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Abstract
Network communication has become a part of everyday life, and the inter-
connection among devices and people will increase even more in the future.
A new area where this development is on the rise is the field of connected
vehicles. It is especially useful for automated vehicles in order to connect the
vehicles with other road users or cloud services. In particular for the latter it
is beneficial to establish a mobile network connection, as it is already widely
used and no additional infrastructure is needed.

With the use of network communication, certain requirements come along.
One of them is the reliability of the connection. Certain Quality of Service
(QoS) parameters need to be met. In case of degraded QoS, according to
the SAE level specification [1], a downgrade of the automated system can
be required, which may lead to a takeover manoeuvre, in which control is
returned back to the driver. Since such a handover takes time, prediction is
necessary to forecast the network quality for the next few seconds.

Prediction of QoS parameters, especially in terms of Throughput (TP) and
Latency (LA), is still a challenging task, as the wireless transmission proper-
ties of a moving mobile network connection are undergoing fluctuation.

In this thesis, a new approach for prediction Network Quality Parameters
(NQPs) on Transmission Control Protocol (TCP) level is presented. It com-
bines the knowledge of the environment with the low level parameters of the
mobile network. The aim of this work is to perform a comprehensive study
of various models including both Location Smoothing (LS) grid maps and
Learning Based (LB) regression ones. Moreover, the possibility of using the
location independence of a model as well as suitability for automated driving
is evaluated.
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Zusammenfassung
Netzwerkkommunikation ist zu einem Teil des täglichen Lebens geworden,
und die Vernetzung von Geräten und Menschen wird in Zukunft noch wei-
ter zunehmen. Ein neuer Bereich, in dem diese Entwicklung zunimmt, sind
vernetzte Fahrzeuge. Es ist vorteilhaft automatisierte Fahrzeuge mit anderen
Verkehrsteilnehmern oder Cloud-Diensten zu verbinden. Insbesondere für
letztere ist der Einsatz einer mobilen Netzwerkverbindung zweckmäßig, da
sie bereits weit verbreitet ist und keine zusätzliche Infrastruktur erfordert.

Mit der Nutzung des Netzwerkes gehen auch einige Anforderungen ein-
her. Die Zuverlässigkeit der Verbindung ist entscheidend. Kann keine ausrei-
chende Qualität der Verbindung erfüllt werden kann nach SAE Spezifikation
[1] das Herunterstufen der Automatisierungsstufe erforderlich sein. In letz-
ter Konsequenz kann diese schließlich zu einem Übernahmemanöver führen,
wobei die Kontrolle wieder an den Fahrer zurückgegeben wird. Da ein sol-
cher Wechsel Zeit in Anspruch nimmt, ist eine Vorhersage erforderlich, um
die Netzqualität in den nächsten Sekunden zu prognostizieren.

Eine solche Vorhersage der Dienstgüte (Quality of Service (QoS)), beson-
ders hinsichtlich Durchsatz und Latenz, nach wie vor eine recht anspruchs-
volle Aufgabe, da die drahtlosen Übertragungseigenschaften einer sich be-
wegenden mobilen Netzwerkverbindung großen Schwankungen unterlie-
gen. In dieser Dissertation wird ein neuer Ansatz für die Vorhersage von Net-
work Quality Parameters (NQPs) auf der Ebene des Transmission Control
Protocol (TCP) vorgestellt. Er kombiniert das Wissen der Umgebung mit den
Parametern des Mobilfunknetzes. Das Ziel dieser Arbeit ist eine umfangrei-
che Untersuchung verschiedener Modelle, darunter sind sowohl Lokalisati-
onsglättende Kachel-Karten wie auch Regressionsverfahren aus dem Bereich
des Maschinellen Lernens. Darüber hinaus wird dessen die Möglichkeit der
Nutzung der Ortsunabhängigkeit eines Modells erörtert sowie Eignung für
automatisiertes Fahren evaluiert.
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Introduction 1

1.1 Motivation and research questions

The current research and development in the field of automated and au-
tonomous driving will change personal transport and daily life for com-
muters tremendously. The increase of automated driving functions improves
both safety and comfort. In order to bring these systems in line with their le-
gal, economic and social environment, a uniform definition of the terms is
required that clearly separates the different levels of automation from one
another. This helps to avoid the general use of terms like automated driv-
ing, which is often unspecifically used in the public discussion and leads to
wrong expectations. To close this gap, different organisations, e.g. Federal
Highway Research Institute of Germany (BASt) [2] or Society of Automotive
Engineers (SAE) [1], define automation levels starting from fully manually
driven vehicles with no driving assistance system at all up to autonomous
vehicles with no driver on board. An overview of the automation levels as
defined by SAE [1] is presented in Table 1.1 and is used in the following.

The automation levels point at the need of two major evolutionary steps.
The first one is between Level 2 (Partial Driving Automation) and Level 3
(Conditional Driving Automation), where an change from a vehicle, always
supervised by the driver to a vehicle only partially supervised by the driver
happens. At Level 3, the driver does not have to monitor the system perma-
nently. Such an automation grade is called High automation by Gasser and
Westhoff [2]. High automation leads to many interesting questions starting
with technology aspects, but also legal [3] and social aspects like the meth-
ods of sharing control between vehicle and driver [4].

The second evolutionary step is between Level 4 and Level 5. The chal-
lenge here is to fulfil the transition from a system running under certain con-
ditions, with a driver as fall-back solution, to one that can be used uncondi-
tional in every situation, so that no driver is further required. According to
Koopman and Wagner [5] this leads to a large number of edge cases, which
Koopmen calls Heavy Tail Distribution [6]. As the current research is more fo-
cusing on closing technological gaps, this work is addressing the edge cases
as well, but mainly taking Level 3 into consideration.

The possibility to drive parts of a trip in an automated mode, offers the
driver the opportunity to pursue new activities. This includes business cases
like rolling office as well as relaxing tasks, e.g. media consumption. In both
cases, there is a demand of mobile network communication. But also the car
itself is performing more and more tasks e.g. the download of high definition
maps to fulfil new automated driving tasks as shown by Jomrich, Schmid,

1
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TABLE 1.1: Overview of the automation levels according to the SAE [1].

SAE
level

Name Narrative Definition Note

0 No Driving
Automation

The performance by the driver
of the entire dynamic driving
task.

1 Driver
Assistance

The domain-specific execution
by a driving automation system
of either the lateral or the longi-
tudinal vehicle motion with the
expectation that the driver per-
forms the remainder of the dy-
namic driving task.

State of the art
in vehicles on
the road.2 Partial

Driving
Automation

The domain-specific execution
by a driving automation system
of both the lateral and longitudi-
nal vehicle motion with the ex-
pectation that the driver com-
pletes.

3 Conditional
Driving

Automation

The domain-specific perfor-
mance by an adaptive cruise
control of the entire dynamic
driving task with the expec-
tation that the fallback-ready
user is receptive to adaptive
cruise control-issued requests to
intervene, as well as to dynamic
driving task performance- rel-
evant system failures in other
vehicle systems, and will re-
spond appropriately.

Modern vehicles
are prepared, no
continuous auto-
mated operation
allowed.

4 High
Driving

Automation

The domain-specific perfor-
mance by an adaptive cruise
control of the entire dynamic
driving task without any expec-
tation that a user will respond
to a request to intervene.

Driver only
needed in case
of faults on the au-
tomated system.

5 Full Driving
Automation

The unconditional performance
by an adaptive cruise control of
the entire dynamic driving task.

No driver on
board, no steering
wheel, pedals etc.
in vehicle.

Knapp, et al. [7] or for dynamical map updating [8]. In order to take these
new use cases into account and to prioritise between them in case of low
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available bandwidth, it must be possible to determine both the resource re-
quirements and the available resources. The first depends strongly on the
application, it is very well possible. But the determination of the available
mobile network quality is a more challenging task, due to the dependency on
many parameters and its strong fluctuation, especially for moving vehicles.
However, this prediction of mobile network quality is needed in many auto-
motive related tasks like teleoperated driving where a vehicle is controlled by
a remote driver [9], [10] or the usage of cloud-based vehicle functions [11]–
[13].

Therefore, it is not surprising that prediction of mobile network param-
eters has grown to a major topic in cellular vehicle-to-network communica-
tion. Prediction of network quality parameters, especially the TP, however,
is not new.

The estimation of download time was even relevant at times without mo-
bile networks at all. While previously the transmission time of bulky Trans-
mission Control Protocol (TCP) connections was a major issue [14], nowa-
days, the focus is more on applications in the field of mobile adaptive video
streaming [15]–[24] and other mobile applications in the area of vehicle-to-
network communication [7], [25], as well as for vehicle related tasks such
as the collection of real time map information [26], the transfer of vehicle to
infrastructure data [27], or cellular vehicle-to-vehicle communication of In-
telligent Transportation Systems [28]. Also interesting is scheduling multi-
provider connections in transport systems [29], therefore, a setup for this
topic is also described in this thesis in Section 4.2.

In order to structure the related work in this field, Section 2.3 shows the
different scenarios in which NQP is applied, as well as a taxonomy of the
techniques used for the prediction of Network Quality Parameter (NQP). But
in general, many relevant approaches [30]–[32] are only targeting a single test
area and therefore require measurement samples from this area, so they are
not performing location independent. Another important aspect is the fact
that, depending on the application, both throughput and LA are relevant
variables in automated driving. Therefore, an investigation of both quality
parameters is necessary.

For the purpose of reducing this gap between the requirements for highly
automated driving and actual approaches for mobile network quality predic-
tion, this thesis is discussing the following Research Questions (RQ):

RQ1: Is it possible to make a prediction covering the whole takeover time
span? Many current NQP prediction approaches are only forecasting
in the range of some milliseconds [33] or a few meters [34]. But in the
Conditional Driving Automation the vehicle needs to be able to take
control within a certain time span, after a takeover request is issued by
the automated system. This period is called takeover time. Although
it is not clearly defined, different studies are showing that it is a period
of several seconds like described in an overview by Eriksson and Stan-
ton [35]. It also highly depends on the driving situation as well as on
the driver performance [36], [37]. Therefore, the prediction of mobile
network parameters also needs to be at least in this magnitude of time.
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Measurements provided by Merat, Jamson, Lai, et al. [38] suggest that
it can take up to 15 s to respond to a takeover request event. This value
is used as time span for the prediction in this thesis to be the safe side.

RQ2: Which LB or LS model achieves the most accurate results, regarding
the prediction error? There are different approaches to predict NQPs.
In addition, there are also some works that have already been done to
compare the methods, such as the study of Liu and Lee [39] which eval-
uates various approaches. So far there is no comparison between dif-
ferent LB models, like Support Vector Regressions (SVRs), Feedforward
Neural Networks (FNNs) and Recurrent Neural Networks (RNNs) with
an LS approach that is made on the same dataset. Also a comparison
that includes both Throughput Prediction (TPP) and Latency Prediction
(LP) is not known.

RQ3: Is it possible to build a prediction method that combines LB techniques
with environment features and competes with state of the art LS and LB
methods or outperforms them? While at the beginning of data link pre-
diction, mainly formula and time series based approaches were used,
given the increasing complexity, especially through the use of wireless
connections, now the utilization of LS and LB methods is adequate.
Therefore, the advantages and disadvantages of these models must be
taken into account and a new approach has to compete with both LS
and LB methods.

RQ4: Is the prediction technique capable to forecast both relevant NQP? Net-
work quality can be measured and predicted on multiple layers of the
network stack, starting from the wireless channel itself, up to applica-
tion layer. Since this work is targeting higher level services on the one
hand but wants to be application independent on the other hand, it is
focusing on the TCP. To determine the quality of such a data connec-
tion, there are only two main parameters: Throughput (TP) and LA.
However, depending on the type of connection, the TP has to be sep-
arated in upload and download. According to the application, either
the TP or the LA are very important parameters for the quality of the
connection. Therefore, it is necessary to consider both in the context
of highly automated driving vehicle-to-server communication. So an
evaluation of the used techniques on both relevant NQPs is needed.

RQ5: Is a location independent prediction possible? One of the biggest ad-
vantages of LB models is their ability to generalize, like classifying pic-
tures never seen before. In the context of NQP prediction, this could
be used for performing a forecast in a location, where no data was
previously recorded. Since such a location independent prediction is
not possible with LS methods and actually not in depth studied on LB
based approaches [40], it should therefore be verified whether these
models can be used for location independent prediction.
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In summary, it is necessary to answer these questions to come closer to a
mobile network based communication for automated driving. How this will
be done in the context of this work is outlined in the next section.

1.2 Overview of this Thesis

This thesis is organised as follows: Chapter 2 is providing the background,
regarding the used NQPs and datasets as well as the used methods for pre-
diction and evaluation. The new approach of including environment features
into the Feature Set (FS) and the preprocessing is given in Chapter 3. The ex-
periments using these methods in order to predict the TP and RTT are shown
in Chapter 4. Finally, Chapter 5 gives a summary of the current work with
the limitations, and an outlook for the future work. In more detail:

Chapter 2 defines the two NQPs used in this thesis, which are TP and
latency, both measured on TCP level as explained in Section 2.1. This is fol-
lowed by a description of the features used for network prediction in other
works in Section 2.2 and a taxonomy of the various approaches, as well as the
description of these models in Section 2.3. In order to compare the models an
overview of the evaluation metrics is shown in Section 2.4. The chapter ends
with an introduction of the used test tracks an datasets.

Chapter 3 starts with the basic idea for using environment features in LB
prediction models. An evaluation of the impact of the location to the network
quality is given in Section 3.2. The process of extracting these features from
the data collected be Open Street Map (OSM) is given in Section 3.3. Finally
the rest of the preprocessing, including filtering, downsampling, encoding,
shifting and feature selection, is also presented in this chapter.

Chapter 4 is showing the experiments made using the methods of Chap-
ter 2 and Chapter 3. It is mainly split in two parts. The first one describing
the TPP experiment in Section 4.1 and the second one showing the LA ex-
periment in Section 4.2. Both experiments are structured in the same way,
beginning with an explanation of the technical setup and the dataset. Fol-
lowed by the feature selection and the prediction methods. In the end of
each section an evaluation of the experiment is given.

Chapter 5 summarizes and concludes the present work of this thesis. It
also discusses limitations and provides possible directions for future work in
an outlook.
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This chapter introduces the theoretical methods, techniques and algorithms
used in this thesis. It includes both the procedures for prediction of the qual-
ity parameters for mobile networks as well as associated methods of evalu-
ation. Furthermore, the connection attributes used by state of the art mobile
network quality prediction algorithms are described.

2.1 Network Quality Parameter

In the context of communication, performance is a key factor to guarantee
good quality. Related to this field, the metric Quality of Service (QoS) is of-
ten used. Another term regarding this topic is Quality of Experience (QoE).
In literature, several varying definitions of these two terms are found. The
aim of the thesis is to predict the QoS of communication and so this section
tries to work out a universal definition. First, the term of quality is defined.
According to the definition from the International Telecommunication Union
(ITU) quality is the totality of characteristics of an entity that bear on its abil-
ity to satisfy stated and implied needs [41]. As a service, one understands a
set of functions offered to a user by an organisation [41]. Combining these
two single definitions, the QoS is a metric, which defines a good performance
of a service. This can be compared to the QoE, which describes the users per-
ception of the technical performance of the service delivered to the user, the
QoS is an easier measurable value, since it refers to deterministic network
behaviour and is not a subjective metric [42]. Therefore, different parameters
have to be taken into account. Depending on different communication link
scenarios either low LA, high TP or low error rate are the most crucial param-
eters. Since this thesis focuses on LA and TP, the following sections discuss
how these parameters are defined and measured. To summarize these two
terms, the word NQP is used in this paper, which refers to the parameters
rather than the QoS.

2.1.1 Throughput

The first quality parameter that is investigated in this thesis is TP. It de-
scribes the amount of data sent within a certain timespan and is defined as
TP := data per cycle

time per cycle . Another commonly used term is Bandwidth (B). The main
difference between the terms B and TP is that B is used for the capacity of a
whole network link, while TP stands for the capacity of a single connection

7
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Wmax

W

tTD1 TD2 TD3 TO

W + 1

W
2

FIGURE 2.1: Illustration of the TCP Reno Congestion Control (CC) [44], with
a description of the time until triple duplicate acknowledgments (TDi) and the
TCP Retransmission Timeout Period (TO) due to timeout as well as their impact

on the congestion window size (W).

[43]. Depending on the use cases, either B or TP is investigated in the litera-
ture. Of course, it also matters at which layer in the communication stack the
prediction is located.

The standardized definition of these layers is described in the well-known
OSI model [45]. It defends seven layers, starting from the physical transmis-
sion up to the high level application layer. The goal in this thesis it to predict
the TP on a layer that is general enough to cover all applications that are ap-
plied in the context of mobile network vehicle communication. But on the
other hand, this layer should be as high as possible, since B of each layer
includes also the overhead of the layers above. So in order to calculate the
usable B at layer seven the overhead at layers one to six must be subtracted
as well as other processes leading to B reduction. To suit these two require-
ments, measurement at TCP level, i.e. layer four, is needed.

TCP as a transport protocol is widely used in all cases, where reliable com-
munication is required. In order to provide reliability, sent messages must be
acknowledged, which at first leads to a slower data flow. So to improve the
performance of TCP, a cumulative acknowledgement has been introduced.
This means that a series of TCP messages, also called segments, are acknowl-
edged with only one response. The number of segments, is also known as
congestion window size (W). During the slow start, W is doubled after ev-
ery correct transmission, until the slow start threshold is reached or a loss
event happens. At this point, W is calculated using the congestion window
scheme. There are different implementations for this scheme, called Conges-
tion Control (CC) algorithms.

One of them is TCP Reno [44], which increases W by one. If a loss hap-
pens, the slow start threshold is set to the half of W, which is also shortened
to this value, as illustrated in Figure 2.1. Such a loss can have several rea-
sons, but in general, there are two ways to detect losses from sender side.
The first one is the so-called triple duplicate acknowledgments method. It is
used to indicate the loss of single packet. Since every TCP message has a
sequence number, which is simply a package counter, it is possible for the
receiver to detect an out-of-order message. This is the case if the receiver
did not receive all packets with a lower sequence number than the actual
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one. Then the response only contains the sequence number of the last in-
order packet. After three answers with the same sequence number, the fol-
lowing package is marked as lost and immediately resent. This technique is
called Fast-Retransmit and the time between two of these events is defined
as Triple-Duplicate ACK Time (TDi) in Figure 2.1. The second kind of losses
are timeouts. These are indicated by packages which are not acknowledged
within a certain time. There, the window size will be reset and the packet is
retransmitted.

The approaches described above are based on a simple TCP implemen-
tation using only slow start, TD and TCP Retransmission Timeout Period
(TO), but there are also further improvements of the TCP implementations
and mechanisms. One of them is e. g. the additive increase multiplicative
decrease algorithm which improves the rate control. This approach of con-
gestion control is using feedback of the other end of the TCP connection. It
was presented by Chiu and Jain [46], but since this method requires the con-
trol of both sides of the connection, it is not further investigated in this work.
However, there are also TCP implementations, with are using a basic TP es-
timation in order to control the Congestion Window Size (CWND), as done
by TCP Vegas [47]. This implementation uses the RTT in order to calculate a
expected data rate. The difference between the expected rate and the actual
one is then used to increase or decrease the CWND. Besides, TCP Westwood
[48], which is also a modification on the TCP congestion window algorithm
aims to improve the performance of wireless links. A detailed analysis of
different algorithms and implementations used for congestion control can be
found in the work on Srikant [49]. In order to implement complex conges-
tion control function the paper of Narayan, Cangialosi, Raghavan, et al. [50]
is worth further reading. In addition, quite detailed information on various
bandwidth estimation techniques is provided by Chaudhari and Biradar in
[51].

TP

time0 1 2 3 4 5 6 7 8 9

Measurement sample
LTE measurement point
TCP Throughput

FIGURE 2.2: Schematic diagram of the measurement process, showing the TCP
Throughput (TP) as graph over time and the measurement intervals divided by

the vertical dashed lines, adopted from pre-published results [52].

For the prediction the limit of the TCP TP value is needed and the TCP
implementation has an impact, as shown in Figure 2.2. The measurements
can only be started after a certain amount of data has already been sent and
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N

(a) Three-Way-Handshake for establish-
ing a connection. Used to calculate
Round-Trip Time (RTT) during connec-
tion establishment (RTTSYN).

Sender Receiver

t5 FIN+ACK

t6

FIN+ACK

t7
ACK

t8

R
T

T
F

IN
(b) Closing of a TCP connection. Used to
calculate Round-Trip Time (RTT) during
closing a connection (RTTFIN).

FIGURE 2.3: Illustration of the establishment and termination of a TCP con-
nection. These parts of a TCP session can be used to measure a more accurate
Round-Trip Time (RTT) since a long processing of a message in this status of the

session is not needed. The figure is adopted from pre-published results [52].

the slow start phase has ended. A visualisation of this process is shown in
Figure 2.2. Only the samples 2,3,7 and 8 contain valid TCP TP values. But
since the samples 3 and 8 show only the TP of a part of the measurement
cycle, in order to clean up the data, these samples are removed using the
filters shown in Section 3.4.2.

2.1.2 Latency

The second quality parameter studied in this work is LA. In general, it de-
scribes the duration needed by a system to generate the required output. In
communication, this term defines the delay between sending and receiving a
packet. The measurement of LA on TCP level requires effort on both sides, re-
ceiver and transmitter, in order to synchronize the system clocks before each
measurement. This can be done via different protocols. One of them is the
Simple Network Time Protocol [53], which achieves according to [54] about
one second accuracy and is therefore not precise enough to be considered
further. Another possibility is the Network Time Protocol [55], which pro-
vides millisecond accuracy. It can be extended with GPS, which decreases
the error to a few hundred microseconds [54]. Such a Network Time Protocol
based approach is also shown by Arlos and Fiedler [56]. However, all this
methods have in common that control of both sides is needed. Therefore,
frequently, an approximate solution considering the LA equal to half of RTT
is applied. One commonly used method is to measure the RTT. This is the
time that elapses between sending a packet and receiving the corresponding
acknowledgement (ACK) for that packet. Between RTT and LA there is the
following relation:
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RTT = 2 · tl + tp (2.1)

In Equation (2.1), processing time tp describes the time required by the
system to process the request. In cases where tp is very low compared to
the LA time tl, it can be assumed that tl ≈ RTT

2 . To measure the RTT within
a TCP connection, there are several methods in the literature. This thesis is
describing two of them. Both are based on the Three-Way-Handshake of a
TCP connection and illustrated in Figure 2.3. A detailed description of the
two methods is given by Schmid, Hess, Höß, et al. [52].

With the first method, called SYN-ACK [57], the RTT is measured during
the establishment of the communication between sender and receiver. Here,
the sender can measure the time between initiating the connection by send-
ing a SYN packet at the timestamp t1, and its receipt at t2. The time span
(t2 − t1) corresponds to the LA between sender and receiver. Assuming that
there is no precessing time tp, the receiver answers with a SYN-ACK packet
to the sender at the same time t2. This packet is received and acknowledged
by the sender at t3 . Finally, the receiver gets this acknowledgement at t4.
So, Round-Trip Time (RTT) During Establishing a Connection (RTTSYN) is
defined as RTTSYN := t3 − t1 and LA as tlSYN := t2 − t1. This measurement
assumes that there are no delays at the receiver side. Once the server receives
the SYN packet, it immediately answers with a SYN-ACK packet. However,
since delays may occur, for example due to limited resources on the server
side, it is necessary to consider such restrictions and avoid them in a mea-
surement setup.

The second algorithm, shown in Figure 2.3 is called FIN-ACK method
[58] and is based on the closing procedure of the TCP. After a closing request
(FIN-ACK) is sent to the receiver at t5, it is immediately answered with a
closing request to the sender at t6. At t7, the sender receives the second re-
quest and acknowledges. Consequently, the Round-Trip Time (RTT) During
Closing a Connection (RTTFIN) is also defined as RTTFIN := t7 − t5, like
described in the SYN-ACK method.

The measuring of the RTT values can be done in two ways, passively by
using the traffic of other application or actively by producing the traffic with
programs like ping or traceroute [59]. Since this work is also focusing on
the TP, the passive method is chosen, in order to avoid interference between
the measurements.

2.2 Network Prediction Features

In order to predict the quality parameters described in section 2.1, it is impor-
tant to figure out, which variables are significant. This section will give an
overview on relevant parameters used in previous approaches. In compari-
son, Chapter 3 describes, which concrete parameters are used for prediction
in this thesis.

Looking at the NQP prediction as a time series prediction, it is obvious
that previous RTT or TP values recorded in equidistant time intervals are
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used. This is especially the case if the prediction is made using Mean Based
(MB) or Time Series Models (TSM). But of course there are also other TCP pa-
rameters that are relevant to predict the NQPs. El Khayat, Geurts, and Leduc
showed the importance of TD and TO for predicting the TP [60]. Also features
like the Loss Rate or the W were used to predict the TP, e.g. by Borzemski and
Starczewski [61]. So, there is a group of relevant TCP parameters, which are
related to the NQP as described in multiple papers [43], [60]–[66] .

Considering the prediction of mobile networks, of course there is also a
bunch of e.g. Long-Term Evolution (LTE) parameters, which can be separated
into two groups. First, the parameters measured on client-side, like the Ref-
erence Signal Strength Indicator (RSSI), Reference Signal Receiving Power
(RSRP), Reference Signal Received Quality (RSRQ), Signal-to-Interference-
plus-Noise Ratio (SINR), Absolute Radio Frequency Channel Number (AR-
FCN), Cell ID or the operator of the mobile network and secondly the param-
eters on network operator side. The first set of parameters is widely used and
helps to describe the connection quality on physical layer. Their influence on
the prediction is shown e.g. by Samba, Busnel, Blanc, et al. [67]. They have
also investigated the impact of the second group of LTE parameters, which
includes the distance to the cell tower, average cell TP and the average num-
ber of users in the cell. This type of parameters is more difficult to measure,
as it can only be done by a network operator. Furthermore, there is no pub-
licly accessible dataset containing this type of parameter. So up to now, these
parameters are only used by Samba, Busnel, Blanc, et al. [33], [67].

The influence of these LTE parameters can be explained by the processes
within the network. These include on the one hand the modulation of the
sent data, which is done via Quadrature Amplitude Modulation, which yields
a higher SINR. So depending on the SINR, different data rates within a given
bandwidth can be achieved [68]. This bandwidth is given by the used LTE
band, which specifies the transfer frequencies. Therefore, the ARFCN helps
to determine the given bandwidth. Obviously, this must be divided between
the connected devices, but no client side parameter can be used for this. For
this purpose the cell tower parameters used by Samba, Busnel, Blanc, et al.
are required.

On the other hand, the forecast of a cell change is also necessary, especially
for LP. Also this decision is made on network side. It is based on measure-
ment reports coming form the mobile network devices. The measurements
contain parameters like RSRP and RSRQ of the current and neighbouring
cells, as shown in [69]. A detailed introduction to the LTE handover proce-
dures is given by Agrawal, Mor, keller, et al. [70].

In order to compensate this lack of information from the network opera-
tor side, there are other parameters used e.g. the location, which can repre-
sent the distance to the cell tower. Since the use of the mobile network also
depends on the time of day, this parameter is also applied [61]. A further
feature is the velocity of the mobile device. It is used in various approaches
[33], [67], [71], [72]. Its impact is discussed by Mirza, Springborn, Banerjee,
et al. [73] and Yao, Kanhere, and Hassan [74]. On the other hand, Li, Xu,
Wang, et al. [75] show in their study of using TCP in high-speed trains that in
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scenarios with a speed less than 150 km/h, the velocity has only small impact
on loss rate and RTT, compared to high-speed scenarios with a speed of more
than 280 km/h. This is also supported by Merz, Wenger, Scanferla, et al. [76],
which is analysing the performance of LTE connections up to 200 km/h.

A summary of all features used in state of the art prediction approaches
is given in the following Table 2.1:

TABLE 2.1: A summary of network quality features used in previous works,
grouped by the category of the parameter.

Group Feature Description

TC
P

RTT

The Round-Trip Time is the timespan between the
sending of a message and the receiving of the answer.
It is used in many TCP measurements as a substitute
for the LA, since it is much easier to capture. Two
methods how to measure the RTT are illustrated in
Figure 2.3.

TP Throughput is defined as the amount of data sent in a
specific time frame.

TD
The Triple-Duplicate ACK Time is the timespan be-
tween two triple-duplicate answer events, as shown
in Figure 2.1.

TO

TCP Retransmission Timeout Period is the time de-
fined as timeout period. Since it is double after every
timeout event, it indicates the timeout loss and RTT of
a TCP connection.

Loss Rate
The Loss Rate is defined as the ratio between the
sent messages that are received correctly and the ones,
which got lost during transmission.

congestion win-
dow size (W)

The Window Size is a parameter used by the CC. It
describes the number of messages sent until a cumu-
lative answer is required.

LT
E-

C
lie

nt

RSSI
The Reference Signal Strength Indicator is the average
total received power. This signal also includes thermal
noise and noise that occurs in the receiver.

RSRP

The Reference Signal Receiving Power describes the
linear average power of a resource element that carries
cell specific reference signals. With the RSRP, it serves
as an indicator for comparing the signal strength of
different cells. Hence, it is one criterion for handover
decisions to another cell.

RSRQ

The Reference Signal Received Quality is the ratio of
the RSRP and the RSSI. So, it indicates the actual sig-
nal strength. The higher the value, the better the sig-
nal in a cell. In addition, this parameter is used as a
criterion for the cell handover decisions.

Operator The operator used for the mobile network connection.
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Cell ID Unique identifier for the mobile cell. It helps to local-
ize the transceiver station within a local area.

SINR The Signal-to-Interference-plus-Noise Ratio is the ra-
tio between the signal and the interference plus noise.

ARFCN

The Absolute Radio Frequency Channel Number (AR-
FCN) is ac code for the used frequency. Since the fre-
quency band has an high impact of the physical trans-
mission. It is also imported to predict the NQPs.

LT
E-

N
et

-
w

or
k Distance to Cell Distance between the mobile network device and the

cell tower.
Average Cell TP The average network traffic of the whole cell.
Number of
Users The number of users in a cell.

O
th

er

Location The location of the mobile network device, normally
measured via Global Positioning System (GPS).

In- / Outdoor A flag that indicates if the measurement is done in-
door or outdoor.

Speed The speed of a moving mobile network client. Typi-
cally measured via GPS.

Time of Day The time of the measurement.

2.3 Models for Network Quality Prediction

As both the objectives and the possible input data for predicting network
quality have been mentioned above, this section describes the models ap-
plied for wired and wireless data transmission scenarios. It starts with a
taxonomy, which gives an outline of the methods used for network quality
prediction. Followed by a detailed explanation of relevant algorithms e.g.
SVR, FNN, RNN and grid based LS. This section concludes with a compari-
son between location and time based approaches.

Overview of the Prediction Models

Since there is a large number of different prediction models as listed in Ap-
pendix A, a taxonomy is provided by Schmid, Höß, and Schuller [77] and
shown in Figure 2.4 distinguishing five groups. The first group are Equa-
tion Based (EB) models, which are using mathematical equations to describe
the transmission of TCP flows as a function of network parameters including
RTT and the probability that a message gets lost. These approaches do not
require a lot of computing power and can therefore be implemented on light-
weight units. One drawback of these models is their limitation to certain sce-
narios [66], which leads to the fact that these models can be outperformed by
approaches using past data samples, especially for lossy paths [43].
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Prediction models

Time smoothing

Equation-
based
(EB)

Mean-
based
(MB)

Time
series

models
(TSM)

Learning-
based
(LB)

Location
smooth-
ing (LS)

FIGURE 2.4: A holistic taxonomy of commonly used prediction models. Includ-
ing state-of-the-art learning based and location smoothing approaches, used in
this thesis and marked in orange. This figure is adopted from pre-published re-

sults [77].

One way for improvement is shown by He, Dovrolis, and Ammar [43],
who are using MB models, e.g. moving average, to improve the accuracy es-
pecially in lossy paths. Another MB technique called Exponentially Weighted
Moving Average (EWMA) was published by Lakhina, Crovella, and Diot
[78]. He, Dovrolis, and Ammar also highlight the fact that the network pa-
rameters e.g. RTT and loss probability, can differ significantly before and dur-
ing the data transfer. This may be one of the reasons why all other models
applied in wireless scenarios are using previously recorded data for model
building. One group of these models are TSM. These algorithms are used
to analyse discrete time-oriented data. The forecast of future values is done
based on previously recorded data, which were used to train the model. In
order to distinguish between LB and classical time series models like Au-
toregressive Model or Moving Average, in this thesis these are called TSM
following [77]. Since the TSM approaches are capable of providing predic-
tions when the knowledge of preview connections should be considered,
they are even used for prediction in wireless data transfer scenarios. In order
to use such models, the data have to fulfil two characteristics. At first, the
data points have to be recorded or preprocessed in regular time intervals of
the same length. At second, the time series needs to be stationary, which de-
scribes their statistical property in time. According to Montgomery, Jennings,
and Kulahci in [79] the property is fulfilled if:

1. The probability values of the Time Series (TS) do not depend on the
time.

2. The auto-covariance function defined as Cov(yt, yt−k) only depends on
k and not on time.

To test the stationary of a TS, one method is the Dickey-Fuller test pro-
posed in [80] by Dickey and Fuller. An analysis done by Yoshida, Satoda,
and Murase in [81] on data recorded from High Speed Packet Access, LTE
and Wi-Fi traces in different locations in Tokyo showed that the ratio of sta-
tionary to non-stationary parts in a TS is depending on the used technology.
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But all measurements contain both, stationary and non-stationary TS parts,
which is one reason for the inaccuracy of TSM. So, newer works using TS
approaches are focusing more on LB algorithms, which can be seen as mod-
els, allowing a computing unit to learn from data. In general, LB techniques
can be used for a variety of problems, from clustering data samples to clas-
sification, regression and many more [82] and as shown by Zhang, Patras,
and Haddadi [83]. They are also frequently used in the context of mobile
networks.

The regression is most relevant for NQP prediction, which is why it is also
explained in more detail in the Sections 2.3.1 and 2.3.2. Another approach
to predict the data connection quality is the use of LS methods. The main
difference between the other groups of models and LS models is that these
algorithms are location based instead of time based. So, the prediction of a
value is related on the location of the device. The analysis of these models can
also be traced back to a study done by Yao, Kanhere, and Hassan [74], which
indicates the effects of the location. The authors call this Past Tells More Than
Present, which means that according to them the past measurements of the
same location have higher impact than the sample of the current (present)
measurement. One method using a simple grid for LS, is investigated in
more detail in Section 2.3.4.

Scenarios for Network Quality Prediction

Static Wired 

Scenario (S1)
Stationary Mobile 

Network Scenario (S2)

Dynamic Mobile 

Network Scenario (S3)

FIGURE 2.5: The three different scenarios, described by Schmid, Höß, and
Schuller [77], in which network quality prediction is used. S1 describes a wired
client to server connection. The other two (S2 and S3) are establishing a connec-
tion via mobile network. S2 is showing a client used only at one location. On
top of S2, in S3 the client is moving. This figure is adopted from pre-published

results [77]

As mentioned in the introduction, there are several scenarios in which
NQP prediction is used. They can be summarised in three main categories.
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The first is a static wired client to Internet scenario called Static Wired Sce-
nario (S1). It describes the connection of a client to a server via cable. In this
scenario, the dynamic of the low level parameters is low and the setup can
be clearly described by simulation environments [84]. There are even exist-
ing test pads, which can be used to collect data. Scenario Stationary Mobile
Network Scenario (S2) describes a static client to server connection, which is
established via mobile network services like LTE. Although the client does
not move, the NQP fluctuate more in this scenario than in S1 [85], [86], espe-
cially with a higher number of users. On the other hand, there are no effects
from moving and cell hand-over, etc. In the Dynamic Mobile Network Sce-
nario (S3), the client is connected via mobile network to the server, but since
the client is typically inside a vehicle, it is moving most of the time. The main
issue, why S2 and S3 are distinguished is that measurements performed by
Mirza, Springborn, Banerjee, et al. in [73] have highlighted the impact of the
moving of wireless connections. Therefore, also other works, e.g. done by
Wei, Kanai, Kawakami, et al. [31] or by Yue, Jin, Suh, et al. [87] are separating
between S2 and S3. An illustration describing the three scenarios, is shown
in Figure 2.5.

This thesis is focusing on S3, since the results will be used to improve the
communication between an automated vehicle, which is of course a moving
mobile network client, and a server. The literature research on already pub-
lished works illustrates that only LB and LS methods are used for prediction
in S3. Therefore, one aim of this thesis is a comparison of both categories, as
well as the improving the LB models. But first, the methods applied in this
work are described in the following.

2.3.1 Support Vector Regression

Even if the concept of SVRs is not new [88], it is still used e.g. in the domain
of TPP as presented by Wei, Kawakami, Kanai, et al. [89]. Apart from this,
also Schmid, Schneider, Höß, et al. [90] compare different learning algorithms
e.g. Random Forests, Linear Regression and SVRs and come to the conclusion
that SVRs are worth to be considered. Therefore, this thesis presents a predic-
tion using SVRs in order to compare results with other prediction methods.
The following section is describing the concept of the Linear SVR algorithm.

Basic Concept

Assuming, there are N samples of data points (~x1, y1) . . . ( ~xN, yN), each con-
taining multiple inputs features (i), as expanded in Table 2.1. A sample is
given by ~xn = (i1,n . . . il,n) with l input features and yn, which is the corre-
sponding prediction result. The input space X is then given by X = Rl. In
ε-SV regression as described by Vapnik in [91], the goal is to find a function f
with a maximum deviation of ε from yn for all xn with n ∈ N and at the same
time f should be as flat as possible. This means that all errors smaller then ε
are ignored. This may be accepted if a certain quality of the results should be
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achieved. To keep things simple, f is described as linear function of the form

f (x) = 〈w, x〉+ b with w, x ∈ X, b ∈ R. (2.2)

where 〈·, ·〉 is the dot product in X. To provide flatness, it is necessary to
seek for a small value of w. One way to ensure this is to minimize the norm
i.e. ||w||2 = 〈w, w〉. This can also be represented as a complex optimization
problem:

minimize
1
2
||w||2 (2.3)

subject to

{
yn − 〈w, xn〉 − b ≤ ε

〈w, xn〉+ b− yn ≤ ε
(2.4)

This requires that a function f exists, which approximates all pairs (~xn, yn)
with ε precision. If this is not the case, it is possible to use the slack variables
ξn, ξ∗n to avoid impossible limitations of the optimization problem (2.4). This
leads to the formulation given in [91]:

minimize
1
2
||w||2 + C

N

∑
n=1

(ξn + ξ∗n) (2.5)

subject to


yn − 〈w, xn〉 − b ≤ ε + ξn

〈w, xn〉+ b− yn ≤ ε + ξ∗n
ξn, ξ∗n ≥ 0

(2.6)

Where the constant C > 0 represents the compromise between the flatness
of the function f and the predication errors bigger than ε. It turns out that
in most cases the optimization problem (2.6) can be solved more easily in
its dual formulation. Therefore, the dual form is derived using Lagrange
multipliers. It can be formulated as:

maximize


−1

2

N

∑
i,j=1

(αi − α∗i )(αj − α∗j )〈xi, xj〉

−ε
N

∑
i=1

(αi + α∗i ) +
N

∑
i=1

yi(αi − α∗i )

(2.7)

subject to
N

∑
i=1

(αi − α∗i ) = 0 and αi, α∗i ∈ [0, C] (2.8)

The Karush-Kuhn-Tucker conditions [92], [93] can also be used to compute
b. For more details see [94]. Using (2.8), equation (2.2) can be rewritten as
follows:

f (x) =
N

∑
i=1

(αi − α∗i )〈xi, x〉+ b. (2.9)
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Kernels

Up to now, the described support vector algorithm is linear. But in order
to support also non-linear behaviour, the model must be modified. One
way to achieve this is by mapping the training data (~x1 . . .~xN) into a high
dimensional feature space Φ : X → F as described by Aiserman, Braver-
man, and Rozonoer [95] and Nilsson [96]. In a case with two input features
(~xn = ( f1, f2)), this can be done e.g. by mapping it into a three dimensional
space R3 using the following function Φ( f1, f2) = ( f 2

1 ,
√

2 f1 f2, f 2
2 ). Although

this approach seems reasonable, it can easily become infeasible if either poly-
nomial features of higher order or higher dimensionality become necessary.
To solve this problem, a so called kernel function K has to be introduced [94].
The functions are based on the fact that linear SVRs only depend on the dot
products between patterns. So the equation (2.9) can be written as

f (x) =
N

∑
i=1

(αi − α∗i )K(xi, x) + b. (2.10)

There are multiple kernels starting from the simple linear one (K(xi, x) =
〈xi, x〉) up to more complex ones. The most commonly used kernels are:

• Polynomial kernel [97]: K(xi, x) = 〈xi, x〉d with d ∈N

• Radial basis function kernel [98] : K(xi, x) = exp
(
− ||xi−x||2

2σ2

)
Although the kernels already allow the prediction of more complex rela-

tionships between inputs and outputs, even these SVRs are still very limited
in terms of complexity. In contrast, other LB techniques, like so-called Arti-
ficial Neural Networks (ANNs), offer the possibility to detect more complex
relationships between data. Therefore, they are very interesting for TPP, as
shown in the following.

2.3.2 Feedforward Neural Network

ANNs are very popular in research at the moment. They are also frequently
used for regression tasks [99] as well as for related tasks like dynamic band-
width allocation [25], so it is hardly surprising that in the area of TPP, they
have also been investigated and used for comparison as shown by Borzemski
and Starczewski [61]. In this work, two main classes of ANNs are presented,
namely Feedforward Neural Networks (FNNs) and Recurrent Neural Net-
works (RNNs). In FNNs, the input values are passed through the network
from the input to the output units in a directed acyclic graph. These net-
works are also called static networks [100]. FNNs are able to approximate
any function from one finite-dimensional space as long as there are enough
hidden neurons available [101]. However, RNNs are dynamic networks with
a cyclic connection path, which acts as memory element for solving time re-
lated problems.
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FIGURE 2.6: Illustration of a simple Feedforward Neural Network (FNN) with
one hidden layer, four inputs and two outputs. Each circle describes a sim-
ple neuron used in feed forward networks. The figure is adopted from pre-

published results [77]
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FIGURE 2.7: Commonly used forms of non-linear activation functions [102] in-
cluded in the neurons of Artificial Neural Networks (ANNs).

In accord with there name, ANNs are networks of so-called neurons. A
neuron is a binary unit that computes a weighted sum. This sum is passed
to the activation function that calculates the output of the unit. Figure 2.6
illustrates the structure for a single neuron. In a more formulaic way a neuron
can be described as

yj = f

(
N

∑
i=1

wi,j × xi + b

)
. (2.11)

Where wi,j, b, xi and yi are the weights, bias, inputs and output respectively
and f is a non-linear function [102], which is also called activation function
and described in the following. The index i iterates over all connections or
inputs with xi being the input value on position i, j is corresponding to the
jth neuronal cell on the actual layer. Consequently, the weight wi,j describes
the relation between the input xi and the actual cell with the output yj .

For the activation function, various non-linear functions are used to in-
troduce non-linearity into an ANN. A selection of them is shown in Figure
2.7. This includes both historically conventional non-linear functions like the
Sigmoid or hyperbolic tangent as well as the Rectified Linear Unit (ReLU),



2.3. Models for Network Quality Prediction 21

which has become particularly popular in recent years. The ReLU func-
tion combines fast training with simplicity. Therefore, different variations
of ReLU, such as leaky ReLU [103], parametric ReLU [104], and exponential
linear unit [105] have also been explored in order to improve the ANNs.

Like other machine learning algorithms, the FNNs must be trained to per-
form their given task. This process does not change the basic structure, such
as the number of neurons or layers. However, the process includes determin-
ing the value of the weights and the biases of the individual neurons, which is
called network training or fitting of the network. Once trained, the network
can do its job by calculating the output of the network using the weights
determined during the training process. Running the network with these
weights on new input data is called inference. The goal for the formation of
an ANN for regression is to determine the weights in such a way that the cal-
culated output reaches the ideal output value as close as possible. Therefore,
a dataset of known input and output values is used, such a learning algo-
rithm is called supervised learning. The gap between the ideal correct results
and the results calculated by ANN based on its current weights is called loss
l. The goal of training ANNs is to find a set of weights that minimizes the
average loss over a large training set. When a network is trained, the weights
(wi,j) are usually updated using an optimization process called gradient de-
scent [106]. A multiple of the gradient of the loss relative to each weight,
which is the partial derivative of the loss with respect to the weight, is used
to update the weight. This gradient indicates how the weights should change
to reduce the loss. In order to reduce the overall loss, this process is repeated
iteratively. So, the update of a weight wi,j for the next iteration (t + 1), wt+1

i,j
is given by

wt+1
i,j = wt

i,j − α
∂L

∂wt
i,j

, (2.12)

where α is called the learning rate and L is the loss function, which can also be
written in the form L(wi,j) = ∑N

k=1 Lk(wi,j). To compute the gradient of L(w),
the gradient of the k partial loss function can be computed [107]. In this case,
k is a subsequent sum over all training data samples. Such a subsequence of
training data samples is called mini-batch. The most common possibility to
compute this gradient of the loss function is called backpropagation and a
detailed discription is given by Dreyfus [108]. To simplify things during the
explanation of the algorithm, some redefinitions are made. Therefore, the
output of a neuron (described in Equation (2.11)) is redefined as yj = f (vj),
with vj being the weighted sum of the inputs xi, in which the value of input
xi is weighted by the parameter wi,j. Backpropagation consists mainly in a
repeated application of the rule of chained derivatives. In addition, it can be
notified that the partial loss function of wi,j only depends on the value of the
output of the neuron. It can be written as(

∂Lk

∂wi,j

)
k

=

(
∂Lk

∂vj

)
k

(
∂vj

∂wi,j

)
k

= δk
i xk

i , (2.13)
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with k being the mini-batch. Since xi as the value of input i for the neuron j
is given, only δk

i needs to be calculated by the form δk
i =

(
∂Lk

∂vj

)
k
. This shows

that δk
i depends in particular on the chosen loss function. To summarize,

according to Dreyfus [108], for each mini-batch k the backpropagation algo-
rithm for computing the gradient of the loss function is performed in two
steps:

1. A propagation phase, in which the inputs of the mini-batch k given into
the network, and the potentials as well as the outputs of all neurons are
calculated.

2. A backpropagation phase, where all δk
i are computed.

According to equation (2.12), calculating the gradient of the loss function
is only one step in the training process. Another step is the choice of the
learning rate α. On the one hand, if the learning rate is too small, the loss
function decreases very slowly. On the other hand, if the rate is too high, the
loss may increase or oscillate around the optimum [108]. An improvement
on this issue is the use of gradient descent optimization algorithms. Since
the goal of the loss function is to update both the weights wi,j and the biases
bj using the learning rate α, in the following, weights and biases are called
parameters (p) and treated equally. Some of these algorithms also face the
problem that applying the same learning rate to all parameters, even though
their inputs may have very different frequencies, may not be the best option.

An algorithm for gradient-based optimization that addresses these issues
is called Adagrad [109]. It adjusts the learning rate to the parameters and
performs small updates for parameters associated with frequently occurring
inputs and larger updates for inputs associated with rarely occurring vari-
ables. Instead of using the same learning rate α for all parameters, Adagrad
uses a different learning rate for every parameter pk at every time step t ∈ T.
So, other than in equation (2.12), the parameter for the next time step (pt+1

k )
is calculated in the following form:

pt+1
k = pt

k −
α√

Gt
k,k + ε

· ∂L
∂pt

k
(2.14)

With Gt as a diagonal matrix having each diagonal element k, k as the sum of
the squares of the gradients up to time step t, and ε is a smoothing term in
order to avoid division by zero [109].

Another method that computes adaptive learning rates for each param-
eter is the Adaptive Moment Estimation (Adam) [110] algorithm. It stores
an exponentially decaying average of past squared gradients vt. In addition,
it also uses an exponentially decaying average of past gradients mt. Both
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variables are described in the following way:

mt = β1mt−1 + (1− β1)
∂L
∂pt (2.15)

vt = β2vt−1 + (1− β2)

(
∂L
∂pt

)2

(2.16)

The constants β1 and β2 should be chosen close to 1 , in order to keep the
decay rates small, vt and mt are corrected the following way:

m̂t =
mt

1− βt
1

and v̂t =
vt

1− βt
2

, (2.17)

with the term βt, is giving a time step dependent to the constants by applying
to power of t. The parameter update rule can than be written as

pt+1
k = pt

k −
α√

v̂t + ε
· m̂t. (2.18)

A more detail explanation including Adadelta, RMSprop, AdaMax and Nadam
[113] can be found in on overview provided by Ruder [114].

2.3.3 Recurrent Neural Network

Although FNNs have a lot of advantages, they are limited to static regression
tasks. This means, they are restricted to providing a static mapping between
input and output. For modelling time prediction tasks, however, a so-called
dynamic regression, which takes not only a current input, but also a kind of
state or previous inputs into account, could be worth considering [115]. To
achieve this, FNNs can be extended in the direction of dynamic classification.
For this, signals from earlier time steps must be returned to the network as
inputs. These networks with recurring connections are called RNNs[116],
[117].

Input layer Hidden layer Output layer

C
onntextcells

FIGURE 2.8: Illustration of a Elman network [118], a simple Recurrent Neural
Network (RNN) using context cells as memory. This context cells are marked in

orange.
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According to Staudemeyer and Morris [115] RNNs are dynamic systems
that have an internal state at each time step. This is achieved due to circu-
lar connections between different neurons in a layer, as well as additional
optional self-feedback connections. Such feedback connections enable the
RNNs to take the information from previous time steps into account, when
calculating the current one. This can also be seen as memory of the previ-
ous time series. One simple method to build an RNN is the Elman network
[118]. Its structure is similar to an FNN shown in Figure 2.6 but the outputs
of the hidden layer neurons are additionally stored in context cells. These
context cells have an output which is fed back as input for the hidden layer.
Such an Elman network is trained using the same algorithms as used for
FNN with the output of the context cells as additional inputs. The struc-
ture of an Elman network is illustrated in Figure 2.8. Another form of RNNs
are fully connected ones, which have self-feedback loops as well as loops
between neurons. In general, RNNs need to be trained differently to FNNs,
since they require to provide information about the recurring connections be-
tween time steps. The most common learning algorithms for the training of
RNNs are Backpropagation Through Time (BTT) [116], [117] and Real-Time
Recurrent Learning (RTRL) [117], [119]. To give a better understanding of
training RNNs, these two methods are described in the following:

RNN hidden layer:
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(a) The diagram
of a layer with
two Recurrent
Neural Network
(RNN) cells
connected to
each other and
themselves.
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(b) The coresponding unfolded Feedforward Neural Network (FNN)
to the Recurrent Neural Network (RNN) shown in 2.9(a). Thereby, one
layer for each time step is generated.

FIGURE 2.9: Visualisation of a simple Recurrent Neural Network (RNN) that is
unfolded in time for training. Based on the work of Staudemeyer and Morris
[115]. This allows the use of training algorithms developed for Feedforward

Neural Networks (FNNs) to train Recurrent Neural Networks (RNNs).

Starting with BTT, the basic idea of this algorithm, as explained by Staude-
meyer and Morris [115], is to unfold the network in time to construct an FNN.
This is possible, because for a limited time span, there is an FNN with identi-
cal behaviour for each RNN. To create it, the RNN must be unfolded in time.
A simplified virtualisation of this process is explained in Figure 2.9, where
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a simple RNN illustrated in Figure 2.9(a) is unfolded to the corresponding
FNN. As shown in Figure 2.9(b), it contains one layer for each time step, hav-
ing the same weights for all layers. If these weights are identical with those
of the RNN, both networks will show the same behaviour. The deployed net-
work can be trained with the backpropagation algorithm described in Section
2.3.2. To do so, the network is unfolded in time at the end of a training se-
quence. Then, the error for the output is calculated using the loss function.
This error is injected backwards into the network and the weight updates
are calculated for each time step. The weights of the recurring network are
updated with the sum of all weight updates from the unfolded network.

In contrast to the BTT algorithm, the RTRL algorithm does not require
error propagation, since all the information needed to calculate the gradient
is already collected when the network receives the input data. Therefore, no
special training step is necessary. However, the algorithm is associated with
higher computing costs per update cycle, although the required memory de-
pends only on the size of the network and not on the size of the input. Unlike
BTT, RTRL assumes the existence of a predicted output at each time step for
each hidden and output neuron, so that the training goal is to minimize the
overall error of the network.

RNNs have a lot of advantages and their training, as shown above, is fea-
sible. But they suffer from the problem that standard RNNs cannot bridge
more than 5–10 time steps [120].Due to the fact that backward error signals
either expand or shrink with each time step, this means that over many time
steps the error either blows up or vanishes [121], [122]. Blown up error sig-
nals lead to oscillating weights. While with a vanishing error, learning takes
an unacceptable amount of time or does not work at all. This effect is called
the vanishing gradient problem [123].

A solution to this problem is a method called Long Short-Term Mem-
ory (LSTM) published by Hochreiter and Schmidhuber [122], [124] and Gers,
Schmidhuber, and Cummins [120], [125]. LSTM cells can learn to cover min-
imal time delays of more than 1 000 discrete time steps. The solution is to use
Constant Error Carousels (CECs) [124], which ensures a constant error flow
within particular cells. The cells are managed by gate units, deciding to what
extent access is granted. This error correction is called CEC and is the main
feature of LSTMs. It allows the short-term memory to be stored over longer
periods of time.

However, an LSTM unit is not only connected to itself, but also to other
neurons of the network [115]. Therefore, these additional weighted inputs
and outputs must be considered as well. These connections can have con-
flicting weight update signals because the weight is controlling both storing
and ignoring of inputs. Furthermore, the same weights are used to track or
ignore the content of the cell. To solve the problem of conflicting weight up-
dates, LSTM extends the CEC by providing input and output gates. These
gates are connected to the network input layer as well as to other memory
cells. The result is a more complex LSTM unit called memory block. The in-
put gate contains a simple activation function in range [0, 1] and controls the
signals from the network to the memory cell. For example, a value close to
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zero means that the gate is closed and the new inputs have a minor effect on
the memory block. The output gate has a similar task for the output of the
memory. It can therefore be shown that the basic function of gate units is to
either allow or deny access to a constant error flow through the CEC.

To train the LSTM memory block cells, the initial LSTM uses a combina-
tion of two learning algorithms: BTT to train network elements located after
the cells and RTRL to train network elements located before and inside the
cells.

According to Gers, Schraudolph, and Schmidhuber [125] LSTMs are par-
ticularly suitable for tasks where a limited amount of data has to be remem-
bered for a long time. This is explained by the use of memory blocks. Since
they provide access control, they can avoid irrelevant information getting
into the memory block. Memory blocks also have a forgetting gate that
weights the information within the cells. Thus, information that becomes
irrelevant can be forgotten, which allows a better prediction because they
can force the cells to completely forget their previous state in order to avoid
biasing the prediction [126].

A common variation of LSTM RNN is the so-called bidirectional LSTM
[127]–[129]. Unlike conventional RNNs, which analyse a number of data
points in one direction, Graves and Schmidhuber [127] describe a way to
analyse both the past and future of a data point with an LSTM RNN. Ab-
stractly, this means that the input is processed forward and backward in two
separate LSTM networks, which are both connected to the same output layer.
According to Graves and Schmidhuber, a full error gradient calculation is
carried out for the training. This simplifies the implementation of bidirec-
tional LSTM RNN and enables training using standard BTT [115].

An alternative to LSTM cells is the Gated Recurrent Unit (GRU) archi-
tecture proposed by Cho, Merrienboer, Gulcehre, et al. [130]. Jozefowicz,
Zaremba, and Sutskever [131] empirically proved that GRU outperforms LSTM
in almost all tasks. Unlike LSTM memory blocks, GRU units have no mem-
ory cell, but gating units such as the Reset Gate and Update Gate.

2.3.4 Grid Based Location Smoothing

Apart from models using previous data samples of a TS in order to predict
the next value, there is also a category of approaches, which assume that
the location of the measurements has a significant influence on the network
quality. Accordingly, they use the location as their main criterion for making
a prediction, which is why they are called LS methods in this thesis. These
LS methods can be separated mainly into two classes. One is using the train-
ing data to pre-calculate a model for a defined area like illustrated in Figure
2.10(a) and 2.10(b), this process is described in more detail later. The other
one is using the past measurements directly without preprocessing (see Fig-
ure 2.10(c)). This leads to the fact that all recorded data is needed, which
makes these techniques, in general, more demanding in terms of hardware,
especially memory. Another issue that should be considered is the fact that
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(a) Road segments of flex-
ible length, e.g. , segments
from a map provider.

(b) Grid based approach.
The area can be split by
building a simple grid.

(c) Nearest neighbour mea-
surements. This approach
calculates the prediction
based on relevant measure-
ments in the past.

FIGURE 2.10: Different types of geographic based models used for Network
Quality Parameter (NQP) prediction. The dark orange dot shows the point,
which should be predicted. The light orange areas and points indicate the ge-
ometries and data points used to calculate a prediction. The grey point are mea-
surements not included in the predication. This figure is adopted from pre-

published results [77]

these predictions are based on location and not on time. Accordingly, to pre-
dict the network quality of a moving vehicle, a prediction of the future posi-
tion is also included, which can be a challenging task on its own as shown by
Zhang, Liu, Liu, et al. [132].

But focusing on aggregated map, the main difference between them is the
way of segments building. One possibility used by Pögel and Wolf [34], as
well as by Kelch, Pogel, Wolf, et al. [133], is to take the segments defined
by the map provider. But this leads to segments, which are differing a lot
in length. So Pögel and Wolf defined an upper boundary to compensate
this fluctuation. Also there are segments e.g. at intersections that are much
shorter. To solve the problem of flexible segments, fixed length segments
500 m or 1000 m were introduced [29], [134], [135]. Of course, this is less flex-
ible, since a test track needs to be a multiple of this length. Apart from this, it
makes the approaches more comparable and avoids the issue of having only
a few data points per segment, which can lead to a calculated quality value
that is not representing the actual value of the road part. A suitable method
for the detection of this kind of risk is an entropy analysis, as proposed by
Yao, Kanhere, and Hassan [136] . Afterwards, the calculation of the network
quality parameters can be done either by building the mean and the standard
deviation as shown by Murtaza, Reinhardt, Hassan, et al. [134] or by using
another mean based prediction, which takes the newer samples into account
with a higher weight [29].

To reduce the additional costs of constructing segments, there are also
methods that are using more simple shapes for dividing the map. As such
an approach the grid based map can be mentioned [137], since techniques
like matching the raw position coordinate to a road segment, as shown by
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Quddus, Yotto Ochieng, Zhao, et al. [138], are not needed and the geometry
is very simple. The calculation of network quality parameters for each grid
cell needs less processing power. On the one side, grid based maps can be
built easily even for the whole world and on the other side, the cells define
a kind of boundary regarding the road part length. A further aspect is the
management of parallel road lines. A road segment based approach would
generate separate predictors for parallel lines. But with a grid, the same pre-
diction is made for these two segments if they are in the same cell of the
grid. A comparison of this different type of LS based approaches was done
by Schmid, Hess, Höß, et al. [52], coming to the conclusion that although the
models are very similar regarding their accuracy, the approaches using fixed
segment sizes are outperforming the others. However, since such fixed seg-
ment models are very hard to scale, in this thesis the grid based approach is
used.

In addition, there are also first models combining LS and LB methods,
as presented by Sliwa, Falkenberg, Liebig, et al. [25], where the authors are
using the aggregated values of grid cells as input features for their ANN.

2.3.5 Comparison of Location and Time Based Approaches

Another issue is the comparison of LB and LS prediction methods. In case LB
models are selected to predict the throughput of a moving client, the predic-
tion usually covers the estimation of the future position of the client, which
may be inaccurate if the model is only trained on known routes and evalu-
ated on other routes.The problem becomes even more visible, when LS pre-
diction is taken into consideration, since a location is required for the fore-
cast. One approach to overcome this problem is to assume that the path of
the client is known, as proposed in the work of Højgaard-Hansen, Madsen,
and Schwefel [139]. This may work reasonably well in a public transport
environment like trains. But for the use of passenger cars or walking pedes-
trians it may not lead to satisfactory results. Here, a suitable approach is to
look ahead or to cover whole predictions as done by Singh, Ott, and Curcio
[140]. Alternatively, the probability of a change of location can be estimated.
A comparison between a grid based map and different LB methods was pre-
sented by Schmid, Schneider, Höß, et al. [90]. Here the authors take the future
location as given, so the location prediction error in ignored, which proved
to be a good starting point. However, finding a suitable method for compar-
ing location and time based approaches covering all aspects is still an open
issue.

2.4 Evaluation Metrics

In this section, the evaluation metrics for measuring the regression perfor-
mance and the significance will be given a brief description. Since evalua-
tions are usually performed to measure the prediction accuracy of a trained
system, it is important to use a metric, which fits to the goals of the use-case
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in with the system should be used. This section will also provide an overview
of the metrics used in NQP prediction.

2.4.1 Performance Metrics for NQP Prediction

According to Botchkarev [141] performance evaluation is an important prob-
lem of all disciplines. Performance metrics are essential parts of the evalua-
tion in different areas. In machine learning regression and other prediction
tasks, performance metrics are used to compare the trained models by pre-
dicting actual data from the test dataset.

Since there is a large variety of error metrics, both in general and in re-
lation to QoS prediction, the goal of this section is to give an overview of
the used performance metrics and to cluster them. An approach described
by Botchkarev [141] is used for this purpose. In this performance metrics
framework, the author describes four different categories: Primary metrics,
extended metrics, composite metrics and hybrid sets of metrics. Since the last
two are not used in NQP prediction, the remaining of this section is focusing
on primary metrics and extended metrics.

Primary Metrics

Primary metrics are the most numerous category and include commonly
used metrics such as Mean Absolute Error (MAE) and Mean Square Error
(MSE). As shown in the next section, the structure of the primary metrics
consist of three steps: Calculating the point distance, performing normaliza-
tion and aggregation. As mentioned by Botchkarev [141], each step can be
performed in different ways. For the point distance, the following methods
are described by the author:

• Error (magnitude of error): D = z− ẑ

• Absolute error: D = |z− ẑ|

• Squared error: D = (z− ẑ)2

• Logarithmic quotient error: D = ln(ẑ/z)

• Absolute Log quotient error: D = | ln(ẑ/z)|

Where D is the point distance, z is the actual value and ẑ is the predicted
value. The second step, after calculating D is the normalization. The main
idea behind normalization is to build metrics that can be used to compare
various datasets with different sizes. Therefore one error value is for mutable
predication i ∈ N, with N as the size of the dataset.

This step is optional, as shown by MSE and other error metrics. Such nor-
malization is called unitary normalization. Possible normalization functions
( fN) according to Botchkarev are:

• Unitary normalization: fN = 1
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• Normalization by actuals: fN = z−c
i

• Normalization by variability of actuals: fN = (zi − z̄)−c

• Normalization by the sum of actuals and predicted values: fN = (zi +
ẑi)
−c

• Normalization by maximum (or minimum) value of actuals and pre-
dicted: fN = [max(zi, ẑi)]

−c

There z̄ is the mean value and c is the magnitude of error, thus c = 1 repre-
sents the absolute error and for the squared error c = 2. The aggregation of
the point distances over a dataset is usually the final step in the calculation
of the primary performance metric. While all aggregation functions can be
potentially used for this purpose, the most common ones are mean, median,
geometric mean and sum aggregation.

Extended Metrics

Apart from primary metrics, the other category of metrics used in this work
are extended metrics. These metrics are commonly based on the primary
metrics with additional normalization. The difference between primary met-
rics and extended metrics is that normalization is carried out after aggrega-
tion. An example for such a metrics is the Normalized Root Mean Square
Error (NRMSE), where a primary Root Mean Square Error (RMSE) is nor-
malized by the mean of actual data. This error is also known as coefficient of
variation of the RMSE [142], [143] and given by

RMSE =

√√√√ 1
n

 n

∑
i=0

(ẑi − zi)2

. (2.19)

This RMSE is then extended by the normalized of actual data in the follow-
ing way:

NRMSE =

√√√√ 1
n

∑n
i=0(ẑi − zi)2


1
n

∑n
i=0(zi)


. (2.20)

Used Metrics

Depending on the scenarios analysed, different performance metrics are cho-
sen with varying frequency. An overview of the taken metrics can be found
in Table A.1. A performance metric used in all scenarios is the RMSE. In
scenarios S3, which is the focus of this work, among others the NRMSE is
commonly used as performance metric. To compare with other approaches
also other metrics are used in this thesis. These include the MAE, Mean
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Relative Error as well as the square of it. Since this thesis is focusing on sce-
nario S3, the NRMSE is the main metric used for evaluation, in order to be
comparable with other works. In addition, this error is especially usefully to
compare different tracks, since it is normalized.

2.4.2 Significance Tests

In order to compare a novel prediction approach with other ones, a statistical
test procedure is needed [144]. When selecting this test procedure, it also
depends on how many algorithms are to be tested. If only two approaches
are compared, a simple pair test can be performed. This is due to the so-called
familywise error rate, as there is an accumulated error resulting from the
combination of pairwise comparisons. Therefore, a suitable test for multiple
comparisons together with a set of post-hoc procedures must be taken, to
benchmark a control algorithm against other algorithms (1×N comparisons)
or to perform all possible pairwise comparisons (N × N comparisons).

Pairwise Comparisons

One of the most commonly used statistic tests to determine a significant dif-
ference between two machine learning algorithms is the t-test. However, as
this test is a parametric test, certain conditions are necessary to apply it. That
means the input data must fit the requirements of independence, normality
and heteroskedasticity [145], [146]. One possibility to test the normal distri-
bution is the Anderson-Darling test, which is based on the cumulative dis-
tribution function (CDF) and performs especially well for small sample sizes
[147]. It is a modification of the Kolmogorov-Smirnov test and gives more
weight to the tails. Furthermore, it is one of the most powerful statistical
tools for detecting a wide range of deviations from normal.

Another possibility is the Shapiro-Wilk test [148], which calculates the W
statistics, it is the most common test of normality because of its good perfor-
mance characteristics compared to almost all other tests. But, since normality
and the other conditions are not fulfilled in the majority of experiments in
machine learning [149], [150], the Wilcoxon signed-ranks test [151] can also
be used as an alternative. It is a non-parametric test that is less powerful than
the t-test, but the conditions of the t-test do not need to be satisfied for it. Like
many other non-parametric tests, the distribution-free test is based on ranks
[152].

To perform the classic Wilcoxon signature rank test [151], the difference
between the error values of the two methods are calculated first. This is ex-
pressed as Di = Ai − Bi, i = 1, . . . , N, where N is the number of datasets
and A and B are the error values of the two models. In addition, the classical
Wilcoxon rank test assumes that the differences Di are independent of each
other and Di, i = 1, . . . , N comes from a continuous distribution, which is
symmetrical around a median θ. Furthermore, it is assumed that the sample
is free of zero differences, i.e. Di 6= 0, ∀i = 1, . . . , N. With N0 is the number
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of zero differences and M is the number of non-zero differences in the sam-
ple. From this follows N = N0 + M with N0 = 0 for the classical Wilcoxon
rank test. The null hypothesis specifies that H0 : θ = 0, i.e. the distribution
of differences is symmetrical about zero, which corresponds to no difference
between the two samples. The two-way alternative is H1 : θ 6= 0. Of course,
a one-sided alternative is also possible. Under these conditions the Wilcoxon
rank test, defined as R+ = ∑N

i=1 RiVi where Vi = 1Di>0, is the indicator for
the sign of the difference and Ri is the rank of |Di|. In simple terms, the test
statistic represents the sum of the positive signed ranks. Another possibility
is to build the test statistic of the sum of the negative signed ranks (R−) or of
the difference of both R = R+− R−. There is also a large-sample approxima-
tion, which is described by Hollander, Wolfe, and Chicken [153].

1 x N Comparisons

If a newly developed method should be compared with a range of existing
algorithms, or the best of a range of algorithms should be selected, pairwise
comparisons are not suitable [154]. In such a case, either the Friedman test
[155] or its more powerful derivative, the Iman and Davenport test [156],
should be performed.

The goal of the Friedman test [155] is to verify if there are significant
differences between the evaluated algorithms when considering the given
datasets. The test determines the ranks of the algorithms for each dataset,
where rj

i represents the rank of the j-th of K algorithms on the i-th of N
datasets. The Friedman test then compares the average ranks of the algo-
rithms, Rj =

1
N ∑i rj

i . Its null hypothesis says that all algorithms are equal
and therefore their ranks Rj should be equal. According to this hypothesis,
the Friedman statistics

χ2
F =

12N
K(K + 1)

[
K

∑
j

R2
j +

K(K + 1)2

4

]
(2.21)

is distributed with K − 1 degrees of freedom, having N > 10 and K > 5
[157]. Iman and Davenport [156] have shown that Friedman’s statistic is too
conservative, so they have produced better statistics

FF =
(N − 1)χ2

F
N(K− 1)χ2

F
, (2.22)

which is distributed according to the F distribution with K − 1 and (K −
1)(N − 1) degrees of freedom. The tests can only detect significant differ-
ences over the entire set of algorithms. Therefore, they are not able to make
any connections between the algorithms. If the null hypothesis of the equiv-
alence of the rankings is rejected by these tests, a post-hoc procedure can be
performed. Possible candidates are described in Rom [158], Finn [159] and
Li [160].
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In this thesis, 1 x N comparisons Friedman test [155] is used, in order to
prove that the errors of the prediction results are different. If this hypothesis
is confirmed, then pairwise comparisons using the Wilcoxon signature rank
test are performed in order to evaluate the prediction errors in more detail.

2.5 Test Tracks and Datasets

In this section, a presentation of the test tracks used for recording the datasets
of this work as well as an overview of the dataset are given. Basically, each
of the four test circles is described by a map, showing the route. In addition,
a textual explanation is given, highlighting the most important characteris-
tics. The datasets recorded on these tracks are summarized at the end of this
section in Table 2.2.

2.5.1 Test Tracks

The four testing areas for the NQP measurements are introduced in the fol-
lowing paragraphs. Each of them provides a description about the geograph-
ical environment, as well as the definition of explicit test points, which will be
used for detailed investigations in this work. The conditions and objectives
of the investigations vary for each of these proving grounds.

Opel Test Circuit in Dudenhofen (Rodgau) [161]

The first measurements were taken on the private test ground of the car man-
ufacturer Opel. It is located close to Dudenhofen (Rodgau) in Hessen. Since it
is a proving ground, it includes various types of test tracks, e.g. a high-speed
circuit and a handling track. The measurements for this thesis are all col-
lected on the long straight, illustrated in Figure 2.11. It is built to simulate a
motorway on- and off-ramp (test location straight) and must be driven clock-
wise in order to fulfil this purpose. The track consists of a straight, which is
approximately 1.4 km long as well as two turnarounds. One of these bends
around the skid pad, which is widely free of vegetation. The other, the steep
curve in the south-east part of the track is surrounded by a dense forest and
partially under ground. In order to avoid crashes in this part of the track a
traffic light is installed, to give the test driver the freedom to accelerate for
the long straight. The private test ground has the advantage that aside from
interval regulations, there are no other rules like speed limits to be respected
for this course. This track is the shortest in the dataset, one round takes only
about three minutes at an average speed of 80 km

h . Of course this can be highly
varied by adjusting the speed on the straight and back straight. Regarding
the mobile network connectivity, there is an LTE cell tower positioned within
the test area close to the centre, as shown in the figure. In addition, there
are no residents living nearby, as the next settlement Dudenhofen is approx-
imately 2.5 km away.
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FIGURE 2.11: Opel test circuit, long straight, in Dudenhofen (Rodgau), Hessen,
Germany. This course is approximately 4.3 km long and located in a closed test
area, which allows testing without influencing the traffic. It is also covered by a

LTE cell tower. The map is based on Open Street Map (OSM) [162] data.

Amberg

The second testing area is the main one used. It is located in the south of
Amberg in Bavaria and contains three road scenarios. Starting in the west
of Amberg and driven counter-clockwise, the first part is a motorway. Here,
the traffic flow is constant and most of this route leads through a forest. Al-
though there is no speed limit enforced by law in Germany, for the mea-
surements the advisory speed limit of 130 km

h is applied. The second part is
an interurban roads, which connect the motorway with the city of Amberg.
The maximum speed on this part is 100 km

h , restricted by speed limitation in
some sub parts. Since the roads direct through rural areas, they are mainly
surrounded by open meadows or farmlands. The last part of the track is an
urban road passing Amberg. Due to several traffic lights and road crossings,
the average speed is below the law enforced speed limit of 50 km

h . Addition-
ally, the population density and the traffic are higher compared to the other
two parts. Therefore, the mobile network is usually better developed to sat-
isfy the demands of the local population. All three part a nearly equidistant
and the track in about 27 km long in total.

Aschaffenburg to Dudenhofen

This test area is located between Aschaffenburg, Hessen, and the Opel test
center in Dudenhofen. It contains a similar road composition as the test area
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FIGURE 2.12: Test round in Amberg, Bavaria. It is about 27 km long and con-
tains motorway, suburban and urban roads. The main dataset for Throughput
Prediction (TPP) is collected on this track. The map is based on Open Street Map

(OSM) [162] data.

in Amberg, since it incorporates motorway, interurban and urban parts. Ad-
ditionally, there are also areas within this round where LTE is not available.
Data collected in this area should not be used as input data for designing
prediction models, but should instead be used as real-world validation data
for the TPP models. Hence, there is no particular specification for a round,
only the most common routes are added as an overlay to the map in Figure
2.13. For this test ground, no explicit test locations are defined.

Paulsdorf to Trisching

The last area is located between two small villages near by Amberg, namely
Paulsdorf and Trisching. It is about 9 km long and contains manly a sec-
ondary road called ST2040. This track is clearly located in a rural area. There-
fore, it is mostly surrounded by open meadows, farmlands and forests. The
focus of this area is on the validation of the prediction models, especially
those for LP. Another feature of the course is the mobile network coverage,
which is not available along the entire track[163].

2.5.2 Overview of Datasets

This section provides an overview of the collected data and their use in this
thesis. It also illustrates the amount of data points as well as the driven kilo-
metres for measuring the data.
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FIGURE 2.13: Test area between Aschaffenburg and Dudenhofen, Hessen. This
test track is used for location independent testing of the TPP. It contains motor-
way, suburban and urban roads. There is no model training performed on this

track. The map is based on Open Street Map (OSM) [162] data.

FIGURE 2.14: Test track between the villages Paulsdorf and Trisching near by
Amberg, Bavaria. The map is based on Open Street Map (OSM) [162] data.
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Table 2.2 provides a summary of the datasets used for TPP. The samples
were captured in the course of the year 2018. The table shows the name of the
dataset as well as the data of measurement. For each day the number of raw
data points, driven rounds, distance as well as standard deviation and the
arithmetic mean of the TP for the download are calculated. All these values
are built on raw data, just removing the pausing times to enable the charac-
teristics to be observed. However, it is important to note, the rounds and the
distance correspond to the measured but not the physically driven rounds,
since multiple measurement kilometres are recorded during the same driven
kilometre. Since due to the usage of multiple measurement setups, some data
was recorded simultaneously. This is valuable in terms of data verification on
the one hand, and on the other hand, it lowers the variety of data in compar-
ison to collecting the same amount with only one setup over a longer period
of time. Looking on the standard deviations, it can be seen that the through-
put is very fluctuating. Sometimes the standard deviation even exceeds the
mean. This underlines how challenging the prediction is. As an addition, for
the Aschaffenburg track it should be mentioned that the term ROUND should
not be understood literally. In this case the term trip is more precise.

TABLE 2.2: Datasets for the Throughput Prediction (TPP). The samples are
recorded on the test tracks and listed by area. All measurements are summa-

rized per measurement day.

Dataset Dates
Data

points Rounds Distance
(km)

Mean
(kb/s)

STD

A
m

be
rg

(s
ee

F.
2.

12
)

03.04.2018 57512 10 271.38 1367.89 1017
04.04.2018 27394 5 136.55 1387.82 912
05.04.2018 127593 24 654.16 1162.62 957
22.06.2018 138584 27 661.43 1277.41 1040

351083 66 1723.51 1262.70 993

A
sc

ha
ff

en
bu

rg
(s

ee
F.

2.
13

)

04.06.2018 (Mon) 22865 3 58.38 610.95 674
05.06.2018 (Tue) 18589 4 93.54 957.77 810
06.06.2018 14475 3 50.21 1127.15 1207
04.07.2018 9442 2 45.51 1039.32 868
21.08.2018 (Tue) 23914 5 99.84 1047.96 1012
22.08.2018 (Wed) 4694 1 17.31 1085.98 1053

93979 18 364.79 973.52 907

Apart from the TP, also RTT data was collected. The collection time and
the improvement of the network, lead to a different mobile network cover-
age in some areas. So, only data recorded for the LP purpose is used. While
the test track for the training data is the same, the track taken for location in-
dependent validation is different to the Aschaffenburg round, taken for TPP.
Also for the RTT dataset, the standard deviation and the arithmetic mean of
the RTTs are calculated, showing a high arithmetic mean, especially for two
days on the Amberg track. In order analyse this, a cumulative distribution
function of the RTTs value recorded in Amberg is given in Figure 2.15. The
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TABLE 2.3: Datasets for the RTT. The samples are recorded on the test tracks
and listed by area. All measurements are summarized per measurement day.

Dataset Dates
Data

points Rounds Distance
(km)

Mean
(ms)

STD
A

m
be

rg
(s

ee
f.

2.
12

)
21.10.2019 (Mon) 4367 2 41.06 20.67 37.25
22.10.2019 (Tue) 25279 11 137.77 24.49 39.52
23.10.2019 (Wed) 36251 16 382.73 1513.80 49.82
24.10.2019 (Thu) 64492 25 519.07 772.27 43.71

130389 54 1080.63 965.14 44.38

Tr
is

ch
in

g
(s

ee
f.

2.
14

)

15.10.2019 (Tue) 2665 2 11.25 48.53 60.80
16.10.2019 (Wed) 8547 6 46.68 60.81 43.49
17.10.2019 (Thu) 12753 11 98.73 66.11 52.38
18.10.2019 (Fri) 4560 5 38.35 70.33 49.93

28525 24 195.02 64.02 50.11

dataset contains a minimum values of 23.6 ms and a maximum of 204.84 s.
An overview of the datasets used for LP is provided in Table 2.3.
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FIGURE 2.15: Cumulative Distribution Function (CDF) of the Amberg Round-
Trip Time (RTT) values, showing the low number of high RTTs.
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This chapter highlights the concept of the novel NQP prediction approach
studied in this work. After the description of the basic idea and an introduc-
tion, which location features should be used, a detailed description of how
these features are generated is provided.

3.1 Location Dependency of Network Quality

As mentioned in Section 2.3, for the prediction of the network quality, the
connection between a client and a server can be seen as a TS. This consent
is used for many years and in all scenarios. Looking in the connection be-
tween a moving mobile network client and a server, there are a number of
scientific publications [34], [74], [133] that highlight the relationship between
mobile network quality and location. This leads to the usage of LS methods
in order to predict the TP. To validate this relation, Figure 3.1 illustrates the
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FIGURE 3.1: Diagram of the Throughput (TP), of a randomly selected part of the
test circuit in Dudenhofen. The vertical dashed lines indicate the beginning of a

round.

throughput of a randomly selected recording of the test track in Dudenhofen
(see Figure 2.11). On the x-axis, a driving distance in meter is given. Since the
test circuit is only approximately 4.3 km long, the record visualises multiple

39
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rounds. In order to distinguish these laps, a vertical dashed line is drawn
into the diagram at the beginning of each round.
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FIGURE 3.2: Autocorrelation function with confidence interval (marked in or-
ange) of the Throughput (TP) shown in Figure 3.1. In addition to the autocorre-
lation function values, the vertical dashed lines indicate the beginning of a test

round.

Although a first visual impression of the TP diagram indicates a relation
to the location, an autocorrelation function was used in order to support this
statement. Therefore, the vales γk, k ∈N need to be calculated using

γk = Cov(yt, yt+k) = E[(yt − µ)(yt+k − µ)], (3.1)

with µ being the mean value of the TS.The results are illustrated in Figure 3.2.
The diagram indicates a significant relation between the two starting points,
which becomes even more clear if the measured TPs of a round are separated
into three classes with equal number of items and then drawn into the map
as done in Figure 3.3.

Previous location based methods used this correlation either by the con-
struction of so-called connectivity maps or by other geo methods for inter-
polation between locations. However, as both methods are based on geo
coordinates of previous measurements, they are not very flexible and can
only be used for locations where data has already been collected. In order
to overcome this disadvantage, the method presented in the following is not
based on the recorded coordinates of the measurement, but on properties of
the location, which can be acquired with the help of standard map data.

3.2 Environment Features for Network Quality

Prior to recording the relevant features based on the data of a map viewer,
the features need to be determined. The relevance of classical LTE low level
parameters like RSRQ, RSRP or Signal Noise Ratio has already been shown
[67]. However, this is not the case for the location-dependent ones. There
are publications, for example, that show a connection to cell change [34] or
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Low TP
Median TP
High TP

FIGURE 3.3: Throughputs (TPs) of a test round in Dudenhofen, separated into
three classes with equal number of items and then drawn into the map. It can be
seen that the Throughput (TP) has a correlation to the location as neighbouring
measurement points tend to be in the same class. The map is based on Open

Street Map (OSM) [162] data.

the velocity of the vehicle [67], [164]. But it is not possible to extract concrete
map attributes from these parameters.

A first approach to find relevant map features, is based on the fact that
LTE is a shared medium [165]. All users in a cell share the capacity of that
cell. Even if techniques like the Adaptive Slot Allocation [166] are applied
to handle the download resources on network side and try to distribute the
QoS as fairly as possible among all users, there is always the fact that the QoS
of a single user decreases as soon as the number of users in a cell increases.
In order to predict the network quality at a certain location, it is important to
know, how crowded this location is. One way of estimating this density is a
compilation of time and day of the week in combination with type of place.
This could either be the type of the street, or the usage of the land around
the position of the network client. For example, it is more likely that there
is a higher accumulation of mobile phone connections in a city centre during
business hours than for the same number of devices in a rural area. But also
the hour of the day and day of the week have an impact on the network
quality as presented by Cainey, Gill, Johnston, et al. in [167].

A second important property of the location is the distance to the con-
nected cell tower. In general, the SINR gets lower, with increasing distance
between client and tower [168]. Therefore, a map with the location of the cell
towers would be needed, but unfortunately this information is not provided
by the mobile network operators and community projects like OpenCellID
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[169] are not as accurate as needed, since the positions of the towers are es-
timated using user device measurements. An analysis of the position error
was also shown by Ulm, Widhalm, and Brändle [170]. But also the viabil-
ity of the cell tower (line of sight), has an impact to the TP, as discussed by
Berisha and Mecklenbrauker [171]. Since objects like high buildings or trees
can restrict this visual connection, such map attributes are also relevant.

In summary, it can be concluded that the following map properties may
have an impact on the mobile network quality:

• The number of buildings and their height, are likely to have an influ-
ence on the network quality. Their impact on the TP has already been
shown by Berisha and Mecklenbrauker.

• The type of the street (e.g. motorway, primary, etc.) could influence the
network quality. First, larger roads are more frequented and second
especially in Germany, there are regulations requiring these roads to be
enhanced with LTE [172].

• Another important indicator with a possible effect on the network qual-
ity is given by the number of people at a certain place. There are places
like retail areas, which are properly more crowded. In consequence,
the shared medium effect becomes more important [165]. And there
are e.g. large trees where the visibility of the cell tower is very unlikely,
so there is no line of sight [171].

In order to provide the information of these attributes for LB methods,
they have to be determined and associated for each measuring point. One
possibility of achieving this is described in the following section.

3.3 Generating Novel Features by Map Extraction

This section deals with the enrichment of the measurement by map related at-
tributes. For this purpose, the GPS coordinates of the measurement are used
to generate geo-based attributes with the help of a map data provider. One
of the most commonly used open data map provider is OSM [162]. OSM is a
community driven project in order to create and distribute geographic data.
The database of OSM consists basically of four different elements: point, line,
polygon and relation. Each element can have different tags that describe the
properties of the element. With the search for specific tags, it is possible to
find objects as well as their location or size.

A comfortable way to query the OSM database is to use a web-based ser-
vice called Overpass Application Programming Interface (API) [173]. Data
is requested via a user-defined overpass query language. While the OSM
API is designed and optimized for writing to the OSM database, Overpass
API provides a read-only service, but for the main target, the extraction of
geographical features that show a correlation with the LTE throughput, it is
sufficient. To provide indicators of population density within an area, OSM
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TABLE 3.1: The environment features extracted from the OSM data using the
Overpass API [173]. Each feature is also a description according to the use, as

defined in the OSM documentation [174].

Attribute Value Radius Description

Building 100 m The number of all building objects
within 100 m radius.

Building
Level 500 m The average size of buildings within an

area of 500 m.

H
ig

hw
ay

motorway

10
m

,1
00

m
,2

50
m

The highway type motorway is iden-
tifying the highest-performance roads
within a territory. In this thesis e.g. the
A6.

primary
The type primary is used for major high-
way linking large towns. In this thesis
e.g. the B85.

secondary

This type is used for link that are not pri-
mary but part of the national route net-
work. In the Amberg dataset, this is the
case for the B85.

residential
This type of roads is used for streets that
are accessing or around residential ar-
eas.

La
nd

us
e

village
green

250 m

A prominent area with grassland in a
village centre.

recreation
ground

An open green area for general recre-
ation, which often includes play-
grounds, sports fields and so on.

meadow
Used to indicate a land area, which is
mainly covered with grass and other
non-woody plants.

forest A forest is a natural or semi-natural area
covered by trees.

farmland An area of farmland, is an area that is
used for agriculture.

farmyard An area with farm buildings.
residential An area of residential buildings.

retail Mostly shops and the corresponding
structures.

industry
Areas of land used for industrial pur-
poses. This includes factories or ware-
houses.

commercial Areas of commercial sites .

A
m

en
it

y

university

250 m

Used to map a unversity or an institu-
tion of higher education.

school Used to map schools, including primary
and secondary schools

parking
Marking a space used by the public,
customers or other authorised users for
parking motor vehicles.
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Secondary
Primaray
Motorway

(a) Highway types of the Amberg test track.

Buldings = 0
Buldings < 6
Buldings > 6

(b) Number of buildings in a radius of 100 m
for the Amberg test track.

FIGURE 3.4: Visualisation of environment based features "highway" and "build-
ing" for the Amberg test track. The values of the feature are extracted using the

Overpass API. The maps are based on Open Street Map (OSM) [162] data.

tags such as amenity, landuse and buildings are requested for a specific re-
gion of interest.

Apart from these characteristics, which can affect the number of users
of the LTE network, another objective is to gather more information about
the environment. This can be collected by querying tags such as motorway
and building levels. The motorway key tag is essential for implementing
a generic and automated method for determining the road scenario. In a
second step, a number of ranges is defined for each of these attributes. This is
sometimes necessary due to GPS inaccuracy. In most cases, the lowest range
is sufficient to indicate, for example, the current type of road, but sometimes,
however, it is necessary to increase the query range to extract a value for
a specific tag from the database. To increase the accuracy of the OSM tag
values, a voting mechanism is introduced. The Overpass API can be accessed
either by public provider, e.g. Overpass Turbo [175] with a limited number
of requests within a time frame, or it can be hosted on a local machine. For
this thesis, the latter is set up on a dedicated machine.

Taking the points mentioned above into consideration, there is a list of
interesting attributes, which are summarized in Table 3.1. This list includes
mainly four categories of features. The first category contains properties re-
garding the density of buildings. The second covers the types of highways.
The third is the land use e.g. farmland or retail, which can influence the num-
ber of mobile network users as well as the line of sight. The last one is a
collection of amenity values with possible impact on the number of mobile
network users. To visualise this geo based features, at least two of these cat-
egories are visualised in Figure 3.4: The highway types, presented in 3.4(a),
without considering residential roads (since this would make the map very
complex) and the number of buildings in Figure 3.4(b) showing that smaller
settlements have a very little impact on this feature.
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3.4 Preprocessing of the Measurements
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FIGURE 3.5: Visualisation of the preprocessing steps used to create the dataset
for the prediction of network quality parameters. The preprocessing includes
the feature engineering of geo attributes, the filtering and machine learning pre-

possessing steps and is adopted from pre-published results [90].

Before the dataset is ready for prediction, some preprocessing steps are
necessary. This preprocessing steps are introduced in this section. It fo-
cuses on processing the data as a batch. The preprocessing consists of the
steps illustrated in Figure 3.5. While the first two steps are equal for the geo
based and machine learning based models, additional stages are applied for
the machine learning models. Since these components are requesting one
whole round as input, in some cases a separation or concatenation of data
files needs to be made, in order to fulfil this requirement.

3.4.1 Environment Based Feature Derivation

After the data is structured in rounds, the first step is the enrichment of
the data with the map features as already explained in Section 3.3. Since
attributes are added to every measurement point, a caching functionally is
implemented for optimization purpose. A more detailed description of the
caching as well as the enrichment process is shown in [176].
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3.4.2 Filtering

The first component implements various filters, which are absolutely neces-
sary for the prediction. Their purpose is to prepare the data for the subse-
quent processing steps to ensure that the requirements of the prediction are
met. The filter is implemented in a way that all fields except timestamp, lon-
gitude and latitude are set to null. This has the advantage that filtered data
samples can still be displayed on a map. In the next paragraphs, the filter
layers will be described separately in the sequence they are used.

1. Invalid Cellular Network Type (CNT) filter: Due to the limitation for
predicting, only the LTE based connection is assessed, while traffic han-
dled via other mobile networks like 3G is ignored. This is verified by
checking the Cellular Network Type (CNT) entry of a data point.

2. Invalid GPS Filter: Because the GPS module takes some time for ini-
tialization, the first data points of a record have the coordinates 0◦N
0◦E. This also happens if the GPS module is deactivated or has no con-
nection to the satellites. Data points with coordinate of the geographic
origin are removed.

3. TCP slow-start Filter: This filter is applied in order to measure only
TPs outside the TCP slow start. A detailed description of this technique
is given in Section 2.1.1. The filter is only applied for the experiment
shown in Section 4.1 and not for the LA experiment described in Section
4.2.

4. Sampling period Filter: In order to have only samples, where the trans-
mission took place during the shown measurement period, this filter is
applied. A more detailed explanation of this process is provided in Sec-
tion 4.1.1.

Since these filters are reducing the amount of data samples, an evaluation
of this reduction is given in section 4.1.2.

3.4.3 Downsampling

In contrast to the processing steps described above, the next four steps are
used exclusively for the machine learning models. Since the requirement is
to make a prediction for the next 15 s as explained in section 1.1, and as this
timespan is different in sampling rate, a downsampling mechanism has to
be implemented. In addition to aggregating the data to the required inter-
val, downsampling also provides the possibility to create additional derived
features. This procedure is called feature engineering. In the first part, gen-
eral methods for downsampling are presented, while in the second part, the
feature engineering is further investigated.



3.4. Preprocessing of the Measurements 47

1

2

Tw

[ [

[ [

Ts

(a) Tumbling windowing.
Defined as Ts = Tw [177]

1

2

Tw

[ [

[ [

Ts

(b) Hopping windowing.
Defined as Ts < Tw [178]

1

2

Tw

[ [

[ [

Ts

(c) Sliding windowing.
Here Ts has the length of
the sampling rate [179].

FIGURE 3.6: Different types of windowing, with the window length defined as
Tw and the time shift of the window as Ts. A more detailed list of windowing

methods is given by Lal and Suman [180].

Windowing

Various methods of windowing can be applied to downsample time series
data. The main variation of these methods is how the window boundaries
are defined and how the window is slided over the time series. In general,
windowing can be applied to both continuous and discrete time series. But
since the further description is based on discrete time series, the window
size is a time interval, and not a number of samples. The window length is
referred to as Tw, the time shift as Ts and the number of sampled frames as
nD. A frame is only valid with at least one valid sample within the window
interval. Otherwise, the frame is empty. In the following, three important
windowing methods are presented and examples of the techniques are illus-
trated in Figure 3.6.

• Tumbling [177]: Describing the most basic technique for building win-
dows. A tumbling window sets Ts = Tw, without leaving gaps between
the windows. The frame includes the lower limit and excludes the up-
per one. All included values are dropped when a new frame begins.

• Hopping [178]: Hopping windowing allows overlapping of windows
that follow each other. Consequently, with this method only parts of
the data are completely dropped. The number of samples within Ts is
called hop size. In contrast to tumbling windowing, not all values of
the window become invalid together. This is defined by Ts < Tw.

• Sliding [179]: Sliding or rolling windowing define a windowing method,
which is continuously moving over a time series. This results in a the-
oretical infinite number of downsampled frames, but practically the
downsampled value is limited by the sampling frequency. This win-
dowing method generates the most frames out of a given time series as
shown in Figure 3.6.

A more detailed description is given by Li, Maier, Tufte, et al. [181] and
there are also other window methods as listed by Lal and Suman [180]. To
obtain the maximum number of samples, the sliding window approach, with
a Tw of 15 s, is selected for downsampling, since downsampling also requires
a handling of empty frames. The following algorithm is able to handle this.
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If during processing, the occurrence of an empty frame happens, the time
series is split at this point. There are also other approaches to solve this issue,
e.g. the interpolation of neighbouring aggregated values or the use of the
previous value, which however are not investigated further in the context of
this work, since the risk of decreasing the prediction accuracy outweighs the
advantage of using additional samples.

All approaches shown by Li, Maier, Tufte, et al. and Lal and Suman have
in common that they all assume time series, which contain a measured value
at any point in time. However, this is not always the case with the data
used for this work, which is not only because of the filtering, but also due to
the measurement setup. In order to visualise the use of the sliding window
method on such a TS, Figure 3.7 is provided.

TS
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FIGURE 3.7: Sliding windowing on a time series with gaps. The time series (TS),
is sampled using sliding windowing, with a window length of 3. Due to the
gaps 10 data point are leading to 15 windows. Windows without any data point

are dropped.

Figure 3.7 illustrates the issue of building windows including one a few
or even non data points. In order to solve the issue, a rule how to treat empty
windows needs to be defined. In this work every window including at least
one data point is used, since also the LS models are built with different num-
bers of data points. This also means that windows without any data point
are dropped. And the time series is slitted at such points.

Aggregation

A further aspect is the use of the aggregation method for downsampled fea-
tures. This is implemented in the following way:

• For quantitative features, median of the samples is calculated. It has
the advantage of smoothing the samples in a robust way, in contrast
to the mean, which is more sensitive to outliers. But it is worth men-
tioning that also more sophisticated smoothing methods such as the
Savitzky–Golay filter could be taken into consideration [182].

• For category features, a voting mechanism selects the most frequent
value within the frame.

There are also corner cases, where an explicit method is used. For instance,
the outgoing value for the download sum is set to the latest value within the
frame.
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Derived Features

In addition, downsampling also offers the possibility to create derived fea-
tures. This automated feature generation is already used in many machine
learning suites like H2O [183], TPOT [184] and Auto-Sklearn [185]. Basically,
there are two important feature engineering methods. Transformations and
aggregations. Both techniques are used in this thesis. The main difference
is that in contrast to aggregation, a transition simply uses one or more fields
of the last input vector and creates a new characteristic, e.g. the transforma-
tion of the time stamp to the corresponding weekday. The following feature
engineering procedures are used for LTE prediction:

• For quantitative features: Minimum, maximum, mean and standard
derivation of the frame values are calculated. Furthermore, the drift,
defined as the subtraction of the last and first value of the frame, as well
as the maximal drift, which is the difference between the minimum and
maximum value, are determined.

• For category features: The frame boolean indicates whether the value
has changed within the downsampled time span.

In addition, some explicit methods like transformation of time stamps to
weekday and daytime are performed. In order to process category features,
also the next step of encoding them is needed.

3.4.4 Encoding

As already mentioned, the features also included categorical variables. These
are created through processing of the mobile network parameters as well as
the generation of environment features and must be provided in numerical
form for certain models such as SVRs.

Therefore, a coding of such features has to be implemented. This can be
done in various ways. Two of these methods are described in the following.
One way is the so called integer coding, where all values are coded regionally,
so that each category corresponds to a numeric value. These procedures im-
plicate a naturally ordered relationship between the values, which can have
an effect on the model. While in some cases integer coding is used to im-
prove the accuracy of the model with this relationship, in the case of features
that do not conform to a natural order, it can lead to model degradation be-
cause categorical values without quantitative relationship are projected onto
a quantitative space. Thus the use of this coding depends strongly on the
context of the feature.

To avoid this, another method is used for the coding, the so-called one-
hot coding [186]. Here, a binary feature is created for each category and these
features are added to the existing ones. Using one-hot encoding to encode
categorical variables has some disadvantages. First, it significantly increases
the overall size of the input data, and second, models tend to overfit by the
insertion of sparse data.
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To compensate for these drawbacks, additional methods such as sum cod-
ing, Helmet coding and backward difference coding or other common ap-
proaches as shown by Potdar, Pardawala, and Pai [187] can be applied. Since
the data include just few categorical variables, one-hot encoding is used.

3.4.5 Shifting

For the following training step, it is necessary to set up equations of the form
X = y, where X is the feature vector and y the quality value being predicted.
This means, when dealing with time series regression, that X at time n corre-
sponds to y for n + 1. To achieve this, a so-called shifter is required. Its task
is to shift back the field y by one time step, so that each training sample con-
tains Xn and yn+1. If a longer memory is needed in order to predict the time
series, there is also an option for shifting older values of X. This results in a
data sample containing Xn−d, . . . Xn, yn+1, with d as memory size. Although
the shifting operations are not expensive in terms of computation effort, they
have a higher amount of consumed memory size, since Xn is storage multi-
ple times. Another drawback is the reduction regrading the number of valid
training samples, due to the fact that each training sample needs to be in a
longer time series in order to provide the data for the shifting.

3.4.6 Feature Selection

The final preprocessing step, before using LB prediction methods, is the se-
lection of the relevant features. This step is highly depending on the ap-
plication as well as the used prediction model. But the techniques used for
features selection are general and shown in this section. Before going into
detail regarding these methods, the objective of feature selection should be
clarified. According to Guyon and Elisseeff [188] it is three-fold and contains
improving the prediction performance of the predictors, providing faster and
more cost-effective predictors as well as a better understanding of the under-
lying process that generated the data. Guyon and Elisseeff have also included
a checklist in their work on how to solve the problem of feature selection.
Since this list is very general and covers both supervised and unsupervised
learning as well as other issues, only the aspects relevant to this work are
reflected in this section.

The first aspect is the usage of domain knowledge. Since this knowledge
is partly given by studies shown in Section 2.2 as well as the summary shown
in Table 2.1, there is a good starting point to note, which attributes should be
included in any case. Secondly, since some less relevant features need to be
excluded in order to lower the computing effort for some models, filtering
is needed. Therefore, different algorithms are applied and discussed in the
next paragraphs. In addition, a comparison of subsets with and without en-
vironment features is needed. To that end, for every used FS with geographic
features, there is also a corresponding one without them.

Before the usage of feature selection methods, there is also a step of ex-
plicit manual elimination. This is needed to remove e.g. the GPS coordinates,
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since the goal of the work is to find a prediction model, which is not using
these features. After this process, the following steps are performed. As
a first automated processing step, the variance threshold filters features in
the overall measurements that have a variance lower than 1 %. It primarily
eliminates one-hot encoded categorical features, which never occurred in the
dataset, e.g. the plant nursery. Next, a feature correlation is performed. This
is done in order to eliminate redundant numerical features. An example for
such a pair of features is the Arbitrary Strength Unit (ASU) and RSRP. Since
in LTE networks, the ASU is defined as

ASU = RSRP + 140 for RSRP ∈ [−156 dBm,−44 dBm], (3.2)

as shown in the 3GPP specification [69] in Section 9.1.4. In order to deter-
mine how many features are needed, a Principal Component Analysis (PCA)
is performed. The PCA is an unsupervised method, which in general nor-
malizes the data to its mean value, with a maximum of the original variance
being retained. During the process, the number of features is reduced repeat-
edly and the summarised variance is calculated for each step. This allows to
determine the number of relevant features. Usually, the number of features is
determined in this way, that there is a variance of certain amount, depending
on the application. This number is then used to obtain an estimation, how
many features are necessary for the final selection. A more detailed descrip-
tion and also other methods for feature reduction are given by Cao, Chua,
Chong, et al. [189].

To select these features, a variable ranking is needed. Therefore, multiple
methods are used. The first and most basic one is the correlation criteria,
which can be calculated using the following equation:

R(i) =
∑m

k=1(xk,i − x̄i)(yk − ȳ)√
∑m

k=1(xk,i − x̄i)2 ∑m
k=1(yk − ȳ)2

, (3.3)

where the bar notation stands for the average over the index k. In order to
determine the coefficient in a linear regression, the square of R(i) is used.
It shows the goodness of linear fit of individual variables and is often used
for microarray data analysis, as illustrated by Weston, Elisseeff, Schölkopf,
et al. [190]. However, R(i) can only detect linear dependencies between two
variables and has therefore, according to Guyon and Elisseeff [188], some
drawbacks:

1. A very high variable correlation (or anti-correlation) does not mean a
lack of variable complementarity.

2. A variable that is completely useless on its own, can provide a signifi-
cant performance improvement when combined with others.

3. Two variables that are useless on their own, can be useful together.

In addition to the correlational criteria, also other methods are needed. This
is the reason, why the Recursive Feature Elimination (RFE) [191] was selected
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as well. This approach offers the possibility to discover suitable features by
recursive training of new models. During this process, either the best or the
worst features are removed for the next run. This step is repeated until the
given limit of variables is reached. Finally, all features are ranked according
to the iteration achieved before the elimination. One advantage of this ap-
proach is that it can include different LB models, which are then trained for
the prediction on the entire dataset [191].

In addition, the RFE can be extended by cross-validation, which provides
more stability. Cross-validation divides the training samples into sets and
rotates them, so depending on the run a set is used for training or for val-
idation. Unlike the RFE, it does not stop, when the limit of the features is
reached. Instead, it optimizes the accuracy according to a predefined quality
indicator. To define a Feature Set (FS), features are selected that are important
for several types of techniques by summarising the quantity of their choice.
An example of this feature selection approach is shown in Section 4.1.3.
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In this chapter the actual experiments and their results are presented. The
chapter is structured in two sections, each with focus on another NQP. This
first one is the TP, so in this section the setup used for recording the datasets
is explained in detail, followed by the acquired datasets. Also, an evaluation
of the derived environment features as well as a description of the predic-
tion models is given. Finally, an evaluation of the different models and the
used features is presented. In the second section, the LA is explored using
the same structure. Differences, e.g. a setup that is recording two LTE mod-
ules at the same time, are presented in more detail. However, in the case
of similarities, usually only the corresponding paragraph of the first exper-
iment is referenced. Both sections are rounded off with a summary of the
most important findings of the experiments.

4.1 Throughput Prediction

For generating a TP model, it is crucial to gather an adequate amount of data.
Therefore, this section shows the tools as well as the recorded dataset. Addi-
tionally, an evaluation of the features including the environment is presented.
These features are then used for the LB prediction models. For comparison,
an LS model is evaluated as well.

4.1.1 Technical Setup
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FIGURE 4.1: Structure of the measurement tool, including the input, processing
and output modules as presented in pre-published results [52].
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The tool developed for the acquisition of network and quality parameters
is called TCP-Analyzer [52]. It was developed with a focus on monitoring
mobile network communication in a passive way, in order to reduce the in-
fluence on the data traffic as far as possible. A further characteristic is the
restriction to the client side, i.e. to the transmission unit in the vehicle. This
enable using it without the help of a server, so basically any connection can
be monitored. The tool is primarily divided into three parts, as shown in Fig-
ure 4.1. The input modules are handling the data acquisition. They provide
an interface to the different hardware devices e.g. GPS sensor, LTE modem
and the network interface. The processing module is in charge of analysing
the data and aggregating or calculating more complex parameters, which are
then provided to the output module, being responsible for either saving the
data using different file formats or forwarding the data to other programs.

Input Modules

The input modules are handling the data acquisition of three devices. The
first one is the mobile network module. As hardware module, a modem from
Sierra Wireless using a Qualcomm SoC is utilized. There is the possibility to
collect the low level parameters with Qualcomm MSM Interface1. This inter-
face provides different functions in order to request all needed parameters.
A request for parameters may take up to 300 ms, which results in a sampling
rate of 3.33 Hz. This rate is also used as the overall sampling rate for the data
collection.

The second device is the network interface. In order to calculate more
complex parameters like the TP or RTT, at least the header information of the
data frames are needed. This information can be collected using the packet
capture library [192]. It allows the program to collect parameters linking
the source and destination Internet Protocol, TCP header flags and the data
length of the package. These data can than be processed in the corresponding
processing modules.

For recording the location, a Global Navigation Satellite System (GNSS)
device is used. The device is integrated in the mobile network model and
supports not only GPS, but also other GNSSs like GLONASS and BeiDou.
So it is capable of communication with all satellites of these three services,
which results in higher accuracy [193]. Standard positioning devices have a
refresh rate of 1 Hz. Using a sample rate of 3.33 Hz for the data collection,
there are multiple data points with the same location.

GPS is a satellite radio navigation system and accuracy depends a lot on
the number of satellites detected by the receiver [195]. Of course, the GPS
device also plays a role in terms of accuracy. In order to measure accuracy, a
reference point provided by the German surveyor’s office can be chosen. The
coordinates of these points are well known and accurate up to one centime-
tre. To validate the accuracy of our GPS device, a reference point in Kastl,
Bavaria, Germany [194] is chosen. It is located at a latitude of 49.36671730◦

and a longitude of 11.68378087◦.

1http://cgit.freedesktop.org/libqmi

http://cgit.freedesktop.org/libqmi
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FIGURE 4.2: Visualisation of the GPS accuracy of the built-in Global Navigation
Satellite System (GNSS) module, measured on the Geo reference point in Kastl,

Bavaria, Germany [194]. Each grid cell has an edge length of approx. 5.5 m.

The measurement was carried out 60 minutes with a measuring rate of
1 Hz. Figure 4.2 shows the measurement results in a scatter diagram. The
grey dots represent the measured values and the orange dot is the reference
point. The figure shows, the measured points do not exactly match the ref-
erence point. To determine the accuracy, the distance of each point to the
reference point was calculated using a method proposed by Karney [196]. As
a result, half of the points are less than 4.78 m away from the reference point
and 95% of the measured points are within a radius of 7.31 m, This is indi-
cated by the orange circle. Since some of the measurements have the same
location, there is an overlap in the diagram, which leads to less points in the
circle than actual measurements.

Processing Modules

The next step after data acquisition is to process the input in order to generate
more complex parameters. First, a list with all relevant TCP inputs of this
measurement cycle is created. The parameters RTT and TP are calculated
based on the acquired data.

In order to calculate the RTT, the methods shown in Figure 2.3 are used.
Determining the TP is more complex because effects like the slow start of
TCP, which is explained in Section 2.1.1, should be excluded.
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Output Modules

The data for the measurements are then either stored to disk or directly fed
into the next process steps. For the offline generation of a new prediction
model, the storage routine is used. The TCP-Analyzer supports two file for-
mats, the first one is the Comma separated values (CSV) format. It is human
readable and widespread in machine learning and allows an easy analysis of
the data.

The second formate is SQLite[197]. Even the format is more complex,
and therefore requires more effort to process, it offers some advantages. For
instance, the use of the SQL query language offers the possibility of creating
complex queries and filtering the data. In addition, it also allows defining
data types for every recorded parameter. An overview of these parameters
as well as their type is shown in Table 4.1.

Apart from storing the data, it can also be directly processed. The recorded
data can be fed into a prediction model and the result of this model can be
used as input for a network scheduler.

4.1.2 Datasets and Preprocessing

After setting up the measurement tool shown above, the data can be recorded.
Data collection was carried out on various test tracks, with each track serv-
ing a specific purpose. The main course is the Amberg track (see Figure 2.12),
where 351 083 data points were collected. It is used for training and validat-
ing prediction models, and therefore most data points were collected on this
track. In order so show the potential of location independence of LB model,
a dataset of the Aschaffenburg track (see Figure 2.13) was acquired, contain-
ing 93 979 data points. It is taken for evaluation of the LB model only and
does not contribute to the training data. In addition, there is also a dataset
of the Dudenhofen test cycle (see Figure 2.11). Although this track is very
limited in its geographical extension, it provides good conditions for testing
the impact of certain parameters like vehicle velocity and line of sight, since
it allows the variation of speed without being affected by other vehicles. The
data collected at Dudenhofen are neither included in the training nor in test
dataset. It also provides a high density of measurement points regarding the
location. Therefore, the data of this course was only used for analyses and
not for the prediction models.

All recorded data is then processed using the techniques described in
Section 3.4. As mentioned during the preprocessing explanation, the num-
ber of data samples is changing, which is reflected in Table 4.2. Even af-
ter the dropout during this process, there are still more than one hundred
and fifty thousand data points in the Amberg dataset. This number is fur-
ther increased by the downsampling step, due to the use of sliding window-
ing shown in Section 3.4.3. So after the downsampling the datasets contain
323 020 points for Amberg and 83 333 points for Aschaffenburg. Of course,
these numbers are reduced by the shifting. So after the pre-precessing there
are 254 139 data points for Amberg. Split into a training and a validation set
along the time series, using a ratio of 90 % for training and 10 % for testing.
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TABLE 4.1: Parameters recorded in the SQLite databases by the measurement
tool called TCP-Analyzer and presented in pre-published results [52].

Field Data type Description

CNT Text Cellular Network Type e.g. LTE
RSSI Integer Receive Signal Strength Indicator
SINR Decimal Signal to interference noise ratio
RSRQ Integer Reference Signal Receiving Quality
RSRP Integer Reference Signal Receiving Power
ASU Integer Arbitrary strength unit
CELL_ID Integer Cell Identifier
PLMN Integer Public Land Mobile Network

ARFCN Integer Absolute Radio Frequency Channel Num-
ber

TAC Integer Tracking Area Code
P_CELL_ID Integer Physical cell id
MCC Integer Mobile Country Code
MNC Integer Mobile Network Code
LAC Integer Location Area Code
LTE_N_GSM Integer Number of neighbouring GSM cells
LTE_N_UMTS Integer Number of neighbouring UMTS cells

INTERF Integer Number of neighbouring inter frequency
cells

INTRAF Integer Number of neighbouring intra frequency
cells

TP_DL Decimal TP download
TP_UL Decimal TP upload
RTT_SYN Decimal RTT measure during connection establish
RTT_FIN Decimal RTT measure during connection close
RTT_AVG Decimal Average of RTT_SYN and RTT_FIN
DL_SUM Decimal Sum of all downloaded data
UL_SUM Decimal Sum of all uploaded data
PERIOD Decimal Period of a established TCP connection
PL_UL Decimal TCP payload data for upload
PL_DL Decimal TCP payload data for download
LON Decimal GPS longitude
LAT Decimal GPS latitude
SPEED Decimal GPS speed
COURSE Decimal GPS course
V_NR Text Version of the TCP-Analyser
TS Timestamp Timestamp of the measurement

This results in 226 978 data point for the training and 27 161 for validation.
The data points from Aschaffenburg (67 726) are all used for validation.
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TABLE 4.2: Dropout of each filter during filtering the Throughput Prediction
(TPP) dataset. A description of the filters applied in data pre-processing is given

in Section 3.4.2.

Filter Amberg % Aschaffenburg %

Data points 351 083 100.00 % 93 979 100.00 %
GPS-Filter 6 903 1.96 % 2 504 2.66 %
CNT-Filter 7 986 2.27 % 7 135 7.59 %
TCP-Filter 178 967 50.97 % 38 518 40.99 %
Period-Filter 4 958 1.41 % 1 286 1.37 %
Remaining data points 152 269 43.37 % 41 536 44.20 %

4.1.3 Feature Selection

After preprocessing, the feature selection is performed. First, reducing the
FS supports the performance of the SVRs, since training them with all fea-
tures and data samples would not be feasible. In addition, dropping pa-
rameters with very low variance or relevance helps to avoid overfitting of
ANNs. Further, the time dependency of the features is investigated in this
section. This is necessary to determine the length of the memory of RNNs.
Consequently, Table 2.2 provides an overview of the resulting FSs, summa-
rizing the different inputs. Of course, this feature selection is only needed for
the LB approaches, since the LS methods only need the coordinates and the
parameters, which should be predicted as input.

Selecting Features using Linear Relations

The feature selection performed for this experiment is done on 50 000 ran-
domly selected samples, in order to improve the process. First, in order to re-
move irrelevant features, a variance analysis is performed and features with a
variance of less then 1 % are removed, since their option is not representative
[198]. In the Amberg dataset, this is particularly true for location features,
since there are features generated by the approach shown in 3.3, which do
not appear in the data record. This is especially the case for amenities like
cafes, bars, restaurants, cinemas or hospitals, which do not appear at all. Ob-
viously, this can also be seen as a weakness of the dataset, as an investigation
of such sites could also be relevant for QoS prediction. Another example are
tertiary roads, which are recorded only with very little extent, as they are not
part of the test track and their precision is only due to the inaccuracy of the
GPS. Apart from location features, there are two low level mobile network
features removed. The first one is the presence of neighbouring LTE cells
when the model is connected via Universal Mobile Telecommunications Sys-
tem (UMTS) as connections via UMTS are removed from the dataset during
filtering. The second are the parameters of neighbouring UMTS cells when
the model is connected via LTE. Their occurrence is very low and would pos-
sibly result in a location dependent training or overfitting of the algorithm.
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The variance analysis also shows the absence of data recordings during cer-
tain weekdays or day times, namely Monday, Saturday and Sunday or in the
evening or night.

Pearson correlation coefficents

1.00 0.10 1.00 0.11 -0.01

0.10 1.00 0.10 0.45 -0.01

1.00 0.10 1.00 0.11 -0.01

0.11 0.45 0.11 1.00 -0.02

-0.01 -0.01 -0.01 -0.02 1.00

A
SU

T
P_

D
L

R
SR

P

R
SR

Q

R
T

T_
SY

N

ASU

TP_DL

RSRP

RSRQ

RTT_SYN

FIGURE 4.3: Pearson correlation coefficients of selected features illustrating the
high correlation between Arbitrary Strength Unit (ASU) and Reference Signal

Receiving Power (RSRP)

The next step is the removing of redundant features, which is done using
the correlation between them. In case of high correlation, the feature is as-
sumed to be redundant. In this experiment, high correlation coefficients only
appeared between ASU and RSRP. This can be attributed to their relation
shown in Equation 3.2.

In order to select the features mainly used for the SVR, the PCA was per-
formed as shown in Section 3.4.6. It results in using 17 feature for dataset
not including location based features and 25 for datasets with location fea-
tures. The ranking of the features was calculated according to the methods
previously described. Results are illustrated in Figure 4.4.

Time Dependence

As shown by Schmid, Schneider, Höß, et al. in [40], an intensive investigation
of the temporal correlation between throughput and other network parame-
ters can be used as part of the feature selection process. The benefits of this
process are also described by Koprinska, Rana, and Agelidis [199]. This re-
lation is especially useful as RNN models contain a temporal relationship,
which should be explicitly investigated first. The goal of this detailed anal-
ysis is to determine the optimal memory length of the RNN, which is also
called lag. The setting of the input memory length has crucial effects on the
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(a) Feature selection including location based
features.
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(b) Feature selection excluding location
based features.

FIGURE 4.4: Resulting features, according to the feature selection done on the
Amberg Throughput (TP) dataset including their ratio of impact for several se-

lection methods.

training and model conclusion. The extension of the input time series for
the prediction leads to the result that less data samples can be used for the
training, and more time passes until the first prediction can be calculated.

The widely used autocorrelation function is used to determine the corre-
lation in sequential data based on the sampled time series, in which each data
point aggregates the measurements over a 15s sliding window. The number
of relevant points is then determined, by considering only the number of val-
ues within a confidence interval of 95 %. This procedure is applied for each
selected characteristic over the whole training dataset. The results of a se-
lected number of interesting parameters is shown in box plot 4.5. In which
the boxes are indicating the range of the first to the third quartile (25 % to
75 %) and the lines are showing the minimum and maximum values. The or-
ange line in the box is representing the median. This figure indicates that the
median of the autocorrelation values for all characteristics is covered within
a delay of four data points, illustrated by a orange dashed line. In particular
for key features such as RSRP, RSRQ, RSSI, RTT and the TP, this delay is not
exceeded by any value. In order to indicate this in the box plot, a dashed line
is drawn. Correspondingly, this memory length is used to create the training
dataset for the RNN models.
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FIGURE 4.5: Autocorrelation analysis of imported features in order to determine
the number of past values for the Recurrent Neural Network (RNN), based on

pre-published results [40].

Resulting FSs

To summarise the results achieved so far, there are a number of criteria that
have to be considered when creating the FS. First, in order to validate the
impact of the created environment features, it is important to compare FSs
including these features with those without them. So, for each set of envi-
ronmental parameters, there is also a similar set without them. In addition,
especially algorithms like SVR require to select a subset of all features. There-
fore, the feature selection methods shown in Section 4.1.3 are used to create
three different FSs.
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In particular RNNs are using the time relation between the data samples,
thus a further aspect is the usage of previous data. As discussed above, the
FSs will contain a lag of four data points in order to include this knowledge.
Apart from the inputs, it is also interesting to look onto the predicted values
themself. Studies from Zhang and Qi [200] are showing the lack of ANNs
to predict seasonal or trending data. One countermeasure is to predict the
difference between the absolute NQP values ∆yt = yt−1 − yt. There are also
applications, where the use of the absolute value yt outperforms this differ-
ence [201]. So, for comparison, the prediction using LB models is performed
on both.

Taking all this into account, the prediction is performed on 24 FSs. They
consist of a core FS I-III (as shown in Table B.1 in the appendix) reflecting the
usage of different feature selections and are listed in the following:

I. The first FS contains all mobile network based features without using
feature selection.

II. The second FS is using all feature selection techniques described in this
section and including all features selected by any of these methods.

III. The third FS does not consider the RFE since it adds a lot of features.

In order to build 24 sets, these three basic FSs are combined with the en-
vironment features, plus the prediction values, which can be absolute or rel-
ative to the previous ones. In order to process the twelve resulting sets using
RNNs, they are enriched with their lag data, which doubles the amount of
FSs. To describe them a symbology is introduced using I − I I I as sign for
the feature selection, e, l indicate the usage of environment features and lags,
as well as y or ∆y to describe the outputs. So, the FS containing all features
without feature selection, plus environment and lags and using the relative
output vales, will be referred as FSI,e,l

∆y in the following. A list of all symbols
and their description is given in Table 4.3.

4.1.4 Prediction Methods

Subsequent ot description of data and FSs, this section discusses the actual
prediction methods used in this experiment. As already mentioned in Section
2.3, there are different categories of models, as well as several varieties within
these groups. For the prediction of the TP, shown in this section, LS and LB
algorithms are deployed. All selected models are described in detail below.

Geo Grid

As representative of the LS models, a grid based approach was chosen. All
measurements of the Amberg training dataset are snapped to a grid with an
edge length of 500 m. This distance is corresponding to 15 s prediction time
at a targeted maximal speed of 120 km/h. The GPS coordinates, originally
recorded as WGS84 coordinates [202], were converted into the Gauss–Krüger
projection [203] that supports metric lengths. For the central storage of the
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TABLE 4.3: Symbols of the Feature Sets (FSs) used for Network Quality Param-
eter (NQP) prediction including the feature selection I-III and environment fea-
tures as shown in Table B.1 and B.2, the memory of four lags used by the Recur-
rent Neural Networks (RNNs) and the prediction value, which can be absolute

(y) or difference (∆y)

Symbol. Description

FSI
∆y no feature selection, differential output

FSI,e
∆y no feature selection + environment features, differential output

FSI
y no feature selection, absolute output

FSI,e
y no feature selection + environment features, absolute output

FSI I
∆y feature selection using all techniques, differential output

FSI I,e
∆y feature selection using all techniques + environment features, dif-

ferential output
FSI I

y feature selection using all techniques, absolute output
FSI I,e

y feature selection using all techniques, + environment features,
absolute output

FSI I I
∆y feature selection without RFE, differential output

FSI I I,e
∆y feature selection without RFE + environment features, differen-

tial output
FSI I I

y feature selection without RFE, absolute output
FSI I I,e

y feature selection without RFE + environment features, absolute
output

FSI,l
∆y no feature selection + four lags, differential output

FSI,e,l
∆y no feature selection + environment features + four lags, differen-

tial output
FSI,l

y no feature selection + four lags, absolute output
FSI,e,l

y no feature selection + environment features + four lags, absolute
output

FSI I,l
∆y feature selection using all techniques + four lags, differential out-

put
FSI I,e,l

∆y feature selection using all techniques + environment features +
four lags, differential output

FSI I,l
y feature selection using all techniques + four lags, absolute output

FSI I,e,l
y feature selection using all techniques, + environment features +

four lags, absolute output
FSI I I,l

∆y feature selection without RFE + four lags, differential output

FSI I I,e,l
∆y feature selection without RFE + environment features + four lags,

differential output
FSI I I,l

y feature selection without RFE + four lags, absolute output
FSI I I,e,l

y feature selection without RFE + environment features + four lags,
absolute output
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LISTING 4.1: SQL query using functionality of the Geo database PostGIS [204]
in order to build a 500 m grid based Location Smoothing (LS) model. This model
can be used to predict certain Quality of Service (QoS) parameters or LTE low

level values.

SELECT
ST_X ( ST_Snaptogrid (
ST_Transform ( d . gps_point , 31468) , 5 0 0 ) ) AS x ,
ST_Y ( ST_Snaptogrid (
ST_Transform ( d . gps_point , 31468) , 5 0 0 ) ) AS y ,
AVG( d . tp_dl ) AS AVG_TPDL, AVG( d . s i n r ) AS AVG_SINR,
AVG( d . asu ) AS AVG_ASU, AVG( d . r t t ) AS AVG_RTT,
AVG( d . r s r q ) AS AVG_RSRQ, AVG( d . r s s i ) AS AVG_RSSI ,
AVG( d . rsrp ) AS AVG_RSRP
FROM measurement_data AS d , measurement_seq AS s
WHERE d . seq_id = s . seq_id
AND s . d i r e c t i o n = TRUE
AND s . t e s t _ d a t a = FALSE
GROUP BY x , y ORDER BY y

data and models, the Geo database PostGIS [204] is used. The creation of the
models is done with the database selection shown in Listing 4.1.

This results in 71 cell measurements. Not all cells are built using an equal
number of data samples. Some areas contain a lot of data, others contain
only a few data, because only a small part of the track passes through them,
or depending on the accuracy of GPS, only a few measurements are asso-
ciated with this cell. So, the areas contain on average 2400 measurements,
but the cell with the lowest number of measurements contains only 35. In
order to validate the cells, an entropy analyse as proposed by Yao, Kanhere,
and Hassan [136] is performed. If the information entropy of a cell is low,
information uncertainty associated with it is also low, so a prediction can be
made. On the other hand, if the entropy leads to a uniform distribution, the
process is completely random, so the model has information. The entropy is
usually calculated in bits/symbol and defined as

H(X) = ∑
x∈X

p(x)log2p(x) (4.1)

with p(x) is the probability mass function [205]. It can be difficult with too
many symbols to capture a pattern that is present in the underlying process.
As shown by Yao, Kanhere, and Hassan [136], the TP values are divided into
7 symbols (A-G), which result in a maximum entropy of 2.81 for a random
process. A complete analysis of the entropy per cell as well as the number of
data samples used to build the cell model is illustrated in Figure 4.6.

This analysis shows much lower entropy values between 0 and 1.56. 75%
are lower than 0.96. It can be assumed that the process is not fully random
and the map can be used for predicting the TP.
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FIGURE 4.6: Entropy analysis of the Amberg geo grid map. Including the en-
tropy (E) and the number of samples (N) used for model building.The map is

based on Open Street Map (OSM) [162] data.

FIGURE 4.7: Visualisation of a grid based prediction model with an edge length
of 500 m used for Throughput Prediction (TPP). The cell value represents the
predicted Throughput (TP) in this cell.The map is based on Open Street Map

(OSM) [162] data.

In order to make such a prediction, an aggregation function is needed.
In this model, the average TP of all measurements within a cell is taken. A
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visualisation of this model is shown in Figure 4.7. Of course, a model cannot
be validated location independent, so the results can only be compared with
LB model outputs for the Amberg test track.

SVR

For the LB prediction, different kinds of algorithms are used. First, SVR mod-
els are taken into account. One main advantage of SVRs is their ability to use
different kernels. This was also applied in this experiment. So apart from the
linear kernel, also polynomial and radial basis functions, as described in Sec-
tion 2.3.1, are studied. For the polynomial kernel, also the third and fourth
degree were investigated. Other parameter of the SVR are kept at their de-
fault and are not considered further. All these algorithms were deployed on
a number of FSs using feature selection. For the training of the models, the
Amberg training dataset, containing more than 226 000 data samples, was
used.

FNN

Another LB method are FNNs. In the TPP experiment, FNNs are used in
different configurations starting with one single hidden layer up to a deep
neural network using eight hidden layers. Also different combinations of
neurons per layer were explored, including so-called wide networks, where
the first hidden layer has more neurons as the input layer. Another parameter
investigated is the activation function of the neurons. Here sigmoid, tanh
and ReLU as shown in Figure 2.7 are studied, together with a number of
optimizers such as Adam, Adadelta and RMSprop. Of course, depending
on the combination of activation function and optimizer, the learning speed
differs a lot. It can also be difficult to find an optimum, if the network learns
very quickly and tends to over fit after only a few epochs. Regrading the
FSs used, FNNs are the algorithms that cover the widest range, including
all FSs without lag as well as FSI,l

∆y, FSI,e,l
∆y , FSI,l

y and FSI,e,l
y . This allows also

comparison with both SVRs and LSTMs. As loss function apart form the
MSE the NRMSE is implemented in order to train the network with the same
loss, as used for the evaluation. In Figure 4.8, two configurations of FNNs
applied to FSI,e

∆y are illustrated. Since the other configurations differ mainly
in their number of hidden layers, only the relevant ones are presented in the
following.

LSTM RNN

To represent the RNNs, LSTM RNNs were used as the third LB algorithm.
Similar to the investigation done on FNNs, different combinations of acti-
vation functions, optimizers, training epochs and loss functions were ex-
plored. In the case of the RNNs, however, the major change was that, due
to the memory functionality of the network, the state must be reset after each
continuous series of measured values. Looking at the architecture, various
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FIGURE 4.8: Structure of the used Feedforward Neural Network (FNN) applied
to FSI,e

∆y. The modules contain multiple fully connected layers (dense layers), in
order to predict the output.
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FIGURE 4.9: Structure of the fifth Long Short-Term Memory (LSTM) Recurrent
Neural Network (RNN) configuration applied to FSI,e,l

∆y . The model contains a
layer with Long Short-Term Memory (LSTM) cells as well as a dense layer to

output the prediction result.
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depths of networks were investigated as well as the usages of bidirectional
layers, which process the inputs forward and backward. As already men-
tioned earlier in this section, in order to use the potential of RNNs, also the
previous values of features are needed, which explains why only the FSs in-
cluding lags are used in the context of LSTM RNNs. An example of a LSTM
RNNs configuration applied to FSI,e,l

∆y is illustrated in Figure 4.9.

4.1.5 Evaluation

In order to evaluate the prediction results achieved by the different models,
a performance metric as explained in Section 2.4.1 is needed. An analysis
of other prediction approaches, listed in Table A.1, has shown that the most
commonly used metric in related applications is the NRMSE. Therefore, this
error metric is also chosen here as the main one.

Additionally to the metrics, however, a dataset is required to evaluate
the models. According to Ripley [206], this dataset should be only used for
assessing the performance of the model, so it needs to be independent of the
data used for training and tuning during the fitting of the model. To achieve
this, certain routes on the test track were held back after pre-processing and
allocated for this purpose. Overall, these rounds contain 27161 data points.
However, since the aim is to determine the error of a ride, rather than the
error of a single measurement, the data points were grouped into time series
of 100 points each. This corresponds to a journey time of approximately 25
minutes. In total, these result in 255 test time series for the Amberg test track.
This test data is used to compare the different models presented above. The
data points at the end of a round are dropped.

For this purpose, the NRMSE of each test time series is calculated. For the
test dataset, this results in a list of 255 NRMSE values per evaluated model.
Comparison of the models is performed using the algorithms explained in
Section 2.4.2. In particular, pairwise comparisons are used to answer the
questions regarding the used FSs, LB and LS models, which are:

• Can the prediction be improved by using feature selection as explained
in 4.1.3?

• Is there a significant difference between FSs with and without environ-
ment features?

• Does the use of differential result values (∆y) improve the prediction?

• Has the usage of various kernel functions an impact on the prediction
result of SVR based prediction?

• Which layout regarding to the number of hidden layers and neurons
achieves the best prediction performance for FNNs?

• Is there a significant difference between the prediction result of SVR
and FNN models?
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• Can the use of a FS including the past feature values improve the FNN
predication?

• Which layout regarding to the number of hidden layers and neurons
achieves the best prediction performance for ANNs?

• Is there a significant difference between the prediction result of FNN
and RNN models?

• Appling LS and LB model on the same test dataset. Which algorithm
performs best?

• Can LB algorithms be used for prediction of data points of a different
location?

Evaluation of the SVRs

The first LB technique that is investigated in the experiment is the so called
SVR. On the basis of SVRs the benefits of kernel functions are investigated,
in addition an evaluation of the different FS takes place. To achieve this, the
error of all models is to be calculated. For tests, such as the t-test, the distribu-
tion of the error values represents an important factor, which must be stud-
ied. For this purpose, a two-sided Kolmogorov-Smirnov test is performed to
prove the normal distribution of the error values. For all SVR models, this
test has a Probability of Obtaining Test Results (p) or p-value of less the 0.001,
which leads to the result that the error values are not normally distributed.
This fact can even be illustrated visually by plotting the histograms, as done
for two of the models in Figure 4.10.
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FIGURE 4.10: Histograms of the Normalized Root Mean Square Error (NRMSE)
values, calculated for linear Support Vector Regression (SVR) using different

FSs.

Since the conditions for a t-test are not fulfilled, the Wilcoxon signature
rank test is used in the following for pairwise comparisons. To handle the
sample with zero-differences, a method described by Wilcoxon [151] is used.
It includes this sample in the ranking process, but drops the ranks of the
zeros, which is considered more conservative. All comparisons are made
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with a confidence level of 5 %. However, there are also situations, in which
1xN comparisons should be tested first. Also the Friedman test [155] is used
in this section.

Following the methods of evaluation described above, the FSs will be in-
vestigated first. A comparison using the Friedman test shows that there is a
significant difference between the NRMSE values of the models (p < 10−4).
As this test does not provide any information about the relationship between
the individual models, this must be evaluated separately. For this purpose,
both the mean NRMSE and the two-sided comparison between the models
are determined and given in Table 4.4.

TABLE 4.4: Throughput Prediction (TPP) results including mean Normalized
Root Mean Square Error (NRMSE) values and pairwise comparison of differ-
ent Support Vector Regression (SVR) models, with their Feature Sets (FSs) and

kernels.

No. Kernel FS NRMSE Pairwise comparison (two-sided test)

1 linear FSI I,e
y 0.4796 1 and 2 are differently distributed

2 linear FSI I I,e
y 0.4798 2 and 3 have the same distribution

3 linear FSI I I,e
∆y 0.4803 3 and 4 have the same distribution

4 linear FSI I,e
∆y 0.4804 4 and 5 are differently distributed

5 poly. FSI I I,e
∆y 0.4887 5 and 6 have the same distribution

6 poly. FSI I,e
∆y 0.4902 6 and 7 are differently distributed

7 linear FSI I I
y 0.4962 7 and 8 are differently distributed

8 linear FSI I
y 0.4964 8 and 9 have the same distribution

9 linear FSI I
∆y 0.4970 9 and 10 are differently distributed

10 linear FSI I I
∆y 0.4974

To determine, which model performs best, a one-sided test was also car-
ried out on the top three models. The results indicated that the first model,
using FSI I,e

y , performed significantly better than the second model using FSI I I,e
y

(p = 0.0079). Also a test of the first models with the third model, demon-
strated a significant small error in the first model (p = 0.0106). It is also
important to note that all three FSs are using environment features.

To investigate the effect of kernel functions, tests with the same FS but
different kernel were executed. This setup includes SVRs with linear, poly-
nomial and Radial Basis Function (RBF) kernels. For the polynomial ones,
the degrees two to four were studied. Here, the tests indicate that the linear
kernels achieve better results than the polynomial ones (p < 10−4), which are
still better than the RBF kernel.

Evaluation of the FNNs

Apart from SVR models, there are also other types of LB approaches which
are investigated in this experiment. One of them are FNNs, explored in the
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following section. Since the error values are not normally distributed, in this
case, non-parametric tests are applied.

As mentioned in Section 4.1.4, models with different configurations were
analysed. In order to investigate the impact of the model configuration, a
Friedman test comparing the results of all models was performed. This test
indicated that the error distributions of the models are differing significantly.
In order to show this difference and to compare the individual models, Table
4.5 was provided.

TABLE 4.5: Throughput Prediction (TPP) results including mean Normalized
Root Mean Square Error (NRMSE) values and pairwise comparison of different

Feedforward Neural Network (FNN) models, with their configurations.

Config. NRMSE Pairwise comparison

5 0.3788 5 and 4 have the same distribution (p = 0.2844)
4 0.3795 4 is smaller than from 6 (p = 0.0019)
6 0.3881 6 is smaller than from 7 (p = 0.0214)
7 0.3913 7 is smaller than from 3 (p = 0.0014)
3 0.4013 3 is smaller than from 2 (p = 0.0001)
2 0.4127 1 is smaller than from 2 (p < 10−4)
1 0.4150 1 and 0 have the same distribution (p = 0.1395)
0 0.4156

This table also shows, there is no significant difference regrading the pre-
diction performance between the first two models using the configurations
4 and 5, as illustrated in the Figures 4.8(a) and 4.8(b). Both of them are per-
forming significantly better than configuration 6, with a p-value for the prob-
ability that the error of 5 is smaller then the error of 6 being p = 0.0001.
However, as also other parameters, like the chosen FS, have an impact to the
model structure, in the following both models are used for testing the other
questions.

Different properties of the FS, e.g. using feature selection, ∆y or environ-
ment features are evaluated next. Due to the structure of ANNs and the pos-
sibility of hardware accelerators, the models can also be performed without
feature selection, as the work of Samba, Busnel, Blanc, et al. [33] highlighted
the increase in performance that results from adding more features. First,
models with and without feature selection are compared. Therefore, the FSs
FSI,e

∆y and FSI I,e
∆y are studied. A significance test for the models with configu-

rations 4 and 5 indicated that FSI,e
∆y performed significantly better than FSI I,e

∆y ,
with p < 10−4 in both cases.This leads to the conclusion that for TPP FNNs
without feature selection are recommended.

To determine whether a significant difference between the use of the dif-
ferential or absolute value of the TP can be determined, the FSI,e

∆y and 4 were

compared. In this experiment FSI,e
∆y is using ∆y and FSI,e

y is utilizing the plain
next TP value y. The comparison demonstrated that a differential TP value,
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as included in FSI,e
∆y should be taken, since the models using ∆y performed

better (p < 10−4).
One of the main topics of this thesis is to evaluate the performance of the

approach developed in Chapter 3. For this purpose, the FSs with and without
environment features were compared. This includes in particular FSI

∆y and

FSI,e
∆y, by applying both best performing models to them, a detailed analysis

indicated that the error of FSI,e
∆y is significantly smaller than the error of FSI

∆y.
This p-value of both is less than 10−4.

In order to put the FNNs in relation to the SVRs mentioned above, the
best representatives with the most suitable FS are also compared with each
other. This is on the one hand a linear SVR with the FSI I,e

y and on the other
hand two FNNs with the configurations 4 and 5 using FSI,e

∆y. In both cases
the FNN performed significantly better with a p-value of less then 10−4.

Since the taxonomy described in Section 2.3 explained the importance
of previous values for time series prediction, a comparison of FNNs using
also previous values, should be investigated. Therefore, the FSI,e

∆y and FSI,e,l
∆y

were compared, as both contain basically the same features. Except for one
difference, FSI,e,l

∆y includes the last four values of each feature. The results
proved that the FS with previous values performed significantly better with
a p-value of less than 10−4. So, previous values should be taken into account.
This leads to the use of RNNs, special ANNs, developed for predicting time
series.

Evaluation of the RNNs

To be able to take advantage of the possibilities offered by RNNs, in the fol-
lowing a special type of RNNs containing LSTM cells, is studied. This is
mainly due to the processing results achieved with this kind of models [115].
As already described in Section 4.1.4, there are different configurations of
LSTM RNNs, which are taken into account. To indicate if LSTM RNNs mod-
els are performing differently, a Friedman test comparing the results of all
models was performed. This test came to the conclusion that with a p-value
of less than 10−4, the models performance is different. The test was done
using the FSI,e,l

∆y , which contains all features including environment ones as
well as their previous values. The results of the single configurations with
their mean NRMSE and a pairwise comparison is given in Table 4.6.

It indicates, that the configuration 5 performs better than 6 (p = 0.0075)
and 2 (p = 0.0060). For the configurations 5 and 2 the hypothesis that they
are distributed differently can be re-checked. (p = 0.3327).

To verify, whether the assumptions regarding the FSs for the evaluation
of the FNNs can also be transferred to the RNNs, different FSs are compared
with each other in the following. This starts with the evaluation of the feature
selection. An analysis comparing FSI I,e,l

∆y , which uses feature selection with
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TABLE 4.6: Throughput Prediction (TPP) results including mean Normalized
Root Mean Square Error (NRMSE) values and pairwise comparison of different

Recurrent Neural Network (RNN) models, with their configurations.

Config. NRMSE Pairwise comparison

5 0.3848 Error of 5 is smaller than from 6 (p = 0.0075)
2 0.3930 Error of 5 is smaller than from 2 (p = 0.0060)
6 0.3962 Error of 2 and 6 are same distributed (p = 0.3327)
1 0.3976 Error of 6 and 1 are same distributed (p = 0.3327)
0 0.4020 Error of 1 is smaller than from 0 (p = 0.0027)
7 0.4077 Error of 0 and 7 are same distributed (p = 0.1104)
3 0.4079 Error of 7 and 3 are same distributed (p = 0.6440)
4 0.4091 Error of 3 and 4 are same distributed (p = 0.9552)

the FSI,e,l
∆y using all values, indicates that the performance or FSI,e,l

∆y is signifi-
cantly better with a p-value of less than 10−4. The same test was performed,
to evaluate the usage of absolute and differential output values. The FSI,e,l

∆y

was compared with FSI,e,l
y , showing a better result using differential output

values as done in FSI,e,l
∆y (p < 10−4). The last experiment on LSTM RNNs

with different FSs, was done to evaluate the impact of environment features
as described in Chapter 3. Therefore, FSI,e,l

∆y and FSI,l
∆y were compared. With a

p-value of less then 10−4, the Wilcoxon signature rank test indicated that the
FSI,e,l

∆y is performing better.
In order to evaluate the performance impact of LSTM RNNs, also a com-

parison to FNNs similar to the one described above is needed. This is done,
by evaluating the LSTM RNN using configuration 5 and FSI,e,l

∆y versus the
FNNs using configurations 4 and 5 and the same FS. The results indicate that
the LSTM RNN is performing significantly better with a p-value of 0.0016 in
both cases.

Evaluation of the Geo Grid

Apart from the LB models, also the LS grid based models need to be evalu-
ated. As pointed out in the previous models, the future position is not esti-
mated but taken as given. The prediction of the future position is a special
field of research as carried out by Altche and La Fortelle [207], which is not
considered in this thesis.

The median NRMSE of the whole model is 0.7224, which is much higher
than the error of the LB approaches. The histogram of the NRMSE value, cal-
culated by evaluation the test time series is given in Figure 4.11. It illustrates,
there is also a higher amount of NRMSE above 1.

One quality criterion is the entropy. To demonstrate the impact of entropy
to the prediction quality, two cells with the highest and lowest entropy are
studied. Figure 4.12 demonstrates that the Relative Error (RE) histogram of
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FIGURE 4.11: Histogram of the Normalized Root Mean Square Error (NRMSE)
calculated for the geo grid using the test dataset.

the cell with high entropy is in a much smaller range than the RE histogram
of the low entropy cell.
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FIGURE 4.12: Histograms of the Relative Error (RE) values, for the cells with
highest and lowest entropy.

It also shows that some cells are evaluated more often then other cells,
which resulted from the model building. For example, there are cells where
only one corner contains the test track, while other cells not only contain
longer parts, but also gain additional data points, since in these segments
there is a reduced driving speed and the data collection is based on time,
rather then on location distance.

Comparison of LS and LB Approaches

Since one of the key questions in this thesis is the comparison of LS and
LB approaches, this is done here with respect to TPP. As a benchmark of
SVR and FNN as well as of FNN and RNN already took place in above, this
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section focuses on the combination with the geo grid model. Therefore, the
best models of each technique were taken and a pairwise comparison with
the LS model was performed. The results of this test are listed in Table 4.7.
These point out, that any of the LB approaches using environment based
features outperform significantly the LS model.

that the LS model can be outperformed significantly by any of the LB
approaches using environment based features.

TABLE 4.7: Throughput Prediction (TPP) results including mean Normalized
Root Mean Square Error (NRMSE) values and pairwise comparison of different

Location Smoothing (LS) and Learning Based (LB) models.

Model NRMSE Pairwise comparison

Grid 0.7224
SVR 0.4796 Error of SVR is smaller than from Grid (p < 10−4)
FNN 4 0.3795 Error of FNN 4 is smaller than from Grid (p < 10−4)
FNN 5 0.3788 Error of FNN 5 is smaller than from Grid (p < 10−4)
RNN 0.3848 Error of RNN is smaller than from Grid (p < 10−4)

Comparison of Location Independence

Another relevant question is the location independence of LB approaches.
In order to study this aspect, the models were evaluated on a dataset of the
Aschaffenburg test track. Also here, the LSTM RNN outperforms both FNNs,
but with a mean NRMSE of 0.6429 the prediction is much worse than on
the Amberg track. Therefore, it must be determined whether the prediction
model added any values. Since LS methods cannot be used on new routes,
a basic TSM, named baseline, is applied. It simply takes the last value as
prediction for the next one. This is illustrated in the Figure 4.13.

An evaluation of the location independence is showing that the baseline
is performing significantly better than the LSTM RNN prediction. This in-
dicates that the model is not general enough to predict the TP at completely
different locations.

4.1.6 Conclusion

Following, key results are summarized with respect to the questions that
were raised at the beginning of this section. In summary, the TPP experi-
ments demonstrate that the approach proposed in Chapter 3, the use of en-
vironment based features, significantly improves the results. Furthermore, it
can be concluded that RNNs in particular LSTM RNNs perform better than
ANNs and SVRs. Regarding the location independence, it has been proven
that a location-independent prediction is not yet possible with sufficient re-
liability using the presented model. It is also worth to note that the use of
difference values of the output (∆y) improves the prediction of ANNs sig-
nificantly, which is not the case for SVRs. A similar behaviour can also be
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FIGURE 4.13: Throughput Prediction (TPP) for a part of the Aschaffenburg eval-
uation dataset, showing the baseline and Long Short-Term Memory (LSTM) Re-
current Neural Network (RNN) predictions as well as the measured Throughput
(TP). The diagram indicates that the LSTM RNN predictor provides not only a
lagging Throughput (TP) value as given by the baseline, but also takes other

features into account.

observed in relation to the use of the feature selection presented in Section
4.1.3. While it gives advantage for SVRs, it does not improve ANNs. The
evaluation also pointed out the difference in tuning the model by using var-
ious kernel functions for the SVRs or configurations for the ANNs. It also
demonstrated that the RNNs can outperform the FNNs with respect to TPP,
while the latter is capable of overshooting SVRs. This is also supported by
the fact that the FSs including past values of the features perform better than
those not using them. Concerning the comparison of LS and LB models, it
can be stated that the LB algorithms achieve better results. As the studied
models are able to predict 15 s ahead, also the targeted requirement regard-
ing the takeover time is fulfilled.

4.2 Latency Prediction

The second NQP analysed is the Latency (LA). It is a very important param-
eter for vehicular communication, since a lot of driving related tasks need to
be handled within a certain time span. Calculating LA is done as explained
in Section 2.1.2. A further important difference in this experiment is the
changed setup for the measurement, shown in Section 4.2.1. This allows the
simultaneous measurement of two mobile network connections, which en-
ables comparing two providers. The prediction of another NQP also means
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that the feature selection analysis must be performed repeatedly, which is
shown in Section 4.2.3. The rest of the section follows the same structure
than Section 4.1.

4.2.1 Technical Setup

In order to measure the LA, some modification and additions to the TCP-
Analyzer [52] where made. The most significant of them is the recoding of
two mobile network connections at the same time. This change is not di-
rectly related to measuring the LA. It is made to enable the comparison of
two providers. In addition, it allows the scheduling of traffic over different
networks by providing the parameter via the named pipe output module. A
figure of the tool is shown in 4.14. In order to describe the differences in more
detail, the section in structured in input, processing and output modules.

LTE modem
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Network
interface
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LTE modem
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Network
interface
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gg
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Input Processing Output

FIGURE 4.14: Structure of the measuring tool, including the input, processing
and output modules as presented in pre-published results [52].

Input Modules

In order to enable the simultaneous measurement of multiple modules, multi
threading was introduced. Therefore, the code was restructured and further
modified in methods and classes. The main thread then starts the GPS mod-
ule first and waits for a first position to be provided by the module. After
receiving an initial position, the measurement of the network interfaces and
LTE parameters module is started. Having the LTE parameters of both mod-
ules received, the network interface measurements are stopped and the GPS
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position of the end of the measurement is recorded. So, in comparison to
the original TCP-Analyzer, which only records the position of the start of a
measurement, this tool is recording the start and end position, which is more
accurate in situations where the vehicle is moving. In order to get equidistant
time spans for the measurement, also an idle time between the start and end
of the network interface measurements is implemented. After the measure-
ment of all parameters, the data is sent to the processing module. Processing
is done in an different thread in order to ensure that the next measurement
can be done in parallel.

Processing Modules

The calculations in the processing module are the same, the module itself
is changed to handle e.g. two position points. Since the LA calculation car-
ried out in Section 2.1.2 assumes the tp to be very low compared to tl, this is
proven in the following. Therefore, a measurement of tp during the collec-
tion of the dataset was done. For this purpose, the program tcpdump is used.
It allows the recording of all network traffic and is also part of the same li-
braries which were used to build the network parameter module [208]. A
cumulation distribution function of the measured tp values is provided in
Figure 4.15.
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FIGURE 4.15: Cumulation distribution function of the measured Processing
Time (tp) values. In order to show the Latence Time (tl) is much smaller than

the tp (tp � tl) by two orders of magnitude.

Since the tp is smaller than 2.96 · 10−2ms in more the 95% of the measure-
ments and the smallest RTT values in the dataset is 13.40ms, it can be con-
cluded that tp is smaller than tl by two orders of magnitude. Therefore, the
approximation tl ≈ RTT

2 is valid and the RTTSYN and RTTFIN measurement
can be used to calculate the LA tl.
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FIGURE 4.16: Database model of the SQLite database used by the measurement
tool presented in Figure 4.14, to store the Latency (LA) measurements.
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Output Modules

Of course due to the changes in the input modules also the output modules
have changed. First of all they have to handle the additional data coming
from the second mobile network module and the changes reading the po-
sition data collection. As this doubles the data values that have to be pro-
cessed, the structure of the data was adapted. For the SQLite output module
this means, for example, that a database model using multiple tables was
used instead of the single table approach shown in Section 4.1.1. The new
database model presented in Figure 4.16 contains ten tables, each fulfilling
a special task. The first one is the measurement table. It contains mainly
references and wraps the data measured in one cycle together. As shown
in the input section, each measurement contains two GPS table entries, stor-
ing the start and end position data of a measurement. In addition for each
mobile network module, a parameter entry is added. Here, the LTE parame-
ters are represented. This entries are linked to the device information as well
as to the information regarding the neighbouring cells. Furthermore, each
measurement contains two references to the RTT values acquired during this
cycle, one per mobile network module.

Measured TCP traffic

Apart from the measurement tool, the traffic used for the measurements is
adapted. Since the LA is only recorded during starting and finishing a con-
nection, the transmitted data is shortened in length. One TCP transmission
only contains one payload message. This allow a faster repetition of LA mea-
surements and a more efficient data collection. In the case that more than one
TCP transmission is measured within one measurement cycle, the arithmeti-
cal mean of the measurements is taken. In case of a handshake exceeding the
measurement cycle, the value is recorded at the end of the handshake and
therefore included in the date of the last cycle.

4.2.2 Datasets and Preprocessing

After setting up the measurement tool explained above, the data can be recorded.
Data collection was carried out on various test tracks with each track serv-
ing a specific purpose. The main course is the Amberg track (see Figure 2.12),
where 130 389 data points were recorded. It is the same track, that is also used
for TPP and the data is taken for training and validating prediction models.
Since the whole training dataset is built from this track, most data points are
collected here. In order to show the potential of location independence of
LB models, a dataset of the Trisching track (see Figure 2.14) were acquired,
containing 28 525 data points. Those are taken for evaluation of the LB model
only and do not contribute to the training data.

All recorded data measurements are then processed using the techniques
described in Section 3.4. As mentioned during the preprocessing explana-
tion, the number of data samples is changing, which is reflected in Table 4.8.
The table shows that the impact of the filters on the amount of data points is
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TABLE 4.8: Dropout of the filter during pre-processing the Latency Prediction
(LP) dataset. A description of the filters is given in Section 3.4.2.

Filter Amberg % Trisching %

Data points 130 389 100.00 % 28 525 100.00 %
CNT-Filter 2 0.00 % 1 0.00 %
Remaining data points 130 387 100.00 % 28 524 100.00 %

not significant. But this number is increased by the downsampling step, to
281 622 points for Amberg and 61 841 points for Trisching. The shifting re-
duces this numbers. So after the pre-precessing the Amberg dataset contains
265 422 data points and the Trisching dataset contains 52 541 data points. As
shown for the TPP, the samples for the Amberg dataset are then split into a
training and a validation set along the time series, using a ratio of 90 % for
training and 10 % for validating. which results in 240 069 points for training
and 25 353 for validation. In addition, the data points of the Trisching dataset
are also used for validation. Since data of two providers are acquired, all
datasets contain data from two providers, which makes them more general
than a dataset containing only one provider like the TP dose.

4.2.3 Feature Selection

The feature selection for the LP follows the same pattern already described in
Section 4.1.3. First, the features are reduced using linear correlation feature
selection algorithms. Then, the time dependency of the features is investi-
gated. The resulting FSs are structured as shown in Table 4.3, also the used
features are differing as listed in Table B.2. However, this feature selection
is only applied to LB approaches, since the LS methods just need the coor-
dinates and the parameters, which should be predicted in order to build a
model. In order to stay compatible with the methods used in Section 4.1, also
new features like the neighbouring cells are not investigated further.

Selecting Features using Linear Relations

The feature selection performed for this experiment is based on a randomly
selected sample of 50 000 data points. The use of this reduced sample length
is necessary to speed up the process. To remove irrelevant features, a vari-
ance analysis is performed first. In this experiment, all features with a vari-
ance of less than 1 % are removed, as described in Section 4.1.3.

The removal of redundant features, is also performed. To select the amount
of features, the PCA was performed as shown in Section 3.4.6. This results
in the use of the 17 features for FSs without location dependent features and
26 feature for FSs with location dependent features. The ranking of the fea-
tures was calculated with the same methods that were used for the TP feature
selection. The results are shown in the Figure 4.17.
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(b) Feature selection excluding location
based features.

FIGURE 4.17: Resulting features, according to the feature selection done on the
Amberg RTT dataset including their ratio of impact for several selection meth-

ods..

Time Dependence

In reference to the investigation carried out in Section 4.1.3, correlation be-
tween LA and other network parameters can be used as part of the feature
selection process. This is particularly useful because, as already mentioned
in the TPP experiment, RNN models contain a temporal relationship that
should be taken into account. Therefore, the goal of the in-depth analysis is
to evaluate the optimal storage length of the RNN. The length of the input
memory has crucial effects on training and model accuracy.

Also here, for the analysis the widely used autocorrelation function is
applied to determine the correlations in sequential data based on the sampled
time series. Like in Section 4.1.3 the confidence interval is set to 95 %, in order
to define the number of relevant points. The results of the most relevant
parameters are shown in box plot 4.18. This visualisation shows that the
median of the autocorrelation values for all features is covered within a delay
of four data points, indicated by a dashed line. Accordingly, this memory
length is used to create the training dataset for the RNN models.
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FIGURE 4.18: Autocorrelation analysis of imported features in order to deter-
mine the number of past values for the Recurrent Neural Networks (RNNs),

used for Latency Prediction (LP).

Resulting FSs

After performing the feature selection, the FSs are built using the same struc-
ture as shown in Section 4.1.3. The feature of the core FSs are shown in Table
B.2 in the appendix.
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4.2.4 Prediction Methods

After the selection of the relevant features, this section is discussing the used
prediction models for the LP. As already done in the previous section, this
section only contains the differences and new results regarding the LA. An
in-depth description of the methods is provided in Section 4.1.4.

Geo Grid

The comparison of LS models with the LB ones is one of the goals of this
work. First, the grid based approach is studied. Therefore, all measurements
of the Amberg training dataset are snapped to a grid with an edge length of
500 m. The model is then built using the SQL query shown in 4.1. Due to
variations in GPS measurements, the grid contains only 70 cells instead of 71
as show in Section 4.1.4. So in the TPP, there is one more cell built for the
Amberg City Center, having the Gauss–Krüger [203] projection coordinates
4490500 for the longitude and 5477000 for the latitude and 37 measurements
for TPP.

In order to validate the rest of the cells, an entropy analysis is performed.
A low cell entropy means that a prediction can be made. On the other hand,
if the entropy leads to a uniform distribution, the process is completely ran-
dom. As shown by Yao, Kanhere, and Hassan [136], the RTT values are di-
vided into 7 symbols (A-G), which result in a maximum entropy of 2.81 for
a random process. A complete analysis of the entropy per cell as well as the
number of data samples used to build the cell model is illustrated in Figure
4.19.

A closer look into the analysis shows much lower entropy values between
0 and 0.18 with 75% being lower than 0.09. It can be assumed that the process
is not fully random and the map can be used for predicting the RTT. The
entropy values are even lower than those from the TPP shown in Figure 4.6.

In order to make such prediction, an aggregation function is needed. In
this model, the average RTT of all measurements within a cell is taken. A
visualisation of this model is shown in Figure 4.20. Also in the case of LP,
it only make sense to validated LS models against LB model outputs for the
same area. This model is used for location dependent comparison with the
LB model for the Amberg test track.

SVR

Apart from the LS model, also LB approaches are studied. The first group
of SVRs is using linear, also polynomial and radial basis function kernels. In
this experiment all FSs not including lags are investigated using a training
set of 240 069 data samples.
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FIGURE 4.19: Entropy analysis of the Amberg geo grid map for Latency Pre-
diction (LP). Including the entropy (E) and the number of samples (N) used for

model building. The map is based on Open Street Map (OSM) [162] data.

FIGURE 4.20: Visualisation of a grid based prediction model with an edge length
of 500 m used for Round-Trip Time (RTT) prediction. The cell value represents
the predicted RTT in this cell. The map is based on Open Street Map (OSM) [162]

data.
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FNN

Also for the LP, apart from SVRs, FNNs are explored. As outlined in the TPP
experiment, different configurations are shown in Section 4.1. These struc-
tures are combined with a number of activation functions shown in Figure
2.7, as well as various optimizers. For the loss function also here MSE and
NRMSE depending on the FS are used. The FNNs are applied to a set of
FSs, including all FSs without lag as well as the FS with lags without feature
selection (FSI,l

∆y, FSI,e,l
∆y , FSI,l

y and FSI,e,l
y ).

LSTM RNN

The third LB algorithm is the LSTM RNN. Since this type of model achieved
the best result regarding TPP, it is highly interesting to study it also for the
LP. Similar to the investigation done on FNNs, different combinations of ac-
tivation functions, optimizers, training epochs and loss functions were ex-
plored. Since, in order to use the potential of RNNs, also the previous values
of features are needed, only the FSs including lags are used in the context of
LSTM RNNs.

4.2.5 Evaluation

For evaluation the performance of the prediction results, the same metrics as
explained in section 4.1.5 are used. This means, that the NRMSE is calculated
and pairwise comparisons are performed. In order to evaluate the models, a
dataset is required. To obtain an independent test dataset, certain routes on
the test track were held back after pre-processing and are allocated for this
purpose. It contain 25 353 data points. Since the aim is to determine the error
of a ride, the data points were grouped into time series of 100 points each,
as done for the TPP evaluation. So, in total this results in 254 test time series
for the Amberg test track, which is used to compare the different presented
models. The goal of this comparison is to answer the questions raised in
Section 4.1.5, in particular:

• Can the prediction be improved by using feature selection as shown in
4.1.3?

• Is there a significant difference between FSs with and without environ-
ment features?

• Does the use of differential result values (∆y) improve the prediction?

• Has the usage of various kernel functions an impact on the prediction
result of SVR based prediction?

• Which layout regarding to the number of hidden layers and neurons
achieves the best prediction performance for FNNs?

• Is there a significant difference between the prediction result of SVR
and FNN models?
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• Can the use of an FS including the past feature values improve the FNN
prediction?

• Which layout regarding to the number of hidden layers and neurons
achieves the best prediction performance for ANNs?

• Is there a significant difference between the prediction result of FNN
and RNN models?

• When applying LS and LB model on the same test dataset. Which algo-
rithm performs best?

• Can LB algorithms be used to predict data points of a different location?

In order to do so, first the different LB models are studied. This is fol-
lowed by the LS model and a comparison between all types of algorithms. In
addition, the location independence of the LB techniques is analysed. Similar
to previous sections, also here all significance analyses are performed with a
confidence level of 5 %.

Evaluation of the SVRs

Starting with the LB technique, an investigation of the SVRs is shown in this
section. Different FSs and kernel functions are compared. Therefore, the
error values of all models are calculated, to test whether they are normal dis-
tributed. The two-sided Kolmogorov-Smirnov test proves that this is not the
case for all models. In consequence, also in the experiment non-parametric
tests like the Wilcoxon signature rank test [151] and the Friedman test [155]
are conducted. In order to illustrate the usage of a pairwise comparison, Fig-
ure 4.21(a) shows two models. The SVR using a polynomial kernel and FSI I I,e

y
having mean NRMSE value of 0.1295. It is performing significantly better
than the SVR using a linear kernel and FSI I,e

y , which has a mean NRMSE
value of 0.0967. The Figure 4.21(b) shows, that the model has more outliers
in the range of 0.3 to 0.4, but also a higher number of occurrences in the range
of 0.05 to 0.1.

A Friedman test is performed to show the significant difference between
the NRMSE values of the models. It proves that the results of the models
are significantly different (p < 10−4). To provide also information about the
relationship between the individual models, both the median of the errors
and the comparison between the models are determined. Both are given in
Table 4.9. To figure out, which model performs best, a one-sided test was also
carried out on the models. The results indicated that the best model is using
FSI I,e

y and an RBF kernel. It is performing significantly better than the second
model using FSI I I,e

y (p < 10−4). This second model can also outperform the
RBF model using FSI I

y (p < 10−4) and the polynomial kernel model using
FSI I,e

y , which have according to the two-sided test, the same distribution of
error values (p = 0.6950).
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(a) NRMSE values of the linear SVR using
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(b) NRMSE values of the polynomial SVR
using FSI I I,e

y .

FIGURE 4.21: Histograms of the Normalized Root Mean Square Error (NRMSE)
values, calculated for different Support Vector Regressions (SVRs), used for La-

tency Prediction (LP).

TABLE 4.9: Latency Prediction (LP) results including mean Normalized Root
Mean Square Error (NRMSE) values and pairwise comparison of different Sup-
port Vector Regression (SVR) models, with their Feature Sets (FSs) and kernels.

No. Kernel FS NRMSE Pairwise comparison

1 RBF FSI I,e
y 0.0695 Error of 1 is smaller than from 2 (p < 10−4)

2 RBF FSI I I,e
y 0.0750 Error of 2 is smaller than from 3 (p < 10−4)

3 poly. FSI I,e
y 0.0997 Error of 3 and 4 are same distributed (p = 0.6950)

4 RBF FSI I
y 0.0822 Error of 4 is smaller than from 5 (p = 0.0009)

5 RBF FSI I I
y 0.0841 Error of 3 and 5 are same distributed (p = 0.0362)

6 poly. FSI I I,e
y 0.1295 Error of 5 is smaller than from 6 (p = 0.0427)

7 poly. FSI I
y 0.0991 Error of 6 is smaller than from 7 (p = 0.0066)

8 poly. FSI I I
y 0.1270 Error of 7 is smaller than from 8 (p = 0.0009)

9 linear FSI I,e
y 0.0967 Error of 8 is smaller than from 9 (p = 0.0362)

10 linear FSI I I,e
y 0.0975 Error of 9 is smaller than from 10 (p < 10−4)

11 linear FSI I
y 0.0984 Error of 10 is smaller than from 11 (p < 10−4)

12 linear FSI I I
y 0.0992 Error of 11 is smaller than from 12 (p < 10−4)

To investigate the effect of kernel functions, tests with the same FS, namely
FSI I,e

y , but different kernels are executed. This setup includes SVRs with lin-
ear, polynomial and RBF kernels. Here the RBF one is outperforming both
other kernels with p < 10−4.

Evaluation of the FNNs

In addition to the SVR models, also other types of LB approaches like the
FNNs are explored. Since also here the error values are not normally dis-
tributed, non-parametric tests are applied. One of the main differences re-
garding FNNs are their different configurations. In order to investigate the
impact of them, a Friedman test comparing the error values of all models
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using the same FS was performed. This test indicated that the error distribu-
tions of the models are differing significantly (p < 10−4).

The comparison of the individual models is presented in Table 4.10. It
indicates that the model using configuration 5 is performing best and out-
performs the configuration 7 significantly with p = 0.0010. Configuration
7 on the other hand is significantly performing better than the two models
using the configurations 4 (p = 0.0008) and 1 (p < 10−4), which have ac-
cording to the two sided, the same distribution of error values (p = 0.2190).
However, as also other parameters, like the chosen FS, have an impact to the
model performance, In the following, models using configuration 5 are used
for evaluation.

TABLE 4.10: Latency Prediction (LP) results including mean Normalized Root
Mean Square Error (NRMSE) values and pairwise comparison of different Feed-

forward Neural Network (FNN) models, with their configurations.

Config. NRMSE Pairwise comparison

5 0.0684 Error of 5 is smaller than from 7 (p = 0.0010)
7 0.0699 Error of 7 is smaller than from 4 (p = 0.0008)
4 0.0710 Error of 4 and 1 are same distributed (p = 0.2190)
1 0.0721 Error of 7 is smaller than from 1 (p < 10−4)
2 0.0768 Error of 1 is smaller than from 2 (p < 10−4)
0 0.0771 Error of 2 is smaller than from 0 (p = 0.0030)
3 0.0800 Error of 0 is smaller than from 3 (p < 10−4)
6 0.1029 Error of 3 is smaller than from 6 (p < 10−4)

After the evaluation of the model configuration, different FS parameters,
like feature selection, usage of ∆y or usage of environment features are eval-
uated next.

Since the use of hardware accelerators also allow the training of FNN
models using many features, the question whether the usage of the feature
selection improves the models performance should be investigated. There-
fore, the models using FSI,e

∆y and FSI I,e
∆y are compared. The Wilcoxon signature

rank test proves that there is a significance difference between the two mod-
els. The probability that the model using FSI,e

∆y has a smaller error than the

model using FSI I,e
∆y is p < 10−4. This leads to the conclusion that for LP FNNs

without feature selection are recommended.
Another interesting question is the impact of using the differential or ab-

solute value of the RTT as values to be predicted by the model. Therefore,
the FSI,e

∆y and FSI,e
y are compared. Regarding the LA experiment, the FSI,e

∆y

is performing significantly better than the FSI,e
y (p < 10−4). Consequently,

these results recommend the use of differential RTT values.
One of the main goals of this thesis is to evaluate the performance of using

location dependent features. To answer this question, the FSI,e
∆y including

location attributes and the FSI
∆y excluding them are compared. A detailed
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analysis, applying both best performing models to them, indicated that the
error of FSI,e

∆y is significantly smaller than the error of FSI
∆y. This p-value is

less than 10−4.
After analysing the best model and FS for FNN based LP, a comparison

between SVR and FNN can be presented. For that purpose, the FNN using
configuration 5 and FSI,e

∆y is evaluated against the best SVR using an RBF

kernel and FSI I,e
y . The result of the pairwise comparison indicated that the

FNN is performing significantly better with p = 0.0130. This leads to the
question whether FNNs can outperform RNNs.

On order to prove this, an FS using memory is applied to the FNN. This
network is then compared with the FS using no memory. Results show that
the model using FSI,e

∆y has a significantly smaller error than the model using

FSI,e,l
∆y (p < 10−4) or FSI,e,l

y (p < 10−4). This validates that applying an FS
using memory to an FNN, does not improve it. In the next paragraph, an
evaluation using RNNs is made in order to prove this.

Evaluation of the RNNs

To use the potential of time dependences of the features, this paragraph stud-
ies the usage of RNNs containing LSTM cells. As already mentioned in Sec-
tion 4.1.4, there are different configurations of LSTM RNNs, which are con-
sidered. To indicate if these configurations are performing significantly dif-
ferent, a Friedman test compares the results of all models. It shows that with
a p-value of less than 10−4, the model results are different. The test was done
using the FSI,e,l

∆y , which contains all features including environment ones as
well as their previous values. The mean NRMSE of the single configurations
as well as a pairwise comparison is given in Table 4.11.

TABLE 4.11: Latency Prediction (LP) results including mean Normalized Root
Mean Square Error (NRMSE) values and pairwise comparison of different Re-
current Neural Network (RNN) models using FSI,e,l

∆y , with their configurations.

Config. NRMSE Pairwise comparison

7 1.0687 Error of 7 is smaller than from 3 (p < 10−4)
3 1.0778 Error of 3 is smaller than from 1 (p < 10−4)
1 1.0885 Error of 1 is smaller than from 4 (p = 0.0003)
4 1.0908 Error of 4 and 0 are in the same way distributed

(p = 0.8501)
0 1.0929 Error of 0 is smaller than from 2 (p < 10−4)
2 1.0960 Error of 2 is smaller than from 6 (p < 10−4)
6 1.1022 Error of 6 is smaller than from 5 (p < 10−4)
5 1.1051
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The pairwise comparison indicates that the configuration 7 performs bet-
ter than 3 (p < 10−4), which shows significantly better results than configu-
rations 1 (p < 10−4). For in the following, configuration 7 is used in order to
evaluate different FS properties.

The first FS property study is the use of feature selection. Therefore, FSI,e,l
∆y

is compared with FSI I,e,l
∆y . A Wilcoxon signature rank test, comparing the dis-

tribution of the resulting NRMSE values, shows for the model using FSI I,e,l
∆y

a significantly smaller error than for the model using FSI,e,l
∆y , with a p-value

of less than 10−4. This indicates, that an FS using feature selection should by
used in order to achieve better results. Since the configuration evaluation is
made on FSI,e,l

∆y , it is repeated with FSI I,e,l
∆y . The results of this repetition are

provided in Table 4.12. It shows a different result reading the performance of
the various configurations.

TABLE 4.12: Latency Prediction (LP) results including mean Normalized Root
Mean Square Error (NRMSE) values and pairwise comparison of different Re-
current Neural Network (RNN) models using FSI I,e,l

∆y , with their configurations.

Config. NRMSE Pairwise comparison

2 0.0703 Error of 2 is smaller than from 6 (p < 10−4)
6 0.0720 Error of 6 is smaller than from 5 (p < 10−4)
5 0.0749 Error of 5 is smaller than from 1 (p < 10−4)
1 0.0776 Error of 1 is smaller than from 7 (p < 10−4)
7 0.0834 Error of 7 is smaller than from 0 (p < 10−4)
0 0.0862 Error of 0 is smaller than from 3 (p = 0.0185)
3 0.0879 Error of 3 is smaller than from 4 (p < 10−4)
4 0.1034

Using FSI I,e,l
∆y configuration 2 is performing better than 6 in the pairwise

comparison (p < 10−4) and the error of 6 is significantly smaller than the
error of 5 (p < 10−4). Since all three models are outperforming configuration
7, the RNN using FSI I,e,l

∆y and configuration 2 are used for further comparison.
As shown in Section 4.1.5, regarding FS property it is worth to investi-

gate the usage of absolute and differential output values. Therefore, FSI I,e,l
∆y

was compared with FSI I,e,l
y , showing a better result using differential output

values as done in FSI I,e,l
∆y (p < 10−4). In addition, an evaluation of the new

approach of this thesis is done by comparing FSs with and without environ-
ment features as described in Chapter 3. In the context of the LA experiment
using LSTM RNNs, this means a comparison of FSI I,e,l

∆y and FSI I,l
∆y . Here the

Wilcoxon signature rank test indicated that the FSI I,e,l
∆y has a smaller error

(p < 10−4), which indicates that the usage of environment features brings a
significant benefit.
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Now, after the evaluation of the FSs and the model configuration, a com-
parison between the FNN and the RNN is made. It indicates that the FNN
using configuration 5 and FSI,e

∆y is performing significantly better than the
LSTM RNNs, with a p-value of 10−4.

Evaluation of the Geo Grid

In order to compare the LB models against LS, the grid based models need
to be evaluated. As pointed out in the TPP experiment in Section 4.1.5, the
histogram of the NRMSE value is calculated. It is given in Figure 4.22. The
histogram illustrates that the most errors are at 0.185, which is much higher
than the mean NRMSE of the LB approaches. To prove this, a pairwise com-
parison is shown in the next section.
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FIGURE 4.22: Histogram of the Normalized Root Mean Square Error (NRMSE)
calculated for the geo grid using the test dataset.

But before, also for the LA experiment, the impact of the entropy as a
quality criterion is studied. Therefore, two cells with the highest and lowest
entropy are analysed. Figure 4.23 demonstrates that the NRMSE of the cell
with high entropy is in a much smaller spectrum than the NRMSE of the low
entropy cell. This indicates that a low entropy does not necessarily also mean
a low error.

Comparison of LS and LB Approaches

After analysing various prediction approaches, this section evaluates one of
the key question in this thesis, the comparison of LS and LB models. There-
fore, the best models of each technique were taken and a pairwise compar-
ison with the LS model was performed. The result of this study is given in
Table 4.13. It clearly shows, that all LB models can outperform the grid based
LS approach.
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FIGURE 4.23: Histograms of the Relative Error (RE) values, for the cells with
highest and lowest entropy.

TABLE 4.13: Latency Prediction (LP) results including mean Normalized Root
Mean Square Error (NRMSE) values and pairwise comparison of different Lo-

cation Smoothing (LS) and Learning Based (LB) models.

Model NRMSE Pairwise comparison

Grid 0.1788
SVR 0.0695 Error of SVR is smaller than from Grid (p < 10−4)
FNN 0.0684 Error of FNN is smaller than from Grid (p < 10−4)
RNN 0.0703 Error of RNN is smaller than from Grid (p < 10−4)

Comparison of Location Independence

Apart of the evaluation of the algorithms, also an analysis of the location in-
dependence of LB approaches is performed. In order to study this aspect, the
best FNN and RNN models were evaluated on a dataset of the Trisching test
track as shown in Figure 2.14. The calculated results of this test are provided
in Table 4.14. Accordingly the RNN is outperforming the FNN, regarding
location independence. However, since the mean NRMSE of the location
independent dataset is much higher, it might be the case that both models
are location dependent. Therefore, it must be determined whether the pre-
diction model added any values. Since LS methods cannot be used on new
routes, a basic TSM, called baseline, is applied. It simply takes the last value
as prediction for the next one.

TABLE 4.14: Latency Prediction (LP) results including mean Normalized Root
Mean Square Error (NRMSE) values and pairwise comparison of different Lo-
cation Smoothing (LS) and Learning Based (LB) models on the Trisching dataset.

Model NRMSE Pairwise comparison

RNN 0.2003 Error of RNN is smaller than the FNN one (p < 10−4)
FNN 0.2100

An evaluation of the comparison between this baseline and the LSTM
RNN prediction shows that the RNN is performing significantly better than
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FIGURE 4.24: Latency Prediction (LP) for a part of the Trisching evaluation
dataset, showing the baseline in dashed orange and the Long Short-Term Mem-
ory (LSTM) Recurrent Neural Network (RNN) predictions in orange as well as
the measured Round-Trip Time (RTT) in grey. The diagram indicates that the
LSTM RNN predictor is not only a lagging RTT value as given by the baseline,
but also takes other features into account as it is not just following the RTT like

the baseline.

the baseline (p < 10−4), which has a mean NRMSE of 0.2101. The fact that
both algorithms are performing differently can also be seen in Figure 4.24.
This indicates that the model is general enough to predict the RTT at various
locations.

4.2.6 Conclusion

Consolidating the results of this evaluation, it can be concluded: The LA ex-
periments demonstrate that the approach proposed in Chapter 3, the use of
environment based features, significantly improves the results. Furthermore,
they indicate that FNNs are outperforming SVRs. Regarding the comparison
of FNN and RNN network evaluation on the same location, FNNs are per-
forming better. But regarding to location independence, RNN are more suit-
able. Also applying FSs including past values of the features to FNNs, did
not result in better performance. However, also in the experiment, the usage
of various kernel functions for the SVRs or configurations for the ANNs had
an impact on the achieved results. Similar is true for the use of feature selec-
tion as presented in Section 4.2.3. The SVRs and RNNs performed better with
an FS that includes feature selection, while this was not the case for FNNs.
Concerning the comparison of LS and LB models, it can be stated that the LB
algorithms achieve better results. The result of this experiment also indicated
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that the use of LB algorithms in different locations is possible and achieves
better results than a simple baseline prediction. As shown in the TPP, also
in this experiment, it is worth to note that the use of difference value of the
output (∆y) improves the prediction of ANNs significantly.





Conclusion 5

To provide a conclusion of the work done in this theses, this chapter is struc-
tured in four sections. The first one is summarizing up the work performed.
The second section is giving an overview of the contributions to the research
questions outlined in Section 1.1. The limitations of the thesis are mentioned
in Section 5.3. Finally, an outlook to possible directions for future work is
provided.

5.1 Summary

This thesis was strongly oriented to the practical problem of predicting the
NQPs TP and LA of mobile network based TCP connection in moving ve-
hicles. Therefore, Chapter 1 described the motivation for solving the issue
and outlined the gaps and questions regarding it. These Research Questions
(RQ), which are presented in Section 1.1, also shape the remaining structure
of the work. Chapter 2 deals with the needed parameters and methods as
well as with the test tracks and datasets used. The ingredients required to
make a prediction. Chapter 3 contains the novelty of the chosen approach,
the extraction of environment features, which can be used to optimize pre-
diction using LB algorithms. Geo location is used to collect environment data
for the map provider. This chapter also described the data prepossessing in
order to create the final training and test datasets.

The main part, the answer to the scientific questions is presented in Chap-
ter 4. Here the experiments are shown, which used the new approach. First,
the experiment regarding TPP is presented in Section 4.1. It indicates that
RNN based models using the new features outperform the models that do
not use them. But concerning the location independence no improvement
using the new technique can be shown. The second experiment deals with
the prediction of LA. It also shows the advantages of the new approach. In
this experiment it can also be shown that a location independent prediction
is possible by using the new approach. The full answers to the RQ are given
in in the flowing.

5.2 Contributions

Based on our findings and outcomes, our main contribution in this work
is the development and evaluation of new approaches to combine environ-
ment features with state of the art LB techniques. This was done on the two
NQPs TP and LA. While first conclusions of each experiment are given in the

97
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Sections 4.1.6 and 4.2.6, this section summarizes the results as well as other
aspects of this work. In addition, the contributions regrading the RQ raised
in Section 1.1 are given:

This includes, for example, determining whether a prediction over a pe-
riod of several seconds is possible as requested in RQ1. It is necessary to
cover a possible transition (from automated to manual driving) scenario. To
solve this issue, the LB models were trained to make a prediction for the next
15 seconds. Since this thesis shows that such a prediction is possible, with
the error rates summarized in Table 5.1. Therefore, RQ1 can be considered as
achieved, especially when using ANNs.

Furthermore, it should also be investigated, whether an approach is possi-
ble, which combines environmental conditions and LB techniques and how
such an approach performs in comparison with other LB and LS methods
(RQ3). Such method was developed in Chapter 3 and evaluated in Chapter
4. Therefore, the geo location and the knowledge of a standard map were
used in order to generate additional environmental feature. Sections 4.1.5
and 4.2.5 demonstrated that this new technique clearly outperforms LB and
LS methods, on data collected for the same test track.

In RQ3 it is asked whether such a method also offers the possibility of
being applied to all relevant parameters. Since this approach works for both
TPP and LP, as shown in Chapter 4. It can be said, that forecasting both
NQPs with the same prediction method with could by e.g. a FNN models is
possible.

However, regarding the ability of a location independent prediction as
mentioned in RQ5, the results are not so obvious. While it is not possible
for TPP with the used training and test data, in case a location independent
prediction of the RTT it is more inaccurate, but still feasible. Since the loca-
tion independent test tracks also differ, the influence of the similarity of the
test tracks on the result cannot be fully clarified. Moreover, the collection of
additional data could also improve the TPP.

Concerning the used LB methods, it can be said that the use of ANNs has
advantages regarding there performance compared to the use of SVRs. While
RNNs perform best in case of TPP, the evaluation of the LP demonstrates that
FNNs beat all other investigated methods in this task significantly, which
answers RQ5.

In addition, this work gives also a contribution to the question on the
use of differential output (∆y) instead of the absolute one. Here, the results
pointed out that a use of ∆y for prediction NQPs improves the accuracy of
ANNs significantly.
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TABLE 5.1: Overview of selected models studied in this thesis, including the
Network Quality Parameter (NQP) with should be predicted. The taxonomy as
provided in Figure 2.4. The use in- and outputs and the prediction error using

the Normalized Root Mean Square Error (NRMSE) metric.

NQP Tax. Model In-/Outputs NRMSE

TPP

LB

SVR using a
linear kernel

Selected LTE parameter plus
environment features as in-
put and the TP as output
(FSI I,e

y ).

0.4796

Selected LTE parameter as in-
put and the TP as output
(FSI I

y ).
0.4962

FNN using five
hidden layer

All LTE parameter plus en-
vironment features as input
and the TP as output (FSI,e

∆y).
0.3795

All LTE parameter as input
and the TP as output (FSI

∆y).
0.3999

All LTE parameter plus en-
vironment features with four
lags as input and the TP as
output (FSI,e,l

∆y ).

0.3795

RNN using one
hidden layer
with LSTM
cells

All LTE parameter plus en-
vironment features with four
lags as input and the TP as
output (FSI,e,l

∆y ).

0.3848

All LTE parameter with four
lags as input and the TP as
output (FSI,l

∆y).
0.4035

LS Grid Location as input and TP as
output. 0.7224

LP LB

SVR using a
RBF kernel

Selected LTE parameter plus
environment features as in-
put and the RTT as output
(FSI I,e

y )

0.0695

Selected LTE parameter as in-
put and the RTT as output
(FSI I

y )
0.0822

FNN using six
hidden layer

All LTE parameter plus en-
vironment features as input
and the RTT as output (FSI,e

∆y)
0.0684

All LTE parameter as input
and the RTT as output (FSI

∆y)
0.0801
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RNN using one
hidden layer
with LSTM
cells

Selected LTE parameter plus
environment features with
four lags as input and the
RTT as output (FSI I,e,l

∆y )

0.0703

Selected LTE parameter with
four lags as input and the
RTT as output (FSI I,l

∆y )
0.0847

LS Grid Location as input and RTT as
output. 0.1788

An overview of selected approaches studied in this thesis including there
der inputs and outputs is presented in Table 5.1. It summaries that for pre-
dicting the LA FNNs perform best and for TPP RNNs are outperforming the
other models.

5.3 Limitations

This work is investigating the predictability of NQPs in moving mobile net-
works. Since this is only done on the TCP level, no statement can be made
regarding the transferability to other layers or protocols. So depending on
the development of future applications, it could be possibly that the studies
have to be done again on a new dataset considering that developments.

Another limitation is the use of LTE networks, also the new mobile net-
work standard 5G is started to role out over motorways and urban areas.
At the time of data collection for this work the test tracks were not covered
by 5G network. There is a possibility that the use of other frequencies as
well as the use of other low level techniques or parameters have an impact
to the result of this theses. Therefore, a verification of the results using 5G
datasets is needed in order to deploy this method on traffic sent over this cel-
lular network type. Since environment parameters like density and height of
buildings have also high impact on 5G networks [209], the approach shown
in this work is also worth being taken into consideration in such a case.

Finally, the number of data points and various test tracks also represents
a restriction. So in order to make a deeper analysis of the location indepen-
dence, more data for training and more different locations for the evaluation
should be used. In addition, the algorithm does not include the position pre-
diction of the next location, since this is according to Zhang, Liu, Liu, et al.
[132] also an open issue. So a dataset or algorithm including this uncertainty
would be a meaningful extension to the methods evaluated in this thesis.
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5.4 Outlook

This thesis is proposing a new approach to combine environment properties
with LB algorithms in order to predicting the network quality of moving mo-
bile network clients. It hat also shown a successful evaluation of this novel
method that allows to predict the network traffic multiple seconds ahead. In
order to use the full potential of the work shown here, it is recommended to
implement the models in a communications unit, which acts on the predic-
tion e.g. by shaping the mobile network traffic.

With the upcoming popularity of Multipath TCP, a protocol that is started
to being implemented in the Linux kernel, such a control of the network
traffic becomes more and more important, since it can be used for packet
scheduling via various connections and therefore different mobile cellular
network providers. A survey providing a more detailed view on the packet
scheduling in Multipath TCP is given by Y. L. Kimura, C. S. F. Lima, and
Loureiro [210].

The proposed prediction method in this thesis is not limited to ground
based vehicles. Since research and development of Unmanned Aerial Vehi-
cles (UAVs) are increasing over the last years, UAV applications are also good
candidates for making use of this method. Particularly when it comes to
communication over longer distances, the use of the mobile network would
be very useful.

As this thesis has shed light on feature extraction by using map data, this
technique could also be relevant for other forecasts. Also another way of us-
ing a LB technique inside a map grid cell as described by Sliwa, Falkenberg,
Liebig, et al. [25] is worth to be considered in further work.

Overall, the developed algorithms contribute to the goal of a more reliable
mobile network connection, which is needed in many cases of automated
driving or flying. So, more attention could be attracted to the field presented
by this thesis and the relevant work could stimulate future research.
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A

A.1 Summary of prediction approaches for TPP

TABLE A.1: A holistic summary of relevant methods used for Transmission Con-
trol Protocol (TCP) Throughput Prediction (TPP), structured by the authors, pre-
diction models taxonomy category presented in Figure 2.4, the used scenarios
illustrated in Figure 2.5, the input feature and there error function of evaluation.

The table is based on pre-published results [77]

Reference Tax. Sce. Input features Error function /
Evaluation

He et al. [43] EB S1 RTT, Loss Rate,
Average Bandwidth

RMINSRE =√
1
n ∑n

i=1(
R̂i−Ri

min(R̂i,Ri)
)2

Hwang and Yoo
[62] EB S1 RMSRE

Padhye et al.
[63] EB S1 Sender, Receiver,

Packets Sent, TD, TO,
RTT, Time Out

E =
∑n

i=1
R̂i−Ri

Ri
n

Cardwell et al.
[64] EB S1 RE

Goyal et al.
[65] EB S1 N/A

Huang and
Subhlok [66] EB S1 Pattern of the Past

Throughput Values
B̂−B

B × 100%

Borzemski and
Starczewski
[61]

MB S1 MAPE

Miller et al.
[211] MB S1 Past TP values in

equidistant time
intervals

RE

Liu and Lee
[39] MB S2 RMSRE

Zhani et al.
[212] TSM S1 RMSRE

Continued on next page
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Table A.1 – Continued from previous page

Reference Tax. Sce. Input features Error function /
Evaluation

Yoshida et al.
[81] TSM S2 RMSRE

Zhou et al.
[213] TSM S1 SER

Karrer [214] TSM S1 Past TP values in
equidistant time
intervals

E(P, ∆t) = ∑i(
ŷi−yi

yi
)2

Sadek and
Khotanzad
[215]

TSM S1 MAE, SER

Torres et al.
[216] TSM S2 MSE

Wei et al. [31] LB,
TSM S3 RMSRE

Hu et al. [217] LB S1 MAE
Zhani et al.
[212] LB S1 RMSRE

El Khayat et al.
[60] LB S1

Sender, Receiver,
Packets Sent, TD, TO,
RTT, Time Out, Time
Out, Loss Rate

MSE, R2

Mirza et al.
[218] LB S1

File Size, Queuing
Delay, Loss, Avail-
able Bandwidth

E = (ŷ−y)
min(ŷ,y)

Borzemski and
Starczewski
[61]

LB S1

File Size, Average
Window Size, Aver-
age SS, ACKs, Loss
Rate, Data Packages,
TP, Transfer Start
Time, Average RTT,
Time of Day

MAPE

Samba et al.
[33], [67] LB S2,

S3

RSRP, RSRQ, RSSI,
Indoor or Outdoor,
Distance to Cell,
Speed, Average Cell
TP, Average Number
of Users, Additional
Network Manage-
ment Parameters

R2

Continued on next page
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Table A.1 – Continued from previous page

Reference Tax. Sce. Input features Error function /
Evaluation

Ghasemi
[219] LB S2

Time, Phone Model,
Network Operator,
Environment Type,
State of Phone’s
Screen, RSRP, RSRQ,
RSSI, . . .

RMSE

Raca, Zahran,
Sreenan, et al.
[220]

LB S2

average throughput,
CQI, RSRP, RSRQ,
SNR, number of
devices connected
to the same cell and
physical resource
block

absolute value of rel-
ative error (ARE)

Lee et al.
[221] LB S1 Sender, Receiver,

RTT, Throughput RMSE

Wei et at. [32] LB S2,
S3

Throughput, RSSI,
Cell ID, Location NRMSE

Yao et al.
[135] LS S3 Timestamps, Loca-

tion, Bandwidth
Number of Audio
Quality Drops

Yue et al. [87] LS S2,
S3

Throughput, RSRP,
RSRQ, CQI RE

Pögel and Wolf
[34] LS S3

Location, Cellular
Network Type, CQI
for HSPA, RSSI,
RSCP, Average Band-
width, Latency

Diagram of Differ-
ence between ŷ and
y

Murtaza et al.
[134] LS S3

TP (Mean, Standard
Deviation, W and p-
value), Location

N/A

Curcio et al.
[71] LS S3 Route, Speed, Loca-

tion, TP N/A

Hao et al. [72] LS S3
Mobile Device ID,
Timestamp, Speed,
Location, Bandwidth

Bandwidth Predic-
tion Rate

Riiser et al.
[222] LS S3 Location, Bandwidth N/A

Continued on next page
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Table A.1 – Continued from previous page

Reference Tax. Sce. Input features Error function /
Evaluation

Kamakaris and
Nickerson
[223]

LS S3

Location, Bandwidth

N/A

Estevez and
Carlsson
[137]

LS S3 NRMSE

Opitz et al.
[224] LS S3

D(Crate) =
{d(µn−1, Crate(s, n))‖n >
1}

Taani and Zim-
mermann
[225]

LS S3 Mean Error

Sliwa et al.
[25] LS+LB S3

Location, Velocity,
Direction, RSRP,
RSRQ, SNIR, CQI

Diagram of predicted
TP over measured TP

Nikolov,
Kuhn,
McGibney,
et al. [226]

LS S3 SNR, RSRP, RSRQ,
RSSI RMSE, MRE
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A.2 Summary of prediction approaches for LP

TABLE A.2: A holistic summary of relevant methods used for TCP Latency Pre-
diction (LP)„ structured by the authors, prediction models taxonomy category
presented in Figure 2.4, the used scenarios illustrated in Figure 2.5, the input

feature and there error function of evaluation.

Reference Tax. Sce. Input features Error function /
Evaluation

Hu, Wang,
and Sun [59] LB S1 ISP, Time, Geo-

distance, AE, RE

Beverly,
Sollins, and
Berger [227]

LB S1 IP, latency MAE

Autoren
noch rauss-
chreiben.
XXX [228]

LB S2

rsrp rsrq, rssi, times-
tamp, band, cellId,
frequency, imei, imsi,
mcc, mnc

f1-score

Belhaj and
Tagina [54] LB S1

Past RTT values in
equidistant time
intervals

MSE

Thang, Le,
Nguyen, et al.
[229]

EB S1

Rizo-
Dominguez,
Munoz-
Rodriguez,
Vargas-
Rosales, et al.
[230]

EB S1 RMSE

Sulei Xu and
Wei Liang
[231]

TSM S1 MSE

Nunes,
Veenstra,
Ballenthin,
et al. [232]

LB S3

Yasuda and
Yoshida [233]

LB,
TSM S2 NLPD, CRPS
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service prediction. B

B.1 Features for TPP

TABLE B.1: A list of all features used for Throughput (TP) prediction and their
Feature Set (FS) I-III with and without environmental features e.

Feature I I, e I I I I, e I I I I I I, e

STD_S__TP_DL X X X X X X
STD_S__RTT_FIN X X X X X X
STD_S__RTT_AVG X X X X X X
MEDIAN__TP_DL X X X X X X
MEAN__TP_DL X X X X X X
MEAN__RTT_AVG X X X X X X
MEAN__BUILDING_LEVELS X X X
LU_NATURAL_IS_VILLAGE_GREEN X X X
ARFCN_IS_6300 X X X X X X
ARFCN_IS_1801 X X X X X X
MEAN__SINR X X X X X X
MAX__RSRP X X X X X X
MAX__LTE_N_UMTS X X X X X X
MAX__INTERF X X X X X X
MAX_DRIFT__TP_DL X X X X X X
MAX_DRIFT__RTT_FIN X X X X X
MAX_DRIFT__RTT_AVG X X X X X
MAX_DRIFT__LTE_N_UMTS X X X X X X
MAX_DRIFT__INTERF X X X X X X
LU_ANTHROPOLOGICAL_IS_RESIDENTIAL X X X
HIGHWAY_IS_MOTORWAY X X X
DRIFT__TP_DL X X X X X X
AMENITY_IS_PARKING X X X
MEAN__SPEED X X X X
MEAN__INTRAF X X X X
MAX__SPEED X X X X X
ARFCN_IS_1836 X X X X X
STD_S__LTE_N_GSM X X X
MIN__TP_DL X X X X X X
MIN__SINR X X X X X X
MIN__RSRQ X X X X X X
MIN__RSRP X X X X X
MEDIAN__SINR X X X X X X
MEDIAN__RSRQ X X X X X X
MEDIAN__INTRAF X X X X

Continued on next page
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Table B.1 – Continued from previous page
Feature I I, e I I I I, e I I I I I I, e
MEDIAN__BUILDING X X
MEAN__RTT_FIN X X X X X X
MEAN__RSSI X X X X X
MEAN__RSRQ X X X X X X
MEAN__BUILDING X X
MAX__TP_DL X X X X X X
MAX__SINR X X X X X X
MAX__RSRQ X X X X X X
MAX__INTRAF X X X X X
MAX__BUILDING_LEVELS X X X
STD_S__SPEED X X
STD_S__SINR X X
STD_S__RTT_SYN X X
STD_S__RSSI X X
STD_S__RSRQ X X
STD_S__RSRP X X
STD_S__INTRAF X X
STD_S__INTERF X X
STD_S__BUILDING_LEVELS X
STD_S__BUILDING X
MIN__SPEED X X
MIN__RTT_SYN X X
MIN__RTT_FIN X X
MIN__RTT_AVG X X
MIN__RSSI X X
MIN__LTE_N_GSM X X
MIN__INTRAF X X
MIN__BUILDING_LEVELS X
MIN__BUILDING X
MEDIAN__SPEED X X
MEDIAN__RTT_SYN X X
MEDIAN__RTT_FIN X X
MEDIAN__RTT_AVG X X
MEDIAN__RSSI X X
MEDIAN__RSRP X X
MEDIAN__LTE_N_GSM X X
MEDIAN__BUILDING_LEVELS X
MEAN__RTT_SYN X X
MEAN__RSRP X X X
MEAN__LTE_N_GSM X X
MAX__RTT_SYN X X
MAX__RSSI X X X X
MAX__LTE_N_GSM X X
MAX__BUILDING X
MAX_DRIFT__SPEED X X
MAX_DRIFT__SINR X X
MAX_DRIFT__RTT_SYN X X
MAX_DRIFT__RSSI X X
MAX_DRIFT__RSRQ X X
MAX_DRIFT__RSRP X X
MAX_DRIFT__LTE_N_GSM X X
MAX_DRIFT__INTRAF X X
MAX_DRIFT__BUILDING_LEVELS X
MAX_DRIFT__BUILDING X

Continued on next page
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Table B.1 – Continued from previous page
Feature I I, e I I I I, e I I I I I I, e
LU_NATURAL_IS_RECREATION_GROUND X
LU_NATURAL_IS_MEADOW X
LU_NATURAL_IS_FOREST X
LU_NATURAL_IS_FARMYARD X
LU_NATURAL_IS_FARMLAND X
LU_ANTHROPOLOGICAL_IS_RETAIL X
LU_ANTHROPOLOGICAL_IS_INDUSTRIAL X
LU_ANTHROPOLOGICAL_IS_COMMERCIAL X
HIGHWAY_IS_SECONDARY X
HIGHWAY_IS_RESIDENTIAL X
HIGHWAY_IS_PRIMARY X
DRIFT__SPEED X X
DRIFT__SINR X X
DRIFT__RTT_SYN X X
DRIFT__RTT_FIN X X
DRIFT__RTT_AVG X X
DRIFT__RSSI X X
DRIFT__RSRQ X X
DRIFT__RSRP X X
DRIFT__LTE_N_UMTS X X
DRIFT__LTE_N_GSM X X
DRIFT__INTRAF X X
DRIFT__INTERF X X
DRIFT__BUILDING_LEVELS X
DRIFT__BUILDING X
AMENITY_IS_UNIVERSITY X
AMENITY_IS_SCHOOL X

B.2 Features for LP

TABLE B.2: A list of all features used for Latency Prediction (LP) and their Fea-
ture Set (FS) I-III with and without environmental features e.

Feature I I, e I I I I, e I I I I I I, e

STD_S__INTRAF X X X X X X
MIN__RTT_SYN X X X X X X
MIN__RTT_FIN X X X X X X
MIN__RTT_AVG X X X X X X
MIN__INTERF X X X X X X
MEDIAN__RTT_SYN X X X X X X
MEDIAN__RTT_FIN X X X X X X
MEDIAN__RTT_AVG X X X X X X
MEAN__RTT_FIN X X X X X X
MEAN__INTERF X X X
MAX__INTERF X X X X X X
LU_NATURAL_IS_VILLAGE_GREEN X X X
ARFCN_IS_6400 X X X X X X
ARFCN_IS_6300 X X X X X X
ARFCN_IS_1801 X X X X X X
STD_S__RTT_FIN X X X X X X
STD_S__RTT_AVG X X X X X X
STD_S__RSRQ X X X X X X

Continued on next page
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Table B.2 – Continued from previous page
Feature I I, e I I I I, e I I I I I I, e
STD_S__LTE_N_UMTS X X X X X X
MIN__BUILDING_LEVELS X X X
MEAN__RTT_SYN X X X X X X
MEAN__RTT_AVG X X X X X X
MEAN__LTE_N_UMTS X X X X X
MEAN__BUILDING_LEVELS X X X
MAX__RSSI X X X X X
MAX_DRIFT__RTT_FIN X X X X X X
MAX_DRIFT__RTT_AVG X X X X X X
MAX_DRIFT__RSRQ X X X X X X
MAX_DRIFT__LTE_N_UMTS X X X X X
DRIFT__RTT_FIN X X X X X X
ARFCN_IS_3749 X X X X X
ARFCN_IS_1444 X X X X X X
ARFCN_IS_1300 X X X X X X
STD_S__INTERF X X X X X X
MIN__RSSI X X X X X
MIN__RSRP X X X X X
MEDIAN__RSSI X X X X X
MEDIAN__RSRQ X X X X X
MEDIAN__RSRP X X X X X
MEDIAN__INTERF X X X X X X
MEDIAN__BUILDING_LEVELS X X X
MEDIAN__BUILDING X X X
MEAN__RSSI X X X X X
MEAN__RSRQ X X X X X
MEAN__RSRP X X X X X X
MAX__RSRP X X X X X
MAX__INTRAF X X X X X X
MAX__BUILDING_LEVELS X X X
MAX_DRIFT__INTRAF X X X X X X
MAX_DRIFT__INTERF X X X X X X
HIGHWAY_IS_PRIMARY X X X
STD_S__SPEED X X X X
STD_S__RSSI X X X X
STD_S__RSRP X X X X
STD_S__BUILDING_LEVELS X X
STD_S__BUILDING X X
MIN__SPEED X X X X
MIN__RSRQ X X X X
MIN__INTRAF X X X X
MIN__BUILDING X X
MEDIAN__SPEED X X X X
MEDIAN__INTRAF X X X X
MEAN__SPEED X X X X
MEAN__INTRAF X X X X
MAX__RSRQ X X X X
MAX_DRIFT__SPEED X X X X
MAX_DRIFT__RSSI X X X X
MAX_DRIFT__RSRP X X X X
MAX_DRIFT__BUILDING_LEVELS X X
MAX_DRIFT__BUILDING X X
LU_NATURAL_IS_RECREATION_GROUND X X
LU_NATURAL_IS_FOREST X

Continued on next page
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Table B.2 – Continued from previous page
Feature I I, e I I I I, e I I I I I I, e
LU_NATURAL_IS_FARMYARD X X
LU_NATURAL_IS_FARMLAND X X
LU_ANTHROPOLOGICAL_IS_RESIDENTIAL X X
LU_ANTHROPOLOGICAL_IS_INDUSTRIAL X X
LU_ANTHROPOLOGICAL_IS_COMMERCIAL X X
HIGHWAY_IS_SECONDARY X X
HIGHWAY_IS_RESIDENTIAL X X
DRIFT__RSSI X X X X
DRIFT__RSRQ X X X X
DRIFT__RSRP X X X X
DRIFT__LTE_N_UMTS X X X X
DRIFT__INTERF X X X X
DRIFT__BUILDING_LEVELS X X
AMENITY_IS_PARKING X X
MAX__BUILDING X
LU_NATURAL_IS_MEADOW X
HIGHWAY_IS_MOTORWAY X
DRIFT__SPEED X X
DRIFT__RTT_AVG X X
DRIFT__INTRAF X X
DRIFT__BUILDING X
AMENITY_IS_SCHOOL X
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