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I am also grateful to Dr. André Freitas and Dr. Adamantios Koumpis
for the technical guidance and living advice during challenging moments of
the development of this thesis.

Additionally, I would like to recognise the crucial support I received
from Mrs Stephanie Pauli in all sort of bureaucratic and administrative
tasks within the University of Passau.

This work could not be completed without the endless love and support
of my wife Rachel Sales. Words cannot express the dedication and care you
have been giving to our family.

The research reported by this thesis was supported by a research fund
from the National Council for Scientific and Technological Development,
Brazil (CNPq).

iii





Abstract

Programming is a key skill in a world where businesses are driven by dig-
ital transformations. Although many of the programming demand can be
addressed by a simple set of instructions composing libraries and services
available in the web, non-technical professionals, such as domain experts and
analysts, are still unable to construct their own programs due to the intrinsic
complexity of coding. Among other types of end-user development, natural
language programming has emerged to allow users to program without the
formalism of traditional programming languages, where a tailored seman-
tic parser can translate a natural language utterance to a formal command
representation able to be processed by a computational machine. Currently,
semantic parsers are typically built on the top of a learning method that
defines its behaviours based on the patterns behind a large training data,
whose production frequently are costly and time-consuming. Our research
is devoted to study and propose a semantic parser for natural language
commands targeting a scenario with low availability of training data. Our
proposed semantic parser follows a multi-component architecture, composed
of a specialised shallow parser that associates natural language commands to
predicate-argument structures, integrated to a distributional ranking model
that matches the command to a function signature available from an API
knowledge base. Systems developed with statistical learning models and
complex linguistics resources, as the proposed semantic parser, do not pro-
vide natively an easy way to associate a single feature from the input data
to the impact in system behaviour. In this scenario, end-user explanations
for intelligent systems has become a strong requirement to increase user
confidence and system literacy. Thus, our research designed an explana-
tion model for the proposed semantic parser that fits the heterogeneity of
its multi-component architecture. The explanation model explores a hier-
archical representation in an increasing degree of technical depth, providing
higher-level explanations in the initial layers, going gradually to those that
demand technical knowledge, applying different explanation strategies to
better express the approach behind each component. With the support
of a user-centred experiment, we compared the utility of different types of
explanations and the impact of background knowledge in their preferences.
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1.1 Programming to the Masses

The market demand for automation increases yearly pushed by the advances
in information technologies (IT), which as a side effect boosts the demand for
IT professionals. In the United States in 2018, there were more than 220,000
open positions for software developers without qualified people to fill them
(The App Association, 2018), whereas Europe suffers now from a shortage
of up to 500,000 IT professionals (Empirica, 2017). As traditional business
faces new waves of digital transformation, there is no sign of reduction in
this demand, especially considering that programming has become a key skill
in almost every industry, including the automotive, healthcare, hospitality,
transportation and even food (Westerman and Bonnet, 2015).

Many programming tasks, however, require neither the exercise of deeper
computer science skills nor sophisticated software engineering, consisting of
the composition of functions and the semantic harmonisation of data flows
across different components (Paternò and Wulf, 2017). This is typically
the case for analytic tasks or small-scale business processes, which do not
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pose high requirements for robustness or performance under critical condi-
tions. However many non-technical professionals such as domain experts
and business analysts are still unable to build their own software due to the
intrinsic complexity of coding (Sales et al., 2017). Such a complexity comes
from the formalism of traditional programming languages and the technical
knowledge to understand and integrate multiple software artefacts.

1.2 End-User Programming

The field of end-user programming has responded to this issue by proposing
methods and tools to free up non-technical users to program without the
syntactic, vocabulary and formal constraints of traditional programming
languages (Paternò and Wulf, 2017). We define end-user programming as
“programming to achieve the result of a program primarily for personal,
rather public use” (Ko et al., 2011).

While this definition distinguishes the nature of the programme, we still
need to characterise the end users. Blackwell (2017) classifies end users into
three groups: those who like programming, those who find programming
useful and those who believe they will be good at programming. Among
other differences, the groups can be understood from a motivational point
of view. While the first and third groups are motivated from an intrinsic
desire, moved from an aesthetic vision of programming, the second has a
more pragmatic perception, moved by the benefits the technology can offer
and evaluating the trade-off of dedicating time and attention to both learning
how to program and automating a task. This second group represents the
target user profile of natural language programming for our research.

For instance, some repetitive manual work executed in a business context
is the typical end-user task we are interested in. Despite being feasible to
be automated, those tasks usually are not big enough to call the attention
of the IT department, or the company has not any IT department at all,
such as small ventures and liberal-professional offices.

Among other techniques for end-user development, our thesis is focused
on a natural language programming approach, whose core tasks concern the
ability to parse a natural language utterance into a data representation able
to be executed by a computational system.

1.3 The Semantic Parsing Problem

Our task of semantic parsing of natural language commands consists of map-
ping a natural language command to a formal representation, called function
signature, from an API Knowledge Base. The parser is responsible for (i)
identifying the suitable function signature, and (ii) matching correctly spans



Introduction 5

of the commands to the respective parameter values. Assuming the follow-
ing natural language command:

Write to newton@example.com asking him to take a look at the
NYT today.

The natural language command targets a specific function signature
named “send an email” present in the API Knowledge Base. Besides iden-
tifying the intended function signature, the semantic parser also needs to
both (i) identify “newton@example.com” and “take a look at the NYT to-
day” as argument values and (ii) figure out to which parameters they should
be assigned, which in this case correspond respectively to “to address” and
“message”.

In the context of our research, we name function call the instantiation
of a function signature describing the function name along with values for
its parameters, mapped partially or totally, as shown below:

function name: send an email
params: message=“take a look at the NYT today”

to address=“newton@example.com”

We formalise the target problem as follows. Let F be an API Knowledge

Base composed of a set of k function signatures (f1, f2, . . . , fk ). Let fi =
(ni , li ,Pi) be an element of F , where ni is the function’s name, li is the
function’s provider, and Pi is the set of function’s parameters. Let f �i be a call
of fi , which also holds values for their parameters, totally or partially. Let
ci be a natural language command which semantically represents a target
function call f �i . The parser aims at building a ranking model which, given
a set of function signatures F and a natural language command c, returns
a list B of ordered function calls, satisfying the command intent.

This task is materialised by the data set obtained from the Task 11 of the
SemEval 2017, named End-User Development using Natural Language (Sales
et al., 2017, 2018a). The main challenge of this task relies on the size of the
data set, which is composed of 185 annotated natural language commands
and a set of 2005 function signatures in the API Knowledge Base. There are
two types of commands. The first type is if-then recipe, which is composed of
a protasis, i.e. the conditional clause, and the apodosis, i.e. the main clause.
In this type of command each clause is associated to a function signature.
The second type is the solo direct command, which is associated to a unique
function signature. Function signatures are also of two types. Triggers
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comprehend function signatures meant to map to the conditional part of the
if-then command. Actions represent the set of function signatures meant to
map to the main clause of the if-then commands and to direct commands.

1.4 The Proposed Semantic Parser

Following a multi-component architecture, we propose a semantic parser
composed of a specialised shallow parser that associates natural language
commands to predicate-argument structures, integrated to a ranking model
supported by semantic relatedness metrics over a word embedding model.

1.4.1 Shallow Parser

Supported by a dependency grammar, the Shallow Parser relies on the
analysis of the syntactic functions of the constituents in the natural language
command to produce a lightweight representation defined as a predicate-
argument structure. In this structure, the predicate assumes the role of the
function descriptor, whereas the arguments assume the role of command ob-
jects. We define function descriptor as the minimal subset of tokens present
in the command that allows one to identify the target function signature in
the API Knowledge Base, and command objects is understood as potential
descriptors or parameters or their values. Figure 1.1 shows the grammar
dependency tree of the natural language command “Exchange 1000 Chilean
Pesos to Euro”, showing its constituents and the syntactic functions between
them.

Figure 1.1: The grammar dependency tree for the natural language
command “Exchange 1000 Chilean Pesos to Euros”, where the ar-
rows represent the syntactic function between the constituents.

Following a rule-based approach, the Shallow Parser identifies “Ex-
change” as the function descriptor and the trio “1000”, “Chilean Pesos” and
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“Euro” as command objects, which are later analysed by a Named Entity

Recogniser and a Type Inferencer, assigning them the tags of “num-
ber” for the first and “currency” for the others. Figure 1.2 presents the
predicate-argument structure of the natural language command obtained
from this process.

Exchange 1000 Chilean Pesos to Euro
<currency><number>

[qualifier]

<currency>

Figure 1.2: A natural language command, where “Exchange” rep-
resents the function description, and “1000”, “Chilean Pesos” and
“Euro” are command objects, whose semantic types are <number>,
for the first, and <currency>, for the last two.

1.4.2 Ranking Model

In an open semantic parsing setting, both the natural language command
and the function signatures are not constrained to a restricted vocabulary.
The role of the ranking model is to bridge the predicate-argument structure
to a set of relevant functions according to the user intent.

The ranking model operates by projecting word embedding vectors of the
text elements of both the predicate-argument structure and the API Knowl-

edge Base in a set of distributional hyperspaces as depicted in Figure 1.3.
The ranking model has two types of distributional hyperspaces. The

Predicate Hyperspace projects the vectorial representation of the func-
tion descriptor from a natural language command, together with the vecto-
rial representation of the function names1 of the function signatures present
in the API Knowledge Base. The vectorial representation is obtained from
a word embedding model, which enables the ranking model to measure the
semantic relatedness between them by geometry. Figure 1.3 depicts Pred-
icate Hyperspace in the left, where the red dot represents the function
descriptor and the other dots the function names.

Considering a nearest neighbours measure, the API Filter defines a
pivoting area, selecting the set of function signatures with higher semantic
relatedness. For each function signature present in the pivoting area, the
ranking model instantiates an Argument Hyperspace, projecting the set of
parameters from the function signature and the set of command objects
from the natural language command as represented in the right part of
Figure 1.3. As the Predicate Hyperspace, the Argument Hyperspace also
serves to measure the semantic relatedness between the projected elements.

1The function name is represented by n in the formal definition of the task, which is
described in Section 1.3
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QUERY:
Exchange 1000 Chilean Pesos to Euro.

from 

from_amount

to

..

.

Chilean Pesos

1000
Euro

for Currency Converter

Predicate Hyperspace
(Distributional Index)

Nudity detection

Send an email

for Make a payment

...

Euro
1000

Chilean Pesos

for Convert file

file

Output format ..
.

Chilean Pesos

Euro
1000

1

(...)

Currency Converter

Convert file

Make a payment

(...)

(...)

(...)

(...)
(...)

(...)

(...)

Target functions (into the pivoting area)

method

invoice

Filtering

pivoting area

2 Aligning parameters and 
generating features

d = “exchange”
O = {“1000”, “Chilean Pesos”, “Euro”}

Lightweight command representation:

Argument Hyperspace

Argument Hyperspace

Argument Hyperspace

Figure 1.3: Reading from left to right, first “Exchange”, which
represents the function descriptor, is projected into the Predicate

Hyperspace in which the full set of function signatures are already
represented. For each function signature into the pivoting area, the
model projects into the Argument Hyperspace (from, from amount,
to in the case of Currency Converter) and also projects the command
objects (1000, Chilean Pesos, Euro).

The semantic relatedness scores obtained from the hyperspaces, together
with other features later defined in this thesis, support the construction of
an Intent Classifier.

The Intent Classifier is a Random-Forest model trained with a task-
specific data set to discriminate relevant function calls, i.e. those that repre-
sent the user intent, from noisy function calls, i.e. whose function signatures
do not represent the user intent, or that associate object commands incor-
rectly to the set of parameters.

At the end, the ranking model produces a list of relevant function calls to
the final user combining the set of semantic relatedness scores from the Pred-
icate and Argument Hyperspaces and the score from the Intent Clas-

sifier.
Figure 1.4 shows a high-level representation of our proposed semantic
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parser, highlighting its multi-component nature.

Shallow Parser

Named Entity 
Recogniser

Type 
Inferencer

<natural language command>

<lightweight
command

representation>
Ranker

<ranking of function calls>

API 
Filter

Call 
Generator

Intent
Classifier

Figure 1.4: A high-level representation of the proposed semantic
parsing.

In Chapter 4, we present the proposed semantic parser, describing in
detail every of its components.

1.5 Explainable Artificial Intelligence

The improvement of learning models (Goodfellow et al., 2016) and the large
availability of annotated data (Halevy et al., 2009) and linguistic resources
(Miller, 1995) supported a strong evolution of natural language processing
(NLP) methods. Such evolution provides a paradigmatic shift in the abil-
ity to build systems that analyse information at scale, it also carries risks
associated with its prevalent models, such as the lack of transparency and
understanding (Biran and Cotton, 2017).

To a large extent, the high performance of intelligent systems comes with
the cost of transparency (Lipton, 2016), as linguistics resources and statis-
tical learning models are generated from an intricate set of computational
operations from which there is no easy way to associate a given input data
to its impact in the trained model.

Given these challenges, end-user explanations for intelligent systems
has become a strong requirement either to comply with legal requirements
(Goodman and Flaxman, 2017) or to increase the user confidence (Zhou
et al., 2016).

Natural language understanding systems that require the complex coor-
dination of multiple NLP components, e.g. POS-tagger, syntactic parsing,
named entity recogniser and task-oriented machine learning models, increase
the complexity, since each component can explore a large spectrum of re-
sources and learning methods (Burgess, 2018).

Although explanation models have been focusing on decision-making
tasks (Stumpf et al., 2007; Zhou et al., 2018; Vorm, 2018), natural lan-
guage understanding systems can also benefit from them. In addition to
increasing the users’ confidence on the system, explanation models can help
the users to adapt their writing styles to improve the system comprehension
according to the underline model.
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However, while delivering a human-interpretable explanation for a single
component is challenging, the problem is aggravated in the context of multi-
component systems (Lipton, 2016; Burgess, 2018).

From this perspective, our research proposes a hierarchical explanation
model for our semantic parser, which also supports an analysis of the human
aspects of explainability in the context of our task.

1.6 The Hierarchical Explanation Model

To deliver explanation for the proposed semantic parser, we designed a model
that explores a hierarchical representation in an increasing degree of techni-
cal depth. The proposed explanation model presents transparency-oriented
explanations in the higher levels, going gradually to explanations that de-
mand technical knowledge, and to the post-hoc ones.

Transparency-oriented explanations allow the user to understand the al-
gorithm’s mechanism of decision, by contemplating “the entire model at
once” and understanding each of its parts and its learning mechanism. Di-
versely, post-hoc explanations make use of interpretations to deliver mean-
ingful information about the intelligent model. Instead of showing how the
model works, it presents evidences of its rationale by making use of approxi-
mate textual descriptions and visual models (Lipton, 2016). Those concepts
will be detailed in Section 2.5.

We propose an explanation model composed of seven explanations grouped
into three layers.

The first layer describes the Shallow Parser, showing the rules acti-
vated to identify the command objects and to identify the semantic types,
highlighting the words and features involved in the process as depicted in
Figure 1.5. The second layer is associated with the dependency grammar,
depicting the syntactic functions of the constituents in the natural language
command.

The explanation model also provides a cluster-based visualisation for the
word embedding representation using the t-SNE approach (van der Maaten
and Hinton, 2008), where it plots the semantic elements that contribute in
the matching process from both the predicate-argument structure and the
function signatures, as shown in Figure 1.6.

In its lower layer, the explanation model is devoted to the most technical
explanations, which present the mathematical expression that defines the
final ranking function, along with the features used in both the expression
itself and in the Intent Classifier.

In Chapter 5, we describe the proposed hierarchical explanation model
in detail, depicting visually every of its layers.
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Figure 1.5: Explanations of the Shallow Parser and the Type

Inferencer.

Figure 1.6: Plot of the elements from the command and function
signature in which the cosine between the points represents the se-
mantic relatedness.

1.7 Research Questions, Hypotheses & Goals

We define the goal of our research by five research questions grouped as
semantic parsing research questions and explainability research questions.

The semantic parsing research questions aim, first, at determining whether
end-to-end encoder-decoder machine learning algorithms are appropriate to
construct a semantic parsing with a restriction in training data. Secondly,
assuming the hypothesis of failure, we also aim at assessing an alternative
multi-component approach that combines a specialised shallow parser that
associates natural language commands to predicate-argument structures, in-
tegrated to a ranking model supported by semantic relatedness metrics over
a word embedding model.

The explainability research questions aim at a user-centred analysis to
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evaluate both the helpfulness of different types of explanations, and the im-
pact of background knowledge in the preference for the different explanations
using the alternative multi-component parser as the object of study. Fur-
thermore, considering different intelligent applications, we also investigate
the user perception on the dilemma of accuracy versus explainability.

1.7.1 Semantic Parsing

We analyse the semantic parsing focusing on answering the following re-
search questions.

Research Question 1.1

How suitable are encoder-decoder machine learning models to
build a semantic parser for our target task, considering the low
availability of training data?

Typically, end-to-end encoder-decoder machine learning models are com-
posed of many layers of neurons, whose large set of parameters depend on
large data sets to learn a task (Du et al., 2018). Despite the existence of
theoretical models trying to estimate formally the minimum recommended
size of a data set for a given task, providing such a number is still impractical
(Du et al., 2018). To assess the performance of those models in an empir-
ical approach, we evaluate several neural network architectures based on
both sequence-to-sequence models and attention mechanisms varying their
hyper-parameters.

Research Hypothesis 1.2

The combination of a specialised shallow parser with type-inference
capabilities and a ranking model supported by relatedness mea-
sures on a word embedding model can be used to define a seman-
tic parser for natural language commands under the restriction
of low availability of training data.

We evaluate the proposed semantic parser in different settings. During
the experiments, we analyse the performance of the architecture considering
distinct implementations of API Filter and the Intent Classifier.

We evaluate three implementations of the API Filter. The first im-
plements the identity function, i.e. no filter is applied, aiming at measur-
ing the relevance of the filtering step. The other implementations are a
TF/IDF weighting scheme and the nearest neighbours method. For the In-
tent Classifier, we also evaluated three implementations: Random For-
est, Support Vector Machine and a simple Multilayer Perceptron Neural
Network (MLP).
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The evaluation was carried out in two scenarios: the first considers the
function calls ranked up to the 10th position (TOP-10), whereas the second,
up to the 50th (TOP-50).

We present and discuss the results regarding the semantic parsing re-
search questions in Chapter 6.

1.7.2 Explainability

We analyse the explanation model focusing on answering the following three
research questions.

Research Question 2.1

To what extent are users able, irrespective of their technical back-
ground, to improve their mental models by associating the lin-
guistic features from the explanations to the system’s behaviour?

Amental model is a cognitive representation of the external world to sup-
port the human reasoning process (Jones et al., 2011). The closer a person’s
cognitive representation to the external world, the higher the understanding
and the ability to take decisions about it (Johnson-Laird, 1983).

We designed an experiment to understand the effectiveness of the expla-
nations to help the end users understand the underlying model of the se-
mantic parsing. We recruited a group of people to participate in our study,
dividing them into the experiment group and control group. We asked both
groups to use the semantic parser respectively with and without access to
the explanations. At the end, they answered a set of questions designed to
evaluate the user’s mental model by associating linguistic features to the
system’s behaviour.

Research Question 2.2

How does the user knowledge in machine learning affect the pref-
erence for technical explanations?

This research question supports the analysis of the utility of different
types of explanations considering the impact of background knowledge in
the preferences of the users. We asked the participants of the treatment
group to assess the helpfulness of each of the explanations presented in
the model. Considering the background knowledge of each participant in
machine learning, we analyse their preferences for different types of expla-
nations.
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Research Question 2.3

To what degree are users willing to favour explainability over
accuracy given a certain contextual task?

For a large number of tasks, the techniques that deliver the higher perfor-
mance are also those that provide less transparency (Lipton, 2016). Despite
the evolution of the explanation methods in providing interpretability to a
raising range of learning models, the dilemma is still relevant (Ribeiro et al.,
2016). We asked the participants about their preferences for explainability
over accuracy in three hypothetical tasks:

• in the case of a command selection tool ;

• in the case of a cancer exam of a relative;

• in the case of a bank loan decision.

The results are analysed to assess whether the simple fact of having
been exposed to explanations and their concepts impact the preference of
the participants in the dilemma.

We present and discuss the results regarding the explainability research
questions in Chapter 7.

1.8 Contributions

This work provides the following contributions:

• The definition of a multi-component semantic parser for natural lan-
guage commands under the restriction of a small training set.

– The proposed distributional semantic parsing method operating
with a Nearest Neighbours API Filter and a Random Forest
Intent Classifier was able to solve up to 68% of the commands
considering the TOP-10 evaluation scenario, and up to 85% when
considering the TOP-50, with the mean reciprocal rank (MRR)
scoring around 0.3, which means that the target function calls
are placed on average at the 3rd or 4th positions.

• The definition of a hierarchical explanation model for the proposed
semantic parser.

– On average, participants in the treatment group gave scores 55%
higher than those in the control group (1.13 vs. 0.73, p < 0.05)
in mental model assessment.
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• A user-centred analysis of the preference for explanations, and the
user’s willingness to favour explainability over accuracy.

– Simple explanations associating the input provided by the user to
the features of the system are the more useful type of information
for a general audience.

– Users tend to favour accuracy over explainability. Among the
three hypothetical task, the bank loan decision diverges from the
others. We conjecture the possible social unfairness of a bank loan
decision incentivises the participants to increase their interest for
an explanation, whereas, for the other two hypothetical contexts
there are, in theory, no incentives for unfairness.

• An analysis of the existing literature with regard to semantic parsing
of natural language commands;

• Definition of a long-term vision for a new end-user programming model
centred on searching.

At its centre, this thesis concentrates on the proposal and evaluation of
a semantic parsing approach for natural language commands with low avail-
ability of training data. Additionally, our research proposes and evaluates
an explanation model analysing human factors related to the preferences on
the type of explanations and the perception of their relevance in contrast to
the system performance. This central part is complemented by broader dis-
cussions concerning the challenges and principles of end-user programming.

1.9 Publications

Different aspects of this work were disseminated on the following publica-
tions:

• Juliano Efson Sales, André Freitas, Siegfried Handschuh, A User-
centred Analysis of Explanations for a Multi-component Semantic Parser,
25th International Conference on Natural Language & Information
Systems - NLDB, Germany, 2020.

• Juliano Efson Sales, André Freitas, Douglas Oliveira, Adamantios
Koumpis, Siegfried Handschuh, Revisiting Principles and Challenges
in Natural Language Programming, 13th International Joint Confer-
ence on Knowledge-Based Software Engineering, Cyprus, 2020.

• Juliano Efson Sales, André Freitas, Siegfried Handschuh, An Open Vo-
cabulary Semantic Parser for End-User Programming using Natural
Language, 12th IEEE International Conference on Semantic Comput-
ing (ICSC), USA, 2018 (Best Student Paper Award).
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• Juliano Efson Sales, Leonardo Souza, Siamak Barzegar, Brian Davis,
André Freitas and Siegfried Handschuh, Indra: A Word Embedding
and Semantic Relatedness Server, 11th Language Resources and Eval-
uation Conference (LREC), Japan, 2018.

• Juliano Efson Sales, André Freitas, Siegfried Handschuh, SemEval-
2017 Task 11: End-User Development Using Natural Language, Pro-
ceedings of the 11th International Workshop on Semantic Evaluation
(SemEval), Canada, 2017.

1.10 Thesis Outline

This thesis can be outlined as follows:

• After introducing the target problem and formalising the task, as well
as presenting the research questions, hypotheses and goals, this intro-
ductory chapter describes an overview of the structure of the thesis.

• In Chapter 2, we provide an overview of the area of end-user de-
velopment, showcasing the benefits and limitations of the four main
schools of thought related to it, namely, natural language programming,
programming synthesis, visual programming and crowd-supported pro-
gramming (Section 2.2). Our analysis suggested that a comprehensive
end-user development system can take advantage of hybrid approaches.
In Section 2.5, we also shed light on the topic of explainability of in-
telligent systems. Despite the high attention received in recent years,
we show that the literature has not yet presented studies concerning
explainable models applied to natural language understanding tasks.
As the understanding of the system can both increase the users’ con-
fidence and allow them to take more advantage from the systems,
explainability is considered as a core aspect of our research.

• Chapter 3 addresses a comprehensive survey on semantic parsing for
natural language commands. We start with an analysis describing
the main tasks associated to the four branches of research in the area,
namely, commands for database queries, navigational instructions, pro-
gram synthesis and natural language interface for APIs. Next, we sur-
vey established strategies and methods in the field, suggesting a clas-
sification that is orthogonal to the task domain. This classification
divides the methods in two main groups, rule-based approaches and
learning-based approaches, presenting their evolutions chronologically:
Section 3.3.1 demonstrates the evolution of rule-based approaches from
simple slot-filling-templates and string matching, to the massive use of
external resources, mainly in the form of thesauri, while, Section 3.3.2
demonstrates how learning-based systems evolved from methods based
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on grammar formalisms, as combinatory categorial grammar, to deep
neural network models based on encoder-decoder architectures. The
survey also highlights the lack of attention dedicated to explainability
in the field of semantic parsing (Section 3.4).

• Chapter 4 presents our semantic parsing method for natural language
commands focused on a task for which there is not a large set of
training data available. The chapter starts presenting evidence, which
is later confirmed by the experiments described in Chapter 6, that the
encoder-decoder methods for this type of task are highly dependant on
large data sets. Because a reasonable large data set is not available,
the goal of our research is to provide an alternative parsing method,
which is accomplished by a hybrid seven-component architecture.

• Chapter 5 describes an explainable model for the proposed semantic
parsing. In contrast to other approaches, our explainable model tar-
geted a multi-component setting, which demands the construction of
different explanation mechanisms for the different types of strategies
used in each component.

• Chapter 6, which is the first of two chapters dedicated to the analysis of
the results and discussion, is devoted to the evaluation of the semantic
parser presented in Chapter 4. Firstly presenting the shortcomings
of the encoder-decoder deep neural networks to learn from small data
sets in the context of our target task. Subsequently, we evaluate our
proposed semantic parsing using the data set from the Task 11 of the
SemEval 2017.

• Chapter 7 represents the second part of the evaluation, which focuses
on a user-centred analysis of the effectiveness of the different types of
explanation methods.

• Chapter 8, in addition to a summary, provides an assessment and
discussion of the conducted research from the perspective of the initial
research questions. We also revisit the principles and challenges for
the development of an effective end-user programming environment.
Lastly, it debates the applicability and the limitations of the thesis,
concluding with what we consider as the future research directions.
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2.1 Introduction

The field of end-user development is focused on shifting the main discus-
sion in software engineering and human-computer interaction from “making
systems easy to use” to “making systems that are easy to develop” (Lieber-
man et al., 2006), under a very pragmatic motivation. As detailed in the
introductory chapter, the current scenario of the shortage of information
technology professionals points to a real risk our society confronts of having
the pace of automation reduced due to the lack of code writers.

Domain experts processing data, analysts automating recurrent tasks,
or a businessman testing an idea on the web are potential end users that,
given access to the correct set of techniques and tools, can materialise their
programming demands without the mediation of professional developers.
The notion of correct set of techniques and tools, although hard to precisely
define, is associated with the cost of learning the development environment
and the programming skill itself. As presented by Ko et al. (2004), among
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the six learning barriers in end-user programming systems (design, selection,
coordination, use, understanding, and information), four (design, selection,
use, and information) can have a large in impact when running away from
the specific syntax of traditional programming languages.

Simplifying the programming language, however, has a side effect in ex-
pressivity (Fischer et al., 2004). Figure 2.1 depicts the dilemma between
the coverage scope of a given programming language and its cost of learn-
ing. Traditional general-purpose programming languages such as Java and
C++ have high expressivity, allowing programmers to build a wide gamut of
different types of programs. This expressivity, however, comes with a high
cost to learn the languages’ peculiarities that go beyond their already com-
plex syntax and lexicon, such as module and library integration methods
and execution requirements to only mention a few. On the opposite corner,
domain-specific languages and tools for simple adaptation and customisation
give a low entry barrier for end users but offer a limited capacity of com-
putation description. For instance, spreadsheets and the IFTTT platform1

are examples of successful methods able to deliver clear value for end users.
Their coverages, however, are respectively restricted (i) to a small set of
applications that are numerically focused, without a straightforward mech-
anism to integrate with external libraries and services, and (ii) to programs
in the form of if-then recipes. As summarised by Fischer et al. (2004), “the
goal [and challenge] for EUD tools is to reduce the learning burden while
providing powerful facilities to address a wide range of problems”.

The literature in EUD is broader, presenting different flavours of tech-
niques. In Section 2.2, we introduce the main types of strategies that have
been applied in the EUD field. We extend the discussion presenting other
important aspects of EUD in the context of disciplines such as teaching,
software engineering and crowdsourcing development. This preliminary ex-
planation aims at setting the basis for a short discussion on EUD from the
user perspective (Section 2.4).

Most of the end-user development techniques are somehow supported
by machine learning methods. While the recent evolution of those methods
provides a paradigmatic shift in the ability to build systems that analyse
information at scale, it also carries the risks associated with its prevalent
models, such as the lack of transparency and understanding, posing a chal-
lenge to the adoption of intelligent systems in environments with high social
and economic impact (Biran and Cotton, 2017). Either to comply with
legal requirements (Goodman and Flaxman, 2017) or to increase the user
confidence (Zhou et al., 2016), offering end-user explanations for intelligent
systems has become a strong requirement. Section 2.5 provides a more thor-
ough insight to this issue. This chapter concludes with a summary in Section
2.6.

1http://ifttt.com
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Figure 2.1: Cost-scope trade-offs in EUD tools (adapted from Fis-
cher et al. (2004)).

2.2 Types of End-User Development

Since its debut, end-user development (EUD) has matured four main branches
of research: visual programming, programming by example, natural language
programming and crowd-supported programming. This section depicts a gen-
eral view of each branch, fostering a debate over their capabilities and limi-
tations.

2.2.1 Visual Programming

Myers (1990) defines visual programming as coding in at least two dimen-
sions, in contrast to text-based, arguably a uni-dimensional mean of expres-
sion. The author classifies visual-programming techniques according to their
form of specification, which includes flowcharts whose primary focus is the
algorithm, and spreadsheets whose focus is the data, to mention a few.

Regardless of the focus, the literature can also be understood from the
perspective of the field by classifying domain-specific visual programming
platforms. For instance, different initiatives focused on sub-fields of com-
puter science, where Smutnỳ (2011) and Francese et al. (2017) targeted mo-
bile applications, Ray (2017) paid attention to Internet of Thing platforms,
Booth and Stumpf (2013) focused on the open-source hardware platform
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Arduino, and more recently Xie et al. (2019) built tools for the development
of deep machine learning models. Visual programming also got popular in
other domain-specific fields, traditionally dominated by professionals with-
out computer science background such as Biology (Milicchio et al., 2016),
Finance and Astrophysics (Segal, 2007).

Figure 2.2: A screenshot of the KidSim platform, where a user
describes “a successfully written rule for jumping over a rock, incor-
porating 4 actions” (Gilmore et al., 1995).

Figure 2.2 shows how students can write visually a rule to move an agent
in the KidSim platform (Gilmore et al., 1995).

Supporters of visual programming argue that “the human visual system
and human visual information processing are optimised for multi-dimensional
data”, whereas traditional programming languages are “conventionally pre-
sented in a one-dimensional textual form, not utilising the full power of the
brain” (Myers, 1990). Additionally, they also believe graphic representa-
tions favour a higher level description of the code, which puts less emphasis
on the language syntax, a perception also shared by Fischer et al. (2004),
according to whom the syntax and lexicon issues make learning a traditional
programming language comparable to learning a new human language. The
limitation in expressivity, however, counts against visual programming, as
better exposed in Section 2.4.

2.2.2 Programming by Example

Program synthesizers can be designed to either act as the desired program,
mimicking its behaviour, or generate the desired program’s formal represen-
tation, usually a source code (Kant, 2018). In both cases, the most impor-
tant distinction is related to the method of construction. Programming by
example, also called programming by demonstration, is a type of program
synthesis that emerged after the attempt of producing programs from for-
mal specifications (Lieberman, 2001). As the effort to generate programs
from such specification was found equivalent to produce the code itself, new
approaches started stating the problem in such a way that a given model
could induce the program from a set of input-output pairs, which is now
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called programming by example (Gulwani, 2016).
The work of Gulwani et al. (2012) is a well-known example of the success

of rule-based systems for programming by example. Part of its success is
due to the focus on string manipulation tasks and table transformation, in
which a component is responsible for generating rule-based programs per
sample, while a second component generalises those programs based on a
domain-specific language.

Figure 2.3 shows an instance of a pair of input-output of the problem
of string manipulation in the context of phone number edition. In addition
to Gulwani et al. (2012), other researchers investigated the problem, as the
recent work of Shu and Zhang (2017) which proposed a deep learning model
based on the typical encoder-decoder architecture (discussed in detail in Sec-
tion 3.3.2). Also in the domain of text editing, Liang et al. (2010) promote
an approach for learning by examples based on Bayesian probability. In par-
ticular, the authors define a combinatorial logic representation based on a
tree model, which simplifies the use of a probabilistic context-free grammar
to infer the correct tree representation for a given program amongst different
tasks.

Figure 2.3: The pair of input-output in the string manipulation
of phone format. It shows a “small sampling of different ways of
generating parts of an output string from the input string” (Gulwani,
2011).

Programming by example, however, is not restricted to the string ma-
nipulation problem. For instance, whereas GoScripter targets a tool to
automate repetitive web tasks, learning how to execute clicks and filling
fields in a browser (Leshed et al., 2008), in a more theoretical fashion, Reed
and de Freitas (2016) described a neural-based approach to learn math op-
erations.



26 End-User Development & Explainability

From a user-centred perspective, Gulwani et al. (2015) conducted a study
on StriSynth, a programming by example tool to generate operating sys-
tem scripts developed on the top of Flash Fill (Gulwani, 2011), showing
that users with scripting experience found scripting more “helpful” than the
programming by example tool, although taking more time to code (Santolu-
cito et al., 2018). The study, however, doesn’t evaluate end users without a
technical background.

Manshadi et al. (2013) presents an example of a hybrid approach aim-
ing at improving the performance of a programming-by-example system by
integrating natural language programming, where a statistical method, in
addition to the pair of input-output, also incorporates textual description
in the form of the grammar dependency tree.

The simplicity for generating training data, which in some cases can be
done in an automated fashion, is the appealing point of programming by
example techniques. This type of method, however, as most of the program
synthesizers, suffers from the lack of graceful repair, which prevents end user
to correct or take advantage from partially incorrect outputs, as we describe
later in detail in Sections 2.4 and 8.3.3.

2.2.3 Crowd-Supported Programming

Crowd-supported programming is the newer strategy among the four branches
of research in end-user development. Its main idea is to build a platform
from which end users can have access to programs developed by other devel-
opers after providing either a high-level specification in the form of a natural
language description or input-output pairs. The platform puts in the loop a
set of qualified supporters (generally professional developers) able to provide
code or give online feedback for the user’s programming demands. An ex-
ample of a crowd-supported programming platform is presented by Huang
et al. (2016), whose framework helps end users not only in constructing
if-then rules but also in identifying a proper solution to the target problem.

From another perspective, the work of Manshadi et al. (2012) combines
crowd-supported programming and programming by example, where, after
receiving the program description in natural language, the supporters or-
ganised under the crowdsourcing mechanism produce a set of high-quality
input-output pairs that comply with the original specification. Once a cer-
tain number of pairs are collected, the platform applies a programming-by-
example model to automatically generate the desired program.

LaToza et al. (2014) and Cochran et al. (2015) apply similar methods to
break down large programs into micro-tasks that can be distributed among
many developers. Extra requirements to select and merge the resulted pro-
grams, however, make those approaches less suited for end users.

In the main, this method can be understood as a simplified method
for “hiring” qualified developers, instead of effectively allowing end users
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to program. While the method can be effective with a low learning curve
involved, besides not teaching the end user how to program in the long run,
there will always be a cost associated with the service.

2.2.4 Natural Language Programming

Sammet (1966) was one of the first to advocate that technical language is
an overhead, representing a constraint to concentrate on the problem and to
design a proper solution. However, the idea that human-computer languages
should be designed with principles of natural language was not a consensual
one.

A more structured criticism was provided by Dijkstra (1979) who calls
natural language programming a “foolish idea”. His main plea is supported
by the fact that a machine does exactly what it is instructed to do and
natural language is essentially vague, imprecise and ambiguous (Dijkstra,
1964). From his point of view, in addition to demanding the construction
of a much more complex “compiler”, the main point relies on the compar-
ison to mathematics, where the lack of proper formalism would stop the
development of the natural science, as during the time of rhetoric texts that
prevented ancient mathematicians to going far.

The prototypes developed by Ballard and Biermann (1979) and Bier-
mann et al. (1983) represent the typical initial effort in constructing a natural
language programming environment. As the main use of the computer was
focused on mathematical methods, these first attempts targeted a general-
purpose programming language able to execute low-level operations such as
matrix manipulation.

Commands such as “Double x and store in y”, which was the focus of
the first initiatives, show the reason why part of the scientific community
was opposed to such technology. However, with the advent of the web and
the proliferation of web services, software artefacts with a higher level of
granularity could better represent the typical level of abstraction present in
the end-user mind, and so, making a natural language interface closer to
her/his intents.

Although textual language increases the expressivity, natural language
also adds a significant overhead to interpret it. Despite its initial criticism,
the idea of using natural languages to program was not completely rejected.
The literature points out some initiatives throughout the decades, whose
initiatives are surveyed in Chapter 3.

2.3 Other Aspects of End-User Development

Lieberman et al. (2006) presented end-user development as a confluence of
other fields, such as software engineering and artificial intelligence, to name
a few. As most of the areas are in fact sub-areas of computer science, we
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tend to focus on technical aspects, ignoring the way humans learn and how
research findings about the human brain are associated with coding (Kr-
ishnamurthi and Fisler, 2019). To properly understand the realm of EUD,
we also need to look, not only from a technical perspective but also from
other disciplines, such as teaching and software engineering. Additionally,
we highlight in this section the recent impact of new machine learning tech-
niques in the field, especially from the use of statistical methods in natural
language processing.

2.3.1 Teaching

Since the early times of microcomputers, educators saw programming as a
powerful competence to help students develop basic thinking and problem-
solving skills (Pea, 1987). Given the intrinsic barriers of traditional pro-
gramming language, since the beginning simplified languages were applied,
such as LOGO, one of the first initiative to teach programming skills using an
end-user educational environment where students could program with visual
aids (Muller, 1985).

Indeed, visual programming is very present in teaching programming for
children. In the study of Gilmore et al. (1995), children wrote rules using
visual elements and the mouse to move an agent in a spatial scenario using
the KidSim end-user platform. In another platform called RAPTOR, students
made use of visual flowcharts not only to develop, but also debug their initial
programs (Carlisle et al., 2005).

Principles to improve the teaching process of programming to novices can
also be used to improve the usability of EUD systems. Krishnamurthi and
Fisler (2019) suggest that, instead of focusing on programming paradigms,
we need to emphasise the behavioural properties and features of a language
itself. Looking from this new perspective affects directly the teaching pro-
cess since we stop taking for granted a series of interpretations about a
given syntax and their semantics. The main goal is to avoid the classi-
cal notion of paradigms that suggests a disjoint classification, considering
that several modern languages offer constructions or sub-language features
that permeate functionalities originally associated with different paradigms
(Krishnamurthi and Fisler, 2019). For instance, although Python is gener-
ally classified as an imperative language, it also allows native constructions
inspired in functional languages.

Pane and Myers (2006) conducted a study to identify how students would
program game scenarios without any guidance or restriction. From the
answers they received it was evident that the participants used graphical
depictions and texts to “program”. This allowed the researchers to conclude
that event- and rule-based structures were the dominant strategy used by
non-programmers, while users privileged aggregation functions applied to
sets instead of iterations.
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Despite the known simplicity of visual programming to serve effectively
as an introductory stage to programming, the pedagogical community, how-
ever, has recognised the necessity for the transition to text-based program-
ming, given its higher expressivity (Kölling et al., 2015).

2.3.2 Machine Learning

With the maturity of machine-learning-based techniques, new methods star-
ted moving from applications of rules and templates to neural-based ap-
proaches which can deal with latent information and deliver approximative
solutions that go beyond the examples expressed in the training data set
(Goodfellow et al., 2016).

These new classes of machine learning models, namely, recurrent neural
networks such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU), and attention-based models like Transformers (Vaswani et al.,
2017), have been attracting attention over the last years due to their perfor-
mance on natural language understanding tasks, producing robust represen-
tations of language models, especially when aligned with word embedding
(Camacho-Collados and Pilehvar, 2018).

In addition to the impact seen in the academic literature (presented in
detail in Chapter 3), machine-learning-based products and services already
available in the market have gained popularity. Supported by these tech-
nologies, companies such as Google, Amazon and Apple have built assistants
that trigger atomic requests and answer simple questions by voice (López
et al., 2017). For instance, the Amazon team defined a language for the vir-
tual assistant Alexa to represent natural language commands based on an
ontology of actions, types, properties and roles (Kollar et al., 2018). Despite
the robustness of the model in delivering results under real-world conditions,
there is a lack of comparability and transparency (Perera et al., 2018) as the
data set, for instance, are not publicly accessible by the community.

Although such an approach has been proved to be helpful for daily-life
situations, it does not attend the fundamental concept of programming,
e.g. to group sets of instructions to which we can assign a meaning. So,
voice assistants are ineffective for business environments, where the demand
for automation requires the composition of multiple services along with the
integration with a large volume of structured data.

2.3.3 Software Engineering

Software engineering has also extended their attention to the code of end
users. Ko et al. (2011) surveyed how the literature covers the practices
of engineering during the end user development of software, detailing how
end users gather and identify their requirements, their main development
strategies, their ability to reuse code from other developers (end users or
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not) and their debugging practices and tools.
In a recent paper, Barricelli et al. (2019) study the field by a map-

ping study to analyse software engineering practices based on a quantita-
tive approach and by means of classifying the literature according to seven
dimensions (type of approach, interaction technique, phase in which the ap-
proach is adopted, application domain, target use, class of users, and type
of evaluation). Different from previous works, this mapping study adopts a
quantitative approach trying to identify the representativeness of methods
and techniques in the literature.

2.4 The User Perspective

Considering the different characteristics of the four main branches of re-
search in end-user development, along with the other aspects of end-user
development so far presented, the question still pertains regarding how can
a programming platform better serve the (needs of the) end users?

Visual programming where blocks and graphics provide an easier syn-
tax to end users allows the developers to start fast, but its effectiveness, in
the long run, is limited due to (i) restrictions in its expressivity and (ii) the
change of the notional machine (Guzdial, 2015). Notional machine is the ab-
straction of an idealised computer, from the runtime point of view, aiming at
describing the semantics of the programs and defining the typical behaviour
of the code instructions (Sorva, 2013). Furthermore, visual programming is
frequently constrained to a sub-set of programming constructors, which lim-
its the type of computation that can be described. To gain expressivity, this
scenario eventually forces to change to a textual language (Kölling et al.,
2015). As there is a significant difference between the notional machines of
visual programming environments and textual environments, the previous
programming experience does not help to construct a gentle learning curve
(Krishnamurthi and Fisler, 2019).

Programming by example (Gulwani, 2016) and code synthesis (Rodri-
gues Filho et al., 2019) have evolved significantly in recent years allowing
respectively the inference of programs from some instances of input-output
examples and the “translation” of natural language into code. These ap-
proaches, however, suffer from the lack of graceful repairing, i.e. in the case
of wrong output, they don’t provide a mechanism to correct or improve the
results, except by redoing the task from scratch, without taking advantage
of the previous results.

Peleg et al. (2018) expressed this limitation as the dilemma of accepting
or rejecting fully a synthesised program. As an alternative, the authors
suggest that users could give “granular feedbacks” in order to accept or
reject parts of the programs. This approach, however, as evidenced in the
evaluation population which has a technical background, does not fit for end
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users, given the judgement about whether a given part is relevant or not
depends on understanding the target programming language. In this sense,
to the best of our knowledge, there is no approach for end users to deal with
the issue of lack of graceful repairing, in terms of providing a mechanism to
correct or improve the results, except by redoing the particular task from
scratch. This limitation prevents the systems from taking advantage of the
previous results.

Having a textual language at the centre of the end-user development
environment since the beginning, and maintaining it as the main program-
ming interaction method, allows the user to keep the same notional machine
during their programming experience, without preventing the use of visual
aids and functions inspired by programming-by-example as auxiliary tools.

This context suggests the construction of a hierarchical model in which
the user deals with simple elements at first, easy to manipulate, and which
can be later improved by a different mechanism.

2.5 Explainability

Providing end-user explanations for intelligent systems has become a strong
requirement either to comply with legal requirements (Goodman and Flax-
man, 2017) or to increase the user confidence (Zhou et al., 2016). However,
what does explanation really mean in the context of machine learning?

Figure 2.4: An overview of the taxonomy to classify explanation
in the context of artificial intelligence proposed by Lipton (2016).

Lipton (2016) defined a comprehensive taxonomy, summarised in Figure
2.4, highlighting various criteria of classification such as motivation (trust,
causality, transferability, informativeness and fairness & ethics) and prop-
erty (transparency and post-hoc interpretability).

Trust is by far the most common motivation presented in the litera-
ture, as Pazzani (2000), Zhou et al. (2016) and Biran and Cotton (2017)
suggest, whose results showed users demonstrate higher confidence when
using a system whose workings they understand. Fairness & ethics is also a
strong driver as the well-known European General Data Protection Regula-
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tion (Goodman and Flaxman, 2017) guarantees both rights “for meaningful
information about the logic involved” and “to non-discrimination” to prevent
bias and unfair behaviour (Selbst and Powles, 2017). The regulation targets
decision-making algorithms as in the works of Mooney (1996) and Bolukbasi
et al. (2016). Although less representative, explanation is also used to sup-
port user’s feedback as Stumpf et al. (2007) and Kulesza et al. (2015). From
the property criterion, transparency allows the user to understand the algo-
rithm’s mechanism of decision, by contemplating “the entire model at once”
and understanding each of its parts and its learning mechanism. Typical
methods complying with these requirements are the so-called “explainable
by design” such as linear regression, decision trees and rule-based approaches
when dealing with small models (Lipton, 2016).

Post-hoc explanations, however, make use of interpretations to deliver
meaningful information about the AI model. Instead of showing how the
model works, it presents evidence of its rationale by making use of (i) tex-
tual descriptions (Silva et al., 2018), (ii) visualisations able to highlight
image parts from which the decision was made (Selvaraju et al., 2016), (iii)
2D-representation of high-dimensional spaces (van der Maaten and Hinton,
2008), or (iv) explanation by similarity (Caruana et al., 1999). While this
type of explanation does not tell precisely how the output was generated,
it still presents useful information about its internal mechanism. For in-
stance, Ribeiro et al. (2016) show a typical post-hoc method, which asso-
ciates meaning to elements of the neural network by perturbing the model
to approximately identify partial predictions.

Other works are also interested in explanation models whose evaluation is
centred on the users. As one of the first initiatives, Pazzani (2000) evaluated
user preferences about the explanation of mail filtering profiles. Applied to
different tasks, Stumpf et al. (2007) and Kulesza et al. (2015) analysed
the feedback of end users to improve the system’s training process. More
recently, Zhou et al. (2018) studied how information regarding uncertainty
and correlation in AI systems impacts the confidence of specialist and non-
specialist users taking decisions. Applying a distinct methodology, Vorm
(2018) studied user’s explanation demands by systematic interviews and
group dynamics.

2.6 Summary

Over the decades, end-user development has explored four main branches
of research: visual programming, programming by example, natural language
programming and crowd-supported programming.

Visual programming methods have their focus on bringing the simplicity
of dealing with visual elements. As a side effect, the techniques usually fails
to allow a higher level of expressivity.



End-User Development & Explainability 33

Programming by example defines a very convenient method to construct
a program based on instances of input-output pairs, lowering the demand for
technical knowledge. However, the level of generalisation can be limited in
complex tasks. Additionally, it suffers from the lack of graceful repair, which
prevents trained methods to take advantage of partially correct models.

The more recent crowd-supported programming, a strategy to integrate
workers with programs, gives the ability to avoid relying on imprecise meth-
ods and models. However, the dependency on humans makes the systems,
expensive, complex and less scalable.

Natural language methods allow high expressivity and scalability, al-
though, their methods require the development of more sophisticated natu-
ral language understanding methods, as discussed in the next chapter.

The new generation of programming platforms for end-user developers
has the potential to change the ways we commercialise, reuse and publish
software, as well as creating new business opportunities. Jointly with func-
tionalities such as information extraction and text generation, it can enlarge
significantly the range of tasks that can be programmed by end-user develop-
ers. The applications emerging from this new context will profoundly affect
the level of automation in the society and how humans deal with repetitive
tasks.
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3.1 Introduction

In this chapter, we are interested in surveying semantic parsers applied to
natural language commands, i.e., the problem of translating a natural lan-
guage utterance to either formal code or machine-readable actions to control
a robot or program a software application. For us, we make no distinction
between a solution that controls a given application by itself, accessing di-
rectly the means of control, or those that translate the user intent to an
intermediate, formal or technical language, such as lambda calculus, code
in a programming language like Python or Java, or even variations of the
Structured Query Language (SQL).

35
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This chapter starts presenting typical tasks of natural language com-
mands, grouping them in four categories: commands for database queries,
navigational instructions, program synthesis and natural language interface
for APIs. We also present some co-related research initiatives in the field,
such as methods to self learn action and vocabularies.

In Section 3.3, we review prominent approaches and methods, debriefing
them into two groups. The first group is composed of the methods based on
rules, where we also put in evidence the problem of vocabulary mismatch.
We also discuss methods supported by ontologies and standards defined by
the Semantic Web community, which had an important impact on allowing
easier access to external resources, together with derived metrics such as
distances and similarities. The second group comprehends learning-based
methods, where we first depict hybrid learning methods, which combine rule-
based generated features and grammar formalisms. Then, we describe the
methods based on end-to-end machine learning models, whose main idea is to
feed a sequence-to-sequence deep neural network with a large set of samples
from which the model can learn the latent pattern without intervention.

In addition to classifying the approaches and methods by those groups,
Section 3.4 proposes a broader analysis that considers other important as-
pects, such as the relevant feature set, the type of evaluation and its support
to explanation.

The chapter concludes exposing the gap of the literature this work aims
at covering, by analysing the specificities of the methods proposed so far,
putting in perspective the particularities of the data sets.

3.2 The Typical Tasks of Parsing of Natural Lan-
guage Commands

In the context of natural language commands, we classify semantic parsing in
four main tasks: commands for database queries, navigational instructions,
program synthesis, and natural language interface for APIs.

3.2.1 Commands for Database Queries

Frequently, commands in natural language aim at retrieving information,
as shown in the Air Travel Information System (ATIS) data set, which
is composed of queries to search for flights according to cities and dates
(Price, 1990; Dahl et al., 1994). Following a similarly focused scope, the
GeoQuery data set comprehends searching for geographic information of
US states (Zettlemoyer and Collins, 2005), the JOBS data set comprises
queries for work positions according to skills, salary and location (Tang and
Mooney, 2001), and the series of Dialog System Technology Challenges

deals with bus timetable and restaurant data (Williams et al., 2013; Hen-
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derson et al., 2014a,b). For instance, the quote below shows a typical query
from the JOBS data set.

what job uses languageid0 and languageid1 are available in
locid0 and pay num salary a year.

Those data sets, each of them focused on a unique narrow domain, rep-
resent a simplified scenario for semantic parsing of commands, because they
deal with a constrained set of entity types, a restricted vocabulary, and one
(or a few) types of command (e.g. getting travel information), varying only
the parameters. These features significantly benefit the training process,
making the data set denser, where the syntactic and semantic regularity
facilitates the generalisation.

Since the 70s (Hendrix et al., 1978), another popular task is regarding
natural language interface for databases, whose main shape is in the form of
generation of SQL queries from natural language, now called text-to-SQL1.

Data sets for text-to-SQL are either adapted from other tasks or made
specifically for it. For instance, although initially planned to deal with am-
biguity in the context of academic information, such as authors, papers and
affiliations, Li and Jagadish (2014) used the Microsoft Academic Search

Dataset (Roy et al., 2013) as a base for a text-to-SQL task, producing a new
data set composed of 196 query sets. On the other hand, the community
has also built larger data sets to expand from single- to multi-domain tasks.
The large size of the data sets also aims to allow the use of deep learning
methods. For instance, Zhong et al. (2017) proposed the WikiSQL, which
potentially covers all domains of knowledge present in the Wikipedia. From
a list of more than 24k tables found on the pages of the Wikipedia, users
were recruited to manually paraphrase questions generated by a template
previously mapped to valid SQL queries. In total, the corpus comprehends
more than 80k queries (Zhong et al., 2017). Although expanding the domain,
WikiSQL is only composed of simple queries over a single table. The Spider
data set is an answer to this simplicity by adding queries over multiple tables
and requiring the use of nested queries and more complex constructors such
as GROUP BY and JOIN (Yu et al., 2018).

Another limitation is the ad-hoc nature of the queries. As the name
suggests, the Semantic Parsing in Context corpus (SParC) mainly differen-
tiates from the previous by adding context to the queries in the form of
a dialogue. Generated from more than 200 different databases, while also
targeting different domains of knowledge, the corpus is structured as a con-
versation between a user and an intelligent system, represented by the target

1As the task of text-to-SQL aims at translating a natural language utterance to a
technical language, it can be also classified as code synthesis. Our decision to describe it
under the database queries context relies on historical reasons, since the topic of natural
language interface for databases has been more associated to the information retrieval
community than to the program synthesis community.
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parser (Yu et al., 2019b). A subsequent initiative called CoSQL for Conver-
sational text-to-SQL goes in the same direction, but including utterances for
which there is no valid SQL or valid data to answer it. This increases the
complexity by reproducing a typical real scenario, where users might want
to query information that is not available (Yu et al., 2019a).

3.2.2 Navigational Instructions

Many applications related to the parsing of natural language commands are
within the context of human-robot interaction. Navigational instructions
aim at controlling the movements of a physical device, usually a robot, by
natural language. Although not meant for intelligent applications, the HCRC
Map Task Corpus is one of the first linguistic resources targeting spatial
instructions, where one instructor guides a follower in a predefined route on
a partially shared map (Thompson et al., 1993). Vogel and Jurafsky (2010)
used this resource to construct one of the first data sets for navigational
instruction tasks.

The HuRIC (Human Robot Interaction Corpus) described a list of spoken
commands between humans and robots. It is composed of three data sets
which were developed in the context of three different events in a crowd-
sourcing fashion. Examples of instructions are shown in Table 3.1. The
corpus differentiates by having their data annotated using Frame Semantics
together with Holistic Spatial Semantics (Bastianelli et al., 2014).

Queries

go to the kitchen

activate the television

go to the bathroom take the rag go to the hall and clean the mirror

Table 3.1: Examples of sentences from the HuRIC data set.

The most popular data set, however, is the SAIL proposed by MacMa-
hon et al. (2006), which became the de-facto evaluation method for naviga-
tional instruction parsers. It has the goal of guiding an agent in a virtual
environment to a specific location on a map. The instructions are based
on visual elements present in the paths such as hanging pictures and floor
patterns. The corpus is composed of 786 route instructions on three virtual
indoor environments. The SAIL data set shows the essence of the navigation-
instruction tasks, mixing text and visual elements in a context of directional
instructions and spatial movements.

From a detailed analysis, Can and Yuret (2018) demonstrated the SAIL
data set lacks diversity. For instance, more than half of the instructions fol-
low the same linguistic pattern, which makes the learning models biased and
not capable to generalise to all possible instructions. To overcome this lim-
itation, the authors suggested the SAILx data set, which aims at balancing
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the type of instructions by enriching the data set with synthetic instructions
generated from templates, which, on their turn, were constructed following
the instructions present in the original SAIL data set.

In 2014, the SemEval workshop hosted a task related to the parsing
of natural language spatial commands, also targeting a robotics scenario
(Dukes, 2014). In this case, however, the task proposed the parsing of
commands to a robot control language to control a robot arm that moved
objects of different types and colors on a squared board representing the
spatial region (Dukes, 2013). The 3.4k+ sentences were generated from an
online game that encouraged users to describe a formal instruction to a
robot to transform an initial state into a second one. Although claiming
to allow “rich linguistic structure”, such as ellipsis, anaphoric references,
multi-word spatial expression and lexical disambiguation, the vocabulary is
rather restricted when describing the objects and the actions.

The works of Tellex et al. (2011) and Hemachandra et al. (2015) rep-
resent a set of initiatives in navigational instructions tasks that operates
on physical prototypes (or their simulators) in real scenarios. Those tasks
consist respectively of manipulating large objects with a robot forklift in
logistic operations and moving a generic robot around a university campus.
Real-world scenarios allow exploring models that combine language and data
captured from physical sensors and cameras.

More recently, new data sets have opened the space for research in other
contexts, such as controlling a robot arm in a kitchen environment to “make
coffee” and “boil water” (Misra et al., 2016), or moving in a house with
commands such as “go up the stairs and turn right” (Anderson et al., 2018).
Recently, Chen et al. (2019) formulated the Touchdown data set as a treasure-
hunt task aiming at finding hidden objects in a map made of real-life visual
urban environments from Google Street View.

Predominantly, as navigational instructions are centred on spatial as-
pects, the linguistic variability, i.e. vocabulary and syntactic variations,
tends towards simpler linguistic patterns. In contrast to addressing a vo-
cabulary gap, the main challenge relies on interpreting language elements
in the context of spatiality and movements. For instance, it is common
that the semantic parsing phase is executed by a method defined by a third
party, while the contribution relies on grounding language to sensor signals,
discovering the map or planning the execution of the movements (Matuszek
et al., 2010; Brooks et al., 2012; Matuszek et al., 2013; Walter et al., 2014).

3.2.3 Program Synthesis

As mentioned in Section 2.2.2, we can divide program synthesis into two
main groups, depending on the nature of the training data. We consider
problems formulated from the program’s input-output perspective as an
instance of the programming by example task. Instead, this section is inter-
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ested in tasks aiming at constructing programs (or their source code) from
natural language utterances.

In this context, the canonical task of program synthesis is the generation
of general-purpose programming code such as Java or Python, from natural
language descriptions. Gvero and Kuncak (2015) defined a small data set
composed of 90 pairs of text-code, where the text is represented by a set of
keywords and the code by a single-line expression in the Java programming
language. In the case of Python, Oda et al. (2015) presented a task to
generate the code of functions from English pseudo-code, whose data set
reaches around 18.8k data pairs. More recently, Barone and Sennrich (2017)
collected a larger data set from GitHub to allow the training and testing of
the generation of functions from documentation. As the code is generated
from repositories of active projects, the authors argue the new data set
better represents the real complexity of the task.

Some researchers opted for using a domain-specific language (DSL) to
intermediate the natural language and the system control. For instance,
Desai et al. (2016) extended the ATIS (Price, 1990) data set to include query
representation in the form of a DSL using this data set in the problem of
synthesizing programs, also releasing data sets for the problem of mapping
utterances to text-editing scripts. In a similar task, Pasupat et al. (2018)
evaluates a set of off-the-shelf models to analyse the problem of mapping
commands to web elements in the context of HTML/CSS.

Other types of formal languages, such as spreadsheets and operating sys-
tem scripts are also of relevance in this area. Gulwani and Marron (2014)
built a domain-specific language to bridge natural language and spreadsheets
to execute operations like map, filter, reduce, join and formatting. The
data set is composed of around 3.5k natural language commands in the con-
text of 40 different tasks over a spreadsheet. From another perspective, Lin
et al. (2018) explored the synthesising of Bash script from natural language,
by defining the NL2Bash data set composed of more than 9k pairs of natu-
ral language/bash commands, covering more than 135 programs. Table 3.2
presents examples of pairs from the NL2Bash data set.

Natural Language Bash Command

Monitor all processes whose
command includes ‘java’.

top -p “$(pgrep -d ‘,’ java)”

Add executable permission to “rr.sh” chmod +x rr.sh

Make a copy of file file1 named file2 su - jetty cp file1 file2

Table 3.2: Examples of pairs of natural language command and
Bash command from the NL2Bash data set (Lin et al., 2018).

Newer data sets have opened a space to interpret coding in a broader
way. Ling et al. (2016) introduced two tasks based on card games, from
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which a text description serves as a code specification to define the cards’
behaviour in the game, such as attacking the opponent given a condition as
depicted in Figure 3.1.

Figure 3.1: A card from Hearthstone, one of the games whose
cards are modelled in the program synthesis task proposed by Ling
et al. (2016). The task focuses on the card description, aiming at
generating a code to execute its behaviour.

Although representing a challenging task from an academic point of view,
the main drawback of program synthesis is its lack of graceful repairing,
as debated in Section 2.2.2. In general terms, in the case of producing a
wrong output, program synthesis doesn’t provide a mechanism to correct or
improve the results.

3.2.4 Natural Language Interface for APIs

The problem of semantic parsing in the context of natural language interface
for APIs has changed significantly along the time. Its initial shape was in
the form of web-service orchestration, which gained large attention during
the consolidation of the Semantic Web standards (Berners-Lee et al., 2001).

More recently, using the data of the ifttt.com platform, Ur et al. (2016)
defined a task to create if-then “recipes” from the natural language de-
scriptions provided by the users. Figure 3.2 shows a typical example of
a “recipe” and its description. This data set, however, has one important
drawback: the values assigned to parameters are missing. The task is limited
to the mapping of the actions that comprise the recipe, keeping aside the
instantiation of the parameter values. This limitation arises from the fact
that in most of the cases the description given by the users does not include
such information. For instance, Figure 3.2 shows the natural language utter-
ance ”If BitCoin rises above $3000, Send Notification”, which is associated
to the trigger Price raises above and the action Send a notification
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from the IFTTT app, however the values that need to be assigned to the
parameters ticker symbol (BTC) and price (3000) aren’t present in the
data set. This lack of information makes the data set very limited.

Figure 3.2: The data set generated from the IFTTT platform as-
sociates a natural language utterance to triggers and actions.

In the context of an email API, Su et al. (2017) proposed the NL2API,
from which the user can retrieve messages and events combining query op-
tions. Their contribution has a special focus on a method to create the data
set, employing combinatorial heuristics and a new crowd-sourcing method-
ology, which generates an initial natural language description for each API
call using a simple grammar, and asking the crowd workers to paraphrase
it.

The Task 11 of the SemEval 2017 presented a data set to support natural
language programming which differs from other works in at least two aspects
(Sales et al., 2017). First, the test collection presents a high variability in
both vocabulary and grammar structure, when compared to the other test
collections available so far. Secondly, the data set is composed of a small
training set, requiring the application of semantic parsing methods able to
generalize from few examples (Kubis et al., 2017).

3.2.5 Other Interests in Semantic Parsing of Commands

The domain literature also comprises initiatives focused on auxiliary aspects
of semantic parsing. Many research groups explored self-learning methods
as Thomason et al. (2015) covering the acquisition of new vocabulary, and
Amos Azaria (2016) building an instructable mobile application focused on
learning the composition of commands.

In navigational-instruction tasks, a typical co-challenge is the simulta-
neous localisation and mapping problem (SLAM), where the robots need to
discover the map of unknown environments while keeping track of its rel-
ative position, as shown by Duvallet et al. (2016). Similarly, Walter et al.
(2013, 2014) described the process of teaching a robot the environment by
describing the premises using natural language while walking throughout a
building, in which the human user acts as a map discovering assistant.
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Other works have been more concerned about reliability, such as Popescu
et al. (2003), which introduced a theory describing the notion of “seman-
tically tractable” to define the level of confidence of the mapping between
utterances and SQL queries.

3.3 Approaches and Methods

Now, under the context of the aforementioned typical tasks, we present a
set of notable methods grouped into two categories: rule-based methods and
learning-based methods.

3.3.1 Methods Based on Rules

At the centre of a rule-based method, we find a hand-crafted set of instruc-
tions to transform an input sentence to the expected output. In the initial
systems, the rules take into consideration only the word, following basically
a string matching approach. For instance, the natural language interface for
a data base proposed by Guida and Tasso (1982) defines an algorithm that
applies rules at the level of vocabulary.

What call our attention is the supposedly good performance that many
of those primitive methods present, which is attributed to two reasons. First,
in most of them, the authors used a data set described by a restricted vocab-
ulary and a constrained variation of syntactical constructions, which nowa-
days we name as controlled natural language (Wyner et al., 2010).

The use of slot-filling-like rules reveals those expectations, as in the case
below, from the work of Ballard and Biermann (1979), showing an exam-
ple of a template in natural language to add a value to a given variable
represented respectively by the two slots.

Add to .

NaturalJava, a natural language interface for programming in Java, is
another case of the use of slot-filling. It is composed of 23 frames to which
a set of verb phrases do the matching later, with a series of assumptions
that transfer their approach in a non-explicitly controlled natural language
(Price et al., 2000).

Evaluations conducted with end users would in theory allow the assess-
ment of those approaches in a real-world scenario, which would indicate
more robustness of a system. However, the way the evaluation is designed
plays a significant role. For instance, the parser described by Ballard and
Biermann (1979), was, some years later, evaluated in a user-setting (Bier-
mann et al., 1983). Composed of 23 students from a university, the users
were instructed to write code to solve linear equation problems, where the
method was evaluated qualitatively according to the users’ opinions. Yet,
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the users were instructed to input text complying with the expected con-
trolled natural language (Biermann et al., 1983).

The second reason why primitive methods showed impressive perfor-
mance is because they were also engineered to cover the previously known
set of utterances, in such a way that the evaluation does not include un-
known samples as in the work of Maas and Suppes (1985). This latter,
though making use of a rudimentary context-free grammar, comprised a
table responsible to convert tokens in natural language to executable in-
structions which are manually crafted to cover all data set.

While still based on a rule-based method, Liu and Lieberman (2005a)
expands the feature set, initially restricted to tokens, with POS-tags and
dependency trees in the natural language interface Programmatic Seman-

tics, which understands nouns as data structures, verbs as functions and
adjectives as properties. Given the set of restrictions imposed to the input
command, it can be understood, once again, as a parser for a controlled nat-
ural language. Their Metafor model (Liu and Lieberman, 2005b) forms a
later application of the Programmatic Semantics in a context of describing
code as a history.

This approach had wider applications, as in the work of Gulwani and
Marron (2014) that transformed natural language utterances to an internal
domain-specific language following two steps. In the first, a component
assigned a type to each token using a simple string matching approach.
Next, another component used a set of hand-made rules to identify the
corresponding DSL-expression based on lexicon and their types.

The NALIGE prototype shows one of the first use of the grammar formal-
ism to represent the natural language utterance (Manaris and Dominick,
1993). The prototype allowed software developers to construct natural lan-
guage interface for a terminal of an operating system (OS) by defining man-
ually a grammar using an extended version of the augmented context-free
grammar (Hendrix et al., 1978). The framework was evaluated by 85 users
accessing 27 commands of a UNIX-based OS (Manaris et al., 1994).

The Problem of Vocabulary Mismatch

An experiment from the 1980s that attracted high visibility and interest
showed 80% of people familiar with a domain would use different words to
name the same concepts, which is known as the problem of vocabulary mis-
match, which quickly became the main concern of semantic parsing (Furnas
et al., 1987).

Word normalisation is the strategy of Little and Miller (2006), which
applied stemming to reduce the vocabulary variability for word edition of
documents and manipulation of web pages. In both evaluation scenarios,
the system used a simple heuristic of tokenize and stem that combines the
largest set of character matching from the natural language command to the
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function, aligned with the number and types of parameters that the function
requires.

The main improvement, however, comes from the use of linguistic re-
sources and structured ontologies as described in the next section.

Linguistic Resources, Semantic Web and Their Metrics

More sophisticated methods came with the advent of linguistic resources,
such as WordNet (Miller, 1995), from which algorithms can, for example,
easily expand vocabularies by playing with sets of synonyms and graph-
based similarity metrics (Agirre et al., 2009).

For instance, the work of MacMahon et al. (2006) that released the
SAIL data set, proposed an initial approach based on rules over syntactic
tags, enriching the vocabulary with WordNet senses. A similar approach
is applied in the context of the text-to-SQL task. Also supported by a
method based on rules, Li and Jagadish (2014) mapped dependency trees to
an intermediate query representation named Query Tree using the Jaccard
Coefficient (Rogers and Tanimoto, 1960) together with WordNet to expand
the vocabulary matching, from which a SQL query can be generated.

Supported by a statistical metric, Gvero and Kuncak (2015) proposed a
Java synthesizer that generates code by either a predefined mapping of text
and code declarations or comparing them by a score based on a bag-of-words
metric.

Ontologies opened the space for taking advantage of third-party re-
sources to expand linguistic knowledge. Englmeier et al. (2006) propose
an approach to process storybooks written in natural language, restricted
to a controlled vocabulary, aiming at interpreting the commands described
in it, and thus translating them to a choreography script. Relying on the
similarity between an ontology-based service description and a formal rep-
resentation of the user request, Bosca et al. (2006) designed a method in
which a restricted set of words and sentence templates compose services.
Lim and Lee (2010) also present a similar work which makes use of key-
words and main verbs to map a natural language command to an OWL-S
ontology. Their data set, however, was artificially created, which favours
the vocabulary matching. In addition to the ontology, the works of Pop
et al. (2010) and Sangers et al. (2013) also make use of linguistic resources
by respectively enriching the vocabulary with WordNet and applying Word-

Net-similarities metrics (Miller, 1995).
Wong (2007) creates a tool in which non-programmer users are able to

use information collected from different websites using their web services
APIs. The tool generates some sort of a mash-up, where complex tasks can
be divided into simpler ones that are processed using data flow metaphors.

Aiming at better understanding the requirements of such users and at-
tempting to simplify service composition, Namoun et al. (2010) propose
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several guidelines for the development of service composition tools.
Unanimously, the main contribution of these works is the design of a

software architecture able to compose distributed services using a natural
language interface, even though the semantic methods present rudimentary
strategies to comprehend the natural language utterances, grounding mostly
in a controlled vocabulary, keywords and POS-tags rules.

On the other hand, these works highlight the concept of the choreography
of high-level components and consolidate the notion of a distributed execu-
tion to create web-scale programs. Rules are still one of the main points
of solution in those methods. However, the works present in this group
differentiate by depending heavily on third-part resources defined under the
semantic web patterns and principles. Another common characteristic is the
use of graph-based measures to calculate the semantic relatedness of terms.

3.3.2 Learning-Based Methods

Generally, we can divide the learning-based methods into two groups. The
first group, hybrid learning methods, combines rule-based components, gen-
erally to preprocess features, with learning methods that act in selected
parts of the tasks. Given their architecture, we can also call them multi-
component learning methods. On the other hand, the second group is com-
posed of end-to-end learning methods, which are defined from full-fledged
learning methods, generally based on deep neural network models, able to
digest the input features to the expected answer. A set of initiatives from
both types of methods are exemplified in the following sections.

Hybrid Learning Methods

Hybrid methods combine rule-based components with learning methods. In
most of the literature, the rule-based step is responsible for pre-processing
the data, mainly focused on the generation of features. For instance, we
consider the work of Giordani and Moschitti (2012), which creates a text-
to-SQL translator in an information-retrieval fashion. Although the authors
crafted a set of manual rules to translate chunks of text to SQL snippets,
the core of the contribution is a ranking function based on a support vector
machine (SVM) (Cortes and Vapnik, 1995) that defines the relevance of
the output considering scores calculated by a weighting schema of both the
terms from the natural language text and the database schema.

Learning methods can also be supported by inductive logic programming,
as in the Chillin model, which defines a logic checker that is trained from a
set of logic statements written in the Prolog programming language (Zelle
et al., 1994). The algorithm aims at compacting the set of statements to
generalise the knowledge expressed in the clauses. A similar approach is
later used in a series of works, for instance, as in Zelle and Mooney (1996)
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to parse database queries, and Tang and Mooney (2001), which used first-
order logic representation as an intermediate language, applying a primitive
alignment algorithm that operates over string matching between the phrases
and the logical representation.

A notable contribution in the field is the WASP semantic parsing algo-
rithm, where Wong and Mooney (2006) interpreted semantic parsing as a
language translation task. At its core, WASP used a synchronous context-
free grammar to build a statistical machine translation parse from natural
language to the expected output (varying according to the task, either Geo-
Query or RoboCup). To learn the grammar, the method defines a lexical
acquisition step, aligning words, which feed a simple synchronous parser
(Aho and Ullman, 1972). Given its inability to handle logical variables, the
authors later extend the WASP parser “by adding a variable-binding mech-
anism based on lambda calculus, which allows for compositional semantics
for logical forms” (Wong and Mooney, 2007).

In the context of a navigational instruction task, where a robot acts in
collaboration with humans to execute rescue and risk missions, Tellex et al.
(2011) defined a model using a statistical model inspired by the Broyden-
Fletcher-Goldfarb-Shanno algorithm (Andrew and Gao, 2007) to map the
natural language utterance to a formal notation called Spatial Descrip-

tion Clauses (Kollar et al., 2010). As other methods targeting physical
prototypes the challenge targets more the grounding phase, i.e. the match-
ing between the instructions and the sensor signal, than the linguistic vari-
ability.

In the context of the SAIL data set, Chen and Mooney (2011) generated
a formal navigation plan from the set of actions and the natural language
instructions. Then, they constructed a data set to train the semantic parser
by associating n-grams to actions according to their co-occurrence. The
base of this work was later improved by three initiatives. Chen (2012)
reduced the complexity of the algorithm responsible for the generation of
the formal navigation plan, Kim and Mooney (2012) replaced the original
learning method with a probabilistic context-free grammar, and later, added
a re-ranking algorithm (Kim and Mooney, 2013).

Wang et al. (2015) defines a semantic parser composed of a framework
“which provides domain-general information” and a builder who “provides
domain-specific information”. Both components operate over a rule-based
grammar to map utterances to logical forms considering the lexicon and its
category. The parser is then trained using a set of paraphrased variations of
the natural language phrases using a probabilistic model based on AdaGrad

(Duchi et al., 2011).
Using the previously presented HCRC Map Task Corpus, Vogel and Ju-

rafsky (2010) trained a semantic parser using reinforcement learning. Later,
Andreas and Klein (2014) developed a model where the input data are repre-
sented as a vector condensing both the language and the spatial information.
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More recently, the authors improved the model by refining a set of rules to
align utterances to actions (Andreas and Klein, 2015).

The Case of Combinatory Categorial Grammars

Combinatory categorial grammars (CCG) is a grammar formalism defined
under a set of lexicon, whose lexical items have a category and a semantic
representation, and a set of combinatory rules (Steedman, 1996, 2000). A
category can be a simple syntactic type such as NP (standing for noun
phrase) or a more complex as (S\NP)/NP , which acts as functions (where
S standing for sentence). As an example, consider the lexicon defined below
where the first component represents the word, which is followed by the
category and the semantic type, whose representation is usually done in the
form of lambda calculus (Zelle and Mooney, 1996; Artzi and Zettlemoyer,
2013; Artzi et al., 2014).

California := NP : california
Nevada := NP : nevada
borders := (S\NP)/NP : λx .λy .borders(y , x )

The combinatory rules aim to allow the combination of the categories.
The following two functional applications represent the canonical operations
for CCG:

1. Forward Application (>): X /Y Y ⇒ X

2. Backward Application (<): Y X \Y ⇒ X

Those functions show that categories of the X /Y accepts a token of
category Y to its right, while X \Y accepts a token of category Y to its
left. Figure 3.3 and 3.4 depict examples of CCG parsers respectively of a
factual sentence and a question both from the SAIL data set.

California borders Nevada

NP (S\NP)/NP NP
: california : λ x .λ y .borders(y , x ) : nevada

>

S\NP : λ y .borders(y ,nevada)
<

S : borders(california,nevada)

Figure 3.3: Parsing of a factual sentence, where S and NP stand
respectively for sentence and noun phrase, whereas —> and —<
represent respectively the application of the forward and backward
functions.

The methods based on grammar formalisms generally follow a two-
component pattern, where the first component is responsible for inducing a
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What states border Hawaii

(S/(S\NP))/N N (S\NP)/NP NP
: λ f λ g .λ x .f (x ) ∧ g(x ) : λ x .state(x ) : λ x .λ y .borders(y , x ) : hawaii

> >

S/(S\NP) : λ g .λ x .state(x ) ∧ g(x ) S\NP : λ y .borders(y , hawaii)
>

S : λ x .state(x ) ∧ borders(x , hawaii)

Figure 3.4: Parsing of a question, where S , NP and N stand respec-
tively for sentence, noun phrase and noun, whereas —> represents
the application of the forward function.

lexicon, whereas the second component acts as a probabilistic model that
learns an optimal derivation from the set of trained data. For instance,
Zettlemoyer and Collins (2005) defines a GENLEX function, representing the
first component, which operates on a set of rules to generate a large combina-
tion of the sentence words to the categories according to their POS-tag. The
authors then apply a probabilistic model using gradient descent to identify
the minimal set of lexicon items to maximise the derivation of the examples
in the test set.

Artzi and Zettlemoyer (2013) extend this work to operate in a naviga-
tional instruction setting. The main changes rely on a joint parsing and
execution model which is demanded to allow the model to update the inter-
nal state (location) while going through the map.

End-to-End Machine Learning Models

From a data set extracted from ifttt.com, similar to that described by Ur
et al. (2016), a subsequent work also explored the combination of a feed-
forward neural network with a context-free grammar to improve the pre-
viously presented results. Liu et al. (2016) also explored the data set, this
time getting higher performance by using an attention-based neural network
architecture. In the same task, Beltagy and Quirk (2016) developed a feed-
forward neural network, which uses word and character n-grams and Brown
clustering as features.

Deep learning models (Goodfellow et al., 2016), together with large sets
of annotated data (Halevy et al., 2009) established new levels of maturity
for natural language processing tasks in general, whose principles are largely
applied in the context of natural language commands, as shown in the De-

caNLP model, which uses the same approach to deal with ten NLP tasks,
including semantic parsing (McCann et al., 2018). The methods presented
so far used what we now call traditional learning models, which comprehends
linear regression, support vector machine or random forest, just to mention
a few. The breakout moment of the era, however came with the popularity
of the deep learning methods, in particular recurrent neural network models
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and the attention mechanisms using the encoder-decoder architecture.
According to Kant (2018), given the connectionist nature of neural net-

work approaches (Sun, 2000), neural-based approaches are not suitable to
generate code properly when operating at character level. Using a varia-
tion of a recurrent neural network, Neelakantan et al. (2015) proposed a
model to interpret questions over spreadsheets that require the application
of built-in functions. Their contribution focuses on the induction of a com-
positional model for the operations. The architecture follows a combination
of components able to deal with the specificities of each type of input data.

The Encoder-Decoder Architecture

The encoder-decoder neural network architecture, as its name suggests, is
composed of two main components: an encoder responsible for learning an
intermediate representation of the input data, and a decoder responsible
for translating the internal representation to a meaningful output. The
architecture has been applied to all sort of tasks in the parsing of natural
language commands.

For instance, to address the SAIL navigational-instruction task, Mei et al.
(2016) proposed an extra component named aligner to bridge the encoder
and the decoder. Whereas both encoder and decoder components follow
a typical implementation based on LSTM, the aligner acts as a enricher
component that, in addition to the output of the encoder, also receives the
input data, offering a short access to the raw features to the decoder.

A different type of improvement is regarding the feature representation.
Also targeting the SAIL task, Can and Yuret (2018) innovates by represent-
ing the perceptual spatial state of the agent as grid, which fed the network
together with the language features.

In the context of code synthesis, some tokens of the input descriptions
need to be copied “as is”, such as when the words represent parameter
values. Using a Bi-LSTM architecture with attention in the decoder, Ling
et al. (2016) combine principles of pointer networks, which are capable of
copying words from the input to the output together with a character-based
softmax. Still in code synthesis tasks and text-to-SQL, frequently the output
needs to comply with a specific syntax. As checking the correct syntax is
straightforward, researchers included a checker mechanism in their decoder
components. For instance, Yin and Neubig (2017) define a syntactic neural
model to overcome the limitation of previous works in guaranteeing that the
synthesised code respects the Python syntax. Dong and Lapata (2016), on
the other hand, include a syntax control at the level of a tree, the structure
used to represent the task in GeoQuery, ATIS and IFTTT data sets. The
authors later propose the Coarse-to-Fine architecture where two pairs of
encoder-decoder components are organised in sequence to produce both an
intermediate representation, from which a second pair of encoder-decoder
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components produce the expected output for the tasks, for example SQL

(Dong and Lapata, 2018).
In a reinforcement learning fashion, Bunel et al. (2018) propose an in-

tricate neural network architecture composed of LSTM and CNN layers.
The main innovation of the model, however, relies on the construction of
a syntax checker at the end of the model that learns valid program syntax
jointly with the other components of the model. A similar strategy is used
by Zhong et al. (2017), which associates a token-based network that gener-
ates SQL with a reinforcement learning component that ensures the correct
syntax.

In the tasks of interpreting cards’ behaviour, Ling et al. (2016) analyse
machine learning baselines based on sequence-to-sequence, machine trans-
lation and the encoder-decoder architecture. Rabinovich et al. (2017) later
re-engineered the data representation to make use of the Abstract Syntax

Description Language Framework (Wang, 1997), from which an encoder-
decoder architecture achieves better results.

Gardner et al. (2018) highlighted how the community has taken advan-
tage of the modern neural machine translation method (Bahdanau et al.,
2014), where the general idea is to follow the same principles of the previ-
ously presented WASP model, that suggests interpreting the parsing task as
a translation task, but following a novel neural-network-based architecture.

Many papers analysed new data sets with popular end-to-end techniques
that offer initial baselines to identify the complexity of the tasks when apply-
ing well-spread models. This is the case of Quirk et al. (2015), which applied
machine translation and loosely synchronous generation in the IFTTT data
set, Misra et al. (2016), playing with a model “which is isomorphic to a
conditional random field”, Chen et al. (2019) which used the LingUNet ar-
chitecture in the Touchdown data set, Misra et al. (2018) and Anderson et al.
(2018) with sequence-to-sequence models to the vision-and-language navi-
gation data set, and Barone and Sennrich (2017) using an open source tool
for neural machine translation in the previously presented data set to build
Python code from its documentation.

In most of the aforementioned works the results are empirical, without
providing proper mathematical grounding.

To better distinguish the approaches based on the encoder-decoder ar-
chitecture, we added additional information in Table 3.3. Mei et al. (2016),
Can and Yuret (2018) and Bunel et al. (2018) differentiate their architec-
tures by adding a new component between the encoder and the decoder.
The main motivation behind this component is to better represent and “re-
member” parts of the information that was “forgotten” by the recurrent
mechanism. For the same motivation, but using a different approach, Ling
et al. (2016) and Dong and Lapata (2016) use attention mechanisms in the
network. Another similarity is found in the improvements of the decoder
component in the works of Dong and Lapata (2016), Zhong et al. (2017),
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Yin and Neubig (2017) and Bunel et al. (2018), to guarantee the networks
output the correct syntax format.

3.4 An Overview of the Methods for Parsing Nat-
ural Language Commands

To acquire a deeper understanding of the research field, apart from classi-
fying the various approaches from the methodological perspective, we con-
ducted a structured analysis according to their approach, feature set, support
to explainability and evaluation methods.

Tables 3.4, 3.5 and 3.6 present an overview of 36 methods analysed
according to the criteria aforementioned. Given their particularities, extra
characteristics of the methods based on encoder-decoder machine learning
models are described in Table 3.3.

3.4.1 Approach and Feature Set

Tables 3.4, 3.5 and 3.6 describe the main approach and feature set of each
of the related works, disposed chronologically.

Independently on being based on rules or supported by a learning model,
parsing methods need to rely on features. For a large set of methods, the
feature set is a discriminator of the approach itself. Furthermore, simply
changing the feature set can be the reason of a performance improvement.

The simplest semantic parsers operate merely based on string matching
and slot filling. The complexity increased gradually when syntactic parsers
and taggers became available, in a way that they added a new set of features
based on which rules could be defined. Subsequently, the emergence of
thesauri, mainly supported by semantic web standards, allowed the methods
to use graph metrics in the field, when ontologies as WordNet (Miller, 1995),
FrameNet (Baker et al., 1998) and VerbNet (Schuler, 2005) got prominent.

The popularity of statistical methods in association with some availabil-
ity of training data and linguistic resources, made a significant shift in the
field by enabling the generation of automated and semi-automated parsers.
Grounded on the same basis, the more recent research agenda mainly dom-
inated by neural-based approaches represents a new wave of the learning
methods, now supported by larger models and much larger annotated train-
ing sets. Feature-wise, the main improvement is regarded to word embed-
ding, which represents the meaning of tokens by a latent vector generated
from large textual data sets in a non-supervised fashion.

3.4.2 Explainability

There is a rising demand in the artificial intelligence community to improve
the levels of interpretability of the learning methods, not only from a tech-
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Work Encoder Decoder Highlights

Mei et al. (2016) LSTM LSTM The architecture has
an extra component
between the encoder
and the decoder, the
Multi-level Aligner,
to enrich the data
input in the decoder.

Dong and Lapata (2016) LSTM LSTM
with
attention

The decoder uses
attention to improve
the generation of
syntactically valid
output.

Ling et al. (2016) LSTM LSTM
with
attention

Components are Bi-
LSTMs combining
pointer networks to
copy words from
the input to the
output together with
a character-based
softmax.

Yin and Neubig (2017) LSTM LSTM
adapted
for AST

The decoder compo-
nent is adapted to
operate according to
a programming lan-
guage AST.

Zhong et al. (2017) LSTM LSTM The decoder uses
augmented pointer
networks and rein-
forcement learning
to ensure the correct
output syntax.

Can and Yuret (2018) LSTM LSTM An attention-based
CNN component
bridges the encoder
and the decoder.

Bunel et al. (2018) LSTM LSTM
and CNN

An extra LSTM net-
work is attached at
the end of the archi-
tecture to learn the
program syntax and
help pruning invalid
outputs.

Dong and Lapata (2018) LSTM LSTM
with
attention

The architecture
is composed of BI-
LSTMs with two
pairs of encoder-
decoder.

Table 3.3: Extra characteristics of the encoder-decoder-based ma-
chine learning models.



Work Approach Lingustic Features Explanability
Gold standard

evaluation
User centred
evaluation

Guida and Tasso (1982) rule-based lexicon potentially no no

Biermann et al. (1983) rule-based lexicon potentially no yes

Maas and Suppes (1985) rule-based lexicon potentially no no

Manaris et al. (1994)
rule-based and grammar

formalism
lexicon potentially no no

Price et al. (2000) rule-based lexicon potentially no no

Tang and Mooney (2001) rule-based and logical forms lexicon potentially yes no

Zettlemoyer and Collins (2005)
rule-based with probabilistic

model
lexicon and categories potentially* yes no

Wong and Mooney (2006) statistical machine translation lexicon no yes no

MacMahon et al. (2006) rule-based
lexicon, pos-tag and
dependency tree

potentially yes no

Englmeier et al. (2006)
rule-based with semantic web

patterns
lexicon and ontology potentially no no

Bosca et al. (2006)
rule-based with semantic web

patterns and similarity
measures

lexicon and ontology potentially no no

Little and Miller (2006) rule-based lexicon mentioned no yes

Wong and Mooney (2007)
grammar formalism with a
maximum-entropy model

lexicon no yes no

Branavan et al. (2009) reinforcement learning lexicon and edit distance no yes no

Lim and Lee (2010)
rule-based with semantic web

pattern sand similarity
measures

lexicon and ontology potentially yes no

Kwiatkowski et al. (2010) Probabilistic CCG lexicon and categories potentially* yes no

Table 3.4: Overview of the methods so far discussed. Potentially explainable methods marked with *, explana-
tion is applied only to part of the methods (Part 1).



Work Approach Lingustic Features Explanability
Gold standard

evaluation
User centred
evaluation

Tellex et al. (2011)
Statistical model (L-BFGS

algorithm)
lexicon, ontology and
similarity metrics

no yes no

Giordani and Moschitti (2012) rule-based with SVM lexicon and weight schema no yes no

Artzi and Zettlemoyer (2013)
rule-based with probabilistic

model
lexicon and categories potentially* yes no

Gulwani and Marron (2014) rule-based lexicon and data schema potentially yes no

Li and Jagadish (2014) rule-based
lexicon, pos-tag and
dependency tree

potentially yes no

Gvero and Kuncak (2015)
rule-based with statistical

Model (PCFG)
lexicon potentially yes no

Hemachandra et al. (2015)
Statistical model

(RaoBlackwell theorem)
lexicon no yes no

Wang et al. (2015) Statistical model (AdaGrad) lexicon / category no yes no

Quirk et al. (2015)
Statistical model (log-linear

probabilistic model)
lexicon no yes no

Neelakantan et al. (2015)
RNN and other probabilistic

models
word embbedings no yes no

Beltagy and Quirk (2016) feed-forward neural networks
word and character n-grams

and Brown cluster
no yes no

Liu et al. (2016)
latent attention in neural

networks
one-hot vector no yes no

Mei et al. (2016) recurrent neural networks one-hot vector no yes no

Dong and Lapata (2016)
LSTM-based encoder-decoder

neural network
one-hot vector no yes no

Table 3.5: Overview of the methods so far discussed. Potentially explainable methods marked with *, explana-
tion is applied only to part of the methods (Part 2).



Work Approach Lingustic Features Explanability
Gold standard

evaluation
User centred
evaluation

Ling et al. (2016)
LSTM-based encoder-decoder

neural network
C2W-based embedding

vector
no yes no

Yin and Neubig (2017)
LSTM-based encoder-decoder

neural network
one-hot vector no yes no

Zhong et al. (2017)
LSTM-based encoder-decoder

neural network
one-hot vector no yes no

Can and Yuret (2018)
LSTM-based encoder-decoder

neural network
one-hot vector no yes no

Bunel et al. (2018)
LSTM-based encoder-decoder

neural network
one-hot vector no yes no

Dong and Lapata (2018)
LSTM-based encoder-decoder

neural network
one-hot vector no yes no

Table 3.6: Overview of the methods so far discussed. Potentially explainable methods marked with *, explana-
tion is applied only to part of the methods (Part 3).
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nical perspective, but also focusing on the end users. In this sense, there
is an expectation that new models, in addition to delivering better perfor-
mance, also bring mechanisms to allow non-technical users to understand
their rationale.

This pressure, however, is not clearly reflected in the related work.
Among the research present in our survey, only the work of Little and Miller
(2006) delivers explainability as a native feature in the parsing of natural
language commands. However, by using criteria like the ones included in the
classification of Lipton (2016) (see Section 2.5), some approaches can be la-
belled as potentially explainable, since, although the authors didn’t address
explainability in their research, the proposed methods offer a straightfor-
ward method of explanation. For more on explainability, please refer to
Section 2.5.

3.4.3 Evaluation

With a few exceptions from the 80s, works are always somehow evaluated,
usually by either a gold standard test collection, that represents the major-
ity of the cases, or based on a user experiment, as the research of Biermann
et al. (1983) and Little and Miller (2006). Gold standard test collections
guarantee easier reproducibility, using generally well-known metrics such as
precision, recall and accuracy, depending on the task. User-centred evalu-
ation, however, can bring a subjective evaluation from a practical point of
view, which is especially valuable when assessing the explainability aspect.

3.5 Exposing the Gap

Provided a large enough data set is available, end-to-end encoder-decoder
models have been showing high performance in several tasks. However, such
a data set is not always available.

Attempts to overcome this restriction with the generation of synthetic
data as in the work of Neelakantan et al. (2015) leads to undesirable biases
as language expressivity is much higher than its examples in the train and
test samples, reducing the real complexity of the task (Shin et al., 2019).
While synthetic data sets can serve to analyse theoretical limitations and
properties of a learning method (Bermeitinger et al., 2019), their benefit
in learning how to decode user language is very limited. We can conclude
intuitively that a learning process trained on a synthetically generated data
set is in fact modelling the generation function behind the synthesis process.

Our thesis focuses on studying the development of a semantic parser for
a task with a restricted amount of training data. Given the implications, as
a requirement, our approach does not rely on synthetically generated sam-
ples to expand the training data. Additionally, we also aim to produce an
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explanation model giving special attention to study the human factors re-
garding preferences on the type of explanations considering the background
of the user, in addition to analyse the user perception on the importance of
explainability with regard to the performance.

3.6 Summary

Parsing of natural language commands is an active task dating back to the
origins of research in computer science. Throughout the time, the field has
evolved from rule-based approaches, mainly focused on string matching, to
more sophisticated learning models using modern neural network architec-
tures.

However, newer models come with a strong requirement: the task needs
to offer a reasonable large training set from which a neural model can learn.
This requirement, however, in many circumstances cannot be achieved, given
particular difficulties and the high costs that data collecting has. A common
approach to overcome this limitation is the generation of synthetic data. The
technique, however, tends to only repeat a known pattern behind the data
generator method, which frequently doesn’t represent in large extent the
complexity of the task and the broadness of the user representation.

The analysis of the literature reveals a gap in methods that can learn
from small data sets, whose complexity are high, without relying on synthe-
sising data, given the already proved high risks of bias. This forms the base
of the method we propose in the coming chapters.
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4.1 Introduction

By surveying the field, Chapter 3 presented an overview of the current
state-of-the-art architecture for the semantic parsing of natural language
commands. Typically, this architecture is defined by an end-to-end encoder-
decoder-based machine learning model that interprets the task as a transla-
tion from natural language commands to function calls. Figure 4.1 depicts
the structure of such architecture, presenting its main components and the
relationship between them.

In our research, the first goal is to analyse the performance of end-to-end
encoder-decoder architectures in our target data set. As further detailed in
Chapter 6, several models based on this architecture do not succeed to solve
the target problem due to the small training set available. Our experiments
evaluated variations of the end-to-end networks considering different types of
input data and variations in the architecture as using attention mechanisms
(Vaswani et al., 2017). All the evaluated models delivered an f1-score of 0.
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Considering our target task, solving the problem using an end-to-end ap-
proach is especially challenging because of its expected output. In addition
to identifying the correct function signature, the model needs to simultane-
ously select chunks of tokens from the input text, and associate them to the
correct set of parameters. Our thesis concentrates on finding an alternative
approach capable of dealing with the given task, assuming the small size of
the data set as a strong requirement.

Following this introductory section, Section 4.2 briefly analysis the struc-
ture of the end-to-end learning model in terms of output complexity and
suggests re-engineering the task to simplify the learning goal. With this
change, the small training data available will be used exclusively to deter-
mine to which degree a given function call represents the intent of a natural
language command. Changing the learning task comes with the price of
adding additional components in the new proposed approach, whose mo-
tivation and role are presented in Section 4.3. Section 4.4 describes our
proposed architecture, defined in a multi-component fashion, where the new
learning task plays a central role in the final ranking function. Finally,
Section 4.5 summarises this chapter, highlighting the main aspects of our

features from the natural language command

en
co

de
r

in
pu

t
de

co
de

r
ou

tp
ut

function
signature

parameters’ assignments

Figure 4.1: A typical method to solve this task is the encoder-
decoder machine learning model in the sequence-to-sequence fashion
(Sutskever et al., 2014; Ling et al., 2016; Gulcehre et al., 2016).
The grey and green boxes represent LSTM cells and the parameters’
assignments are one-hot vectors associating chunks of the input text
to the parameters.
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approach.
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Figure 4.2: The current learning task receives as input a set of
features from the natural language command, whereas the output
defines the intent function signature together with their parameters’
values. On its turn, the new learning task represents a model that
receives as input features a pair of a natural language command and
a function call, outputting a score that defines the level of represen-
tativeness of the user intent ranging from 0 to 3 whose meaning is
defined in Table 4.1.

4.2 Re-engineering the Learning Task

To overcome the restriction on the size of the training data, the main strat-
egy is to break down the solution, dividing the responsibilities among smaller
components. Thus, based on the intuition that the smaller the training data,
the simpler the learning task (Halevy et al., 2009), the data set is used to
learn a more targeted piece of information. Hence, instead of inducing the
function call directly, predicting at once both the function signature and its
parameters’ values, as it is stated now, in the new approach we re-engineer
the task to classify the function calls, letting the new model be responsible
for evaluating them as representative or not of the user intent.

Figure 4.2 compares the input and output data of the current learning
task to the new remodelled learning task. For instance, let the excerpt below
be a natural language command:

“Write to newton@example.com asking him to take a look at
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the NYT today”

In the first task our learning model receives as input the features from
this natural language command aiming at producing the following intended
function call, where send and email is a function signature defined in the
API Knowledge Base, and both message and to address are parameters
associated to this function signature:

function name: send an email

params: message = “take a look at the NYT today”
to address = “newton@example.com”

The proposed learning task, however, operates at the level of function
calls, which, together with the natural language command, become the input
of the learning model, where the expected output is a score denoting the
degree the given function call represents the user intent of the given natural
language command.

The change in the structure of the task has two advantages. First, it
simplifies the object of learning, from a large set of variables, whose range
of the function signature for example is at the scale of thousands, to a single
output ranging from 0 to 3 as detailed in Table 4.1. Secondly, this approach
increases the training data as we need to generate candidates of function
calls to train the model.

Intent Score Meaning

0 wrong function signature

1 right function signature with wrong parameters

2 right function signature with partially right parameters

3 right function signature with right parameters

Table 4.1: Range of intent scores and their respective meaning.

For example, given the natural language command “Exchange 1000 Chi-
lean Pesos to Euro”, the new approach first generates a set of function
call candidates, as depicted in Table 4.2, and then classifies each of them
according to its relevance represented by an intent score, which is a central
feature in the final ranking method. This new approach, however, demands
the support of extra components able to generate the set of function call
candidates from the natural language command and API Knowledge Base.

4.3 Componentising the Semantic Parsing

The main characteristics of a complex system are the multiplicity and het-
erogeneity of its components. In the context of computational semantics,
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building such systems requires the coordination of different NLP compo-
nents frequently organised as a chain, whose integration often depends on
different tools and resources of less granularity, such as language resources
and structured knowledge bases (Sales et al., 2018a; Desolda et al., 2017).

The purpose of the componentisation is to support the re-engineering
of the learning task, reserving the available training data to determine the
intent score of a function call in relation to the natural language command.

Essentially, the componentisation aims at defining the semantic parser
as a pipeline composed of a specialised shallow parser that produces a
predicate-argument structure from the natural language command, followed
by a ranking model based on a distributional model. This architecture takes
advantage of external resources to shallow parse the command, enriching
their compound part with additional semantic data, before matching to a
compatible function signature. For example, tokens of the natural language
command that represent a named entity are labelled as such. Other tokens
that represent the description of the target function are also highlighted as
such. Those cases of labelling can be performed by the composition of a
grammar parser and a thesaurus, as shown in the coming sections. This
strategy guarantees that the final learning task has more features to classify
the degree of representativeness of the function calls.

Figure 4.3 illustrates, at the bottom of the pyramid, resources that store

Function Calls
Intent
Score

Convert File
[file = Chilean Pesos, output format = Euro]

0

Make a Payment
[invoice = 1000,method = Chilean Pesos]

0

Currency Convert
[from amount = Chilean Pesos, from = Euro, to = 1000]

1

Currency Convert
[from amount = Euro, from = Chilean Pesos, to = 1000]

2

Currency Convert
[from amount = 1000, from = Chilean Pesos, to = Euro]

3

Table 4.2: List of possible function calls for the command “Ex-
change 1000 Chilean Pesos to Euro”, where the last row represents
the intent score from the user perspective. The calls are generated
considering a selected set of function signatures, which can be clas-
sified according to its intent score as wrong function signature (0),
right function signature with wrong parameters (1), right function
signature with partially right parameters (2) or right function signa-
ture with right parameters (3).
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both linguistic and common-sense knowledge, such as manually built the-
sauri like WordNet (Miller, 1995) and VerbNet (Schuler, 2005), the knowledge
base DBpedia (Auer et al., 2007) and word embedding models (Camacho-
Collados and Pilehvar, 2018). Under this umbrella, there are also linguistic
tools trained from manually curated data such as POS taggers (Manning,
2011) and dependency parsers (Bohnet, 2010).

At the next level, the pyramid has the list of low-level components, which
are built from the composition of those linguistic tools and common-sense
knowledge to address fundamental tasks of natural language processing such
as named entity recognition and semantic relatedness. Finally, at the top of
the pyramid, the complex multi-component semantic system emerges from
the coordination of the seven coarser-grained components, which are also
built from the elements presented in lower levels.

Named Entity Recognizer

Word Embedding 
Models

Semantic Type 
Inferencer

Semantic 
Relatedness

Semantic 
CompositionIndirect Speech 

Identificator

High-Level Components

Command 
Segmenter

Shallow
Parser

WordNetPOS Tagger

VerbNet
Dependency
Tree Parser

DBpedia

Low-Level Components

Linguistic Resources and Thesauri

Type  
Inferencer

API
Filter

Function
Call

Generator

Intent 
Classifier

Ranker

Figure 4.3: The top level of the pyramid shows the high-level com-
ponents, which represent the main elements from which our proposed
architecture is built. Immediately below, there are the low-level com-
ponents, representing some fundamental NLP tasks, such as named
entity recognition and semantic relatedness. At the bottom, we have
linguistic tools and thesauri of common-sense knowledge.

4.4 The Proposed Architecture

Our proposed architecture is composed of seven main components, which
are developed as a composition of lower-grained natural language models
and linguistic resources. Figure 4.4 depicts the execution pipeline of our
proposed architecture, showing a functional example of a natural language
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command in the form of an if-then recipe. The first component in the
pipeline is the Command Segmenter, responsible for splitting the protasis, i.e.
the conditional clause, and the apodosis, i.e. the main clause. As described
in Section 1.3, commands can appear in the form of an if-then recipe or not.
When only one single action is submitted, the Command Segmenter just for-
wards the command. From now onwards, each sentence of the command is
analysed individually. The second component, the Shallow Parser, identi-
fies the function descriptor and the set of command objects, constituting a
lightweight representation of the natural language command in the form of
a predicate-argument structure. Before serving as input for the API Filter

to identify the relevant set of function signatures from the API Knowledge

Base, the predicate-argument structure is enriched with semantic types by
the Type Inferencer. Next, the Function Call Generator analyses the
features generated so far to generate a set of potential function calls, which,
together with the predicate-argument structure serves as input for the In-

tent Classifier to obtain the intent score. In the final step, the Ranker

component lists to the final user the most likely set of function calls.
Considering the formal description of the task of semantic parsing of nat-

ural language commands in Section 1.3, the components can be formalised
as:

1. Command Segmenter: In the first step, represented by Equation
4.1, the model identifies whether the natural language command (c) is
defined in the form of an if-then recipe, to split it into two sentences
(cs | s ∈ [0, 1]);

2. Shallow Parser: In the second step, represented by Equation 4.2, for
each sentence, the model reduces the natural language command (cs)
to a predicate-argument structure composed of an function descriptor
(d) and a set of command objects (o1, . . . , ok );

3. Type Inferencer: Then, each command object is analysed by an in-
ference type function (Equation 4.3) that, associate it with a semantic
type when appropriate. For example, δ(“dollar”) = CURRENCY and
δ(“john@domain.com”) = EMAIL;

4. API Filter: Next, the API Filter, represented by Equation 4.4,
selects a set of function signatures F̂ , where F̂ ⊂ F , | F̂ |<<| F | and
(∀ f̂ ∈ F̂ | f̂ ≈ cs), in the sense that the cardinality of the selected sub
set is significantly smaller than the original one, and those elements
are semantically related to the natural language command. This step
reduces the search space, maximising the probability of matching the
parameters;

5. Function Call Generation: Further, the selected set of function
signatures F̂ is combined with the command objects (o1, . . . , ok ) to
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Figure 4.4: The architecture, from a software perspective, of the proposed semantic system to interpret natural
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generate the set of function calls, representing them according to the
feature set described in Section 4.4.6;

6. Intent Classifier: Then, the function calls are classified according
to their representativeness of the user intent in line with the scores
defined in Table 4.1, which is represented in Equation 4.6;

7. Ranker: Our semantic parser ends with the ranking function that
produces the ranking score from the features generated in the previ-
ous steps, listing the set of relevant function calls to the final user.
The Ranker is represented by Equation 4.7, which is defined in Sec-
tion 4.4.8.

The seven components are formalised in the following equations:

κ(c) = [cs | s ∈ [0, 1]] (4.1)

σ(cs) = (d , o1, . . . , ok ) (4.2)

δ(o1, . . . , ok ) = (t1, . . . , tk ) (4.3)

ρ(F , d , o1, . . . , ok ) = F̂ (4.4)

features(d ,O , F̂ ) = Z (4.5)

classify(Z ) = κ (4.6)

4.4.1 Command Segmenter

The Command Segmenter aims at identifying and splitting compound sen-
tences that are mapped to more than one function signature in the API

Knowledge Base. In our target data set, it represents the case of if-then
clauses as in the example shown in Figure 4.4. Our implementation fol-
lows a method based on the context-free grammar described in Figure 4.5
defined by Weigelt et al. (2018), which operates on chunk tags from a gram-
mar parser, where if-keywords and then-keywords come from a curated list
of terms.
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conditional → if-clause then-clause
if-clause → if-keyword NP VP

then-clause → then-keyword NP VP
then-clause → then-keyword VP

then-clause → NP VP
then-clause → VP

Figure 4.5: Adapted context-free grammar from Weigelt et al.
(2018) describing the basic structures, where NP and VP stand re-
spectively for noun phrase and verb phrase.

4.4.2 Shallow Parser

The Shallow Parser is responsible for identifying the (i) function descrip-
tor and (ii) the set of command objects based on an approach that considers
the syntactic functions of the constituents of the natural language command
and the presence of named entities. The function descriptor is the minimal
subset of tokens present in the command that allows identifying the target
function signature in the API Knowledge Base. Figure 4.4 shows the out-
put of the Shallow Parser, where the function descriptors are highlighted
in pink, while the command objects are green and yellow. A command ob-
ject represents a potential descriptor or value of a parameter. For example,
in the conditional command “if the price of the stock VOW3 drops below
17e ”, “drops” acts as a function descriptor, whereas “stock”, “VOW3” and
“17e ” represents the set of command objects. Equation 4.2 defines σ(cs),
where cs is the natural language command, d is the function descriptor and
o1, . . . , ok are the command objects.

We implemented the Shallow Parser based on an explicit grammar
defined by dependency relations and POS-tags. Table 4.3 shows the rules
used to identify the command objects.

Be a dependency tree defined as a tuple H = (V ,E ,φ), where:

• V is a finite set of nodes each of them representing tokens;

• E ⊆ V × V is a finite set of edges, where eorigin represents the node
in the origin and edest the node in the destination of an edge e ∈ E ;

• φ : E −→ C assigns a label from C to each edge.

In addition to the rules described in Table 4.3, chains of tokens that
comply with the POS-tag patterns (JJ ) ∗ (NNP)+ and (JJ ) ∗NN , are also
included in the set of command objects, where JJ , NNP and NN represent
respectively adjectives, proper nouns and nouns.

The extraction of the function descriptor is also dependent on linguistic
features, which is summarised in Algorithm 1.
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Condition CO Qualifier

φ(e) = (poss | amod) ∧ τ(eorigin) �= PRP eorigin edest
φ(e) = (nn) ∧ τ(edest ) �= NNP ∧ τ(eorigin) �= PRP eorigin edest
φ(e) = (nsub) ∧ τ(eorigin) �= PRP eorigin edest
φ(e) = (pobj | aposs) ∧ τ(eorigin) �= PRP edest eorigin

Table 4.3: Tree-based rules to identify command objects (CO) and
their respective qualifiers, where τ represents the POS-tag of the
element e ∈ V .

To illustrate, Table 4.4 shows examples of natural language commands
and their representation in the form of a predicate-argument structure com-
posed of the function descriptor and the set of command objects.

In addition to identifying the command objects, the Shallow Parser

can also associate a qualifier to them, which serves as an expanded string
to identify the matching between a command object and its parameter. For
instance, in the command “Exchange 1000 Chilean Pesos to Euro”, Chilean
Pesos and Euro can only be differentiated in the sentence if we consider the
preposition to. The qualifiers are defined concomitantly with the command
objects themselves according to the rules described in Table 4.3.

4.4.3 Type Inferencer

For each command object, we also associate a semantic type, which is as-
signed by a named entity recogniser. Additionally, in our context, reported
speeches frequently act as the content or message of a command, as in the
example “write a tweet saying I am getting poor”, whose expression “I am
getting poor” is expected to be associated to the message.

Algorithm 1 Extracting the function descriptor, where τ represents the
POS-tag of the element e ∈ V

1: procedure GetFunctionDescriptor
2: q ← natural language command
3: S ← tokens present in command objects
4: I ← [‘TO’, ‘IN’, ‘.’]
5: T ← tokenize(q)
6: r ← “”
7: for t ∈ T do
8: if τ(t) �∈ I ∧ (t �∈ S ∨ δ(t) = ∅) then
9: r ← r + “ ” + t

return r
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Natural Language Command

Exchange 1000 Chilean Pesos to Euro

Send file.doc to sandra@mail.com

Find an image of the Sputnik-1 on Flickr

Descriptor Set of Command Objects

Exchange (1000, Chilean Pesos, Euro)

Send (file.doc, sandra@mail.com)

Find image (image, Sputnik-1, Flickr)

Table 4.4: Examples of natural language commands with their
respective function descriptors (d) and set of command objects
(o1, o2, ..., ok ) expected to be produced by σ.

Reported Speech Detector

We developed a reported speech identification mechanism based on the tech-
nique proposed by Krestel et al. (2008), which operates in two execution
cases. The first represents the trivial case when part of the command is
quoted. As quotation doesn’t always represent a reported speech, it is later
analysed by the Named Entity Recogniser (NER) to identify whether its
content represents another semantic type.

The second case uses Krestel et al. (2008)’s strategy, which, similarly to
the conditional detection from Weigelt et al. (2018), is centred on a set of
curated keywords: the reported verbs. In its mechanism, after identifying
a reported verb, the detector analyses the components of the sentence con-
sidering its rection, i.e. the relationship between a verb and its dependants.
For instance, given the command:

“write a tweet saying I am getting poor”

After identifying the reported verb say, according to its verb rection, the
Reported Speech Detector can extract the reported speech by collecting
the reduced non-finite verbal modifier, which is identified by a dependency
grammar parser, corresponding in this example to the expression “I am
getting poor”. Table 4.5 lists the reported verbs supported by Krestel et al.
(2008)’s approach.

Named Entity Recognition

Typical named entity recognisers usually identify people, organisations and
places in texts. More comprehensive recognisers also tag dates and expres-
sions of time (Nadeau and Sekine, 2007). In addition to the identification of
those common types, our domain demands specific types, such as currency,
user and email.
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For this reason, we developed our own recogniser, whose implementation
combines heuristics with a gazetteer mainly fed by DBpedia instances, where,
given a command, it searches for the longest chain of tokens that maps to an
element in the gazetteer, ignoring those tokens that are part of a reported
speech.

Table 4.6 lists examples of types of entities identified by our component.
Types marked with one asterisk are identified by regular expression, while
the others use the NER. Types marked with double asterisks are identified
by the Reported Speech Detector.

4.4.4 Predicate-Argument Structure

From this step onward, the commands are represented by predicate-argument
structures composed of the function description and the set of command ob-
jects together with their semantic types and qualifiers, whose foremost goal
is to help to measure the semantic relatedness of a given command and a
function call. At this level, the challenge relies on calculating the degree
of representativeness of the function signature with regard to the natural
language command. Figure 4.6 shows the predicate-argument structure of
the command “Send file.doc to sandra@mail.com”.

Our strategy aims at projecting both commands and function signatures
on two semantic hyperspaces, where the first represents a general projection
of the commands and function signatures, whereas the second represents a
hyperspace for the command objects and parameters.

4.4.5 API Filter

The goal of the filter function ρ (Equation 4.4) is to restrict the set of
function signatures to those semantically relevant for the natural language

according blame decline mention stress

accuse charge deny note suggest

acknowledge cite describe order tell

add claim disagree predict testify

admit complain disclose promise think

agree concede estimate recall urge

allege conclude explain recommend warn

announce confirm fear reply worry

argue contend hope report write

assert criticise insist say observe

believe declare maintain state

Table 4.5: The list of reported verbs supported by the approach
designed by Krestel et al. (2008).
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Location Day* Music User*

Product Person Telephone Number* Hashtag*

Language Email* Currency File*

Time* Sports Team Number* Reported Speech**

Table 4.6: Example of semantic types identified by the Named En-

tity Recogniser. Types marked with an asterisk are identified
purely by regular expression, whereas those with double asterisks
are identified by the Reported Speech Detector.

Send file.doc to sandra@email.com
<email><file>

[qualifier]

Figure 4.6: A natural language command, where “Send” rep-
resents the function description, and both “file.doc” and “san-
dra@email.com” are command objects, whose semantic types are
respectively <file> and <email>.

command. It is meant to reduce the complexity in generating and analysing
function calls and avoiding adding more noise in the final ranking system.

The filter function operates in the Predicate Hyperspace, which is de-
fined by a word embedding model on which both the predicate-argument
structure and the function signatures from the API Knowledge Base are
projected as depicted in Figure 4.7. The command and the function signa-
tures are each represented as one vector, from which a semantic relatedness
measure can be calculated.

The rationale behind this approach relies on a broader notion of semantic
relatedness. For instance, identifying that the words problem and issue may
have equivalent meanings in some contexts, even when these words are not
related to each other in a thesaurus, is a practical example of the role that
semantic approximation plays in the proposed system. Such approximation
ability seeks to overcome the divergence between the vocabulary used by the
user and that used to describe the function signatures in the API Knowl-

edge Base, known as the problem of vocabulary mismatch as discussed in
Section 3.3.1. Word embedding provides a mechanism to address this prob-
lem (Turney and Pantel, 2010), where a semantic relatedness metric can be
calculated from a geometric measure.

The filter function defines the set of relevant function signatures (F̂ ) by
calculating a geometric measure in the hyperspace. The vector representa-
tion for both commands and function signatures are defined as a composi-
tion of the individual token’s vectors. The representation of the function
signature considers its name, provider and parameters’ names, whereas the



A Semantic Parser for End-User Development 75

command considers the natural language query and the semantic types from
the command objects.

The filtering function is defined as a distance measure in a nearest neigh-
bours fashion, where the n closest functions are selected. Figure 4.7 shows a
simulated representation in two dimensions of the Predicate Hyperspace

where a command and a set of function signatures are depicted.

QUERY:
Exchange 1000 Chilean Pesos to Euro

Predicate Hyperspace
(Distributional Semantics Index)

Nudity detection

Send an email

Currency Converter

Convert file

Make a payment

(...)

(...)

(...)
(...)

(...)

(...)

Target functions (into the pivoting area)

pivoting area

LIGHTWEIGHT REPRESENTATION

Exchange 1000 Chilean Pesos to Euro
<number>

[qualifier]

<currency> <currency>

Figure 4.7: The natural language command “Exchange 1000
Chilean Pesos to Euro” is projected on the Predicate Hyperspace

in which the set of function signatures is also represented. The pivot-
ing area, represented by a blue ellipsis, determines the set of relevant
function signatures for the given command.

4.4.6 Function Call Generator

Based on the predicate-argument structure, the model generates potential
function calls by combining the set of command objects and the list of func-
tion signatures. For each of the selected set of relevant function signatures,
we instantiate a Predicate Hyperspace on where the command objects and
the function parameters are also projected based on the semantic represen-
tation of their names, qualifiers and types. The semantic representation is
again generated from a word embedding model, using the same composi-
tional method defined for the function signature in the previous hyperspace.
Based on this projection, our model generates the features of the set of
potential function calls, which are listed in the bullet points below. Each
function call candidate corresponds to a certain combination of function
parameters and command objects. Considering the relation many-to-many
between function parameters (i) and command objects (j ), each pair of func-
tion signature-command generates a set of function calls resulting from the
permutation iPj . Table 4.2 shows examples of generated function calls.

Figure 4.8 depicts the simulated example in two dimensions considering
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the set of relevant function signatures defined by the pivoting area in Figure
4.7.

from 

from_amount

to

..

.

Chilean Pesos

1000
Euro

Currency ConverterConvert file

file

Output format ..
.

Chilean Pesos

Euro
1000

Aligning parameters and generating features

Make a payment

...

Euro
1000

Chilean Pesosmethod

invoice

(...)

...

Euro
1000

Chilean Pesos
...

Figure 4.8: The natural language command “Exchange 1000
Chilean Pesos to Euro” is parsed to generate a predicate-argument
structure, whose command objects are then projected on Predicate

Hyperspaces. Each hyperspace represents a function signature se-
lected by the API Filter, on which the function parameters are also
projected.

The model represents each function call by the following list of features:

• cos(�d , �n): The semantic relatedness between the function description
(d) and the function name (n);

• max 0≤j≤m cos(�o literalj ,�l): The maximum semantic relatedness between
the command objects (o) and the provider (l);

• cos(�o literalj , �pi): The set of semantic relatedness between the pairs com-
posed of the command objects (o) and function parameters (p);

• cos(�otypej , �pi): The set of semantic relatedness between the pairs com-
posed of the semantic type of the command object(o) and the function
parameter (p);

• den(pi): The set of the densities of the function parameters, which
represents the inverse term-frequency in the function signature’s vo-
cabulary set.
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These semantic relatedness scores are used as input features to identify
jointly the most relevant function signature and the best configuration of
parameters’ values.

4.4.7 Intent Classifier

The role of the Intent Classifier is to measure, according to the scale
below described, whether a given function call represents the intent of the
natural language command. For each function call, the Intent Classifier

provides a classification as:

• (i) wrong function signature (score 0);

• (ii) right function signature with wrong parameters (score 1);

• (iii) right function signature with partially right parameters (score 2);

• (iv) right function signature with right parameters (score 3).

This small, but discriminative set of classes works as a data augmentation
method, as it enables the existence of many training instances of the same
class, even considering the small training data set the task offers.

Our proposed architecture defines both the input feature set and the
expected output of the Intent Classifier, but allowing the instantiation
of different types of learning methods to build it.

In our experiment settings, we assess the performance of different clas-
sifiers, such as those based on neural networks, random forest or support
vector machines, as described in Chapter 6.

4.4.8 Ranker

Equation 4.7 defines the ranking score function (rs), where c represents the
natural language command, f represents a function signature,

�
represents

a given combination of parameters and command objects defined in the
function call, and α represents a large number to guarantee function calls
with a higher intent score (κ) are always ranked above those with lower
scores.

rs(c, f ) = cos(�n,�d) +
k

max
j=1

(cos(l , oj )) +
� n,k�

i=1,j=1

(cos(�pi , �δ(oj ))) + (α ∗ κ)

(4.7)
In simple terms, the ranker function is defined to guarantee that function

calls are sorted first by its intent scores and then by the sum of their features.
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4.5 Summary

The restriction on the size of the training data prevents us to use an end-
to-end approach, where a unique machine learning model is able to identify
the function signature, as well as simultaneously selecting chunks of tokens
from the input text to associate them with the correct set of parameters.
As an alternative, we propose a multi-component system able to restructure
the task to take advantage of the training data.

Our semantic parsing approach relies on the notion of predicate-argument
embedding, where functions and parameters are embedded in distributional
vector spaces, in which geometric operators such as distance and density
are used to measure the semantic relatedness between a predicate-argument
structure of the command and the function calls.

The training data is mostly applied to build a classifier able to provide
an intent score, which together with other semantic features serves as input
for a ranking model to sort the relevant function calls according to their
likelihood to represent the user intent.

In Chapter 6, we evaluate and discuss variations of this architecture to
evaluate the contribution of each component to the final result, comparing
them to a set of baselines. Before this evaluation, we present in Chapter 5
an explanation model for the proposed semantic parser, setting the bases
for an additional user-centred study presented in Chapter 7.
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5.1 Introduction

Aligned with our proposed approach, a large gamut of natural language
understanding systems require the complex coordination of multiple com-
ponents, e.g. POS-tagger, syntactic parsing, named entity recogniser and
task-oriented machine learning models, where each component explores a
large spectrum of resources and learning methods (Burgess, 2018).

While delivering a human-interpretable explanation for a single com-
ponent is challenging, the problem is aggravated in the context of multi-
component systems (Lipton, 2016; Burgess, 2018). In contrast to atomic
approaches showing a single unified explanation, multi-component models
have the challenge of providing explanations presenting how each individ-
ual component works and how they are integrated to deliver the system’s
results.

This chapter defines a hierarchical explanation model for the proposed
semantic parser, exploring a hierarchical representation in an increasing de-
gree of technical depth.

79
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5.2 Levels of Interpretability

The hierarchical model defines three different levels of interpretability.

Figure 5.1: The three levels of interpretability defined in a hierar-
chical model.

1. Comparative Output Behavior Model: Displays the output in
contrast to other alternative top-k outputs. It provides the user with
the aggregate understanding of either the classification or similarity
aspects computed by the model. It outputs a ranked list ordered by a
score or by a probability distribution. Background knowledge required
by the user: expected output behaviour of the classifier.

2. Output-Explicit Feature Set Model: Displays the set of relevant
features associated with a specific output class or score. These sets of
features can be associated with four types: (i) lexical (naturally inter-
pretable input), (ii) numerical (corresponding to a probability distri-
bution or score), (iii) linguistic (affixes, POS, syntactic elements) and
(iv) categorical (derived categories). Background knowledge required
by the user: meaning of the features.

3. Output-Latent / Projective Feature Set: Corresponds to a pro-
jection-based visualisation of the impact of one or more features in
the model. For word embeddings projections, it can be defined as 2D
similarity models, while for machine learning based models it can be
defined by correlation or attention-based models. Background knowl-
edge required by the user: for word embeddings, the similarity model,
for classifiers, the notion of the relevance of a feature for a classification
task.

Figure 5.1 summarises the layers of the hierarchical model. Different
layers of the model are interpretable for different end-user profiles. Layer
(1) requires the understanding of the final task which the system should
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address (i.e. the expected behaviour of the application). Typically, it con-
sists of the final aggregation layer for a classifier, matcher or ranker. Layer
(2) describes the relationship between features and the output. The inter-
pretability of this layer is dependent on the understanding of the role of
linguistic features in the classification (e.g. lexical categories, syntactic re-
lations). Layer (3) is the deepest level and requires the understanding of
the dynamics of a classifier, ranker (the notion of different discriminative
weights associated with different features) as well as the understanding of
the expected behaviour of a word embedding (clusters of similar terms).

Although our explanation model targets a general audience, from a cer-
tain depth, unavoidably the user needs some sort of technical knowledge to
understand the explanation. Even from this level, the explanation should be
chosen in such a manner that the effort and technical knowledge to under-
stand it is minimised in the initial technical layers. The complexity increases
gradually, up to the point in which a deep knowledge is mandatory to un-
derstand the information.

5.3 The Explanation Model

We instantiate the explanation model in the proposed semantic parser, for
which, given a natural language command, it returns a list of function calls
that potentially represents the command intent as depicted in Figure 5.2.

Figure 5.2: A command in natural language and a list of potential
function calls representing the user intent.

Table 5.1 depicts the components of the semantic parser along with their
respective input features and mechanism of work.

The model presents seven explanations grouped by three layers focused
on the components’ behaviour and their particular input features. As ex-
pected in a heterogeneous architecture, each component operates under a
different method, requiring different types of inputs.

5.3.1 Shallow Parser Rules & Syntactic Tree Layers

The first layer describes the Shallow Parser and the Type Inferencer.
The explanations show the rules activated (i) to identify the command ob-
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Figure 5.3: Explanations of the Shallow Parser and the Type

Inferencer.

jects, (ii) to generate multi-word objects, and (iii) to identify the seman-
tic types, highlighting the tokens and features involved in the process, as
shown in Figure 5.3. The second layer depicts the features on which the
rules operate, namely the syntactic tree and the part of speech (POS) of
each token. Figure 5.4 shows a natural language command and both the
set of POS-tags and the dependency tree associated with its tokens. These
layers aim at showing the connection between the linguistic features and
main concepts of the parsing system, whose interpretability is dependent on
the understanding of the role of linguistic features in the classification.

Component Features Mechanism

Shallow Parser command rule-based

Type Inferencer
function descriptor,
set of command objects

gazetteer

Intent Classifier

word embedding model,
semantic relatedness,
density

Random Forest

Ranker relevance classification ranking model

Table 5.1: Components present in the semantic parser along with
their input features and mechanism of work. Each component uses
also the features described in the predecessor components.
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Figure 5.4: The second layer of the explanation model describ-
ing the linguistic features and highlighting the relationship between
them and the command objects.

5.3.2 Word Embedding Layer

The matching process relies on the semantic relatedness scores, which repre-
sent the degree of semantic similarity the function descriptor and command
objects have in relation to the function signature. The semantic relatedness
is calculated from a word embedding model, which represents terms as vec-
tors in a high-dimensional space. The explanation provides a cluster-based
visualisation using t-SNE (van der Maaten and Hinton, 2008), where it plots
the semantic elements that play a role in the matching process from both
the command and the function signature as shown in Figure 5.5. The co-
sine between the points represents the degree of semantic relatedness in a
post-hoc explanation fashion.

5.3.3 The Ranking & Classification Layer

The lower level is devoted to the most technical explanations which shows
the mathematical expression that defines the final ranking score of the func-
tion call along with the features used in both the expression itself and in
the Intent Classifier. To simplify the model to non-technical users, we
reduced Equation 4.7 to Equation 5.1 in which all elements in the expression
are represented by z , the vector of all features. Additionally, this level also
presents the trained Random Forest classifier, showing the relevance of each
feature in the final classification using the visualisation proposed by Welling
et al. (2016), called Random Floor. Petkovic et al. (2018) also propose a
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Figure 5.5: Plot of the elements from the command and function
signature in which the cosine between the points represents the se-
mantic relatedness.

visual representation for Random Forest models which makes use of a set of
charts. Welling et al. (2016)’s proposal, however, is more condensed, which
is the reason why we decided to apply it in our explanation model.

In the Random Floor chart, X-axis are variable values (in our experi-
ment, the score of the semantic relatedness) and Y-axis the corresponding
cross validated feature contributions, whereas the colour gradient in all plots
establishes a parallel of the instances among them.

Figure 5.6: The relevance of some features in the Intent Classi-

fier using the Forest Floor visualisation method.

Figure 5.6 shows the Random Floor representation model, depicting the
feature correlations for the Random Forest classifier trained in the context
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rs(c, f ) =

|z |�

i=0

(zi) + 1000 ∗ τ (5.1)

of this experiment. the objectProvider (the semantic relatedness of the
function’s provider) is display at the centre on the top representing the most
important feature for the prediction.

5.3.4 The Comparative Explanation

According to Jeroen and Erik (2002), explanations can be factual (plain-
fact) or comparative, being the last subdivided into property contrast, object
contrast and time contrast. All the explanations we presented so far are
classified as plain-fact, since it acts in the context of one unique function
call. In all layers, the explanations describe in detail aspects and properties
of a unique function call. The user can infer from those explanations, for
example, why this object matched with that parameter, why the semantic
relatedness between the function descriptor and the function name has that
specific value or why the function call received that specific ranking score.
However, identifying the reason the function call A is ranked higher than the
function call B demands a comparison between them. In this explanation,
we allow the user to make such a comparison, whose intuition is to aggregate
visual elements that can support the user to compare and contrast function
calls with an eyesight. For this purpose we put side-by-side the instantiation
of each function call, the projection of the word embedding vectors, the score
expression and feature list.

Figure 5.7 shows the comparison between the function calls “currency
converter” and “make a payment”. The comparative explanation reuses
elements from the factual explanations, such as the ranking expression, the
word embedding plot and the list of features.

5.4 Summary

Although usually claimed to have broad natural language capabilities, any
natural language understanding system is limited to the rules it models or
the set of latent patterns present in its training data sets. In this context,
explanations can serve as a mechanism to communicate the real abilities and
limitations of an intelligent system, allowing the users to adapt their writing
style to favour the system’s performance.

We instantiated different explanation paradigms in the multi-component
semantic parsing system targeting the end-user programming task. In Chap-
ters 6 and 7, the system and the set of supporting explanation mechanisms
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are respectively evaluated in the context of users with different ranges of
background in linguistics and machine learning.



Figure 5.7: The comparative explanation shows the function calls currency converter and make a payment in the context
of the natural language command Exchange 1000 Chilean Pesos to Euro.
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Chapter 6

The Evaluation of the
Semantic Parser

6.1 Introduction

In this thesis, we separate the evaluation of the parser mechanism, which is
presented in this chapter, from the user-centred evaluation of the explanation
method, described in Chapter 7. The rationale behind this decision is to
more clearly identify the performance of each contribution.

We start this chapter presenting the target data set with samples and
statistics. Next, as both baseline models and the proposed architecture rep-
resents tokens as word embeddings, we present Indra, a spin-off tool acting
as a centralised semantic relatedness function and vector repository. Indra
was built to simplify the experimentation with word embeddings, especially
regarding the composition of vectors and the identification of nearest neigh-
bours.

The first experiment batches concentrate on the end-to-end encoder-
decoder baseline models, which show their failure to address the given task
with the presented data set, due to the small size of the training data.

Section 6.4 is devolved to the evaluation of the proposed architecture.
We analyse variations in the implementations of both components API Fil-

ter and Intent Classifier, namely TF-IDF and Nearest Neighbours for
the filtering function, and Random Forest, Support Vector Machine andMul-
tilayer Perceptron for the final classification. Additionally, the experiment
covers also scenarios where no filtering function or classifier is applied to
help us identify the contribution of each component in the final solution.

The chapter finishes with a detailed analysis of the results and a short
summary.

6.1.1 The Data Set

The target task is defined by the data set derived from the Task 11 of the
SemEval 2017, named End-User Development using Natural Language (Sales
et al., 2017, 2018a). The data set is composed of 185 natural language com-
mands and 2005 function signatures. There are two types of commands.
The first type is if-then recipe, which is composed of a protasis, i.e. the
conditional clause, and the apodosis, i.e. the main clause. In this type of
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command each clause is associated to a function signature. The second type
is the solo direct command, which is associated to a unique function sig-
nature. Function signatures are also of two types. Triggers comprehend
function signatures meant to map to the conditional part of the if-then com-
mand. Actions represent the set of function signatures meant to map to the
main clause of the if-then commands and to direct commands. We borrow
the nomenclature from the IFTTT platform1, from which the function signa-
tures came. The data set comprehending the mappings of natural language
commands to function calls and the set of function signatures is available
at https://rebrand.ly/nlc-dataset. Table 6.1 shows some examples of
function signatures present in the knowledge base.

Function name Provider Parameters

Create a status message Facebook status message

Currency converter null from amount, from, to

Open garage door Garageio Which door

Create an issue GitHub repository, title, body

Create new contact Google Contacts full name, email...

Table 6.1: Examples of function signatures present in the KB.

Table 6.2 summarises the data set regarding its size. The numbers show
the unbalance between command samples and the total number of available
function signatures, which give a flavour of the complexity of the task.

Commands Functions

conditional direct total trigger action total

34 151 185 1225 780 2005

Table 6.2: Number of commands and function signatures present
in the data set, according to their respective types.

6.2 Indra

Vector space models usually comprise large data sets, whose manipulation
can easily raise performance issues. As word embedding and semantic re-
latedness play a central role in our architecture, we implemented a self-
contained tool whose twofold goal is to simplify the experimentation while
guaranteeing high performance. Given the general academic interest in vec-
tor space models, we spinned out the effort as a library called Indra (Sales
et al., 2018b). Indra can be used in the form of a local library or a web

1http://ifttt.com
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service receiving calls by REST standards. The project is now realised as an
open-source2 under the MIT license.

Among other functionalities, such as providing different types of seman-
tic metrics and exploring multi-linguality with machine translation (Freitas
et al., 2016), four functions are of higher importance for our proposed archi-
tecture: obtaining a vector representation of individual tokens; providing a
composed representation for multi-token strings; calculating semantic relat-
edness of vectors; and providing an efficient method for the identification of
nearest neighbours. The four functions are briefly presented in the following
sections.

6.2.1 Word Embedding Vector

Indra allows easy access to the vector representation of single tokens. It
can serve several word embedding models, in different languages, built from
different text corpora and using different types of algorithms. For instance,
by just changing parameters, Indra gives access to models built by Skip
Gram (Mikolov et al., 2013), Global Vectors (Jeffrey Pennington, 2014),
Explicit Semantic Analysis (Gabrilovich and Markovitch, 2007) or Latent
Semantic Analysis (Dumais et al., 1988), over different text corpora, such
as Google News or Wikipedia. The simplicity of experimenting with such
variations helps, for example, to identify the best combination of algorithm
and corpus for a given problem (Sales et al., 2017).

6.2.2 Composition Vector

In a vector space model, each vector represents an individual token. The
definition of tokens in the corpus depends on a pre-defined choice in the
tokenisation during the counting/training process of building the word em-
bedding model. Frequently, the tokenisation strategy targets splitting the
text in tokens that represents single words in the target language.

In addition to obtaining vectors for single tokens, our approach re-
quires the composition of them to generate the representation of multi-token
strings. For instance, when projecting the function name currency converter
on the Predicate Hyperspace, the model needs to obtain the two vectors
representing respectively currency and converter, and combine them to gen-
erate a final representation. This step requires the use of a compositional
method.

Indra offers a built-in function that detects the occurrence of multi-
token strings and automatically applies a compositional function according
to the parameters. Currently, the tool supports four compositional methods
(average, simple sum, distinct sum, l2-norm sum) (Sales et al., 2017).

2https://github.com/Lambda-3/Indra
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The final vector representation can then be used to both calculate the
semantic relatedness and identify the nearest neighbours.

6.2.3 Semantic Relatedness

Semantic relatedness is the core feature used in the Intent Classifier.
Calculating it at scale demands optimisation to guarantee a reasonable
execution time. Indra integrates this functionality with both single and
composite vectors in a multi-threading fashion to improve the performance.
The service allows the use of twelve relatedness metrics (AbsoluteCosine,
AlphaSkew, Chebyshev, CityBlock, Cosine, Dice, Euclidean, Jaccard2, Jac-
card, JensenShannon, Pearson, Spearman).

6.2.4 Nearest Neighbours

To find the n closest points to a given query vector in a multi-dimensional
space that considers thousands of points is a computationally intensive task,
which justifies why many researchers opt for approximate approaches (Re-
hurek, 2014). In the case of Indra, we incorporate the annoy method,
developed by Spotify, which wins out the popular Gensim (Rehurek and So-
jka, 2010) in performance (Rehurek, 2014). The function is also able to use
the composition functions in the query vector.

The integration of the aforementioned features makes Indra a recom-
mended tool to speed up both the development and execution phases of any
experiment setting that depends on semantic relatedness, nearest-neighbours
functions, or correlated measures.

6.3 The Encoder-Decoder Baseline Models

As described in Chapter 3, the encoder-decoder neural network model is the
typical state-of-the-art approach for semantic parsing. This type of model,
however, demands large data sets to demonstrate its efficiency. To prove
its shortcomings to deal with the problem we consider in our research, we
instantiated two encoder-decoder models, namely a sequence-to-sequence
recurrent neural network architecture and an attention-based architecture,
which are presented below.

6.3.1 The Sequence-to-Sequence Baseline

We implemented a sequence-to-sequence neural network composed of LSTM
cells as the recurrent unit in the style of Sutskever et al. (2014), which is
represented in Figure 6.1. The training process was designed to receive
a matrix Z ∈ R3 containing the set of function calls. Each function call
is represented by the function descriptor and the set of command objects
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features from the natural language command
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Figure 6.1: A typical method to solve this task is the encoder-
decoder machine learning model in the sequence-to-sequence fashion
(Ling et al., 2016; Gulcehre et al., 2016; Sutskever et al., 2014).
The grey and green boxes represent LSTM cells and the parameters’
assignments are one-hot vectors associating chunks of the input text
to the parameters.

expressed as 300-length vectors generated by the skip-gram model generated
over the Google News corpus.

The training process was conducted in two steps. First, we encoded each
function signature present in the API Knowledge Base as input, in order to
make the model aware of all of them. We used the function name as function
description and the parameter names as command objects. Secondly, we
used the training data in a 10-fold cross-validation fashion.

We evaluated different network architectures varying the number of lay-
ers (1 to 3), nodes (1 to 3 times the input size), dropouts (0, 0.3, 0.5),
epochs (up to 500), learning rates (0.001, 0.003, 0.01, 0.03, 0.1) and batch
sizes (100%, 50% and 25% of the training data). All the evaluated models
delivered an f1-score of 0.

6.3.2 The Attention-Based Baseline

An important improvement in the encoder-decoder model is the advent of
the Transformer neural network architecture, which defines a new model
that uses neither recurrent nor convolutional layers, but a new architecture
composed solely of attention functions (Vaswani et al., 2017).
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Figure 6.2: The Transformer model architecture defined by
Vaswani et al. (2017), where the left block represents the encoder
and the right block the decoder.

For our experiments, we implemented the original architecture model
defined by Vaswani et al. (2017). Its encoder is composed of N identical
layers, each made up of a pair of a multi-head self-attention mechanism
and a fully connected feed-forward neural network. The decoder has also
N identical layers, varying from the encoder by the addition of an extra
multi-head self-attention mechanism, as depicted in Figure 6.2.

The training process follows the same two-step methods applied in the
sequence-to-sequence architecture.

We also evaluated different network architectures varying the number of
layers (1, 3 and 6). The output of the sub-layers of the models, the hyper
parameters of the multi-head attention mechanism and the feed-forward
networks follow the default values defined in the original paper (dmodel =
512, h = 8, dk = dv = dmodel/h = 64, dff = 2048). Once again, all the
evaluated models delivered an f1-score of 0.
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6.3.3 Baseline Analysis

The task requires the identification of the target function call over a set of
thousands of function signatures, besides the correct map of the parameters
values. As a consequence, this needs multiple samples per instance to deliver
a reasonable performance.

In the case of our data set, however, there is a significant number of
function signatures without a single instance, and among those used in the
commands, the average number of instances per function signature lies at
3.5, which is very low.

End-to-end encoder-decoder models are well-known for delivering good
performance, given they have access to a reasonable large training data
set (Halevy et al., 2009). An intuitive explanation for the failure of those
experiments in the given data set is the low rate of number of training
samples with respect to the number of classes.

6.4 Evaluating the Proposed Architecture

Our experimental setting aims at evaluating the proposed architecture con-
sidering different types of implementation for our two main components: the
API Filter and the Intent Classifier.

6.4.1 API Filter Settings

The API Filter assumed three implementations. In the first case, ρ im-
plements the identity function. This configuration means that no filter is
applied and aims at measuring the relevance of the filtering step. Secondly,
a natural candidate for a filtering function is the TF/IDF weighting scheme,
which selects the target function signatures considering the overlap of their
vocabulary with the query, i.e the natural language command. Our exper-
iment show the TF/IDF filtering function on average limits the number of
target function signatures to 10. The third approach uses a nearest neigh-
bours method to select the 50 closest function signatures, when projecting
the natural language command on the Predicate Hyperspace defined by
the word embedding model. This type of function is not limited to the over-
lapping of the vocabulary with the query, but expands their relations to the
latent notion of semantics defined by the word embedding model.

6.4.2 Intent Classifier Settings

With regard to the Intent Classifier, we evaluated three learning meth-
ods: Random Forest, Support Vector Machine and a simple Multilayer Per-
ceptron Neural Network (MLP). We calibrated each learning configuration
identifying their optimal hyper-parameters by grid searching. For Random
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Forest, the number of estimators ranged into (100, 300, 1000, 3000, 10000),
the maximum number of features assumed the sqrt or the log2 of the to-
tal available. For the Support-Vector-Machine classifier the grid search was
applied considering the kernel varying into linear, sigmoid and polynomial
(with 2, 3, 5 degrees) and gamma into the log-space (−9, 3, 3), keeping a
fixed C = 1. Finally, for the MLP network, we evaluated under the same
variation specified for the sequence-to-sequence model. The classifiers re-
ceive the input features as described in Section 4.4.6.

Our experiments used the skip-gram model generated over the Google
News data set as the word embedding model (Mikolov et al., 2013). As
mentioned, to speed up the development and execution time, we used the
Indra word embedding server (Sales et al., 2018b). To fix the problem of
imbalanced classes in the training data, we applied random majority under-
sampling with replacement, making use of the imbalanced-learn library
(Lemâıtre et al., 2017).

We evaluated the architecture purposely with off-the-shelf implementa-
tions for both the API Filter and the Intent Classifier. This decision
seeks to highlight the relevance of the model architecture and the feature
selection to the final solution.

6.5 Results & Discussion

Classifiers Scenario Identity TF/IDF
Nearest

Neighbours

RF
TOP-10 0.4217 0.6594 0.6825
TOP-50 0.7549 0.7778 0.8551

SVM
TOP-10 0.0476 0.4298 0.3608
TOP-50 0.2280 0.6224 0.6232

MLP
TOP-10 0.0738 0.4798 0.3944
TOP-50 0.3110 0.7015 0.7292

None
TOP-10 0.0380 0.4071 0.3119
TOP-50 0.1737 0.5989 0.6680

Table 6.3: Recall for Random Forest (RF), Support Vector Ma-
chine (SVM) and Multilayer Perceptron Neural Network (MLP) for
different filter functions evaluated in the TOP-10 and TOP-50 sce-
narios. The last line (None) describes the results when no classifier
is used.

Tables 6.3 and 6.4 show the results of the proposed approach in differ-
ent combinations of filter functions and classifiers, measured respectively in
relation to the recall and mean reciprocal rank (MRR). The evaluation was
carried out in two scenarios: the first considers the function calls ranked
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Classifiers Scenario Identity TF/IDF
Nearest

Neighbours

RF
TOP-10 0.1264 0.2878 0.3038
TOP-50 0.1426 0.2932 0.3120

SVM
TOP-10 0.0099 0.1901 0.1207
TOP-50 0.0123 0.1978 0.1187

MLP
TOP-10 0.0187 0.2063 0.1323
TOP-50 0.0311 0.2171 0.1514

None
TOP-10 0.0115 0.1626 0.0954
TOP-50 0.0175 0.1700 0.1147

Table 6.4: Mean Reciprocal Rank for Random Forest (RF),
Support Vector Machine (SVM) and Multilayer Perceptron Neural
Network (MLP) for different filter functions evaluated in the TOP-
10 and TOP-50 scenarios. The last line (None) describes the results
when no classifier is used.

up to the 10th position, whereas the second, up to the 50th. In the exper-
iments, we assumed that only one function call corresponded to the target
answer. This assumption makes precision a redundant indicator since it can
be derived from the recall.

6.5.1 API Filter

The application of the identity function as an API Filter represents the
absence of a pivoting area in the sense that the full API Knowledge Base

is considered in the classification step. Given the simplicity of the feature
set and the straightforwardness of the matching model, the results show
that the filter function plays a key role in increasing the performance. The
experiments in which the identity function is present consistently deliver
lower recall, as shown in Figure 6.3. Even when combined with a Random-
Forest-based Intent Classifier, where the identity function had a more
competitive performance in recall, Figure 6.4a shows that the target function
calls are significantly lower ranked. As expected, an overall look at Figure 6.4
shows that the identity filter function consistently places the target function

TF/IDF Nearest Neighbours

# of function signatures 31.73 50.98

missed by the pivoting area 15.55% 6.84%

maximum recall 84.45% 93.16%

Table 6.5: The average number (#) of function signatures into the
pivoting area and how many functions are missed in percentage.
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Figure 6.3: The charts show the behaviour of the recall for the Random Forest(a), SVM(b) and MLP(c) considering the
three filter functions. The fourth chart (d) describes the behaviour of the ranking system when the classification component
of the ranking equation is ignored.
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Figure 6.4: The charts show the behaviour of the mean reciprocal rank for the Random Forest(a), SVM(b) and MLP(c)
considering the three filter functions. The fourth chart (d) describes the behaviour of the ranking system when the classification
component of the ranking equation is ignored.
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calls in lower ranks regardless of the Intent Classifier.

The other two filter functions have similar results in recall, with a slight
advantage of Nearest Neighbours over TF/IDF. This is explained by the
fact that the TF/IDF cut out relevant function signatures more often than
Nearest Neighbours as shown in Table 6.5. Whereas Nearest Neighbours
allows the Intent Classifier to evaluate on around 50 function calls, the
TF/IDF filter reduces this search space to around 31. This stronger cut
reduces the potential maximum recall of TF/IDF to around 84%, compared
to around 93% of the Nearest Neighbours approach.

6.5.2 Classifiers

Random Forest is by far the best classifier considering either recall or MRR
in all of the evaluation scenarios, whereas the SVM and MLP classifiers per-
form similarly in relation to the recall. Our assumption is that the set of
semantic relatedness features shows a high level of independence, producing
many sub-optimal areas that can be better avoided by a tree-based learning
model. This assumption is reinforced considering the scenarios in conjunc-
tion with the identity function, in which the higher volume of data tends to
generate more sub-optimal spaces and represents exactly the scenario where
the other classifiers show lower performance. The MRR values in the Ran-
dom Forest chart (a) means that on average the target function calls are
placed between the 3rd and 4th positions.

We also evaluated a scenario in which the relevance classification is ig-
nored, i.e. the rank function becomes exclusively the sum of the features
without any learning process as depicted in Equation 6.1.

n�

i=0

(zi) (6.1)

Figures 6.3d and 6.4d show respectively its recall and MRR. Considering
the recall, ignoring the classification component of the ranking equation
delivers results equivalent to the SVM, given its ineffective classification as
discussed in our further analysis.

We also analysed the effectiveness of the classifier in isolation and its
impact on the results. Figures 6.5, 6.6 and 6.7 show the confusion matrices
of the three classifiers.

The Random Forest classifier shows a high accuracy in the classification
of the 0-class function calls. This ability helps in removing non-related calls
from the top positions. Classes 1 and 2, which represent the correct func-
tion calls but without all the correct parameter assignments, are frequently
classified as 0.

SVM is the worst-performing model in the correct identification of the
0-class, where more than 50% of them are misclassified as 3. Additionally, it
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Figure 6.5: The confusion matrix in percent of the Random For-
est classifiers considering the evaluation scenario with the nearest
neighbours filter function.
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Figure 6.6: The confusion matrix in percent of the SVM classifiers
considering the evaluation scenario with the nearest neighbours filter
function.

poorly identifies the 3-class, which led to the low accuracy. Given the gains
and the losses, it is on average as if no filter was applied as shown in the
comparison of Figures 6.3b and 6.3d.

Regarding the MLP classifier, while having high accuracy in classifying
correctly the 0-class, the other classes are generally all classified as 3-class.
The excessive number of mis-classifications of 1 and 2 classes explains its
poor result, performing worse than the scenario without a classifier.
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Figure 6.7: The confusion matrix in percent of the MLP classifiers
considering the evaluation scenario with the nearest neighbours filter
function.

Considering that our evaluation is focused only on the correct matching
function with the correct set of parameters, classifying 1 and 2 with any
class different than 3 does not create high impact on the ranking. In reality,
classifying only as a boolean (true for the actual 3-class and false for the
others classes) would be ideal. However, after some experiments showing
better results, we opted for making the current fined-grained classification,
since the full matching spectrum is better identified.

6.6 Summary

The proposed semantic parsing method maps natural language commands to
function calls considering a large and heterogeneous API Knowledge Base

under a restricted set of annotated data. The proposed semantic parsing
method operating with a Nearest Neighbours API Filter and a Random
Forest Intent Classifier was able to solve up to 68% of the commands
considering the TOP-10 evaluation scenario, and up to 85% when consider-
ing the TOP-50, with MRR scoring around 0.3, which means that the target
function calls are placed on average at the 3rd or 4th positions.

Our experiments also show that many instances of both sequence-to-
sequence and attention-based machine learning models were unable to present
successful results in the task. As briefly debated, an intuitive explanation is
the lack of a large-enough training set.
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7.1 Introduction

We present in this chapter the evaluation of the explanation model presented
in Chapter 5 instantiated in the proposed multi-component semantic parsing
system. The evaluation setting is designed to analyse the different types of
explanations with different levels of abstraction and technical depth.

Three research questions guided our experimental analysis:

• To what extent are users able, irrespective of their technical back-
ground, to improve their mental models by associating the linguistic
features from the explanations to the system’s behaviour?

• How does the knowledge in machine learning affect the preference for
technical explanations? and
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• To what degree are users willing to favour explainability over accuracy
given a certain context?

7.2 The Experimental Setting

The evaluation was carried out in a simulated use of the semantic parser,
in which the system presents the user’s natural language commands, and
a suggested list of function calls as depicted in Figure 7.1. During the
experiment, we asked the participants to go over a sub-set of twelve pre-
configured natural language commands and their corresponding lists of 3 to
5 potential function calls as a result of the execution of the parser. This
simplified scenario is intended to help the users focus exclusively on the
command matching and the explanations (when available), thus avoiding
the distraction of having to deal with a larger list of options to decide upon.

Figure 7.1: A command in natural language and a list of potential
function calls representing the user intent.

7.2.1 Participants

We recruited 66 adult participants from our professional networks whose
unique requirement was to be fluent in English. The set of participants is
composed of 26 females and 40 males, with an age range between 20 and 49.
They reported their level of knowledge in machine learning (ML) and En-
glish grammar (EG) according to the same scale suggested by Amos Azaria
(2016), to which we attributed a score from 1 to 6 respectively:

1. none;

2. very little;

3. some background from high school ;

4. some background from university ;

5. significant knowledge, but mostly from other sources;
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6. bachelor with a major or minor in the related topic.

The participants were divided randomly into the control group, composed
of 31 participants, which were given access to the system without the expla-
nation, and the treatment group, composed of 29 participants, with access
to the explanation. The random division longed for balancing the number
of participants with and without ML knowledge in each group. Table 7.1
shows the number of participants in each group.

Knowledge Level 1 2 3 4 5 6

Machine Learning 14 6 1 17 9 19

English Grammar 0 0 11 18 27 10

Table 7.1: Distribution of the participants according to their knowl-
edge in machine learning and English Grammar.

7.2.2 General Instructions

We introduced the experiment to the participants by exposing its main goals
and the expected procedures in the task. We highlighted that the idea
behind the parser is to allow a user to find suitable functions and their
parameters from their commands expressed in natural language, regardless
of their technical knowledge. We asked them to select the correct function
call for each pre-configured command, while examining the tool to infer
how it works. For the users that participated in the treatment group, we
encouraged them to examine the explanations, which shows how the system
maps commands to the function calls, and also encouraged them to see the
comparative explanation using the proper buttons.

We estimated a dedicated participant would take less than 15 minutes
to complete the task without the explanation, whereas the time increases to
around 30 minutes for the case with the explanation. Appendix A details
the complete questionnaire filled by the participants.

7.3 Evaluation Criteria

In our evaluation, we examined three main aspects of the impact of the
explanation on the user:

• Firstly, how the explanation affects the mental models of the end users;

• Secondly, which types of explanations can better serve the needs of
the end users, considering their background knowledge; and finally,

• How end users perceive the dilemma of accuracy versus explainability.

We elaborate each of them in the following subsections.
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7.3.1 Mental Models

A mental model is a cognitive representation of the external world to sup-
port the human reasoning process (Jones et al., 2011). The closer a person’s
cognitive representation to the external world, the higher the understanding
and the ability to take decisions about it (Johnson-Laird, 1983). In our task,
the “external world” is represented by the semantic parsing system, and we
evaluate the user’s mental model by assessing whether the presented expla-
nations help the user to understand the system’s mechanisms. We designed
a set of questions to measure whether the user realised the correct influence
of linguistic features in the overall performance of the parser in both the
Shallow Parser and the other components of the ranking model, such as
the Intent Classifier. Given a contextual command, the participants
were asked to judge affirmative sentences on the following Likert 7-point
scale (Likert, 1932):

1. strongly disagree;

2. disagree;

3. somewhat disagree;

4. neither agree nor disagree;

5. somewhat agree;

6. agree;

7. strongly agree.

We evaluated three aspects of the Shallow Parser: (i) the role of proper
nouns, (ii) the importance of the correct spelling and use of grammar and
(iii) the verb mood (indicative vs. imperative).

Capital Letters Matter

Proper nouns in general start with a capitalised letter in English. As proper
nouns define a command object, we want to identify to what extend users
figure out the impact of this feature in the system’s performance. After
giving a contextual command, we asked the participants to judge the veracity
of sentences like:

“Writing ‘Swiss Francs’ with capital
letter increases the system comprehension”
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Full Sentence Instead of Keywords

Incomplete sentences can introduce errors in the part-of-speech tagger and
grammar tree parser, which, on the other hand, leads to wrong interpretation
of the objects. In this task, we present grammatically incomplete commands
similarly to many information retrieval systems, as in a keyword-search style,
to highlight the importance of grammatically correct sentences. After giving
a contextual command, we asked the participants to judge the veracity of
sentences like:

“Writing a set of keywords for the command
has the same result as grammatically correct sentences”

Give Orders instead of Polite Requests

About verb mood, we presented to the participants commands written as
questions and in the indicative form. After giving a contextual command,
we asked the participants to judge the veracity of sentences like:

“Starting by ‘I would like’ increases the system comprehension”

7.3.2 Type of Explanations

We also asked the participants to evaluate the relevance of each explanation
presented in the model, also, on the Likert 7-point scale. The questions had
the following template:

• I found helpful to see how parameters’ values are identified.

• I found helpful to see the comparison explanation.

• I found helpful to see the scoring expression.

Given the different nature of the explanations, such as, targeting sim-
ulation capability or visualisation, we decided to opt for an open question
able to allow the user to grade the helpfulness they believe the explanations
had in helping them understand the system.

7.3.3 Accuracy vs. Explainability

Explainable AI models have advanced significantly, however in many cases
higher transparency still comes with a cost of accuracy (Lipton, 2016; Adadi
and Berrada, 2018). We questioned the participants to what degree they
would favour accuracy over interpretability for a semantic parsing, stating
that the higher the accuracy, the better the system’s results, while explain-
ability means the ability to understand the underlying systems’ mechanisms
of work. To expand the context of the evaluation, we also inquired the
participants the same question targeting two further hypothetical contexts:
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• in the case of a cancer exam of a relative;

• in the case of a bank loan decision.

The participants answered these questions on a 7-point scale, in which
1 means high explainability and low accuracy, and 7 the opposite, i.e. low
explainability and high accuracy.

7.4 Results & Discussion

We associated the answers on the Likert 7-point scale to the interval -3 to
3, where 0 is the neutral answer and 3 represents strongly agree when the
question reflects a true statement, and strongly disagree when it represents
a false statement. We also analysed the statistical significance of the results
using the t-test, which is represented by the variable p.

7.4.1 Mental Models

Table 7.2 presents the results of the mental model assessment. On average,
participants in the treatment group give scores 55% higher than those in the
control group (1.13 vs. 0.73, p < 0.05). The results also demonstrate that
knowledge in machine learning and English grammar exhibit a significant
positive correlation with the mental model scores in both treatment group
(r = 0.54 for ML, r = 0.45 for EG) and the control group (r = 0.45 for ML,
r = 0.46 for EG). The invariance of the correlation coefficients among the
groups and the mental model scores strongly suggest the explanation model
helps users to build better mental models.

Metrics
Treatment
Group

Control
Group

Average 1.13 0.73
r (ML) 0.54 0.45
r (EG) 0.45 0.46

Acquainted Non- Acquainted Non-

Avg. (ML) 1.62 0.63 1.07 0.54
Avg. (EG) 1.42 0.62 1.11 0.34

Table 7.2: The results regarding the mental model assessment, pre-
senting the average scores and Pearson correlation coefficient r in
relation to machine learning knowledge (r ML) and English gram-
mar knowledge (r EG) for both treatment and control groups. The
last two rows represent the average scores grouped by the level of
specialisations.
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To explicitly present this conclusion, we divided both treatment and
control groups into four subgroups according to their knowledge in ML. We
considered as acquainted with ML those users that declared having signif-
icant knowledge, but mostly from other sources or a bachelor with a major
or minor in the topic. On average, the score of the users acquainted with
ML in the treatment group was 1.62, while it was 1.07 in the control group
(p < 0.05). Although not being the focus of our study, the results concerning
EG knowledge present a similar tendency as shown in Table 7.2.

7.4.2 Relevance of the Explanations

The participants show a clear preference for less technical explanations,
regardless of their ML background, as shown in Table 7.3. For instance,
the relevance score given to the Shallow Parser Layer, which shows high
score in both groups, is more than five times higher than the score given to
the Intent Classifier.

Average Overall Acquainted
Non-

Acquainted
p

Shallow Parser Layer 1.69 2.19 1.19 < 0.001

Syntactic Tree Layer 0.84 1.38 0.31 < 0.1

Word Embedding 0.59 1.19 0.00 < 0.05

Feature List 0.31 -0.19 0.81 < 0.1

Score Expression 0.91 0.38 1.44 < 0.05

Intent Classifier 0.31 0.56 0.06 > 0.35

Comparative 0.78 0.88 0.69 > 0.70

Table 7.3: The average scores of the relevance given to each type
of explanation on a Likert 7-point scale (-3 to 3). The second and
third columns show respectively the averaged scores for the group
of participants acquainted and non-acquainted in machine learning,
whereas the last column represents the p-value of the statistical sig-
nificance (t-test).

Syntactic Tree Layer and Word Embedding, however, present significant
divergences between the groups (respectively p < 0.1 and p < 0.05). Al-
though these explanations cannot be considered highly technical, they still
demand a sort of domain-specific knowledge to be interpreted. As the users
acquainted with ML master the required knowledge, we presume their un-
derstanding as straightforward. In contrast, the other group of users that
struggle to comprehend them, results in the lower scores.

Feature List and Score Expression also present high divergence (respec-
tively p < 0.1 and p < 0.05). When interviewing the participants, some users
not acquainted with ML (participants P21, P26 and P30) acknowledged that
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this pair of explanations could serve to check the system’s correctness. Other
users acquainted with ML (P5 and P14), however, credited their low interest
to the fact that debugging at this stage would allow checking only the last
expression, which is an unlikely source of problem.

Participants were unanimous in relation to the Intent Classifier expla-
nation, giving comparatively low scores to its relevance. Additionally, the
results do not show a statistical significance between the groups (p > 0.35),
suggesting that the background in ML does not affect the general perception
about the explanation. In general, as the explanations become more tech-
nical, either the users are unable to understand them or they do not invest
enough time to interpret them. Although this hypothesis might not cover
the case of the technically competent and knowledgeable users, we presume,
however, the lack of interest in this part of the experiment is associated with
the lack of incentive to convince them to make the necessary effort to fully
understand the explanations.

The score of the Comparative explanation in the group acquainted with
ML exceeds the average score of its compound parts, suggesting that the
users see a value from looking at two distinct function calls simultaneously.
Although the same cannot be identified in the group non-acquainted with
ML, the fact that there is no statistical significance between the groups
(p > 0.70) indicates the lack of influence of ML knowledge on the user
perception of the importance of the Comparative explanation.

7.4.3 The Accuracy vs. Explainability Dilemma

In this part of our analysis, we considered the participants from both the
treatment and control groups. Generally, users tend to favour accuracy over
explainability, as the score of the four questions are higher than 4 out of 7,
as shown in Table 7.4. However, although having a small variability in the
average scores, the results allow us to come up with a hypothesis.

The general average score for command selection tool and cancer exam
are equivalent to each other (p > 0.70). Diversely, the general score for
bank loan present statistical significance comparing to the other hypotheti-
cal contexts (p < 0.05). It means that for command selection tool and cancer
exam, the participants in general would favour accuracy over explainability
to a higher degree than when compared to bank loan. We conjecture the
possible social unfairness of a bank loan decision incentivises the partici-
pants to increase their interest in an explanation, whereas, for the other two
hypothetical contexts there are, in theory, no incentives for unfairness.

The results also tell us that the participant’s judgements are left almost
perfectly uninfluenced by their ML or EG backgrounds, given the close-to-
zero correlations shown in lines r (ML) and r (EG). This hypothesis is also
confirmed by the lack of statistical significance between the group of users
acquainted and not acquainted.
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Command
Selection

Tool

Cancer
Exam

Bank
Loan

General Average 5.35 5.44 4.80

r (ML) 0.07 -0.09 0.03

r (EG) 0.01 -0.08 -0.12

Ave. p Ave. p Ave. p

Acquainted 5.36
> 0.90

5.29
> 0.50

4.54
> 0.30

Non-Acquainted 5.34 5.55 5.00

Treatment Group 5.09
< 0.1

5.44
> 0.95

4.66
> 0.50

Control Group 5.59 5.44 4.96

Table 7.4: The results represent the degree to which participants
favour accuracy over explainability. The average scores are repre-
sented on a 7-point scale, where 1 denotes high explainability and
low accuracy, and 7 the opposite.

When we group the participants according to their role in the study,
we see a slight difference between the groups for the command selection
tool with a statistical significance of p < 0.1. However, the scores for the
cancer exam and bank loan do not show any significant variance, which
might suggest that users get biased only when carrying out a domain-specific
experiment.

7.4.4 Concerns About the Design of the Experiment

Although the participants did not effectively write the commands by them-
selves, the evaluation presented diversified commands from which we can
evaluate the users’ ability to identify the parser mechanisms of execution to
validate our hypothesis that participants exposed to the explanations were
in a better position to identify how to write more understandable commands.

We designed this evaluation method after trying others without success.
We acknowledge that allowing the user to input their own commands would
set a better evaluation scenario. However, when we applied this approach,
several problems appeared. When we asked the users to write their own
commands based on a scenario description, they were biased by the descrip-
tion itself, reusing its vocabulary and syntactical structures. Additionally,
the level of engagement was much lower. So we converged to the current
approach.
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7.4.5 Considerations about Completeness

At first consideration, the information provided in the explanations might
seem complete and sound, in the sense that it explains in concrete terms the
underlying mechanisms behind the components.

However, when drilling down through even deeper layers, the user might
want to understand how (and why) the system produced some of the gen-
erated features such as POS-tags, syntactic structures or word embedding
vectors.

As many systems recurrently depend on low interpretable linguistic-level
features, it is expected that linguistic features and word-embedding might
represent a cut-off point for most application scenarios. However, the same
hierarchical model can be recursively applied to feature levels without loss
of generality.

7.4.6 Participants’ Comments and Impressions

Vocabulary Gap

Although studies show that the vocabulary gap is highly present when users
interact with information systems (Furnas et al., 1987), some participants
(P31, P33 and P55) felt uncomfortable with the variation of terms expressed
in data set. In the context of the command Exchange 1000 Chilean Pesos
to Euro, three participants argued that the verb exchange represents more
the effective swap of cash, than the calculation of the value rate. This type
of variation occurs because it is induced by the data set of the Task 11 of
the SemEval 2017.

Neutral Score to Technical Explanation

During the experiment two participants (P19 and P32) said that labelling a
more technical explanation as irrelevant could sound as they did not under-
stand (which in fact they did not) and they did not want to be perceived as
dummies, reinforcing the argument that non-technical participants tend to
give neutral scores to technical explanation.

Provider and Visual Aids

At least 20% of the participants highlighted the importance of the provider
to determine the correct function signature to choose. The provider is the
company or institution that provides the service or functionality. Icon/provider
plays an important role in the identification of the intent function call.
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7.5 Summary

This chapter presented a user-centred analysis of the interpretability of dif-
ferent types of explanations in relation to different types of users in the
context of the proposed semantic parser. In the setting involving the com-
plex multi-component system, our experiment showed explanations are an
effective method to build mental models in the given task, regardless of the
users’ technical background.

The experiment also suggested that technical knowledge is boosted with
the support of explanations, as the results show higher correlation between
machine learning knowledge and the mental model score in the treatment
group in comparison to the control group.

Simple explanations associating the input provided by the user to the
features of the system are the more useful type of information for a general
audience. On the other hand, even low technically explanations, such as
plotting a t-SNE chart or a grammar tree, demands a previous grasp to
attract the user interest.
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8.1 Summary

This thesis was dedicated to the task of semantic parsing of natural language
commands, proposing a method that has low dependency on training data.
Additionally, our research defined a hierarchical explanation model, which
was analysed from a user-centred perspective.

The chapters can be summarised as follows:

• After defining the task and the research questions and hypotheses in
Chapter 1, we presented two comprehensive surveys in Chapters 2
and 3 describing prominent approaches, data sets and tasks respec-
tively on end-user development and semantic parsing. Additionally,
whereas, Chapter 2 introduced the concept of explainable artificial in-
telligence and discussed its related work in the context of our research,
Chapter 3 exposed a gap in the literature, which pointed to semantic
parsers with low dependency on large training sets. This gap and the
rising importance of explainability of AI methods defined the focus of
our research.
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• Chapter 4 proposed a multi-component semantic parsing approach
composed of a shallow parser that associates natural language com-
mands to predicate-argument structures, integrated to a ranking model
supported by semantic relatedness metrics over a word embedding
model. The proposed method starts by shallow parsing the natu-
ral language command, generating a predicate-argument structure, in
which the following components append additional semantic informa-
tion. The predicate-argument structure stores the natural language
command as a tuple composed of a function descriptor, which is the
minimal subset of tokens present in the command that allows identi-
fying the target function signature in the API Knowledge Base, and
a set of command objects, which represent potential descriptors or pa-
rameters or their values. The command objects are later processed
to receive extra semantic labels, such as tags of named entities. At
the centre of the proposed solution are the semantic hyperspaces, on
which both the attributes of the predicate-argument structure and the
set of potential function signatures are projected using their word-
embedding vectorial representations. Those semantic hyperspaces al-
low the system to calculate semantic similarity measures as described
in Section 4.4.6, which serve as features to classify the intent score,
i.e. the degree to which a given function call represents the user in-
tent expressed in the natural language command (Section 4.4.7). As
a result, the intent score and the set of features feed a final ranking
component that defines the relative relevance of the function calls for
the final user (Section 4.4.8).

• Chapter 5 defined an explanation model for our parser. The method
is organised in a hierarchical fashion, starting with easy-to-read ex-
planations, i.e. those that do not demand technical background, fol-
lowed by the more advanced ones, to which a proper background can
highly favour the understanding. The explanations are associated to
the components, and combine both transparency-based and ad-hoc-
based methods.

• Chapter 6 was devoted to the evaluation of the semantic parsing, con-
sidering a gold standard data set. Before evaluating our proposed
method, we demonstrated the low performance of encoder-decoder
based architectures to deal with our target task, given the low avail-
ability of training data. The experiments evaluated both sequence-to-
sequence and attention-based architectures in different settings, vary-
ing the number of layers, the input data representation and other sensi-
tive hyper-parameters. All the evaluated models delivered an f1-score
of 0. To evaluate our proposed architecture from different points of
view, we instantiated several implementations for both the API Fil-
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ter and the Intent Classifier. For the filtering function, we evalu-
ated TF/IDF, nearest neighbours and the identity function. Random
Forest, Support Vector Machine and Multilayer Perceptron were the
evaluated implementations for the classifier. The proposed method op-
erating with a nearest-neighbours filter and a Random-Forest classifier
achieved the best results with a recall of 0.682 and a mean reciprocal
rank of 0.303 for the TOP-10 results over a knowledge base of 2005
distinct function signatures.

• In Chapter 7, we analysed from a user-centred perspective the util-
ity of different types of explanations and the impact of background
knowledge on the user preferences. The experiments provide sufficient
evidence that explanations are an effective method to build mental
models, regardless of the users’ technical background. Our experi-
ments suggested that simple explanations associating the input pro-
vided by the user to the features of the system are the more useful
type of information for a general audience. On the other hand, even
low technical explanations, such as plotting a t-SNE chart or a gram-
mar tree, demands a previous grasp to attract the user interest. The
experiment also suggests technical knowledge is boosted when accom-
panied by explanations, given its high correlations with mental model
scores. This work also assumes that technical explanations are more
suitable for debugging tools, as the level of effort necessary to prop-
erly understand them demands higher level of attention and reasoning
capabilities.

• Finally, in addition to this summary, this chapter discusses the re-
sults of the experiments under the light of the hypotheses and the
research questions (Section 8.2), revisits the principles and challenges
for the development of an effective end-user programming environment
(Section 8.3), and concludes presenting the future research directions
opened by our research (Section 8.4).

8.2 Discussion and Conclusions

8.2.1 Semantic Parsing

We analysed the performance of our proposed semantic parser focusing on
two research questions, which are now discussed in the light of the obtained
results.

Research Question 1.1

How suitable are encoder-decoder machine learning models to
build a semantic parser for our target task, considering the low
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availability of training data?

Experimental support: Evaluation of several end-to-end encoder-decoder
neural network architectures based on both sequence-to-sequence models
and attention mechanisms for the given task, whose results are described in
Section 6.3.

Interpretation: We instantiated a comprehensive set of sequence-to-se-
quence and attention-based models, with variations in several hyper-parame-
ters as described in Section 6.3. None of the instantiated models were
capable to provide any satisfactory output. The experiments confirm the
well-known requirement, to which Du et al. (2018) provided the theoretical
foundation, that a deep learning machine model depends on large data sets,
given the high number of parameters in their weight matrices.

Research Hypothesis 1.2

The combination of a specialised shallow parser with type-inference
capabilities and a ranking model supported by relatedness mea-
sures on a word embedding model can be used to define a seman-
tic parser for natural language commands under the restriction
of low availability of training data.

Experimental support: Our proposed multi-component semantic pars-
ing method operating with a Nearest Neighbours API Filter and a Random
Forest Intent Classifier was able to solve up to 68% of the commands
considering the TOP-10 evaluation scenario, and up to 85% when consider-
ing the TOP-50. The results are shown in detail in Tables 6.3 and 6.4.

Interpretation: The multi-component parser can mitigate the lack of
training data by relying on curated linguistic data sets and models, to define
a shallow parser, able to produce a predicate-argument representation for
the natural language command, associated to a ranking model supported
by semantic relatedness metrics over a word embedding model. In our ap-
proach, a shallow parser identifies the main linguistic elements to match
a natural language command to a function signature (Section 4.4.2). Ad-
ditionally, both Named Entity Recogniser (Section 4.4.3) and Reported

Speech Detector (Section 4.4.3) were able to append semantic labels to
the list of potential descriptors or values of parameters. The final configu-
ration optimised the use of the training data, reserving it to solely learn the
intent score (Section 4.4.7).
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8.2.2 Explanation Model

We analysed our user-centred study on explainability focusing on three re-
search questions, which are now discussed in the light of the obtained results.

Research Question 2.1

To what extent are users able, irrespective of their technical back-
ground, to improve their mental models by associating the lin-
guistic features from the explanations to the system’s behaviour?

Experimental support: The mental-model experiment with the treat-
ment and control groups to measure whether the users realise the correct
influence of linguistic features in the overall performance of the parser, whose
results are shown in Table 7.2.

Interpretation: We divided this research question into two parts. The
first analyses the ability of the explainable model to improve the mental
model of the end users, while the second analyses the impact of the tech-
nical background on the user perceptions. The results of the experiments
showed that the users exposed to the explanations demonstrated a better
understanding of the system’s working mechanisms. When analysing sub-
groups, according to their machine learning and grammatical competence
in English, the results consistently demonstrate improvement in the under-
standing, regardless of the level of knowledge in any of the areas. Addition-
ally, the results suggest that the knowledge in machine learning boosts the
explanations in helping the understanding of the system.

Research Question 2.2

How does the knowledge in machine learning affect the preference
for technical explanations?

Experimental support: Among the different types of explanations, we
asked the participants, grouped as acquainted and non-acquainted to ma-
chine learning, the level of helpfulness of each of them, as summarised in
Table 7.3.

Interpretation: After been exposed to seven different types of explana-
tions, each of them associated to one component of the architecture, the
results showed that the participants prefer explanations that require simple
reasoning using logic, plain mathematics and linguistic features. When we
analyse the score inter-groups, the results show that those simpler expla-
nations are comparatively better assessed by the participants. The results
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concerning the relevance of both comparative explanation and the expla-
nation for the intent classifier present an interesting consistency, showing
insignificant statistical divergence between the groups. On the other hand,
participants acquainted with machine learning appear to be more satisfied
with simpler explanations and are rather sceptical to more technical ones
when compareded to the group of non-acquainted.

Research Question 2.3

To what degree are users willing to favour explainability over
accuracy given a certain context?

Experimental support: We asked a set of questions to both treatment
and control groups regarding their preferences on explainability vs. accuracy
in three scenarios, namely, a semantic parsing, in the case of a cancer exam
of a relative and in the case of a bank loan decision, as summarised in Table
7.4.

Interpretation: In general, participants favour accuracy over explainabil-
ity. There is however a significant distinction between the scenarios. We
conjecture that, as a command selection tool is perceived as non-critical
and harmless, whereas a cancer screening, despite having a high impact on
the subjects’ lives, is perceived as technical, and so, less prone to errors,
the users tend to favour accuracy over explainability in a more intensive
degree when compared to the bank loan scenario. We speculate there is a
social awareness of the possible bias of financial agents that incentivises the
participants to be more interested in an explanation for a loan decision.

8.3 Revisiting the Principles and Requirements of
End-User Programming

In this section, we revisit the principles and requirements for the develop-
ment of end-user programming environments considering the insights ob-
tained during the development of our research.

8.3.1 Motivational Task

For our analysis, consider the following motivational task, which represents
a request to administrative staff in a hypothetical language school.

“Please, send an email to each student from Table 8.1. Calculate
their bills, where each class costs e80, converting the price to
their preferred currency. For those in the A1 or A2 levels, please
also attach a translated message in their mother languages.”



Conclusions and Future Research 125

Name Email
Course
Level

# of
Classes Currency

Mother
Language

John john@smith.com A1 13
Chinese
Yuan Chinese

Kim kim@korea.com A2 17
Korean
Won Korean

Tarsila tarsila@ama.br B2 10
Brazilian
Real Portuguese

... ... ... ... ... ...

Frida frida@kahlo.mx A2 15
Mexican
Peso Spanish

Table 8.1: Tabular content within an email message.

Processing this task manually for a reasonable long table can demand
a few hours of work, although being easily automated if a proper tool and
services are available.

8.3.2 Principles

Writability, readability and expressivity have been the main criteria to eval-
uate programming languages (Sebesta, 2012). Contrary to the first thought,
we need to resist the temptation of assuming that NL programming would
address these issues by nature. Indeed, some high-level instructions in natu-
ral language look clearer and straightforward, but this is not always the case.
For instance, long mathematical expressions described in plain text decrease
both readability and writability when compared to the algebraic notation
(Dijkstra, 1979). Data manipulation, an aspect neglected in the mainstream
end-user discussions, cannot receive proper support from a purely natural
language interface as well (Desolda et al., 2017). Looking at EUD as more
than a language, but as a platform, allows us to overcome these restrictions
by using hybrid approaches as we further describe.

Reliability, also commonly accounting for general programming languages
evaluation (Sebesta, 2012), assumes a different sense in the context of NL
programming too. As natural language interpreters and parsers need to han-
dle an open lexicon, they always bring a degree of uncertainty (Li and Du,
2017). Being reliable in this context means offering to the end user a grace-
ful mechanism to identify and repair any AI misclassifications (Sales et al.,
2018a; Schlegel et al., 2019). For example, when a user types a command
and one word is interpreted in a sense different from the user’s intention,
the output will be incorrect. Any interactive system supported by AI needs
to take into account the need to provide a graceful repairing mechanism.

Moreover, the information overload that we currently face cannot be
ignored (Roetzel, 2018). This phenomenon is not only regarded in books,
news, scientific papers and social media posts, but also to code. As of 2018,
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GitHub1 hosts more than 100 million repositories, each one holding poten-
tially a library (Jason Warner, 2018). Professional developers already need
to make use of specialised blogs and tech social media such as Stack Over-

flow2 to find the intended library or API call. Given its nature, any EUD
platform must offer suitable mechanisms to help the user to browse and find
the pertinent functions.

Despite integrating data being a fundamental step to automate repeti-
tive tasks, EUD platforms usually are short of any data manipulation tools
(Desolda et al., 2017). In addition to deal with structured data sources, a
new fundamental requirement is the integration of data in the unstructured
form, since by 2022, 93% of the information generated is expected to be
unstructured (IDG, 2016), e.g. texts and also semi-structured data such as
Table 8.1.

8.3.3 Challenges

An effective EUD tool cannot be only a compiler for a certain syntax but
also a platform offering three main features. First, the platform needs to
allow end users to find and execute both single and composed high-level
functions natively integrated with their service providers. Second, it needs
to supply tools to deal with unstructured and semi-structured data. And
finally, the platform must offer an embedded explanation mechanism.

The failure of the first natural programming languages may be attributed
to the attempt to address general-purpose programming, believing they
could act as Java or Python (Biermann et al., 1983). Indeed, as the typical
end users think at the level of business concepts and processes, the main
advantage of those languages is rather related to their capacity to operate
at a higher level of abstraction, connecting coarse-grained pieces of code,
a concept well-established in the fields of Service-oriented Architecture and
Business Process Management (Pourmirza et al., 2019). For instance, the
reference task lists three coarse-grained functions: send an email, convert
currency and translate a text, representing the functions end users see as
atomic in that context.

Information Extraction: The Data

The success of spreadsheets, the most popular EUD platform, can be cred-
ited to their ability to fuse data and functions gently (Birch et al., 2017).
An effective EUD platform needs to have built-in support for data manip-
ulation of complex data types. To a large extent, the unstructured nature
of the information we deal daily with forms the main barrier to advance the

1https://github.com
2https://stackoverflow.com
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automation of our tasks, since demanding the end users to structure large
data sets manually cuts significantly the benefit of automation.

In this context, information extraction (IE) becomes a key tool in end-
user platforms. Usually based on artificial intelligence techniques, IE trans-
forms a text into a knowledge graph from which a function can identify and
process its content easier (Cetto et al., 2018).

Search & Run: The Method

In an environment where end-user developers can use services from many
sources and providers, finding the appropriate function becomes challenging,
resulting in a scenario that represents the information overload phenomenon
for code.

Inspired by feature-rich applications that relied on searching to prevent
the user from navigating with intricate menu hierarchies to find the desired
function (Bota et al., 2018), we advocate for a method also focused on search.
Furthermore, given the potential scale of millions of functions, we need to
power a search engine with semantic capabilities, especially to deal with the
vocabulary gap and ambiguity.

As natural languages allow expressing the same idea using not only dif-
ferent words but also different syntactic structures, having an efficient search
engine is mandatory to disambiguate related services and correctly deal with
the vocabulary gap between the way the users express themselves and the
way the service is described in the repository. For instance, a user might
write “exchange money” to find a service that is described as “convert cur-
rency” (Sales et al., 2017). Regarding ambiguity, using natural language
command as search queries provides not only an initial description for its
functions, but also contextual information that might be used as parame-
ters’ names or values, thus serving to disambiguate services sharing similar
concepts (Sales et al., 2018a).

After finding the desired function, the end user can execute it. The data
produced in each execution needs to be shown to the user but also stored
as contextual information to be potentially used by subsequent commands.
The end user can then define new functions by “chaining” a sequence of
previously executed commands, by means of interlinking the output of a
command to the input of the subsequent. After receiving a name, the end
user can make the new function available to be resolved by the semantic
parser. For example, the sequential execution and chaining of send an email,
convert currency and translate a text can generate the new function ”notify
student”, which can be reused with less effort.

Such a method favours a gentle learning curve from two aspects. Novice
users find easier to understand stateless programming (Krishnamurthi and
Fisler, 2019), but to guarantee a pace of learning, the platform needs to allow
also a simple transition to writing stateful code. When using a method
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based on search, the end user can make this transition naturally, as the
same mechanism is used for both the execution of a single command and
the construction of functions. Secondly, showing functions in a ranked list
dialogues with the principle of graceful repairing, thus reducing the effect of
misunderstanding and performance error of the parser (Sales et al., 2018a).
Furthermore, the ranked list also allows simple mechanisms to learn from
the user experience without any feedback overloading the user.

Hybrid Interface: The Fusion

None of the interaction modes, i.e. textual language, visual language or pro-
gramming by example, can address alone all expressivity issues of end-user
developers. Rather, an effective EUD platform requires multiple mechanisms
to tackle appropriately the diverse types of user interactions. Whereas nat-
ural languages cover the identification of coarse-grained functions with a
semantically-empowered search mechanism, the platform needs to provide
proper mechanisms to describe simple computations and to integrate data.

When defining a new function from a chain of commands, as shown in
the reference example, the output of one might mismatch (i.e. data type or
format) to the input of the subsequent. This is the typical duty of scripting
languages focused on performing simple computations, such as mathemat-
ical expressions and string transformations, like those used in spreadsheets
applications. The mathematical formalist in this scenario represents a gain
in expressivity (Dijkstra, 1964).

Regarding data integration, both visual tools and programming by ex-
ample can play important roles. On the one hand, visual tools can signifi-
cantly help end users manipulating and understanding the data. Pane and
Myers (2006) showed that users benefit when data is represented in visual
cards that may be traversed manually, or by textual filters. Additionally, it
also serves as an important debugging mechanism for the (potentially error-
prone) information extraction tools. On the other hand, when importing
semi-structured data, comprehending table into texts or content following
a standard format, users can benefit from programming-by-example tech-
niques with high performance.

User’s Idiosyncrasies: The Human Factor

A tool with the impressive 95% of accuracy fails, in average, every 20 uses,
and the impreciseness of intelligent systems can lead to users’ frustration and
lack of interest in the tool (Thomason et al., 2015). Despite the significant
improvement in semantic-based technologies in recent years, the level of
complexity inherent to natural language requires that solutions be aware of
their (still high) likelihood of failure.

To safeguard user’s attention, every AI-empowered functionality needs to
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provide graceful repairing mechanisms to allow proper corrections of misun-
derstandings in a simple and easy manner. The search approach to identify
functions, for example, goes in this direction by giving flexibility to the user
to select the correct function among the priorities.

Considering the freedom of expressivity that a natural language allows,
the programming model needs to learn the particular user’s writing style.
For example, while some users might use complete and grammatically sound
sentences to express their commands, others might insist on a keyword-based
approach. The same occurs when the user frequently writes a vague word
to express a given concept. Learning from the user’s history of use is a key
component to deliver quality results.

Explainability: The Transparency

Although much of the debate around explanation for AI systems have been
concentrated on decision-making algorithms, mainly guided by the rights
“for meaningful information about the logic involved” and “to non-discrimination”
both defined in the European Union’s General Data Protection Regulation
(Parliament and Council of European Union, 2016), other types of AI sys-
tems can also benefit from explanations. Biran and Cotton (2017) show a
set of studies suggesting where users feel much more confident using a sys-
tem they understand how it works. Explanation for AI has become a point
of no return for many intelligent systems.

8.4 Future Research Directions

The research described in this thesis points to the construction of an end-
user programming environment mainly supported by a natural language
interface, integrated with visual elements, as presented in Section 8.3.

Given the importance of data sets to produce and improve natural lan-
guage understanding systems, in Section 8.4.1, we also highlight the poten-
tial of transfer learning techniques to enlarge training data in general, and
alternative methods to improve the quality and reduce the cost to obtain
new training data in our target task.

At the end, Section 8.4.2 is devoted to debate future research regarding
the explainability of semantic parsing methods.

8.4.1 Enriching the Training Data

We are facing the unprecedented proliferation of learning representation
models, where the increasing size of the data sets can be highly beneficial
(Du et al., 2018). We foresee three strategies that can be used to improve
the quality and reduce the costs of obtaining data for our target task.
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Transfer Learning Methods

The high availability of resources from other natural language processing
task may favour the improvement of any semantic model when using transfer
learning techniques. Transfer learning is the ability to extract knowledge
from a data set initially meant for another task (Pan and Yang, 2010).

In addition to other data sets targeting semantic parsing in other do-
mains, data sets associated with question answering or text entailment might
be beneficial given two important similarities such as the SimpleQuestions
data set (Bordes et al., 2015) and the Boeing-Princeton-ISI Textual En-

tailment data set (Silva et al., 2019). Both tasks usually deal with short
utterances and, except for the tendency of having imperative mood, the
variability in vocabulary and grammar structure tends to be similar.

Collecting as Using

A functional prototype can serve as a source of real-world data from users
that accept to use a beta version. Once there is an initial implementa-
tion of a minimum viable platform, this strategy of data collection can be
immediately applied.

“Don’t Think of a White Elephant”

When a person is asked to suppress a certain thought such as thinking of a
white elephant, the psychological effect is in fact making it more likely to
surface, which is called ironic rebound (Wegner and Schneider, 2003).

A similar effect occurs when asking one to describe a natural language
command to search for a yellow monkey video on YouTube. By describing
the task in natural language, we induce the use of the same vocabulary and
grammar structure. One alternative is to describe the task using images,
such as Figure 8.1, in which the user is expected to write a chain of com-
mands to search for a product, convert its price to another currency, and
finally sending it by Skype to someone else. Figure 8.2 presents another
possible scenario including searching and posting in social medias.

The method can also open the doors for the collection of more complex
composition of commands, that goes beyond single commands or if-then
recipe, in line with the revisited principles and challenges described in Sec-
tion 8.3.

8.4.2 Further Research on Explainability

Concerning explainability, there are two important aspects that deserve our
attention for future research: an investigation on the notion of completeness
as well as the need for interactive and customised explanations.
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Command 1iPhone Command 2 Command 3
@MyMother

Figure 8.1: An example of a multiple-command scenario composed
of three commands. The chart induces the user to write a command
to search for “iPhone” in Amazon followed by exchanging its price
from Euro to US Dollar, and finally sending the calculated price to
the user @MyMother in Skype.

Command 1

Command 2

Mozart

Command 3

Figure 8.2: A chart describing a chain of a command to search a
video on YouTube, followed by a pair of commands to share it on
social media platforms.

The Notion of Completeness

In the context of data quality (Pipino et al., 2002), completeness is usually
regarded as intuitive. For instance, if you have a database of clients, which
doesn’t contain an entry for a given known client, the data set isn’t complete.
The intuitiveness comes from the simplicity of identifying the whole, and to
check if the object of study, in this case the database, covers it completely.
However, this is not always the case. In a context of knowledge management,
when making logic inference over common-sense knowledge, we can assume
its completeness only under the theoretic assumption of closed-world (Reiter,
1981). It is not feasible to cover the entire common-sense knowledge in a
database.

The notion of completeness for explanations are closer to the second
example. There is a gap in the literature regarding the measurement of
completeness and the evaluation of soundness of an explanation. Our re-
search, as well as the work of Kulesza et al. (2015), assume the explanations
are complete and sound without any metric or experimentation to ground
it. From the user perspective, which are the requirements of a given expla-
nation, considering the task and the method, to be considered complete and
sound?
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Interactive and Customised Explanations

Current explanation models are mostly static, in the sense that there is
no interactive element for the user (Abdul et al., 2018). Given the lack
of interaction, as a side effect, the models define a unique message to the
users. However, users observe the world and systems with different eyes
(Jones et al., 2011).

Aligned with the challenges of the field of Human Computer Interaction
(HCI) (Abdul et al., 2018), there is a research space to advance the field
towards customised explanations. This research direction points to define
explanation models that offer interactive mechanism based on space explo-
rations (Vermeulen, 2014) or conceptual models for implicit interactions (Ju,
2015) where the end users navigate and adapt the explanations to better help
their understanding.

Our explanation model partially addresses this issue by its hierarchical
model, offering different levels of explanation aiming at satisfying different
kinds of users. The challenge, however, is to allow that all layers of ex-
planations present interactive elements to allow the end users to adapt the
explanation to different perspectives.
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Appendix A

Questionnaire

This Appendix describes the questionnaire used in the user evaluation of the
explanation model. It was equally applied to both target and control group,
except for Section A.2, which was exclusively applied to the first group.

A.1 Mental Models

For each scenario below defined, consider the commands and choose one
option for each statement, following the Likert 7-point scale (Likert, 1932):

1. strongly disagree;

2. disagree;

3. somewhat disagree;

4. neither agree nor disagree;

5. somewhat agree;

6. agree;

7. strongly agree.

Scenario 1.1: For the command: I’d like, please, to exchange 100 euro
to swiss francs.

Questions 1 2 3 4 5 6 7

Writing the command in the
imperative form increases
the system comprehension.

Writing ”Euro” with capital letter
increases the system comprehension.

Changing 100 for “one hundred”
increases the system comprehension.

Writing “Swiss Francs” with
capital letters increases
the system comprehension.

Starting by “I’d like” increases
the system comprehension.
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Scenario 1.2: For the command: directions new york city to los angeles.

Questions 1 2 3 4 5 6 7

Writing the command
as a grammatically correct
sentence increases the
system comprehension.

Writing “New York City”
with capital letter increases
the system comprehension.

Writing a set of keywords has
the same result as gramma-
tically correct sentences.

Writing “Los Angeles” with
capital letters increases the
system comprehension.

Changing “directions” for
“distance” makes no
difference in the command.

Scenario 1.3: For the command: Could the system translate doc1.txt
from english to portuguese?

Questions 1 2 3 4 5 6 7

Writing the command in the
imperative form increases
the system comprehension.

Writing “English” with
capital letter increases
the system comprehension.

Writing the command as a
question has the same result
as the imperative form.

Writing “Portuguese” with
capital letter increases the
system comprehension.

A.2 Types of Explanation

The expression “strongly disagree” means you didn’t find the given explana-
tion useful at all, whereas “strongly agree” means the explanation is highly
useful to understand the system behaviour.

Scenario 2.2: I found helpful to see ...
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Questions 1 2 3 4 5 6 7

how parameters’ values
are identified.

the grammar tree.

the comparison
explanation.

the representation of
word vectors in a chart.

the importance of features
in the relevance classification.

the score expression.

the features’ values.

A.3 Accuracy over Interpretability

In our context, the higher the accuracy, the better the system’s results, while
interpretability means your ability to understand the system’s mechanism.

Question 3.1: To what degree would you favour accuracy over inter-
pretability for a command selection tool?

1 2 3 4 5 6 7

Table A.1

Question 3.2: To what degree would you favour accuracy over inter-
pretability for ...

1 2 3 4 5 6 7

a cancer exam of a relative?

a bank loan decision?

Table A.2
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