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Abstract: In the Internet of Things (IoT), Low-Power Wide-Area Networks (LPWANs) are designed to
provide low energy consumption while maintaining a long communications’ range for End Devices
(EDs). LoRa is a communication protocol that can cover a wide range with low energy consumption.
To evaluate the efficiency of the LoRa Wide-Area Network (LoRaWAN), three criteria can be considered,
namely, the Packet Delivery Rate (PDR), Energy Consumption (EC), and coverage area. A set of
transmission parameters have to be configured to establish a communication link. These parameters
can affect the data rate, noise resistance, receiver sensitivity, and EC. The Adaptive Data Rate (ADR)
algorithm is a mechanism to configure the transmission parameters of EDs aiming to improve the
PDR. Therefore, we introduce a new algorithm using the Multi-Armed Bandit (MAB) technique, to
configure the EDs’ transmission parameters in a centralized manner on the Network Server (NS)
side, while improving the EC, too. The performance of the proposed algorithm, the Low-Power
Multi-Armed Bandit (LP-MAB), is evaluated through simulation results and is compared with other
approaches in different scenarios. The simulation results indicate that the LP-MAB’s EC outperforms
other algorithms while maintaining a relatively high PDR in various circumstances.

Keywords: Internet of Things (IoT); LoRaWAN; adaptive configuration; machine learning; reinforcement
learning

1. Introduction

The Internet of Things (IoT) refers to the network of physical objects—“things”—
embedded with sensors and software that use the internet to transmit and receive data.
With several billion connected IoT devices today, experts expect this number to grow to
22 billion by 2025 [1]. Various requirements are essential to IoT applications, including a
long transmission range, low energy consumption, and a cost-effective design. Short-range
communication technologies, such as Bluetooth, ZigBee, and Wi-Fi, are unsuitable for long-
range communication. In contrast, cellular communication networks, such as 3G and 4G
cellular networks, can provide a much wider transmission range at the expense of draining
the ED’s battery quickly. Therefore, in order to meet the needs of IoT applications, long-
range and low-power networks are required. Low-Power Wide-Area Networks (LPWANs)
are wireless networks that enable long-range communications with low data rates and low
energy consumption. An LPWAN can provide a transmission range of 40 and 10 kilometers
(km) in sub-urban and urban environments, respectively [2], with a maximum battery life
of ten years [3].

As shown in Figure 1, compared with other technologies, LPWAN was mainly de-
signed for IoT applications that require the non-periodic transmission of short messages
in extended radio coverage. LPWANs can operate on both licensed and unlicensed fre-
quencies, such as LoRa [4], NarrowBand IoT (NB-IoT) [5,6], Sigfox [7], and LTE-M [8].
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LoRa (short for Long Range) is a physical proprietary radio communication technique
that utilizes spread-spectrum modulation derived from the Chirp Spread Spectrum (CSS)
technology. LoRa enables long-range and low-power communication, where packets of up
to 256 bytes can be sent with each message transfer at sub-GHz frequencies [9]. A number
of network evaluation criteria can be used to assess the efficiency of LPWANs, including
Packet Delivery Ratio (PDR) and Energy Consumption (EC).
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Figure 1. Range of wireless protocols, according to [10] and our own knowledge and experience.

In the LoRa network, several transmission parameters must be configured before a
connection can be established. These transmission parameters are: Spreading Factor (SF),
Transmission Power (TP), Carrier Frequency (CF), Coding Rate (CR), and BandWidth (BW).
Various values can be assigned to each of these parameters. By configuring each transmission
parameter to a different value, a relatively large state space of configurations, consisting of
several hundreds of states, exists. The selection of each of these states can affect the network
evaluation criteria, such as PDR and EC. As an example, if ED transmits with SF7 and TP2,
i.e., using the minimum spreading factor and transmission power, respectively, the least noise
sensitivity, the lowest transmission delay, and the least coverage area are achieved. In this
regard, it is crucial to find the optimal configuration of the transmission parameters [11].

The Adaptive Data Rate (ADR) algorithm is a mechanism to adjust the transmission
parameters of LoRa EDs with the objective of improving the values achieved for the network
evaluation criteria. This mechanism was first proposed in the LoRaWAN specification
v1.1 [4]. In this mechanism, the Network Server (NS) uses the highest Signal-to-Interference-
plus-Noise Ratio (SINR) for link quality assessment after receiving the last 20 packets from
each ED.

Machine Learning (ML) algorithms, which provide a self-learning process, are divided
into supervised, unsupervised, and Reinforcement Learning (RL). There is no need for
training data sets in RL-based methods, as learning happens through interaction with the
environment. The RL agent can perceive and analyze its environment, take actions, and
learn through trial and error [12]. Therefore, RL-based methods are the best choice for
low-complexity network deployment. The literature review shows that RL techniques can
improve resource allocation performance in LoRaWAN by allowing each ED to select the
most appropriate configuration of transmission parameters.

In [13,14], an RL-based non-stationary resource allocation algorithm called LoRa-MAB
is proposed, based on an adversarial environment suitable for LoRaWAN deployments.
However, as a result of the long exploration process of the approach, LoRa-MAB experiences
a high EC. Moreover, in the distributed solutions, the transmission parameters configuration
is done on the EDs’ side, which are resource-constrained devices that are not designed to
handle the computational overhead. Since many IoT applications employ battery-powered
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EDs that are used in large numbers for lengthy periods of time, EC plays an essential role
in measuring the performance of such algorithms.

To meet the desired communication performance, it is challenging to determine the
proper configuration of the transmission parameters so that EC is minimized and PDR
is enhanced. In our previous works, [15,16], we have used centralized and distributed
ADR approaches, respectively, to find a solution to this problem. In [15], a low-complexity
ADR scheme was proposed, in which the NS attempts to obtain the optimal transmission
parameters of the EDs, not by considering the history of the last 20 packets received, but by
considering only the current environmental conditions of the communication, based on the
transmission parameters of the last packet received. In [16], each ED individually tries to
find the optimum transmission parameter configuration with the help of ML approaches.

This article focuses on improving the EC by combining non-stationary adversarial
algorithms, suitable for the LoRa environment, with stochastic algorithms, which have the
advantage of a short exploration time. Our work also reduces the overall computational
overhead by migrating the implementation of the scheme to the NS without imposing
any changes on the protocol design. Thereby, we improve upon our previous work that
has been presented in [16], by reducing the overall EC and improving the PDR. The main
contributions of our article can be summarised as follows:

• In this paper, we propose a Low-Power Multi-Armed Bandit (henceforth, LP-MAB)
ADR mechanism, a centralized adaptive configuration scheme in LoRaWAN. In partic-
ular, we employ EXPonential weights for EXPloration and EXPloitation (EXP3) along
with the Successive Elimination (SE) technique. As a result, the proposed solution
combines non-stationary adversarial and stochastic methods.

• In order to assess the performance of LP-MAB, simulation results for LP-MAB and
various other ADR schemes, namely, ADR-MAX [4], ADR-AVG [11], No-ADR, and
ADR-Lite [15], have been compared. These results indicate that the LP-MAB’s EC out-
performs other algorithms while maintaining a relatively high PDR in various circum-
stances, considering both stationary and mobile EDs. This is achieved by determining
the effects of various parameters and conditions such as channel noise, simulation
time, network size, and the number of daily sent packets by each ED. We also consider
both an urban and a sub-urban environment for all the examined scenarios, while also
studying the impact of network densification, i.e., the number of EDs in the simulation.

In general, this article follows the following structure: Background information and
related works are presented in Section 2 and Section 3, respectively. Section 4 describes our
LP-MAB algorithm. Then, the simulation setup and our results are presented in Sections 5
and 6, respectively. Finally, Section 7 concludes this work.

2. Background

In this section, following a review of the LoRa and LoRaWAN protocol stack, an EC
model will be discussed for LoRa EDs, since we are primarily concerned with optimizing the
energy consumption of the LoRa network. This section will be concluded with a thorough
description of the Adaptive Data Rate (ADR) mechanism.

2.1. LoRa Overview

The LoRa architecture is based on a star-of-stars topology, consisting of four compo-
nents, i.e., EDs, GateWays (GWs), the NS, and an application server, as shown in Figure 2.
Multiple GWs are located at different locations to receive the uplink data from EDs. As
uplink messages are broadcast over the network, EDs are not assigned to a specific GW.
The received LoRa packets by the GW, are then relayed to the NS over a backbone net-
work, which can, for example, be implemented using IP over Ethernet, cellular, Wi-Fi, or
2.4-GHz radio communication. Packets are then routed to the relevant application by the
NS, e.g., by using an Ethernet connection. Both uplink communication (ED to application)
and downlink communication (application to ED) can be performed by the NS. The LoRa
specification is documented in more detail in [4].
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Figure 2. LoRaWAN network architecture.

In LoRa, communication link quality is impacted by several transmission parame-
ters [17], which are:

• SF: SF can be described as the number of symbols that can appear in a single bit of
transferred data, which can be set in the range of 7 to 12, depending on the environ-
mental conditions between the ED and the GW.

• TP: The TP of LoRa radio can be configured between 2 dBm and 14 dBm in steps of
3 dBm (the setup of each transmitter may vary). When the TP increases, the signal
range increases while the battery lifetime of the EDs shortens, and vice versa.

• CF: Lower frequency ranges result in decreased receiver antenna size, BW capacity, and
latency, while increasing the coverage. A LoRa communication network can operate
over radio frequency bands below 1 GHz, including frequencies of 433, 868, and
915 MHz, with different step sizes depending on the regulation rules.

• CR: CR improves LoRa communication link robustness with Cyclic Redundancy Check
(CRC). The values of CR may vary in the range of { 4

5 , 4
6 , 4

7 , 4
8}. Adding such error correc-

tion coding will increase the transmission overhead, which can affect the performance.

Various parameters and conditions, such as BW, channel noise, simulation time,
network size, packet length, ED speed, and the number of daily sent packets by each ED,
can affect the network performance. The value of BW, in particular, may vary in the range
of {125, 250, 500} kHz.

2.2. An EC Model for LoRa EDs

To have a realistic EC model for LoRa EDs, we assume the same sequence of working
modes for the LoRa and LoRaWAN sensor nodes as the one presented in [18]. This sequence
of working modes is illustrated in Figure 3. Thus, the total energy consumed by the EDs,
ETotal, is calculated as follows:

ETotal = ESleep + EActive , (1)

where ESleep and EActive is the energy consumed by the EDs during the sleep and the active
modes, respectively. The total EC of EDs in the active mode is calculated by the summation
of the energy consumed during the relevant working modes of the EDs (from the ones
shown in Figure 3). Thus, EActive is calculated as shown in the following equation [19]:

EActive = EWU + Em + Eproc + EWUT + EToA + ER . (2)
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Figure 3. The assumed working mode sequence for each ED, adopted from [18].

Hence, in Equation (2), EWU , Em, Eproc, EWUT , EToA and ER, describe the EC of the
wake-up of the device, the data measurement, the microcontroller processing, the LoRa
transceiver’s wake-up, the transmission, and the reception mode, respectively, as shown
in Figure 3. The consumed energy in the data transmission mode, EToA, is expressed as
follows [18]:

EToA = (PON( fMCU) + PToA)× TToA . (3)

Here, PON( fMCU) is the microcontroller’s EC depending on its processor frequency
fMCU , while PToA and TToA are the consumed power in the transmission mode and its
time duration, respectively [18]. The power utilization of LoRa sensors in the active mode
depends on the Time-on-Air (ToA) duration. An ED requires time to transfer both the
preamble and the payload message, i.e., TPreamble and TPayload, respectively [19], which
leads to the following equation:

TToA = TPreamble + TPayload . (4)

TPreamble can be obtained as follows:

TPreamble = (4.25 + NP)× TSymbol . (5)

Let the number of preamble symbols be NP, and the symbol’s length be denoted by
TSymbol, which is defined as the duration time for transmitting 2SF chirps. Note that the
BW is equal to the chirp rate. The symbol duration is calculated so that:

TSymbol =
2SF

BW
. (6)

Moreover, TPayload (in seconds) is calculated using this equation:

TPayload = TSymbol × NPayload . (7)

NPayload is the number of symbols transmitted as message payload, except the pream-
ble, specified as [19]:

NPayload = 8 + max
(⌈Θ(PL, SF)

Γ(SF)

⌉
× 1

CR
, 0
)

. (8)

We use the following equation to calculate Θ(PL, SF):

Θ(PL, SF) = 8× PL− 4× SF + 16 + 28− 20× H . (9)
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In this equation, H is zero when the header is enabled, and H is equal to one when
there is no header present. Γ(SF) can be calculated as SF− 2× DE, wherein DE is set as
one when the low data rate optimization is enabled; otherwise, DE is set to zero.

As observed from Equations (1)–(9), higher SF values significantly increase the EC:
Higher SF values exponentially increase TSymbol (Equation (6)), leading to long TPreamble
(Equation (5)) and, thus, TToA (Equation (4)). The increase in TToA then leads to EToA being
higher (Equation (3)), making the EActive (Equation (2)) and ETotal (Equation (1)) larger.
Therefore, compared to lower SFs, transmitting the same amount of data with a higher SF
requires a much higher TToA and, thus, a much higher EC.

2.3. The ADR Mechanism

There are two methods to control the transmission parameters in LoRaWAN: dis-
tributed and centralized approaches [11]. In the distributed method, each ED tries to
configure its own transmission parameters based on the NS’s ACKnowledgment (ACK)
regarding the reception or non-reception of the uplink messages, e.g., in the ADR-AVG [11],
and ADR-Lite [15] schemes. In the centralized method with a global knowledge of the
network, the NS tries to configure the transmission parameters of each link according to
the ACK messages individually, e.g., in the MIX-MAB [16], and LoRa-MAB [13] schemes.
Our work significantly extends and revises the MIX-MAB work.

The Adaptive Data Rate (ADR) algorithm is a mechanism to configure the transmission
parameters of EDs with the aim of improving PDR and EC as the two primary performance
metrics. Through a centralized manner of configuring the EDs’ transmission parameters,
ADR aims to optimize data rate and ED lifetime. ADR, for this purpose, evaluates the
link-budget estimation between EDs and GWs in the uplink messages. In this regard, Media
Access Control (MAC) commands will be used to control the data rate of the ED if the ADR
bit is set. Each ED and the NS may set and unset the relevant ADR bit on demand. When the
ADR bit is not set, the NS will not configure the ED’s transmission parameters, regardless of
the signal quality received by the end device. However, the ADR scheme should be enabled
whenever possible to maximize the network capacity and battery lifetime of EDs. More
details about the ADR mechanism are provided in [20,21].

3. Related Works

There have been several studies to improve LoRaWAN performance, focusing on
statistical and mathematical models [22], the effect of the number of GWs [23], optimization
algorithms [24,25], and machine learning techniques [16]. Configuring the LoRaWAN trans-
mission parameters to address scalability has been presented in [11]. In recent years, the
ADR approach has been proposed in version 1.1 of the LoRaWAN Specification [4]. In [4],
the maximum value of the latest twenty received packets’ Signal to Interference and Noise
Ratio (SINR) is taken into account as an indicator to evaluate the link quality. However, in
this optimistic approach, environmental changes cannot realistically be considered.

The proposed methods in [11] and [24] improved the original ADR mechanism by using
the details, i.e., the SINR, of the last 20 received packets to adjust the transmission parameters.
More specifically, by using the average SINR value of the last twenty packets in [11], in a
method called ADR-AVG, instead of the maximum value of the SINR, resulted in better
performance. In [24], the authors proposed a new ADR, called ADR-OWA, using the Ordered
Weighted Averaging (OWA) function. However, when channel saturation in either an urban
or a sub-urban environment is low, the EC of ADR-OWA will be higher than ADR-AVG.

In addition to the emerging ML techniques, the new IoT ED requirements for more
reliability, as well as low latency demands, led to the development of more efficient opti-
mization mechanisms [14]. Self-resource management is critical to improving the battery
lifetime for LoRa EDs. Some works focused on using ML techniques, such as RL, to enable
EDs to use innovative and inherently distributed techniques for the management of the
transmission parameters [13,14]. MAB [13,14] and Q-learning [26] are two RL algorithms
used in the literature to propose distributed radio resource allocation in LoRaWAN. In [26],
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the authors use RL by offering a Q-learning model combined with Carrier-Sense Multiple
Access with Collision Avoidance (CSMA/CA), to decrease the collision rate and improve
the PDR. However, in addition to the increased EC using the method in [26], Q-Learning
requires a database to save its processing data, a requirement that is not compatible with
resource-constrained IoT EDs.

The LoRa-MAB algorithm proposed in [13,14] is based on EXP3. As a non-stationary
adversarial method, this approach suffers from a rather long exploration process resulting
in high EC. In particular, in the aforementioned distributed approach, the EDs and the
NS must frequently communicate, resulting in reducing the battery lifetime. SE is a non-
stationary stochastic MAB-based algorithm presented in [27], for which, however, the
adversarial environment of LoRa has not been taken into account.

4. Our Proposed LP-MAB Algorithm

This section proposes a centralized adaptive configuration algorithm in LoRaWAN. In
our newly proposed RL-based adaptive configuration algorithm, the NS does not need to be
provided with a predefined dataset, as it will learn by interacting with the EDs. In LP-MAB,
the agent is the NS interacting with the environment, including EDs, to perform an action
that can be defined as the determination of the set of transmission parameters to which an
ED should be configured. The NS tries to achieve the optimum action, i.e., the optimal set of
transmission parameters, for each ED by learning based on the relevant reward, which is
based on the reception of the ACK messages. More specifically, a LoRa ED configures its
transmission parameters based on the NS’s selected action. If the NS receives the packet, it
sends back a confirmation ACK message to the ED, assigns a reward (which will be defined
later) to the selected action, and uses it for the subsequent transmission parameters’ index.
We model the adaptive configuration scheme utilised by the NS as a MAB problem, an
RL-based technique, and formulate it using k multi-armed bandits, where k represents the
total configuration’s state space. An agent selects from k different actions and, each time,
receives a reward based on its chosen action.

Three general categories, of stochastic, adversarial, and switching bandit algorithms,
can be used to address the MAB problems. EXP3 is a category of non-stationary adversarial
MAB problems. LoRa can be placed in this category because the selection by two or more
EDs of the same transmission parameter values, such as an equal SF, affects the transmission
performance of all the relevant EDs. Stochastic MAB algorithms such as SE are unsuitable for
LoRaWAN due to its adversarial nature. The long exploration process of EXP3 results in a
high convergence time. On the other hand, the SE algorithm has the advantage of short-term
exploration. So, inspired by the benefits of the EXP3 and SE algorithms used in [13,14]
and [27], respectively, we combine these two approaches and propose a new algorithm called
LP-MAB.

As can be seen in Algorithm 1, at the beginning, we assume there are |U | EDs in the
simulation forming the set U = {ED1, ED2, . . . , EDU}. NS aims to maximize the PDR of
the network, while keeping the EC at the minimum possible value by learning to select
the optimum transmission parameter set for ∀u ∈ U . Assuming that each action is a
vector of four transmission parameters, au

k = {SFk, TPk, CFk, CRk} denotes the kth action
for the uth ED, in which SFk, TPk, CFk, and CRk are the values of SF, TP, CF, and CR in the
kth action, respectively. We assume that there are |A| actions, whose set is denoted by
A = {au

0 , au
1 , . . . , au

|A|−2, au
|A|−1}. LP-MAB allows configuring the CF and CR in addition

to the SF and TP, unlike [4,11,24], making the action set size |A| rather large. Actions are
sorted inA in ascending order based on their EC according to Equation (8). Let Nau

k
indicate

how many times the NS selects the kth action for the uth ED. Wau
k
(t) and Pau

k
(t) are the

weight of the kth action and the probability of selecting the kth action for the uth ED at
the simulation time of transmission period t, respectively. The transmission period t is
initialised to zero. Thus, the visual representation of Algorithm 1 can be seen in Figure 4.
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Algorithm 1: Initialization of LP-MAB.

1 Set t = 0.

2 Initialization:
3 Set u ∈ U to be the uth ED.

4 Set |U | to be the total number of EDs, so that U = {ED1, ED2, . . . , EDU}.
5 Set |A| to be the total number of actions, so that

A = {au
0 , au

1 , . . . , au
|A|−2, au

|A|−1}.

6 Set k to be the index of an action au
k , such that au

k = {SFk, TPk, CFk, CRk} is the
kth chosen action for the uth ED.

7 Check and set T and Trem to be the total time and the remaining time of the
simulation, respectively.

8 if Trem ≤ 0 then
9 end the simulation.

10 end
11 Set #GW to be the number of GWs.

12 Set LEXP = d |U |
#GW×100e, so that TLEXP is the time required for the exploration

phase.

13 Set LEE = d TLEXP
Trem
e × |A| , so that TLEE is the time required for the exploitation

phase. LEE should initially be considerably larger than LEXP.

14 Set Nau
k
= 0, Pau

k
(t = 0) = nan, Wau

k
(t = 0) = 1, ∀au

k ∈ A.
(nan standing for “not a number”.)

15 Set learning rate γ=min
{

1,
√
|A| log(|A|)

(e−1)T

}
, e=2.71.

16 Rau
k
(t) =



1.0, if ACK is received, TPk = 02,
0.8, if ACK is received, TPk = 05,
0.6, if ACK is received, TPk = 08,
0.4, if ACK is received, TPk = 11,
0.2, if ACK is received, TPk = 14,
0.0, if ACK is not received.

𝑁𝑎0
𝑢 = 0

𝑎0
𝑢 𝑎1

𝑢 𝑎|𝐴|−2
𝑢

𝑁𝑎1
𝑢 = 0 … 𝑁𝑎|𝐴|−2

𝑢 = 0 𝑁𝑎|𝐴|−1
𝑢 = 0

𝑎|𝐴|−1
𝑢

𝑎2
𝑢

𝑃𝑎|𝐴|−1
𝑢 = 𝑛𝑎𝑛

𝑁𝑎2
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𝑆𝐹0 = 7

𝑇𝑃0 = 2dBm

𝐶𝐹0 = 868100Hz

CR0 = 4/5

𝑊𝑎|𝐴|−1
𝑢 =1

𝑃𝑎|𝐴|−2
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𝑊𝑎|𝐴|−2
𝑢 =1𝑊𝑎2

𝑢=1𝑊𝑎1
𝑢=1𝑊𝑎0

𝑢=1

…

|𝐴| ascending sorted actions

𝑆𝐹|𝐴|−1 = 12
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𝑎𝑞
𝑢

𝑁𝑎𝑞
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𝑃𝑎𝑞𝑢 = 𝑛𝑎𝑛

𝑊𝑎𝑞
𝑢=1

…

Figure 4. The initialization of LP-MAB for the uth ED.

Our proposed LP-MAB algorithm is composed of two phases, exploration and ex-
ploitation, as described in Sections 4.1 and 4.2, respectively.
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4.1. Exploration Phase of the LP-MAB Algorithm

The goal of the first phase of our algorithm is to update the values of the Wau
k
(t) and

Pau
k
(t) so that, in the exploitation phase, the NS can select the optimum configuration for the

uth ED based on the information gathered from the environment. We assign probabilities
to each action to obtain their weights (lines 10–12 of Algorithm 2), so that we can make a
trade-off between exploration and exploitation. At the start of the simulation, the NS selects
the first action for the uth ED, i.e., au

k=0, and then increase the value of Nau
k

by one, as shown
in Figure 5 (I). After the ACK reception or non-reception for the chosen action (demonstrated
in Figure 5 by 3 and 7, respectively), the NS updates the reward value, Rau

k
(t), based on line

16 of Algorithm 1. In this multi-reward strategy, the reception of the ACK for the action with
the highest TP (TP = 14), will be far less rewarded than the reception of the ACK for the
action with the lowest TP (TP = 2), aiming to minimize the EC as much as possible.

Algorithm 2: Exploration Phase of LP-MAB.

Output: Pau
k
(t + 1), Wau

k
(t + 1)

1 Run the Initialization process of Algorithm 1.

2 Set k = 0.

3 while ∀au
k∈A, Nau

k
≤ LEXP do

4 if k = |A| then
5 set k = 0.
6 end
7 Select and transmit, performing action au

k , then set Nau
k
= Nau

k
+ 1.

8 Wait for the reception or non-reception of the ED’s ACK.

9 Update reward Rau
k
(t) using line 16 of Algorithm 1.

10 Set Pau
k
(t + 1) = (1− γ)

( Wau
k
(t)

∑au
k ∈A

Wau
k
(t)

)
+ γ
|A| .

11 Set Pau
k
(t + 1) =

Pau
k
(t+1)

∑au
k ∈K

Pau
k
(t) .

12 Set Wau
k
(t + 1) = Wau

k
(t)× exp

( γRau
k
(t)

|A|×Pau
k
(t+1)

)
.

13 Set k = k + 1.
14 end

After calculating the reward, the NS updates the weight and probability of the action
according to the lines 10–12 of Algorithm 2, which have been extracted from the EXP3
algorithm. As a rule, the summation of all probabilities is equal to one. So the action’s
probability should be normalized (line 11 of Algorithm 2). For the next packet of the uth ED,
the NS selects the action au

1 (Figure 5 (I I)). This procedure for the uth ED continues until
the NS has selected all the actions once (Figures 5 (IV) and 6 (I)).

The exploration phase of the LP-MAB scheme was adopted from the SE algorithm.
As can be seen in line 3 of Algorithm 2, this phase is repeated for multiple rounds, up to the
LEXP value, for each ED. A novel feature of our work in comparison to [16], is that we take
into account, in the exploration phase, the potential occurrence of environmental changes,
such as changes in the number of EDs and GWs, through the utilisation of LEXP. According
to line 12 of Algorithm 1, LEXP can be calculated by dividing the total number of EDs by
the product of the multiplication of the number of GWs by the constant value 100. The
use of this constant value is intended to reduce the value of LEXP, which should not be too
large, as it would significantly prolong the exploratory phase.

In general, as the number of EDs increases, the level of interference in a fixed network
area grows higher, and thus it becomes necessary to extend the exploration phase, which is
achieved through the use of LEXP, the value of which is directly proportional to the number
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of EDs. According to [28], the reception probability in LoRa networks is dependent on the
number of GWs. Thus, in case of a high number of GWs, a shorter exploration phase is
needed, which is achieved by LEXP being inversely proportional to the number of GWs. As
seen in Figure 6 (I I I), after LEXP rounds, at the end of the exploration phase, the value of
Nau

k
(∀au

k ∈ A) is equal to LEXP. The weights and probabilities at the end of this phase for
all the actions, will form the input of the exploitation phase.
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Figure 5. Possible first round of the LP-MAB exploration phase for the uth ED.
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4.2. Exploitation Phase of the LP-MAB Algorithm

In this phase, the actions are selected based on the relevant Probability Density
Function (PDF), i.e., their probability, Pau

k
at the end of the exploration phase (line 2 of

Algorithm 3). According to this step, which is derived from the EXP3 scheme, it is more
likely that actions of high probability will be selected, i.e., more suitable actions have a
higher chance to be selected. Same as in the exploration phase, also in this phase, both in
the case of a successful ACK reception and in the case of a non-reception, in addition to the
Nau

k
increment (line 3 of Algorithm 3), the NS will update the weight and probability of the

relevant action (lines 6–8 of Algorithm 3).

Algorithm 3: Exploitation Phase of LP-MAB.

Output: Pau
k
(t + 1), Wau

k
(t + 1)

1 while @au
k∈A, Nau

k
≥ LEE do

2 Select action au
k using the relevant Probability Density Function (PDF) based on

Pau
k
(t), ∀au

k ∈ A, and transmit, performing au
k .

3 Set Nau
k
= Nau

k
+ 1.

4 Wait for the reception or non-reception of the ED’s ACK

5 Update reward Rau
k
(t) using line 16 of Algorithm 1

6 Set Pau
k
(t + 1) = (1− γ)

( Wau
k
(t)

∑au
k ∈A

Wau
k
(t)

)
+ γ
|A| .

7 Set Pau
k
(t + 1) =

Pau
k
(t+1)

∑au
k ∈K

Pau
k
(t) .

8 Set Wau
k
(t + 1) = Wau

k
(t)× exp

( γRau
k
(t)

|A|×Pau
k
(t+1)

)
.

9 if Pau
k
(t + 1) <

1
2

(
max∀au

k∈A{Pau
k
(t)}

)
then

10 set Pau
k
(t + 1) = 0.

11 end
12 end
13 Set t = t + 1.

Let us consider the case in which the probability of the kth action for the uth ED,
i.e., of au

k , is smaller than the half of the maximum probability when all actions in A are
considered. In that case, the NS will set the probability of action au

k to zero, so that action au
k

will not be selected until the end of the exploitation phase (lines 9–11 of Algorithm 3). This
removal process aims to eliminate actions with a low probability of leading to a successful
transmission. It should be noted that the above threshold (line 9 of Algorithm 3) is derived
heuristically from our simulation results, leading to the best performance.

The exploitation phase for the uth ED continues until the number of selections of
at least one of the actions (Nau

q , for that action au
q ) reaches the value of LEE (line 1 of

Algorithm 3). Thus, LEE should be considerably larger than LEXP for the first few transmis-
sion periods t considered, as ∀au

k∈A, Nau
k
= LEXP at the beginning of the exploitation phase.

Our work differs from [16], in that we incorporate what we have learned from the
environment during the exploration phase, through the use of the dynamic value of LEE.
According to line 13 of Algorithm 1, LEE is calculated by multiplying the total number of
actions by the quotient of the division of the exploration phase duration by the remaining
time of the simulation. In general, the higher the number of actions is, the higher the number
of successful transmissions, i.e., of potentially optimal configurations, will be, and, therefore,
the NS will need to consider more actions to select the one that reduces interference the
most; thus, a longer period of time should be spent on exploitation in this case. Moreover,
due to the fact that our learning about the network increases as we get closer to the end
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of the simulation, to utilize the information obtained during the exploration phase more
effectively, it is reasonable that the exploitation phase should take longer to finish.

As seen in Figure 7, for any arbitrary au
q , when Nau

q reaches the value of LEE, the
exploitation phase will be ended. At the end of this phase, the transmission period index t
is incremented by one, so that the exploration phase can start again for a new transmission
period. In this way, the actions that were removed from the previous execution will have
a second chance. Note that all actions will have their Nau

k
set to zero, with no change in

their weights or probabilities (line 14 of Algorithm 1). By not resetting the weight and
probability values of the actions at the end of the exploitation phase, the previously gained
knowledge is not eliminated by the proposed LP-MAB algorithm. Nevertheless, the weights
and probabilities of all actions at the end of the new exploration phase, which correspond
to the new transmission period, will be inputs for the exploitation phase corresponding to
that transmission period.
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Figure 7. Possible LP-MAB exploitation phase for the uth ED, with (V) representing the final round
of the exploitation phase for this transmission period of the uth ED. In this extreme case used as an
example, action au

q has been selected to be performed in all rounds.

5. Simulation Setup

We have used FLoRa [11] (a Framework for LoRa simulations) as a simulator tool.
FLoRa, which is based on OMNeT++ [29], a discrete event network simulator, was proposed
for the simulation of a LoRaWAN composed of EDs, GWs, and an NS according to the setup
presented in [11]. More information regarding FLoRa is available at https://flora.aalto.fi/
(accessed on 11 January 2023). A LoRa link behavior model that considers the capture effect
and inter-SF collisions in multiple network settings is presented in FLoRa. We customized
FLoRa for simulating our adaptive configuration scheme based on artificial intelligence
methods in the LoRa network. The LP-MAB framework is available at the following GitHub
repository: https://github.com/reza-serati/LP-MAB (accessed on 11 January 2023).

We consider a LoRaWAN consisting of arbitrary numbers of GWs randomly placed
in a square-shaped cell having different radius sizes based on urban and sub-urban en-
vironments, with up to 700 EDs uniformly distributed [11]. Simulations were conducted
under the impact of the capture effect and inter-SF collisions to minimize the number of
collisions [13]. The list of parameters that affect the performance of LoRaWAN are summa-

https://flora.aalto.fi/
https://github.com/reza-serati/LP-MAB
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rized in Table 1. It should be noted that, for the final results, a series of simulations was
performed twenty times, and the resulting data were averaged.

Table 1. Simulation Setup Parameters.

Parameter Value

Simulator Platform OMNet++
Simulator Model INET and FLORA

Repetitions 20
Mobility Model Random Waypoint

ED Speed (v) {0, . . . , 12}m/s
Urban Cell Radius (r) 480 m

Sub-urban Cell Radius (r) 9800 m
Packet Length (L) 20 bytes

BW (BW) 125 kHz
Simulations Time (T) 12 days
Number of EDs (N) {100, . . . , 700}

Number of GWs (#GW) {1, . . . , 10}
Urban Environment’s Sigma (σ) {0.0, . . . , 3.56}

Sub-urban Environment’s Sigma (σ) {0.0, . . . , 7.08}
SFs (SF ) {7, 8, 9, 10, 11, 12}
TPs (T P) {2, 5, 8, 11, 14} dBm
CFs (CF ) {868.1, 868.4, 868.7}MHz
CRs (CR) { 4

5 , 4
6 , 4

7 , 4
8}

Number of Sent Packets per Day (ε) {1, . . . , 192} packets/day

To evaluate the proposed algorithm’s performance and compare it with other schemes,
we use the following two metrics:

1. PDR (%): Defined as the total number of packets received by the NS divided by the
total packets sent from all EDs during the simulation time.

2. EC (kJ): Defined as the total EC divided by PDR as discussed in [15].

We consider the following eight scenarios:

• Scenario 1: The number of static EDs varies from 100 to 700, with a step size of 100.
• Scenario 2: Based on the environmental conditions, for 100 static EDs, the channel

saturation varies according to the values shown in Table 1.
• Scenario 3: Considering that EDs are mobile, the number of nodes varies between 100

and 700.
• Scenario 4: For 100 mobile EDs, the mobility speed can be changed using the values

shown in Table 1.
• Scenario 5: Comparatively to Scenarios 3 and 4, in which all nodes were mobile, two

types of EDs were considered in the simulation environment: static and mobile, for
varying network sizes.

• Scenario 6: In contrast to the constant 12-day simulation time assumed in other
Scenarios, in this Scenario, simulation days vary from 12 to 120, with a step size of
12 days, for 100 static EDs.

• Scenario 7: Using the values shown in Table 1, the number of packets sent daily by
each ED varies in a 365-day simulation time.

• Scenario 8: Unlike traditional ADR approaches, in this Scenario, we have studied both
the impact of CR and CF on LoRa network performance as well as the impact of SF
and TP.

Additionally, all simulation scenarios are evaluated in urban and sub-urban environ-
ments, which operate differently in terms of path loss, channel saturation, and simulation
radius parameters as demonstrated in Table 2. The parameter values selected for the two
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environments being simulated are such that make our work directly comparable to other
works on the relevant scientific field, e.g., [11,15,24,30].

Table 2. Standard deviation of the path loss (σ) in dB and other parameters for the different deploy-
ment scenarios. This table is partially adapted from [30] and based on the relevant values provided
in [23,30].

Scenarios d0 [m] P̄L(d0) [dB] n σ [dB] Cell Radius (r) [m]

Urban 40 127.41 2.08 3.57 480
Sub-urban 1000 128.95 2.32 7.08 9800

6. Simulation Results

Through simulations, we compare our proposed algorithm with the ADR-MAX [4],
ADR-AVG [11], No-ADR (“No-ADR” indicates the absence of ADR; ADR is disabled and is
not being used in this scheme.), and ADR-Lite [15] schemes in the eight aforementioned
scenarios.

6.1. Scenario 1: Performance under a Varying Number of Static EDs

Figure 8a shows the PDR and EC in ADR-MAX, ADR-AVG, No-ADR, ADR-Lite, and
LP-MAB in Scenario 1, for an urban environment with a radius of 480 m and σ equal to 3.56.
As observed, the PDR of our proposed solution is higher than others due to the use of a
combination of a short-term initial exploration phase and a long exploitation phase, which
follows the exploration phase. Additionally to that, in many RL techniques, the initial action
probability is defined as a uniform distribution, i.e., Pa

u
k (t = 0) = 1

|A| , ∀au
k ∈ A, u ∈ U [13].

Uniform probability initialization in such solutions as LoRa-MAB can take a long time to
eliminate wrong choices from the actions, leading to increased convergence time. However,
in LP-MAB, we do not assume an equal probability initialization for each action of an ED.
Instead, we set the initial probabilities as an undefined number, i.e., nan, which can be
changed based on the ACK reception as demonstrated in the initial state shown in Figure 4.
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Figure 8. PDR & EC versus different numbers of static EDs in Scenario 1.

Keeping a long system history from the start until the present enables the proposed
method to maintain a more comprehensive understanding of the network and achieve a
better performance than other ADR mechanisms, which have only a history of the last twenty
packets received. We also see in Figure 8a that, in low network densification (N < 300), the
LP-MAB’s EC is lower than other approaches due to the fact that instead of making a decision
based on only a portion of the previously received packets, we made decisions based on the
entire history of received packets. In this way, from the first received packet to the last one,
the NS tries to find the most optimal action to improve the network’s performance.
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In Figure 8b, we illustrate the PDR and EC in ADR-MAX, ADR-AVG, No-ADR, ADR-
Lite, and LP-MAB in Scenario 1, for a sub-urban environment with a radius of 9800 m.
It can be seen that, due to the greedy manner of decision-making in ADR-Lite, it is possible
to achieve a higher level of PDR, regardless of the network density, at the cost of a higher
EC. Also, in the No-ADR scheme, because of its randomness and its lack of consideration
for environmental changes, the result is entirely dependent on the initial transmission
parameter values. Therefore, the No-ADR scheme achieves a better performance in the sub-
urban environment compared to the urban environment. As a result of applying machine
learning techniques such as RL, the NS can converge to the optimal state in terms of TP,
resulting in the lowest EC of LP-MAB compared to other approaches. Another pertinent
observation from Figure 8 is that the reduction in PDR and EC performance associated
with increasing the number of the EDs is negligible, making the LP-MAB approach more
scalable than others.

6.2. Scenario 2: Performance under Varying Values of Channel Saturation

In this Scenario, the channel noise, i.e., sigma (σ), takes the values of {0, 0.89, 1.78, 2.67,
3.56} and {0, 0.89, 1.78, 2.67, 3.56, 4.46, 5.36, 6.24, 7.08} for the urban and the sub-urban
environment, respectively. In Figure 9, we illustrate the PDR and EC of different algorithms
versus σ for the 100 static EDs used in Scenario 2. In the LP-MAB scheme, the reception of
the NS’s ACKs by the EDs can directly influence the network’s performance. Thus, a higher
rate of successful reception of the NS’s feedback by the EDs can contribute to a higher
likelihood of determining the most optimal action.
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Figure 9. PDR & EC versus different values of channel saturation in Scenario 2.

Due to the lack of noise for σ = 0, the EDs can receive most of the feedback, which can
result in almost 100% PDR and the lowest EC for LP-MAB compared to other schemes, in
both urban and sub-urban environments. Increasing channel noise decreases the probability
of successful feedback reception, so sub-optimal actions are selected for the EDs, resulting
in reduced PDR and an increase in EC. In contrast to LP-MAB, when σ increases, the
ADR-MAX’s EC also increases significantly, especially in noisy channels, because, as σ
increases, the ADR-MAX’s PDR decreases, thus causing the EDs to choose less optimal
actions, resulting in an increase in the EC.

6.3. Scenario 3: Performance under a Varying Number of Mobile EDs

A wide variety of applications require or apply mobility enabled by the IoT. Mobile
applications are found in traffic monitoring, smart metering, and animal tracking [31,32].
Through this Scenario, we are investigating the effects of mobility on the performance
of EDs, by comparing various ADR mechanisms. In this work, we assess the use of the
Random Waypoint Mobility Model for simulating LoRaWAN [32]. This Scenario runs for
σ = 7.08 and the number of EDs varies between 100 and 700 in both the urban and the
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sub-urban environment, while the EDs’ speed varies from zero to five meters per second
and follows an exponential distribution.

Figure 10 shows the PDR and EC in ADR-MAX, ADR-AVG, No-ADR, ADR-Lite, and
LP-MAB in Scenario 3. In LP-MAB, unlike ADR-Lite, the PDR, in both the urban and
the sub-urban environments, does not degrade as the network densification increases
because of the LP-MAB’s scalability feature. Thus, our proposed algorithm outperforms
other ADR mechanisms in terms of PDR as the number of EDs increases. Compared to all
other methods, our proposed algorithm achieved the lowest EC in the urban environment
for low ED densification, and in the sub-urban environment for any number of EDs. We
can attribute this to the multi-reward technique we have in place in our scheme, which
means that the actions with the highest TP receive the lowest reward.
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Figure 10. PDR & EC versus different numbers of mobile EDs in Scenario 3.

6.4. Scenario 4: Performance under Varying Values of Speed for Mobile EDs

For different IoT applications that require mobility, depending on the use case, the
EDs may have varying speeds. For instance, in smart bicycles and animal monitoring
applications, the EDs’ speed can be greater than 20 or lower than 5 km per hour, respectively.
We examined the impact of different mobility speeds in a mobile Scenario, and the ways
in which ADR mechanisms could be used to overcome the potential impact of mobile IoT
devices. In this Scenario, EDs have a relatively low speed, between zero and twelve meters
per second, with the speed varying in small steps of 2 m per second, i.e., of 7.2 km per hour,
which is typical of IoT deployments in real-world environments. The varying speeds do
not affect network performance in both the urban and the sub-urban environments, as can
be seen in Figure 11.
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Figure 11. PDR & EC versus different values for speed for mobile EDs in Scenario 4.
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6.5. Scenario 5: Performance under Varying Network Sizes and Different Mobility Speeds

Figure 12 shows the PDR and EC of the LP-MAB scheme for a variety of network
sizes (small and large network areas) using 100 EDs, for different mobility speeds, based
on the Random Waypoint Mobility Model [32]. As can be seen in Figure 12, by increasing
the network size, the overall performance of the network will be degraded, regardless of
its speed, the same as indicated in Scenario 4. It is important to note that the configured
path loss model in our work is LoRaLogNormalShadowin, which is appropriate for small
area networks as [11], unlike the LoRaPathLossOulu path loss model used in [32], which is
usually used in large area networks.
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Figure 12. PDR & EC of the LP-MAB scheme versus varying network sizes and different mobility
speeds in Scenario 5.

6.6. Scenario 6: Performance under a Varying Number of Simulation Days

In Figure 13, we illustrate the PDR and EC of different algorithms versus the number
of simulation days for the 100 static EDs used in Scenario 6. According to the results, ADR-
AVG performs better than other ADR mechanisms in terms of PDR in urban environments,
as well as in terms of EC in both urban and sub-urban environments. It should be noted that
these performance results were achieved in a low-density deployment of EDs. This may
be incongruous with most IoT applications, requiring several hundred EDs, for which, as
demonstrated in Scenarios 1 and 3, the performance of ADR-AVG may not be satisfactory.
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Figure 13. PDR & EC versus different numbers of simulation days in Scenario 6.

Additionally, LP-MAB’s results are consistently second-best in this Scenario in terms
of both PDR and EC, and may outperform other algorithms, if more EDs are included in
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this simulation scenario. Thus, we note that there seems to exist a trade-off between the ED
densification and the number of days being simulated.

6.7. Scenario 7: Performance under a Varying Number of Packets Sent per Day

Figure 14 shows the PDR and EC in ADR-MAX, ADR-AVG, No-ADR, ADR-Lite, and
LP-MAB in Scenario 7 for 100 static EDs in a 365-day simulation time. As discussed in
Scenario 6, in an urban environment with low densification, ADR-AVG can outperform
other algorithms. By lowering the average number of daily sent packets per ED, we
can observe a throughput degradation of those algorithms whose performance directly
depends on the reception of the feedback from the NS, i.e., ADR-AVG and LP-MAB, which
are making decisions based on the last 20 received packets and the history of all the
last received packets, respectively. Among the examined schemes, ADR-Lite as a low-
complexity scheme that decides the following action based only on the last received packet,
and No-ADR as a basic randomly deciding algorithm that does not apply any specific
decision-making approach, exhibit a performance that remains unchanged by the reduction
of the daily sent packets in the network.
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Figure 14. PDR & EC versus different values for number of sending message per day in Scenario 7.

6.8. Scenario 8: Performance under a Varying Number of Total Actions Available

Similar to the novel Scenario examined in our other work [15], here, we are also
evaluating the impact of increasing the state space of the transmission parameters over a
120-day simulation time. In this way, we provide more freedom of choice in configuring
the transmission parameters while applying no changes to the protocol design and adding
no overhead to the LoRa packet’s header. Based on the parameter values shown in Table 1,
the EDs can choose the SF, TP, CF, and CR using the following values: {7, 8, 9, 10, 11, 12},
{2, 5, 8, 11, 14}, {868.1, 868.4, 868.7}, and { 4

5 , 4
6 , 4

7 , 4
8}, respectively. In addition, it is important

to note that as indicated in [33], BW cannot easily be altered due to the regularity limitations.
Therefore, we have only considered the effects of SF, TP, CF, and CR with a cardinality of
6, 5, 3, and 4, respectively. For this Scenario, same as in [15], four different configurations
were examined, namely Config-1, Config-2, Config-3, and Config-4, where the transmission
parameters are: {SF + TP}, {SF + TP+CF}, {SF + TP+CR}, and {SF + TP+CF +CR},
respectively. Although, in real environments, the CF may not be adjustable for each ED, it
can be modified during FLoRa simulations.

Figure 15 shows that, contrary to the initial assumptions about the higher degree
of freedom in the choice of transmission parameters, the possibility of increasing PDR
in both urban and sub-urban environments is rather limited. Config-1 uses the SF and
TP as transmission parameters, which is the default configuration parameter set for ADR
mechanisms, resulting in the same result as in Scenario 1. In general, increasing the number
of CFs can result in less collision probability in each frequency, since inter-SF collisions, which
are an important factor affecting the network’s performance, will be less likely. Therefore
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Config-2, which allows EDs to select different CFs for packet transmission, performs better
than any other configuration in terms of both PDR and EC.
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Figure 15. PDR & EC versus different values for number of total actions in Scenario 8.

According to Equation (8), by increasing the CR, the physical message length will also
increase, which will result in a longer ToA duration and, consequently, an increase in the
chance of collision occurrence and a higher EC. Thus, in Config-3, in which the parameters’
selection state space has increased by allowing for the use of higher CR values for packet
transmission, the overall network performance will be reduced. Albeit using multiple
channels, i.e., a higher SF, can improve network performance even when a higher CR, i.e., a
more effective error correction code, is selected. Nevertheless, also in this case, the total
overhead of the network will also grow higher, resulting in unsatisfactory performance, as
seen in Config-4’s results.

As illustrated in Figure 15 the PDR degradation in Config-1, Config-3, and Config-4,
as well as the PDR growth in Config-2, in both the urban and the sub-urban environments,
is more consistent in the LP-MAB approach in comparison to the ADR-Lite scheme due to
LP-MAB’s scalability feature as discussed in Scenario 1. In general, however, our results
validate the results presented in [15] regarding the ADR-Lite scheme’s performance in the
four different configurations examined, as well as the general performance of ADR schemes
in the context of these four configurations.

7. Conclusions and Future Works

This article introduces a centralized adaptive configuration algorithm to improve
the PDR and EC in the context of LoRaWan, as these two metrics constitute the main
performance metrics for LoRa networks. For this goal, we have presented an RL-based ADR
algorithm that allows the NS to configure the EDs’ transmission parameters. This algorithm,
which we have named LP-MAB, can achieve an efficient adaptive configuration using two
MAB algorithms, SE and EXP3, after mapping the LoRa resource allocation problem to the
MAB problem. By using SE and EXP3, the proposed solution can simultaneously benefit
from the advantages of a short-term initial exploration phase and of a long exploitation
phase, which follows the exploration phase.

Using several scenarios, we have evaluated the performance of the LP-MAB and
compared it with other ADR mechanisms, namely the ADR-MAX [4], ADR-AVG [11],
No-ADR, and ADR-Lite [15], in different circumstances. The simulation results indicate
that the LP-MAB’s EC outperforms other algorithms while maintaining a relatively high
PDR in various circumstances. LP-MAB is also more scalable than other approaches, since
its PDR decreases relatively slowly as the number of the EDs increases. In IoT applications,
where the battery lifetime is the most important factor, LP-MAB makes LoRa one of the
best candidates for adoption as the main communication protocol among the vast number
of EDs deployed.
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As LoRa utilizes the ALOHA protocol as its Media Access Control (MAC) mechanism,
the consequent dynamic value for the number of potential re-transmissions may lead to an
increased PDR. Therefore, as a future work, we propose the use of an RL-based algorithm to
specify the number of potential re-transmissions, which should be able to take into account
the overall environmental conditions of the LoRa network, including the number of the
EDs, the relevant noise, and the network size, on the one hand, as well as the trade-off
between the number of potential packet re-transmissions and the EC, on the other hand.
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Abbreviations
The following abbreviations are used in this manuscript:

3G third-generation cellular network
4G fourth-generation cellular network
ACK ACKnowledgment
ADR Adaptive Data Rate
BW BandWidth
CF Carrier Frequency
CR Coding Rate
CRC Cyclic Redundancy Check
CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance
CSS Chirp Spread Spectrum
EC Energy Consumption
ED End Device
EXP3 EXPonential weights for EXPloration and EXPloitation
FLoRa Framework for LoRa simulations
GW GateWay
IoT Internet of Things
km kilometers
LoRa Long Range
LoRaWAN Long-Range Wide-Area Network
LP-MAB Low-Power Multi-Armed Bandit
LPWAN Low-Power Wide-Area Network
m meters
MAB Multi-Armed Bandit
MAC Media Access Control
ML Machine Learning
NB-IoT NarrowBand IoT
NS Network Server
OWA Ordered Weighted Averaging
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PDF Probability Density Function
PDR Packet Delivery Ratio
RL Reinforcement Learning
SE Successive Elimination
SINR Signal-to-Interference-plus-Noise Ratio
SF Spreading Factor
ToA Time-on-Air
TP Transmission Power
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