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Abstract

The generalization of univariate splines to higher dimensions is not straightforward.
There are different approaches, each with its own advantages and drawbacks. A
promising approach using Delaunay configurations and simplex splines is due to
Neamtu.

After recalling fundamentals of univariate splines, simplex splines, and the well-
known, multivariate DMS-splines, we address Neamtu’s DCB-splines. He defined
two variants that we refer to as the nonpooled and the pooled approach, respectively.
Regarding these spline spaces, we contribute the following results.

We prove that, under suitable assumptions on the knot set, both variants exhibit the
local finiteness property, i.e., these spline spaces are locally finite-dimensional and at
each point only a finite number of basis candidate functions have a nonzero value.
Additionally, we establish a criterion guaranteeing these properties within a compact
region under mitigated assumptions.

Moreover, we show that the knot insertion process known from univariate splines
does not work for DCB-splines and reason why this behavior is inherent to these
spline spaces. Furthermore, we provide a necessary criterion for the knot insertion
property to hold true for a specific inserted knot. This criterion is also sufficient for
bivariate, nonpooled DCB-splines of degrees zero and one. Numerical experiments
suggest that the sufficiency also holds true for arbitrary spline degrees.

Univariate functions can be approximated in terms of splines using the Schoenberg
operator, where the approximation error decreases quadratically as the maximum
distance between consecutive knots is reduced. We show that the Schoenberg
operator can be defined analogously for both variants of DCB-splines with a similar
error bound.

Additionally, we provide a counterexample showing that the basis candidate func-
tions of nonpooled DCB-splines are not necessarily linearly independent, contrary to
earlier statements in the literature. In particular, this implies that the corresponding
functions are not a basis for the space of nonpooled DCB-splines.
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Zusammenfassung

Univariate Splines können nicht unmittelbar auf mehrere Dimensionen verallge-
meinert werden. Jedoch gibt es verschiedene Ansätze mit jeweils unterschiedli-
chen Vor- und Nachteilen. Eine vielversprechende Herangehensweise, die Delaunay-
Konfigurationen und Simplex-Splines verwendet, stammt von Neamtu.

Nachdem wir die Grundlagen von univariaten Splines, Simplex-Splines und den
bekannten multivariaten DMS-Splines wiederholt haben, beschäftigen wir uns mit
Neamtus DCB-Splines. Er führte zwei verschiedene Varianten ein, die als nicht-
aggregierter beziehungsweise aggregierter Ansatz bezeichnet werden. In Bezug auf
diese Splineräume präsentieren wir die folgenden Ergebnisse.

Wir zeigen zum einen, dass beide Varianten unter geeigneten Voraussetzungen an
die Knotenmenge die sogenannte Lokale-Endlichkeits-Eigenschaft besitzen. Dies
bedeutet, dass die Splineräume lokal endlichdimensional sind und dass an jedem
Punkt nur eine endliche Anzahl der Kandidaten an Basisfunktionen einen von null
verschiedenen Wert aufweist. Zusätzlich ermitteln wir ein Kriterium, welches diese
Eigenschaften auf einem kompakten Gebiet auch unter schwächeren Voraussetzun-
gen garantiert.

Darüber hinaus zeigen wir, dass der von den univariaten Splines her bekannte Pro-
zess des Knoteneinfügens für DCB-Splines nicht funktioniert, und begründen, warum
dieses Verhalten in der Natur dieser Splineräume liegt. Außerdem geben wir ein
notwendiges Kriterium dafür an, dass die Knoteneinfüge-Eigenschaft für einen be-
stimmten einzufügenden Knoten gegeben sein kann. Für bivariate nicht-aggregierte
DCB-Splines von Grad null und eins ist dieses Kriterium auch hinreichend. Nume-
rische Experimente legen ferner die Vermutung nahe, dass dies unabhängig vom
Splinegrad der Fall ist.

Univariate Funktionen können mithilfe des Schoenberg-Operators durch Splines
approximiert werden. Dabei hat eine Verringerung des maximalen Abstands zweier
aufeinanderfolgender Knoten eine quadratische Verringerung des Approximations-
fehlers zur Folge. Wir zeigen, dass der Schoenberg-Operator für beide Variaten von
DCB-Splines auf analoge Art und Weise und mit einer ähnlichen Fehlerschranke
definiert werden kann.
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Zusätzlich geben wir ein Gegenbeispiel an, das zeigt, dass die Basisfunktions-
Kandidaten der nicht-aggregierten DCB-Splines nicht notwendigerweise linear un-
abhängig sind, was einen Gegensatz zu früheren Behauptungen in der Literatur
darstellt. Dies impliziert insbesondere, dass die entsprechenden Funktionen keine
Basis für den Raum der nicht-aggregierten DCB-Splines bilden.
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Introduction 1
„All exact science is dominated by the idea of

approximation.

— Bertrand Russell

1.1 Motivation

The quote cited above is the very first sentence in the introduction of Steffen’s
book on the history of approximation theory [Ste06, p. vii] and indicates the
vast importance of approximation theory in mathematics. Approximation theory
addresses the “approximative determination of a given quantity” [Ste06, p. vii]
using a set of well-understood objects.

These quantities can be numbers or functions, for example. The Babylonian mathe-
maticians found a procedure to approximate the mostly irrational square roots of
numbers using well-understood rational numbers, which is today known as Heron’s
method [ZZZ16, p. 55ff]. Another example for approximation problems are regres-
sion problems, where one tries to approximate “an unknown function based on some
finite amount of data (often measurements)” [Sch07, p. 1].

However, computers only have limited accuracy, and therefore, numerical compu-
tations are almost never exact [Ste06, p. vii]. It is not possible to express every
real world quantity in digital terms using a computer. On the other hand, also the
inaccuracies of sensors causing noise in the measurements indicate that, with real
world data, it is often more reasonable to refrain from exact reproduction of the
measurements and be content with approximating them instead.

The approach to find an approximation for some unknown function f can usually be
separated into two stages [Sch07, p. 2]:

1. Choosing an appropriate class of candidate functions: Like the Babylonians
used the class of rational numbers to approximate certain irrational numbers,
one has to choose a set of functions that will be used to approximate f .
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2. Contriving a selection scheme which chooses a specific function from the
class as approximant to f . To be able to decide which function is the best
approximant to f , it is necessary to choose a metric which determines the
difference between two functions.

Since the choice of the class of candidate functions has a huge influence on the
quality of the resulting approximation, this stage is very important. Schumaker gives
the following properties, which are typically desired from such a class F of functions
[Sch07, p. 2]:

1. All functions in F should exhibit a certain amount of smoothness: Usually,
the functions under consideration arise from real world scenarios and de-
scribe a physical process, which can often be modeled by (partial) differential
equations. Solutions to these equations naturally feature a smooth behavior.

2. The flexibility of the class of functions F should be large enough to provide a
good approximation of arbitrary sufficiently smooth functions.

3. For all functions in F , it has to be possible to manipulate and store them easily
on a computer: Since computers only have a finite amount of memory, a finite
set of numbers has to be sufficient to describe the function uniquely.

4. The functions in F are required to enable efficient evaluation on a computer
with sufficient accuracy. Since many computations are based on derivatives
or integrals of functions, it should be possible to compute and evaluate these
quantities, too.

Although the last two points have been of minor interest in theoretical considerations,
they are crucial in modern applications, which almost exclusively make use of
computers [Sch07, p. 2].

One possible choice of candidate functions are polynomials up to a certain degree
as this class of functions is well understood and has a relatively simple structure.
However, we will see in the next chapter that the global nature of polynomials entails
a lack of flexibility, which renders them inappropriate for many types of data.

In order to overcome this limitation, one moves to considering piecewise polynomials,
which are also known as splines nowadays. For the construction of a spline, one has to
choose the positions (called knots) at which the polynomial pieces are glued together,
the smoothness constraints at these positions, and the degree of the polynomial
pieces.
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We motivate the use of splines in approximation problems exemplarily by the
following two applications:

1. Computer Aided Geometric Design (CAGD): The field of CAGD “is concerned with
the design, computation, and representation of curved objects on a computer”
[BHS94, p. 106]. This primarily involves (univariate) curves, which have
a one-dimensional parameter space, as well as surfaces, whose parameter
space is two-dimensional and which, therefore, require multivariate concepts.
The advantage of using splines instead of polynomials is easy to see for this
application: Assume that a user designing some model desires to change the
object in a certain region. The global behavior of polynomials immediately
yields a propagation of this change to every position of the model. On the
contrary, the local nature of splines restricts all changes to a bounded region,
which presumably meets the user’s expectation.

2. Finite Element Method (FEM): FEM is a technique for the numerical solution
of differential equations, which is widely used in applied mathematics and
engineering applications, such as fluid flow, continuum mechanics and thermo-
dynamics [Höl03, p. 1]. It is based on the idea of discretizing the continuous
domain by splitting it into partitions like triangles or tetrahedra, for example
[Höl03, p. 9]. In order to find an approximate solution to the continuous
problem, one then uses a basis of functions, each of which is defined with
respect to several vertices of the partitioning. These functions are called finite
elements and are often piecewise polynomials [Höl03, p. 8] with support on
few neighboring cells [Höl03, p. 12]. Together with the continuity constraints
imposed on the boundaries of adjacent cells, this reveals a close connection
between FEM and splines. The approximation error can be made arbitrarily
small by refining the partitioning of the domain.

Splines have been studied thoroughly in literature, and the univariate case, where
the resulting spline is a one-dimensional object, is well understood. However, the
generalization of splines to the multivariate case is not straightforward. Despite the
huge variety of available approaches, “there does not seem to exist a generalization
that is commonly agreed to be the ‘right’ one” [Nea01b, p. 355]. One proposal,
which is very promising due to its geometric motivation and elegance, has been
introduced by Neamtu in [Nea01a] and [Nea01b]. Although it has been shown that
this spline space exhibits many appealing properties, there are still open questions
regarding both theoretical and practical issues. The goal of this thesis is to provide
proofs and answers to a few of these questions.
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1.2 Contributions

Throughout the thesis, we will refer to Neamtu’s multivariate spline space as De-
launay Configuration B-splines (DCB-splines). His method, which will be defined
in Section 4.3, comes in two different variants: One of them will be called pooled
DCB-splines, whereas we will refer to the second one as nonpooled DCB-splines.
Although the focus of this thesis is on the nonpooled approach, it will turn out that
many of our results will also be applicable to the pooled variant.

Neamtu formulated the most important properties desired from a multivariate spline
space in his Fundamental Problem [Nea01b] and constructed DCB-splines in order to
provide a solution to that problem. In fact, it has been claimed that both the pooled
and the nonpooled approach satisfy all the properties listed in the Fundamental
Problem [Nea01b]. However, to the best of our knowledge, for some of these
properties, there has not been given a proof in literature so far. Therefore, our aim
is to prove these properties by answering the following questions:

1. Local finiteness: Under which conditions do pooled and nonpooled DCB-splines
have the properties that

a) each point is in the support of only a finite number of basis candidate
functions and

b) the restriction of the spline space to any compact region has finite dimen-
sions?

2. Linear independence: Are the basis candidate functions of the nonpooled DCB-
splines linearly independent, and do they, therefore, really constitute a basis?

In addition to these questions arising from the Fundamental Problem, we consider
another two properties, which hold true for univariate splines and are important for
both theoretical and practical considerations:

3. Approximation: Are nonpooled and pooled DCB-splines suitable for approxima-
tion tasks? Can we define an operator yielding an approximation of reasonable
quality of a given function in terms of DCB-splines?

4. Knot insertion: It is known from the univariate case that the spline space
generated by a refined knot sequence is a superset of the spline space generated
by the original knot set. Does this property also apply to nonpooled DCB-
splines in general? Otherwise, is it possible to formulate necessary or sufficient
criteria for this property?
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As it will turn out, we are able to confirm that the local finiteness property (Question 1)
holds true for both pooled and nonpooled DCB-splines under suitable assumptions
and that both spline spaces are well-suited for approximation (Question 3). However,
we will provide a counterexample to Question 2 by specifying a knot set yielding
linear dependent basis candidate functions. Note that this result does not apply to
the pooled approach, where the question is still open. Furthermore, we will prove
by another negative example that the knot insertion property (Question 4) does not
hold true for DCB-splines in general. We will extend this by providing a necessary
criterion for knot insertion which applies to the nonpooled spline space. Moreover,
we will show that this criterion is also sufficient for bivariate, nonpooled DCB-splines
of degrees zero and one. Numerical evidence suggests that the sufficiency holds true
independently of the spline degree, which we will formulate as a conjecture.

1.3 Structure

The thesis is organized as follows: After this introductory chapter, we will recall
univariate splines in Chapter 2. As we will focus on similarities and differences of
univariate and multivariate spline spaces, a thorough understanding of univariate
splines is important. Therefore, the introduction to these splines will be rather
detailed.

Next, we will consider simplex splines in Chapter 3 as a first step towards multivariate
spline spaces. These simplex splines are a natural generalization of B-splines, which
act as basis functions in univariate spline spaces. Hence, simplex splines are a
promising concept for multivariate basis functions.

In Chapter 4, we will come to multivariate spline spaces. After showing the dif-
ficulties that arise when switching to higher dimensions, we will use Neamtu’s
formulation of the Fundamental Problem [Nea01b] to specify the desired properties
for multivariate spline spaces. Then, we will introduce different approaches, which
finally culminate in the well-known DMS-splines. Since none of these methods is a
solution to the Fundamental Problem, Neamtu defined another approach, which is
based on a generalization of the Delaunay triangulation. We will present his ideas
and close the chapter with a list of further methods towards multivariate splines.

After that, we will investigate the properties of Neamtu’s spline spaces by providing
answers to the questions that we have formulated before. We consider local finiteness
in Chapter 5 and start by motivating certain assumptions on the set of knots. We
will show subsequently that, under these assumptions, the local finiteness property
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indeed holds true. Afterwards, we will conclude the chapter by presenting corollaries
following from this property and by showing a way how to mitigate the assumptions
on the knot set.

Chapter 6 is dedicated to the knot insertion property. We will present an example
showing that this property cannot be expected to hold true for DCB-splines in
general. Then, we will make this insight more precise by formulating a criterion
that is necessary for the knot insertion property to be fulfilled. The remainder of the
chapter investigates the sufficiency of this criterion. To that end, we will introduce
Micchelli’s knot insertion formula for simplex splines and give an alternative proof
which shows that this formula is practically equivalent to Micchelli’s recursion
formula for simplex splines. Using the knot insertion formula, we will show that, at
least in the nonpooled, bivariate case and for degrees zero and one, the criterion is
indeed sufficient.

Using DCB-splines for approximation tasks is considered in the first section of
Chapter 7. To that end, we will introduce a multivariate analogue of the Schoenberg
operator and show that it offers quadratic convergence with respect to the maximum
radius of circumcircles of Delaunay configurations. Afterwards, we will investigate
the condition of the basis candidate. Here, it will turn out that at least nonpooled
DCB-splines can in fact contain linearly dependent basis candidate functions, which
in turn shows that this variant is not a solution to the Fundamental Problem.

In the final chapter of the thesis, we will summarize our results regarding DCB-
splines, consider some practical issues, and finally give a perspective for potential
future research.
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Univariate Splines 2
„It’s the job that’s never started as takes longest to

finish.

— J. R. R. Tolkien
The Lord of the Rings

Before we turn to multivariate splines, we consider the univariate case in this
chapter. A thorough introduction to these well-understood concepts is especially
important as we are going to discuss similarities and differences between univariate
and multivariate spline spaces later.

2.1 From Polynomials to Splines

In this section, we introduce polynomials and show that they are not always a good
choice for approximation. After that, we use piecewise polynomials for piecewise
linear interpolation (PLI) and cubic spline interpolation. As a generalization of these
two special cases, we will then define splines and state that the B-splines form a basis.
We close the chapter by listing important properties of splines, which we will try to
generalize to the multivariate case over the course of this thesis.

2.1.1 Polynomials

We start with the well-known definition of polynomials:

Definition 2.1. (Polynomial) Let p : R → R. If we can find an m ∈ N0 and coefficients
a0, . . . , am ∈ R such that

p(t) =
m∑

k=0
aktk for all t ∈ R,
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then p is called polynomial of order m + 1. Its degree is defined as

deg p :=





−∞ if ak = 0 for all k ∈ {0, . . . , m},

max{k ∈ {0, . . . , m}
∣∣ ak ̸= 0} otherwise.

The set of all polynomials is denoted by Π. For m ∈ N0, the set Πm of all polynomials
of degree at most m is defined as

Πm := {p ∈ Π | deg p ≤ m}.

◀

Together with coefficientwise addition and scalar multiplication, the sets Π and Πm,
m ∈ N0, form a vector space.

Note that there is a difference between the degree and the order of a polynomial. A
polynomial of order m + 1, m ∈ N0, always has degree at most m. The order equals
the dimension of the corresponding vector space Πm, whereas the degree describes
the highest power present in a polynomial. As we use both definitions simultaneously,
special caution should be exercised when working with these terms.

A polynomial is uniquely identified by its coefficients. Since, for each polynomial,
only a finite number of coefficients differ from zero, a polynomial can be represented
by a finite set of numbers.

To evaluate a polynomial at some position t ∈ R, we just perform additions and
multiplications of the coefficients and the number t. This can be done efficiently
using the Horner scheme. Moreover, derivatives and integrals of polynomials are
again polynomials and can be constructed by a simple modification of the coefficients.
Therefore, the last two conditions on Schumaker’s list in Section 1.1 regarding the
suitability of function classes for approximation are fulfilled for polynomials.

In addition, polynomials are infinitely differentiable and, hence, have maximum
smoothness, which ensures the first condition. This follows directly from the fact
that derivatives of polynomials are again polynomials.

It remains to be shown that polynomials can approximate arbitrary sufficiently
smooth functions. One of the most important theorems on this topic is due to
Weierstrass:
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Theorem 2.2 (Weierstrass approximation theorem). Let I ⊆ R be a compact interval
and f ∈ C(I) . For each ϵ > 0, there exists a polynomial p ∈ Π satisfying ∥f−p∥∞ < ϵ.

◀

Hence, any continuous function can be approximated by polynomials within a
compact interval, which ensures the second condition on Schumaker’s list. However,
the theorem does not give any information about the degree of this polynomial.

In the following example, which is due to Runge and can be found in [Sch07,
p. 101f], we consider the following problem: Approximate a particular continuous
function f by a polynomial of some degree that interpolates f at certain positions.

Example 2.3. Let f : R → R, t 7→ 1/(t2 + 1) and m ∈ N+ with m > 1. We take m

equally spaced samples of f in the interval [−5, 5] at the positions

xi = −5 + 10 i − 1
m − 1 for all i ∈ {1, . . . , m}.

These samples uniquely determine a polynomial Lmf of order m that interpolates
f at these positions [Tim06, p. 58f]. The graphs of f , L5f , L15f are depicted in
Figures 2.1a and 2.1b. As one can see, L15f is a much better approximation of f

compared to L5f near the center of the interval [−5, 5]. However, L15f oscillates in
the boundary regions of the interval and, therefore, massively deviates from f , even
though f is optimally smooth. ◀

For the function f in the previous example, Runge proved in [Run01] (see also
[IK94, p. 275ff]) that the maximum approximation error in the interval [−5, 5] will
get even larger when the polynomial degree is increased further.

In [Boo01, p. 24], switching from interpolation to approximation is investigated,
as presented in Figure 2.1c. However, at least for reasonable sample positions and
polynomial degrees, the error is reduced by a factor of four at most, independently
of the approximation scheme.

This nonconvergence-behavior of interpolating polynomials reveals that polynomials
lack flexibility and, therefore, are of limited suitability for approximation tasks. One
of the reasons is

“deeply rooted in one of their most conspicuous properties, heralded
earlier as a virtue: polynomials are smooth. In fact, polynomials are too
smooth.” [Sch07, p. 103]
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(a) Interpolating polynomial of order 5
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(c) Approximation using polynomials

Fig. 2.1: Using polynomials to approximate or interpolate the function t 7→ 1/(t2 + 1) (blue)
at the given samples (black). The results (orange and green) exhibit an oscillating
behavior independently of the method.

This is due to the fact that each polynomial is uniquely determined by its values in
any nonempty open set since we can choose a sufficiently large number of distinct
samples in this open set [Sch07, p. 103]. In the next subsection, we will try to
overcome this global nature of polynomials by considering piecewise polynomials.

2.1.2 Piecewise Polynomials

We give a formal definition of the term piecewise polynomial now, which is essentially
the one given in [Sch07, p. 4].

Definition 2.4 (Piecewise polynomial). Let m ∈ N0, n ∈ N+, and x0, . . . , xn ∈ R
with x0 < . . . < xn. For all i ∈ {0, . . . , n − 2}, define Ii := [xi, xi+1), and let
In−1 := [xn−1, xn]. A function f : [x0, xn] → R satisfying

f |Ii ∈ Πm for all i ∈ {0, . . . , n − 1}
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is called piecewise (univariate) polynomial of degree at most m with breakpoints
x0, . . . , xn. If m = 1, we call f a piecewise linear function. Using X := (x0, . . . , xn),
we refer to the set of all piecewise polynomials of degree at most m with breakpoints
at X as Πm,X . ◀

Note that we placed no constraints on the junctions between two adjacent polynomial
pieces. In particular, f may not even be continuous.

2.1.3 Piecewise Linear Interpolation

We will first look at Piecewise Linear Interpolation (PLI), which, in some sense, is the
opposite of polynomial interpolation: While polynomials are infinitely differentiable
and, therefore, have maximum smoothness, we will require the functions under
consideration in this subsection to be continuous, but they will not be differentiable
at the breakpoints between pieces in general. On the other hand, a polynomial has
a global nature since its values on any nonempty, open set determine the whole
polynomial uniquely, whereas values of a continuous piecewise linear function in an
interval between two breakpoints influence the function only in that interval and
the two neighboring ones. The simple structure of such continuous piecewise linear
functions can be seen in the following proposition.

Proposition 2.5. Let f be a continuous piecewise linear function with breakpoints
x0, . . . , xn ∈ R satisfying x0 < . . . < xn. Then, for each i ∈ {0, . . . , n − 1}, one has

f(t) = xi+1 − t

xi+1 − xi
f(xi) + t − xi

xi+1 − xi
f(xi+1) for all t ∈ [xi, xi+1].

◀

We consider the locality of continuous piecewise linear functions in more detail and,
to that end, define hat functions in accordance with [Boo01, p. 32f]:

Definition 2.6 (Hat function). Let [a, b] ⊆ R and a = x0 < · · · < xn = b for some
n ∈ N+. Furthermore, define x−1 := a and xn+1 := b. For i ∈ {0, . . . , n}, the i-th
hat function with respect to the knot sequence X := (x−1, . . . , xn+1) is defined as

Hi : R → R, t 7→





t−xi−1
xi−xi−1

if xi−1 < t ≤ xi,

xi+1−t
xi+1−xi

if xi ≤ t < xi+1,

0 otherwise.
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Fig. 2.2: Hat functions and piecewise linear interpolation. Breakpoints are indicated by
black, dashed lines.

For H0 and t = x0 as well as for Hn and t = xn, we use the expression with a
nonzero denominator as definition. ◀

The collection of all hat functions with respect to a certain knot sequence is depicted
in Figure 2.2a. Hat functions are continuous piecewise linear functions. Additionally,
it is easy to see that

Hi(xj) = δi,j for all i, j ∈ {0, . . . , n}, (2.1)

as stated in [Boo01, p. 33]. In particular, the hat functions are linearly independent.
For an arbitrary function f : [a, b] → R, we define

I2f :=
n∑

i=0
f(xi)Hi. (2.2)

Since all hat functions are continuous piecewise linear functions with breakpoints at
X, it is clear that I2f is also a continuous piecewise linear function with breakpoints
at X. From Equation (2.1), it follows that I2f interpolates f at all sites in X [Boo01,
p. 33], as shown in Figure 2.2b. The segments of a piecewise linear function can be
regarded as polynomials of order two, which is also the justification for the subscript
in the operator I2.

Assume now that f is also a continuous piecewise linear function with breakpoints
at X and domain [a, b]. Let t ∈ [a, b], and choose i ∈ {0, . . . , n − 1} such that
xi ≤ t ≤ xi+1. Proposition 2.5 then yields

I2f(t) =
n∑

j=0
f(xj)Hj(t) = f(xi)Hi(t) + f(xi+1)Hi+1(t) = f(t).
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As this equation is valid for all t ∈ [a, b], it follows that I2f = f . In particular, every
continuous piecewise linear function with breakpoints at X and domain [a, b] can
be represented in this way as linear combination of hat functions, with coefficients
given by the function values f(x) at the breakpoints x ∈ X. Together with the
linear independence ensured by Equation (2.1), this observation shows that the hat
functions are a basis for the space of continuous piecewise linear functions with
domain [a, b] and breakpoints exactly at the sites in X, which have been used for
the construction of the hat functions [Boo01, p. 33].

Piecewise linear functions can also be used to interpolate or approximate given data,
like samples of a certain function, for example. For details on this topic, we refer to
[Boo01, p. 33ff]. In particular, for a twice continuously differentiable function f and
n equidistant interpolation sites, which also act as breakpoints, the error ∥f − I2f∥∞
is of order O(n−2) [Boo01, p. 35].

The hat functions feature a pleasantly small support: For i ∈ {0, . . . , n}, one has
supp Hi = [xi−1, xi+1]. Hence, also the function value f(xi), which is used as
coefficient for Hi in the hat function representation (2.2), only influences I2f on this
interval, which shows the local nature of (continuous) piecewise linear functions.

We may mention here that the pieces of such piecewise linear functions are not
linear in an algebraic sense. In fact, the correct term would be affine. Nevertheless,
it is common to call this type of functions linear, which is why we stick to this term
for that purpose.

2.1.4 Cubic Spline Interpolation

In the previous subsections, we have seen the extreme cases: Polynomials have a
global nature, while continuous piecewise linear functions have a very good localiza-
tion. Conversely, the latter type of functions is not differentiable in general, whereas
polynomials are infinitely differentiable and, thus, feature maximum smoothness.

The following question naturally arises from these facts: Is there a way to combine
the best of these two extreme cases? Starting from continuous piecewise linear
functions, the following two modifications are necessary for this purpose:

1. The linear pieces between two breakpoints are polynomials and, therefore, are
infinitely differentiable. The problem is with the breakpoints. Hence, we have
to place additional differentiability constraints at the breakpoints in order to
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obtain a higher degree of differentiability of the overall function. This can be
achieved by requiring that derivatives of adjoining pieces coincide.

2. Since these linear pieces are uniquely determined by the value of the function
and its derivative at a certain site within the corresponding interval, enforcing
these two values to coincide for adjoining pieces would imply that these two
pieces are segments of the same polynomial. By applying this argument at all
breakpoints, we see that the whole function is a single affine-linear function
in this case. Therefore, we have to use polynomial pieces of a higher degree
between each pair of adjacent breakpoints.

Let m ∈ N0 be the maximum degree of the polynomial pieces between two neigh-
boring breakpoints, which will be called the degree of the resulting spline later. We
consider the special case of degree m = 3, which is a very common choice [Boo01,
p. 39]. Furthermore, assume that we have a function f : R → R and interpolation
sites x0 < · · · < xn for some n ∈ N+ which are again real numbers. We will use the
interior knots x1, . . . , xn−1 as the breakpoints of the piecewise polynomial. Hence,
the resulting piecewise polynomial consists of n pieces p0, . . . , pn−1 ∈ Π3, each one
being a polynomial of degree at most three and, therefore, having order four [Boo01,
p. 39]. This results in 4n degrees of freedom in total. We require each polynomial
piece to interpolate the value of f at the two bounding interpolation sites, i.e.,

pi(xi) = f(xi), pi(xi+1) = f(xi+1) for all i ∈ {0, . . . , n − 1}, (2.3)

so that there remain two degrees of freedom per piece. In order to obtain a smooth
function, we place constraints on the junctions between two adjacent pieces now.
We seek the values of the first and second order derivative to coincide, which can be
expressed via the following equations [Boo01, pp. 39, 43]:

p′
i(xi+1) = p′

i+1(xi+1), p′′
i (xi+1) = p′′

i+1(xi+1) for all i ∈ {0, . . . , n − 2}.

By subtracting the number of equations from the total degrees of freedom, we
obtain 4n − 2n − 2(n − 1) = 2. Therefore, we still have two degrees of freedom left,
which refer to the slopes at the beginning and the end of the interval [x0, xn] under
consideration [Boo01, p. 43]. Figure 2.3 depicts some of the most common methods
to choose these two values [Boo01, p. 43ff], namely:

1. If f ′(x0) and f ′(xn) are known, one can choose the slopes p′
0(x0) and p′

n−1(xn)
accordingly.
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Fig. 2.3: Cubic spline interpolation (orange) of the function t 7→ 1/(t2 + 1) (blue) at the
given samples (black). Each plot presents a different approach of choosing the
boundary conditions.

2. If f ′′(x0) and f ′′(xn) are known instead, one can force the first and the last
polynomial piece and, hence, the overall piecewise polynomial function to
interpolate the curvature of f at x0 and xn, respectively.

3. By setting the second derivatives p′′
0(x0) and p′′

n−1(xn) to zero, one obtains the
method called natural spline interpolation.

4. If n ≥ 3, it is also possible to enforce the third derivatives of the polynomial
pieces to coincide at the breakpoints x1 and xn−1. Since polynomial pieces
of degree three satisfying this condition are in fact the same polynomial,
the breakpoints x1 and xn−1 disappear, which is why this method is called
not-a-knot condition.

After choosing one of these strategies, all equations can be written as linear system
with a unique solution, which can be solved efficiently [Boo01, p. 43].

Hence, we get a function that is twice continuously differentiable and a polynomial
of degree three between adjacent breakpoints. Furthermore, it interpolates the

2.1 From Polynomials to Splines 15



function f at the breakpoints. The construction of a piecewise polynomial function
with exactly these properties is called cubic spline interpolation [Boo01, p. 43].

If we do not wish to interpolate some given function, we lose n + 1 equations in
(2.3) and, therefore, have n + 3 degrees of freedom in total to control the shape of
the resulting function. Note that we have to keep n − 1 equations in (2.3) to enforce
continuity of the overall function.

In this subsection, we only investigated one particular example of splines. One
of the restrictions, of course, was the arbitrary choice of the degree m of the
polynomial pieces. However, it could also be possible that we are content with a
piecewise polynomial function with only one continuous derivative and instead want
to spend more degrees of freedom on interpolation. In cubic Hermite interpolation,
for example, one not only interpolates the values of f at the breakpoints but also its
slopes [Boo01, p. 40]. Are these tasks still in the scope of splines, though? So far,
we did not give a rigid definition for the term spline. We will make up for this in the
next section by defining the spline space and giving a convenient basis.

2.2 Definition of Univariate Splines

It follows directly from Definition 2.1 of polynomials of degree at most m, m ∈ N0,
and the linear independence of the monomials 1, t, t2, . . . , tm that these monomials
are a basis for the vector space Πm. On the other hand, we have seen in Subsec-
tion 2.1.3 that the hat functions are a basis for the space of continuous piecewise
linear functions. Naturally arising from these observations is the question whether
such a basis can be constructed for the functions we dealt with in Subsection 2.1.4,
i.e., piecewise polynomials of a higher degree with continuity constraints.

2.2.1 The Spline Space

Let m ∈ N0 denote the degree of the polynomial pieces, and choose a strictly
increasing sequence of breakpoints X = (x0, . . . , xn) ∈ Rn+1, n ∈ N+. In Subsec-
tion 2.1.4, we considered the particular case m = 3 and three continuity constraints
at each interior breakpoint x1, . . . , xn−1, i.e., continuity of the piecewise polynomial
function and its first and second order derivative. However, we want to restrict
ourselves neither to a specific spline degree nor to a specific number of continuity
constraints. In fact, we aim to assign an individual number of constraints to each
interior breakpoint.
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We can express the desired number of continuity constraints by specifying a tuple
R = (r1, . . . , rn−1) ∈ Nn−1

0 [Boo01, p. 82] and requiring the following to hold true
for a piecewise polynomial function g of degree m with breakpoints at X: For each
i ∈ {1, . . . , n − 1}, we can find an open neighborhood U(xi) ⊆ [x0, xn] around
xi such that g|U(xi) ∈ Cri(U(xi)). Similarly to the notation in [Boo01, p. 82], we
summarize all functions satisfying these conditions in the space Πm,X,R.

As it turns out, a basis for the space Πm,X,R is given by the B-splines, which we will
define in the next subsections, following [Boo01, p. 87].

2.2.2 Divided Differences

For the definition of B-splines, we have to recall the concept of divided differences
first. In this work, we will only give a definition and present a formula for their
computation. For a more comprehensive introduction to divided differences, we
refer to [Boo01, p. 3ff] and [Sch07, p. 45ff].

Definition 2.7 (Divided difference). Let k ∈ N0, and choose not necessarily distinct
sites x0, . . . , xk ∈ [a, b] ⊆ R. Let X := (x0, . . . , xk). Define X ′ as the set of distinct
sites in X, and let

µ(x′) :=
∣∣∣
{

i ∈ {0, . . . , k}
∣∣∣ xi = x′

}∣∣∣ for all x′ ∈ X ′

denote the multiplicity of a site in X. The divided difference

[x0, . . . , xk]f

for some function f : [a, b] → R is defined as the leading coefficient of the unique
polynomial p ∈ Πk satisfying

p(r)(x′) = f (r)(x′) for all r ∈ {0, . . . , µ(x′) − 1}, x′ ∈ X ′. (2.4)

Clearly, the existence of the corresponding derivatives of f is required. ◀

Note that this definition, which is an adapted version of the one given in [Boo01,
p. 3], is well-defined as the corresponding Hermite problem has a unique solution.
In particular, we have exactly k + 1 equations in (2.4) and likewise k + 1 degrees of
freedom to construct a polynomial of order k + 1.

Divided differences can be computed easily using the following recursive formula
[Boo01, p. 6].
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Proposition 2.8 (Recursive formula for divided differences). Let [a, b] ⊆ R be a
nonempty interval, k ∈ N0, and f ∈ Ck([a, b]). One has

[x]f = f(x) for all x ∈ [a, b]. (2.5)

Moreover, for x0, . . . , xk ∈ [a, b] and arbitrary i, j ∈ {0, . . . , k} with xi ̸= xj , the
equality

[x0, . . . , xk]f = [x0, . . . , xi−1, xi+1, . . . , xk]f − [x0, . . . , xj−1, xj+1, . . . , xk]f
xj − xi

(2.6)

holds true, whereas one has

[x0, . . . , xk]f = f (k)(x0)
k! (2.7)

for x0 = · · · = xk. ◀

According to this proposition, one can compute the value of any divided difference
by reducing it to divided differences with fewer arguments using the recursion
formula in (2.6) until in each divided difference only one distinct site is left.

The remaining values can then be obtained using Formulas (2.5) and (2.7), respec-
tively, depending on the number of arguments left. In fact, when looking at these
formulas more closely, it turns out that (2.5) is just the particular case k = 0 of the
more general Formula (2.7).

Furthermore, from the free choice of sites in (2.6), it follows that divided differences
are symmetric in their arguments [Boo01, p. 6]. This also seems reasonable when
looking at Definition 2.7 [Boo01, p. 4].

We close the subsection with the following example regarding different ways to
compute a divided difference:

Example 2.9. Consider the interval [0, 2] and the interpolation sites x0 = 1 and
x1 = 2. Let

f : [0, 2] → R, t 7→ t2 − 2.

The results in this subsection enable the computation of the divided difference
[x0, x1]f in two different ways:
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1. Using Definition 2.7: To obtain the value of [x0, x1]f using the divided dif-
ference definition, we have to find the unique polynomial of degree one
interpolating f at x0 = 1 and x1 = 2, which can be calculated to be

p : [0, 2] → R, t 7→ 3t − 4.

The divided difference [x0, x1]f is by definition the leading coefficient of p,
and consequently, [x0, x1]f = 3.

2. Using Proposition 2.8: The computation can also be performed using Formu-
las (2.5) and (2.6):

[x0, x1]f = [x1]f − [x0]f
x1 − x0

= f(x1) − f(x0)
x1 − x0

= 3.

◀

2.2.3 B-Splines

Before being able to define B-splines, we still have to introduce truncated power
functions in accordance with [Boo01, p. 82f] first:

Definition 2.10 (Truncated power function). Let x ∈ R and k ∈ N0. Using

(· − x)+ : R → R, t 7→ max{t − x, 0},

one can define the truncated power function as

(· − x)k
+ : R → R, t 7→

(
(t − x)+

)k
,

where we make the assignment 00 := 0 for k = 0. ◀

Some plots of truncated power functions are depicted in Figure 2.4. Clearly, (· − x)k
+

is a piecewise polynomial of degree k with a breakpoint at x. It is continous if and
only if k ≥ 1 and, in this case, has k − 1 continuous derivatives [Boo01, p. 82].

These properties motivate the consideration of using truncated power functions as
basis for the spline space Πm,X,R. In fact, when choosing breakpoints and degrees
appropriately, these functions constitute a basis [Boo01, p. 83f]. However, truncated
power functions feature some unpleasant properties [Boo01, p. 84]: Firstly, since
these functions have a very large support, the evaluation of a spline at a certain site
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Fig. 2.4: Truncated power functions of different degrees

would involve many basis functions. Secondly, if two breakpoints are chosen very
close to each other, the condition of the basis can be very bad, resulting in numerical
issues. Therefore, in particular for computational purposes, it is more reasonable to
use a basis formed by B-splines, which are obtained as rescaled divided differences
of truncated power functions [Boo01, p. 87]:

Definition 2.11 (B-spline). Let n ∈ N+, m ∈ N0, and let x0, . . . , xn+m ∈ R be a
nondecreasing sequence of knots. The j-th (normalized) B-spline of degree m with
respect to the knot sequence X := (x0 . . . , xn+m) is for j ∈ {0, . . . , n − 1} defined as

Bj,m,X : R → R, t 7→ (xj+m+1 − xj) [xj , . . . , xj+m+1](· − t)m
+ .

◀

Examples of B-splines are presented in Figure 2.5a. The connection between B-
splines and the space Πm,X,R is established by the following theorem, which is due
to Curry and Schoenberg [CS66]. Both the theorem and its proof can be found in
[Boo01, p. 97f].

Theorem 2.12 (Curry-Schoenberg). Let m ∈ N0 and k ∈ N+. Furthermore, let
Y := (y0, . . . , yk) ∈ Rk+1 be a strictly increasing sequence of breakpoints, and
set R := (r1, . . . , rk−1), where r1, . . . , rk−1 ∈ {0, . . . , m} specify the number of
continuity constraints at the interior breakpoints. For

n := k(m + 1) −
k−1∑

i=1
ri,

let X := (x0, . . . , xm+n) ∈ Rm+n+1 be a nondecreasing sequence of knots that is
connected to the breakpoints Y via the following two conditions:
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Fig. 2.5: B-splines of various degrees and the collection of B-spline basis functions generated
by some knot sequence. Knots are indicated by black dots and the corresponding
breakpoints as black, dashed lines. The multiplicity of a knot is expressed in the
number of dots at a certain position.

(i) The site yi occurs exactly (m + 1 − ri)-times in X:

∣∣∣
{

j ∈ {0, . . . , m + n}
∣∣∣xj = yi

}∣∣∣ = m + 1 − ri for all i ∈ {1, . . . , k − 1}.

(ii) x0 ≤ · · · ≤ xm ≤ y0 and yk ≤ xn ≤ · · · ≤ xm+n.

The set {Bj,m,X | j ∈ {0, . . . , n−1}} of B-splines is a basis for Πm,Y,R on the interval
[xm, xn]. ◀

In this theorem, we constructed the knot sequence X from the sequence of break-
points Y and the continuity constraints R. Naturally, it is possible to skip that
step and start directly with the knot sequence. This finally motivates the following
definition of the spline space Sm,X in accordance with [Boo01, p. 93]:

Definition 2.13 (Spline space). Let m ∈ N0 and n ∈ N+. For a nondecreasing
sequence of knots X = (x0, . . . , xm+n) ∈ Rm+n+1, we define the spline space Sm,X

of degree m as

Sm,X :=





n−1∑

j=0
ajBj,m,X

∣∣∣∣∣ a0, . . . , an−1 ∈ R



.

◀

If the knot sequence X satisfies the two conditions established in Theorem 2.12,
the B-splines are a basis for Πm,Y,R, and consequently, Sm,X = Πm,Y,R. Figure 2.5b
depicts the basis functions generated by a certain sequence of knots.
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Note that, for simplicity, we only considered finite sequences of knots and break-
points in the previous subsections. The underlying concepts, however, work more
generally: When considering biinfinite knot sequences (xi)i∈Z, the sum in the previ-
ous definition has to be taken pointwise. We will see in Proposition 2.15 that, due to
the locality of B-splines, each point is in the support of only a finite set of B-splines.
Hence, there are no convergence issues even for infinite knot sequences [Boo01,
p. 93].

Both B-splines and the corresponding spline space have many appealing properties.
We will list some of them in the next section.

2.3 Properties of Univariate Splines

Throughout this section, let m ∈ N0 denote the spline degree, and let X = (xj)j∈Z

be a nondecreasing, biinfinite knot sequence, which covers the whole real line, i.e.,

lim
j→−∞

xj = −∞ and lim
j→∞

xj = ∞.

Following [Boo01, p. 87ff], we list important properties of B-splines and the spline
space generated by them. Like in the previous sections, we omit all proofs and
instead refer to the book by de Boor [Boo01] for more details.

2.3.1 Properties of B-Splines

We begin with some basic properties of B-splines: It follows from Definition 2.11 that
B-splines of degree zero are characteristic functions of intervals between adjacent
knots. In particular, Bj,0,X ≡ 0 if xj = xj+1. For B-splines of a higher degree, one
can establish a recurrence relation using B-splines of a lower degree. The results are
summarized in the following proposition [Boo01, p. 89f]:

Proposition 2.14 (B-spline recurrence relation). For all j ∈ Z and t ∈ R, the
following equations hold true:

(i) If m = 0, one has

Bj,0,X(t) =





1 if xj ≤ t < xj+1,

0 otherwise.
(2.8)
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(ii) If m ≥ 1, one can apply the recurrence relation

Bj,m,X(t) = wj,m(t)Bj,m−1,X(t) +
(
1 − wj+1,m(t)

)
Bj+1,m−1,X(t), (2.9)

where
wj,m(t) = t − xj

xj+m − xj
.

◀

Note that the weights wj,m are undefined if xj = xj+m. As the corresponding B-
splines are constant zero-functions in that case, it is not necessary to evaluate these
weights, though.

Since characteristic functions are nonnegative, the same holds true for B-splines of
degree zero. It follows by induction that B-splines of arbitrary degree are nonnega-
tive as the coefficients used in the recurrence relation in (2.9) are nonnegative on
the support of the corresponding lower degree B-splines [Boo01, p. 91]. Further-
more, when we trace the support of degree zero B-splines through m applications
of the recurrence relation, it turns out that the support of B-splines is the span of
m + 2 consecutive knots. Thus, one can formulate the following proposition [Boo01,
p. 91].

Proposition 2.15 (B-spline support and positivity). For all j ∈ Z, one has

Bj,m,X(t) > 0 for all t ∈ (xj , xj+m+1),
Bj,m,X(t) = 0 for all t ̸∈ [xj , xj+m+1).

In particular, Bj,m,X ≡ 0 if xj = xj+m+1. ◀

When looking at this result from a slightly different point of view, it turns out that
only m + 1 B-splines are nonzero at a certain site. Hence, the value at each site is
only influenced by m + 1 coefficients, which emphasizes the local nature of splines
and is also an important property for efficient algorithms.

2.3.2 Continuity and Derivatives

The Curry-Schoenberg Theorem ensures that the B-splines span the space of piece-
wise polynomials Πm,Y,R. Hence, each linear combination of B-splines has to be a
piecewise polynomial of degree m with breakpoints at Y and continuity constraints
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between adjacent polynomial pieces specified by R. These constraints are controlled
by the knot multiplicity, which leads to the following insights [Boo01, pp. 90f, 99]:

Proposition 2.16. Let g ∈ Sm,X . For each j ∈ Z, the following holds true:

(i) The pieces between two knots are polynomials of degree at most m:

g|[xj ,xj+1) ∈ Πm.

(ii) If xj has multiplicity k ∈ N+, i.e., xj appears exactly k-times in the sequence
X, then g has m − k continuous derivatives at xj . ◀

In [Boo01, p. 99], the latter property is expressed as follows:

number of continuity constraints at xj + number of knots at xj = m + 1.

This rule even works for a site t ∈ R with no associated knots: As it has multiplicity
zero, we have m + 1 continuity constraints there. Hence, the function value and
the first m derivatives of the polynomial pieces at both sides of t coincide. Since a
polynomial of degree m is uniquely determined by these values, it follows that both
polynomial pieces are in fact pieces of the same polynomial, which is exactly the
expected behavior at sites without a knot [Boo01, p. 99].

Now that we know about the differentiability of spline functions, we are also
interested in a formula for the computation of derivatives. It has been shown in
[Boo01, p. 115f] that the derivative of a spline function is a spline of a lower degree
whose coefficients are normalized differences of the original coefficients:

Proposition 2.17. Let g ∈ Sm,X with coefficients (aj)j∈Z, and let m ≥ 1. For all
t ∈ R at which g is differentiable, the first derivative of g at t is given by

dg

dt
(t) = d

dt


∑

j∈Z
ajBj,m,X


(t) = m

∑

j∈Z

aj − aj−1
xj+m − xj

Bj,m−1,X(t).

◀

Similar to Proposition 2.14, the denominator on the right hand side is undefined if
a knot has a multiplicity of at least m + 1. But also in this case, the corresponding
B-splines are zero-functions and, therefore, can be ignored.
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2.3.3 Polynomial Reproduction

The spline space Sm,X contains all piecewise polynomials of degree at most m satis-
fying certain continuity constraints at the knots specified by X. Since polynomials
fulfill all continuity constraints, we can expect that each polynomial of degree at
most m is contained in Sm,X . In this subsection, we consider the coefficients leading
to a particular polynomial.

The relation between splines and polynomials is established by Marsden’s identity
(see [Mar70] and [Boo01, p. 95]), for which there is an elegant formulation using
polar forms. As we will make use of this concept later, we already recall it here in
accordance with [Ram89, p. 326] and [Ram87]:

Theorem 2.18 (Blossoming principle). Let p ∈ Πm. There is a uniquely defined
polar form P : Rm → R of p satisfying the following properties.

(i) P is symmetric in all arguments: For all z1, . . . , zm ∈ R and i, j ∈ {1, . . . , m}
with i < j, one has

P (z1, . . . , zi−1, zi, zi+1, . . . , zj−1, zj , zj+1, . . . , zm)
= P (z1, . . . , zi−1, zj , zi+1, . . . , zj−1, zi, zj+1, . . . , zm). (2.10)

(ii) P is multiaffine: Let i ∈ {1, . . . , m} and z1, . . . , zm ∈ R. Furthermore, let
n ∈ N+, a0, . . . , an ∈ R, and z̃0, . . . , z̃n ∈ R such that

n∑

j=0
aj z̃j = zi and

n∑

j=0
aj = 1.

Then, it follows that

n∑

j=0
ajP (z0, . . . , zi−1, z̃j , zi+1, . . . , zm) = P (z0, . . . , zm).

(iii) The polynomial p is the diagonal of the polar form P : For each z ∈ R, one has

P (z, . . . , z) = p(z). (2.11)

Conversely, each symmetric and multiaffine P : Rm → R uniquely defines a polyno-
mial of degree at most m as its diagonal. ◀
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Fig. 2.6: Blossoming principle. We display the polar form P of Example 2.19 and its
associated polynomial p (orange) on the diagonal.

Multiaffinity demands that the polar form is an affine function (i.e., a polynomial
of degree at most one) with respect to all arguments. Hence, the essence of the
preceding theorem is “that we can trade one parameter of degree [...][m] for [...][m]
symmetric parameters, each of degree 1” [Ram89, p. 325]. We demonstrate the
concept of polar forms in the following example.

Example 2.19. We consider the polynomial

p : R → R, z 7→ 4z2 + 6z − 1

and derive its polar form P . Since p is of degree two and P is multiaffine, it has the
shape

P : R2 → R, (u, v) 7→ a3uv + a2u + a1v + a0,

with coefficients a0, . . . , a3 ∈ R. The symmetry of P enforces that a1 = a2. When
using the same value z ∈ R for both arguments and applying the diagonal property
(2.11), we obtain

P (z, z) = a3z2 + (a1 + a2)z + a0 = p(z).

A comparison of coefficients immediately yields a0 = −1, a3 = 4, and a1 = a2 = 3.
Hence, the polar form of p is uniquely determined as

P : R2 → R, (u, v) 7→ 4uv + 3u + 3v − 1.

The polynomial p and its polar form P are displayed in Figure 2.6. ◀
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As a special case of a formula given in [Ram87, p. 101], Marsden’s identity can be
formulated as follows by employing the blossoming principle:

Theorem 2.20 (Marsden’s identity). For each polynomial p ∈ Πm with polar form
P , one can represent p in terms of B-splines as

p(t) =
∑

j∈Z
P (xj+1, . . . , xj+m)Bj,m,X(t) for all t ∈ R.

◀

Hence, the coefficient for a specific B-spline when representing a polynomial with re-
spect to the B-spline basis is determined by evaluating its polar form at m successive
knots inside the support of the B-spline.

Here, we used the assumptions on the knot sequence X that we have stated at the
beginning of the section: According to Proposition 2.15, each B-spline is supported
on the closed interval bounded by its outermost knots. Consequently, all spline
functions with respect to a knot sequence that does not cover the whole real line
R have compact support. As the only polynomial with compact support is the
zero-function, Marsden’s identity would only hold true on a certain interval in that
case.

Moreover, for infinite knot sequences, the previous theorem also motivates the
admission of infinite sums in Definition 2.13 since it would be impossible to represent
polynomials in terms of B-splines if only a finite set of coefficients could differ from
zero.

A constant function can be considered as polynomial of degree at most m for all
m ∈ N0 and, thus, has an associated polar form in m variables, which is also a
constant function. Using the constant one-function as input to Marsden’s identity
yields the following corollary [MS88, p. 252]:

Corollary 2.21 (Partition of unity). For all t ∈ R, one has

∑

j∈Z
Bj,m,X(t) = 1.

◀

There is also a well-known generalization of Marsden’s identity to piecewise poly-
nomials, which provides the coefficients of an arbitrary spline function [Ram87,
p. 101]:
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Theorem 2.22. Let (aj)j∈Z be a sequence in R. For all k ∈ Z, define the polynomial

pk :=


∑

j∈Z
ajBj,m,X



∣∣∣∣∣
[xk,xk+1)

∈ Πm,

and let Pk be the polar form of pk. Then, one has

aj = Pk(xj+1, . . . , xj+m) for all k ∈ {j, . . . , j + m}, j ∈ Z.

◀

In particular, the evaluation of the polar form yields the same value independently
of the choice of k.

2.3.4 Approximation

Assume that we have a certain function f : R → R and aim at an approximation of f

in terms of B-splines. In Section 1.1, we recalled the two stages of an approximation
process: The class of candidate functions in this case is the spline space Sm,X ,
whereas the selection scheme choosing a specific approximant will be the Schoenberg
operator, which can be defined as follows [Boo01, pp. 96, 141]:

Definition 2.23 (Greville sites, Schoenberg operator). Let f : R → R and m ≥ 1.

(i) For j ∈ Z, the j-th Greville site is defined as

gj,m,X := 1
m

m∑

k=1
xj+k.

(ii) The Schoenberg operator of degree m with respect to the knot sequence X is
defined as

Sm,Xf :=
∑

j∈Z
f(gj,m,X)Bj,m,X ∈ Sm,X .

◀

For an example regarding the application of the Schoenberg operator, we refer to
Figure 2.7. Without further assumptions on the function f , we cannot expect this
approximation to be good in an L∞-sense as f can behave arbitrarily between two
Greville sites. However, if we restrict f to the simple class of polynomials of degree
at most one, we can prove the following [Boo01, pp. 96, 141]:
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Fig. 2.7: Application of the Schoenberg operator. We approximate the function f : t 7→
1/(t2 + 1) (blue) by splines of degree three with respect to the given sequence of
knots (black dots) using the Schoenberg operator. To that end, we evaluate f at the
Greville sites and use these samples (blue dots) as coefficients for the corresponding
B-splines (gray). The resulting spline function is displayed in orange.

Proposition 2.24 (Linear exactness). Let p ∈ Π1. If m ≥ 1, one has Sm,X p = p. ◀

Although the restriction to Π1 is quite strong, one can use the previous proposition
to get a much more general result regarding the approximation quality for arbitrary
C2-functions [Boo01, p. 142]:

Theorem 2.25 (Approximation order). Let f ∈ C2(R) and m ≥ 1. The difference
between f and its Schoenberg approximant Sm,Xf is bounded by

∥f − Sm,Xf∥∞ ≤ m2∥f ′′∥∞h2, (2.12)

where h := supi∈Z |xi+1 − xi|. ◀

For a proof of the exact bound in (2.12), we refer to [Sau12, p. 44f]. The essence
of the theorem is that, for a given function and a given knot sequence, one can
make the approximation error arbitrarily small by refining the knot sequence. The
bound can also be considered locally, which shows that a dense knot sequence is
especially important in regions of large curvature since the absolute value of the
second derivative appearing in the bound in (2.12) is large there [Sau12, p. 44]. In
other words, the spline functions are more flexible in regions with a high density of
knots.

According to (2.12), the approximation error when applying the Schoenberg opera-
tor is in O(h2). Whereas this approximation order is even sharp, a better approx-
imation can be achieved by using a more sophisticated approximation procedure
[Boo01, p. 142].
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2.3.5 Knot Insertion

In the previous subsection, we learned that, when approximating a given function,
a dense knot sequence is especially important in areas of large curvature. One
question arising from this fact is the following:

Consider a spline function g ∈ Sm,X of degree m with respect to some knot sequence
X, and assume that we desire more flexibility in a certain region. Hence, we insert
a finite number of knots in that region in order to enhance the flexibility. But are
we still able to represent g in terms of the spline space with respect to the refined
knot sequence? That is indeed the case, as shown by following theorem, which is
due to Boehm [Boe80] and can be found in [Boo01, p. 137]. Clearly, it is sufficient
to consider the insertion of one knot at a time since any (finite) refinement can be
achieved by adding single knots iteratively [Boo01, p. 135].

Theorem 2.26 (Knot insertion). Let x∗ ∈ R, and choose the index i ∈ Z such that
xi−1 ≤ x∗ < xi. Through the assignment

x∗
j :=





xj if j < i,

x∗ if j = i,

xj−1 if j > i,

for all j ∈ Z,

one can define the refined knot sequence X∗ := (x∗
j )j∈Z, which is again nondecreas-

ing. Let (aj)j∈Z be any sequence of coefficients in R, and define

a∗
j := (1 − wj)aj−1 + wjaj , where wj =





0 if x∗ ≤ xj ,

x∗−xj

xj+m−xj
if xj < x∗ < xj+m,

1 if xj+m ≤ x∗,

for all j ∈ Z to obtain another sequence (a∗
j )j∈Z of coefficients in R. Then, the

identity ∑

j∈Z
ajBj,m,X =

∑

j∈Z
a∗

jBj,m,X∗

holds true. In particular, Sm,X ⊆ Sm,X∗ . ◀

2.3.6 Condition of the B-Spline Basis

The following property reveals the relation between spline coefficients and spline
value, as shown in [Boo01, p. 131].

30 Chapter 2 Univariate Splines



Proposition 2.27 (Convex hull property). Let t ∈ R, and choose i ∈ Z such that
xi ≤ t < xi+1. Choose real-valued coefficients (aj)j∈Z, and let

g :=
∑

j∈Z
ajBj,m,X ∈ Sm,X

denote the associated spline function. Then, g(t) ∈ conv(ai−m, . . . , ai), where conv
denotes the convex hull of the given coefficients, as will be specified in Definition 3.4
later. In particular,

min{ai−m, . . . , ai} ≤ g(t) ≤ max{ai−m, . . . , ai}.

◀

These properties directly follow from the nonnegativity of B-splines (see Proposi-
tion 2.15) and the partition of unity (see Corollary 2.21). Furthermore, one can
show that a similar inequality also holds for the converse [Boo01, p. 132]:

Proposition 2.28 (Condition). Let (ai)i∈Z be a coefficient sequence in R. There
exists a constant C(m) ∈ R+, which only depends on m, such that, for all i ∈ Z, one
has

|ai| ≤ C(m) sup
t∈[xi+1,xi+m]

∣∣∣∣∣∣
∑

j∈Z
ajBj,m,X(t)

∣∣∣∣∣∣
.

◀

By combining Propositions 2.27 and 2.28, one obtains the following relation [Boo01,
p. 133]:

C(m)−1∥a∥∞ ≤
∥∥∥∥∥∥
∑

j∈Z
ajBj,m,X

∥∥∥∥∥∥
∞

≤ ∥a∥∞.

Hence, the B-splines constitute a relatively well-conditioned basis for Sm,X . This
close relation between spline coefficients and spline values also motivates the term
control points for the coefficients (ai)i∈Z [Boo01, p. 133].

There are many more interesting properties regarding B-splines, such as the locally
linear independence or the variation diminishing property. However, we will close
our introduction to univariate splines here and focus on another topic instead: The
generalization of the concepts presented in this chapter to higher dimensions. For
more details on univariate splines, we again refer to the books by Carl de Boor
[Boo01] and Larry Schumaker [Sch07].
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Simplex Splines 3
„Real change, enduring change, happens one step

at a time.

— Ruth Bader Ginsburg

In the previous chapter, we constructed spline functions g : R → R with both a
one-dimensional domain and a one-dimensional value range. The generalization
to vector-valued function spaces can be achieved easily by using vectors in Rd for
some d ∈ N+ instead of scalars as control points and employing componentwise
operations. The resulting object is a curve in Rd [Boo01, p. 133]. However, the
curve itself is still a one-dimensional object. In order to overcome this limitation
and obtain surfaces, we have to increase the dimension of its domain. As a first
step to that end, we will recall simplex splines, which can act as basis functions
for multivariate spline spaces, as one possible generalization of B-splines in this
chapter.

After defining simplices, barycentric coordinates, and multivariate polynomials in
the following section, we will recall a certain geometric interpretation of univariate
B-splines, which will be used as motivation for the subsequent definition of simplex
splines. Afterwards, we will list important properties of simplex splines and close
the chapter with some examples.

3.1 General Multivariate Concepts

We recall essential multivariate concepts now, such as barycentric coordinates, sim-
plices, and multivariate polynomials, which are employed throughout the thesis.

3.1.1 Simplices and Barycentric Coordinates

The most common type of coordinate systems are Cartesian coordinate systems. This
choice is reasonable if one has a canonical origin and associated coordinate axes.
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However, in some situations, these requirements are not fulfilled and one desires to
express points with respect to a given set of reference points instead. In this case,
barycentric coordinates, which employ affine instead of Euclidean geometry, are a
handy tool.

Definition 3.1 (Affine combination, affine hull). Let d ∈ N+, n ∈ N0, and choose
reference points x0, . . . , xn ∈ Rd. An affine combination of these reference points is
an expression

n∑

k=0
λkxk, where λ0, . . . , λn ∈ R,

n∑

k=0
λk = 1. (3.1)

The set of all affine combinations of x0, . . . , xn is called the affine hull (of x0, . . . , xn)
and is denoted by

aff(x0, . . . , xn) :=
{

n∑

k=0
λkxk

∣∣∣∣∣ λ0, . . . , λn ∈ R,
n∑

k=0
λk = 1

}
.

The reference points are called affinely independent if

aff(x0, . . . , xi−1, xi+1, . . . , xn) ⊂ aff(x0, . . . , xn) for all i ∈ {0, . . . , n}.

◀

The affine hull of a given set of reference points is an affine subspace of Rd, i.e., a
shifted linear subspace, as displayed in Figure 3.1a. We define the dimension

dim aff(x0, . . . , xn)

of an affine hull as the dimension of the corresponding linear subspace.

The expressions in (3.1) can be combined into the following system of linear equa-
tions: 



1
t1
...
td




=




1 · · · 1
x0,1 · · · xn,1

...
. . .

...
x0,d · · · xn,d







λ0
...

λn


. (3.2)

This system is solvable for any t ∈ Rd if and only if the matrix is nonsingular,
which is exactly the case if aff(x0, . . . , xn) = Rd, i.e., dim aff(x0, . . . , xn) = d. Ref-
erence points satisfying this condition are usually called in general position (see
Definition 3.18 below). With the additional assumption that d = n, the system
is solvable uniquely and the numbers λ0, . . . , λn are called barycentric coordinates
[LS07a, p. 18]:
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x0

x1

(a) Affine hull (blue, dashed) and convex hull
(orange) of the given points x0 and x1. The

convex hull is formed by all affine
combinations with nonnegative coefficients.

x0 x1

x2

t

(b) Geometric interpretation of barycentric
coordinates. The coordinate u2(t | x0, x1, x2)

equals the ratio of the area of the blue
triangle and the area of the orange triangle.

Fig. 3.1: Affine and convex hulls are closely related to barycentric coordinates.

Definition 3.2 (Barycentric coordinates). Let d ∈ N+, t ∈ Rd, and choose reference
points x0, . . . , xd ∈ Rd with dim aff(x0, . . . , xd) = d. For each k ∈ {0, . . . , d}, the
k-th coefficient λk of the uniquely determined solution of Equation (3.2) is called
k-th barycentric coordinate

uk(t | X) := λk

of t with respect to X := (x0, . . . , xd). ◀

Example 3.3. Let d ∈ N+ and X = (0, e1, . . . , ed), where ei denotes the i-th
unit vector in Rd for i ∈ {1, . . . , d}. Then, dim aff(X) = d, and the barycentric
coordinates of t = (t1, . . . , td) ∈ Rd with respect to X are given as

(
1 −

d∑

k=1
tk, t1, . . . , td

)
,

which yields a conversion formula from Cartesian to barycentric coordinates. ◀

A particular kind of affine combinations are those with nonnegative coefficients:

Definition 3.4 (Convex combination, convex hull). Let d ∈ N+, n ∈ N0, and choose
reference points x0, . . . , xn ∈ Rd. A convex combination of these reference points is
an expression

n∑

k=0
λkxk, where λ0, . . . , λn ∈ R≥0,

n∑

k=0
λk = 1.

The set of all convex combinations

conv(x0, . . . , xn) :=
{

n∑

k=0
λkxk

∣∣∣∣∣ λ0, . . . , λn ∈ R≥0,
n∑

k=0
λk = 1

}
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Fig. 3.2: The standard simplex in three dimensions

of the given reference points is called convex hull (of x0, . . . , xn). ◀

For an example, we again refer to Figure 3.1a. The convex hull of a reference system
of affinely independent points is also known as simplex:

Definition 3.5 (Simplex). Let d ∈ N+ and n ∈ N0 with n ≤ d. Furthermore,
choose x0, . . . , xn ∈ Rd. If dim aff(x0, . . . , xn) = n, then conv(x0, . . . , xn) is called
(nondegenerate n-)simplex. If dim aff(x0, . . . , xn) < n, then conv(x0, . . . , xn) is called
degenerate (n-)simplex. ◀

If, for instance, n = 1, a simplex is a line segment, and if n = 2, it is a triangle. The
most common simplex is the standard simplex, which is displayed in Figure 3.2 and
can be defined as follows in accordance with [Mic79]:

Definition 3.6 (Standard simplex). For d ∈ N+, we define the (d-dimensional)
standard simplex ∆d as

∆d :=
{

(a0, . . . , ad) ∈ Rd+1
≥0

∣∣∣∣∣
d∑

k=0
ak = 1

}
.

For any integrable function f : ∆d → R, we define the integral over the standard
simplex ∆d as

∫

∆d

f(a) da :=
∫ 1

0

∫ 1−a1

0
· · ·
∫ 1−a1−···−ad−1

0
f

(
1 −

d∑

k=1
ak, a1, . . . , ad

)
dad · · · da1.

◀
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We can use the notion of simplices to obtain the following geometric interpretation
of barycentric coordinates [LS07a, p. 19].

Remark 3.7. When solving Equation (3.2) using Cramer’s rule with the same prereq-
uisites as in Definition 3.2, one obtains the following equations for the barycentric
coordinates:

uk(t | X) = dk(t | X)
d(X) for all k ∈ {0, . . . , d}, (3.3)

where

d(X) := det




1 · · · 1
x0,1 · · · xd,1

...
. . .

...
x0,d · · · xd,d




,

dk(t | X) := det




1 · · · 1 1 1 · · · 1
x0,1 · · · xk−1,1 t1 xk+1,1 · · · xd,1

...
. . .

...
...

...
. . .

...
x0,d · · · xk−1,d td xk+1,d · · · xd,d




.

Since the absolute value of the determinant d(X) equals the volume of the simplex
conv(X) up to a factor of 1/d!, the fraction in (3.3) can be interpreted as ratio between
the volume of a subsimplex conv

(
Xt

k

)
and the volume of conv(X) itself, where

Xt
k := (x0, . . . , xk−1, t, xk+1, . . . , xd). The simplex conv

(
Xt

k

)
equals the simplex

conv(X) except that the k-th vertex has been replaced by t. If, for instance, d = 2
and k = 1, one has

u1(t | X) = vol2(conv(x0, t, x2))
vol2(conv(x0, x1, x2)) ,

where voln(A) for any n ∈ {1, . . . , d} and for any A ⊆ Rd such that dim aff(A) ≤ n

denotes the n-dimensional Lebesgue measure in an n-dimensional affine subspace
containing A. This geometric interpretation is depicted in Figure 3.1b. The specific
point t ∈ R2 with barycentric coordinates

uk(t | X) = 1
d + 1 for all k ∈ {0, . . . , d},

i.e., for which all subsimplices have the same volume, is the barycenter of the simplex
conv(X). This fact also motivates the term barycentric coordinates. ◀

Remark 3.8. The barycentric coordinates of a point sum up to one by definition. A
direction is usually considered as a difference of two points, which is also valid for
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their Cartesian coordinates. When representing the points in barycentric coordinates,
however, the components of the difference vector sum up to zero instead. Therefore,
if the component sum of a vector is zero, the vector is often referred to as barycentric
direction. Hence, barycentric coordinates allow a distinction between points and
directions. ◀

In the current chapter, barycentric coordinates will appear only implicitly (in Propo-
sitions 3.19 and 3.24). However, they will also be used explicitly over the course of
the thesis.

3.1.2 Multivariate Polynomials

We have seen that univariate splines are piecewise polynomials. Hence, it will
be desirable that simplex splines, as a generalization of univariate splines, are
piecewise multivariate polynomials. Before defining multivariate polynomials, we
recall multiindices, which are a handy notational tool for working with multivariate
objects:

Definition 3.9 (Multiindex). Let n ∈ N+. Then, α := (α1, . . . , αn) ∈ Nn
0 is called

multiindex, and its length is denoted by

|α| :=
n∑

i=1
αi ∈ N0.

For a given ℓ ∈ N0, we summarize all multiindices of length ℓ and all multiindices of
length at most ℓ in the sets

Γℓ,n :=
{

α ∈ Nn
0

∣∣∣ |α| = ℓ
}

and Γ≤ℓ,n :=
{

α ∈ Nn
0

∣∣∣ |α| ≤ ℓ
}

,

respectively. For i ∈ {1, . . . , n}, the unit-multiindex is given as ϵi := (δi,1, . . . , δi,n). ◀

Sometimes it is more convenient to use a zero-based indexing scheme for multi-
indices, especially when working with barycentric coordinates. It will be clear from
the context which indexing scheme is being employed.

Using multiindices, one can define the space of multivariate polynomials as fol-
lows:
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Definition 3.10 (Multivariate polynomial). Let d ∈ N+ and m ∈ N0. If one chooses
coefficients pα ∈ R for each α ∈ Γ≤m,d, the function

p : Rd → R, x 7→
∑

α∈Γ≤m,d

pαxα, where xα :=
d∏

k=1
xαk

k ,

is called d-variate polynomial of (total) degree at most m. The (total) degree of p is
defined as

deg p :=





−∞ if p ≡ 0,

max
{

|α|
∣∣∣ α ∈ Γ≤m,d, pα ̸= 0

}
otherwise.

The set of all d-variate polynomials is denoted by Π(Rd). All d-variate polynomials
of total degree at most m are summarized in the set

Πm(Rd) :=
{

p ∈ Π(Rd)
∣∣∣ deg p ≤ m

}
.

◀

3.2 Definition of Simplex Splines

In the following subsection, we will recall an interesting geometric interpretation of
B-splines. Subsequently, we will use a multivariate generalization of this interpreta-
tion for the definition of simplex splines.

3.2.1 Univariate Geometric Interpretation

The idea of simplex splines is based on a certain geometric interpretation of uni-
variate B-splines, which has already been discovered by Curry and Schoenberg in
[CS66]. It is established by two different representations of divided differences. The
first one is given by the Hermite-Genocchi formula, which [Mic79] relies on:

Theorem 3.11 (Hermite-Genocchi formula). Let n ∈ N+, x0, . . . , xn ∈ R, and set
x := (x0, . . . , xn)⊺. For each f ∈ Cn(R), one has the identity

[x0, . . . , xn]f =
∫

∆n

f (n)(a⊺x)da. (3.4)

◀
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Note that the integrability of the integrand in the Hermite-Genocchi formula is
ensured by the continuity of f (n) and the compactness of ∆n.

Another identity for divided differences, which can also be found in [Mic79], incorpo-
rates rescaled versions of B-splines. B-splines have been introduced in Definition 2.11
using divided differences, and by expanding f in terms of a Taylor polynomial with
integral remainder, one obtains the following equation (see also [Boo76] and [Boo05,
p. 62] for more details).

Proposition 3.12. Let n ∈ N+. Choose x0, . . . , xn ∈ R such that x0 ≤ · · · ≤ xn and
x0 < xn. Define X := (x0, . . . , xn). For f ∈ Cn([x0, xn]), one has

[x0, . . . , xn]f =
∫ xn

x0
M(t | x0, . . . , xn)f (n)(t) dt, (3.5)

where the normalized B-spline is defined as

M(t | x0, . . . , xn) := 1
(n − 1)! [x0, . . . , xn](· − t)n−1

+ = 1
(n − 1)!

B0,n−1,X(t)
xn − x0

.

◀

We combine Identities (3.4) and (3.5) now. Since M(· | x0, . . . xn) is supported on
[x0, xn], we can expand the integral in (3.5) to the whole real line. Furthermore, we
substitute g := f (n) in both formulas [Mic95, p. 151], which yields the following
corollary [Mic79].

Corollary 3.13. Let n ∈ N+. Choose x0, . . . , xn ∈ R such that x0 ≤ · · · ≤ xn and
x0 < xn. Define x := (x0, . . . , xn)⊺. For all integrable functions g : R → R, one has

∫

R
M(t | x0, . . . , xn)g(t) dt =

∫

∆n

g(a⊺x)da. (3.6)

◀

Hence, the value of M(t | x0, . . . , xn) equals the “number of ways per unit volume”
[Mic80] a given t ∈ conv(x0, . . . xn) can be represented as convex combination of
the knots x0, . . . , xn.

The importance of that corollary becomes clear when considering the integration
variables in (3.4) as barycentric coordinates with respect to the vertices of some
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n-dimensional simplex V . To that end, we lift the real numbers x0, . . . , xn to Rn by
choosing y0, . . . , yn ∈ Rn−1 [Mic79] and defining

x̂0 :=
(

x0

y0

)
, x̂1 :=

(
x1

y1

)
, . . . , x̂n :=

(
xn

yn

)
∈ Rn.

One can show that the actual way of lifting the points does not matter as long as
the first component is preserved and the resulting simplex V := conv(x̂0, . . . , x̂n)
is nondegenerate [Mic95, p. 151f], i.e., as long as dim aff(x̂0, . . . , x̂n) = n. In
particular, it follows from x0 < xn that there are at least two distinct values and,
thus, an appropriate lifting is possible. According to [Mic95, p. 152] and [Mic79],
one can rewrite the right-hand side of Identity (3.6) as

∫

∆n

g(a⊺x)da = 1
n! voln(V )

∫

Rn
1V (t1, . . . , tn)g(t1) dtn · · · dt1 (3.7)

since we have encoded the values x0, . . . , xn in the first component of the vertices
x̂0, . . . , x̂n of V and the indicator function 1V (t), which has the value 1 if t ∈ V and
0 otherwise, ensures that we integrate over each argument of g exactly as often as
in the convex combinations of the original expression.

By combining (3.6) and (3.7) and considering the integrands, we obtain

M(· | x0, . . . , xn) = 1
n! voln(V )

∫

Rn−1
1V (·, t2, . . . , tn)dtn · · · dt2,

according to [Mic79]. Note that we have an (n − 1)-fold integral on the right-hand
side now instead of the n-fold integral in Identity (3.7). We summarize this insight
in the following theorem [Mic95, p. 152].

Theorem 3.14. Let n ∈ N+, and let x0, . . . , xn ∈ R with at least two distinct values.
Choose a lifting x̂0, . . . , x̂n ∈ Rn of these values such that dim aff(x̂0, . . . , x̂n) = n

and
x̂0,1 = x0, . . . , x̂n,1 = xn.

Let V = conv(x̂0, . . . , x̂n). Then, for all t ∈ R, one has

M(t | x0, . . . , xn) =





voln−1({v ∈ V | v1 = t})
n! voln(V ) if n ≥ 2,

1V (t)
vol1(V ) if n = 1.

(3.8)

◀

This fraction between two different volumes is illustrated in Figure 3.3.
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Fig. 3.3: Geometric interpretation of univariate B-splines of degree two. The value of
a B-spline at a certain position t (black dot) corresponds to the volume of the
intersection of the simplex V (orange) and the hyperplane {v ∈ Rn | v1 = t}
(gray), normalized according to the volume of V . The corresponding knots and
(lifted) vertices are depicted in red. Based on Figure 1 in [Nea01a].

3.2.2 Multivariate Generalization

As it turns out, the geometric interpretation of univariate B-splines contains the
key to a multivariate analogue, as discovered by de Boor [Boo76] (and earlier by
Schoenberg in the complex plane). Assume that we constrain not only one but
d ∈ N+ coordinates of the point v ∈ V in Equation (3.8), so that we obtain a
d-variate function, which is called simplex spline and is displayed in Figure 3.4. We
define it in accordance with [Mic79; Mic80]:

Definition 3.15 (Simplex spline). Let m ∈ N0, d ∈ N+, and let x0, . . . , xm+d ∈ Rd

with dim aff(x0, . . . , xm+d) = d. Furthermore, let x̂0, . . . , x̂m+d ∈ Rm+d be lifted
points, i.e., there are y0, . . . , ym+d ∈ Rm satisfying

x̂0 =
(

x0

y0

)
, x̂1 =

(
x1

y1

)
, . . . , x̂m+d =

(
xm+d

ym+d

)
,

and
dim aff(x̂0, . . . , x̂m+d) = m + d.
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(a) Geometric interpretation and resulting function (b) Knot set and support

Fig. 3.4: Simplex splines as volumetric projections of higher-dimensional simplices for
d = 2 and m = 1. The values of the simplex spline on the left-hand side at certain
positions (black dots) are determined by the volumes of the intersections (black
lines) of the (m + d)-dimensional simplex (orange) and (one-dimensional) affine
subspaces, normalized according to the volume of the simplex. The support and
the knots of the resulting simplex spline are depicted on the right-hand side. Based
on Figures 2 and 4 in [Nea01a].

Let V = conv(x̂0, . . . , x̂m+d). The (d-variate) simplex spline (of degree m with respect
to the knots x0, . . . , xm+d) is defined for t = (t1, . . . , td) ∈ Rd as

M(t | x0, . . . , xm+d) :=





volm({v ∈ V | v1 = t1, . . . , vd = td})
(m + d)! volm+d(V ) if m ≥ 1,

1V (t1, . . . , td)
d! vold(V ) if m = 0.

(3.9)

◀

Note that the requirement dim aff(x0, . . . , xm+d) = d is necessary for the construc-
tion of a suitable lifting. Under the assumption that dim aff(x0, xm+1, . . . , xm+d) = d

(which can be met in any case by reordering the points), one obtains a canonical
lifting, which is a multivariate analogue of the univariate one given in [Mic95,
p. 152], by choosing

y0 = ym+1 = · · · = ym+d = 0 and yi = ei for all i ∈ {1, . . . , m}.
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However, also in this case, the specific way of lifting the points does not matter. This
fact in particular follows from the multivariate analogue of Corollary 3.13, which is
formulated in the following Proposition and is due to Micchelli [Mic79; Mic80].

Proposition 3.16. Let m ∈ N0, d ∈ N+, and choose x0, . . . , xm+d ∈ Rd such that
dim aff(x0, . . . , xm+d) = d. Define X := (x0, . . . , xm+d) ∈ Rd×(m+d+1). For any
integrable function g : Rd → R, the following identity holds true:

∫

Rd
g(t)M(t | x0, . . . , xm+d)dt =

∫

∆m+d

g(Xa)da.

◀

As this identity determines a simplex spline for almost every t ∈ Rd and since,
according to [Mic79], Equation (3.9) implies that simplex splines are continuous for
m > 0, Proposition 3.16 may also be used as definition of a simplex spline [Mic80].
For m = 0, however, the simplex spline is discontinuous at the boundary of the
simplex conv(x0, . . . , xd), and therefore, its value at that boundary is not defined
by Proposition 3.16. As Definition 3.15 reduces to (3.8) for d = 1, it follows that
1-variate simplex splines are just renormalized B-splines.

3.3 Properties of Simplex Splines

We will recall some of the most important properties of simplex splines now. The
first result follows directly from the definition of simplex splines [Boo76]:

Proposition 3.17. Let d ∈ N+, m ∈ N0, and choose x0, . . . , xm+d ∈ Rd such that
dim aff(x0, . . . , xm+d) = d. Then, M(t | x0, . . . , xm+d) ≥ 0 for all t ∈ Rd and

supp M(· | x0, . . . , xm+d) = conv(x0, . . . , xm+d).

◀

For simplicity, we primarily consider nondegenerate situations in the following.
Hence, we assume the knots to be in general position [Mic95, p. 156]:

Definition 3.18 (General position). Let d ∈ N+, and choose a knot set X ⊆ Rd with
|X| > d. Then, X is said to be in general position if dim aff(Y ) = d for all subsets
Y ⊆ X with |Y | = d + 1. ◀
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One of the most important formulas concerning simplex splines is a differentiation
identity, which is due to Micchelli [Mic80; Mic79] and can be used to derive further
properties of simplex splines:

Proposition 3.19. Let m ∈ N0, d ∈ N+, and let x0, . . . , xm+d ∈ Rd be in general
position. If m ≥ 2, then M(· | x0, . . . , xm+d) is continuously differentiable on Rd,
and one has directional derivatives

DyM(t | x0, . . . , xm+d) =
m+d∑

k=0
µkM(t | x0, . . . , xk−1, xk+1, . . . , xm+d) (3.10)

for all t ∈ Rd and for each direction y ∈ Rd, where µ0, . . . , µm+d ∈ R are chosen
such that

m+d∑

k=0
µkxk = y and

m+d∑

k=0
µk = 0,

i.e., (µ0, . . . , µm+d) is a barycentric direction associated to y. ◀

Since the first publication of this result, many alternative proofs have been given by
different authors, for example in [Höl81] using the Fourier transform, in [Dah80]
using certain fundamental solutions of differential equations which are similar to the
univariate truncated power functions, in [BH82b] for the more general polyhedral
splines, and also in [Hak82].

Due to the recursive structure in Proposition 3.19, repeated application yields

M(· | x0, . . . , xd+m) ∈ Cm−1(Rd),

which is also valid for m = 1 as M is continuous in that case [Mic79].

Similar considerations of derivatives for m = 1 in [Mic79] lead to the conclusion
that a simplex spline of degree one is continuously differentiable almost everywhere,
in which case one can also apply Proposition 3.19. Hence, the derivative is a linear
combination of simplex splines of degree zero, which are by definition characteristic
functions, each being supported on the convex hull of d + 1 knots. As a consequence,
this linear combination is constant on every region Ω that does not intersect a convex
hull generated by any set of d knots since these convex hulls bound the support
of the characteristic functions and, therefore, precisely describe the discontinuous
areas. Consequently, M(· | x0, . . . , xd+1) is an affine function on every region Ω.
Repeated application of this argument yields that a simplex spline of degree m is a
polynomial of degree at most m on Ω. These results are summarized in the following
theorem [Mic79].
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Theorem 3.20. Let m ∈ N0, d ∈ N+, and choose x0, . . . , xm+d ∈ Rd in general
position. Set X := {x0, . . . , xm+d}, and let

A :=
⋃

Y ⊆X
|Y |=d

conv(Y ).

Furthermore, denote by R the set of connected components of Rd\A. Then,

(i) M(· | x0, . . . , xm+d) ∈ Cm−1(Rd) and

(ii) M(· | x0, . . . , xm+d)|R ∈ Πm(R) for all R ∈ R. ◀

Remark 3.21. If the knots in the preceding theorem are not in general position, i.e.,
dim aff(X) = d but

ℓ := min
k∈{0,...,m}






 min

Y ⊆X
|Y |=k+d+1

dim aff(Y )


 = d





> 0,

the overall smoothness is reduced to

M(· | x0, . . . , xm+d) ∈ Cm−ℓ−1(Rd).

We refer to [Mic80] and [Mic79] for more details. ◀

The preceding theorem ensures that simplex splines are indeed piecewise polyno-
mials, which also justifies the term spline. In particular, one-dimensional simplex
splines are simply (rescaled) B-splines. Another interesting relationship is the fol-
lowing geometric consequence of Theorem 3.20, which again has been discovered
by Micchelli [Mic79]:

Remark 3.22. Let y, z ∈ Rd, and choose m and X as in Theorem 3.20. Then,
M(y + λz | X) as function in λ ∈ R is a univariate spline function of degree m. ◀

Further useful properties of simplex splines have been established in [Mic79] and
are collected in the following proposition:

Proposition 3.23. Let m ∈ N0, d ∈ N+, and choose x0, . . . , xm+d ∈ Rd such that
dim aff(x1, . . . , xm+d) = d.

(i) For all permutations σ of the set {0, . . . , m + d}, one has

M(· | xσ(0), . . . , xσ(m+d)) = M(· | x0, . . . , xm+d).
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(ii) For all y ∈ Rd, one has

M(· | x0 + y, . . . , xm+d + y) = M(· − y | x0, . . . , xm+d).

(iii) For all nonsingular A ∈ Rd×d and for any t ∈ Rd, one has

M(t | Ax0, . . . , Axm+d) = 1
|det A|M(A−1t | x0, . . . , xm+d).

◀

We close the section with a useful recursion formula [Mic80] for the evaluation
of simplex splines, which is due to Micchelli and is the multivariate analogue
of Identity (2.9). As the knots in the affine combination therein can be chosen
arbitrarily, however, this formula is even more general [Mic79].

Proposition 3.24 (Micchelli’s recursion formula). Let d ∈ N+, m ∈ N+ with m ≥ 2,
and choose x0, . . . , xm+d ∈ Rd in general position. Let t ∈ Rd, and choose an
arbitrary affine combination of t, i.e.,

λ0, . . . , λm+d ∈ R,
m+d∑

k=0
λixi = t,

m+d∑

k=0
λi = 1.

Then, the identity

M(t | x0, . . . , xm+d) = 1
m

m+d∑

k=0
λkM(t | x0, . . . , xk−1, xk+1, . . . , xm+d) (3.11)

holds true. ◀

Hence, simplex splines can be evaluated by computing simplex splines of lower
degrees recursively. The restriction to degrees of at least two is necessary since
problems arise in Identity (3.11) when evaluating simplex splines at discontinuities,
which are present in simplex splines of degree zero at the boundary of their support.
Aside from numerical issues, the definition of simplex splines of degree zero would
have to be more sophisticated in order to enable the application of Identity (3.11)
for m = 1. These discontinuities will be excluded in several results of the thesis and
are the reason why some identities only hold almost everywhere. We will mention
this fact in most situations but not on every occurrence throughout the thesis. Hence,
one should always be aware of this difficulty when considering simplex splines of

3.3 Properties of Simplex Splines 47



−1 −0.5 0 0.5 1 −1

0

1
0

0.05

0.1

(a) Simplex spline (b) Knot set

Fig. 3.5: Example of a simplex spline of degree one with knots arranged in a square

degree zero. We refer to [Mic79] and Subsection 8.2.1 for more details on this
topic.

Remark 3.25. Consider an arbitrary evaluation site t ∈ conv(x0, . . . , xm+d). Due
to Carathéodory’s theorem, d + 1 nonzero summands are always sufficient in Iden-
tity (3.11). Furthermore, the corresponding knots can be chosen in a way that t can
be represented as convex combination of these knots. Then, one has λk ≥ 0 for all
k ∈ {0, . . . , m + d}. Hence, the value of a simplex spline at a site t in its support is
always a nonnegative convex combination of d + 1 simplex splines of degree m − 1
evaluated at t. The specific choice of knots depends on t, however [Mic79]. ◀

3.4 Examples of Simplex Splines

In this section, we give some examples of bivariate simplex splines in order to
facilitate a better understanding of these functions and to demonstrate the properties
that we have derived in the previous section. We present different simplex splines of
degree one in Figures 3.5, 3.6, and 3.7. On the contrary, quadratic simplex splines
(i.e., of degree two) are displayed in Figures 3.8, 3.9, 3.10, and 3.11 with a focus on
highlighting the effects of degenerate knot sets. A cubic simplex spline is depicted in
Figure 3.12. The lines connecting two knots indicate where polynomial pieces touch
each other, whereas the shaded areas correspond to the support of the resulting
simplex splines.
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Fig. 3.6: Example of a simplex spline of degree one, where one knot is in the convex hull of
the other three knots
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Fig. 3.7: Example of a simplex spline of degree one with a discontinuity, which is caused by
three knots being arranged in a line
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(a) Simplex spline (b) Knot set

Fig. 3.8: Example of a quadratic simplex spline with respect to knots in general position
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(a) Simplex spline (b) Knot set
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(c) Cross section at coordinate zero

Fig. 3.9: Example of a quadratic simplex spline with respect to a degenerate knot set causing
a nondifferentiable edge at the boundary of the support, as can be seen in the
cross section
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(a) Simplex spline (b) Knot set

Fig. 3.10: Example of a quadratic simplex spline with respect to a degenerate knot set
leading to a nondifferentiable ridge in the interior of the support
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(a) Simplex spline (b) Knot set

Fig. 3.11: Example of a quadratic simplex spline with respect to a degenerate knot set
causing nondifferentiable edges and a peak in the resulting function
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(a) Simplex spline (b) Knot set

Fig. 3.12: Example of a cubic simplex spline, where all knots are arranged in a regular
hexagon
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Multivariate Spline Spaces 4
„Mathematics is like love; a simple idea, but it

can get complicated.

— George Pólya

In the previous chapter, we recalled a multivariate analogue of univariate B-splines.
The univariate spline space was defined as linear span of the B-splines specified by a
given knot sequence. In a multivariate setting, however, a problem arises in this step,
which we will investigate in the following section. As it will turn out, there is no
straightforward strategy for the definition of an appropriate multivariate spline space.
Hence, we will formulate the properties that we expect from a reasonable spline
space. Afterwards, we will consider two different approaches towards multivariate
splines.

4.1 Constructing Multivariate Spline Spaces

In the following subsection, we will identify the essential problem in the construction
of a multivariate spline space. In order to be able to verify if a given solution to that
problem is reasonable, we will define the desired properties for multivariate spline
spaces subsequently.

4.1.1 Generalizing the B-Spline Basis

In Definition 2.13, we defined the univariate spline space as linear span of all B-
splines with respect to a given knot sequence. The B-splines were constructed using
all sets of m + 2 consecutive knots, where m ∈ N0 was the spline degree.

Let us consider the space Rd for d ∈ N+ now. We recall that m + d + 1 points give
rise to a d-variate simplex spline of degree m. This number reduces to m + 2 (as
in the univariate case) when setting d to one, which again indicates that simplex
splines are (renormalized) B-splines for d = 1, as we have mentioned earlier.
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Therefore, the task is to find subsets of knots of size m+d+1 that give rise to simplex
splines spanning a reasonable spline space. However, the concept of consecutive
knots in the one-dimensional setting relies on the ordering of the real numbers. As
there is no natural ordering on Rd for d > 1, the issue of choosing appropriate basis
candidate functions becomes relevant in the multivariate case [Nea01a].

One simple option would be to choose all knot subsets of size m + d + 1 for the
construction of simplex splines. This, however, would yield linear dependent basis
candidate functions which can have a very large support [Nea01b, p. 361f]. This
suggests that a more sophisticated approach is necessary to obtain a spline space
with the desired properties. These properties will be formulated in the following
subsection.

4.1.2 The Fundamental Problem

As indicated, the generalization of splines to higher dimensions is not straightforward.
We noted earlier that we want to construct a reasonable spline space. However, this
term is obviously very vague. We will eradicate this shortcoming now by defining the
precise properties that are desirable for a multivariate spline space, as formulated in
[Nea01b, p. 356f]:

Requirements. Let d ∈ N+, m ∈ N0, and choose a knot set X ⊆ Rd. A d-variate
spline space Sd,m,X generated by a countable set B ⊆ Sd,m,X of basis candidate
functions should feature the following properties:

(A) The functions in Sd,m,X are piecewise polynomials of degree at most m on
regions induced by X, i.e., there is a system of knot subsets P ⊆ P(X) such
that, for all P ∈ P, one has |P | = d, and such that

g|R ∈ Πm(R) for all g ∈ Sd,m,X , R ∈ R,

where R denotes the set of connected components of the set Rd\A and A

is the union of all lower-dimensional simplices connecting the knot subsets
specified by P:

A :=
⋃

P ∈P
conv(P ).
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(B) Each spline function in Sd,m,X has optimal smoothness, i.e., is (m − 1)-times
continuously differentiable:

Sd,m,X ⊆ Cm−1(Rd).

(C) The spline space Sd,m,X contains all polynomials of degree at most m:

Πm(Rd) ⊆ Sd,m,X .

(D) The spline space Sd,m,X is locally finite-dimensional:

dim Sd,m,X |Ω < ∞ for all compact Ω ⊆ Rd.

(E) Each point lies in the support of only a finite number of basis candidate
functions:

|{B ∈ B | t ∈ supp B}| < ∞ for all t ∈ Rd.

(F) The basis candidate functions are compactly supported, and each spline func-
tion in Sd,m,X can be represented as a (possibly infinite) linear combination
of basis candidate functions, i.e., for each g ∈ Sd,m,X , there exist coefficients
aB ∈ R, B ∈ B, such that

g =
∑

B∈B
aBB.

(G) The basis candidate functions in B are linearly independent, and the represen-
tation in the previous requirement is therefore unique: For all coefficient sets
aB ∈ R, B ∈ B, the implication

∑

B∈B
aBB ≡ 0 ⇒ aB = 0 for all B ∈ B

holds true. In particular, this implies that B constitutes a basis.

(H) For d = 1, the basis candidate functions in B are B-splines, and the spline
space Sd,m,X equals the univariate splines:

S1,m,X = Sm,X .

◀
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The search for a strategy to construct a spline space meeting these requirements for
all choices of m, d and for almost every knot set X ⊆ Rd satisfying Assumptions (i)
and (ii) below is called Fundamental Problem in [Nea01b, p. 356f].

(i) X covers the whole space, i.e., conv(X) = Rd,

(ii) X is locally finite and, therefore, has no accumulation points, i.e.,

|X ∩ Ω| < ∞ for all compact Ω ⊆ Rd.

Regarding these assumptions on X, several remarks are in order:

Usually, knot sets that are encountered in practical applications should exhibit local
finiteness in the sense of Assumption (ii). Its goal is, on the one hand, to be able to
work with a finite number of objects in any bounded region (as ensured by Require-
ments (D) and (E)) and, on the other hand, to avoid academic counterexamples.

On the contrary, Assumption (i) is a more severe restriction since most practical knot
sets are finite and, therefore, have a bounded convex hull. However, at this point,
we do not want to consider boundary regions but concentrate on the core region,
which is not influenced by the boundary of the knot set. The easiest way to achieve
this is to choose conv(X) = Rd as, in this case, conv(X) has no boundary.

Furthermore, we expect Requirements (A) - (H) to hold true only for almost every
knot set satisfying the stated assumptions. This comes from the fact that we want to
ignore degenerate cases, like situations where d+1 points lie in the same hyperplane
and, therefore, give rise to a degenerate simplex. In particular, this is the case when
one has multiple knots at the same site. Whereas these configurations certainly have
to be dealt with in practical applications (see Subsection 8.2.2), they are of minor
interest for the task of creating an appropriate spline space [Nea01b, p. 356].

In the following sections, we will revisit two different approaches towards a reason-
able multivariate spline space generated by arbitrary knot sets, both making use of
the simplex spline functions that we have defined in the previous chapter.

4.2 DMS-Splines

One of the most common multivariate spline spaces is the approach introduced
by Dahmen, Micchelli, and Seidel [DMS92], which is known as Dahmen-Micchelli-
Seidel-splines (DMS-splines). In this section, we will briefly recall the path from the
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Fig. 4.1: Example of a triangulation of the knot set {x0, . . . , x7} ⊆ R2. Each element of the
triangulation corresponds to three knots that are pairwise interconnected.

first space using simplex splines to the DMS-splines. Since this approach is based
on the notion of triangulations, we will now define this term in a way similar to
[Huß99, p. 13] but more general:

Definition 4.1 (Triangulation). Let d ∈ N+ and Ω ⊆ Rd. Let X ⊆ Ω be countable.
Then, T ⊆ P(X) is a triangulation of Ω with respect to the vertices X if

(i) |T | = d + 1 for all T ∈ T ,

(ii) vold(conv(T )) > 0 for all T ∈ T ,

(iii)
⋃

T ∈T conv(T ) = Ω,

(iv) conv(T ) ∩ conv(T ′) = conv(T ∩ T ′) for all T, T ′ ∈ T , and if

(v) conv(T ) ∩ X = T for all T ∈ T . ◀

For an example of a triangulation, we refer to Figure 4.1. If T is a triangulation, then,
for each T ∈ T , the convex hull conv(T ) is a nondegenerate simplex. These simplices
subdivide Ω, and if two simplices have a nonempty intersection, the intersection is a
lower-dimensional face of both simplices. Here, a face denotes the convex hull of a
subset of the vertices of a simplex.

4.2.1 A Geometric Approach

Directly after the definition of simplex splines as projections of higher-dimensional
simplices in [Boo76], de Boor showed a possible construction of a spline space
spanned by a collection of simplex splines. To that end, let m ∈ N0 denote the spline
degree, and let d ∈ N+ be the dimension of the spline domain, i.e., one employs
d-variate simplex splines. One considers the set Rd × Ω for an arbitrary convex
Ω ⊆ Rm with volm(Ω) = 1 and constructs an arbitrary triangulation T of Rd × Ω
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[Boo76], where all vertices should be contained in the boundary of Rd × Ω [Dah79].
Then, each element of T spans a nondegenerate (m + d)-dimensional simplex and,
therefore, gives rise to a d-variate simplex spline of degree m, which is denoted by
MT for each T ∈ T . Since T is a triangulation, the intersection conv(T ) ∩ conv(T ′)
for two distinct T, T ′ ∈ T is empty or a lower-dimensional face and, therefore, in
particular a null set. As a consequence, it follows with aT := volm+d(conv(T )) for
each T ∈ T that, for m ≥ 1 (just to avoid the improperly defined value of simplex
splines of degree zero on the boundary of their support) and any t ∈ Rd, one has

∑

T ∈T
aT MT (t) =

∑

T ∈T
volm

({
v ∈ conv(T )

∣∣∣ v1 = t1, . . . , vd = td

})

= volm
({

v ∈
⋃

T ∈T
conv(T )

∣∣∣∣ v1 = t1, . . . , vd = td

})

= volm
({

v ∈ Rd × Ω
∣∣∣ v1 = t1, . . . , vd = td

})
= volm(Ω) = 1.

Consequently, appropriately rescaled simplex splines generated by T form a partition
of unity [Boo82, p. 68]. It has been shown in [Dah79; Dah81] that the spline space
also contains polynomials up to degree m, i.e., Πm ⊆ span{MT | T ∈ T }. Here,
we allow infinite linear combinations in the span in order to be able to represent
polynomials, which do not have compact support in general.

Although, according to [Nea01b, p. 363], the resulting simplex splines are linearly
independent if Ω is chosen to be a simplex, this does not hold true in general,
according to [DM82, p. 993]. The approach is visualized in Figure 4.2 for the special
case d = 1 and m = 2.

Despite some appealing properties of this spline construction, it becomes infeasible
in practical applications due to the necessity of computing a high-dimensional
triangulation [Nea01b, p. 363f]. Furthermore, it is undesirable that the generated
simplex splines depend on the specific high-dimensional triangulation in Rm+d.
Instead, it would be beneficial if one could derive the splines directly from some
triangulation of Rd [Boo82, p. 69]. We will see in the next subsection how this can
be achieved using a combinatorial approach.

4.2.2 A Combinatorial Approach

We will now recall an approach for the construction of a d-variate spline space
which uses a triangulation of Rd and combinatorial methods. It has been introduced
by Dahmen and Micchelli [DM82], whereas a similar method has been proposed
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(a) Arbitrary triangulation of [0, 4] × Ω
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(b) Simplex splines generated by the triangulation

Fig. 4.2: Geometric approach to a multivariate spline space for d = 1 and m = 2. The
triangulation presented at the top gives rise to the basis functions plotted at the
bottom. Note that these functions differ from the B-splines that would have been
generated by the given knot sequence.

independently by Höllig [Höl82]. Summaries can be found in [Nea01b] and [Boo82],
where the latter has been used primarily for this subsection.

To that end, let us assume that T is a triangulation of Rd with respect to a vertex
set X ⊆ Rd, and let m ∈ N0 be the spline degree. The Cartesian product of two
simplices is named simploid in [DM82]. Hence, conv(T ) × ∆m ⊆ Rm+d is a simploid
for each T ∈ T .

[DM82] gives a generic way to triangulate such simploids, which is based on
Kuhn’s triangulation of the unit cube. Let T̂ denote this generic triangulation of the
simploid conv(T ) × ∆m for each T ∈ T . If T ∈ T , there are x0, . . . , xd ∈ X such
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that T = {x0, . . . , xd}. Then, the vertex set of the simploid conv(T ) × ∆m is given
by

{
(xi, ej) ∈ Rd+m

∣∣∣ i ∈ {0, . . . , d}, j ∈ {0, . . . , m}
}

, (4.1)

where e0 := 0 ∈ Rm. The combinatorial notion of the triangulation T̂ of a simploid
can be seen in Figure 4.3c, which is based on [Boo82, p. 71]: Each nondecreasing
path from (0, 0) to (d, m) is assigned to a simplex spanned by the vertices on the
path.

Furthermore, Dahmen and Micchelli proved in [DM82] that

T ∗ :=
⋃

T ∈T
T̂

constitutes a triangulation of Rd × ∆m as long as the vertices in X are enumerated
consistently. Therefore, T ∗ is a triangulation of Rd × Ω in terms of the previous
subsection, and one can conclude that

Πm ⊆ span{MT | T ∈ T ∗}, (4.2)

where MT denotes the simplex spline generated by the projections of all vertices of
T ∈ T ∗ on the first d components [Boo82, p. 71]. The situation is exemplified in
Figure 4.3 for d = 1 and m = 2.

Since the triangulation of every simploid conv(T ) × ∆m consists of exactly
(m+d

d

)

simplices for any T ∈ T , there are exactly
(m+d

d

)
different simplex splines with

support in conv(T ), which equals the dimension of the space of d-variate polynomials
of degree at most m. Hence, it follows from (4.2) that the simplex splines are
linearly independent and, therefore, form a basis for the space of d-variate piecewise
polynomials of degree at most m on the triangulation T [Boo82, p. 71].

However, as one can easily see in the vertex set (4.1) of a simploid, the m + 1
vertices (x, e0), . . . , (x, em) correspond to the same projected vertex x ∈ Rd for each
x ∈ X, which, thus, has multiplicity m + 1. According to Remark 3.21, the resulting
simplex splines do not have maximum smoothness [DM82, p. 1001]. In particular,
the triangulation T ∗ gives rise to discontinuous simplex splines. To overcome this
flaw, [DM82] proposes to pull the knots apart, so that, on the one hand, the linear
independence and the polynomial reproduction property in (4.2) are retained and,
on the other hand, all resulting simplex splines are in Cm−1(Rd). We are content with
showing the resulting basis functions in Figure 4.4 and refer to [DM82], [Höl82],
and [Boo82] for details on this topic.
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(a) The given triangulation of the interval [0, 3] with knot set {0, 1, 2, 3} is extended to a triangulation
of [0, 3] × ∆m.
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(b) The simplex splines generated by the triangulation shown above. Note that these functions feature
discontinuities at the breakpoints.
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(c) The nondecreasing paths from (0, 0) to (d, m) used to triangulate the simploids T × ∆m for all
T ∈ T in the original triangulation of the interval [0, 3]. Based on [Boo82, p. 71].

Fig. 4.3: Combinatorial approach to a multivariate spline space for d = 1 and m = 2. The
simplices shown in the figure at the top give rise to the depicted basis functions.
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Fig. 4.4: Combinatorial approach with knots pulled apart. In contrast to Figure 4.3b, the
basis functions feature optimal smoothness now.

4.2.3 B-Patches and B-Weights

Whereas the two approaches recalled in the previous subsections marked important
steps towards DMS-splines, the motivation for the latter is neither based on geometric
nor combinatorial concepts but is motivated by symmetric simplicial algorithms and
their connection to simplex splines [DMS92].

Symmetric simplicial algorithms have been used heavily for univariate splines,
especially for computational purposes. For the sake of brevity, we could not cover
them in Chapter 2 and will only scratch the surface in this section. We refer to
[Sei91] and [DMS92] for more details.

Assume that, for d ∈ N+ and m ∈ N0, one has a knot set

X := {xi,j ∈ Rd | 0 ≤ i ≤ d, 0 ≤ j ≤ m}

such that, for each α ∈ Γ≤m,d+1, one has

dim aff(Xα) = d, where Xα := (x0,α0 , . . . , xd,αd
). (4.3)

Here, we assume from now on that the multiindices use a zero-based indexing
scheme. Furthermore, let aα ∈ R for each α ∈ Γm,d+1.

A symmetric simplicial algorithm is defined by the following recursion for each
ℓ ∈ {0, . . . , m}, for each α ∈ Γm−ℓ,d+1, and for all t ∈ Rd:

c0
α(t) := aα if ℓ = 0, (4.4)

cℓ
α(t) :=

d∑

i=0
ui(t | Xα) cℓ−1

α+ϵi
(t) if ℓ ∈ {1, . . . , m}.
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Every cℓ
α is a d-variate polynomial of degree at most ℓ. Moreover, cm

(0,...,0) is called
B-patch. All symmetric simplicial algorithms have their associated multiaffine ver-
sion [DMS92], which, for each ℓ ∈ {0, . . . , m}, for all α ∈ Γm−ℓ,d+1, and for any
t1, . . . , tm ∈ Rd, is defined as

C0
α() := aα if ℓ = 0,

Cℓ
α(t1, . . . , tℓ) :=

d∑

i=0
ui(tℓ | Xα) Cℓ−1

α+ϵi
(t1, . . . , tℓ−1) if ℓ ∈ {1, . . . , m}.

Each Cℓ
α is multiaffine and symmetric. Furthermore, it follows directly from the

definition of the algorithm that

cℓ
α(t) = Cℓ

α(t, . . . , t) for all t ∈ Rd, ℓ ∈ {0, . . . , m}, α ∈ Γm−ℓ,d+1.

Hence, Cℓ
α is the uniquely defined polar form of the polynomial cℓ

α (see Theo-
rem 2.18).

The given symmetric simplicial algorithm also has a dual correspondent, which,
according to [DMS92], is given for all t ∈ Rd and α ∈ Γ≤m,d+1 by

Wα(t) :=





1 if |α| = 0,
∑d

i=0 ui(t | Xα−ϵi) Wα−ϵi(t) otherwise,

so that, for all ℓ ∈ {0, . . . , m}, one has

cm
(0,...,0)(t) =

∑

α∈Γm−ℓ,d+1

Wα(t) cℓ
α(t).

If αi = 0 and, therefore, α − ϵi ̸∈ Γ≤m,d+1, we assume ui(· | Xα−ϵi) and Wα−ϵi to be
zero. The functions Wα are called normalized B-weights [DMS92].

As shown in [DMS92], the B-weights {Wα | α ∈ Γm,d+1} are a basis of Πm(Rd) as,
on the one hand, one can show that they are linearly independent and, on the other
hand, |Γm,d+1| =

(m+d
d

)
= dim Πm(Rd). Moreover, the unique representation of a

polynomial p ∈ Πm(Rd) with polar form P is for all t ∈ Rd given by

p(t) =
∑

α∈Γm,d+1

P (x0,0, . . . , x0,α0−1, . . . , xd,0, . . . , xd,αd−1) Wα(t), (4.5)

which can be interpreted as a multivariate analogue of Marsden’s identity (see
Theorem 2.20). In the next subsection, we will see how one can relate these
concepts to simplex splines.
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Fig. 4.5: Knot selection scheme for DMS-splines (d = 1, m = 2). The selected knots are
depicted in orange. Based on Figure 23 in [Sei92a].

4.2.4 B-Weights and Simplex Splines

The setting for the simplicial algorithm in the previous subsection is quite similar to
the one used in the combinatorial approach: In the simplicial algorithm, we used the
knot set X containing the knots x0,0, . . . , xd,0, which, due to (4.3), are the vertices
of a nondegenerate simplex. In the combinatorial approach, we had a knot with
multiplicity m + 1 at each vertex of a simplex. We pulled these m + 1 knots apart
to obtain simplex splines with maximum smoothness and, thus, had m + 1 distinct
knots at each vertex, which correspond to the knots xi,0, . . . , xi,m ∈ X for each
i ∈ {0, . . . , d}. Hence, X can be regarded as the knot set associated to one specific
simplex of the triangulation T in the combinatorial approach.

The important relationship between B-weights and simplex splines has been discov-
ered in [DMS92]: Let

Ω :=


 ⋂

α∈Γ≤m,d+1

conv(Xα)




◦

.

If vold(Ω) > 0, the following identity holds true for all α ∈ Γm,d+1:

Wα(t) = m! |d(Xα)| M(t | Vα) for all t ∈ Ω,

where
Vα := (x0,0, . . . , x0,α0 , . . . , xd,0, . . . , xd,αd

).

Hence, an equivalent of Formula (4.5), which only holds true on Ω and uses the
collection {M(· | Vα) | α ∈ Γm,d+1} of simplex splines instead of B-weights, can be
formulated easily. In particular, appropriately rescaled versions of these simplex
splines,

MDMS(· | Vα) := m! |d(Xα)| M(· | Vα) for all α ∈ Γm,d+1,

constitute a partition of unity on Ω. Furthermore, the collection of simplex splines is
locally linearly independent on Ω [DMS92].

The similarities between B-weights and the combinatorial approach raise the ques-
tion of the differences between both concepts. According to [Nea01b, p. 366f],
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it lies in the selection of the
(m+d

d

)
subsets of knots used to generate the simplex

splines: The knot sets used for B-weights expose a symmetric structure, contrary
to the nondecreasing paths in the combinatorial approach, as one can see when
comparing Figures 4.3c and 4.5. In particular, the choice of knot sets for B-weights is
independent of the numbering of the vertices of the simplex. This symmetry enables
elegant identities for the representation of polynomials [Nea01b, p. 367].

For an example of a knot set X and the selection scheme in a bivariate setting, we
refer to Figure 4.6.

4.2.5 Definition and Properties of DMS-Splines

In the previous subsection, we considered the relation between B-weights and
simplex splines only on one simplex. However, since we aim at the construction
of a spline space not only for one simplex but for a whole collection of adjacent
simplices, we again assume T to be a triangulation of Rd with respect to a vertex
set Y ⊆ Rd and assign a collection of knots consisting of xy,0 := y and additional
xy,1, . . . , xy,m ∈ Rd to every vertex y ∈ Y , yielding the knot set

X := {xy,j | y ∈ Y, 0 ≤ j ≤ m},

which has the same structure as the projections of the pulled-apart knots in the
combinatorial approach. For the remainder of the section, we consider each T ∈ T
as (d + 1)-tuple with arbitrarily ordered elements T0, . . . , Td. For all T ∈ T , we
define

Xα,T := (xT0,α0 , . . . , xTd,αd
) for all α ∈ Γ≤m,d+1,

Vα,T := (xT0,0, . . . , xT0,α0 , . . . , xTd,0, . . . , xTd,αd
) for all α ∈ Γ≤m,d+1,

ΩT :=


 ⋂

α∈Γ≤m,d+1

conv(Xα,T )




◦

,

as in the previous subsections. In order to ensure that the barycentric coordinates in
the simplicial algorithms are well-defined, we again have to require that

dim aff(Xα,T ) = d for all α ∈ Γ≤m,d+1, T ∈ T .

Furthermore, we assume that

vold(ΩT ) > 0 for all T ∈ T
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Ω

(a) The shaded region Ω (orange) refers to the intersection of convex hulls of collections of d + 1
knots, on which the B-patch coincides with an appropriately normalized simplex spline. Based on

Figure 2.2 in [DMS92].
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(b) The collections of knots chosen by the selection scheme for DMS-splines. The selected / active
knots are depicted in blue, whereas the shaded regions refer to the support of the associated

simplex splines. Based on Figure 11 in [Nea01b].
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(c) The collections of knots chosen by the selection scheme for DMS-splines, illustrated in accordance
with Figure 4.5. Based on Figure 23 in [Sei92a].

Fig. 4.6: Example of the knot selection scheme for DMS-splines (d = 2, m = 2). Each of
the vertices of a d-dimensional simplex has m + 1 associated knots.

and define the space of DMS-Splines in accordance with [DMS92] as follows:

Definition 4.2 (DMS-splines). With the stated prerequisites, the space of DMS-splines
is defined as

SDMS
m,T ,X := span

{
MDMS(· | Vα,T )

∣∣∣∣ α ∈ Γm,d+1, T ∈ T
}

.

◀

Although not explicitly mentioned in [DMS92], it is necessary to allow infinite
linear combinations in the definition of DMS-splines since, otherwise, all DMS-spline
functions would have compact support and, therefore, it would be impossible to
describe nonzero polynomials. However, since T is a triangulation, each t ∈ Rd is
in the support of only a finite set of basis functions, and thus, the function value is
well-defined.

According to [DMS92], every element of SDMS
m,T ,X associated with some collection of

coefficients (aα,T )α∈Γm,d+1,T ∈T can be reduced for all t ∈ ΩT , T ∈ T , as follows:


∑

T ′∈T

∑

α∈Γm,d+1

aα,T ′MDMS(· | Vα,T ′)


(t) =

∑

α∈Γm,d+1

aα,T MDMS(t | Vα,T ).
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Hence, DMS-splines can be evaluated efficiently on the sets ΩT , T ∈ T , by means of
the recursive algorithms presented above. However, if the coefficients are chosen
appropriately, a recursive evaluation is also available on the regions outside of the
sets ΩT , T ∈ T , as ensured by the following lemma, which is also due to [DMS92]:

Lemma 4.3. Suppose that the set of coefficients (aα,T )α∈Γm,d+1,T ∈T satisfies the
following property: For any two adjacent simplices corresponding to T, T ′ ∈ T , so
that the common (d − 1)-dimensional face is

conv(T ) ∩ conv
(
T ′) = conv

(
xT0,0, . . . , xTp−1,0, xTp+1,0, . . . , xTd,0

)

= conv
(
xT ′

0,0, . . . , xT ′
q−1,0, xT ′

q+1,0, . . . , xT ′
d
,0
)

for appropriate p, q ∈ {0, . . . , d} with p ≤ q, and for all α, β ∈ Γm,d+1 such that

βi = αi for all i ∈ {0, . . . , p − 1} ∪ {q + 1, . . . , d},

βi = αi+1 for all i ∈ {p, . . . , q − 1},

βq = αp = 0,

one has aα,T = aβ,T ′ . Then, for all t ∈ Rd, one has


∑

T ∈T

∑

α∈Γm,d+1

aα,T MDMS(· | Vα,T )


(t) =

∑

T ∈T

∑

α∈Γm−1,d+1

a∗
α,T (t) MDMS(t | Vα,T ),

where

a∗
α,T (t) :=

d∑

i=0
ui(t | Xα,T ) aα+ϵi,T , for all T ∈ T , α ∈ Γm−1,d+1.

◀

Furthermore, it has been shown in [DMS92] that appropriate evaluations of the
polar form associated to a polynomial satisfy the conditions of Lemma 4.3, yielding
Marsden’s identity for DMS-splines similar to (4.5):

Theorem 4.4. Let T , Y , and X be defined as above. For all p ∈ Πm(Rd) with polar
form P , the following holds true for all t ∈ Rd:

p(t) =
∑

T ∈T

∑

α∈Γm,d+1

P (xT0,0, . . . , xT0,α0−1, . . . , xTd,0, . . . , xTd,αd−1) MDMS(t | Vα,T ).

◀
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Hence, one has Πm ⊆ SDMS
m,T ,X . For DMS-Splines, Seidel could prove (see [Sei92b]

and [Sei92a, p. 275f]) that a similar identity even holds true for piecewise polyno-
mials, whose univariate analogue we have recalled in Theorem 2.22:

Theorem 4.5. Let T , Y , and X be defined as above, and choose ℓ ∈ {0, . . . , m − 1}.
Let f ∈ Cℓ(Rd) be a piecewise polynomial of degree at most m on the triangulation
T , i.e.,

fT := f |conv(T ) ∈ Πm(conv(T )) for all T ∈ T ,

and let FT denote the polar form of fT for every T ∈ T . If all knots have a
multiplicity of at least m − ℓ, i.e.,

xy,0 = · · · = xy,m−ℓ−1 for all y ∈ Y,

then one can represent f using DMS-splines for all t ∈ Rd as follows:

f(t) =
∑

T ∈T

∑

α∈Γm,d+1

aT,αMDMS(t | Vα),

where aT,α := FT (xT0,0, . . . , xT0,α0−1, . . . , xTd,0, . . . , xTd,αd−1). ◀

4.2.6 DMS-Splines and the Fundamental Problem

Despite the appealing properties and elegant formulas that have been presented
in the previous subsection, DMS-splines according to [Nea01b] do not solve the
Fundamental Problem formulated in Subsection 4.1.2. The same holds true for both
the geometric and the combinatorial approach.

The geometric approach requires the triangulation of an (m + d)-dimensional set.
The problems arising from this fact are twofold: Firstly, the triangulation procedure
is computationally very expensive. Secondly, the resulting spline space depends on
the chosen triangulation, which is undesirable and not necessarily gives the ordinary
univariate splines when considering the case d = 1 [Nea01b, pp. 364, 368]. For an
example of the discrepancy, we again refer to Figure 4.2.

Both the combinatorial approach and DMS-splines just require the triangulation of a
d-dimensional set, which is mostly a feasible endeavor. However, they use clouds of
knots at each vertex. On the one hand, it is not clear how to choose the auxiliary
knots in the clouds reasonably. On the other hand, the resulting spline space also
in this case depends on the specific choice of auxiliary knots [Nea01b, p. 368]. If
the auxiliary knots are very close to the original vertex, the simplex splines tend
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to be “nearly” discontinuous. On the contrary, if original and auxiliary knots are
far apart, it will be hard to ensure that the sets ΩT have positive volume for each
T ∈ T . Although these conditions have been relaxed in [Sau95], the freedom of
choice inherent in these approaches is often an unwanted feature. In particular,
they do not necessarily give rise to the common univariate spline space in the case
d = 1. Whereas a clever selection of auxiliary knots in the combinatorial approach
in fact yields the ordinary univariate splines, an equivalent selection scheme does
not seem to be available for higher dimensions [Nea01b, p. 369]. Contrarily, the
inherent symmetry of DMS-splines renders an appropriate choice of auxiliary knots
impossible, except in the case where all auxiliary knots are placed directly at the
vertex and, therefore, each knot has multiplicity m + 1 [Nea01b, p. 369].

In summary, one can conclude that none of the approaches presented in this section
fulfills Requirement (H) of the Fundamental Problem [Nea01b, p. 369]. However, a
method for the construction of a multivariate spline space satisfying this requirement
by construction will be introduced in the next section.

4.3 Delaunay Configuration B-Splines

As the approaches presented in the previous section (in particular the well-known
DMS-splines) do not solve the Fundamental Problem and have some further draw-
backs, like the necessity of auxiliary knots, we look for another approach. A very
promising proposal is due to Neamtu [Nea01a; Nea01b], which by construction
reduces to the ordinary univariate splines when considered in one dimension. Before
being able to introduce this approach, we first have to recall two basic and closely
related concepts, namely Voronoi diagrams and Delaunay triangulations.

4.3.1 Voronoi Diagrams

In Subsection 4.1.1, the essential difference between univariate and multivariate
spline spaces has emerged already: Whereas in one dimension, one can choose
consecutive knots for the construction of B-splines, the concept of consecutivity is not
generalizable to multiple dimensions as there is no natural ordering on the spaces
Rd for d ≥ 2.

However, one of the most appealing properties of univariate B-splines is their locality:
They have a relatively small support. Hence, in order to obtain equivalent properties
in higher dimensions, the knots chosen to construct a simplex spline should not
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be too far apart. To be able to decide if a set of knots is “far apart”, we need an
appropriate notion of neighborhood in Rd. One way to describe the neighborhood of
a knot in Rd is the Voronoi diagram. The following definition is a higher-dimensional
and extended variant of the one given in [AKL13, p. 7f]:

Definition 4.6 (Voronoi diagram). Let d ∈ N+, and let X ⊆ Rd be a set of knots
with |X| ≥ 2 which is locally finite, i.e., |X ∩ Ω| < ∞ for all compact Ω ⊆ Rd.

(i) Let x, x′ ∈ X be distinct knots. The hyperplane

S(x, x′) :=
{

t ∈ Rd
∣∣∣ ∥t − x∥ = ∥t − x′∥

}

is called bisector of x and x′. The bisector separates Rd into two (closed) half
spaces H(x, x′) and H(x′, x), where

H(x, x′) :=
{

t ∈ Rd
∣∣∣ ∥t − x∥ ≤ ∥t − x′∥

}
.

(ii) Let x ∈ X. The Voronoi region of x (with respect to X) is defined as the
intersection of all half spaces generated by bisectors corresponding to x:

VX(x) :=
⋂

x′∈X\{x}
H(x, x′).

(iii) Let x, x′ ∈ X be distinct knots. The intersection VX(x) ∩ VX(x′) of the corre-
sponding Voronoi regions is called Voronoi face (or Voronoi edge in the case
d = 2) if

vold−1
(
VX(x) ∩ VX(x′)

) ̸= 0.

We call two knots adjacent if they share a Voronoi face. All adjacencies are
summarized in the set

E(X) :=
{

{x, x′} ⊆ X
∣∣∣ x ̸= x′, vold−1

(
VX(x) ∩ VX(x′)

) ̸= 0
}

.

(iv) The Voronoi diagram of X is defined as the union of all Voronoi faces corre-
sponding to pairs of distinct, adjacent knots in X:

V(X) :=
⋃

{x,x′}∈E(X)

(
VX(x) ∩ VX(x′)

)
.

◀
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Fig. 4.7: Example of a Voronoi diagram of a given collection of knots (d = 2). Based on
Figure 13 in [Nea01b].

An example of a Voronoi diagram is displayed in Figure 4.7. The bisector of two
distinct knots x, x′ ∈ X is a hyperplane and separates the space into two half spaces:
one consisting of the points closer to x than to x′, and the other one containing the
points closer to x′ than to x. Hence, the Voronoi region VX(x) of x contains exactly
the points that are closer to x than to any other knot of X.

The Voronoi region of x is a d-dimensional convex polyhedron [AKL13, p. 75], at
least if X is finite. One can show that each vertex of a Voronoi region (called Voronoi
vertex) has at least d + 1 incident Voronoi faces [AKL13, p. 9]. The number exceeds
this minimum only if there are more than d + 1 knots with the same distance to the
Voronoi vertex, which is the case if these vertices are cospherical, i.e., they lie on the
same sphere.

Voronoi diagrams have many interesting properties. However, we refer the interested
reader to [AKL13] and instead turn to Delaunay triangulations, which are closely
related to Voronoi diagrams.

4.3.2 Delaunay Triangulations

When considering Delaunay triangulations, one has to exclude certain degenerate
cases of the knot set X ⊆ Rd, which refer to the circumcircle of subsets of knots.
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Definition 4.7 (Circumcircle). Let d ∈ N+, and choose x0, . . . , xd ∈ Rd such that
dim aff(x0, . . . , xd) = d. The uniquely defined d-dimensional ball

B(x0, . . . , xd) := Br(c), r ∈ R+, c ∈ Rd,

satisfying x0, . . . , xd ∈ ∂Br(c) is called circumcircle (of x0, . . . , xd). As the order of
the points does not matter, we write

B(A) := B(x0, . . . , xd)

for A := {x0, . . . , xd}. ◀

Definition 4.8 (General Delaunay position). Let d ∈ N+ and X ⊆ Rd such that
|X| ≥ d + 1. Then, X is said to be in general Delaunay position if, for all A ⊆ X with
|A| = d + 1, the following two conditions hold true. Otherwise, X will be called
degenerate.

(i) dim aff(A) = d,

(ii) ∂B(A) ∩ X = A. ◀

Each knot set in general Delaunay position is clearly also in general position, ac-
cording to Definition 3.18. The second condition ensures that no more than d + 1
knots are cospherical, i.e., lie on the same sphere. Almost every locally finite knot
set is in general Delaunay position, and thus, every locally finite degenerate knot set
can be forced to be in general Delaunay position by applying an arbitrarily small
perturbation to the concerned knots.

For a locally finite knot set in general Delaunay position, one can define the Delaunay
triangulation as follows [AKL13, p. 12, p. 76]:

Definition 4.9 (Delaunay triangulation). Let d ∈ N+, and let X ⊆ Rd be locally
finite and in general Delaunay position. The set

K(X) :=
{

T ⊆ X
∣∣∣ |T | = d + 1, B(T ) ∩ X = ∅

}

is called Delaunay triangulation (of X). ◀

Theorem 4.10. Let d ∈ N+, and let X ⊆ Rd be in general Delaunay position and
locally finite. Then, the Delaunay triangulation K(X) is a triangulation of conv(X).

◀
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The Delaunay triangulation is named after Boris Delaunay, who introduced it and
proved fundamental results [Del34].

The term triangulation is also used for the case d > 2, although in this case, the
partitions are higher-dimensional simplices instead of triangles. If d = 3, one can
also use the term tetrahedrization [AKL13, p. 76]. Each element of K(X) is called
Delaunay triangle or Delaunay simplex. By definition, the circumcircle generated by
the vertices of a Delaunay triangle does not contain any knots in its interior.

Note that, if the knots are not in general Delaunay position, the triangulation could
contain “holes”, so that some of the resulting partitions would not be simplices.
Hence, the result would be no triangulation but only a tessellation in this case.
The definition of Delaunay triangulations can also be generalized to knot sets
which contain more than d + 1 cospherical knots and, therefore, are not in general
Delaunay position. However, the “holes” in the triangulation have to be triangulated
appropriately.

The Delaunay triangulation has many appealing properties. For example, if d = 2, it
is the triangulation that maximizes the minimal angle of its triangles [AKL13, p. 42f].
Since triangles with small angles are long, thin, and hence, less desirable [Nea01a],
the Delaunay triangulation in some sense yields optimally shaped triangles.

Furthermore, the Delaunay triangulation of a given knot set in R2 can be computed
efficiently in O(n log n) time complexity, where n denotes the number of knots [LS80]
[PS85, p. 221]. However, the complexity can grow rapidly when increasing d since
the expected runtime complexity of the flipping algorithm is in O

(
n log n + n⌈d/2⌉

)

[ES96]. For more information regarding Delaunay triangulations, we again refer to
[AKL13].

4.3.3 Duality Relations

The interesting relation between Voronoi diagrams and Delaunay triangulations can
be seen in the following observation for the case d = 2 (see also [AKL13, p. 12]):

Let X ⊆ R2 be locally finite and in general Delaunay position. We consider both
Voronoi diagram and Delaunay triangulation as undirected graphs: The graph of the
Voronoi diagram is given by G := (V, E), where V denotes the Voronoi vertices and
E the pairs of Voronoi vertices sharing a Voronoi edge of V(X). The graph of the
Delaunay triangulation K(X) is given by G′ := (X, E′), where the set of Delaunay
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Delaunay triangulation Voronoi diagram
Knot in X Voronoi region

Delaunay edge Voronoi edge
Delaunay triangle Voronoi vertex

Tab. 4.1: The bijective duality relations between components of Delaunay triangulations
and Voronoi diagrams for d = 2 [AKL13, p. 12]

edges E′ contains all pairs of distinct knots of X which are vertices of the same
Delaunay triangle, i.e.,

E′ :=
⋃

{x,y,z}∈K(X)

{
{x, y}, {y, z}, {z, x}

}
.

Then, the graphs G and G′ are dual. Therefore, two knots are connected by a
Delaunay edge if and only if the corresponding Voronoi regions are adjacent, i.e.,

E(X) = E′.

The bijective duality relations between the components of the Delaunay triangulation
and the Voronoi diagram can be seen in Table 4.1, in accordance with [AKL13, p. 12].
Each Voronoi vertex is exactly the center of the circumcircle of the corresponding
Delaunay triangle, which is not necessarily in the interior of the triangle. The stated
duality also holds true for d > 2 [AKL13, p. 76].

As noted earlier, the number of Voronoi regions incident to a Voronoi vertex equals
the number of knots with equal, minimal distance to the vertex. Consequently, if
there are more than d + 1 incident Voronoi regions, more than d + 1 knots lie on a
sphere around the vertex. Thus, the knot set is not in general Delaunay position as
it does not satisfy Requirement (ii) in Definition 4.8. However, there are knot sets
whose Voronoi vertices all have d + 1 incident Voronoi regions and which, therefore,
yield a valid Delaunay triangulation but which are not in general Delaunay position.
As a consequence, the requirement on the knot set to be in general Delaunay position
is sufficient but not necessary for the definition of a valid Delaunay triangulation
[AKL13, p. 12].

Figure 4.8 shows a two-dimensional knot set with its Delaunay triangulation and
the duality to the Voronoi diagram.

Since, according to the duality, two knots are vertices of the same Delaunay triangle
if and only if the corresponding Voronoi regions are adjacent, the vertices of a
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Fig. 4.8: Duality of Voronoi diagrams and Delaunay triangulations. The edges of Delaunay
triangles (black) correspond to adjacent Voronoi regions. The circumcircles of
Delaunay triangles (gray) do not contain any knot in its interior. Based on Figure 18
in [Nea01b].

Delaunay triangle are neighbors in some sense. Hence, the dual graph of the Voronoi
diagram encodes proximity information of the knots. We will see that this notion of
neighborhood can replace the concept of consecutivity in the construction of spline
spaces. As encouragement, we consider the Delaunay triangulation for d = 1:

Remark 4.11. Let n ∈ N+, and let x0, . . . , xn ∈ R be an increasing sequence of
knots. As a ball in d = 1 is just an interval, the circumcircle B(xi, xj) of two knots xi

and xj is the interval (xi, xj) for all i, j ∈ {0, . . . , n} with i < j. That interval does
not contain any of the knots x0, . . . , xd if and only if j = i + 1. Hence, the Delaunay
triangulation of x0, . . . , xn is given by

K({x0, . . . , xn}) =
{

{xi−1, xi}
∣∣∣ i ∈ {1, . . . , n}

}
.

Note that the intervals [xi−1, xi], i ∈ {1, . . . , n}, of consecutive knots are exactly the
supports of the B-splines of degree zero with respect to the knots x0, . . . , xn. ◀

This remark motivates the following consideration of a spline space of degree zero.
A Delaunay triangle (or simplex) consists of d + 1 affinely independent knots, which
can be used to generate a d-variate simplex spline of degree zero. We renormalize
the simplex splines as follows: For any affinely independent knots x0, . . . , xd ∈ Rd,
let

M̃(· | x0, . . . , xd) := d! vold(conv(x0, . . . , xd)) M(· | x0, . . . , xd),
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so that, for all t ∈ Rd, one has

M̃(t | x0, . . . , xd) =





1 if t ∈ conv(x0, . . . , xd),

0 otherwise.

Let X ⊆ Rd be locally finite and in general Delaunay position, and let

A :=
⋃

T ∈K(X)
conv(T )◦.

Since the Delaunay triangulation is a tessellation, it follows that the renormalized
simplex splines generated by the Delaunay simplices form a partition of unity on A,
i.e., ∑

T ∈K(X)
M̃(t | T ) = 1 for all t ∈ A.

As conv(X)\A contains only the faces of Delaunay simplices, which comprise the
discontinuous regions of the corresponding simplex splines, and is a set of measure
zero, the latter identity holds true almost everywhere [Nea01a]. Hence,

span
{

M̃(· | T )
∣∣∣ T ∈ K(X)

}

is almost everywhere in conv(X) a space of piecewise polynomials of degree zero
which contains all polynomials of degree zero (i.e., constant functions) restricted
to conv(X) ∩ A and has a basis of compactly supported and linearly independent
functions. Furthermore, it reduces to the common univariate splines for d = 1,
according to Remark 4.11, and, therefore, is a promising starting point for a general
solution of the Fundamental Problem. To extend these results to the whole set
conv(X), a more sophisticated definition of simplex splines of degree zero would be
necessary.

4.3.4 Higher-Order Voronoi Diagrams

In the previous subsection, we have seen means of defining a spline space of degree
zero in arbitrary dimensions, which reduces to the univariate splines for d = 1. We
are going to investigate now if this construction can be generalized to arbitrary
degrees.

In [SH75], Shamos and Hoey introduced higher-order Voronoi diagrams as a gener-
alization of the usual Voronoi diagrams. They are based on the fact that a Voronoi
region corresponding to a given knot contains the points closest to that knot. A
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Fig. 4.9: Example of a Voronoi diagram of order two with respect to the given collection of
knots. Based on Figure 14 in [Nea01b].

Voronoi region of a Voronoi diagram of order k, k ∈ N+, contains exactly the points
which are closer to each knot of a given collection of k knots than to any other knot.
This can be formalized as follows [Nea01b, p. 372]:

Definition 4.12 (Higher-order Voronoi diagram). Let d ∈ N+, k ∈ N+, and choose a
locally finite X ⊆ Rd with |X| ≥ k. For all Y ⊆ X with |Y | = k, the Voronoi region
of Y (with respect to X) is the set of points

VX(Y ) :=





t ∈ Rd

∣∣∣∣∣ max
y∈Y

∥y − t∥ = inf
Y ′⊆X
|Y ′|=k

max
y′∈Y ′

∥y′ − t∥





,

which is closer to all knots in Y than to any other knot in X. The terms adjacency
and Voronoi diagram are defined precisely as in Definition 4.6. ◀

Figure 4.9 depicts a Voronoi diagram of order two. Clearly, a Voronoi diagram of
order one is the usual Voronoi diagram. It is easy to see that many Voronoi regions
may be empty [Nea01b, p. 372]. However, knot sets corresponding to nonempty
Voronoi regions are in some sense close to each other. This leads to the following
consideration, which is due to Sabin [Sab89] (see also [Nea01b, p. 373f]):

Let m ∈ N0, and consider Voronoi diagrams of order m + d + 1. Each set of m + d + 1
knots gives rise to a d-variate simplex spline of degree m. When considering
only simplex splines generated by knot sets corresponding to nonempty Voronoi
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regions, all basis candidate functions are generated by knots close to each other and,
therefore, have reasonably small support. However, it turns out that the resulting
basis candidate functions are linearly dependent and, thus, do not yield a spline
space solving the Fundamental Problem [Nea01b].

Therefore, we will consider another approach using higher-order analogues of
Delaunay triangles, which are again closely related to higher-order Voronoi diagrams,
in the next subsection.

4.3.5 Delaunay Configurations

When recalling the Delaunay triangulation, we defined it to be the unique triangula-
tion with the property that the circumcircle of each triangle contains not a single
knot of the given knot set in its interior. Similar to the higher-order analogue of
Voronoi diagrams, this definition can be modified by requiring that each circumcircle
has to contain exactly m knots, where m ∈ N0. This leads to the definition of
Delaunay configurations, which is due to Neamtu [Nea01a; Nea01b] and is depicted
in Figure 4.10.

Definition 4.13 (Delaunay configuration). Let d ∈ N+, m ∈ N0, and let X ⊆ Rd be
in general Delaunay position. An (oriented Delaunay) configuration of degree m is a
tuple K := (P, I) with

P, I ⊆ X, |P | = d + 1, |I| = m

and
∂B(P ) ∩ X = P, B(P ) ∩ X = I.

B(K) := P is called the boundary of K, whereas I(K) := I denotes the interior of
K. The union U(K) := P ∪ I is the corresponding unoriented Delaunay configuration.
The circumcircle of K is given as B(P ). Km(X) denotes the set of all Delaunay
configurations of degree m with respect to the knot set X. ◀

Examples of Delaunay configurations can be seen in Figure 4.11. If m = 0, a
Delaunay configuration does not contain any interior knot and, thus, is just a
Delaunay triangle. Note that the Delaunay configurations do not constitute a
triangulation of the knots anymore if m > 0 [Nea01b, p. 378]. However, this does
not pose a problem as we are only interested in finding suitable subsets of knots for
the construction of a spline basis.
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I

P

Fig. 4.10: Example of a Delaunay configuration of degree two. The ball generated by the
d + 1 boundary knots in P (orange) contains exactly the m knots of I in its
interior (blue). Based on Figure 21 in [Nea01b].

(a) Delaunay configurations of degree one (b) Delaunay configurations of degree two

Fig. 4.11: All Delaunay configurations of degrees one and two with respect to the given
knots

The relation between Delaunay configurations and higher-order Voronoi diagrams is
pointed out in [Nea01b, p. 376f] for the case d = 2, m = 1 and Voronoi diagrams
of order two: There are two types of Voronoi vertices, where the type depends on
the knot sets assigned to the surrounding Voronoi regions. If each knot in one of
these knot sets is also contained in another knot set associated to one of the Voronoi
regions surrounding the Voronoi vertex, there are only three knots involved in total.
On the contrary, if all three regions have the same knot in common, whereas the
other knot of each region is not assigned to any of the other regions, the number of
involved knots is four. The latter type of Voronoi vertex corresponds to a Delaunay
configuration of degree one, where the interior knot is the one shared by all three
Voronoi regions. For more details, we refer to [Nea01b, p. 376f]. A description
of the relation for more general cases has not been given so far to the best of our
knowledge.
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By definition, a Delaunay configuration of degree m has d + 1 knots on the boundary
and exactly m knots in its interior. The union (i.e., the corresponding unoriented
configuration) is a set of d + m + 1 knots, which is exactly the number required for
the construction of a d-variate simplex spline of degree m. Moreover, since Delaunay
configurations of degree zero are just Delaunay triangles, one can use the reasoning
in Subsection 4.3.3 to conclude that, in this special case, the Delaunay configurations
give rise to a spline space containing constant functions supported on conv(X).

Neamtu proved in [Nea07] that this observation holds true for arbitrary degrees
m ∈ N0 of Delaunay configurations and corresponding polynomial degrees. However,
a renormalization of the simplex splines is necessary again, which motivates the
following definition. It stems from [Nea01b] and has been adapted to our differently
normalized original simplex splines:

Definition 4.14 (Normalized simplex spline). Let d ∈ N+, m ∈ N0, and let X ⊆ Rd

be in general Delaunay position. The normalized simplex spline with respect to a
Delaunay configuration K ∈ Km(X) is defined as

N(· | K) := d! m! vold(conv(B(K))) M(· | U(K)).

◀

Note that the normalization is chosen such that the normalized simplex splines of
degree zero again form a partition of unity (everywhere on conv(X) except for the
discontinuous boundaries), as it has been the case in Subsection 4.3.3.

Since a simplex spline M generated by a Delaunay configuration is defined with
respect to the unoriented Delaunay configuration, the role of knots in the Delaunay
configuration, i.e., whether it is an interior or a boundary knot, has no influence
on the simplex spline. For normalized simplex splines, however, the normalization
factor depends on the role of the knots.

To avoid boundary cases, Neamtu assumed X to cover the whole space, i.e.,
conv(X) = Rd, and to be locally finite, which are exactly the assumptions on
the knot set in the Fundamental Problem (see Subsection 4.1.2). We summarize
these assumptions in the following definition, as a reference for the remainder of
the thesis.

Definition 4.15 (Strong conditions). For d ∈ N+, a knot set X ⊆ Rd satisfies the
strong conditions if

4.3 Delaunay Configuration B-Splines 81



(i) X is locally finite, i.e., |X ∩ Ω| < ∞ for any compact Ω ⊆ Rd,

(ii) X is in general Delaunay position, as specified by Definition 4.8, and

(iii) X covers the whole Rd, i.e., conv(X) = Rd. ◀

However, some of the results in this thesis are valid also for the following, more
general class of knot sets:

Definition 4.16 (Weak conditions). For d ∈ N+, a knot set X ⊆ Rd satisfies the
weak conditions if

(i) X is nonempty and locally finite, i.e., |X ∩ Ω| < ∞ for any compact Ω ⊆ Rd,
and

(ii) X is in general Delaunay position, as specified by Definition 4.8. ◀

For knot sets satisfying the strong conditions, we can now formulate Neamtu’s
theorem [Nea01b; Nea07]:

Theorem 4.17 (Neamtu). Let d ∈ N+, m ∈ N0, and let X ⊆ Rd be a knot set
satisfying the strong conditions. Let p ∈ Πm(Rd) and P be its uniquely defined polar
form. Then, the following identity holds true:

p(t) =
∑

K∈Km(X)
P (I(K)) N(t | K) for almost every t ∈ Rd. (4.6)

In particular, if m ≥ 1, one has

Πm(Rd) ⊆




∑

K∈Km(X)
aK N(· | K)

∣∣∣∣∣ aK ∈ R, K ∈ Km(X)



.

◀

For m = 0, it would be necessary to exclude the edges of the Delaunay triangles
(see Subsection 4.3.3) in order for the latter subset relation to hold true. For m ≥ 1,
Identity (4.6) holds pointwise [Nea07].

This result, which can be considered as an equivalent of Marsden’s identity known
from univariate splines (see Theorem 2.20), has been stated in [Nea01b] and proved
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in [Nea07]. For m = 0, the result follows with the reasoning in Subsection 4.3.3.
For m ≥ 1, the proof is based on the recursive application of the identity

∑

K∈Km(X)
P (I(K)) N(t | K) =

∑

K′∈Km−1(X)
P (I

(
K ′), t) N(t | K ′),

which in turn can be established for almost every t ∈ Rd using the following
observation: When applying Micchelli’s recursion formula (see Proposition 3.24)
to the left-hand side and the multiaffinity of P to the right-hand side, some terms
cancel out due to combinatorial properties of Delaunay configurations, and the
remaining terms have a corresponding summand on the other side. We refer to
[Nea07] for the complete proof.

Note that the polar form P is symmetric and, therefore, does not depend on the
order of its arguments. Hence, using the set I(K) as m-fold argument is a handy
shorthand notation.

Corollary 4.18 (Partition of unity). Let d ∈ N+, m ∈ N0, and let X ⊆ Rd satisfy the
strong conditions. Then,

∑

K∈Km(X)
N(t | K) = 1 for almost every t ∈ Rd.

◀

The previous corollary follows directly from applying Identity (4.6) to the polynomial
of degree zero that has value one. However, in the case m = 0, the identity again
holds true only almost everywhere, as long as we have no consistent definition of
simplex splines of degree zero on the (discontinuous) boundary.

Theorem 4.17 provides an explicit representation of polynomials of degree up to m

by means of simplex splines associated with Delaunay configurations of degree m.
Therefore, the generated spline space fulfills Requirement (C) of the Fundamental
Problem.

When recalling univariate splines and DMS-splines, we encountered a more versatile
variant of Marsden’s identity in Theorem 2.22 and Theorem 4.5, which provides an
explicit representation of all piecewise polynomials (with respect to the given knot
sequence or the underlying triangulation) by means of B-splines and DMS-splines,
respectively. Neamtu states in [Nea01b, p. 382] that a similar identity also holds
true for the splines based on Delaunay configurations when reproducing piecewise
polynomials with respect to the Delaunay triangulation:
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Theorem 4.19. Let d ∈ N+, m ∈ N0, and let X ⊆ Rd satisfy the strong conditions.
Let f ∈ Cm−1

(
Rd
)

such that

fT := f |conv(T ) ∈ Πm(conv(T )) for all T ∈ K(X),

and let FT be the polar form associated with fT . Then,

f(·) =
∑

K∈Km(X)
FT (K)(I(K)) N(· | K),

where T (K) denotes any Delaunay triangle in the support of N(· | K). ◀

However, a proof of this theorem has not been given in [Nea01b]. Instead, there
is a reference to a publication “in preparation”. A paper with the stated title was
published some years later [Nea07], but it only deals with the proof of Theorem 4.17
and does not contain any information regardig this generalized formula. Despite
the considerable time gone by since the original publication of [Nea01b], a proof of
Theorem 4.19 has not been given so far in literature to the best of our knowledge.

4.3.6 Elimination of Duplicates

It would be a very appealing property of the Delaunay configuration construction
if we could use the simplex splines generated by Delaunay configurations as a
basis. However, this is not possible since there are linearly dependent functions,
which result from Delaunay configurations that are the same when considered
as unoriented Delaunay configurations but differ when taking the roles of the
different knots into account, i.e., whether a knot is a boundary knot or an interior
knot. Figure 4.12 displays the example presented in [Nea01b, p. 381] of two
configurations of degree one, K and K ′, satisfying

U(K) = U
(
K ′), B(K) ̸= B

(
K ′), I(K) ̸= I

(
K ′).

Since unnormalized simplex splines do not respect the roles of the knots, normalized
simplex splines associated with Delaunay configurations yielding the same unori-
ented configuration only differ by a constant factor and, hence, are clearly linearly
dependent.

In [Nea01b, p. 381f], Neamtu proposes two different remedies to overcome this
problem. The most straightforward way is to identify all configurations that are the
same when considered as unoriented configurations using an equivalence relation ∼.
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Fig. 4.12: Example of two different Delaunay configurations of degree one, which coincide
when considered as unoriented configuration. Based on Figure 23 in [Nea01b].

The associated simplex splines only differ by a constant factor, which is why one
representative of each equivalence class suffices. Hence, we define the corresponding
splines space as follows:

Definition 4.20 (Nonpooled Delaunay configuration B-splines). Let d ∈ N+, m ∈ N0,
and let X ⊆ Rd satisfy the weak conditions. Define

∼ :=
{

(K, K ′) ∈ Km(X) × Km(X)
∣∣∣ U(K) = U

(
K ′)},

and let R be an arbitrary system of representatives of Km(K)/ ∼. Define the space
of nonpooled Delaunay configuration B-splines (DCB-splines) Sm,X as follows:

Sm,X :=
{∑

R∈R
aRN(· | R)

∣∣∣∣∣ aR ∈ R, R ∈ R
}

.

The normalized basis candidate functions are given as

Bm,X :=






d! m!

∑

R′∈[R]∼
vold

(
conv

(
B
(
R′)))


M(· | U(R))

∣∣∣∣∣ R ∈ R


.

◀

As it is not yet clear if the functions in Bm,X are linearly independent, we will use
the term basis candidate function instead of basis function. Note that, when using
Theorem 4.17 on this spline space, the normalization factors from Definition 4.14
have to be summed up for identified simplex splines in order to maintain the validity.
To that end, we formulated the normalized basis candidate functions explicitly in
the previous definition.

4.3 Delaunay Configuration B-Splines 85



The second possibility, which is also due to Neamtu [Nea01b], is motivated by
a closer look on Theorem 4.17: Due to the arguments of the polar form in each
summand, the coefficients only depend on the interior knots of the configurations.
Therefore, configurations with the same collection of interior knots always have
the same coefficient when representing a specific polynomial. This undesirable
redundance can be avoided by identifying all configurations with the same set of
interior knots via an equivalence relation

≃ :=
{

(K, K ′) ∈ Km(X) × Km(X)
∣∣∣ I(K) = I

(
K ′)}.

In this case, however, the identified simplex splines are essentially different (i.e., not
equal up to normalization). Hence, the corresponding simplex splines have to be
summed up in order to maintain the validity of Theorem 4.17. Formally, we define
the corresponding spline space as follows [Nea01b]:

Definition 4.21 (Pooled Delaunay configuration B-splines). Let d ∈ N+, m ∈ N0,
and let X ⊆ Rd satisfy the weak conditions. Let Im(X) := {I(K) | K ∈ Km(X)}
denote the set of all occurring collections of interior knots. Then, for each I ∈ Im(X),
one can define the set of Delaunay configurations identified with I as

KI,m(X) :=
{

K ∈ Km(X)
∣∣∣ I(K) = I

}
.

The space of pooled Delaunay configuration B-splines (pooled DCB-splines) S ′
m,X can

be defined as follows:

S ′
m,X :=





∑

I∈Im(X)
aI


 ∑

K∈KI,m(X)
N(· | K)



∣∣∣∣∣ aI ∈ R, I ∈ Im(X)



.

In this case, the basis candidate functions are given as

B′
m,X :=





∑

K∈KI,m(X)
N(· | K)

∣∣∣∣∣ I ∈ Im(X)



.

◀

An example for the pooling of Delaunay configurations according to ≃ and the
resulting linear combination of simplex splines is presented in Figure 4.13. Note
that the above definition is not reasonable in the case m = 0 as, in this case, the
Delaunay configurations have no interior knots and, thus, have the same collection of
interior knots. Hence, the spline space would only contain the constant one-function
(when ignoring the inadequate definition of simplex splines at the discontinuities).
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(a) Four configurations (orange) have the same interior knot
and, thus, are identified. The shaded region (blue) refers
to the support of the corresponding sum of normalized

simplex splines.

−1
0

1 −1

0

1
0

0.5

1

(b) The sum of the normalized simplex splines generated by the four pooled
Delaunay configurations

Fig. 4.13: Example of the pooling of Delaunay configurations for d = 2, m = 1. The
additional knots have been added in order to avoid that the pooling is incomplete
due to an inadequate knot set.

Although this issue is not addressed in [Nea01b], a more reasonable convention
would be to consider all Delaunay configurations as different with respect to ≃ for
m = 0. In particular, one has S0,X = S ′

0,X with this interpretation.

The nonpooled DCB-splines are exactly as comprehensive as the span of all simplex
splines associated with Delaunay configurations of the given degree since ∼ only
identifies functions that are equal to each other up to a constant factor. On the
contrary, the relation ≃ pools different simplex splines, which is why the pooled
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DCB-splines are more restrictive and, therefore, are less ample than nonpooled
DCB-splines [Nea01b, p. 382].

The term DCB-splines has been introduced in [Cao+09] and, since then, has been
used in a couple of publications [Cao+12; Zha+17; Cao+19], which is why we
also use it here. However, no distinction has been made between the pooled and
the nonpooled variant. For example, [Cao+09] and [Cao+12] use the nonpooled
variant, whereas [Zha+17] employs pooled basis candidate functions. For the results
in this thesis, we will state explicitly which spline space is considered.

For the linear combinations of simplex splines employed as basis candidate functions
in the space of pooled DCB-splines, the term multivariate B-spline is established in
[Nea01b]. However, we will refrain from using this term in the context of multivari-
ate basis candidate functions since it is used frequently in literature whenever an
approach seems to provide an appealing spline space similar to univariate B-splines
and since little is known about the nature of the occurring linear combinations
of simplex splines, although they reduce to the usual univariate B-splines when
considered in one dimension as no pooling happens in that case. In order to avoid
confusions, we will stick to the term pooled simplex spline or pooled basis candidate
function.

4.3.7 DCB-Splines and the Fundamental Problem

The overall goal of this chapter is the definition of a multivariate spline space that is
a solution to the Fundamental Problem (see Subsection 4.1.2). According to Neamtu
[Nea01b, p 381ff], both nonpooled and pooled DCB-splines provide such a solution.
We recall the specific requirements. To that end, let d ∈ N+, m ∈ N0, and let X ⊆ Rd

be a knot set satisfying the strong conditions.

(A) Each simplex spline associated with a Delaunay configuration is a piecewise
polynomial of degree m on each region bounded but not intersected by convex
hulls of subsets of d different knots. Since each spline is a (possibly infinite)
linear combination of such simplex splines, both nonpooled and pooled DCB-
splines satisfy Requirement (A) of the Fundamental Problem. The set A in the
formulation of this requirement can be specified as follows:

A =
⋃

K∈Km(X)

⋃

L⊆U(K)
|L|=d

conv(L).
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(B) We assume X to be in general Delaunay position and, therefore, also in
general position, as specified by Definition 3.18. Hence, all simplex splines
defined with respect to m + d + 1 knots of X are (m − 1)-times continuously
differentiable. In particular, this holds true for simplex splines associated with
Delaunay configurations and, thus, also for arbitrary linear combinations of
such simplex splines. Hence, both spline spaces satisfy Requirement (B):

Sm,X ⊆ Cm−1(Rd), S ′
m,X ⊆ Cm−1(Rd).

(C) Theorem 4.19 ensures that the (possibly infinite) span of all simplex splines
generated by Delaunay configurations of degree m contains all polynomials of
degree up to m. By construction, this also holds true for both spline spaces,
i.e.,

Πm(Rd) ⊆ Sm,X , Πm(Rd) ⊆ S ′
m,X ,

which ensures Requirement (C).

(D) It has been claimed that Requirement (D), which states that the spline space
should be locally finite-dimensional, follows from “the local nature of Delaunay
configurations” [Nea01b, p. 381]. The provided reference [Nea07] (“in prepa-
ration” at that time and published some years later), however, concentrates
on the proof of Theorem 4.17 and contains no explicit results on this topic.
Hence, a proof of that property has not been given so far to the best of our
knowledge. We will deal with this issue in detail in Chapter 5.

(E) Requirement (E) states that, at each point, all but a finite set of basis candidate
functions should vanish. This is closely related to the previous requirement
and will also be dealt with in Chapter 5. Note that, for m = 0, this property
directly follows from the fact that the Delaunay triangulation tessellates Rd.

(F) Since each simplex spline is supported on the convex hull of its defining knots,
each nonpooled basis candidate function has compact support. For pooled
basis candidate functions, however, it could be possible that an infinite number
of simplex splines is pooled, possibly yielding an unbounded support. For
knot sets satisfying the strong conditions, we will see in Corollary 5.30 that
the pooling involves only a finite number of simplex splines, though. Under
this premise, also pooled basis candidate functions feature a compact support.
Furthermore, it follows by construction of Sm,X and S ′

m,X , respectively, that
each spline can be represented as (possibly infinite) linear combination of
basis candidate simplex splines, which establishes Requirement (F).

4.3 Delaunay Configuration B-Splines 89



(G) It has been stated in [Nea01b, p. 381ff] that the basis candidate functions
spanning Sm,X and S ′

m,X are linearly independent after identifying redundant
configurations via ∼ and ≃, respectively. However, also in this case, a proof
has been provided neither in [Nea01b] nor in any other publication so far
to the best of our knowledge. In Section 7.2, we will answer the question of
linear independence negatively for the nonpooled spline space Sm,X .

(H) Requirement (H) of the Fundamental Problem ensures that the construction
yields the ordinary univariate spline space when considering the case d = 1.
In Remark 4.11, we have noted that Delaunay triangles in one dimension are
the pairs of consecutive knots. It is easy to see that Delaunay configurations of
degree m reduce to sets of m + 2 consecutive knots for d = 1. Furthermore,
univariate simplex splines are just (potentially renormalized) B-splines, which
immediately yields that the space of simplex splines associated with Delaunay
configurations of degree m equals the usual space of univariate splines in this
case. As there are no redundancies in the set of Delaunay configurations for
d = 1, i.e., each equivalence class of ∼ and ≃ consists of exactly one element,
the same holds true for both nonpooled and pooled DCB-splines. We refer to
[Nea01b, p. 380] for more details on this topic.

We have defined two different spline spaces now, which both seem to provide a
solution to the Fundamental Problem, according to [Nea01b]. But which one should
be preferred?

The pooled approach avoids redundant summands in Identity 4.6 [Nea01b, p. 382].
Furthermore, it has been stated in [Nea01b, p. 383] that the spline space contains
exactly the functions that are representable by means of Theorem 4.19, whereas the
nonpooled version contains other functions, too. This is the reason why the pooled
variant is favored in [Nea01b] and, therefore, is also more common in literature
(see Subsection 4.3.8).

However, the pooled approach has the drawback that its basis candidate functions are
no simplex splines but only (positive) linear combinations of simplex splines. Little
is known about these linear combinations as, to the best of our knowledge, there
is no publication so far explicitly dedicated to the investigation of their properties.
Questions naturally arising are, for example, the following: Is there a lower or
upper bound for the number of simplex splines pooled by such a linear combination?
Could a linear combination yield a basis candidate function with a support whose
interior is not connected? Is there always a unique maximum? Moreover, “there is no
associated recurrence relation relating these functions to basis [candidate] functions
of lower degree” [CLR13, p. 1669]. Such recurrence relations are very important
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not only for theoretical but also for computational considerations. Neamtu defines
the nonpooled DCB-splines only implicitly in [Nea01a] and the subsequent paper
[Nea07], whereas he does not mention the pooled DCB-splines at all. However, at
least for the latter publication, this could be due to the fact that he concentrates on
the proof of Theorem 4.17.

Due to all these open questions involved when considering pooled DCB-splines, we
think that the nonpooled variant, whose basis candidate functions are just the well-
known simplex splines, is a better starting point for our considerations. However,
our results partially also apply to the pooled spline space. We will leave a note
hereof at the respective places and when summarizing our results in Section 8.1.

4.3.8 Related Work

So far, DCB-splines can rarely be found in practical applications. This may be
mainly due to the fact that, on the one hand, there are both computational and
numerical issues when computing simplex splines (see Section 8.2) and, on the other
hand, the combinatorial nature of Delaunay configurations is very complex and not
thoroughly understood. Nevertheless, pooled DCB-splines are used in [Han+08]
to describe the deformation field in the process of parametric image registration.
Nonpooled DCB-splines have been employed in [Cao+09] for the reconstruction of
a smooth surface based on a closed triangulated surface of arbitrary topology. This
approach requires to split the surface into several charts, which are topologically
equivalent to a disk, and then to blend the pieces together. Later, [Cao+12] defined
nonpooled DCB-splines directly on the sphere without the necessity of splitting and
blending. Neamtu’s approach and the idea of Delaunay configurations have been
generalized by Liu and Snoeyink [LS07b; Liu08] by defining generalized Delaunay
configurations. We will briefly introduce their approach in Section 4.4.3. In [DGN05],
Dembart, Gonsor, and Neamtu deal with bivariate pooled DCB-splines of degree two
in order to solve certain integral equations: They consider the approximation of a
given function using pooled DCB-splines and sketch an algorithm for the efficient
computation of Delaunay configurations in this special case. Furthermore, they
investigate degenerate knot sets with a focus on repeated knots at the boundary of
the convex hull of the knot set (see Subsection 8.2.2 for more details).

Although the concept of Delaunay configurations appeared implicitly in several
publications dealing with higher-order Voronoi diagrams, its study as a separate
entity by Neamtu seemed to be new [Nea01b, p. 377f]. Shortly after Neamtu’s
construction, [GHK02] introduced Higher-order Delaunay triangulations in order to

4.3 Delaunay Configuration B-Splines 91



improve the quality of Triangulated Irregular Networks in Geographic Information
Systems. These triangulations allow triangles with up to k ∈ N0 knots in the interior
of their circumcircle and, therefore, provide more flexibility than the Delaunay trian-
gulation. Hence, they consist of triangles associated with Delaunay configurations of
degree up to k, which reveals a close relationship between both concepts. [SK09]
and [Sil09] consider higher-order Delaunay triangulations of polygons and, as part
of that, develop an algorithm for the computation of all Delaunay triangles up to the
given order k, which, according to [Han+08], can also be employed for the efficient
computation of Delaunay configurations.

4.4 Other Approaches

In the current chapter, we have given an overview of some important spline spaces
using simplex splines so far. However, there are many other approaches, some of
which we will name in this section.

4.4.1 Tensor Product Splines

One of the most popular approaches to multivariate splines are tensor product
splines. For some d ∈ N+, assume that we have the information required for a
univariate spline space for each dimension. Namely, this is the spline degree mi ∈ N0

and the nondecreasing knot sequence Xi = (xi,0, . . . , xi,mi+ni) ∈ Rmi+ni+1, ni ∈ N+,
for each i ∈ {1, . . . , d}.

The Cartesian product

X :=
d×

i=1
Xi

of all knot sequences forms a d-dimensional grid of knots. Furthermore, using a
tensor product construction, we can define higher dimensional analogues of B-splines
as (

d⊗

i=1
Bji,mi,Xi

)
: Rd → R, (t1, . . . , td) 7→

d∏

i=1
Bji,mi,Xi(ti),

where ji ∈ {0, . . . , ni − 1} for each i ∈ {1, . . . , d} [Sch07, p. 486]. These tensor
product B-splines span a multivariate spline space on the grid X, which inherits many
of the appealing properties known from univariate splines. For instance, the tensor
product B-splines have compact support, which is a rectangle or cuboid now instead
of a line segment, and form a partition of unity [Sch07, p. 487]. Additionally, they
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(a) Original knotset before
refinement

(b) Refinement along
orthogonal direction

(c) Refinement along diagonal
direction

Fig. 4.14: Refining the knot set of tensor product splines. The original knots are depicted in
black, whereas the inserted knots are displayed in orange. The blue area specifies
the region in which a refinement is desired.

are polynomials of degree at most mi, i ∈ {1, . . . , d}, in the corresponding direction
on each of the cuboids generated by neighboring knots [Sch07, p. 485].

However, tensor product splines have some drawbacks, which limit their suitability
to certain applications. Two of the most severe problems are directly related to the
simplicity of the tensor product structure:

1. The grid of knots X always has a rectangular structure. If one tries to approxi-
mate certain data using tensor product splines, the data also has to exhibit this
special structure, i.e., the data points must form the mesh points of a rectangu-
lar grid. Otherwise, without further adaptions, no efficient approximation or
interpolation is possible [Boo01, p. 310].

2. If the knot grid of a tensor product spline function shall be refined in a certain
region in order to enhance the local approximation quality, it is not possible
to add single knots. Instead, whole (d − 1)-dimensional layers of knots have
to be inserted. Whereas this may be feasible if the features necessitating
the refinement are aligned with the directions of the tensor product grid,
improving the approximation quality for diagonal features leads to a global
refinement of the knot grid, as presented in Figure 4.14 [Boo01, p. 310].

Although these drawbacks limit the applicability of tensor product splines, their com-
putational efficiency [Boo01, p. 291] causes an enormous popularity. An extension
of tensor product splines are the Non-Uniform Rational B-Splines (NURBS). They
can be employed, for example, in Isogeometric Analysis (IgA), which is an approach
for integrating the solving of Partial Differential Equations (PDEs) into CAGD-tools
[CHB09].
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4.4.2 Polyhedral Splines and Box Splines

In [BH82b], de Boor and Höllig introduced a generalization of simplex splines, where
the high-dimensional object that is projected on Rd is not restricted to simplices but
can be an arbitrary bounded convex polytope instead, which is why these splines are
called polyhedral splines. Further information on polyhedral splines can be found,
for example, in [Boo93] and [Höl86].

One special type of polyhedral splines are the box splines introduced by [BD83],
where the high-dimensional object is a parallelepiped. Properties as well as recur-
rence relations of box splines are given in [BH82a]. According to [Höl86], box
splines can be viewed as generalization of univariate cardinal splines. For details
on box splines, we refer to the book by de Boor, Höllig, and Riemenschneider
[BHR93].

4.4.3 Generalized Delaunay Configurations

Liu and Snoeyink [LS07b; Liu08] distilled the two core ingredients in Neamtu’s proof
of Theorem 4.17, namely that it starts with a triangulation of a given set of knots
for degree zero and that configuration sets of successive degrees exhibit a certain
relation called facet-matching property. They provide the link triangulation procedure
for the iterative construction of configurations of a certain degree. In each iteration,
certain polygons have to be triangulated, and the specific choice of triangulation
influences the resulting configurations. When starting with a Delaunay triangulation
of the knots and performing a Delaunay triangulation of each polygon, one obtains
Neamtu’s Delaunay configurations. Otherwise, the resulting configurations are called
generalized Delaunay configurations. As the link triangulation procedure ensures
the facet-matching property, one can use a generalized version of Theorem 4.17 to
obtain a Marsden identity for all spline spaces generated in this way. However, the
link triangulation procedure can only be defined in two dimensions, and Liu and
Snoeyink could prove the correctness only for a degree of at most three. Recently,
Schmitt [Sch19] could show that the procedure works for arbitrary degrees.

Due to the freedom of choice with respect to the triangulations, one has certain con-
trol over the flexibility of the resulting spline space. According to [Liu08, p. 96] and
[Zha+17], the result when approximating anisotropic functions or sharp features
can be improved by using properly aligned generalized Delaunay configurations that
are no ordinary Delaunay configurations.
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Very recently, Barucq, Calandra, Diaz, and Frambati [Bar+22] used fine zonotopal
tilings to generalize the link triangulation procedure to higher dimensions. Due to
their combinatorial approach, they can also handle finite and degenerate knot sets.
Furthermore, they provide algorithms for these (generalized) spline spaces, which
can act as starting point for practical applications of these spaces.

4.4.4 Splines on Triangulations

In this chapter, we started with a certain kind of functions, namely simplex splines,
and tried to choose an appropriate collection of basis candidate functions that spans
a reasonable spline space with appealing properties. However, one can also proceed
vice-versa and start with a certain space of piecewise polynomials. Afterwards, one
can try to construct a compactly supported basis and derive properties [Nea01b,
p. 358]. These spline spaces are frequently constructed on refinements (“splits”)
of a certain triangulation, such as the Clough-Tocher split [CT66] and the Powell-
Sabin split [PS77]. The corresponding Macro-element spaces, which emerge from
Finite Element Methods, are presented for example in [LS07a]. For an application
of Powell-Sabin splines to the Isogeometric Analysis of certain PDEs, we refer to
[Spe+12]. Another approach based on simplex splines is given in [CLR13].

However, according to [Nea01b, p. 358], a partitioning of Rd ensuring the optimal
smoothness of the splines (see Requirement (B) of the Fundamental Problem) may
be very complicated. There are situations in which the ordinary space of piecewise
polynomials on triangulations or other approaches yielding a simple partitioning
do not contain any nontrivial spline that at the same time is optimally smooth
and has compact support. Hence, these approaches in general do not satisfy both
Requirements (B) and (F) at the same time and, therefore, are no solution to the
Fundamental Problem [Nea01b, p. 358]. For an extensive study of this kind of
piecewise polynomials on triangulations, we refer to the book on this subject by Lai
and Schumaker [LS07a] and the references therein.
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Local Finiteness 5
„Der Worte sind genug gewechselt,

Laßt mich auch endlich Taten sehn;

— Johann Wolfgang von Goethe
Faust, Part One

In this chapter, we investigate the local finiteness property of DCB-splines, as intro-
duced in our first research question. The essential consequence of this property is
the fact that the splines spaces have a locally finite structure, even when considering
infinite knot sets. This is also part of the requirements stated in the Fundamental
Problem. Therefore, we start by recalling these requirements, formulating the local
finiteness property, and settling reasonable assumptions on the knot set. Afterwards,
we analyze the structure of appropriate knot sets and, finally, give a proof that the lo-
cal finiteness property indeed holds true for both pooled and nonpooled DCB-splines
under suitable conditions. Subsequently, we list several appealing consequences of
this property, which in particular include the affected requirements of the Funda-
mental Problem, and close the chapter by formulating a practical criterion that can
be used to check if the conditions on the knot set required for the local finiteness
property to hold true on some compact region are satisfied.

5.1 Preliminaries

In the following subsection, we will formulate the local finiteness property. Subse-
quently, we will investigate which requirements on the knot set are necessary for the
local finiteness property to hold true.

5.1.1 Problem Statement

DCB-splines have been constructed in order to provide a solution to the Fundamental
Problem stated by Neamtu (see Subsection 4.1.2). Requirements (D) and (E) expect
the spline space to exhibit a locally finite structure. More precisely, the following two
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conditions are required to hold true for all spline degrees m ∈ N0 and appropriate
knot sets X ⊆ Rd, d ∈ N+:

(D) The spline spaces Sm,X and S ′
m,X are locally finite-dimensional, i.e.,

dim Sm,X |Ω < ∞, dim S ′
m,X |Ω < ∞ for all compact Ω ⊆ Rd.

(E) At each point t ∈ Rd, only a finite number of basis candidate functions in Bm,X

and B′
m,X , which are the basis candidates for the spline spaces Sm,X and S ′

m,X ,
respectively, are nonzero, i.e.,

∣∣∣
{

B ∈ Bm,X

∣∣∣ t ∈ supp B
}∣∣∣ < ∞,

∣∣∣
{

B′ ∈ B′
m,X

∣∣∣ t ∈ supp B′
}∣∣∣ < ∞.

It was claimed that these properties follow from “the local nature of Delaunay
configurations” [Nea01b, p. 381]. There was a reference to the publication [Nea07],
which was “in preparation” at that time and was published some years later. However,
to the best of our knowledge, neither [Nea07] nor any other publication contains
any explicit results on the topic of local finiteness. Hence, we consider it worthwhile
to spend the present chapter on these properties.

If X is finite, it is easy to see that both properties hold true as Delaunay configurations
are specified uniquely by their boundary and interior knots and both collections are
subsets of X.

Furthermore, in the case m = 0, the support of a basis candidate function is
just the convex hull of its corresponding Delaunay triangle / simplex. Hence,
Requirement (E) follows directly from the fact that Delaunay triangles tessellate
conv(X). However, even if m = 0, it is not immediately clear that Requirement (D)
holds true, as will be shown in Example 5.1.

The main result of this chapter is Theorem 5.29, which states that, for any compact
Ω ⊆ Rd and for any suitable knot set X ⊆ Rd, whose properties will be settled in
the following subsection, there is only a finite number of Delaunay configurations of
some given degree m ∈ N0 whose circumcircles have a nonempty intersection with
Ω, i.e., ∣∣∣

{
K ∈ Km(X)

∣∣∣ B(B(K)) ∩ Ω ̸= ∅
}∣∣∣ < ∞.

In the following, this will be referred to as the local finiteness property. Require-
ments (D) and (E) then follow as corollaries for both pooled and nonpooled DCB-
splines.
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The local finiteness property is utterly important not only for practical but also for
theoretical considerations: In the definitions of both spline spaces, we allow an
infinite number coefficients to be nonzero, whereas the span is usually restricted
to finite linear combinations of basis candidate functions. Since every simplex
spline has compact support, these infinite linear combinations are inevitable if one
is interested in representing globally supported functions, such as polynomials.
Immediately arising from the consideration of infinite sums is the question of
convergence. Moreover, one is interested in the (possibly infinite) number of
(nonnegative) basis candidate functions contributing to the function value at a
certain position. Requirement (E) ensures that, for each point, only a finite set of
functions is nonzero and, therefore, the number of nonzero summands is finite.
Moreover, Requirement (D) suggests a certain uniformity of this property: For
an arbitrary compact region Ω, no more than a finite number of basis candidate
functions have to contribute to the value of a spline function anywhere inside of Ω.

The influence of the local finiteness property on practical aspects can be seen
easily. Computers can only handle finite objects and, therefore, cannot evaluate
infinite sums. Requirement (E) ensures that the evaluation of a spline function
at a specific position t ∈ Rd involves only a finite number of functions. However,
in order to decide which functions may contribute to the function value at t, it is
necessary to compute all Delaunay configurations overlapping t, which, consequently,
should be a finite set, too. This assumption is sharper than Requirement (E) since,
for d > 1, the support of a basis candidate function is a proper subset of the
circumcircle generated by the corresponding Delaunay configuration. The local
finiteness property also comprises this sharper requirement, though. Furthermore,
it follows from Requirement (D) that it is not necessary to handle infinite objects,
even when considering infinite knot sets, as long as one restricts considerations on a
compact and, thus, bounded region.

5.1.2 Prerequisites

The goal of this subsection is to determine suitable assumptions on the knot set
X ⊆ Rd, d ∈ N+. In Neamtu’s Theorem 4.17 regarding DCB-splines, we assumed
the knots to satisfy the strong conditions, as specified by Definition 4.15, i.e., to be
in general Delaunay position, to be locally finite, and to cover the whole space Rd. It
would be desirable that these assumptions are sufficient to prove the local finiteness
of DCB-splines. However, in order to keep the results as general as possible, we will
check if one or several of these assumptions can be dropped without loosing the
validity of the local finiteness property.
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As we can define Delaunay configurations only with respect to knot sets in general
Delaunay position, the corresponding assumption on X is inevitable. It is not very
strong, however, since general Delaunay position can be enforced for any knot set by
arbitrarily small perturbations of certain knots. In particular, it is not a contradiction
to the Fundamental Problem as we expect Requirements (D) and (E) to hold true
only for almost every knot set (see Subsection 4.1.2).

We defined Delaunay configurations as a generalization of Delaunay triangles, which,
in some sense, encode neighborhood relations. Therefore, it seems reasonable
to expect that, also in the case of Delaunay configurations, the structure of the
corresponding spline space resembles the local neighborhood of knots within a
certain region. Hence, if the knot set exhibits an accumulation point, also the set of
Delaunay configurations can be expected to be infinitely dense in that region. On
the contrary, a locally finite knot set can be expected to give rise to a locally finite set
of Delaunay configurations. This justifies the assumption on X to be locally finite,
i.e.,

|X ∩ Ω| < ∞ for all compact Ω ⊆ Rd.

The assumption conv(X) = Rd, however, does not seem to be necessary at first sight
because there is no immediate reason for the local finiteness property to hold true
only for knot sets without boundary. This consideration is disproved by the following
example:

Example 5.1. Let d = 2, and consider the degrees zero and one. Define

X0 := {x1, x2, . . . } ∪ {y1, y2, . . . } ∪ {z0}, X1 := X0 ∪ {z1},

where

xi :=
(

2i − 1,
1

2i−1

)⊺

, yi :=
(

2i,
1

2i−1

)⊺

for all i ∈ N+,

z0 := (0, 0)⊺, z1 :=
(

0, −1
2

)⊺

.

The knots are depicted in Figure 5.1. We show in the upcoming Lemmas 5.2 and 5.3
that, for all i, j ∈ N+ with i ̸= j, one has

xj , yj ̸∈ Bi := B(xi, yi, z0). (5.1)

Furthermore, Lemma 5.4 provides that

z1 ∈ Bi for all i ∈ N+. (5.2)
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Fig. 5.1: Counterexample for the local finiteness property when dropping the assumption
conv(X) = Rd. The tuples (xi, yi, z0), i ∈ N+, give rise to an infinite set {Bi | i ∈
N+} of overlapping circles corresponding to Delaunay configurations. Due to
computational limitations, we only display a finite subset of these circles, namely
those for i ∈ {1, . . . , 3}. The sets Q2,1, . . . , Q2,4 as well as the points u and w2 are
used in Example 5.1 and the proofs of Lemmas 5.2 and 5.5.

Consequently,

B(z0, xi, yi) ∩ X0 = ∅ and B(z0, xi, yi) ∩ X1 = {z1} for all i ∈ N+.

To be able to compute Delaunay configurations for X0 and X1, respectively, we have
to ensure that both sets are in general Delaunay position. As it is necessary to check
every combination of three knots for collinearity and every combination of four
knots for cocircularity, the proofs would be very tedious. Instead, we give evidence
in Lemma 5.5 that, even if some combination of knots is collinear or cocircular, one
of these knots can be relocated arbitrarily within some nonempty, open, bounded
neighborhood U of the original position without violating any of the statements
in (5.1) and (5.2). Considering a relocation of xi or yi for i ∈ N+ is sufficient
since any combination of three or four knots contains at least one of these knots.
The intersection of U with the union of all lines spanned by any two knots and of
all circumcircles induced by any combination of three knots is a null set as it is a
countable union of null sets and due to the σ-subadditivity of the Lebesgue measure.
Since the Lebesgue measure of U as a nonempty, open set is positive, one can be
sure to find a suitable relocation within any arbitrarily small neighborhood around
the original position.
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As a consequence, we can assume that

Ki := ({z0, xi, yi}, ∅) ∈ K0(X0) and K ′
i := ({z0, xi, yi}, {z1}) ∈ K1(X1)

for all i ∈ N+. These configurations are also displayed in Figure 5.1. Note that

K ′
i ̸∼ K ′

j but K ′
i ≃ K ′

j for all i, j ∈ N+, i ̸= j.

In particular, z0 is a boundary knot of both an infinite set of configurations of degree
zero and of an infinite set of configurations of degree one. Likewise, z1 is an interior
knot of an infinite number of Delaunay configurations of degree one.

Moreover, the point u := (1/4, −1/4)⊺ is in the support of each simplex spline gener-
ated by the Delaunay configurations K ′

i, i ∈ N+, of degree one, i.e.,

u ∈ supp M(· | z0, z1, xi, yi) for all i ∈ N+,

which can be seen as follows: Let i ∈ N+, and consider the tuple Yi := (z0, z1, yi)
of knots in general position. The barycentric coordinates of u with respect to Yi

are positive since one can apply Cramer’s rule, as shown in Remark 3.7, with the
following determinants:

d(Yi) = 2i−1 > 0, d0(u | Yi) = 2i−1(2i − 1/2
)− 1

2i+1 > 0,

d1(u | Yi) = 22i−1 + 1
2i+1 > 0, d2(u | Yi) = 1

8 > 0.

As a consequence,

u ∈ conv(z0, z1, yi) ⊆ conv(z0, z1, xi, yi) = supp M(· | z0, z1, xi, yi)

for all i ∈ N+, according to Proposition 3.17.

This example can be generalized to arbitrary degrees by adding additional points like
z1 in the nonempty intersection of all circumcircles. Note that we have conv(X0),
conv(X1) ⊂ R2 as there is at most one knot in the lower half plane. On the contrary,
if there would be more than m ∈ N0 knots in that half plane, each of these knots
would be contained in the balls Bi for sufficiently large i ∈ N+. Hence, only a finite
subset of the triples {(z0, xi, yi) | i ∈ N+} would give rise to circumcircles with m

knots in their interior. Thus, we would not have an appropriate infinite collection of
Delaunay configurations of degree m in that case, and therefore, the counterexample
would not work any more. ◀
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Example 5.1 leads to several interesting conclusions for DCB-splines with respect to
knot sets satisfying the weak conditions, as specified in Definition 4.16:

1. For all m ∈ N0, there may be compact regions that have a nonempty intersec-
tion with the support of an infinite number of basis candidate functions. This
can be seen, for instance, when considering B1/4(z0) in the previous example.
Since (at least for m = 0) the corresponding simplex splines are linearly in-
dependent, it follows that Requirement (D) does not hold true in general for
pooled and nonpooled DCB-splines.

2. For all m ∈ N+, there may be points in the support of an infinite number
of basis candidate functions, like u in the previous example, for instance.
Therefore, Requirement (E) does not hold true in general for nonpooled
DCB-splines and m ≥ 1.

3. For all m ∈ N0, there may be points in the circumcircles of an infinite number
of Delaunay configurations of degree m, like u in the previous example.

4. Since K ′
i ≃ K ′

j for all i, j ∈ N+ in the previous example, i.e., all these config-
urations are in the same pool, it follows that, without further assumptions,
the pooling of simplex splines for the construction of pooled basis candidate
functions does not necessarily yield finite linear combinations. Therefore, a
basis candidate function can be an infinite sum of simplex splines, which does
not even have bounded support in this example.

As a consequence, all properties that we have hoped to gain from the local finiteness
property do not hold true in general if we do not require the knot set to satisfy
conv(X) = Rd. We will close the section with the pending Lemmas regarding the
previous example.

Lemma 5.2. For all i, j ∈ N+ with j < i, one has xj , yj ̸∈ Bi.

Proof. Let i, j ∈ N+ with j < i. We define the sets

Qi,0 :=
{

t ∈ R2
∣∣∣∣ t1 < 2i − 1, t2 <

1
2i−1

}
,

Qi,1 :=
{

t ∈ R2
∣∣∣∣ t1 < 2i − 1, t2 >

1
2i−1

}
,

Qi,2 :=
{

t ∈ R2
∣∣∣∣ t1 > 2i − 1, t2 <

1
2i−1

}
,

Qi,3 :=
{

t ∈ R2
∣∣∣∣ t1 > 2i − 1, t2 >

1
2i−1

}
.
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One has z0 ∈ Qi,0 ∩ Bi by definition. Furthermore, we consider the point

wi := 1
2(xi + yi) =

(
2i − 1

2 ,
1

2i−1

)
,

which lies on the line separating Qi,2 and Qi,3. Since Bi is strictly convex and
xi, yi ∈ ∂Bi, it follows that wi is an interior point of Bi. Hence, one can find an
ϵ > 0 such that Bϵ(wi) ⊆ Bi. Let

w′
i := wi − (0, ϵ/2)⊺ ∈ Qi,2 ∩ Bi and w′′

i := wi + (0, ϵ/2)⊺ ∈ Qi,3 ∩ Bi.

We assume that Qi,1 ∩ Bi ̸= ∅ and choose an arbitrary v ∈ Qi,1 ∩ Bi. Consequently,
there is one of the points z0, v, w′

i, w′′
i in each of the sets Qi,0, . . . , Qi,3. Therefore, we

can express xi, which is the point separating the four sets Qi,0, . . . , Qi,3, as convex
combination of z0, v, w′

i and w′′
i . As these points lie in Bi, it follows from the strict

convexity of Bi that xi is an interior point of Bi, which is a contradiction. As a
consequence, one has

Qi,1 ∩ Bi = ∅ for all i ∈ N+. (5.3)

In particular, due to the fact that xj , yj ∈ Qi,1 for j < i, this implies that xj , yj ̸∈ Bi

for all i, j ∈ N+ with j < i.

Lemma 5.3. For all i, j ∈ N+ with j > i, one has xj , yj ̸∈ Bi.

Proof. Let i, j ∈ N+ with j > i. The center of the circle Bi is given as

ci :=
(

2i − 1
2 ,

1
2i

+ 22i−2(1 − 2i)
)⊺

since it can be verified easily that

r2
i := ∥ci∥2 = ∥ci − z0∥2 = ∥ci − xi∥2 = ∥ci − yi∥2.

The claims xj , yj ̸∈ Bi are equivalent to ∥xj − ci∥2 − r2
i > 0 and ∥yj − ci∥2 − r2

i > 0.
Let k := j − i ≥ 1. Straightforward calculation yields

∥xj − ci∥2 − r2
i = 22j − 2i+j+1 − 2j + 2i+1 + 1

22j−2 −
1
2i + 22i−2 − 23i−2

2j−2 (5.4)

≥ 2k − 1
22i+2k

(
23i+k − 4

)
> 0.
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Consequently, xj ̸∈ Bi. The claim yj ̸∈ Bi is proved by similar calculations:

∥yj − ci∥2 − r2
i = 22j − 2i+j+1 + 2j + 1

22j−2 −
1
2i + 22i−2 − 23i−2

2j−2 > 0. (5.5)

Lemma 5.4. For all i ∈ N+, one has z1 ∈ Bi.

Proof. Let i ∈ N+. Then,

r2
i − ∥z1 − ci∥2 = 1

2i+2

(
−4 − 23i + 24i − 2i

)
≥ 1

4
(
2i − 1

)
≥ 1

4 , (5.6)

which in particular yields the stated claim.

Lemma 5.5. For each i ∈ N+, one can find open neighborhoods Uxi and Uyi around
xi and yi, respectively, such that, for all x′

i ∈ Uxi , y′
i ∈ Uyi and for any j ∈ N+, i ̸= j,

one has

xj , yj ̸∈ B(x′
i, yi, z0), z1 ∈ B

(
x′

i, yi, z0
)
, (5.7)

xj , yj ̸∈ B(xi, y′
i, z0), z1 ∈ B

(
xi, y′

i, z0
)
, (5.8)

x′
i, y′

i ̸∈ B(xj , yj , z0). (5.9)

Proof. Let i ∈ N+, and let ri, ci be defined as in Lemma 5.3. From (5.4) and (5.5),
it follows that

lim
j→∞

(
∥xj − ci∥2 − r2

i

)
= ∞ and lim

j→∞

(
∥yj − ci∥2 − r2

i

)
= ∞. (5.10)

In combination with (5.1), i.e., xj , yj ̸∈ Bi for all j ∈ N+ with j ̸= i, this yields

η1 := inf
j∈N+
j ̸=i

{
∥xj − ci∥2 − r2

i

}
> 0 and η2 := inf

j∈N+
j ̸=i

{
∥yj − ci∥2 − r2

i

}
> 0

since, otherwise, the sequence of distances would contain a subsequence converging
to zero, which would be a contradiction to (5.10). Furthermore, according to (5.6),
one has

η3 := ∥ci∥ − ∥z1 − ci∥ = ri − ∥z1 − ci∥ ≥
√

∥z1 − ci∥2 + 1/4 − ∥z1 − ci∥

>
√

∥z1 − ci∥2 − ∥z1 − ci∥ = 0.
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One can set

ϵ := 1
2 min

{√
min{η1, η2} + ∥ci∥2 − ∥ci∥, η3

}
> 0,

apply the triangle inequalities, and use the definitions of ϵ and η1 to obtain for any
c′

i ∈ Bϵ(ci) and for all j ∈ N+ with j ̸= i that

∥xj − c′
i∥ − ∥c′

i∥ ≥
∣∣∥xj − ci∥ − ∥ci − c′

i∥
∣∣− (∥c′

i − ci∥ + ∥ci∥
)

> ∥xj − ci∥ − ∥ci∥ − 2ϵ

≥ ∥xj − ci∥ − ∥ci∥ −
(√

η1 + ∥ci∥2 − ∥ci∥
)

≥ ∥xj − ci∥ −
√

∥xj − ci∥2

= 0.

Hence, one has xj ̸∈ B∥c′
i∥(c′

i). It follows analogously that yj ̸∈ B∥c′
i∥(c′

i). On the
contrary, one has

∥z1 − c′
i∥ − ∥c′

i∥ ≤ ∥z1 − ci∥ + ∥ci − c′
i∥ −

∣∣∣∥c′
i − ci∥ − ∥ci∥

∣∣∣

< ∥z1 − ci∥ − ∥ci∥ + η3

= 0,

and thus, z1 ∈ B∥c′
i∥(c′

i). Consequently, Relations (5.7) and (5.8) hold true if the
relocation from xi to x′

i or from yi to y′
i, respectively, causes a movement of the

center of Bi from ci to c′
i by a distance of less than ϵ.

To that end, let Hxi be the open half plane generated by the hyperplane aff(z0, yi)
such that xi ∈ Hxi , which is possible due to the affine independence of the knots
z0, xi, yi. Analogously, let Hyi be the open half plane generated by aff(z0, xi) with
yi ∈ Hyi . The maps

Hxi → R2, x′
i 7→ cen

(
z0, x′

i, yi
)

and

Hyi → R2, y′
i 7→ cen

(
z0, xi, y′

i

)

are continuous on Hxi and Hyi , respectively, where cen denotes the center of the
circumcircle generated by the given points. Hence, one can find δxi,1 > 0 and
δyi,1 > 0 such that

∥ci − cen
(
z0, x′

i, yi
)∥ < ϵ for all x′

i ∈ Bδxi,1(xi),
∥ci − cen

(
z0, xi, y′

i

)∥ < ϵ for all y′
i ∈ Bδyi,1(yi),
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ensuring (5.7) for all x′
i ∈ Bδxi,1(xi) and (5.8) for all y′

i ∈ Bδyi,1(yi). In order to
establish (5.9), we reutilize the sets Qj,1 for j ∈ N+ from the proof of Lemma 5.2.
From xi, yi ∈ Qi+1,1, it follows that

inf
t∈Qc

i+1,1
∥xi − t∥ = min

{∣∣∣∣(2
i+1 − 1) − (2i − 1)

∣∣∣∣,
∣∣∣∣

1
2i−1 − 1

2i

∣∣∣∣
}

= min
{

2i,
1
2i

}
= 1

2i

and equivalently that

inf
t∈Qc

i+1,1
∥yi − t∥ = min

{
2i − 1,

1
2i

}
= 1

2i
.

By definition of Qi+1,1, one has Qi+1,1 ⊆ Qj,1 for all j ∈ N+ with j ≥ i + 1 and,
therefore, also Qc

j,1 ⊆ Qc
i+1,1. Consequently, one obtains together with (5.3) that

inf
t∈Bj

∥xi − t∥ ≥ inf
t∈Qc

j,1
∥xi − t∥ ≥ inf

t∈Qc
i+1,1

∥xi − t∥ = 1
2i

and analogously that

inf
t∈Bj

∥yi − t∥ ≥ 1
2i

for all j ∈ N+ with j ≥ i + 1. Together with Lemma 5.3 and the fact that the set of
remaining circles B1, . . . Bi−1 clearly is finite, this yields that there are δxi,2, δyi,2 > 0
such that, for each j ∈ N+ with j ̸= i, one has

x′
i ̸∈ Bj for all x′

i ∈ Bδxi,2(xi),
y′

i ̸∈ Bj for all y′
i ∈ Bδyi,2(yi).

Overall, we have shown that (5.7), (5.8), and (5.9) hold true for all x′
i ∈ Bδxi

(xi)
and y′

i ∈ Bδyi
(yi), where δxi := min{δxi,1, δxi,2} and δyi := min{δyi,1, δyi,2}, which

finishes the proof.

5.2 Density Cones

Unless stated otherwise, we will assume for the remainder of the current chapter
that d ∈ N+, m ∈ N0, and that X ⊆ Rd is a knot set satisfying the strong conditions
specified in Definition 4.15.

As starting point for a proof of the local finiteness property, we use the following
observation: Delaunay configurations with a large circumcircle correspond to areas
with only few knots. On the contrary, in areas with a high density of knots, the
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circumcircles of Delaunay configurations are smaller. Therefore, we can hope to find
a bound for the diameter of Delaunay configurations in some region, depending on
the local density of knots.

At first, we consider an arbitrary point t ∈ Rd. Without loss of generality, we can
assume t to be the origin since we can translate all knots in X accordingly. In
order to describe the density of knots in a certain direction around t, we consider
(infinite) cones with apex in t. To that end, we give a definition of cones now, which
is appropriate for our purposes, and show some basic properties. Afterwards, we
use these cones to describe the density of knots in a certain direction and prove
subsequently that one can find a bound independently of a specific direction.

5.2.1 Definition and Properties of Cones

Definition 5.6 (Cone). Let θ ∈ Rd with ∥θ∥ = 1 and a ∈ [0, 1]. The (infinite open)
cone (with aperture a and direction / axis θ) is defined as the set

Ca(θ) :=
{

w ∈ Rd\{0}
∣∣∣∣∣

⟨θ, w⟩
∥w∥ > 1 − 2a

}
.

◀

Remark 5.7. We can identify all unit vectors in Rd with elements of the sphere Sd−1.
Therefore, we will henceforth write “θ ∈ Sd−1” instead of “θ ∈ Rd with ∥θ∥ = 1”. ◀

Remark 5.8. Our definition of cones is consistent with the definition of cones in
linear algebra in the sense that, for any cone C, one has

λw ∈ C for all w ∈ C, λ ∈ R+,

which follows directly from our definition. ◀

For a visualization of a cone, we refer to Figure 5.2. In all figures of this chapter, we
parameterize the aperture of cones by an angle: For a cone with aperture a, this
angle is given as α := 2 arccos(1 − 2a).

Definition 5.9 (Convex cone). Let C be a cone. C is a convex cone if, for arbitrary
v, w ∈ C, one has v + w ∈ C. ◀
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Fig. 5.2: Visualization of a cone in two dimensions (d = 2), parameterized by α and θ. The
angle α corresponds to the aperture a, whereas θ denotes the direction / axis of
the cone.

In particular, convex cones are convex [Itô93, p. 333]. Next, we formulate an easy
criterion for cones in terms of our definition to be convex. Subsequently, we show
that our definition of cones yields open sets.

Proposition 5.10. Let θ ∈ Sd−1 and a ∈ [0, 1/2]. Then, Ca(θ) is convex.

Proof. Let v, w ∈ Ca(θ). Then, v ̸= −w since, otherwise, one would have

1 − 2a <
⟨θ, v⟩
∥v∥ < −1 + 2a

and, thus, the contradiction a > 1/2. By using the linearity of ⟨·, θ⟩ and the triangle
inequality, one can conclude that

⟨v + w, θ⟩
∥v + w∥ >

(1 − 2a)(∥v∥ + ∥w∥)
∥v + w∥ ≥ (1 − 2a)(∥v∥ + ∥w∥)

∥v∥ + ∥w∥ = 1 − 2a,

and therefore, v + w ∈ Ca(θ).

Proposition 5.11. Let θ ∈ Sd−1 and a ∈ [0, 1]. Then, Ca(θ) is open in Rd.

Proof. The interval (1 − 2a, 1] is open with respect to the topological space [−1, 1]
equipped with the topology inherited from R. Furthermore, the map

h : Rd\{0} → [−1, 1], w 7→ ⟨θ, w⟩
∥w∥
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is continuous. Thus, the inverse image Ca(θ) = h−1((1 − 2a, 1]) is open with respect
to the topological space Rd\{0} equipped with the topology inherited from Rd. Since
Rd\{0} is open in Rd, it follows with the properties of the induced topology that
Ca(θ) is open in Rd.

In our last topological result regarding cones, we specify the boundary of a cone.
We constrain the aperture to a ∈ (0, 1) and exclude the special cases a ∈ {0, 1}. For
a = 0, the cone is an empty set and, thus, has no boundary. The case a = 1 would
require special treatment and will be omitted for the sake of simplicity since it will
not be used throughout the thesis.

Proposition 5.12. Let θ ∈ Sd−1 and a ∈ (0, 1). Then,

∂Ca(θ) =
{

w ∈ Rd\{0}
∣∣∣∣∣

⟨θ, w⟩
∥w∥ = 1 − 2a

}
∪ {0} =: A.

Proof. “⊆” According to Proposition 5.11, Ca(θ) is open, i.e.,

∂Ca(θ) ⊆ Ca(θ)c =
{

w ∈ Rd\{0}
∣∣∣∣∣

⟨θ, w⟩
∥w∥ ≤ 1 − 2a

}
∪ {0}. (5.11)

Let

A′ :=
{

w ∈ Rd\{0}
∣∣∣∣∣

⟨θ, w⟩
∥w∥ < 1 − 2a

}
⊆ Ca(θ)c.

Since A′ = C1−a(−θ), one can apply Proposition 5.11 to obtain that A′ is open.
Consequently,

∂Ca(θ) ∩ A′ = ∂(Ca(θ)c) ∩ A′ = ∅,

yielding, together with (5.11), that ∂Ca(θ) ⊆ A.

“⊇” Let w ∈ A. We show that w ∈ ∂Ca(θ) by constructing a sequence of points in
Ca(θ) converging to w. Let

wk :=
(

1 − 1
k

)
w + 1

k
θ for all k ∈ N+.

It follows from a < 1 that wk ̸= 0 for each k ∈ N+. Consequently, one obtains
together with ∥θ∥ = 1 and ⟨θ, w⟩ = (1 − 2a)∥w∥ as well as 1 − 2a < 1 that

⟨θ, wk⟩
∥wk∥ ≥

(
1 − 1

k

)
⟨θ, w⟩ + 1

k(
1 − 1

k

)
∥w∥ + 1

k

>

(
1 − 1

k

)
(1 − 2a)∥w∥ + 1

k (1 − 2a)
(
1 − 1

k

)
∥w∥ + 1

k

= 1 − 2a.
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Therefore, wk ∈ Ca(θ) for all k ∈ N+. Since (wk)k∈N+ converges to w, this shows
that w ∈ ∂Ca(θ).

5.2.2 Density Description Using Cones

After these general preparations, we can now start to connect cones with the knot
set X. To that end, we associate a cone with each direction around the point of
consideration (which we assumed to be the origin). The aperture of the cone is
chosen such that less than a given number n ∈ N+ of knots lie inside the cone but
each cone with a larger aperture contains at least n knots. Hence, directions with
a dense distribution of knots correspond to cones with a small aperture, whereas
large apertures indicate sparse regions in the knot set.

Lemma 5.13. Let θ ∈ Sd−1 and n ∈ N+. The maximum

an(θ) := max A := max
{

a ∈ [0, 1]
∣∣∣ |Ca(θ) ∩ X| < n

}

is well-defined.

Proof. As C0(θ) = ∅, one has 0 ∈ A and, in particular, A ̸= ∅. Due to the fact that A

is bounded and nonempty, it has a supremum a := sup A ∈ [0, 1]. We assume that
a ̸∈ A. Then, |Ca(θ) ∩ X| ≥ n. Since

Ca′(θ) ⊆ Ca(θ) and |Ca′(θ) ∩ X| < n for all 0 ≤ a′ < a,

there is an x ∈ X satisfying

x ∈ Ca(θ) and x ̸∈ Ca′(θ) for all 0 ≤ a′ < a. (5.12)

Consequently,

â := 1
2 − ⟨θ, x⟩

2∥x∥ <
1
2 − 1

2(1 − 2a) = a.

Let ϵ := (a − â)/2. Then, ϵ > 0 and â + ϵ < a. Furthermore, x ∈ Câ+ϵ(θ) since, by
definition of â, one has

⟨θ, x⟩
∥x∥ = 1 − 2â > 1 − 2(â + ϵ),

which is a contradiction to (5.12). Hence, the assumption a ̸∈ A is false, and thus,
the maximum is well-defined.
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0

θ

S1

Ca3(θ) (θ)

a3(θ)

Fig. 5.3: Visualization of a cone (d = 2) in direction θ with aperture an(θ) for n = 3, as
specified by Lemma 5.13. The knots in X are indicated by green dots. The aperture
is chosen such that each cone with a larger aperture contains at least n knots.

Note that the consideration of open cones is essential for the preceding Lemma. The
maximum does not exist in general when considering closed cones. A cone that is
maximal in terms of Lemma 5.13 is depicted in Figure 5.3.

Corollary 5.14. For any θ ∈ Sd−1, n ∈ N+ and for all ϵ > 0, one has

∣∣∣Can(θ)+ϵ(θ) ∩ X
∣∣∣ ≥ n.

Proof. Assume that |Can(θ)+ϵ(θ)∩X| < n for an ϵ > 0, and define A as in Lemma 5.13.
Then, an(θ)+ϵ ∈ A. Due to an(θ)+ϵ > an(θ), this is a contradiction to the definition
of an(θ).

Corollary 5.15. Let θ ∈ Sd−1, n ∈ N+, and a ∈ [0, 1]. If |Ca(θ) ∩ X| ≥ n, there is an
ϵ > 0 such that |Ca−ϵ(θ) ∩ X| ≥ n.

Proof. Assume that the claim does not hold true. Then, for all ϵ > 0, one has
|Ca−ϵ(θ) ∩ X| < n. Hence, a ≤ sup A, where A is again defined as in Lemma 5.13.
The latter provides a ≤ max A, and therefore, a ∈ A, which yields the contradiction
|Ca(θ) ∩ X| < n. Consequently, the assumption is incorrect, and one can find a
suitable ϵ > 0.

We can use the assumption conv(X) = Rd now to ensure that an(θ) is strictly smaller
than 1/2 for every direction θ ∈ Sd−1 and for all n ∈ N+.
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Proposition 5.16. If X satisfies the strong conditions, then, for all θ ∈ Sd−1 and for
any n ∈ N+, one has an(θ) < 1/2.

Proof. Let n ∈ N+, and assume that there is a θ ∈ Sd−1 with an(θ) ≥ 1/2. The cone
C1/2(θ) is an open half space, which will be called H. Consequently,

n >
∣∣∣Can(θ)(θ) ∩ X

∣∣∣ ≥
∣∣∣C1/2(θ) ∩ X

∣∣∣ = |H ∩ X|. (5.13)

Without loss of generality, assume that H = {u ∈ Rd | u1 > 0}. Choose

x∗
1 :=





0 if H ∩ X = ∅,

max{x1 | x ∈ H ∩ X} otherwise,

which is well-defined due to the finiteness of H ∩ X, according to (5.13). Hence, for
all x ∈ X, one has x1 ≤ x∗

1 by definition of x∗
1 and H, respectively. Let t ∈ conv(X).

Then, there is a family (µx)x∈X in R satisfying

t =
∑

x∈X

µxx,
∑

x∈X

µx = 1, and µx ≥ 0 for all x ∈ X.

Consequently,
t1 =

∑

x∈X

µxx1 ≤
∑

x∈X

µxx∗
1 = x∗

1
∑

x∈X

µx = x∗
1,

and hence,
conv(X) ⊆ {u ∈ Rd | u1 ≤ x∗

1} ⊂ Rd,

which is a contradiction to conv(X) = Rd. Therefore, the assumption is incorrect,
yielding that one has an(θ) < 1/2 for all θ ∈ Sd−1.

5.2.3 Uniformity of Density Cones

The next goal is to find a global upper bound for an(·) that is independent of the
direction on the one hand and smaller than 1/2 on the other hand. Proposition 5.16
ensures that we can find an appropriate bound for any direction. As there is an
infinite number of directions, we cannot just take the maximum, though. It is clear
that 1/2 is an upper bound, but the following proposition ensures that we can do
better and find an upper bound which is strictly smaller than 1/2.

Proposition 5.17. Let n ∈ N+, and let X ⊆ Rd satisfy the strong conditions. There
is an a ∈ (0, 1/2) such that, for all θ ∈ Sd−1, one has |Ca(θ) ∩ X| ≥ n.
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Proof. Assume that the claim does not hold true. Then, for all a ∈ (0, 1/2), one can
find a θ ∈ Sd−1 such that |Ca(θ) ∩ X| < n. Since

1
2 − 1

4k
∈
(

0,
1
2

)
for all k ∈ N+,

there is a sequence (θk)k∈N+ in Sd−1 such that

∣∣∣C( 1
2 − 1

4k )(θk) ∩ X
∣∣∣ < n for all k ∈ N+. (5.14)

As Sd−1 is compact, this sequence has a convergent subsequence (θkℓ
)ℓ∈N+ with limit

θ∗ ∈ Sd−1. Proposition 5.16 provides that

a′ := max
{

a ∈ [0, 1]
∣∣∣ |Ca(θ∗) ∩ X| < n

}
<

1
2 .

Let a∗ := a′/2 + 1/4. Then, one has a′ < a∗ < 1/2. Thus, Corollary 5.14 yields

|Ca∗(θ∗) ∩ X| ≥ n. (5.15)

Let ϵ := 1/2 − a∗ > 0. Since (θkℓ
)ℓ∈N+ converges to θ∗, it follows from the continuity

of ⟨·, θ∗⟩ that

lim
ℓ→∞

⟨θkℓ
, θ∗⟩ =

〈
lim

ℓ→∞
θkℓ

, θ∗
〉

= ∥θ∗∥2 = 1.

Hence, there is an ℓ̃ ∈ N+ such that ⟨θ∗, θkℓ
⟩ > 1 − ϵ2/2 for all ℓ ≥ ℓ̃. Choose ℓ∗ ∈ N+

such that
kℓ∗ ≥ max

{ 1
2ϵ

, kℓ̃

}
.

Then, 1/kℓ∗ ≤ 2ϵ. We claim now that

Ca∗(θ∗) ⊆ C 1
2 − 1

4kl∗

(
θkℓ∗

)
. (5.16)

To that end, let t ∈ Ca∗(θ∗). As a consequence of

∥θ∗ − θkℓ∗ ∥2 = 2 − 2⟨θ∗, θkℓ∗ ⟩ < ϵ2

and the Cauchy-Schwarz inequality, one obtains

⟨t, θkℓ∗ ⟩
∥t∥ = ⟨t, θ∗⟩ − ⟨t, θ∗ − θkℓ∗ ⟩

∥t∥ ≥ 1 − 2a∗ − ∥θ∗ − θkℓ∗ ∥

> 1 − 2a∗ − ϵ = ϵ ≥ 1
2kℓ∗

= 1 − 2
(1

2 − 1
4kℓ∗

)
,
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θkℓ

αkℓ

α∗

θ∗

α′

Fig. 5.4: The key idea in the proof of Proposition 5.17. At some point of the convergent
subsequence of “counterexamples”, the corresponding cone (orange), which con-
tains less than n knots, encloses the cone Ca∗(θ∗) (blue), which is by definition a
proper superset of the limit cone Ca′(θ∗) (green) and, therefore, contains at least
n knots, yielding a contradiction.

and thus, (5.16) holds true. Together with (5.15) and (5.14), this yields the contra-
diction

n ≤ |Ca∗(θ∗) ∩ X| ≤
∣∣∣∣C 1

2 − 1
4kℓ∗

(
θkℓ∗

) ∩ X

∣∣∣∣ < n.

Hence, the assumption is false, and one can find a suitable a ∈ (0, 1/2).

The key idea of the previous proof is the construction of a sequence of cones whose
apertures grow towards 1/2 and whose directions converge to the axis of some limit
cone. The contradiction then follows from the fact that, for a sufficiently large index,
the cones of the sequence enclose the limit cone, as depicted in Figure 5.4.

The same strategy can be used to show that we can also find an R ∈ R+ such that
each cone with an aperture as specified by the previous proposition contains at least
n ∈ N+ knots within a distance to the apex / origin of at most R:

Proposition 5.18. Let n ∈ N+, and let X ⊆ Rd satisfy the strong conditions. There
is an a ∈ (0, 1/2) and an R ∈ R+ such that

|Ca(θ) ∩ BR(0) ∩ X| ≥ n for all θ ∈ Sd−1.
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Proof. Proposition 5.17 ensures the existence of an a ∈ (0, 1/2) such that

|Ca(θ) ∩ X| ≥ n for all θ ∈ Sd−1.

Assume that we cannot find an appropriate R ∈ R+. Then, for all R ∈ R+, we
can find a θR ∈ Sd−1 such that |Ca(θR) ∩ BR(0) ∩ X| < n. By picking any of
these directions for a given radius, one can construct a sequence (θk)k∈N+ in Sd−1

satisfying
|Ca(θk) ∩ Bk(0) ∩ X| < n for all k ∈ N+. (5.17)

As Sd−1 is compact, this sequence has a convergent subsequence (θkℓ
)ℓ∈N+ with limit

θ∗ ∈ Sd−1. Since |Ca(θ∗) ∩ X| ≥ n, Corollary 5.15 yields the existence of an ϵ > 0
such that |Ca−ϵ(θ∗) ∩ X| ≥ n. Thus, one can find an R∗ ∈ R+ such that

|Ca−ϵ(θ∗) ∩ BR∗(0) ∩ X| ≥ n. (5.18)

The sequence (θkℓ
)ℓ∈N+ converges to θ∗, and therefore, it follows in the same way as

in the proof of Proposition 5.17 that one can find an ℓ̃ ∈ N+ such that

⟨θkℓ
, θ∗⟩ > 1 − 2ϵ2 for all ℓ ≥ ℓ̃. (5.19)

Choose ℓ∗ ∈ N+ such that kℓ∗ ≥ max{kℓ̃, R∗}. We claim now that

Ca−ϵ(θ∗) ⊆ Ca
(
θkl∗

)
. (5.20)

To that end, let t ∈ Ca−ϵ(θ∗). Together with

∥θ∗ − θkℓ∗ ∥2 = 2 − 2⟨θ∗, θkℓ∗ ⟩ < 4ϵ2

and the Cauchy-Schwarz inequality, one obtains

⟨t, θkℓ∗ ⟩
∥t∥ = ⟨t, θ∗⟩ − ⟨t, θ∗ − θkℓ∗ ⟩

∥t∥ > 1 − 2(a − ϵ) − ∥θ∗ − θkℓ∗ ∥ > 1 − 2a.

Consequently, t ∈ Ca
(
θkℓ∗

)
, and therefore, (5.20) holds true, which, together with

(5.18), the definition of kℓ∗ , and (5.17), yields the contradiction

n ≤ |Ca−ϵ(θ∗) ∩ BR∗(0) ∩ X| ≤
∣∣Ca−ϵ(θ∗) ∩ Bkℓ∗ (0) ∩ X

∣∣

≤
∣∣Ca

(
θkℓ∗

) ∩ Bkℓ∗ (0) ∩ X
∣∣ < n.

As a consequence, the assumption is incorrect, yielding the existence of an appropri-
ate R ∈ R+.
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θkℓ∗
α

α

θ∗

α − ϵ

Fig. 5.5: The key idea in the proof of Proposition 5.18. Despite being a proper subset
of the cone Ca(θ∗) (blue), the cone Ca−ϵ(θ∗) (green) still contains at least n
knots within a certain radius. However, for a sufficiently large index l∗ in the
convergent subsequence of “counterexamples”, the corresponding cone (orange)
encloses the cone Ca−ϵ(θ∗), which is a contradiction to the assumption that every
counterexample contains less than n knots within an even larger radius.

The situation in the preceding proposition is presented in Figure 5.5.

5.3 Geometry of Cones and Balls

In the previous section, we ensured that, for all n ∈ N+, we can find a distance and
an aperture such that each cone with this aperture contains at least n knots within
that distance from the apex, independently of the direction of the cone.

Delaunay configurations are based on balls instead of cones, though. Hence, we show
several geometric results in this section regarding cones, balls, and the interactions
between them. Many of the results appear obvious for d ∈ {2, 3}. However,
proofs are still necessary since we consider an arbitrary number of dimensions and
geometric intuition is very limited for d > 3. Many of the proofs can be simplified
considerably by specific assumptions that do not limit the overall generality.

5.3.1 Geometry of Balls

We start with a formula for the center of a circumcircle through d + 1 points in the
case that all but one point take certain positions:
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v0 v1

w

w′

H+

H−

H0

B

B′

Fig. 5.6: Points, circles, and half spaces as introduced by Lemma 5.20, which examines the
subset relations between the balls B and B′ in the half spaces H+ and H−

Lemma 5.19. Consider v0, . . . , vd ∈ Rd such that

v0 = −e1, v1 = e1, v2 = e2, . . . , vd−1 = ed−1 ∈ Rd.

If v0, . . . , vd are affinely independent, the center of the circumcircle B(v0, . . . , vd) is
given as

c := (0, . . . , 0, ĉ)⊺ ∈ Rd, where ĉ := ∥vd∥2 − 1
2vd,d

,

and its radius is
√

ĉ2 + 1.

Proof. We can assume that vd,d ̸= 0 since, otherwise, the d + 1 points would lie in a
(d−1)-dimensional hyperplane and, thus, would not be affinely independent. Hence,
the denominator in the expression for ĉ is nonzero.

It is clear that ∥vi − c∥2 = ĉ2 + 1 for all i ∈ {0, . . . , d − 1}. But also for vd, one has

∥vd − c∥2 =
d−1∑

i=1
v2

d,i + (vd,d − ĉ)2 =
d−1∑

i=1
v2

d,i + v2
d,d − 2vd,d

(∥vd∥2 − 1
)

2vd,d
+ ĉ2 = ĉ2 + 1,

which yields the stated claim.

Next, we use the formula shown in the previous Lemma to derive certain subset
relationships between two circumcircles generated by sets that only differ by one
point, as visualized in Figure 5.6.

Lemma 5.20. Let v′
0, . . . , v′

d−1 ∈ Rd be affinely independent and w, w′ ∈ Rd\H0,
where H0 := aff(v′

0, . . . , v′
d−1). The hyperplane H0 divides Rd into two open half
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spaces H+, H−, indexed such that w′ ∈ H−. The following statements are equiva-
lent:

(i) w′ ∈ B
(
w, v′

0, . . . , v′
d−1

)
,

(ii) B
(
w′, v′

0, . . . , v′
d−1

)
∩ H− ⊆ B

(
w, v′

0, . . . , v′
d−1

)
∩ H−,

(iii) B
(
w, v′

0, . . . , v′
d−1

)
∩ H+ ⊆ B

(
w′, v′

0, . . . , v′
d−1

)
∩ H+.

Proof. Since w, w′ ̸∈ aff(v′
0, . . . , v′

d−1), it is clear that the two sets {w, v′
0, . . . , v′

d−1}
and {w′, v′

0, . . . , v′
d−1} are affinely independent and, therefore, give rise to circumcir-

cles. Without loss of generality, assume that

H0 = {t ∈ Rd | td = 0} and H+ = {t ∈ Rd | td > 0}.

The points v′
0, . . . , v′

d−1 give rise to a hypersphere which is contained in H0. Further,
we can assume without loss of generality that, for this hypersphere, one has

rad
(
v′

0, . . . , v′
d−1
)

= 1 and cen
(
v′

0, . . . , v′
d−1
)

= 0,

where rad and cen denote radius and center, respectively, of the circumcircle gener-
ated by the given points. We consider the points

v0 := −e1, v1 := e1, v2 := e2, . . . , vd−1 := ed−1 ∈ Rd.

It is easy to see that v0, . . . , vd−1 ∈ ∂B(v′
0, . . . , v′

d−1) and that these points are affinely
independent. Consequently, B(v0, . . . , vd−1) = B(v′

0, . . . , v′
d−1), and also

B := B(w, v0, . . . , vd−1) = B
(
w, v′

0, . . . , v′
d−1
)
,

B′ := B
(
w′, v0, . . . , vd−1

)
= B

(
w′, v′

0, . . . , v′
d−1
)
.

Hence, we can work with v0, . . . , vd−1 instead of v′
0, . . . , v′

d−1 from now on and, thus,
can apply Lemma 5.19 to obtain that

b := cen(w, v0, . . . , vd−1) = (0, . . . , 0, b̂)⊺,

c := cen
(
w′, v0, . . . , vd−1

)
= (0, . . . , 0, ĉ)⊺,

r := rad(w, v0, . . . , vd−1) =
√

b̂2 + 1,

s := rad
(
w′, v0, . . . , vd−1

)
=
√

ĉ2 + 1,
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where

b̂ = ∥w∥2 − 1
2wd

and ĉ = ∥w′∥2 − 1
2w′

d

.

“(i) ⇒ (iii)” Let u ∈ B ∩ H+. Then, ud > 0 and ∥u − b∥2 ≤ r2. Consequently,

∥u∥2 − 1 = ∥u − b∥2 + 2b̂ud − b̂2 − 1 = ∥u − b∥2 − r2 + 2b̂ud ≤ 2b̂ud. (5.21)

Since w′ ∈ B, it follows as in (5.21) that ∥w′∥2 − 1 < 2b̂w′
d. Furthermore, we have

chosen H− such that w′ ∈ H−, yielding w′
d < 0. As a consequence,

∥u − c∥2 = ∥u∥2 + ĉ2 − ud

w′
d

(∥w′∥2 − 1)

< ∥u∥2 + ĉ2 − 2b̂ud

≤ ∥u∥2 + ĉ2 − (∥u∥2 − 1)
= s2,

and thus, B ∩ H+ ⊆ B′.

“(iii) ⇒ (ii)” We set z := (0, . . . , 0, b̂ + r) ∈ Rd. Then,

∥z − b∥2 = r2 and zd = b̂ +
√

b̂2 + 1 > b̂ + |b̂| ≥ 0.

Therefore, z ∈ ∂B ∩ H+ and, in particular, z ̸∈ H0. Hence, the points v0, . . . , vd−1, z

are affinely independent, and their circumcircle is given as B(v0, . . . , vd−1, z) = B.
Thus, also the centers of both spheres coincide, yielding with Lemma 5.19 that

b̂ = ∥z∥2 − 1
2zd

.

From the assumption that (iii) holds true, one obtains z ∈ B ∩ H+ ⊆ B′ ∩ H+.
Similar to (5.21), this can be expressed by the inequality ∥z∥2 − 1 < 2ĉzd. Now, let
u ∈ B′ ∩ H−, i.e., ∥u∥2 − 1 ≤ 2ĉud and ud < 0. Then,

∥u − b∥2 = ∥u∥2 − ud

zd
(∥z∥2 − 1) + b̂2

< ∥u∥2 − 2ĉud + b̂2

≤ ∥u∥2 − (∥u∥2 − 1) + b̂2

= r2,

and therefore, u ∈ B, which yields the stated claim.

“(ii) ⇒ (i)” It directly follows from (ii) that w′ ∈ B, which finishes the proof.
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Bλ (cλ)
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w

cλ

Fig. 5.7: The situation in the proof of Lemma 5.22. All circles Bλ(cλ) (blue) passing through
v are contained in the circle Br(c) (orange) if cλ ∈ conv(c, v). For a particular
choice of λ, one can ensure additionally that Bλ(cλ) passes through w.

In the previous proof, we made assumptions and claimed that they do not reduce
its generality. The assumption on position and orientation of the hyperplane H0

takes several rotational degrees of freedom and one translational degree of freedom,
whereas the assumption on H+ determines the flip along H0. The assumption on
the radius can be fulfilled by appropriate scaling, and positioning the center in the
origin within the hyperplane H0 consumes the remaining d − 1 translational degrees
of freedom. Hence, each set of points can be forced to fulfill all assumptions by a
transformation containing a rotation, a translation, scaling, and in some circum-
stances a reflection. As subset relations are invariant under such transformations,
the assumptions do not diminish the generality of the proof.

We add another two results regarding the subset relationship between certain balls,
which will only be used in the next section but fit into the current context.

Lemma 5.21. Let c, c′ ∈ Rd, r, r′ ∈ R+ such that there exists a v ∈ ∂Br(c) ∩ ∂Br′(c′).
If there is a λ ∈ R with λ ≥ 1 and (c′ − v) = λ(c − v), it follows that Br(c) ⊆ Br′(c′).

Proof. Without loss of generality, assume that c = (0, . . . , 0)⊺ and v = (1, 0, . . . , 0)⊺.
It follows that

c′ = (1 − λ, 0, . . . , 0)⊺, r = 1, r′ = λ.

Let w ∈ Br(c). Then, ∥w∥ < 1 and, in particular, w1 < 1. With λ ≥ 1, it follows that

∥w − c′∥2 = ∥w∥2 − 2(1 − λ)w1 + (1 − λ)2 < 1 − 2(1 − λ) + (1 − λ)2 = r′2,

and therefore, w ∈ Br′(c′), yielding the stated claim.
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Lemma 5.22. Let c ∈ Rd, r ∈ R+, v ∈ ∂Br(c), and w ∈ Br(c). Then, there are
c′ ∈ conv(c, v) and r′ ∈ R+ such that

v, w ∈ ∂Br′
(
c′) and Br′

(
c′) ⊆ Br(c).

Proof. If w ∈ ∂Br(c), the claim follows directly by choosing c′ = c and r′ = r. Hence,
it is sufficient to consider the case w ∈ Br(c).

Without loss of generality, assume that c = (0, . . . , 0)⊺ and v = (1, 0, . . . , 0)⊺, so that
r = 1. For all λ ∈ (0, 1), define cλ := (1 − λ, 0, . . . , 0)⊺, so that v ∈ ∂Bλ(cλ). Let
λ ∈ (0, 1) and u ∈ Bλ(cλ). One has 1 − u1 > 0 since, otherwise, the inequality

∥u − cλ∥2 − λ2 ≥ (u1 − 1 + λ)2 − λ2 = u2
1 − 2u1 + 1 − 2λ(1 − u1) ≥ (u1 − 1)2 ≥ 0

would yield the contradiction u ̸∈ Bλ(cλ). Consequently,

∥u∥2 = ∥u − cλ∥2 − (1 − λ)2 + 2u1(1 − λ) < λ2 − (1 − λ)2 + 2u1(1 − λ)
= 1 − 2(1 − λ)(1 − u1) < 1,

which provides Bλ(cλ) ⊆ Br(c) for all λ ∈ (0, 1). The claim is proved if we can find
a specific λ ∈ (0, 1) with w ∈ ∂Bλ(cλ). We make the particular choice

λ := 1 − 1 − ∥w∥2

2(1 − w1) .

As we assumed that w ∈ Br(c), we have ∥w∥ < 1 and, in particular, w1 < 1. Then,
λ ∈ (0, 1) since, on the one hand, both nominator and denominator are positive and,
on the other hand,

λ ≥ 1 − 1 − w2
1

2(1 − w1) = 1 − 1 + w1
2 > 0.

Furthermore, we have

∥w − cλ∥2 = ∥w∥2 + w1(∥w∥2 − 1)
1 − w1

+ (1 − λ)2

= 1 + (1 − w1)(∥w∥2 − 1) + w1(∥w∥2 − 1)
1 − w1

+ (1 − λ)2

= 1 + ∥w∥2 − 1
1 − w1

+ (1 − λ)2

= 1 − 2(1 − λ) + (1 − λ)2

= λ2,
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Fig. 5.8: The intersection of the boundary of a cone (orange) with apex in the origin and a
sphere (blue) with center in the origin is a sphere (green) in the (d−1)-dimensional
affine subspace H0. Note that a sphere in one dimension, like ∂BH0

r (c) in this
example, just consists of two points.

and therefore, w ∈ ∂Bλ(cλ), which shows that Bλ(cλ) satisfies all conditions stated
in the claim.

A visualization of the preceding Lemma is presented in Figure 5.7.

5.3.2 Interactions of Cones and Balls

After showing several properties of balls, we now aim at a formulation of the main
result of the previous section, Proposition 5.18, in terms of balls instead of cones.
To that end, several geometric preparations are necessary. The following result is
a direct consequence of the Minkowski theorem (see [Brø83, p. 35f] or [Roc70,
p. 167], for example).

Lemma 5.23. Let A ⊆ Rd be compact and convex. Then, conv(∂A) = A. ◀

For c ∈ H0, r ∈ R+, and some hyperplane H0 ⊆ Rd, let BH0
r (c) := Br(c)∩H0 denote

the restriction of the ball Br(c) to H0. In the expression ∂BH0
r (c), we consider the

relative boundary with respect to H0 instead of the boundary with respect to the
topological space Rd.

In the next Lemma, which is visualized in Figure 5.8, we examine the intersection of
a sphere and the boundary of a cone.
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Lemma 5.24. Let θ ∈ Sd−1, a ∈ (0, 1), and R ∈ R+. Define

c := R(1 − 2a)θ, r := R
√

1 − (1 − 2a)2, H0 := {w ∈ Rd | ⟨w − c, θ⟩ = 0}.

Then, one has
A := ∂Ca(θ) ∩ ∂BR(0) = ∂BH0

r (c).

Proof. “⊆” Let v ∈ A. Then, ∥v∥ = R and ⟨v, θ⟩/∥v∥ = 1 − 2a, according to
Proposition 5.12. Consequently,

∥v − c∥2 = ∥v∥2 − 2⟨v, c⟩ + ∥c∥2

= R2 − 2R(1 − 2a)⟨v, θ⟩ + R2(1 − 2a)2

= r2,

which shows that, in fact, A is a sphere of radius r around c. This sphere is restricted
to the lower-dimensional affine subspace H0 since

⟨v − c, θ⟩ = (1 − 2a)∥v∥ − R(1 − 2a)⟨θ, θ⟩ = 0.

“⊇” Conversely, every point w ∈ Rd satisfying ⟨w − c, θ⟩ = 0 and ∥w − c∥ = r is an
element of A, which can be seen by

∥w∥2 = ∥w − c∥2 + ∥c∥2 + 2⟨w − c, c⟩
= R2

(
1 − (1 − 2a)2

)
+ R2(1 − 2a)2 + 2R(1 − 2a)⟨w − c, θ⟩ = R2

and
⟨w, θ⟩
∥w∥ = ⟨w − c, θ⟩ + ⟨c, θ⟩

R
= R(1 − 2a)

R
⟨θ, θ⟩ = (1 − 2a).

As shown in the previous Lemma, the intersection of a sphere with the boundary of
a cone yields a lower-dimensional sphere whose affine hull is a hyperplane. We state
now that the intersection of the cone with one of the closed half spaces generated
by this hyperplane can be expressed as convex hull of certain points if a < 1/2:

Lemma 5.25. Let θ ∈ Sd−1, a ∈ (0, 1/2), R ∈ R+, and A := ∂Ca(θ) ∩ ∂BR(0). The
hyperplane H0 := aff(A) generates two open half spaces H+, H−, numbered such
that 0 ∈ H+. Let H := H0 ∪ H+. Then,

Ca(θ) ∩ H = conv(A ∪ {0}).
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Proof. Lemma 5.24 ensures that dim aff(A) = d − 1, and therefore, the half spaces
are well-defined. Additionally, it confirms that A is a (d − 1)-dimensional sphere
in H0, i.e., A = ∂BH0

r (c), where H0, the center c ∈ H0, and the radius r ∈ R+ are
specified by Lemma 5.24.

“⊇”: Due to a < 1/2, it follows with Proposition 5.10 that Ca(θ) is convex. Together
with the convexity of H, it follows that Ca(θ)∩H as intersection of convex sets is also
convex. From A ∪ {0} ⊆ Ca(θ) ∩ H and the fact that conv(A ∪ {0}) is the smallest
convex set containing A and 0, one obtains that conv(A ∪ {0}) ⊆ Ca(θ) ∩ H.

“⊆”: Assume without loss of generality that θ = (0, . . . , 0, 1) ∈ Sd−1, and choose an
arbitrary v ∈ Ca(θ) ∩ H. If v = 0, the claim follows immediately. Hence, we consider
the case v ̸= 0 now. Definition 5.6 yields

vd = ⟨θ, v⟩ ≥ (1 − 2a)∥v∥ > 0.

From ⟨w − c, θ⟩ = wd − R(1 − 2a) for all w ∈ Rd, it follows that

H0 =
{

w ∈ Rd
∣∣∣ wd = R(1 − 2a)

}
.

Hence, vd = R(1 − 2a) if v ∈ H0. In the case v ∈ H+, one obtains

sgn(vd − R(1 − 2a)) = sgn⟨v − c, θ⟩ = sgn⟨0 − c, θ⟩ = sgn(−R(1 − 2a)) = −1

due to 0 ∈ H+ and R(1 − 2a) > 0. As a consequence, one has vd ≤ R(1 − 2a) in
both cases. Let

λ := vd

R(1 − 2a) ∈ (0, 1] and v′ := 1
λ

v,

so that v′
d = R(1 − 2a) and, therefore, v′ ∈ H0. Together with 1/λ > 0 and

Remark 5.8, one obtains that v′ ∈ Ca(θ) ∩ H0. Next, we claim that v′ ∈ BH0
r (c).

Since v′ ∈ Ca(θ)\{0}, it follows that

∥v′∥ ≤ ⟨θ, v′⟩
1 − 2a

= v′
d

1 − 2a
= R,

and thus,

∥v′ − c∥2 =
∥∥v′ − R(1 − 2a)θ

∥∥2 = ∥v′∥2 − v′2
d ≤ R2 − R2(1 − 2a)2 = r2.

Consequently, one has v′ ∈ BH0
r (c), which yields together with Lemma 5.23 that

v′ ∈ BH0
r (c) = conv

(
∂BH0

r (c)
)

= conv(A). Since v = λv′ + (1 − λ)0 and λ ∈ (0, 1],
it follows that v ∈ conv(A ∪ {0}), which finishes the proof.
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v1

Fig. 5.9: The situation in Proposition 5.26. All knots in the cone Ca(θ) (orange) within a
certain radius r (blue) of the origin are contained in the ball B(0, v0, v1) (green).

Many of the results presented in this section are used in the following proposition,
which reveals an important geometric relationship between balls and cones, as
pictured in Figure 5.9.

Proposition 5.26. Let θ ∈ Sd−1, a ∈ (0, 1/2), and r ∈ R+. For each collection of
affinely independent points v0, . . . , vd−1 ∈ A := ∂Ca(θ) ∩ ∂Br(0), one has

Ca(θ) ∩ Br(0) ⊆ B(0, v0, . . . , vd−1).

Proof. According to Lemma 5.24, the set A is a sphere in a (d−1)-dimensional affine
subspace H0. In particular, this ensures the existence of affinely independent points
v0, . . . , vd−1 ∈ A. From a < 1/2, it follows that 0 ̸∈ H0. The hyperplane H0 generates
two open half spaces H+ and H−, where we choose H+ such that 0 ∈ H+.

Now, let u ∈ Ca(θ) ∩ Br(0). We have to distinguish two different cases: First, we
assume that u ∈ H := H0 ∪ H+. Applying Lemma 5.25 yields

Ca(θ) ∩ H = conv(A ∪ {0}).

Since A is a sphere in d − 1 dimensions, the boundary (relative with respect to H0)
of the circumcircle determined by the affinely independent points v0, . . . , vd−1 ∈ A
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α
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∂Cα(θ)
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∂BR(t)

Fig. 5.10: This slightly adapted version of Figure 5.9 visualizes the situation in Proposi-
tion 5.27. For any point t, one can find a distance R (purple) such that each point
v with that distance to t gives rise to a ball (green) through t and v with center
(t + v)/2 containing at least n knots. This is due to the fact that R is chosen
such that this ball (green) encloses all points in the cone Ca(θ) (orange) within
distance r (blue) of t. This set contains at least n knots if a and r are chosen
appropriately, as ensured by Proposition 5.18.

is exactly the sphere A. Therefore, A ∪ {0} ⊆ B(0, v0, . . . , vd−1). The convexity of
B(0, v0, . . . , vd−1) yields the stated claim as follows:

u ∈ Ca(θ) ∩ Br(0) ∩ H ⊆ Ca(θ) ∩ H = conv(A ∪ {0}) ⊆ B(0, v0, . . . , vd−1).

The case u ∈ H− remains to be considered. From 0 ∈ Br(0) ∩ H+, it follows that
there is a w ∈ ∂Br(0)∩H+. In particular, w ̸∈ H0, and thus, the points v0, . . . , vd−1, w

are affinely independent and give rise to a circumcircle. Due to the fact that
v0, . . . , vd−1, w ∈ ∂Br(0), the two balls coincide, i.e., B(v0, . . . , vd−1, w) = Br(0). In
particular, 0 ∈ B(w, v0, . . . , vd−1) ∩ H+. Hence, one can apply Lemma 5.20 to obtain

u ∈ Ca(θ) ∩ Br(0) ∩ H− ⊆ B(w, v0, . . . , vd−1) ∩ H− ⊆ B(0, v0, . . . , vd−1),

which finishes the proof.

The previous proposition is the core ingredient in the proof of the following result,
which can be considered as an equivalent of Proposition 5.18 using balls instead of
cones. After all, this was the goal of the current subsection. We refer to Figure 5.10
for a visualization.
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Proposition 5.27. Let X ⊆ Rd satisfy the strong conditions. Let t ∈ Rd and n ∈ N+.
There is an R ∈ R+ such that, for all v ∈ ∂BR(t), one has

∣∣∣∣∣B R
2

(
t + v

2

)
∩ X

∣∣∣∣∣ ≥ n.

Proof. Without loss of generality, assume that t = 0. Proposition 5.18 ensures the
existence of r ∈ R+ and a ∈ (0, 1/2) such that one has

|Ca(θ) ∩ Br(0) ∩ X| ≥ n for all θ ∈ Sd−1. (5.22)

Let R := r/(1 − 2a) and v ∈ ∂BR(0). Without loss of generality, assume that
v = (v̂, 0, . . . , 0)⊺ with v̂ > 0. Let

θ := v/∥v∥ = (1, 0, . . . , 0) ∈ Sd−1, s :=
√

1 − (1 − 2a)2,

and define w0, . . . , wd−1 ∈ Rd as follows:

w0 :=




r(1 − 2a)
−rs

0
...
0




, w1 :=




r(1 − 2a)
rs

0
...
0




,

w2 :=




r(1 − 2a)
0
rs

0
...
0




, . . . , wd−1 :=




r(1 − 2a)
0
...
0
rs




.

It follows from 1 − 2a ∈ (0, 1) and r > 0 that w0, . . . , wd−1 are linearly independent
and, therefore, also that 0, w0, . . . , wd−1 are affinely independent. Consequently,
these points give rise to a circumcircle B(0, w0, . . . , wd−1). For all i ∈ {0, . . . , d − 1},
one has ∥wi∥ = r and, consequently,

⟨wi, θ⟩
∥wi∥

= 1 − 2a,

yielding
w0, . . . , wd−1 ∈ ∂Ca(θ) ∩ ∂Br(0).
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Thus, one can apply Proposition 5.26 to obtain

Ca(θ) ∩ Br(0) ⊆ B(0, w0, . . . , wd−1). (5.23)

Since v ∈ ∂BR(0) and v̂ > 0, one has v̂ = R. As a consequence, one obtains for all
i ∈ {0, . . . , d − 1} that

∥∥∥∥wi − v

2

∥∥∥∥
2

=
(

r(1 − 2a) − R

2

)2
+ r2

(
1 − (1 − 2a)2

)
=
(

R

2

)2
.

Together with ∥v/2∥ = R/2, this yields

0, w0, . . . , wd−1 ∈ ∂B R
2

(
v

2

)
,

and therefore,

B(0, w0, . . . , wd−1) = B R
2

(
v

2

)
,

which can be utilized together with (5.23) and (5.22) to obtain

∣∣∣∣∣B R
2

(
t + v

2

)
∩ X

∣∣∣∣∣ =
∣∣∣B(0, w0, . . . , wd−1) ∩ X

∣∣∣ ≥ |Ca(θ) ∩ Br(0) ∩ X| ≥ n.

5.4 Local Finiteness Theorem

After the preparations in the previous sections, the goal of the current section is to
prove that the local finiteness property holds true if the knot set satisfies the strong
conditions specified in Definition 4.15.

5.4.1 Generalization to Compact Sets

So far, we considered cones and circles only to describe the neighborhood of one
specific point. However, as stated in the introductory part of this chapter, we aim
at a proof of the local finiteness property that holds true for arbitrary compact sets
instead of single points.

Most of the work necessary for this generalization is done by the following Lemma,
which is again based on the idea of building a sequence of counterexamples and
obtaining a contradiction using the limit of a convergent subsequence. To keep track
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Ω

θk

θ∗

vk

wk

v∗
v̂

ŵ

ĉ
r̂

k

Fig. 5.11: The situation in Lemma 5.28 with compact Ω. The circle with center vk through
wk with radius k (orange) corresponds to an element of the sequence of coun-
terexamples. The limit (v∗, θ∗) (green) of a convergent subsequence is used to
construct a ball with center ĉ and radius r̂/2 (blue) containing at least n knots. If
the index k is chosen large enough, this ball is contained in the ball corresponding
to the k-th counterexample (orange), which is a contradiction.

of the different quantities used during the course of the proof, we display most of
the points and vectors in Figure 5.11.

Lemma 5.28. Let X ⊆ Rd satisfy the strong conditions. Let Ω ⊆ Rd be compact and
n ∈ N+. There is an R ∈ R+ such that, for all v ∈ Ω and for all w ∈ ∂BR(v), one has

∣∣∣∣B R
2

(
v + w

2

)
∩ X

∣∣∣∣ ≥ n.

Proof. According to Proposition 5.27, one can find an r(v) ∈ R+ for each v ∈ Ω such
that one has ∣∣∣∣∣B r(v)

2

(
v + w

2

)
∩ X

∣∣∣∣∣ ≥ n for all w ∈ ∂Br(v)(v).

Assume that there is no R ∈ R+ satisfying

∣∣∣∣B R
2

(
v + w

2

)
∩ X

∣∣∣∣ ≥ n for all v ∈ Ω, w ∈ ∂BR(v).
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Then, for all R ∈ R+, one can find v ∈ Ω and w ∈ ∂BR(v) such that

∣∣∣∣B R
2

(
v + w

2

)
∩ X

∣∣∣∣ < n.

Hence, we can construct a sequence (vk, wk)k∈N+ of counterexamples in Ω×Rd such
that, for each k ∈ N+, one has

wk ∈ ∂Bk(vk) and
∣∣∣∣B k

2

(
vk + wk

2

)
∩ X

∣∣∣∣ < n.

For k ∈ N+, let
θk := (wk − vk)/∥wk − vk∥ ∈ Sd−1.

From now on, we consider the sequence (vk, θk)k∈N+ in Ω × Sd−1, which has a
convergent subsequence (vkℓ

, θkℓ
)ℓ∈N+ with limit (v∗, θ∗) since both Ω and Sd−1 are

compact and, therefore, Ω × Sd−1 is compact, too. We choose an arbitrary ϵ > 0 now,
consider θ∗ as unit vector in Rd, and set v̂ := v∗ + ϵθ∗. Then, v̂ is not necessarily
in Ω, but one can apply Proposition 5.27 nevertheless, yielding the existence of an
r̂ ∈ R+ such that

∣∣∣∣∣Br̂/2

(
v̂ + w

2

)
∩ X

∣∣∣∣∣ ≥ n for all w ∈ ∂Br̂(v̂).

In particular, this holds true for ŵ := v̂ + r̂θ∗. As (θkℓ
)ℓ∈N+ converges to θ∗, one can

find an ℓ1 ∈ N+ such that

∥θkℓ
− θ∗∥ <

ϵ

2ϵ + r̂
for all ℓ ≥ ℓ1.

Due to the fact that (vkℓ
)ℓ∈N+ converges to v∗, one can find an ℓ2 ∈ N+ satisfying

∥vkℓ
− v∗∥ <

ϵ

2 for all ℓ ≥ ℓ2.

Furthermore, there is an ℓ3 ∈ N+ such that kℓ ≥ r̂ + 2ϵ for all ℓ ≥ ℓ3. Define
ℓ := max{ℓ1, ℓ2, ℓ3} and k := kℓ. Let ĉ := (v̂ + ŵ)/2 and u ∈ Br̂/2(ĉ). Then,

∥∥∥∥u − vk + wk

2

∥∥∥∥

=
∥∥∥∥u −

(
vk + θk∥wk − vk∥

2

)∥∥∥∥

≤ ∥u − ĉ∥ +
∥∥∥∥ĉ −

(
vk + k

2θk

)∥∥∥∥

≤ r̂

2 +
∥∥∥∥v̂ + r̂

2θ∗ −
(

vk + k

2θk

)∥∥∥∥
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= r̂

2 +
∥∥∥∥v

∗ − vk +
(

ϵ + r̂

2

)
θ∗ − k

2θk

∥∥∥∥

≤ r̂

2 + ∥v∗ − vk∥ +
∥∥∥∥
(

ϵ + r̂

2

)
(θ∗ − θk) +

(
r̂ − k

2 + ϵ

)
θk

∥∥∥∥

≤ r̂

2 + ∥v∗ − vk∥ +
∣∣∣∣ϵ + r̂

2

∣∣∣∣∥θ∗ − θk∥ +
∣∣∣∣
r̂ − k

2 + ϵ

∣∣∣∣

= r̂

2 + ∥v∗ − vk∥ +
(

ϵ + r̂

2

)
∥θ∗ − θk∥ + k − r̂

2 − ϵ

<
ϵ

2 +
(2ϵ + r̂

2

)
ϵ

2ϵ + r̂
− ϵ + k

2

= k

2 .

Thus, due to the arbitrary choice of u, one obtains

Br̂/2(ĉ) ⊆ Bk/2

(
vk + wk

2

)

and, therefore, the contradiction

n ≤
∣∣∣∣∣Br̂/2

(
v̂ + ŵ

2

)
∩ X

∣∣∣∣∣ ≤
∣∣∣∣Bk/2

(
vk + wk

2

)
∩ X

∣∣∣∣ < n.

As a consequence, the assumption is incorrect, and the existence of an appropriate
R ∈ R+ is guaranteed.

5.4.2 Main Result

Finally, we can merge the previous results into the following theorem proving the
local finiteness property for both pooled and nonpooled DCB-splines.

Theorem 5.29 (Local Finiteness). Let d ∈ N+, m ∈ N0, and let Ω ⊆ Rd be compact.
Choose a knot set X ⊆ Rd satisfying the strong conditions. The set

{
K ∈ Km(X)

∣∣∣ B(B(K)) ∩ Ω ̸= ∅
}

is finite.

Proof. As Ω is bounded, one can find a closed ball B containing Ω. Without loss of
generality, assume that Ω ⊆ B = B1(0). Then, for all v ∈ Ω, one has ∥v∥ ≤ 1. Let
n := m + 1. According to Lemma 5.28, there is an R ∈ R+ such that one has

∣∣∣∣B R
2

(
v + w

2

)
∩ X

∣∣∣∣ ≥ n > m for all v ∈ Ω, w ∈ ∂BR(v). (5.24)

132 Chapter 5 Local Finiteness



Assume now that there is a K∗ ∈ Km(X) satisfying

B(B(K∗)) ∩ Ω ̸= ∅ and B(B(K∗)) ̸⊆ BR+1(0).

Then, there is a w ∈ ∂B(B(K∗)) with w ̸∈ BR+1(0) since, otherwise, Lemma 5.23,
which can be applied due to the convexity and compactness of B(B(K∗)), would
yield the contradiction

B(B(K∗)) = conv(∂B(B(K∗))) ⊆ conv
(
BR+1(0)

)
= BR+1(0).

Furthermore, we can choose any v ∈ B(B(K∗)) ∩ Ω. Lemma 5.22 provides the
existence of a c̃ ∈ Rd and an r̃ ∈ R+ such that

v, w ∈ ∂Br̃(c̃) and Br̃(c̃) ⊆ B(B(K∗)). (5.25)

Moreover, let

c′ := v + R

2∥c̃ − v∥(c̃ − v), w′ := 2c′ − v, λ := 2∥c̃ − v∥
R

.

Then, with

∥c̃ − v∥ = ∥c̃ − v∥ + ∥c̃ − w∥
2 ≥ ∥c̃ − v∥ + ∥c̃ − w∥ + ∥v∥ − 1

2

≥ ∥c̃∥ − ∥v∥ + ∥w − c̃∥ + ∥v∥ − 1
2 ≥ ∥c̃ + w − c̃∥ − 1

2 >
R

2 ,

it follows that λ > 1. Furthermore, λ(c′−v) = c̃−v and v ∈ ∂BR/2(c′). Consequently,
one can apply Lemma 5.21, yielding

B R
2

(
c′) ⊆ Br̃(c̃). (5.26)

Additionally, ∥w′ − v∥ = 2∥c′ − v∥ = R, and therefore, w′ ∈ ∂BR(v). Hence, (5.24)
is applicable to w′, which, together with (5.26) and (5.25), yields the contradiction

m <

∣∣∣∣B R
2

(
v + w′

2

)
∩ X

∣∣∣∣ =
∣∣∣∣B R

2

(
c′) ∩ X

∣∣∣∣

≤ |Br̃(c̃) ∩ X| ≤ |B(B(K∗)) ∩ X| = m.

Consequently, there is no Delaunay configuration K∗ such that

B(B(K∗)) ∩ Ω ̸= ∅ and B(B(K∗)) ̸⊆ BR+1(0),

and thus, for all K ∈ Km(X) with B(B(K)) ∩ Ω ̸= ∅, one has B(B(K)) ⊆ BR+1(0).
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As X is locally finite, the set BR+1(0) ∩ X is finite. Since a Delaunay configuration
is uniquely identified by its d + 1 boundary knots and since there is only a finite
number of different choices of boundary knots in BR+1(0) ∩ X, the set

{
K ∈ Km(X)

∣∣∣ B(K) ⊆ BR+1(0) ∩ X
}

is also finite. From B(K) ⊆ B(B(K)) ∩ X, it follows that

∣∣∣
{

K ∈ Km(X)
∣∣∣ B(B(K)) ∩ Ω ̸= ∅

}∣∣∣

=
∣∣∣
{

K ∈ Km(X)
∣∣∣ B(B(K)) ∩ Ω ̸= ∅, B(B(K)) ⊆ BR+1(0)

}∣∣∣

≤
∣∣∣
{

K ∈ Km(X)
∣∣∣ B(B(K)) ⊆ BR+1(0)

}∣∣∣

≤
∣∣∣
{

K ∈ Km(X)
∣∣∣ B(B(K)) ∩ X ⊆ BR+1(0)

}∣∣∣

≤
∣∣∣
{

K ∈ Km(X)
∣∣∣ B(K) ⊆ BR+1(0) ∩ X

}∣∣∣

< ∞,

which finishes the proof of the theorem.

5.5 Consequences

In this final section of the current chapter, we will first list results following from
the local finiteness theorem and, then, try to mitigate the conditions on the knot set
X.

5.5.1 Corollaries

In Section 5.1.2, we presented an example to show that, without the assumption
conv(X) = Rd, several undesirable situations may happen. We show now that these
situations can be excluded if the local finiteness property holds true, which is in
particular the case if conv(X) = Rd, as shown by Theorem 5.29. Hence, let d ∈ N+,
m ∈ N0, and assume again that X ⊆ Rd satisfies the strong conditions specified by
Definition 4.15.

Corollary 5.30. If X ⊆ Rd satisfies the strong conditions and if m ≥ 1, every pooled
basis candidate function is a linear combination of a finite number of simplex splines.
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Proof. Let B ∈ B′
m,X . There is an I ∈ Im(X) such that

B =
∑

K∈KI,m(X)
N(· | K).

Therefore, it remains to be shown that KI,m(X) is finite. As I(K) ⊆ B(B(K)) for all
K ∈ KI,m(X), it follows from I ̸= ∅ and the fact that one can apply Theorem 5.29
to I, which is a finite set and, thus, compact, that

|KI,m(X)| =
∣∣∣
{

K ∈ Km(X)
∣∣∣ I(K) = I

}∣∣∣

=
∣∣∣
{

K ∈ Km(X)
∣∣∣ I(K) = I, I ⊆ B(B(K))

}∣∣∣

≤
∣∣∣
{

K ∈ Km(X)
∣∣∣ I ⊆ B(B(K))

}∣∣∣

≤
∣∣∣
{

K ∈ Km(X)
∣∣∣ I ∩ B(B(K)) ̸= ∅

}∣∣∣

< ∞.

Since sets containing only one element are trivially compact, the following two
corollaries in particular yield pointwise results. Therefore, they ensure that Require-
ment (E) of the Fundamental Problem holds true for both Sm,X and S ′

m,X .

Corollary 5.31. If X ⊆ Rd satisfies the strong conditions, the set

{
B ∈ Bm,X

∣∣∣ supp B ∩ Ω ̸= ∅
}

is finite for all compact Ω ⊆ Rd.

Proof. As the basis candidate functions are simplex splines, their support is the
convex hull of their knots. Each basis candidate function is generated by one or
several Delaunay configurations corresponding to the same unoriented Delaunay
configuration (see Definition 4.20). Both boundary and interior knots lie in the closed
circumcircle of the Delaunay configuration. Hence, it follows with Theorem 5.29
that

∣∣∣
{

B ∈ Bm,X

∣∣∣ supp B ∩ Ω ̸= ∅
}∣∣∣ ≤

∣∣∣
{

K ∈ Km(X)
∣∣∣ supp N(· | K) ∩ Ω ̸= ∅

}∣∣∣

≤ |{K ∈ Km(X)
∣∣∣ B(B(K)) ∩ Ω ̸= ∅}| < ∞.
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Corollary 5.32. If X ⊆ Rd satisfies the strong conditions, the set

{
B ∈ B′

m,X

∣∣∣ supp B ∩ Ω ̸= ∅
}

is finite for all compact Ω ⊆ Rd.

Proof. The basis candidate functions are finite linear combinations of simplex splines.
Hence, all basis candidate functions that have a nonempty intersection with Ω
involve at least one simplex spline whose support has a nonempty intersection with
Ω. Every such simplex spline is generated by a Delaunay configuration, and its
support is a subset of the circumcircle of the Delaunay configuration. Consequently,
Theorem 5.29 yields

∣∣∣
{

B ∈ B′
m,X

∣∣∣ supp B ∩ Ω ̸= ∅
}∣∣∣

≤
∣∣∣
{

I ∈ Im(X)
∣∣∣ there exists a K ∈ KI,m(X) with supp N(· | K) ∩ Ω ̸= ∅

}∣∣∣

≤
∣∣∣
{

K ∈ Km(X)
∣∣∣ supp N(· | K) ∩ Ω ̸= ∅

}∣∣∣

≤
∣∣∣
{

K ∈ Km(X)
∣∣∣ B(B(K)) ∩ Ω ̸= ∅

}∣∣∣ < ∞.

Corollary 5.33. If X ⊆ Rd satisfies the strong conditions, the spaces of pooled and
nonpooled DCB-splines are locally finite-dimensional, i.e.,

dim Sm,X |Ω < ∞, dim S ′
m,X |Ω < ∞ for all compact Ω ⊆ Rd.

Proof. The claim follows directly from Corollaries 5.31 and 5.32, respectively, and
the fact that zero-functions are trivially linearly dependent.

In particular, the previous corollary ensures that Requirement (D) of the Funda-
mental Problem holds true for both pooled and nonpooled DCB-splines. Conse-
quently, all desired properties related to local finiteness hold true if we assume that
conv(X) = Rd or, trivially, if X is finite.

5.5.2 Local Finiteness Condition

In the introductory section of the current chapter, we have seen that, without the
condition conv(X) = Rd, we cannot expect the local finiteness property to hold
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true for infinite knot sets. This assumption is very strong, though. When recalling
the proof of the local finiteness property, it turns out that the only point at which
we used this condition was in the proof of Proposition 5.16. Therefore, the local
finiteness property and, in turn, the corollaries of the previous subsection hold true
even for knot sets with conv(X) ⊂ Rd if one can guarantee that Proposition 5.16
holds true.

When we analyze the proof of that particular proposition, it follows readily that it
also holds true if we assume that each open half space generated by any hyperplane
contains at least a given number n := m+1 of knots, where m ∈ N0 again denotes the
spline degree. Since these hyperplanes can be placed arbitrarily, it is easy to see that
this assumption is equivalent to the initial assumption conv(X) = Rd. However, we
can utilize this observation to obtain a local variant of the local finiteness property. To
that end, we consider a compact region Ω ⊆ Rd now and assume that X satisfies the
following local finiteness condition, which in particular implies the weak conditions
specified in Definition 4.16.

Definition 5.34 (Local finiteness condition). Let d ∈ N+, n ∈ N+, and let Ω ⊆ Rd

be compact. X ⊆ Rd satisfies the local finiteness condition (with respect to Ω and n)
if X fulfills the weak conditions and if there is an Ω̂ ⊆ Rd with Ω ⊆ Ω̂◦ and

|H(t, θ) ∩ X| ≥ n for all t ∈ Ω̂, θ ∈ Sd−1, (5.27)

where H(t, θ) denotes

H(t, θ) := {u ∈ Rd | ⟨u − t, θ⟩ > 0},

which is one of the half spaces generated by the hyperplane passing through t with
normal vector θ. ◀

Note that, for the local finiteness condition, we require (5.27) to hold true on a set
Ω̂ which is larger than the original domain Ω. This is due to the fact that, in the
proof of Lemma 5.28, we invoke Proposition 5.27 on a point v̂ := v∗ + ϵθ∗ which
is possibly outside of Ω. This procedure is uncritical when considering the local
finiteness property globally, as we did in Lemma 5.28. In a local version, however, it
is crucial to keep v̂ inside the controlled region. Since we do not have any control
over the values of v∗ ∈ Ω and θ∗ ∈ Sd−1, it is not possible to enforce that v̂ ∈ Ω. As
ϵ > 0 can be chosen arbitrarily, the distance of v̂ to Ω can be made arbitrarily small,
though. Hence, it is sufficient to choose any region Ω̂ with Ω ⊆ Ω̂◦, as can be seen
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easily: Any point v∗ ∈ Ω is an interior point of Ω̂, and therefore, one can find an
ϵ > 0 such that

v̂ = v∗ + ϵθ∗ ∈ B2ϵ(v∗) ⊆ Ω̂.

Let Ca(t, θ) denote the open cone with aperture a ∈ [0, 1], direction θ ∈ Sd−1, and
apex in t ∈ Rd. This is consistent with Definition 5.6 in the sense that Ca(0, θ) =
Ca(θ) for all a ∈ [0, 1] and θ ∈ Sd−1. The following proposition provides the
conclusion that Proposition 5.16 holds true on a suitable Ω̂ ⊃ Ω for knot sets
satisfying the local finiteness condition with respect to Ω.

Proposition 5.35. Let n ∈ N+, and choose a compact Ω ⊆ Rd. Let X ⊆ Rd be a
knot set satisfying the local finiteness condition with respect to Ω and n. There is an
Ω̂ ⊆ Rd with Ω ⊆ Ω̂◦ and

an(t, θ) := max
{

a ∈ [0, 1]
∣∣∣ |Ca(t, θ) ∩ X| < n

}
<

1
2 for all t ∈ Ω̂, θ ∈ Sd−1,

where Ca(t, θ) denotes the open cone in direction θ ∈ Sd−1 with aperture a ∈ [0, 1]
and apex in t ∈ Rd, i.e.,

Ca(t, θ) :=
{

w ∈ Rd\{t}
∣∣∣ ⟨θ, w − t⟩/∥w − t∥ > 1 − 2a

}
.

Proof. The definition of the local finiteness condition yields the existence of a suitable
Ω̂ such that (5.27) holds true on Ω̂. The assumption that there is a t ∈ Ω̂ and a
θ ∈ Sd−1 with an(t, θ) ≥ 1/2 directly yields the contradiction

n > |Can(t,θ)(t, θ) ∩ X| ≥ |H(t, θ) ∩ X| ≥ n.

The choice n := m + 1 in the preceding proposition, where m ∈ N0 again denotes
the spline degree, readily yields the following corollary:

Corollary 5.36. Let d ∈ N+, m ∈ N0, and let Ω ⊆ Rd be compact. If X ⊆ Rd satisfies
the local finiteness condition with respect to Ω and m + 1, the local finiteness
property, i.e., ∣∣∣

{
K ∈ Km(X)

∣∣∣ B(B(K)) ∩ Ω ̸= ∅
}∣∣∣ < ∞,

holds true for both spline spaces Sm′,X |Ω and S ′
m′,X |Ω restricted to Ω. ◀

For a given region Ω ⊆ Rd and a given knot set X ⊆ Rd, the following question
directly arises from this result: Can we show practically whether X satisfies the local
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θ

t∗
Ω̂

H(t∗, θ)

Fig. 5.12: Example of extremal points. The marked line (orange) represents all extremal
points in direction θ with respect to Ω̂. One exemplary extremal point and its
associated half space H(t∗, θ) (blue) is given by t∗ (orange).

finiteness condition with respect to Ω? As a first step, we show that the consideration
of certain boundary points of a suitable Ω̂, which we will call extremal points, is
sufficient.

Definition 5.37 (Extremal point). Let θ ∈ Sd−1, and let Ω̂ ⊆ Rd be nonempty and
compact. An extremal point in direction θ (with respect to Ω̂) is a point t ∈ Ω̂ satisfying

⟨t, θ⟩ = max
t′∈Ω̂

⟨t′, θ⟩.

◀

The maximum is well-defined since one can apply the extreme value theorem due
to the compactness of Ω̂ and the continuity of ⟨·, θ⟩. We refer to Figure 5.12 for
an exemplary visualization of extremal points. Note that all extremal points are
necessarily boundary points since the maximum cannot be assumed on interior
points due to the linearity of ⟨·, θ⟩. Conversely, if Ω̂ is chosen to be convex, each
boundary point is an extremal point in at least one direction.

The significance of extremal points for the local finiteness condition can be seen as
follows. Let Ω̂ ⊆ Rd be nonempty and compact, and choose θ ∈ Sd−1. Let t∗ ∈ Ω̂ be
an extremal point in direction θ. Then, H(t∗, θ) ⊆ H(t, θ) for all t ∈ Ω̂ since for any
u ∈ H(t∗, θ) one has

⟨u − t, θ⟩ = ⟨u, θ⟩ − ⟨t, θ⟩ ≥ ⟨u, θ⟩ − ⟨t∗, θ⟩ = ⟨u − t∗, θ⟩ > 0

and, therefore, also u ∈ H(t, θ). In particular, this subset relation ensures that
the half spaces H(t1, θ), H(t2, θ) associated to different extremal points t1, t2 with
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respect to the same direction θ coincide, as can be seen easily when looking at
Figure 5.12. As a consequence, it is sufficient to consider extremal points when
checking a given knot set X for the local finiteness condition in a region Ω̂:

Proposition 5.38. Let n ∈ N+, and let Ω̂ ⊆ Rd be nonempty and compact. For all
θ ∈ Sd−1, let tθ ∈ Rd denote an arbitrary extremal point in direction θ with respect
to Ω̂. If X ⊆ Rd satisfies the weak conditions and if

|H(tθ, θ) ∩ X| ≥ n for all θ ∈ Sd−1, (5.28)

then X fulfills the local finiteness condition with respect to n and any compact Ω
with Ω ⊆ Ω̂◦.

Proof. The proof follows immediately from the previous observation since, for all
t ∈ Ω̂ and for any θ ∈ Sd−1, one has |H(t, θ) ∩ X| ≥ |H(tθ, θ) ∩ X| ≥ n.

Without further assumptions on Ω̂, we still have to consider a possibly infinite set of
extremal points. For example, if we choose Ω̂ to be a closed ball, Ω̂ is convex and,
therefore, each point on the boundary of Ω̂ is an extremal point. Moreover, it is the
unique extremal point in a specific direction. Hence, we will assume now that Ω̂ has
a considerably simpler structure:

Remark 5.39. Let X ⊆ Rd satisfy the weak conditions, and let Ω̂ ⊆ Rd be a
nonempty, closed polytope, as displayed exemplarily in Figure 5.13. In particular, Ω̂
is convex, bounded, and also compact. Hence, the prerequisites of Proposition 5.38
are fulfilled if one can show that (5.28) holds true.

However, due to the fact that Ω̂ is an intersection of a finite number of half-spaces
and due to the linearity of ⟨·, θ⟩ for all θ ∈ Sd−1, it follows that each extremal point
is a solution of a linear optimization problem with linear side conditions. It is known
from linear optimization theory (see [BT97, p. 65], for example) that, for such
optimization problems, one can always find a vertex (i.e., a corner) of the feasible
region (in this case Ω̂) solving the problem. Thus, for each θ ∈ Sd−1, one can find a
vertex of Ω̂ that is an extremal point in direction θ.

Therefore, according to Proposition 5.38, if Ω̂ is a nonempty, closed polytope, it is
sufficient to check that (5.28) holds true at the vertices of Ω̂ in the corresponding
directions (for which the vertex is an extremal point) in order to ensure that the
local finiteness condition and, thus, also the local finiteness property hold true on
any compact Ω with Ω ⊆ Ω̂◦. In practice, this is a much more feasible endeavor than
the initial local finiteness condition. ◀
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Ω

Ω̂

Fig. 5.13: Local finiteness condition for polytopes. If Ω̂ is chosen to be a polytope that
contains Ω in its interior, it is sufficient to consider half spaces only at the vertices
(blue) of that polytope (which are in particular extremal points) in order to
ensure that the local finiteness property holds true on Ω. We also display the
range of half space normals (orange) that has to be checked at each vertex.
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Knot Insertion 6
„We seem to be made to suffer. It’s our lot in life.

— Star Wars: Episode IV – A New Hope

When introducing univariate splines, we also recalled knot insertion in Subsec-
tion 2.3.5, which ensures that each spline with respect to some knot sequence can
also be expressed in terms of any refined knot sequence. We will refer to this as knot
insertion property and investigate if it also holds true for nonpooled DCB-splines.
We explicitly focus on nonpooled DCB-splines, although some results may also be
applied to pooled DCB-splines. Moreover, we prefer to consider the unnormalized
simplex splines M instead of the normalized version N in order to avoid nota-
tional overhead. For the question if the knot insertion property holds true, the
normalization of basis candidate functions clearly does not matter.

Throughout the chapter, we once again assume that d ∈ N+, m ∈ N0, and that
X ⊆ Rd satisfies the weak conditions specified in Definition 4.16.

6.1 Preliminaries

The fundamental question we are going to answer in this chapter is the following:
For two knot sets X, X ′ with the specified properties and X ⊆ X ′, does the subset
relation Sm,X ⊆ Sm,X′ hold true, like it does for univariate splines?

Due to the same argument as in the univariate case, one can restrict considerations
on the insertion of a single knot since the general case follows by repeated application
(at least for a finite number of new knots). Hence, we assume that x∗ ∈ Rd and
add x∗ to the existing knot set X to obtain the refined knot set X∗ := X ∪ {x∗}.
Furthermore, we require X∗ to be in general Delaunay position, which in particular
implies that x∗ ̸∈ X. We have to check now if the relation Sm,X ⊆ Sm,X∗ holds true.
The question is answered by the following example:
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x0

x1

x2

x3

K0

K1

(a) Situation for original knot set X

x0

x1

x2

x3

x∗

K∗
0

K∗
1

K∗
2

K∗
3

(b) Situation for refined knot set X∗

Fig. 6.1: Counterexample for the knot insertion property. There are splines in the spline
space S0,X (left) which cannot be represented with respect to the refined spline
space S0,X∗ (right). The circles represent the circumcircles of Delaunay config-
urations, whereas the black lines indicate the boundary of the support of the
corresponding simplex splines.

Example 6.1. Choose d := 2, m := 0, and the knots

x0 :=
(

−1
0

)
, x1 :=

(
0
1

)
, x2 :=

(
0

−1

)
, x3 :=

(
2
0

)
, x∗ :=

(
1/4

1/4

)
.

When looking at Figure 6.1, it can be seen that these knots are in general Delaunay
position. We choose an arbitrary locally finite knot set X∗ in general Delaunay
position with conv(X∗) = Rd such that x0, . . . , x3, x∗ ∈ X∗ and

X∗\{x0, . . . , x3, x∗} ∩
1⋃

i=0
B(B(Ki)) ∩

3⋃

i=0
B(B(K∗

i )) = ∅, (6.1)

where the Delaunay configurations K0, K1, K∗
0 , . . . , K∗

3 are defined with respect to
the finite knot sets {x0, . . . , x3} and {x0, . . . , x3, x∗}, respectively, and will be defined
below. Due to (6.1), these configurations are not influenced by the remaining knots
in X∗. Hence, the additional knots do not require further consideration. We extend
X∗ in this way to show that the counterexample also works for knot sets satisfying
conv(X∗) = Rd. Moreover, define X := X∗\{x∗}, which is also a locally finite knot
set in general Delaunay position. It generates the Delaunay configurations

K0 := ({x0, x1, x2}, ∅), K1 := ({x1, x2, x3}, ∅)
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of degree zero, i.e., without interior knots (see Definition 4.13), as can be verified
easily when looking at Figure 6.1. On the contrary, Delaunay configurations of the
refined knot set X∗ are

K∗
0 := ({x0, x1, x∗}, ∅), K∗

1 := ({x0, x2, x∗}, ∅),
K∗

2 := ({x1, x3, x∗}, ∅), K∗
3 := ({x2, x3, x∗}, ∅).

It can be seen in Figure 6.1 that K∗
0 , . . . , K∗

3 ∈ K0(X∗) but K0, K1 ̸∈ K0(X∗).
Furthermore, since Delaunay triangulations tessellate R2, there is no other configu-
ration in K0(X∗) that gives rise to a simplex spline whose support has a nonempty
intersection with conv(x0, . . . , x3)◦. We consider the spline function

g :=
∑

K∈K0(X)
aKM(· | U(K)) ∈ S0,X

with coefficients

aK :=





2 vold(conv(x0, x1, x2)) if K = K0,

0 otherwise,
for all K ∈ K0(X).

According to Definition 3.15, g can be represented for all t ∈ R2 as

g(t) = 2 vold(conv(x0, x1, x2)) M(t | U(K0)) =





1 if t ∈ conv(x0, x1, x2),

0 otherwise.

We assume now that it is possible to express g in terms of the refined spline space
S0,X∗ . Due to the fact that there are no further basis candidate functions with
support in conv(x0, . . . , x3)◦, there are coefficients aK∗

0
, aK∗

1
, aK∗

2
, aK∗

3
∈ R such that

g∗(t) :=
3∑

i=0
aK∗

i
M(t | U(K∗

i )) = g(t) for all t ∈ R2\A∗.

Here, A∗ contains the boundaries of the supports of the simplex splines, i.e.,

A∗ :=
4⋃

i=0

4⋃

j=i+1
conv(xi, xj),

where x4 := x∗. Let us consider the point t = (−1/2, 1/4)⊺ ∈ R2\A∗, for which
g(t) = 1 holds. Due to t ∈ conv(x0, x1, x∗)◦ and the pairwise disjointness of

conv(x0, x1, x∗)◦, conv(x0, x2, x∗)◦, conv(x1, x3, x∗)◦, conv(x2, x3, x∗)◦,
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it follows that aK∗
0

= 1. Equivalently, one can conclude for the point (−1/2, −1/4)⊺

that aK∗
1

= 1. On the contrary, the points (1/2, 1/4)⊺ and (1/2, −1/4)⊺ yield that
aK∗

2
= aK∗

3
= 0. If we finally consider the point t′ = (1/8, 1/8)⊺, it follows with

t′ ∈ conv(x0, x2, x∗)◦ and t′ ̸∈ conv(x0, x1, x2)

that g(t′) = 0 ̸= 1 = g∗(t′), which is a contradiction to the assumption that g(t) =
g∗(t) for all t ∈ R2\A∗. Hence, g cannot be expressed in terms of the refined spline
space S0,X∗ , which shows that the knot insertion property does not hold true in
general for nonpooled DCB-splines. Note that this example also works for pooled
DCB-splines of degree zero (according to our definition). As a consequence, the knot
insertion property does not hold true in general for pooled DCB-splines either. ◀

As the knot insertion property does not hold true in general, we spend the remainder
of the current chapter on the characterization of situations where the insertion of
an additional knot yields a spline space that contains all functions of the coarser
space. In the following section, we will formulate a necessary criterion which has to
be fulfilled if the relation Sm,X ⊆ Sm,X∗ holds true. Afterwards, we will try to show
that this criterion is also sufficient.

6.2 Necessary Criterion

When recalling Example 6.1, it can be seen that the key problem is the disappearance
of the edge between x1 and x2 after inserting the additional knot x∗. All splines that
can be expressed with respect to the refined knot set are continuous across that edge.
Hence, not all splines of the coarse spline space can be represented in that way since
it contains functions with discontinuities across this edge, even when considering
only the interior of the supports and ignoring the improperly defined boundary.

As it turns out, this is the key idea towards a general necessary criterion for the knot
insertion property. Without this criterion being satisfied, the refined spline space
does not contain all functions of the coarser one.

6.2.1 Limits of Differentiability

We have recalled in Theorem 3.20 that a simplex spline of degree m has m − 1
continuous derivatives if the corresponding knots are in general position. In the
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following two lemmas, we will show that this differentiability is optimal in the
following sense: In each convex hull of a subset of d knots, there are points at which
the (m − 1)-th derivative is not continuously differentiable. The following results
are sufficient for our subsequent considerations. A more detailed treatment of the
exact differentiability of simplex splines and more general results on this topic are
presented in [Hak82].

Lemma 6.2. Let X ⊆ Rd satisfy the weak conditions, and choose a Z ⊆ X with
|Z| = d. Let A be a system of subsets of knots such that A ⊆ {

A ⊆ X
∣∣ |A| = d

}
and

Z ̸∈ A. Then,

vold−1

(
conv(Z) ∩

⋃

A∈A
conv(A)

)
= 0.

Proof. The claim is clear if A = ∅. Otherwise, we can choose an A ∈ A. Since
A ̸= Z, one has |Z ∩ A| ≤ d − 1. We assume now that

vold−1(conv(Z) ∩ conv(A)) ̸= 0. (6.2)

Both convex hulls are subsets of hyperplanes in Rd, and the intersection of two
distinct hyperplanes is empty or a lower-dimensional affine subspace of dimension
d − 2. As this would yield vold−1(conv(Z) ∩ conv(A)) = 0, which would be a
contradiction to Assumption (6.2), it follows that both hyperplanes coincide. Hence,
all knots in Z ∪ A lie in the same hyperplane. However, due to

|Z ∪ A| = |Z| + |A| − |Z ∩ A| ≥ 2d − (d − 1) = d + 1,

these (at least) d + 1 knots in a common hyperplane constitute a contradiction to
the requirement on X that no d + 2 knots are affinely dependent. Consequently,
Assumption (6.2) is incorrect, and one has

vold−1(conv(Z) ∩ conv(A)) = 0 for all A ∈ A. (6.3)

A is countable since it consists of subsets containing exactly d elements of the
countable set X. Hence, the claim follows due to (6.3) and the σ-subadditivity of
the Lebesgue measure:

0 ≤ vold−1

(
conv(Z) ∩

⋃

A∈A
conv(A)

)
≤
∑

A∈A
vold−1(conv(Z) ∩ conv(A)) = 0.
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Lemma 6.3. Let X ⊆ Rd satisfy the weak conditions. Choose Y ⊆ X such that
|Y | = d + m + 1, and let Z ⊆ Y with |Z| = d. Moreover, choose A such that

A ⊆
{

A ⊆ X
∣∣∣ |A| = d, A ̸= Z

}
and

{
A ⊆ Y

∣∣∣ |A| = d, A ̸= Z
}

⊆ A.

We set
W := conv(Z)

∖ ⋃

A∈A
conv(A).

Then, vold−1(W ) > 0, and M(· | Y ) is at all points in W not m-times continuously
differentiable.

Proof. Since A satisfies the conditions in Lemma 6.2, one can apply this lemma to
obtain that

vold−1

(
conv(Z) ∩

⋃

A∈A
conv(A)

)
= 0.

Furthermore, one has vold−1(conv(Z)) > 0 as X is in general Delaunay position.
Hence, one can conclude that

vold−1(W ) = vold−1(conv(Z)) − vold−1

(
conv(Z) ∩

⋃

A∈A
conv(A)

)

= vold−1(conv(Z)) > 0.

We prove the remainder of the claim via induction on m.

Simplex splines of degree zero are just scaled characteristic functions of the convex
hull of Y . As the scaling factor is nonzero, the claim follows for m = 0 directly from
the fact that 1conv(Y ) is discontinuous at the boundary of conv(Y ).

Consider m → m + 1 now. Since vold−1(W ) > 0, it follows that W ̸= ∅, so that we
can choose a t ∈ W . Moreover, we number x0, . . . , xd+m+1 ∈ Y such that

Z = {x0, . . . , xd−1} and Y = Z ∪ {xd, . . . , xd+m+1}.

Consider the barycentric direction

µ := (−1, 0, . . . , 0︸ ︷︷ ︸
(d − 1)-times

, 1, 0, . . . , 0︸ ︷︷ ︸
(m + 1)-times

) ∈ Rd+m+2.

According to Theorem 3.19, one can represent the directional derivative of M(· | Y )
in direction

y :=
d+m+1∑

k=0
µkxk = xd − x0
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conv(Z)

Fig. 6.2: The situation in Lemma 6.3. The quadratic simplex spline with respect to the given
knots is not twice differentiable at almost every point of conv(Z) (orange). The
endpoints of conv(Z) (orange) as well as the intersection point (blue) are excluded
from the set W .

in terms of two simplex splines of degree m:

DyM(· | Y ) = M(· | x0, . . . , xd−1, xd+1, . . . , xd+m+1)
− M(· | x1, . . . , xd+m+1). (6.4)

Since t ∈ W and A satisfies the corresponding conditions, we can apply the induction
hypothesis to the first simplex spline M(· | x0, . . . , xd−1, xd+1, . . . , xd+m+1) to obtain
that it is not m-times continuously differentiable at t.

We show now that the second simplex spline is m-times continuously differentiable
at t. To that end, we note that, for all A ⊆ {x1, . . . , xd+m+1} with |A| = d, one has
x0 ̸∈ A and, therefore, A ̸= Z. Consequently, A ∈ A, and thus, t ̸∈ conv(A). Hence,
Theorem 3.20 yields that M(· | x1, . . . , xd+m+1) is a polynomial locally around t and,
in particular, m-times continuously differentiable at t. According to (6.4), this yields
that DyM(· | Y ) is not m-times continuously differentiable at t since, otherwise, one
would obtain the contradiction that

M(· | x0, . . . , xd−1, xd+1, . . . , xd+m+1) = M(· | x1, . . . , xd+m+1) + DyM(· | Y )

as a sum of functions which are m-times continuously differentiable at t would
also be m-times continuously differentiable at t. Consequently, M(· | Y ) is not
(m + 1)-times continuously differentiable at all points in W .

The nondifferentiable points covered by the previous lemma are presented in Fig-
ure 6.2. Note that, in most cases, M(· | Y ) is not m-times continuously differentiable
at all points in conv(Z). However, for some choices of A ∈ A, it can happen
that both simplex splines in (6.4) are not m-times continuously differentiable at
t ∈ conv(Z) ∩ conv(A). Since it could happen theoretically that these nondifferen-
tiabilities cancel out, one cannot conclude in general that also DyM(· | Y ) is not
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m-times continuously differentiable at t. As the scope of the previous lemma is
sufficient for our purposes, we will not consider these special situations in more
detail and instead refer to [Hak82].

6.2.2 Definition of the Criterion

We can use the nonexistence of m-th derivatives now to formulate the following
criterion, which is a necessary condition for the knot insertion property.

Theorem 6.4. Let d ∈ N+, m ∈ N0, and let X ⊆ Rd satisfy the weak conditions.
Furthermore, choose

Y ⊆ X, |Y | = d + m + 1,

Z ⊆ Y, |Z| = d,

and let
A ⊆

{
A ⊆ X

∣∣∣ |A| = m + d + 1
}

such that ∣∣∣
{

A ∈ A
∣∣∣ supp M(· | A) ∩ Ω ̸= ∅

}∣∣∣ < ∞ (6.5)

for all compact Ω ⊆ Rd. If Z ̸⊆ A for all A ∈ A, then there is no family of real-valued
coefficients (cA)A∈A such that

M(· | Y ) =
∑

A∈A
cAM(· | A).

Proof. Assume that one has Z ̸⊆ A for all A ∈ A, and define

W :=




⋃

Z′⊆Y
|Z′|=d
Z′ ̸=Z

conv
(
Z ′)




∪
⋃

A∈A

⋃

A′⊆A
|A′|=d

conv
(
A′)

︸ ︷︷ ︸
=:WA

.

Then, one can apply Lemma 6.3 to obtain that vold−1(conv(Z)\W ) > 0. In particular,
there is a t ∈ conv(Z)\W . Lemma 6.3 additionally provides that, for all open
neighborhoods U ⊆ Rd of t, one has

M(· | Y )
∣∣∣
U

̸∈ Cm(U). (6.6)
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Let A ∈ A. Then, WA ⊆ W and t ̸∈ W imply t ̸∈ WA. Moreover, WA is closed as
finite union of closed sets, and therefore, W c

A is open. Hence, there is an ϵA > 0
such that BϵA(t) ∩ WA = ∅. Thus, Theorem 3.20 provides that

M(· | A)
∣∣∣
BϵA(t)

∈ Πm(BϵA(t)). (6.7)

Assume now that there is a family of real-valued coefficients (cA)A∈A such that

M(· | Y ) =
∑

A∈A
cAM(· | A). (6.8)

Choose an arbitrary ϵ′ > 0, and consider

A′ :=
{

A ∈ A
∣∣∣ Bϵ′(t) ∩ supp M(· | A) ̸= ∅

}
and ϵ := min

{
ϵ′, min

A∈A′
ϵA

}
> 0,

so that
M(· | A)

∣∣∣
Bϵ(t)

≡ 0 for all A ∈ A\A′.

With Assumption (6.5), it follows that A′ is finite and, therefore, that ϵ is well-
defined. Consequently, M(· | Y ) can locally be represented as

M(· | Y )
∣∣∣
Bϵ(t)

=
∑

A∈A
cAM(· | A)

∣∣∣
Bϵ(t)

=
∑

A∈A′
cAM(· | A)

∣∣∣
Bϵ(t)

, (6.9)

which is a finite linear combination of polynomials, according to (6.7). Hence,

M(· | Y )
∣∣∣
Bϵ(t)

∈ Πm(Bϵ(t)) ⊆ Cm(Bϵ(t)),

i.e., M(· | Y ) is locally a polynomial and, in particular, has m continuous derivatives
at t, which is a contradiction to (6.6). Thus, a family of coefficients satisfying (6.8)
does not exist with the stated premises.

When setting A to the set of unoriented Delaunay configurations of degree m with
respect to the knot set X, Condition 6.5 follows directly from the local finiteness
property (see Theorem 5.29 and Corollary 5.31). Although the previous theorem
looks fairly abstract at first sight, its application to DCB-splines is straightforward:

Corollary 6.5. Let d ∈ N+, m ∈ N0, and let X∗ ⊆ Rd be a knot set satisfying the
strong conditions. Choose x∗ ∈ X∗. Define the coarser knot set as X := X∗\{x∗}. If
there exists a K ∈ Km(X) and a Z ⊆ U(K) with |Z| = d such that Z ̸⊆ U(K∗) for
all K∗ ∈ Km(X∗), then Sm,X ̸⊆ Sm,X∗ .
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Proof. Let
A :=

{
U(K∗)

∣∣∣ K∗ ∈ Km(X∗)
}

.

Since X∗ satisfies the strong conditions, Corollary 5.31 yields that

∣∣∣
{

A ∈ A
∣∣∣ supp M(· | A) ∩ Ω ̸= ∅

}∣∣∣ < ∞ for all compact Ω ⊆ Rd.

Thus, one can apply Theorem 6.4 to obtain that M(· | U(K)) ∈ Sm,X\ Sm,X∗ .

Definition 6.6 (Necessary criterion for knot insertion). Let d ∈ N+, m ∈ N0, and let
X∗ ⊆ Rd be a knot set satisfying the weak conditions. Choose x∗ ∈ X∗, and define
the coarser knot set as X := X∗\{x∗}. Then, X∗ satisfies the necessary criterion for
knot insertion (with respect to x∗) if, for all K ∈ Km(X) and for any Z ⊆ U(K) with
|Z| = d, one can find a K∗ ∈ Km(X∗) such that Z ⊆ U(K∗). ◀

In the previous definition, we required X∗ to satisfy only the weak conditions, in
order to keep the results in the next section as general as possible. However, only
for knot sets satisfying the strong conditions, we have shown that the criterion is
really necessary. The following result is just the contraposition of Corollary 6.5.

Corollary 6.7. Let d ∈ N+, m ∈ N0, and let X∗ ⊆ Rd be a knot set satisfying
the strong conditions. Choose x∗ ∈ X∗, and define X := X∗\{x∗}. If one has
Sm,X ⊆ Sm,X∗ , then X∗ satisfies the necessary criterion for knot insertion. ◀

Remark 6.8. The usual univariate splines exhibit the knot insertion property, as
stated in Subsection 2.3.5. Since DCB-splines reduce to these univariate splines
when considered in one dimension, the necessary criterion is required to hold true
for d = 1 in any case. This is indeed true as Z is then just a single knot, which is
contained in each collection of knots corresponding to the m + 2 overlapping or
adjacent B-splines. ◀

Remark 6.9. The necessary criterion requires that every set of d knots appearing as
subset of any unoriented Delaunay configuration in the coarse knot set also appears
in at least one of the configurations of the refined knot set. One possibility to enforce
that the necessary criterion holds true, of course, would be to modify the definition
of the spline space as to incorporate these subsets by adding further basis candidate
functions that are not generated by Delaunay configurations. Such a modification is
clearly a severe intervention, which is incompatible with the whole approach based
on Delaunay configurations. Another issue with enforcing the necessary criterion
is the following: In Figure 6.3a, there are only few knots and it is reasonable to
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x0

x1

(a) Sparse knot set

x0

x1

(b) Knot set after repeated refinement

Fig. 6.3: Enforcing the necessary criterion. In a sparse knot set (left), it may be reasonable
to consider two knots as neighbors even though they are fairly far apart (orange).
After repeated insertion of knots (right), however, it may be not reasonable any
more to consider these knots as neighbors.

consider the knots x0 and x1 as neighbors, i.e., there is a Delaunay configuration
incorporating both knots. When enforcing the necessary criterion and inserting
knots iteratively, this neighborhood relation has to be retained. This contrasts the
desired locality of spline basis candidate functions, as presented in Figure 6.3b. ◀

6.3 Sufficiency of the Criterion

The definition of a sufficient criterion ensuring that the knot insertion property holds
true for a specific knot set would be at least as interesting as a necessary criterion,
like the one formulated in the previous section. Ideally, this necessary criterion is
already sufficient, which would show the equivalence of the criterion and the knot
insertion property. In this section, we try to give a proof for this circumstance.

In the following subsection, we will recall a knot insertion formula for simplex splines.
Subsequently, we will show step-by-step that the necessary criterion implies the
existence of specific Delaunay configurations, which, under certain circumstances,
can be combined using the knot insertion formula. We try to use these combinations
to prove the sufficiency of the criterion. To show the relationship Sm,X ⊆ Sm,X∗

for a knot set X and a refined knot set X∗, it is clearly sufficient to show that
Bm,X ⊆ Sm,X∗ since Bm,X is a generating system for Sm,X . Therefore, we will
pick an arbitrary basis candidate function in Bm,X and try to prove that it is also
contained in the refined spline space Sm,X∗ .
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6.3.1 Knot Insertion Formula

The first ingredient needed to show the sufficiency of the necessary criterion is a
knot insertion formula which enables the expression of a simplex spline of a certain
degree by means of several other simplex splines of the same degree. Note that
Micchelli’s recursion formula (see Proposition 3.24) uses simplex splines of a lower
degree for that purpose. We will see, however, that the recursion formula is closely
related to the knot insertion formula presented in this subsection.

The knot insertion formula is also due to Micchelli since, in fact, it has been used
in [Mic80] to prove the recursion formula. Therefore, it is called Micchelli’s knot
insertion formula in [PBP02, p. 264]. In literature, different proofs of this formula
have been presented: The proofs in [Mic80] and [Mic95, p. 165f] are based on
divided differences, whereas [Mic95, p. 164f] and [PBP02, p. 263f] employ different,
geometric approaches. In the following, we present another, novel proof for the knot
insertion formula for the case m ≥ 2, which utilizes Micchelli’s recursion formula
and, to the best of our knowledge, has not been given in literature so far.

To keep things clear, we use the following shorthand notation, which has been
employed, for example, in [Nea07], [PBP02], and [Mic95] in a similar way: For any
x0, . . . , xd, t ∈ Rd, Z := (x0, . . . , xd), and i, j ∈ {0, . . . , d}, we define

Z†
i := (x0, . . . , xi−1, t, xi+1, . . . , xd), Z∗

i := (x0, . . . , xi−1, x∗, xi+1, . . . , xd),
Zi := (x0, . . . , xi−1, xi+1, . . . , xd).

We can now give the following proof for Micchelli’s knot insertion formula for
m ≥ 2:

Theorem 6.10 (Micchelli’s knot insertion formula). Let d, m ∈ N+, m ≥ 2, and
choose x0, . . . , xm+d, x∗ ∈ Rd in general position. Set Z := (x0, . . . , xd). Then,

M(t | x0, . . . , xm+d) =
d∑

i=0
ui(x∗ | Z)M(t | x0, . . . , xi−1, xi+1, . . . , xm+d, x∗)

for every t ∈ Rd.

Proof. Let Y := (xd+1, . . . , xm+d) and t ∈ R. Since the definition of simplex splines
is independent of the order of knots, one has

M(· | (Z∗
j )i, Y ) = M(· | (Z∗

i )j , Y ) for all i, j ∈ {0, . . . , d}, i ̸= j.
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Together with Micchelli’s recursion formula (see Proposition 3.24), Identity (3.3)
regarding barycentric coordinates, and the manipulation of sums

d∑

i=0

d∑

j=i+1
ai,j =

d∑

j=0

j−1∑

i=0
ai,j =

d∑

i=0

i−1∑

j=0
aj,i

shown in [GKP89, p. 36], one obtains

d∑

i=0
ui(x∗ | Z)M

(
t
∣∣∣ x0, . . . , xi−1, xi+1, . . . , xm+d, x∗

)

= 1
d(Z)

d∑

i=0
d(Z∗

i )M
(
t
∣∣∣ Z∗

i , Y
)

= 1
md(Z)

d∑

i=0
d(Z∗

i )
(

ui(t | Z∗
i )M

(
t
∣∣∣ Zi, Y

)
+

d∑

j=0,j ̸=i

uj(t | Z∗
i )M

(
t
∣∣∣ (Z∗

i )j , Y
))

= 1
md(Z)

d∑

i=0


d
(
Z†

i

)
M
(
t
∣∣∣ Zi, Y

)
+

d∑

j=0,j ̸=i

d
(
(Z∗

i )†
j

)
M
(
t
∣∣∣ (Z∗

i )j , Y
)



= 1
md(Z)

(
d∑

i=0
d
(
Z†

i

)
M
(
t
∣∣∣ Zi, Y

)
+

d∑

i=0

i−1∑

j=0
d
(
(Z∗

i )†
j

)
M
(
t
∣∣∣ (Z∗

i )j , Y
)

+
d∑

i=0

i−1∑

j=0
d
(
(Z∗

j )†
i

)
M
(
t
∣∣∣ (Z∗

j )i, Y
))

= 1
md(Z)

(
d∑

i=0
d
(
Z†

i

)
M
(
t
∣∣∣ Zi, Y

)

+
d∑

i=0

i−1∑

j=0

(
d
(
(Z∗

i )†
j

)
+ d

(
(Z∗

j )†
i

))

︸ ︷︷ ︸
=0

M
(
t
∣∣∣ (Z∗

i )j , Y
))

= M
(
t
∣∣∣ x0, . . . , xm+d

)
.

As we have to apply the recursion formula, the proof does not cover the case
m ∈ {0, 1}. For m = 0, the occurring functions are piecewise constant, and the
stated identity reduces to a combinatorial relationship between the support of these
functions. This relationship is basically the core of the geometric proof of the
knot insertion formula in [PBP02, p. 263f]. In the case m = 1, the above result
still does not hold pointwise as we cannot apply the recursion formula due to
the discontinuities in the occurring simplex splines of degree zero. This could be
remedied by a consistent definition of degree zero simplex splines on the boundary
of their support (see Subsection 8.2.1).
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The original formulation of Theorem 6.10 is more general in two ways: Firstly, it
also allows for the case m ∈ {0, 1} and more general collections of knots. Secondly,
it facilitates the use of an arbitrary number of nonzero coefficients in the affine
combination of x∗, whereas we assumed that at most d + 1 coefficients are different
from zero. Nevertheless, due to Carathéodory’s theorem, every choice of x∗ can be
represented in this way.

Despite these limitations, our proof reveals the interesting insight that the intimate
relationship between Micchelli’s recursion formula and the knot insertion formula
is in some sense bidirectional since, in [Mic80], Micchelli used the knot insertion
formula to prove the recursion formula and we proceeded vice versa.

Remark 6.11. The knot insertion formula provides rich possibilities for the combi-
nation of simplex splines of the same degree. In particular, if one has d + 1 simplex
splines such that each pair is defined with respect to collections of knots that differ
by exactly one knot, the total number of involved knots is m + d + 2. In this case, the
knot insertion formula enables the combination of any simplex spline that is defined
with respect to a subset of m + d + 1 knots. Hence, there are exactly m + d + 2
possible choices. Clearly, d + 1 of these choices yield the original simplex splines,
whereas the remaining m + 1 possibilities generate functions which are not part of
the initial set of simplex splines. ◀

Remark 6.12. In the univariate case, the coefficients in the knot insertion for-
mula (see Theorem 2.26) are always nonnegative when combining a specific B-
spline. However, this is not necessarily the case in the multivariate analogue. The
coefficients are nonnegative if and only if the barycentric coordinates ui(x∗ | Z)
are nonnegative for all i ∈ {0, . . . , d}. This is clearly the case if and only if
x∗ ∈ conv(x0, . . . , xd). We display this behavior in Figure 6.4. ◀

6.3.2 Critical Configurations

We aim at a proof of the existence of certain Delaunay configurations now, which
we will call critical configurations and which, under certain circumstances, enable
us to apply Micchelli’s knot insertion formula to obtain a linear combination of
a given basis candidate function in Bm,X in terms of basis candidate functions
generated by the refined knot set X∗. As mentioned earlier, it is sufficient to show
that Bm,X ⊆ Sm,X∗ in order to prove that Sm,X ⊆ Sm,X∗ .
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x0

x1

x2

x∗

(a) All coefficients are positive

x0

x1

x2x∗

(b) One coefficient is negative

x0

x1

x2 x∗

(c) Two coefficients are negative

Fig. 6.4: Different signs of coefficients when applying the knot insertion formula in order to
represent the simplex spline M(· | x0, x1, x2) by means of other simplex splines of
degree zero with respect to three knots of the set {x0, x1, x2, x∗}. Regions shaded
in blue refer to the support of simplex splines with a positive coefficient, whereas
orange regions indicate a negative coefficient.

To that end, several geometric preliminaries are necessary again. One of these results
cannot be generalized for d > 2, though (see the remarks following Lemma 6.16).
Since the case d = 1 is clear as the knot insertion property holds true for univariate
splines in any case, we will formulate the final result of this subsection only for
d = 2. Nevertheless, we provide generic proofs that work for arbitrary d ∈ N+ for
the following auxiliary results.

One of the most important results for the following considerations is Lemma 5.20.
We will extend its statement now by the following two results:

Lemma 6.13. Let d ∈ N+, and choose affinely independent v0, . . . , vd−1 ∈ Rd.
Let H+ and H− denote the two open half spaces generated by the hyperplane
aff(v0, . . . , vd−1). Choose w, w′ ∈ H+ ∪ H− such that {v0, . . . , vd−1, w, w′} is in
general Delaunay position. Then, exactly one of the following properties holds true:

(i) B(v0, . . . , vd−1, w) ∩ H+ ⊆ B(v0, . . . , vd−1, w′),

(ii) B(v0, . . . , vd−1, w′) ∩ H+ ⊆ B(v0, . . . , vd−1, w).

Proof. Due to the affine independence of the points, both balls are well-defined. We
make the same transformations as in Lemma 5.20 to simplify the proof, so that one
has H+ = {t ∈ Rd | td > 0} and

b := cen(v0, . . . , vd−1, w) = (0, . . . , 0, b̂)⊺,

c := cen
(
v0, . . . , vd−1, w′) = (0, . . . , 0, ĉ)⊺,
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r := rad(v0, . . . , vd−1, w) =
√

b̂2 + 1,

s := rad
(
v0, . . . , vd−1, w′) =

√
ĉ2 + 1,

where

b̂ = ∥w∥2 − 1
2wd

and ĉ = ∥w′∥2 − 1
2w′

d

.

As the points are in general Delaunay position, it follows that b̂ ̸= ĉ. Assume that
ĉ < b̂, and choose u ∈ Bs(c) ∩ H+. Then, it follows as in (5.21) that

∥u∥2 − 1 ≤ 2udĉ < 2udb̂,

and therefore, u ∈ Br(b). Consequently, (ii) holds true. Otherwise, one has b̂ < ĉ,
and it follows analogously that (i) holds true.

The assumption that both (i) and (ii) hold true yields the contradiction

Br(b) ∩ H+ ⊆ Bs(c) ∩ H+ ⊂ Bs(c) ∩ H+ ⊆ Br(b) ∩ H+ ⊂ Br(b) ∩ H+,

which finishes the proof.

Corollary 6.14. Let d ∈ N+, and choose affinely independent v0, . . . , vd−1 ∈ Rd.
Let H+ and H− denote the two open half spaces generated by the hyperplane
H0 := aff(v0, . . . , vd−1). Choose w ∈ H+ ∪ H− and u ∈ H+\B(v0, . . . , vd−1, w) such
that {v0, . . . , vd−1, w, u} is in general Delaunay position. Then,

B(v0, . . . , vd−1, w) ∩ H+ ⊆ B(v0, . . . , vd−1, u) ∩ H+ and

B(v0, . . . , vd−1, u) ∩ H− ⊆ B(v0, . . . , vd−1, w) ∩ H−.

Proof. Since u ∈ H+ ∩ B(v0, . . . , vd−1, u), one has

B(v0, . . . , vd−1, u) ∩ H+ ̸⊆ B(v0, . . . , vd−1, w),

and consequently, Lemma 6.13 yields

B(v0, . . . , vd−1, w) ∩ H+ ⊆ B(v0, . . . , vd−1, u).

The second formula then follows by applying Lemma 5.20.

We can use previous results to show that points in a half space can be ordered strictly
in the following way:
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Lemma 6.15. Let d ∈ N+, and choose affinely independent v0, . . . , vd−1 ∈ Rd. Let
H+ be one of the open half spaces generated by the hyperplane aff(v0, . . . , vd−1).
Choose W := {wi ∈ H+ | i ∈ I} such that W ∪ {v0, . . . , vd−1} is in general Delaunay
position, where I is a nonempty index set. Then, the relation

≺ :=
{

(w, w′) ∈ W × W
∣∣∣ w ∈ B

(
v0, . . . , vd−1, w′)}

is a strict total order on W .

Proof. a) Irreflexivity: It follows from the definition that w ̸≺ w for all w ∈ W .

b) Connectedness: Let w, w′ ∈ W with w ̸= w′. Lemma 6.13 provides that either

B(v0, . . . , vd−1, w) ∩ H+ ⊆ B
(
v0, . . . , vd−1, w′),

yielding w ≺ w′, or

B(v0, . . . , vd−1, w′) ∩ H+ ⊆ B(v0, . . . , vd−1, w),

which in turn implies that w′ ≺ w.

c) Transitivity: Let w1, w2, w3 ∈ W such that w1 ≺ w2 and w2 ≺ w3. Then,
w2 ∈ B(v0, . . . , vd−1, w3) ∩ H+, and thus,

w1 ∈ B(v0, . . . , vd−1, w2) ∩ H+ ⊆ B(v0, . . . , vd−1, w3)

due to Lemma 5.20. Therefore, it follows that w1 ≺ w3, which finishes the
proof. □

Whereas the formal definition of this order seems to be new in the context of
Delaunay configurations, it already appeared implicitly in literature, for example
in [SK09]. For a visualization of the previous result, we refer to Figure 6.5. In the
following lemma, we again extend the statement of a geometric result that has been
presented earlier, namely Lemma 5.22:

Lemma 6.16. Let d ∈ N+, c ∈ Rd, r ∈ R+, and v, v′ ∈ Br(c). There are c′ ∈ Rd,
r′ ∈ R+ such that v, v′ ∈ ∂Br′(c′) and Br′(c′) ⊆ Br(c).

Proof. If v, v′ ∈ ∂Br(c), the claim follows immediately. If only one of the points v, v′

is on the boundary ∂Br(c), applying Lemma 5.22 yields the stated claim. Otherwise,
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v0 v1

w0

w1

w2

w3H+

Fig. 6.5: Strict total order of points in a half space. The points w0, . . . , w3 in the half
space H+ can be ordered according to the nesting of the circles B(v0, v1, wi),
i ∈ {0, . . . , 3}, in H+. In this example, one has w0 ≺ w1 ≺ w2 ≺ w3.

v, v′ ∈ Br(c). We choose an arbitrary w ∈ ∂Br(c) and apply Lemma 5.22 both to
v, w and to v′, w, yielding b, b′ ∈ conv(c, w) and s, s′ ∈ R+ such that

v, w ∈ ∂Bs(b), Bs(b) ⊆ Br(c),
v′, w ∈ ∂Bs′

(
b′), Bs′

(
b′) ⊆ Br(c).

Since b, b′ ∈ conv(c, w), there are λ, λ′ ∈ [0, 1] such that

b = λc + (1 − λ)w and b′ = λ′c + (1 − λ′)w.

Consequently,

∥b − b′∥ = |λ − λ′|∥c − w∥ =
∣∣∣|λ| − |λ′|

∣∣∣∥c − w∥ =
∣∣∣∥b − w∥ − ∥b′ − w∥

∣∣∣ = |s − s′|.

If s ≥ s′, one obtains

∥v′ − b∥ ≤ ∥v′ − b′∥ + ∥b′ − b∥ = s′ + |s − s′| = s

and, therefore, v′ ∈ Bs(b). Applying Lemma 5.22 once again to v and v′ results in
c′ ∈ conv(b, v) and r′ ∈ R+ satisfying

v, v′ ∈ ∂Br′
(
c′) and Br′

(
c′) ⊆ Bs(b) ⊆ Br(c),

which yields the stated claim. If s < s′, the claim follows analogously.
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c
v

v′

w

c′
c̃

c̃′

Fig. 6.6: The situation in Lemma 6.16. Lemma 5.22 ensures the existence of circles (orange)
through w and v or v′, respectively, where w can be chosen arbitrarily on the
boundary of the initial circle (black). Applying the same result once again to the
larger of the two orange circles yields the existence of another circle (blue) through
v and v′, which is contained in the initial circle (black).

The situation in the previous lemma is illustrated in Figure 6.6. Note that it cannot
be generalized to d points in a d-dimensional ball for d ≥ 3. As an example, consider
the case d = 3, and assume that we have three distinct points v, v′, v′′ ∈ B, where B

is an arbitrary open ball. If v, v′ ∈ ∂B and v′′ ∈ B, there is no ball B′ satisfying both
v, v′, v′′ ∈ ∂B′ and B

′ ⊆ B since every B
′ ⊂ B touches ∂B at no more than one

point and, therefore, it is impossible that both v ∈ ∂B′ and v′ ∈ ∂B′. On the contrary,
if v, v′ ∈ ∂B ∩ ∂B′ and B

′ ⊆ B, it follows that B = B′ and, hence, v′′ ̸∈ ∂B′.

In the last preparation for the main result of this subsection, we show a very simple
property of certain maps. Despite its simplicity, it is a core ingredient in the proofs
of the following propositions.

Lemma 6.17. Let m ∈ N0 and n ∈ N+. Let φ : {1, . . . , n} → N0 be a map satisfying

φ(k) ≥ φ(k + 1) − 1 for all k ∈ {1, . . . , n − 1}.

as well as φ(1) ≤ m and φ(n) ≥ m. Then, there is a k∗ ∈ {1, . . . n} with φ(k∗) = m.

Proof. The claim trivially holds true for n = 1 since m ≤ φ(1) ≤ m. Consider
n → n + 1 now. If φ(2) ≥ m + 1, one has m ≥ φ(1) ≥ φ(2) − 1 ≥ m and, thus,
can choose k∗ = 1. If φ(2) ≤ m, apply the induction hypothesis to the function
φ̃ : {1, . . . , n} → N0, k → φ(k + 1), yielding the existence of a k̃ ∈ {1, . . . , n}
such that φ̃(k̃) = m. Consequently, setting k∗ := k̃ + 1 ∈ {2, . . . , n + 1} yields
φ(k∗) = φ̃(k̃) = m and, therefore, finishes the proof.
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x0 x1

x2

y1

y2
y3

K

Br (c)

K∗

K ′

Fig. 6.7: The situation in Proposition 6.18 for m = 4. We require the existence of the
Delaunay configuration K (blue) and define I as the set of knots in the shaded
region (orange). Together with x0 and x1, at least one of these knots (namely
x̂ = y2 in this example) is a boundary knot of a Delaunay configuration K ′

(orange), which we will call critical configuration.

We are able to prove the existence of specific Delaunay configurations now, which we
will subsequently define as critical configurations. As elucidated in the introduction of
this subsection and the remarks following Lemma 6.16, we have to restrict ourselves
to d = 2 for that purpose.

The requirements of the following proposition are in particular fulfilled when one
considers X as a refined knot set satisfying the necessary criterion for knot insertion
(see Definition 6.6). K∗ can be considered as Delaunay configuration (formerly
of degree m) which is not an element of Km(X) any more due to the insertion of
the new knot. Therefore, it is a Delaunay configuration of degree m + 1 now. The
necessary criterion implies the existence of a suitable configuration K. The proof is
illustrated in Figure 6.7.

Proposition 6.18 (Critical configurations). Let X ⊆ R2 be a knot set satisfying the
weak conditions. Let m ∈ N0 and x0, x1 ∈ X such that there are

K∗ ∈ Km+1(X) with x0, x1 ∈ B(K∗),
K ∈ Km(X) with x0, x1 ∈ U(K).

Then, there is an x̂ ∈ I(K∗) and a K ′ ∈ Km(X) with {x0, x1, x̂} = B(K ′).
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Proof. Let B := B(B(K∗)). According to Lemma 6.16, there is a c ∈ R2 and an
r ∈ R+ such that x0, x1 ∈ ∂Br(c) and Br(c) ⊆ B(B(K)). Hence, one has

|Br(c) ∩ X| ≤ |B(B(K)) ∩ X| = m (6.10)

and, in particular, Br(c) ̸= B since |B ∩ X| = m + 1. Let H+, H− denote the two
open half planes generated by the hyperplane aff(x0, x1). Since x0, x1 ∈ ∂B∩∂Br(c),
one can apply Lemma 6.13, yielding that

either B ∩ H+ ⊆ Br(c) or Br(c) ∩ H+ ⊆ B.

According to Lemma 5.20, the latter would imply B ∩ H− ⊆ Br(c). As we have not
imposed any restrictions on the roles of H+ and H− yet, we can number them such
that

Br(c) ∩ H+ ⊆ B and B ∩ H− ⊆ Br(c). (6.11)

Define I := (B\Br(c)) ∩ X. Due to (6.11), one has

I ⊆ H+. (6.12)

Moreover, as X is in general Delaunay position, (6.11), (6.12), and (6.10) yield

m + 1 = |B ∩ H+ ∩ X| + |B ∩ H− ∩ X|
= |Br(c) ∩ H+ ∩ X| + |(B\Br(c)) ∩ H+ ∩ X| + |B ∩ H− ∩ X|
≤ |Br(c) ∩ H+ ∩ X| + |I| + |Br(c) ∩ H− ∩ X| ≤ m + |I|,

and hence, I ̸= ∅. According to Lemma 6.15 and (6.12), we can define a strict total
ordering ≺ on I such that, for any y, y′ ∈ I with y ≺ y′, one has y ∈ B(x0, x1, y′),
which in turn implies B(x0, x1, y) ∩ H+ ⊆ B(x0, x1, y′), according to Lemma 5.20.
Moreover, we label the elements in I as {y1, . . . , yn} := I with n := |I| such that, for
all i, j ∈ {1, . . . , n} with i < j, one has yi ≺ yj . Then,

B(x0, x1, yi) ∩ I = {y1, . . . , yi−1} for all i ∈ {1, . . . , n}, (6.13)

and, due to Lemma 5.20, also

B(x0, x1, yj) ∩ H− ⊆ B(x0, x1, yi) for all i, j ∈ {1, . . . , n}, i < j. (6.14)

For all i ∈ {1, . . . , n}, it follows from yi ∈ H+\Br(c) and Corollary 6.14 that

Br(c) ∩ H+ ⊆ B(x0, x1, yi) and B(x0, x1, yi) ∩ H− ⊆ Br(c). (6.15)
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Moreover, yi ∈ B ∩ H+ together with Lemma 5.20 yields

B(x0, x1, yi) ∩ H+ ⊆ B and B ∩ H− ⊆ B(x0, x1, yi) (6.16)

for all i ∈ {1, . . . , n}. As a consequence of (6.15), (6.16), (6.12), and (6.13), one
has

|B(x0, x1, yi) ∩ H+ ∩ X|
= |Br(c) ∩ H+ ∩ X| + |(B(x0, x1, yi)\Br(c)) ∩ H+ ∩ X|
= |Br(c) ∩ H+ ∩ X| + |B(x0, x1, yi) ∩ H+ ∩ (B\Br(c)) ∩ X|
= |Br(c) ∩ H+ ∩ X| + i − 1 (6.17)

for all i ∈ {1, . . . , n}. Our goal is to apply Lemma 6.17 to the map

φ : {1, . . . , n} → N0, i 7→ |B(x0, x1, yi) ∩ X|.

The remainder of the proof shows that the prerequisites of that lemma hold true.
From (6.17) and (6.15), it follows that

φ(1) = |B(x0, x1, y1) ∩ H− ∩ X| + |Br(c) ∩ H+ ∩ X|
≤ |Br(c) ∩ H− ∩ X| + |Br(c) ∩ H+ ∩ X| ≤ m,

whereas (6.14) and (6.17) yield

φ(i) ≥ |B(x0, x1, yi+1) ∩ H− ∩ X| + |B(x0, x1, yi) ∩ H+ ∩ X|
= |B(x0, x1, yi+1) ∩ H− ∩ X| + |B(x0, x1, yi+1) ∩ H+ ∩ X| − 1
= φ(i + 1) − 1.

for all i ∈ {1, . . . , n − 1}. It remains to be shown that φ(n) ≥ m. One has

yn ∈ A := (B\B(x0, x1, yn)) ∩ H+ ∩ X.

Assume that there is another y ∈ A with y ̸= yn. Then, from (6.15) and applying
Corollary 6.14 to y ∈ H+\B(x0, x1, yn), one obtains

y ̸∈ B(x0, x1, y) ∩ H+ ⊇ B(x0, x1, yn) ∩ H+ ⊇ Br(c) ∩ H+.

As a consequence, y ̸∈ Br(c), and therefore, y ∈ I. Due to the maximality of yn in I

with respect to ≺, one has y ∈ B(x0, x1, yn), which is a contradiction to y ∈ A. Thus,
there is no such y, and it follows that |(B\B(x0, x1, yn)) ∩ H+ ∩ X| = 1.
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Consequently, one obtains together with (6.16) that

φ(n) = |B ∩ H+ ∩ X| − |(B\B(x0, x1, yn)) ∩ H+ ∩ X| + |B(x0, x1, yn) ∩ H− ∩ X|
≥ |B ∩ H+ ∩ X| − 1 + |B ∩ H− ∩ X| = m.

Finally, one can apply Lemma 6.17, yielding the existence of an i∗ ∈ {1, . . . , n} such
that |B(x0, x1, yi∗) ∩ X| = φ(i∗) = m. Hence, by choosing x̂ := yi∗ ∈ I(K∗), one
obtains the stated claim.

In the proof of Proposition 6.18, we ensured the existence of an x̂ ∈ I such that

|B(x0, x1, x̂) ∩ X| = m. (6.18)

However, this knot is in general not uniquely defined. In this case, we choose of all
knots in I satisfying (6.18) the one which is maximal with respect to ≺.

Definition 6.19 (Critical configuration, Rank). Let X ⊆ R2 satisfy the weak condi-
tions, and let x0, x1, x′ ∈ X such that there are

K∗ ∈ Km+1(X) with x0, x1 ∈ B(K∗) and x′ ∈ I(K∗),
K ′ ∈ Km(X) with {x0, x1, x′} = B

(
K ′).

Let H+, H− be the open half planes generated by the hyperplane aff(x0, x1), indexed
such that x′ ∈ H+. Let I := I(K∗) ∩ H+. Since x′ ∈ I, one has I ̸= ∅. Define a strict
ordering ≺ on I such that, for any y, y′ ∈ I with y ≺ y′, one has y ∈ B(x0, x1, y′),
and whose existence is guaranteed by Lemma 6.15. Let

x̂ := max≺

{
y ∈ I

∣∣∣ |B(x0, x1, y) ∩ X| = m
}

.

Then, the Delaunay configuration K ∈ Km(X) with B(K) = {x0, x1, x̂} is a critical
configuration of K∗ (with respect to x0 and x1). The number

∣∣∣I(K∗)
∖
U(K)

∣∣∣ ∈ N0

denotes the rank of the critical configuration. ◀

Note that the set I has been defined differently in Proposition 6.18 and Defini-
tion 6.19 in order to avoid the dependence of the ball Br(c) in the latter. Since

(B\Br(c)) ∩ X = (B\Br(c)) ∩ H+ ∩ X = (I(K∗) ∩ H+)\Br(c) ⊆ I(K∗) ∩ H+,
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the set I in Proposition 6.18 is a subset of the one in Definition 6.19. According
to (6.15), no knot in Br(c) can be maximal with respect to ≺, though. Moreover,
Proposition 6.18 ensures that there is always an x̂ ∈ (I(K∗) ∩ H+)\Br(c) under the
stated assumptions. Hence, the resulting critical configuration would be the same
for both definitions of I.

The critical configuration has been chosen as the Delaunay configuration generated
by x0, x1, and some point in I which has the largest overlap with I(K∗) in terms
of common knots, as displayed in Figure 6.8a. However, despite the unambiguous
choice of x̂ in I, a critical configuration with respect to x0, x1 is not necessarily
unique since it also depends on the roles of the half planes H− and H+, which in
turn depend on the choice of K ′. This ambiguity is presented in Figure 6.9.

Since x̂ ∈ U(K) ∩ I(K∗) and |I(K∗)| = m + 1, it is clear that the rank of a critical
configuration can be at most m.

Remark 6.20. Consider a knot set X∗ ⊆ R2 satisfying the weak conditions, and let
X := X∗\{x∗} denote the coarser knot set for an arbitrary inserted knot x∗ ∈ X∗.
Then, X also satisfies the weak conditions. We choose any K ∈ Km(X) with
x∗ ∈ B(B(K)) and set K∗ := (B(K), I(K) ∪ {x∗}) ∈ Km+1(X∗). Moreover, let
x0, x1, x2 ∈ X such that B(K) = {x0, x1, x2}. If we assume now that the necessary
criterion for knot insertion (Definition 6.6) holds true, we can find configurations
K ′

0, K ′
1, K ′

2 ∈ Km(X∗) such that

x1, x2 ∈ U
(
K ′

0
)
, x2, x0 ∈ U

(
K ′

1
)
, x0, x1 ∈ U

(
K ′

2
)
.

Invoking Proposition 6.18 on each of these configurations yields the existence of
critical configurations K0, K1, K2 ∈ Km(X∗) and not necessarily distinct interior
knots x̂0, x̂1, x̂2 ∈ I(K∗) such that

{x̂0, x1, x2} = B(K0), {x0, x̂1, x2} = B(K1), {x0, x1, x̂2} = B(K2).

We assume now that all three critical configurations have rank zero, which is
equivalent to |I(K∗)\U(Ki)| = 0 and, in turn, I(K∗) ⊆ U(Ki) for all i ∈ {0, 1, 2}. As
|I(K∗)| = m + 1 and |U(K0)| = m + 3, it follows from x1, x2 ∈ U(K0)\I(K∗) that

U(K0) = I(K∗) ∪ {x1, x2}.

Since it follows analogously that

U(K1) = I(K∗) ∪ {x2, x0} and U(K2) = I(K∗) ∪ {x0, x1},
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(a) The Delaunay configuration through y2 (green) is no critical configuration as y2 is not maximal
with respect to ≺ in the set {y ∈ {y1, . . . , y4} | |B(x0, x1, y) ∩ X| = m}.

x0x1x2y1y2y3y4

x0x1x∗y1y2y3y4x0x2x∗y1y2y3y4 x1x2x∗y1y2y3y4

(b) Scheme of the combination of simplex splines above

Fig. 6.8: Using critical configurations to combine a simplex spline for m = 4. The critical
configuration K ′

2 through x0, x1 and y4 (orange) has rank zero. Together with the
critical configurations K ′

0 and K ′
1 with respect to x0, x2 and x1, x2, respectively, of

rank zero (blue, dashed), one can use the knot insertion formula to combine the
simplex spline M(· | x0, x1, x2, y1, . . . , y4), which has been generated by the con-
figuration of degree m with the boundary knots x0, x1, x2 (black) before inserting
the knot x∗.

the Delaunay configurations K0, K1, and K2 differ pairwise by exactly one knot.
Therefore, according to Remark 6.11, we can apply the knot insertion formula,
yielding coefficients a0, a1, a2 ∈ R such that

M(· | K) =
2∑

i=0
aiM(· | Ki)

is a linear combination of the simplex spline corresponding to the original configura-
tion K ∈ Km(X) with respect to the coarser knot set, which uses the simplex splines
generated by the configurations K0, K1, K2 ∈ Km(X∗) with respect to the refined
knot set. After all, this has been our goal, as presented in Figure 6.8. Since the rank
of any critical configuration is at most m, we have proved the following corollary. ◀
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x0 x1

x2

z1

z2

y1
y2

Fig. 6.9: We consider the Delaunay configuration of degree m+1 (black) with the boundary
knots x0, x1, and x2. There exist two different critical configurations (orange /
blue) of that configuration with respect to the same knots x0 and x1.

Corollary 6.21. Let m = 0, and choose a knot set X∗ ⊆ R2 satisfying the weak
conditions. Let X := X∗\{x∗} for an arbitrary x∗ ∈ X∗. If the necessary criterion for
knot insertion (Definition 6.6) holds true with respect to x∗, one has S0,X ⊆ S0,X∗ ,
i.e., the necessary criterion is also sufficient. ◀

If m > 0, however, the critical configurations do not have rank zero in general. In
that case, their corresponding simplex splines cannot be combined directly using
Micchelli’s knot insertion formula, and we have to find another strategy:

We will see in the following subsection that the existence of a critical configuration
of nonzero rank also implies the existence of specific configurations, which will be
called companion configurations and, under certain circumstances, can be used to
combine the original simplex spline by repeated application of the knot insertion
formula.

The fact that these companion configurations automatically come with a critical
configuration also justifies the term critical configuration that we have introduced in
this subsection.

Remark 6.22. Critical configurations of rank zero reveal an interesting connection
to Neamtu’s proof of Theorem 4.17 in [Nea07]. For a knot set X satisfying the
strong conditions, he defined a face of degree m as a tuple (P, I), where P, I ⊆ X,
|P | = d, and |I| = m such that there is an open ball B̃ with P ⊆ ∂B̃ and I = B̃ ∩ X.
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He proved that, for each face (P, I), there are exactly two distinct knots x, x′ ∈ X\P

such that there are open balls B, B′ with

P ∪ {x} ⊆ ∂B, P ∪ I ∪ {x} = B ∩ X,

P ∪ {x′} ⊆ ∂B′, P ∪ I ∪ {x′} = B′ ∩ X.

Clearly, either zero, one, or two of the points x, x′ are contained in I. Depending
on this number, Neamtu classified the face as nonessential face, essential face, or
phantom face, respectively.

Let K∗ ∈ Km+1(X), and choose two distinct x0, x1 ∈ B(K∗). As it turns out, there
exists a critical configuration K ′ of K∗ with respect to x0, x1 and of rank zero if and
only if ({x0, x1}, I(K∗)) is an essential face of degree m + 1. In this case, the sets
{x0, x1, x} and {x0, x1, x′} are the boundary knots of the original configuration K∗

and the critical configuration K ′, respectively, where x and x′ denote the two distinct
knots from Neamtu’s proof. However, it does not seem possible to take immediate
advantage from this connection, in particular as it seems to exist only for critical
configurations of rank zero. ◀

6.3.3 Companion Configurations

Throughout the whole subsection, we again have to restrict ourselves to d = 2. We
begin with further geometrical preparations, which give information on the subset
relationships of circles for two different divisions of R2 into half planes. So far, all
results only considered one separating hyperplane, which is not sufficient for the
subsequent proof regarding companion configurations.

Lemma 6.23. Let u, v, w ∈ R2 be affinely independent, and define G+, G− as the
two open half planes generated by aff(u, v) with w ∈ G+. Furthermore, define
H+, H− as the two open half planes generated by aff(u, w) with v ∈ H−. Then, one
has B(u, v, w) ∩ G− ⊆ H−.

Proof. In a similar way as in the proof of Lemma 5.20, assume without loss of
generality that

u = (1, 0)⊺, v = (−1, 0)⊺, G+ = {(z1, z2)⊺ ∈ R2 | z2 > 0}. (6.19)

Hence, w2 > 0, and one can apply Lemma 5.19 to obtain that

c := cen(u, v, w) = (0, ĉ)⊺, r := rad(u, v, w) =
√

ĉ2 + 1,
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where

ĉ := w2
1 + w2

2 − 1
2w2

.

Let n := u − c, and define the tangent on B(u, v, w) at u as

F0 := {z ∈ R2 | ⟨z − u, n⟩ = 0}.

This tangent generates the open half plane F− := {z ∈ R2 | ⟨z − u, n⟩ < 0}. Let
z ∈ B(u, v, w). Then, it follows in the same way as in (5.21) that ∥z∥2 − 1 < 2ĉz2,
and, due to the choices in (6.19), one has

⟨z − u, n⟩ = z1 − 1 − z2ĉ <
−z2

1 + 2z1 − 1 − z2
2

2 = −(z1 − 1)2 − z2
2

2 ≤ 0,

which shows that
B(u, v, w) ⊆ F−. (6.20)

Let n′ := (w2, 1 − w1)⊺. Due to

⟨n′, w − u⟩ = w2(w1 − 1) + (1 − w1)w2 = 0,

one has n′ ⊥ aff(u, w). Therefore, it follows together with ⟨v − u, n′⟩ = −2w2 < 0
that H0

+ := H+ ∪ H0 can be expressed as H0
+ = {y ∈ R2 | ⟨y − u, n′⟩ ≥ 0}. Assume

that there is a y ∈ F− ∩G− ∩H0
+. Then, y2 < 0 due to the definition of G−. Moreover,

y ∈ H0
+ yields

0 ≤ ⟨y − u, n′⟩ = (y1 − 1)w2 + y2(1 − w1),

which is equivalent to
y1 − 1 ≥ − y2

w2
(1 − w1)

since w2 > 0. Then, y ∈ F− yields the contradiction

0 > ⟨y − u, n⟩

= (y1 − 1) − y2
w2

w2
1 + w2

2 − 1
2

≥ − y2
w2

(
1 − w1 + w2

1
2 + w2

2
2 − 1

2

)

= − y2
w2︸ ︷︷ ︸

>0




(
w1√

2
− 1√

2

)2

︸ ︷︷ ︸
≥0

+
(

w2√
2

)2

︸ ︷︷ ︸
≥0




≥ 0.
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(a) The situation in Lemma 6.23
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H− H+

(b) The situation in Lemma 6.24

Fig. 6.10: Points, circles, and half planes as specified in Lemmas 6.23 and 6.24

Therefore, F− ∩ G− ∩ H0
+ = ∅, and thus, it follows with (6.20) that

B(u, v, w) ∩ G− ⊆ F− ∩ G− ⊆ H−,

which finishes the proof.

The points, circles, and half planes used in the previous and the following lemma
are presented in Figure 6.10.

Lemma 6.24. Let u, u′, v, w ∈ R2 be in general Delaunay position. Let G+, G−
denote the two open half planes generated by aff(u′, v), and suppose that u, w ∈ G+.
Furthermore, assume that w ∈ B(u, u′, v) and v ∈ B(u, u′, w). Then,

B
(
u′, v, w

) ∩ G− ⊆ B
(
u, u′, w

)
.

Proof. Assume that u ∈ B(u′, v, w). Then, from w ∈ B(u, u′, v) ∩ G+, the fact that
u ∈ G+, and applying Lemma 5.20 twice, one obtains the contradiction

B(u, u′, v) ∩ G+ ⊆ B
(
u′, v, w

) ∩ G+ ⊂ B(u′, v, w) ∩ G+ ⊂ B(u, u′, v) ∩ G+.

Hence, one has

u ̸∈ B
(
u′, v, w

)
. (6.21)
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Define H+, H− as the two open half planes generated by aff(u′, w), indexed such
that v ∈ H−. Since w ∈ G+, one can apply Lemma 6.23 to obtain

B
(
u′, v, w

) ∩ G− ⊆ H−. (6.22)

Assume that u ∈ H+. Together with (6.21), Corollary 6.14 yields B(u, u′, w) ∩ H− ⊆
B(u′, v, w). However, together with v ∈ B(u, u′, w) ∩ H− and Lemma 5.20, one
again obtains the contradiction

B(u, u′, w) ∩ H− ⊆ B
(
u′, v, w

) ∩ H− ⊂ B(u′, v, w) ∩ H− ⊂ B(u, u′, w) ∩ H−.

Hence, one can deduce that u ∈ H−. Consequently, due to (6.21), one can apply
Corollary 6.14 to obtain together with (6.22) that

B
(
u′, v, w

) ∩ G− ⊆ B
(
u′, v, w

) ∩ H− ⊆ B
(
u, u′, w

)
,

which finishes the proof.

Corollary 6.25. Let u, u′, v, w, w′ ∈ R2 be in general Delaunay position. Let G+, G−
denote the open half planes generated by aff(u′, v), and assume that u, w, w′ ∈ G+.
Furthermore, suppose that

w ∈ B
(
u′, v, w′), w ∈ B

(
u, u′, v

)
, v ∈ B

(
u, u′, w

)
.

Then, B(u′, v, w′) ∩ G− ⊆ B(u, u′, w).

Proof. Since w ∈ B(u′, v, w′) ∩ G+, Lemmas 5.20 and 6.24 yield

B
(
u′, v, w′) ∩ G− ⊆ B

(
u′, v, w

) ∩ G− ⊆ B
(
u, u′, w

)
.

Lemma 6.26. Let u, v, w ∈ R2 be in general position. Then,

(i) B(u, v, w) ∩ aff(u, v) = conv(u, v),

(ii) B(u, v, w) ∩ aff(u, v) = conv(u, v)\{u, v}.

Proof. We only give a proof for (i) as (ii) follows similarly.

“⊇” This direction directly follows from u, v ∈ B(u, v, w) ∩ aff(u, v) and the fact that
B(u, v, w) ∩ aff(u, v) is convex as intersection of convex sets.
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“⊆” Let t ∈ B(u, v, w) ∩ aff(u, v). Then, there is a λ ∈ R satisfying

t = λu + (1 − λ)v.

Choose c ∈ R2 and r ∈ R+ such that B(u, v, w) = Br(c). Assume that t ̸∈ conv(u, v),
which is equivalent to λ ̸∈ [0, 1] and, in turn, yields λ(1 − λ) < 0. From the law of
cosines and u ̸= v, it follows that

∥t − c∥2 = λ2∥u − c∥2 + (1 − λ)2∥v − c∥2 + 2λ(1 − λ)⟨u − c, v − c⟩
=
(
λ2 + (1 − λ)2

)
r2 + λ(1 − λ)

(
∥u − c∥2 + ∥v − c∥2 − ∥u − v∥2

)

=
(
2λ2 − 2λ + 1

)
r2 + 2λ(1 − λ)r2 − λ(1 − λ)∥u − v∥2

> r2,

which is a contradiction to t ∈ B(u, v, w). Consequently, the assumption is false, and
one has t ∈ conv(u, v).

We can now introduce companion configurations. We will start by a formal definition
and prove afterwards that, for d = 2, the existence of companion configurations
is guaranteed by the existence of a critical configuration of nonzero rank. The
term companion configuration is also motivated by the fact that these configurations
automatically come with a critical configuration.

Definition 6.27. Let m ∈ N+, and let X ⊆ R2 be a knot set satisfying the weak
conditions. Suppose that there are x0, x1, x2, x̂ ∈ X and

K∗ ∈ Km+1(X) with {x0, x1, x2} = B(K∗), x̂ ∈ I(K∗),
K ∈ Km(X) with {x0, x1, x̂} = B(K)

such that K is a critical configuration of K∗ with respect to x0, x1. Then, for all
x′ ∈ I(K)\I(K∗), a configuration K ′ ∈ Km(X) is called companion configuration
for x′ (with respect to K and K∗) if

B
(
B
(
K ′)) ⊆ B(B(K)) ∪ B(B(K∗))

and if either x0, x′ ∈ B(K ′) or x1, x′ ∈ B(K ′). ◀

As the set I(K)\I(K∗) is empty if the critical configuration K has rank zero, com-
panion configurations can only exist if the corresponding critical configuration has
a nonzero rank. For this case, we can now prove the existence of at least two
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x0 x1

x2

zj∗

yi∗

ŷ

I+

I−

J

H+

H−

K∗

K

Fig. 6.11: Important quantities in the first half of the proof of Proposition 6.28. We display
the half planes H+, H− and the regions for the knot sets I+ (orange), I− (green),
and J (blue). We also show the important knots zj∗ , yi∗ , and ŷ := yi∗−j∗+|J|+1,
as well as the circle B(x0, x1, zj∗) (purple).

companion configurations for any knot in I(K)\I(K∗). The proof is rather long and
technical since the consideration of many different circles is necessary.

Proposition 6.28 (Companion configurations). Let m ∈ N+, and let X ⊆ R2 be a
knot set satisfying the weak conditions. Suppose that we can choose x0, x1, x2, x̂ ∈ X

and

K∗ ∈ Km+1(X) with {x0, x1, x2} = B(K∗), x̂ ∈ I(K∗),
K ∈ Km(X) with {x0, x1, x̂} = B(K)

such that K is a critical configuration of K∗ with respect to x0, x1 of nonzero rank.
Then, for all x′ ∈ I(K)\I(K∗), there are configurations K0,x′ , K1,x′ ∈ Km(X) with

x0, x′ ∈ B
(
K0,x′

)
, x1 ̸∈ B

(
K0,x′

)
, B

(
B
(
K0,x′

)) ⊆ B(B(K)) ∪ B(B(K∗)),
x1, x′ ∈ B

(
K1,x′

)
, x0 ̸∈ B

(
K1,x′

)
, B

(
B
(
K1,x′

)) ⊆ B(B(K)) ∪ B(B(K∗)).

In particular, there are at least two companion configurations for x′ with respect to
K and K∗.
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Proof. We only prove the existence of a suitable K1,x′ since the existence of K0,x′

follows analogously due to symmetry. We divide the proof into several parts and
refer to Figure 6.11 for an overview.

Part 1: In the first part of the proof, we define several quantities.

Let H+, H− denote the two open half planes generated by H0 := aff(x0, x1), indexed
such that x̂ ∈ H+. Due to the assumption that X is in general Delaunay position, it
follows that H0 ∩ X\{x0, x1} = ∅. Furthermore, define

I := I(K∗) = B(x0, x1, x2) ∩ X, I+ := I ∩ H+, I− := I ∩ H−.

Clearly, |I| = m + 1. According to Lemma 6.15, there is a strict total order ≺ on
I+ such that, for any y, y′ ∈ I+ with y ≺ y′, one has y ∈ B(x0, x1, y′). We label the
elements as {y1, . . . , y|I+|} := I+ such that, for all i, i′ ∈ {1, . . . , |I+|} with i < i′,
one has yi ≺ yi′ . Since x̂ ∈ I+, there is an i∗ ∈ {1, . . . , |I+|} such that x̂ = yi∗ . In
particular, I+ is nonempty. From K ∈ Km(X), it follows that

|B(x0, x1, yi∗) ∩ X| = m. (6.23)

Part 2: The goal of this part is to show that |B(x0, x1, yi) ∩ X| ≥ m + 1 for all
i ∈ {i∗ + 1, . . . , |I+|}.

With yi ∈ B(x0, x1, x2) ∩ H+ and Lemma 5.20, it follows that

B(x0, x1, x2) ∩ H− ⊆ B(x0, x1, yi), (6.24)

B(x0, x1, yi) ∩ H+ ⊆ B(x0, x1, x2) (6.25)

for all i ∈ {1, . . . , |I+|}. Furthermore, from the maximality of y|I+| with respect to ≺,
one obtains that ∣∣∣I+

∖
B
(
x0, x1, y|I+|

)∣∣∣ =
∣∣∣
{

y|I+|
}∣∣∣ = 1. (6.26)

Consequently, using (6.25), (6.24), and (6.26) yields

∣∣∣B
(
x0, x1, y|I+|

)
∩ X

∣∣∣

=
∣∣∣B
(
x0, x1, y|I+|

)
∩ B(x0, x1, x2) ∩ H+ ∩ X

∣∣∣+
∣∣∣B
(
x0, x1, y|I+|

)
∩ H− ∩ X

∣∣∣

≥
∣∣∣I+
∣∣∣−

∣∣∣I+
∖

B
(
x0, x1, y|I+|

)∣∣∣+
∣∣∣I−
∣∣∣

= m. (6.27)
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By definition of ≺ on I+, one has

B(x0, x1, yi) ∩ I+ = {y1, . . . , yi−1} for all i ∈ {1, . . . , |I+|} (6.28)

and yi ∈ B(x0, x1, yi+1) for all i ∈ {1, . . . , |I+| − 1}. Hence, Lemma 5.20 provides

B(x0, x1, yi+1) ∩ H− ⊆ B(x0, x1, yi) (6.29)

for i ∈ {1, . . . , |I+| − 1}. According to (6.25), (6.29), and (6.28), one can deduce
that

|B(x0, x1, yi) ∩ X|
≥ |B(x0, x1, yi) ∩ B(x0, x1, x2) ∩ H+ ∩ X| + |B(x0, x1, yi+1) ∩ H− ∩ X|
= |B(x0, x1, yi+1) ∩ B(x0, x1, x2) ∩ H+ ∩ X| − 1 + |B(x0, x1, yi+1) ∩ H− ∩ X|
= |B(x0, x1, yi+1) ∩ X| − 1. (6.30)

Assume now that there is an i ∈ {i∗ + 1, . . . , |I+|} such that |B(x0, x1, yi) ∩ X| ≤ m.
Then, together with (6.27) and (6.30), it follows that we can apply Lemma 6.17 to
the map

φ : {i, . . . , |I+|}, k 7→ |B(x0, x1, yk) ∩ X|,

yielding the existence of an i′ ∈ {i, . . . , |I+|} with |B(x0, x1, yi′) ∩ X| = φ(i′) = m.
Since i′ ≥ i ≥ i∗ + 1 and, hence, yi′ ≻ yi∗ , this is a contradiction to the fact that
K is a critical configuration due to the maximality of yi∗ in Definition 6.19. As a
consequence, there is no such i, and one can conclude that

|B(x0, x1, yi) ∩ X| ≥ m + 1 for all i ∈ {i∗ + 1, . . . , |I+|}. (6.31)

Part 3: In this part, we consider the knots in I(K)\I(K∗).

Let J := I(K)\I(K∗) = (B(x0, x1, yi∗) ∩ X)\I. Then, (6.25) provides

J ⊆ H−. (6.32)

As the critical configuration K has nonzero rank, it follows that I(K∗)\U(K) ̸= ∅,
and thus, I(K∗) ̸⊆ U(K). Therefore, one obtains together with |I(K∗)| = m + 1
that |I(K∗) ∩ U(K)| ≤ m. In combination with yi∗ ∈ I(K∗) ∩ B(K), this yields
|I(K∗) ∩ I(K)| ≤ m − 1. Consequently, by using |I(K)| = m, one obtains that

J = I(K)\I(K∗) ̸= ∅.
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According to (6.32), Lemma 6.15 guarantees the existence of a strict total ordering
≺ on J such that one has z ∈ B(x0, x1, z′) for all z, z′ ∈ J with z ≺ z′. We label
the elements in J as {z1, . . . , z|J |} := J such that zj ≺ zj′ for any j, j′ ∈ {1, . . . , |J |}
with j < j′.

We have to prove the existence of companion configurations for all x′ ∈ J . To that
end, let x′ ∈ J and choose j∗ ∈ {1, . . . , |J |} such that x′ = zj∗ . Set

I ′
+,j∗ :=

{
y ∈ I+

∣∣∣ zj∗ ∈ B(x0, x1, y)
}

⊆ I+.

Part 4: We consider the particular knot yi∗−j∗+|J |+1 and show yi∗−j∗+|J |+1 ∈ I ′
+,j∗ .

The knot yi∗−j∗+|J |+1 is well-defined since, on the one hand,

i∗ − j∗ + |J | + 1 ≥ i∗ + 1 (6.33)

and, on the other hand, (6.23), (6.25), (6.28), (6.24), and (6.32) yield

m = |B(x0, x1, yi∗) ∩ X| = i∗ − 1 + |B(x0, x1, yi∗) ∩ H− ∩ X|
= i∗ − 1 + |I−| + |(B(x0, x1, yi∗) ∩ H− ∩ X)\I−| = i∗ − 1 + |I−| + |J |, (6.34)

which in turn provides that

i∗ − j∗ + |J | + 1 = m − |I−| − j∗ + 2 ≤ m − |I−| + 1 = |I+|.

By definition of ≺ on I+ and (6.33), one has yi∗ ∈ B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H+, and

hence, due to Lemma 5.20,

B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H− ⊆ B(x0, x1, yi∗). (6.35)

Applying Lemma 5.20 once more to yi∗−j∗+|J |+1 ∈ B(x0, x1, x2) ∩ H+ yields

I− = B(x0, x1, x2) ∩ H− ∩ X ⊆ B
(
x0, x1, yi∗−j∗+|J |+1

)
. (6.36)

Consequently, one obtains with (6.36), (6.35), and (6.32) that

B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H− ∩ X

= I− ∪
((

B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H− ∩ X

)∖
I
)

⊆ I− ∪
((

B(x0, x1, yi∗) ∩ X
)∖

I
)

∩ H−

= I− ∪ J. (6.37)
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Assume now that
yi∗−j∗+|J |+1 ̸∈ I ′

+,j∗ , (6.38)

which is equivalent to
zj∗ ̸∈ B

(
x0, x1, yi∗−j∗+|J |+1

)
. (6.39)

We are going to show now that, under this assumption,

zj∗+1, . . . , z|J | ̸∈ B
(
x0, x1, yi∗−j∗+|J |+1

)
. (6.40)

Indeed, if we assume that zj ∈ B
(
x0, x1, yi∗−j∗+|J |+1

)
for a j ∈ {j∗ + 1, . . . , |J |},

applying Lemma 5.20 twice yields

B(x0, x1, zj∗) ∩ H− ⊆ B(x0, x1, zj) ∩ H− ⊆ B
(
x0, x1, yi∗−j∗+|J |+1

)
,

which is a contradiction to (6.39). As a consequence, by using (6.34), (6.28), (6.25),
and J ∩ I− = ∅, one obtains

m = i∗ − 1 + |I−| + |J | + |{z1, . . . , zj∗−1}| − (j∗ − 1)
= (i∗ − j∗ + |J |) + |I−| + |J\{zj∗ , . . . , z|J |}|

=
∣∣∣B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ I+

∣∣∣+
∣∣∣I−
∣∣∣+

∣∣∣J
∖

{zj∗ , . . . , z|J |}
∣∣∣

=
∣∣∣B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H+ ∩ X

∣∣∣+
∣∣∣
(
I− ∪ J

)∖
{zj∗ , . . . , z|J |}

∣∣∣

and, by further applying (6.37), (6.39), (6.40), (6.33), and (6.31), the contradiction

m ≥
∣∣∣B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H+ ∩ X

∣∣∣+
∣∣∣
(
B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H− ∩ X

)∖
{zj∗ , . . . , z|J |}

∣∣∣

=
∣∣∣B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H+ ∩ X

∣∣∣+
∣∣∣B
(
x0, x1, yi∗−j∗+|J |+1

)
∩ H− ∩ X

∣∣∣

≥ m + 1.

Hence, Assumption (6.38) is false and one has

yi∗−j∗+|J |+1 ∈ I ′
+,j∗ . (6.41)

Part 5: The aim of the following part is to show that |B(x0, x1, zj∗) ∩ X| ≥ m + 1.

To that end, let ỹj∗ := max≺ I ′
+,j∗ , which is well-defined since I ′

+,j∗ is nonempty due
to (6.41). According to (6.41) and the fact that I ′

+,j∗ ⊆ I+, one can find an

ℓ ∈ {i∗ − j∗ + |J | + 1, . . . , |I+|}
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such that ỹj∗ = yℓ. From y1, . . . , yℓ−1 ∈ B(x0, x1, yℓ) ∩ H+, the definition of I ′
+,j∗ ,

and (6.32), it follows with Lemma 5.20 that

B(x0, x1, yi) ∩ H+ ⊆ B(x0, x1, yℓ) ∩ H+ ⊆ B(x0, x1, zj∗)

for all i ∈ {1, . . . , ℓ}. In particular,

y1, . . . , yℓ ∈ B(x0, x1, zj∗) ∩ H+ ∩ X. (6.42)

Due to (6.32), one has zj∗ ∈ B(x0, x1, yi∗) ∩ H−. Thus, Lemma 5.20 yields

B(x0, x1, zj∗) ∩ H− ⊆ B(x0, x1, yi∗), (6.43)

B(x0, x1, yi∗) ∩ H+ ⊆ B(x0, x1, zj∗). (6.44)

From the strict total order on J and (6.32) as well as (6.43), one obtains

{z1, . . . , zj∗−1} = B(x0, x1, zj∗) ∩ H− ∩ J =
(
B(x0, x1, zj∗) ∩ H− ∩ X

)∖
I−. (6.45)

By definition of J , one has zj∗ ̸∈ I = B(x0, x1, x2) ∩ X, and therefore, (6.32) and
Corollary 6.14 yield

I− = B(x0, x1, x2) ∩ H− ∩ X ⊆ B(x0, x1, zj∗), (6.46)

B(x0, x1, zj∗) ∩ H+ ⊆ B(x0, x1, x2). (6.47)

Hence, due to (6.46), (6.42), (6.45), and (6.34), one can conclude that

|B(x0, x1, zj∗) ∩ X|
= |B(x0, x1, zj∗) ∩ H+ ∩ X| + |(B(x0, x1, zj∗) ∩ H− ∩ X)\I−| + |I−|
≥ |{y1, . . . , yℓ}| + |{z1, . . . , zj∗−1}| + |I−|
≥ i∗ + |J | + |I−|
= m + 1. (6.48)

Part 6: We introduce a second hyperplane G0 and consider the corresponding half
planes. Throughout the remainder of the proof, we refer to Figure 6.12 for an
overview.

The hyperplane G0 := aff(x1, zj∗) divides R2 into two open half planes G+, G−,
indexed such that x0 ∈ G+. Since zj∗ ∈ H−, Lemma 6.23 yields

B(x0, x1, zj∗) ∩ G− ⊆ H−. (6.49)
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zj∗
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K

Fig. 6.12: Important quantities in the second half of the proof of Proposition 6.28. We
display the regions for the knots sets K+ (orange) and K− (blue), the important
knots w and w, as well as the resulting companion configuration (orange).

Define

K− := B(x0, x1, zj∗) ∩ G− ∩ X, K+ := B(x0, x1, zj∗) ∩ G+ ∩ X.

Then, according to (6.49), (6.46), (6.45), and (6.34),

|K−| ≤ |B(x0, x1, zj∗) ∩ H− ∩ X| = |(B(x0, x1, zj∗) ∩ H− ∩ X)\I−| + |I−|
= |{z1, . . . , zj∗−1}| + |I−| ≤ |J | − 1 + |I−| = m − i∗ ≤ m − 1. (6.50)

Since, according to (6.48),

|K−| + |K+| = |B(x0, x1, zj∗) ∩ X| ≥ m + 1, (6.51)

one can conclude with (6.50) that

|K+| ≥ m + 1 − |K−| ≥ 2. (6.52)

Part 7: Our next goal is to define two specific knots w, w ∈ K+ which will be the
extremes of our subsequent considerations.

180 Chapter 6 Knot Insertion



According to Lemma 6.15, there is a strict total ordering ◁ on K+ with respect to
the half plane G+ such that, for any w, w′ ∈ K+ with w ◁ w′, one has

w ∈ B
(
x1, zj∗ , w′). (6.53)

The different symbol ◁ is used to distinguish between the different orderings with
respect to H+, H− and G+, G−, respectively. Moreover, label the elements in K+ as
{w1, . . . , w|K+|} := K+ such that w1 ◁ . . . ◁ w|K+|. For w, w′ ∈ K+, let w ⊴ w′ denote
that w = w′ or w ◁ w′. Let s := m − |K−| + 1. Due to (6.50) and (6.51), one has

2 ≤ s ≤ |K+|, (6.54)

and therefore, the element w := ws is well-defined. Next, consider the set

L :=
(
H+

∖
B(x0, x1, yi∗)

)
∩ K+.

The assumption yi∗ ∈ G− yields together with yi∗ ∈ H+, (6.44), and (6.49) the
contradiction yi∗ ∈ H−. Hence, yi∗ ∈ G+, and also yi∗ ∈ K+, according to (6.44).
Moreover, one has yi∗ ∈ L since yi∗ ̸∈ B(x0, x1, yi∗). In particular, L ̸= ∅, and thus,
the element w := min◁ L is well-defined.

Part 8: We prove now that w ◁ w.

Assume that w ⊴ w, which is equivalent to w ∈ B(x1, zj∗ , w). Due to (6.54), the set
L′ := {w1, . . . , ws−1} is nonempty. Let w′ ∈ L′. Then, w′ ∈ K+ as well as

w′ ◁ w ⊴ w. (6.55)

Assuming w′ ∈ H+\B(x0, x1, yi∗) yields w′ ∈ K+ ∩ H+\B(x0, x1, yi∗) = L, which,
together with (6.55), is a contradiction to the minimality of w in L. Hence, it follows
that w′ ̸∈ H+\B(x0, x1, yi∗), and as a consequence,

L′ ⊆ H− ∪ B(x0, x1, yi∗) = H− ∪
(
B(x0, x1, yi∗) ∩ H+

)
. (6.56)

Therefore, one can conclude using (6.23), (6.43), and (6.49) that

m = |B(x0, x1, yi∗) ∩ H+ ∩ X| + |B(x0, x1, yi∗) ∩ H− ∩ X|
≥ |B(x0, x1, yi∗) ∩ H+ ∩ X| + |B(x0, x1, zj∗) ∩ H− ∩ X| + |{zj∗}|
= |B(x0, x1, yi∗) ∩ H+ ∩ X| + |B(x0, x1, zj∗) ∩ H− ∩ G+ ∩ X|

+ |B(x0, x1, zj∗) ∩ G− ∩ X| + 1
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and further, due to (6.56), that

m ≥ |B(x0, x1, yi∗) ∩ H+ ∩ K+| + |H− ∩ K+| + |K−| + 1
≥ |K+ ∩ L′| + |K−| + 1
= |{w1, . . . , ws−1}| + |K−| + 1
= m + 1,

which is clearly a contradiction. Thus, our initial assumption is incorrect and one
has

w ◁ w. (6.57)

Part 9: Next, we show the first of three important subset relations that hold for all
elements of K+ between w and w.

Let w ∈ K+ such that w ⊴ w ⊴ w and whose existence is guaranteed by (6.57).
Since w ∈ B(x0, x1, zj∗) ∩ G+, Lemma 5.20 yields

B(x1, w, zj∗) ∩ G+ ⊆ B(x0, x1, zj∗), (6.58)

and, together with (6.43), one obtains

B(x1, w, zj∗) ∩ G+ ∩ H− ⊆ B(x0, x1, zj∗) ∩ H− ⊆ B(x0, x1, yi∗). (6.59)

Since w ∈ L ⊆ B(x0, x1, zj∗) ∩ H+, one can apply Lemma 5.20 to obtain

zj∗ ∈ B(x0, x1, zj∗) ∩ H− ⊆ B(x0, x1, w). (6.60)

Furthermore, one has x0, w, w ∈ G+ and w ∈ B(x0, x1, zj∗) by definition of K+. If
w = w, Lemma 6.24 can be applied due to (6.60), and consequently,

B(x1, w, zj∗) ∩ G− = B(x1, w, zj∗) ∩ G− ⊆ B(x0, x1, w). (6.61)

Otherwise, one has w ◁ w and, thus, w ∈ B(x1, w, zj∗). Together with (6.60), one
can apply Corollary 6.25 to obtain also in this case that

B(x1, w, zj∗) ∩ G− ⊆ B(x0, x1, w). (6.62)

As w ∈ L ⊆ H+\B(x0, x1, yi∗), Corollary 6.14 yields

B(x0, x1, w) ∩ H− ⊆ B(x0, x1, yi∗). (6.63)
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By using Lemma 6.26, the convexity of B(x0, x1, yi∗), and zj∗ ∈ B(x0, x1, yi∗), one
obtains

B(x1, w, zj∗) ∩ G0 ∩ H− ⊆ conv(x1, zj∗)\{x1, zj∗} ⊆ B(x0, x1, yi∗). (6.64)

Hence, (6.59), (6.64), (6.61), (6.62), and (6.63) can be used to establish

B(x1, w, zj∗) ∩ H− ⊆ B(x0, x1, yi∗) ∪ (B(x1, w, zj∗) ∩ G− ∩ H−)
⊆ B(x0, x1, yi∗) ∪ (B(x0, x1, w) ∩ H−)
= B(x0, x1, yi∗). (6.65)

Part 10: In the following, we show a second subset relation, which again holds true
for all elements of K+ between w and w.

To that end, we again choose a w ∈ K+ with w ⊴ w ⊴ w, whose existence is
guaranteed by (6.57). Let P := B(x1, w, zj∗), and assume that

∂P ∩ H+ = ∅. (6.66)

Then, one has ∂P ⊆ H0 ∪ H−. Since H0 ∪ H− is convex and P is convex and
compact, one obtains P = conv(∂P ) ⊆ H0 ∪ H−, according to Lemma 5.23. Hence,
w ⊴ w yields w ∈ P ⊆ H0 ∪ H−, which is a contradiction to w ∈ L ⊆ H+. Thus,
Assumption (6.66) is false, and therefore, we can choose an arbitrary x̃ ∈ ∂P ∩ H+,
which, independently of the specific choice, satisfies

B(x1, x̃, zj∗) = P = B(x1, w, zj∗).

From x1, x̃, zj∗ ∈ ∂P , x̃ ∈ H+, zj∗ ∈ H−, and x1 ∈ H0, it follows that H0, considered
as a line, is a secant of the circle ∂P . Therefore, one can find an x̃0 ∈ ∂P ∩ H0\{x1},
and one has

B(x1, x̃0, zj∗) = P. (6.67)

We claim now that x̃0 ∈ G+, which is clear by definition of G+ if x̃0 = x0. Hence,
we consider x̃0 ̸= x0 and show that the assumption

x̃0 ̸∈ G+ (6.68)

yields a contradiction.

First, we first consider the case x̃0 ∈ G0. Then, it follows with x̃0 ̸= x1 and
x1, x̃0 ∈ H0 that zj∗ ∈ G0 = aff(x1, x̃0) = H0, which is a contradiction to zj∗ ∈ H−.
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Secondly, we consider the case x̃0 ∈ G−. As x0 ∈ G+ and x1 ∈ G0, it follows with
the convexity of G0 ∪ G+ that conv(x0, x1) ⊆ G0 ∪ G+. Together with Lemma 6.26,
this yields

x̃0 ̸∈ conv(x0, x1) = B(x0, x1, yi∗) ∩ H0. (6.69)

Since x̃0 ∈ H0 by definition, one obtains from (6.69) that x̃0 ̸∈ B(x0, x1, yi∗). As
B(x0, x1, yi∗) is closed, its complement is open, and one can find an open neighbor-
hood U around x̃0 such that

B(x0, x1, yi∗) ∩ U = ∅. (6.70)

Next, we define the sequence (qk)k∈N+ , where

qk := 1
k + 1zj∗ +

(
1 − 1

k + 1

)
x̃0 for all k ∈ N+.

Due to the definition of qk and Lemma 6.26, one obtains for all k ∈ N+ that

qk ∈ conv(x̃0, zj∗)\{x̃0, zj∗} = B(x1, x̃0, zj∗) ∩ aff(x̃0, zj∗) ⊆ B(x1, x̃0, zj∗).

Moreover, from x̃0 ∈ H0, zj∗ ∈ H−, and the convexity of H− ∪ H0, it follows that
qk ∈ conv(x̃0, zj∗) ⊆ H− ∪ H0 for all k ∈ N+. Assume now that there is a k ∈ N+

such that qk ∈ H0. Then,

zj∗ = (k + 1)
(

qk −
(

1 − 1
k + 1

)
x̃0

)
= (k + 1)qk − kx̃0 ∈ aff(qk, x̃0) = H0,

which is a contradiction to zj∗ ∈ H−. Hence, one has

qk ∈ B(x1, x̃0, zj∗) ∩ H− = B(x1, w, zj∗) ∩ H− for all k ∈ N+.

Since (qk)k∈N+ converges to x̃0, it follows that B(x1, w, zj∗) ∩ H− ∩ U ̸= ∅. This,
however, is a contradiction to

B(x1, w, zj∗) ∩ H− ∩ U ⊆ B(x0, x1, yi∗) ∩ U = ∅,

which follows from (6.65) and (6.70). Hence, we obtained a contradiction for both
x̃0 ∈ G0 and x̃0 ∈ G−. Thus, Assumption (6.68) is false, yielding x̃0 ∈ G+.

As H0 = aff(x0, x1) = aff(x̃0, x1) and since x̃0 ∈ G+ and zj∗ ∈ H−, one can apply
Lemma 6.23 with interchanged names of the half planes, yielding together with
(6.67) and the definition of P that

B(x1, w, zj∗) ∩ H+ = B(x1, x̃0, zj∗) ∩ H+ ⊆ G+.
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Hence, one can conclude together with (6.58) and (6.47) that

B(x1, w, zj∗) ∩ H+ = B(x1, w, zj∗) ∩ H+ ∩ G+

⊆ B(x0, x1, zj∗) ∩ H+ ∩ G+ (6.71)

⊆ B(x0, x1, x2). (6.72)

Part 11: We show the third and last subset relation now.

Let w ∈ K+ with w ⊴ w ⊴ w, and assume that there is a

t ∈
(
B(x1, w, zj∗)

∖
B(x0, x1, x2)

)
∩ H0. (6.73)

Since
B(x1, w, zj∗)\B(x0, x1, x2) = B(x1, w, zj∗) ∩ B(x0, x1, x2)c

is open as intersection of open sets, one can find an open neighborhood U ′ around
t with U ′ ⊆ B(x1, w, zj∗)\B(x0, x1, x2). As ∂H+ = H0, it follows that U ′ ∩ H+ ̸= ∅.
This is a contradiction to (6.72), though. Hence, Assumption (6.73) is false, and
one has

B(x1, w, zj∗) ∩ H0 ⊆ B(x0, x1, x2) ∩ H0 = conv(x0, x1),

where the latter equality is established by Lemma 6.26. However, x1 ̸∈ B(x1, w, zj∗),
and, according to (6.58) and x0 ∈ G+\B(x0, x1, zj∗), also

x0 ̸∈ B(x1, w, zj∗). (6.74)

Consequently, applying Lemma 6.26 once again yields

B(x1, w, zj∗) ∩ H0 ⊆ conv(x0, x1)\{x0, x1} = B(x0, x1, x2) ∩ H0. (6.75)

Part 12: In the following, we consider the number of knots in the extremal
circumcircles defined by x1, zj∗ , and w or w, respectively.

One has w ∈ K+ ⊆ B(x0, x1, zj∗) ∩ G+, and hence, Lemma 5.20 yields

B(x0, x1, zj∗) ∩ G− ⊆ B(x1, w, zj∗).

Therefore, by recalling the definitions of ◁ and w = wm−|K−|+1, it follows that

|B(x1, w, zj∗) ∩ X| ≥ |B(x1, w, zj∗) ∩ G+ ∩ X| + |B(x0, x1, zj∗) ∩ G− ∩ X|
=
∣∣∣{w1, . . . , wm−|K−|}

∣∣∣+ |K−| = m. (6.76)
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Next, we consider w. One has

B(x1, w, zj∗) ∩ H+ ∩ K+ ⊆ B(x0, x1, yi∗) (6.77)

as any x ∈ B(x1, w, zj∗) ∩ L would satisfy x ◁ w, which would be a contradiction to
the minimality of w in L. As a consequence, due to (6.71), the definition of K+, and
(6.77), one has

B(x1, w, zj∗) ∩ H+ ∩ X ⊆ B(x1, w, zj∗) ∩ H+ ∩ B(x0, x1, zj∗) ∩ G+ ∩ X

⊆ B(x0, x1, yi∗). (6.78)

Finally, one obtains in combination with H0 ∩ X = {x0, x1}, (6.74), (6.65), (6.78),
and (6.23) that

|B(x1, w, zj∗) ∩ X|
= |B(x1, w, zj∗) ∩ H+ ∩ X| + |B(x1, w, zj∗) ∩ H− ∩ X|
≤ |B(x0, x1, yi∗) ∩ H+ ∩ X| + |B(x0, x1, yi∗) ∩ H− ∩ X|
= m. (6.79)

Part 13: The last missing requirement for an application of Lemma 6.17 to the knots
w ⊴ w ⊴ w is the relationship of the number of knots in successive circumcircles,
which will be shown now.

Let s′ ∈ {1, . . . , |K+| − 1}, which is well-defined since |K+| ≥ 2, according to (6.52).
Then, due to the definition of the ordering ◁ in (6.53), one has

|B(x1, ws′ , zj∗) ∩ K+| = s′ − 1, |B(x1, ws′+1, zj∗) ∩ K+| = s′. (6.80)

Since ws′ , ws′+1 ∈ K+ ⊆ B(x0, x1, zj∗) ∩ G+, Lemma 5.20 yields

B(x1, w, zj∗) ∩ G+ ⊆ B(x0, x1, zj∗) for both w ∈ {ws′ , ws′+1}. (6.81)

Therefore, by recalling that K+ = B(x0, x1, zj∗) ∩ G+ ∩ X and applying (6.81) as
well as (6.80), one obtains

|B(x1, ws′+1, zj∗) ∩ G+ ∩ X|
= |B(x1, ws′+1, zj∗) ∩ B(x0, x1, zj∗) ∩ G+ ∩ X|
= |B(x1, ws′ , zj∗) ∩ B(x0, x1, zj∗) ∩ G+ ∩ X| + 1
= |B(x1, ws′ , zj∗) ∩ G+ ∩ X| + 1. (6.82)
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Furthermore, one has ws′ ∈ B(x1, ws′+1, zj∗) ∩ G+, and consequently, it follows with
Lemma 5.20 that

B(x1, ws′+1, zj∗) ∩ G− ⊆ B(x1, ws′ , zj∗). (6.83)

By combining (6.82) and (6.83), one obtains

|B(x1, ws′+1, zj∗) ∩ X|
≤ |B(x1, ws′ , zj∗) ∩ X ∩ G−| + |B(x1, ws′ , zj∗) ∩ X ∩ G+| + 1
= |B(x1, ws′ , zj∗) ∩ X| + 1. (6.84)

Conclusion: We can finally combine our results to prove the stated claim. In
particular, we apply Lemma 6.17, which guarantees the existence of an appropriate
Delaunay configuration.

Let s := m − |K−| + 1 ≤ |K+|, so that ws = w. Due to w ∈ K+ and (6.57), there is
an s ∈ {1, . . . , s − 1} such that ws = w. Then, according to (6.84), one obtains

|B(x1, ws′ , zj∗) ∩ X| ≥ |B(x1, ws′+1, zj∗) ∩ X| − 1 (6.85)

for all s′ ∈ {s, . . . , s − 1}. From (6.76), (6.79), and (6.85), it follows that we can
now apply Lemma 6.17 to the map

φ : {s, . . . , s} → N0, s′ 7→ |B(x1, ws′ , zj∗) ∩ X|,

yielding the existence of an s∗ ∈ {s, . . . , s} such that

|B(x1, ws∗ , zj∗) ∩ X| = φ(s∗) = m.

Therefore, we found an appropriate Delaunay configuration of degree m. It remains
to be shown that the stated subset relation holds true and the configuration, thus,
is a companion configuration. We have made preparations in (6.65), (6.72), and
(6.75), so that

B(x1, ws∗ , zj∗)
= (B(x1, ws∗ , zj∗) ∩ H+) ∪ (B(x1, ws∗ , zj∗) ∩ H−) ∪ (B(x1, ws∗ , zj∗) ∩ H0)
⊆ B(x0, x1, x2) ∪ B(x0, x1, yi∗)
= B(B(K∗)) ∪ B(B(K))

finally yields the stated claim.
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Let us recall the steps in the proof briefly: In the first part, we introduce the sets
I+ and I−, which contain the interior knots of the configuration K∗ in the half
planes H+ and H−, respectively. The half planes H+ and H− are generated by
the hyperplane H0 = aff(x0, x1). In the second part, we show that, for all knots
y ∈ I(K∗)\U(K), where K is the critical configuration of K∗ with respect to x0

and x1, the ball B(x0, x1, y) contains at least m + 1 knots. On the contrary, the
third part considers the knots in I(K)\I(K∗), which are the possible choices for x′.
Parts 4 and 5 show that, for each choice of x′, also the ball B(x0, x1, x′) contains
at least m + 1 knots. Afterwards, we introduce the alternative division of R2 by
the hyperplane G0 = aff(x1, x′), which is necessary for the consideration of circles
that contain x′ instead of x0 on their boundary. Part 7 introduces two specific knots
w, w ∈ K+, where K+ contains the knots in B(x0, x1, x′) ∩ G+ and G+ is one of the
two half planes generated by G0. The knots w and w are in some sense extremal
for the following considerations. After showing that w ◁ w in Part 8, where ◁ is a
specific order on the knots in K+, we prove fragments of the subset relation stated
in the claim during the course of Parts 9 to 11 for all knots in K+ that are between
w and w with respect to ◁. Here, Parts 9, 10, and 11 consider the subset relation
on H−, H+, and H0, respectively. Subsequently, Parts 12 and 13 ensure that the
requirements of Lemma 6.17 hold true for the knots between w and w, so that we
can apply this lemma in the Conclusion.

Remark 6.29. Define X, m, K∗, K, x0, x1, x2, and x̂ as in Definition 6.27, and
consider the case where the critical configuration K has rank one. Since the rank is
bounded by the degree, this trivially holds true for critical configurations of nonzero
rank if m = 1. In Figure 6.13, the situation is depicted for m = 1, where the
knot labeled y is the unique knot in I(K∗)\U(K) and z denotes the interior knot
in the critical configuration K. For m > 1, the additional knots would be interior
knots of both K∗ and K. Since these knots are of minor interest in the subsequent
considerations, we assume that m = 1. However, the reasoning remains valid for
arbitrary degrees as long as the critical configuration has rank one.

We can use the facts that x̂ ∈ I(K∗) ∩ B(K), that |I(K∗)| = 2, and that K has rank
one to obtain that z ̸∈ I(K∗). Hence, the unoriented companion configurations for
z with respect to K and K∗ are given by

U(K0,z) = {x0, z, y, x̂} and U(K1,z) = {x1, z, y, x̂}.

As the unoriented critical configuration is given by U(K) = {x0, x1, x̂, z}, the three
configurations K0,z, K1,z, and K differ from each other by exactly one knot. Accord-
ing to Remark 6.11, one can use the knot insertion formula to obtain the simplex
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spline M(· | x0, x1, x̂, y). This function, however, would be the simplex spline cor-
responding to the (nonexistent) critical configuration of rank zero. Therefore, we
can apply the strategy in Remark 6.20 (including another application of the knot
insertion formula) to obtain a linear combination of the original basis candidate
function using simplex splines generated by Delaunay configurations of the refined
knot set also in this case. This procedure is illustrated in Example 6.31. Thus, we
have shown the following corollary, where the case m = 0 has already been proved
in Corollary 6.21. ◀

Corollary 6.30. Let m ∈ {0, 1}, and let X∗ ⊆ R2 be a knot set satisfying the weak
conditions. Define X := X∗\{x∗} for an arbitrary x∗ ∈ X∗. If the necessary criterion
for knot insertion, as introduced in Definition 6.6, holds true with respect to x∗, one
has

Sm,X ⊆ Sm,X∗ ,

i.e., the necessary criterion is also sufficient. ◀

Example 6.31. Let us again consider the situation depicted in Figure 6.13. Namely,
one has m = 1 and a knot set X ⊆ R2 satisfying the weak conditions. Choose
K∗ ∈ K2(X), and let x0, x1, x2, x̂, y ∈ X such that one has B(K∗) = {x0, x1, x2} and
I(K∗) = {x̂, y}. Suppose that x̂ is a newly inserted knot and that we are interested
in representing the simplex spline M(· | x0, x1, x2, y), which is not generated by a
Delaunay configuration of degree one anymore due to the inserted knot x̂. Further,
suppose that the necessary criterion for knot insertion (Definition 6.6) with respect
to the new knot x̂ holds true. In this case, Proposition 6.18 ensures the existence of
critical configurations K0, K1, K2 ∈ K1(X) of K∗ with respect to x1, x2 and x0, x2

as well as x0, x1, respectively. Moreover, assume that K0 and K1 have rank zero,
whereas K2 has rank one. As in the previous remark, suppose that y is the unique
knot in I(K∗)\U(K2), which implies that x̂ ∈ B(K2). Furthermore, let z denote the
interior knot of the critical configuration K2. Invoking Proposition 6.28 on K2 yields
the existence of two companion configurations K ′

2, K ′′
2 ∈ K1(X) for z with respect

to K2 and K∗, indexed such that x0 ∈ B(K ′
2). In total, we have the following five

unoriented Delaunay configurations of degree one:

U(K0) = {x1, x2, x̂, y}, U(K1) = {x0, x2, x̂, y},

U(K2) = {x0, x1, x̂, z}, U
(
K ′

2
)

= {x0, x̂, y, z},

U
(
K ′′

2
)

= {x1, x̂, y, z}.

Set Y := (x0, x1, x2) and Z := (x0, x1, y). By applying Micchelli’s knot inser-
tion formula (Theorem 6.10) twice, one can represent the desired simplex spline
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M(· | x0, x1, x2, y) in terms of simplex splines generated by Delaunay configurations
in K1(X) as follows:

M(· | x0, x1, x2, y) = u0(x̂ | Y )M(· | x1, x2, x̂, y) + u1(x̂ | Y )M(· | x0, x2, x̂, y)
+ u2(x̂ | Y )M(· | x0, x1, x̂, y)

= u0(x̂ | Y )M(· | x1, x2, x̂, y) + u1(x̂ | Y )M(· | x0, x2, x̂, y)
+ u2(x̂ | Y )u2(z | Z)M(· | x0, x1, x̂, z)
+ u2(x̂ | Y )u1(z | Z)M(· | x0, x̂, y, z)
+ u2(x̂ | Y )u0(z | Z)M(· | x1, x̂, y, z).

This formula is schematically also reflected in Figure 6.13b. ◀

Corollary 6.30 is restricted to m ∈ {0, 1}. However, both Propositions 6.18 and
6.28, apply to arbitrary degrees m ∈ N0. Does the strategy of Remark 6.29 and
Example 6.31 also work in the general case? This is indeed true for some cases, as
depicted in Figure 6.14 exemplarily: The critical configuration can be combined
with two companion configurations, yielding a simplex spline that can be combined
with another two companion configurations to obtain the simplex spline that would
have been generated by the (nonexistent) critical configuration of rank zero.

On the contrary, the strategy does not work for the example presented in Figure 6.15:
No pair of companion configurations can be combined with the critical configuration.
The core of the problem is the fact that the orderings with respect to the half planes
generated by aff(x0, x′) and aff(x1, x′), respectively, are not necessarily equivalent.
Nevertheless, it is possible to combine the desired simplex spline also in this example.
Further auxiliary configurations, whose circumcircles are contained in the union
of the circumcircles of original and critical configuration (like it is the case for
companion configurations), are necessary, though.

Despite numerous experiments regarding these combinations, no general strategy for
the construction of the simplex spline that would have been generated by the critical
configuration of rank zero could be found. In numerical experiments checking
for combinability in more than 12,000 cases, this simplex spline could always be
reconstructed using critical, companion, and auxiliary configurations, though. The
results of the simulation are presented in Table 6.1. This leads to the conjecture
that, for all m ∈ N0 and at least for d = 2, the necessary criterion formulated in
Definition 6.6 is sufficient for the knot insertion property to hold true.
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Rank
Degree 2 3 4 5 6 7

2 1744
3 1461 1207
4 972 814 622
5 809 687 331 154
6 798 658 186 139 144
7 546 527 180 144 58 60

Tab. 6.1: Numerical experiments for the combination of simplex splines: We tried to con-
struct the simplex spline corresponding to the (nonexistent) critical configuration
of rank zero using the (existent) critical configuration, its companion config-
urations, and auxiliary configurations for randomly chosen knot sets. In this
table, the number of simulated cases is displayed for different degrees m and for
different ranks of the critical configuration.

Conjecture 6.32. Let m ∈ N0, and let X∗ ⊆ R2 be a knot set satisfying the weak
conditions. Define X := X∗\{x∗} for an arbitrary x∗ ∈ X∗. If the necessary criterion
for knot insertion introduced in Definition 6.6 holds true with respect to x∗, one has

Sm,X ⊆ Sm,X∗ ,

i.e., the necessary criterion is also sufficient. ◀
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x0 x1

x2

x̂
y

z

(a) Delaunay configurations used for the combination of simplex splines

x0x1x2y

x0x1x̂y

x0x1x̂z

Critical

x0x2x̂y x1x2x̂y

x0x̂yz

Companion Left

x1x̂yz

Companion Right

(b) Scheme of the combination of simplex splines

Fig. 6.13: Combination of critical and companion configurations for m = 1. The critical
configuration (orange) of the original configuration (black) with respect to x0, x1
has rank one. The simplex splines corresponding to the critical configuration and
its two companion configurations (blue, green) can be combined using the knot
insertion formula to obtain a simplex spline with respect to the knots x0, x1, x̂,
and y. Together with the critical configurations with respect to x0, x2 and x0, x1
(purple, dashed), which have rank zero in this example, this yields the original
simplex spline by another application of the knot insertion formula.
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x0 x1

x2

y1
y2

y3

z0

z1

(a) Delaunay configurations used for the combination of simplex splines

x0x1y1y2y3

x0x1y2y3z0

x0x1y3z0z1

Critical

x0y2y3z0z1

Companion Left

x1y2y3z0z1

Companion Right

x0y1y2y3z0

Companion Left

x1y1y2y3z0

Companion Right

(b) Scheme of the combination of simplex splines

Fig. 6.14: Example of a critical configuration of rank two where the strategy of Remark 6.29
can be applied. The critical configuration (orange) can be combined with two
companion configurations (dark blue, dark green) to obtain a simplex spline that
would have been generated by the critical configuration of rank one. This simplex
spline can in turn be combined with another two companion configurations
(blue, green) to the simplex spline corresponding to the (nonexistent) critical
configuration of rank zero. The critical configurations with respect to x1, x2 and
x0, x2 are not displayed in this figure.
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x0 x1

x2

y1

y2y3

z0

z1

(a) Delaunay configurations used for the combination of simplex splines

x0x1y1y2y3

x0x1y2y3z0

x0y2y3z0z1

y1y2y3z0z1

Auxiliary

x0y1y2y3z0

Companion Left

x0y1y3z0z1

Companion Left

x1y2y3z0z1

Companion Right

x0x1y3z0z1

Critical

x1y1y2y3z0

Companion Right

(b) Scheme of the combination of simplex splines

Fig. 6.15: Example of a critical configuration of rank two where the strategy of Remark 6.29
cannot be applied since no pair of companion configurations (blue, green, dark
blue, dark green) can be combined with the critical configuration (orange). Nev-
ertheless, the simplex spline corresponding to the (nonexistent) critical configu-
ration of rank zero can be combined using an auxiliary configuration (purple), as
presented in the displayed scheme.
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Approximation and Condition 7
„True learning must not be content with ideas,

which are, in fact, signs, but must discover
things in their individual truth.

— Umberto Eco
The Name of the Rose

After the theoretical results in the previous chapters, we investigate two aspects of
splines now which are particularly important for practical considerations, namely
the approximation quality of the spline spaces and the condition of the spline space
basis candidates.

7.1 Approximation

In the introductory chapter of this thesis, we motivated the definition of splines with
their suitability for approximation problems. Regarding multivariate DCB-splines,
however, we have little information about their approximation quality so far. The
goal of the current section is the definition of a multivariate generalization of the
Schoenberg operator, which we have introduced in Subsection 2.3.4 for univariate
splines, and the determination of an upper bound for the error that can occur when
we use this operator to approximate a given, sufficiently smooth function.

We will see that all definitions and proofs in this section are straightforward gener-
alizations of the univariate analogues, which is possible due to the fact that both
univariate and DCB-splines provide a Marsden-like identity, which is the core ingre-
dient in the determination of an error bound. To be able to apply the corresponding
Theorem 4.17, we assume throughout the section that m ∈ N+ denotes the spline
degree and that X ⊆ Rd for d ∈ N+ is a knot set satisfying the strong conditions
specified in Definition 4.15.

Note that a generalization of Greville sites and the Schoenberg operator to DCB-
splines has already been given in [DGN05] for the special case of bivariate quadratic
DCB-splines, i.e., d = m = 2. Our results can be applied to arbitrary dimensions and
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gK,2,X

K

Fig. 7.1: Generalized Greville site gK,2,X (orange dot) with respect to the configuration K
(black circle) and the given knot set X (black dots)

degrees but are equivalent to the results in [DGN05] when considered in this special
case.

7.1.1 Multivariate Schoenberg Operator

The definition of the univariate Schoenberg operator is based on Greville sites. When
recalling Definition 2.23, it can be seen that each Greville site is associated with one
particular B-spline and that the site is the mean of m knots in the support of this
B-spline. Each B-spline is defined with respect to m+2 knots, but only the m interior
knots contribute to the Greville site, whereas the two boundary knots are ignored.
This motivates the following straightforward generalization to DCB-splines:

Definition 7.1 (Greville site). Let d, m ∈ N+, and let X ⊆ Rd satisfy the strong
conditions. For all K ∈ Km(X), the point

gK,m,X := 1
m

∑

x∈I(K)
x

denotes the (generalized) Greville site with respect to K. ◀

For an example of the Greville site with respect to a given configuration, we refer to
Figure 7.1. Using generalized Greville sites, the Schoenberg operator can be defined
equivalently to the univariate case:

Definition 7.2 (Schoenberg operator). Let d, m ∈ N+. Choose X ⊆ Rd satisfying
the strong conditions, and let f : Rd → R. Then,

Sm,Xf :=
∑

K∈Km(X)
f(gK,m,X)N(· | K) ∈ Sm,X ∩ S ′

m,X .

defines the Schoenberg operator (of degree m with respect to X). ◀
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It is easy to see that the Schoenberg operator is linear. The fact that the approxi-
mant resulting from an application of the Schoenberg operator is a spline both in
Sm,X and S ′

m,X can be seen as follows: The nonpooled DCB-splines identify only
simplex splines that are identical up to normalization. Hence, the coefficient in the
Schoenberg operator corresponding to a basis candidate function in Bm,X is just the
sum of properly weighted function evaluations at the corresponding Greville sites.
Formally,

∑

K∈K
f(gK,m,X)N(· | K) =

(
d!m!

∑

K∈K
f(gK,m,X)vold(conv(B(K)))

)
M(· | U(K∗)),

where K ⊆ Km(X) is a set of configurations such that K1 ∼ K2 for all K1, K2 ∈ K,
and K∗ ∈ K can be chosen arbitrarily. Here, ∼ denotes the equivalence relation
introduced in Definition 4.20.

When considering pooled DCB-splines instead, also simplex splines that are es-
sentially different (i.e., not equal up to normalization) are identified. However,
the pooling according to ≃ only involves Delaunay configurations with the same
collection of interior knots. Hence, the corresponding Greville sites and, in turn, the
coefficients in the Schoenberg operator coincide.

Similar generalizations of the Schoenberg operator have already been presented
earlier for other spline spaces employing simplex splines, for example in [GL81] for
the geometric approach in the case d = 2 and in [DMS92, p. 111] for DMS-splines. It
is not surprising that they are very similar both to the original univariate Schoenberg
operator and to our definition in terms of DCB-splines.

7.1.2 Approximation Quality

As the Schoenberg operator evaluates a given function only at the discrete Greville
sites, the approximation quality, like in the univariate case, heavily depends on the
behavior of the function between the Greville sites. For univariate B-splines, we
recalled the linear exactness property in Subsection 2.3.4, which ensures that, for
m ≥ 1, affine functions (i.e., polynomials of degree at most one) are reproduced by
the Schoenberg operator and, thus, the error is zero. As it turns out, it follows from
Neamtu’s generalization of Marsden’s identity that this also holds true for pooled
and nonpooled DCB-splines. This fact has already been claimed in [DGN05] for the
special case d = m = 2. For a proof, we first have to compute the polar form of a
multivariate polynomial of degree at most one. Our result agrees with the one given
in [DMS92, p. 111].
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Lemma 7.3. Choose p ∈ Π1(Rd). Let a ∈ Rd and b ∈ R be the uniquely defined
coefficients such that p(t) = a⊺t + b for all t ∈ Rd. The polar form P of p is given by

P (t1, . . . , tm) = b + 1
m

a⊺

(
m∑

i=1
ti

)
for all t1, . . . , tm ∈ Rd.

Proof. According to Theorem 2.18, we have to show that P is symmetric, multiaffine,
and that it has the diagonal property.

(i) Symmetry: The symmetry follows directly from the commutativity of vector
addition in Rd.

(ii) Multiaffinity: Choose affinely independent z0, . . . , zd ∈ Rd. Moreover, let
Z := (z0, . . . , zd) and k ∈ {1, . . . , m}. Then, for all t1, . . . , tm ∈ Rd, one has

d∑

ℓ=0
uℓ(tk | Z)P (t1, . . . , tk−1, zℓ, tk+1, . . . , tm)

= 1
m

a⊺

(
d∑

ℓ=0
uℓ(tk | Z)zl

)

︸ ︷︷ ︸
=tk

+


b +

m∑

i=1
i ̸=k

a⊺ti

m




(
d∑

ℓ=0
uℓ(tk | Z)

)

︸ ︷︷ ︸
=1

= P (t1, . . . , tm).

(iii) Diagonal property: For all t ∈ Rd, one has

P (t, . . . , t) = b +
m∑

i=1

a⊺t

m
= b + a⊺t = p(t).

Using the previous Lemma, the linear exactness property follows directly from the
equivalent of Marsden’s identity for DCB-splines formulated in Theorem 4.17.

Proposition 7.4 (Linear exactness). Let d, m ∈ N+, and choose a knot set X ⊆ Rd

satisfying the strong conditions. For all p ∈ Π1(Rd), one has Sm,Xp = p.

Proof. Let a ∈ Rd and b ∈ R be the uniquely defined coefficients such that, for all
t ∈ Rd, one has p(t) = a⊺t + b. It follows with Lemma 7.3 and Theorem 4.17 that

Sm,Xp(t) =
∑

K∈Km(X)
p


 1

m

∑

x∈I(K)
x


N(t | K)
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=
∑

K∈Km(X)


b +

∑

x∈I(K)

a⊺x

m


N(t | K)

=
∑

K∈Km(X)
P (I(K))N(t | K)

= p(t)

for all t ∈ Rd.

Of course, one is interested in a result regarding the approximation quality of a
much broader class of functions, and indeed, if we assume a given function to be at
least two times continuously differentiable, we can use the linear exactness property
to obtain an upper bound for the approximation error. It has been stated in several
publications, like in [Boo82, p. 68f] or in [DMS92, p. 111] for example, that, for suit-
able operators which reproduce polynomials of degree up to m′, the error decreases
as hm′+1, where h denotes the maximum (local) distance between neighboring
knots. Nevertheless, we give an explicit upper bound for the approximation error
in order to confirm the approximation order, derive also the constant factor, and
enable a comparison to the univariate equivalent provided in Theorem 2.25. The
proof follows the sketch for general approximation operators in [Boo82, p. 68f].

Theorem 7.5 (Approximation order). Let m, d ∈ N+, and choose a knot set X ⊆ Rd

satisfying the strong conditions. Moreover, let f ∈ C2(Rd), and let Hf (z′) denote the
Hessian of f at z′. Then, under the condition that both supremums exist, one has

∥f − Sm,Xf∥∞ ≤ 2r2 sup
z′∈Rd

∥Hf (z′)∥F,

where
r := sup

K∈Km(X)
rad(B(K)).

Proof. For v ∈ Rd, let

K∗
m,v(X) :=

{
K ∈ Km(X)

∣∣∣ v ∈ supp N(· | K)
}

⊆ Km(X)

denote the set of all Delaunay configurations whose corresponding simplex splines
contain v in their support. Then, in particular, v ∈ B(B(K)) for all K ∈ K∗

m,v(X),
and thus, one has

∥v − w∥ ≤ ∥v − cen(B(K))∥ + ∥cen(B(K)) − w∥ < 2 rad(B(K))

7.1 Approximation 199



for all w ∈ B(B(K)). Since the Greville site with respect to a configuration K is a
convex combination of interior knots of K, which are clearly in B(B(K)), it follows
from the convexity of B(B(K)) that gK,m,X ∈ B(B(K)), and hence,

∥v − gK,m,X∥ < 2 rad(B(K)) for all v ∈ Rd, K ∈ K∗
m,v(X). (7.1)

Furthermore, for all v, w ∈ Rd, the multivariate Taylor expansion of f at v yields the
existence of a z ∈ conv(v, w) such that

f(w) = f(v) + ⟨∇f(v), w − v⟩︸ ︷︷ ︸
=:T1,vf(w)

+ 1
2(w − v)⊺Hf (z)(w − v)
︸ ︷︷ ︸

=:Tr,vf(w)

.

For all v, w ∈ Rd and a suitable choice of z ∈ conv(v, w), one can use the Cauchy-
Schwarz inequality and the compatibility of the Frobenius and the Euclidean norm,
i.e.,

∥Au∥2 ≤ ∥A∥F∥u∥2 for all u ∈ Rd, A ∈ Rd×d,

to bound the absolute value of the remainder term Tr,vf(w) of the Taylor expansion:

|Tr,vf(w)| = 1
2 |(w − v)⊺Hf (z)(w − v)| ≤ 1

2∥w − v∥∥Hf (z)(w − v)∥

≤ 1
2∥Hf (z)∥F∥w − v∥2 ≤ 1

2∥w − v∥2 sup
z′∈Rd

∥Hf (z′)∥F.

In combination with (7.1), this yields that, for all K ∈ K∗
m,v(X), one has

|Tr,vf(gK,m,X)| ≤ (2 rad(B(K)))2

2 sup
z′∈Rd

∥Hf (z′)∥F ≤ 2r2 sup
z′∈Rd

∥Hf (z′)∥F.

Together with the identity T1,vf(v) = f(v) for all v ∈ Rd, the linear exactness and
linearity of the Schoenberg operator, the nonnegativity of simplex splines, and the
partition of unity (Corollary 4.18), we obtain the final estimate

∥f − Sm,Xf∥∞ = sup
v∈Rd

|T1,vf(v) − Sm,Xf(v)| = sup
v∈Rd

|Sm,X(T1,vf)(v) − Sm,Xf(v)|

= sup
v∈Rd

|Sm,X(Tr,vf)(v)| ≤ sup
v∈Rd

∑

K∈K∗
m,v(X)

|Tr,vf(gK,m,X)||N(v | K)|

≤ 2r2
(

sup
z′∈Rd

∥Hf (z′)∥F

)
 sup

v∈Rd

∑

K∈K∗
m,v(X)

|N(v | K)|



= 2r2 sup
z′∈Rd

∥Hf (z′)∥F.
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Equivalently to this global result, one can also derive a local error bound. To that
end, we consider a convex, open Ω ⊆ Rd and f ∈ C2(Ω). However, the supremum
of the Frobenius norm of the Hessian of f has to be taken on a convex region
Ω̂ ⊇ Ω which contains all Greville sites corresponding to Delaunay configurations in
{K∗

m,v(X) | v ∈ Ω}. The set Ω̂ is in general larger than Ω, but if Ω is bounded, the
local finiteness theorem (Theorem 5.29) ensures that Ω̂ is bounded, too.

When comparing this bound to the univariate equivalent in Theorem 2.25, we miss
the dependency on the spline degree m at first sight. However, as the circumcircle of
Delaunay configurations becomes larger when the spline degree increases, the value
of m is already encoded in the factor r2. In fact, our multivariate bound employing
2r2 is even slightly better than the univariate bound in Theorem 2.25 since it can be
expressed as 1/2 (supi∈Z |xi+m+1 − xi|)2∥f ′′∥∞ in the univariate case.

Theorem 7.5 ensures that the maximum approximation error decreases quadratically
as the maximum configuration size decreases. Since Neamtu’s Theorem 4.17, as
foundation for the results in this section, applies to both pooled and nonpooled DCB-
splines, the same holds true for Theorem 7.5. Hence, both pooled and nonpooled
DCB-splines can be utilized for the efficient approximation of C2(Rd)-functions.

If one is able to construct an operator ensuring an exactness of a higher degree, it
can be expected that also the approximation order would increase accordingly, as
has been suggested by several publications, such as [Boo82, p. 68f]. Most parts of
our proof could be reused by employing a higher-order Taylor expansion.

7.2 Condition

It is the goal of this section to provide bounds that relate the maximum absolute value
of some set of coefficients with the maximum absolute value of the spline function
generated by these coefficients. If the bounds are relatively close to one, the basis
candidates for DCB-splines are well-conditioned and, in particular, really a basis. An
equivalent result for univariate splines has been presented in Subsection 2.3.6.

7.2.1 Bounding the Spline Value

The supremum norm of a spline function can be bounded easily by employing the
partition of unity for DCB-splines, as presented in Corollary 4.18. The result follows
analogously for both nonpooled and pooled DCB-splines.
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Proposition 7.6. Let d ∈ N+, m ∈ N0, and choose a knot set X ⊆ Rd satisfying the
weak conditions. Let g ∈ Sm,X be a nonpooled DCB-spline and a := (aB)B∈Bm,X

be
its bounded, real-valued family of coefficients. Then, one has ∥g∥∞ ≤ ∥a∥∞.

Proof. Let t ∈ Rd. Due to the definition of Bm,X , the nonnegativity of simplex
splines, and the partition of unity (Corollary 4.18), it follows that

|g(t)| ≤ ∥a∥∞
∑

B∈Bm,X

|B(t)| = ∥a∥∞
∑

K∈Km(X)
N(t | K) ≤ ∥a∥∞.

Proposition 7.7. Let d ∈ N+, m ∈ N0, and choose a knot set X ⊆ Rd satisfying the
weak conditions. Let g ∈ S ′

m,X be a pooled DCB-spline and a := (aB)B∈Bm,X
be its

bounded, real-valued family of coefficients. Then, one has ∥g∥∞ ≤ ∥a∥∞. ◀

7.2.2 Bounding the Coefficients

For an estimate in the other direction, we only consider nonpooled DCB-splines. Sta-
bility can be considered as “quantized version of linear independence”. In particular,
a linear dependent basis candidate cannot be stable. During our experiments, we
encountered the following example, which shows that the basis candidate functions
for nonpooled DCB-splines are not necessarily linear independent and, thus, renders
the existence of a constant Cm > 0 such that ∥a∥∞ ≤ Cm∥g∥∞ for all spline func-
tions g ∈ Sm,X with a bounded, real-valued family of coefficients a := (aB)B∈Bm,X

impossible.

Example 7.8. Let d = 2, m = 2, and

x0 := (−1, 0)⊺, x1 := (1, 0)⊺, x2 :=
(1

4 , −1
2

)⊺

,

x3 :=
(

−1
4 , −1

)⊺

, x4 :=
(

−1
4 ,

1
2

)⊺

, x5 :=
(1

4 , 1
)⊺

.

When looking at Figure 7.2, it is easy to see that x0, . . . , x5 are in general Delaunay
position and give rise to the following Delaunay configurations:

K̃0 := ({x0, x1, x2}, {x4, x5}), K̃1 := ({x0, x1, x3}, {x2, x4}),
K̃2 := ({x0, x1, x4}, {x2, x3}), K̃3 := ({x0, x1, x5}, {x2, x4}),
K̃4 := ({x2, x3, x5}, {x0, x4}), K̃5 := ({x3, x4, x5}, {x1, x2}).

202 Chapter 7 Approximation and Condition



x0 x1

x2

x3

x4

x5

K0

K1

K2 K3

Fig. 7.2: Knots and configurations as introduced in Example 7.8. Delaunay configurations
of the same color are equivalent with respect to ∼.

When we consider unoriented Delaunay configurations and eliminate duplicates
according to ∼, the following four configurations remain:

K0 := {x0, x1, x2, x3, x4} = U
(
K̃1
)

= U
(
K̃2
)
,

K1 := {x0, x1, x2, x4, x5} = U
(
K̃0
)

= U
(
K̃3
)
,

K2 := {x0, x2, x3, x4, x5} = U
(
K̃4
)
,

K3 := {x1, x2, x3, x4, x5} = U
(
K̃5
)
.

We extend the knot set {x0, . . . , x5} to a knot set X ⊆ R2 satisfying the strong
conditions such that x0, . . . , x5 ∈ X and

(
X\{x0, . . . , x5}

)
∩

5⋃

i=0
B
(
B
(
K̃i

))
= ∅.

Then, K̃0, . . . , K̃5 ∈ K2(X), and therefore, c0M(· | K0), . . . , c3M(· | K3) ∈ B2,X for
appropriately chosen normalization factors c0, . . . , c3 ∈ R+. This expansion of the
simple knot set {x0, . . . , x5} is necessary in order to ensure conv(X) = Rd. Define

b := 1
d(x0, x1, x5) = 1

2 , b′ := 1
d(x0, x1, x3) = −1

2 ,

and the nonzero coefficients

a0 := bd(x0, x1, x2) = −1/2, a1 := −b′d(x0, x1, x2) = −1/2,

a2 := bd(x0, x2, x5) − b′d(x0, x2, x3) = 15/16 − 7/16 = 1/2,

a3 := bd(x2, x1, x5) − b′d(x2, x1, x3) = 9/16 − 1/16 = 1/2.
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It follows from Micchelli’s knot insertion formula (see Theorem 6.10) that, for all
t ∈ Rd, one has

3∑

i=0
aiM(t | Ki)

= b

(
d(x0, x1, x2)M(t | K0) + d(x0, x2, x5)M(t | K2)

+ d(x2, x1, x5)M(t | K3)
)

− b′
(

d(x0, x1, x2)M(t | K1) + d(x0, x2, x3)M(t | K2)

+ d(x2, x1, x3)M(t | K3)
)

= M(t | x0, x1, x3, x4, x5) − M(t | x0, x1, x3, x4, x5) = 0.

As all coefficients a0, . . . , a3 are nonzero, we have found a nontrivial linear com-
bination of the zero-function, which shows in particular that the basis candidate
functions in Bm,X are linearly dependent.

This has also been confirmed by the numerical evaluation presented in Figure 7.3:
The maximum absolute deviation from the zero-function is 5.7745 · 10−16 , which is
small enough to be caused by numerical inaccuracies. ◀

The previous example is a contradiction to the claim in [Nea01b, p. 381] that the
basis candidate functions in Bm,X are linearly independent. In particular, this shows
that Bm,X is in general not a basis for the space of nonpooled DCB-splines Sm,X .
Furthermore, the knots in the example can be varied slightly without changing
the validity of the example, as follows from the fact that the set of Delaunay
configurations does not change as long as none of the knots crosses the circumcircle
of any Delaunay configuration and the knot set remains in general Delaunay position.
Within that range, the circumcircles of Delaunay configurations follow the knot
positions “continuously”. This insight ensures that the set of knot configurations
leading to dependent basis candidate functions is not a set of measure zero. In
particular, this counterexample is not some kind of degenerate case which could
have been excluded by additional constraints on the knot set.

Remark 7.9. When we consider pooled DCB-splines and look at the Delaunay con-
figurations K̃0, . . . K̃5 in the previous counterexample, it turns out that there are five
different collections of interior knots and, thus, also five different pooled basis candi-
date functions. In particular, this collection of functions comprises all the basis candi-
date functions generated by the nonpooled approach, c0M(· | K0), . . . , c3M(· | K3),
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(a) The simplex spline M(· | K0)
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(b) The simplex spline M(· | K1)
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(c) The simplex spline M(· | K2)
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(d) The simplex spline M(· | K3)
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(e) A linear combination of the simplex splines displayed above

Fig. 7.3: Plots of the functions in Example 7.8. A linear combination of the four displayed
simplex splines with appropriate nonzero coefficients yields the zero-function. It
is presented in Figure 7.3e, where the small deviations from zero are caused by
numerical inaccuracies.
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up to normalization. Therefore, the counterexample also works for the pooled
approach at first sight. However, when expanding the set of knots {x0, . . . , x5} to
the knot set X with conv(X) = R2, new Delaunay configurations arise, and each
of the configurations K̃0, K̃2, K̃4, and K̃5 will be pooled with at least one of these
new Delaunay configurations. This also influences the generated basis candidate
functions, of course, and thus, the counterexample does not apply to pooled DCB-
splines with respect to knot sets satisfying the strong conditions. As the pooling also
influences the value of the pooled basis candidate functions inside the convex hull
conv(x0, . . . , x5), it is even unclear if there is a linear combination of pooled basis
candidate functions yielding the zero function when restricting them to the region
conv(x0, . . . , x5). Hence, the counterexample does not contain any statement about
the local linear independence (see [DM85], for example) of pooled basis candidate
functions either. ◀

The supremum norm of the constant zero-function is clearly zero. Due to linear
dependence, it is possible to combine the zero-function with nonzero coefficient sets.
This immediately shows that a constant Cm > 0 satisfying

∥a∥∞ ≤ Cm∥g∥∞

for all spline functions g ∈ Sm,X with a bounded, real-valued family of coefficients
a := (aB)B∈Bm,X

does not exist in general. After all, Bm,X is not necessarily a
basis.
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Conclusion 8
„Of course it is happening inside your head,

Harry, but why on earth should that mean that
it is not real?

— J. K. Rowling
Harry Potter and the Deathly Hallows

This final chapter starts with a summary of the results gained in the previous chap-
ters, followed by some issues that arise when employing DCB-splines for practical
applications. Afterwards, we will close the chapter with open questions and ideas
for future research.

8.1 Summary

In the introduction of the thesis, we formulated four research questions regarding
DCB-splines, which have been answered in the previous chapters. When recalling
the properties of univariate splines presented in Section 2.3, it turns out that, for
each property, we have investigated to what extent it applies to DCB-splines, with a
focus on the nonpooled approach. We will summarize our insights now.

In Chapter 5, we investigated the local finiteness property. For knot sets X satisfying
the strong conditions specified in Definition 4.15, in particular conv(X) = Rd, we
proved for both pooled and nonpooled DCB-splines that each point is in the support
of only a finite number of basis candidate functions and that the restriction of the
spline space to a compact region has finite dimensions. This is an affirmative answer
to our first research question. However, we could also provide an example showing
that the local finiteness property does not hold true in general if conv(X) ⊂ Rd. We
also formulated the local finiteness condition, which is a sufficient criterion for the lo-
cal finiteness property in a compact domain even if conv(X) ⊂ Rd. For appropriately
chosen domains, the local finiteness condition can be checked practically.

For nonpooled DCB-splines, we found a counterexample in Section 7.2 showing
that the basis candidate functions are not necessarily linearly independent, which
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answers our second research question. Consequently, nonpooled DCB-splines are
not a solution to the Fundamental Problem formulated in Section 4.1.2. Note that
the counterexample does not apply to the pooled approach to DCB-splines favored
by Neamtu.

The third research question, which is answered in Section 7.1, concerns approxi-
mation by DCB-splines. A Schoenberg operator can be defined equivalently to the
univariate case. We verified that it features linear exactness and used this result to
provide an upper bound for the approximation error. Like in the univariate case,
this error decreases quadratically as the maximum radius of the circumcircles of
Delaunay configurations is reduced. These circumcircles seem to be a “natural”
measure.

The knot insertion property is an important feature of univariate splines. However,
both pooled and nonpooled DCB-splines do not exhibit this property, as shown by
a counterexample in Chapter 6. Inspired by this example, we provide a necessary
criterion for the knot insertion property to hold true for a given inserted knot. We
also succeeded in proving that this criterion is sufficient for bivariate, nonpooled
DCB-splines of degrees zero and one. Numerical experiments suggest that the
sufficiency even holds true for arbitrary degrees. All these results are contributions
to our fourth research question.

8.2 Practical Considerations

While the focus of this work lies in theoretical properties of DCB-splines, splines
have primarily been designed to be used in practical applications. In this section, we
consider three different issues that arise when implementing DCB-splines, namely
the efficient evaluation of simplex splines, the handling of degenerate and finite
knot sets, and the efficient computation of Delaunay configurations.

8.2.1 Efficient Evaluation of Simplex Splines

Let d ∈ N+ and m ∈ N0. Clearly, one of the most important tasks in practical
applications using simplex splines is their evaluation. The key ingredient for an
efficient evaluation procedure is Micchelli’s recursion formula (see Proposition 3.24).
For m ≥ 2, it can be employed to express the value of a simplex spline of degree m

at t ∈ Rd as weighted sum of several simplex splines of degree m − 1 evaluated at t.
If the recursion formula would also be valid for m = 1, one could apply it recursively
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to express every simplex spline in terms of simplex splines of degree zero, i.e., scaled
characteristic functions of simplices.

However, a more sophisticated definition of the value of simplex splines of degree
zero on the discontinuous boundary of their support would be necessary to be
able to apply the recursion formula for m = 1. There “does not seem to exist
a simple convention which is compatible with the recurrence relations” [Höl86,
p. 104], though. [Mic79] assigns specific values to that boundary in order to obtain
a valid formula for m = 1. Unfortunately, it turns out that it is impossible to choose
these values appropriately in a way that the recursion identity holds pointwise
independently of the specific relative position of the knots. For univariate splines,
the problem is solved by simply choosing to make the B-splines continuous from
either the left or from the right [Gra88]; note that we have chosen the latter in
Definition 2.11. An equivalent approach for the multivariate case is proposed in
[Sei92a, p. 263] by introducing half-open convex hulls, and similarly in [Gra88].
Although being theoretically correct, this approach does not allow a numerically
stable implementation, which renders it infeasible for practical applications [Gra88].
Instead, Grandine shows in [Gra88] how to evaluate continuous simplex splines
of degree one directly. By applying the recursion formula for the case m ≥ 2, this
enables an efficient evaluation of all simplex splines of degree at least one with
respect to knots in general position. For other knot sets, the issue remains for
evaluations on the (d − 1)-simplices spanned by subsets of d knots, though.

Assume that m ≥ 2. When using Micchelli’s recursion formula to evaluate a d-variate
simplex spline of degree m at some site t ∈ Rd, it is necessary to express t as affine
combination of the d + m + 1 knots. The weights associated to the knots are then
used as coefficients in the linear combination of the simplex splines of degree m − 1.
Due to Carathéodory’s theorem, at most d + 1 nonzero coefficients are sufficient to
represent t in this way (see Remark 3.25). According to [Gra88], one should choose
the d + 1 nonzero coefficients such that all coefficients are nonnegative in order
to increase numerical accuracy: As simplex splines are nonnegative, this strategy
avoids inaccuracies due to cancellation. [Gra88] formulates these requirements on
the coefficients and uses a Tucker tableau to derive a suitable solution.

Another question regarding the efficiency of function evaluation in a specific spline
space is the following: Can simplex splines of degree m − 1 be reused for the
computation of several basis candidate functions of degree m? If this would be
possible, branches of the recursive evaluation tree could be memoized. For the
combinatorial approach presented in Subsection 4.2.2, [Gra87] provides the negative
result that a simplex spline of degree m − 1 contributes to at most two simplex
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splines of degree m. To the best of our knowledge, a similar result regarding DCB-
splines has not been published so far. Thus, it may still be possible that an efficient
evaluation procedure is available for these spline spaces.

8.2.2 Degenerate and Finite Knot Sets

Throughout the thesis, we had different requirements on the knot set X ⊆ Rd,
d ∈ N+. For many theorems, we assumed that X satisfies the strong conditions
specified in Definition 4.15, i.e., that X is locally finite, in general Delaunay position,
and that conv(X) = Rd. Whereas most knot sets in practical applications are
certainly locally finite, the restriction to knot sets satisfying conv(X) = Rd is more
severe since this implies in particular that X contains an infinite number of knots.
Moreover, it would also be desirable to be able to cope with knot sets that are
not in general Delaunay position, such as knots on a grid. Relaxations of the
requirements on the knot sets are investigated in [DGN05] for bivariate, quadratic,
pooled DCB-splines.

The problem with degenerate knot sets, i.e., knot sets that are not in general
Delaunay position, is twofold: Firstly, if we construct a simplex spline with respect
to a collection of knots which contains a subset A ⊆ X of d + 1 knots such that
dim aff(A) < d, this simplex spline is not (m − 1)-times continuously differentiable,
i.e., does not have maximum smoothness [Hak82]. This is not necessarily a problem,
but one should be aware of this fact, for example when constructing DCB-splines
with respect to a grid-like knot set. Secondly, the construction of basis candidate
functions for DCB-splines is based on Delaunay configurations, which can only be
defined for knot sets in general Delaunay position. Namely, if more than d + 1 knots
lie on a sphere, it is unclear if the additional knot(s) should be treated as interior
knot(s) of the configuration. This circumstance corresponds to the situation where
the Delaunay triangulation contains untriangulated holes (see Subsection 4.3.2).
If these holes are triangulated arbitrarily, for example via symbolic perturbation,
however, one obtains a suitable space of DCB-splines of degree zero [DGN05]. This
approach can be employed for arbitrary spline degrees. The resulting spline spaces
depend on the specific perturbation, though [DGN05].

Whereas knot sets with an infinite number of knots may be of theoretical interest,
almost every practical application is restricted to finite knot sets, which in particular
do not satisfy conv(X) = Rd. We demanded the knot set X to satisfy this requirement
in order to ensure the local finiteness property (see Theorem 5.29) and the validity of
Neamtu’s equivalent of Marsden’s identity for DCB-splines (see Theorem 4.17). We
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only have to consider the latter since the local finiteness property is trivially satisfied
for finite knot sets. Marsden’s identity can be used to obtain the spline representation
of polynomials, which, except for the zero-function, do not have a bounded support
and, thus, cannot be expressed using a finite knot set and compactly supported basis
candidate functions. The following insights regarding this topic can be found in
[DGN05]. Let m ∈ N+, and choose a finite knot set X ⊆ Rd in general Delaunay
position. Then, Ω := conv(X) is our convex and compact domain of interest. As
all basis candidate functions in Bm,X and B′

m,X , respectively, are continuous and
supported on Ω, they vanish on ∂Ω, which is in particular a contradiction to the
partition of unity (see Corollary 4.18). Thus, Theorem 4.17 can only hold true on
a subset of Ω. One possible approach to handle this issue would be to add knots
outside of Ω to the knot set X. However, since there is no canonical choice for
these knots and as this method involves further drawbacks, [DGN05] propose to
allow knots with multiplicity at the boundary of Ω and apply symbolic perturbation
to obtain a space of DCB-splines. Although the resulting spline space depends
on the specific perturbation, Theorem 4.17 holds true on Ω if each knot on the
boundary has multiplicity m + 1, which is also the usual choice in the univariate
case. As [DGN05] point out, the discontinuities of the basis candidate functions
at the boundary of Ω can propagate to the interior of Ω, though. In their specific
case (d = 2, m = 2), the continuity of the resulting spline functions can be ensured
by choosing the same coefficient for all basis candidate functions corresponding to
coalescing Greville sites. In order to guarantee that the spline functions are also
continuously differentiable in the interior of Ω, further coplanarity constraints on the
coefficients are necessary, however [DGN05]. When using the Schoenberg operator
to approximate a given function, the values of this function at the Greville sites are
used as coefficients, and thus, basis candidate functions with identical corresponding
Greville sites are assigned the same coefficient automatically. On the contrary, the
additional coplanarity conditions reduce the approximation quality as one cannot
just use the values at the Greville sites as coefficients [DGN05].

8.2.3 Computing Delaunay Configurations

In the previous subsection, we considered DCB-splines with respect to finite knot sets.
However, “finite” could still be too large if the involved algorithms are not efficient
enough. An important task when constructing DCB-splines is to find all Delaunay
configurations of a given degree with respect to some finite knot set X ⊆ Rd, d ∈ N+,
in general Delaunay position. Let N := |X| denote the number of knots. A naive
approach would be to count the knots in each circumcircle spanned by any collection
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of d + 1 knots. This would yield an overall time complexity of O(Nd+2), which is
prohibitive for large knot sets even for d = 2. However, in the bivariate case, there
are two approaches towards an efficient computation of Delaunay configurations,
both having an expected time complexity in O(N log N). In the following, we will
recall both approaches briefly.

An algorithm originally designed to enumerate all suitable triangles for order-m
Delaunay triangulations is due to [GHK02; SK09] and can be adapted for the
computation of Delaunay configurations [Han+08]. The algorithm can be split into
two stages:

1. Enumerating suitable edges: The first stage computes a collection of certain
pairs of knots as input for the second stage. According to [GHK02], these
m-OD edges have a one-to-one correspondence to the Voronoi diagram of order
m + 1: Two knots x, x′ ∈ X constitute an m-OD edge if and only if there are
Y, Y ′ ⊆ X with |Y | = |Y ′| = m + 1 such that x ∈ Y , x′ ∈ Y ′, and the Voronoi
regions with respect to Y and Y ′ are adjacent. For the computation of the
Voronoi diagram of order m + 1, [GHK02] use an algorithm which is due to
[Ram99] and has an expected time complexity in O(Nm2 + N log N). The
number of m-OD edges is in O(Nm) [GHK02].

2. Finding Delaunay configurations for each edge: The following procedure is
applied to each of the m-OD edges found in the first stage of the algorithm
and is an adapted version of the approach sketched in [SK09]. Consider the
hyperplane spanned by the two knots x, x′ ∈ X constituting the m-OD edge
that is currently under consideration. In both half spaces generated by this
hyperplane, we enumerate the m + 1 knots that are closest to x and x′ with
respect to an appropriate order of the points (which in fact is equivalent to the
strict total order ≺ that we have introduced in Lemma 6.15) and sort these
knots according to this order. This can be done with a time complexity of
O(m log m). The result is two sorted lists of knots, which, together with x and
x′, are the only knots potentially involved in Delaunay configurations featuring
x and x′ as boundary knots. As the lists of knots are sorted, the number of
knots inside each circumcircle can be computed in O(m) time complexity, as
described in [SK09]. Since the number of m-OD edges is in O(Nm), this yields
a total time complexity O(Nm2 log m) for the second stage.

Hence, the expected total time complexity of the algorithm presented in [GHK02;
SK09] is in O(Nm2 log m+N log N), which reduces to O(N log N) when considering
m as constant.
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The second approach has been proposed in [DGN05] specifically for the computation
of Delaunay configurations of degree two, i.e., m = 2. The algorithm starts with
a Delaunay triangulation of the knot set, which can be computed in O(N log N)
time complexity. For each knot x ∈ X, its cell is defined as the region covered by
the Delaunay triangles that have x as a vertex. The cell of each knot, which is not
necessarily convex, is then triangulated using a constrained Delaunay triangulation.
Each of the triangles determines the boundary knots of a Delaunay configuration
of degree one with x as interior knot. According to [DGN05], the time complexity
for the computation of all Delaunay configurations of degree one from the given
Delaunay triangulation is in O(N). In a similar way, the configurations of degree
one can then be used to compute all configurations of degree two. For proofs and
details of the algorithm, [DGN05] refer to a manuscript, which, to the best of our
knowledge, has not been published. The time complexity of the whole algorithm is
in O(N log N), which is equivalent to the approach by [GHK02; SK09] in the case
of a constant m.

8.3 Future Research Topics

There are clearly many open questions regarding DCB-splines. We close the thesis
with some ideas for potential future research topics, which is by far not exhaustive.

As we have proved in Example 7.8, nonpooled DCB-splines are not a solution to the
Fundamental Problem due to the potential linear dependence of basis candidate
functions. Therefore, future research should focus on the pooled variant. Although
it has been stated in [Nea01b] that the pooled basis candidate functions are linearly
independent, a rigorous proof of this fact would be desirable. Additionally, an
upper bound for the absolute coefficient values dependent on the norm of the spline
function with these coefficients would ensure that the basis candidate for pooled
DCB-splines is well-conditioned.

In this thesis, we formulated a necessary criterion for the knot insertion property
to hold true for one particular inserted knot. We could show that this criterion is
also sufficient in the bivariate, nonpooled case for degrees zero and one. A desirable
generalization of this result to arbitrary degrees would confirm our conjecture that
the criterion is sufficient for more general cases as well.

In general, it would be beneficial to gain a better understanding of the interactions
between Delaunay configurations. Possibly, some of the combinatorial results on this
topic, for example in [LS07b], [Sch19], and [Bar+22], could be employed for that
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purpose. In particular, a thorough understanding of the pooling of simplex splines
as basis candidate functions for pooled DCB-splines would be advantageous.

The multivariate Schoenberg operator defined in this thesis exhibits linear exactness
and, as a consequence, provides a quadratic decrease of the approximation error as
the knot set becomes denser. It can be expected that an operator with an exactness
of degree m ∈ N+, i.e., all polynomials of degree at most m are invariant under the
operator, would yield an approximation order of m + 1 [Boo82, p. 68]. Hence, the
formulation of such operators would allow a better approximation of sufficiently
smooth functions in terms of DCB-splines.

In addition to these theoretical questions, future research could also examine DCB-
splines in practical applications. To that end, the development of an actual software
framework for DCB-splines would be of interest. During such an endeavor, further
questions probably arise in addition to the ones already addressed in the previous
section. One of them could concern the efficient evaluation of pooled basis candidate
functions, for which “there is no associated recurrence relation relating these func-
tions to basis [candidate] functions of lower degree” [CLR13] so far. Despite these
challenges, a framework facilitating a relatively easy usage of these splines would
lower the hurdles to actually use DCB-splines in practical applications and would
spark further interest in this spline space. After all, de Boor considers Neamtu’s
DCB-splines as “the most convincing solution” [Boo09] for the construction of a
multivariate spline space employing simplex splines.
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