08] describe an approach on how vision based object detection can
be combined with on-body motion sensors for a sub-room level user localization. A
ceiling-mounted �sh-eye camera is used to identify and track di�erent moving objects
and to identify the user's status: walking, sitting, standing, sitting down, standing

2http://www.lukotronic.com
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up. A mobile phone with an integrated motion sensor assigned to a speci�c user
is doing the same motion classi�cation in parallel. Matching these motion streams
assigns each recognized moving object a unique ID; thus each user is assigned a
speci�c location.

Starner et al. [SSP98] present a room-level indoor location system based on
two head-mounted cameras. HMMs are trained for each location of interest. The
observations presented to the HMMs are color and lightning features extracted from
designated areas in each sampled frame.

de la Hamette et al. [dlHT08] present a wearable stereo camera system for relative
hand tracking as a novel human-computer-interaction (HCI) concept.

1.5.3.9 Microphone arrays
Microphone arrays are proven to be useful for speaker localization. Adcock and
Silverman [BAS97, BAS96] present a location technique based on microphone
arrays � each microphone has assigned a static and known position � and time
di�erence of arrival estimations.

1.5.3.10 Inertial measurement units
Inertial measurements units (IMU) comprising three-dimensional acceleration and
three-dimensional gyroscopes (see also Section 4.2) are usually used for ship and
aeroplane navigation, see e.g. [BH97]. Due to drift errors being integrated over
time, such a navigation system always needs an absolute aiding source. For outdoor
navigation GNSS, i.e. GPS, is usually used as an absolute aiding source whereas
in indoor navigation either a UPS or a magnetic sensor can be used as a reference
system, see e.g. [RDM03, Fox05, WH08].

1.5.3.11 Interaction
This refers to the huge �eld of tracking people by logging their interaction with
objects that have a known position. Locating a person due to his/her credit card
and bank customer card use belongs to this category.

Another example is the monitoring of power consumption. The German
electricity provider Yello Strom3 is going to launch a service in 2009 that will
allow the provider to monitor the electricity consumption per power outlet per
second. A service that can also be used to track people and their activities �
particularly in case each power outlet is assigned a speci�c location and a speci�c
device, either manually or using a dSID-Chip, as done by Yello Strom. dSID-
Chips provide unique identi�cation for electronic devices using the communication
standard digitalSTROM 4. 5

3http://www.yellostrom.de/
4http://www.digitalstrom.org/
5The reason for Yello Strom being awarded the BigBrotherAward 2008 in the technical

category by the data privacy protection watch organization FoeBuD e.V. is that � as stated on
http://www.bigbrotherawards.de/2008/.tec � this technology might lead to a detailed surveillance
of activities in the home with resolution of a single second. Though the digitalStrom consortium
states that the physical principals of their technology do not allow surveillance from outside the
in-house electricity network and thus leaves the decision to the customer, who is allowed access to
the data, this will probably be circumvented by the Yello Strom electricity meter that will collect
the data and transmit it to the provider every quarter of an hour.
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1.5.3.12 Tracking of body parts
With regard to tracking body parts several di�erent approaches can be taken. In bio-
mechanics applications such as high performance sports or rehabilitation magnetic
systems (e.g. Flock of Birds by ascension6) are widely used. Such systems use a
stationary source of a prede�ned magnetic �eld to track body-mounted magnetic
sensors. The main problem with magnetic tracking is that it is easily disturbed by
metal objects, which are common in industrial environments.

One alternative is the use of optical markers (often IR markers, see e.g.
the Lukotronic system7) together with appropriate cameras. Here problems like
background lighting, for IR systems in particular, and occlusion need to be dealt
with. The main disadvantage of both magnetic and optical tracking systems is that
they are optimized for ultra-high spatial resolution and thus expensive and bulky.

Roetenberg [Roe06] is combining inertial measurement units with on-body
magnetic sensing and vision based marker tracking for high resolution tracking of
body parts.

1.5.3.13 Conclusion
Various solutions to the indoor tracking problem are proposed. Little are applicable
for the detailed tracking of body parts. Many indoor tracking systems provide
a spatial resolution of room-level or sub-room level. Others provide a temporal
resolution that is too small to re�ect the dynamics of human hand motion. Some
vision and IR based systems provide both decent spatial and temporal resolutions
and are thus widely used for detailed recordings of human motions, e.g. in the
movie industry. In our contemplated scenario large objects in the line of sight � in
most cases the object that is being manipulated � prohibit the employment of such
systems.

1.5.4 Context-aware and wearable computing applications
Various applications and application areas are being investigated by researchers.
This section lists frequently contemplated application scenarios.

1.5.4.1 Maintenance and production assistance
Well-suited sensors both in the environment as well as �xed on the clothing and
equipment of the (mobile) worker are monitoring the progress of a speci�c activity
with the goal to give the worker advice, display warnings in case of critical situations,
pro-actively display manual pages, and optimize industrial work�ows in general, see
e.g. [LABT04, LWJ+04, LTGLH07, SRO+08].

The bene�t of wearable and contextual computing to assembly and maintenance
tasks in particular is approved by e.g. Randell [Ran05]. In fact, there are various
case studies investigated that � though using di�erent sensing approaches � deal
with such an application scenario.

Moreover, a context-aware system can also give hints and advice to a trainee
doing test-runs for a speci�c production work�ow [SRO+08].

In the �eld of wearable pro-active maintenance support [WNK06, WLKK06]
present a data glove for maintenance tasks; the glove evolves from earlier �ndings

6http://www.ascension-tech.com/realtime/RT�ockofBIRDS.php
7http://www.lukotronic.com/
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in the Winspect project [BNSS01], a wearable system for crane maintenance
comprising among other sensors a RFID scanner to follow the progress of a
maintenance task.

In [AMS02] it is shown how pressure and tilt sensors integrated in tools and
components can be used to track a furniture assembly task. The system recognizes
single steps within the assembly process and thus can pro-actively guide the process.

Ward et al. [WLTS06] investigate the combination of acceleration sensors and
body-worn microphones to spot and recognize manipulative hand gestures in a wood
workshop task.

1.5.4.2 Support for daily routines
Daily routines can be supported via context-awareness, e.g. learning activi-
ties [YJ07]. Stikic et al. [SHvLS08] are comprising acceleration sensors and RFID
tags for the monitoring of everyday household activities to facilitate care of the
elderly. In such a way wearable computing may also enable applications such as
assisted living [LKT04]. A personal assistant may also just in time and dependent
on the user's location manage reminders for upcoming appointments and to-do list
items [AS03].

1.5.4.3 Sport activities
Wijnalda et al. [WPVS05] propose a wearable architecture capable of selecting and
playing music to motivate the user while doing recreational exercises. The music is
selected according to congruity or incongruity of the current exercise e�ort and the
previously de�ned exercise goals.

Kreil et al. [KOL08] present FSRs integrated into cycling tights for wearable
sport activity monitoring giving on-line feedback for runners and bicyclists.

1.5.4.4 Pervasive health-care
Considerable research is done in the �eld of patient monitoring by means of wearable
sensing and wearable computing; e.g. Amft [Amf08] presents an on-body sensor
system for detecting eating and drinking behavior aiming at context-aware diet
monitoring and assistance. Paradiso [Par03] presents a wearable setup to monitor
vital signs aiming at remote and automatic assistance for cardiopathic patients
during their rehabilitation.

Another research �eld is dealing with novel information access and communi-
cation methods in hospitals. Adamer et al. [ABK+08] present a wearable system
for unobtrusive information access for the medical sta� in hospitals. Horvitz and
Shwe [HS95] describe a wearable, hands-free system providing medical sta� access
to a decision-theoretic diagnostic system in emergency situations.

1.5.4.5 Information services for rescue operations
Information at the right time at the right place with respect to the contextual
situation of the user is essential, in life critical services such as rescue operations
in particular. In this application domain wearable computing research also aims
at enhanced inter-operator communication methods [JCH+04] and new navigation
concepts [KRG+07, Kla07].

1.5.4.6 Conclusion
Various application areas for contextual and wearable computing have been fostered
by researchers. It remains to be seen which application areas can bene�t in real-life
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from these concepts. That depends also on the relation of the actual bene�t for
the user to the grade of obtrusiveness and intrusiveness that can be achieved by the
�nal implementation of such a system.

1.6 Objectives of the thesis
To support mobile workers following the wearable demands the knowledge of the
workers activity is essential. In general the aim of this thesis is to investigate the
aptitude of on-body sensors for activity recognition and the spotting of manipulative
hand gestures.

As a state-of-the-art approach we use orientation sensors to measure the worker's
upper body motions and further recognize the gestures the worker is performing.

The general questions are: Can the recognition of manipulative gestures based
on motion sensors be enhanced through additional sensor sources? What kind of
enhancements can be expected? In more detail we aim at investigating the following
questions:

7 The set of gestures a person usually performs on a speci�c place is limited, in
the production and maintenance scenario we have in mind in particular. Does
thus the knowledge of the worker's location context or even the hand location
give essential hints to the activity recognition process?

7 Does the addition of location context introduce more user-independence to
the recognition system?

7 Can knowledge of the hand location help solving the spotting problem?
7 An additional information source for motion can be the muscular activity. Are
force sensitive resistors (FSRs) a feasible way to recognize gestures based on
the information about muscular activity of the lower arms?

7 Can FSR based muscular activity monitoring further enhance the motion
based recognition approach?

7 How can these di�erent kinds of contextual information � motion, location,
and muscular activity � be combined?

7 Even within a single application di�erent activities are likely to have di�erent
sensing modalities that characterize them best. The same is true for the feature
sets. Does � as a consequence � a multi-modal sensing approach increase the
performance of an activity recognition system?

7 Modularity is a key feature of �exible recognition systems. It enables �exibility
concerning activity classes, sensors, and processing and recognition algorithms.
Moreover the overall performance of a truly modular setup is immune to
addition and removal of activities, sensors and algorithms. How can a
recognition system be set up to achieve such modularity? What additional
enhancements can be achieved thereby?

Another major challenge within context recognition is the sensing process itself. In
this context we will investigate the following questions:

7 Can a slow sampling location system be enhanced by means of fast sampling
inertial motion sensors in terms of enhanced dynamics in order to comprise a
decent hand tracking indoor location system?
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7 How can a decent FSR system be set up to be both wearable and applicable
for measuring muscular activities?

1.7 Contributions
The main contributions of this thesis with respect to the questions raised in
Section 1.6 are:

7 We test a Kalman �lter based method to blend absolute position readings
with orientation readings based on inertial measurements. A �lter structure
is suggested that allows up-sampling of slow absolute position readings and
thus introduces higher dynamics to the position estimations. In such a way
the position measurement series is made aware of wrist motions in addition to
the wrist position.

7 We suggest a location based gesture spotting and recognition approach. To
this end various methods to model location classes used in the spotting and
recognition stages as well as di�erent location distance measures are suggested
and evaluated.

7 We develop a wearable hardware architecture for lower arm muscular activity
measurements. The sensing hardware is designed to have a high dynamic
range. In contrast to preliminary attempts the new design makes hardware
calibration unnecessary.

7 We suggest a modular and multi-modal recognition system; modular with
respect to both sensors and algorithms and to gesture classes. This means
that adding or removing a sensor modality or an additional algorithm has
little impact on the rest of the recognition system.

Our recognition architecture has an independent spotting process for each
activity. New activities can be added without impact on the recognition
systems for the old ones. Sensors and algorithms used for spotting can also
be selected and �ne-tuned separately for each single activity.

7 The methods are evaluated on di�erent case studies. All case studies are
recorded in a laboratory-like environment but are designed to be as realistic
as possible and necessary.

1.8 Outline
The thesis is organized as follows (for a graphical overview refer to Figure 2.5):

7 Chapter 2 gives a brief overview of our basic approach how to achieve
modularity within an activity spotting and recognition system. The chapter
summarizes the basic concepts of the class-wise approach that will be used
throughout the thesis for the presented spotting and continuous recognition
tasks.

7 Chapter 3 gives a summary of the three presented case studies. The
case studies are inspired by the mobile worker scenario, more precisely the
maintenance and production assembly scenario. As a consequence, the case
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studies investigate a bicycle maintenance task and a car assembly conveyor
belt quality assurance task.

An additional case study � giving a multimedia talk � is designed to test
the limits concerning gesture recognition based on monitoring of lower arm
muscular activities by means of a FSR system.

7 Chapter 4 outlines some background information about indoor location
techniques. The requirements to the location systems concerning our speci�c
application scenarios in mind, the chapter as a consequence gives reasons for
speci�c indoor location system choices and describes the realization and the
setup of the �nally used sensor systems.

Furthermore, the chapter outlines the position estimation methods used.
The methods are intended to be able to handle the great presence of erroneous
distance readings due to the limitations of the ultrasonic positioning technique.

Moreover, the chapter describes our approach to fuse motion and ori-
entation readings with ultrasonic based position estimations, resulting in a
hand trajectory with a far better dynamic response than the mere ultrasonic
positioning approach is able to provide.

7 Chapter 5 de�nes various probabilistic methods in order to model hand
locations. The training of these location models can be done either in a
supervised or in a semi-supervised manner. Appropriate distance measures
are de�ned for each location modeling approach.

The methods are tested and evaluated on the bicycle maintenance test
scenario. The chapter gives detailed evaluation results for pre-segmented
activities in order to foster the combination of hand location and hand
orientation for the use of gesture recognition.

7 Chapter 6 presents in detail our approach on combining location and motion
information for activity spotting and recognition.

The proposed approach comprises location based spotting enhanced by
means of a location trajectory based spotting step. Finally a strategy for
fusing intermediate, class-wise results is described. The methods are tested
and evaluated on the bicycle maintenance test scenario.

Finally, the chapter gives also a comparison with the approach applied
in [SOJ+06] and contrasts results achieved by both methods.

7 Chapter 7 investigates the usefulness of muscular information of the lower
arms. To this end an adequate sensing hardware comprising several FSRs is
developed and implemented.

We then systematically investigate the usability of the FSR system to
recognize di�erent manipulative gestures. The aim is to test the limits of the
system, compare them to established sensing modalities, i.e. three-dimensional
acceleration and gyroscopes, and establish the advantages of combining FSRs
with other sensing modalities.

7 Chapter 8 describes an approach to real-life task tracking using a multi-modal,
on-body sensor system. The speci�c example that we study will be quality
inspection in car production. This task is composed of up to 20 activity classes
such as checking gaps between parts of the chassis, opening and closing the
hood and trunk, moving the driver's seat, and turning the steering wheel.
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Most of these involve subtle and short movements and have a high degree of
variability in the way they are performed.

To spot those actions nonetheless in a continuous data stream we use a
wearable system composed of seven motion sensors, 16 FSRs for lower arm
muscle monitoring and four UWB tags for tracking user position. We propose
a recognition approach that deals separately with each activity class and then
merges the results in a �nal reasoning step. This allows us to �ne-tune the
system parameters separately for each activity. It also means that the system
can easily be extended to accommodate further activities.

In order to demonstrate the feasibility of our approach we present the
results of a study with eight participants and a total of 2394 activities.

7 Chapter 9 concludes the thesis, gives a short summary of the achievements
and a short outlook on future research questions.
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Chapter

2
Modular multi-modal activity
recognition∗

This chapter gives a brief overview of our basic approach
how to achieve modularity within an activity spotting and recognition system. The
chapter summarizes the basic concepts of the class-wise approach that will be used
throughout the thesis for the presented spotting and continuous recognition tasks.

∗This chapter is partly based on reference [OSLT08].
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2.1 Introduction
As described in Section 1.4 on page 6 this work aims at suggesting an approach
to solve the continuous gesture recognition problem in a modular manner, i.e.
the suggested approach aims at �exibility concerning the number of gestures and
concerning the sensing modalities and algorithms. This chapter will give an overview
of this approach and summarize its objectives and advantages.

In order to achieve a recognition system that addresses the following issues:

7 decent recall and precision rates,
7 recall and precision rates that are independent of the overall number of activity
classes,

7 independence of sensors or combination of sensors,
7 user-independence, and
7 independent parameterization for each individual activity class and thus a
class-wise optimized recognition,

we propose to use a modular, multi-modal approach. Our approach has two major
advantages. First, it allows to use for each class di�erent sensors, features and
algorithms depending on what best identi�es the unique characteristics of the
corresponding activity. This addresses the challenge of large heterogeneity inherent
in activity spotting. For example, a speci�c gesture might be characterized best by
a speci�c sound pattern, e.g. tightening a screw by means of an electric drill, or by
a speci�c location, e.g. checking the �xation of a speci�c screw, or by location and
sound, e.g. tightening a speci�c screw by means of an electric drill.

Second, it facilitates easy addition and removal of activities from the spotting
system. The only part that needs to be modi�ed when classes are added/removed
or sensors/algorithms are exchanged is the �nal reasoning step that produces the
union of the output of the individual spotting and recognition processes.

This approach also aims at a self con�guring activity system. Individual
processing stages are tuned to achieve the best possible performance for each
individual class given a speci�c sensing modality. Assuming a sensing modality
is exchanged or malfunctions the system might be trained to automatically select
the best available alternative sensing modality for each individual activity class.

The obvious drawback of such a late fusion approach is of course the fact that
it neglects the advantages of joint inference such are high performance on the one
hand and a lower demand on the amount of training data on the other hand.

2.2 Modularity with respect to activities
We treat each activity as a separate event stream; thus for n activities we have n
independent spotting processes (see also Figure 2.1). Each process is responsible for
a single activity and determines where events corresponding to this activity occur in
the data stream. The �nal output of the spotting system is the union of the outputs
of the individual processes. By contrast most previously published work (including
our own work) combines spotting with multi-class recognition from the start.

Independent class recognition enables easy addition and removal of classes.
Moreover, the class-separation prevents that activity event hypotheses can delete
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Figure 2.1
The �gure schematically depicts the class-wise spotting approach.

each other, and thus the maximum information is passed on to the next processing
stages. Additionally the class separation assures that individual performances are
independent of the overall amount of activity classes. Thus individual classes can be
added or removed without in�uencing the overall recognition system. And, what is
more, each individual activity class can use the sensing modality that suits best and
each activity class can be tuned individually and as good as possible. Hence this
class-wise spotting and recognition approach aims at a class-dependent selection of
sensors, features and algorithms with algorithms trained and parameterized for each
class individually.

Evidently the class-wise processing approach results in concurrent prediction
event streams with activity events that may have temporal overlaps. A �nal
processing stage is needed to solve event prediction con�icts. This �nal processing
step is trivial in case the individual processing steps achieve a decent precision,
which is equivalent to a small amount of concurrent activity event predictions. This
�nal reasoning step makes a classi�er necessary that is based on an overall class-
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Figure 2.2
Merging individual
spotting streams.

independent feature or rather con�dence value. Thus this stage will be dependent
on both the overall number of gesture classes and the available sensing modalities.
In case the individual processing steps are not optimized to achieve high precision
the overall performance will greatly depend on this �nal reasoning stage.

2.3 Merging activity event streams
The class-wise approach results in n separate outputs with n being the number of
classes. If all the spotting processes were 100% correct, at any given time at most
one stream could contain an activity while all the others would have to indicate the
NULL class since the user performs only one activity at a time. In order to resolve
this we apply di�erent merge strategies, as explained in the following sections.

2.3.1 Approach 1
We propose a simple, e�cient heuristic for the resolution of con�icts. It is based
on dividing the output of all processes into what we call invariant segments. An
invariant segment is de�ned as a time period during which the output of none of
the spotting streams changes. This is illustrated in Figure 2.2 in the middle. New
segments start when the activity 2 event starts and when activities 2 and 1 both
stop. Note that the invariant segments partitioning is identical for all spotting
processes and thus provides a natural, coarse grain partitioning of the output into
partial events.

In the next step con�icts are identi�ed concerning invariant segments. An
invariant segment is said to contain a con�ict, if more than one spotting process
reports an activity in this segment. In Figure 2.2 segment 2 contains a con�ict as
both activity recognition processes report an event. Next we decide which activity
to retain. To this end we �rst look at each activity reported in this segment and
check if the corresponding event contains invariant segments without con�icts. If
this is the case, removing this segment from the event would not cause it to be
deleted. In Figure 2.2 this is the case for the activity 1 event which is con�ict-free
in segment 1, but not for activity 2. As a consequence, in case of a con�icting
segment we retain the activity where the corresponding event contains no segments
without con�icts. In Figure 2.2 this is activity 2. If there are no such activities in
the segment, the choice is made randomly. The same is true, if there is more than
one such activity in the invariant segment.

Obviously, the above heuristic does not always guarantee perfect con�ict
resolution. However, if the con�icts do involve many activity streams they are
unlikely to produce deletions. The idea behind it is that the merge process matters
more when con�icts are rare and do not involve many activity streams. This is
the case when all the streams have good recognition performance. In this case it
is important that the merge step does not introduce additional errors. If there are
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Figure 2.3
The �gure depicts a possible approach to handle concurrent activity hypothesis. The three
ellipses mark those event prediction sub-lists, that contain no prediction concurrency. The
most probable sub-list according to a speci�c criteria is selected as a �nal prediction stream.

various and complex con�icts, the system performance is poor anyway. Thus it
makes little sense to optimize the merge system for this case.

2.3.2 Approach 2
For this approach con�dence values derived from preceding spotting and recognition
steps are calculated. In case of a (local) concurrency we search for all possible sub-
lists containing no concurrency (see also Figure 2.3) and decide in favor of the sub-list
that contains the gesture segment with the highest con�dence value. Evidently, this
strategy will fail and cause a considerable amount of deletions in case of heavily
nested concurrencies.

Before this strategy is applied, some minor concurrencies are pseudo-resolved,
i.e. in case of a concurrency of two segments with the overlapping fraction of both
segments being smaller than a certain threshold we shorten these segments by half
of the respective overlapping fraction. In Figure 2.3 the �rst and the second overlap
may be resolved in such a way � depending on the threshold. It is obvious that the
third concurrency in the depicted example cannot and must not be resolved in such
a simple way. For any given segment repeated pseudo-resolving is allowed while the
deleted fraction on each side of the segment is equal to or smaller than half of the
threshold.

2.4 Modularity with respect to sensors
Our recognition approach comprises a multi-modal on-body sensing hardware that
is set up to facilitate both addition and removal of individual sensing modalities. As
stated in Section 2.2, the recognition component employs a speci�c sensing modality
in order to spot potential activity events.

The recognition approach starts with individual, class-dependent processes with
a fast spotting stage that provides an initial guess about possible locations of the
relevant class while removing obviously non-relevant signal segments. It is optimized
for high recall and low precision to ensure low deletion rates.
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The �gure illustrates the class-wise masking passes (plausibility analysis).

Due to the reason that each spotting process is only responsible for a single
activity class this approach assures a maximum recall spotting stage � at least the
maximum that can be achieved considering the particular sensing modality and
considering the particular parameterization of the spotting process.

In the next stage any available sensing modality can be consulted for each
individual event hypothesis to decide on potential incorrectly inserted activities.
Once more this stage is parameterized in a class-wise manner to assure an optimal
performance for each individual class. This stage might even apply di�erent
classi�ers to decide whether a speci�c class hypothesis achieved from a particular
sensing modality is plausible with respect to a speci�c other sensing modality; or
speaking in terms of context: Do various contextual information sources agree on a
speci�c activity event hypothesis?

The idea behind this is to incrementally improve the precision of the system
through the application of a sequence of what we call masking passes or plausibility
analyses. A masking pass works on the signal segments that have been identi�ed
as possible occurrences of a given class by the spotting stage. It makes a binary
decision of either retaining or rejecting the segment. In the later case the segment is
not presented to the following stage. For a schematic overview of this see Figure 2.4.

Evidently, masking passes are activity speci�c, so that each of the parallel
activity spotting processes can have its own sequence of di�erent or di�erently
tuned/parameterized masking passes. The sequence of passes can be determined
class-dependently. This approach allows easy removal/addition of sensors or
algorithms without changing the rest of the system. Adding a new masking pass
requires no changes in the rest of the recognition system regardless whether the
pass uses di�erent sensor signals or just di�erent algorithms. Note that since all
that a masking pass does is discard event candidates, the system is not capable of
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The �gure depicts the contributions of the di�erent chapters to the proposed modular
recognition system (Chapters 4 to 8).

detecting events that are deleted during the spotting step.
This masking stage may also include high level information about the activities.

This may comprise knowledge about typical event length and most likely event
sequences or even impossible event sequences.

Another advantage of this approach is that it is tolerant of synchronization
mismatches between sensors. Events will in general be long in relation to the sensor
sampling rate. Since additional sensors are applied to event candidates produced by
previous masking stages, synchronization needs to be accurate on event time scale
not on sampling rate time scale.

Given a set of individually and class-dependently trained sensing modalities and
algorithms the recognition system can also take over the responsibility of deciding
which sensing modality is applied for which activity depending on the currently
available hardware setup. In such a way not only the e�ect of addition and removal
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of individual activity classes but also of individual sensing modalities on the overall
performance of the recognition system is minimized.

2.5 Outline
The proposed gesture spotting and recognition approach uses multi-modal sensing
and multi-modal, class-wise processing in order to achieve modularity and thus
�exibility. Hence Chapters 4 and 7 investigate two on-body sensing modalities,
i.e. location sensing and force sensitive resistor (FSR) based muscular activity
sensing. Chapter 5 describes the location models applied for the location spotting
and recognition stages. Finally Chapters 6 and 8 apply the presented approach
on two di�erent experimental continuous activity recognition tasks. A chapter-
wise overview of this contributions and the attendant chapters is also depicted by
Figure 2.5.



Chapter

3
Case studies∗

This chapter gives a summary of the three presented case studies. The case
studies are inspired by the mobile worker scenario, more precisely the maintenance
and production assembly scenario. As a consequence, the case studies investigate a
bicycle maintenance task and a car assembly conveyor belt quality assurance task.

An additional case study � giving a multimedia talk � is designed to test the limits
concerning gesture recognition based on monitoring of lower arm muscular activities
by means of a FSR system.

∗The case studies presented in this chapter have already been presented in preliminary
publications, see references [SOJ+06, OKL07, OSLT08].
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3.1 Introduction
A series of case studies was performed in conjunction with this thesis to test and
evaluate the gesture recognition abilities of the envisioned wearable sensor setups.
The activities in our mind are manipulative hand gestures, i.e. arm movements or
rather a successive sequence of arm movements with the objective of manipulating a
speci�c object either with or without using a tool, e.g. opening a notebook, tightening
a screw, etc. More precisely we focus on manipulative gestures in the area of
industrial assembly or maintenance tasks (see also Section 1.2 on page 2).

Typical wearable approaches to activity recognition are based on acceleration and
gyroscope sensors as the basic source of information. As stated in Section 1.3 on
page 4 this work aims to explore the use of additional on-body information sources,
namely on-body location sensing and the monitoring of muscular activities of the
lower arm by means of force sensing resistors (FSR).

In order to explore the use of these additional information sources, a series of case
studies was conducted. This chapter gives a summary of these three case studies.
In addition it discusses the design choices and design parameters, their goals and
challenges, and their ability and constraints when it comes to general statements
beyond the focus of the experiments.

3.2 The bicycle maintenance scenario
The experiment focuses on the tracking of the user's hand position in order to assist
the activity and gesture recognition process. The envisioned application scenario
within the wearIT@work project is the car assembly scenario (see Section 1.2 on
page 2).

Due to shortage of space in our lab, we decided to start with a bicycle maintenance
scenario. Previous results of this experiment and a preceding case study have already
been presented in [SOJ+06, OSJ+05]. The experiment in [OSJ+05] has been further
extended to re�ect as realistically as possible a real-life continuous task tracking
scenario. This includes1:

7 The recording of a large data set, consisting of 404 minutes of overall data
with 1240 relevant gestures.

7 Frequent, random insertion of complex NULL events � 68.2% of the total data
length and approximately 50% of the overall number of gestures performed.

7 A separate, non-in-sequence training set, i.e. 3035 additional gestures with an
overall length of 291 minutes.

7 Consideration of inter-subject training and recognition, i.e. six subjects
volunteered for the data recordings.

3.2.1 Sensor setup
The main focus of the experiment is the question whether knowledge of a user's
hand position can signi�cantly increase the recognition rate of the user's activity.

1The numbers are slightly bigger than those given in reference [SOJ+06] because additional
data was used for the presented evaluations.
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Thus the sensor setup encompasses a motion sensor system as well as a positioning
system (see also Section 4.3.2.2 on page 52). As the general focus of our work is a
wearable approach, no instrumentation or sensors of any kind have been attached
to the bicycle. It has been mounted on a special repair stand

7 for ease of reaching di�erent parts and tools,
7 to ensure repeatable and thus recognizable motions,
7 to ensure the user is facing the positioning system,
7 to ensure an exact and static position of the bicycle, and thus to ensure static
locations of interest.

In order to use the ultrasonic system, the room has been equipped with four
ultrasonic base stations (receivers). They have been placed at exactly prede�ned
locations in the room and serve as the absolute reference for the UPS, for details
see section 4.3.2.1 on page 50. The locations of the base stations have been chosen
in a way to minimize the possibility of a subject occluding the line of sight between
base stations and wrist-mounted devices.

Two types of sensors have been placed on the user, as depicted in Figure 3.1 on the
next page. Ultrasonic devices (Hexamite HX900SIO) are mounted on both wrists.
These two devices measure their distances to the four base stations in an alternating
manner in order to be able to track the hands' position with respect to the bicycle.
Thus each wrist-worn device simultaneously measures four distances; we will refer
to these as four distance channels. Second, a set of nine IMUs (MT9B from Xsens)
have been attached to the user's hands, lower and upper arms, the chest, and the
thighs. The MT9B are sampled at a rate of 100Hz each, the ultrasonic transmitters
at approximately 1.4Hz each. The presented approach uses only the wrist mounted
devices.

3.2.2 The task
We adapted and extended the gesture set used in [OSJ+05]. The result is a set of
23 manipulative gestures that are part of a regular bicycle maintenance task. They
have been chosen to provide as much information as possible about the suitability
of our approach to the recognition of di�erent types of activities. There are gestures
that contain very characteristic motions as well as such that are highly unstructured.
Similarly, there are activities that take place at di�erent, well-de�ned locations as
well as such that are performed at (nearly) the same locations or are associated
with vague locations only. Table 3.1 on page 33 gives a full overview of the used
gestures. The key properties in terms of recognition challenges can be summarized
as follows.

7 pumping (gestures 1 and 2) Pumping begins with unscrewing the valve. Thus
it consists of more than just the characteristic periodic motion. Pumping
the front and the back wheel di�ers in terms of location, however, depending
on where the valve is during pumping the location is rather vaguely de�ned.
People tend to use di�erent valve positions for the front and the back wheel,
which means that statistically there is a di�erence in the acceleration signal
as well.
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  intertial measurement unit

  ultrasonic device

Figure 3.1
The �gure depicts one subject of the bicycle maintenance case study as well as the bicycle
mounted on a repair stand. The red squares indicate where the IMUs (Xsens MT9B) are
placed on the body whereas the green circles indicate the positions of the ultrasonic devices
(Hexamite HX900SIO). Note, that not all motion sensors are used for evaluation though
used for recording. For the results presented in this work only the four wrist mounted
devices (two IMUs and two ultrasonic devices) have been used.

7 screws (gestures 3 to 8) The sequence contains the screwing and unscrewing
of three screws at di�erent, clearly separable locations. Screw A requires
a hexagon wrench key, screws B and C require an ordinary screwdriver.
Combined with di�erent arm positions required to handle each screw, this
provides some acceleration information to distinguish between the screws (in
addition to location information).

7 pedals (gestures 9 to 12) The set contains four pedal related gestures: just
turning the pedals, turning the pedals and oiling the chain, testing the gear
switch while turning the pedals and turning the pedals while marking buckles
of the back-wheel with chalk. Pedal turning is a reasonably well-de�ned
gesture.

7 (dis)assembly (gestures 13, 14, and 20 to 23) Among the gestures most di�cult
to recognize are assembly and disassembly of the pedals, the front wheel, and
the back light. All of them can be performed in many di�erent ways, while
the hand seldom remains at the same location for a signi�cant time.

7 wheel spinning (gestures 15 and 16) The wheel spinning gestures involve hand-
turning of the front or the back wheel. The gestures contain a reasonably well
de�ned motion (the actual spinning). However, there is also a considerable
amount of freedom in terms of overall gesture. Front and back can be easily
distinguished by location. In most cases di�erent hand positions were used for
turning the front and the back wheel.
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Table 3.1
Set of manipulative gestures for the bicycle maintenance scenario.
full gesture class resolution reduced gesture class resolution

class ID description group ID description periodic

1 pumping (front wheel) 1 pumping (front wheel) - /
√

2 pumping (back wheel) 2 pumping (back wheel) - /
√

3 screw A (loose)
3 screw A

√

4 screw A (tighten)
√

5 screw B (loose)
4 screw B

√

6 screw B (tighten)
√

7 screw C (loose)
5 screw C

√

8 screw C (tighten)
√

9 turning pedal 6 turning pedal
√

10 turning pedal (chain oiling) 7 turning pedal (chain oiling) - /
√

11 turning pedal (testing gear switch) 8 turning pedal (testing gear switch) - /
√

12 turning pedal (wheel buckles) 9 turning pedal (wheel buckles) - /
√

13 disassembling front wheel
10 changing front wheel

-
14 assembling front wheel -
15 turning front wheel 11 turning front wheel

√

16 turning back wheel 12 turning back wheel
√

17 testing bell 13 testing bell -
18 seat (up)

14 seat
- /
√

19 seat (down) - /
√

20 disassembling pedal
15 changing pedal

- /
√

21 assembling pedal - /
√

22 changing bulb (remove)
16 changing bulb

-
23 changing bulb (insert) -

7 bell (gesture 17) Another challenging gesture is the testing of the bell. The
time for ringing the bell up to �ve times is so short that only few location
samples are available.

7 seat (gestures 18 and 19) These gestures alter the position of the seat. The
�rst increases the seating position by twisting the seat within its mounting
using both hands. In addition to the twisting, the degrading gesture requires
the pounding with a �st to drive the seat into its mounting.

3.2.3 The class sets
The above gesture set contains many pairs that di�er only with respect to one
small detail. This includes fastening and unfastening a given screw, assembling
and disassembling the pedal/light and lowering and raising the seat. In every pair,
both gestures are performed at the same location. The motions di�er only slightly.
Thus both fastening and unfastening a screw involves rotational motion in both
directions. The di�erence is that while turning in one direction the screwdriver is
engaged with the screw, while in the other it is not. We have labeled such pairs
as two distinct gestures, since the objective of this work is to test the limits of
recognition performance. However, it is also interesting to see the overall system
performance without these distinctions. To this end, we have de�ned a second, so-
called reduced gesture set, in which such nearly identical pairs are treated as a single
activity, see Table 3.1 columns 3 and 4. We will refer to this as reduced gesture
class set or reduced gesture class resolution.

In addition the classes can be grouped together due to their hand location, see
Table 5.1 on page 75 columns 2 and 3 for right hand locations and columns 6 and 7
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Figure 3.2
Signal examples for three di�erent gesture classes of the bicycle maintenance case study.
The plots depict a subset of the signals recorded for the right wrist. Each gesture class is
illustrated by one instance of two di�erent subjects.
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for left hand locations. Analogous to the above considerations we will refer to this
class set as the location class set or the location class resolution.

3.2.4 The NULL class
The di�culty of continuous recognition depends on the complexity of the NULL
events that separate the task related gestures. Recognition would be fairly easy if
the user could be relied on to start and �nish each gesture in a well de�ned position.
It would also be easier if the relevant activities were performed immediately after
each other with little in between but moving between the di�erent locations. Neither
of the above is likely in a real-life maintenance scenario. As a consequence, we have
put great emphasis on having complex, random NULL events in our tests. To this
end the following events were randomly included in the stream of manipulative
gestures used to test our method.

7 Walking over to a notebook placed about three meters away from the bike to
type a few characters.

7 Cleaning a user-selected part of the bike. Here the NULL class could be
potentially close to some relevant gestures both in terms of location and
motion.

7 Holding on to a user-selected part of the frame for a user selected period of
time (a few seconds). The user was free to choose a location and often chose
a location relevant for a speci�c gesture.

In addition to the above random gestures the user had to pick up and put away
tools. No instructions were given to the user what to do/not to do between gestures.
Overall the NULL class amounted to 68.2% of the recording time whereas no NULL
class event interrupted a manipulative gesture. A random number generator was
set to generate approximately as many NULL class events as there were real events
in the sequence.

3.2.5 Data recording
We recorded two types of data sets. The �rst type comprises approximately 20
repetitions of each of the 23 available manipulative gestures. Here, the repetitions
are separated by a few seconds during which the subject returned into a de�ned
home position. This data type is called train data.

The second type of recordings involves all 23 manipulative gestures in a randomly
generated order. We refer to this data type as sequence data. This ensures that even
gestures with little complexity are carried out with a certain variability, thus giving
the data real-life conditions. The gestures in the sequence data are separated by
randomly inserted NULL class events as described above.

The experiment was performed by one female and �ve male subjects. For each
of the six subjects, we recorded at least 20 train repetitions of each gesture and
nine sequences containing all of the 23 gestures. This resulted in more than 3035
di�erent gesture instances of the type train, i.e. 291 minutes; 1240 gesture instances
of the type sequence, i.e. 128 minutes of gestures. The whole length of sequences
was 404 minutes.
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We used the framework proposed by [BAL08, BKL06] for recording and
annotating the sensor data. With this software tool, the di�erent sensor streams
could be merged into one data �le and simultaneously annotated using a regular
keyboard. Any errors in the annotation stream were corrected o�-line using the
MARKER tool [Amf].

3.2.5.1 Training set rationale
Splitting the data into a train and a test set in the above way is fostered by practical
considerations related to the envisioned real-life implementation of such systems. On
any given piece of machinery, the set of possible individual actions (manipulative
gestures) that can be taken is likely to be by far smaller than the set of all possible
maintenance sequences. In fact since the maintenance sequences are permutations
of individual actions in theory, there can be exponentially more sequences than
individual actions. As a consequence in any practical system we will have to train
gestures individually and not as part of a sequence that is trained as a whole. This
also makes labeling of the training sequence much easier since prede�ned start and
stop positions can be used.

The downside of this method is that if the gestures are trained separately as
described above, the onset and the end phase of the gestures are likely to be di�erent
than in a real maintenance sequence. Also as a person is likely to repeat the same
gesture a large number of times, the repetitions are likely to get sloppy. Thus the
training will be less e�ective. However, since the objective of the work was to get as
close as possible to a real-life scenario, we have used this training strategy despite
the drawbacks mentioned above.

3.3 Giving a talk
As

context is not only about location [Jim08, Men03]

we also aim at additional sensor modalities, in this case Force sensitive resistors
(FSR) for the use of muscular activity measurements, as will be fostered in
Section 7.2 on page 103.

This experiment design was not driven by a speci�c realistic application. Instead
we aimed to implement a scenario that contains a reasonable variety of realistic
gestures that would test the limits of what can be achieved with FSR based muscle
activity monitoring. In particular we wanted to have a mixture of bold and subtle
gestures, gestures performed with di�erent force. At the same time we wanted to
have a situation where the gestures are performed in a natural way as part of an
everyday activity rather than make the subjects perform a set of arti�cial gestures.

3.3.1 Activities
As a consequence of the above considerations we have opted for a scenario of giving
a talk, e.g. at a seminar. Table 3.2 on the opposite page lists the gestures performed.
They can be organized in four groups each consisting of four di�erent subroutines.
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Table 3.2
Set of gestures for the talk scenario.

class ID description class ID description

1 open the pen 9 open notebook
2 write on white-board 10 type a few words
3 close the pen 11 use the mouse
4 erase 12 close the notebook

5 scroll screen down 13 open bottle
6 point on screen 14 pour water in a glass
7 scroll screen up 15 close bottle
8 press buttons on remote control 16 drink

7 white-board (gestures 1-4) First the subject opens a pen, then he/she starts
to write some random words on the blackboard. After that he/she closes the
pen, which is similar to the opening movement. Finally the words are cleared
with an eraser, which is usually done in a periodic circulate movement.

7 beamer screen (gestures 5-8) This gesture set contains pushing down the screen
for the beamer. Then the subject points on the screen with a �nger to show
some things. After that the screen is lifted up again, which is similar to the
�rst movement. The last action is using the remote control to switch o� the
beamer by pressing keys.

7 computer (gestures 9-12) It starts with opening a laptop. After that
some random text is entered via the keyboard. Then some random mouse
movements are done. Next the laptop is closed again, which is a similar
movement to the opening of the laptop.

7 drinking (gestures 13-16) A bottle of water is �rst opened by unscrewing the
lid. Water is then poured into a glass and the bottle is closed again. Finally
the subject takes a sip of water from the glass.

3.3.2 Sensor setup
We mounted the FSR sleeve (see also Section 7.2 on page 103) on the right forearm.
Furthermore the subjects wore a glove with a MTx sensor from Xsens (see Section 4.2
on page 47) comprising acceleration, gyroscopes, and magnetic �eld sensors, each
of them in three dimensions. The MTx sensor is mounted on the back of the hand
rather than on the wrist to prevent its housing from in�uencing the FSRs. Note
that this provides signi�cantly more information on palm actions than the more
typical and much less obtrusive wrist based setup and, to a degree, neutralizes the
inherent advantage of FSR.

Each FSR is sampled at a rate of 20Hz, the MTx is sampled at 50Hz.

3.3.3 Data recording
In total we recorded two subjects, with ten data sets each and one instance of every
activity listed in Table 3.2 per data set, i.e. a total of 320 gestures. The experiment
environment was a meeting room at our lab with a white-board, a beamer screen
and a meeting table.
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Figure 3.3
A user wearing the FSR sleeve
on the lower arm, the MTx glove,
a FSR thigh bandage, and a
wearable computer used as a
recording system during
the experiments.

The sensor data acquisition and the ground truth annotation was again done
using the framework proposed by [BAL08, BKL06]. As before any errors in the
annotation stream were corrected o�-line using the MARKER tool [Amf].

3.4 The car assembly scenario
This case study investigates manipulative hand gestures within a quality assurance
procedure at the production site of the car manufacturer �koda. This experiment
aims at tracking the progress of the �nal quality inspection procedure at the end of a
car production line. The procedure involves actions such as opening the trunk, door
and hood, sliding the hands over parts of the car to detect gaps of wrong size, and
moving parts such as the steering wheel and the seats. Table 3.3 on page 40 lists the
gestures performed within this case study. They were chosen from the approximately
40 gestures actually performed at the �koda factory in Mladá Boleslav at a certain
point in their quality assurance process. There is neither a speci�c sequence nor a
time frame within which the activities are to be executed by the worker. Between
the relevant actions the workers could perform arbitrary other activities, e.g. picking
something up, just walking around the car, talking to a work-mate, and so on.

This case study brings the scenario closer to the envisioned �nal application
scenario. What is more, the manipulative gestures partly become more subtle than
those in Section 3.2 on page 30.

3.4.1 Sensor setup
Instead of the user's hand position (as described in Section 3.2 on page 30) as
additional source of information we now want to use the position of the user itself �
which decreases the position information content.

Thus the worker's relative position to the car body is measured with an UWB
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Figure 3.4
Examples of activities
performed at the
checkpoint part of the
assembly line. From top
to bottom and left to
right these activities
are: check trunk gaps
(Class ID: 14), open
the trunk (3), open the
spare wheel box (18),
writing (20), testing the
fuel lid (6), open the
right door (9), testing
the mirror �xation (13).

positioning system from Ubisense (see also Section 4.3.2.3 on page 53). Four tags on
the worker's shoulders enable the system to calculate his/her position with respect
to four reference base stations placed around the car. Four tags are used to deal
with the high data loss rate caused by a large amount of metallic objects around,
e.g. the car. The UPS used in the bicycle maintenance case study (see Section 3.2.1)
was exchanged by an UWB positioning system, because the ultrasonic signals are
re�ected at large scale from the metallic car body, which makes the UPS unreliable
within this environment. Re�ections are crucial, when the body-mounted device is
close to the car in particular, i.e. there is no direct line of sight between transmitter
and receiver, but at the same time the metallic car body re�ects the signal without
appreciable loss; that, of course, results in meaningless distance measurements. Thus
the ultrasonic transmitters are not trackable in the close area of the car. The UWB
system proved to be less in�uence-able by the metallic car body. Still there is a
considerable amount of false or even no position readings, see also Figure 3.5 on
page 41.

Analogous to Section 3.3 on page 36, we aim to measure the muscular activities of
the lower arm by means of using two custom-built sleeves, each integrating an eight-
channel FSR unit, as will be described in more detail in Section 7.2 on page 103.

The major sensor source is a set of motion sensors to measure the upper body
motions. [SRO+08] describes the Motion Jacket that was developed to integrate the
required motion sensors in an unobtrusive and robust working jacket. The jacket
captures the upper body motion of the worker from seven IMUs (Xsens MTx) (see
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Table 3.3
Activity classes and appropriate location classes for the car assembly scenario. The last
column de�nes which hand is involved (r=right, l=left, b=bi-manual).

class ID description location classes gesture type

1 open hood 1 b
2 close hood 1 b
3 open trunk 5 b
4 check trunk 5 b
5 close trunk 5 b

6 fuel lid 6 r
7 open left door 4,8 l
8 close left door 4,8 l
9 open right door 6,7 r
10 close right door 6,7 r

11 open two doors 6,8 b
12 close two doors 7,8 b
13 mirror 3 r
14 check trunk gaps 5 b
15 lock check left 4,8 l

16 lock check right 6,7 r
17 check hood gaps 2,7 b
18 open spare-wheel-box 5 r
19 close spare-wheel-box 5 r
20 writing 4,7 b

also Section 4.2 on page 47) within the jacket. The IMUs are placed on the lower
arms, the upper arms, the torso, and on the back of the hands. The subject had
to wear two gloves in addition to the Motion Jacket to mount the latter two IMUs.
Two data acquisition units collect the data from these IMUs. The IMUs capture
arm and hand orientation and thus their motion, which provides information about
the activity performed by the worker.

The FSRs are sampled at a rate of 60Hz each, the MTx at 50Hz, and the Ubisense
tags at 100Hz.

3.4.2 The task
As stated in the beginning of this section, the task performed by the subjects is a
car assembly quality checking procedure copied as realistically as possible from an
actually performed checking procedure at the �koda factory. Table 3.3 lists the
gesture classes re-enacted within this case study. The classes can be grouped into
four categories:

7 Opening and closing: These classes are short movements with a single hand
without a signi�cant body movement for the doors (classes: 7-12) and bi-
manual gestures with a signi�cant body movement for the trunk, hood and
the spare wheel box (classes: 1,2,3,5,18,19).

7 Lock tests: Testing a door lock (classes: 15,16), the trunk �xation (class: 4),
the fuel lid (class: 6) and the mirror �xation (class: 13) are repeated usually
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Figure 3.5
Data loss of the Ubisense system is avoided by using four tags. The picture depicts the
data loss of the individual tags for a single run in plots 1 to 4. Plot 5 depicts the Kalman
smoothed tag results merged together and plot 6 the �nal position result.

between three and �ve times, thus these gestures result in a repetitive pattern
in both the motion and muscle signals.

7 Gap tests: Testing chassis gaps (classes: 14,17) is a sliding movement of the
�ngers over the tested gap.

7 Writing: Writing (class: 20) itself is a subtle gesture but should be
distinguishable by its unique start and stop: taking the pen, putting away
the pen. When unused, the pen is kept in a pocket of the Motion Jacket.

3.4.3 Data recording
We collected data in-situ at the �koda production facility. A worker wearing the
Motion Jacket performed the procedure on ten cars while the cars were moving on
the conveyor belt of the assembly line. In addition we observed and �lmed several
other workers performing the procedure for later analysis.
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Due to the high cost of interruptions, large scale data recording within the
production process was not possible. The only way to collect a comprehensive
data set was to recreate the production environment in our lab. For that �koda
provided us with a complete car. The video material from the factory was used to
ensure a realistic setup.

On this recreated setup we recorded a data set with eight subjects (students,
instructed from the video material) who each conducted ten repetitions of the
procedure, see also Figure 3.4 on page 39. We collected about 3680 checking
activities within 560 minutes of data. One experimenter annotated the start
and end points of activities to provide an absolute reference, while a second
experimenter simultaneously annotated the location ground truth of the user. As
in the previous case studies both experimenters were using the framework proposed
by [BAL08, BKL06] to synchronize the annotation streams with the data streams.
As before any errors in the annotation stream were corrected o�-line using the
MARKER tool [Amf].

3.5 Summary and discussion
This chapter described the parameters of the experiments conducted in order to
evaluate the methods in mind.

The talk scenario is designed to test the limits of FSR based gesture recognition.
In particular we wanted to have a mixture of bold and subtle gestures, gestures
performed with di�erent force. This was intended as a step ahead of previous
evaluations of basic motions such as bending an arm. The talk scenario was chosen
to have a situation where the gestures are performed in a natural way as part of an
everyday activity rather than make the subjects perform a set of arti�cial gestures.

The bicycle maintenance experiment aims at investigating the use of on-body
hand tracking for the recognition of manipulative hand gestures. Gestures included
in the experiment contain very characteristic motions as well as such that are highly
unstructured. Moreover, there are activities that take place at di�erent, well-de�ned
locations as well as such that are performed at nearly the same locations or are
associated with vague locations only. This way the experiment was intended to test
the limitations concerning the gesture recognition ability of the proposed sensor
approach.

Moreover, the bicycle scenario put great e�ort to model a complex and diverse
NULL class to test the limits of location based gesture spotting.

Finally the car assembly scenario combined all three suggested sensor modalities �
location, motion, and FSR based muscular activity measurement.

It aims at bringing the experiment from the laboratory setup to a real-life test
scenario. That is why data recordings were performed at a real quality assurance
conveyor belt at the �koda factory in Mladá Boleslav. A �koda worker volunteered
as a subject for a two-hour data recording session executing his normal checking
procedure. The experiment set up hereafter at ETH Zürich was as closely re-
enacting the same quality assurance procedure as possible. It comprises 20 of the
approximately 40 activities actually performed by �koda workers at this speci�c
part of the quality assurance process.
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Moreover, the experiment aims at evaluating the sensor setup on its ability to
provide a modular and thus �exible sensing setup.

The gestures included in the experiments are intended to re�ect the diversity
of the speci�c scenario, but by no means constitute an exhaustive set of possible
activities in that speci�c application domain. Moreover, the gestures are performed
in a uniform manner by all subjects, i.e. the subjects are instructed which hand to
use for which tool and so forth. In such a way the outcome of the experimental
evaluations has limited ability for generalization. It remains an open issue whether
the presented approaches can be expanded in such a way that they can also handle
a greater diversity in the way a certain gesture is performed.
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Chapter

4
Hand Tracking∗

This chapter outlines
some background information about indoor location techniques. The requirements
to the location systems concerning our speci�c application scenarios in mind, the
chapter as a consequence gives reasons for speci�c indoor location system choices
and describes the realization and the setup of the �nally used sensor systems.

Furthermore, the chapter outlines the position estimation methods used. The
methods are intended to be able to handle the great presence of erroneous distance
readings due to the limitations of the ultrasonic positioning technique.

Moreover, the chapter describes our approach to fuse motion and orientation
readings with ultrasonic based position estimations, resulting in a hand trajectory
with a far better dynamic response than the mere ultrasonic positioning approach is
able to provide.

∗Parts of Chapters 4, 5 and 6 are under revision for publication in Springer's Pattern Analysis

and Applications, see reference [OLST].
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4.1 Introduction
As described in Section 1.3 purely body-worn sensors have only limited capability of
detecting which part of an object the user is interacting with. Among other sensing
modalities we aim to use hand tracking by means of ultrasonic indoor positioning
to deal with this issue.

Ultrasonic indoor positioning systems (UPS) are widely used for indoor loca-
tion [MRC05, SBGP04, WJH97] and relative positioning [HKG+05]. They are
relatively cheap and require only little infrastructure. Placing four base stations in
prede�ned locations in the environment is usually su�cient; at least when observing
a space of up to approximately 100m2. Due to physical properties of ultrasound (see
also Section 4.3.2.1) such an approach accounts for a number of problems when used
for hands tracking. In particular, it is subject to re�ections and occlusions and has
got limited sampling rates in the range of 1 to 5Hz.

As the proposed setup also comprises body-worn motion sensors � so-called
inertial measurement units (IMUs) � actually an additional hand tracking system
is available. This is because of the fact that the applied IMU platform measures
its absolute orientation in three dimensions. By means of concatenating several
IMUs and a well-de�ned concatenation model a trajectory of each IMU platform
in the reference system of any other IMU platform within this concatenation
can be derived. In such a way a trajectory of the hand can be calculated for
the given sensor setup � at least in the reference system of the upper body.
[Sti08, SRO+08, SRT07b, SRT07a] describe how a set of such IMUs can be combined
to derive trajectories of di�erent body parts used thereafter for activity and gesture
spotting and recognition. A short overview on this trajectory estimation method is
given in Section 6.4.1 on page 83.

Due to the fact that the given sensor setup provides two independent hand
tracking possibilities, we will suggest a �lter design capable of fusing an absolute
aiding source � namely the UPS measurements � with the inertial measurements
to achieve similar trajectories as in [Sti08, SRO+08, SRT07b, SRT07a]. [Roe06]
has already described how the same IMU platform can enhance an absolute aiding
source by means of a complementary Kalman fusion �lter. Note that the vision
based aiding source used in [Roe06] runs at 120Hz, the IMUs sample at 100Hz as
is the case with the IMUs used throughout this thesis, whereas the UPS samples
at just 1.4Hz.1 Thus the fusion �lter will be designed in way to deal with the
di�erences in the sampling frequencies and to up-sample the slow hand position
updates from 1.4Hz to 100Hz.

Note that the trajectories that can be derived from a mere on-body IMU approach
still lack absolute position information, i.e. the reference system is de�ned in relation
to the person wearing the system whereas the herein presented approach results in
trajectories whose coordinates are given in relation to the reference system of the
aiding source and thus in a global reference system.

Moreover, the presented approach requires a slimmer sensor setup. A mere

1The UPS sampling rate is of course depending on the actual chosen setup. A sampling rate
of 1.4Hz corresponds to the setup applied throughout the experiments presented in this thesis,
i.e. two ultrasonic transmitters (one on each wrist) and four ultrasonic base stations (receivers)
resulting in eight sequential time-of-�ight measurements.
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IMU based hand trajectory estimation approach makes use of at least seven
devices, as shown in [Sti08, SRO+08, SRT07b, SRT07a], when tracking both hand
positions or �ve devices when tracking both wrist positions. In contrast to this the
mixed UPS/IMU approach needs four devices (one ultrasonic transmitter and one
IMU on each wrist or lower arm) in the current setup. An optimized hardware
implementation would integrate both hardware devices into one platform2 resulting
in just two on-body devices for the mixed hand tracking approach.

On the other hand the IMU based approach bene�ts from the fact that one can
also derive upper body postures in addition to the relative hand or wrist trajectories.
Such body postures can give essential hints to the activity spotting process as shown
in [ZWS09] where the authors use the data set described in Section 3.4 on page 38
to derive these body postures from �ve upper body worn IMUs.

In addition to the position estimation approaches this chapter will describe
in more detail the indoor location techniques in use. Sections 4.2 and 4.3 as a
consequence give a preliminary introduction to the applied sensing systems.

4.2 Motion and orientation sensors
Acceleration and gyroscope sensors � measuring the rate of turn � are a state-of-
the-art approach to on-body activity recognition. As shown e.g. in [Roe06] three-
dimensional acceleration and gyroscope sensors can even be incorporated into an
orientation sensor system. Such a sensor setup measures the orientation in an
inertial manner e�ecting that even tiny drift errors of either sensor result due to the
integration step � double integration for the acceleration sensor � in an orientation
error rapidly growing over time.

A state-of-the-art approach to circumvent this issue is the incorporation of
an absolute aiding sensor source, fusing the inertial measurements with absolute
measurements. As [Roe06] shows, a three-dimensional magnetic sensor � despite its
limitations � is feasible to serve as an absolute reference source in such an orientation
sensor system.

Throughout this thesis we use sets of such orientation sensor systems or IMUs.
More precisely, we apply the MTx and its predecessor the MT9B both commercially
available from Xsens3 for the use of tracking the motion and the orientation of
di�erent upper body parts. The same sensor system is used for activity recognition
e.g. in [ZLS07, Jun05].

4.3 Location tracking
As this thesis investigates the use of location tracking in the �eld of activity and
gesture recognition in indoor scenarios, we are limited to location techniques (see
Section 1.5.3) functioning in indoor environments.

2For outdoor applications such devices are already commercially available as acceleration/rate
of turn/air pressure enhanced GPS devices.

3http://www.xsens.com/ � A similar measurement system is also provided by the InterSens
InertiaCube2+, see http://www.intersense.com/InertiaCube_Sensors.aspx?
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When deciding on a location system a number of decisions have to be made or
rather a number of requirements and their priorities have to be de�ned in advance.
These requirements can be of the following kind, but are not limited to:

7 form factor
7 power requirements
7 infrastructure vs. portable elements
7 resolution in space
7 resolution in time
7 accuracy in space
7 accuracy in time
7 scalability with respect to the number of objects to be tracked
7 scalability with respect to the area to be observed
7 dynamic issues
7 user-centralized vs. infrastructure-centralized vs. a mixed approach.
7 privacy and security issues
7 auto-calibration methods
7 output: absolute vs. relative
7 output: raw measurements (e.g. distance measurements or angle of arrival
measurements) vs. coordinates (physical location) vs. location classes (sym-
bolic location).4

7 physical phenomena used for location determination and, what is more, does
it �t into the environment? Such systems might a�ect the environment,
e.g. clinical instruments, or, vice versa, the environment might disturb these
location techniques, e.g. metallic environments.

4.3.1 Concerns
Indoor localization techniques have widely been investigated and developed through-
out the last decades. Trying to give an exhaustive summary of techniques and
systems that have been developed � and are still being investigated by both
researchers and industry � in order to solve the indoor positioning problem is
impossible because of the great number of approaches and suggestions. On the other
hand, this great variety implies that no satisfactory or generally applicable solution
has been found. Whereas for outdoor localization the Global Navigation Satellite
System (GNSS) � with its implementations GPS (USA), GLONASS (Russia),
GALILEO (Europe, not �nished), Compass (China, not �nished) � can be said
to be useful within the majority of applications. E�orts have been made to enhance
the system by other techniques such as GSM-based localization or vision [PWP+07]
but this technique will most likely be state-of-the-art � despite, of course, further
improvements � for at least the next couple of decades. For the indoor localization
problem no general solution is in sight.

4For a de�nition on location models see e.g. [Leo98]. Symbolic locations themselves can be
de�ned in a supervised (see e.g. [GF03]) or unsupervised manner (see e.g. [AM06]).



4.3. Location tracking 49

Thus researchers have started to endorse a top down approach instead of the so
far widely applied bottom up approach when designing and implementing an indoor
location system. In this context top down implies roughly the following design
process:

7 design of a possible solution to the positioning problem,
7 design a widely applicable and thus often unhandy and bulky system, and
7 testing the system's limitations concerning speci�c environments and applica-
tion domains

whereas the top down approach demands that

7 �rst the requirements regarding environment and contemplated application
domain should be de�ned, and

7 from these the list of requirements for the location system should be derived.

The location system implemented in the end should then be less generally applicable
but ideal for the special case in mind. This is considered by commercial projects
in particular; within research projects there are often various assumptions made
concerning the location system. Assuming that an application under test depends
on a high update rate and high accuracy (i.e. there are great requirements to the
location system) an experimenter will have to make some e�orts to set up a decent
location system to prove the concept of the proposed application; thinking in terms
of marketability these e�orts will not pay o�. Great e�orts and expenses for long
term investments such as patient tracking in hospitals will most likely amortize
within the life span of the installed system, unlike short term applications like
providing a location service for a three-day conference. Such a system should be
more like a plug and play system. Thus auto-calibration techniques in particular
(see e.g. in [DMC+05]) will be necessary for generally applicable indoor positioning
systems.

Another important question is user privacy: the system can either function in a
tracking manner or in a (self-)positioning manner. The Cricket team [PCB00] raises
this concern; Hazas et al. also deal with this issue. In [HH06] the authors describe
the requirements of a privacy oriented indoor positioning system, i.e.

[...] a user's presence is not advertised, even anonymously, and [...] entities
outside of the user's control are not entrusted with gathering signal times-
of-arrival or with calculating the user's location; otherwise, these entities
may relay that data to other parties without permission.

but they also remark:

It remains to be seen whether such systems provide bene�ts for the user in
practice � denying location information to external devices severely limits
the applications which can be made available, and complications arise
when trying to reliably authenticate and distribute location information
without being compromised by an attacker.
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4.3.2 System choices
Within this thesis the location systems are supposed to serve either as a hand
location tracking system or as a user location tracking systems. In both cases the
requirements to spatial and temporal granularity are high. The following sections
describe the chosen location systems.

4.3.2.1 Ultrasonic hand localization
Hexamite, the Bat system [ACH+01] and Cricket [Pri05] are the traditional
ultrasonic positioning systems (UPS). See also Section 1.5.3.4, which already gave
an incomplete overview of available UPS implementations. The implementations
vary signi�cantly in their details but in general these systems rely on time-of-
�ight measurements between a mobile devices and at least four reference devices
�xed at known positions in the environment. The categories in which most UPS
implementations can be divided into are:

7 setting

7 outdoors

7 indoors

7 purpose

7 tracking

7 positioning

7 reference

7 automated and absolute

7 absolute

7 relative

7 output

7 distance readings

7 position estimations (coordinates)

7 location classes

7 synchronization

7 wired

7 synchronized clocks

7 ultrasonic

7 RF-synchronization

7 asynchronous

7 bandwidth

7 narrow-band

7 broadband

Due to physical properties a narrowband ultrasonic approach to hands tracking
accounts for a number of problems. It is in particular subject to re�ections and



4.3. Location tracking 51

occlusions and has got limited (1 to 5Hz) sampling rates. Anyway we will decide
in favor of such a system mainly due to its spatial resolution.

The envisioned setup with four stationary devices and synchronous distance
readings allows to solve the positioning problem by adopting a Least Squares
Optimizer (LSQ). However, independent of the UPS implementation details there
are three issues that a LSQ cannot deal with properly:

7 Re�ections: Ultrasound is re�ected by most materials present in the environ-
ment. Thus the location systems has to deal with false signals resulting from
re�ections.

7 Occlusions: Ultrasonic distance measurements essentially require line of sight
between the communicating devices. In case the transmitter turns away from
the receiver or some person/object comes between the two, the signal is lost.

7 Temporal resolution: The temporal resolution is limited by the speed of sound
which is about is 340ms−1. In general several transmissions are needed to
perform three-dimensional location (either one from every base station in the
environment or one from every mobile device that needs to be localized).
Unless some advanced coding schemes are used the transmission time slots
need to be long enough apart for the re�ections to subside. In a room a couple
of meters in diameter this reduces the maximum number of transmissions to
10 to 20 a second. This means that the maximum realistic sampling frequency
is a couple of Hz. Often � as is the case with the Hexamite sensors � it is
about 1Hz.

In the indoor location scenario � where ultrasonic devices are mainly used � the
above factors can often be neglected and a standard extended Kalman �lter approach
would work �ne. With base stations placed in the ceiling and the personal devices
e.g. on the shoulder occlusions can be minimized. Except for applications dealing
with fast motions, e.g. sports related scenarios, the temporal resolution of < 10Hz
is more than enough.

In the envisioned maintenance scenario things are much more di�cult. As the
transmitters need to be mounted on the arms, occlusions are a frequent problem.
They may occur in case the subject

7 is standing behind the maintenance object,
7 occludes the moving devices or
7 turns away from the �xed devices.

In all these cases two di�erent problems can occur: either no signal reaches the
measuring device in time (no measurement) or a re�ected signal is measured (wrong
measurement). In the majority of cases a re�ected signal is easy to detect in case
the re�ection comes from a point far away, e.g. from a wall when the subject is
standing in the middle of the room. So occlusions are likely to produce wrong, not
detectable measurements in cases where the subject is close to an object, e.g. in
cases where maintenance activities are performed.

The resulting coordinates of one moving device are dependent on distances to
at least four �xed devices. The time frame for acquiring the distance to one �xed
device is approximately 0.3 seconds. In the user-centered approach the distance
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measurements are not simultaneous but consecutive, thus the calculation of the
position of the moving devices is dependent on measurements with a time delay of
at best 1.2 seconds. That means that the error for the resulting position is not so
much dependent on the accuracy of the measurement system (approximately 2 to
3cm for the Hexamite system) than on the speed of the moving device.

4.3.2.2 Ultrasonic positioning system setup
The work at hand uses the Hexamite ultrasonic positioning system, more precisely
the Hexamite HX900 5. This system is speci�ed as follows:

7 Bandwidth: Narrow-band, frequency: 40kHz.
7 Range: The range is dependent on the voltage source, and can go up to ten
meters.

7 Distance resolution: The resolution is 1e−3 meter.
7 Accuracy: The accuracy is approximately 3e−2 meter.
7 Synchronization: Either wired synchronization or ultrasonic synchronization
can be used. The ultrasonic synchronization causes a slower update rate; at
least two times slower. The wired synchronization outperforms the ultrasonic
synchronization mode due to faster update rate and more accurate distance
readings. But the wired synchronization is uncomfortable for a user-centered
setup due to the need of a wired connection between the moving devices. In
principle the system would also be extendible to use radio frequency based
wireless synchronization by means of o�-the-shelf components.

7 Output: Distance readings. The output is triggered by a master node
asynchronous to distance measurements, i.e. the exact time-stamp of a
distance reading has to be estimated by the position processing unit.

The reasons why we decided in favor of the Hexamite system are:

7 good spatial resolution
7 good spatial accuracy
7 commercial availability.

For practical reasons the latter was the decisive argument. The drawbacks of the
Hexamite implementation are

7 Output: The system outputs distance measurements, i.e. one has to solve the
positioning problem on its own, unlike with e.g. the Ubisense system. Kalman
�lter approaches to this problem are sketched in sections 4.4.4 on page 57
and 4.4.5 on page 58.

7 Missing time-stamps: The system does not output the time-stamp of a certain
measurement. That does not e�ect the room-centered approach but is a major
drawback in case of the user-centered approach. In this mode the body-worn
device polls the stationary devices consecutively, but outputs the results only
after an entire measurement cycle; thus only the last measurement's time-
stamp is known, any preceding time-stamp has to be interpolated.

5http://www.hexamite.com/hx900b.pdf
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7 Synchronization: A state-of-the-art UPS provides wireless synchronization.
However, that does not e�ect the presented case study. Rather, the system
setup for the �nal application would have to solve that issue.

The system is adopted in the room-centered mode with a single user wearing two
transmitters, one on each wrist. The room is equipped with four ultrasonic base
stations set up as receivers. The UPS is set to ultrasonic synchronization mode, thus
the moving devices do not have to be wired with the stationary devices. Nonetheless,
the two moving devices need to be connected for communication purpose, thus the
devices are connected using a wired serial connection. Choosing this setup results
in a positioning system as reliable and accurate as possible. A UPS can provide
quite �ne-grained distance readings compared to e.g. an ultra-wide-band system.
Moreover, the chosen setup itself assures the best result that can be achieved by
means of the applied Hexamite UPS.

4.3.2.3 UWB user localization
In addition to hand location tracking we also want to investigate how user location
tracking can enhance on-body sensor based gesture recognition. The demands on
an indoor user location tracking system regarding spatial and temporal resolution
are low compared to a hand tracking location system.

Moreover, as this system had to be applied in a real-life test scenario at a �koda
factory site (see Section 3.4 on page 38) within a strict time frame of a couple of
hours, stability, reliability, and ease of use have been one of the decisive categories.

The requirements to the location system can be summarized as follows:

7 Stable, reliable o�-the-shelf equipment, see above.
7 Form factor: wearable, i.e. in our case the device carried by the user should be
as small as possible, at least it must be small enough to be integrated in the
work suit.

7 Power requirements: battery driven, and batteries should last for at least one
workday.

7 Infrastructure vs. portable elements: within the factory environment there is
room to install several base stations, i.e. the location system need not rely on
moving devices alone.

7 A couple of centimeters resolution in space is enough to de�ne a user's location.
7 A couple of Hz is enough to track a moving person. But, as will be seen later
in this section, higher temporal resolution is needed anyway.

7 Ability to track various sensor nodes at the same time. This requirement is
at least valid for the �nal system setup, when tracking several workers at the
same time within a factory site.

The major arguments for deciding in favor of the Ubisense 6 UWB system are:

7 commercial availability,
7 stable, reliable setup, and

6http://www.ubisense.net/
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7 it can be set up in a simple and straightforward process, which was essential
because the system had to be set up on a factory site while the production
line was running within a small time frame (see Section 3.4.3 on page 41).

The Ubisense system has a spatial resolution of approximately 20 cm and thus
outperformed by the Hexamite UPS (see Section 4.3.2.1) by factor 10. Nevertheless,
the Ubisense's spatial resolution seems adequate for the investigated user tracking
scenario. The major reasons for deciding against the Hexamite system are:

7 A bad scalability for large areas. The Hexamite system using four base stations
can cover an area of up to approximately �ve by �ve meters at a supply voltage
of 6V .

7 In addition, the system will not be able to deal with the huge amount of
re�ected and occluded ultrasonic signals due to the metallic environment in
the car manufactory. What is more, the car being assembled will always be
in the line of sight to at least some of the location base stations, while the
worker is standing close to the car.

The UWB system is not completely immune to that issue, but its high
temporal resolution of up to 100Hz should be able to balance that problem.

4.4 Position estimation

4.4.1 Introduction
Each localization technique presupposes a speci�c algorithm to derive location
information from the raw measurements. State estimation techniques that can
handle a series of position readings are often very similar, though. Decent state
estimation becomes necessary when relying on an inertial sensor system in particular
or in case the dynamics of the system are essential. Locating a static object is easier
than locating moving objects, particularly

7 in case the update rate of the location system is low compared to the expected
maximum speed and the acceleration of the moving device and

7 in case of increasing spatial accuracy requirements.

Under these conditions localization becomes more di�cult and demands a more
sophisticated state estimation technique. For a survey on this issue refer to
Fox [FHL+03] who identi�es the following approaches:

7 Bayes �lters
7 Kalman �lters
7 hybrid approaches
7 topological approach
7 particle �lters

Additional approaches are:

7 Markov processes, see e.g. [TMK04]
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7 Hidden Markov Models, see e.g. Krumm [Kru03], which gives a survey on this
issue as well. Krumm summarizes Hidden Markov models, particle �lters and
Kalman �lters as recursive estimates.

The trilateration problem, i.e. estimating a point in space from four or more
absolute distance measurements, can be solved in various ways. A straightforward
method is the least squares optimization (LSQ) approach.7 The estimation of the
best �tting point in space given a set of distance measurements is thus interpreted
as an optimization problem with a given objective function. The major drawback of
this approach is the fact that each set of distance measurements is treated separately,
i.e. the fact that the hand positions are correlated in time is simply ignored.

A state-of-the-art approach to solve a state estimation problem given a time-
series of measurements is the Kalman �lter. In the past almost �fty years this
algorithm became a state-of-the-art technique for positioning systems in particular.
Since the measurement model is non-linear � in Euclidean space the coordinates of
two points have a non-linear correlation with their distance � one has to make use
of the extended Kalman �lter. Depending on the e�orts made when designing state
transition model and measurement model the Kalman �lter output is quite robust
concerning erroneous input and thus concerning measurement errors.

The Kalman �lter additionally has got the ability to fuse di�erent sensor sources
to an optimal solution. A lot of research has been carried out on how to blend
inertial tracking data with absolute position measurements. Actually the �eld of
sensor fusion has become a major application for the Kalman �lter. This approach
usually aims at combining high accuracy of an absolute measurement system with
high dynamic response of an inertial measurement system. As this work is also
aiming at combining inertial measurement readings with absolute location readings,
we suggest and evaluate a Kalman �lter design, see Section 4.4.5 on page 58.

There are di�erent ways to implement such a fusion �lter. Due to its good
dynamic response a complementary �lter design is a common method. Using
a complementary Kalman �lter we fuse the measurements of the orientation
sensor system with the ultrasonic position measurements, achieving two di�erent
improvements:

7 Re�ections and occlusions of the UPS measurements are corrected automat-
ically in most cases and thus the accuracy of the position estimation can be
increased.

7 The position estimation is up-sampled from the UPS sampling frequency
(' 1.4Hz) to the sampling frequency of the orientation system (100Hz).
Thus the position estimation becomes more responsive to the dynamics of the
hand motions. Hence the position estimation can be directly used for gesture
recognition not only as a complementary contextual information source.

Refer to [BH97, RV05, Roe06] on how to set up such a complementary Kalman
�lter to fuse the measurements of an inertial navigation system (INS) with position
measurements. Figure 4.2 on page 61 and Section 4.4.5 on page 58 describe our
design of such a �lter used for the evaluations presented in this work. In addition
one could set up a constrained Kalman �lter to exclude impossible states, re�ecting

7For an exhaustive survey on how to solve positioning problems using LSQ see [CSMC06].
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considerations similar to those listed in Section 4.4.2 � refer to [GH07] or [UDL07]
for promising basic approaches.

4.4.2 Preprocessing
In previous approaches [OSJ+05, SOJ+06] we demonstrated how the inherent errors
present in the ultrasonic signal can be handled through plausibility analysis based
on physical constraints of the system; constraints concerning human anatomy and
basic assumptions about plausible motions. These constraints re�ect the following
considerations:

7 The user is equipped with a ultrasonic transmitters on each hand. Thus the
maximum distance between these two devices is limited to a certain value.
This maximum distance value is de�ned by the span of the user's arms minus
two times the distance between �ngertips and ultrasonic transmitter. That
results in a typical maximum distance between 110cm and 140cm.

7 A UPS is based on distance measurements. Typical errors are caused by
re�ections or occlusions. A non-moving transmitter non-periodically produces
wrong measurements due to these re�ections and occlusions. In many cases
these errors are present only on one of the distance channels. Due to the fact
that it is impossible for a device to move on a path that is equidistant to three
or more stationary devices, we can identify some of these single-channel errors:
In case a segment with static distance readings on all channels is followed by
a segment with a change bigger than the UPS distance measurement accuracy
on a single channel, either the �rst or the second segment must be erroneous.

7 The speed must be limited to a certain amount (/ 10ms−1).
7 As shown in [OSJ+05], an additional ultrasonic device on one of the user's
shoulder enables additional constraint considerations.

Errors typically occur in sequences of less than three to four samples. Thus we
apply a rather naive error correction: overwriting the current measurement by the
last known good measurement sample.

4.4.3 Least squares optimization
A trilateration problem can be seen as an optimization task solving a speci�c
objective function. The positions of the stationary devices are given by a set of
points Bi with known coordinates (Bix, Biy, Biz) with i ∈ [1 . . .M ] and M > 3.
Furthermore there are M given distance measurements Di between these points
and a point P with unknown coordinates [x, y, z]T . The coordinates of point P
shall be optimized with respect to the distance measurements Di. The distance
ri between the optimized coordinates of point P and the known point Bi can be
calculated according to

ri = ‖Bi −P‖ . (4.1)

One strategy could be to minimize all the di�erences between the distances measured
and the theoretically resulting distances in case the distance measurements were
taken at the �nal assumption we make for the coordinates of point P. Before
summing up, these distances are squared following the Gauss-Markov theorem. Thus
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the optimization task at hand is to minimize the squared di�erences between the
measured distances Di and the resulting distances ri and thus the optimization
problem can be written as

f(x, y, z) =
M∑
i

(ri −Di)
2 → min (4.2)

which is the error or objective function of the optimization problem. This
optimization problem can then be solved using a standard numerical optimization
strategy (e.g. the Gauss-Newton algorithm). A major drawback of this solution
is the missing ability to deal with measurement errors caused by occlusions or
re�ections, thus additional e�orts must be made to �lter these errors, as e.g.
suggested in section 4.4.2 on the next page.

4.4.4 Kalman filtering
Kalman �ltering is supposed to deal with error measurements far better than
constraint considerations as described in 4.4.2 on the opposite page. This and
the following section will focus on how to apply this algorithm in our contemplated
scenario, for a quick reference on the Kalman �lter see Appendix A on page 135.

The Kalman �lter is an algorithm which makes optimal use of imprecise data in
a linear system. It continuously updates the best estimate of the system's current
state. The algorithm assures that all seen measurements in�uence the current state
estimate. The resulting state estimation is ideal from a probabilistic point of view,
i.e. it �nds the best state estimate given a series of measurements. It should perform
similar to a least square optimization algorithm (LSQ) (see Section 4.4.3) considering
the accuracy of a single result, but far better given a series of measurements � even
more so from the dynamics point of view.

The system must be de�ned by a state transition model and a measurement
model. In case either one is non-linear, the Kalman �lter in its original de�nition
cannot be applied. The extended Kalman �lter is one possible way to linearize such
models.

In position estimation applications the state vector is usually set to

x = [x, y, z, ẋ, ẏ, ż]T (4.3)

where x, y and z are the coordinates of the current position vector and the dot
accent notates the �rst derivative and thus in this case the speed in the appropriate
directions. Then the state transition matrix, see Eq. (A.1), can be de�ned according
to

Fk = F =

[
I3 ·∆t I3

03 I3

]
, ∀ k ∈ [−∞,∞] (4.4)

with I3 and 03 being the 3 × 3 identity and 3 × 3 zero matrix, respectively. The
distance di between an ultrasonic transmitter with coordinates X and the ith �xed
device with known coordinates Bi is given according to

di = ‖Bi −X‖ (4.5)
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which is a non-linear relation. Thus we have to apply the extended Kalman �lter.
Let the measurement vector be given by

zk =
[
d2

1,k, d
2
2,k, d

2
3,k, d

2
4,k

]T (4.6)

with di,k being the measured distance to the �xed device i at time tk. From Eq. 4.5
and Eq. 4.6 the measurement model can be derived according to

h(xk) = [xk, yk, zk] · [xk, yk, zk]T − 2 ·C + diagonal(C ·CT ) (4.7)

with C de�ning the coordinates of the �xed devices according to

C = [B1,B2,B3,B4]T (4.8)
Bi = [Bi,x, Bi,y, Bi,z]

T (4.9)

According to Eq. (4.4) the linear state transition function f is given by

f(x) =

[
I3 ·∆t I3

03 I3

]
· x (4.10)

The force function uk can be set to

uk ≡ u ≡ 0 (4.11)

Several choices have to be made including initialization values, system noise
modeling, and measurement error modeling. The choices for the initialization of
the state estimation x0|0 and P0|0 in�uence the time the �lter needs to converge to a
feasible position estimation series and are thus rather unimportant because the �lter
will converge within a couple of seconds. Setting initialization values to 0 is a quite
decent strategy. The choices for Qk and Rk in�uence the performance of the �lter
during runtime according to its dynamic response and its immunity to measurement
errors. In our case these covariance matrices are set to constant diagonal matrices.

Figure 4.3 on page 64 exempli�es the performance of the proposed Kalman �lter
design in comparison with the LSQ approach.

4.4.5 Kalman filter based fusion of absolute and inertial posi-
tion measurements

A lot research has been carried out how to blend inertial tracking data with
absolute position measurements. Actually the �eld of sensor fusion has become
a major application for the Kalman �lter. In most cases the absolute measurement
system assures high accuracy whereas the inertial measurement system assures high
dynamic response.

In the car assembly case study (see Section 3.2 on page 30) we use inertial
measurement units (IMUs) to track the upper body motions. The IMUs are sampled
at 100Hz and comprise three types of sensors:

7 acceleration,
7 gyroscope, i.e. rate of turn, and
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7 magnetic �eld sensors, for an absolute reference of orientation.

Each of these sensing modalities is implemented in three dimensions. This sensor
system assures a setup that is able to measure the absolute orientation of the sensor
platform.8

However, this sensor system also provides an inertial positioning system. The
linear accelerometers measure acceleration a due to rate of velocity change plus
acceleration g due to gravitation, both in sensor coordinates. Thus the sensor
output is a vector a − g. The rate of turn sensors give the attitude of the sensor
coordinate system, which can then be used to rotate both a and g from sensor
coordinates into global coordinates. Due to the fact that the sensor system uses the
magnetic �eld readings as aiding source for orientation estimations one can also use
the orientation information directly to rotate the acceleration vectors.

In a next step the gravitational acceleration is added to the sensor output and
the result has to be integrated twice to receive the position. Such a setup is called
inertial navigation system (INS).

The obvious drawback of an INS is the fact that via double integration of the
acceleration the measurement errors are also integrated twice. As stated before,
typically an absolute positioning system is used to correct this error; in our case the
UPS will be the guiding positioning system.

[Roe06] also follows such an approach, but with two major simpli�cations
compared to the setup at hand. The absolute positioning system � an optical
tracking system � samples at 120Hz. After re-sampling to 100Hz both sensor
systems run at the same sampling frequency. In our setup the INS runs at 100Hz
and the UPS at approximately 1.4Hz. The next di�erence are the error sources:
In both setups the error source of the INS is assumed to be white noise though the
error sources for the absolute positioning systems di�er. [Roe06] assumes that the
optical tracking system sometimes fails to get a measurement due to occlusions, that
results in missing samples. In our case we also assume re�ections which may result in
totally wrong distance measurements, which cannot be modeled as Gaussian white
noise. Nonetheless, the adaptation of a Kalman �lter fusion algorithm seems to be
promising for the following reasons:

7 The position estimations will be up-sampled from to 100Hz, which �ts the
speed of human arm motions better; and lets one anticipate better dynamics
in the �nal position estimations.

7 Re�ection and occlusion errors are intended to be corrected more easily.

Following the recommendations given in [BH97, Roe06] we set up a comple-
mentary Kalman �lter. The complementary �lter approach is a state-of-the-art
method in navigation when combining di�erent sensor sources due to the following
reasons:

8Evidently, this sensor setup requires again a decent method to blend the di�erent sensor results.
And, in fact, this platform is a good example of a Kalman �lter application. A good overview of
how it is applied in this scenario and beyond gives the thesis of Roetenberg [Roe06]. The author
follows the recommendations given in [BH97], which is also the basic source for the Kalman �lter
questions in this thesis.
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complementary filter structure

+

+ G(s)

s(t) + n1(t)

+

+ x(t)

s(t) + n2(t)

−
n1(t)− n2(t)

−

notation:
s(t) ... input signal
n(t) ... noise
x(t) ... output signal
G(.) ... transfer function

Figure 4.1
Complementary �lter
scheme � In case G(s) can
be designed to separate
the errors of both input
signals, the resulting
output x(t) will be
approximately the actual
input signal s(t).

7 The complementary approach usually reduces the grade of non-linearity, due
to the fact that the state vector is built by the sum of inertial and aiding
errors.

7 It has got a better dynamic response but at the same time has got a small
time delay.

7 Generality � it scales for various mixes of aiding sources.

Figure 4.1 depicts the basic concept of the complementary �lter approach. This
section will outline the way we implemented this method; Figure 4.2 on the next
page gives an overview of our implementation.

As depicted in Figure 4.1, the input of the complementary Kalman �lter is equal
to the di�erence of the errors of both positioning systems. The setup at hand has got
a major drawback; both positioning devices use a Kalman �lter itself. Thus our �lter
setup comprises a feedback-less, decentralized �lter approach with a complementary
centralized Kalman �lter with a feedback loop as master �lter. The decentralized
�lter approach is a rather simple approach with two problems:

7 The full order state vector is typically not available to all �lters, which causes
a measurement information loss in the master �lter.

7 The estimation errors of the local �lter outputs are usually correlated in time.
This correlation is usually unknown and thus may cause a divergence in the
master �lter.

As Figure 4.2 illustrates, the inertial position estimation is done by integrating the
(rotated and gravitation free) acceleration measurements twice, which are sampled
at 100Hz. The UPS is sampled at ' 1.4Hz. Thus UPS velocity and acceleration
estimations must be compared with the average acceleration and average velocity
of the INS results of the same time interval. The error model derived below tries to
account for that.

We consider the time interval

T = [tk, tk+1] = [τκ, τκ+s] (4.12)

with ti being the points in time where the UPS is sampling, and τι being the points
in time where the INS is sampling.9 In an analogous manner we de�ne ∆τ as the

9tk is actually not equal to τκ and tk+1 is not equal to τκ+s. But due to the way the data
recording system (see [BAL08, BKL06]) was set up to fuse these raw sensor streams � i.e. triggering
at the highest sampling data input, in our case at τκ � these time di�erences get lost anyway and
Eq. (4.12) gets valid.
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legend:
acc ... acceleration sensor
gyr ... rate of turn sensor
mag ... magnetic field sensor
KF ... Kalman filter
UPS ... ultrasonic positioning

system

notation:
U ... UPS
I ... INS
G ... global reference system
S ... MT9B reference system
U ... UPS reference system
T ... UPS sampling cycle time
Θ ... rotation matrix
r ... position
v ... velocity
a ... acceleration
g ... gravitational acceleration
xε ... error
〈.〉 ... average over time period T
x̂ ... state estimation
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Figure 4.2
Complementary Kalman �lter for blending the inertial positioning result with the aiding
ultrasonic positioning sensor. The gray net depicts signals running at orientation sensor
sampling rate, i.e. 100Hz. The orange net depicts signals running at UPS sampling rate,
i.e. ' 1.4Hz.
The Kalman �lter for the mere ultrasonic based position estimation was set up according
to the description in Section 4.4.4 on page 57.

time di�erence between two consecutive INS samples and ∆t as the time di�erence
between two consecutive UPS samples, i.e. ∆τ = 0.01s and ∆t ' 0.7s. The UPS
position estimation at time tk denoted as rU,tk can be written as the sum of the true
position at time tk and the error of the UPS result

rU,tk = rtk + rUε,tk (4.13)

The same can be written for acceleration and velocity

vU,tk = vtk + vUε,tk (4.14)
aU,tk = atk + aUε,tk (4.15)

Analogous to that we can de�ne for the INS

aI,τκ = aτκ + aIε,τκ (4.16)
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and thus the INS velocity estimation can be calculated according to

vI,τκ = vI,τκ−1 + aI,τκ−1 ·∆τ =

= vτκ−1 + vIε,τκ−1 + aτκ−1 ·∆τ + aIε,τκ−1 ·∆τ =

= vτκ + vIε,τκ−1 + aIε,τκ−1 ·∆τ
(4.17)

With
vI,τκ = vτκ + vIε,τκ (4.18)

the velocity error of the INS at time τκ can then be written as

vIε,τκ = vIε,τκ−1 + aIε,τκ−1 ·∆τ (4.19)

Analogous to that we can derive the INS position estimation

rI,τκ = rI,τκ−1 + vI,τκ−1 ·∆τ + aI,τκ−1 ·
∆τ 2

2
=

= rτκ−1 + rIε,τκ−1 + (vτκ−1 + vIε,τκ−1) ·∆τ + (aτκ−1 + aIε,τκ−1) · ∆τ 2

2
=

= rτκ + rIε,τκ−1 + vIε,τκ−1 ·∆τ + aIε,τκ−1 ·
∆τ 2

2

(4.20)

and its error at time τκ

rIε,τκ = rIε,τκ−1 + vIε,τκ−1 ·∆τ + aIε,τκ−1 ·
∆τ 2

2
(4.21)

To account for the di�erent sampling rates we de�ne the following average values
for acceleration and velocity over time interval T as de�ned by Eq. (4.12)

〈aI〉T =
s−1∑
j=0

aI,τκ+j
=

s−1∑
j=0

(aτκ+j
+ aIε,τκ+j

) =

= 〈a〉T + 〈aIε〉T
(4.22)

〈vI〉T = vI,τκ + (〈a〉T + 〈aIε〉T ) ·∆τ =

= vτκ + vIε,τκ + 〈a〉T ·∆τ + 〈aIε〉T ·∆τ =

= 〈v〉T + 〈vIε〉T
(4.23)

Thus the position estimation at time tk+1 can be written according to

rI,tk+1
= rI,tk + 〈vI〉T ·∆τ + 〈aI〉T ·

∆τ 2

2
=

= rtk + rIε,tk + (〈v〉T + 〈vIε〉T ) ·∆τ + (〈a〉T + 〈aIε〉T ) · ∆τ 2

2
=

= rtk+1
+ rIε,tk+1

(4.24)

The state vector x of the complementary Kalman �lter as depicted in Figure 4.2
on the previous page is set to

x =


rIε
vIε
aIε
rUε
vUε
aUε

 (4.25)
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and �nally we can de�ne the state transition model according to

F =



I3 ∆t · I3
∆t2

2
· I3

I3 ∆t · I3

e−β〈a〉·∆t · I3

e−β〈a〉·∆t · I3

1−e−β〈a〉·∆t
∆t

· I3

1−e−β〈a〉·∆t
∆t2

· I3 − 1
∆t
· I3 03


(4.26)

As can be seen from Eq. (4.26) the mere measurement errors are modeled as Gauss-
Markov processes. The parameters for these processes are tuned according to
experimental test runs, as well as the values for Q and R.

As already explained, the input to a complementary �lter is not the measurements
but the di�erence between the two measurement systems, i.e. the input can be
written as

z =

rU,tk − rI,tk
vU,tk − vI,tk
aU,tk − aI,tk

 =

 (rtk + rUε,tk)− (rtk + rIε,tk)
(vtk + vUε,tk)− (vtk + vIε,tk)
(atk + aUε,tk)− (atk + aIε,tk)

 =

=

rUε,tk − rIε,tk
vUε,tk − vIε,tk
aUε,tk − aIε,tk

 (4.27)

and hence the observation model is given according to

H =
[−I9 I9

]
(4.28)

4.5 Result
Figure 4.3 on the following page depicts the results of both Kalman �lters. Positions
as estimated from mere ultrasonic distance readings by means of an extended
Kalman �lter (as de�ned in Section 4.4.4 on page 57) are illustrated. Additionally
the results of the complementary Kalman �lter fusing INS data (i.e. acceleration
and gyroscope) with UPS distance readings are shown. The acceleration depicted
here is not the same signal as that shown in Figure 3.2 on page 34. This is due to
the fact that the acceleration readings from the INS have to be rotated from the
local INS sensor reference system to the global UPS reference system preliminary
to the complementary Kalman �lter stage. Furthermore the earth acceleration has
to be removed from the acceleration signal.

As the resulting trajectories are not the �nal results we are interested in but
are further applied for probabilistic location modeling (see Chapter 6) no detailed
quantitative evaluations of the resulting trajectories have been conducted so far.
Thus closed loop tests or similar evaluations remain an open issue.

Another possibility to test the performance of a speci�c Kalman �lter design is
to evaluate the resulting time series of residuals ỹk (innovations) derived according
to Eq. (A.8). A decent �lter design will result in a white innovation series, i.e.
a normally distributed series with zero mean and equally distributed frequencies.
Figure 4.4 on page 66 evaluates three out of nine innovation series (rxUε − rxIε,
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Figure 4.3
Results of three di�erent state estimation approaches � Position estimations using an LSQ
approach are depicted by the cross-marked lines, extended Kalman �lter based estimation
of mere ultrasonic distance readings are depicted by dot-marked lines. The crosses and the
big dots mark those points in time where the UPS provides its readings. The black graphs
depict the results of the complementary Kalman �lter. The acceleration plots also depict
the acceleration state estimation of the complementary Kalman �lter (black dashed lines).
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ryUε − ryIε, and rzUε − rzIε) for the complementary Kalman fusion �lter applied on
the entire sequence data set of the bicycle maintenance case study. The upper plots
compare the histogram of innovation amplitudes with the normal distribution

N

0,

√√√√ 1

n

n∑
k=0

(r
iUε,k − riIε,k − 0)2

 (4.29)

whereas the lower �gures give the FFT based calculation of the spectrum of the
innovations and a low-pass �ltered version of the spectrum. The �gures suggest that
though the histograms are quite similar to normal distribution and the spectrum
is similar to that of a white sequence there might still be some potential for
enhancements in the Kalman fusion �lter design.

4.6 Future work
Note that Kalman �ltering assumes a Gaussian state transition estimation error
and a Gaussian measurement error. The ultrasonic distance measurements can be
assumed to be Gaussian. Actually, the measurement errors are only Gaussian given
a static distance, i.e. the variance of the distance measurements increases with the
distance. A proper implementation accounts for this by modeling the variance of
the current measurement depending on the current distance estimation. Due to
the fact that errors resulting from re�ections cannot be modeled as Gaussian error
the actual measurement error consists of two portions: a Gaussian measurement
error and a non-Gaussian error resulting from sporadically occurring re�ections.
Thus the presented position estimation approach could bene�t from either applying
a constrained Kalman �lter to exclude impossible states re�ecting considerations
similar to those listed in Section 4.4.2 on page 56; (refer to [GH07] or [UDL07] for
such an approach) or by applying a particle �lter (see e.g. [AMGC01]).

4.7 Summary
After giving an introduction to indoor positioning and location tracking techniques
the chapter presented di�erent position estimation techniques capable of deriving
hand position trajectories from erroneous ultrasonic distance readings. Due to the
fact that the sampling rate provided by a typical UPS is too slow to estimate
trajectories re�ecting the dynamics of hand motions, a complementary Kalman
fusion �lter was set up. By means of this Kalman �lter motion and position readings
can be fused to a hand trajectory providing both decent position estimations and
dynamic trajectory estimations.
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Figure 4.4
Evaluations of the Kalman �lter innovations for the complementary Kalman �lter de�ned
in Figure 4.2 on page 61.



Chapter

5
Location modeling

This chapter de�nes various probabilistic methods in order
to model hand locations. The training of these location models can be done either
in a supervised or in a semi-supervised manner. Appropriate distance measures are
de�ned for each location modeling approach.

The methods are tested and evaluated on the bicycle maintenance test scenario.
The chapter gives detailed evaluation results for pre-segmented activities in order to
foster the combination of hand location and hand orientation for the use of gesture
recognition.
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5.1 Introduction
This chapter demonstrates how, despite the preliminary described sensing problems,
ultrasonic positioning can be used to improve the accuracy of manipulative gesture
recognition. Speci�cally this chapter presents the following contributions

7 We describe and contrast di�erent ways of modeling locations of interest
(including location distance metrics) in a supervised or semi-supervised
manner.

7 We describe and contrast di�erent ways of combining the location information
with motion information from orientation sensors at the user's arms given pre-
segmented activities.

7 We present the results of an experimental validation of our method. It is
based on a bicycle maintenance task that has been repeatedly performed by six
volunteers, see also Section 3.2 on page 30. The task consists of manipulative
hand gestures that were chosen according to two criteria:

7 being typical for the maintenance task and
7 being ambitious in terms of recognition.

7 One of the most signi�cant results is the fact that our method can handle user-
dependent training as well as user-independent without a signi�cant di�erence
in the performance.

5.2 From position to location
In order to incorporate position information within the activity and gesture
recognition process, the position measurements are mapped to some abstract
location representation. Within this work we will use the words position and location
to distinguish between these two representations; thus

7 position will refer to a place given by its absolute coordinates and
7 location and location class will refer to a place de�ned by some abstract
location information, i.e. de�ned on the basis of an abstract spatial correlation,
e.g. close to a speci�c object.

The methods and considerations described in this section have to be applied for
each position sensor or rather for each hand separately.

5.2.1 Manual location definitions
In order to de�ne the location of interest for a speci�c activity one might use the
coordinates of the object which is being manipulated. There are activities where
this strategy might be e�ective, e.g. tightening a screw. The coordinates of the
screw are known and its spatial expansion is approximately within the accuracy
of the position measurements. Thus the coordinates of the screw head's center of
gravity might be su�cient to de�ne the location of this action. Unfortunately, we
are not able to measure the cone end of the screwdriver, but the position of the
wrist of the user's hand. Depending on the way the user holds the tool and on the
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size of the tool itself there is a distance of up to 20 or 30cm between the location of
interest and the measured position and, what is more, the wrist is not standing still
but performing a circular movement. However, for this simple task it is possible to
de�ne a point around which the wrist will be rotating most likely; but for activities
with more complex motions, e.g. turning a wheel or pumping, this manual location
class de�nition will most likely fail because the location of interest

7 is not equal to the positioning of the manipulated device and
7 has got a spatial expansion, which is far from being point-shaped or even
sphere-shaped.

5.2.2 Supervised location definitions
Much more promising seem to be approaches where the locations can be learned in a
semi-supervised or supervised manner. Such a supervised way was already described
in [SOJ+06]. Each hand gesture (gesture class) is manually assigned to one of the
manually de�ned location classes, see e.g. Table 5.1 on page 75 columns 2, 3, 6, and
7. For both hands mean and variances are modeled for these locations according to
the training data; i.e. each location is modeled as a multivariate normal distribution
which better considers the nature of the locations of interest.

Although a multivariate normal distribution can model the spatial expansion of
the location of interest it cannot model arbitrary shapes. Thus other distributions
could also be helpful. To this end we will test multivariate Gaussian mixture
distributions.

A n-component Gaussian mixture distribution is de�ned according to

f(x) =
n∑
k=1

akfk(x) =
n∑
k=1

akΦ(x|µk,Σk) (5.1)

where fk(x) = Φ(x|µk,Σk) is the kth normal distribution1 and ak its prior
probability. In case the number of mixture components is high enough, such a
distribution is able to simulate any possible distribution and thus any possible shape.

For consistency reasons we will use the following denotations:

7 1-component Gaussian mixture distribution (supervised) (1-m-s) will refer to
the �rst and

7 n-component Gaussian mixture distribution (supervised) (n-m-s) to the
second supervised location de�nition method.

To �t a mixture distribution to the training data for one location class the
expectation-maximization (EM) algorithm [Bil98] is used. The EM algorithm has
to �t the prior probability a, the mean µ and the covariance matrix Σ for any
component. In addition we do not use a constant value for n but a range of values.
Hence for each permitted number of components a separate mixture distribution has
to be �tted. Furthermore it has to be decided which distribution �ts best according

1In general mixture distributions can use any distribution function, thus fk(x) does not have
to be a normal distribution but can also be of any other kind.
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to a given criterion. The Akaike or the Bayes information criteria are typically used
as determining criteria.

For the presented case study the number of components n is restricted to the
range of 1 to 5. To decide which component �ts best we apply the Bayes information
criterion. Before �tting the distribution with the EM algorithm, the means are
initialized with the k-means cluster algorithm. Di�erent additional information is
further de�ned manually, e.g. which activity is performed with the right, the left,
or both hands, see Table 5.1 columns 4, 5, 8, and 9.

5.2.3 Semi-supervised location definitions
The semi-supervised location class de�nition is based on an automatic clustering
method. The location training data is clustered using a Gaussian mixture cluster
algorithm and furthermore each resulting location class is assigned one or more
gesture classes in a probabilistic manner.

This cluster algorithm �ts a n-component Gaussian mixture distribution to the
training data. To �t this mixture distribution the EM algorithm is used. Once
again we do not use a constant value for n but a range of values. Hence for each
permitted number of components a separate mixture distribution has to be �tted.

In case we decided on a mixture distribution, we need an assignment between
gesture classes and location models. Each training sample x of gesture class i is
assigned to a speci�c component of the �tted mixture distribution by means of
assigning each sample x the component with the largest posterior probability of
x. Accumulating the assignments per component results in a n-fold assignment
histogram for each gesture class i, and hence in a g× n matrix A, with g being the
number of gesture classes and n being the number of components of the Gaussian
mixture.2

For the presented case study the number of components n is restricted to the
range n ∈ [10, 25]. The number of components �nally used is then de�ned according
to

nfinal = arg max
k

(min({max
i

(Ak
i,1), . . . ,max

i
(Ak

i,n)})) (5.2)

where Ak denotes the assignment table corresponding to a k-component-mixture-
distribution. Before �tting the distribution with the EM algorithm the means are
initialized with the k-means cluster algorithm. The algorithm is further fed with
knowledge about whether an activity is accomplished with the right, the left, or
both hands. In case an activity is performed with only one hand, location training
data of the appropriate other hand must not be presented to the cluster algorithm.
Hence again we apply a two-way location de�nition, one for each hand. The semi-
supervised location modeling is done in two di�erent schemes: one using the entire
gesture class resolution and the other using the reduced resolution for the training.
For spotting and classi�cation both schemes are using the entire resolution. We
will refer to these schemes as semi-supervised Gaussian mixture location modeling

2This assignment table A can be seen as a probabilistic or continuous generalization � with
values ranging from 0 to 1 � of the manually de�ned binary or discrete assignment table, see
Table 5.1 on page 75, columns 2 and 6.
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(s-m-m) and semi-supervised Gaussian mixture location modeling using the reduced
gesture class resolution (s-m-r), respectively.

5.3 Distance measures
To assign each position sample or a sequence of samples a speci�c location class a
distance measure is needed. It is quite obvious that the manually assigned locations
simply a�ord the use of an Euclidean distance measure whereas both the semi-
supervised and the supervised method make better use of more complex distance
measures.

The Mahalanobis distance is able to consider the spatial expansion � speci�ed
by the trained distribution � of the location of interest. Thus we will apply the
Mahalanobis distance for the 1-m-s approach, but also use the Euclidean distance
for reasons of comparison. The 1-m-s method in combination with the Euclidean
distance measure is used to simulate best-case manual location modeling. We refer
to this method as pseudo-manual because it is an ideal version of the manual method
de�ned in Section 5.2.1.

For the n-m-s approach we de�ne the distance of sample x to location i analogous
to the Mahalanobis distance according to

di(x) = −ln(pdfi(x)) (5.3)

with pdfi(x) being the probability density function of the location model i evaluated
at position sample x.

For the semi-supervised location approach we calculate the posterior probability
of component j given position sample x for all n components of the location model,
thus we end up in a posterior probability vector p(x). The distance to gesture i of
position sample x is then de�ned according to

di(x) = −ln
(

n∑
j=1

(pj(x) · Ai,j)
)

(5.4)

with A being the g×n probabilistic gesture-to-location assignment table, as de�ned
above; g being the number of gesture classes.

5.4 Decision boundary
To decide whether a speci�c position reading originated in a speci�c location or not,
a decision boundary has to be de�ned. This decision boundary is represented by a
threshold ϑdist, which can be assigned

7 manually using a static threshold, or
7 automatically during the training process resulting in a class-wise threshold.

In [SOJ+06] we trained the thresholds according to

ϑdist,i = µi + f · σi (5.5)
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where µi is the mean value of all distances calculated during the training of location i
and σi the corresponding standard deviation. f is a constant factor. Hence to decide
in favor of location class i in case of position sample x the following constraint must
be ful�lled:

di(x) < ϑdist,i (5.6)

The constant factor f is optimized during a spotting test run on the training data
set by applying the evaluation metric de�ned by Ward et al. [WLT06, War06], see
also Appendix B on page 139.

For the results presented in this thesis we de�ne � no matter which location
method is applied � the decision boundary for sample x and class i according to the
Mahalanobis distance√

(di (x)− µi)T Σ−1
i (di (x)− µi) < ϑdist,i (5.7)

Where µi is the mean of all distances of the training samples and Σi the respective
covariance matrix. ϑdist,i is de�ned according to

ϑdist,i = fi (5.8)

with fi being a constant factor trained as above but separately for each location
class.

5.5 Recognition approach on pre-segmented activ-
ities

As the focus of this work lies on how subsidiary context sensing techniques can
support motion sensing based gesture recognition considering a continuous sensor
data stream, evaluations on pre-segmented activities, i.e. activity segmentation
based on the ground-truth annotation during the experiment, can help supply proof
of concept. Due to that this section summarizes the recognition approach as applied
in this special evaluation scheme.

5.5.1 HMM based motion classification
We have picked Hidden Markov Models (HMMs) as a state-of-the-art classi�cation
approach to the motion classi�cation problem. HMMs have proven [JLT04a, Jun05]
to be an appropriate choice for modeling and recognition of the dynamically
changing motions in our experiment.

HMMs [Rab89, Gha98, Gha01] became a sort of state-of-the-art method for
(on-line) analysis of sequential time series data. HMMs have �rst been used in
the �eld of speech recognition [Rab89] and are now used in many other domains.
HMMs are probabilistic models that are de�ned over a �nite number of states, their
observations, and state transition probabilities. The advantages of HMMs are time
invariance and their ability to deal with real world data. But with an increasing
number of states, the complexity of such models can result in ine�ectiveness due
to an explosion of the number of parameters, unless the parameters can be reduced
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through exhaustive planning, which demands an exact knowledge of the system that
should be modeled.

Although HMMs are quite time-invariant they are unresistant regarding to
under�ll and over�ll errors (see Appendix B.1 on page 140) in particular. While
under�ll errors can be handled a bit more easily, through assigning the states of
the HMM equally distributed prior probabilities � what makes the model of course
less restrictive � over�ll errors may totally confuse the recognition process because
unknown states are presented to the model. Thus this method seems inadequate for
the recognition of gestures in the preliminary spotted segments:

7 The spotting stage aims to be non-restrictive to ensure that all segments
potentially containing a gesture are detected. Thus it will introduce a high
over�ll error rate.

7 The idea of location spotting itself implies that the result will contain a high
over�ll error rate: the hand location is a strong indicator for a gesture to start
or a gesture to start in the near future and a spotted segment might also
contain two or more gestures.

Nonetheless, for pre-segmented activities HMMs are a viable approach.
For the presented evaluation HMMs have been applied to the motion data

according to the following principles. Each manipulative gesture in our experiment
corresponds to an individually trained HMM. The analysis and evaluation of the
number of states per model ranging from two to twelve resulted in determining
the number of states from �ve to seven for the manipulative gestures explored
in the given case studies. The number of states re�ects the complexity of the
respective manipulative gesture. We exclusively used so-called left-right models.
A characteristic property of left-right models is that no transitions are allowed to
states whose indices are lower than the current state.

As features for the HMMs, only raw inertial sensor data has been used. The
employed set of features comprises the following subset of available sensor signals:
three acceleration and two gyroscope signals from the user's right hand and three
acceleration and two gyroscope signals originating at the user's right upper arm. The
observations of the used HMMs correspond to the raw sensor signals or features.
Their continuous nature is modeled by a single normal distribution for each state
in all models.

5.5.2 Location classification
When recognizing pre-segmented activities the trained location models are the basis
for location classi�cation. A frame-based classi�cation is applied based on the
distances de�ned in Eqs. (5.3) and (5.4). We calculate the median distance for
all position samples of the segment. The location class with the minimum median
distance is taken as the location class result. The location class ranking is derived
from the median distances to all location classes. For the supervised and the pseudo-
manual method a gesture class ranking can be derived by assigning each gesture the
same rank its appropriate location class has got.
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5.5.3 Classifier fusion
This section summarizes di�erent approaches to fusing motion and location based
classi�cation results in the pre-segmented recognition approach.

5.5.3.1 Ranking based fusion
A simple fusion method combines the rankings of both the position and the motion
classi�er. In general both classi�cation stages produce a ranking starting with the
most likely and ending with the least likely class. The �nal classi�cation is then
based on a combination of these two rankings. This combination can be done as
follows:

7 average of best matching classes (aob) comparing the average ranking of the
top choices of both classi�ers.

7 average (avg) comparing the average ranking of all gesture classes.

5.5.3.2 Plausibility analysis
The most obvious fusion method is the use of wrist position information to constrain
the search space of the motion based classi�er. The motion based HMM classi�er
results in motion class ranking. We test the four most likely gesture classes according
to the following criteria. Beginning with the most likely gesture concerning the
motion result we analyze the plausibility concerning the location of this gesture
class. In case the plausibility result �ts the location class, the result is assumed
to be the correct gesture class, otherwise the next candidate is tested. In case the
whole set of possible candidates is tested and we end up with no plausible class,
the position estimation is assumed to have failed for whatever reason and the most
likely motion result is taken as a �nal gesture result.3

Whether the current gesture hypothesis is plausible concerning current position
estimations is decided by calculating the median distance of all position samples
of the tested segment to the trained location for the gesture class that is currently
tested for plausibility. In case the median of these distances is below a certain
threshold level, it is assumed to be a plausible gesture result.

5.5.3.3 Naive Bayes classifier fusion
This fusion method considers the confusion matrix (CM) that is achieved by running
a test run on the pre-segmented data used for training.

In order to describe this in more detail we apply the following denotation: ω
denotes an event. ω can be one out of the n relevant hand gestures, thus ω ∈
[ω1, . . . , ωn]. α denotes the result of classi�er A for the spotted gesture and β the
result of classi�er B. The confusion matrices CMA and CMB belong to classi�er
A and B, respectively. From these confusion matrices we obtain an estimation for
the probability that a classi�er recognizes class ωi although class ωj is true, i.e.
the probability P (α = ωi|ω = ωj) = CMA,ij and P (β = ωi|ω = ωj) = CMB,ij.
Assuming that the classi�er results are independent, one can show that

c = arg max
i

([P (α|ωi) · P (β|ωi)]) (5.9)

3For the continuous evaluation scheme we apply a similar concept also called plausibility
analysis. The major di�erence is that in case of no plausible class the spotted location is assumed
to contain no relevant gesture and thus the segment can be treated as falsely inserted.
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Table 5.1
Gesture list for the bicycle maintenance case study. The table also lists additional
information used to con�gure the recognition process.

right hand left hand

loc loc loc act loc loc loc act

class ID ID description relevant relevant ID description relevant relevant

1 1 fw (bottom)
√ √

1 fw (bottom)
√

-
2 2 bw (bottom)

√ √
2 bw (bottom)

√
-

3
3 screw A

√ √
N - - -

4
√ √

N - - -
5

4 screw B

√ √
N - - -

6
√ √

N - - -
7

5 screw C

√ √
N - - -

8
√ √

N - - -
9

6 pedal

√ √
N - - -

10
√ √

3 chain
√

-
11

√ √
4 gear-switch

√
-

12 7 bw (top)
√

- 5 pedal
√ √

13
8 fw (center)

√ √
6 fw (center)

√ √

14
√ √ √ √

15 N - - - 7 fw (left)
√ √

16 9 bw (right)
√ √

N - - -
17 N - - - 8 bell

√ √

18
10 seat

√ √
9 seat

√ √

19
√ √ √ √

20
11 pedal (center)

√ √
10 pedal

√
-

21
√ √ √

-
22

12 close to bw

√ √
11 close to bw

√ √

23
√ √ √ √

legend:
loc ... location fw ... front wheel
act ... activity bw ... back wheel
N ... NULL

is the best fused result from the Bayesian point of view. Due to the assumption
that has to be made this fusion method is called naive Bayesian classi�er fusion, see
also [KBD01]. They refer to this method as Naive Bayes combination.

5.6 Experimental results

5.6.1 Introduction
This section presents evaluations when working with pre-segmented activities, to
fortify the usefulness of the combination of location and motion in the gesture
recognition process. In addition to the fusion methods described in Section 5.5.3
on the next page we apply additional pseudo-fusion methods to visualize the
potential capacity of the classi�er fusion approach, see next section. Moreover the
performance of di�erent location modeling approaches are contrasted.

We use the experiment described in Section 3.2 on page 30 to evaluate the
methods described within this chapter. Table 5.1 gives the list of gestures (as
already named in Table 3.1 on page 33) and any additional information used to
con�gure the spotting and recognition algorithms. This information comprises the
manually assigned location classes (only used for methods p-m, 1-m-s, and n-m-s),
and whether hand location or hand activity is relevant for this speci�c manipulative
hand gesture.

To evaluate the ability of the approach to deal with inter-subject training and
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recognition and in particular to fortify the assumption that location awareness is
a comprehensively user-independent feature and therein outperforms motion based
activity recognition, we adopt a threefold evaluation scheme:

7 Intra: denoting the user-dependent training and recognition, i.e. the location
and gesture recognition for a speci�c subject is adopting models trained only
on test data of this subject.

7 Inter: denoting the inter subject test and recognition scheme, i.e. the models
are trained using data from all subjects.

7 External: in this evaluation scheme the models used for recognizing gestures of
a speci�c subject are trained using exclusively test data of all other subjects.

To ensure a comparable training of these three evaluation schemes and, what is
more, to avoid over-�tting in the inter and external schemes, we use just a subset
of all recorded training instances according to the following rules:

7 Intra: the �rst 18 recorded instances per gesture and subject → 1 × 18 = 18
train instances per model.

7 Inter: the �rst three recorded instances per gesture and subject → 6× 3 = 18
train instances per model.

7 External: the �rst four recorded instances per gesture and subject→ 5×4 = 20
train instances per model.

The ultrasonic distance readings of both wrist-worn ultrasonic transmitters and
the orientation, acceleration, and gyroscope readings of both MT9B devices worn
on the lower arms (see also Figure 3.1 on page 32) are processed as described in
Chapter 4 using the �lter structure as depicted in Figure 4.2 on page 61 resulting
in two wrist trajectories as exempli�ed in Figure 4.3 on page 64.

5.6.2 Classification results for pre-segmented activities
Table 5.2 on the next page summarizes the classi�cation results, see Section 5.6.1
on the preceding page. The HMM classi�cation of the motion readings is fused with
di�erent location results. The fusion methods are average (avg), average of best
(aob), and location plausibility analysis (pa), see Section 5.5.3 on page 74.

Note that HMMs are trained gesture-class-wise and locations are trained location-
class-wise. Thus the performance is evaluated in the same manner. Due to that the
recognition results of mere location recognition cannot be directly compared with
either mere motion based or fused results.

Two additional fusion methods are applied. Almighty identi�es a fake fusion
algorithm: in case either one classi�er is correct the result is counted as correctly
classi�ed. Whereas binary is a rather strict classi�er fusion method: both classi�ers
must agree, otherwise it is assumed that the class cannot be correctly classi�ed and
thus no valid result is available. The almighty and the binary fusion results are
given as a clue on the upper and lower bounds of the classi�er fusion capacities, i.e.
any fusion method is expected to be signi�cantly better than the binary result, but
hardly any fusion method will be better than the almighty result.

Moreover, the table also summarizes the results for the reduced gesture class
resolution, see also Table 3.1 on page 33. Finally the label 1+2 gives the classi�cation
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Table 5.2
Classi�cation results for pre-segmented activities � The table summarizes the classi�cation
results for pre-segmented activities. The HMM motion based classi�cation is fused with
di�erent location results. The fusion methods are avg, aob, and pa. The table also
summarizes the results for the reduced gesture class resolution (results in brackets). Finally
the label 1 + 2 gives the classi�cation results for taking the two most probable predictions
of the classi�er or classi�er fusion into account. All numbers are given as a percentage of
the overall amount of gesture events.
Note that the location results are given in location class resolution whereas the motion
and the fusion results are given in gesture class resolution. Thus the location recognition
rates are not directly comparable with the other results.

intra inter external

loc method corr ( red) 1+2 ( red) corr ( red) 1+2 ( red) corr ( red) 1+2 ( red)
motion HMM 83.5 (86.8) 90.5 (91.8) 81.5 (89.7) 94.6 (96.7) 69.8 (81.0) 84.6 (87.7)

p-m location 85.0 (85.0) 96.3 (96.3) 86.6 (86.6) 96.2 (96.2) 85.9 (85.9) 96.0 (96.0)
almighty 98.1 (98.2) 99.9 (99.9) 98.2 (98.7) 99.8 (99.8) 95.6 (96.6) 98.9 (99.1)
binary 70.4 (73.6) 86.9 (88.2) 69.9 (77.5) 90.9 (93.1) 60.1 (70.3) 81.7 (84.6)

avg 90.2 (94.7) 95.9 (96.3) 87.8 (98.1) 99.2 (99.7) 77.4 (90.9) 92.3 (94.0)
aob 90.5 (95.0) - ( -) 88.7 (99.5) - ( -) 79.4 (93.3) - ( -)
pa 88.9 (93.1) - ( -) 86.4 (96.4) - ( -) 76.4 (89.4) - ( -)

1-m-s location 77.8 (77.8) 92.3 (92.3) 81.4 (81.4) 96.0 (96.0) 81.1 (81.1) 94.2 (94.2)
almighty 95.5 (96.6) 98.8 (98.8) 95.9 (97.5) 99.2 (99.7) 94.1 (96.0) 98.0 (98.4)
binary 65.9 (67.9) 84.0 (85.3) 67.0 (73.6) 91.4 (93.0) 56.8 (66.0) 80.8 (83.5)

avg 89.9 (94.4) 95.4 (96.0) 87.8 (98.4) 99.0 (99.7) 78.4 (91.6) 92.6 (94.5)
aob 88.2 (92.3) - ( -) 87.7 (97.7) - ( -) 79.2 (92.1) - ( -)
pa 88.9 (93.1) - ( -) 86.7 (96.7) - ( -) 77.0 (90.1) - ( -)

n-m-s location 80.8 (80.8) 91.8 (91.8) 87.4 (87.4) 95.6 (95.6) 85.5 (85.5) 94.2 (94.2)
almighty 96.7 (97.3) 99.6 (99.6) 97.8 (98.4) 99.7 (99.8) 95.6 (96.2) 98.7 (98.9)
binary 67.6 (70.3) 82.6 (84.0) 71.1 (78.7) 90.4 (92.5) 59.8 (70.3) 80.1 (83.0)

avg 89.5 (93.9) 95.6 (95.9) 87.6 (98.4) 98.9 (99.5) 77.9 (91.2) 92.6 (94.0)
aob 88.4 (92.8) - ( -) 87.8 (98.6) - ( -) 78.9 (92.5) - ( -)
pa 88.5 (92.7) - ( -) 86.8 (97.0) - ( -) 76.6 (89.7) - ( -)

s-m-m location 43.7 (59.6) 74.5 (80.2) 47.1 (61.9) 76.8 (85.1) 47.7 (65.2) 81.8 (88.0)
almighty 89.6 (94.2) 97.6 (98.6) 88.5 (95.5) 98.7 (99.5) 81.5 (92.1) 97.6 (99.1)
binary 37.6 (52.2) 67.4 (73.5) 40.1 (56.1) 72.6 (82.2) 36.1 (54.1) 68.8 (76.5)

avg 82.9 (93.0) 95.5 (96.0) 83.4 (97.6) 99.4 (99.6) 75.2 (91.4) 92.7 (94.6)
aob 76.1 (90.4) - ( -) 78.5 (94.5) - ( -) 72.6 (90.9) - ( -)
pa 86.0 (89.7) - ( -) 85.1 (96.1) - ( -) 74.4 (86.5) - ( -)

s-m-r location 64.2 (64.2) 88.0 (88.0) 66.6 (66.6) 90.0 (90.0) 65.9 (65.9) 89.1 (89.1)
almighty 91.3 (93.0) 98.8 (98.9) 92.4 (96.1) 99.5 (99.5) 88.5 (91.8) 97.7 (98.6)
binary 56.4 (58.0) 79.6 (80.9) 55.7 (60.1) 85.1 (87.2) 47.2 (55.0) 76.0 (78.3)

avg 88.9 (93.0) 94.9 (96.0) 86.9 (97.6) 99.1 (99.5) 78.0 (91.4) 92.8 (94.4)
aob 88.7 (92.8) - ( -) 84.6 (95.4) - ( -) 77.2 (90.6) - ( -)
pa 86.3 (89.9) - ( -) 85.1 (95.7) - ( -) 74.4 (86.2) - ( -)

legend:
1-m-s ... 1-component Gaussian mixture distribution supervised location modeling
p-m ... pseudo-manual: 1-m-s using Euclidean distance
n-m-s ... n-component Gaussian mixture distribution supervised location modeling
s-m-m ... semi-supervised Gaussian mixture location modeling
s-m-r ... s-m-m the reduced gesture class resolution
HMM ... Hidden Markov Model
avg ... fusion method based on average class ranking
aob ... fusion method based on average ranking of winner classes
pa ... fusion method based on location plausibility analysis
binary ... strict fusion method: both classi�ers must agree
almighty ... fake fusion: either one result is correct
red ... reduced gesture class resolution
1+2 ... a gesture is counted as correctly recognized in case it came in �rst or second rank
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results for taking the two most probable predictions of the classi�er or classi�er
fusion into account. All numbers are given as a percentage of the overall amount of
ground truth gesture events.

The results given in Table 5.2 suggest that the pseudo-manual and the supervised
location modeling methods outperform both semi-supervised location modeling
techniques. But considering also the second ranked gesture class or the reduced
gesture class resolution the bene�t of supervised location-gesture assignment
decreases, arguing that semi-supervised location modeling is also a viable approach.

Moreover, the table suggests that location and motion provide complementary
information for the contemplated gesture recognition task. The �nal recognition
rates are between 86% and 97% when considering the reduced gesture class
resolution and the pa fusion strategy.

In addition the results depict that external modeling has signi�cant downsides
in terms of decreasing recognition rates in case the system is based on mere
motion sensing. The shortcoming is almost compensated by adding the location
information. Thus this result con�rms the user-independence of the mixed motion-
location approach.

5.7 Conclusion
In this chapter we demonstrated that despite all its problems ultrasonic hand
tracking is a valuable addition to motion sensor based recognition of manipulative
gestures. Di�erent location modeling techniques were proposed and thereafter
contrasted by experimental evaluations. Summarizing, the following conclusions
can be drawn:

7 The results show that the supervised approaches including the manual
approach outperform the semi-supervised location modeling techniques. But
considering also the second ranked gesture class or the reduced gesture
class resolution the advantage of supervised location modeling decreases.
Thus � depending on the contemplated application � semi-supervised location
modeling may still be a viable approach.

7 We have shown that location and motion provide complementary information
for the contemplated gesture recognition task, with (reduced) gesture recog-
nition rates around 90% for pre-segmented activities � around 80% for the
external case.

7 In addition we have shown that bad recognition rates of mere motion based
sensing when performing an external modeling scheme are compensated by
adding position sensing and location information. Thus this result con�rms
the user-independence of the proposed mixed motion-location approach.



Chapter

6
Location based spotting and
recognition

This chapter presents in detail our approach on combining location and motion
information for activity spotting and recognition.

The proposed approach comprises location based spotting enhanced by means of
a location trajectory based spotting step. Finally a strategy for fusing intermediate,
class-wise results is described. The methods are tested and evaluated on the bicycle
maintenance test scenario.

Finally, the chapter gives also a comparison with the approach applied
in [SOJ+06] and contrasts results achieved by both methods.
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6.1 Introduction
This chapter deals with the use of the proposed hand tracking approach (see
Chapter 4) to identify which parts of the machinery are being manipulated during
an assembly or maintenance task in order to solve the gesture spotting problem. The
advantage of this approach is that it requires only minimal instrumentation of the
environment. All that is needed are at least four ultrasonic base stations (receivers)
placed at prede�ned locations, two ultrasonic transmitters attached to both wrists
of the user, two wrist-worn orientation sensors, and data on the dimensions and
layout of the machinery, which today is in most cases available in electronic format,
at least in industrial environments.

This chapter demonstrates how hand tracking can be used to improve the
accuracy of continuous recognition of manipulative gestures. Speci�cally this
chapter presents the following contributions

7 To prove that the suggested approach can handle the continuous case, we
apply and expand a recently presented motion trajectory based spotting and
recognition approach on the position trajectories derived by means of the
Kalman fusion �lter described in Chapter 4.

7 We present the results of an experimental validation of our method. It is
based on a bicycle maintenance tasks that has been repeatedly performed by
six volunteers, see also Section 3.2 on page 30. Complex NULL gestures where
inserted accounting for approximately 50% of the overall number of gestures
(68.2% of the total data length) in the sequence data set.

7 We demonstrate a recognition process that is initiated with a high recall lo-
cation based spotting approach and continuously increases precision by fusing
additional information without decreasing the initial recall rate signi�cantly.

7 What was already shown for pre-segmented activities (see Section 5.6.2)
becomes even more obvious in the continuous case: our method can handle
user-dependent training as well as user-independent without a signi�cant
di�erence in the performance.

6.2 Basic idea
One possible approach to continuous recognition of manipulative hand gestures is to
correlate arm gestures with the user's hand location � or rather wrist location. More
precisely, we consider the location with respect to the object being maintained or
assembled. The assumption is that the probability of a gesture resembling a certain
maintenance activity to be accidentally performed at the location corresponding to
this activity is very low.

Moreover position based spotting seems to be promising because the user's
location or, even more, the location of the hands is a strong indicator for starts
or stops of manipulative hand gestures, see also Section 1.3 on page 4.

Figure 6.1 on the next page gives an overview of our implementation of this idea.
We use the hand position information derived from ultrasonic and orientation sensor
based hand tracking as described in Chapter 4 to select data segments most likely
containing an activity of interest. In each segment we perform motion trajectory
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Figure 6.1
Overview of the recognition process.

based spotting already considering the gesture hypotheses derived from the location
spotting step, aiming at further re�nements of the spotting results. The �nal merge
step includes additional decision making on the spotted gestures.

The locations of interest have to be de�ned in advance. This is done either in a
manual or in a (semi-) supervised manner in the training stage, see Section 5.2 on
page 68. The section also de�nes a distance measure for each location de�nition
method.

6.3 Location based spotting
This spotting method is based on the detection of segments within the location
stream, whose position samples lie within the location decision boundary ϑdist
de�ned in Eq. (5.7). For bi-manual gesture classes the locations of either hand
must ful�ll this criterion. This step results in a class-wise binary spotting stream,
see also Figure 6.2 on the next page.

The location spotting is done for each of the trained location classes of both
the left and the right hand, i.e. we end up with two multi-dimensional spotting
results with the dimension being the number of de�ned location classes per hand.
Combining left and right hand locations considering the mapping of the gesture
classes to the three type of gestures � left, right, bi-manual � still results in a multi-
dimensional spotting but with the dimension being the number of gesture classes.

After this �rst spotting stage these detected segments potentially holding a
speci�c gesture also have to ful�ll the following criteria, aiming to delete falsely
inserted segments:

7 Temporal criterion First we de�ne a temporal criterion, i.e. the segments must
be of a certain length. For that, segments with a length < ϑlen are �ltered
out. Preliminary � in order to handle sample-wise measurement errors � we
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Figure 6.2
The location spotting process is tuned and controlled by criteria de�ned on the class-wise
distance calculations.
The higher ϑdist is set, the higher the median grade of a speci�c segment most likely gets.
Consider segment S1 in the illustration: in case ϑdist is increased, additional samples are
most likely included within this segment. In case one sample on both sides gets included
then the median grade of S1 would increase from 1 to 2.

�lter out gaps of length < ϑNULL len between segments with identical class
hypotheses.

7 Grade criterion In addition we calculate the median grade of each segment:
Each position sample x results in an n-dimensional vector of distances d(x),
e.g. according to Eq. (5.3), with n being the number of location classes. Sorting
this distance vector results in an n-dimensional vector r(x) of ordinal numbers
where the ith entry ri(x) assigns location class i a grade given position sample
x in such a way that ri(x) ≤ rj(x) ⇔ di(x) ≤ dj(x)∀{(i, j) ∈ [1, . . . , n]}.
Thus r(x) is the location class ranking given position estimation x. Since each
detected segment consisting of position samples [x1, . . . ,xm] has got a speci�c
location class hypothesis i, we can assign each segment a series of grades
[ri(x1), . . . , ri(xm)]. We will refer to the median of this series as median grade.

In case this median grade is above a certain threshold ϑgrade the segment
is assumed to be an insertion and gets deleted. In case of a bi-manual gesture
the median grades for both location classes must be below a certain threshold.

The choices for ϑdist and ϑgrade are the tuning factors to minimize both deletion
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and insertion rate of the spotting stage: The higher ϑdist, the lower the number
of deletions, but the higher the number of insertions; the same is true for ϑgrade.
On the other hand, the higher ϑdist is set, the higher the median grade of a speci�c
segment gets because the segment boundaries are spread due to the lower restrictive
decision boundary. Thus we most likely include more samples with a higher grade
which increases the median grade of this segment; for an example see Figure 6.2. By
increasing ϑdist at a constant value for ϑgrade we both add segments to the spotting
result but also exclude some other segments. We now apply a bi-modal spotting
stage, the �rst stage is using a high value for ϑdist and the other stage is applying
a low value, both using the same value for ϑgrade. The �nal output is the union of
both spotting stages. This has turned out to be an e�ective method to increase the
precision without signi�cantly lowering the recall.

6.4 Trajectory based spotting
Up-sampling the position data by means of a complementary Kalman �lter, see
Section 4.4.5 on page 58, does not only result in position and thus location estimation
with higher resolution in time, but also in a more dynamical position estimation,
i.e. the position estimation is aware of subtle and fast motions of the hand. Hence,
these resulting hand trajectories are better applicable for gesture recognition.

6.4.1 Introduction
A class-wise motion trajectory based spotting approach was already presented
by Stiefmeier et al. [Sti08, SRO+08, SRT07b, SRT07a], see also Section 8.2.3 on
page 116. It is based on a discretization of the motion trajectories of the lower
arms or the hands resulting in a motion trajectory alphabet. Furthermore, for each
gesture class an optimal string, which best represents the training set, is trained.
For methods how to train these optimal string patterns refer to [Sti08].

In the spotting stage a string matching function is used to retrieve similar patterns
within the discretized motion trajectories. This string matching function results in
matching cost series with minima at the end of potential gesture segments. Cost
function results for trajectories of di�erent body parts are �nally fused to handle
left, right, and bi-manual gestures and to handle gestures that are more related to
the arms or more related to the hands.

The approach has been tested on trajectories recorded using the Motion
Jacket [SRO+08]. The Motion Jacket uses four or six orientation sensors on the
upper body limbs (upper arms and lower arms or upper arms, lower arms, and
hands) to track their motion trajectory. All trajectories are referenced to the motion
trajectory of an additional orientation sensor �xed on the torso � either on the
chest or on the back � of the user. By compensating the heading of the user by
means of the measured heading of the torso orientation sensor, the trajectories are
calculated according to a reference system translating but non-rotating compared to
the global reference system; i.e. the resulting trajectories are given in a user reference
system with the x-axis1 rotated to magnetic north; thus the user always seems to

1The x-axis is de�ned in such a way that it is always pointing into the same direction the user
is facing.
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face magnetic north. In such a way the trajectories are invariant to global user
orientation and global user position. For a visual comparison of the two trajectory
estimation approaches (mere orientation sensing and mixed location and orientation
sensing) see Figure 6.3 on the opposite page.

6.4.2 Approach
This work aims at applying this technique to the trajectories that can be derived
from the position estimation of the fusion of the absolute position measurements
with the relative position estimation of the inertial measurement units described in
Section 4.4.5 on page 58.

This mixed location-orientation sensor approach should outperform the mere
orientation approach in the following points:

7 The orientation sensors used in [SRO+08] are inertial measurement units
mixed with a three-dimensional magnetic �eld sensor as an absolute reference
source. This is a decent approach as long as the magnetic �eld is non-changing
over time and homogeneous, otherwise this results in drifting orientations.
Evidently, ultrasonic positioning as an aiding source has got its disadvantages
as well, in industrial environments in particular. However, magnetic aiding will
most likely cause slightly drifting errors also confusing the estimations based
on the relative measurements whereas location aiding sources will mainly cause
missing position readings, which can be for a short term compensated by the
relative measurement system.

7 The mere orientation approach uses at least three on-body sensors to measure
the orientation of the wrist. Each sensor has to be �xed separately on a
single body limb. In case both wrist trajectories are of interest the sensor
setup demands �ve sensors �xed on di�erent locations on the user. In case a
position sensor is used, there is need for two motion sensors and two position
sensors for both wrists. A �nal implementation could even integrate motion
and position sensors to one sensor unit.

As stated above, the mere motion trajectory approach results in rotation and
position invariant trajectories. An additional orientation sensor would be necessary
to achieve the same in the mixed position and orientation approach.

We now apply this trajectory based spotting approach to further re�ne the
location based spotting result. More precisely, we apply this method only on
preliminary spotted segments. Every segment is assigned a speci�c location
hypothesis and one or more gesture hypotheses. The string trajectory patterns
trained for each of these expected gestures are then used to search in these spotted
segments in order to recognize matching trajectories and thus to locate sub-segments
containing the actual gesture. This results in a (multivariate, in case of multiple
gesture hypotheses) series of matching costs for every single location segment.

6.4.3 Matching cost minima spotting
As stated above the matching costs have a minimum at the end of a potential gesture
segment. Thus [SRO+08] suggests a class-wise trained threshold. Subsequently, any
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Figure 6.3
The �gure depicts the results of two di�erent sensing approaches to obtain a wrist
trajectory. The MTx based trajectories display those trajectories calculated from three
on-body orientation sensors: chest, upper and lower arm. The resulting trajectories are
given in the user reference system with the x-axis rotated to the magnetic north. The
position estimation depicts the coordinates of the Kalman �lter based fusion of motion
and position readings, see also Figure 4.3 on page 64. The resulting trajectories of the
second approach are given in the global reference system.
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Figure 6.4
Matching cost time series � the plots depict the matching cost time series for three di�erent
trained string patterns. All three matching cost time series depict the result for the same
data set of the type sequence. The colorized regions depict the ground truth annotation
for the respective manipulative hand gesture. Black depicts the raw matching costs and
red the �ltered matching cost series after applying a low-pass �lter to the raw matching
costs. The low-pass �lter uses a cosine-tapered window of the size of the pattern that was
trained for the respective gesture class.



6.4. Trajectory based spotting 87

decreasing matching cost segment with an endpoint below this threshold is assumed
to contain the respective gesture.

Figure 6.4 on the next page exempli�es matching cost series as calculated for
three di�erent gestures on the same sequence. The colorized regions mark the
ground truth annotations of the respective gesture. As expected, the matching
costs reach a minimum in all three examples. In case of gesture pumping (front
wheel) this minimum is outstanding compared to the other minima peaks, the other
outstanding minimum results from an instance of gesture pumping (back wheel). A
contrary result can be seen in the third plot. Though the matching cost series for
gesture changing bulb does have a minimum at the end of the annotated gesture,
this minimum is not outstanding at all. Thus a strategy based on mere minima
thresholding does not seem to be viable for all gesture classes. In fact it turned out
to be applicable for approximately the half of the gesture class set of the bicycle
maintenance case study. For the other gestures this approach has though a decent
recall but is not restrictive enough, i.e. these patterns are not speci�c enough to
further improve the location based spotting result.

6.4.4 Multivariate analysis of matching costs
Nevertheless Figure 6.4 implies that a more accurate analysis of the matching cost
series can enhance the performance of the string matching approach further. As a
straightforward starting approach additional polynomial features2 of the matching
cost series are evaluated; for examples see Figures 6.5 on the following page to 6.8 on
page 89. Figures 6.5 and 6.7 exemplify parameter results for data of two activities
used for training and Figures 6.6 and 6.8 for the respective activities but calculated
on data used for testing. The �ve features are minimum, maximum, mean, gradient,
and curvature. The �gures depict feature values for two di�erent gesture classes, one
most likely resulting in a good class separation (Figures 6.5 and 6.6). The others
exemplify a really challenging gesture class (Figures 6.7 and 6.8).

These additional features are included into the spotting process by means
of gesture-class-wise LDA classi�ers. Each classi�er is trained by applying the
respective trajectory string pattern on training data sets of all gesture classes.
The resulting matching cost series is segmented by means of minima and maxima
recognition. Finally this results in two sets of polynomial features for each gesture
class, one set comprising correctly spotted gestures, the other comprising the NULL
class examples, see also Figures 6.5 to 6.8.

The LDA performs a dimensionality reduction for a given n-dimensional feature
space resulting in a (c − 1)-dimensional feature space with c being the number of
classes. Hence in our case the new feature space is one-dimensional and a single
scalar threshold can be trained for each gesture.

Note that LDA based classi�cation has got its limitations in this case. The
classi�ers are trained to separate two classes: one speci�c gesture class and the
NULL class consisting of any imaginable human hand gesture. Modeling the NULL
class by means of just using any other gesture of interest is not su�cient. The
resulting projection matrix and the appropriate threshold will only discriminate

2Refer to [EGK91] for a fast polynomial least-squares approximation. Applying such a method
on the cost function remains future work.
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between the gesture and the set of all other trained gestures where it should
obviously discriminate between the gesture and any other possible gesture.

6.5 Final decision making process
Trajectory based spotting result in a set of segments, that has to be further processed
for the purpose of

7 excluding falsely predicted gesture events (insertions) and thus increase the
�nal precision;

7 deciding on gesture class hypotheses that have temporal concurrencies. These
temporal concurrencies result from the class-wise processing approach, i.e. all
preceding processing stages operate separately in a class-wise manner unaware
of the concurrent recognition results.

In order to cope with these two issues, we apply a plausibility analysis stage and a
simple strategy aiming to resolve recognition concurrencies.

6.5.1 Plausibility analysis
The plausibility analysis stage argues that after the trajectory based spotting step
more restrictive location criteria than in the mere location spotting stage can be
applied.

This is because the result of the trajectory based spotting stage further con�nes
each segment from location class resolution to gesture class resolution. Thus in case
of a correctly spotted gesture the position samples of this gesture segment should
on average �t the location model better than the overall location segment's samples
do: the trajectory based spotting stage excludes samples at the beginning and the
end of the location segment that might be close to the location but are not part
of the actual activity, whereas position samples remaining in the gesture segment
should be even closer to the respective location model than the excluded position
samples are. In case of an incorrectly spotted gesture this is obviously not true.

The criteria � calculated on the gesture segments � on which this analysis is based
on are:

7 the fraction of position samples with grade rl(i) = 1,
7 the fraction of position samples with grade rl(i) ≤ 2,
7 the minimum distance value to location l(i), and
7 the median distance value to location l(i)

with i being the gesture class hypothesis, l(i) being the location class of gesture i,
and r being the ranking vector as de�ned in Section 6.3. The above listed criteria
are used to further exclude potentially falsely recognized gestures.

Additional criteria based on the trajectory matching cost function would make
a class-comprehensive normalization of the matching costs necessary. This has
remained an open issue so far.



6.6. Summary of the previously published approach 91

6.5.2 Concurrency resolving
Finally the remaining gesture recognition concurrencies have to be resolved. For
this purpose we calculate a con�dence value derived from the above listed criteria,
according to the product of all four criteria � all eight in case of a bi-manual gesture.
In case of a concurrency (i.e. a list of segments overlapping one another), we search
for all possible sub-lists containing no concurrency and decide in favor of the sub-
list that contains the gesture segment with the highest con�dence value, as already
proposed in Section 2.3.2 on page 25. Evidently, this strategy will fail and cause a
considerable amount of deletions in case of heavily nested concurrencies; which is
not the case for the predicted gesture event streams after the plausibility analysis
stage at least in the presented case study.

Before this strategy is applied, some minor concurrencies are pseudo-resolved,
i.e. in case of a concurrency of two segments with the overlapping fraction of both
segments being smaller than a certain threshold � this threshold is set to 30% for
the presented evaluations � we shorten these segments by half of the respective
overlapping fraction. For any given segment repeated pseudo-resolving is allowed
while the deleted fraction on each side of the segment is equal or smaller than half
of the threshold.

6.6 Summary of the previously published approach
Section 6.7 will also compare the current results with the results achieved
in [SOJ+06]. Thus this section summarizes this preliminary applied approach.
Location based spotting is based on position data derived from least squares
optimization. In the training stage gestures are manually grouped into a set of eleven
locations, similar to Table 5.1 on page 75. For both hands, mean and variances are
modeled for these locations according to the training data.

In the gesture spotting stage, the Mahalanobis distance is used to estimate the
probabilities for each sample to be part of a speci�c location, analogous to method
1-m-s, resulting in a parallel spotting stream for each location of interest.

In a next step a Mahalanobis classi�cation similar to the location spotting stage
itself is done, despite its being trained for all gesture classes instead of the location
classes. For each spotted location segment each sample out of this segment is
classi�ed using the Mahalanobis distance. A majority vote over all samples assigns
then a �nal gesture class hypothesis.

For motion based classi�cation HMMs have been chosen, similar to Section 5.5.1.
The features for the HMMs are raw inertial sensor data, i.e. acceleration and rate of
turn, on the one hand. On the other hand, we derived orientation information from
the set of inertial sensors in form of Euler angles to complement the raw sensor data
features. The employed set of features comprises the following subset of available
sensor signals and derived quantities: two acceleration and one gyroscope signal
from the right hand, pitch angles from right lower and upper arm, two acceleration
signals from the left hand and the pitch angle of the left upper arm.

Finally fusion algorithms as described in Section 5.5.3 are used to combine
both classi�er results and to exclude possibly falsely spotted gestures. The fusion
stage constitutes the major di�erence to the current modular approach conceptually
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explained in Chapter 2. Any decision on rejecting or accepting a speci�c gesture
hypothesis is always made in comparison to another gesture hypothesis or even a set
of hypotheses. Hence these stages have to be trained on the overall set of gestures
of interest and what is more the classes cannot be be optimized individually. In
both approaches an activity class with low precision rate most likely decreases the
recall rate of other classes. But in case the recognition is optimized in a class-wise
manner this negative inter-class e�ect is kept to a minimum.

6.7 Experimental results

6.7.1 Introduction
The presented evaluations test the suggested hand tracking (see Chapter 4) and
location modeling approaches (see Chapter 5) on its ability to spot sporadic hand
gestures by means of applying the approaches presented within this chapter. Thus
this section presents results of the continuous case.

Once again we use the experiment described in Section 3.2 on page 30. Additional
information and a description of the applied evaluations schemes (intra, inter, and
external) was already given in Section 5.6 on page 75.

Ultrasonic distance readings of both wrist-worn ultrasonic transmitters and
orientation, acceleration, and gyroscope readings of both MT9B devices worn on the
lower arms (see also Figure 3.1 on page 32) are processed as described in Chapter 4
using the �lter structure as depicted in Figure 4.2 on page 61 resulting in two wrist
trajectories as exempli�ed in Figure 4.3 on page 64.

6.7.2 Spotting results
Location based spotting and location trajectory based spotting results for di�erent
location methods and the three di�erent evaluation schemes are given in Table 6.1
on the next page. In order to count event errors the evaluation metric proposed
by [WLT06, War06] was applied, see also Appendix B on page 139.

Note that all errors have to be counted gesture-class-wise, thus merge errors
are impossible because no recorded sequence contains more than one instance of a
certain gesture class. On the other hand, insertion errors are overestimated, e.g. in
case the location spotting stage correctly detects location class screw A because the
subject is tightening screw A, this will account for a correct event for this gesture
class but also for an insertion error for the respective other screw A class.

The results of the spotting evaluations can be summarized as follows.

7 Table 6.1 on the next page shows that the semi-supervised location modeling
methods are outperformed in terms of correctly recognized location event
rates and substitution error rates by the supervised and the pseudo-manual
methods.

7 Moreover, the results point out that the mere intra location modeling seems
to provide too little diverse location training data. Whereas for motion based
gesture recognition intra training schemes usually outperform inter-subject
trained models, this does not seem to be valid for location features. Thus �
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Table 6.1
Location and location trajectory spotting results for di�erent location methods and the
three di�erent evaluation schemes. The results are given as a percentage of the overall
amount of gesture events. The results for over�ll and under�ll errors are given as a
percentage of the overall amount of correctly predicted events.
eval. scheme spotting stage correct del subst ins frag mer over under

intra loc (p-m) 93.8 2.3 3.9 269.9 0.1 - 98.9 42.3
traj (poly) 90.8 5.7 3.0 89.7 0.5 - 97.7 47.9
traj (min) 89.0 4.7 4.7 133.9 1.6 - 82.6 64.6
loc (1-m-s) 97.3 1.4 1.2 286.4 0.1 - 98.7 38.9
traj (poly) 94.2 3.0 2.4 110.1 0.5 - 97.2 45.5
traj (min) 93.4 2.7 2.1 161.6 1.7 - 83.4 61.8
loc (n-m-s) 90.7 4.2 4.8 206.1 0.3 - 97.9 49.6
traj (poly) 87.8 8.4 3.3 75.9 0.6 - 96.1 54.3
traj (min) 86.2 7.8 4.4 107.1 1.6 - 79.8 68.5
loc (s-m-r) 84.9 1.4 13.6 278.4 0.1 - 96.4 47.6
traj (poly) 82.3 10.6 6.9 127.7 0.2 - 94.6 53.2
traj (min) 80.8 9.4 8.1 138.0 1.8 - 79.3 69.5
loc (s-m-m) 79.6 0.1 20.0 262.4 0.2 - 96.6 50.6
traj (poly) 77.6 8.4 13.8 114.5 0.2 - 95.2 54.7
traj (min) 75.9 6.8 15.8 125.5 1.5 - 78.8 67.6

inter loc (p-m) 96.8 1.1 2.1 315.5 0.1 - 99.2 36.1
traj (poly) 93.8 3.1 2.7 112.3 0.4 - 97.8 42.3
traj (min) 92.2 3.0 3.1 154.7 1.7 - 85.7 61.9
loc (1-m-s) 97.4 1.1 1.5 313.1 0.1 - 99.2 33.2
traj (poly) 94.5 2.5 2.5 129.6 0.5 - 98.1 41.5
traj (min) 93.5 2.1 2.5 176.0 1.8 - 85.9 59.7
loc (n-m-s) 95.2 1.5 2.6 264.5 0.7 - 99.5 42.7
traj (poly) 92.0 3.8 3.2 106.8 1.0 - 97.2 49.3
traj (min) 90.9 3.3 3.7 144.9 2.1 - 84.3 65.5
loc (s-m-r) 81.3 1.6 17.0 200.2 0.1 - 97.5 49.8
traj (poly) 79.6 9.4 10.7 88.2 0.2 - 95.9 53.8
traj (min) 77.4 7.1 14.0 95.1 1.5 - 77.7 68.9
loc (s-m-m) 80.1 1.0 18.8 223.7 0.1 - 97.2 49.1
traj (poly) 78.4 12.1 9.3 104.0 0.2 - 95.2 53.4
traj (min) 76.5 8.6 13.4 116.8 1.5 - 78.1 70.4

external loc (p-m) 96.1 1.2 2.6 319.0 0.1 - 99.2 37.5
traj (poly) 93.2 3.9 2.6 111.5 0.3 - 97.8 43.4
traj (min) 91.5 3.5 3.4 158.4 1.6 - 85.4 63.3
loc (1-m-s) 97.4 1.2 1.3 315.5 0.2 - 99.2 35.0
traj (poly) 94.3 2.8 2.4 124.8 0.5 - 97.9 42.2
traj (min) 93.4 2.3 2.5 174.0 1.8 - 85.6 60.8
loc (n-m-s) 94.9 1.9 2.7 263.3 0.5 - 99.3 44.9
traj (poly) 91.9 4.4 3.0 104.6 0.7 - 97.2 50.7
traj (min) 90.4 3.9 3.9 142.4 1.8 - 83.5 66.9
loc (s-m-r) 86.9 0.3 12.7 265.6 0.1 - 97.2 45.4
traj (poly) 84.6 5.7 9.2 114.2 0.5 - 96.0 50.7
traj (min) 82.7 3.8 12.0 109.9 1.5 - 80.4 68.6
loc (s-m-m) 81.3 1.3 17.3 221.1 0.0 - 97.7 46.4
traj (poly) 79.3 9.0 11.5 113.1 0.2 - 96.9 51.0
traj (min) 77.8 6.2 14.5 110.9 1.6 - 79.9 68.0

legend:
del ... deletion error 1-m-s ... 1-component Gaussian mixture
subst ... substitution error supervised location modeling
ins ... insertion error p-m ... pseudo-manual: 1-m-s using Eucl. distance
frag ... fragmentation error n-m-s ... n-component Gauss. mixture
mer ... merge error supervised location modeling
over ... over�lled event s-m-m ... semi-supervised Gaussian mixture location modeling
under ... under�lled event s-m-r ... s-m-m using reduced gesture class resolution
loc ... location based spotting stage
traj ... location trajectory based spotting stage either using minimum matching cost search (min) or

using the LDA classi�er trained on additional polynomial features (poly)
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Figure 6.9
Accumulated timing error rates � The plots in the upper row depict the results for the
location spotting stage whereas the second row depicts the timing errors of the location
trajectory based spotting stage. Class set 2 comprises all opening classes and class set 3
summarizes all closing classes. Class set 1 comprises all other gesture classes. Four types of
timing errors are depicted: pre-over�ll (dark gray), post-over�ll (light gray), pre-under�ll
(red), post-under�ll (orange). Errors are given in absolute time.
See also Figures 6.11 and 6.10.

as expected � location appears to be truly user-independent and moreover
locations can and should be modeled by means of a set of recordings providing
a decent diversity.

7 The event results in Table 6.1 also include the results of the location trajectory
based spotting stage using mere minima search in the string matching cost
function. The results clearly show that the use of additional polynomial fea-
tures to evaluate the string matching costs enhances the spotting performance
regarding its insertion rate, arguing that the mere minima search is too little
selective although it results in decent recall rates.

7 In Table 6.1 an over�ll error accounts for a correct prediction event that
exceeds its appropriate ground truth event whereas an under�ll error accounts
for the opposite, see also Appendix B on page 139. Evidently, a correct
prediction event can also account for both types of errors. Figures 6.9 to 6.10
give additional information on these timing errors for the spotting results.
The �gures show the timing errors for external evaluation scheme and n-m-s
location modeling. The plots depict the accumulated timing errors for these
types of errors: pre-over�ll, post-over�ll, pre-under�ll, and post-under�ll (as
de�ned in Appendix B on page 139). Note that the timing errors in Table 6.1
are counted event-wise and given in fraction of the overall amount of correctly
predicted events, whereas the error rate in Figures 6.9 to 6.10 is given either in
fraction of the length of the appropriate ground-truth element (fgel) or of the
appropriate prediction event (fpel) or in absolute time and accumulated over
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Figure 6.10
Accumulated timing error rates � see also Figure 6.9. Errors are given in fraction of the
length of the appropriate ground-truth event (fgel).

all timing error events. Thus the accumulated error rate displays the fraction
of timing error events that are smaller or equal a certain time span, fgel or
fpel.

Whereas the event-based evaluation of the timing errors suggests that the
location trajectory based spotting stage did not achieve an improvement, the
accumulated timing errors prove the spotting optimization: the over�ll errors
decrease whereas the under�ll errors do not signi�cantly increase.

7 The plots also depict that merge errors are actually present in the spotting
result � although not shown in Table 6.1. Though the gesture sequence
order was randomized during recording of the sequence data sets, speci�c
pairs of gestures, namely open/close gesture pairs, were always accomplished
consecutively. Thus both the post-over�ll timing errors for opening-gestures
and the pre-over�ll timing errors for closing-gestures are far above the amount
of the respective other three error types. This result suggests that similar
gestures performed at the same location can hardly be distinguished and
separated by the suggested approach.

6.7.3 Continuous recognition results
The results for the continuous recognition case, i.e. the �nal results, are given as
precision and recall plots. Transferring the precision and recall de�nition as used in
the information retrieval domain to our recognition problem results in the following
de�nitions:

7 precision is the ratio of correctly predicted events and overall number of
predicted events whereas

7 recall is the ratio of correctly predicted events and overall number of ground
truth events.
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Figure 6.11
Accumulated timing error rates � see also Figure 6.9. Errors are given in fraction of the
length of the appropriate prediction event (fpel).

Once again, the event error count directive de�ned by [WLT06, War06] was used
to achieve these error rates. For an exact de�nition of how precision and recall are
de�ned in our case see Appendix B on page 139.

Figures 6.13 on page 99, Figure 6.12, and Table 6.2 on the opposite page
summarize parts of the results of both the �nal and intermediate processing stages.

As depicted in these �gures, the proposed spotting and recognition procedure is
initiated by means of a high recall location based spotting stage. Any additional
re�nement stage succeeds in increasing the precision without decreasing the recall
signi�cantly. The �nal concurrency resolving stage does not introduce further
deletions at a signi�cant rate. For open/close gesture pairs � these are gesture
pairs with only a small amount of diversity in their motion pattern performed at
exactly the same location � the reduced class resolution evaluation scheme suggests
that insertion and deletion errors are mainly due to substitutions between these
gesture pairs.

In addition Table 6.2 and Figure 6.12 compare the results achieved by the current
approach with the method used in [SOJ+06] as described in Section 6.6 on page 91.
Evidently, the current approach outperforms the previous approach in terms of a
better recall and a far better precision.

6.8 Conclusion
We demonstrated that ultrasonic hand tracking might help solving the gesture
spotting problem in the contemplated industrial production and maintenance
scenario. Summarizing, the following conclusions can be drawn:

7 As already shown for pre-segmented activities, the location context of the
user's hand proved to be user independent. Moreover mere intra location
modeling seems to provide too little diverse location training data. Whereas
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Figure 6.12
Overall precision and recall, see also Figure 6.13. The depicted processing stages are:
location based spotting (green disk), location trajectory based spotting using polynomial
matching cost features (square), plausibility analysis (x), prediction concurrency dissolving
(+), and prediction concurrency dissolving evaluated using the reduced class resolution
(white disk).
The plot to the right also compares current results with the results achieved in [SOJ+06],
see also Table 6.2. The depicted processing stages are: motion (red diamond), location
(red x), �nal (red +), and �nal using the reduced class resolution (red circle).

Table 6.2
Overall precision and recall � results for di�erent spotting stages and di�erent location
modeling methods using the external evaluation scheme. The table to the right summarizes
the results achieved in [SOJ+06] using the same evaluation scheme.

p-m 1-m-s n-m-s results from [SOJ+06]
rec prec rec prec rec prec rec prec

loc 97.5 23.6 96.2 23.2 95.4 26.7 motion 57.8 19.7
traj (poly) 94.8 43.3 93.5 45.7 92.6 47.2 location 73.4 33.4
pa 89.9 77.5 88.4 79.9 87.0 80.1 �nal 73.7 45.9
diss 88.3 80.9 86.4 82.6 86.3 82.9 �nal (red) 86.3 60.4
diss (red) 91.7 95.4 89.9 96.1 89.9 96.8
legend:
rec ... recall
prec ... precision
loc ... location based spotting stage
traj ... location trajectory based spotting stage using the LDA classi�er trained on

polynomial matching cost features
pa ... post spotting plausibility analysis
diss ... prediction concurrency dissolving stage
diss (red) ... prediction concurrency dissolving stage, evaluated using the reduced class resolution
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for motion based gesture recognition intra training schemes usually outperform
inter-subject trained models, this does not seem to be valid for location
features. Thus hand locations can and should be modeled by means of a
set of recordings providing a decent diversity.

7 Location and location trajectory spotting seem to be promising approaches,
resulting in a correct rate above 95% for the location spotting stage and a
correct rate above 90% for location trajectory based spotting re�nement stage
when applying inter-user, supervised location modeling.

7 We have suggested a modi�cation (LDA classi�cation of polynomial matching
cost features) for the motion trajectory based spotting approach presented
by [Sti08, SRO+08, SRT07b, SRT07a]. This adaptation allows to apply this
approach on all tested classes without the high insertion error rate of the
original version of this approach.

7 By means of consecutive motion and location information fusion we �nally
increase the precision of the continuous recognition process above 80% (above
95% for the reduced case) whereas the recall does not go under 86% (almost
90% for the reduced case).

7 The results have shown that the substitutions are mainly due to do/undo
gesture pairs, arguing that the proposed spotting and recognition approach
still has great problems with similar gestures performed at the same location.
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Figure 6.13
Precision and recall � results of the n-m-s location method for di�erent processing steps
in the spotting and recognition procedure using the external evaluation scheme. The
depicted processing stages are: location based spotting (green disk), location trajectory
based spotting using polynomial matching cost features (square), plausibility analysis (x),
prediction concurrency dissolving (+), and prediction concurrency dissolving evaluated
using the reduced class resolution (white disk).
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Chapter

7
Muscle activity monitoring∗

This chapter investigates the usefulness of muscular information of the
lower arms. To this end an adequate sensing hardware comprising several FSRs is
developed and implemented.

We then systematically investigate the usability of the FSR system to recognize
di�erent manipulative gestures. The aim is to test the limits of the system,
compare them to established sensing modalities, i.e. three-dimensional acceleration
and gyroscopes, and establish the advantages of combining FSRs with other sensing
modalities.

∗This chapter is partly based on reference [OKL07].
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7.1 Introduction
Much research in wearable context recognition has gone into tracking and recogniz-
ing arm and hand actions. The bulk majority of this research is based on motion
sensors placed at di�erent arm and hand locations, see e.g. [WLTS06, BI04]. This
has both advantages and disadvantages. On the positive side, motion sensors, in
particular accelerometers, are cheap, small and low power. At the same time a
signi�cant amount of activity information is contained in motion patterns. On
the negative side, acceleration sensors tend to contain a mixture of motion and
orientation information that is di�cult to separate with simple sensor setups. In
addition they provide no information on the palm and �nger activity.

This work investigates an additional source of information about arms and hand
actions: the analysis of arm muscle activity with force sensitive resistors (FSRs).
Section 7.2 on the opposite page already gave more details on this sensor system.

FSRs are thin piezoelectric plates (see Figure 7.1 on page 104) that change their
electrical resistance as mechanical force is applied to their surface. They are cheap
and can easily be integrated in garments. It has also been shown ([MLT06]) that
such mechanical pressure sensors can be implemented directly into textiles.

The idea behind our work is to use such sensors in an elastic sleeve worn on the
forearm. This is fostered by the fact that palm and �nger motions are driven by
muscles in the forearm. As those muscles contract, they change their shape which in
turn results in mechanical pressure being applied to the sensors in the elastic sleeve.

7.1.1 Contributions
Preliminary work [LHSS06] has already demonstrated the general feasibility of using
FSRs to monitor leg muscle activity. [AJL+06] shows that di�erent arm actions such
as holding a heavy object or making a �st produce distinct FSR signals.

This work goes beyond such basic signal examples; it aims to investigate the
use of FSRs for the actual recognition of a set of non-trivial manipulative gestures,
see Section 3.3 on page 36. The aim is not to demonstrate the ability to reliably
a speci�c, application relevant activity set recognize. Instead we want to lay the
foundation for other researchers to set up FSR based activity recognition systems.
To this end we present the following speci�c contributions:

7 We describe details of the hardware implementation of the �nal FSR system
and its advantages over previous implementations. The herein suggested
implementation addresses key problems that were identi�ed this preliminary
work, i.e. large variations in the attachment force and sensor placement
accuracy issues. The new system allows unobtrusive attachment of the sensors
and makes post-attachment hardware calibration unnecessary, independent of
attachment force and placement.

7 We systematically investigate the performance of a FSR system with di�erent
classi�ers on a set of 320 manipulative gestures from 16 di�erent classes
performed by two subjects. The classes have been chosen to test the limits of
the system rather than to be recognizable with high accuracy. Thus the set
contains some very subtle gestures.
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7 We compare the FSR performance to well-established sensing modalities, i.e.
three-dimensional acceleration and gyroscopes. To capture hand rather than
only arm motions (as do the FSR through muscle monitoring) the additional
sensors are mounted on the back of the hand rather than on the wrist. Wrist
mounting is actually more common since attaching devices to the hand is
usually considered burdensome and requires at least a glove. However, we
know from previous work that wrist-mounted motion sensors are not good at
recognizing gestures primarily de�ned by hand motions so that hand-mounted
sensors o�er a more challenging comparison.

7 We investigate the bene�t of combining FSRs with additional sensing modali-
ties by testing di�erent combinations of the three sensor types (accelerometer,
gyroscope, FSR).

7.2 A wearable FSR sensing prototype
7.2.1 The sensing hardware design
This section gives a short overview of what has to be considered when designing
a FSR measurement circuit. However, no matter which strategy is used to build
such a system, a major challenge is the fact that it is just possible to measure the
di�erential muscle force; i.e. it is not possible to measure the muscle pressure force
directly but the di�erence of force applied by the muscles to the most inner layer
and the most outer layer of the arm-mounted sensors.

FSRs � available e.g. from Interlink1 � are polymer thick �lm devices. The
resistance of such a device decreases with an increase in the force applied to its
active surface. According to Interlink, see [Int], FSRs are ideal for use in human
touch control but are not suitable for precision measurements. The speci�cations
are as follows:

7 size range maximum: 51× 61cm

7 size range minimum: 0.5× 0.5cm

7 device thickness: 0.20 to 1.25mm

7 force sensitivity range: <100g to >10kg

7 pressure sensitivity range: <0.1kg/cm2 to >10kg/cm2

7 part-to-part force repeatability: +− 15% to +− 25% of established nominal
resistance

7 single part force repeatability: + − 2% to + − 5% of established nominal
resistance

7 force resolution: better than 0.5% full scale
7 break force (turn-on force): 20g to 100g

7 stand-o� resistance: >1MΩ

7 switch characteristic: essentially zero travel
7 device rise time: 1− 2ms (mechanical)
7 lifetime: >10−6 actuations

1http://www.interlinkelectronics.com



104 Chapter 7. Muscle activity monitoring

Figure 7.1
Examples of force sensing
resistors (FSR). The picture
shows square FSRs of size 46×46
mm as used throughout this
thesis. FSRs are available in any
other shape or size.

7 sensitivity to noise/vibration: not signi�cantly a�ected

7.2.1.1 Voltage divider solution
An obvious and straightforward method to measure a resistance value is simply using
a voltage divider, see Figure 7.2 on the next page. Let Vref be a known reference
voltage and Rref a known reference resistance. Let further be vout the voltage drop
along Rref then vout given a certain FSR resistance rfsr is:

vout(rfsr) =
Rref · Vref
Rref + rfsr

(7.1)

From Eq. (7.1) output voltage vs. FSR resistance characteristics can be identi�ed.
Figure 7.3 on page 106 depicts di�erent output voltage vs. FSR resistance graphs
given di�erent reference resistances and a certain reference voltage. The �gure
depicts also the quanti�cation results assuming a 6 bit AD converter, i.e. 64
quanti�cation steps.2 What can be seen already from Eq. (7.1) becomes even more
obvious in Figure 7.3: the correlation of resistance and voltage output is not linear
at all. The quanti�cation results illustrate that any given Rref results in a decent
resolution for only approximately two resistance decades. A typical FSR ranges from
approximately 2Ω to approximately 2MΩ, i.e. the FSR resistance has a range of
approximately 6 resistance decades. Thus the voltage divider solution is suboptimal
for a force measurement where the entire sensor range is of interest. Though, this
solution might still be useful for an initial test-run in case

7 a narrow force range of interest [F1, F2] can be identi�ed,
7 the resistance of Rref is �ne-tuned so that the highest resolution lies
approximately in the middle of [F1, F2].

This �ne-tuning has to be done every time a subject is equipped with a FSR.
In previous experiments we used a potentiometer for Rref . Using a digital
potentiometer an open loop controlled Rref would be a decent solution as well,
though inducing much higher demands on the micro-controller.

2Most implementations will of course use a higher resolution AD converter. 12 bit conversion
is used in our case.
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Figure 7.2
FSR resistance to voltage conversion
using a voltage divider.

7.2.1.2 Current-to-voltage converter solution

The FSR generates di�erent counter forces for di�erently attached sensors. When
measuring the resistance of the FSR by means of a voltage divider according to
Section 7.2.1.1 on the opposite page and [AJL+06, LHSS06] the initial counter force
must be adapted for each sensor and each user individually due to the nonlinear
relationship of resistance and output voltage. To circumvent this problem this
approach is based on current measurement instead of voltage measurement; thus
a current-to-voltage converter is required, see Figure 7.4 on page 107. This results
in a linear relationship between resistance and output voltage and thus in an
enhancement of the dynamic performance of the system. It furthermore scales
better for di�erent users and di�erent ways of attaching the FSR.

7.2.2 Sensor placement and attachment

[LHSS06] describes the e�ect of sensor displacement on muscle activity monitoring.
It was shown that a sensor displacement of just 1cm can lead to false or no signals.
However, we have also demonstrated that this problem can be overcome by covering
a larger area with the FSRs. This can either be accomplished by a matrix of sensors
around the point of interest (as discussed in [LHSS06]) or by using large FSRs. In
this work we combine both approaches. Both the lower part of the forearm (right
above the wrist) and the upper part of the forearm (right below the elbow) are
covered with a ring of four 46 × 46mm FSRs. In such a way we circumvent the
problem of slightly slipping sensors, see also Figure 3.3 on page 38.

The attachment of the sensors is another crucial question. FSRs require a
moderate counter-force. On the other hand, the system should be wearable, i.e.
easy to be put on and taken o� and not too tight. As a consequence we opted for
a three layer design: a thin inner layer (a thin stocking) on which the FSRs � the
second layer � are �xed, and a third outer layer that is tight but stretchable. We
considered an ordinary bicyclist's sleeve to be the right choice. That way we ended
up with a sleeve that can be put on and taken o� easily.

Future implementations of such muscle activity monitoring systems may rely on
implementations that can be even more easily integrated into garments; e.g. Meyer et
al. [MLT06] present a capacitive pressure sensor that can be integrated into textiles.
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Figure 7.4
Schematic of the
adopted current-to-
voltage converter.
Resistance R1 depicts
the FSR, the �rst op-
amp circuit comprises
the actual conversion,
the second op-amp
circuit is needed for
voltage level inversion.

7.2.3 The sensor system
The overall sensor system (Figure 7.5 on the next page) comprises a tmote sky from
moteiv3 with add-on boards featuring a current-to-voltage converter. To keep the
size of the add-on board small we decided to multiplex the individual FSR channels,
thus the add-on board also features an ADG708 able to multiplex up to eight FSRs.
Tmote sky is featuring six AD converter channels thus parallel conversion would
also be possible and would increase the sampling frequency by factor four in case
of eight FSRs. Hence the actually applied strategy results in a signi�cantly smaller
maximum sampling frequency than the parallel approach; we adopted this approach
anyway, due to the following considerations:

7 For wearable and on-body sensors the size of the devices should be kept as
small as possible, but the parallel approach would require a separate current-
to-voltage converter circuit for each individual FSR channel.

7 By multiplexing on one AD channel the other channels of the tmote sky
platform are vacant for additional sensor modalities, e.g. by using six add-
on boards we can multiplex 48 FSR channels. In such a way the system is
ready to handle a matrix of FSRs, as is planned for future experiments.

The add-on board also comprises the LTC3455 from Linear Technology. The
LTC3455 is a power management solution for battery driven USB devices, containing
DC/DC converters, power controller and a Li-Ion battery charger. By means of this
power management chip the �nal system can be both powered via USB and via
Li-Ion battery. In addition the battery can be charged via USB during normal
usage.

The following considerations are reasons for choosing the tmote sky platform �
which is actually a wireless sensor platform

7 handling di�erent body parts without need for on-body wiring,
7 well-documented, open source hardware platform (tmote sky is almost identical
to telos rev. B 4 from UC Berkeley),

3http://www.moteiv.com
4http://webs.cs.berkeley.edu/tos/hardware/telos/telos-revb-2004-09-27.pdf
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Figure 7.5
Two example setups comprising the
tmote sky based FSR system. The
system can be interfaced via the
IEEE 802.15.4 / Bluetooth-SPP bridge
(both �gures: the devices to the very left)
to an ordinary computer (upper �gure) or
to a smart phone (lower �gure).
The smart phone was actually used as
a recording and annotating platform for
a sport experiment: a subject wearing
the FSR system mounted on the thigh
performing activities like running,
walking, bicycling, hiking, etc.

7 open source embedded operating system, and
7 availability of various interfaces, i.e. USB, I2C, UART, SPI, and IEEE 802.15.4.

By means of using a wireless sensor platform we can easily distribute various
FSR system on di�erent body parts (legs, hands). A central node can collect the
measurements and forward them to the recording system. The forwarding can be
done in various ways, depending on the interfaces of the recording system. In case
of an ordinary desktop-like computer being the recording system the central node
will most likely just communicate the measurement readings by means of the USB
interface. For various contemplated experiments � in sport scenarios in particular �
lightweight platforms are more suitable like a smart phone or a wearable computer.
These devices � as is the case with the Nokia device in Figure 7.5 � often lack a
USB interface, thus we also built a IEEE 802.15.4 / Bluetooth-SPP bridge by simply
attaching a Bluetooth-SPP device to the UART of the central node.

7.2.4 Calibration
In earlier versions of the sensing platform an experimenter had to � after equipping
the test subject with FSRs � adapt one or more resistors to shift the voltage level
of the FSR-resistor into a sensitive area, see e.g. Figure 7.3. As stated before the
proposed new design makes hardware calibration unnecessary. The FSR-resistor is
always in a sensitive area. Anyway calibration is needed to shift the baseline to the
same level for any experiment and any test subject. Due to the fact that the data
is only processed o�-line the calibration was done o�-line as well. What is more,
test-runs usually last for only a couple of minutes and thus a static calibration was
used.

7.3 Gesture recognition
For comparison, three classi�ers have been tested. The tree based C4.5 classi�er
and the instance based k-Nearest-Neighbor (k-N-N) are used in a sliding window
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Table 7.1
Recognition results per class for the k-N-N classi�cation for di�erent sensor modalities.
sensor

P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

acc 81 80 99 58 100 73 75 79 100 61 99 93 63 69 93 55 100
gyr 65 58 100 10 99 80 73 64 93 11 46 90 31 51 94 46 99
fsr 76 54 93 55 100 85 90 74 100 45 87 88 34 59 82 80 98
acc+gyr 90 91 100 63 100 94 92 81 100 80 97 98 83 89 100 82 100
fsr+acc 86 71 100 61 100 85 100 78 100 77 96 97 62 76 99 87 100
fsr+gyr 84 66 96 65 100 89 95 78 100 74 92 91 48 80 92 84 98

legend:
acc ... acceleration gyr ... gyroscope
fsr ... force sensitive resistor

P
... overall result

Table 7.2
Recognition results per class for the HMM classi�cation for di�erent sensor modalities.
sensor

P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

acc 83 89 95 60 98 73 99 79 100 58 99 98 67 64 90 66 95
gyr 72 43 93 35 96 72 86 76 79 32 87 94 56 68 88 59 87
fsr 73 63 79 51 100 74 81 76 99 53 51 70 68 74 76 63 88
acc+gyr 91 87 96 69 100 92 99 88 100 74 98 100 85 95 100 74 97
fsr+acc 84 74 98 55 100 83 96 77 100 74 76 83 74 82 93 80 94
fsr+gyr 81 56 88 58 100 81 91 81 100 66 73 86 73 76 93 77 91

legend:
acc ... acceleration gyr ... gyroscope
fsr ... force sensitive resistor

P
... overall result

approach: In a time window of �xed size, a set of features is computed using the
raw sensor data. Then the sliding window is moved by an o�set which determines
the overlap with the last window. We use mean and variance as features, with
window-size 30 and step-size 15. After that a majority decision is applied to the
raw classi�cation results. This yields a �ltered decision for the particular gesture
and constitutes the �nal result of the frame-based classi�cation. We use the YALE 5

implementation of these classi�ers.
In addition to this frame-based approach a Hidden Markov Model (HMM) based

classi�er is tested as well. For each manipulative gesture in our experiment a
separate HMM is trained. During testing a single gesture is aligned with the most
likely model. We use the HMM implementation in the Bayes Net Toolbox 6 for
Matlab for our experiments.

7.4 Results
Due to the small data set we evaluate the data in a cross validation scheme. The
classi�cation results for the three classi�ers are summarized in Table 7.4 on page 111,
a per-class recognition rate for di�erent sensor modalities for the k-N-N classi�cation
is given in Table 7.1, for the HMM classi�er in Table 7.2. In addition Table 7.3
on page 111 gives the confusion matrices of the k-N-N classi�cation for three
di�erent sensor combinations: acceleration sensors, acceleration and gyroscopes,
and acceleration in combination with FSRs. The following points are the main
observations:

5http://www-ai.cs.uni-dortmund.de/SOFTWARE/YALE/index.html
6http://www.cs.ubc.ca/�murphyk/Software/BNT/bnt.html
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7 The recognition is far from perfect for all combinations of sensors and all
classi�ers. This was to be expected, as the gesture set was chosen to test the
limits of the recognition rather than to be fully recognizable. As can be seen
from Table 7.3 most errors occur typically for do/undo gesture pairs. Such
pairs of classes are: C1,3, C5,7, C9,12, C13,15.

7 For all classi�ers the overall accuracy of the FSR system is in the middle
between the accelerometers (which is between 5% and 10% better) and the
gyroscopes (which is between 2% and 11% worse). This is also not surprising,
since the accelerometers are mounted on the hand rather than the wrist.
Thus � just like FSRs � they provide information not just on motions, but
also on grasping which causes vibration on the back of the hand. At the same
time the FSRs have less clear signals due to placement issues and, what is
more, lack some motion information. On the other hand, gyroscopes lack the
grasping information (reaction to the vibrations is minimal).

7 Adding FSRs to other sensors always leads to an improvement (between a
minimal 1% for HMM and acceleration and 19% for k-N-N and gyroscope).
This is clear for the gyroscopes. For accelerometers it indicates that there
is indeed some information that the FSRs have and an accelerometer � even
when hand-mounted � does not have. This is further con�rmed by the fact
that even in a single sensor case there are gestures for which FSRs perform
better than accelerometers.

7.5 Conclusion
As force sensing resistors have not been used extensively for monitoring muscular
activities, the chapter suggested a FSR platform intended to be wearable and
applicable for di�erent on-body sensing scenarios. Compared to previous approaches
the suggested sensing platform makes no hardware calibration necessary. Moreover,
the suggested platform allows a body-network of FSRs and provides state-of-the-art
wireless communication.

The main lesson of this chapter is that FSR based muscle monitoring is indeed
useful for the recognition of activities involving hand actions. While being inferior
to accelerometers mounted on the hand for the overall accuracy on the 16 gestures,
FSRs perform well for many individual gestures. In a few cases they are even
better than the accelerometer, which con�rms that there is some grasping related
information that even hand-mounted motion sensors cannot detect. Note that in
our experiment FSRs rely on much less obtrusive arm mounting which makes them
preferable for many applications.

7.6 Limitations
Although the gesture set in the experiment has been chosen to be diverse, it cannot
be claimed to be representative in any systematic way. In addition, even for the same
gesture set the performance for a given sensing modality depends on �ne-tuning of
features, window sizes, etc. � factors that were not explored systematically in this
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Table 7.3
Confusion matrices of the k-N-N classi�cation for three di�erent sensor combinations:
acceleration sensors (upper table), accelerometers and gyroscopes (middle), and accelerom-
eters in combination with FSRs (lower table).
The results are given in % of the overall amount of ground-truth events.
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Prediction
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s

1 - open pen 80 9

2 - write 6 99 12 13 2

3 - close pen 2 58

4 - erase 1 7 100 9 1 2

5 - screen down 3 3 73 3 8 3

6 - point 3 5 75 1

7 - screen up 3 3 18 79 1 1 3

8 - remote 8 3 3 100

9 - open notebook 61 1 18 5

10 - type 6 99 5 4 8 2

11 - mouse 3 7 1 93 4 5

12 - close notebook 8 63

13 - open bottle 3 1 69 30

14 - glass 3 6 1 4 93 6

15 - close bottle 8 1 3 16 2 55

16 - drink 1 1 5 100

a
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e
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s
+

g
y
r
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s
c
o
p
e
s 1 - open pen 91 7

2 - write 1 100 16 7 2

3 - close pen 63 3

4 - erase 3 2 100

5 - screen down 3 1 94 1 6

6 - point 92

7 - screen up 6 81

8 - remote 10 5 100

9 - open notebook 80 2 4 2

10 - type 2 97 4 3

11 - mouse 3 8 3 98 4 5

12 - close notebook 5 83

13 - open bottle 89 9

14 - glass 2 1 1 4 100 2

15 - close bottle 4 8 82

16 - drink 1 1 100

a
c
c
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r
s
+

F
S
R
s

1 - open pen 71 10

2 - write 13 100 19

3 - close pen 8 61

4 - erase 2 5 100 1 1

5 - screen down 1 85 14

6 - point 1 100

7 - screen up 2 15 78

8 - remote 1 4 7 100

9 - open notebook 77 2

10 - type 1 5 96 3 7 4 9

11 - mouse 5 3 97 15 1 1

12 - close notebook 2 62 2

13 - open bottle 2 1 76 4

14 - glass 2 6 1 99

15 - close bottle 1 6 16 87

16 - drink 1 8 100

Table 7.4
Classi�cation results in percentage of the overall amount of gestures.

classi�er acc gyr fsr acc+gyr fsr+acc fsr+gyr

HMM 83 72 73 91 84 81
C4.5 76 57 62 82 79 68
k-N-N 81 65 76 90 86 84
legend:
acc ... acceleration gyr ... gyroscope
fsr ... force sensitive resistor

P
... overall result

HMM ... Hidden Markov Models k-N-N ... k-Nearest-Neighbor
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work. Thus the lessons and conclusions discussed above must be taken as indicative
rather than proven beyond doubt.

7.7 Future work
So far the calibration is done o�ine in a static way. Thus an important next step
will be to investigate in more detail and possibly to automate the calibration of
the system to di�erent users. An auto-calibration procedure could also compensate
changes in the force signal baseline caused by slipping sensors.



Chapter

8
Multi-modal continuous spotting
and recognition∗

This chapter describes
an approach to real-life task tracking using a multi-modal, on-body sensor system.
The speci�c example that we study will be quality inspection in car production. This
task is composed of up to 20 activity classes such as checking gaps between parts of
the chassis, opening and closing the hood and trunk, moving the driver's seat, and
turning the steering wheel. Most of these involve subtle and short movements and
have a high degree of variability in the way they are performed.

To spot those actions nonetheless in a continuous data stream we use a wearable
system composed of seven motion sensors, 16 FSRs for lower arm muscle monitoring
and four UWB tags for tracking user position. We propose a recognition approach
that deals separately with each activity class and then merges the results in a �nal
reasoning step. This allows us to �ne-tune the system parameters separately for
each activity. It also means that the system can easily be extended to accommodate
further activities.

In order to demonstrate the feasibility of our approach we present the results of
a study with eight participants and a total of 2394 activities.

∗This chapter is based on reference [OSLT08].
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8.1 Introduction
In this chapter we look at a complex, realistic case study closely modeled after a
real industrial application; including initial data recordings in the real production
line at a �koda car factory. We focus on how highly multi-modal sensor systems �
27 on-body sensors in our speci�c case study � can be used in a �exible, modular
way. Thus the methods described in this work allow addition and removal of sensors
with little changes to the rest of the recognition systems. Similarly new activities
can be added without impact on the recognition system regarding the old activities.
Finally the sensors and algorithms used for spotting can be selected and �ne-tuned
separately for each activity.

As described in Section 3.4 on page 38 the investigated scenario is closely modeled
after a real-life quality assurance procedure in a car assembly factory, namely the
�koda factory in Mladá Boleslav. The aim is to track the progress of a quality
inspection procedure at the end of the car production line. The procedure involves
activities such as opening the trunk, door and hood, sliding the hands over parts of
the car to detect gaps, and moving parts such as the steering wheel and the seats.
For a complete list refer to Table 3.3 on page 40.

The sensor system used in that case study consists of seven motion sensors (each
is a combination of a three-axis accelerometer, a three-axis gyroscope and a three-
axis digital compass) monitoring the motions of di�erent upper body parts, 16
FSRs to monitor arm muscle activity and a high accuracy indoor location system
to determine the position of the user with respect to the car.

8.1.1 Contributions
7 Complexity and degree of multi-modality of the recognition architecture. Our
recognition system uses 27 sensors (seven motion sensors, 16 muscle activity
sensors and four location tags at di�erent upper body locations). The bene�t
of our approach is illustrated in the discussion of the experiment results (see
Section 8.3.4 on page 124).

7 Modularity of the recognition system with respect to sensors and algorithms.
As described in Section 8.2 we use additional sensors in form of consecutive
independent masking passes. This means that adding or removing a sensor
modality or an additional algorithm has no impact on the rest of the
recognition system.

7 Modularity with respect to activity classes. Our recognition architecture has
an independent spotting process for each activity (see Section 8.2 on the
opposite page). New activities can be added without any impact on the
recognition systems for the old ones. Also, sensors and algorithms used for
spotting can be selected and �ne-tuned separately for each activity.

7 Speci�c methods for individual sensing modalities. We present two methods
for removal of insertion errors from a pre-segmented signal stream. One
uses a motion sensor based Bayesian �ltering approach (see Section 8.2.5 on
page 119), the other one is based on muscle activity information from the
arm-mounted FSRs (see Section 8.2.4 on page 118).

In addition we demonstrate how information from the individual activity
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spotting processes can be consistently and e�ciently combined into a single
event stream (see Section 8.2.6 on page 121).

7 Complexity and realism of the case study. In the case study we apply our
method to a car quality inspection task. The task is a real procedure performed
at the end of the production line at a �koda factory in the Czech Republic, see
also [SRO+08]. The experiments were performed on a real �koda car according
to videos and initial test recordings with identical sensor setup done during a
test run at the factory.

8.2 Approach
Our approach is based on the following ideas:

7 Activity separation. We treat each activity as a separate event stream. Thus
for N activities we have N independent spotting processes. Each process is
responsible for a single activity and determines where events corresponding
to this activity occur in the data stream. The �nal output of the spotting
system is the union of the outputs of the individual processes. By contrast
most previously published work (including work of our groups) combines
spotting with multi-class recognition from the start. Our approach allows
a class-dependent selection of sensors, features and algorithms. It enables
easy addition and removal of classes.

7 High recall initial spotting stage. We start each process with a fast spotting
stage that provides an initial guess about possible locations of the relevant
class while removing obviously non-relevant signal segments. It is optimized
for high recall and low precision to ensure low deletion rates.

7 Incremental masking passes. We incrementally improve the precision of the
system through the application of a sequence of what we call masking passes.
A masking pass works on the signal segments that have been identi�ed as
possible occurrences of a given class by the initial spotting stage. It makes
a binary decision of either retaining or rejecting the segment. Each masking
pass uses di�erent algorithms and/or sensors. The sequence of passes can be
determined class-dependently. This approach allows easy removal/addition of
sensors or algorithms without changing the rest of the system.

8.2.1 Recognition process overview
Figures 8.1 on the following page and 8.2 on page 117 give an overview of the
recognition process. The detailed overview also includes the hardware architecture;
there are three main parts:

7 the distributed sensor systems, their synchronization and annotation,
7 the parallel sensor-dependent spotting and recognition modules which imple-
ment the masking passes and

7 the fusion of the parallel results.

An essential part of a distributed sensor system is the synchronization of the data
streams and their annotation for training. For recognition systems trained in a
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Figure 8.1
Overview of the recognition process. The examples on the right depict how the di�erent
masking steps may in�uence the recognition result.

supervised manner also the possibility to annotate events of interest is crucial. We
use the framework proposed by [BAL08, BKL06] to cope with these issues. The
individual spotting and classi�cation modules are described in the following sections.

8.2.2 Position preprocessing
The worker's relative position to the car body is estimated using an ultra-wide-
band (UWB) system from Ubisense (see Section 4.3.2.3 on page 53). Tags on the
shoulders of the worker enable the system to calculate the worker's position with
respect to four reference base stations placed in the environment.

To avoid extensive data loss because of the huge amount of metal materials at
the assembly line the worker is equipped with four tags on his/her shoulders. Before
the resulting positions are fused they are processed with a Kalman smoother.

There was a signi�cant loss of Ubisense data of 28.7% on average per tag, which
was decreased by this fourfold redundant approach to an average of 6.5% per subject.

8.2.2.1 Location classification
The worker's location is de�ned according to seven location classes, see Table 8.1
on page 118. The classes are modeled by k-means clustering with k = 7. The
Euclidean distance between the estimated position vector and each location class
center is calculated and the closest class center is assigned to the worker's current
location class. A sliding window median �lter is applied to the classi�er result to
omit outliers.

The location classes are statically de�ned in relation to the car. In the �nal
application the location processing has to be adopted to the fact that the car is
moving with the constant velocity of the conveyor belt.

8.2.3 Motion based spotting
The motion trajectory based spotting scheme was already brie�y explained in
Section 6.4 on page 83. For a more detailed description refer to [Sti08, SRO+08,
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Figure 8.2
Detailed overview of the recognition process. The boxes display the individual processing
modules; arrows demonstrate the data �ow whereas dashed arrows show additional paths
during di�erent training steps. Note that the plausibility analysis can also be applied to
any previous spotting result, e.g. per sensor spotting result right before the fusion step.
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Table 8.1
Location classes

class ID class name class ID class name

1 hood 5 trunk
2 front left 6 rear right
3 inside 7 front right
4 rear left

SRT07b, SRT07a]. This section will summarize the method as it was applied in the
car assembly scenario.

In order to transform the continuous-valued trajectory data into a discrete
symbol space appropriate for string matching, a quantization step is performed.
This quantization is achieved by fragmenting the trajectory in motion direction
vectors of equal spatial length. Based on its direction each motion vector is
mapped to a symbol of a �nite alphabet. The sequence of resulting symbols is
referred to as motion string. Approximate string matching [NR02] is used to spot
activity occurrences in the motion string. The weighted edit distance or weighted
Levenshtein distance provides a measure for the similarity of two strings.

During the training stage one template string for each activity class is found
by computing the minimum edit distance among all training instances which
corresponds to the minimum linkage distance of the training instances. Matching
costs between the template string and all training instances of that class are
calculated by aligning the template string with the motion string of all training
instances. The mean µi and the standard deviation σi of these matching costs
are computed for each activity class i and a class-related threshold ϑi is derived:
ϑi = µi+ν ·σi where ν is a parameter which needs to be optimized for an individual
data set.

In the spotting stage the matching cost for each template string with the current
motion string is computed resulting in a stream of matching costs for each class.
Within these cost streams, local minima are detected. When local minima are
below threshold ϑi for class i, a spotted occurrence of the particular class i in the
current cost stream is reported. The start point of the potential occurrence can be
estimated by identifying the previous local maximum in the cost stream. Due to
the class-dependency of the templates an implicit classi�cation is performed.

The afore described activity spotting process is performed in parallel on four
trajectory streams. The detected potential activity occurrences found in individual
streams are combined to produce the fused results. An overlap detection is applied
which detects segments of high consistence among the individual streams. The
individual streams are weighted and a class-dependent threshold is applied to decide
whether a fused segment is produced.

8.2.4 Muscular activity
The muscle activity of the lower arms is measured using two custom-built
sleeves [OKL07]. In order to incorporate the muscle data into the activity
recognition process, three k-Nearest-Neighbor (k-N-N) classi�ers are trained using
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Figure 8.3
Visualization of sensor signals for individual gestures from the checkpoint scenario.

the WEKA1 k-N-N implementation with k = 5. Each of the three sub-classi�ers
is responsible for a subset of classes; classi�er 1 for right hand activities, classi�er
2 for left hand activities and classi�er 3 for bi-manual activities. This results in a
threefold concurrent prediction.

8.2.5 Bayes motion classification
One of the processing steps to remove potential insertion errors from the retrieved
activity events is a naive Bayes classi�cation applied to motion data.

8.2.5.1 Features
The classi�cation is based on features that are derived from the inertial measurement
units (IMUs) that are also used for the activity spotting operation. The sensors
deliver calibrated readings for acceleration, rate of turn and magnetic �eld. Each
sensor domain provides its readings in three dimensions. In addition, the orientation
of each of the sensor modules is provided in Euler angles format (roll, pitch, yaw).
All used features are computed on temporal segments which can be seen as a time
series of a multivariate sensor signal. We derive six features from the left and right
hand respectively: mean and variance of acceleration over three axes, mean and
variance of the Euler component roll and the start and stop angle value of this

1http://www.cs.waikato.ac.nz/ml/weka/
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component for a given time segment. For both upper and both lower arms we
compute the following four features: mean and variance of the Euler component
pitch and the start and stop angle value of this component.

We use seven features based on the IMU that is aligned with the torso: mean
and variance of the Euler component pitch, minimum and maximum of the Euler
component pitch, variance of the Euler component roll, and variance and maximum
of the gyroscope signal from the vertical axis.

8.2.5.2 Feature selection
For each of the activity classes in our experiment, we select an individual subset
of the 35 available features. We developed the following procedure to achieve a
class-dependent feature selection. First, we compute all 35 features for all training
instances of all activity classes. From these features we create 35 univariate naive
Bayes classi�ers which are used to classify all training instances sequentially. The
resulting probability ranking of a certain classi�er (considering one feature) for a
given training instance is then inspected to check whether the probability of the
correct class of the segment is above a threshold ϑi for class i. If this is true for
fraction f of the class' training instances, we select the feature under examination
for the classi�cation of the given class. That way we identify those features that
carry relevant information to increase the chance for a correct classi�cation of a
certain activity class.

8.2.5.3 Training
In the case of a naive Bayes classi�er with continuous multivariate variables training
the classi�er means to �nd the likelihood in Eq. (8.1).

posterior =
likelihood× prior

normalizing constant
(8.1)

The posterior stands for the probability of an activity class given a certain
observation which is the multivariate sensor reading in our case. For our problem
the likelihood is the probability of seeing the measured observation given that it
is produced by a certain activity class. The prior is equally distributed among all
activity classes. We can neglect the normalizing constant because it is equal for all
activity classes. The likelihood is trained by �nding a probabilistic model based on
the observations of the training instances. We use Gaussian distributions for our
activity classes models.

8.2.5.4 Classification
During classi�cation we compute the posterior of all activity classes for a signal
segment that has been retrieved by the spotting and masking operations before.
That way we collect a probability ranking of the segment at hand. During the
spotting operation that retrieved the segment an activity class is implicitly assigned.
The probability ranking of the Bayes classi�cation allows to check this implicit
assignment for plausibility. Such a check requires one parameter, which determines
the rank up to which we want to �nd the initial class label in order not to discard
the segment.
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8.2.6 Merging the parallel spotting streams
All the steps described so far are performed in parallel by the spotting processes
devoted to individual activity classes. Thus instead of a single system output we
have n separate outputs with n being the number of classes. If all the spotting
processes were 100% correct, at any given time at most one stream could contain
an activity while all the others would have to indicate the NULL class since the
user performs only one activity at a time. We thus apply the heuristic proposed in
Section 2.3.1 on page 24 for the resolution of con�icts.

8.3 Results and discussion
This section summarizes the results achieved when applying the afore-mentioned
methods to the data recorded in the car assembly scenario (see Section 3.4 on
page 38). Most results are given in terms of precision and recall merits. All error
count methods � including precision and recall � are de�ned in an analogous manner
to the de�nitions given in Section 6.7.3 on page 95 and in Appendix B on page 139.

8.3.1 Individual activities
Figure 8.4 on page 123 shows precision and recall for three di�erent class sets.

7 open/close hood (1, 2), check/close trunk (4, 5), mirror (13), trunk gaps (14),
open spare-wheel-box (18):
The �rst plot contains one third of the activities (seven out of 20). For those
activities the system achieves very good performance with an average precision
of 84.5% and an average recall of 87.1%.

7 open trunk (3), fuel lid (6), open/close right door (9, 10), lock check (15, 16),
close spare-wheel-box (19):
The second plot depicts the results of another seven activities that go down to
60% to 70% on one or both measures (average precision 58.5%, average recall
85.2%).

7 open/close left door (7, 8), open/close two doors (11, 12), hood gaps (17),
writing (20):
Finally on the remaining six activities the system can be said to fail as one or
both of the measures drop below 50% (average precision 28.5%, average recall
49.5%). Those extremely poorly performing classes pull down the average
performance of all activities, which is precision 47.8% and recall 70.6%.

8.3.2 Merged results
The results of merging the individual event streams into a single output are shown
in Table 8.2 on the following page. It can be seen that even for the entire set of
20 classes the merging process does not introduce a signi�cant amount of deletions.
For the �nal step the recall remains on the same level.
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Table 8.2
Results after the merge step of exemplary intermediate steps averaged over all gesture
classes given as a percentage of the overall amount of ground truth events. Fragmentations
refer to events that were split into several parts (see Appendix B on page 139 and
references [WLT06, War06] for an exact de�nition).

masking step masking step
motion spotting (FSR) (location) �nal

correct
deletions
insertions
substitutions
fragmentations

80.4
1.3

427.3
22.7
4.5

76.2
8.1

175.1
19.6
3.8

80.7
8.8

140.1
15.6
5.0

70.3
18.7
52.4
11.2
2.0

8.3.3 Discussion of individual activity errors
8.3.3.1 Door related activities
The bulk, i.e. eight out of 13, of the activities with mediocre and poor spotting
results are related to doors (activities 7-12, 15, 16). There are two main reasons for
this:

7 Opening and closing the door allows a huge degree of variability in the way
it can be performed. There is only a short characteristic part: pulling the
handle to unlock the door. After that one can continue to pull on the handle,
or use one or the other hand placed on an arbitrary part of the frame to �nish
opening the door. In the case of opening both doors at the same time much
of the pull comes from body motion as it is di�cult to pull both doors at the
same time without moving the body. Such slow body motions are much more
di�cult to recognize than distinct arm activities and occur more often during
random activities.

7 Opening and closing the doors also occurred as part of other checking activities
without being annotated as an activity for itself. This is particularly grave
for the left door where the muscle activity classi�er fails (recall below 83.4%),
e�ecting the muscle plausibility analysis to fail as well.

8.3.3.2 Checking the gaps
Checking the gaps on the trunk (activity 14) is among the best recognized activities.
Checking the hood gaps (activity 17), on the other hand, belongs to the poorly
performing activities. At a �rst glance this may be surprising as these two activities
seem related. However, a close look reveals considerable di�erences. To check the
trunk gaps the user stands in the middle behind the car and moves both hands
from the top sidewards to the bottom. In the process the user has to bend down.
This is a very characteristic sequence of motion that is unlikely to occur in other
activities. Checking the hood, on the other hand, consists of running the �ngers
along the more or less horizontal line between the hood and the fender. This is a
subtle motion combined with a posture that can occur in other unrelated activities.

8.3.3.3 Writing
Writing (activity 20) is among the poorly performing classes. This is due to the fact
that it is not bound to a certain location, has no large characteristic gestures and
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Figure 8.4
Precision and recall plots for di�erent class sets. The markers depict particular results:
motion spotting (black disk), muscle activity classi�cation (black square), masking step
(FSR) (white disk), masking step (location) (+), masking step (FSR+location) (white
square), and �nal result (x). Precision is given as a percentage of the overall amount of
predicted events and recall as a percentage of the overall amount of ground truth events.

little distinguishable muscle activity. The only speci�c aspect is the arm posture,
i.e. lower arms in horizontal position, which is just not enough for reliable spotting.
More information on �nger motion and subtle hand motions would be needed here.

8.3.3.4 Checking the fuel lid

Checking the fuel lid (activity 6) is in the middle group. With an excellent recall
of 91.4% but just 54.6% precision it is just out of the good group. The activity has
a characteristic turning motion associated with opening and closing the lid and a
reasonably well-de�ned location. On the other hand it is fairly short and subtle;
and similar activities can occur in unrelated activities. This accounts for the poor
precision.

8.3.3.5 Hood, trunk and mirror activities

The remaining activities, i.e. hood, trunk and mirror activities (activities 1-5, 13,
18, 19), can be said to be well de�ned from both the location and the upper body
motion point of view. Due to that six out of these activities result in good and the
remaining two in mediocre recognition results.
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8.3.4 Discussion of sensing modalities
8.3.4.1 Summary results
Figure 8.4 on the preceding page shows the precision and recall curve after the
application of di�erent masking approaches to the original spotting result. It can
be seen that initial spotting achieves a very good recall (79.0% for all activities,
92.1% for the seven good ones) at the cost of an excessive insertion rate (precision
16.2% and 41.3% respectively). First we have a signi�cant jump in the precision
(28.6% for all and 73.1% for the seven good classes) associated with a signi�cant
drop in the recall (73.7% for all and 90.3% for the good classes) as a �rst masking
technique is applied. From there comes a steady, signi�cant increase of precision
(47.8% for all and 84.5% for the good classes) with only a relatively small drop in
the recall (70.6% for all and 87.1% for the good classes).

8.3.4.2 Results on selected classes
Figure 8.5 on the next page shows the precision and recall curves for the individual
activities. Three main observations result from an analysis of the precision and
recall plots of individual activities.

7 While the performance of the individual masking approaches varies greatly
from activity to activity, the combination of all approaches consistently
remains best or very close to best for all classes. The only exception are the
left door classes, on which, however, results are very poor for all approaches.

7 With the exception of activity 8 (close left door) the initial fast spotting sweep
nearly perfectly achieves the goal of high sensitivity and has a recall in the
nineties.

7 The precision and recall plots of the activities can be put into four groups.

7 In the �rst group the application of the di�erent masking techniques
produce steep gain in precision (up to around 90%) with no or little loss
of recall. Open hood (1), check/close trunk (4, 5), mirror (13), trunk
gaps (14), open spare-wheel-box (18) belong to this group. In short this
result means that our sensor system is perfectly matched to capture the
unique characteristics of these activities.

7 In the second group � fuel lid (6), open right door (9), lock check (15,
16) � the �ltering also retains high recall but the gains in precision levels
are on average around 60%.

7 In the third group � open trunk (3), close right door (10), close spare-
wheel-box (19), writing (20) � we see both, the leveling o� of the precision
gains and a signi�cant drop in the recall.

7 Finally we have the group of activities open/close left door (7, 8),
open/close two doors (11, 12), hood gaps (17) � where the system can be
said to fail and �ltering leads to a large drop in recall with no adequate
gain in precision. For these activities we can conclude that additional or
di�erent sensing modalities are unavoidable.
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Figure 8.5
Precision and recall plots for the individual classes, see also Figure 8.4 on page 123. Plots
are sorted according to class numbers, read from left to right and from top to bottom:
open hood close hood open trunk check trunk close trunk

fuel lid open left door close left door open right door close right door

open two doors close two doors mirror check trunk gaps lock check left

lock check right check hood gaps open spare-wheel-box close spare-wheel-box writing

8.3.5 Lessons learned
From the results given and discussed above a number of conclusions can be drawn
that we believe to be signi�cant beyond the speci�c car inspection example.

7 Importance of consistent class de�nition. The poor performance of the door
related activities underscore the importance and the di�culty of a consistent
de�nition of an activity. As described in the previous section the problem
can be traced to the similarity of activities belonging to di�erent door closing
classes and an overlap with parts of other activities (which also require opening
the door).

7 Slight variations in the task setup can be crucial. Seemingly similar activities
performed under slightly di�erent circumstances can be dramatically di�erent
in their recognition complexity. This is illustrated by the example of checking
the hood and the trunk gaps. From a high level task description both sound
similar and aim to achieve the same thing. However, in terms of recognition
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di�culty they are very di�erent.
7 Inadequate sensing for subtle gestures. The FSRs have been included in the
setup as a way to get information about subtle palm and �nger motion related
to activities such as for example writing. It turns out that this did not work
as expected. As discussed in the previous section the FSRs clearly improve
the overall performance of the system. However, they do not provide su�cient
information to achieve the original goal. There are two conclusions from this
observation. One is the need to improve the FSR system. The other is to add
further sensing modalities such as sound, proximity sensing, or even wrist-
mounted cameras.

7 Merit of separate recognition chains for each activity. Our system has
made extensive use of the possibility to tune the parameters for each of the
investigated activities independently. This tuning has signi�cantly improved
the results. At the same time we have seen that the �nal fusion step does not
introduce many deletions.

7 Merit of the incremental masking approach. While it is di�cult to �nd sensing
modalities that fully capture the unique characteristics of certain activities, it
is often easy to �nd sensors that contain certain necessary (but not su�cient)
conditions for these activities to occur. The FSRs are a prime example of such
sensors. While the signals from our system are often not unique to a certain
activity, we can say that some activities cannot have occurred.

The same can be said about user location with respect to the car. The
incremental masking approach is perfectly suited to exploit this. The im-
provements achieved through the individual masking passes and the variations
in the e�ect of the passes on di�erent activities con�rm that. As the main
performance issue is insertion errors, it can be assumed that further masking
passes with new sensing modalities (e.g. sound) should produce considerable
improvements.

8.4 Conclusion
As described in Section 8.2 on page 115 the core ideas of our approach were: (1) to
start with a fast spotting stage that has very poor precision but very good recall,
(2) improve the precision through incremental application of masking passes based
on di�erent sensor modalities and recognition algorithms that can be �exibly added
and removed, and (3) to treat each activity as a separate event stream for which
spotting can proceed with di�erent methods and sensors.

Overall the results of the experiment have con�rmed the usefulness of this
approach. The initial spotting produces few deletions. For more than a third
of the investigated activities the masking passes increase the precision without a
signi�cant impact on the recall. Merging the individual event streams introduces
few additional errors. At the same time masking passes can be added, removed and
their sequence can be varied �exibly. The performance for individual activities can
be tuned and analyzed independently.

Our approach has failed for about a third of the activities. The reasons for
this failure are predominantly inadequate characterization of those activities by the
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sensors used in the experiment and issues with consistent activity class de�nition.
Interestingly, those failures actually underscore the merit of our approach. Adding
additional sensors and masking passes to improve the recognition of the problematic
activities will not require any changes in the processing chain of the well-recognized
classes, neither will an adjustment of the de�nition of the activity classes (e.g.
putting the door classes together). In the latter case only the �nal merge stage will
have to be adapted.

On the negative side we have seen that sensing modalities, and in some cases
possibly the speci�c algorithms we have used, were not su�cient to characterize
some activities.
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Chapter

9
Summary

This chapter concludes the thesis, gives a short summary of the achievements and
a short outlook on future research questions.
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9.1 Summary of achievements
With a rather speci�c wearable application area in mind � maintenance and
production in industrial environments � this thesis has investigated a novel on-
body sensing combination to its limitations according to its applicability to the
recognition of manipulative hand gestures.

The thesis has evaluated the combination of location and motion sensingFSRs

techniques with force sensing based muscular activity recognition. To this end a
wearable sensing platform for muscular activity monitoring has been designed and
implemented. This sensing technique has been evaluated according to its aptitude
to recognize basic manipulative hand gestures. The evaluations show that activities
with strong muscular activities (e.g. pulling the screen up and down, erasing text
on the whiteboard) are recognized at a rate of up to 100% and thus FSRs are
outperforming or at least equal to motion sensing. On the other side subtle gestures
(e.g. open/close a pen, open/close a notebook) are hardly recognized by means
of FSR muscular activity sensing. Nevertheless by means of adding FSRs as an
additional sensing modality the performance of motion based activity recognition
can be signi�cantly increased. In the car assembly scenario the achieved increase in
the precision rate goes even up to 15%.

Moreover, ultrasonic based hand tracking has been used together with on-bodyUltrasonic hand
tracking motion and orientation sensing to suggest a novel approach to on-body sensing

based gesture spotting and recognition. The thesis has outlined an approach to fuse
the motion and orientation readings with the position estimations, resulting in a
hand trajectory with a far better dynamic response than the mere slow sampling
positioning system provides. In addition, the thesis has described and evaluated
di�erent methods for location modeling, location based gesture spotting, motion
based gesture spotting, and methods for fusing intermediate, class-wise results.

We have shown that both supervised and semi-supervised location modelingLocation
modeling techniques can be employed for the envisioned activity recognition scenarios. The

location information introduces user-independence to the recognition approach.
Moreover mere intra location modeling seems to provide too little diverse location
training data. Whereas for motion based gesture recognition intra training schemes
usually outperform inter-subject trained models, this does not seem to be valid for
location features. Thus hand locations can and should be modeled by means of a
set of recordings providing a decent diversity.

We have shown that location trajectory based spotting is a promising approachLocation based
spotting (above 90% correct spotted gestures). We have suggested a modi�cation (LDA

classi�cation of polynomial matching cost features) for the motion trajectory based
spotting approach presented by [Sti08, SRO+08, SRT07b, SRT07a].

Finally, the suggested recognition approach achieves recall rates above 90% atLocation based
recognition precision rates above 95% no matter whether user-dependent or user-independent

models are applied. As expected do/undo gesture pairs (e.g. tightening/loosening a
speci�c screw) are easily substituted.

The thesis has described an approach to real-life gesture spotting and recognitionMulti-modality

by using a multi-modal sensor system. To recognize gestures in a continuous data
stream the work has suggested to use a wearable system composed of seven motion
sensors, 16 force sensing resistors for lower arm muscle monitoring and four ultra-
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wide-band tags for tracking the user's position. Overall the results of the experiment
have con�rmed the usefulness of the suggested approach with precision and recall
above 80% for some classes. Other activities still demand additional optimization,
e.g. additional sensing modalities.

The continuous recognition experiments apply an recognition approach that deals Modularity

separately with each gesture class. This allows the system to be �ne-tuned separately
for each activity of interest. It also allows to extend the recognition system by means
of accommodating further gesture classes in a simpli�ed way. The approach applies
independent, consecutive masking passes or plausibility checks to consecutively
increase the high recall spotting stage. For each sensing modality an independent
masking pass can be trained. Thus sensing modalities can be exchanged, added,
removed with only little impact on the performance of the recognition system.

9.2 Conclusion
The results of the location based spotting and recognition experiments con�rm the User-

independenceuser-independent nature of location features. The results indicate that the use
of user-independent sensing modalities and features outperforms an arti�cial user-
independent training by means of multi-user training sets.

A multi-modal approach addresses the challenge of large heterogeneity inherent Multi-modality

in activity spotting and recognition. Thus a multi-modal sensing approach increases
the range of gestures that can be recognized. On the other the side multi-modality
demands higher integration of the hardware components and increases the demands
for the processing unit and the power supply. These are essential questions when
designing wearable devices. One will have to balance these issues when setting up
wearable context recognition systems.

The modular class-wise approach seems to be a promising approach for activity Modularity

recognition. As shown by the comparison of current results with results achieved
by a preliminary recognition approach con�rms the usefulness of this approach.

Moreover we believe that modular setups are a key feature when designing
commercial activity recognition systems. Another key feature are unsupervised
learning schemes, which was just touched within this thesis by means of the semi-
supervised location modeling approaches. We presume that unsupervised modeling
of human gestures and activities will play a major role in future research, and
modularity can be one of the enabling techniques.

9.3 Outlook
7 We have shown that FSR based muscle monitoring is indeed useful for the
recognition of activities involving hand actions. However, they do not provide
su�cient information to achieve persuasive recognition results when used for
subtle gestures. An important next step will be to investigate in more detail
and possibly to automate the calibration of the system to di�erent users. An
auto-calibration procedure could also compensate changes in the force signal
baseline caused by slipping sensors.

Future work will also investigate new and improved sensing modalities.
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This includes improvements in the FSR setup and addition of sensing
modalities such as microphones and RFID readers which are known to be
useful from previous research.

7 Future work will look at further improving the segmentation methods for
the location trajectories in order to facilitate better precision of the initial
spotting stage. Moreover the suggested approach will be tested on other sensor
modalities as well.

7 We will further investigate the use of higher level activity models in particular
in conjunction with the �nal merge step. This will also include looking at
combinations of errors made in parallel on di�erent event streams as means of
improving spotting performance.

7 We intend to record data sets from di�erent applications to be able to verify
our method not just on one case study but over a broader range of conditions.

7 The modular approach might be used to achieve a self-con�guring recognition
system. This aims at automatically selecting the best suited sensing
modalities in case new activities are added or a speci�c sensing modality is
malfunctioning. Future experiments will consider this demand and investigate
concepts to accomplish this goal.
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Chapter

A
Kalman filtering

This chapter gives a quick introduction to the Kalman �lter algorithm.
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A.1 Introduction
The Kalman �lter (see also [BH97]) can be applied for linear systems de�ned by a
state transition model and a measurement model. In case either one is non-linear,
the Kalman �lter in its original de�nition cannot be applied. The extended Kalman
�lter is one possible way to linearize such models.

The state transition model must describe the transition concerning two consecu-
tive states, thus the system must be of the form

xk = Fk−1 · xk−1 + wk−1 (A.1)

with xk being the state vector at time tk and F being the state transition matrix.
wk represents the system noise at time tk. The noise is assumed to be white and
independent. The Kalman �lter furthermore expects a linear measurement model
of the form

zk = Hk · xk + vk (A.2)

with z being the measurement vector, H being a matrix giving the ideal connection
between the measurement and the state vector. Vector vk represents the measure-
ment error; again it is supposed to be a white sequence with zero mean and known
covariance structure.

The extended Kalman �lter allows a measurement model of the form

zk = h(xk) + vk (A.3)

with h being a known, di�erentiable function, de�ning the relation between
measurements and the state vector analogous to Eq. (A.2). To apply the extended
Kalman �lter state transition and observation model must be of the form

xk = f(xk−1,uk) + wk (A.4)
zk = h(xk) + vk (A.5)

with uk being a known, deterministic force function.
The Kalman �lter prediction step is done according to

x̂k|k−1 = f(x̂k−1|k−1,uk) (A.6)
Pk|k−1 = FkPk−1|k−1F

T
k + Qk (A.7)

and the update step according to

ỹk = zk − h(x̂k|k−1) (A.8)

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + Rk

)−1
(A.9)

x̂k|k = x̂k|k−1 + Kkỹk (A.10)
Pk|k = (I −KkHk)Pk|k−1 (A.11)

In case of the extended Kalman �lter the state transition matrix Fk and observation
matrix Hk are de�ned to be the following Jacobeans

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

(A.12)

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(A.13)
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Qk and Rk represent the covariance matrices of system noise wk and measurement
error vk, respectively. The following notation is used in the previous:

x̂ . . . state estimation for state vector x
P . . . error covariance matrix of the current state estimation
K . . . Kalman �lter gain
ỹ . . . measurement residual

k|k − 1 . . . state prediction at time tk given measurements and state
estimations until time tk−1

k|k . . . state estimation at time tk given measurements and state
predictions until time tk

I . . . Identity matrix
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Chapter

B
Spotting evaluation

This chapter gives a quick overview of the evaluation metrics used throughout this
thesis.
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B.1 Introduction
This chapter describes the performance measures applied throughout this thesis.
As shown by Ward et al. [WLT06, War06], state-of-the-art evaluation measures of
classi�cation results such as precision and recall curves (PR) or receiver-operator
characteristics (ROC) and others are too little signi�cant merits when applied in
the �eld of activity and gesture spotting. These measures often cause ambiguous
and delusive results.

B.2 The SET measure
[WLT06, War06] present a performance evaluation method called segment error
table (SET) considering the following aspects:

7 The method evaluates frame-based and event-based errors in an analogous
manner.

7 It considers substitutions.
7 It considers event merges and event fragmentations.
7 Activity or gesture recognition case studies rely on manually annotated data
streams, thus the ground truth event have fuzzily de�ned event boundaries
and so do the recognized events. The SET metric tries to account for this
timing problem.

7 It scales for n number of classes not only for two as e.g. ROC does.
7 It results in an unambiguous evaluation table.

This section will give a short summary of the SET metric because the results
presented in this thesis rely on that evaluation measure; moreover, we will suggest
an extension to the method.

The SET method a�ords that the resulting prediction/ground-truth stream is
fragmented into segments that may not contain either a change in the ground-truth
stream or a change in the prediction stream; and each segment border must cover a
change in at least one of these streams. We will refer to these segments as bi-unique
segments (BUS).

Each BUS is then assigned either the label match or one of the following error
pair labels (for details refer to [WLT06, War06]):

7 event error pairs

7 Insertion-Deletion (ID)

7 Insertion-Fragmentation (IF )

7 Merge-Deletion (MD)

7 timing error pairs

7 Insertion-Under�ll (IU)

7 Over�ll-Deletion (OD)

7 Over�ll-Under�ll (OU)

These errors pairs can further be interpreted from the ground-truth point of
view:
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Table B.1
Segment error table (SET) with NULL (N) as special case

D U F DN UN FN
I ID IU IF IDN IUN IFN

O OD OU ODN OUN

M MD MDN

IN IND INU INF

ON OND ONU

MN MND

7 Deletions = ID +OD +MD

7 Under�ll = IU +OU

7 Fragmentations = IF

or from the prediction point of view:

7 Insertions = ID + IU + IF

7 Over�ll = OD +OU

7 Merges = MD

These are referred to as error labels in contrast to the above listed error pair labels.
The error counts in the SET can be given both in number of frames or in number
of BUS. A SET can be generated in di�erent ways, e.g.:

7 for the overall result,
7 for pairs of classes; this way the SET can be interpreted as an extended version
of the confusion matrix where each non-diagonal entry contains one single
SET, and each diagonal entry contains the number of matches of a speci�c
class; or

7 for the overall result accounting for two special cases: (1) the prediction is the
NULL class, (2) the ground-truth is the NULL class.

The latter results in a threefold table, see Table B.1 taken from [War06]. Within
this thesis we use additional over�ll and under�ll labels to be more precise. Thus

7 a pre-over�ll error accounts for an over�lled ground-truth event with the
prediction starting too early (preemption),

7 a post-over�ll error accounts for an over�lled ground-truth event with the
prediction stopping too late (prolongation),

7 a pre-under�ll error accounts for an under�lled ground-truth event with the
prediction starting too late (delay), whereas

7 a post-under�ll error accounts for an under�lled ground-truth event with the
prediction stopping too early (shortening).
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B.3 SET extension

The SET approach can be used as an evaluation metric both when summarizing
results and when evaluating intermediate steps, i.e. while parameters are optimized
or concurrent algorithms are compared with each other. Due to the fact that a
varying number of intermediate spotting and recognition steps within this thesis
contain what we call concurrent prediction streams, the SET is not directly
applicable because it does not scale for more than one prediction stream. We suggest
an extension to the SET that preserves its unambiguousness to some extent but
is able to handle concurrent prediction streams. To describe this problem in more
detail �rst we need to de�ne two special sub-sequences within the prediction/ground-
truth stream.

A NULL BUS speci�es a segment containing the NULL class in all prediction
streams and the ground-truth stream. A special NULL BUS with length = 0 is
de�ned by a border that does not intersect any prediction event nor a ground-truth
event. For each BUS that is not a NULL BUS we can then de�ne its adjacencies
according to the sub-sequence that (1) contains that BUS, (2) is bordered by a NULL
BUS on each side, but (3) does not contain any NULL BUS itself. Adjacencies can
either contain predictions of only one single class (non-concurrent adjacencies) or
predictions of di�erent classes (concurrent adjacencies).

[War06] de�nes an error pair label assignment directive that �nds the SET for
any given prediction/ground-truth stream. The algorithm loops over the whole BUS
sequence and assigns each one of them either the label match or one of the error
pair labels. Two inner loops are necessary to assign the IF and the MD label. In
this manner SET is able to handle concurrent prediction streams in case of a NULL
BUS and in case of non-concurrent adjacencies, but it cannot handle concurrent
adjacencies.

Our extension simply suggests another inner loop for the concurrent adjacencies
that assigns a match label or one of the error pair labels to each prediction/ground-
truth pair that does not contain a NULL class prediction element just in the same
manner as the SET directive suggests. NULL BUS and non-concurrent adjacencies
are processed as suggested by the original assignment directive. Thus we end up
with an evaluation table that sums up to a value bigger than the overall number of
evaluated frames or the overall number of BUS.

To cope with that issue a label assignment sequence has to be de�ned with the
label match being the �rst to be assigned. The �rst label out of the sequence that
suites is assigned normally whereas any subsequent label assigned obtains the annex
extra. In this manner the �nal table sums up to the overall number of evaluated
frames (or BUS) for the original error pair labels whereas the sum of the derived
error pair labels de�nes an excess of predicted events and gives also a clue on the
degree of concurrency.

As mentioned before, this SET extension preserves the unambiguousness only
to some extent: the extended SET is ambiguous according to the label assignment
sequence. Changes in this sequence will shift labels from the SET to the extra part
and vice versa. One would have to de�ne a sequence that best �ts the contemplated
application.
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B.4 Event-based error measure
In addition to the SET assignment directive [War06] suggests an unambiguous event
error assignment directive, assigning each prediction event and each ground-truth
event an error label de�ned in analogous manner to the BUS error labels listed in
the previous section, resulting in an Event Error Table (EET).

Two additional labels are de�ned: no ground-truth label (nG) is assigned to
any correctly recognized ground-truth event in case the respective prediction event
accounts for a merge error and analogous to that no prediction label (nP) is assigned
to any correct prediction in case the respective ground-truth event accounts for a
fragmentation error.

In addition, one can di�erentiate between substitution and insertion errors,
with insertions being prediction events that account for a NULL deletion error
and substitutions being prediction events that account for a non-NULL deletion
error. Unfortunately the SET extension is not reasonable applicable to the EET
assignment directive.

As a straightforward solution, we suggest to apply the EET assignment directive
in a twofold manner. In the �rst stage the event errors are assigned on each
class-dependent prediction/ground-truth stream separately, i.e. for each class it is
applied on a prediction/ground-truth stream that has been cleaned from any event
(prediction event or ground-truth event) that is not of this speci�c class type;
whereas cleaning means replaced by a NULL event of the same length. In such
a way we end up with a n-fold event error table, with n being the number of classes.
Accumulating these class-wise EETs results in the accumulated, class-wise EET
(acEET).

Evidently, acEET over-estimates the insertion error rate because any substitution
error will be counted as an insertion error. Thus this acEET has got two
disadvantages:

7 It is unable to assign substitution errors.
7 Insertion errors are over-estimated.

In the second stage the n-fold prediction/ground-truth stream will be merged
into an 1-fold prediction/ground-truth stream, in order to count the number of
substitution errors. In order to achieve that �rst the n-fold prediction/ground-truth
stream is fragmented into a BUS stream. The following mapping directive is then
applied aiming to map each n-fold BUS into an 1-fold BUS (no changes are made
to the ground-truth element of the BUS)

7 Any NULL BUS is mapped to a NULL BUS.
7 A non-NULL BUS containing no correct match is mapped to a BUS containing
the prediction element with the lowest class identi�cation number.

7 A non-NULL BUS containing a match is mapped to a BUS containing the
matching prediction element.

Applying then the EET assignment directive on this (de-fragmented) prediction/ground-
truth stream results in substitution and insertion error rates that give just a rough
estimation of how many percent of the insertion error rate achieved by the acEET
are actually substitution errors.
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Evidently, the �rst stage will result in an unambiguous EET whereas the
second stage results in an EET that is di�cult to be interpreted because of the
arti�cial prediction event separations, e.g. a false prediction event accounting for a
substitution error may be separated into two prediction events by a matching event.
Mapping an n-fold BUS into a 1-fold BUS causes of course information loss and
thus under-estimated error rates. On the other hand, the event separating e�ect
may cause over-estimation, e.g. considering the example given before, in case the
matching event causing the arti�cial prediction event separation is under�lling the
appropriate ground-truth event on both sides the false prediction event will then
account for two substitution errors.

Thus the results of this second stage should always be contrasted with the result
of the acEET achieved in the �rst stage. Nevertheless, in case the concurrencies are
not too complex the second stage gives a clue on the actual proportion of insertion
to substitution errors.

B.5 Precision and recall
In order to evaluate the �nal recognition performance the precision and recall metric
is still a viable evaluation measure. These values can be directly calculated from
the EET according to:

recall =
#C + #F + #nG

#G
(B.1)

precision =
#C + #M + #nP

#P
(B.2)

with #X denoting overall amount of events being labeled with X.
Note that all continuous precision and recall results given within this thesis are

based on these de�nitions. In case of a processing stage with a n-fold intermediate
spotting or recognition stage, these event errors are assigned in a class-wise manner
by means of applying the acEET metric (as described in the previous section).
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