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2



Abstract

A new deflectometric method for the measurement of specular free-form surfaces

with strong surface structures in motion is presented. It is based on an existing

method - single-shot phase-measuring deflectometry (SSPMD [TIK82][HNA11]

[Liu+14]) - which has been modified and extended in several ways. In single-

shot PMD, a pattern of additively superimposed sinusoidal fringes aligned

perpendicularly to each other is reflected from the test object and recorded

by a camera. The phases of the distorted cross-fringe-pattern observed by the

camera are separated and evaluated by single-sideband demodulation. The

three-dimensional shape of the surface is then obtained from the phase-coded

correspondence between the observed pattern points and the associated camera

points via ray tracing and subsequently via numerical integration of the normal

vectors.

So far, the existing method could not be applied for objects with strong

surface structures, since these generate - due to the strongly varying image scale

- a globally broadband signal in the camera image, which cannot be evaluated

by single-sideband demodulation. Furthermore, due to the height ambiguity

(“height problem of deflectometry”), the surface normal vectors from the ray

tracing could only be obtained after adding suitable additional measurements,

e.g. a second camera image from another view (so-called “stereo deflectometry”).

Both problems are solved in the present work. The problem of the global

broadband signal - the missing localization of the spectrum of the distorted

pattern in frequency space due to the locally too strongly varying fringe densities
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- is solved by a local frequency evaluation. For this purpose, instead of the

global frequency evaluation given by Fourier transform based single sideband

demodulation, the localized ridgelet transform was used, which allows for a local

frequency and phase determination for global broadband signals.

The height problem of PMD is solved by adapting and substantially extending

an existing approach, used for isolated points and discrete patterns proposed in

[SCP04] and [SCP05], for the case of phase-based deflectometric measurements.

In contrast to conventional PMD evaluation, where only the screen-point-camera-

point correspondence is used separately for each observed pixel, this new approach

uses the local lateral correspondence in the screen plane and in the image plane,

which is present in each PMD measurement but not considered in conventional

PMD evaluation methods1, as additional source of information. The adapted and

extended algorithm proposed in this work allows to resolve the ambiguity from

the spatial context of each measurement point without any further measurements

(”monocular absolute deflectometry”).

Finally, to further increase flexibility, data should not only be obtained and

merged from different camera views, but also from different object positions

during the motion and even different measurement stations if needed. For this

purpose, a multi-position and especially a multi-station deflectometry was deve-

loped, which allows for highly precise registration of data from different object

positions within one measuring station and even of data from different measuring

stations with different patterns using different fringe frequencies. This makes it

possible to obtain a specific optimal fringe resolution in the camera image for

different object areas, if required.

The combination of all these approaches allows for the measurement of

specular objects even with strongly curved surface structures in motion, which

has not been possible so far. Corresponding measurement examples on mirrors,

smartphones and petrol cap with movement speeds of up to 200 mm/s will be

shown.

1except for the numerical integration step required to obtain the object shape from the
measured slopes.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

The topography measurement of specular free-form surfaces, such as varnished

car bodies, eyeglass lenses or smartphone displays, is an important topic in the

field of optical metrology. However, there is not yet a method that is capable

of measuring specular objects with strong surface structures in motion quickly,

robustly and in full-field.

Phase measuring deflectometry (PMD) has been an established method for the

contactless optical measurement of the topography of specular surfaces for more

than 20 years and is notable for its robustness, flexibility and high measurement

dynamics. In principle, phase-measuring deflectometry has the potential to

meet the above requirements. A disadvantage of this method, however, is that

several images of a sinusoidal fringe pattern in different phase positions must

be recorded for one measurement. During the measurement, the test object

is not allowed to move. For many industrial applications - for example in the

production with short cycle times - the necessity of stopping the object for

inspection is a major disadvantage, even though the very few images required

for evaluation can be captured with modern camera technology within the short

cycle time of only a few seconds. Due to the large relative overhead caused

by handling times for stopping, fixing and re-accelerating the object, however,

the use of this measurement technique is not practical for many important

applications. Therefore, the possibility to measure specular objects with strong

surface structures in motion and in full-field is strongly desired.

1.2 Problem Statement

According to the state of the art, it is possible to perform a PMD measurement for

“benign” object surfaces using only one single camera acquisition [TIK82][HNA11]

[Liu+14]. Two sinusoidal fringe patterns aligned perpendicular to each other

are additively superimposed and displayed on a screen. This pattern is reflected

from the object surface and recorded by a camera. The pointwise correspondence

between the screen plane and the camera plane is encoded in the phases of the

2



1.2. PROBLEM STATEMENT

fringe pattern. These are evaluated by single-sideband demodulation. The normal

vectors of the surface are then obtained by ray tracing and the three-dimensional

shape is determined by integrating the normal vectors obtained. However, so

far this method does not work for objects with strong surface structures, since

these generate a globally broadband signal that cannot be evaluated in the

Fourier domain by single-sideband demodulation. To solve this problem, a new

single-shot evaluation method for the phase determination using the localized

ridgelet transform, which analyses the signal locally both in spatial and frequency

domain, is presented.

The surface normal is determined using the correspondence between image

plane and screen encoded by the observed fringe phases. However, since the

emitted radiation of the screen is (and has to be) diffuse, the direction information

of the incident ray from the screen is not available. Therefore, the surface normal,

obtained by the law of reflection, can only be evaluated under a given height

assumption. The (coupled) height and the normal of the surface can not be

evaluated simultaneously and unambiguously (the so-called height problem of

PMD). This problem can be solved with different approaches, but all of these

approaches either require different types of mechanical adjustments to the PMD

setup or are not suitable for practical use due to low signal-to-noise ratio. A

new algorithm based on the adaption and substantial extension of the approach

proposed in [SCP05][SCP04] for deflectometric measurements is presented, which

applies not only the point to point correspondence, but also the local lateral

correspondence information. This additional lateral correspondence information

is present in each deflectometric measurement. This way, an absolute monocular

PMD evaluation of both the slope and the height becomes possible without the

necessity of any further measurements.

Finally, to improve the flexibility and also to extend the measuring field,

which can be problematic for highly curved object surfaces, it should be possible

to combine PMD data from different camera views and different measurement

stations. Furthermore, for object surfaces with highly dynamical curvature varia-

tion, two fringe patterns with different frequencies could be required. However,

switching the pattern during object movement is time consuming (much slower

3



CHAPTER 1. INTRODUCTION

than camera shots). Therefore, it is technically preferable to have different pat-

terns displayed in different measuring stations, if they exist. The data from

different camera views and measuring stations must be fused. For this purpose,

a new Multi-Position- and especially Multi-Station-Deflectometry was developed,

which allows for a highly precise registration of data from different object posi-

tions within one measuring station and even of data from different measuring

stations with different patterns in different fringe frequencies, appropriately

combining the surface normal vectors obtained from all the measurements to

determine the object surface.

1.3 Organization of Chapters

The principle and the state of art of conventional PMD and single-shot PMD

will be briefly reviewed in Chapter 2.

In Chapter 3, the appropriate mathematical modeling of PMD signals and

how the different models react differently to various physical influences will be

presented. Specific limiting cases for single-shot PMD are discussed, which are of

no concern for a phase shift evaluation but problematic for single-shot evaluation.

In Chapter 4, different time-frequency analyzing methods are discussed and a

method suitable for PMD phase evaluation is presented. The algorithm used for

the calculation of PMD phases is shown in detail and the limits of this evaluation

are discussed.

In Chapter 5, the principle of the absolute evaluation for discrete pattern

points and lines presented in [SCP05][SCP04] is briefly reviewed. After this,

two important extensions of this evaluation for the case of PMD measurements

are presented: from discrete evaluation to full-field lateral evaluation, and from

line-dependent evaluation to line-free evaluation.

In Chapter 6, the algorithms used for Multi-View- and Multi-Station-PMD

will be presented.

This thesis will be completed by Chapter 7, presenting a final summary,

conclusion and outlook of this research.
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CHAPTER 2. STATE OF THE ART

Phase-Measuring Deflectometry (PMD) [Häu99][PB97][KHL04b][Bot+04]

is a frequently used method for the topographical measurement of specular

free-form surfaces in industrial environments because of its low demands with

respect to mechanical vibrations and temperature changes, and at the same time

of its high accuracy and robustness.

In this chapter, the measuring principle, the existing problems and the

drawbacks and limitations of PMD will be discussed.

2.1 Conventional PMD

A perfectly specular reflective surface is strictly speaking invisible. All we can

see when looking at a specular surface is the (commonly distorted) image of

the environment surrounding and illuminating the object - this is exactly the

measuring principle exploited by PMD. For this purpose, a known (calibrated)

diffuse environment in the form of a sinusoidal pattern as extended (and therefore

spatially incoherent) light source is used. This differs from most of the other

3D metrology technologies, where a structured light source is projected onto the

object surface (Fig. 2.1 on the left hand side). The necessity for this different

approach is caused by the property of the object surface. Specular surfaces reflect

the light only in a certain direction. If applying a projector, it is impossible

to guarantee that all the reflected rays would enter the pupil of the observing

camera, especially if the surface slope itself is unknown before the measurement

(Fig. 2.1 in the middle). To ensure that all (or at least most of) the reflected rays

can be captured by the camera, a large diffuse pattern should be utilized in PMD

instead of a projector (Fig. 2.1 on the right hand side). The light emanating

from the diffuse pattern is reflected by the (commonly curved) surface of the

specular object and the image of the pattern is distorted according to the form

of the object surface. The reflected pattern is recorded by a camera. From the

information of these distorted pattern images and the known calibration data,

the specular surface can be reconstructed in 3D.

6



2.1. CONVENTIONAL PMD

Camera

Specular surface

Projector

Screen

Camera

Specular surface

Camera

Rough surface

Projector

Fig. 2.1: The reflection property of rough and specular surface and the difference
of applying a screen and a projector (only chief rays are shown).

2.1.1 Measuring Principle of PMD

A typical PMD setup is shown in Fig. 2.2. A PMD setup consists basically of a

screen and a camera. A known sinusoidal fringe pattern in x- or in y-direction is

displayed on the screen. The fringe patterns can be represented mathematically

as:

Isx(xs, ys) = I0s +Ms(cos(Φsx(xs))), with Φsx(xs) = 2πfsxxs + φx0 (2.1)

or

Isy(xs, ys) = I0s +Ms(cos(Φsy(ys))), with Φsy(ys) = 2πfsyys + φy0, (2.2)

where (xs, ys) denotes the two dimensional coordinates of the plane defined by

the screen, and Φsx(xs),Φsy(ys) denote the phases of the fringe patterns in xs

and ys direction respectively. fsx and fsy are the constant spatial frequencies

of the fringes in x- and y-direction respectively. φx0 and φy0 are two constant

phases that can be varied during a phase-shifting process, see Chapter 2.1.2. I0s

is the mean pattern intensity and Ms is the modulation. An example of the fringe

pattern and the encoding phases are shown in Fig. 2.3. The phases Φsx(xs) and

Φsy(ys) depend linearly on the screen coordinates and in this manner encode the

screen position information. This pattern is reflected on the object surface and

then captured by a camera. Analysing the phase of the resulting (distorted) fringe

7



CHAPTER 2. STATE OF THE ART

pattern in the camera image, the screen - camera (point to point) correspondence

is determined. In conventional PMD, the phase of the reflected fringe is analyzed

by applying the well-known phase-shifting method, which will be discussed in

the next subsection.

Specular surface

Camera imageCamera 

Screen

Fig. 2.2: Schematic representation of PMD. A sinusoidal fringe pattern is
displayed on a screen. The camera records the pattern reflected by the specular
object. The deformation of the pattern in the image is evaluated.

Taking this into account, PMD does not measure the height / the shape of

the surface primarily. PMD actually measures predominantly the normal / the

slope of the object surface. Utilizing the phase encoding, for each camera point

rc in the image plane (Fig. 2.2) with the associated reflection ray x̂r (known by

camera calibration), the corresponding screen point rs is determined. Applying

the law of reflection, the surface normal n̂ at the reflecting surface point r is

obtained1. Performing a 2D integration of the surface slopes recovered from the

surface normals n̂, the 3D shape of the object surface is obtained. Performing

1This is a simplified description. Actually, to apply the law of reflection, the length s of the
reflection ray x̂r or the direction of the incident ray x̂i must be given. However, neither s nor
x̂i is available in PMD. This underdetermination is known as the “height problem” in PMD.
This problem and its solution will be discussed in Chapter 2.1.4 and Chapter 5

8



2.1. CONVENTIONAL PMD

Fig. 2.3: Fringe pattern in x- and y- direction. Phase encoding in x- and
y-direction.

a differentiation, the curvature map is produced. Measuring the surface slopes

as primary measurand is in many ways advantageous compared to a direct

measurement of the surface heights. For optically reflective surfaces, users are

usually interested in their refractive power / the radius of curvature. To calculate

the curvature, the height data must be differentiated twice, but the slope data

only once. Note that each numeric differentiation increases the noise due to its

high-pass characteristics and therefore worsens the measurement results.

2.1.2 Phase Shift

Conventionally, the phase of the observed fringe pattern in the camera image

is obtained by sequential phase-shifting. The intensity distribution of the kth

9



CHAPTER 2. STATE OF THE ART

(k = 1, 2, 3, 4...) sequence can be written as [Kin+88][KHL04a]:

Ick(xc, yc) = Ic0(xc, yc)(1 +Kc(xc, yc) cos (Φc(xc, yc)− φkshift)), (2.3)

where Ic0(xc, yc) denotes the background intensity, Kc(xc, yc) is the fringe con-

trast resp. visibility, φkshift denotes the shifted phase in the kth sequence and

Φc(xc, yc) is the encoded phase to be determined. Note that Ic0(xc, yc) and

Kc(xc, yc) are only determined by the surface properties (roughness, reflectivity -

see Chapter 3) and the illuminating situation. They do not change while shifting

the phase. To solve for the phase Φc(xc, yc), at least three phase-shifts or more

are needed since there are three unknowns Ic0(xc, yc), Kc(xc, yc) and Φc(xc, yc)

in (2.3). By three-Phase-shifting (phase-shifting step: 2
3π), the phase Φc(xc, yc)

in wrapped form is determined by[KHL04a]:

φc(xc, yc) = atan2(
√

3(Ic2(.)− Ic3(.)), 2Ic1(.)− Ic2(.)− Ic3(.)), (2.4)

where the function atan2(Y,X) returns the four-quadrant inverse tangent of Y

and X, which must be real and varies between −π and π.

In practice, four-phase-shifting is frequently used because of its simplicity

and robustness. By the well-known four-phase-shifting, also called the Carré

method[Cre87][Car05], the phase is normally shifted by a quarter period each

time, and the phase in wrapped form is then determined independently in each

pixel by by the following equation:

φc(xc, yc) = atan2(Ic2(.)− Ic4(.), Ic1(.)− Ic3(.)), (2.5)

which is the conventional method used in PMD.

Note that the phase φc(xc, yc) in (2.4) and (2.5) is the wrapped phase, which

repeats after every period and still differs from the monotonically increasing

or decreasing phase Φc(xc, yc) to be determined to recover the absolute (and

unique) screen coordinates (xs, ys) observed in (xc, yc).

10



2.1. CONVENTIONAL PMD

2.1.3 Phase Unwrapping

An example of the phase calculated by (2.5) is shown in Fig. 2.4 on the left. The

phase of the sinusoidal pattern repeats after each period and is in the range of

[0, 2π]. This leads to an ambiguity problem: a value of φc(xc, yc) corresponds

to many different locations in the screen; the screen points are not uniquely

encoded. It is not possible to obtain the correct correspondence information

without further measurements or assumptions. .

Fig. 2.4: Phase map before (left) and after (right) Unwrapping.

To determine the absolute phase, a so-called “unwrapping” procedure must

be performed. The basic idea is to extend the uniqueness range to the whole

screen (Fig. 2.4 right).

A possible solution to enlarge the uniqueness region is based on the so-called

Chinese Remainder Theorem[Kos83]. In practice, sinusoidal patterns of two

different frequencies are employed. Patterns with m and n fringes across the

entire screen encode the screen points uniquely if m and n are positive integers

and have no common divisors. Let φcm(xc, yc) denote the repeating phase map

obtained with a fringe pattern with m fringes and φcn(xc, yc) the repeating phase

map obtained with a fringe pattern with n fringes, the unique phase map is

achieved by:

Φc(xc, yc) = (pφcn(xc, yc) + qφcm(xc, yc))mod(mn), (2.6)

11



CHAPTER 2. STATE OF THE ART

with
p = 1(mod(m))

p = 0(mod(n))

q = 1(mod(n))

q = 0(mod(m)).

(2.7)

For example, if m = 8 and n = 7, it follows that p = 49 and q = 8. The application

of the Chinese residual theorem is described in detail in [Hor98][Gru91][Lam03].

Another solution is combining a sequential gray code to uniquely encode the

global correspondence and the phase-shifting to obtain the refined correspondence

in high quality [SCR99][CXJ08]. In terms of the number of required exposures

in one measurement, this procedure is not much different from the Chinese

Remainder Theorem.

A further phase unwrapping solution is to encode the coarse global correspon-

dence in a random pattern[LCZ14][LF18]. This is implemented by a pattern which

is an additive superimposition of a sinusoidal fringe pattern for the periodical

phase evaluation with a random, not modulated pattern for global mapping

(phase unwrapping). These two patterns are (should be able to be) then separa-

ted in the Fourier domain. The uniqueness problem is solved here by adding a

single random pattern, while with Chinese Remainder Theorem at least three

additional exposures and with Gray coding even more are needed. However, the

disadvantage of this method is the loss of gray level dynamics2.

Another method is based on a lateral context approach, exploiting a smooth-

ness assumption for the object surface (continuity of the surface slopes). In this

case, no further measurement is required. The phase jumps of the demodulated

phase are detected and removed: The phase values of two successive neighboring

pixels are compared; If the phase difference is greater than a threshold value

(approximate to 2π), 2π is added to all the subsequent phase values. This method

is frequently applied to the single-shot PMD since it does not require any further

2This is especially disadvantageous in the case of single-shot deflectometry (which will be
discussed in Chapter 2.2.1), since here half of the gray scale dynamics is already lost due to
the additive cross grid pattern.

12



2.1. CONVENTIONAL PMD

camera exposure and does not reduce the gray scale dynamics.

A comprehensive overview of these phase unwrapping methods is provided

by [Zha18][JB94][SKS17].

2.1.4 Height Problem

The height problem of PMD [KHL04a], also called the regularization problem

[Bal08], is caused by the unknown direction of the incident ray as shown in Fig.

2.5. Given a camera pixel point rc, the direction of the corresponding reflection

ray x̂r is obtained according to the view direction of the camera (known by

calibration). The screen point rs is determined by the phase encoding. However,

the direction of the incident ray x̂i is ambiguous since the screen is diffusely

illuminating. For each point along the reflection ray x̂r, a matching normal that

satisfies the law of reflection for the given screen (source) point (xs, ys) can

always be found. An unambiguous evaluation of the object height and the surface

normal just using the observation made in a single point resp. pixel in the image

plane is impossible 3.

One possible solution is to figure out the direction of the incident ray by

displacing the screen. This solution is called specular surface triangulation and

has been described by [BSG06][PR01] in 2006. The corresponding screen point

is traced in both of the screen positions - before and after the displacement.

According to these two screen points, the incident ray is fully determined

and the specular surface can now be obtained by a triangulation evaluation.

However, in this approach a high precision mechanical control of the screen

displacement is required because the screen (embodying the reference standard

of the measurement apparatus) must move from exactly the same position to

the second position for each measurement, which is also very time-consuming.

Another solution has been proposed by [SH00][SH04]. Here, a collimating

lens is placed in front of the screen and the screen is located in the focal

3It is possible to evaluate the surface height and the surface normal simultaneously and
unambiguously by using the information of the neighboring camera pixel points and their
equivalent on the screen. This will be shown in Chapter 5

13
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Specular surface

Camera imageCamera 

Screen

Fig. 2.5: Schematic representation of the height problem of PMD.

plane of this lens imaging the screen to infinity and thus assigning all screen

points to a corresponding unique incident direction. The reflection is detected by

telecentric observation optics, whereby the lateral position of the object points is

directly encoded into the position of the image points. If a camera point and the

corresponding screen point are given, the incident ray direction and the reflected

beam direction (always parallel to the optical axis) are determined. Thus, the

surface normal can be evaluated unambiguously. However, telecentric optics are

usually bulky and expensive and also severely limits the measurement field and

angular dynamics.

The most widely used approach is stereo PMD [KHL04a][Kic07][SB09]. As

shown in Fig. 2.5, the height and the normal of the object surface can not be

determined simultaneously and unambiguously since neither the incident ray

direction x̂i nor the length of the reflection ray is known. However, under an

assumption of the surface height, a proper surface normal satisfying the law

of reflection can be determined for each such assumption - these normals are

denoted as “potential normals” resulting in a vector field within the measurement

volume in [KHL04a]. Placing a second camera with a different perspective, a

14



2.1. CONVENTIONAL PMD

second vector field can be defined as shown in Fig. 2.6. The actual object surface

is determined by comparing both of the vector fields.

Object surface

Normal field (camera 1)

Normal field (camera 2)

Fig. 2.6: Potential normals of two cameras. Under certain conditions, the
normals only agree at the actual surface location of the object. Author’s own
representation according to [KHL04a], Fig. 3.6

In this approach a second camera is needed. Nowadays, adding a second

camera is usually not considered as a financial nor technical drawback anymore.

However, it is not feasible in all cases, such as smartphone or tablet PMD with

only one front camera [Wil+19][Wil+20]. Additionally, a large overlap of both

fields of view is required, and at the same time a sufficiently large difference

of the viewing directions is necessary. This limits the practical applications

considerably.

Alternatively, it is also possible to determine the height of one object point by

using an additional sensor and calculate the rest of the surface by self-consistent

iterative integration [SB09]. The drawback of this approach is of course that a

second sensor is required and that the global accuracy depends on the accuracy

of this single point.

It was also attempted to find the absolute object surface from one single

camera perspective by analysing the local integrability exploiting the so-called

“Frobenius condition”for the vector field of potential normals [Kam04a]. Theo-

retically, an absolute object surface can be found where the local integrability
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condition is best fulfilled. However, this approach is not suitable for practical

use since the vector field only varies extremely slightly for typical geometries so

that the Frobenius condition is approximately fulfilled almost everywhere, which

results in a very poor SNR.

2.2 Single-shot PMD

[TIK82] applied the Single-Sideband Demodulation (SSB) to analyse the phase of

interferometric fringe patterns from one single image. [HNA11][Liu+14] utilized

this phase measuring method in PMD and introduced a new method which

calculates the fringe phase in two directions based on only one single camera

image, called Single-Shot PMD (SSPMD). This allows for measurement in motion

since only one camera exposure is required. However, the frequency dynamics of

the distorted fringe pattern and therefore the allowed height and slope dynamics

of the object surface are severely restricted in order to be able to use this

approach.

2.2.1 Principle

SSPMD utilizes the additive superposition of two perpendicular fringe patterns

(Fig. 2.7) in order to encode the two screen components in only one pattern,

which is called a “cross fringe pattern” and mathematically represented as:

Is(xs, ys) = I0s +
cos(Φsx(xs)) + cos(Φsy(ys))

2
Ms. (2.8)

(xs, ys) denotes the screen coordinate. The phases Φsx(xs) and Φsy(ys) are

linearly depending on xs and ys respectively. Therefore, they can again be

written as Φsx(xs) = 2πfsxxs + φx0 and Φsy(ys) = 2πfsyys + φy0, where fsx

and fsy are two constant spatial frequencies in the respective direction.

The cross fringe pattern is reflected on the object surface and recorded by

the camera as shown in Fig. 2.8. As the pattern is not strongly deformed by the

object surface, and the fringe frequency and the fringe direction of the camera

16



2.2. SINGLE-SHOT PMD

Fig. 2.7: The cross fringe pattern.

Fig. 2.8: The camera image of the cross fringe pattern reflected on a mirror.

image are varying only slightly, the camera image of the reflected pattern can be

written as:

Ic(xc, yc) =Ic0(xc, yc)

+
Mc(xc, yc)

2
(exp (iΦcx(xc, yc)) + exp (iΦcy(xc, yc)))

+
Mc(xc, yc)

2
(exp (−iΦcx(xc, yc)) + exp (−iΦcy(xc, yc))) ,

(2.9)

with

Φcx(xc, yc) = 2πfcxxc + δφcx(xc, yc)

Φcy(xc, yc) = 2πfcyyc + δφcy(xc, yc)
(2.10)

denoting the encoded phases to be determined, where fcx and fcy designate

the spatial-carrier frequencies in x- and y-direction, which are assumed to be

17
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constants, δφcx(xc, yc) and δφcy(xc, yc) denote the local phase deformation in-

troduced by the unknown object surface form, Ic0(xc, yc) represents unwanted

irradiance variations as a nuisance variable arising from the nonuniform illumina-

ting direction and reflectivity variations of the surface, and Mc(xc, yc) represents

both reflectivity variations and variations of the surface roughness of the test

object. In most cases Ic0(xc, yc), Mc(xc, yc), δφcx(xc, yc) and δφcy(xc, yc) vary

slowly compared with the spatial carrier frequency 2πfcxxc and 2πfcyyc. The

Fourier transform (FT) of (2.9) can be presented as approximated to):

I(fu, fv) = I0(fu, fv) +M(fu − fcx, fv) +M(fu, fv − fcy)+

+M∗(fu − fcx, fv) +M∗(fu, fv − fcy),
(2.11)

with fcx and fcy being clearly separated from the DC term in Fourier space

(Fig. 2.9). Applying two suitable windows to the carrier frequencies in the

sequence - such as the window highlighted in red and green in Fig. 2.9 - and

calculating the inverse Fourier transform in each case, the analytical signals
Mc(xc,yc)

2 exp (−iΦcx(xc, yc)) and Mc(xc,yc)
2 exp (−iΦcy(xc, yc)) are obtained se-

parately. Note that in this stage the unwanted (low-frequency) background

variation Ic0(xc, yc) has been filtered out. The phases Φcx(xc, yc) and Φcy(xc, yc)

determined by the inverse Fourier transform are shown in Fig. 2.10. Unwrapping

the phase and applying the point specially marked in the middle of screen to

match the phase obtained from the camera image and the phase of the pattern

displayed on the screen, the unambiguous correspondence between the camera

points and the screen points is determined.

The basic idea of single-shot PMD was to apply a cross fringe pattern

to overcome the sequential acquisition of the two phase components, and to

overcome the phase shifting sequence by evaluating the fringe image via SSB in

the Fourier domain.

18
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Fig. 2.9: Fourier spectrum of the camera image displayed in Fig. 2.8.

Fig. 2.10: The phase in x- and y- directions calculated using the method
introduced in [TIK82] [HNA11][Liu+14].

2.2.2 Single-shot-PMD with Predistorted Pattern

The single-shot method presented in [HNA11][Liu+14] is only suitable when the

specular surface is smooth and does not have a strong surface structure. If a

specular sphere with 7.5 mm radius ([Lia+16]) is under test, the cross fringe
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pattern reflected on the object surface is significantly distorted (Fig. 2.11, B).

The fringe direction varies strongly and the fringe frequency can not be assumed

to be a constant any more. Its Fourier spectrum as shown in Fig. 2.11, C indicates

as well that the carrier frequency is not narrow band. A further disadvantage of

the strong distortion is that the peripheral area of the observed fringes displays

a low contrast introduced by the high frequency.

Both of these problems can be overcome by an appropriate predistortion of

the input fringe pattern. If the expected shape of the object surface is known

in advance, an input fringe pattern can be designed by ray tracing, so that its

reflection on the object surface generally results in a narrowband fringe pattern.

Such a pre-distorted fringe pattern, calculated for a spherical surface with 7.5 mm

radius is shown in Fig. 2.11, D, with its regular high-contrast reflected image

displayed in Fig. 2.11, E. Its narrow band Fourier spectrum is displayed in Fig.

2.11, F and now a suitable window can be applied to the carrier frequency.

2.2.3 Problems and Limitations of the Single-Shot PMD

Single-shot PMD is well-established to measure specular surfaces with not too

strongly varying slopes. However, this method is not suitable to evaluate the

phase of cross fringe patterns reflected on a broadband object surface. An

example of such a “broadband object” - a red petrol cap with a ridge - is shown

in Fig. 2.12 left, and the cross fringe pattern reflected on this object surface is

displayed in Fig. 2.12. The frequency of the fringe pattern in y-direction varies

strongly in the ridge area.

As the Fourier spectra of the observed fringe pattern displayed in Fig. 2.13,

the observed frequencies vary considerably, so that there can not be assumed as a

constant “carrier frequency”to be used for the demodulation any more. therefore,

in the y-direction, the carrier frequency fcy can not be separated from the base

band A(fu, fv) appropriately. This illustrates the fact that the conventional

single-shot method is not suitable for the PMD measurement of a broadband

object.
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2.2. SINGLE-SHOT PMD

Fig. 2.11: Projected patterns, camera images, and Fourier spectra of the camera
images. In the left column a regular pattern is applied (A, B, C), and in the
right column a pre-distorted pattern is applied (D, E, F). The original Fig. 3 in
[Lia+16].
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(a) A petrol cap with strong surface
structures.

(b) The cross fringe pattern reflected
by the object surface.

Fig. 2.12: Broadband object.

Fig. 2.13: Fourier spectrum of the camera image shown in Fig. 2.12 (b).
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CHAPTER 3. SIGNAL GENERATION AND LIMITS OF SSPMD

It happens that the same signal can be described with different mathematical

models. For example, two additive signals sin 2πf1x+ sin 2πf2x can be inter-

preted as one signal of average frequency sin (πf1x+ πf2x) with its amplitude

modulated by 2 cos (πf1x− πf2x). Both models are mathematically equivalent.

But depending on the application, one may make more physical sense than the

other in a given context

Similar to the example discussed above, a sinusoidal signal can be expressed

as

Is(xs) = Is0(xs) +Ms(xs) cos (Φs(xs)) (3.1)

with Is0(xs) denoting the DC term and Ms(xS) representing the amplitude or

“modulation”. This signal can also be represented as

Is(xs) = Is0(xs)(1 +Ks(xs) cos (Φs(xs))), (3.2)

where Ks(xs) represents the contrast or “visibility”. For phase shift evaluation,

both descriptions are completely equivalent, since the essential information is

provided by the sequential phase Φs(xs). In contrast to the phase shift, the

single-shot phase evaluation is based on contextual information. Physical effects

such as surface reflectivity jumping or background material changes do not have

a strong influence on the phase shift evaluation (stronger noise), while in such

situations single-shot phase evaluation is not possible at all.

In this chapter, it will be discussed how such physical effects are manifested

in the mathematical model.

3.1 Signal Modelling and Physical Influencing

Variables

3.1.1 Contrast

Considering a screen displaying a perfect sinusoidal pattern with the maximum

intensity Imax = 0.8 and the minimum intensity Imin = 0.2 as shown in Fig.
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3.1, the DC term Is0(xs), the contrast Ks(xs) and the modulation Ms(xs)

are determined by Is0(xs) = Imax+Imin
2 , Ks(xs) = Imax−Imin

Imax+Imin
and Ms(xs) =

Imax−Imin
2 .
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Fig. 3.1: A perfect sinusoidal signal with the maximum intensity Imax = 0.8 and
the minimum intensity Imin = 0.2; The DC term of the signal Is0(xs) = 0.5; The
contrast of the signal Ks(xs) = 0.6; The modulation of the signal Ms(xs) = 0.3.

However, even if this pattern is reflected by a perfect planar mirror and is

then captured by a perfect camera, the recorded signal is never the same as

Is(xs) shown in Fig. 3.1. The radiance of the screen as a function of the angle

between the normal of the screen surface and the direction of observation resp.

object illumination changes the signal characteristic.

Denoting the total emitted radiation power of a screen pixel as Φe [W ] as

shown in Fig. 3.2, the part of the radiant flux which is emitted into a small

solid angle dΩ is called the radiant intensity and denoted as Ie = dΦe
cdΩ [W/sr].

The radiant intensity of most of the radiators depends on the angle between the

normal of the screen plane and the direction of the emitted light - β, and can be

written as:

Ie(β) = I0 cosm β. (3.3)
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For m = 1, it is a lambertian radiator. A lambertian radiator always has the same

brightness, no matter under which direction it is observed, since its radiance,

which is generally defined as

Le(β) =
dIe

cosβdA
(3.4)

with A being the pixel area, is a constant I0
A . Another kind of radiator is radiator

with a preferential direction (in German: Keulenstrahl) with m = 3. The radiance

Le(β) = I0 cos2 β
A is directional. Most of the light is emitted to small angles β

and the radiant intensity is the strongest while β equals 0.

Screen plane

Pixel

A

Fig. 3.2: The radiometric parameters of a screen pixel as a light source.

Most of the conventional (LCD) screens are neither perfectly lambertian

nor radiators with a preferential direction with exactly m = 3. Usually, it

is something in between. The radiance characteristic, usually called viewing

angle characteristic, is different from screen to screen, and also different from

the meridional to sagittal direction. In screen production, the viewing angle

characteristics of a screen are measured with the conoscope lens [YG09] or the

method proposed in [RKW06], and recorded in the attached data sheet. If the
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radiance characteristic of the screen is given as a (normalized) function r(β(xs)),

the signal can be represented as

Is(xs) = r(β(xs))Is0(xs) + r(β(xs))Ms(xs) cos 2πfxs (3.5)

or

Is(xs) = r(β(xs))Is0(xs)(1 +Ks(xs) cos 2πfxs). (3.6)

As shown in Fig. 3.3, the mean value (DC term) and the modulation of the

signal are changed according to the radiance condition, while the contrast of the

signal remains.
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Fig. 3.3: The influence of the viewing angle on the signal.

In addition to the viewing angle characteristic of the screen, the reflectivity

of the object surface has the same influence on the signal. Based on the Fresnel

equations resp. Schlick’s approximation [Sch94], the reflectivity of a reflecting

surface can be written as a function of the angle of incidence. The intensity of

the signal reflected from the surface is, same as (3.5) and (3.6), obtained by

multiplying this function by the signal. Besides angle of incidence, reflectivity is

also a material property of the surface. Examples of an aluminum-coated mirror
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with high reflectivity and a 1 mm-thick silicon with low reflectivity are shown in

Fig. 3.4. Both of the mirrors are specular, s. Fig. 3.4 (a). At an angle of incidence

of 45°, the reflectivity of the aluminum-coated mirror is about 93% and the

reflectivity of the 1 mm-thick silicon is between 25% and 50%, depending on

polarization. The angle of incidence of the fringe pattern captured in Fig. 3.4

(b) is about 30°. The modulation Ms, as shown in Fig. 3.4 (c), is reduced by the

1 mm thick silicon, while the contrast Ks remains in both cases above 93%1.

Fig. 3.4: (a): The camera image of a specular aluminum-coated mirror and
a specular 1 mm-thick silicon. (b): A sinusoidal fringe is reflected from the
aluminum-coated mirror and from the 1 mm-thick silicon. (c): The intensity of
the section A-B.

For those applications where the surface reflectivity strongly varies or the

screen viewing angle characteristics is far from a lambertian radiator, the model

Is(xs) = Is0(xs)+Ms(xs) cos (Φs(xs)) would make more sense as the modulation

changes quickly and the contrast preserves.

3.1.2 Modulation

Suppose that the pattern is displayed on a perfect screen, such as a lambertian

radiator, but there is an “offset background illumination” in the room that shines

past the object into the camera. This kind of “offset”, as a value added to the

1Imax and Imin from the aluminum-coated mirror surface are about 220 and about 6,
respectively. The contrast Ks = Imax−Imin

Imax+Imin
is 94.69%; Imax and Imin from the 1 mm-thick

silicon surface are about 157 and about 5, respectively. The contrast Ks is 93.83%
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signal, changes the average intensity of the signal and the contrast of the signal,

but not the modulation of the signal, as shown in Fig. 3.5.
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Fig. 3.5: The influence of the background light on the signal.

A “background material change” has the same influence on the signal as the

background illumination. Consider a smartphone display as shown in Fig. 3.6,

the sinusoidal pattern is reflected on a glass pane (the first layer). The color of

the material under the glass pane changes from black (screen) to white (frame).

The higher reflectivity of the white frame introduces a constant offset to the

reflected signal. As the intensity of the section A-B shown on the right, the

average intensity changes, while the modulation of the signal remains the same.

This “jumping” effect shown in Fig. 3.6 on the right hand side will cause serious

problems in the single-shot evaluation since the lateral context information is

not continuous at this jumping position. However, this is not a problem in the

phase-shifting evaluation since only the sequential information is applied. For

these situations the model Is(xs) = Is0(xs)(1 + Ks(xs) cos (Φs(xs))) is more

sensible.
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Fig. 3.6: A crossed sinusoidal signal reflected on a smartphone display with black
and white background color. The intensity of the section A-B is plotted on the
right.

3.2 Physical Limits of Single-Shot PMD

3.2.1 Nyquist-Shannon Sampling Limit

When using conventional phase shift evaluation, at least six, normally eight

camera images have to be recorded in each measurement, while in the single-shot

evaluation only one is sufficient. As to be expected, the considerable reduction

of the required amount of data leads to certain restrictions and limitations.

In the conventional phase shift method, the phase information is obtained

by the sequential intensity variation independently of the neighboring pixels.

In comparison, in single-shot methods, the phase information is evaluated by

exploiting lateral context information. Therefore, the lateral sampling must

satisfy the condition of the Nyquist-Shannon sampling theorem [Nyq28]. An

example is shown in Fig. 3.7. The object under test has a very small radius of

curvature, resulting in a very high fringe frequency (as the screen is extremely

demagnified), so that the sampling distances in the screen are greater than half

of the fringe period. In this example, the sampling distance is exactly 2π. The

recorded intensity in the single-shot camera image is displayed in the upper right

corner in Fig. 3.7. The phase of the observed fringe pattern can not be evaluated

30



3.2. PHYSICAL LIMITS OF SINGLE-SHOT PMD

as the sampling theorem is violated.

However, this case is not problematic for phase shift evaluation, since the

phases, as shown in (2.4) and (2.5), are evaluated not by using the lateral context,

but by using the sequential contrast (Fig. 3.7 bottom right).

Specular surface

Surface

I c

Pixel
t

Pixel

I c

Single shot  

Phase shift  

1 1
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3
3

4
4
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Camera

Fig. 3.7: Information acquisition of single-shot PMD and phase shifting PMD:
Different effects of violating the sampling theorem.

3.2.2 Local Convergence

The object to be inspected is an optically effective component, acting as a (gene-

rally stigmatic) lens. If this lens converges all the camera chief rays backwards

to a common screen point, all camera points observe the same screen point

and the context information is completely lost (More generally, if all camera

rays converge on the same screen line, the lateral context is degenerated in one

dimension.). A single-shot evaluation based on the context information is not

possible either. Therefore for single-shot evaluation, it is essential to understand

when this situation will appear. This happens when the screen distance equals
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the image distance when considering the camera entrance pupil as the object to

be “imaged” and the surface to be measured as the imaging lens. The camera

chief rays are under this consideration regarded as the aperture rays. The image

distance of the camera entrance pupil can be obtained by applying the lens

equation 1
o + 1

i = 1
f in the imaging optic2.

This critical geometry can now be interpreted mathematically. Consider the

case of a coaxial PMD, where the screen, the camera, and the local surface normal

are all coaxial (Fig. 3.8). For this case, the lens equation can be applied without

further adaption. Applying a local coordinate system ûv̂ŵ to the object surface

in which the ŵ-axis is coaxial with the surface normal, the local surface can be

represented in the second fundamental form w = a
2u

2 + buv + c
2v

2. Representing

the local object surface by using the Weingarten matrix[Küh08]

W =

[
a c

c b

]
, (3.7)

the principal curvatures of the surface is given by its eigenvalues:

k1,2 =
a+ b

2
±
√

(a− b)2

4
+ c2. (3.8)

For a rotationally symmetric surface (a = b, c = 0), the curvature remains the

same in all directions regardless of the cross section with the ŵ-axis. Denoting

the distance from screen to object as rs0 and the distance from the camera to

the object as s, the converging condition, or the critical geometry condition is

given by
1

s
+

1

rs0
=

1

f
= 2a = 2b (3.9)

with f denoting focal length and f = 1
2a = 1

2b
3. In this case all the chief rays

of the camera converge to a point on the screen as shown in Fig. 3.8 on the

left. For a general parabolic surface that is rotationally asymmetric, the surface

2In the imaging optics, o generally denotes the object distance, i denotes the image distance,
and f denotes the focal length of the effective lens provided by the curved object surface.

3The focal length of a spherical mirror is half of the sphere radius.
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curvature differs in each cross section with the ŵ-axis. The cross section with the

maximum curvature has the strongest optical power and the minimum curvature

has the lowest optical power. As a result, the camera rays never converge to a

point, but to two focal lines (corresponding to the two principal curvatures) in

the respective distance. (3.9) can be rewritten as:

1

s
+

1

rs0
= a+ b±

√
(a− b)2 + 4c2. (3.10)

An example is shown in Fig. 3.8 on the right, which is called astigmatism in

optics.

(a) (b)

Fig. 3.8: A simulated coaxial PMD. The camera rays all converging to the
camera center c given by the center of the entrance pupil of the camera optic are
displayed in blue and the incident rays from the screen is displayed in red. The
object surface is shown in green and the screen plane is shown in yellow. The
geometrical parameters are given in [m]. (a): all camera rays converge to a screen
point; (b): all camera rays converge to a screen line. Both situations are not
problematic for the the phase shift evaluation, since the sequential information
is not affected by the lack of lateral context.

However, most of the conventional PMDs are not coaxial. In a non-coaxial

system, even a perfectly rotationally symmetric object surface will result in
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astigmatism, since the effective focal length differs in the meridional and the

sagittal planes. Denoting the angle of incidence as θ and letting the non-coaxial

incident and reflection ray lie on the ûŵ-plane as shown in Fig. 3.9, the ûŵ-plane

becomes the meridional plane for the “off axis” imaging process and the v̂ŵ-plane

becomes the sagittal plane for this “on axis” imaging process. Projecting all the

camera rays onto the sagittal plane, the lens equation can be written as

1

s cos θ
+

1

rso cos θ
=

1

f
= 2b. (3.11)

Rewriting (3.11) as 1
s + 1

rs0
= 1

f
cos θ

= 2b cos θ, the effective focal length fs = f
cos θ

and the effective curvature bs = b cos θ on the sagittal plane are obtained.

The effective focal length on the sagittal plane can also be found in [Gro18].

According to [Gro18], the effective focal length on the meridional plane is given

by fm = f cos θ and the effective curvature am = a
cos θ .

Screen Camera

Sagittal

Meridional

Fig. 3.9: Non-coaxial PMD resulting in an off-axis imaging of the camera center
by the object surface, and the meridional and sagittal plane depending on the
angle of incidence θ.

To describe this a bit more involved situation, an “effective Weingarten
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Matrix”can be introduced, defined by

We =

[
a

cos θ c

c b cos θ

]
, (3.12)

and the effective principal curvature is therefore given by

ke1,e2 =
a

cos θ + b cos θ

2
±
√

( a
cos θ − b cos θ)2

4
+ c2. (3.13)

For a general, coaxial or non-coaxial PMD, if the geometric relation of the

image distance, object distance and effective local curvature satisfies the lens

equation:

1

s
+

1

rs0
=

1

fe
= 2ke1,e2 (3.14)

the camera rays converge to a focus line on the screen. Such a geometry is shown

in a simulation in Fig. 3.10. This condition will be found in Chapter 5.3.1 by

reintroducing the [SCP05] completely mathematically without the corresponding

physical interpretation.

Note that for a diverging convex mirror (a < 0, b < 0, c2 < ab), the camera

rays never converge to a focal point or line and (3.14) is never satisfied4.

3.2.3 Phase Monotony

In most PMD camera images, the phase value is monotonically increasing or

decreasing. This happens when the object surface is smooth and has no strong

local curvature. This monotony, however, will be broken if there is a focus line

and the screen is above the focus line. The monotony is completely irrelevant

for the conventional phase shifting evaluation, since the correspondence between

screen and camera is evaluated independently of the lateral context by the

sequential phase shift. For single-shot evaluation, however, monotony is an

4A convex mirror follows a < 0, b < 0, c2 < ab. Since

( a
cos θ

−b cos θ)2

4
+ c2 =

a2

cos2 θ
+b2 cos2 θ−2ab+4c2

4
<

a2

cos2 θ
+b2 cos2 θ+2ab

4
=

( a
cos θ

+b cos θ)2

4
,

ke1,e2 are therefore negative and (3.14) is never satisfied.
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Fig. 3.10: A simulated Non-coaxial PMD while the lens equation 3.14 is satisfied.
The camera rays are displayed in blue and the incident rays from the screen are
displayed in red. The geometrical parameters are given in [m]

essential requirement for evaluability, since no continuous context information is

available at the place where the monotony is broken and additional information

about the increasing screen pixel position in camera image is required.

Consider a PMD setup with a fixed camera and object, and let the screen

distance rs0 be flexible. Denote the screen distance as rs0f
5 if rs0 satisfies (3.14)

and let rs0f1 and rs0f2 be the two solutions6 of (3.14). If for the whole object

surface rs0f does not exist (e.g. for a convex mirror), or if rs0f exists but the

screen distance rs0 is always smaller than min(rs0f1, rs0f2), the camera image

of the screen is never mirrored, and monotony holds for the whole area. An

example is shown in the simulation in Fig. 3.11 on the left hand side. Single-shot

5Note that rs0f denotes the distance between the local object surface patch to the cor-
responding screen point. For a (locally) convex mirror, as discussed in Chapter 3.2.2, rs0f
does not exist. If rs0f exists, rs0f is not a constant for the entire object surface, but varies
depending on the local curvature and the angle of incidence.

6Analogous to astigmatism, the camera rays will converge to two focal lines at two different
screen distances and the two focal lines will lie in different directions.
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PMD is in this case performable.

Camera image Camera image

P
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P
ix

e
l 
ro

w

Fig. 3.11: A simulated Non-coaxial PMD. Left: the light rays in a common PMD;
Right: the light rays while the screen above the focal line. The geometrical
parameters are given in [m]

If on the other hand rs0f1 and rs0f2 both exist for the entire object surface and

the screen distance rs0 is always between min(rs0f1, rs0f2) and max(rs0f1, rs0f2),

the camera image of the screen is always mirrored, as shown in Fig. 3.11 on

the right hand side. The monotony also holds for the whole area and only the

image is mirrored with respect to the focal line7. In this case single-shot PMD

is also performable, but prior knowledge about the object surface, and the

direction in which the fringe phases and therefore the encoded screen coordinates

increase is required since the image is mirrored. If rs0f1 and rs0f2 both exist

for the entire object surface and the screen distance rs0 is always greater than

max(rs0f1, rs0f2), the image is mirrored with respect to both of focal lines. The

monotony also holds and prior knowledge about the system geometry is needed

for the single-shot evaluation, but not for the phase shift evaluation.

If rs0f1 and rs0f2 are present (not necessarily for the entire surface) and

the screen distance rs0 is partly greater than min(rs0f1, rs0f2), the monotony is

broken since the camera image of the screen is partly mirrored. An example is

displayed in Fig. 3.12. The fringe pattern reflected on a petrol cap is recorded by

a camera and the camera image is displayed on the left hand side in Fig. 3.12.

7The focal line given by the screen distance min(rs0f1, rs0f2)
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The phase of the fringe is evaluated by the phase shift method and shown on the

right hand side. Along the black arrow shown in Fig. 3.12, the phase value at

first increases, and then decreases, and at the end increases again. In single-shot

evaluation, the increasing phase direction may be determined by prior knowledge

about the system geometry or by optical flow[HS81][LK81][BWS05]. However

the transition area from the non-mirrored screen image to the mirrored screen

image, or vice versa, is not suitable for single-shot evaluation because the lateral

context is lost at the border.

-200
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200

400

600

800

1000

Camera image Screen pixel position

Fig. 3.12: Left: a PMD camera image; Right: the PMD phase value.
c
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Chapter 4

Time-Frequency Analysis

for Phase Evaluation
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When using PMD to measure the topography of a specular surface, the

geometrical correspondence of a camera pixel point and the observed screen

point must be found. This correspondence is encoded in the phase of the sinusoidal

fringe pattern, which is conventionally obtained by applying the phase shifting

method discussed in Chapter 2.1.2. However, because of its sequential measuring

process, the phase shift method is not suitable for moving objects in industrial

production, nor for non-fixable objects such as the human cornea. Therefore,

single-shot PMD [HNA11][Liu+14], as discussed in Chapter 2.2.1, utilizing the

additive superposition of two perpendicular fringe patterns and single-side band

demodulation instead of a temporal phase shift in order to determine the phase

[TIK82] has been invented. However, single-sideband demodulation only works

for camera images presenting narrow bandwidths. The camera image of objects

with complex surface geometries (Fig. 2.12) that result in broadband fringe

patterns (Fig. 2.13) cannot be evaluated this way, since the single-side band

demodulation approach [TIK82] only considers both frequency and phase globally

in Fourier space and the global frequencies determined this way cannot be filtered

appropriately in the Fourier domain.

To determine the local phases of broadband fringe patterns like this, time-

frequency analysing methods muss be applied, in which the signal is evaluated

locally both in time and in frequency domain. In this chapter, different time-

frequency methods will be discussed and a specially adapted time-frequency

method, called “localized ridgelet transform”, will be introduced for the phase

evaluation of the additive broadband fringe patterns occurring when using

single-shot deflectometry on complex surfaces.

Although the task at hand deals with spatially rather than temporally varying

patterns and functions, common terms like “time-frequency analysis” or “time-

frequency domain” etc. will be used throughout this chapter, although the term

“frequency” always refers to a spatial frequency and the “time domain” is in fact

always a physically spatial domain.
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4.1 State of the Art Technology of Time-Frequency

Analysis

Applying the same notation as introduced in Chapter 2.2.1, the regular cross

fringe pattern (Fig. 2.7) encoding the 2D screen position applied in the SSPMD

can be represented in the following normalized form:

Is(xs, ys) =
1

2
+

cosφx(xs) + cosφy(ys)

4
(4.1)

with (xs, ys) denoting the two dimensional coordinates of the plane defined

by the screen, and φx(xs) = 2πfsxxs and φy(ys) = 2πfsyys being the phases

(the phases depend linearly on xs and ys respectively and fsx, fsy are the

frequencies) encoding the screen position (xs, ys). The cross fringe pattern is

distorted according to the geometry of the object surface, and the reflection on

the test object surface is captured by a camera. The intensity of the camera

image can be represented by1:

Ic(xc, yc) = Ic0(xc, yc) +Mc(xc, yc)(cosφx(xc, yc) + cosφy(xc, yc)), (4.2)

where (xc, yc) denotes the two dimensional coordinates of the camera image

plane, and φx(xc, yc) and φy(xc, yc) indicate the desired phase information

observed by the camera pixel (xc, yc), by which the corresponding (observed)

point on the screen is determined. Note that the x- or y-instantaneous frequency

times 2π equals the gradient of the instantaneous phase φx(xc, yc) or φy(xc, yc)

respectively. The instantaneous phase is, strictly taken, defined by the complex

argument of an analytic signal. If the signal Ic is real, the instantaneous phase

is determined by the complex argument of the signal’s analytic representation

Ic + iH(Ic), where H(Ic) represents the Hilbert transform of the signal Ic. If

strong structures are present on the specular object surface, the instantaneous

frequency varies considerably This chapter discusses how to determine the highly

varying instantaneous frequencies, resp. their phase φx(xc, yc) and φy(xc, yc),

1This model implicitly assumes that the modulations of the additive fringe structures are
the same in both directions
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with the time-frequency analysing methods.

The global notation for the camera coordinates and screen coordinates is

(xc, yc) and (xs, ys), respectively. Since we are only interested in the reflected

pattern on the image plane captured by the camera in this chapter, (x, y), instead

of (xc, yc), will be used for camera coordinates in this chapter.

4.1.1 Short-time Fourier Transform

To analyse a signal locally, the signal must be transformed to a suitable time-

frequency domain, which represents both the temporal (resp. spatial) and the

spectral properties of the signal simultaneously. The Short-time Fourier Trans-

form (STFT), also known as Windowed Fourier Transform (WFT), is histo-

rically the first and simplest approach extending the Fourier transform to a

time-frequency analysis. Instead of analysing the signal frequency globally, STFT

divides the entire signal into shorter segments of equal length and then computes

the Fourier transform on each shorter segment independently. A 2D STFT can

be written as[SEV16][Mal08][Add02]:

X{I}(bx, by, fx, fy) =

∫∫
I(x, y)e−i2πfxxe−i2πfyy

w(x− bx, y − by)dxdy,

(4.3)

where w(x, y) is a normalized window function (‖ w ‖L2= 1) centered at (0, 0)

and w(x − bx, y − by) represents the same window centered at (bx, by). I is

the signal function (the intensity of the camera image) and bx and by are the

translation factors in x- and y-direction. The “time-frequency atom” of STFT is

therefore:

ψbx,by,fx,fy = e−i2πfxxe−i2πfyyw(x− bx, y − by). (4.4)

The window function of STFT can in principle be chosen arbitrarily. [Gab46]

introduced the Gaussian window function into the STFT, called Gabor transform

(GBT), which advances the resolution of localization in both the time and

42



4.1. STATE OF THE ART TECHNOLOGY OF TIME-FREQUENCY
ANALYSIS

frequency domains. GBT is therefore a special and more advanced type of

STFT, avoiding the common spectral leakage in the form of multiple side lobes

associated with simple rectangular localization windows. However, there is still

a fundamental trade-off between the temporal and the spectral resolution.

The time location µx, µy resp. the frequency location µfx , µfy , the time

spread σ2
x, σ2

y resp. the frequency spread σ2
fx

, σ2
fy

of a time-frequency atom

ψbx,by,fx,fy are defined as [Mal08][Add02]:

µx =

∫
x ‖ ψbx,by,fx,fy ‖2 dx,

µy =

∫
y ‖ ψbx,by,fx,fy ‖2 dy,

µfx =

∫
fx ‖ ψ̂bx,by,fx,fy ‖2 dfx,

µfy =

∫
fy ‖ ψ̂bx,by,fx,fy ‖2 dfy,

σ2
x =

∫
(x− µx)2 ‖ ψbx,by,fx,fy ‖2 dx,

σ2
y =

∫
(y − µy)2 ‖ ψbx,by,fx,fy ‖2 dy,

σ2
fx =

∫
(fx − µfx)2 ‖ ψ̂bx,by,fx,fy ‖2 dfx,

σ2
fy =

∫
(fy − µfy )2 ‖ ψ̂bx,by,fx,fy ‖2 dfy,

(4.5)

with ψ̂ being the Fourier transform of ψ.

The fundamental trade-off between the temporal and the spectral resolution

of all linear transforms used for spectral analysis is called the time-frequency

uncertainty, also called the Heisenberg uncertainty principle 2, which is mathe-

matically presented as σxσfx ≥ 1
4π in 1D cases, and σxσyσfxσfy ≥ 1

16π2 in 2D

cases. The Heisenberg uncertainty can be visualized by a so-called Heisenberg

2Heisenberg combined this fundamental trade-off with the (physical) relations between
energy and (temporal) frequency (Planck) resp. momentum and spatial frequency (de Broglie)
in order to define his famous physical “uncertainty relation”.
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box in the time-frequency space 3 centered at (µx, µy, µfx , µfy) and having a

time width equal to σx and σy, and a frequency width equal to σfx and σfy as

shown in Fig. 4.1.

Since the window of STFT is equidistantly chosen and not correlated with the

frequency, the shape of the 4d Heisenberg box σxσyσfyσfy is independent of its

position (µx, µy, µfy , µfy ). The Heisenberg box of STFT atoms is schematically

shown in Fig. 4.1. For simplification, the Heisenberg box of a 1D signal is

displayed in a time-frequency plane.

Fig. 4.1: The Heisenberg box representing the time-frequency spread of STFT
atoms.

The Heisenberg uncertainty principle [Mal08] states that, the product of the

uncertainty by determining the time and the uncertainty by determining the

frequency is larger than a constant. This limits the time-frequency resolution of

the atoms. In all the linear time-frequency analysing methods, there is always a

trade-off between time and frequency resolution. The higher the signal frequency,

the better the time resolution and therefore the worse the frequency resolution

has to be, and vice versa (Fig. 4.2). The Heisenberg box of STFT, however,

3In general cases, this term is known as the time-frequency plane. Here we discuss about a
2D signal, whose transform into the time-frequency domain is 4 dimensional. Therefore, it is
named as time-frequency space.
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always has the same shape. STFT therefore has a good absolute resolution but a

poor relative resolution in the time-frequency domain. Using STFT to analysing

a signal with significantly varying frequency can therefore lead to serious errors.

Fig. 4.2: The schematic representation of the Heisenberg uncertainty.

An example is shown in Fig. 4.3 and the scalogram - the visualization of the

spectrum of a signal over time - of the STFT of the signal shown in Fig. 4.3

is displayed in Fig. 4.4. An 1D sine wave signal consisting of three frequencies

is applied subsequently at different times. The amplitude of the signal and the

time-frequency distribution are displayed in Fig. 4.3. The signal is transformed

into the time-frequency domain by using STFT of two different window sizes

and the resulting time-frequency spectra are shown in Fig. 4.4. Different from

a conventional FT, the existing frequencies and their amplitudes and phases

are not presented globally but extended in the time axis. The frequency can be

fairly well defined (resp. resolved) by using a large window in time (on the left

hand side of Fig. 4.3), but - as limited by the Heisenberg uncertainty - then the

location is “smeared”. By using a small window as shown on the right hand

side of Fig. 4.3, the location is well defined, but the frequency resolution is

poor. Given a window width, the shape of the Heisenberg box of STFT remains

the same independently from the frequency of the signal. When dealing with a
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broadband signal, the chosen window length can only be suitable for a certain

frequency range. A reliable full-field evaluation is therefore difficult to perform.
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Fig. 4.3: Left: a 1D sine wave signal in time domain; Right: the 1D signal
presented in time-frequency domain.
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Fig. 4.4: The scalogram of the STFT of the signal shown in Fig 4.3. Left: the
window size of the time-frequency atom is 512 pixels in the time domain; Right:
the window size of the time-frequency atom is 128 pixels in the time domain.
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4.1.2 Wigner-Ville Transform

Besides the linear time-frequency approach like STFT, [Vil] introduced a quadra-

tic method, called Wigner-Ville Transform (WVT) or Wigner-Ville Distribution

(WVD), to analyse the time and frequency distribution of a signal that had been

studied by Wigner [Wig32] in quantum thermodynamics. WVT is defined as

the Fourier transform of the instantaneous autocorrelation function (ACF) of a

signal (representation in 1D for simplification):

WV {I}(bx, fx) =

∫
I(bx +

x

2
)I∗(bx −

x

2
)e−i2πfxxdx, (4.6)

where the asterisk denotes the complex conjugate and x is a dummy integration

variable in time. Applying the Parseval’s formula, the Wigner-Ville transform

above can also be equivalently represented as a inverse Fourier transform of the

autocorrelation function in frequency:

WV {I}(bx, fx) =

∫
Î(fx +

f

2
)Î∗(fx −

f

2
)ei2πfbxdf, (4.7)

where f is a dummy integration variable in frequency. The WVT can be regarded

as using the signal itself as a filter and provides a high-resolution representation

in both time and frequency domain, since time and frequency have a symmetric

role in WVT.

Both the instantaneous power (in time) and the energy spectrum (in frequen-

cy) can be recovered from the WVT simply as marginal distributions: since the

integral of the Wigner-Ville distribution over the frequency (the time) at any bx

(fx) is equal to the energy density of a signal in time (frequency)[Lok15]:

∫ ∞
−∞

WV {I}(bx, fx)dfx =| I(bx) |2, (4.8)

or ∫ ∞
−∞

WV {I}(bx, fx)dbx =| Î(fx) |2 . (4.9)

47



CHAPTER 4. TIME-FREQUENCY ANALYSIS FOR PHASE EVALUATION

(4.8) can be proven by applying the inverse Fourier transform of (4.6):

∫
WV {I}(bx, fx)ei2πfxτxdfx =

∫∫
I(bx +

x

2
)I∗(bx −

x

2
)e−i2πfxxei2πfxτxdfxdx

=

∫
I(bx +

x

2
)I∗(bx −

x

2
)

∫
e−i2πfx(x−τx)dfxdx

=

∫
I(bx +

x

2
)I∗(bx −

x

2
)δ(x− τx)dx

= I(bx +
τx
2

)I∗(bx −
τx
2

).

(4.10)

Letting τx = 0,
∫
WV {I}(bx, fx)dfx = I(bx)I∗(bx) =| I(bx) |2 is obtained

[Lok15]. Analogously, (4.9) is obtained by performing a Fourier transform of

(4.7).

WVD provides the highest possible time-frequency resolution that is mathe-

matically possible within the limits of the uncertainty principle. As discussed

in [FS97][BLC12], the time-frequency resolution of the WVD is always ≥ ‖I‖
2
2

2π ,

which depends on the input signal itself. The WVD of the signal shown in Fig.

4.3 is displayed in Fig. 4.5. The signal is solved sharply.

One drawback of WVD is the interference created by the quadratic property

of the transform when applied to a composite signal. Let I = I1 + I2 be a

composite signal. The WVT of I can be written as:

WV {I} = WV {I1}+WV {I2}+WV {I1, I2}+WV {I2, I1}, (4.11)

with the cross terms:

WV {I1, I2} :=

∫
I1(bx +

x

2
)I∗2 (bx −

x

2
)e−i2πfxxdx,

WV {I2, I1} :=

∫
I2(bx +

x

2
)I∗1 (bx −

x

2
)e−i2πfxxdx.

(4.12)

These cross terms appear when the cross-correlation of the two signals I1 and I2
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original signal

cross terms

Fig. 4.5: The WVD of the signal shown in Fig. 4.3.

is nonzero, with the energy density of the cross terms lying between the energy

densities of I1 and I2 in both time and frequency [Mal08]. Due to the additive

superposition of two fringe patterns used in SSPMD and the possible shearing

of the pattern in the camera image, the signal of an SSPMD measurement is

always a multicomponent signal. Therefore, WVD is not suitable for SSPMD

evaluation. In addition, camera images have only positive intensity. All camera

image signals are the superposition of a modulated signal and a DC component.

Hence, camera images themselves are always multicomponent signals. To apply

WVD to a camera image, the DC term must be removed (eg. by using empirical

mode decomposition [Zei+10]) in advance. The cross term artifacts are also

shown in Fig. 4.5 between two signal sequences.

Furthermore, the Wigner-Ville distribution does not contain any phase infor-

mation. The WVD represented in (4.6) remains real, because it is the Fourier

transform of I(bx + x
2 )I∗(bx − x

2 ), which has a Hermitian symmetry in x. The

phase of the signal encoding the screen position is not given by the transform.

This phase could be recovered by numerical integration after the instantaneous
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frequency is known. For this, a further evaluation is necessary.

4.1.3 Continuous Wavelet Transform

An advanced linear time-frequency transform not suffering from the unwanted

“cross terms” introduced above is the Continuous Wavelet Transform (CWT).

The fundamental idea of wavelet transforms is to “spread” (stretch resp. squeeze)

a basic function called “wavelet” with a varying dilation (“scale”) but always

with the same shape. The longer the dilation, the lower the frequency while - at

the same time - the larger the (temporal resp. spatial) width of the localization

window. This way, the basic function adjust itself to the time-frequency resolution.

The basic function is called wavelets or time-frequency atoms and defined by

ψax,ay,bx,by (x, y) =
1

√
axay

ψx(
x− bx
ax

)ψy(
y − by
ay

), (4.13)

where ax, ay are the dilation parameters (the scales) and bx and by are the

translation parameters. ψax,ay,bx,by(x, y) is called the mother wavelet when

ax = 1, ay = 1, bx = 0 and by = 0. A signal is transformed into the time-

frequency domain by using a range of ax’s, ay’s, bx’s and by’s. The continuous

wavelet transform of the signal Ic(xc, yc) is defined as

Wψ{I}(ax, ay, bx, by) =
1

√
axay

∫∫
R2

I(x, y)ψ∗x(
x− bx
ax

)ψ∗y(
y − by
ay

)dxdy.

(4.14)

The wavelet transform can be thought of as the cross-correlation of a signal

with a set of wavelets of various ‘widths’. In contrast to the STFT, the window

width and the frequency of the wavelet atoms change jointly according to the

dilation parameters ax and ay. In the time-frequency plane, the width and the

height of the Heisenberg box of a wavelet atom compromises between the time

and frequency resolution. The varying Heisenberg boxes for the 1D case are

schematically shown in Fig. 4.6. The area σoxσofx remains constant due to the

uncertainty relation. The width and the height of the rectangle are linearly
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related to ax and 1
ax

, which is adjusted to the signal automatically.

Fig. 4.6: The Heisenberg box representing the time-frequency spread of CWT
atoms. µofx is the center frequency of the mother wavelet at its origin (ax = 1).
σox and σofx are the time- and frequency-uncertainty of the mother wavelet at
its origin. The mathematical expressions of µofx , σox and σofx are analogous to
(4.5).

The effectiveness of the CWT in locating the time and frequency of an 1D

signal is shown in Fig. 4.7. The signal displayed in Fig. 4.3 is transformed into the

time-frequency domain now by employing the CWT with the 1D time-frequency

atom of a Morlet wavelet: ψx(x) = 1√
πFbax

ei2πFc(
x−bx
ax

)e
− 1
Fb

( x−bxax
)2

. Note that

the admissibility condition of this wavelet is not satisfied, which will be discussed

in Chapter 4.3.1. Fig. 4.7 demonstrates that the wavelet adjusts its time and

frequency resolution to the signal itself and does not need a local parameter

definition.

Coming back to the 2D pattern image, the input signal is the superposition

of two distorted intrinsically 1D-fringe patterns. The phase of the two fringe

patterns must be evaluated separately. One possible evaluation procedure could
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Fig. 4.7: The scalogram of CWT of the signal displayed in Fig 4.3.

be to separate the 2D wavelet transform ((4.14)) into

W
(x)
ψ {I}(ax, bx, by) = 1√

ax

∫∫
R I(x, y)ψ∗x(x−bxax

)wy(y − by)dxdy,

W
(y)
ψ {I}(ay, bx, by) = 1√

ay

∫∫
R I(x, y)ψ∗y(

y−by
ay

)wx(x− bx)dxdy,
(4.15)

where wy(y − by) and wx(x− bx) are two compactly supported bump functions

in y− and x− directions, respectively.

However, this evaluation is not sensitive to any fringe direction variation.

This procedure allows only for the evaluation of reflected 2D cross patterns with

separate phase variations only along the x- and y-directions and no direction

variations at all. Therefore, as the directions of the fringes are also expected to

vary simply by perspective projection effects, this method is not applicable for

the given task.
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4.2 Localized 2D Ridgelet Transform applied to

Phase Evaluation in PMD

The advantage of utilizing CWT to analyse a broadband signal is discussed

in Chapter 4.1.3. However, the conventional 2D CWT is not sensitive to any

direction change. To analyse the phase of the PMD pattern as shown in Fig. 2.12,

the CWT muss be further adjusted.

4.2.1 2D Ridgelet Transform

Different from the 2D Wavelet transform, the so-called Ridgelet Transform (RT)

is sensitive to all fringe directions with its mother wavelet given by [Can98]:

ψa,b,θ(x, y) =
1√
a
ψ(
x cos θ + y sin θ − b

a
), (4.16)

where θ is the directional parameter with θ ∈ [0, 2π]. A ridgelet is constant along

the line x cos θ + y sin θ = const. as shown in Fig. 4.8. This direction is denoted

as the projection direction or “p-direction”. Perpendicular to the “ridge”, the

ridgelet is an 1D wavelet. As demonstrated in Fig. 4.8, this direction is denoted

as the transform direction or “t-direction”. The two-dimensional continuous

ridgelet transform of the signal I(x, y) is defined as follows:

Rψ{I}(a, b, θ) =

∫∫
R2

I(x, y)ψ∗a,b,θ(x, y)dxdy. (4.17)

Applying the directional parameter θ, fringe patterns which are not strictly

aligned along the x or y direction can now be detected. Since a ridgelet is constant

along lines x cos θ + y sin θ = const., the ridgelet transform in (4.17) can also

be implemented as an one dimensional Wavelet transform applied to the signal

projected to a line perpendicular to x cos θ + y sin θ = const.:

Rψ{I}(a, b, θ) =

∫
R
ψ∗a,b(t)Rd{I}(θ, t)dt, (4.18)
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p-direction

b
y

x

t-direction

c

Fig. 4.8: A ridgelet is constant along the direction defined by θ (projection
direction or p-direction) and the transverse of the ridge is an one-dimensional
wavelet shifted by b (transform direction or t-direction).

where t is a dummy variable, ψa,b(t) is an one-dimensional wavelet with:

ψa,b(t) =
1√
a
ψ(
t− b
a

), (4.19)

and Rd{I}(θ, t) is the projection of the 2D signal to a line, called a Radon

transform 4[Dea07]:

Rd{I}(θ, t) =

∫∫
R2

I(x, y)δ(x cos θ + y sin θ − t)dxdy. (4.20)

In contrast to the 2D Wavelet transform described in the Chapter 4.1.3, the

4Note that, if instead of an 1D Wavelet transform, an 1D Fourier transform is applied
to Rd{I}(θ, t) along t, (4.18) is the 2D Fourier transform of I(x, y) - the projection-slice
theorem. The difference between a 2D Fourier transform and a ridgelet transform is whether
the time-frequency atom is finite or infinite.
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ridgelet transform is sensitive to all fringe directions by rotating the mother

wavelet. But at the same time, the local information along the projection

direction (p-direction) is lost, since the 2D signal is integrated in this direction

and the signal is only time-frequency transformed in the perpendicular direction

(t-direction).

4.2.2 Localized 2D Ridgelet Transform

The lost local information along the p-direction in the standard 2D ridgelet

transform can be recovered by applying an additional “bump function” w in the

p-direction (Fig. 4.8 ):

wc,θ(x, y) = w(x sin θ − y cos θ − c). (4.21)

Note that wc,θ(x, y) is constant along the line x sin θ − y cos θ = const., which is

perpendicular to the ridges (p-direction), and serves as a localizing test function

in the projection direction (Fig. 4.9). The bump function should be smooth -

continuous derivatives of all orders - and compactly supported. The product of

the bump function in p-direction and the 2D ridgelet result in a localized 2D

ridgelet [LSF20]:

ψa,b,c,θ(x, y) =
1√
a
ψ(
x cos θ + y sin θ − b

a
)w(

x sin θ − y cos θ − c
a

). (4.22)

The localized two-dimensional continuous ridgelet transform of the signal

I(x, y) is defined as:

Rψl{I}(a, b, c, θ) =

∫∫
R2

I(x, y)ψ∗a,b,c,θ(x, y)dxdy. (4.23)

Compared to the 2D Wavelet transform in (4.14), the translation parameters

bx and by are now replaced by b and c - the translation parameters along the t-

and p-directions. By introducing the directional parameter θ, which rotates the

t- and p-directions, the phases of distorted fringe patterns that do not change
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Fig. 4.9: A ridgelet is shown in the left figure. A bump function perpendicular
to the ridge is shown in the figure in the middle. Applying the bump function to
the ridgelet gives the localized ridgelet as shown in the right.

exactly along the x- or y-direction can now be measured. Different from the

2D Wavelet transform, where the mother wavelets stretch and squeeze in - and

only in - x- and y- directions (through the dilation parameters ax and ay), the

localized 2D ridgelet is only stretching and squeezing in the t-direction (through

the dilation parameter a). Different from a standard ridgelet transform, where

the 1D Wavelet transform is applied to the projected image, the local information

along the projection direction is achieved by the smooth bump function. The

relationship between a 2D Fourier transform, a ridgelet transform and a localized

ridgelet transform is shown in Fig. 4.10 .

The mother ridgelet defined in (4.22) can also be understood as an 1D

mother wavelet ψ rotated by θ and expanded in the perpendicular direction

by a bump function w. The properties of various 1D wavelets are studied since

decades and well-developed. The most commonly used wavelets are Haar wavelet,

Morlet wavelet, Mexican hat wavelet etc.. The Morlet wavelet is suitable for

the application of detecting the phase of the sinusoidal fringe patterns of PMD,

since its oscillation is also sinusoidal. The localized ridgelet based on a Morlet

wavelet and a bump function interpreted as a Gaussian function (which has to
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Fig. 4.10: The relationship between the 2D Fourier transform (using the
Projection-slice theorem), the ridgelet transform and the localized ridgelet trans-
form. The 1D Wavelet transform of a 2D signal integrated along the projection
direction results a ridgelet transform (red). Applying an 1D Fourier transform
instead of the 1D Wavelet transform, it results in a 2D Fourier transform (the
Projection-slice theorem, blue). Applying a bump function instead of the inte-
gration along the direction θ leads to a localized ridgelet transform (green).

be properly clipped at the edges in order to ensure compact support5) can be

5As an alternative, avoiding “step artefacts” and the introduction of high local frequencies
at the edges where the Gaussian has to be slightly ”clipped”(forced to zero) in order to ensure
a compact support. Wendland functions providing both smoothness and compact support can
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explicitly written as:

ψa,b,c,θ(x, y) =
1

a2πFb
ei2πFc(

x cos θ+y sin θ−b
a )

e
− 1
Fb

( x cos θ+y sin θ−b
a )2

e
− 1
Fb

( x sin θ−y cos θ−c
ξa )2

,

(4.24)

where Fc is the center frequency of the ridgelet, Fb is the wavelet bandwidth and

a is the dilation (scale) parameter in the t-direction. b and c are the translation

parameters in the t- and p-directions respectively. ξ is the proportional dilation

in the p-direction with regard to the dilation a in the t-direction. The localized

ridgelet is schematically shown in Fig. 4.9.

Note that, generally, an 1D wavelet is normalized with 1√
a

(as shown in (4.16))

and a 2D wavelet with 1
a , to ensure that the wavelet energy is independent of the

dilation parameter a - energy conservation across scales. However, in the PMD

fringe phase detection application, a different normalization factor 1
a2 (s. (4.24))

should be applied to ensure that the 2D localized “ridgelet coefficients” are

independent of the scales (or 1
a in 1D cases). The difference of these two kinds

of normalization factors is demonstrated in Fig. 4.11 .

Actually, the normalization factor 1
a2 for 2D cases and 1

a for 1D cases are

applied in the Stockwell transform (ST) [SML96] which is defined (in 1D) as6:

ST{I}(fx, bx) =

∫
I(x)
| fx |√

2π
e
−f2x(bx−x)

2 e−i2πfxxdx. (4.25)

Except the normalization factor, ST is very similar to CWT with a Morlet wavelet

kernel. The only other difference is that ST provides the absolute referenced

phase information, since the phase of the ST kernel function, which is multiplied

with the signal I(x), is zero at t = 0. Therefore, the particular time-frequency

atom proposed for this application and described in (4.24) is actually a mixture

of CWT, RT and ST.

be used [Wen95].
6fx is the dilation parameter expressed in frequency and ax is the dilation parameter

expressed in scale, with fx = const.
ax
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Fig. 4.11: The CWT scalogram of the signal defined by the quadratic instanta-
neous frequency displayed above. Bottom left: The scalogram normalized with

1√
ax

; Bottom right: The scalogram normalized with 1
ax

;

To ensure the invertibility and the energy conservation of the transform, the

ridgelets must satisfy the admissibility condition [Mal08]:∫∫
Ψ̂a,b,c,θ

| fxfy |
dfxdfy <∞, (4.26)

with Ψ̂a,b,c,θ denoting the 2D Fourier transform of ψa,b,c,θ. To guarantee that
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(4.26) is finite, Ψ̂a,b,c,θ(0, 0) must be 07, or presented in time domain:

ˆΨa,b,c,θ(0) =

∫∫
ψa,b,c,θ(x, y)dxdy = 0, (4.27)

which is also denoted as the zero integral condition. The admissibility condition

ensures the invertibility of the localized 2D ridgelet transform and ensures that

the DC gain is zero. A zero DC gain is important to the application in PMD,

since the camera image always has a slightly varying additive term depending on

the illuminating condition, that can not be subtracted easily (s. Chapter 3.1).

Note that the ridgelet defined in (4.24) does not satisfy the admissibility

condition since ∫∫
ψa,b,c,θ(x, y)dxdy = ξe−π

2FbF
2
c . (4.28)

To overcome this, a correction term muss be added to this definition:

ψa,b,c,θ(x, y) =
1

a2πFb
e
− 1
Fb

( x cos θ+y sin θ−b
a )2︸ ︷︷ ︸

window function

in t−direction

e
− 1
Fb

( x sin θ−y cos θ−c
ξa )2︸ ︷︷ ︸

bump function

in p−direction

(ei2πFc(
x cos θ+y sin θ−b

a )︸ ︷︷ ︸
oscillation

− e−π
2FbF

2
c︸ ︷︷ ︸

correction term

),

(4.29)

or represented in the Fourier domain:

Ψ̂a,b,c,θ(ft, fp) = e−π
2Fbξ

2a2f2
p (e−π

2Fba
2(ft−Fca )2︸ ︷︷ ︸

Morlet Wavelet

− e−π
2Fba

2(f2
t +(Fca )2)︸ ︷︷ ︸

correction term

), (4.30)

where ft denotes the frequency in the transform direction and fp denotes the

frequency in the projection direction with:

ft = fx cos θ + fy sin θ,

fp = fx sin θ − fy cos θ.
(4.31)

7This condition is not sufficient for (4.26), but almost. If Ψ̂a,b,c,θ(0, 0) = 0 and

Ψ̂a,b,c,θ(fx, fy) is continuously differentiable, then (4.26) is satisfied [Mal08].
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Another important parameter of the Morlet wavelet is the FWHM (full

width at half maximum), or more precisely, “the number of cycles [Coh19]”.

According to (4.29), the standard deviation of the window function in t-direction

is σ = a
√

Fb
2 . From this follows the FWHM: 2a

√
ln 2Fb. Compared with the

length of one cycle a
Fc

, the number of cycles is obtained by 2
√

ln 2FbFc. Note

that this parameter is independent of the scale a. Applying a large number of

cycles, the frequency resolution is high and the temporal resolution is low, and

vice versa for a a small number of cycles. An example is shown in Fig. 4.12.

Fig. 4.12: The signal shown in Fig. 4.11 above is transformed into the time-
frequency domain with the same Morlet wavelet but different Fb. Left: a large Fb
(higher number of cycles) is applied; Right: a small Fb (lower number of cycles)
is applied.

There is no definition of optimal number of cycles because it always de-

pends on whether a high resolution in time or in frequency is expected. If the

number of cycles is infinite, it turns out to be a Fourier transform with high

frequency resolution but without any temporal information. The lowest number

of cycles is discussed in [Coh19] and it is suggested not to set it lower than one:√
FbFc >

1
2
√

ln 2
. The lowest number of cycles is also limited by the correction

term. The localized 2D ridgelet with a correction term in frequency domain

introduced in (4.30) is plotted in Fig. 4.13 on the left hand side. Along the
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t-direction (marked red on the left hand side) of the localized 2D ridgelet, it can

be considered as the superposition of a positive Gaussian term centred at Fc
a

(Morlet wavelet) and a negative Gaussian term centred at 0 (correction term),

which are plotted on the right hand side. The FWHM of both of the Gaussian

terms are 2
aπ

√
ln 2
Fb

according to (4.30). To avoid the unwanted influence of the

correction term on the Morlet wavelet outside the zero position, the Morlet

wavelet center should be greater than the FWHM, which gives
√
FbFc >

2
π

√
ln 2.
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correction term

Fig. 4.13: Left: the 3D plot of a localized 2D ridgelet introduced in (4.30); Right:
the Morlet wavelet term and the correction term along the red curved on left
hand side plotted separately.

Utilizing a Morlet wavelet as the oscillation term has various advantages in

the sinusoidal fringe pattern analysis. Firstly, the known pattern displayed on the

screen is sinusoidal. The Morlet wavelet also having a sinusoidal oscillation can

be matched to the pattern optimally. Secondly, the Morlet wavelet is analytic.

It is suitable for applications where the phase information of a signal is to

be separated from the amplitude. It can be understood as a single side-band

demodulation (Chapter 2.2) with local information and self-adapted testing

frequency and window size.

The advantage of the localized ridgelet transform is, firstly, it has all the

benefits of Wavelet transforms - varying testing frequencies, self-adapted window
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size and local transform etc.. Secondly, the evaluation is sensitive to all fringe

directions. Distorted fringe patterns can also be detected by varying θ. Thirdly,

compared to the normal ridgelet transform, the localized ridgelet transforms the

input signal into the time-frequency domain along the t-direction and at the

same time the local information along the p-direction is retained, so that the

local fringe orientation is allowed to vary throughout the image - which it does

considerably for complex surface topographies of the object under test.

4.2.3 Fast Implementation

To implement the localized ridgelet transform in a fast way, the (fast) Fourier

transform instead of the correlation8 in (4.23) is applied. According to the

convolution theorem, the Fourier transform of the correlation of I(x, y) and

ψa,b,c,θ(x, y) equals the pointwise product of their (fast) Fourier transforms

Î(fx, fy) and Ψ̂∗a,b,c,θ(fx, fy). Therefore, the localized ridgelet transform can be

written as:

RψlI(a, b, c, θ) = F−1{ÎΨ̂∗a,b,c,θ}, (4.32)

where F−1{·} denotes the inverse Fourier transform. The fast implementation

of the ridgelet transform is schematically shown in Fig. 4.14. The advantage

of using the (fast) Fourier transform is that the input signal only needs to be

transformed once. The Fourier transform of the localized ridgelet is analytically

defined, and can be computed and stored in advance. The localized ridgelet can

be performed only by using nθna inverse Fourier transforms with nθ and na

denoting the number of testing angles and dilations respectively.

The Fourier transform of the localized ridgelet with the correction term was

defined in (4.30). The Fourier transform of the localized ridgelets are dilated

by a and rotated by θ with regard to the Fourier transform of the original

localized ridgelet. The computation of the localized ridgelets can therefore be

simplified by just stretching and rotating the Fourier transform of the original

8As the (localized) ridgelet applied here is symmetrical with respect to the t-direction,
correlation and convolution are the same.

63



CHAPTER 4. TIME-FREQUENCY ANALYSIS FOR PHASE EVALUATION

Fig. 4.14: The input image is Fourier transformed (left panel). The localized
ridgelets are computed in the Fourier domain (bottom right). The product of the
transformed image and the ridgelets in Fourier domain are inverse transformed
respectively. The maximal modulus under all the tested angles and scales indicates
the local frequency and local phase.

localized ridgelet as shown in Fig. 4.15. The angle parameter θ should be chosen

according to the directional dynamics of the fringe pattern in the camera image.

The dilation parameter a should be chosen so that the Heisenberg boxes of the

wavelets cover the time-frequency domain. As shown in Fig. 4.6, a wavelet has its

energy in time located in µx with a spread of axσos while its energy in frequency

centered at
µ0fx

ax
with a spread of

σofx
ax

. To fully cover the time-frequency domain,

the dilation parameter should be chosen as an exponential sequence [Mal08].

The Fourier transform of the original localized ridgelet is shown in Fig. 4.15 on

the left hand side. This wavelet is rotated in the middle and stretched on the
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right hand side. The red grid demonstrates the sampling points. Note that the

Fourier transform of the original localized ridgelet is analytically known. No

interpolation is necessary after the rotation.

Localizied  Ridgelet in time domain Localizied  Ridgelet in time domain Localizied  Ridgelet in time domain

Fig. 4.15: From left to right: The original localized Ridgelet with a = 1 and
θ = 0; Varying θ by rotating the applied coordinate system; Varying a by dilating
the applied coordinate system. Top: representation in Fourier domain; Bottom:
representation in time comain.

4.2.4 Phase Evaluation

The local phase of the camera pixel point (b, c) is determined by locating the

local maximum of the modulus of the localized ridgelet transform:

θm, am = arg max
θ,a∈R>0

|F−1{ÎΨ̂∗a,b,c,θ}|. (4.33)

The phase φ(b, c) equals the angle of the complex value F−1{ÎΨ̂∗am,b,c,θm} to

the real axis. Note that, applying the localized ridgelet transform to a cross
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pattern image results in two local maxima9, at (θmx, amx) and (θmy, amy), since

the signal has two dominant fringe directions. As shown in Fig. 4.16, the pattern

on the left is generated by the superposition of a sinusoidal fringe pattern in the

x -direction with a fringe period of 16 pixels and a sinusoidal fringe pattern in

the y -direction with a fringe period of 32 pixels. This pattern is transformed

using the localized ridgelets. The image on the right displays the modulus of

the localized ridgelet transform at one pixel (marked yellow on the left) with

the x-axis representing the varying angle θ and y-axis representing the varying

dilation a. Two peaks indicating |F−1{ÎΨ̂∗amx,b,c,θmx}| and |F−1{ÎΨ̂∗amy,b,c,θmy}|
are observed in the image on the right. As long as the two local maxima are

separable in the angle-frequency domain, the x-phase φx(b, c) and the y-phase

φx(b, c) can be obtained respectively.

The localized ridgelet transform is applied to evaluate the cross pattern

image displayed in Fig. 2.12 (b), in which the screen position is encoded with a

sinusoidal pattern of 16 pixels period in the x-direction and 24 pixels period in

the y-direction, since the angular dynamic is much stronger in the y-direction. To

verify the accuracy of the phase evaluation by using localized ridgelet transform,

the object remaining in the same position is measured using the conventional

phase shifting method and this phase is considered as the ground truth. As the

screen positions in x-direction and in y-direction are encoded using different

fringe periods, the phase deviations from the ’ground truth’ are converted to

screen position deviations for comparison and displayed in Fig. 4.17. The screen

position deviation in x-direction varies from about −0.5 to 0.5 screen pixels and

the screen position deviation in y-direction varies from about −1 to 1 screen

pixels. Note that the screen pixel size is 294 µm. The distance between the object

surface and the screen is about 100 mm, or more. One screen pixel deviation is,

therefore, corresponding to a surface slope deviation of ±5 arcmin.

There are still some outliers as displayed in Fig. 4.17. The outlier in the

middle of the petrol cap (black circle) is introduced by a paint blister. Above the

paint blister, there are horizontal outliers in the y-phase deviation (rectangle),

9degenerate case where one of the fringe directionss is lost due to a perfect astigmatic
imaging by the object surface of the camera center onto a one-dimensional line screen as
discussed in Chapter 3.2.2.
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Fig. 4.16: Left: A pattern is generated by the superposition of a sinusoidal fringe
pattern in the x-direction with a fringe period of 16 pixels and a sinusoidal fringe
pattern in the y-direction with a fringe period of 32 pixels; Right: The modulus
of the localized ridgelet transform of the pattern centered at the pixel marked
green in the pattern is displayed with the x-axis representing the variation of the
angle (θ) and the y-axis representing the (logarithmic) variation of the dilation
parameter a.

which are introduced by the rapidly changing fringe frequencies and will be

discussed in the next section.

4.3 Limits of the 2D Ridgelet Transform and So-

lution

4.3.1 Problem with Local Broadband Signals

As discussed above, the local phases of the cross pattern with a broadband

spectrum can be evaluated quite well using the localised Ridgelet transform.

However, even this evaluation can become a pitfall if the signal has a locally

rapidly varying frequency.

To simplify the explanation, this problem will be discussed with an one
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Fig. 4.17: Comparison of the phase evaluation of a petrol cap by using the
localized ridgelet transform and by conventional using phase-shifting method.
The phase deviations are all converted into units of ßcreen pixels”(SP) with 1
SP corresponding to a surface slope variation of 5 arcmin. Top left and top right:
The phase deviations in x- and y-direction respectively. Bottom left and bottom
right: the histogram of the deviations top left and top right respectively.

dimensional signal written as:

I(x) = I0(x) +
1

2
M(x)eiφ(x) +

1

2
M(x)e−iφ(x). (4.34)

Note that both the background irradiance I0(x) and the modulation M(x)

vary very slowly compared to phase φ(x), and the phase φ(x) can be expanded
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to a Taylor series around b as follows:

φ(x) = φ(b) + φ
′
(b)(x− b) +

φ
′′
(b)

2!
(x− b)2 + ..., (4.35)

Employing the Morlet wavelet 10 defined as:

ψa,b(x) =
1

a
√
πFb

ei2πFc(
x−b
a )e

− 1
Fb

( x−ba )2
, (4.36)

the 1D signal is transformed into the time-frequency domain. Fc is the center

frequency, Fb is the wavelet bandwidth, a is the dilation (scale) parameter, and b

is the translation parameter. Note that the Morlet wavelet defined above doesn’t

satisfy the admissibility condition. To overcome this, a correction term has to be

added. For simplification, this term is not considered in the discussion below, as

it can be safely neglected for sufficiently high frequencies.

The transform is computed by:

Rψl{I}(a, b) =

∫
I0(x)ψ∗a,b(x)dx+∫

1

2
M(x)eiφ(x)ψ∗a,b(x)dx+∫

1

2
M(x)e−iφ(x)ψ∗a,b(x)dx

= R1 +R2 +R3.

(4.37)

Since I0(x, y) varies only slightly, the first term in (4.37) is approximately 0.

Employing the Taylor expansion up to the second order in (4.35) and assuming

M(x) to be a constant M0, the second and third term of (4.37) becomes (s.

10In one dimensional problem the localized ridgelet equals a wavelet.
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Appendix A.1):

R2 = 1
√

2(4+M2)
1
4
M0e

− N2
4+M2 e

i(φ(b)+ θ
2−

MN2
2(4+M2)

)
,

R3 = 1
√

2(4+M2)
1
4
M0e

−(
N3

4+M2 )
e
−i(φ(b)+ θ

2−
MN3

2(4+M2)
)
,

(4.38)

where

M = a2Fbφ
′′(b),

N2 = Fb(2πFc − aφ′(b))2,

N3 = Fb(2πFc + aφ′(b))2,

θ = arctan(M2 ).

, (4.39)

Note that the first order derivative of the signal phase φ′(x) divided by 2π

is the instantaneous frequency and the second order derivative of signal phase

φ′′(x) divided by 2π is the rate of change of the instantaneous frequency. If the

second derivative of the phase φ′′(x) is close to 0, (4.38) can be written as:

R2 = 1
2M0e

−Fb(2πFc−aφ
′(b))2

4 eiφ(b),

R3 = 1
2M0e

−Fb(2πFc+aφ
′(b))2

4 eiφ(b). , (4.40)

In the case of positive carrier frequency (φ′(b) > 0), R3 is approximately 0

and | R2 | represents the wavelet coefficient, or vice versa, in the case of negative

carrier frequency (φ′(b) < 0), R2 is approximately 0 and | R3 | represents the

wavelet coefficient. The local signal phase φ(b) is determined by computing the

angle of the complex value of R2 or R3 and the maximal norm is obtained at

2πFc − aφ′(b) = 0 or 2πFc + aφ′(b) = 0, which represents the local frequency as
Fc
a or −Fca .

As already discussed in Chapter 4.2, the motherlet in (4.36) is normalized

with 1
a (in 2D cases 1

a2 ) here, which differs from the common normalization 1√
a

(in 2D cases 1
a ). The normalization with 1

a (in 2D cases 1
a2 ) ensures that the

maximum norm of R2 or R3 in (4.40) always equals to 1
2M0 by 2π Fca = φ′(b)
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or 2π Fca = −φ′(b) respectively, through which the instantaneous frequency is

determined. With the common normalization factor of 1√
a
, the maximal norm

does not represent the local frequency anymore.

If the frequency of the input signal varies rapidly (locally broadband) - the

second derivative of the phase φ
′′
(b) is not negligible, or if φ

′′
(b) is not continuous,

the angle of the complex term R2 or R3 no longer represents exactly the phase

of the input signal φ(b), but one has φ(b) + θ
2 −

MN2

2(4+M2) as shown in (4.38).

However, the second and third phase terms, θ2 and − MN2

2(4+M2) both decrease when

minimizing Fb. The error introduced by φ
′′

can be reduced by applying a smaller

Fb which provides a better time resolution11. An example is shown in Fig. 4.18.

The fringe phase in y-direction of the camera image of a petrol cap as shown

in Fig. 2.13 is evaluated with the localized ridgelet transform with different Fb

values. The determined phases converted into the screen pixel positions compared

with the phase-shift evaluation are shown. The strong deviation shown in the

figure on the left hand side is introduced by the rapidly varying fringe frequencies

(s. the y-fringes shown in Fig. 2.13). This error is decreased by minimizing Fb

from 1 to 0.6.

Another example is demonstrated in the following Fig. 4.19 and Fig. 4.20. A

signal

I(x) =

sin 2π x
200 if 0 ≤ x < 2000

sin 2π( x3

4·107 − x2

104 + 21x
200 ) if 2000 ≤ x ≤ 3000

is simulated and displayed in Fig. 4.19 (a). The instantaneous frequency of the

signal

f(x) =

 1
200 if 0 ≤ x < 2000

3x2

4·107 − 2x
104 + 21

200 if 2000 ≤ x ≤ 3000

and its phase are displayed in Fig. 4.19 (b) and (c).

The frequency evaluated with Morlet wavelet is shown Fig. 4.20 (a) in magenta.

The signal phase (ground truth) and the determined phase are shown in Fig. 4.20

(b) in blue and magenta respectively. At x = 2000, where the second derivative

11Note, however, that other problems can appear by minimizing Fb. The minimal Fb was
discussed in Chapter 4.2.
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Deviation y-screen pixel position Deviation y-screen pixel position

Fig. 4.18: The error of the y-phase evaluation (converted to the screen pixel
position error) of the fringe pattern reflected on a petrol cap (Fig. 2.13) by using
the localized ridgelet transform. Left: Fb = 1; Right: Fb = 0.6.

of the phase is not continuous, deviations arise in both the phase determination

and the frequency determination. Also at x > 2000, where the second derivative

of the phase is growing, the error of the frequency determination increases.

However, at the same time the error of the phase determination is decreasing.

Let am = a0 + ∆a, with am resulting in the maximum wavelet coefficient (norm),

a0 determining the actual instantaneous frequency 2πFc
a0

= φ
′
(b) and ∆a being the

error. Assuming that ∆a� a0 and the error by determining the instantaneous

frequency ∆φ
′
(b) = 2πFc

am
− φ′(b) is in a reasonable range, the second and the

third phase term,

θ
2 =

arctan
a2Fbφ

′′
(b)

2

2 , and − MN2

2(4+M2) = −a
4F 2
b φ
′′

(b)( 2πFc
a −φ

′
(b))2

2(4+a4F 2
b φ
′′2(b))

of R2 are decreasing while the scale a is dropping. Therefore, the disruptive

effect of the rapidly varying frequencies on the phase determination is small by

small a values, namely by high signal frequencies.
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Fig. 4.19: (a) The amplitude of a chirp signal. (b) The frequency of a chirp
signal (is not continuous at x = 2000). (c) The amplitude of a chirp signal.

4.3.2 Chirplet Transform

A signal where the second derivative of the instantaneous phase is called a chirp

signal. Chirplet Transform (CT, [MH95]) is another time-frequency method

which is specifically designed for the analysis of the chirp signals, and commonly

applied to sonar, radar, and laser systems. A chirplet transform is similar to a

wavelet transform but with its mother-let multiplied by a sweep term:

ψa,b,α(x) =
1

a
√
πFb

ei2πFc(
x−b
a )e

− 1
Fb

( x−ba )2
eiπα(x−b)2 , (4.41)

where α represents the chirp rate - the rate of change of the frequency.

Similar to a wavelet transform, the chirplet transform is carried out by

performing the correlation of the signal and the chirplet. Let the signal be

I(x) = I0(x) + 1
2M(x)eiφ(x) + 1

2M(x)e−iφ(x) with the phase represented as
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Fig. 4.20: The frequency and the phase of the signal shown in Fig. 4.19 is
evaluated with the localized Ridgelet transform (in 1D case also Wavelet trans-
form). (a): The computed frequency is shown in magenta in the upper image. To
comparison the ground truth frequency is shown in blue. The deviation of the
computed frequency from the ground truth is shown in the bottom image; (b):
The computed phase is shown in magenta in the upper image. To comparison
the ground truth phase is shown in blue. The deviation of the computed phase
from the ground truth is shown in the bottom image.
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φ(x) = φ(b) + φ
′
(b)(x− b) + φ

′′
(b)

2! (x− b)2 + ... as defined in (4.34) and (4.35).

The chirplet transform can be written as

Cψ{I}(a, b) =

∫
I0(x)ψ∗a,b,α(x)dx+∫

1

2
M(x)eiφ(x)ψ∗a,b,α(x)dx+∫

1

2
M(x)e−iφ(x)ψ∗a,b,α(x)dx

= C1 + C2 + C3.

(4.42)

Assuming that I0(x) and M(x) are constants, it follows that C1 is also a constant

and

C2 = 1
√

2(4+M2
2 )

1
4
M0e

− N2
4+M2

2 e
i(φ(b)+

θ2
2 −

M2N3
2(4+M2

c2)
)
,

C3 = 1
√

2(4+M2
3 )

1
4
M0e

−(
N3

4+M2
3

)
e
−i(φ(b)+

θ3
2 −

M3N3
2(4+M2

c3)
)
,

(4.43)

where
M2 = a2Fb(φ

′′(b)− 2πα)

M3 = a2Fb(φ
′′(b) + 2πα)

N2 = Fb(2πFc − aφ′(b))2,

N3 = Fb(2πFc + aφ′(b))2,

θ2 = arctan(M2

2 ),

θ3 = arctan(M3

2 ).

, (4.44)

Rewrite the norm of C2 as a function of p and q:

| C2(p, q) | = 1
√

2(4+M2
2 )

1
4
M0e

− N2
4+M2

2

= 1
√

2(4+a4F 2
b p

2)
1
4
M0e

− Fbq
2

4+a4F2
b
p2 ,

(4.45)

with q = 2πFc − aφ′(b) and p = φ′′(b)− 2πα, and plot | C2(p, q) | in Fig. 4.21.

The maximal norm is present when both p and q equal zero. a = 2π Fc
φ′(b) and
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α = φ′′(b)
2π , indicating the instantaneous frequency and the rate of change of

the frequency respectively, can be determined by locating the maximal norm.

When a = 2π Fc
φ′(b) and α = φ′′(b)

2π , the second and third phase term of C2, θ
2

and − M2N3

2(4+M2
c2)

both equal zero and only the first phase term φ(b) remains.

The disruptive effect introduced by the signal phase in second derivative is

compensated by the chirp rate parameter α.

Fig. 4.21: Plotting | C2(p, q) | as a function of p and q as presented in (4.45).
a = 2 and Fb = 0.36

2π2 are applied for the plotting.

Applying the chirplet transform to the signal shown in Fig. 4.19, the phase of

the signal is determined and the phase error is displayed in Fig. 4.22 above. The

phase error of a CWT evaluation is plotted in Fig. 4.22 in magenta for comparison.

At x = 2000, where the second derivative of the phase is not continuous, there

is no significant difference between these two methods in the respect of phase

determination (Fig. 4.22 (a)). For x > 2000, where the signal frequency rate is

non-zero, CT shows its potential to reduce measurement inaccuracy due to the
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rapid changing signal frequency (Fig. 4.22 (b)).
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Fig. 4.22: Determining the phase of the signal shown in Fig. 4.19 by applying
CWT and CT.

4.3.3 Critical Area Recognition

The second order derivative of the signal phase can be evaluated by the chirplet

transform, in which an additional parameter α is introduced compared to the

wavelet transform. The chirplet transform of an 1D signal is an R→ R3 projection
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from the time domain to the time-frequency-chirp domain, f(x) → g(a, b, α).

Analogously, applying a chirp term to the localized 2D ridgelet transform results

in an R2 → R5 projection, which is f(x, y)→ g(a, b, c, θ, α). The expansion into a

higher dimensional space significantly increases the computation time. Therefore,

although the chirplet transform is a possible solution for phase evaluation of

fringe patterns with locally rapidly changing frequencies, it is not suitable for

industrial use due to the time-consuming computation.

Since the inaccuracy of the phase evaluation is introduced by its second-order

derivative when the localized 2D-Ridgelet transform is applied, the “critical”

region can be detected by the frequency change rate, which can be estimated

after the localized 2D-Ridgelet transform. Calculating the gradient of the phase

in x- and y- directions 12, the norm of the gradient gives the instantaneous

frequency. Calculating the gradient of the instantaneous frequency itself, the

norm of the gradient gives the rate of change of the instantaneous frequency.

The frequency rate of change evaluated in this way is not completely accurate

since the phase estimated by the localized 2D-Ridgelet transform is not reliable

if the signal frequency varies rapidly. However, it is accurate enough for locating

the “critical” region for a localized 2D-Ridgelet transform.

The frequency rate of change α of the fringe pattern in the y-direction of

the camera image shown in Fig. 2.13 is evaluated by the localized 2D ridgelet

transform and by performing the gradient of the phase. The result is shown in

Fig. 4.23. The “critical” region can be identified and localized very well by large

values of the frequency change rate. If necessary, the phase evaluation can be

improved by applying a chirplet transform only in these critical regions.

12The gradient muss be performed since the phase does not change along the x- or y-
direction, but in any direction.
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Fig. 4.23: The chirp rate of the fringe pattern (in y direction) reflected on a
petrol cap as shown in Fig. 2.13.
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CHAPTER 5. MONOCULAR SOLUTION OF THE HEIGHT PROBLEM

The height-normal ambiguity caused by the unknown direction of the incident

ray described in Chapter 2.1.4 complicates the 3D reconstruction of a specular

surface considerably. Several solutions addressing this problem are discussed in

Chapter 2.1.4. The majority of the solutions for this problem require different

kinds of changes and adaptations on the hardware like a second camera [KHL04a;

Kic07], a second screen position [BSG06] or a specific camera with a telecentric

aperture [SH00]. It is also possible to find the absolute surface without any

hardware changes by using the
’
Frobenius condition‘[Kam04b], but this approach

is not suitable for practical use since the local integrability condition exploited

in this approach is very weak and the vector field only varies extremely slightly

for typical test objects like a spherical mirror or a plane mirror.

A new method solving the height-normal ambiguity without any change of

the PMD setup is possible by utilizing, adapting and advancing an approach

suggested by Savarese [SCP05] based on the local differential geometry of a

reflected checkerboard pattern. This approach is hereafter implemented and

considerably extended for the new use case of PMD evaluation. The new method

developed here allows for a monocular absolute PMD measurement of the entire

surface area, which was not possible neither in Savarese’s original proposal nor

with the original PMD evaluation.

5.1 The Principle of the “Savarese Method”

The principle of the Savarese method is discussed in full detail in [SCP04][SCP05].

It will not be repeated in full in this thesis. Only the part which is important as a

starting point for the solution of the height problem of PMD will be re-introduced

and its physical meaning will be discussed.

Savarese applied a checkerboard pattern and an observing camera to measure

discrete points on specular surfaces. The checkerboard pattern, which can be

printed on a paper or displayed on a screen (called screen plane or scene plane),

is reflected on the specular surface, and the reflected pattern is captured by the

camera. The checkerboard and the camera are both calibrated and known. The
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corners of the checkerboard’s squares are the intersection points to be measured.

The correspondence between the intersection points on the pattern and those

in the camera image are supposed to be known as well. Two scene lines - two

crossing lines lying on the screen - are defined by five intersection points on

the screen plane (Fig. 5.1 left). Their correspondences on the camera plane are

defined (Fig. 5.1 right) by interpolating those five corresponding neighboring

intersection points on the camera plane. Applying the local differential geometry

of the two curves, the position of the reflection object point is evaluated.

Screen Image

Fig. 5.1: The correspondence of screen and camera image are obtained by the
intersecting points of the checkerboard pattern. Five neighboring points (yellow)
in the screen define two intersecting lines (yellow). The green and the red arrows
are the direction vectors of the intersection lines. The five corresponding points
in the camera image can be found, and consequently, the corresponding direction
vectors of the intersection curves are determined on the image plane.

Notations and the basic geometry are displayed in Fig. 5.2. The intersecting

point on the checkerboard is denoted by rs0. rs0 is reflected by the object point

r0 and observed by (and therefore mapped onto) the point rc0 on the camera

image plane. d̂ is the unit vector from the camera projection center c to rc0,

which defines the normalized direction vector of the corresponding ray of sight,

known by the internal calibration of the camera. The distance between c and
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the image plane is the camera constant l of the utilized pinhole camera model.

The distance between c and r0 is denoted by s and the angle of incidence on the

object surface is denoted by θ.

Image plane

Screen plane

Specular surfaceTangent plane

Fig. 5.2: Geometry of specular reflections. A curve lying on the camera plane
is denoted by rc(t) = rc0 + tṙc. The perspective projection of rc(t) = rc0 + tṙc
onto the tangent plane of the object surface is written as r(t) = r0 + tṙ (camera
projection center: c). The correspondence curve on the screen plane is denoted
by rs(t) = rs0 + tδrs. (û v̂ ŵ) is the local principal reference coordinate system
defined by the surface normal n̂r and the principal plane spanned by the incident
and reflected ray to simplify the surface representation.

A so-called principal reference system (û v̂ ŵ) is introduced in [SCP05] for

each observation point to simplify the surface representation. The object point

r0 defines the coordinate origin of the reference system. ŵ is given by the surface

normal vector n̂r, which is perpendicular to the tangent plane of the surface. v̂ is
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the unit normal vector of the so-called “principal plane” spanned by the incident

ray r0 − rs0 and the reflected ray r0 − rc0. Note that v̂ lies in the tangent plane.

According to the law of reflection, n̂r lies in the principal plane and bisects the

angle between the incident ray and the reflected ray. û is given by v̂× ŵ and

lies in both the tangent plane and also the principal plane. The local surface

around r0 can now be written as (special Monge form in an implicit form, Eq.

(14) in [SCP05]):

g(u, v, w) = w− 1

2!
(au2 + 2cuv+ bv2)− 1

3!
(eu3 + 3fu2v+ 3guv2 +hv3) + ... = 0,

(5.1)

where a,b,c and e, f, g, h are the second and the third-order surface parameter

around r0 respectively, and (u, v, w) are the Cartesian coordinates of a given

vector r̂ = uû + vv̂ + wŵ in the system defined by (û v̂ ŵ).

A curve passing through a screen point rs0 in the checkerboard can be

described in parametric form: rs(t) = rs0 + tδrs, where t is a parameter and

δrs is the 3D direction vector of the curve. rsi(t) denotes the ith space curve

lying on the screen plane1. rsi(t) is reflected on the object surface and captured

by (and therefore mapped to) the camera. The image of rsi(t) lying on the

camera plane is denoted by rci(t) = rc0 + tṙci. ri(t) = r0 + tṙi denotes the

perspective projection of rci(t) = rc0 + tṙci onto the object surface. Taking the

linear approximation, the curve ri(t) lies within the tangent plane of the specular

surface defined by ŵ or n̂r.

The direction of the incident ray x̂i and reflected ray x̂r can be obtained

from (Eq. (16) (17) in [SCP05]):

x̂i =
r0 − rs(t)

‖r0 − rs(t)‖
,

x̂r =
r0 − c

‖r0 − c‖
.

(5.2)

Applying the law of reflection - the direction of the normal vector n̂r (in the

1According to Fig. 5.1, at least two intersecting curves have to be considered for each
surface point
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implicit form ∇g(r) 2 of the reflection point is parallel to x̂r + x̂i, therefore (Eq.

(15) in [SCP05]):  x̂i(r, t) + x̂r(r) + λ∇g(r) = 0

g(r) = 0
(5.3)

where λ is a scaling parameter. It can be denoted by F(t, r, λ) = 0 3. By

differentiating F with respect to t and taking the chain rule into account, a new

equation is obtained (Eq. (19) in [SCP05]4):

B(t, r, λ) = J(t, r, λ)S(t), (5.4)

where B(t, r, λ) = ∂F(t,r,λ)
∂t , J(t, r, λ) = ∂F(t,r,λ)

∂(r,λ) ,S(t) = [ṙu(t) ṙv(t) ṙw(t) λ̇(t)]T =

[ṙ(t) λ̇(t)]T .

Performing the partial derivative of ∂F(t, r, λ) with respect to t and r respec-

tively, it turns out (the entire deduction in details is shown in Appendix. A.2

and Appendix. A.3, Eq. (21) and Eq. (21) in [SCP05]):

B =

[
− (I−x̂ix̂Ti )δrs

|r−rs(t)|
0

]
, and (5.5)

J =

[
I−x̂ix̂Ti
|r−rs(t)| +

I−x̂rx̂Tr
|r−c| + ∂λ∇g(r)

∂r ∇g(r)

(∇g(r))T 0

]
. (5.6)

Expressing x̂r and x̂i in the principal reference system in terms of the

2Note that the implicit function g(u, v, w) is always invertible. g(u, v, w) is obtained by the
explicit function w(u, v) = 1

2!
(au2 + 2cuv + bv2) + 1

3!
(eu3 + 3fu2v + 3guv2 + hv3) + .... The

derivative of g(u, v, w) with respect to w is always 1. Therefore, g(u, v, w) is always invertible.
3 F denotes the Lagrange multiplier, with F = [F1, F2, F3, F4]T and:
F1 = x̂r,u + x̂i,u + λ∇g(r)u,
F2 = x̂r,v + x̂i,v + λ∇g(r)v ,
F3 = x̂r,w + x̂i,w + λ∇g(r)w,
and F4 = g(r),

where ∇g(r)u and ∇g(r)u always equal to zero.
4The original Eq. (19) in [SCP05] is B(t, r, λ) = −J(t, r, λ)S(t), in which the sign is not

correct according to the chain rule. However, in Savarese’s proposal only the norms of two
vectors are compared at the end, therefore, the wrong sign has no effect on the result.
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reflection angle θ ([SCP05]), which is a function only of the length of the

reflection ray s:

x̂i(s) = (− sin θ(s), 0,− cos θ(s))T , x̂r(s) = (sin θ(s), 0,− cos θ(s))T . (5.7)

(5.4) can be rewritten as (only taking the surface parameter up to the second-

order a, b and c into account, Eq. (19) in [SCP05]):
Bu(s)

Bv(s)

Bw(s)

0

 =


Ju(s)− 2a cos θ(s) −2c cos θ(s) Jw(s) 0

−2c cos θ(s) Jv(s)− 2b cos θ(s) 0 0

Jw(s) 0 Jv(s) sin2 θ(s) 1

0 0 1 0



ṙu

ṙv

ṙw

λ̇

 ,
(5.8)

where (Eq. (10) and (24) in [SCP05])

Bu(s) =
δrs,w cos θ(s) sin θ(s)− δrs,u cos2 θ(s)

| rs0(s) |
,

Bv(s) = − δrs,v
| rs0(s) |

,

Bw(s) =
δrs,u cos θ(s) sin θ(s)− δrs,w sin2 θ(s)

| rs0(s) |
,

(5.9)

with δrs,u, δrs,v and δrs,w denoting the projection of δrs (the measurand) on û,

v̂ and ŵ respectively, and (Eq. (11) and (25) in [SCP05])

Ju(s) = Jv(s) cos2 θ(s),

Jv(s) =
1

s
+

1

|rs0(s) |
,

Jw(s) =
| rs0(s) | −s
| rs0(s) | s

cos θ(s) sin θ(s).

(5.10)

Note that s is the distance from the camera projection center c to the object

point r0, which is the first surface parameter. The reflection angle θ of a given

camera pixel depends only on s. | rs0 | is the distance between the surface point
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r0 and the screen point rs0, which also only depends on s if a camera pixel is

given. Therefore, Ju, Jv and Jw are only functions of s. Since δrs,u, δrs,v and

δrs,w are measured values, Bu, Bv and Bw are thus only functions of s as well.

(5.8) is the core relation of this differential problem (the height problem of PMD).

It is obtained according to the chain rule applied on (5.3). This equation can

be interpreted and understood more comprehensibly by considering its physical

meaning, which is not discussed in [SCP05]. (5.5) implies that B is the projection

of δrs onto a plane which is perpendicular to the incident ray x̂i (the red plane

in Fig. 5.3 ) and scaled with the inverse of | rs0 |. The first three equations of

(5.8) is the mapping of the vector ṙ (corresponding to δrs on the screen) on the

tangent plane onto [Bu Bv Bw]T . This mapping matrix is completely determined

by the surface parameter s, a, b and c.

Since ṙ lies on the tangent plane, and also because of the last equation of

(5.8), ṙw always equals to 0. Ignoring the third equation in (5.8) and taking the

inverse of the remaining matrix,[
ṙu

ṙv

]
=

1

d(s, a, b, c)

[
Jv(s)− 2b cos θ(s) 2c cos θ(s)

2c cos θ(s) Ju(s)− 2a cos θ(s)

][
Bu(s)

Bv(s)

]
, (5.11)

is obtained5 (Eq. (88) in [SCP05]), where

d(s, a, b, c) = (Ju(s)− 2a cos θ(s))(Jv − 2b cos θ(s))− 4c2 cos2 θ(s) (5.12)

is the determinant. Represent the 2× 2 matrix in (5.11) with

M(s, a, b, c) =

[
M2(s, b) M3(s, c)

M3(s, c) M1(s, a)

]
, (5.13)

5The analytically inverted matrix is only for the theoretical derivation. In the actual
computation, of course numerically more stable methods are utilized.

88



5.1. THE PRINCIPLE OF THE “SAVARESE METHOD”

Image plane

Screen plane

Specular surface

Tangent plane

Perpendicular plane

Fig. 5.3: The physical interpretation of (5.4) and (5.11)(not given in [SCP05]).
The 3D direction vector of the screen curve δrs projected onto a plane perpendi-
cular to the incident ray x̂i (the red plane) is denoted by δrsp. B equals to δrsp
while being scaled with 1

|rs0| (s. (5.9)) - the inverse of the length of the incident

ray. The geometrical interpretation of (5.11) is a 2D mapping on the tangent
plane (the green plane), which maps the vector [Bu Bv]

T (the projection of B
onto the tangent plane) to [ṙu ṙv]T (the projection of ṙc onto the tangent plane).
The mapping is illustrated by the black dashed arrow.

where
M1(s, a) = Ju(s)− 2a cos θ(s),

M2(s, b) = Jv(s)− 2b cos θ(s),

M3(s, c) = 2c cos θ(s).

(5.14)

1
M1M2−M2

3
M can be interpreted as a 2D mapping matrix on the tangent plane,

which maps the vector [Bu(s) Bv(s)]
T (the projection of B onto the tangent
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plane, also denoted by Buv) to [ṙu ṙv]
T .

Rewriting (5.11) as[
ṙu

ṙv

]
=

1

M1(s, a)M2(s, b)−M2
3 (s, c)

[
M2(s, b) M3(s, c)

M3(s, c) M1(s, a)

][
Bu(s)

Bv(s)

]
, (5.15)

it is a non-linear system of 2 equations with four unknowns (a, b, c and s). The-

refore, to recover a surface point, theoretically only two noncollinear intersecting

lines are needed. But to recover the whole surface, for every single pixel point

there is a new non-linear system with four variables to be solved. This problem

can be simplified according to [SCP05] by introducing a new auxiliary parameter

φ, through which the four variables in (5.11) can be reduced to two. Considering

two scene lines, a new equation with only one variable can be generated. φ is the

angle between ṙ and û axis on the tangent plane, and tanφ can be expressed as
ṙv
ṙu

. According to (5.11), the tangent direction tanφ can be computed by (Eq.

(68) in [SCP05]):

tanφ =
ṙv
ṙu

=
M1(s, a)Bv(s) +M3(s, c)Bu(s)

M2(s, b)Bu(s) +M3(s, c)Bv(s)
. (5.16)

The introduction of the angle φ is only an auxiliary construction for the

evaluation of the mapping matrix on the tangent plane. It is necessary if, as

input data, only the differential correspondence in two directions is available.

However, this approach is quite disadvantageous, because tanφ introduces bad

mathematical properties as tanπ2 is not defined. In Chapter 5.4, it will be shown

that it is possible to compute the absolute height without introducing this

auxiliary tangent value if the local differential correspondence is provided in full

area in 2D as it is the case for PMD.

(5.16) can be represented as (Eq. (75) in [SCP05])

[
Bv(s) −Bu(s) tanφ Bu(s)−Bv(s) tanφ

]M1(s, a)

M2(s, b)

M3(s, c)

 = 0. (5.17)
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In the following, the vector to the left is denoted by h with

h(s, φ) :=
[
Bv(s) −Bu(s) tanφ Bu(s)−Bv(s) tanφ

]
. (5.18)

The vector on the right hand side is denoted by m with

m(s, a, b, c) := [M1(s, a) M2(s, b) M3(s, c)]T . (5.19)

Considering two coplanar scene lines intersecting at rs0, two vectors h1(s, φ1)

and h2(s, φ2) are to be obtained. Since h1 and h2 are both perpendicular to m,

it results in (Chapter 5.2 in [SCP05]):

m(s, a, b, c) = r(h1(s, φ1)× h2(s, φ2)). (5.20)

Note that r is a only a scaling parameter. h1(s, φ1)× h2(s, φ2) is totally deter-

mined by the first surface parameter s and the φ value of the chosen lines (given

by the measurement).

Letting (Section 5.2 in [SCP05])

hT (s, φ1, φ2) =

hT1(s, φ1, φ2)

hT2(s, φ1, φ2)

hT3(s, φ1, φ2)

 := h1(s, φ1)× h2(s, φ2), (5.21)

(5.11) can be rewritten as (Eq. (98) in [SCP05]):

ṙ =
1

r(hT1hT2 − h2
T3)

[
hT2 hT3

hT3 hT1

][
Bu

Bv

]
=

1

r
VBuv, (5.22)

where

V :=
1

hT1hT2 − h2
T3

[
hT2 hT3

hT3 hT1

]
. (5.23)

The R2 → R2 mapping on the tangent plane based on the (more general)

M matrix introduced here in (5.11) is now performed using the V matrix of

Savarese’s proposal. The difference between M and V is that M depends on
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the first order surface parameter s and the second order surface parameters a, b

and c, while V only depends on the first order surface parameter s and two

measured angles φ1 and φ2. Additionally, a new scaling parameter r is introduced

by utilizing the V matrix in (5.22). In total, four unknown variables in (5.11)

are now reduced to two in (5.22).

It can be proven that the projection of the first order derivative ṙc of the

observed curve to the image plane can be expressed as (Eq. (37) in [SCP05]):

ṙc = T ṙ = −1

r
T

[
VBuv

0

]
, with T =

l

s〈d̂, ẑc〉

[
I− d̂ẑTc

〈d̂,ẑc〉

]
. (5.24)

There are only two unknowns r and s left in the (5.24). Using two crossing

curves, a new equation with only one unknown variable -s, can be obtained (Eq.

(101) in [SCP05]):

f(s) =
|ṙc1|
|ṙc2|

−

[
BT
uv1V

T 0
]

TTT

[
VBuv1

0

]
[
BT
uv2V

T 0
]

TTT

[
VBuv2

0

] . (5.25)

The first order surface parameter s can be determined by solving the target

function f(s) = 0:

The 3D reconstruction procedure introduced by Savarese can be summarized

in 2 steps: (i), estimating the first-order derivative ṙc1(t) and ṙc2(t) according to

the pixel position map; (ii), projecting ṙc1(t) and ṙc2(t) onto the tangent plane

and computing the angle φ1 and φ2; (iii), searching for the first-order surface

parameter s satisfying f(s) = 0.
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5.2 Extension to PMD

5.2.1 Full Area Evaluation with R2 → R2 Mapping

Savarese’s method evaluates the shape and the height of the local object surface

by taking not only the point to point correspondence of screen and image, but

also the lateral differential correspondence ṙc1(t), ṙc2(t) and ṙs1(t), ṙs2(t) into

account. This lateral correspondence is obtained by observing and evaluating two

intersecting lines in a checkerboard by Savarese: Two curves were determined

by interpolating the five neighbouring yellow points in Fig. 5.1. The direction

vectors of these two curves were numerically computed.

Estimating the local correspondence in this way is rather disadvantageous:

1. the object surface is evaluated only on discrete points in positions that are

pre-determined by the pattern on the screen and not on the surface itself; 2. the

amount of calculation required is large; 3. the local corresponding differential

geometry is determined by only five pre-defined points using arbitrarily chosen

curve directions determined by the orientation of the checkerboard pattern on

the screen, which is numerically unstable. Indeed, the local lateral differential

correspondence is provided in full by every PMD measurement, which is never

fully exploited in the conventional PMD evaluation. Utilizing the PMD data to

analyze the lateral differential correspondence can avoid the drawbacks mentioned

above.

In a PMD measurement, the observed screen points are continuously coded

via their coordinates by the phases of the utilized fringe patterns. The lateral

correspondence can be estimated in a much more efficient (and stable) way by

applying this continuous coding and by applying a R2 → R2 mapping evaluation

(Fig. 5.4). A local 2 dimensional coordinate system (xc, yc) was utilized with

its origin locating in the camera pixel to be evaluated. Analogously, a local

coordinate system (xs, ys) was applied in the screen plane with its origin in the

corresponding screen point. The neighbouring pixels in the image
[
xci, yci

]T
with

i being a positive integer representing the pixel index and their corresponding

screen points
[
xsi, ysi

]T
allow for the estimation of the local lateral mapping
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from the image to the screen plane by using a transformation matrix - “A matrix”

with [Lia+19a][Lia+19b][Lia+19c]:

A =

(
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

)
, (5.26)

and

[
xsi

ysi

]
= A


xci

yci

x2
ci

xciyci

y2
ci

 . (5.27)

Screen

Camera

Jacobian Hessian

Fig. 5.4: The lateral correspondence of screen and image is obtained by using a
R2 → R2 mapping. A local 2 dimensional coordinate system (xc, yc) is applied
in the image plane with its origin at the pixel point to be evaluated. The
corresponding screen point position is given by the PMD phase map. A local
2 dimensional coordinate system (xs, ys) is used at this screen point. The local
lateral mapping camera → screen is evaluated by applying the A matrix to
given vectors in the image plane.

The transformation matrix A can be determined analytically and efficiently.

Choose n2 neighbouring camera pixels to determine A with n = 2k + 1 and k
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being an positive integer. (5.27) can be extended to be:

Ps = APc, (5.28)

with Pc =


xc1 xc2 ... xcn2

yc1 yc2 ... ycn2

x2
c1 x2

c2 ... x2
cn2

xc1yc1 xc2yc2 ... xcn2ycn2

y2
c1 y2

c2 ... y2
cn2

 and Ps =

[
xs1 xs2 ... xsn2

ys1 ys2 ... ysn2

]
.

Since the camera pixels
[
xci, yci

]T
are located in a 2 dimensional regular square

grid, the positions of the neighbouring pixels relative to the central pixel are

always the same for every camera pixel to be evaluated. Pc is therefore always

the same and known. Transposing (5.28) to PTs = PTc A
T , AT can then be

determined by applying the left pseudo inverse of PTc by AT = (PcP
T
c )−1PcP

T
s .

Depending on the desired precision, the A matrix is a m× 2 matrix represen-

ting the coefficients of the Taylor expansion of the corresponding local mapping

on the screen. If m = 2, A is a Jacobian matrix. If m = 5, A is a Jacobian matrix

plus a Hessian matrix. If necessary, further coefficients of the multi-dimensional

Taylor expansion can be used. The entire evaluation can also be understood as a

local 2 dimensional polynomial fit.

Given the linear approximation of an arbitrary curve passing through the

camera pixel
[
xc0, yc0

]
:
[
xc(t) yc(t)

]T
=
[
xc0 yc0

]T
+ t

[
ẋc0 ẏc0

]T
para-

meterized by t, the corresponding curve in the screen plane can be linear-

ly approximated by
[
xs0 ys0

]T
+ A

[
tẋc0 tẏc0

]T
, or by further coefficients[

xs0 ys0

]T
+A

[
tẋc0 tẏc0 t2ẋ2

c0 t2ẋc0ẏc0 t2ẏ2
c0

]T
. The 3D direction vector

of the curve on the camera image plane ṙc is obtained by using the camera

rotation matrix 6 Rc with ṙc = Rc

[
ẋc0 ẏc0 0

]T
. Analogously, the direction

vector of the curve on the screen plane δrs is maintained by utilizing the screen

6Rc is a 3× 3 matrix which is commonly defined as Rc =
[
x̂c ŷc ẑc

]
where x̂c, ŷc, and

ẑc respectively denote the unit vectors of the x-, y- and z-axis of the camera coordinate system
presented in world coordinates. For simplification reasons, the height problem is discussed in
this chapter on the tangent plane of the object surface. The principal coordinate system is
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rotation matrix 7 Rs with δrs = Rs

A
[
ẋc0

ẏc0

]
0

. According to (5.9), (5.18), (5.21)

and (5.23), if δrs is obtained, V and Buv are determined under an assumption

of s. The target function (5.25) is therefore a function that depends only on s.

Solving the target function f(s) = 0, the first order surface parameter s is be

determined.

To verify the feasibility and the accuracy of the new approach combining

the Savarese evaluation and the local differential mapping of the PMD data, a

simulation result is presented and a real measurement of a precise planar mirror

is performed.

According to the calibration data of an existing laboratorial PMD setup, the

phase of the pattern reflected on an assumed convex surface (z = −0.25x2 +

0.001xy − 0.25y2) is simulated. Applying the PMD phase and performing the

R2 → R2 mapping, a Savarese evaluation based on the approach introduced above

is carried out. The height difference of the evaluated surface with the original

surface (the ground truth) is displayed in the left panel in Fig. 5.5. This deviation

map displays a full surface evaluation. At each data point, the absolute height is

evaluated by using the A matrix evaluated from the simulated PMD phase map

using a local 3× 3 neighbourhood. The deviation of the evaluated surface from

the known surface varies essentially up to 10 nm (Fig. 5.5, right). The deviation

is particularly large along a central line in the image (also marked red in the

right panel in Fig. 5.5). The reason for this large deviation is correlated with the

object - screen geometry (in the case that the principal plane is perpendicular to

the screen plane). This will be discussed more thoroughly in Chapter 5.3.4 and

Chapter 5.4. In practice, such a geometry can be avoided in advance by rotating

therefore applied as the world coordinate in the following discussion. Note that the principal
coordinate system is individually defined for every object point. The camera rotation matrix
Rc must be individually calculated at every assumed object surface point by

[
û v̂ ŵ

]
.

7Rs is a 3× 3 matrix which is commonly defined as Rs =
[
x̂s ŷs ẑs

]
where x̂s, ŷs, and

ẑs respectively denote the unit vectors of the x-, y- and z-axis of the screen coordinate system
presented in the world coordinate. For the same reason as discussed for Rc, the principal
coordinate system is applied as the world coordinate in the following discussion. Therefore,
Rs must be individually calculated at every assumed object surface point by

[
û v̂ ŵ

]
Rs.
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the object or the entire setup.

Height Difference

[nm]

Section A-B

[nm]

Fig. 5.5: A convex surface (z = −0.25x2 + 0.001xy − 0.25y2) is evaluated by
using a simulated PMD phase map. The height difference of the evaluated surface
from the known surface is shown in the left. A section A-B of the difference data
is shown in the right.

A planar mirror (Fig. 5.6) with a surface flatness of λ/20 is under test. The

surface points are evaluated by using the lateral differential correspondence

determined by 31×31, 51×51, 71×71 and 91×91 local neighbouring camera

pixels respectively. The exact physical position and the tilt of the mirror in the

coordinate system is unknown in this experiment. The known “ground truth”

at this point is only the precise flatness of the mirror. The deviation of the

measured surface points against the best-fit plane is therefore considered as the

measurement accuracy. The deviations of evaluations using diverse number of

neighbouring camera pixels are displayed in (a), (b), (c) and (d) in Fig. 5.7. The

height of every surface point is evaluated absolutely only according to the local

lateral phase information from one camera using the new method introduced

above. Compared to the simulation in Fig. 5.5, in which only 3×3 pixels are used,

97



CHAPTER 5. MONOCULAR SOLUTION OF THE HEIGHT PROBLEM

more local neighbouring pixels are needed in the real measurement to suppress the

noise (the differential approach always increases the noise in real measurements).

As to be expected, the more local pixels are used, the smoother the evaluated

surfaces appears (Fig. 5.7). The height analysis using the local differential

correspondence exhibits stable surface points with an accuracy of up to ±500 µm

((d) in Fig. 5.7). It should be noted that the other monocular evaluation [Kam04b],

which employs the surface integrability theorem, is difficult to implement in

practice, and that the accuracy of an other PMD height evaluation approach

applying multiple cameras, as shown in [KHL04a], is about ±70 µm. An accuracy

of ±500 µm is sufficient for a preliminary assumption of the object surface.

Fig. 5.6: A precise planar mirror with a surface flatness of λ/20 is under test.

There are several advantages of utilizing the R2 → R2 mapping to estimate

the lateral correspondence. Firstly, the A matrix can be quickly and robustly

evaluated by applying the pseudo inverse of PTc based on the camera pixel grid.

Secondly, in contrast to Savarese’s original approach, A completely represents

the lateral correspondence by mapping the lateral vectors in all directions. The

entire lateral correspondence offers many advantages, which will be discussed

in Chapter 5.3.1. Thirdly, the lateral correspondence is not estimated from

discrete points, but from the entire continuous local context information, which

suppresses noise and provides a more stable measurement.
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Fig. 5.7: A precise planar mirror is measured using the new monocular approach
for an absolute height measurement combining the Savarese method and the
lateral differential correspondence of PMD. The mirror surface is evaluated by
using 31×31, 51×51, 71×71 and 91×91 local neighbouring camera pixels of the
PMD phase map in every measurement point, resulting in a dense height map (in
contrast to Savarese’s original method). The deviation of the measured surface
against the best-fit plane is shown in (a), (b) (c) and (d) respectively.
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5.3 Geometrical Properties and Bad Conditions

5.3.1 Surface Properties

Note that (5.11) is well defined only under the condition d 6= 0, which guarantees

that the mapping matrix M is non-singular and the smooth and unique mapping

around the neighborhood of r0 exists [SCP05]. The condition d 6= 0 can be

written as

1

s
+

1

| rs0 |
=

a

cos θ
+ b cos θ ±

√
(
a

cos θ
− b cos θ)2 + 4c2 (5.29)

by considering (5.14) and (5.10). (5.29) is equal to (3.14), with (5.29) being the

interpretation in mathematics and (3.14) being the interpretation in imaging

optics. Moreover, the condition number of M as a measure of how close M

is to being singular, should be small. Note that in some cases a non-singular

M may have a large condition number. Large condition number, also called

ill-conditioned, indicates that the output of the function (5.15) is sensitive to

small changes or errors in the input signal - the numerical stability is low. An

example of a non-continuous mapping (M is singular) on the object surface is

shown in the Fig. 4 in [SCP05].

The continuity property of the mapped pattern can be explained in terms

of geometrical optics. If the specular surface (which in deflectometry has to

be considered as part of the imaging system) is a convex surface, it acts as a

divergent lens on the chief rays, therefore, its determinant never equals zero8.

This can also be proven mathematically (Proposition 10 in [SCP05]): A convex

surface has a < 0, b < 0 and c2 < ab. Ju and Jv are both positive. The angle of

incidence θ is between 0 and π
2 . Consequently Ju

2 cos θ − a and Jv
2 cos θ − b are both

positive and greater than |a| and |b| respectively. Therefore ( Ju
2 cos θ −a)( Jv

2 cos θ −b)
is always greater than c2 and thus the determinant is always positive.

8Note that d = (Ju − 2a cos θ)(Jv − 2b cos θ) − 4c2 cos2 θ is not only determined by the
surface shape a, b and c, but also by the geometry of the setup and the surface position: Ju, Jv
and θ. But in the case of a convex mirror, d is always positive.
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If the specular surface is a concave surface or a saddle surface, it acts as a

(partly) convergent lens in the optical path between the camera and the screen.

Depending on the object and image positions and also the surface shape, the

rays of light can be converged in varying degrees. The mathematical measure of

the optical convergence9, resp. local magnification scale of the imaging process, is

the determinant of the mapping d. In both cases (a concave specular surface and

a saddle specular surface), the case d = 0 is not excluded. Examples are shown

in Fig. 5.8. In Fig. 5.8, the camera view rays of 5×5 camera pixels are traced

backwards according to a given specular surface in a given position to the scene.

The intersection points of the view rays with the scene (the yellow area) are

presented as red points. In Fig. 5.8 (a), (b) and (c), three saddle surfaces with

decreasing d are simulated, and in Fig. 5.8 (e), (f) and (g), three concave surfaces

also with decreasing d are simulated. In both cases, the imaged intersection

points are converging to a line with d approaching to zero.

In a more general way: d or the convergence does not only depend on the

(local) geometry of the surface, but also on the geometry of the apparatus; d = 0

means, that the neighborhood of r0 locally images the rays originating from a

2d areal patch (neighbourhood) on the screen onto a 1d line in the camera and

vice versa. Since a convex paraboloid mirror surface is diverging, therefore, d is

always positive for all convex surfaces.

5.3.2 Properties of the Chosen Scene Lines

Note that the hT vector ((5.21)) is parallel to the normal vector of the plane

spanned by h1 and h2. h1 and h2 are both determined by the surface parameter

in 0th order (s), and also by the values of tanφ1 and tanφ2 of the chosen scene

lines respectively. If the chosen scene line maps onto a curve in the tangent plane

introducing φ = π
2 + nπ, with n = 0,±1,±2, ..., tanφ is undefined. For these

scene lines, s can not be computed. If φ is in the vicinity of π
2 + nπ, the error by

locating s will be significantly magnified. Since the tangent value is not a surface

9Not the convergent power of the lens/the surface shape (expressed by the focal length),
but how strong the image is contracted resp. expanded by a given lens, in a given object and
image position (expressed by the magnification scale).
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Fig. 5.8: Examples of concave surfaces and saddle surfaces. The view rays of
5×5 camera pixels are traced backwards. The red lines are incident rays from
the scene and blue lines are reflection rays to the camera (landing on the 5×5
camera pixels). The scene plane is marked yellow and the specular surface is
shown in green: (a), (b) and (c) are saddle surfaces with ∆ = −745.8825 1

m2 ,
∆ = −250.5771 1

m2 and ∆ = 0.043072 1
m2 respectively; (d), (e) and (f) are concave

surfaces with ∆ = −138.3568 1
m2 , ∆ = −115.2976 1

m2 and ∆ = −0.0013333 1
m2

respectively;

property, but rather strongly depends on the chosen scene lines, the error induced

by tanφ can partially be corrected by rotating the chosen scene line. This is

102



5.3. GEOMETRICAL PROPERTIES AND BAD CONDITIONS

not possible in the case of Savarese’s original method where the scene lines are

predefined at capture time by the edges of the utilized checkerboard pattern. In

the case of PMD, however, any direction can be chosen at evaluation time, as

the full R2 → R2 correspondence is available from the phase map provided by

PMD.

Besides the condition of φ 6= π
2 + nπ, the two scene lines must be chosen so

that h1 and h2 are linearly independent, which means Rank[h1; h2] 6= 1. In the

linearly dependent case, h1 and h2 do not span any plane. Therefore (5.20) is

not valid and consequently V (through (5.23)) is not computable. This leads to

a poor accuracy in estimating s, if h1 and h2 are close to colinear. Note that V

is theoretically independent of the chosen scene lines and totally determined by

the surface parameters and screen position. To simplify the nonlinear problem

described in (5.11), the “values of tanφ” of two scene lines (measured values) are

introduced as auxiliary variables to evaluate V. The bad condition introduced

by the linear dependence of h1 and h2 can be solved by rotating the scene lines.

Both of the problems discussed above are induced by the particular chosen

scene lines and can be solved by just rotating the scene lines. An example

is shown in Fig. 5.9. The PMD phase data of a spherical surface is simulated

(according to the calibration data of the laboratorial PMD set up: screen position,

camera position, camera focal length...). The error of estimating the surface

points using the method introduced in [SCP05] and in Chapter 5.2 is shown in

Fig. 5.9 (a). Fig. 5.9 (b) displays the surface area with large tangent values and

Fig. 5.9 (c) displays the mask of the surface area having two linear dependent

vectors, h1 and h2. The surface points are evaluated again with the same method

but with the chosen scene lines rotated in the marked out areas. The error of

the second evaluation is displayed in Fig. 5.9 (d). The error introduced by the

bad condition of the chosen scene lines (in both of mask in (b) and (c)) are

significantly corrected.
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Fig. 5.9: Tangent and linear dependence correction in simulated data: (a) Error
by the reconstruction of a spherical surface; (b) The mask of the area with large
tangent values; (c) The mask of the area where h1 and h2 are highly linear
dependent; (d) Error by the reconstruction of a spherical surface after rotating
the scene lines accordingly in the marked out areas.

5.3.3 Ghost Solutions

The surface point is evaluated by solving the non-linear equation f(s) = 0 ((5.25)).

However, the empirical analysis in Matlab shows that, the target function f(s)

vanishes sometimes not only at the actual surface, but also at some “ghost”

solutions. This problem is also discussed in [SCP05]: the ghost solution is called

degenerate geometrical configuration, which means all the scene lines have

the same ratio of Bu to Bv (∀i 6= j, BuiBvi
=

Buj
Bvj

). The degenerate geometrical

configuration occurs when the “ghost surface point” (rg) belongs to the plane

spanned by the scene lines, i.e. the “ghost solution” lies within the plane of

the screen. This is an obvious possibility, as only first order parameters have

been used to determine s and a “direct” observation of the screen without any

intermediate reflection at all is obviously a possible solution as well. In the
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simulations performed above, the scene is located in a way that the camera

rays never intersect the scene plane (even if they intersect the scene plane,

the intersection points only arise in the far field out of the numerical search

range.). The degenerate geometrical configuration (∀i 6= j, BuiBvi
=

Buj
Bvj

) mentioned

in [SCP05] never arises in the simulation analysis considered here. But still,

multiple minima show up in the profiles of some target functions that have not

been considered or discussed in [SCP05].

Examples of profiles of log | f(s) | are displayed in Fig. 5.10. Note that

f(s) is the target function and its absolute value varies in the search range

(s ∈ [0.1m, 0.4m]) from 1e − 4 to 1e − 12. To make the local minima visible,

the absolute value of the target function is demonstrated in logarithmic scale.

Moreover, finding the solution of log | f(s) | is numerically advantageous because

the derivative of log | f(s) | is better scaled for small values of f(s) than the

derivative of | f(s) |. As in Fig. 5.10 (a), the ghost solution can even approach

the actual solution, which contradicts the statement of degenerate geometrical

configuration in [SCP05]. Even worse, in some cases the ghost solution has a

lower target function than the actual solution (see case (d) in Fig. 5.10)! In

general, the ghost solutions are rather uncommon. This is problematic for the

reconstruction because ghost solutions can not be ruled out analytically. Further

work is needed in order to derive sufficient conditions to reject ghost solutions.

A possible solution can be constraining the variation of the curvature of the

evaluated surface.

5.3.4 Perpendicular Configuration

Independently of the multiple solutions, outliers of the reconstruction errors

are observed frequently (e.g. the middle region of the height map in Fig. 5.5).

In order to validate the source of this kind of errors, specular reflections of

different polynomial surfaces in various setup geometries (diverse scene positions

and camera positions) are simulated. The simulated apparatus and polynomial

surface are displayed in the left panel of Fig. 5.11. The polynomial surfaces

are reconstructed by locating the local minimum of f(s). The error of the
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Fig. 5.10: Examples of profiles of log | f(s) |. Actual solutions are marked
with ellipses and ghost solutions are marked with rectangles. (a) The profile of
log | f(s) | of pixel [48, 178]; (b) The profile of log | f(s) | of pixel [46, 129]; (c)
The profile of log | f(s) | of pixel [44, 57]; (d) The profile of log | f(s) | of pixel
[49, 176];
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configuration surface property screen and camera rotation
config.1 saddle surface screen rotated by 0°

−0.5x2 − 0.001xy + 0.5y2 camera rotated by 0°
config.2 saddle surface screen rotated by 2°

−0.5x2 − 0.001xy + 0.5y2 camera rotated by 0°
config.3 saddle surface screen rotated by 4°

−0.5x2 − 0.001xy + 0.5y2 camera rotated by 0°
config.4 concave surface screen rotated by 0°

0.05x2 + 0.001xy + 0.05y2 camera rotated by 0°
config.5 concave surface screen rotated by 0°

0.05x2 + 0.001xy + 0.05y2 camera rotated by 0.75°
config.6 convex surface screen rotated by -2°

−0.25x2 + 0.001xy − 0.25y2 camera rotated by 2°

Tab. 5.1: The surface properties and the screen and camera positions of the
simulation displayed in Fig. 5.11. Rotation = 0° means the camera image plane
or the screen plane is perpendicular to the yz-plane.

reconstructed surface is shown in the right panel of Fig. 5.11. The surface and

apparatus properties are listed in Tab. 5.1 respectively. The evaluation of the

same saddle surface (Config.1, Config.2 and Config.3) with the screen rotated by

0°, 2° and 4° indicates that the error region of the reconstructed surface rotates

with the increase of the screen angle. The evaluation of a concave surface is

shown in Config.4, Config.5 in Fig. 5.11. Rotating the camera slightly by 0.75°,
the error region is shifted to the left hand site as well. Rotating the screen and

the camera at the same time (Config.6 in Fig. 5.11), the error region stays in

the same position on the specular surface. Obviously, this error is the result

of a certain combination of the apparatus geometry and the object surface.

The empirical analysis shows that the outliers always arise in the perpendicular

configuration, where the principle plane defined in Chapter 5.1 (spanned by the

incident and reflection ray) is perpendicular to the scene plane.

This conjecture can be further confirmed by observing the profile of | f(s) |
while searching the numerical minimum. Fig. 5.12 (a) displays the error of the

evaluated surface in full-area. The left area in the picture shows very large errors.
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Fig. 5.11: Outliers in various geometrical configurations for different surface
shapes. The first column displays the position of the simulated apparatus: screen
(yellow), the specular surface (green), the incident ray (red) and the reflection ray
(blue). The apparatus and the specular surface property are listed in Tab. 5.1.
The second column displays the error of the reconstructed surface respectively.

It is at the same time the surface area having a perpendicular configuration

(known from the simulation: the surface points lying on the curve where the error
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Fig. 5.11: Outliers in various geometrical configurations for different surface
shapes. The first column displays the position of the simulated apparatus: screen
(yellow), the specular surface (green), the incident ray (red) and the reflection ray
(blue). The apparatus and the specular surface property are listed in Tab. 5.1.
The second column displays the error of the reconstructed surface respectively.
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Fig. 5.12: Examples of profiles of | f(s) |. (a) Reconstruction error in full-area;
(b) the profiles of | f(s) | of pixel [9, 12], [16, 12], [21, 12], [41, 12] and [81, 12].

jumps from positive (yellow) to negative (blue) lead exactly to a perpendicular

configuration). Picking out five pixel points as marked in Fig. 5.12 (a), the

profiles of | f(s) | along varying s is shown in (b) in Fig. 5.12 respectively. The

further the points are from the area leading to the perpendicular configuration,

the steeper | f(s) | varies, and vice versa. The points close to the perpendicular

configuration area (Pixel [9, 12], [16, 12] and [21, 12] in Fig. 5.12) have a rather

flat profile. The sensitivity when searching the numerical minimum of | f(s) | is

therefore relatively weak. Large errors appear even in the case of low noise.

Empirical analysis with Matlab shows that: (1) The outliers always arise

in the perpendicular configuration, where the principle plane is perpendicular

to the scene plane; (2) In the perpendicular configuration, the slopes of f(s)

are distinctly low. The lower is the slope of f(s), the worse is the accuracy in

estimating s (an example is shown in Fig. 8); (3) The reconstruction errors in

the perpendicular configuration are independent of the chosen scene lines. This

error in estimating s can not be corrected by rotating the scene lines.
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5.4 Monocular Height Estimation without Par-

ticular Scene Lines

The method introduced in [SCP05] and [SCP04] applied the differential cor-

respondence between the object plane (the screen) and the image plane (the

camera) to estimate the position of the optical imaging surface. The relation

between the differential geometries ((5.11)) is generated by utilizing the chain

rule on a equation group (Eq. 5.3) created by considering the law of reflection

and the surface representation in Monge form (Eq. 5.1). This relation associating

with the surface position and surface shape is mathematically interpreted by

the the mapping matrix M on the tangent plane. [SCP05] and [SCP04] applied

the tangent value of two arbitrary curves to estimate M, which is necessary

since there are only differential correspondences in two directions available, but

disadvantageous since the two curves are predefined and have bad mathemati-

cal properties (like tanπ2 is not defined). The PMD phase data provide a full

R2 → R2 mapping between the screen and the image. Differential correspondence

in all directions are described in this 2D mapping. Bad mathematical conditions

can be avoided by changing the chosen angle φ. However, the height problem

can also be solved without introducing any arbitrary curves by considering the

entire system in local 2D patches mapped or transformed from plane to plane.

Denote a patch on the camera image plane by Oc with

Oc =

 xc1 − x∗c xc2 − x∗c xc3 − x∗c ... xci − x∗c
yc1 − y∗c yc2 − y∗c yc3 − y∗c ... yci − y∗c

0

 , (5.30)

where
[
x∗c y∗c

]T
denotes the pixel to be measured and

[
xci yci

]T
denotes

the ith pixel belonging to the patch. The patch can be rotated to be parallel

to the camera plane by left multiplying the patch with the camera rotation

matrix RcOc (s. Fig. 5.13). At this point, only the rotation is considered and

the translation is not included since only the lateral deformation of the patch

is important and the position of patch center
[
x∗c y∗c

]T
in the 3D space is not
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relevant. The rotated patch RcOc can then be projected onto the oblique tangent

plane under a perspective projection with respect to the camera perspective

as shown in Fig. 5.13. The projection onto the oblique tangent plane can be

approximately represented as (derivation see Appendix. A.4):

O =
s

l
〈d̂, ẑc〉(I −

d̂ŵT

〈d̂, ŵ〉
)RcOc, (5.31)

with s denoting the distance between the projection center and the object point

and l denoting the distance between the projection center and the camera plane.

ẑc denotes the camera axis and ŵ denotes the normal vector of the tangent

plane.

Note that (5.31) is not a homogeneous transformation. (5.31) is the transfor-

mation of lateral vectors on the image plane onto the tangent plane. Translation

is not considered since the starting point of the vectors is not important and only

the direction and the norm of the vectors before and after the transformation

are relevant. Also note that this is not a standard perspective projection since

(5.31) projects a patch on the image plane onto the tangent plane, neither of

which needs to be perpendicular to the reflection ray. The derivation in detail is

shown in Appendix. A.4. O is the extension of ṙ denoted in Chapter 5.1 while

ṙ contains only the lateral relation in one direction, but O contains the lateral

relation in all directions without any preference. Note that the third row of O is

0 since the patch O is lying on the ûv̂ plane.

The patch can also be transformed onto the tangent plane with respect to the

screen. The patch Oc related to the screen plane is given by a R3 → R3 mapping

matrix Ã with Ã =

[
A 0

0 0

]
, where A is defined in (5.26). As shown in Chapter

5.2, The 3D representation of the screen patch (only considering its orientation

but not its translation) is obtained by RsÃOc. The screen patch is mapped

onto the tangent plane in two steps. Firstly, the screen patch is projected onto a

plane perpendicular to the incident ray (the red plane in Fig. 5.14) by using the
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Fig. 5.13: The projection of a given patch onto the tangent plane in terms of
the camera perspective projection. A 2D patch is rotated and presented in 3D
according to the camera perspective Rc. The 3D patch is projected onto the
tangent plane of the object surface by applying (5.31).

projection matrix:

P = −(I− xix
T
i ). (5.32)

Expressing the incident ray in terms of the reflection angle θ with xi =[
− sin θ 0 − cos θ

]T
, it results:

P =

 − cos2 θ 0 cos θ sin θ

0 −1 0

cos θ sin θ 0 − sin2 θ

 , (5.33)

and the patch on the perpendicular plane is then computed by PRsÃOc. Scaling
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the patch on the perpendicular plane with the inverse of the length of the incident

ray and denoting it as Os with:

Os =
1

| rs0 |
PRsÃOc, (5.34)

Os results in the extension of B defined in (5.5) and (5.9). B specifies the

(scaled) projection of one curve direction onto the perpendicular plane wheres

Os specifies the entire (scaled) lateral patch on the red plane in Fig. 5.14. The

(second) projection of Os onto the tangent plane is computed by simply letting

the third row of Os to be 0.

Fig. 5.14: The projection of a given patch onto the tangent plane in terms of
the screen. A 2D patch related to the screen is given by the mapping matrix A
(Chapter 5.2 ). The screen patch in 3D is obtained by using the screen rotation
matrix Rs. The 3D patch is then projected onto a plane perpendicular to the
incident ray and then projected onto the tangent plane.
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As shown in (5.11), the projection of B and ṙ on the ûv̂ plane is mapped

with M. The mapping can be extended from one specific curve direction to the

entire lateral area. Denoting the projection of O and Os on the ûv̂ plane as Ouv

and Os,uv, the full area lateral mapping is expressed as:

Ouv = MOs,uv. (5.35)

The mapping matrix M can be computed by OuvO
−1
s,uv, which is also the

polynomial fit of ( 1
|rs0|PRsÃ)uv (from (5.34)) to ( sl 〈d̂, ẑc〉(I −

d̂ŵT

〈−d̂,ŵ〉
)Rc)uv

(from (5.31)). Note that there is only one unknown variable s in O and Os. M

is therefore a function only of s. As shown in (5.11), M muss be a symmetric

matrix. The height of the object surface can therefore be obtained by s satisfying

resp. imposing the condition that M is a symmetric matrix. However, whether a

matrix is symmetric is a binary condition, which is disadvantageous in numerical

computation. The symmetric criterion can be modified to be

UTV→ I, (5.36)

with U and V being the left- and right-singular vectors of M. If M is a symmetric

matrix, it gives M− 1
2 (M + MT ) = 0, which can also be written as UΣVT −

1
2 (UΣVT + VΣUT ) = 0. Left multiplying the function with UT and right

multiplying the function with V, it results in 1
2Σ− 1

2UTVΣUTV→ 0. Therefore,

if M is a symmetric matrix, it follows UTV→ I.

For comparison, the height of a simulated surface is computed using two

specific curves given by the A matrix (Chapter 5.2) and computed without any

preferential directions as introduced in this section. The evaluated heights are

subtracted by the simulated surface and the deviations are shown in Fig. 5.15.

The results show that there are almost no difference between these two methods.

The outliers induced by the perpendicular configuration remain the same.

The open question of the perpendicular configuration discussed in Chapter

5.3.4 can now be explained by the system symmetry: Since the object height

is computed by s satisfying the symmetry condition of M, therefore, it is
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Fig. 5.15: The height of a simulated surface is evaluated with two arbitrary
curves obtained by A and evaluated without preferential directions. The height
deviations from the simulated surfaces are displayed in (a) and (b) respectively.

expected that the computed M for the wrong object position is asymmetric.

The “perpendicular configuration” where the screen plane is perpendicular to

the principal plane, leads to system symmetry about the û axis. The expected

asymmetry of M while s does not equal the correct surface height is therefore

getting weak or is lost completely. This is also demonstrated in Fig. 5.12. The

maximal error (where the positive error switches to a negative error) appears

exactly at the region where the perpendicular configuration is present(known from

the simulation). The nearer the pixel locates to the area having a perpendicular

configuration, the flatter the profile of the target function becomes. The sensitivity

of locating the surface height is therefore getting weak.
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Chapter 5 presented how the information from a single camera position can

be maximally exploited. In this chapter, the gathering of information will be

extended to multi-camera positions, multi-object positions and even multiple

measurement systems.

Multi position measurements are advantageous and competitive when measu-

ring a complex object with large local curvatues which introduce a very large

angular dynamic range and optical divergence. The pattern on the screen is, in

this case, only reflected by a part of the object surface under test. For a full-field

measurement (measuring the entire object surface at once), a much larger screen

would be needed. However, a large screen introduces other problems, as it limits

severely the available installation space for the camera and puts high demands

on system calibration. This results in a slant viewing angle of the camera and a

long working distance between the camera and the object.

This problem can be solved by using multi-sensor positions1. [Ole+14] also

applied multi-sensor positions to solve the measuring field problem of astrono-

mical mirrors. The 3D point cluster is firstly evaluated individually for every

camera position. The 3D point clusters from different camera positions are then

merged into a large point cluster. This method is straightforward and easy to be

implemented. However, due to unavoidable calibration inaccuracies, edges are

always present in the transition areas where the data acquired by one sensor is

transitioning to the data acquired by another sensor. Therefore, it is advisable

to merge the data in an earlier stage of the evaluation.

1Multi-camera positions are conventionally applied in PMD [KHL04a]. The purpose of
using multiple cameras is primarily to solve the height problem introduced in Chapter 2 and
Chapter 5. In this chapter, however, the goal is to utilize additional information from multiple
cameras and / or positions in order to extend the field of measurement for complex object
surfaces under test.
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6.1 Information from Different Camera Positi-

ons

The object surface observed under multiple viewing directions can be evaluated

by comparing the surface normals n̂i of an assumed height map under different

viewing perspectives. The assumed surface point r does not have to be observed

by all the available cameras. As long as r can be observed by at least one camera,

the surface normal is obtained under this height assumption, through which the

measuring field is enlarged.

As discussed in the introduction of this chapter, multi camera positions

are conventionally used in PMD to solve the height problem [KHL04a]. In this

work, the stereo method introduced in [KHL04a] is applied to solve the height

ambiguity of one single surface point r0 with the surface normal n̂0 around this

point. This point serves as a start value for the following iterative evaluation.

Further (new) evaluation is based on the assumption that the object surface is a

plane perpendicular to n̂0 and passing through r0. Projecting the points on this

plane r onto the ith camera plane (rci) and evaluating their corresponding screen

points (rsi), the “revised” surface normals n̂i can be evaluated by applying the

law of reflection for each single camera. Taking the averaged surface normals from

all the available camera perspectives, new surface normals n̂ can be evaluated.

Performing an integration, a new surface r is obtained. Applying this new surface,

the surface normals n̂i can be updated for every camera perspective. The surface

can therefore be evaluated iteratively.

The new algorithm merging data from different cameras can be divided into

the following seven steps:

1. Evaluate the 3D Positions of the observed Screen Points

Given the unwrapped phase2 of the ith camera image φxi(mci, nci) and

φyi(mci, nci), where mci and nci denotes the pixel index of the ith camera

2The unwrapped phase denotes the monotonic absolute phase. The phase jump after each
period of 2π is removed and the screen coding is unique.
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Interpolation

Projection
onto the ith
image plane

(xci, yci)

The (regular)
x- & y-

phase map
φxi(mci, nci)
φyi(mci, nci)

φxi(xci, yci)
φyi(xci, yci)

Mapping the
camera pixels
to the screen
points in 3D

according to (6.1)
rsi(xci, yci)

The assumed ob-
ject points

r

Fig. 6.1: The workflow of evaluating the corresponding screen points according
to the phase map and given object points, denoted as Workflow 1.

with mci, nci = 0, 1, 2, 3..., the phase of the assumed object point r can be

determined by projecting r onto the ith camera plane and performing an

interpolation as shown in Fig. 6.1. The corresponding screen points in 3D

space are then determined by

rsi(xci, yci) = Hs


µsnpx

2π φxi(xci, yci)
µsnpy

2π φyi(xci, yci)

0

1

 , (6.1)

where µs denotes the metric screen pixel size, npx and npy denote the x-

and y-pattern period given in number of screen pixels, Hs denotes the

homogeneous matrix (Appendix A.5) of the screen and rsi(xci, yci) denotes

the corresponding 3D screen point of the camera point (xci, yci). This is a

standard step in almost all the PMD evaluations.

2. Define an Evaluation Grid in the Common Coordinate
System

A fixed xy-grid in the common coordinate system (x, y) must be defined

before the iteration begins (Fig. 6.2). The height of the grid z(x, y) (or the

surface r = [x, y, z]) will be adapted after every iteration step according

to the assumed local surface normal. The grid can be arbitrarily chosen
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according to the application. The simplest option is to choose a Cartesian

grid which is slightly larger than the object surface. The grid points outside

the object surface can not be observed by any camera. They can be removed

or masked appropriately after the first iteration.

Fig. 6.2: A fixed xy-grid is defined in the common coordinate system x̂ŷẑ. A line
segment is defined in the center of the grid and perpendicular to the grid. The
real surface point is searched along the line segment by projecting the points
on the segment onto every camera plane. Evaluating the corresponding screen
points by interpolating the phase map, the surface normal can be determined
by applying the law of reflection. The real surface point is found by comparing
the surface normals under different camera perspectives and choosing the point
along the line segment with the smallest variation of the different surface normals
calculated for each camera.

3. Search for an Absolute Surface Point in 3D

A stereo surface point with a known absolute height is found as introduced

in [KHL04a]. Define a line segment in the common coordinate system.

This line segment, or part of the line segment must be observed by all

the cameras. The simplest option is to define a line segment which is

perpendicular to the xy-plane in the common coordinate and intersecting

121



CHAPTER 6. DATA FUSION FROM DIFFERENT SIGNAL SOURCES

the center of the chosen grid (Fig. 6.2). This line segment is denoted as

r0(t) = [x0 y0 t]
T , t ∈ [tmin, tmax], (6.2)

where (x0, y0) is the xy-position of the line segment, t is a parameter and

[tmin, tmax] defines the search range.

Projecting r0(t) onto the ith camera image plane and denoting the landing

point on this image plane as rc0i(t). The screen point rs0i(t) is obtained by

applying the workflow shown in Fig. 6.1 and (6.1). For a given (assumed)

surface point r0(t), the direction of the corresponding surface normal

“observed” by the ith camera at this point can be obtained by applying

the law of reflection as

n0i(t) =
rs0i(t)− r0(t)

| rs0i(t)− r0(t) |
+

rc0i(t)− r0(t)

| rc0i(t)− r0(t) |
, (6.3)

and in normalized form

n̂0i(t) =
n0i(t)

| n0i(t) |
. (6.4)

n̂0i(t) denotes the surface normal observed by the ith camera under the

assumption that [x0 y0 t]T is an actual surface point. Under a wrong

assumption, n̂0i(t) differs for different camera perspectives. The real surface

point is obtained by searching for the t value where all the n̂0i(t) are

maximally colinear. Denoting this t value as t0, a real surface point is

specified as r0(t0) = [x0 y0 t0]T and the surface normal around this point

as n̂0(t0) (obtained by averaging over all n̂0i(t0) ).

4. Define a Surface According to the Absolute Surface
Point and its Normal

In a first (rough) approximation, the object surface can be assumed to be

a plane going through the point r0(t0) and perpendicular to n̂0(t0). This
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plane is denoted as rk with k = 0, where k denotes the kth iteration step

(Fig. 6.3).

Fig. 6.3: The first assumption of the height of the grid points is obtained by a
plane defined by the point r0(t0) and its surface normal n̂0(t0).

5. Evaluate the Surface Normals by taking all Cameras
into Account

The corresponding image point of the surface point rk is obtained by

projecting rk onto the ith image plane using the camera calibration data.

The image point is denoted as rcki or presented in the ith local camera

coordinate system as (xcki, ycki). If the projected point is outside the field

of view of the ith camera, the surface point under this camera perspective

rcki must be removed. The corresponding screen point rski is obtained by

applying Step. 1 and (6.1). The surface normal n̂ki observed by the ith

camera under the height assumption of rk can then be determined by 6.3

and 6.4.

Obviously, under a wrong height assumption, the surface normals n̂ki of

the surface point rk are different under diverse camera perspectives (Fig.

6.4). A new surface normal can be obtained by averaging the assumed
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normals from all the camera perspectives:

n̂k+1 =

∑
i

n̂ki

|
∑
i

n̂ki |
. (6.5)

Note that for a surface point rk, its normal vector n̂ki does not have to

exist for all the camera perspectives. The new surface normal n̂k+1 can

be obtained if the assumed normal n̂ki is available for at least one camera

perspective. The evaluation field is therefore not limited by any single

camera. The evaluation field is in this stage a combined field of all the

cameras (Fig. 6.4).

Fig. 6.4: The local surface normals for each grid point can be evaluated under
the height assumption introduced in Step. 4 for each camera (blue and orange).
New ”consolidatedßurface local normal n̂(x, y) (black) are obtained for each grid
point by averaging over the different surface normals calculated for each camera
perspective.

6. Evaluate the Surface According to the New Surface
Normals

The shape of the surface can now be newly reconstructed according to the

normals determined in the Step. 5 by applying a 2D integration (Fig. 6.5).

Reconstructing a surface through the normal field / the gradient field is a
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frequently posed mathematical question that has been studied intensively

in the field of 3D metrology. This can be done by different mathemati-

cal methods. One possible method is based on the global least squares

solution with Tikhonov regularization [HO13a][HO13b][HO11][HO08]. A

second option is to fit a radial basis function (RBF) in local patches

and then to reduced to height distances of the overlapping points sets

[FC88][Ett+08][EKH07][LOW02][LK05][Low05].

Fig. 6.5: The height of the object surface is obtained by performing a 2D-
integration of the normal vector field calculated in Step. 5.

7. Iteration Loop: Repeat Step. 5 and Step. 6

Use the updated surface points rk+1 determined in Step. 6 as input data

and perform Step. 5 again, until the stopping criterion is fulfilled. A possible

criterion is for example surface normal max | rk+1 − rk | < threshold or

does not change3.

The entire multi cameras evaluation is introduced in the workflow displayed

Fig. 6.6.

3Another criterion could be that the surface normals n̂ki from the different camera views
differ slightly enough - this would correspond to a “(multi-)stereo criterion”
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6.2 Information from Different Object Positions

In addition to multiple camera positions, the measuring field can also be extended

by combining data obtained from multiple object positions. Obtaining / acquiring

the data from different object positions is in principle easy and can be done

without any additional hardeware if the object is moving anyway. The object

only needs to be captured several times by all the available cameras during

object movement as displayed in Fig. 6.7. The measurement field is extended by

the multiple views which is generated by the object movement.

However, data fusion of multiple object positions is very difficult due to the

reflectivity of the object surface. A reflective surface is invisible and has to be

considered as a part of the imaging system, effectively imaging the (distorted)

screen pattern used for illumination. The exact location and shape of the object,

is unknown until the 3D point cloud of the object surface has been fully evaluated.

Up to this point, the surface normals are only assumed under a height assumption

- the height ambiguity. In the case of multiple object positions, an additional

lateral ambiguity is introduced: The surface normal correspondence between

the jth position to the j + 1th position is not traceable, therefore a normal

comparison or normal fusion is not possible in this early stage of the evaluation.

To be able to compare and combine the assumed surface normals from different

object positions, the surface normals must be considered in the same coordinate

system in which the object does not move, so that no further ambiguity is added.

The previous x̂ŷẑ-coordinate system is no longer suitable since the object has

a relative motion in these coordinates. A new coordinate system fixed to the

object muss be introduced. The fixed coordinate can be achieved by using a

target carrier with fixed markers on it (Fig. 6.8 ). Since the target carrier moves

with the object, there is no relative movement between the markers and the

object. Such a fixed “object coordinate system” x̂tŷtẑt can be defined basing on

the markers (Fig. 6.8 ). As the markers are not reflective, the positions of the

markers in the previous x̂ŷẑ-coordinates are easy to evaluate using triangulation

[HS97]. The transform between the moving coordinate x̂tŷtẑt and the common

coordinate x̂ŷẑ are performed by the homogeneous matrix (s. Appendix A.5),
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Fig. 6.6: The workflow of evaluating the object surface by applying multiple
camera positions.

127



CHAPTER 6. DATA FUSION FROM DIFFERENT SIGNAL SOURCES

Object

... ...

capture 4capture 3capture 2capture 1 capture 1 capture 3capture 2 capture 4

Fig. 6.7: Multi position PMD.

where j denotes the jth camera image exposure.

Fig. 6.8: target carrier with fixed markers to define a coordinate x̂tŷtẑt that
moves together with the object. (courtesy of Simon Hartel)

By applying the coordinate system - x̂tŷtẑt moving with the object, the

camera image captured in the jth object position can be considered as an image
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captured by the jth slightly shifted virtual camera and screen (as shown in

Fig. 6.9), with the object always remaining in the same position. The algorithm

introduced in Chapter 6.1 comparing the surface normals from multiple camera

perspectives can therefore now be applied for multiple object positions as well

while all the screen points rsj and image points rcj are presented in the x̂tŷtẑt-

coordinate by using the inverse4 of Htj .

capture 1

capture 4

capture 1

j = 1

j = 4

j = 1
j = 2

...

...

...

capture 2

capture 4

...

capture 2
capture 3

j = 3

capture 3

j = 4j = 2
j = 3

Fig. 6.9: Fixed coordinate with respect to the object. Cameras and screen are
moving relative to the object.

The petrol cap displayed in Fig. 2.12 is under test. The petrol cap is captured

five times during its movement through the sensor. It is evaluated by combining

and comparing the assumed surface normals from all the object positions by

applying the homogeneous matrix Htj . The measuring result is shown in Fig. 6.10

at the bottom right. The object is also evaluated in every position independently

and the independently evaluated point clouds are demonstrated in Fig. 6.10 as

well. As shown in Fig. 6.10, only a part of the object surface is acquired in every

single object position.

The topography of the petrol cap was measured stationary with a high-

4To perform a numerically stable inverse of Htj , the following approach is applied:

H−1
tj =

[
RT
tj −RT

tjttj
0 1

]
.
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Fig. 6.10: A petrol cap is measured in motion. The petrol cap is captured five
times in five different positions during the movement. Only a part of the patrol
cap is measured in each measuring position. The entire surface is evaluated by
combining the normals acquired in every position and the result is displayed at
the bottom right.

precision confocal sensor as well. The measurement result from the confocal

sensor is viewed as the ground truth. The comparison of the multi-position

deflectometry measurement in motion at a speed of 200 mm/s and the time

consuming stationary confocal measurement is shown in Fig. 6.11. For the large

measuring object of about 100 mm wide and 160 mm long, which is substantially

uncooperative for a deflectometric measurement due to the large curvature,

the multi-position deflectometric measurement in motion delivers only height

deviations (sometimes even significantly) smaller than 50 µm.
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Fig. 6.11: Height deviation of a multi-position deflectometry measurement in
motion of a petrol cap against a ground truth measured with a precise confocal
sensor.

6.3 Information from Different Measuring Sys-

tems

The multi-view and multi-position-measurements created by a moving object

can increase the measurement field. However, the (lost) information of the object

side facing the screen itself, which is observed by the camera with a large angle,

cannot be captured by adding observation views from the same side. To recover

this information, the object must be removed and placed back on the target

carrier, but with this side of the object surface facing the camera view, and then

measured again.

Alternatively, the object can also be measured by two sensors oriented in
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opposite directions and located one after the other. Such a combined sensor

system is shown in Fig. 6.12. The combined sensor system consists of two identical

PMD sensors, each with two cameras. The two PMD sensor units are mounted

one after the other in the object moving direction - along the x̂t-axis. Each

sensor has its own coordinate system x̂ŷẑ, marked in red and blue. The x̂-axes

of the two sensors are directed in the opposite directions, as well as the ŷ-axes.

The object is placed on the target carrier. The associated moving coordinate

system, defined by the markers on the target carrier, is shown in green. The

object moves along the x̂t-axis and both sides of the object surface are now

observed in the respective sensor units.

Sensor 2

Sensor 1

Fig. 6.12: The combined sensor system consists of two identical PMD sensors.
(blue and red). The two PMD sensor units are mounted one after the other in the
object moving direction and facing the opposite direction. (courtesy of Simon
Hartel)

Like the multi-position PMD, the data from different measuring stations can

be also evaluated in a merged way by applying the same algorithm as introduced

above. The sensor 1 and the sensor 2 must be calibrated in their own coordinates
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x̂ŷẑ, respectively. The object moves together with the markers on the object

carrier. The position of the markers can be evaluated in each measurement by

triangulation, thus, the position of the coordinate x̂tŷtẑt relative to x̂ŷẑ can be

determined. The transformation matrix is denoted by Htjm, where j and m stand

for the jth camera exposure in the mth measuring station. Representing the data

points (screen points and camera points) of different measuring stations in x̂tŷtẑt

by applying the inverse of the homogeneous matrix Htjm, the surface normals

from different measuring stations can be considered in a common coordinate

system. Thus the object surface can be evaluated with the algorithm introduced

in Chapter 6.1.
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Chapter 7

Conclusion and Outlook

Measuring the topography of specular surfaces with strong surface structures

in motion was impossible before this research. A new method based on single-

shot phase-measuring deflectometry (SSPMD) and combining different solution

aspects has been presented.

Specular surfaces can be measured in motion using SSPMD, which uses the

additive superposition of two perpendicular fringe patterns as a diffuse light

source, and then uses single-sideband demodulation to separate the fringes of

different directions and determine the phases. However, this approach only works

for sufficiently smooth object surfaces without strong surface structures, since

the optical effect of the varying radii of curvature associated with strong surface

structures results in heavily changing magnification factors being applied to the

spatial fringe frequency observed via the surface. The camera image of such

object surfaces is not a narrowband signal anymore. Therefore, single-sideband

demodulation cannot be applied. The broadband problem arising in conventional

SSPMD has been solved in this research by an adapted localized Ridgelet

transform, in which the varying frequency components are considered locally.

The additively superimposed fringes, which encode the x- and y-positions of the

screen respectively, are separated by localized ridgelets in different directions.

Using a petrol cap as a test object, which has strong surface structures and
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can not be measured with conventional SSPMD, the geometric positions on

the illuminating screen observed via the object surface by the different camera

pixels (forming the primary measurand of deflectometry) could be determined by

applying the localized ridgelet transform in screen pixel accuracy (screen pixel

size: 297 µm), which corresponds to a surface slope variation of 5 arcmin in the

laboratorial PMD setup. Such an object was impossible to be measured with

only one camera image before this research. A limitation of the localized ridgelet

transform is still the local broadband problem, where the signal frequency varies

strongly within only a few fringe periods in local areas. A possible improvement

for these kinds of situations using the chirplet transform was discussed in Chapter

4.3.

Since the screen - the encoding light source of PMD - is diffusely illuminating,

the direction of incident ray is unknown. For each point along the reflection ray,

a surface normal which satisfies the law of reflection can always be found. The

height and the normal of the surface can not be determined simultaneously and

unambiguously. This problem is called the height problem of PMD. The height

problem has been solved in a new way by adaption and substantial extension

of an existing discrete differential approach based on two lateral curves on the

continuous fullfield PMD phase data. Not only the screen point to camera point

correspondence, but also the existing (but up to now not exploited - at least

not for the purpose of solving the height problem) spatial context information

of the local R2 → R2 mapping from the PMD screen plane to the camera

plane (vice versa) has been utilized, which makes an absolute monocular PMD

possible. Simulations and practical test results have been shown in Chapter

5.2. Simulations showed that in principle, a height measuring accuracy of up

to 10 nm is achievable for extremely high SNRs. However, like most differential

approaches, the proposed method is also sensitive to signal noise. Despite this, a

measurement accuracy of ±500 µm for a planar mirror has been reached. This

allows this method to be used for a start point search in certain situations (with

the final surface still being evaluated by a proper integration of the deflectometric

slope data determined under this height assumption). Limitations of this method

have been shown and a physical interpretation of those limitations has been
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given in Chapter 5.3.4. Furthermore, a new generalized solution without the

necessity of pre-defining specific curves was presented and discussed in Chapter

5.4.

In order to increase the robustness and to enlarge the measurement field

when measuring complex objects, a novel multi-position resp. multi-station-

PMD has been developed. Furthermore, for object surfaces with extremely high

dynamical curvature variations, two fringe patterns with different frequencies

could be needed. These different patterns should be displayed in different screens

(stations) due to the time consuming switching between patterns in only one

screen. Therefore, not only data from different camera views, but also from

different measuring stations should be merged. However, the specular object

surface is invisible. A (further) lateral ambiguity is introduced when gathering

data acquired in motion or from different measuring stations. To avoid the

additional ambiguity, a coordinate system defined by matt markers moving

together with the object has been applied. The camera position and the screen

position can be determined in this (moving) coordinate system in every single

measurement by detecting these markers. Every further acquisition is therefore

contributing an additional (virtual) measuring system, which is completely

described in this moving coordinate system. A new algorithm has been developed

based on this approach, which combines the data from all virtual measurement

systems and determines the 3D shape of the object surface. Since all measuring

units are considered equally and only the averaged measured values are considered,

the new evaluation algorithm is not limited by the number of measuring stations.

The measuring system can be flexibly extended as required.

Results from simulations as well as practical experiments have shown that the

combination of the presented approaches allows for the measurement of specular

objects even with strongly curved surface structures in motion, which was not

the case so far. A petrol cap as device under test, which has a height dynamic

of about 10 mm, was measured in motion with a speed of up to 200 mm/s. A

measurement error of only ±30 µm was achieved.

This research enables automated measurement of objects with specular
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surfaces in motion, through which the costs for quality control can be considerably

reduced. This approach can be applied to various inspection scenarios, such as

inspection systems for smartphones, tablets, painted car bodies, lenses, mirrors

or porcelain. Both scientific and economic benefits can be achieved through this

research.
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fläche sowie entsprechende Messanordnung“. DE102019208474 /

WO2020249166 , (the international patent procedure not yet com-

pleted by the time of submission of the dissertation). 2019.

[Wil+19] Florian Willomitzer u. a. Uncalibrated Deflectometry with a Mobile

Device on Extended Specular Surfaces. 2019. arXiv: 1907.10700

[cs.CV].

147

https://www.iap.uni-jena.de/iapmedia/de/Lecture/Lens+Design+II1519858800/LDII_Lens+Design+II+_+12+Mirror+systems-p-20002953.pdf
https://www.iap.uni-jena.de/iapmedia/de/Lecture/Lens+Design+II1519858800/LDII_Lens+Design+II+_+12+Mirror+systems-p-20002953.pdf
https://www.iap.uni-jena.de/iapmedia/de/Lecture/Lens+Design+II1519858800/LDII_Lens+Design+II+_+12+Mirror+systems-p-20002953.pdf
https://doi.org/https://doi.org/10.1016/j.optlaseng.2018.03.003
https://doi.org/https://doi.org/10.1016/j.optlaseng.2018.03.003
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.05.048
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.05.048
https://doi.org/10.1117/12.2527747
https://doi.org/10.1117/12.2527747
https://arxiv.org/abs/1907.10700
https://arxiv.org/abs/1907.10700


BIBLIOGRAPHY

[LSF20] Hanning Liang, Tomas Sauer und Christian Faber.
”
Using wavelet

transform to evaluate single-shot phase measuring deflectometry

data“. In: Applications of Digital Image Processing XLIII. Hrsg. von

Andrew G. Tescher und Touradj Ebrahimi. Bd. 11510. International

Society for Optics und Photonics. SPIE, 2020, S. 404–410. url:

https://doi.org/10.1117/12.2567301.

[Wil+20] Florian Willomitzer u. a.
”
Hand-guided qualitative deflectometry

with a mobile device“. In: Opt. Express 28.7 (März 2020), S. 9027–

9038.

[Vil] J. Ville. Theorie et Applications de la notion de signal analytique.

url: https://books.google.de/books?id=JVp1twAACAAJ.

148

https://doi.org/10.1117/12.2567301
https://books.google.de/books?id=JVp1twAACAAJ


Acknowledgement

This work would not have been accomplished without the support and help of

many people during my time as a PhD student. I am deeply grateful to each

and every one of you.

First of all, my biggest thanks go to my supervisor, Prof. Dr. Christian

Faber, who gave me the opportunity to work at Landshut University of Applied

Sciences as a scientific associate and to participate in the FlyFlect3D project.

The knowledge and experience I have learned and gained from you over the past

five years are tremendous. I am grateful for your supportive encouragement,

expert insights and helpful discussions.

My greatest thanks also go to my PhD supervisor Prof. Dr. Tomas Sauer

for having accepted me as a PhD student at the University of Passau in the

Faculty of Mathematics and Computer Science. I thank you for offering me the

opportunities to participate in the seminars in different thematic groups and

for the promising and productive discussions with you. Your enthusiasm for

mathematics has always been an inspiration for me.

Huge thanks to the people I worked with: Dr. Michael Strohmeier, Simon

Hartel for the numerous discussions, supports and inspirations. I would also like

to thank Dr. Alexander Zimmermann for the help in optimizing the algorithm

and the discussions. I don’t think I would have achieved these results in this

project without the supports from all of you.

I also thank the financial support of the Bavarian Research Foundation (BFS,

149



AZ-1273-17) and Micro-Epsilon Messtechnik GmbH & Co. KG. I thank Micro-

Epsilon Messtechnik GmbH & Co. KG for providing the PMD setup and all

the helping hands. I would like to thank the Bavarian Science Forum (BayWiss)

for their generous scholarship and the offer for a wide variety of workshops.

Thank you mom, dad and my brother for standing firmly behind me whenever

I look back. You have supported me all the way to this day. My dearest love

goes to my husband Li Ang. Thank you for always being by my side in all the

ups and downs, sharing my pain and joy.

Thank you all.

150



Anhang A

Appendix

A.1 Calculation of R2

According to (4.37), R2 =
∫

1
2b(x)eiφ(x)ψ∗a,b(x)dx, with:

φ(x) = φ(b) + φ
′
(b)(x− b) + φ

′′
(b)

2! (x− b)2 + ...,

and ψa,b(x) = 1
a
√
πFb

ei2πFc(
x−b
a )e

− 1
Fb

( x−ba )2
.

Since b(x) varies only slightly, b(x) is considered as a constant b0. R2 is now

rewritten as:

R2 = b0
2a
√
πFb

∫
eiφ(b)eiφ

′
(b)(x−b)ei

φ
′′

(b)
2 (x−b)2e−i2πFc(

x−b
a )e

− 1
Fb

( x−ba )2
dx.

Combining the (x− b) - terms and the (x− b)2 - terms, it gives:

R2 = b0
2a
√
πFb

eiφ(b)
∫
e−i2π(Fca −

φ
′
(b)

2π )(x−b)e
−( 1

Fba
2−i

φ
′′

(b)
2 )(x−b)2

dx.

Note that, the integration in R2 is the Fourier transform of a complex Gaus-

sian function. Therefore, it can be rewritten as:∫
e−i2π(Fca −

φ
′
(b)

2π )(x−b)e
−( 1

Fba
2−i

φ
′′

(b)
2 )(x−b)2

dx

=
√

π
αr
e−

(πfr)
2

αr ,

with αr = 1
Fba2

− iφ
′′

(b)
2 , and fr = Fc

a −
φ
′
(b)

2π .
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√
π
αr

=
√

2πFba2

2−iFba2φ′′ (b)

=

√
2πFba2(2+iFba2φ

′′ (b))

4+F 2
b a

4φ′′2(b)

=
√

2πFba2

(4+F 2
b a

4φ′′2(b))
1
2
ei
θ
2 , with θ = arctan Fba

2φ
′′

(b)
2 .

− (πfr)2

αr

= −π
2(Fca −

φ
′
(b)

2π )2

1
Fba

2−i
φ
′′

(b)
2

= −
1
2Fba

2(2π Fca −φ
′
(b))2

4+F 2
b a

4φ′′2(b)
(2 + iFba

2φ
′′
(b))

Then,

R2 = b0√
2(4+F 2

b a
4φ′′2(b))

1
4
e
−
Fba

2(2π
Fc
a
−φ
′
(b))2

4+F2
b
a4φ
′′2(b) e

i(φ(b)+ θ
2−

1
2
F2
b a

4φ
′′

(b)(2π
Fc
a
−φ
′
(b))2

4+F2
b
a4φ
′′2(b)

)
.

Let

M = a2Fbφ
′′(b),

N2 = Fb(2πFc − aφ′(b))2,

θ = arctan(M2 ),

then

R2 = b0√
2(4+M2)

1
4
e
− N2

4+M2 e
i(φ(b)+ θ

2−
N2M

2(4+M2)
)
.

Let N3 = Fb(2πFc + aφ′(b))2,

then R3 = b0√
2(4+M2)

1
4
e
− N3

4+M2 e
−i(φ(b)+ θ

2−
N3M

2(4+M2)
)
.

A.2 B(t, r, λ) = ∂F(t,r,λ)
∂t represented in the princi-

pal coordinate system

According to Eq.5.3, B can be represented as

[
∂x̂r+∂x̂i+∂λ∇g(r)

∂t
∂g(r)
∂t

]
, since
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A.3. J(T,R, λ) = ∂F(T,R,λ)
∂(R,λ) REPRESENTED IN THE PRINCIPAL

COORDINATE SYSTEM

∂g(r)
∂t = 0, ∂x̂r∂t = 0 and ∂[λ∇g(r)]

∂t = 0, therefore, B can be written as

[
∂x̂i
∂t

0

]
.

∂x̂i
∂t =

∂
r−rs(t)
|r−rs(t)|
∂t

= ∂(r−rs(t))
∂t

|r−rs(t)|
|r−rs(t)|2 −

∂|r−rs(t)|
∂t

r−rs(t)
|r−rs(t)|2

= ∂(r−rs(t))
∂rs(t)

∂rs(t)
∂t

1
|r−rs(t)| −

x̂i
|r−rs(t)|

∂|r−rs(t)|
∂(r−rs(t))

∂(r−rs(t))
∂t

= − δrs
|r−rs(t)| +

x̂ix̂
T
i δrs

|r−rs(t)|

= − (I−x̂ix̂Ti )δrs
|r−rs(t)| . (Eq.(21) in [SCP05])

Applying Eq. 5.7 and representing B in [û, v̂, ŵ], B =


Bu

Bv

Bw

0

, with

Bu =
δrs,w cos θ sin θ−δrs,u cos2 θ

|rs0| ;(Eq. (10) in [SCP05])

Bv = − δrs,v|rs0| ; (Eq. (10) in [SCP05])

Bw =
δrs,u cos θ sin θ−δrs,w sin2 θ

|rs0| . (Eq. (24) in [SCP05])

A.3 J(t, r, λ) = ∂F(t,r,λ)
∂(r,λ) represented in the princi-

pal coordinate system

According to Eq. 5.3, J can be written as

∂F(t,r,λ)
∂(r,λ) =

[
∂x̂r+∂x̂i+∂λ∇g(r)

∂r
∂x̂r+∂x̂i+∂λ∇g(r)

∂λ
∂g(r)
∂r

∂g(r)
∂λ

]
=

[
∂x̂r+∂x̂i+∂λ∇g(r)

∂r ∇g(r)

∇(g(r))T 0

]
.

(Eq.(20) and Eq. (21) in [SCP05])

According to Eq.5.2, ∂x̂i
∂r can be expressed as

∂
r−rs(t)
|r−rs(t)|
∂r

= ∂(r−rs(t))
∂r

|r−rs(t)|
|r−rs(t)|2 −

∂|r−rs(t)|
∂r

r−rs(t)
|r−rs(t)|2

= I
|r−rs(t)| −

x̂i
|r−rs(t)|

∂|r−rs(t)|
∂(r−rs(t))

∂(r−rs(t))
∂r
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= I
|r−rs(t)| −

x̂ix̂
T
i

|r−rs(t)|

=
I−x̂ix̂Ti
|r−rs(t)| ,

and analogous ∂x̂r
∂r =

I−x̂rx̂Tr
|r−c| .

Rewriting ∂λ∇g(r)
∂r = λ∂∇g(r)

∂r as λHg with

Hg =

−a− eu− fv −c− fu− gv 0

−c− fu− gv −b− gu− hv 0

0 0 0

 , (Eq. (22) in [SCP05])

J can be represented by

J =

[
I−x̂ix̂Ti
|r−rs(t)| +

I−x̂rx̂Tr
|r−c| + λHg ∇g(r)

(∇g(r))T 0

]
. (Eq. (20) and Eq. (21) in [SCP05])

Note that λ = 2cosθ. Considering the surface parameter up to the second

order, J can therefore be written as:
Ju − 2a cos θ −2c cos θ Jw 0

−2c cos θ Jv − 2b cos θ 0 0

Jw 0 Jv sin2 θ 1

0 0 1 0

, (Eq.(23) in [SCP05])

with

Ju = Jv cos2 θ, (Eq. (11) in [SCP05])

Jv = 1
s + 1

|rs0| , (Eq. (11) in [SCP05])

Jw = s−|rs0|
|rs0|s cos θ sin θ. (Eq. (25) in [SCP05])
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A.4. THE PERSPECTIVE PROJECTION OF A VECTOR ON THE
CAMERA PLANE ONTO THE TANGENT PLANE OF THE OBJECT

SURFACE

Fig. A.1: The perspective projection of δrc on the camera plane onto δr on the
tangent plane of the object surface.

A.4 The perspective projection of a vector on

the camera plane onto the tangent plane of

the object surface

ẑc is the camera axis and l is the distance between the projection center c and the

camera plane. d̂ is the directional vector of a camera ray, which passes through

point rc0 on the camera plane and lands on point r0 on the object surface. The

distance between c and rc0 is therefore

dc→rc0 =
l

〈ẑc, d̂〉
. (A.1)

δrc is a vector beginning from rc0 and lying on the camera plane. Shifting δrc

with its beginning from rc0 to r0 along d̂ under the perspective projection in

the respect of c and denoting the shifted vector as δrct, it gives

δrct =
s〈ẑc, d̂〉

l
δrc. (A.2)
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Denote a vector on the d̂ axis starting from r0 as δrd = αd̂ with α being a

scaling factor, which allows δrct,d = δrct−δrd to be parallel to the tangent plane.

It follows that the projection of δrct and δrd on the ŵ axis (the normal of the

tangent plane) are equal:

〈δrct, ŵ〉 = 〈δrd, ŵ〉 = 〈αd̂, ŵ〉. (A.3)

α can be therefore written as

α =
ŵT

〈d̂, ŵ〉
δrct, (A.4)

and it follows

δrd = αd̂ =
d̂ŵT

〈d̂, ŵ〉
δrct. (A.5)

Since the norm of δrd is negligible compared to the s - the distance between

c and r0, δrct,d can be approximated as δr - the The perspective projection of

δrc on the camera plane onto the tangent plane. Therefore,

δr ≈ δrct,d = δrct − δrd =
s

l
〈ẑc, d̂〉(I −

d̂ŵT

〈d̂, ŵ〉
)δrc. (A.6)

A.5 Homogeneous Matrix

The homogeneous matrix is applied for affine transformation including translation,

scaling, rotation and shearing. To transform a 3-vector [x y z]T presented in

the original coordinate system XY Z into a new coordinate system X ′Y ′Z ′, the

homogeneous matrix H is a 4 · 4 matrix and can be written as:

H =

[
R t

0 1

]
, (A.7)

where t = [tx ty tz]
T is the translation vector (the origin of the coordinate

system XY Z presented in X ′Y ′Z ′), and the scaling, rotation and shearing are
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all included in the 3 ·3 matrix R. In the application of coordinate transformation

discussed in this thesis, only rotation and translation are applied. Therefore, the

R matrix is a (orthogonal) rotation matrix here and can be written as:

R = [x̂ ŷ ẑ], (A.8)

where x̂, ŷ and x̂ denote the x-, y- and z-axis of the original coordinate XY Z

presented in the new coordinate X ′Y ′Z ′.

To apply the homogeneous transformation, the 3D vector [x y z]T muss be

extended to 4D by adding the 4th axis with 1 and the vector [x y z]T presented

in X ′Y ′Z ′ is obtained by 
x′

y′

z′

1

 = H


x

y

z

1

 . (A.9)
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