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ABSTRACT

Natural Language Processing has an important role in Artificial Intelligence for

easing human-machine interaction. Processing human language, though, poses

many challenges, among which is the semantics-related phenomenon known as

language variability, the fact that the same thing can be said in several ways.

NLP applications’ inputs and outputs can be expressed in different forms, whose

equivalence can be verified through inference. The textual entailment paradigm

was established to enable the creation of a unifying framework for applied infer-

ence, providing a means of delivering other NLP task from handling inference

issues in an ad-hoc manner, using instead the outputs of an inference-dedicated

mechanism.

Text entailment, the task of determining whether a piece of text logically

follows from another piece of text, involves different scenarios, which can range

from a simple syntactic variation to more complex semantic relationships be-

tween sentences. However, most approaches try a one-size-fits-all solution that

usually favors some scenario to the detriment of another. The commonsense

world knowledge necessary to support more complex inferences is also usually

employed in a limited way, with most approaches sticking to shallow semantic

information, leaving more elaborate semantic relationships aside. Furthermore,

most systems still work as a “black box”, providing a yes/no answer that does

not explain the underlying reasoning process.

This thesis aims at addressing these issues by proposing a composite inter-

pretable approach for recognizing text entailment where the entailment pair is

analyzed so the most relevant phenomenon is detected and the suitable method

can be used to solve it. Syntactic variations are dealt with through the analysis

of the sentences’ syntactic structures, and semantic relationships are detected

with the aid of a knowledge graph built from natural language dictionary defini-

tions. Also, if a semantic matching is involved, the answer is made interpretable

through the generation of natural language justifications that explain the seman-

tic relationship between the pieces of text. The result is the XTE – Explainable

Text Entailment – a system that outperforms well-established tools based on

single-technique entailment algorithms, and that also gives an important step

towards Explainable AI, allowing the inference model interpretation, making

the semantic reasoning process explicit and understandable.
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Chapter 1

Introduction

Artificial Intelligence (Russell & Norvig, 2010) is now a pervasive concept, af-

fecting every aspect of modern life. AI technology has been making quick and

significant progress in the recent years and can now perform a wide range of

tasks that can be said to demand “intelligence”, from labeling a picture ac-

cording to its contents to diagnose diseases based on patients’ records (Hosny,

Parmar, Quackenbush, Schwartz, & Aerts, 2018; Hirasawa et al., 2018; Poplin

et al., 2018). Decision-making systems can now support a wide range of tasks

at work, making them easier by analyzing huge amounts of data, identifying

patterns, and making predictions (Duan, Edwards, & Dwivedi, 2019). AI also

permeates through our personal lives, not only recommending products to buy

or movies to watch but even influencing human interactions by suggesting con-

nections in social networks or other applications (Ma, Yang, Lyu, & King, 2008).

One of the reasons why AI became so widespread is the ease with which

people can now interact with intelligent applications. Users can now talk to

personal assistants on their smartphones or smart speakers or engage in a con-

versation with a chatbot in the same they would do with another person (Canbek

& Mutlu, 2016). Letting users express themselves in their own language makes

any technology much more widely accessible, granting Natural Language Pro-

cessing (NLP) a fundamental role in AI popularization. Be it for recognizing

and executing spoken commands, interpreting a question posed in natural lan-

guage in a search engine and retrieving the relevant answer, or finding the best

translation for a piece of text, NLP makes human-machine communication pos-

sible and smooths users’ interactions with AI technology (Cambria & White,

2014).

1



2 CHAPTER 1. INTRODUCTION

Processing human language, though, comes with plenty of challenges. There

is a large gap between the way humans deal with language and what computers

can do. When people communicate, there’s an implicit assumption about their

similar “mental structures” and accumulated world knowledge, which provides

the context that enables the generation and understanding of highly condensed

messages (Nilsson, 2014). Cambria and White (2014) observe that the auto-

matic analysis of natural language text requires a deep understanding of such

language by machines, which requires high-level symbolic capabilities, such as

the acquisition and access of lexical, semantic, and episodic memories, or the

representation of abstract concepts, among others. These symbolic capabilities

would enable a machine to emulate humans’ mental structures to go one step

further beyond what it “sees”, that is, what is explicitly expressed in the text.

Cambria and White (2014) also argue that this further step is necessary to

go from mere processing, which they regard as an interpretation of text at the

lexical-syntactic level, to understanding, that is, emulating the way the human

brain processes natural language, in which every word “activates a cascade of

semantically related concepts, relevant episodes, and sensory experiences”. In

other words, it is not enough to get what a text says, it is necessary to grasp

what it means beyond what it is said. Semantics is, then, a core component of

NLP, which must be taken into account by any computational model dealing

with natural language.

1.1 Language Variability in NLP

The importance of considering semantic features in NLP tasks becomes evident

when we deal with a recurring phenomenon: natural language variability. Vari-

ability refers to the fact that the same thing can be said in several different

ways. Robust language processing applications must be able to deal with the

different forms in which their inputs and requested outputs might be expressed

(Dagan & Glickman, 2004).

As an example, consider a Question Answering system which receives as

input the question “Who painted the Mona Lisa?”. The standard output for

this input would be “Leonardo da Vinci painted the Mona Lisa”. Likewise,

the standard input for the output “Leonardo da Vinci painted the Mona Lisa?”

would be “Who painted the Mona Lisa?”, making up the ideal 1:1 input-output

relationship. Figure 1.1 shows how this ideal relationship can be perturbed.
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Figure 1.1: Example of a n:n relationship between inputs and outputs in an
NLP task.

An efficient Question Answering (or any other NLP) system must account

for all possible inputs leading to the same output and all the possible outputs

that can be generated for the same input. Nevertheless, knowing and listing

all those possibilities beforehand is not feasible. Therefore, it is necessary to

determine if an alternative input or output is equivalent to the standard input

or output, respectively.

The equivalence between inputs or outputs can be translated into an infer-

ence relationship. Inference is generally defined as the process by which new

facts are concluded from given information in the form of facts or premises

(Dagan, Roth, Sammons, & Zanzotto, 2013). Therefore, given the fact that

“a human is a mammal”, it is possible to infer that “a human is an animal”,

but it is not possible to conclude that “a human is rational”. That means that

the truth of the consequent is not enough for reaching a conclusion, because

inference is a binary relationship; although we know that the second statement

is true, its truth does not follow from the truth of the given fact.

In NLP, inference can be defined as the process of concluding the truth of a

textual statement based on (the truth of) another given piece of text (Dagan et

al., 2013). As mentioned before, since it deals with natural language, this pro-

cess must involve not only the explicit information but all the context that can

be derived from it trough commonsense knowledge. As Nilsson (2014) summa-

rizes, an intelligent NLP system “capable of understanding a message in natural

language would [...] require (no less than would a human) both the contextual

knowledge and the processes for making the inferences (from his contextual

knowledge and from the message) assumed by the message generator”.
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1.2 The Textual Entailment Paradigm

Given that language variability is a common and recurring phenomenon, tex-

tual inference is a need across numerous NLP applications. Equally numer-

ous are the ways it had been dealt with to meet the requirements of each of

these applications. Question Answering, Text Summarization, Machine Transla-

tion, Information Retrieval, and Information Extraction systems, among others,

would typically have their own inference mechanism to support their main task.

Application-independent resources and tools that can assist in the inference

task usually cover only specific sub-tasks, such as Named Entity Recognition,

Semantic Role Labeling, or Word Sense Disambiguation. The inference itself,

however, remained an ad-hoc feature. Built within each specific NLP applica-

tions, the inference mechanism used to cover only the application’s needs and

could not be easily reused by other applications, since researchers in one area

might not be aware of relevant methods developed in the context of another

application (Dagan et al., 2013).

The textual entailment paradigm was introduced to enable the creation of a

unified framework for dealing with inference issues. Based on the principle that

inference is a task on its own right, text entailment1 aims at tackling it in an

application-independent manner, allowing researchers to focus on core inference

issues while still making the results applicable to a number of different NLP

applications.

Text entailment is based on a common human understanding of language,

and is formally defined as follows (Dagan et al., 2013):

Definition 1.1. Textual entailment is defined as a directional relationship

between pairs of text expressions, denoted by T – the entailing “Text” – and

H – the entailed “Hypothesis”. We say that T entails H if humans reading T

would typically infer that H is most likely true.

The directional nature of text entailment distinguishes it from simple para-

phrase, defined as “phrases, sentences, or longer texts that convey the same, or

almost the same information” (Androutsopoulos & Malakasiotis, 2010). That

implies it is a bidirectional relationship, so, for example, if we have the following

two expressions a and b:

a. Shakespeare wrote Hamlet.

1In this thesis, the expressions “textual entailment” and “text entailment” are used inter-
changeably.
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b. Hamlet was written by Shakespeare.

and we say that a is a paraphrase of b, then necessarily b is a paraphrase of a.

Considering the text entailment directionality constraint, three main differ-

ent scenarios can be observed (Dagan et al., 2013):

(1) T and H are equivalent statements but expressed in different ways. Ex.:

T: The badger is burrowing a hole.

H: A hole is being burrowed by the badger.

(2) H generalizes information from T. Ex.:

T: A dog is riding a skateboard.

H: An animal is riding a skateboard.

(3) H present new information derived from T. Ex.:

T: Iran is a signatory to the Chemical Weapons Convention.

H: The Chemical Weapons Convention is an agreement.

We notice that (1) is also a paraphrase, therefore, a paraphrase is a specific

kind of text entailment. What makes entailment a more complex task, capable of

encapsulating the inference aspects, are cases like (2) and (3), where, as already

pointed earlier, it is necessary to go beyond what we “see” in T and H and

consider, besides the message, the background knowledge which contextualizes

it and makes the entailment true.

1.3 Problem

Casting inference problems in NLP as textual entailments allows us to abstract

from the application which will use it as an input and focus only on the entail-

ment task requirements. That by no means makes it an easier task. In fact,

the amount and variety of issues involved in text entailment recognition poses

a number of challenges which, despite many advancements in the area, remains

to be better addressed.

The first and most prominent challenge is the high variety of phenomena that

may be involved, which may range from linguistic constructs, such as changes

from active to passive voice, co-reference, or subset (when H is a subset of T),

to simple semantic relations, like synonymy or hypernymy, or more complex

relationships such as location, cause-effect, or parthood, to name a few. This
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is exemplified by the three entailment scenarios listed in Section 1.2: while (1)

can usually be resolved syntactically, given that only the sentence structure is

altered, and (2) requires only shallow semantic information, such as synonyms

and hypernyms, (3) requires knowledge that goes beyond what is expressed in

T and H, demanding the use of external commonsense world knowledge to solve

the entailment.

Some text entailment approaches focus on exploring the syntactic structures

of T and H, trying to transform the syntactic representation of T into that of H

to determine whether they are equivalent and confirm the entailment. This kind

of approach can fall short of identifying more complex semantic variations, like

that observed in (3). On the other hand, techniques concentrating purely on

finding semantic relations between T and H will struggle to deal with pairs like

the one shown in (1) where only a syntactic variation holds. Addressing many

different phenomena while still attending to the specificities of each of them is

one of text entailment main pain points.

Another challenge is the knowledge acquisition for solving entailments like

(2) and (3). Some text entailment approaches, especially those relying on more

complex semantic interpretation, use knowledge bases and linguistic resources

to track down semantic relationships between text and hypothesis. WordNet

(Fellbaum, 1998) is notably the most commonly used resource, which provides

links between terms such as synonym, hypernym or derivational form, among

others. Other common lexical resources include VerbNet (Kipper, Korhonen,

Ryant, & Palmer, 2006), FrameNet (Baker, Fillmore, & Lowe, 1998), and Ver-

bOcean (Chklovski & Pantel, 2004), which gather classes, frames and semantic

relationships such as similarity, antonymy, or enablement, for verbs. Neverthe-

less, the knowledge that those approaches usually extract from these resources

is limited because, besides covering only shallow semantic relationships, it is re-

stricted to the information that is available in a structured format, in the form

of explicit links between terms.

While shallow semantic information can suffice in some entailment scenar-

ios, like the one in example (2), more complex semantic relationships, like the

one between “signatory” and “document” observed in example (3), will require

deeper commonsense world knowledge usually not contained in lexical resource’s

links. Even inference rules databases like DIRT (D. Lin & Pantel, 2001) will

mostly cover equivalence, paraphrase-style relationships, but hardly something

further than that. The necessary world knowledge is, though, largely available

in the Web, but in the form of natural language text. Unstructured text is
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undoubtedly a rich source of knowledge, from which a wide range of semantic

relationships can be identified, but that requires extraction methods and repre-

sentation models that enable easy information structuring and querying, being

seldom explored by text entailment approaches.

A further downside of most existing text entailment approaches is their lack

of interpretability. Rendering a system interpretable, that is, making it able

to explain how it reaches its decisions, is becoming a key requirement due to

the recent surge of Explainable AI (Gunning, 2017). Most entailment system

will only output a yes/no answer and, sometimes, a confidence score, but no

further explanation on how this output was computed. This lack of explanation

becomes more critical when a more complex semantic relationship is involved in

the entailment; if only a syntactic variation is present (for example, an active-

passive voice change like the one in example (1) above) it is clear why the

entailment holds, because T and H present the same information, but if they

present different information and there is a lot going on regarding the use of

knowledge and reasoning, it is easier for the final user to trust the answer if

they understand how it was reached, which pieces of knowledge were used, and

how this knowledge links things together. Automated complex inference is a

challenging task, and making a text entailment system interpretable enables us

to check whether it is accomplishing this task in a consistent and reliable way.

1.4 Motivation

Besides many advancements in recent years, due to the textual inference task’s

inherent complexity, there is still a number of open challenges in the text en-

tailment field. As pointed in Section 1.3, there is the variety of phenomena in-

volved in text entailment, the need for world knowledge encoding more complex

semantic relationships (which may demand knowledge extraction from natural

language text), and the emerging demand for interpretability features (espe-

cially when those more complex semantic relationships and, consequently, world

knowledge and reasoning are involved). These are though points with room left

for further development and refinement. But why is it worth the effort? What

is the concrete contribution of advancing text entailment capabilities?

As mentioned before, text entailment can support many other NLP applica-

tions that need to deal with language variability. To show how text entailment

recognition impacts other areas, and how its advancement benefits the NLP
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field as a whole, we list some of its applications in the context of different NLP

tasks.

Question Answering

In a Question Answering system, a set of documents are retrieved from which

the answer for a natural language question posed to the system is to be ex-

tracted. A common strategy is to rephrase the question as an affirmative hy-

pothesis template, with a variable representing the expected answer (Dagan et

al., 2013). Consider as an example the question “Who painted ‘The Scream’?”.

The hypothesis template would then be “X painted ‘The Scream’.”, being X

the answer to be found. Suppose the retrieved documents are the ones whose

relevant excerpts are shown in Figure 1.2. Abstracting the QA system inner

workings, we would have that, from the retrieved documents, X = “Edvard

Munch” and, then, “Edvard Munch painted ‘The Scream’.” is the candidate

answer for the above-mentioned question.

Figure 1.2: A Question Answering example.

The need for inference here translates into the need for verifying if the can-

didate answer is valid, that is, if it is confirmed by some of the text passages.

Casting the problem as a text entailment task, we have:

T: ‘The Scream’ is undoubtedly Edvard Munch’s most famous motif.

H: Edvard Munch painted ‘The Scream’.

The first document in Figure 1.2 was used as the text T in the entailment

pair, but any of the other documents would fit as well. The candidate answer can



1.4. MOTIVATION 9

be confirmed, then, if the entailment engine confirms that H is in fact entailed

by T. Note that, in this example, some commonsense knowledge is required

in order to establish the relationship between T and H, like the facts that “a

motif is something that was painted” and “if X is Y ’s motif then Y painted X”,

demanding more than an analysis of the syntactic features of T and H.

Text Summarization Evaluation

The main purpose of a Text Summarization system is to extract the main idea

and topics in a document for representing it in a shortened way (Tas & Kiyani,

2007). Consider the example shown in Figure 1.3, which shows a document and

its candidate summary.

Figure 1.3: A Text Summarization example.

Evaluating if the summary is correct, that is, if it actually grasps the most

relevant points and summarizes the main idea in the document, is somewhat

subjective and more of a qualitative assessment (Dagan et al., 2013). Never-

theless, a more objective evaluation regarding the consistency of the summary

is also necessary and can be cast as an inference problem as well. Verifying

if the summary is consistent with the original document is equivalent to check

whether all the summary’s sentences can be inferred by some of the document’s

sentences.

Again abstracting some side tasks, such as sentence splitting and co-reference

resolution, the summary consistency evaluation can be cast as a text entailment

problem as follows:

T: Google building a complex of up to 1 million square feet on NASA-owned

property.

H: Google may build a campus on NASA property.
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Besides the objective consistency evaluation, text entailment can also help

in the correctness assessment, as in the work presented by Harabagiu et al.

(2007), where they generate a set of candidate summaries and choose the best

one by using an entailment engine to evaluate how well each summary matches

previously extracted document chunks, and adding this assessment to the scores

used to rank the summaries.

Text Summarization Update

Another task related to Text Summarization is the evaluation of the consistency

of the summary after its update following the introduction of new documents

in the collection. The new documents may contain relevant information, which

must be added to the summary, but might as well contain redundant content

also present in other documents already in the collection, which should not be

included in the summary if it is already there. Consider again the summary in

the example in Figure 1.3, and the new document on the same subject added

to the collection shown in Figure 1.4. Assuming that the summary must be up-

dated, some candidate summary sentences are extracted from the new document

to be added to it.

Figure 1.4: A Text Summarization update example.

Inference is necessary here to determine whether the candidate sentence

contains new information, that is, if it is not yet included in the summary,

which is equivalent to identify whether it can be inferred from the summary.

As a text entailment problem, for each of the two candidate sentences in Figure

1.4 we would have:
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T: Google may build a campus on NASA property.

H: Google has plans to develop a campus at NASA Research Center.

T: Google may build a campus on NASA property.

H: Google will lease land from NASA.

This case is different from the other examples seem so far, where a positive

output from the entailment engine means a positive answer also for the final

application. Here, what we are looking for is a negative answer, that is, for

the candidate sentence to contain novel information, it should not be entailed

by the summary. Therefore, the first entailment pair, which would result in an

entailment answer, leads to the candidate sentence rejection, while the second

one, for which a non-entailment output would be given, since H cannot be

inferred from T, is the right answer for the Text Summarization application.

Automatic Answer Assessment

Automatic Answer Assessment is the task of validating the answers for open

questions, that is, questions in an exam for which students need to provide a

fully written answer, as opposed to multiple-choice questions. In order to assess

the correctness of a student’s answer, it must be compared against a predefined

reference answer. Consider the example in Figure 1.5, which shows an exam

question, its reference answer and a student answer.

Figure 1.5: An Automatic Answer Assessment example.

Determining whether the student’s answer is correct, that is, if it is equiva-

lent to the reference answer, is an inference problem, and can be cast as a text

entailment as follows:
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T: The water was evaporated, leaving the salt.

H: The water dried up and left the salt.

A student answer is considered correct, then, if it is fully entailed by the

reference answer. Text entailment can also be used for Automatic Answer Val-

idation in QA systems, where the focus is to validate the system’s outputs,

comparing them against the gold standards for evaluating the system accuracy.

Machine Translation Evaluation

A task similar to Automatic Answer Assessment is Machine Translation Evalu-

ation, where the correctness of a translation produced automatically by a ma-

chine translation system for a piece of text is verified through its comparison

to the reference translation produced by a professional translator. Figure 1.6

shows an example of a piece of text in Spanish, its reference translation, and

the translation provided by a translation system.

Figure 1.6: A Machine Translation example.

Again, determining whether the system translation is correct is equivalent

to answering whether it is entailed by the reference translation:

T: Nevertheless, watchers, as well as eyewitnesses call it terrorism.

H: However, observers and witnesses name it terrorism.

Given that grammatical rules and structures can vary largely from one lan-

guage to another, automated translations can also diverge syntactically from

the reference translation. Hence, the importance of taking into account the
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sentences meaning, in addition to the commonly used lexical-syntactic fea-

tures, such as n-grams (Papineni, Roukos, Ward, & Zhu, 2002), word alignment

(Denkowski & Lavie, 2014), and longest common subsequence (C.-Y. Lin &

Och, 2004).

The NLP tasks just described are only some of the possible applications of

text entailment that illustrates its impact on real-world applications. Inference

is a concrete need across many NLP tasks, especially the ones dealing with

Web content, whose scale and heterogeneity magnify the language variability

issues, so more robust and flexible text entailment approaches are still a welcome

addition to the NLP landscape.

Improving an entailment system ability to recognize more complex semantic

relationships is a particularly important requirement, which can also boost the

capabilities of the other systems using it. As a consequence of enhanced seman-

tic exploration, which involves external knowledge and reasoning, explainability

also becomes a substantial demand. The interpretability of a text entailment

system can reflect on the interpretability of the target application, helping it to

explain its own output, like a QA system justifying the answer for a question

through the documents it retrieves but also through the relationships, estab-

lished by the entailment engine, between these documents and the question,

for example. The positive side effects for a variety of applications of advancing

these points is, then, the motivation of this work.

1.5 Research Questions

Given the problems described in Section 1.3, and the motivations for addressing

them listed in Section 1.4, the goal of this work was to develop an improved

text entailment approach capable of tackling some of the current issues in the

field. The research was planned and conducted with the aim of answering the

following questions:

Q1: How to deal adequately with the different phenomena that can be present

in entailments, which can go from a simple syntactic variation to a complex

semantic relationship?
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Q2: How to improve the recognition of entailments involving semantic relation-

ships, which require commonsense world knowledge to be solved?

Q3: Where to find the knowledge necessary to solve entailments involving se-

mantic relationships?

Q4: How to maximize the interpretability of the entailment system?

1.6 Hypotheses

For answering the research questions listed in Section 1.5 and guiding the de-

velopment of the proposed text entailment approach, this research sought to

evaluate the following hypotheses:

H1: The use of different methods for addressing different (syntactic or se-

mantic) entailment phenomena increases the accuracy of the overall entailment

approach.

The first hypothesis has a direct relation with the research question Q1 and as-

sumes that a single method cannot be suitable for both syntactic and semantic

phenomena. An approach made up by a composition of methods, each of them

tending the specificities of each phenomenon, will, then, reach better overall

accuracy.

H2: Solving semantic entailments by searching for the key semantic relationship

between T and H in a knowledge graph (a knowledge base structured as a set of

concepts linked by semantic relationships) increases the accuracy of the system,

especially for world knowledge-demanding datasets.

The second hypothesis relates to the research question Q2 and complements the

hypothesis Q1, assuming that the best way to deal with semantic phenomena

is to go beyond syntactic features and shallow semantic information and inject

commonsense knowledge from a knowledge graph in the reasoning process for

establishing the relationship between T and H.

H3: Natural language dictionary definitions, extracted from lexical resources,

can provide the commonsense knowledge necessary to solve semantic entail-

ments.
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The third hypothesis is related to both the research question Q3 and the hypoth-

esis H2, assuming that natural language lexical definitions contain the knowledge

necessary for establishing the semantic relationship between T and H, and can

be represented as a knowledge graph for being explored as a knowledge source

in the entailment recognition process.

H4: By traversing a definition knowledge graph to find the key semantic rela-

tionship between T and H, it is possible to generate a natural language justifi-

cation from the retrieved path, making the system decision interpretable.

The fourth and last hypothesis addresses the research question Q4 and follows

from the hypotheses H2 and H3, assuming that a knowledge graph built from lex-

ical definitions, besides allowing the recognition of entailments involving more

complex semantic relationships, also provides the evidence for explaining the

reasoning process followed by the system. This evidence can be formatted into

a natural language justification, making the entailment decision interpretable.

1.7 Methodology

The research methodology followed in the development of this work intended to

validate the hypotheses listed in Section 1.6, and comprised the following steps:

1. Literature review encompassing the relevant areas related to this work,

covering both text entailment recognition systems and semantic inter-

pretability in AI models.

2. Categorization of existing approaches and identification of gaps in the

area.

3. Systematic study of world commonsense knowledge-demanding text en-

tailment datasets for categorizing the knowledge needs.

4. Analysis of the linguistic and semantic features of natural language lexical

definitions, and development of a conceptual model for representing them.

5. Creation and implementation of a methodology for automatically convert-

ing natural language definitions into knowledge graphs.

6. Conceptualization, design, and implementation of the composite inter-

pretable text entailment approach.
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(a) Implementation of a distributional semantics-based graph navigation

model for solving semantic entailments and generating natural lan-

guage justifications.

(b) Implementation of a routing mechanism for identifying the predom-

inant phenomenon in an entailment pair and, therefore, the suitable

method to be used.

(c) Adaptation of a tree edit distance model for solving syntactic entail-

ments.

(d) Implementation of a complementary module for extracting additional

context information from the sentences in the entailment pair.

(e) Integration of all the modules into the final system.

7. Design and execution of experiments for the proposed approach evaluation.

(a) Construction of various definition knowledge graphs from different

lexical resources.

(b) Quantitative evaluation through a comparison with existing base-

lines, using precision, recall, and F-score as measures.

(c) Qualitative evaluation of the justifications generated by the system.

(d) Quantitative and qualitative evaluation of the different definition

knowledge graphs.

8. Error analysis, including error classification and quantification.

1.8 XTE: A Composite Interpretable Text Entailment System

The outcome of the research methodology described in Section 1.7 is a compos-

ite interpretable text entailment approach materialized in the entailment system

called XTE – Explainable Text Entailment – a system that uses different meth-

ods to tackle different entailment scenarios, integrated as components into a

composite approach that performs a routing, that is, it analyzes the entailment

pair, identifies the most relevant phenomenon present, and sends it to the most

suitable component to solve it.

In the context of this thesis, entailment phenomena are split into two broad

categories: syntactic and semantic. For solving syntactic entailments, the ap-

proach adopts a tree edit distance algorithm, which operates over a dependency
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tree representation of both T and H. For semantic entailments, it looks for the

semantic relationships holding between T and H, employing a distributional

(word embedding-based) navigation algorithm that explores a graph knowledge

base composed of natural language dictionary definitions. By finding a path

is this graph linking T and H, the system can provide human-readable justi-

fications that shows explicitly what the semantic relationship holding between

them is, which is an important feature that renders the system interpretable.

The development of the entailment approach and its implementation into

the XTE system were based on the following core assumptions:

1. The syntactic and semantic components are self-contained and operate

independently, being each able to deliver a final decision.

2. For semantic entailments, the focus is on the key semantic relationship,

that is, the relationship that maximizes the semantic relatedness between

T and H.

3. By using lexical definitions for injecting commonsense world knowledge

into the inference process, the approach primarily relies on intensional,

that is, meaning-based, background knowledge.

4. The interpretability dimension of the resulting system translates as post-

hoc explanations, meaning that the natural language justifications suffice

for explaining the system’s decisions, without the need of exposing its

internal operations.

The core contributions of this approach and of this thesis as a whole are:

• A conceptual model and a methodology for automatically building knowl-

edge graphs from dictionaries.

• A set of definition graph knowledge bases.

• A more flexible way to deal with different entailment scenarios, employing

the most suitable method for each entailment phenomenon.

• An interpretable definition-based commonsense reasoning model which,

through the generation of natural language explanations, allows the final

users to understand and assess the inference process leading to a decision.
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• A quantitative and qualitative analysis of different knowledge bases gener-

ated from various lexical resources, showing how they compare especially

from the interpretability point of view.

The contributions of this work are not restricted to the text entailment

field: besides the main contribution for a number of applications that rely on

efficient inference models, the knowledge resources developed in the context of

this research, including the graph construction methodology and the knowledge

bases themselves, can also be reused in any task that demands commonsense

knowledge, benefiting the NLP research area in a wider way.

1.9 Thesis Outline

This thesis is organized as follows:

Chapter II – Literature Review – presents the literature survey on both the

text entailment recognition field and the semantic interpretability area. The text

entailment review covers the main characteristics of the entailment problem, in-

cluding the phenomena and the knowledge requirements involved in entailment

recognition. The most prominent base methods, approaches, and evaluation

initiatives are analyzed, and an overview of the Natural Language Inference

subtask is given. The semantic interpretability survey was carried out in an

application-independent manner, covering different AI models to show how each

research area define interpretability, provide transparency and/or explanations,

and evaluate a model’s degree of interpretability. A further analysis draws the

relationship between text entailment systems and the Explainable AI require-

ments, and a gap analysis points at some aspects of text entailment approaches

that still need improvements, and that will be addressed in this thesis.

Chapter III – From Lexicons to Knowledge Graphs – describes the graph

knowledge bases creation process, including the modeling, knowledge extrac-

tion, and representation procedures. The most popular existing commonsense

knowledge graphs are reviewed and, then, the conceptual model designed for

representing lexical definitions in a structured form is described. A rule-based

filtering procedure for cleaning a knowledge source, removing ill-formed defini-

tions is detailed, and the complete methodology for automatically converting a

dictionary into a knowledge graph is presented.

Chapter IV – Composite Syntactic-Semantic Interpretable Text Entailment

– presents the proposed composite interpretable text entailment approach. The
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first part of the development includes a brief introduction to Distributional Se-

mantics, followed by the description of the Distributional Graph Navigation

model, used to solve and justify semantic entailments. The second part details

the complete entailment system, including the definition of the routing mech-

anism which analyzes the entailment pair to choose the model to be used, the

adaptation of the Tree Edit Distance model for solving syntactic entailments,

the improvements introduced in the semantic entailment module for provid-

ing better inputs for the Distributional Graph Navigation algorithm, and the

development of the Context Analysis module.

Chapter V – Evaluation – describes the experiments carried out for evaluat-

ing the proposed text entailment approach. The experimental setup is described,

including the definition of the system’s main parameters, the description of the

datasets tested, the knowledge bases employed and the baselines used for com-

parison. The quantitative results are presented and discussed, and a qualitative

analysis of the justifications produced by the system is also presented. A discus-

sion on the impact of the different knowledge bases in the results, based on their

characteristics, is provided through a quantitative and qualitative comparative

analysis.

Chapter VI – Error Analysis – presents a detailed systematic analysis of the

cases for which the proposed approach produced wrong entailment decisions.

Errors are identified, classified and quantified, and an analysis on the approach

limitations and the possible enhancements to overcome them is presented.

Chapter VII – Conclusion – summarizes the thesis, listing the main de-

velopments, findings, and contributions. Research hypotheses are recalled and

compared against the results obtained to confirm their validity, and future work

opportunities are identified.

1.10 Related Publications

The following publications were produced throughout the development of this

work, and are related to the aforementioned chapters as indicated:

• Vivian S. Silva, Siegfried Handschuh, André Freitas. Categorization of Se-

mantic Roles for Dictionary Definitions. Cognitive Aspects of the Lexicon

(CogALex-V), Workshop at the 26th International Conference on Com-

putational Linguistics (COLING), Osaka, Japan, 2016.

Includes content described in Chapter III.
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• Vivian S. Silva, André Freitas, Siegfried Handschuh. Building a Knowl-

edge Graph from Natural Language Definitions for Interpretable Text En-

tailment Recognition. 11th Language Resources and Evaluation Confer-

ence (LREC), Miyazaki, Japan, 2018.

Includes content described in Chapter III.

• Vivian S. Silva, André Freitas, Siegfried Handschuh. Recognizing and

Justifying Text Entailment through Distributional Navigation on Defini-

tion Graphs. Thirty-Second AAAI Conference on Artificial Intelligence

(AAAI-18), New Orleans, USA, 2018.

Includes content described in Chapters IV and V.

• Vivian S. Silva, André Freitas, Siegfried Handschuh. Exploring Knowl-

edge Graphs in an Interpretable Composite Approach for Text Entailment.

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Hon-

olulu, USA, 2019.

Includes content described in Chapters IV and V.

• Vivian S. Silva, André Freitas, Siegfried Handschuh. On the Semantic In-

terpretability of Artificial Intelligence Models. arXiv preprint arXiv:1907.0

4105. 2019.

Includes content described in Chapter II.

• Vivian S. Silva, André Freitas, Siegfried Handschuh. XTE: Explainable

Text Entailment. arXiv preprint arXiv:2009.12431. 2020.

Includes content described in Chapters IV and V.



Chapter 2

Literature Review

In this chapter, the literature regarding the main areas relevant to this work

is reviewed. As described in Chapter 1, this work proposes an approach for

recognizing textual entailment (TE) in an interpretable way. Emphasizing the

importance of the semantic aspects of entailments, the proposed approach seeks

to better address different (syntactic or semantic) phenomena for better entail-

ment recognition while also explaining the reasoning mechanism behind each

decision, allowing the user to interpret and understand the system output.

Therefore, this literature review is divided into two main parts, covering

the text entailment recognition field, and the semantic interpretability research

area. While the text entailment review focuses on the aspects, approaches, and

evaluation initiatives for this specific task, the interpretability study is carried

out in a cross-application manner, in order to identify the explainability features

being developed and adopted by AI models in general to perform a wide range

of tasks. Nevertheless, once the big picture of AI interpretability is drawn,

its relationship with text entailment task in particular is also analyzed, so the

main approaches covered in the first part of the review could be examined also

through their interpretability dimension.

The text entailment part starts with a description of the entailment recogni-

tion task, the main phenomena it may involve, and the knowledge requirements

triggered by such phenomena. A high-level classification and an overview of

the main sources available for knowledge acquisition is presented as well. Next,

the main base methods used in text entailment recognition are described. Base

methods are methods that tackle a single syntactic or semantic task, and that

can be combined in different ways by the same approach. The different ap-

21
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proaches building upon these methods are then analyzed. Evaluation initiatives

are listed, and the Natural Language Inference, an emerging subtask of textual

entailment recognition, is also reviewed.

The semantic interpretability part starts with an overview of the importance

of interpreting and understanding the model rationale, followed by an examina-

tion of the concept of interpretability across different areas. Next, interpretable

AI models, as well as evaluation initiatives, are analyzed and categorized, and an

investigation of the impacts of the types of interpretability features and the way

they are implemented on the final user wraps up the main findings. A further

analysis of text entailment system from the point of view of their interpretability

and a gap analysis conclude the review.

2.1 Text Entailment Recognition

The Natural Language Processing field has expanded and advanced to cover

a wide range of tasks, providing solutions that allow applications to deal with

language in an increasingly better way. Question Answering, Information Ex-

traction, Machine Translation, Relation Extraction, Multi-Document Summa-

rization, and Information Retrieval are some of the tasks whose inputs and

outputs are expressed in natural language, and where the correct interpretation

of sentences, not only at the lexical and syntactic level but also from the seman-

tic point of view, is possibly one of the most crucial factors of success for the

application (Dagan et al., 2013).

While syntactic processing is a fairly mature research field, semantic inter-

pretation is still an area filled with open-challenges, due to the large number of

phenomena which can affect the meaning of natural language inputs, outputs,

and the relationship between them (Dagan et al., 2013). One such phenomenon

is language variability: the fact that the same meaning can be stated in various

different ways. NLP applications, then, need a model for this variability phe-

nomenon in order to recognize that a particular target meaning is equivalent to

its possible alternatives, that is, it can be inferred from different text variants

(Dagan, Dolan, Magnini, & Roth, 2009).

Textual inference is a task by its own and, given that, as observed by Cabrio

and Magnini (2014), “language variability manifests itself at different levels of

complexity, and involves almost all linguistic phenomena of natural languages,

including lexical, syntactic and semantic variation”, it can be better addressed
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in an application-independent manner rather than as a side functionality in the

context of another task. The textual entailment paradigm was introduced with

the goal of allowing researchers to focus on core inferences issues, while providing

a way for dealing with language variability that could be reused across different

NLP applications. Recalling the definition given in Chapter 1, we have that

text entailment is a directional relationship between a pair of text expressions,

denoted by T – the entailing text, and H – the entailed hypothesis. We say

that T entails H if, typically, a human reading T would infer that H is most

likely true (Dagan, Glickman, & Magnini, 2006).

The variety of phenomena involved in text entailment is one of its most

remarkable and challenging characteristics. Cabrio and Magnini (2014), in-

vestigating some popular entailment datasets (see Section 2.1.4), highlight two

relevant aspects of textual inference: the logical dimension and the linguistic di-

mension. The logical dimension refers to the capacity of the inference to prove

the conclusion from its premises, independent of the way they are expressed,

and the linguistic dimension deals with the linguistic devices that are used to ac-

complish the goal of the inference and, therefore, are representation-dependent.

The representation is the language in which the premises and conclusion (or T

and H) are expressed.

According to the rationale that guided this investigation, when textual infer-

ences are seen as logical arguments, they can be classified into three categories,

as described by Cabrio and Magnini (2014):

• Deductive arguments, whose conclusion follows necessarily from their basic

premises.

• Inductive arguments, whose conclusion does not necessarily follow from

their basic premises.

• Abductive arguments, where the reasoning goes from data description of

something to a hypothesis that accounts for the reliable data and seeks to

explain relevant evidence.

When analyzed in terms of linguistic and knowledge phenomena, textual

inferences are divided into five macro categories, each one including the listed

fine-grained phenomena:

• Lexical : identity, format1, acronymy, demonymy, synonymy, semantic op-

position, hyperonymy, geographical knowledge.

1Numerical format variations, e.g. 15 April → 15/04.
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• Lexical-syntactic: nominalization, verbalization, causative, paraphrase,

transparent heads2.

• Syntactic: negation, modifier, argument realization, apposition, list, coor-

dination, active/passive alternation.

• Discourse: co-reference, apposition, zero anaphora, ellipsis, statements3.

• Reasoning : apposition, modifiers, genitive, relative clause, elliptic expres-

sions, meronymy, metonymy, membership/representativeness, reasoning

on quantities, temporal and spatial reasoning, all the general inferences

using background knowledge.

The above-mentioned investigation showed that almost three fourths of en-

tailment pairs correspond to deductive arguments, and that abductive argu-

ments are very rare, which is in line with the definition of textual entailment,

where the dependency of H on T has a heavy weight. Regarding the linguistic

dimension, there is no absolute quantification, since categories are not mutually

exclusive. They also observe that world knowledge has not been categorized

separately because it was considered as “an omni-pervasive phenomenon”.

In fact, world commonsense knowledge is not a phenomenon, but rather the

underlying basis supporting a wide range of different phenomena. Analyzing

the proposed classification, though, some issues can be noticed, like overlaps, as

in the apposition being classified in both the discourse and reasoning categories,

and misplaced phenomena, such as causative, which implies a semantic cause-

effect relationship, in the lexical-syntactic category, suggesting that an overly

fine-grained categorization may not be the ideal classification tool.

From the point of view of textual entailment needs, that is, what is neces-

sary to be identified so the entailment can be solved, a macro-categorization

grouping similar classes of phenomena, which will demand similar techniques,

would comprise the following categories:

• Lexical-Syntactic Variation: phenomena referring to changes in sentence

structure and phrasing. Text entailments involving such phenomena de-

mand only an analysis of the T and H sentences and simple word re-

placements using shallow semantic information. Includes most lexical,

lexical-syntactic, syntactic and discourse subcategories.

2When the syntactic head of a noun phrase is not its most semantically significant noun.
3Reported discourse.
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• Semantic Reasoning : phenomena that depend on supporting known facts

linking the meaning of sentences. Text entailments involving this kind of

phenomena requires, besides the sentences content analysis, background

knowledge from which the supporting facts can be extracted. Includes

most reasoning subcategories, but also categories like geographical knowl-

edge, demonymy, or causative, which usually can’t be solved with simple

word replacement.

Since phenomena are grouped in terms of their needs regarding the analysis

of sentence features and the use of external knowledge sources, this macro-

categorization allows for a more intelligible review of different entailment meth-

ods and approaches. Therefore, in this review we use this categorization as

a framework for studying the text entailment state-of-the-art, analyzing how

different approaches address these two dimensions and how they make use of

external sources of world knowledge.

The survey starts with an overview of the knowledge requirements in text

entailment recognition, and then use these requirements as one of the factors for

analyzing different entailment methods and approaches. Base methods and the

most prominent approaches using one or more of these methods are described,

followed by an account of the RTE Challenges, a text entailment evaluation

initiative, and an overview of Natural Language Inference, a prominent text

entailment subtask.

2.1.1 Knowledge Requirements in TE Recognition

Like any Natural Language Processing task, text entailment abides by human

understanding of language, which requires not only the processing of text itself

but also of the underlying commonsense world knowledge shared and assumed

by humans when they express themselves and communicate in natural language.

Taking into account the need for background knowledge, Dagan et al. (2013)

refine the definition of text entailment to include this requirement:

Definition 2.1. A text T entails a hypothesisH if there exists some background

knowledge K such that T and K together entail H while K alone does not.

This definition stresses the role of T in the entailment reasoning for inferring

the truth of H, emphasizing that the assumed background knowledge K may be

used to augment the information represented by the text in order to entail the

hypothesis but cannot entail the hypothesis on its own.
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Knowledge acquisition is a major issue in textual entailment research, and

several studies tried to identify the linguistic and shallow semantic knowledge as

well as the general commonsense world knowledge required to solve entailments

across different datasets (Clark et al., 2007; Cabrio & Magnini, 2014; Sammons,

Vydiswaran, & Roth, 2010). The most common types of world knowledge (ex-

cluding linguistic knowledge, hyponymy, and synonymy) can be classified in the

following categories, according to the classification offered by LoBue and Yates

(2011):

Form-based Categories

Cause and Effect : an event described in H is an effect of an event in T.

Example:

T: Mary gave birth.

H: Mary has a child.

Entailment: Yes

Precondition : an event described in H is a condition for an event in T. Ex-

ample:

T: Mary gave birth.

H: Mary was pregnant.

Entailment: Yes

Simultaneous Condition : events described in T and H must happen at the

same time. Example:

T: John works for Google.

H: Google pays John’s salary.

Entailment: Yes

Argument Type : arguments in a relationship can only be of a specific type. In

the example below, the predicate “adopt” has an explicit argument (“child”),

and the second argument can only be of type “person” (following commonsense,

only a person can adopt a child):

T: The child was adopted yesterday.

H: A person adopted the child yesterday.

Entailment: Yes
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Prominent Relationship: relationship in H between entities in T is defined

by the entities’ types. In the examples below, the possessive marker linking the

entities “Leonardo da Vinci” and “Mona Lisa” could indicate either author-

ship or ownership, but, given the background knowledge about these entities,

“authorship” is the most prominent relationship between them.

T: Leonardo da Vinci’s Mona Lisa is famous worldwide.

H: Leonardo da Vinci painted the Mona Lisa.

Entailment: Yes

T: Leonardo da Vinci’s Mona Lisa is famous worldwide.

H: Leonardo da Vinci bought the Mona Lisa.

Entailment: No

Definitional : the relationship between entities in T and H is given by their

basic attributes, contained in their definitions. Example, supported by the

WordNet definition for “sell” – “exchange or deliver for money or its equivalent”:

T: John sold a car to Mary.

H: John received money from Mary.

Entailment: Yes

Functional : entities in T are linked by a functional relationship, where one of

the entities only can assume a single value, formally denoted as ∀x, y, y′R(x, y)∧
R(x, y′) ⇒ y = y′. In the examples below, the entailment is true for the

relationship “father of”, which is functional (a person can only have one father),

but not for the relationship “friend of”:

T: Mary’s father lives in Italy. Bill is Mary’s father.

H: Bill lives in Italy.

Entailment: Yes

T: Mary’s friend lives in Italy. Lucy is Mary’s friend.

H: Lucy lives in Italy.

Entailment: No

Mutual Exclusivity : an entity can’t participate in events described in T and

H at the same time. Examples:
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T: John is sitting in a chair.

H: John is not walking.

Entailment: Yes

T: John is sitting in a chair.

H: John is not reading a book.

Entailment: No

Transitivity : Entities participate in a transitive relationship, formally R(a, b)∧
R(b, c)⇒ R(a, c). Example:

T: Mary supports the Party. The Party supports John as candidate.

H: Mary supports John as candidate.

Entailment: Yes

Content-based Categories

Arithmetic: involves arithmetic operations, comparisons, and rounding. Ex-

ample:

T: The plane was carrying 115 passengers and 6 crew.

H: The plane was carrying 121 people.

Entailment: Yes

Geographical : involves knowledge about the type of geographic entities as well

as the relationships between them. Examples:

T: Mary visited Rome.

H: Mary visited the capital of Italy.

Entailment: Yes

T: John was in Passau.

H: John was near Austria.

Entailment: Yes

Public Entities: involves knowledge about highly-recognizable named entities.

Example:

T: Barack Obama is writing a book.

H: A former US president is writing a book.

Entailment: Yes
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Cultural/Situational : involves knowledge of or shared by a particular culture.

In the example below, the entailment is possibly true, as long as the equivalence

between T and H is accepted as valid in the context of some culture:

T: The cities are a half-hour drive apart.

H: The cities are close to each other.

Entailment: Yes

Membership: includes knowledge about typical membership relationships be-

tween entities and organizations. Example:

T: Mary is a minister.

H: Mary works for the government.

Entailment: Yes

Parthood : entities in T and H are linked through the part-of relationship, also

known as meronymy. Example:

T: The forest was destroyed.

H: Trees were destroyed.

Entailment: Yes

Support/Opposition : the action or relationship toward an entity indicates

positive or negative feelings toward it. Example:

T: John and Mary are friends.

H: John likes Mary.

Entailment: Yes

Accountability : involves the relationships between entities and the actions

they are responsible for. Example:

T: US bombs were thrown in Iraq in 1998.

H: The US military threw bombs in Iraq in 1998.

Entailment: Yes

Synecdoche : involves the relationships between entities and the organiza-

tions/institutions they represent. Example:

T: The US president supported the war.

H: The US supported the war.

Entailment: Yes
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Miscellaneous Categories

Probabilistic Dependency : a combination of facts in T contributes to mak-

ing H true, while these same facts in isolation are not enough to support H.

Examples:

T: Temperatures will fall below 0◦C.

H: It may snow.

Entailment: No

T: Humidity will be high.

H: It may snow.

Entailment: No

T: Temperatures will fall below 0◦C and humidity will be high.

H: It may snow.

Entailment: Yes

LoBue and Yates (2011) also cite Omniscience as a miscellaneous category,

defining it as the assumption that T includes all the necessary information, so

any fact not mentioned in T can be discredited. Given the definition of text

entailment, this category can be considered redundant, since the truth of H

necessarily follows from the information contained in T (in this case, new facts

mentioned in H are neither contained in T nor can be derived from T through

any other kind of background knowledge). Other relevant categories not covered

in this categorization but cited in the study of Clark et al. (2007) are:

Spatial Co-location : entities physically interacting must be at the same lo-

cation. Example:

T: John was at the party dancing with Mary.

H: Mary was at the party.

Entailment: Yes

Metonymy : an entity in T is replaced in H by another closely related entity

that conveys the same meaning. Example:

T: Germany is a big beer consumer.

H: People in Germany consume beer.

Entailment: Yes
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The high granularity of this categorization gives us a broad view of the

variety of knowledge types and suggests that concentrating on collecting these

kinds of commonsense world knowledge can make a large difference in text

entailment recognition (LoBue & Yates, 2011). But, on the other hand, this

level of detail makes it harder to point to sources for knowledge acquisition for

each of the identified types, since they are very specific and atomic. The analysis

of this classification suggests that many categories have common characteristics

and the knowledge they cover could, consequently, be acquired from the same

type of knowledge source. After narrowing this classification, and, hence, the

universe of possible knowledge sources, the following macro-categories can be

considered:

1. Event Chain/Temporal Relations: knowledge about the interactions

between events. Includes categories such as Cause and Effect, Precondi-

tion, Simultaneous Condition, Mutual Exclusivity, and Probabilistic De-

pendency. Figure 2.1 illustrates some of the links between these categories,

showing how several of them usually apply to a single set of related events.

Figure 2.1: An example of the links between temporal relations.

2. Geographical/Spatial Relations: knowledge about the relationships

involving geographical entities. Includes relations such as spatial inclu-

sion, location, co-location, nearness, distance, etc. Figure 2.2 shows some

spatial relations and the inferences that can be derived from them through

transitivity.
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Figure 2.2: An example of the links between spatial relations.

3. Entity Types: knowledge about the type of arguments allowed in a re-

lationship or the types of known named entities. Includes the categories

Argument Types, Prominent Relationship, and Public Entities. Figure

2.3 shows the similarities between these categories.

Figure 2.3: Relations involving entity types. From top to bottom: Argument
Type, Prominent Relationship, and Public Entities.

4. Metonymy : knowledge about pairs of entities that can be used inter-

changeably without being synonyms. Includes, besides Metonymy itself,

the Accountability and Synecdoche categories. Figure 2.4 shows the com-

mon point across these categories.

A possible fifth category is Definitional Knowledge, which is any knowledge

that can be contained in a definition. This category, though, is not mutually

exclusive with the other ones, since a definition can contain a number of different

relations between entities. Figure 2.5 shows a few examples of definitions from
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Figure 2.4: Relations involving metonymy. From top to bottom: Metonymy,
Accountability, and Synecdoche.

WordNet and the relations that can be extracted from them that are relevant

for inference purposes.

Some of the relations in Figure 2.5 are covered by some of the knowledge

macro-categories, like Precondition in Temporal Relations, Location in Spatial

Relations, and Entity Type/Info in Entity Types, and others, like Membership

and Parthood, are not. In fact, this macro-categorization does not cover other

knowledge types, like functionality and transitivity, which can be better seen

as properties of relationships than relations themselves, and which depends on

more sophisticated representation mechanisms, like ontologies, to be encoded.

Arithmetic knowledge, on the other hand, is the kind of information that, if

correctly detected, can be dealt with algorithmically, not depending on semantic

interpretation. With these exceptions in mind, Definitional knowledge could,

then, be considered a cross-category, overlapping (but not completely covering)

the other macro-categories while also covering further relations. Figure 2.6

drafts the proposed hierarchy of knowledge types required in text entailment

recognition. These types refer to the knowledge requirements identified in the

investigated datasets, therefore the lists of subcategories are not exhaustive.

2.1.2 Knowledge Acquisition Sources

There are a number of sources from which many of these types of knowledge

can be acquired. These knowledge sources have been developed for more general

purposes rather than specifically for text entailment, being employed in a wide

range of NLP tasks. Traditionally, textual inference have been relying on classi-

cal lexical-semantic relations, also called shallow semantic information, such as
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Figure 2.5: Examples of relations covered by definitional knowledge.

synonymy or hypernymy, but the more complex semantic relationships involved

in text entailment is gradually led to the integration of more diverse knowledge

sources into the reasoning process.

There are resources built manually by professional lexicographers and auto-

matically generated from large corpora. Among the manually built resources,

some were constructed with the aim of being machine-understandable, while

other ones are primarily for human consumption. WordNet (Fellbaum, 1998)

is a computation-oriented manually built lexical resource and the most widely

used knowledge source in Natural Language Processing. It contains structured

information in the form of links between lexical items, such as synonymy, hyper-

nymy (for nouns) and troponymy (for verbs), and derivationally related form

(linking terms which are morphological derivations of one another), which cov-

ers the general shallow semantic knowledge needs. It also provides antonymy

links, which can, to some extent, help in the identification of mutual exclusivity.

WordNet also provides natural language definitions for all its terms, from which
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Figure 2.6: The proposed hierarchy of knowledge types required in textual en-
tailment.

definitional knowledge can be extracted, but since it is unstructured informa-

tion, some previous knowledge extraction process is required.

FrameNet (Baker et al., 1998) is another manually built lexicographic re-

source which provides frames for verbs. These frames contain information about

the argument roles relevant for a specific verb and can provide knowledge about

allowed argument types for a given predicate. VerbNet (Kipper et al., 2006) also

provides frames but with more refined selectional restrictions on the arguments,

which can allow more accurate argument type identification.

Resources created for human consumption can also be a source of knowledge

for text entailment, and Wikipedia is the most popular among them, due to

its vast size and scope. Its structured information can provide different types

of knowledge: redirect links can be used for inferring synonymy, category tags

can provide taxonomic relations, and the infoboxes, with values for a number of

properties, which vary according to the type of the entity being described, can

cover different relations, usually related to entity types and the most important

information associated to named entities. As much as WordNet, Wikipedia’s
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unstructured content is a rich source of definitional knowledge, from which a

wide range of relations can be extracted, but, due to the larger amount of

information contained in an article, the knowledge extraction methods needed

can be even more challenging.

The automatic learning of semantic information from corpora aims at over-

coming the inherent incompleteness of manually built resources. VerbOcean

(Chklovski & Pantel, 2004) is one such resource, built semi-automatically and

oriented to verb description. Instead of specifying frames like FrameNet and

VerbNet, it collects semantic relationships between verbs, from which some (lim-

ited) knowledge about temporal relations, e.g. enablement, happens-before, etc.,

can be extracted.

The Paraphrase Database (PPDB) (Ganitkevitch, Van Durme, & Callison-

Burch, 2013) is a resource automatically built from parallel corpora which

contains lexical paraphrases and meaning-preserving syntactic transformations.

Since paraphrase is a bidirectional relationship, the use of PPDB in text entail-

ment is limited to the detection of equivalence through synonymy. Although

these synonymy relations are more elaborated than those that can be found in

WordNet, for example, for considering also longer text expressions, other types

of knowledge necessary for capturing more complex semantic relationships not

necessarily implying equivalence, like cause-effect, parthood, or membership, to

name a few, cannot be apprehended from it.

The DIRT (Discovery of Inference Rules from Text) Database (D. Lin &

Pantel, 2001) is built in a way similar to PPDB but intended to cover other

inference rules besides equivalence. These inference rules hold between binary

predicates, in the form Xpred1Y ≈ Xpred2Y , and can cover some temporal

and spatial relations. However, since the extraction method was based on simi-

larity between branches of syntactic parse trees, in practice most rules describe

paraphrase-style relations, making DIRT one more rich source of shallow se-

mantic knowledge.

The use of external resources and the type of knowledge extracted from them

are important features for characterizing a text entailment approach. These

points contribute to determining the extent to which it can deal with differ-

ent entailment scenarios, from simple syntactic variations to shallow semantic

relationships to deeper commonsense world knowledge-backed reasoning.
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2.1.3 Methods and Approaches

Text entailment recognition was first materialized as a generic model for captur-

ing language variability at a shallow semantic level, meaning that it processed

sentences without any explicit interpretation into meaning representations, but

rather operating directly over lexical-syntactic units (Dagan & Glickman, 2004).

Such approach, as well as other shallow methods, like word overlap and statis-

tical lexical relations, have been gradually giving way to more sophisticated

approaches, or deep methods, which combine the analysis of the sentence struc-

ture with logical features and information from external linguistic resources

(Androutsopoulos & Malakasiotis, 2010).

As a common starting point, these approaches translate the text and hy-

pothesis to some kind of structured representation and then try to determine

if the representation of the hypothesis is subsumed by that of the text. There-

fore, it is possible to distinguish between base methods and approaches. The

base methods define the kind of representations to be extracted from T and H,

determining the scope of operations that can be performed over these represen-

tations. The approaches, then, use one or more base methods to recognize the

entailments, handling the representations in different ways.

2.1.3.1 Base Methods

Considering the text entailment field as a whole, base methods can be di-

vided into three categories, which differ mainly in terms of their final goal

(Androutsopoulos & Malakasiotis, 2010):

• Recognition: the input is a pair of pieces of text, and the output is a

judgment, possibly along with a confidence score, on whether or not one

piece is entailed by the other one.

• Generation: the input is a single piece of text, and the output is a set of

text expressions – the hypotheses – that can be entailed by the input text.

• Extraction: the input is a text corpus, and the output is a set of pairs of

text expressions where one of them is entailed by the other.

While generation and extraction methods can provide background knowledge

and rules to be later used in entailment recognition, they are more related to

text mining and information extraction than to inference itself. We, then, focus
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our analysis on recognition methods, presenting them in what can be thought

of as an increasing level of complexity.

Surface String Similarity

Surface String Similarity base methods operate directly over the lexical repre-

sentations of T and H (Androutsopoulos & Malakasiotis, 2010). This representa-

tion is usually a bag-of-words, where lexical units are considered as independent

elements, and allows comparisons using similarity measures such as string edit

distance, coverage (the number of words H have in common with T), and longest

common subsequence (LCS) (Gomaa, Fahmy, et al., 2013).

A combination of several string similarity measures is also possible. In the

cases where T is much longer than H, string similarity can be low even if H is

fully contained in T, being necessary to introduce complementary approaches,

such as comparing H to a sliding window of T’s surface string of the same size

as H (Androutsopoulos & Malakasiotis, 2010), and use this window to compute

the coverage or LCS, for example.

Syntactic Similarity

Syntactic Similarity base methods operate over the syntactic representation of

T and H, which can be given by their constituency parse or dependency parse.

Syntactic trees can be seen as a graph or treated as a set of independent el-

ements, such as a bag-of-syntactic-dependencies. The comparison, then, can

take into account only the number of common edges (considered along with

their source and destination nodes) or use more sophisticated tree similarity

measures, like tree edit distance (Androutsopoulos & Malakasiotis, 2010).

It is also possible to compare the parse tree of H to subtrees of T. Similarity

measures applied to lexical representations, such as coverage and longest com-

mon subsequence, also work for syntactic representations. However, when such

representations are considered as a unit, graph isomorphism-related measures,

like common subtrees or largest common subtree, are the most commonly used

(Dagan et al., 2013).

Symbolic Meaning Similarity

Symbolic Meaning Similarity base methods operate over graph representations

of T and H, where edges represent semantic relations between words. These rela-

tions are usually extracted through semantic role labeling, FrameNet’s frames,
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or PropBank (Palmer, Gildea, & Kingsbury, 2005) semantic roles. Other re-

sources, such as WordNet, can be also used to identify shallow semantic rela-

tions between the words of T and H, such as synonyms, hypernym-hyponyms,

nominalizations, and other derivationally related forms, to expand the symbolic

meaning representation (Androutsopoulos & Malakasiotis, 2010).

As a graph, the same similarity measures employed for syntactic represen-

tations apply. The representations derived from role labeling and frames are

somewhat limited as a semantic representation, for being restricted to predicate-

argument structures. Nevertheless, they allow the extraction of relations, such

as temporal and spatial information regarding an event, not captured by syn-

tactic dependencies.

Logic-based

Logic-based methods operate over logical representations of T and H, using

logical theorem provers to recognize the entailment. Due to the high level of

complexity involved in defining a standard canonical logical representation, the

induced representation “can be thought of as a quasi-formal interpretation, with

an associated quasi-formal semantics” (Dagan et al., 2013). These representa-

tions are derived from the natural language lexical representations of T and H,

usually based on predicate-argument or dependency structures extracted from

syntactic parse (Androutsopoulos & Malakasiotis, 2010).

Formal proof-theoretic models encode facts using a formal representation

such as Propositional or First-Order Logic and rely on theorem-proving tech-

niques to apply rules of inference to determine the set of facts that can be

derived from the already encoded facts (Dagan et al., 2013). General world

knowledge can also be used, and linguistic resources like WordNet, VerbNet,

and FrameNet can serve as a knowledge base from where logical axioms can be

derived (Androutsopoulos & Malakasiotis, 2010).

Rule-based

Rule-based methods use a set of rules to incrementally transform T into H.

They can be seen as a relaxation of logic-based methods where, instead of the

formal inference rules, a looser concept of rule is employed, corresponding to

pairs of related text expressions which are extracted from text corpora through

entailment extraction techniques and gathered in resources like PPDB or DIRT

(Androutsopoulos & Malakasiotis, 2010).
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Also called decoding, this kind of method works by searching a sequence

of rules that, applied to T, can turn it into H. Rules can be associated with a

confidence score; in this case, the sequence of rules with the maximum score rep-

resents the optimal transformation sequence (Androutsopoulos & Malakasiotis,

2010). Although the paraphrase-style rules are more commonly used, hand-

crafted rules can also be employed, especially for specifying syntactic transfor-

mations such as passive/active voice alternations, for example.

Base methods rely on a series of annotations, usually generated during a

preprocessing stage, to derive the relevant representation. These annotations

include sentence and word segmentation, lemmatization, part-of-speech (POS)

tagging, syntactic dependency or constituency parser, named entity recognition,

co-reference resolution, and semantic role labeling (Dagan et al., 2013). The

amount of annotations differ depending on the method, and the way how the

information they provide is used in the entailment recognition also varies across

the different approaches, presented next.

2.1.3.2 Entailment Approaches

The base methods presented in Section 2.1.3.1 provide the foundations upon

which most text entailment approaches develop a recognition strategy. These

approaches can be divided into three main groups, according to their character-

istics:

• alignment approaches, which are based on comparisons between T and H,

• transformation approaches, which, besides comparisons, rely on replace-

ments to turn T into H, and

• classification approaches, which combine several representations and simi-

larity measures to learn the patterns distinguishing entailments from non-

entailments.

Most approaches use learning techniques, be it for simply deriving weights

to be associated with different features or rules, in the case of alignment and

transformation techniques, or for delivering the final entailment decision, as it is

commonly done by classification systems. The approaches surveyed were chosen

according to their performance, being among the best scoring ones in different

evaluation tasks, and also due to the representativeness of their strategies within

a given category.
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Alignment Approaches

Alignment approaches work by searching for similar elements in T and H. This

elements can range from a single word to a whole subtree and, therefore, surface

string, syntactic and symbolic meaning similarity base methods can be used.

The alignment creates anchors, which are links between elements in T and H,

and each anchor can have a similarity score associated with it. Anchors can

be created between identical elements (for which the similarity score will be 1,

considering scores ranging between 0 and 1), or between similar ones, when word

replacements, such as synonym, nominalizations or verbalizations, are allowed.

The set of similarity scores are averaged or added, generating a final score which

is compared against a threshold so the entailment decision can be made (Dagan

et al., 2013).

The simplest alignment approach is the one operating only at the lexi-

cal level, using a bag-of-words representation. Glickman and Dagan (2005)

implemented such approach as a probabilistic model that uses document co-

occurrence statistics as a measure for aligning lexical units. This approach

was, though, only focused on lexical entailment, and didn’t intend to tackle the

textual entailment problem as a whole. MacCartney et al. (2008) take the

alignment to the phrase level, defining phrase as any contiguous span of tokens,

not necessarily corresponding to a syntactic phrase. Replacements are allowed,

and their cost is computed through a combination of various string similarity

functions, measures of synonymy, hypernymy, antonymy, and semantic related-

ness based on WordNet and PropBank relations, and distributional similarity

metrics.

Iftene and Balahur-Dobrescu (2007) advance to the syntactic level, generat-

ing the dependency tree representation for T and H and looking for a mapping

between their entities. They define an entity as a node in the dependency tree

associated with information about its edges, which are the dependencies having

this node as an argument. For every mapping the local fitness is calculated,

which is 1 if the entities are identical, and a value between 0 and 1, computed

with the aid of relations extracted from WordNet, DIRT, Wikipedia, and Ver-

bOcean, otherwise. The final alignment score is the sum of all local fitness

values. Background knowledge is generated ad-hoc, and only for named en-

tities and numbers, covering only the is-a and is-in relationships. Sammons

et al. (2009) add semantic role labeling and split the representation of T and

H into multiple layers. Besides the role labeling, they generate a number of
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annotations by applying tokenization, POS tagging, named entity recognition,

syntactic parsing, and co-reference resolution. Each annotation corresponds to

a representation layer, and alignments are performed only between layers of the

same type. A set of predefined features are then extracted from the multiple

alignments and weighted to generate the final entailment decision.

Hickl and Bensley (2007) presented an approach where they precede the

alignment with a sentence expansion step, where T and H are decomposed

into a series of discourse commitments. These commitments are simpler con-

structs that are true regardless of the entailment relation between T and H.

As an example, they show how the sentence “A Revenue Cutter, the ship was

named for Harriet Lane, niece of President James Buchanan, who served as

Buchanan’s White House hostess.” can be decomposed into the commitments

“A Revenue Cutter is a ship.”, “The ship was named for Harriet Lane”, “Harriet

Lane was the niece of President James Buchanan.”, etc. These commitments

are generated with the aid of constituency and dependency parsing, named en-

tity recognition, co-reference resolution, and numeric quantity recognition. The

alignment is, then, performed between all the commitments extracted from T

and the ones extracted from H. At the alignment step, surface string similarity

is adopted, and multiple similarity metrics are used.

Transformation Approaches

Transformation approaches work by successively replacing elements in T to try

to transform it into H. If there is a sequence of transformation that can suc-

cessfully turn T into H, then the entailment is true. Transformations can be

performed over the syntactic or symbolic meaning, or logic-based representa-

tions of T and H, using formal logic rules or the more general entailment rules

extracted from text employed by rule-based base methods (Dagan et al., 2013).

The approach proposed by Dagan and Glickman (2004), who introduced

the textual entailment paradigm as a means for providing a unified inference

framework, is the first example of a transformation approach. They explic-

itly abstain from representing the sentence’s meaning, performing entailment

inferences directly over lexical-syntactic representations obtained from syntac-

tic parsing. The proposed inference mechanism uses a small set of hand-coded

rules which specify valid syntactic transformations, and a knowledge base of

paraphrase-style entailment patterns extracted from text. As a probabilistic

model, it estimates the likelihood that the entailment holds between T and H
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using the probabilities returned by each rule in the transformation chain. A

similar probabilistic approach was developed by Harmeling (2009), who mod-

els the probability of the entailment as the maximally achievable probability of

preserving the truth along the sequence of transformations, using hand-coded

rules supported mainly by the synonymy, antonymy, and hypernymy relations

from WordNet.

Also operating at the lexical-syntactic level, the approach proposed by Bar-

Haim et al. (2007) implements a proof system supported by different types

of rules, such as lexical, syntactic, polarity, negation, and modality annotation

rules. T and H are represented as dependency trees, and at each step of the

proof an inference rule generates a derived tree from the tree representation of

T. The entailment is considered true if a complete proof is found, that is, if H is

generated from T, but also if the total transformation cost is below a predefined

threshold, in order to cope with knowledge gaps resulting from insufficient rule

coverage. Some rules are hand-coded, while others are generated from WordNet

and the DIRT algorithm applied over the Reuters RCV1 corpus4. Stern and

Dagan (2011) extend this model by adding a set of syntactically-motivated on-

the-fly transformations, which include dependency relation change, POS tag

change, and multi-word expression cut or expansion, among others, to overcome

the rule coverage limitations. The entailment rules used in their approach also

comes from a wider range of resources, including VerbOcean, Wikipedia, and

DIRT.

Other rule-based approaches introduced more elaborate representations, such

as the one proposed by Braz et al. (2005). In a model called Hierarchical

Knowledge Representation, sentences are represented as concept graphs, where

the nodes represent single words or phrases (phrasal nodes in a syntactic parse

tree). Each node can have a number of attributes, ranging from word-level syn-

tactic features, such as lemma and POS tag, to semantic role labels assigned to

the arguments of a predicate, represented by a verb. Edges between nodes rep-

resent relationships of precedence between words in the sentence, and relations

between a predicate and its arguments. The same concepts graph representa-

tion is used to express rewrite rules, which are inference rules obtained mostly

from paraphrase repositories. The inference algorithm then takes as input a

pair of sentences, called source (S) and target (T), corresponding to T and H

in the entailment task, respectively, and try to determine whether the repre-

4https://trec.nist.gov/data/reuters/reuters.html
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sentation of S subsumes that of T, incrementally rewriting S with the help of

the inference rules. The system uses DIRT and WordNet as external resources.

Although it implements a sophisticated combination of modules to perform dif-

ferent types of comparative analysis between S and T, apart from the semantic

role labeling, the majority of the features used in the representation remains at

the lexical-syntactic level.

With a more rigorous formalism, Raina et al. (2005) proposed an abductive

reasoning mechanism using a logical-formula semantic representation of text.

This representation is generated from the syntactic constituency parse trees of

T and H. Dependencies between nodes are detected through hand-coded rules,

then each node is represented as a predicate. Dependencies define predicates’

arguments in the resulting logical formula. Over this representation, an abduc-

tive theorem prover tries to find the minimum cost set of assumptions necessary

to show that H follows from T. These costs are learned from syntactic and

semantic features and also from relationships retrieved from WordNet. If the

transformation is given by only highly plausible, low-cost assumptions, then

the entailment is considered true. The COGEX system (Fowler et al., 2005),

adopts a similar syntactic parse-derived logical representation, but employs a

richer set of axioms in the theorem prover. A small set of hand-coded world

knowledge axioms, extracted from training data, and lexical chains extracted

from WordNet are added. The prover employs proof by refutation, and the cost

for each step in the proof is set manually.

Bos and Markert (2005) presented a logic-based approach that sought to

refine both the logical representation of T and H, employing a CCG parser to

generate more fine-grained semantic representations, and the use of background

knowledge by the theorem prover. As most approaches, it uses lexical relations

extracted from WordNet and a few hand-coded general knowledge axioms, but

also geographical knowledge axioms extracted from the CIA Factbook5. The

classic logical theorem prover is coupled with a model builder, and surface string

similarity is also used to draw further lexical relations between T and H. The

BLUE (Boeing Language Understanding Engine) system (Clark & Harrison,

2009) also uses a bag-of-words representation in addition to the logical formula.

The surface string similarity, however, is used as a back-off module called only

when the logical prover can’t reach a decision. It is more limited in terms

of world knowledge usage, extracting rules only from WordNet and DIRT and

5https://www.cia.gov/library/publications/the-world-factbook/
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lacking the ability to deal with more complex semantic variations between T

and H, but introduces an important feature: the generation of user-oriented

explanations for the entailment decision, derived from the inference proof.

Although transformation approaches are more commonly associated with

logic-based and rule-based methods, Tree Edit Distance (TED) is also a widely

employed way for checking whether T can be transformed into H through a

sequence of simple operations. It refines the string-based edit distance similar-

ity, allowing the manipulation of entailment pairs using their syntactic depen-

dency representations (Dagan et al., 2013), and is a straightforward yet fairly

efficient approach for detecting syntactic variants when no complex semantic

variation is involved and only shallow semantic knowledge suffices. Kouylekov

and Magnini (2005) implement the tree edit distance algorithm proposed by

Zhang and Shasha (1989) and apply it to the dependency trees of T and H

to find the mapping between them. They define a mapping as a sequence of

editing operations, namely node insertion, deletion, and replacement, needed to

transform T into H, where each edit operation has a cost associated with it. The

operation costs are computed with the aid of a syntactic similarity thesaurus,

and the entailment is considered true if the overall cost of the transformation is

below a certain threshold.

The EDITS (Edit Distance Textual Entailment Suite) package (Mehdad,

Negri, Cabrio, Kouylekov, & Magnini, 2009) is a configurable framework which

extends the basic Tree Edit Distance model, allowing edit operations at the

string, token, and tree-level. It also allows the use of external resources from

which shallow semantic information (synonymy, hypernymy, troponymy, and

semantic relatedness) can be retrieved for word-level replacements, having been

tested with WordNet, VerbOcean and a Latent Semantic Analysis model learned

from Wikipedia. Heilman and Smith (2010) proposed another extension to the

TED model, expanding the set of edit operations, allowing, besides node inser-

tion, deletion, and replacement, more complex operations such as moving entire

subtrees, re-ordering child nodes, and replacing the tree’s root node. These

new operations enable transformations that represent some common syntactic

variations with fewer edits, and, consequently, a smaller cost, but no external

resource is used to provide similarity measures or other kinds of relationships.

The NatLog system (MacCartney & Manning, 2007) is a hybrid approach

that extends the tree edit-based transformations with natural logic operators

aimed at dealing with monotonicity, polarity, and general quantifiers. It does

not employ a logical representation, operating over the syntactic parse tree
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instead. The basic insertion, deletion, and replacement edit operations apply,

but after each edit a monotonicity calculus is carried out in order to check

whether there was a change in polarity, which can, in turn, change the overall

entailment relation between T and H. Although it represents an advancement

regarding TED models, it covers only a very limited set of semantic phenomena,

namely upward-, downward-, and non-monotonicity, and is not able to deal with

more complex inferences requiring world knowledge.

Classification Approaches

Classification approaches work by combining multiple similarity measures, com-

puted over lexical, syntactic and semantic representations, to learn the patterns

common to entailment and non-entailment pairs. Any base method can be

used, and their outputs are used as the features which will make up the vec-

tor v = {f1, f2, ..., fm} that represents the [T, H] pair. When a supervised

machine learning model is used, pairs are manually classified as entailment or

non-entailment, and, after training, the model can then classify unseen entail-

ment pairs by examining their features (Androutsopoulos & Malakasiotis, 2010).

Tatu et al. (2006) use three different measures for classifying entailment

pairs: two generated by the COGEX logical prover and one from a lexical

alignment module. The two measures generated by COGEX correspond to

the proof costs computed for two different logical forms, one generated from

a constituency parser and the other one from a dependency parser. World

knowledge is provided by hand-coded axioms and by logical rules derived from

WordNet. The lexical overlap component computes the edit distance between T

and H, allowing synonym replacement. Each component returns a score between

0 and 1 (the higher the score, the better), and a classifier based on the linear

combination of the three scores makes the final entailment decision.

Wang and Neumann (2008a) adopt what they call a “divide-and-conquer”

strategy, implementing several modules to deal with different features and then

selecting the decision of the highest scoring module. Three specialized modules

focus on extracting temporal expression, identifying named entities and linking

them to events, and analyzing the tree skeleton, which is a representation de-

rived from the syntactic dependency parse tree. Two backup modules, whose

results are used in case no expert module reaches a decision, compute the lexical

overlap and the dependency edge overlap. Each module returns an entailment

or non-entailment decision and a confidence score. After their predictions are



2.1. TEXT ENTAILMENT RECOGNITION 47

made, the modules are ordered in a list according to their confidence score and

the prediction of the first module on the list that returned a non-null deci-

sion is taken as the final result. The extraction of temporal expressions and

the identification of the event they refer to can cover some temporal relations.

However, apart from WordNet and VerbOcean, which are used to improve the

event matching, no other knowledge sources are employed.

More recent approaches are mostly classification-based and usually employ

machine learning models such as decision trees, support vector machine (SVM),

and neural networks, which are fed with a large set of features. Jimenez et al.

(2014) proposed a classifier which uses the notion of soft cardinality, a relaxation

of the concept of set cardinality that considers, besides identity, the similarity

between elements. Each sentence in an entailment pair is seen as a collection

of words. The soft cardinality, which rely on several measures commonly used

in textual semantic similarity, is used for comparing the collections for T and

H and extracting features based on n-gram overlap, explicit semantic analysis

(ESA) (Gabrilovich & Markovitch, 2007), part-of-speech grouping, syntactic

dependencies, antonymy, hypernymy, and negation. A decision tree model is

then trained for predicting the entailment label (either yes or no). At the

feature extraction step, only WordNet is queried for both the usual shallow

semantic information and for generating the ESA representation.

Also seeking to reuse the most common features employed in the textual

semantic similarity task, Zhao et al. (2014) experiment with different machine

learning models for finding the best classifier. Using a large set of features com-

posed of measures derived from sentence length difference, surface string sim-

ilarity, syntactic similarity, weighted word overlap, n-gram similarity, longest

common subsequence, corpus-based co-occurrence, and latent semantic analysis

(LSA), they trained SVM, Random Forest, Gradient Boosting, k-nearest neigh-

bors, and Stochastic Gradient Descent models, being the Gradient Boosting

the best performing one. WordNet is used for preprocessing and for antonym

lookup, but, since the focus is on sentence similarity, no other knowledge sources

that could support more complex inferences is considered in this approach.

Zhang et al. (2017) advance to the neural network domain, implementing

a supervised Context-Enriched Neural Network (CENN) which uses multiple

embedding vectors from different contexts to represent the words in T and H in

order to deal with homonymy and polysemy. They then apply different combi-

nation methods for optimizing the neural network weights and identifying the

preferable context for a given pair of words. This approach is, however, intended



48 CHAPTER 2. LITERATURE REVIEW

to solve only lexical entailment, that is, entailment at the word level rather than

at the sentence level, such as, for example, “dog” entails “animal” and “walk”

entails “move”. Therefore, despite the more sophisticated architecture, only a

few relations, namely synonymy and hypernymy, can be covered by this model.

Even if it is seen as a proxy for textual entailment, in the sense that a large

number of positive lexical entailments maximizes the likelihood of the overall

positive entailment between T and H, it is limited to such shallow semantic rela-

tionships, requiring its association with other models if more complex inferences

are to be accomplished. Neural networks designed for more general inference

are more commonly developed in the context of the Natural Language Inference

task, which is reviewed in Section 2.1.5.

Tables 2.1 and 2.2 summarize the most important characteristics of the

reviewed approaches. The columns Lexical-Syntactic and Semantic indicates

whether the approach can deal with syntactic variations and more complex

semantic relationships, respectively. In the Lexical-Syntactic column, Partial

means the approach can only solve lexical entailment, while in the Semantic

column, Partial means the approach uses only shallow semantic information,

such as links from WordNet, semantic role labeling, and word embeddings. Also

in this column, Yes means it incorporates some kind of world knowledge, even

if in a limited way, from other external knowledge sources.

2.1.4 Evaluation Initiatives

The main effort to evaluate text entailment systems is the Recognizing Textual

Entailment (RTE) Challenge, which ran from 2004 to 2013 as “an attempt to

promote an abstract generic task that captures major semantic inference needs

across applications” (Dagan et al., 2009). All RTE Challenges were organized

by the European PASCAL and PASCAL-2 Networks of Excellence. RTE-4

through RTE-7 were realized as a track in the Text Analysis Conference (TAC),

organized by the U.S. National Institute of Standards and Technology (NIST)

(Dagan et al., 2013). RTE-8 was co-located with the Student Response Analysis

at SemEval 2013.

In the RTE task, the gold standards are defined by annotators who decide

whether a textual entailment relationship holds for a given pair of texts or not,

following pre-defined judgment criteria. The criteria are based on the definition

of text entailment (see Chapter 1), which is, in turn, grounded on human judg-
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ment about the truth of H based on (the truth of) T, also assuming common

human understanding of language as well as common background knowledge

(Dagan et al., 2009). By common background knowledge, the organizers meant

“typical” knowledge of an educated person reading the news (Dagan et al.,

2013).

The RTE datasets are composed of entailment pairs extracted from many

different application scenarios, such as information extraction (IE), information

retrieval (IR), question answering (QA), and summarization (SUM), with the

aim of reflecting the way by which each of those applications could, in fact,

benefit from an automatic text entailment decision. The data is usually split

into development and test sets and the availability of such datasets for training

allowed the development of classification approaches (Section 2.1.3.2), where

features are extracted from the training examples and then used by machine

learning algorithms in order to build a classifier, which is finally applied to the

test data to classify each pair either as positive or negative (Bentivogli, Dagan, &

Magnini, 2017). RTE-1 through RTE-3 and RTE-8 datasets are freely available,

and RTE-4 to RTE-7 datasets are available upon request to NIST6.

The main task in the RTE Challenges was classification, expressed as a two

(yes/no) way decision. Optional tasks, present only in some of the challenge

editions, included ranking the entailment pairs, according to a confidence score

assigned to them, and justifying the entailment decision, providing a human

readable explanation of the given answer. For classification, the main evalua-

tion measure was accuracy, i.e., the percentage of pair correctly judged. Other

evaluation measures for this task include micro-averaged precision, recall, and

F-measure. For ranking, the average precision measure was used, computed as

the average of the system’s precision values at all points in the ranked list in

which recall increases, i.e., at all points in the ranked list for which the gold

standard annotation is yes (Dagan et al., 2009). Justifications provided to ex-

plain entailment decisions were evaluated by human judges, taking into account

criteria such as correctness and readability (Voorhees, 2008).

Other evaluation efforts focus on applying textual entailment in the context

of a specific application. By reformulating tasks such as Automatic Answer

Validation and Question Answering as a textual entailment problem, initia-

tives like the CLEF Answer Validation Exercise (AVE), the Parser Evaluation

task (PETE), the Cross-lingual Textual Entailment (CLET) and EVALITA, for

6Links to all datasets at http://tiny.cc/709hcz
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Italian language entailments(Dagan et al., 2013), assess the efficacy of a text

entailment approach by measuring its impact on the accuracy of a particular

application as a whole.

2.1.5 One Step Further: Natural Language Inference

In the last years, with the end of the RTE Challenges, the development of new

textual entailment approaches have slowed down. On the other hand, a new

subtask derived from it have emerged, leveraged by a new set of datasets and

machine learning methods. As opposed to the original text entailment task,

which is a binary classification task where the answer is either yes or no (cor-

responding to entailment or non-entailment), the Natural Language Inference

(NLI) subtask is intended to perform a three-way classification, labeling entail-

ment pairs as entailment, neutral, or contradiction.

NLI is usually associated with deep learning methods, which was enabled

by the introduction of large machine learning oriented datasets, such as the

Stanford Natural Language Inference (SNLI) corpus (Bowman, Angeli, Potts, &

Manning, 2015), with approximately 570,000 pairs, and the Multi-Genre Natural

Language Inference (MultiNLI) corpus (Williams, Nangia, & Bowman, 2018),

with around 433,000 examples. Benefiting from the large amount of training

data, NLI systems can make use of models and techniques now widely adopted

for natural language text processing, among which stand out the Long Short

Term Memory (LSTM) models (Sundermeyer, Schlüter, & Ney, 2012) and the

attention mechanisms integrated into deep neural networks.

In the NLI task, the text (T) sentence is usually called the premise, and

sentence embedding is a common way of representing the premise and the hy-

pothesis. Bowman et al. (2015), who coordinated the creation of the SNLI

corpus, proposed baseline systems where a vector representation of each of the

two sentences is produced separately, and the two resulting vectors are then

passed to a neural network classifier, which predicts the label for the pair. They

implemented a plain Recurrent Neural Network (RNN) and an LSTM RNN,

initializing the word embeddings with the 300 dimensions GloVe (Pennington,

Socher, & Manning, 2014) vectors. These vectors, which are intended to approx-

imate the sentences’ meaning, are, then, the only features used in the models.

Rocktäschel et al. (2016) use the same sentence embedding for the premise and

the hypothesis, but add an attention-weighted representation of the premise to

its embedding by taking into account the alignment between the two sentences.
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Wang and Jiang (2016) also use an LSTM architecture supported by an

attention-weighted model but propose a different input representation. Instead

of generating sentence embeddings for the premise and the hypothesis, they use a

match-LSTM to perform word-by-word matching between the sentences, seeking

to put more emphasis on the most important word-level matching results. Chen

et al. (2017) also adopt a word-level representation, using a Bidirectional LSTM

(BiLSTM) model (Graves & Schmidhuber, 2005) that learns to represent a word

and its context. BiLSTM is also used to perform the inference composition so

the final prediction can be computed. Besides the word embeddings, they also

use syntactic parsing information as a feature.

Parikh et al. (2016) stick to a simple LSTM model but propose a decom-

posable attention model, where the premise and hypothesis are represented as

bag-of-words embedding vectors and the alignment between them is computed

individually to softly align each word from one sentence to the content of the

other one. This is equivalent to decompose the whole inference problem into

subproblems that can be solved separately in a parallel manner. They also

experiment with intra-sentence attention to encode compositional relationships

between words within each sentence in order to capture relevant sequence infor-

mation.

A number of variants regarding the attention mechanism have been pro-

posed, including inner-attention to detect the most important portions of one

sentence in the pair regardless of the content of the other one (Y. Liu, Sun, Lin,

& Wang, 2016), self-attention to model the long-term dependencies in a sentence

(Im & Cho, 2017; Gong, Luo, & Zhang, 2017), and co-attention to preserve in-

formation from all the network layers (S. Kim, Kang, & Kwak, 2019). Despite

the differences in the way they attend sentences and align their words, these

approaches build upon similar architectures, using LSTM or BiLSTM models

with no or almost no feature engineering, and no external resources.

Even though NLI datasets are semantically simpler than text entailment

ones, still not all the knowledge needed for the inference is self-contained within

the training data. Some approaches try to address this issue by incorporating

external knowledge in the inference process. Chen et al. (2018) do this by ex-

tracting synonymy, antonymy, hypernymy, and co-hyponymy (relation between

sibling words, that is, words having the same hypernym) relations from Word-

Net and using them as features to enrich the input representation that will feed

a co-attention mechanism in a BiLSTM model. Wang et al. (2019) goes further

and, besides WordNet, use also ConceptNet and DBPedia as knowledge sources.
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In this approach, they represent the premise and the hypothesis as a graph, map-

ping the words in the sentences to concepts in the knowledge source (when they

exist), and then retrieving those concepts’ first-level and second-level neighbors.

The embeddings of the two resulting graphs are then passed as inputs to the

neural network. Relationships retrieved from the knowledge sources will not,

therefore, be used to determine the overall semantic relationship between the

premise and the hypothesis, but rather be used as additional features through

which the attention model computes concepts’ degree of similarity to perform

the word-by-word alignment.

Although NLI systems show great quantitative improvement when compared

with text entailment applications, since all of them use very advanced deep

neural network models, the increasing number of different approaches present

only incremental improvements among them. Furthermore, even though the

advances introduced in the NLI field are arguably invaluable, the high accuracy

the approaches achieve may nevertheless be partly influenced by bias in the

training datasets. In a study conducted by Gururangan et al., (2018) (in which

Samuel R. Bowman, one of the researchers responsible for the creation of both

SNLI and MultiNLI, also participated), it is shown that NLI datasets contain

a significant number of annotation artifacts that can help a classifier detect the

correct class without ever observing the premise. The presence of such artifacts

is a result of the crowdsourcing process adopted for the dataset creation, because

crowd workers adopt heuristics in order to generate hypotheses quickly and

efficiently, producing certain patterns in the data. Through a shallow statistical

analysis of the data, focusing on lexical choice and sentence length, they found,

for example, that entailed hypotheses tend to contain gender-neutral references

to people, purpose clauses are a sign of neutral hypotheses, and negation is

correlated with contradiction.

Besides the dataset statistical analysis, they also built a hypothesis-only

classifier, showing that a significant portion of SNLI and MultiNLI test sets can

be correctly classified without looking at the premise. Then, they re-evaluated

high-performing NLI models on the subset of examples on which the hypothesis-

only classifier failed (which were considered to be “hard”), showing that the per-

formance of these models on the “hard” subset is dramatically lower than their

performance on the rest of the instances. They conclude that supervised mod-

els perform well on these datasets without actually modeling natural language

inference because they leverage annotation artifacts and these artifacts inflate

model performance, so the success of NLI models to date has been overesti-
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mated. Poliak et al. (2018) reinforce these conclusions, implementing a similar

hypothesis-only classifier but extending the study to other eight datasets be-

sides SNLI and MultiNLI, underlining that such statistical irregularities lead

models to skimp over a fundamental principle of textual entailment and, by

extension, of NLI: that the truth of the hypothesis necessarily follows from the

premise and, then, the premise must be indispensable if actual inference is to

be performed.

The problems evidenced by the bias in the datasets show that NLI is still an

open challenge, but one more issue can be highlighted: due to their increasingly

more complex architectures, NLI models will invariably show poor interpretabil-

ity, making it even harder for user to know how decisions are reached, and,

therefore, if they are reliable or not. Semantic interpretability in AI models in

general, and in inference models in particular, is discussed in more detail in the

next Section.

2.2 Semantic Interpretability

Artificial Intelligence is becoming a ubiquitous presence in our everyday lives.

Supporting and expanding the cognitive abilities of humans or even replacing

them, powerful algorithms along with huge amounts of data can now perform

a wide variety of tasks, from labeling images to predicting cancer, as well as or

even better than a human would do. As AI models grew in processing power

and accuracy, they also became more complex, and their predictions, as accurate

as they may be, don’t bring with them a clear explanation on how they were

achieved. Such operation paradigm may bring drawbacks with it because, as it

was recently reinforced (Kuang, 2017), AI must “conform to the society we’ve

built – one in which decisions require explanations, whether in a court of law, in

the way a business is run or in the advice our doctors give us”. This leads us to

the need for moving from simply accepting what a model does, to interpreting

it to understand how it does so.

Interpreting the model behavior is not always necessary. Users probably

won’t want further explanation about the outputs of systems performing voice

recognition or image classification, as long as they behave reasonably as ex-

pected. But, even in those cases, understanding how the model works can

sometimes be of great help. Back in 2015, Google was embarrassed by its Pho-

tos service labeling pictures of black people as “gorillas” (Simonite, 2018). Why
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was the image recognition software doing so? Certainly not because it is racist

and deliberately meant to offend people, but rather because it was making the

wrong correlations between the features extracted from the pictures. Google’s

answer to the problem was to ban the words “gorilla”, “chimp”, “chimpanzee”,

and “monkey” from the Photos lexicon altogether, avoiding people (and mon-

keys) being assigned such labels, and this workaround remains in place, more

than four years on. Although there may be many different reasons for Google’s

approach towards the issue, it becomes clear that the complexity of the machine

learning algorithm employed for image recognition may have prevented a proper

quick fix, that is, it wasn’t possible to quickly interpret the model, identify, and

adjust its malfunctioning parts in a timely manner.

However, misclassifications can cause much more than annoyance. The

greatest importance of model interpretability rests on decision-making systems,

whose outputs can have a material impact on the lives of individuals. Artifi-

cial intelligence techniques are now being largely used in tasks such as medical

diagnosis, insurance and credit assessment, and criminal recidivism prediction,

among others. In those cases, even though a system is known to make accurate

predictions, explaining and justifying these predictions may be crucial for users

to trust it and make further decisions based on these outputs. Same Google

has just released a new AI algorithm capable of predicting heart diseases by

analyzing data generated from scans of the back of patients’ eyes (Poplin et al.,

2018). This algorithm can make the assessment of a patient’s cardiovascular

risk quicker and easier, but, although all authors say is that it still needs to

be thoroughly further tested before being used by doctors, it also needs to be

interpretable: it must make clear what information from the scans and what

correlations between them are leading to a diagnosis, so doctors can have the

necessary evidence to judge whether to follow the system’s recommendation or

not. Moreover, relying on such technology for prescribing medical treatments

won’t allow for a quick workaround in case the model start showing undesirable

behavior, as in the image classification scenario.

The importance of the so-called Explainable AI lies not only on the need for

evidence to support decision making but also on the demand to easily identify

biased correlations that could go unnoticed otherwise. Zhao et al. (2017) argues

that many prediction models risk reflecting social biases found in data, showing

that, using an image dataset containing significant gender bias where the activity

“cooking” was over 33% more likely to involve women than men, a trained

model further amplifies the disparity to 68% at test time. Transported to the
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decision-making scenario, sensitive information such as gender, race, religion

or income, for example, can lead to unfair predictions on tasks that involve

individual profiling, such as hiring, loan granting or crime prediction, to name

a few, where certain groups can be subject to discrimination. Even though the

model’s predictions may seem to conform to previous decisions, if those decisions

were influenced by social biases and this is reflected in the data they generated,

an interpretable model can make that clear and allow for more fairness on future

verdicts.

Although semantic interpretability is gaining renewed attention due to the

increasing use of machine learning, being interpretable is not an issue exclu-

sive to these models, but a requirement for any approach dealing with AI.

For example, in an evaluation challenge asking participants to rate the seman-

tic similarity of pieces of texts and explain their decisions (Agirre, Banea, et

al., 2015), approaches as different as knowledge base search (Hänig, Remus, &

De La Puente, 2015; Hassan, AbdelRahman, & Bahgat, 2015; Banjade et al.,

2015), rule-based (Banjade et al., 2015; Karumuri, Vuggumudi, & Chitirala,

2015), referential translation machine (Biçici, 2015), and support vector ma-

chine (Agirre, Gonzalez-Agirre, et al., 2015) were employed to implement an

interpretable text analysis system. Interpretability is an AI concern rather than

purely a machine learning matter. Therefore, in this review we seek to offer a

broader view on interpretability, analyzing the efforts of different types of AI

models to become more interpretable and how the concept of interpretability is

dealt with by each of them.

We start by examining the concept of interpretability itself: how it is re-

garded across different fields and what shapes it can assume. We then analyze

several models that claim to be interpretable as well as the evaluation methods

and initiatives intended to measure a model’s level of interpretability. Finally,

we look at the human-centric aspect of semantic interpretability, classifying

models according to how they implement and what they offer as interpretations

and pointing to gaps that still need to be addressed to meet explanation re-

quirements from the final user point of view. The list of analyzed models is by

no means exhaustive; we sought to pick representative examples of each class,

focusing on the ones that emphasize and prioritize interpretability as a driving

design choice in the model construction.
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2.2.1 Interpretability across Models

Interpretability issues have been gaining the spotlight in recent years due to the

fast advancements and widespread utilization of machine learning techniques,

especially the ones based on deep neural network models. Such models proved

to be powerful predictors, but its complexity usually prevents the user from un-

derstanding its internal dynamics. To trust supervised machine learning models,

we need them to be not only accurate, but interpretable (Lipton, 2016). How-

ever, the need for interpretability is not exclusive to machine learning models.

Rule-based models can also grow in size and complexity to a point where users

are similarly left unable to comprehend them, also requiring interpretability is-

sues to be taken into account, so that keeping track of those models’ decisions

becomes feasible. In fact, interpretability has been a key issue in many differ-

ent areas of AI for many years, notably in the design of fuzzy logic models,

giving origin to a number of theoretical and practical studies regarding this

topic (Alonso & Magdalena, 2011; Mencar, Castiello, Cannone, & Fanelli, 2011;

Alonso, Mencar, Castiello, & Magdalena, 2014).

Being interpretable is sometimes regarded as an inherent attribute of the

model. Kotsiantis (2007), for example, states that logic-based algorithms such

as Näıve Bayes, decision trees, and rule learners are naturally easy to inter-

pret, while neural networks, SVMs and K-NNs have very poor interpretability.

Nevertheless, this is not always accepted as a fact. Lipton (2016) questions this

assumption arguing that “neither linear models, rule-based systems, nor decision

trees are intrinsically interpretable”, adding that “sufficiently high-dimensional

models, unwieldy rule lists, and deep decision trees could all be considered less

transparent than comparatively compact neural networks”. This suggests that

interpretability is a property that must be pursued rather than being taken for

granted as a result of the model choice.

But what could, in fact, be called interpretability? Being tackled in the

scope of different approaches, it is natural that the definition of “interpretable

model” is not yet something uniformly agreed upon. Lipton (2016) observes

that “both the motives for interpretability and the technical descriptions of

interpretable models are diverse and occasionally discordant, suggesting that

interpretability refers to more than one concept”. He argues that the purpose

of an interpretation is to convey useful information and that this can be done

even without shedding light on a model’s inner workings. This leads to the

division of interpretability techniques into two broad categories: one referring
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to transparency, asking how the model works, and the other relating to post-hoc

explanations, inquiring what else the model can tell (Lipton, 2016). That means

that interpretability can be related to the system output, but also to the system

architecture itself.

Most of the models that claim to be interpretable focus on transparency,

that is, given the input data and the model parameters, it should be possible

to step through the calculations that lead to a prediction. Transparency refers

not only to the model as a whole (simulatability), but also to each of its parts:

each input, parameter, and calculation should admit an intuitive explanation

(decomposability) (Lipton, 2016).

Post-hoc explanations, on the other hand, can be seen as an abstraction layer

for the model, as they can summarize and translate the system’s procedures into

a friendlier format, exempting the user from going through algorithmic details.

Natural language explanations, visualizations of learned representations or mod-

els, and explanations by example (such as presenting the k-nearest neighbors of

a word given its vector representation) are some common approaches for provid-

ing post-hoc model interpretation (Lipton, 2016). Explanations are especially

necessary when the problem formalization is incomplete, due to, for example,

the infeasibility of predicting all possible outputs given all possible inputs, or the

abstract nature of some system requirements, such as fairness and trust (Doshi-

Velez & Kim, 2017). In an incompleteness scenario, explanations are a resource

to make possibly flawed results (and their causes) clearly visible, allowing users

to act on them.

Biran and Cotton (2017), focusing on machine learning, also distinguishes

between two research branches, which they call interpretable models, equivalent

to the transparent models in Lipton’s classification; and prediction interpretation

and justification, that is, the previously seen post-hoc explanations. However,

they limit the usage of the term interpretability only to the understandability of

the model’s internal operations, arguing that a system can provide justifications

(as the output) without being interpretable, that is, without making clear to

the user what its internal procedures are.

The importance of both varieties of interpretability can be noted in the Eu-

ropean Union’s new General Data Protection Regulation, which took effect as

law across the EU in 2018. It covers two points tightly related to interpretabil-

ity: the non-discrimination in automated individual decision-making and the

right to explanation (Goodman & Flaxman, 2016). The first point refers to

algorithmic transparency: systems that support decision-making based on indi-
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vidual profiling, such as credit and insurance assessment platforms, should en-

sure that they do not produce discriminatory results by using variables coding

for race or ethnicity, income, or any other sensitive information. That means

systems must make clear not only what information they are using but also

what correlations algorithms are extracting from data for making predictions.

The second point is directly related to the systems’ ability to provide (post-

hoc) explanations and justify decisions reached after algorithmic assessment in

a human-understandable way.

Regardless of the chosen technique to render a model interpretable, the most

important aspect to be kept in mind is that interpretability is a human-centered

feature. Doshi-Velez and Kim (2017) define interpretability as “the ability to

explain or to present in understandable terms to a human”, while Alonso et

al. (2015) observe that “the importance of the human component implicitly

suggests a novel aspect to be taken into account in the quest for interpretability”,

both emphasizing that the aspects of human cognition should be put at the

center of modeling decisions. Offering an interpretation of a model can be seen as

a knowledge extraction process, and as such it must take into account the human

cognitive factor it inherently involves (Vellido Alcacena, Martin Guerrero, &

Lisboa, 2012).

Some studies have tried to draw the users’ preferences when it comes to inter-

pretation, especially explanations. Miller et al. (2017) summarize the findings

pointing that people usually judge explanations based on pragmatic influences

of causes, which include usefulness and relevance, among others, rather than the

probability that the cited cause is actually true. Also, people prefer explanations

that are simpler (cite few causes), more general (they explain more events), and

coherent (consistent with prior knowledge), favoring simpler explanations over

more likely explanations. They conclude that “giving simpler explanations that

increase the likelihood that the observer both understands and accepts the ex-

planation may be more useful to establish trust, if this is the primary goal of

the explanation” (Miller et al., 2017).

As important as defining what interpretability is is understanding what it is

for. Models, and consequently the systems they support, are ultimately designed

to address some human user need, and making them interpretable is intended

to ensure that the users’ requirements are met in the sense that they can use,

understand and trust the system in the simplest and most effective way possible.
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2.2.2 Interpretability-driven AI Models

In this Section, different types of models which emphasize interpretability are

reviewed. The review focus lies on models that were explicitly designed to

be interpretable, that is, models for which introducing or increasing the inter-

pretability was a primary requirement driving the design choices. The models

are divided into three categories: data models, algorithmic models, and hybrid

models, which take into account the content where an interpretation is to be

extracted from. These categories are not mutually exclusive: algorithmic mod-

els can have minor internal data representations and vice-versa; therefore, for

classifying the models, the most predominant characteristic of each of them was

considered.

2.2.2.1 Data Models

Interpretable data models are models whose core component is preprocessed

data, which goes through some clusterization process for posterior use. Although

these models are usually built by some machine learning method, what define

such models, rather than the construction procedure, is the shape and content

of the final product, which will be used as input for a number of other tasks.

The most outstanding examples of such models are interpretable Distri-

butional Semantics Models (DSMs). These models are grounded in the

distributional hypothesis, which states that words that occur in similar con-

texts tend to have similar meanings (Turney & Pantel, 2010), and allow words

to be represented as a vector summarizing their patterns of co-occurrence in

large text corpora (more details on DSMs in Chapter 4). The vector represen-

tations usually go through a dimensionality reduction process, a mathematical

operation that makes the vectors more manageable while still capturing the co-

occurrence patterns (Baroni, Murphy, Barbu, & Poesio, 2010), being the most

common technique the Singular Value Decompositions (SVD) (Klema & Laub,

1980).

Dimensionality reduction results in vectors whose features correspond to

very broad domains of knowledge, such as “food”, “sports” or “education”, for

example. A direct consequence of this new representation, as observed by Baroni

et al. (2010), is that the underlying abstraction behind most DSMs, the Vector

Space Models (VSMs), “might be very good at finding out that two concepts

are similar, but they tell us little about the internal structure of concepts and,

hence, why or how they are similar” (Baroni et al., 2010). What can be obtained
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is an overall similarity score that does not convey any additional information

about the relationship between similar words. SVD, in particular, produces

matrices where, for most dimensions, it is hard to interpret what a high or

low score entails for the semantics of a given word (Fyshe, Wehbe, Talukdar,

Murphy, & Mitchell, 2015). This is illustrated in the example posed by Murphy

et al. (2012), where they retrieve the latent dimension of an SVD-based model

for which the word “pear” has its largest weighting and whose most strongly

positively associated tokens are “action”, “records”, “government”, “record”,

and “search”. As can be seen, it is not clear at first sight what the relationships

between the words in this dimension are or even to what semantic category they

all belong in, making it hard to extract an interpretation from it.

To overcome this problem, some approaches for building more interpretable

DSMs have been proposed. An example is Strudel (structured dimension ex-

traction and labeling), a corpus-based semantic model that induces semantic

information from naturally occurring data using part-of-speech (POS) tagging,

lemmatization of the corpus, and a set of extraction templates defined over

POS sequences. The model’s main goal is to extract dimensions which are “in-

terpretable as properties, automatically annotated with information about the

nature of the relation they instantiate” (Baroni et al., 2010). That means it

involves some relation extraction functionality, but instead of being predefined,

the relations are inferred from the co-occurrence patterns, that is, from the

distribution of patterns connecting a concept to its properties. For example,

for the concept “book”, Strudel associates the following properties, along with

the correspondent relations (expressed by either verbs or prepositions): they

“are written”, “published”, and “read”, they are “by an author”, “from a pub-

lisher”, “for a reader”, and “on a subject”, they “have pages” and “chapters”,

and they “are in libraries”. When compared with speaker-generated descrip-

tions, the property-based concept representations produced by Strudel showed

to be reasonable both quantitatively and qualitatively.

Murphy et al. (2012) present a technique called Non-Negative Sparse Em-

bedding (NNSE) for learning interpretable distributional semantic models. They

define interpretability from the point of view of cognitive plausibility, stating

that a word representation is interpretable if each of its dimensions is seman-

tically coherent. They measure this coherence through the word intrusion de-

tection task, in which, for each dimension, a set is created containing its top

five words and an intruder word. The sets are then presented to human eval-

uators who need to identify the intruder. A high precision in this task means
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the dimension is interpretable because the human evaluator can easily name the

category it is representing and pick out the word that is not a member of this

category, i.e., the intruder. One example of such sets is the one composed of the

words {“bathroom”, “closet”, “attic”, “balcony”, “quickly”, “toilet”}; here it is

easy to name the category as “house parts” and point “quickly” as the intruder.

CNNSE (Compositional NNSE) is a variation of NNSE intended to allow

word and phrase vector to adapt to the notion of composition by learning a DSM

that supports semantic composition operations (Fyshe et al., 2015). CNNSE

phrasal vector representations have shown to be a better match to actual phrase

meanings when judged by human evaluators. JNNSE (Joint NNSE) is yet

another NNSE variation that combines the representations obtained from large

text corpora with brain activation data recorded while people read words (Fyshe,

Talukdar, Murphy, & Mitchell, 2014).

The Explainable Principal Component Analysis (EPCA) (Brinton, 2017) is

yet another technique for generating interpretable vector representations. It

builds upon the Principal Component Analysis (PCA) dimensionality reduction

approach (Jolliffe, 1986), including a human-in-the-loop stage for refining the

data. The EPCA process is performed iteratively: basis vectors generated by the

regular PCA are analyzed by a (human) model designer, who excludes any word

not related to the general category implied by all the other words in the vector,

creating the first explainable basis vector. This vector is then excluded from

the input data, over which regular PCA followed by the manual procedure are

performed again, generating the second explainable basis vector. The process

goes on until all the possible explainable basis vectors have been identified.

Although the human curation can doubtless improve the model interpretability,

the author presents no study regarding the approach feasibility. Relying on

such amount of human interaction could be a prohibitive costly task, given that

vector representations are usually built over very large corpora.

DSMs are widely used as input features for machine learning models ad-

dressing a large variety of tasks. Using more coherent and interpretable data

models can potentially increase the interpretability of the algorithmic models

using them as input, providing an additional source of information for the gener-

ation of post-hoc explanations. Interpretable algorithmic models are discussed

next.
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2.2.2.2 Algorithmic Models

Interpretable algorithmic models are models which work by executing a sequence

of computations over data, possibly using a set of parameters, to perform a

given task. Different from data models, what matters here is not what they are

composed of, but rather how they work.

Fuzzy logic is an example of a field of study where interpretability has

long been a central concept. As observed by Alonso et al. (2011), “thanks to

their semantic expressivity, close to natural language, fuzzy variables and rules

can be used to formalize linguistic propositions which are likely to be easily

understood by human beings”. But they also point out that, besides being a

feature taken for granted even inside the fuzzy community, interpretability is

not an intrinsic property of fuzzy models. Although fuzzy logic has a natural

inclination to interpretability, whether every element in a fuzzy system can be

checked and understood by a human being heavily depends on how the system

is designed (Alonso & Magdalena, 2011).

Mencar et al. (2011) define fuzzy model interpretability as a relation between

fuzzy sets – the basic elements of a fuzzy rule base – and concepts – basic units of

human knowledge. Fuzzy sets and concepts are linked by the common linguistic

terms they refer to. A fuzzy model can be said interpretable when its explicit

semantics, that is, the linguistic representation of fuzzy sets, is cointensive with

its implicit semantics inferred by a human, i.e., the meanings they infer while

reading the linguistic representation of the rules (Mencar et al., 2011).

As the knowledge extracted from data by fuzzy systems must be usually

communicated to users, the fuzzy community has been, in recent years, taking

into account interpretability issues as a major research concern (Alonso et al.,

2014). Balázs et al. (2013) proposed an approach based on meaning preser-

vation (MP) – having a common vocabulary with the user, by using linguistic

terms in the same sense as the user employs them – and a parameterizable

search space narrowing method aimed at adjusting the trade-off between inter-

pretability and accuracy commonly observed in fuzzy systems. Interpretability

is not measured, but rather regarded as a binary feature: if the resulting rule

base meets the predefined interpretability conditions then it is referred to as a

valid interpretable solution.

Mencar et al. (2013) argue that the fulfillment of many interpretability con-

straints (distinguishability, coverage, special elements, etc. (Mencar & Fanelli,

2008)) is guaranteed if Strong Fuzzy Partitions (SFPs) are adopted. A fuzzy
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partition of the data feature is the collection of the fuzzy sets associated with

each linguistic term in the model. The authors propose an approach for defining

interpretable SFPs based on cuts, points of separation between clusters within

the data. Again, interpretability is not measured but considered as a natural

outcome of the fuzzy partition-based adopted modeling technique.

Visual representation of rules is another resource employed to allow the inter-

pretation of a fuzzy model. Pancho et al. (2013) describe a technique to present

fuzzy association rules (FARs) to users in a graph format. Association rules

identify and represent dependencies between data items in a dataset. Those de-

pendencies are graphically depicted through fuzzy inference-grams, or fingrams,

which are networks where nodes represent fuzzy rules and the weighted edges

represent interactions between rules. Nodes are always labeled with relevant

textual information and the edge weighting naturally leads to the formation

of distinguishable groups of rules, each associated with some value for a given

variable. Although this graphical representation clearly facilitates the visual

analysis and comprehension of fuzzy association rules (Pancho et al., 2013), no

evaluation was carried out, and the assessment of its usefulness through user

feedback remains to be done.

Going beyond the theoretical aspects explored by most of the research in

the area, Riid et al. (2013) proposed a practical application to take advantage

of an interpretable fuzzy model. They employ a fuzzy classifier to explain the

geographical variation of Estonian folk songs metrical features. Hierarchical

Clustering (HC), an agglomerative procedure based on the idea that objects

tend to be more related to nearby objects than to objects farther away, is used

to determine the cluster of geographical regions that show similarities regarding

the verse metre. A data-driven fuzzy classifier is then used for analyzing the

clusters in order to identify which features of the verse metre are critical in

cluster assignment (Riid & Sarv, 2013). The result is a clear separation of

the geographical regions into three well delineated groups. However, since no

evaluation was performed, it is unclear to what extent the comprehension of

how the features lead to the cluster separation is, in fact, interpretable from the

user point of view.

Another practical application was presented by Conde-Clemente et al. (2013).

A prototype that allows a person with visual disabilities to take their own profile

photos was implemented as a fuzzy control system including human-in-the-loop

using natural language. The authors argue that, by making use of an approach

known as Highly Interpretable Linguistic Knowledge (HILK) methodology, they
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“are able to represent the extracted knowledge in highly interpretable fuzzy

rule-based systems” (Conde-Clemente et al., 2013). HILK is a fuzzy modeling

methodology intended to produce classifiers easily comprehensible by humans.

As in the previously mentioned fuzzy logic approaches, model interpretability is

not measured but assumed to be a natural result of the methodology application,

where a set of conditions must be met at design time.

Machine learning has recently become the most active field of research on

interpretability. More interpretable models are being pursued not only for more

complex techniques such as deep neural networks but also for more traditional

models, like the interpretable decision lists proposed by Letham et al. (2013). A

decision list is a series of if-then-else statements, where the if statements define

a partition of a set of features, the then statements define a predicted outcome,

and the else statements define either a new rule to be applied (if followed by an-

other if statement) or a default outcome to be assumed as the prediction, in case

none of the previous rules were assessed as true. The proposed approach, called

Bayesian List Machine (BLM), “produces a posterior distribution over permu-

tations of if...then... rules, starting from a large set of possible pre-mined rules”

(Letham et al., 2013). The authors follow the assumption that the model is in-

trinsically interpretable because, given their format, the rules naturally provide

a reason for the prediction they lead to. However, no quantitative or qualitative

evaluation is presented regarding the model’s interpretability assessment.

Lakkaraju et al. (2016) introduced a predictive model based on interpretable

decision sets (DSs): sets of independent if-then rules aimed at being human-

interpretable while still showing high accuracy. They define decision sets as

“a model class that can both accurately predict class labels and interpretably

describe its decision boundaries” (Lakkaraju et al., 2016), and claim they are

more interpretable than decision lists because the if-then rules, organized in a

non-hierarchical structure, apply independently and can be considered in any

order. On the other hand, the rules in decision lists are in the if-then-else format,

and each rule depends on all the rules above it, being necessary to interpret the

whole hierarchical structure to understand why a given rule is applied. This

difference is exemplified in Figure 2.7. Decision sets are concerned only with

model transparency, and the authors measure the model interpretability both

quantitatively (see Section 2.2.3) and through a qualitative evaluation, which

measured to what extent human subjects could interpret the rules, that is,

determine which decision each rule was leading to (Lakkaraju et al., 2016).
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Figure 2.7: A decision set (left) and a decision list (right) learned from a diag-
nosis dataset, as provided by Lakkaraju et al. (2016). Decision set rules can be
interpreted independently, while in decision lists every rule depends on all the
rules above it.

Aiming at making statistical modeling accessible to non-experts, Lloyd et al.

(2014) introduces the Automatic Statistician, a system that analyses data sets

and automatically discovers the statistical model describing the data, generating

a report with figures and natural language text. The proposed approach, called

Automatic Bayesian Covariance Discovery (ABCD), focus on Nonparametric

Regression Models and uses a greed search procedure to explore the space of

regression models, finding, through Bayesian inference, the main components

describing the data, such as “periodic function”, “linear function”, “constant”,

“smooth function”, among others. The discovered model’s components are then

translated into English phrases, resulting in a report with text, figures, and

tables, detailing what has been inferred about the data, besides model checking

and criticism (Ghahramani, 2015). The final report allows users to interpret

the system decisions without having to go through its internal operations, still,

qualitative interpretability evaluation was not presented.

As well as the ABCD approach, the technique proposed by Ribeiro et al.

(2016) can be seen as an interpretability layer for machine learning models,

in the sense that they do not try to adjust the algorithms in order to make

them more interpretable, but rather analyze their outputs to build an expla-

nation around it. The Local Interpretable Model-agnostic Explanations (LIME)

approach can do so for any classifier by learning an interpretable model that

approximates a prediction locally (Ribeiro et al., 2016). The explanations con-

sist of a set of artifacts that were relevant for the model’s prediction, be it

textual (for example, which words were decisive in a text classification task) or

visual (for instance, which elements present in a picture influenced an image

classification task). These artifacts can assume any representation format and
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can be seen as an abstraction for the features used by the model, since these

features can be too complex to be presented to the user (like word embeddings,

for example). The explanation for a prediction is built by sampling instances in

its vicinity and selecting the features that were relevant for those instances clas-

sification. This method allows the explanation not only of a single prediction,

but also of the whole model, by selecting a set of representative instances, a

method called submodular pick, and presenting the explanations for them. This

allows the users to have an overall insight into how decisions are being made

and decide whether they can trust them or not, while the model itself can still

be treated as a black box. Quantitative and qualitative evaluations (see Section

2.2.3) show good results for text and image classification tasks. However, what

a suitable interpretable representation for an explanation is and how complex

is to derive such representation will depend on the model and the task being

addressed.

The Gray Box Decision Characterization (GBDC) approach (Brinton, 2017)

also uses some knowledge about the model’s internal procedures to generate

post-hoc explanations, without modifying the model itself. That means it could

also be used as an interpretability layer for any classifier or regression model.

It focuses on characterizing, i.e., explaining a single prediction at a time by

performing a sensitivity analysis around its input data vector. The GBDC

searches for changes in the basis vector contained in the space region around

the input data that lead to changes in the model’s output. The explanation for

a prediction is then constructed by selecting the features that yield the most

significant changes in this specific output. Explanations are provided in natural

language but, as the author points out, interpretability evaluation including

human subjects is yet to be done.

Datta et al. (2017) go one step further and, besides pointing out which

features most likely led to a decision, measure the influence of each of these

features on the prediction. By defining a family of Quantitative Input Influence

(QII) measures, transparency queries can be posed to the model so decisions

about individuals and groups can be explained. Joint influence of a group of

features and marginal influence of individual inputs can also be measured when

single inputs do not have high influence. Like the GBDC approach, QII forces

changes on the inputs to check whether they lead to changes in the output for

identifying influential features, but also attributes weights, placing the features

in a rating scale that shows clearly how influential each feature was for the

decision. The QII measures can also be applied to any classifier and are used
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to produce transparency reports, which, for a given prediction, shows the QII

measures for every input feature in graph format. The transparency reports

allow for a clear interpretation of how the decision was reached and make it

easier spotting spurious correlations, but still need to be qualitatively evaluated

by human users.

Rather than performing post-processing to interpret some model’s results,

the Mind the Gap Model (MGM) opts for embedding interpretability criteria

directly into the model (B. Kim, Shah, & Doshi-Velez, 2015). The MGM is

a generative approach for feature extraction and selection which aims at iden-

tifying not only what features characterize a cluster, but also what features

distinguish between clusters. A logic-based feature extraction consolidates di-

mensions into groups, followed by the identification of important groups based

on parameter values, which selects groups having gaps in their parameter val-

ues across clusters. The feature groups consist of logical formulas governed by

either the or or the and logical operators, and each group is associated to a

cluster through a probability value, which indicates how likely the features in

the group are to appear in the cluster. This feature group vs. cluster matrix

is presented to the user as an explanation for the final data clustering. Qual-

itative evaluation including the participation of human subjects to verify the

model interpretability has shown that domain experts could easily understand

and quickly write an executive summary of this matrix, as well as finding the

differences between clusters.

Figure 2.8 shows some examples of post-hoc explanations produced by the

ABCD, LIME, QII, and MGM approaches. ABCD reports rely on natural

language descriptions and graphs to describe the discovered data models. LIME

shows the features that influenced a prediction in a classification task and QII

does the same but placing the features on a numerical scale. MGM presents

groups of features along with their likelihoods of belonging in each cluster.

2.2.2.3 Hybrid Models

Interpretable hybrid models are a mix of data and algorithmic models. Besides

having a data component, they also include an algorithmic procedure which

makes use of this data for a predefined task, meaning that the data component

is designed and created specifically to suit the algorithm goals.

Topic models can be seen as hybrid models, as they encompass both a data

model – the set of topics, which are collections of words similar to the DSM’s
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Figure 2.8: Examples of post-hoc explanations: (a) ABCD report (J. R. Lloyd
et al., 2014); (b) LIME prediction explanation (Ribeiro et al., 2016); (c) QII
transparency report (Datta et al., 2017); and (d) MGM feature matrix (B. Kim
et al., 2015).

dimensions – and an algorithmic procedure, used to classify the documents

according to the previously discovered topics. Topic modeling algorithms can

be applied to large and unstructured collections of documents, discovering their

main themes and categorizing their documents based on the discovered themes

(Blei, 2012). Formally, probabilistic topic models are resources composed by a

set of latent topics for performing the unsupervised analysis of large document

corpora, and assume that each document in the collection can be described by a

combination of such topics (Chang, Gerrish, Wang, Boyd-Graber, & Blei, 2009).

Although it is usually assumed that the resulting semantic space is always

meaningful, its interpretability can’t be measured by the commonly used pre-

dictive evaluation metrics, that is, quantitative metrics that capture the model’s

ability to predict the topics for unseen documents. Chang et al. (2009) show

that by evaluating topic models generated by three different techniques: Latent

Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003), Probabilistic Latent Se-

mantic Indexing (pLSI) (Hofmann, 1999) and Correlated Topic Model (CTM)

(Blei & Lafferty, 2005), through the word intrusion and topic intrusion tasks
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(see Section 2.2.3). They show that LDA presents the best results for the word

intrusion task, and is comparable to pLSI for the topic intrusion one, while

CTM showed to be the less interpretable model, despite presenting the highest

predictive likelihood among the three. This leads to the conclusion that the

highest probability does not entail the best interpretability. As the trend was,

in fact, the opposite, this could suggest that as topics become more fine-grained

in models with a larger number of topics, they are less useful for humans (Chang

et al., 2009).

For learning semantically consistent topics right from the beginning, topic

models are starting to be designed with the explicit goal of being interpretable.

Among the models that claim to favor interpretability is the Topical N-Grams

(TNG) (X. Wang, McCallum, & Wei, 2007), a topic model that takes into

account the order of words in text to discover topical phrases, in contrast to

models such as LDA that generates topics under the bag-of-words assumption,

that is, assuming that words are generated independently from each other. The

authors argue that whether or not a phrase is a collocation may depend on the

topic context and that the TNG is capable of making that distinction. TNG

proves to be more interpretable than LDA especially when dealing with generic

words, such as “state” or “action”, which, alone, may seem misplaced in a

topic for being too vague (when interpreted by a human), but are far more

meaningful when forming n-grams such as “belief state” or “action selection”

in a reinforcement learning-themed topic, for example.

Ramage et al. (2011) also claim that their models, Partially Labeled Dirichlet

Allocation (PLDA) and Partially Labeled Dirichlet Process (PLDP), are more

interpretable than unsupervised approaches. PLDA and PLDP combine un-

supervised machine learning-based discovery of topics with content annotated

with human-provided labels. PLDA “is a generative model for a collection of

labeled documents, extending the generative story of LDA to incorporate labels,

and of Labeled LDA to incorporate per-label latent topics”. PLDP “replaces

PLDA’s per-label topic mixture [...] with a Dirichlet process mixture model”

(Ramage et al., 2011). Both models learn the topic structure within the scope of

the observed labels, which impose a kind of semantic constraint on the resulting

model. However, although they argue that this constraint improves correlation

with similarity judgments, the case studies presented involves no human par-

ticipation. Tying discovered topics to human interpretable labels can indeed

produce a more interpretable topic structure, but how humans actually evalu-
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ate both the topic’s consistency and the adequacy of the associations between

topics and documents provided by these two models remains to be measured.

The work introduced by Song et al. (2011) is a kind of topic modeling fo-

cused on short texts, such as Twitter messages. Since such short texts don’t

provide enough contextual information, the topics can’t be derived solely from

their content. Instead, the words in the text are mapped to entities, which can

be either concepts (e.g. “country”), instances of concepts (e.g. “China”, “In-

dia”) or attributes of concepts/instances (e.g. “language”, “population”), in a

probabilistic knowledge base called Probase. Those entities, along with the re-

lationships between them, will then provide the context for the topic discovery,

which the authors call conceptualization, i.e., the definition of a set of con-

cepts that best describe the text’s content. The conceptualization is carried out

through Bayesian Inference (BI), benefiting from the large size of the database.

The quantitative evaluation, which uses clustering-related measures, such as pu-

rity, adjusted random index (ARI) and normalized mutual information (NMI),

shows the approach yields good accuracy but, although the resulting topics pre-

sented as examples are in fact easily interpretable, no evaluation regarding the

model interpretability itself was performed.

Table 2.3 summarizes the main characteristics of the analyzed data, algo-

rithmic and hybrid models.

2.2.3 Evaluation Methods and Initiatives

Despite the crescent effort to build more interpretable models, measuring their

level of interpretability is still a challenge, regardless of the type of the model.

Some evaluation methods have been proposed, but always in the context of a

specific model, whose characteristics determine what will be assessed and which

measures are relevant for the evaluation.

An initiative towards the qualitative evaluation of topic models is the set

of tasks proposed by Chang et al. (2009), intended to measure the model’s

interpretability. In the word intrusion task, a human evaluator needs to find

the word that does not belong in the topic, i.e., the intruder, assessing the

model’s data component. The algorithmic component is evaluated through the

topic intrusion task, which checks whether the topics assigned to a document

by a topic model match the human judgments of the document’s content, by

presenting a document and a set of topics related to it to a human evaluator and
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asking them to identify the intruder topic. The underlying rationale is the same

for both tasks: if the topic is semantically consistent, that is, if the words that

compose it refer to the same semantic category, even if in a broad sense, then

humans can easily interpret its meaning and point out what does not belong

to it, be it a single word or a whole document. The word intrusion task is also

commonly used to assess the semantic coherence of DSM dimensions (Murphy

et al., 2012; Fyshe et al., 2015).

In the fuzzy logic context, evaluating model interpretability is not yet a

widespread practice. As seen in Section 2.2.2, most fuzzy models claim to be

interpretable because they meet a set of constraints at design time, but no

quantitative or qualitative evaluation is in fact carried out so the model inter-

pretability can be assessed from a human point of view. Despite that, a large

number of objective and subjective indexes for assessing the interpretability of

fuzzy systems have been proposed, covering different granularity levels inside

the model (Alonso et al., 2015). These indexes are intended to analyze both

the structural-based interpretability and semantic-based interpretability of a

model, and takes into account a set of constraints and criteria regarding each

of the model’s abstraction layers, from the lowest to the highest: fuzzy sets,

fuzzy partitions, fuzzy rules, and fuzzy rule bases. Structural constraints and

criteria refer to the internal organization of the elements that compose a fuzzy

model and determine its readability level, while semantic constraints and crite-

ria refer to the way the fuzzy system behaves, that is, how it reaches its results,

dictating the model’s comprehensibility level. A detailed list of constraints and

criteria, as well as a description of the most outstanding interpretability indexes

for evaluating fuzzy models, is provided by (Alonso et al., 2015).

Mencar et al. (2011) go in a different direction and propose an interpretabil-

ity evaluation method using the notion of cointension, defined as “a measure

of proximity of the input/output relations of the object of modeling and the

model” (Mencar et al., 2011). Exploiting the logical view, a set of properties

expected to contain the (approximated) implicit semantics and defined as “the

propositional structure of the rules in the knowledge base, responding to the

laws of formal logics both for the fuzzy rule-based inference and the user think-

ing” (Mencar et al., 2011), the rule base is transformed into a different one

logically equivalent to it. The model interpretability is then measured by the

extent to which the retained logical equivalence of the rule bases corresponds

to the semantic equivalence. In practice, this is a quantitative assessment of

interpretability: the model is interpretable if the logical view of its rules is cor-
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rect, what is measured by the comparison between the accuracies of the two

rule bases (the lower the difference, the higher the logical view correctness and,

consequently, the interpretability).

Regarding machine learning models, Doshi-Velez and Kim (2017) go in a

more theoretical direction and propose, rather than a method, a taxonomy for

the evaluation of model interpretability. They observe that current evaluation

techniques either assesses interpretability in the context of an application or via

a quantifiable proxy. In the first case, a system is considered interpretable if it

is useful in a practical application (or a simplified version of it); in the second

scenario, a model is considered intrinsically interpretable and is just subjected

to optimization algorithms. They argue that, although these approaches may

seem, at first, reasonable, they lack rigor and, in order to compare methods in

an effective way, evaluation criteria must be formalized and based on evidence.

Hence, in the proposed taxonomy, the evaluation method, which should be based

on sets of task- and method-related latent dimensions, may vary from model to

model. It must also take into account the focus of the contribution, which can

range from assessing the reliability of a real-world application from the human

point of view to better optimizing a given model with regard to interpretability

requirements.

In a more practical fashion, Lakkaraju et al. (2016) propose, in addition to

asking human subjects to relate a given decision to the rules that generated it, a

quantitative evaluation for assessing decision sets’ interpretability. They define

four metrics: size (the number of rules in the set), length (the size of each rule),

cover (the number of points in the data set covered by each rule) and overlap

(the number of features covered by more than one rule). Under this evaluation

framework, the lowest the size, length and overlap of a decision set, the highest

its interpretability (cover is used as an intermediary metric to compute overlap).

The evaluation methods introduced by Ribeiro et al. (2016) also target ma-

chine learning models, but focus on assessing the interpretability of the post-hoc

explanations generated for their predictions. The set of evaluation tasks includes

both quantitative and qualitative assessments. The quantitative tasks aim at

determining if the explanations are faithful to the model, if a single prediction

is trustworthy, and if the model as a whole is trustworthy. As the explana-

tions are basically composed of a set of features, this is done by creating gold

standard sets of features and computing the model’s recall for each explanation

it generates (for measuring faithfulness); by marking a subset of features as

“untrustworthy” and measuring the rate of such features in an explanation (for
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computing the prediction’s trustworthiness); and by adding artificial “noisy”

features to the model to evaluate how many of its predictions can be trusted,

i.e., how many predictions do not include the untrustworthy noisy features in

their explanations (for measuring the model’s overall trustworthiness).

The qualitative assessment is carried out by showing human subjects the

explanations generated by two classifiers and measuring to what extent these

explanations help them to make decisions. First, users need to select the best

classifier based on the explanations they provide for a text classification task,

where one classifier uses untrustworthy features (words) and the other one (con-

sidered the best one) does not. Second, also in the context of a text classification

task, (non-expert) users need to improve a classifier, by analyzing the explana-

tions and removing the features (words) they consider untrustworthy for subse-

quent model training. Using an image classification task as context, the third

evaluation task forces a wrong correlation by selecting all images from a class

having a given feature that does not generalize in the real world (in this case,

the classes used were “wolf” and “husky”, and all the wolf pictures contained

snow, which would end up being used by the classifier for generalization). The

objective is to evaluate if observing the explanation for a prediction, which in

this case is a super-pixel of the image, users can have insights on which features

are being used by the model, identify if it is making spurious correlations and

decide whether it can be trusted or not. The rationale behind the three tasks

is the same: if human users make the expected decisions, it can be concluded

that the explanations are in fact allowing the correct model interpretation.

A few evaluation challenges have also been realized to stimulate the addi-

tion of interpretability features in semantic applications. The third PASCAL

Recognizing Textual Entailment Challenge (RTE-3) included an optional task

requiring the participant system to justify their answer, that is, besides deciding

whether a piece of text (the entailed hypothesis) could be entailed from another

one (the entailing text) or not, they should also provide a post-hoc explanation

justifying this decision (Voorhees, 2008). The explanations, which could be a

collection of strings of any size, should be given in terms suitable for an end

user (i.e., not a system developer), and were evaluated by human judges who

assessed their understandability and correctness. Some common concerns and

criticisms in the judges’ evaluation summaries include verbatim repetition of the

text and hypothesis in the justification, use of generic phrases such as “there

is a relation” and “there is a match”, presentation of system internals such

as numerical similarity scores, and use of mathematical notation and linguistic
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jargon such as “polarity” and “hyponym”. These observations point out that

conciseness and specificity are important features from the user point of view,

and must have priority when explaining the system behavior.

Also in the Natural Language Processing field, an interpretable semantic

text similarity (STS) task was proposed at SemEval (Agirre, Banea, et al.,

2015). Participants were asked, in addition to rating the degree of semantic

equivalence between two text snippets, to include an explanatory layer respon-

sible for aligning the chunks in the sentence pair and annotating the kind of

relation and the similarity score of the chunk pair. Rather than providing a

natural language (post-hoc) explanation, systems should only justify the overall

similarity score by pointing which parts in both pieces of text contributed to

this score. Two scenarios were proposed: in the first one, participants were

given gold standards chunks and should only make the correct alignments and

provide them with appropriate labels and scores. In the second scenario, they

were given raw text as input, and should also segment the input. The relevant

relations defined for the task include EQUI (semantically equivalent), OPPO

(oppositional meaning), SPE1/SPE2 (chunk in sentence 1 is more specific than

the one in sentence 2 and vice-versa), SIM (similar meaning, other than EQUI,

OPPO, and SPE1/SPE2), and REL (related meaning, other than EQUI, OPPO,

SPE1/SPE2, and SIM). Other relations refer to non-aligned chunks (NOALI ),

or context alignments (ALIC ), that is, chunks that should be aligned to a chunk

that was already aligned previously but can’t due to a 1:1 alignment restriction.

Since gold standards for chunk alignments, relations and similarity scores were

available for all the text pairs, the evaluation was purely quantitative, measur-

ing the F1 score obtained by each participant system. From the interpretability

point of view, the output produced by the systems can’t be assessed individu-

ally, since they followed the task requirements, providing only chunk alignments,

with a relation from a predefined set and a similarity score associated with each

alignment. Regarding the predefined relationships, SIM and REL relations seem

particularly vague: the difference between them is not clear and both can re-

fer to any semantic relation other than equivalence, opposition, and hypernymy,

without ever making explicit what this relation is. The task may doubtless have

served as a first exercise towards extracting further information for allowing a

system interpretation, but turning this information into useful explanation for

end users would require subsequent data refinement and formatting.

Table 2.4 summarizes the main characteristics of the aforementioned inter-

pretability evaluation tasks.
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2.2.4 A Human-centered Take on Interpretability

Given the heterogeneity of the models tackling interpretability, the product

offered as an interpretation and the point in the system’s workflow at which

this is accomplished also widely vary. Both aspects can affect the way the final

user benefits from an interpretable model. It may not be enough for a model

being interpretable; model interpretability should be incorporated seamlessly

into the user’s routine while using the system as a support tool.

To visualize the differences between approaches, consider the generic system

architecture depicted in Figure 2.9, which sums up the characteristics of the

various models described in Section 2.2.2. In this architecture, an input is sent

to an algorithmic component, which will perform a sequence of computations

over it and produce an output. Optionally, the algorithm can also employ the

features from a data component, which can be an external model developed

independently (such as a DSM) or an internal component tailored to the algo-

rithm needs (the set of topics in a topic model, for instance). Besides the output

itself, the algorithm may also provide an explanation for it. Alternatively, this

explanation can be produced by an interpretability layer, a component that will

take the output and induce the model behavior that generated it.

Figure 2.9: A generic AI system architecture and the points where interpretabil-
ity features can be inserted.

Interpretability features at the data and algorithmic component levels can

be considered intra-model, that is, the interpretability is embedded in the model
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and influences the way it works in order to keep its behavior understandable

from the user point of view. On the other hand, an interpretability layer can be

seen as an extra-model component, since it usually is model-independent and

tries to explain the algorithm behavior without modifying it or interfering in

the way it works.

Intra-model interpretability naturally favors transparency, but can also work

on the generation of post-hoc explanation if the algorithmic component is de-

signed for providing complementary information to the predicted output. Extra-

model interpretability is an effective tool for providing comprehensible post-hoc

explanations, but at the expense of transparency, since it usually interprets the

model locally (around the output being explained); interpreting the whole model

is a challenging task, so, globally, it may remain a black box.

In practice, most models that implement intra-model interpretability will be

contented with transparency, doing without any kind of post-hoc explanation.

Figure 2.10 shows this trend, situating the models analyzed in Section 2.2.2

according to the points where they introduce interpretability features and the

kind of interpretation they offer. As can be seen, the majority of the models of-

fers only transparency through intra-model interpretability, while a few provide

only post-hoc explanations making use of extra-model interpretability features.

The sole exception is MGM (B. Kim et al., 2015), which provides post-hoc

explanations while still claiming to be a transparent, interpretable model.

Taking into account the aforementioned human-centric nature of interpretabil-

ity, this classification allows us to identify two important dimensions: the ease

of use of interpretability features and the impact of their introduction from the

point of view of the final user. First, it may be easy to understand the internal

operations of a transparent model, but not all users will be willing to do so. A

machine learning engineer seeking to tune a neural network will be happy to

track the flow of computations of the model; a physician looking for the evidence

for a diagnosis or a credit analyst who needs to justify a denied loan probably

won’t. Post-hoc explanations, either in textual or visual formats, tell how the

model is working in a user-friendlier way and are better suited for non-developer

users.

Second, new, interpretable versions of already existing models are important

additions to the artificial intelligence body of knowledge, but, given the current

widespread use of such technologies, ditching a deployed, fully functional sys-

tem altogether for a new explainable one is not always an option. Despite the

efforts in the direction of preserving the model performance while making it
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Figure 2.10: The four quadrants of AI models’ interpretability.

interpretable, the trade-off between interpretability and accuracy is still an is-

sue (Balázs & Kóczy, 2013). Interpretability layers can offer higher flexibility

while evolving a system, since they can be attached to any model, and with-

out affecting the way it is already working, ensuring that results won’t change

due to newly introduced interpretability functionalities. For large scale and/or

critical systems, adding such layers represent a low-risk incremental upgrade,

potentially meaning also a low impact on the final user routine.

Increasing model transparency is an important step towards widespread Ex-

plainable AI, but it should be only the first one if the user needs are put in the

first place. A transparent model already offers a rich material for providing the

user with explanations, requiring only a translation step to format the sequence

of interpretable operations that led to an output as natural language justifica-

tions, image highlighting, graphs, diagrams or any other form of communication
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suited to the task at hand, as long as it supports the user’s work instead of

adding further workload. Any model can benefit from an interpretability layer;

even though fuzzy sets or decision lists are more comprehensible than deep neu-

ral networks, they still carry logic formalisms, which the user can be spared of.

Given the wide variety of available artificial intelligence approaches and tasks

to be addressed, generating post-hoc explanations, either at the intra- or extra-

model level, is still an open challenge, and a path worth being explored even by

the already interpretable (transparent) models.

2.2.5 Interpretability in Text Entailment Systems

As mentioned in Section 2.2.3, one of the PASCAL RTE Challenges proposed a

task requiring participant text entailment systems to provide a justification for

their answers. The literature review for the field (Section 2.1), though, allows

us to conclude that such feature was an ad-hoc functionality for most systems,

implemented in order to enable their participation in the task, as explainability,

among all the challenges in the textual entailment recognition field, wasn’t (and

it is still not quite) a priority.

Considering the approaches analyzed in Section 2.1.3.2, it is possible to

sketch their degree of interpretability according to the category they fit in.

Although, as pointed out in Section 2.2.1, the fact that some models are in-

trinsically interpretable is debatable, alignment and transformation entailment

approaches can be considered fairly transparent, as they don’t use a large num-

ber of parameters or perform thousands of computations to reach a decision.

For alignment systems, it might be easy to follow the rationale by knowing what

portions of T and H are being aligned, the confidence scores assigned to each

alignment, and how these scores are combined so the final decision is reached.

Similarly, in transformation systems, it might also be simple to keep track of

the sequence of rules applied in the transformation.

Besides the likely transparency, transformation approaches also have the

potential to provide post-hoc explanations. In a positive entailment, when T can

successfully be transformed into T, the sequence of logical axioms or rules is the

proof that justifies the decision. With some additional effort, especially for logic-

based systems, since rule-based approaches employ rules which are already closer

to natural language expressions, such proofs could be formatted into human-

readable explanations, providing user-oriented justifications. Nevertheless, the
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BLUE system (Clark & Harrison, 2009) is the only one to implement such

feature.

For classification systems, transparency cannot be considered as a given.

With multiple representation schemata, similarity measures, and weighting meth-

ods, all being combined by increasingly complex algorithms, it becomes harder

to follow every step in the reasoning procedure. Some models only use machine

learning for computing weights, but others use it as the classification model it-

self, in which case the multiple-features vector representations and the complex

computations performed over them turn the system into a black box. None of

the analyzed classification systems provide post-hoc explanations either.

Table 2.5 summarizes the interpretability characteristics of the entailment

approaches analyzed in Section 2.1.3.2. Note that transparency is presumed,

following the above-mentioned arguments. For completeness, NLI models de-

scribed in Section 2.1.5 are also included. Nonetheless, their characteristics

are rather uniform: as deep neural network models, they are not transparent,

and none of them provide post-hoc explanations. Regarding explanations, the

newly released e-SNLI dataset (Camburu, Rocktäschel, Lukasiewicz, & Blun-

som, 2018), an extension of SNLI with human-annotated natural language ex-

planations for each premise-hypothesis pair, can leverage the developments in

this area. So far, a single approach (Thorne, Vlachos, Christodoulopoulos, &

Mittal, 2019) has used this dataset, and only for token-level explanation, that

is, only the tokens in the premise and in the hypothesis that are relevant for the

inference are presented (which is basically the output of the attention mecha-

nism). Fully human-readable explanations made up of full concise and connected

natural language sentences are yet to be addressed in NLI.

2.3 Gap Analysis

Text entailment recognition is a very complex task, requiring not only the de-

velopment and integration of different modules that address different entailment

phenomena but also the acquisition of commonsense world knowledge that can

support those modules’ reasoning process. As observed by Dagan et al. (2013),

a complete text entailment model would require solving many types of NLP and

Computational Linguistics problems, as well as additional inference problems

investigated in Artificial Intelligence.
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Approach Task Transparency Explanation
Glickman & Dagan (2005) TE Yes No
MacCartney et al. (2008) TE Yes No
Iftene & Balahur-Dobrescu (2007) TE Yes No
Sammons et al. (2009) TE Yes No
Hickl & Bensley (2007) TE Yes No
Dagan & Glickman (2004) TE Yes No
Harmeling (2009) TE Yes No
Bar-Haim et al. (2007) TE Yes No
Stern & Dagan (2011) TE Yes No
Braz et al. (2005) TE Yes No
Raina et al. (2005) TE Yes No
Fowler et al. (2005) TE Yes No
Bos & Markert (2005) TE Yes No
Clark & Harrison (2009) TE Yes Yes
Kouylekov & Magnini (2005) TE Yes No
Mehdad et al. (2009) TE Yes No
Heilman & Smith (2010) TE Yes No
MacCartney & Manning (2007) TE Yes No
Tatu et al. (2006) TE No No
Wang & Neumann (2008a) TE No No
Jimenez et al. (2014) TE No No
Zhao et al. (2014) TE No No
Zhang et al. (2017) TE No No
Bowman et al. (2015) NLI No No
Rocktäschel et al. (2016) NLI No No
Wang & Jiang (2016) NLI No No
Chen et al. (2017) NLI No No
Parikh et al. (2016) NLI No No
Chen et al. (2018) NLI No No
Wang et al. (2019) NLI No No

Table 2.5: Interpretability features of the analyzed text entailment and NLI
approaches.

Nevertheless, text entailment datasets, including those created for the RTE

Challenges, are composed of mixed phenomena and were used to evaluate the

quality of complete entailment architectures rather than for individual inference

modules, that is, modules focused on a specific phenomenon (Dagan et al., 2013).

Specialized datasets to evaluate individual phenomena are crucial assets in the

development of focused inference components, but this kind of resource is still

scarce. Moreover, new datasets now focus on size, since being large enough to
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enable machine learning model training is one of the main requirements, and

breaking the data by specific subtypes haven’t been an option.

An alternative to matching specific modules to the kind of data they are

intended to in the absence of specialized datasets is to make the system able

to analyze each entailment pair, identify the most relevant phenomenon, and

then use the suitable module to solve it. As evidenced by the review presented

in Section 2.1, no text entailment approach have tried this strategy so far,

with all the systems instead opting for either using a single method or using as

many methods as possible, but combining all of them in a single technique that

tries to find the better weights for each of them so the most relevant one for a

given entailment pair can have more impact in the final decision. In a selective

approach, previously identifying the phenomenon and using only the relevant

method can not only simplify the reasoning process but also avoid that similarity

measures that are not relevant (for example, using syntactic similarity measures

when T and H have very different syntactic structures but are still semantically

related) have a negative impact on the final decision.

Another gap that could be apprehended from the review refers to the com-

monsense world knowledge acquisition methods employed by the entailment

approaches. Although some systems did consider more complex semantic rela-

tionships by, for example, trying to retrieve such knowledge from structured con-

tent in Wikipedia, most approaches stop at the shallow semantic level. Entail-

ment rules, which were already somewhat limited, since they mostly expressed

paraphrase relations, were gradually being left aside as approaches moved from

alignment and transformation techniques to classification strategies. Most NLI

models follow this trend, heavily focusing on accuracy and giving almost no

attention to external knowledge.

Finding the suitable knowledge source for the task, one that at the same

time is reasonably expressive and can be easily integrated into the system, is

one of the challenges in knowledge acquisition, especially because of the variety

of knowledge types to be covered (Section 2.1.1). In their investigation about the

most common knowledge types needed in text entailment recognition, LoBue

and Yates (2011) point out that “common knowledge types, like definitional

knowledge, arithmetic, and accountability have for the most part been ignored

by research on automated knowledge collection”. Among these types, defini-

tional knowledge is the one whose extraction could bring more benefits given

the varied number of relationships it can cover, as explained in Section 2.1.1.

Dagan et al. (2013) reinforce this idea, observing that “The first and most natu-
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ral candidate for providing such [entailment] knowledge is dictionary definitions.

These definitions have long been identified as a valuable source for semantic re-

lations between words, as they describe words in terms of other words”. Despite

that, there are no entailment approaches making use of definitional knowledge,

or initiatives to extract and represent definitions in a way that suits the text

entailment task.

Regarding interpretability features, Table 2.5 shows that the gap in the

text entailment field is clear. As argued in Section 2.2.4, providing post-hoc

explanations are the most user-friendly way to render a system interpretable,

and, in NLP tasks, natural language justifications can be seen as one of the

most suitable presentation formats. Generating such justifications is a task for

which there is still much room for development.

Therefore, the text entailment approach proposed in this thesis seeks to ad-

dress these gaps by: (1) implementing different modules to address different

phenomena and being able to identify the relevant phenomenon so the entail-

ment pair can be sent to the suitable module; (2) developing a methodology

for extracting and representing definitional knowledge, converting dictionaries

into knowledge graphs that will be used for detecting semantic relationships be-

tween sentences; and (3) making the system interpretable by generating natural

language justifications for the entailment decision, using the knowledge from

the definition graphs. These contributions represent additions not only for the

text entailment field but also for the knowledge representation and semantic

interpretability areas as well.

2.4 Summary

In this chapter, the literature referring to the two main research areas addressed

in this work – Text Entailment Recognition and Semantic Interpretability – was

reviewed. In the text entailment part, the main phenomena involved in entail-

ment recognition were described and categorized. The knowledge requirements

for the task were detailed, and a macro-categorization was also proposed, along

with an overview of the main knowledge sources from which different types of

knowledge can be acquired to be used in the entailment task.

The most used base methods for entailment recognition were described,

and different approaches, which combine base methods for matching T and

H through alignment, transformation, or classification were reviewed. It was



2.4. SUMMARY 87

shown that, although some of them do use external knowledge sources for iden-

tifying more complex semantic relations, most approaches focus on exploring

the syntactic structure of the sentences and retrieving shallow semantic infor-

mation, mainly in the form of structured lexical links, semantic role labeling, or

paraphrase-style rules. The RTE Challenges, the main evaluation initiative in

the area, were described, and a brief review introduced the Natural Language

Inference task, a subtask of textual entailment which is gaining increasing im-

portance in the NLP community.

Regarding the semantic interpretability aspect, it was shown that, after suc-

cessful efforts for making AI models highly accurate, researchers are now being

faced with the challenge of making them also interpretable, untangling their

complexity to make the rationale behind any prediction clear and intelligible.

By understanding the model behavior and being able to explain its decisions,

users can not only justify the decisions they make based on it but also identify

when it is making spurious correlations or reflecting social biases contained in

data to avoid unfair decisions.

Semantic interpretability was reviewed as a cross-field subject, making it

possible to go beyond the machine learning perspective and bring to light the

efforts of other areas, such as distributional semantics and fuzzy logic, towards

increasing model interpretability. By examining how distinct disciplines define

and offer interpretability, we outlined the shapes it can assume and, based on

them, analyzed several different types of models and interpretability evaluation

methods. We further categorized the models according to how they integrate

interpretability features into their architectures and assessed how this, along

with the type of interpretation offered, impacts the final user routine. Textual

entailment approaches were also analyzed with regard to their interpretability

features, and the characterization provided in the first part of this literature

review was complemented with attributes that reflect each approach’s trans-

parency and explainability dimensions.

Finally, a gap analysis highlighted some of the most important points iden-

tified in this review that are yet to be improved in the text entailment field, and

which are addressed in the approach proposed in this thesis.





Chapter 3

From Lexicons to

Knowledge Graphs

In this chapter, the foundations of the knowledge bases (KBs) employed by the

text entailment recognition approach proposed in this work are introduced. Such

knowledge bases constitute one of the main pillars of the proposed approach,

enabling the recognition of text entailments requiring world knowledge and al-

lowing the generation of human-readable explanations, which distinguishes this

work as an interpretable entailment system.

The need for external, commonsense knowledge comes from the nature of the

text entailment task itself: as detailed in Chapter 1, one of the three possible

scenarios is when the hypothesis presents new information derived from the

text, requiring knowledge that goes beyond what is expressed in T and H so the

entailment can be solved. But the importance of injecting external knowledge

in the reasoning process is not restricted to the entailment decisions, that is,

the generation of a yes or no answer. The ability to explain how such decisions

are reached, be they entailment decisions or any other intelligent application’s

prediction, is becoming a key requirement for AI systems (Gunning, 2017).

Although a model may produce accurate results, if it lacks transparency, not

showing clearly how it is using the data, it can become harder for users to trust

its predictions.

Generating natural language justifications is an important feature for in-

creasing a system’s interpretability, and the generation of such explanations can

be leveraged by the use of external sources of world knowledge. Dictionary-style

89
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definitions are a rich source of such knowledge and, different from formal struc-

tured resources like ontologies, they are domain-independent and largely avail-

able. Many NLP systems, including text entailment systems (Clark, Fellbaum,

& Hobbs, 2008; Herrera, Penas, & Verdejo, 2006), already explore lexicons, no-

tably WordNet (Fellbaum, 1998), but they usually look only at the structured

information, that is, links such as synonyms, hypernyms, etc. The natural lan-

guage definition is left aside, although it contains the largest amount of relevant

information about an entity: its type, essential attributes, primary functions,

and often many non-essential, but very informative, attributes as well.

The text entailment recognition and justification approach proposed in this

work relies on the knowledge provided by lexical dictionary definitions for look-

ing for and explaining the semantic relationships holding between the text and

the hypothesis. If such relationships exist and can be found in the knowledge

base, they not only confirm the entailment but also explain why the entailment

is true. In order to make natural language definitions useful in the entail-

ment reasoning process, dictionaries were structured into a graph knowledge

base, here called a Definition Knowledge Graph (DKG). A conceptual model

for representing the DKG, expressing a lexical definition’s main components

and the relationships among them, is proposed, and a filtering procedure was

developed so invalid definitions, that is, definitions that don’t fit the essential

structural aspects expressed by this model, could be removed. A graph con-

struction methodology was then developed to populate the conceptual model

with the set of filtered definitions, automatically converting a whole (filtered)

dictionary into a structured graph knowledge base.

Next, an overview of commonsense knowledge graphs and the applications

of this type of resource in NLP tasks is given. Then, the conceptual model for

representing dictionary definitions as a knowledge graph is detailed, followed by

an account of the definition syntactic filtering procedure, and the description of

the graph construction methodology which converts dictionaries into concrete

knowledge bases ready to be explored by a world knowledge-driven reasoning

model.

3.1 Commonsense Knowledge Graphs

The main goal of Natural Language Processing is to provide computers with

the ability to understand and manipulate text expressed in natural language
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for performing a given task, by emulating the way human beings understand

and use language (Chowdhury, 2003). But humans do not grasp the meaning

of sentences based only on what is explicitly written or said. Rather, they use

their previously acquired and accumulated knowledge about the world to draw

relationships between entities and to infer new facts based on the information at

hand. That means that, for properly understanding and making use of natural

language, especially in tasks involving inference, computers should be able to

link the explicit information contained in text to the implicit facts that can be

logically derived from it (Nilsson, 2014; Cambria & White, 2014).

But how can computers acquire the world background knowledge which hu-

mans take for granted in their everyday language-mediated interactions? Avail-

ability is fortunately not an issue: with billions of websites, the Web gathers a

vast amount of knowledge, ranging from very specific domain-related informa-

tion to the most generic commonsense facts. But in order to make this knowl-

edge useful for NLP applications, it is necessary to extract and make explicit the

relationships between objects. Knowledge graphs support the representation of

entities and the associations between them in a lightweight manner, allowing

the retrieval of simple relations expressed by triples, that is, two nodes linked

by an edge, or more complex connections made up by a composition of relations,

represented by longer paths between two graph nodes.

The most popular large-scale commonsense knowledge graphs are indeed

built out of content extracted from the Web, like DBpedia (Lehmann et al.,

2015), YAGO (Suchanek, Kasneci, & Weikum, 2007), KOG (F. Wu & Weld,

2008), and Probase (W. Wu, Li, Wang, & Zhu, 2012). Other important knowl-

edge bases, such as ConceptNet (H. Liu & Singh, 2004) and Freebase (Bollacker,

Evans, Paritosh, Sturge, & Taylor, 2008), are populated with content created

from scratch in a collaborative manner.

DBpedia extracts structured information from Wikipedia pages, such as in-

foboxes, category labels, and geographic coordinates. The extraction framework

relies mainly on mapping rules to associate elements in an infobox or other fea-

tures found in a Wikipedia article to terms in the DBpedia ontology. It is a mul-

tilingual resource whose largest knowledge base derives from the English version

of Wikipedia, with 400 million facts describing 3.7 million entities, which are

represented as RDF statements (triples) and resources, respectively. Although

Wikipedia does contain articles describing common language concepts, that is,

concepts denoted by common nouns, more detailed and informative infoboxes

tend to be available only for named entities. In fact, the most popular classes,
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which covers the largest number of instances, include “Person”, “Place”, “Orga-

nization”, and “Work” (“Musical Work”, “Film”, “Software”, etc.) (Lehmann

et al., 2015). DBpedia is used in a large number of NLP applications, espe-

cially for named entity annotation and disambiguation (Garćıa-Silva, Szomszor,

Alani, & Corcho, 2009; Kobilarov et al., 2009; Mendes, Jakob, Garćıa-Silva, &

Bizer, 2011; Hulpus, Hayes, Karnstedt, & Greene, 2013) and question answer-

ing (Unger et al., 2012; Lopez, Fernández, Motta, & Stieler, 2012; Damljanovic,

Agatonovic, & Cunningham, 2011; Cabrio et al., 2012), among which the most

remarkable is the IBM Watson system (Ferrucci et al., 2010). Many datasets,

such as DrugBank (Wishart et al., 2017), LinkedGeoData (Stadler, Lehmann,

Höffner, & Auer, 2012), the CIA World Factbook (Central Intelligence Agency,

2009), and Book Mashup (Bizer, Cyganiak, & Gauß, 2007) among others, also

link to DBpedia for uniquely identifying their entities.

YAGO (Yet Another Great Ontology) is another knowledge graph built from

Web content which combines information from Wikipedia and WordNet. It re-

lies on the WordNet hierarchy of concepts, given by the hypernym and hyponym

links to draw Is-A relationships between individuals. The set of individuals is

composed by the union of WordNet nouns and the subjects of Wikipedia ar-

ticles. Rather than using the infoboxes for extracting attributes as DBpedia

does, YAGO uses Wikipedia categories for deriving relationships between en-

tities, using a combination of rule-based and heuristic methods for extracting

both entities and relationships from a given category label associated with an ar-

ticle. It is based on an extension of the RDFS data model (Allemang & Hendler,

2011), called YAGO model, which can express relations between facts and other

relations. A fact is a triple composed of two entities linked by a relation, similar

to an RDF statement. YAGO contains around 1 million entities and 5 million

facts, and is mainly used for entity linking and disambiguation (Shen, Wang,

Luo, & Wang, 2012; Usbeck et al., 2014; Hoffart et al., 2011; Shen, Wang, Luo,

& Wang, 2013).

KOG (Kylin Ontology Generator, after the autonomous semantic markup

system Kylin (F. Wu & Weld, 2007)) is yet another Web content-based knowl-

edge graph, which combines the DBpedia and YAGO extraction strategies: it

uses information from Wikipedia and WordNet like YAGO, but, for drawing

relationships between the entity described by an article and other entities, it

extracts such entities from infoboxes, like DBpedia. It then maps the extracted

entities to WordNet concepts. KOG aims at refining the infoboxes underlying

ontology for supporting advanced queries over data extracted from Wikipedia.
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Probase (W. Wu et al., 2012) is a knowledge base that goes beyond the

Wikipedia scope, with the ambitious goal of harvesting knowledge from the

whole Web, but at the cost of reduced relationship expressiveness. In fact,

Probase is only a taxonomy, that is, it covers only isA relationships between 2.7

million concepts extracted from 1.68 billion web pages. Its extraction framework

combines syntactic and semantic features in an iterative learning process to

identify concepts and their sub- or super-concepts in text excerpts, and uses

probabilities to model inconsistent, ambiguous and uncertain information. The

result is a direct acyclic graph (DAG), where a node can be either a concept,

or an instance of a concept, and both types of nodes are distinguished by the

fact that instance nodes don’t have children (and, therefore, no outgoing edges),

that is, they are the leaf nodes in the graph. One of the main applications of

Probase is enabling semantic web search through query expansion (Hua, Song,

Wang, & Zhou, 2013; Z. Wang, Zhao, Wang, Meng, & Wen, 2015) and better

interpretation of HTML content (J. Wang, Wang, Wang, & Zhu, 2012; C. Wang

et al., 2015).

ConceptNet (H. Liu & Singh, 2004) puts aside existing web content and

relies entirely on data generated collaboratively by lay users. It is part of the

Open Mind Common Sense (OMCS) project, which collects general knowledge

statements from over 14,000 volunteers and automatically converts them into a

semantic network. Users can either enter free-form data or follow simple semi-

structured frames with suggested relations, such as “ can be used to ”,

where they fill in the blanks with concepts that may later compose a triple,

linked by the usedTo relationship, for example. Free-form statements are also

usually simple, like “An apple is a fruit” or “A city is part of a country”, for

example, making the rule-based information extraction quite straightforward.

The initial OMCS corpus contained over 700,000 statements, which generated

around 300,000 nodes and 1.6 million assertions. ConceptNet has a predefined,

but open, set of relationships, which includes IsA, PartOf, LocationOf, UsedFor,

InstanceOf, and CreatedBy, among others. It is used in different types of tasks,

such as query expansion (Bouchoucha, He, & Nie, 2013; Hsu, Tsai, & Chen,

2008; Kotov & Zhai, 2012), sentiment analysis (Cambria, Havasi, & Hussain,

2012; Tsai, Wu, Tsai, & Hsu, 2013; Agarwal, Mittal, Bansal, & Garg, 2015),

and question answering (Boteanu & Chernova, 2015; P. Wang, Wu, Shen, Dick,

& van den Hengel, 2018).

Freebase (Bollacker et al., 2008) was an attempt to integrate both KB pop-

ulation strategies, combining knowledge extracted from the Web with content
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created collaboratively. It also harvested data from Wikipedia, among other

sources, but also offered a system for allowing users to collaborate on the data

creation, structuring and maintenance in a wiki-style web interface. Freebase

main goal was to offer a knowledge base with the structural diversity provided

by collaborative wikis while still allowing the scalability and query capabilities

of a traditional structured database. As a tuple store, Freebase had more than

2.4 billion facts about around 44 million topics, being used in many question

answering systems (Yih, Chang, He, & Gao, 2015; Berant, Chou, Frostig, &

Liang, 2013; Dong, Wei, Zhou, & Xu, 2015; Yao & Van Durme, 2014). It was

later used as a source for, and replaced by, the Google Knowledge Graph, now

perhaps the largest commonsense knowledge graph, but which is not freely avail-

able, being used only by Google and its services for enhancing search results,

especially about named entities.

What can be noticed when comparing the different knowledge extraction

methods employed in the creation of the above-mentioned knowledge graphs is

that there is a trade-off between diversity of sources and variety of relationships.

While strategies that explore Wikipedia infoboxes and categories, like DBpe-

dia, YAGO, and KOG, can generate graphs with a larger number of different

relationships, they can only do so from structured or semi-structured content.

Moreover, by targeting Wikipedia content, these graphs predominantly contain

knowledge about named entities and little information about the world’s most

ordinary entities. On the other hand, methods capable of harvesting knowledge

from any web page and processing natural language text to extract entities and

relationships among them have to do so by committing to a smaller set of pre-

defined relationships, or even ending up with only a taxonomy, like Probase,

which contains a larger variety of entities, encompassing both named entities

and common world objects, but only a single relationship linking them.

Collaborative knowledge acquisition is a way to overcome expressiveness lim-

itations, since, through the input of thousands of contributors, it is possible to

gather a wide range of both entity types and relationships. Nevertheless, resort-

ing to lay users for generating formalized knowledge has as a side effect the de-

crease in content quality. This becomes clear when we analyze the relationships

for common concepts in ConceptNet: users often misunderstand the meaning

of relationships and end up creating inconsistent triples. The most remarkable

example is the very common confusion between the IsA and InstanceOf rela-

tionships. For example, for the concept “city”, the list of other concepts linked

to it through the IsA relationship mixes actual subclasses such as “capital” and
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“town” with instances like “San Francisco”, “London”, and “Venice”. Another

example is the relationship LocationOf : the list of things located at “Toronto”

includes “garbage”, “road”, and “tower”, when such common concepts should

be linked to other common concepts (in this case, to “city” so as to express

the same idea of location), while links to things located in “Toronto”, which is

an instance and not a class, should be reserved to other instances, like “Cana-

dian National Tower” or “St. James Anglican Cathedral”. Such principles are

part of the basic rules of formal knowledge representation and known to any

data modeling expert, but usually out of reach for the general population which

collaborative efforts rely on, making modeling and representation mistakes a

recurrent issue in collaborative environments.

Considering the text entailment task in particular, since it deals with lan-

guage variability and in most cases involves common language concepts, knowl-

edge graphs focused on named entities can’t provide the necessary information

for the reasoning process. However, besides word coverage, content quality is

also an important attribute for a commonsense knowledge base. The choice for

using dictionaries in the scope of this work owes to the fact that they are a rich

source of commonsense knowledge, gathering essential information about a wide

range of basic language concepts. Nevertheless, no knowledge base dedicated to

representing natural language definitions in a structured form with the explicit

intent of providing world knowledge for inference tasks had been developed so

far. We believe that such resources can provide the knowledge necessary for

the text entailment task, helping to meet both reasoning and interpretability

requirements.

3.2 DKG Conceptual Model

Commonsense world knowledge is a fundamental resource not only for Text

Entailment, but for a number of other Natural Language Processing tasks, such

as Question Answering, Information Retrieval, and Machine Translation, to

name a few. Nevertheless, existing large-scale knowledge bases, as described

in Section 3.1, have coverage and quality limitations, and formal, structured

resources that can express more complex relationships between a large number

of entities in a reliable way, such as ontologies, are still scarce and usually target

a very specific domain. On the other hand, a large number of linguistic resources
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gathering dictionary definitions is available not only for particular domains but

also addressing wide-coverage commonsense knowledge.

However, understanding the syntactic and semantic “shape” of natural lan-

guage definitions, i.e., how definitions are usually expressed, is fundamental for

the extraction of structured representations and the construction of semantic

models from these data sources. In order to make the most of those resources,

it is necessary to capture the underlying structure of natural language defi-

nitions so they can be represented in a structured way that favors both the

information extraction process and the subsequent information retrieval. This

allows the effective construction of semantic models from these data sources

while keeping the resulting model easily searchable and interpretable. Further-

more, by using these models, the approach for text entailment proposed in this

work can increase its own interpretability, benefiting from the structured data

for performing traceable reasoning and generating explanations.

Through a systematic analysis of the syntactic and semantic structure of

natural language definitions, the predominant definition patterns were identi-

fied. Based on these patterns, a set of semantic roles for definitions is proposed.

Differently from the commonly used event-centered semantic roles, which define

the semantic relations holding among a predicate (the main verb in a clause)

and its associated participants and properties (Màrquez, Carreras, Litkowski,

& Stevenson, 2008), in the context of this work, semantic role means entity-

centered roles, that is, roles that express the part played by an expression in a

definition, showing how it relates to the definiendum, that is, the entity being

defined.

Although the predicate-oriented semantic role labeling (SRL), which focuses

on determining “who” did “what” to “whom”, “where”, “when”, and “how”

(Jurafsky & Martin, 2000), is the most widespread SRL task, other sets of

semantic labels targeting different relationships have indeed already been pro-

posed, such as the non-event-centered semantic role labeling task focusing on

spatial relations between objects (Kordjamshidi, Moens, & van Otterlo, 2010).

This task defines roles such as trajectory, landmark, region, path, motion, direc-

tion and frame of reference, and an approach for annotating sentences contain-

ing spatial descriptions, extracting topological, directional and distance relations

from their content was developed as well, showing the potential of SRL for other

areas beyond predicate analysis.

WordNet (Fellbaum, 1998), one of the most employed linguistic resources in

semantic applications, was used as a corpus for the present study. The analysis’
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results pointed out the syntactic and semantic regularity of definitions, making

explicit an enumerable set of syntactic and semantic patterns which was used to

derive the information extraction framework and the underlying DKG semantic

model.

3.2.1 Structural Aspects of Definitions

Swartz (1997) describes lexical, or dictionary definitions as reports of common

usage (or usages) of a term. He argues that they allow the improvement and

refinement of the use of language, because they can be used to increase vo-

cabulary (introducing people to the meaning and use of words new to them),

to eliminate certain kinds of ambiguity and to reduce vagueness. A clear and

properly structured definition can also provide the necessary identity criteria to

correctly allocate an entity in an ontologically well-defined taxonomy (Guarino

& Welty, 2002).

Some linguistic resources, such as WordNet, organize concepts in a tax-

onomy, so the genus-differentia definition pattern would be a suitable way to

represent the subsumption relationship among them. The genus and differentia

concepts date back to Aristotle’s writings concerning the theory of definition

(Berg, 1982; Granger, 1984; A. C. Lloyd, 1962) and are most commonly used to

describe entities in the biology domain, but they are general enough to define

concepts in any field of knowledge. An example of a genus-differentia based

definition is the Aristotelian definition of a human: “a human is a rational an-

imal”. “Animal” is the genus, and “rational” is the differentia distinguishing

humans from other animals.

Another important aspect of the theory of definition is the distinction be-

tween essential and non-essential properties. As pointed by Burek (2004), stat-

ing that “a human is an animal” informs an essential property for a human

(being an animal), but the sentence “human is civilized” does not communi-

cate a fundamental property, but rather something that happens to be true for

humans, that is, an incidental property.

Analyzing a subset of the WordNet definitions to investigate their structure,

it could be noticed that most of them loosely adhere to the classical theory of

definition: with the exception of some samples of what could be called ill-formed

definitions, in general, they are composed by a linguistic structure that resembles

the genus-differentia pattern, plus optional and variable incidental properties.

Such recurring structures were classified and organized into patterns, deriving a
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set of semantic roles representing the components of a lexical definition, which

are described next.

3.2.2 Semantic Roles for Lexical Definitions

Definitions in WordNet don’t follow a strict pattern: they can be constructed

in terms of the entity’s immediate superclass or rather using a more abstract

ancestral class. For this reason, we opted for using the more general term

supertype instead of the classical genus. A supertype is either the immediate

entity’s superclass, as in “footwear: clothing worn on a person’s feet”, being

“footwear” immediately under “clothing” in the taxonomy; or an ancestral, as

in “illiterate: a person unable to read”, where “illiterate” is three levels below

“person” in the hierarchy (according to WN hypernym links, “illiterate” is an

“uneducated person”, an “ uneducated person” is an “unskilled person”, and

an “unskilled person” is a “person”).

Two different types of distinguishing features stood out in the analyzed

definitions, so the differentia component was split into two roles: differentia

quality and differentia event. A differentia quality is an essential, inherent

property that distinguishes the entity from the others under the same supertype,

as in “baseball coach: a coach of baseball players”. A differentia event is an

action, state or process in which the entity participates and that is mandatory

to distinguish it from the others under the same supertype. It is also essential

and is more common for (but not restricted to) entities denoting roles, as in

“roadhog: a driver who obstructs others”.

As any expression describing events, a differentia event can have several

subcomponents, denoting time, location, mode, etc. Although many roles could

be derived, we opted to specify only the ones that were more recurrent and

seemed to be more relevant for the definitions’ classification: event time and

event location. Event time is the time in which a differentia event happens,

as in “master of ceremonies: a person who acts as host at formal occasions”;

and event location is the location of a differentia event, as in “frontiersman: a

man who lives on the frontier”.

A quality modifier can also be considered a subcomponent of a differentia

quality: it is a degree, frequency or manner modifier that constrains a differentia

quality, as in “dart: run or move very quickly or hastily”, where “very” narrows

down the differentia quality “quickly” associated to the supertypes “run” and

“move”.
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The origin location role can be seen as a particular type of differentia

quality that determines the entity’s location of origin, but in most of the cases

it doesn’t seem to be an essential property, that is, the entity only happens to

occur or come from a given location, and this fact doesn’t account to its essence,

as in “Bartramian sandpiper: large plover-like sandpiper of North American

fields and uplands”, where “large” and “plover-like” are essential properties to

distinguish “Bartramian sandpiper” from other sandpipers, but occurring in

“North American fields and uplands” is only an incidental property.

The purpose role determines the main goal of the entity’s existence or

occurrence, as in “redundancy: repetition of messages to reduce the probability

of errors in transmission”. A purpose is different from a differentia event in

the sense that it is not essential: in the mentioned example, a repetition of

messages that fails to reduce the probability of errors in transmission is still a

redundancy, but in “water faucet: a faucet for drawing water from a pipe or

cask”, “for drawing water” is a differentia event, because a faucet that fails this

condition is not a water faucet.

Another event that is also non-essential, but rather brings only additional

information to the definition is the associated fact, a fact whose occurrence

is/was linked to the entity’s existence or occurrence, accounting as an incidental

attribute, as in “Mohorovicic: Yugoslav geophysicist for whom the Mohorovicic

discontinuity was named”.

Other minor, non-essential roles identified in our analysis are:

Accessory determiner: a determiner expression that doesn’t constrain the

supertype-differentia scope, as in “camas: any of several plants of the genus

Camassia”, where the expression “any of several” could be removed without

any loss in the definition meaning;

Accessory quality: a quality that is not essential to characterize the entity,

as in “Allium: large genus of perennial and biennial pungent bulbous plants”,

where “large” is only an incidental property; and

[Role] particle: a particle, such as a phrasal verb complement, non-contiguous

to the other role components, as in “unstaple: take the staples off ”, where the

verb “take off” is split in the definition, being “take” the supertype and “off” a

supertype particle.
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The conceptual model in Figure 3.1 shows the relationship among roles, and

between roles and the definiendum. Table 3.1 summarizes the identified seman-

tic roles’ descriptions. The proposed semantic roles list is by no means definitive

or exhaustive, but it covers a reasonable amount of definition properties, ren-

dering enough granularity and expressiveness to the resulting knowledge base.

Figure 3.1: Conceptual model for the semantic roles for lexical definitions. Rela-
tionships between [role] particle and every other role in the model are expressed
as dashed lines for readability.

3.2.3 Identifying Semantic Roles in Definitions

Once the relevant semantic roles were identified in the manual analysis, the

following question emerged: is it possible to extend this classification to a whole

definition database through automated Semantic Role Labeling? Although most

SRL systems rely on efficient machine learning techniques (Palmer, Gildea, &

Xue, 2010), an initial, preferably large, amount of annotated data is necessary

for the training phase.

Since manual annotation is expensive, an alternative is a rule-based mecha-

nism to automatically label the definitions, based on their syntactic structure,

followed by manual curation of the generated data. As shown in an experimen-

tal study by Punyakanok et al. (2005), syntactic parsing provides fundamental

information for event-centered SRL, and, in fact, this is also true for entity-

centered SRL.

To draw the relationship between syntactic and semantic structure (as well

as defining the set of relevant roles described earlier), a random sample of 100



3.2. DKG CONCEPTUAL MODEL 101

Role Description
Supertype the immediate or ancestral entity’s superclass
Differentia quality a quality that distinguishes the entity from the others

under the same supertype
Differentia event an event (action, state or process) in which the entity

participates and that is mandatory to distinguish it
from the others under the same supertype

Event location the location of a differentia event
Event time the time in which a differentia event happens
Origin location the entity’s location of origin
Quality modifier degree, frequency or manner modifiers that constrain

a differentia quality
Purpose the main goal of the entity’s existence or occurrence
Associated fact a fact whose occurrence is/was linked to the entity’s

existence or occurrence
Accessory determiner a determiner expression that doesn’t constrain the

supertype-differentia scope
Accessory quality a quality that is not essential to characterize the en-

tity
[Role] particle a particle, such as a phrasal verb complement, non-

contiguous to the other role components

Table 3.1: Semantic roles for dictionary definitions

definitions from the WordNet nouns+verbs database1 was selected, being 84

nouns and 16 verbs (the verb database size is only approximately 17% of the

noun database size).

First, each of the definitions was manually annotated, so each segment in the

sentence was assigned the most suitable role. Example sentences and parenthe-

ses were not included in the classification. Figure 3.2 shows some examples of

annotated definitions. Then, using the Stanford parser (Manning et al., 2014),

we generated the syntactic parse trees for all the 100 definitions and compared

the semantic patterns with their syntactic counterparts, pairing role labels with

phrasal nodes for each relevant segment in the sentences.

Table 3.2 shows the distribution of the semantic patterns for the analyzed

sample. As can be seen, (supertype) (differentia quality) and (supertype) (dif-

ferentia event) are the most frequent patterns, but many others are composed

by a combination of three or more roles, usually the supertype, one or more

differentia qualities and/or differentia events, and any of the other roles. Since

1Adjectives and adverbs are not organized in a taxonomy in WordNet, so are less likely to
follow a supertype-differentia pattern, probably requiring a different classification strategy
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Figure 3.2: Examples of definition role labeling.

most of them occurred only once (29 out of 42 identified patterns), it is easier to

analyze the roles as independent components, regardless of the pattern where

they appear in. The context can always give some hint about what a role is,

but we would expect the role’s main characteristics not to change when their

“companions” in the sentence varies. The conclusions are as follows2, and are

summarized in Table 3.3:

Supertype: it’s mandatory in a well-formed definition, and indeed 99

out of the 100 sentences analyzed have a supertype (the definition for “Ter-

tiary period” – “from 63 million to 2 million years ago” lacks a supertype and

could, then, be considered an ill-formed definition). For verbs, it is the leftmost

VB and, in some cases, subsequent VBs preceded by a CC (“or” or “and”).

This is the case whenever the parser correctly classifies the definition’s head

word as a verb (11 out of 16 sentences). For nouns, in most cases (70 out of

83) the supertype is contained in the innermost and leftmost NP containing at

least one NN. It is the whole NP (discarding leading DTs) if it exists as an entry

in WN, or the largest rightmost sequence that exists in WN otherwise. In the

last case, the remaining leftmost words correspond to one or more differentia

qualities. If the NP contains CCs, more than one supertype exist, and can be

2POS tags and non-terminal symbols are listed in Appendix A
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Pattern Total
(supertype) (differentia quality) 27
(supertype) (differentia event) 13
(differentia quality) (supertype) 6
(supertype) (differentia event) (event location) 5
(supertype) (differentia quality) (purpose) 3
(accessory determiner) (supertype) (differentia event) 3
(accessory determiner) (supertype) (differentia quality) 2
(supertype) OR(differentia quality)+ 2
(supertype) (origin location) 2
(differentia quality) (supertype) (differentia quality) 2
OR(supertype)+ (differentia event) 2
(differentia quality)+ (supertype) 2
(differentia quality)+ (supertype) (differentia event) 2
Other 29
Total 100

Table 3.2: Distribution of semantic patterns for the analyzed definitions.
“Other” refers to patterns that occurred only once. (role)+ indicated the occur-
rence of two or more consecutive instances of the role, and OR(role)+ indicates
the same, but with the conjunction “or” connecting the instances.

identified following the same rules just described. The 13 sentences that don’t

fit this scenario include some non-frequent grammatical variations, parser errors

and the presence of accessory determiners, described later.

Differentia quality: for verbs, this is the most common identifying com-

ponent in the definition. It occurs in 14 out of the 16 sentences. The other

two ones are composed by a single supertype (that would better be seen as a

synonym), and by a conjunction of two supertypes. The differentia quality is

usually a PP (5 occurrences) or an NP (4 occurrences) coming immediately af-

ter the supertype. JJs inside ADJPs (3 occurrences) or RBs inside ADVPs (1

occurrence) are also possible patterns, where the presence of CCs indicates the

existence of more than one differentia quality. For nouns, two scenarios stand

out: the differentia quality preceding the supertype, where it is composed by

the leftmost words in the same NP that contains the supertype but are not

part of the supertype itself (the NP’s “leftovers”), as described above; and the

differentia quality coming after the supertype, predominantly composed by a

PP, where the prevailing introductory preposition is “of”. These two scenarios

cover approximately 90% of all analyzed sentences where one or more differentia

qualities occur.



104 CHAPTER 3. FROM LEXICONS TO KNOWLEDGE GRAPHS

Role Most common syntactic patterns
Supertype innermost and leftmost NP containing at least one

NN
Differentia quality leftovers in the innermost and leftmost NP; PP be-

ginning with “of”’
Differentia event SBAR; VP
Event location PP inside an SBAR or VP, possibly having a location

named entity
Event time PP inside an SBAR or VP, possibly having a time

interval named entity
Origin location PP not inside an SBAR or VP, possibly having a

location named entity
Quality modifier NN, JJ or RB referring to an element inside a differ-

entia quality
Purpose VP beginning with TO; PP beginning with “for”

with a VP right after
Associated fact SBAR; PP not beginning with “for” with a VP right

after
Accessory determiner whole expression before supertype; common acces-

sory expression
Accessory quality JJ, presence of a differentia quality, common acces-

sory word
[Role] particle PRT

Table 3.3: Most common syntactic patterns for each semantic role.

Differentia event: differentia events occur only for nouns, since verbs can’t

represent entities that can participate in an event (i.e., they are endurants in

the ontological view, and only perdurants can participate in events). They are

predominantly composed by either an SBAR or a VP (under a simple clause or

not) coming after the supertype. This is the case in approximately 92% of the

analyzed sentences where differentia events occur. In the remaining samples, the

differentia event is also composed by a VP, but under a PP and immediately

after the introductory preposition.

Event location: event locations only occur in conjunction with a differentia

event, so they will usually be composed by a PP appearing inside an SBAR or a

VP. Being attached to a differentia event helps to distinguish an event location

from other roles also usually composed by a PP, but additional characteristics

can also provide some clues, like, for example, the presence of named entities

denoting locations, such as “Morocco” and “Lake District”, which appear in

some of the analyzed definitions.
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Event time: the event time role has the same characteristics of event lo-

cations: only occurs in conjunction with a differentia event and is usually com-

posed by a PP inside an SBAR or a VP. Again, additional information such as

named entities denoting time intervals, for example, “the 19th century” in one

of the analyzed definitions, is necessary to tell it apart from other roles.

Origin location: origin locations are similar to event locations, but oc-

curring in the absence of an event, so it is usually a PP that does not appear

inside an SBAR or a VP and that frequently contains named entities denoting

locations, like “United States”, “Balkan Peninsula” and “France” in our sample

definitions. A special case is the definition of entities denoting instances, where

the origin location usually comes before the supertype and is composed by an

NP (also frequently containing some named entity), like the definitions for Char-

lotte Anna Perkins Gilman – “United States feminist” – and Joseph Hooker –

“United States general [. . . ]”, for example.

Quality modifier: quality modifiers only occur in conjunction with a dif-

ferentia quality. Though this role wasn’t very frequent in our analysis, it is

easily identifiable, as long as the differentia quality component has already been

detected. A syntactic dependency parsing can show whether some modifier

(usually an adjective or adverb) references, instead of the supertype, some of

the differentia quality’s elements, modifying it.

Purpose: the purpose component is usually composed by a VP beginning

with a TO (“to”) or a PP beginning with the preposition “for” and having a

VP right after it. In a syntactic parse tree, a purpose can easily be mistaken

by a differentia event, since the difference between them is semantic (the dif-

ferentia event is essential to define the entity, and the purpose only provides

additional, non-essential information). Since it provides complementary infor-

mation, it should always occur in conjunction with an identifying role, that is,

a differentia quality and/or event. Previously detecting these identifying roles

in the definition, although not sufficient, is necessary to correctly assign the

purpose role to a definition’s segment.

Associated fact: an associated fact has characteristics similar to those of

a purpose. It is usually composed by an SBAR or by a PP not beginning with

“for” with a VP immediately after it (that is, not having the characteristics of

a purpose PP). Again, the difference between an associated fact and a differen-

tia event is semantic, and the same conditions and principles for identifying a

purpose component also apply.
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Accessory determiner: accessory determiners come before the supertype

and are easily recognizable when they don’t contain any noun, like “any of sev-

eral”, for example: it will usually be the whole expression before the supertype,

which, in this case, is contained in the innermost and leftmost NP having at

least one NN. If it contains a noun, like “a type of”, “a form of”, “any of a class

of”, etc., the recognition becomes more difficult, and it can be mistaken by the

supertype, since it will be the leftmost NP in the sentence. A more extensive

analysis in the WN database to collect the most common expressions used as

accessory determiners was performed in order to provide further information for

the correct role assignment.

Accessory quality: the difference between accessory qualities and differen-

tia qualities is purely semantic. It is usually a single adjective, but the syntactic

structure can’t help beyond that in the accessory quality identification. Again,

the presence of an identifying element in the definition (preferably a differentia

quality) associated with knowledge about most common words used as accessory

qualities can provide important evidence for the correct role detection.

[Role] particle: although we believe that particles can occur for any role, in

our analysis it was very infrequent, appearing only twice and only for supertypes.

It is easily detectable for phrasal verbs, for example, take off in “take the staples

off”, since the particle tends to be classified as PRT in the syntactic tree. For

other cases, it would be necessary a larger number of samples such that some

pattern could be identified and a suitable extraction rule could be defined.

Figure 3.3, which shows both the (simplified) parse tree and the role labeling

for the definition of the concept “lake poets”, illustrates some of the relation-

ships between syntactic structures and the semantic roles shown in Table 3.3.

Each relevant segment, that is, a segment that can be considered a self-contained

amount of information, is assigned a role label, which is closely related to the

segment’s syntactic classification.

3.3 Definition Filter

As described in Section 3.2, the proposed conceptual model for representing a set

of lexical definitions as a DKG derives from the basic genus-differentia pattern.

In fact, a well-formed definition should contain at least the definiendum’s type,

informing what it is, and its essential attributes, stating how it differs from



3.3. DEFINITION FILTER 107

Figure 3.3: The (simplified) parse tree for the definition of the concept
“lake poets” and the correspondences between each relevant phrasal node and
the definition’s semantic roles.

other entities under the same type. In the proposed conceptual model, this

translates to at least a supertype and a differentia (quality or event) role.

However, we can’t always guarantee that definitions in a dictionary will fol-

low these principles. As an example, consider the following definitions extracted

from WordNet:

(1) poorness: less than adequate

(2) accession: agreeing with or consenting to

(3) codfish ball: usually made of flaked salt cod and mashed potatoes

(4) worrier: thinks about unfortunate things that might happen

(5) brown lemming: of northwestern Canada and Alaska

(6) clerid beetle: predacious on other insects

What can be noticed in all of these definitions is that none of them explicitly

says what the entity being defined is. The definition in (1) could be suitable

for an adjective but, since “poorness” is a noun, it would be more appropriate

to say that it is “the quality of being less than adequate”. The same happens

in (2): starting a definition with a verb is suitable for defining another verb

but not a noun; “accession” should be defined as “the act of agreeing with

or consenting to”. Similarly, (3) and (4) contain a differentia quality and a



108 CHAPTER 3. FROM LEXICONS TO KNOWLEDGE GRAPHS

differentia event, respectively, but both refer to no subject. It should be explicit

that “codfish ball” is “a dish made of flaked salt cod and mashed potatoes”

and “worrier” is “a person who thinks about unfortunate things that might

happen”. The definitions in (5) and (6) are even poorer: besides not stating

what the definiendum’s type is, the only information given regards non-essential

attributes, which by no means uniquely characterize the entity being defined.

WordNet is a lexical resource built by expert lexicographers, but even so,

it contains a number of ill-formed definitions. This problem becomes more

noticeable for collaborative resources, such as the online dictionary Wiktionary,

where definitions are entered by a large number of lay users.

The issue introduced by ill-formed definitions is twofold: first, if we use def-

initions for explaining entailment decisions, poor definitions will generate poor

justifications. Second, since, as detailed in Section 3.2.3, definition semantic

roles are closely related to specific syntactic patterns, definitions that don’t fit

the most common patterns are more prone to classification errors because it is

harder to automatically induce the right label when the proper syntactic cues

are absent.

For preventing ill-formed definitions from being included in the graph knowl-

edge base, a definition filter which implements a set of rules regarding the syntac-

tic structure of a well-formed definition was developed. Although, as mentioned

before, a well-formed definition should contain a supertype role and at least a

differentia role, we opted for a more flexible interpretation, characterizing as an

ill-formed definition one that does not inform the definiendum’s type. There-

fore, the filter is meant to eliminate definitions for which the supertype role is

lacking, such as the ones in examples (1) through (6) above. This choice was

made due to the fact that the supertype is the only mandatory role node in the

final RDF definition graph, where all the other nodes are structured around it,

as described later in the methodology steps description.

The set of rules was obtained through a manual analysis of the syntactic

structure of a sample of definitions. Similarly to the conceptual model creation,

WordNet was used as the corpus for this analysis. A set of 6,000 definitions

were randomly chosen, being 5,148 noun definitions and 852 verb definitions.

Using the Stanford parser (Manning et al., 2014), the syntactic parse tree for

each definition was generated, and the most common syntactic patterns were

identified, grouped and formatted as a rule. The rules not only describe the

expected shape of a definition but also account for parser errors, identifying a

well-constructed sentence even when the parser fails to capture the right struc-
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ture whenever it is possible. The rules differ for noun and verb definitions, and

are detailed next.

3.3.1 Noun Definition Patterns

A noun must be defined in terms of another noun, which indicates its kind. For

example, “a man is a person”, “a tree is a plant”, and “joy is an emotion”

would be proper ways of starting a noun definition. Syntactically, this means

that a noun definition must start with a noun phrase (NP). In fact, this is the

most common syntactic pattern observed in the sample, and can be considered

the standard noun definition pattern, from which the first rule derives3:

Rule N1: Definition starts with an NP having at least one NN

Formally, the leftmost node in the parse tree must be an NP having at least one

NN and no other NP under it. The NN is the supertype role candidate, and it

may or may not be preceded by other words, usually a determiner and one or

more qualifiers. Example in Figure 3.4, where the dashed and shadowed areas

indicate the satisfied rule conditions.

Figure 3.4: Example of a noun definition following the pattern defined by the
rule N1.

Rule N1 defines the mandatory structure for a noun definition. Nevertheless,

definitions that follow this pattern can be erroneously filtered out due to parser

3POS tags and non-terminal symbols are listed in Appendix A
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errors. The remaining rules are intended to overcome the most common parser

misclassifications observed in the analyzed sample:

Rule N2: Definition starts with an NP having a word that exists as a noun

Formally, the leftmost node in the parse tree is an NP having no other NP under

it, and whose rightmost child is not an NN, but is a word that exists as a noun

in WordNet. That means the rightmost word is a NN misclassified as a JJ,

VB, CD, etc. Example in Figure 3.5, where the shadowed branch indicates the

parser misclassification; the highlighted area satisfies the rule conditions since

“helping” exists as a noun in WordNet.

Figure 3.5: Example of a noun definition following the pattern defined by the
rule N2.

Rule N3: Definition starts with an ADJP or ADVP having a word that exists

as a noun

Formally, the leftmost node in the parse tree is an ADJP or ADVP having no

NP under it and whose rightmost child is a word that exists as a noun in Word-

Net. Example in Figure 3.6, where the whole tree satisfies the rule conditions,

since there is no NN but “ecclesiastic” exists as a noun in WordNet.

Rule N4: Definition starts with an NP having an NN followed by a complete

simple or subordinate clause

Formally, the leftmost node in the parse tree is an NP having an NN whose
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Figure 3.6: Example of a noun definition following the pattern defined by the
rule N3.

immediate right sibling is an S or an SBAR. Example in Figure 3.7, where the

leftmost NP, which in this case is the root node, has another NP under it (and,

therefore, does not satisfy the rule N1), but has an NN having an S immediately

to its right.

Figure 3.7: Example of a noun definition following the pattern defined by the
rule N4.

Rule N5: Definition starts with an NP having a POS followed by a NN

Formally, the leftmost node in the parse tree is an NP having a POS that has
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a NN as a right sibling. Parse trees whose leftmost NP contains a POS are

excluded from rule N1 even if such NP also contains an NN, because this NN

is usually not the supertype, therefore it is necessary to ensure there is another

NN after the POS. Example in Figure 3.8, where the dashed area indicates the

leftmost NP that satisfies the rule. We can notice that it contains an NN (“one”)

which is not the supertype, and a POS which has an NN to its right. This NN

is part of the actual supertype, namely “native language”.

Figure 3.8: Example of a noun definition following the pattern defined by the
rule N5.

3.3.2 Verb Definition Patterns

Verb definitions are usually simpler than noun ones: they either start with an-

other verb, or with a verb preceded by an adverb. In the first case, the sentence

will start with a VP, and in the second, it may start with an ADVP or an RB,

followed by a VP. These scenarios can be considered the standard verb defini-

tion patterns, and derive the first two rules:

Rule V1: Definition starts with a VP

Formally, the leftmost node in the parse tree must be a VP. Example in Fig-

ure 3.9, where the dashed area indicates the satisfied rule condition. It is not

necessary to check for a VB in this branch, since a VP will always contain such
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node, as shown by the shadowed area in the picture.

Figure 3.9: Example of a verb definition following the pattern defined by the
rule V1.

Rule V2: Definition starts with an ADVP or RB before a VP

Formally, the leftmost node in the parse tree is an ADVP, or an RB not under

an ADVP, having a VP as the immediate right sibling. This means that the RB

(under an ADVP or not) is qualifying the verb and, if removed, the definition

fully satisfies the rule N1. Example in Figure 3.10, where the highlighted areas

indicate the satisfied rule conditions.

Rules V1 and V2 define the mandatory structures for a verb definition. As

for noun definitions, complementary rules were defined to overcome the most

common parse errors observed in the analyzed sample:

Rule V3: Definition starts with an NP whose leading NN exists as a verb

Formally, the leftmost node in the parse tree is an NP whose leftmost child is

an NN that exists as a verb in WordNet. Since in English a large number of

words double as a noun and a verb, this is the most common parser misclassifi-

cation for verb definitions. Example in Figure 3.11, where the highlighted areas

indicate the satisfied rule conditions, since “whip” exists as a verb in WordNet.

Rule V4: Definition starts with an ADJP whose leading JJ exists as a verb
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Figure 3.10: Example of a verb definition following the pattern defined by the
rule V2.

Figure 3.11: Example of a verb definition following the pattern defined by the
rule V3.

Formally, the leftmost node in the parse tree is an ADJP whose leftmost child

is a JJ that exists as a verb in WordNet. Example in Figure 3.12, where the

highlighted areas indicate the satisfied rule conditions, since, although “subject”

is tagged as an adjective, it also exists as a verb in WordNet.

Rule V5: Definition starts with an ADVP whose leading RB exists as a verb

Formally, the leftmost node in the parse tree is an ADVP whose leftmost child
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Figure 3.12: Example of a verb definition following the pattern defined by the
rule V4.

is an RB that exists as a verb in WordNet. Such ADVP must not be followed

by a VP, which means it is not qualifying a verb, otherwise, it would satisfy

the rule V2. Example in Figure 3.13, where the highlighted areas indicate the

satisfied rule conditions, since “forward”, besides being an adverb, also exists

as a verb in WordNet.

Figure 3.13: Example of a verb definition following the pattern defined by the
rule V5.
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Table 3.4 lists the formalized set of rules. A definition parse tree D is

composed of a set of nodes, indicated by the elements enclosed by “(” and “)”.

The node after the first ∗ is the leftmost (non-terminal) tree node; ∗ indicates

the existence of 0 to n subtrees, x is any terminal symbol, and | stands for “or”.

N1 D → (∗ (NP ∗ (NN)) ∗)
N2 D → (∗ (NP ∗ (x)) ∗), x is a WordNet noun
N3 D → (∗ (ADJP | ADV P ∗ (x)) ∗), x is a WordNet noun
N4 D → (∗ (NP ∗ (NN) (S | SBAR) ∗) ∗)
N5 D → (∗ (NP ∗ (POS) ∗ (NN) ∗) ∗)
V1 D → (∗ (V P ∗) ∗)
V2 D → (∗ (ADV P | RB) (V P ) ∗)
V3 D → (∗ (NP (NN) ∗) ∗), NN is also a WordNet verb
V4 D → (∗ (ADJP (JJ) ∗) ∗), JJ is also a WordNet verb
V5 D → (∗ (ADV P (RB) ∗) ∗), RB is also a WordNet verb, no V P after RB

Table 3.4: Definition filter rules.

The definition filter based on this set of rules was implemented with the

aid of the TRegEx tool (Levy & Andrew, 2006), which allows the specification

of queries with a wide range of conditions over the syntactic parse tree. In

order to check whether the set of rules reflects the actual composition of a

complete lexicon, the definition filter was applied to the whole noun and verb

WordNet databases. The distribution of patterns for both the analyzed sample

and the full databases are shown in Table 3.5. As can be noted, rules N1

for nouns and V1 for verbs cover the vast majority of definitions in both the

sample and the full WN definition database. While the rule N1 covers 95%

of the noun definitions in the sample and 92,6% in the full database, rule V1

covers around 95,5% of verb definitions in both sets. With some slight variation,

the pattern distribution in the sample reflects that of the full WordNet. The

total of rejected definitions encompasses both noun and verb ones. Although

rules N2 through N5 and V2 through V5 covers only a small percentage of

definitions, it is important to account for such patterns because, as mentioned

before, other linguistic resources, especially the ones built collaboratively like

Wiktionary, may have less syntactic regularity, presenting a wider variation of

definition styles, which can lead to varying parser interpretations. Therefore,

it is desirable to tell parser errors apart from actual definition design errors as

much as possible.

The accuracy of the filtering procedure was verified on the analyzed 6,000

sample. The whole set of rejected definitions and a random sample of the same
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Rule
WordNet

6,000 Sample
WordNet Full Noun
and Verb Databases

N1 95,00% 92,60%
N2 1,50% 2,30%
N3 1,17% 0,15%
N4 0,38% 1,00%
N5 0,11% 0,36%
V1 95,50% 95,40%
V2 0,10% 0,05%
V3 4,20% 4,00%
V4 0,23% 0,50%
V5 0,10% 0,01%
Rejected 2,66% 2,26%

Table 3.5: Distribution of syntactic patterns detected during the definition fil-
tering.

size from the accepted definitions were analyzed, showing that around 70% of

rejected definitions were in fact invalid ones, and over 98% of the filtered, i.e.,

accepted definitions are indeed valid ones. False negatives, that is, rejected defi-

nitions that are in fact valid ones, are mainly due to very complex an uncommon

syntactic parse trees. Nevertheless, given that the main goal of the filter is to

prevent ill-formed definitions from being included in the final graph knowledge

base, the high precision (98% of true positives) ensures that the intended clean-

ing purposes are met. The definition filter was integrated as a preprocessing

stage in the knowledge graph construction methodology, which is described in

the next Section.

3.4 Graph Construction Methodology

Information Extraction (IE) methods have been largely used in NLP for select-

ing and structuring relevant data from natural language unstructured text in

order to populate some kind of database (Cowie & Wilks, 2000). In the lexical

definitions field, IE has also been widely explored with the aim of constructing

structured knowledge bases from machine-readable dictionaries (Vossen, 1992;

Calzolari, 1991; Vossen, 1991; Vossen & Copestake, 1994).

The use of syntactic information from dictionary definitions is a constant

across the different attempts to build structured representations of lexicons.

Among early efforts, it is remarkable the creation of the LKB, a Lexical Knowl-
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edge Base (Copestake, 1991) based on typed-feature structures that can be seen

as a set of attributes for a given concept, such as “origin”, “color”, “smell”,

“taste” and “temperature” for the concept “drink”, for example. The defini-

tions from a machine-readable dictionary were parsed to extract the definien-

dum’s genus and differentiae, and the values represented by the differentiae

filled in the feature structures for that genus. But, since the features, that is,

the relevant attributes for a given entity, had to be defined in advance, only a

restricted domain could be covered by this approach.

Besides the entity-attributes structure, syntactic parsing was also already

used to identify semantic relations such as is-a, part-of, etc., to convert a dictio-

nary into a directed graph (Dolan, Vanderwende, & Richardson, 1993). Other

graph conceptual models were also adopted, such as the one containing only

three types of edges, numbered from 0 to 2: the 0-edge represents unary pred-

icates and the 1 and 2-edges connects binary predicates to their arguments

(Recski, 2016). In common, these approaches work at the word-level, convert-

ing every single word in the definition into a node. This strategy can increase

the complexity of the information retrieval over the final knowledge base, given

that it may be necessary to concatenate the contents of several nodes to obtain

meaningful enough information about an entity. Representations at the multi-

word expression level, also through the syntactic-semantic analysis of textual

definitions, have been proposed (Bovi, Telesca, & Navigli, 2015), but the re-

sulting graphs are used only as an intermediary resource for the final goal of

extracting semantic relations between the entities present in the definition.

The methodology for automatic graph construction proposed in this work

follows the principle that a knowledge graph derived from a dictionary, where

each node is a meaningful phrase, allows the retrieval of intelligible data from a

path made up by only a few nodes. This is possible because every node contains

a piece of self-contained information about the definiendum. This methodology

was developed with the aid of the semantic and syntactic patterns identified in

Section 3.2, as well as their association rules. It includes information extraction,

semantic role labeling, and RDF conversion procedures, resulting in a framework

which receives as input a set of plain text natural language definitions and

outputs a structured DKG.

Splitting a natural language definition into comprehensible segments allows

the selection of the portions of information regarding an entity’s description

that are relevant for a certain reasoning task. For example, consider the defini-

tion for the concept “lake poets”, which was classified according to the model
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described in Section 3.2, illustrated in Figure 3.3. When retrieving data related

to this concept, we could be interested only in origin- (“lake poets are English

poets”), time- (“lake poets are poets at the beginning of the 19th century”) or

space- (“lake poets are poets who lived in the Lake District”) related informa-

tion. When each of those roles is represented as a node in the graph we can

focus only on the path containing the nodes of interest. Moreover, since the

definition is split into segments rather than single words, each node contains a

comprehensible amount of information, avoiding the need to visit several nodes

to gather intelligible phrases.

The methodology for classifying and structuring natural language definitions

to generate a DKG – a knowledge graph using the RDF data model – comprised

the following steps:

Synsets Sample Selection

As mentioned in Section 3.2.3, classifying definitions according to the conceptual

model described in Section 3.2.2 is a Semantic Role Labeling task, which can

be performed automatically but requires an initial set of annotated training

data. In order to use a supervised machine learning model to classify the data,

4,000 WordNet synsets4, along with their definitions, were randomly selected

to compose the training set. Out of this 4,000 synsets, 3,443 are noun synsets

and 557 are verb synsets (as mentioned before, the verb database size is only

around 17% of the noun database size).

Automatic Pre-Annotation

Using the association rules described in Section 3.2.3, an automatic pre-annotation

procedure implementing a rule-based heuristic was used to classify the sample

set of 4,000 definitions. This procedure uses the Stanford parser (Manning et al.,

2014) to generate the syntactic parse tree for each definition and the TRegEx

tool (Levy & Andrew, 2006) to identify the relevant phrasal nodes and then

assign the semantic roles more often associated to them (see Table 3.3).

Figure 3.14 shows an example of pre-annotation, depicting the parse tree

generated for the definition of the concepts “Scotch” – “whiskey distilled in

Scotland” – and the semantic roles automatically assigned to each phrasal node.

Note that, after being classified as a differentia event, the VP is further analyzed

4A synset in WordNet is a set of synonyms words or phrases which share the same definition
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and a PP containing an event location is identified and assigned its own role

label.

Figure 3.14: Syntactic parse tree for a definition and assigned semantic role
labels.

Data Curation

After the automatic pre-annotation, the definitions were submitted to a manual

curation procedure for label validation. This task was performed with the aid

of the Brat5 annotation tool. At this stage, all misclassifications were manually

fixed and segments missing a role were assigned the appropriate one. Misclas-

sifications and missing roles are due to parser errors or insufficient information

(for instance, a PP inside a VP may not contain any named entity, making it

hard to correctly distinguish between an event time and an event location). The

manual data curation ensured that every segment in each definition, apart of

leading determiners and conjunctions between roles (as opposed to conjunctions

inside roles), was associated with a semantic role label.

Classifier Training

The curated data was then converted to the IOB (Inside-Outside-Beginning)

format and used to train a Recurrent Neural Network (RNN) machine learning

model designed for sequence labeling.

The model used was the RNN implementation provided by Mesnil et al.

(2015), which reports state-of-the-art results for the slot filling task. Besides

focusing on Spoken Language Understanding (SLU), that is, targeted under-

standing of human speech directed at machines, they define the slot filling task

as “a sequence classification problem in which contiguous sequences of words

are assigned semantic class labels”, which also fits our purposes.

5http://brat.nlplab.org/
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The annotated dataset was split into training (68%), validation (17%) and

test (15%) sets. The best accuracy reached during training was of 73.84% on

the validation set and 77.24% on the test set.

Database Classification

The trained classifier was then used to label the set of definitions from different

lexical resources. This set was composed of the filtered definitions generated as

the output of the filtering procedure described in Section 3.3. Since semantic

roles are closely related to syntactic patterns in the definitions, by excluding ill-

formed definitions, that is, definitions that don’t fit the most common syntactic

patterns, it is possible to reduce the probability of classification errors. Lexical

resources with different characteristics were chosen, as will be detailed later,

and each resource gave origin to a different DKG, which allowed us to test the

proposed text entailment approach with different configurations and compare

the resources among them.

Data Post-Processing

Since some of the classified definitions lacked the supertype role label, the la-

beled data had to pass through a post-processing phase. The supertype is a

mandatory component in a well-formed definition and, as will be detailed later,

the RDF model is structured around it. Following the same syntactic rules

adopted for pre-annotation, missing supertypes were identified and the roles

around it had their limits adjusted, while the remaining classification was kept

unchanged. It is worth reminding that all the definitions submitted to the clas-

sifier have been previously filtered, therefore most of the ill-formed ones were

removed and the lack of a supertype in the resulting labeling is most likely due

to a classification error than a syntactic malformation.

Figure 3.15 shows an example of post-processing, picturing the output of

the classification step for the definition of the concept “spur” – “any sharply

pointed projection” – and the fixed labeling after the post-processing phase.

RDF Conversion

Finally, the labeled definitions were serialized in RDF format. In the RDF

graph, the entity being defined is a node (the entity node), and each semantic

role in its definition is another role (the role nodes). The entity node is linked to
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Figure 3.15: Classified definition missing a supertype fixed in the post-
processing phase.

its supertype role node, which is, in turn, linked to all the other role nodes. More

specifically, a supertype linked to a role is a reified node, and this reified node is

linked to the entity node. Reification is also used when a role has components,

such as event time and/or location for a differentia event and quality modifier

for a differentia quality. In this case, the component is linked to its main role,

composing a reified node which is linked to the supertype node, creating another

reified node which is eventually linked to the entity node. This structure allows

the relationships to be fully contextualized.

As an example, consider again the definition for the concept “lake poets”

depicted in Figure 3.3. Figure 3.16 shows the simplified (without reification)

RDF representation for this definition. The node defined by the concept “poet”

will be linked to several other nodes in the graph, but it is linked to the dif-

ferentia quality node “English” only in the context of this definition. This is

necessary because, like any other entry in the dictionary, the concept “poet”

has its own definition, which is represented as another subgraph, making the

whole graph interconnected through the words that appear in each definition,

but still allowing the information retrieval process to focus unambiguously on

the set of nodes pertaining to a specific definition.

Supertype nodes are always represented as resources (ellipses in the graphic

representation, according to the RDF notation). The differentia quality and

differentia event nodes can be represented as either resources, when they have

components (event times and/or locations, or quality modifiers) to be linked to,

or literals (rectangles in the graphic notation) otherwise. All the other roles are

represented as literals, and properties are named after role names6.

Figure 3.17 schematizes the graph construction methodology, which can be

divided into two parts: the Classifier Construction and the Graph Construction

itself. The Classifier Construction includes the Synset Sample Selection, Auto-

6RDF model properties and namespaces are listed in Appendix B
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Figure 3.16: RDF representation of a labeled definition.

matic Pre-Annotation, Data Curation, and Classifier Training steps, which were

performed a single time, using data from WordNet, with the aim of building a

classifier that could label definitions from any dictionary. The products of the

Classifier Construction feed the Graph Construction, which encompasses the

Database Classification, the Data Post-Processing, and the RDF Conversion

steps, performed for every different lexical resource used as a knowledge source,

receiving as input the resource’s set of filtered natural language definitions and

outputting an RDF knowledge graph.

Figure 3.17: Definition knowledge graph construction methodology.

By structuring the commonsense world knowledge contained in dictionary

definitions into a model that allows us to focus on specific and meaningful

pieces of information regarding an entity, the definition knowledge graphs play
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a fundamental part in the proposed text entailment approach, making it possible

not only to find semantic relationships between sentences but also explain what

these relationships are, contributing to both the core entailment recognition

task and the overall system interpretability.

3.5 Summary

In this chapter, the principles supporting the knowledge representation model

adopted in the proposed text entailment approach were described in detail. An

overview of commonsense knowledge graphs, including a review of the most

popular ones, their knowledge extraction methods and main applications, as

well as their limitations and disadvantages, was given.

The conceptual model for representing natural language definitions was in-

troduced. A set of semantic roles that reflect the most common structures of

dictionary definitions was proposed, and, based on an analysis of a random sam-

ple of noun and verb definitions, the main semantic roles and their compositions

present on dictionary definitions were identified and named. The semantic pat-

terns were then compared to the definitions’ syntactic structure, pointing out

the features that would serve as input for the automatic role labeling.

A filtering procedure aimed at cleaning the data by removing invalid def-

initions was also described. The filter is based on a set of syntactic patterns

identified though a manual analysis of a random sample of noun and verb def-

initions. These patterns derived a set of rules which ensure that definitions

included in the knowledge base have at least a supertype role and is, there-

fore, suitable to be represented in a graph format, according to the proposed

conceptual model.

Finally, a methodology for converting whole dictionaries into knowledge

graphs was presented. This methodology takes as input the set of filtered def-

initions and outputs an RDF graph whose nodes and relationships reflect the

definition semantic role-based conceptual model. The methodology consists of

two main parts: the classifier construction phase, where an automatic data pre-

annotation, followed by manual curation to create the training dataset for the

subsequent classifier training resulted in a definition role labeler; and the graph

construction phase, where the trained classifier labels the data, which is later

post-processed for small adjustments and then converted into an RDF graph.
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By designing and implementing the conceptual model, filtering procedure

and construction methodology, it became possible to turn any lexicon into a

knowledge graph, ready to be explored by the proposed interpretable composite

text entailment approach and provide the commonsense world knowledge nec-

essary to recognize and justify entailments involving semantic relationships.





Chapter 4

Composite Syntactic-Semantic

Interpretable Text Entailment

In this chapter, the proposed approach for recognizing text entailments based

on the entailment pair main phenomenon is presented. As described in Chapter

1, we distinguish between two main phenomena that can be observed in the T-H

pair: syntactic, when only the structures of T and H differ, but the content is

the same; and semantic, when T and H state different things which are related

through some semantic relationship.

For dealing with different phenomena, different methods are applied. These

methods are encapsulated into modules, which are combined to make up a

syntactic-semantic composite system, capable of analyzing the entailment pair,

identifying the relevant phenomenon, and applying the suitable method. This

composite syntactic-semantic system is also interpretable: for semantic entail-

ment pairs, it finds the semantic relationship between T and H and gives a

natural language justification explaining what this relationship is, using the

definition knowledge graph described in Chapter 3 for both recognizing and

explaining the entailment.

The development of the approach was divided into two parts: first, a method

for tackling semantic entailments was designed, and then a complete system

was developed so both syntactic and semantic entailment could be dealt with.

The option for focusing first on semantic entailment aimed at addressing one

of the main gaps in the area: as described in Chapter 2, most entailment ap-

proaches will heavily rely on syntactic structures to compare T and H, and the

127
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use of external knowledge seldom goes beyond shallow semantic information and

paraphrase-style entailment rules. These strategies account satisfactorily for en-

tailments where the equivalence is given by syntactic similarity but constrain

the identification of more complex semantic relationships between T and H, so

the first problem to be tackled was: how can we leverage the use of external

world knowledge to find the link between sentences which are syntactically very

different, but semantically closely related?

Once the method for identifying semantically related pairs of words in T and

H, finding the relationship between them and justifying the entailment decision

was successfully developed, the second problem emerged: since this method only

works for semantic entailments and can do very little for entailment scenarios

where such semantically related pair of words is not present, how can we build

a complete entailment system capable of dealing with any pair, regardless of the

entailment phenomena it involves?

By developing a complete text entailment system, it was possible to combine

an existing and tested well-performing algorithm for solving syntactic entail-

ments with the newly developed semantic-oriented approach, not only improv-

ing the latter but also allowing the identification of blind spots in both methods,

which were addressed by a complementary support module.

Splitting the approach development into two separate stages allowed for the

assessment of two different, but complementary, questions, as it will be de-

tailed later in Chapter 5: first, how a semantic-oriented entailment approach

compares to the existing entailment algorithms when dealing with more world

knowledge-demanding datasets; and second, how an approach capable of dis-

tinguishing between syntactic and semantic entailments and applying the most

suitable method for each of them compares to single-method approaches, be

they syntactic-only or semantic-only.

Therefore, the chapter starts describing the approach for solving entailments

where a semantic relationship exists, including an overview of the concept of dis-

tributional semantics and how it is used for exploring a knowledge graph and

recognizing semantic entailments in an interpretable way. Next, the complete

composite interpretable entailment system is detailed, through the description

of the entailment pair routing mechanism, the algorithm adopted for solving

syntactic entailments, the improvements to the distributional navigation algo-

rithm, and the Context Analysis support module.
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4.1 Towards Semantic Entailment Recognition

and Justification

Semantic entailments are those where H presents new information derived from

T. Checking whether the information in H logically follows from what is stated

in T is equivalent to finding the semantic relationship between T and H, which

usually holds between a pair of entities represented by words or phrases, one of

them in T and the other one in H. It may be a basic relation, such as synonymy

or hypernymy, or a more elaborate association, like the ones denoting location,

parthood, cause and effect, or purpose, for example. It could even be a more

complex relationship, made up by a composition of two or more atomic relations.

Regardless of the relationship type and level of complexity, the entities linked

by it will invariably be semantically similar. By semantically similar, we mean

that they tend to belong to the same thematic group and to appear together

on documents covering such theme. Therefore, the semantic similarity between

a given pair of words is a good parameter for guiding the discovery of the type

of association between them. Its computation and use in the text entailment

context are described next.

4.1.1 Distributional Semantics

The term distributional, as pointed by Lenci (2008), can sometimes be used

interchangeably with context-theoretic, corpus-based or statistical, and “qualify

a rich family of approaches to semantics that share a ‘usage-based’ perspective

on meaning, and assume that the statistical distribution of words in context

plays a key role in characterizing their semantic behavior” (Lenci, 2008).

Distributional Semantics is, then, an approach for representing aspects of

natural language semantics based on the distributional properties of linguistic

elements observed in large corpora. It is grounded in the distributional hypoth-

esis, which states that words that occur in similar contexts tend to have similar

meanings (Turney & Pantel, 2010). The idea, introduced by Firth (1957), be-

hind the distributional hypothesis that “a word is characterized by the company

it keeps” is leveraged by the large amount of text currently available on the Web,

which provides the necessary volume of data required for the generation of sta-

tistical models.

Distributional Semantic Models (DSMs) allow the approximation of a word

meaning representing it as a vector summarizing its pattern of co-occurrence
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in large text corpora (Marelli et al., 2014). This representation is supported

by Vector Space Models (VSMs), in which objects are represented by points

in a space and the closer two points are in this space, the more similar they

are. The VSM was first explored in the context of the SMART information

retrieval system (Salton, 1971), where the points corresponded to documents

in a collection, and a user’s query was also represented as a point in the same

space as the documents. The distance between each document and the user’s

query was then computed and the documents were sorted in order of increasing

distance from the query to be presented to the user.

In DSMs, words, rather than whole documents, are represented as vectors

in the vector space. These vectors are derived from a word-context matrix,

where the rows correspond to words and the columns correspond to contexts

where the words occur. The context can be given by words, phrases, sentences,

paragraphs, or other patterns (Turney & Pantel, 2010). Therefore, a cell mij in

a word-context matrix M indicates the number of occurrences of the i-th word

in the j-th context.

Figure 4.1 (left) shows an example of a word-context matrix derived by verb-

object counts from the British National Corpus1, where the words are nouns,

the contexts are given by verbs, and the frequencies indicate the number of

documents in the corpus where both the noun and the verb occur. So, for

example, out of all the documents where “eat” occurs, “cat” appears in 6, “pig”

in 9, and “cup” in only 1.

Figure 4.1: A word-context matrix (left) and a representation of the word vectors
in a bi-dimensional vector space (right).

1Example adapted from Stefan Evert’s lecture notes, available at http://tiny.cc/ewefaz
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Similar rows in the word-context matrix, which translates to similar distri-

butions, indicate similar word meanings. Figure 4.1 (right) shows the derived

word vectors in a bi-dimensional vector space, where the dimensions are given

by the contexts “use” and “get”. The 2D space is given as an example for

simplicity and readability, since word vectors will usually be contained in an

n-dimensional vector space, n � 2. The angle α between vectors can be used

as a parameter for computing the distance and, hence, the similarity between

them.

A Distributional Semantic Model (DSM) is a scaled and/or transformed

word-context matrix where each row represents the distribution of a given word

across contexts. Frequencies are normalized, usually in terms of the corpus size,

and, since word-context matrices tend to be sparse, the final model is a result

of some dimensionality reduction procedure. Figure 4.2 illustrates a possible

scaled and normalized version of the matrix in Figure 4.1.

Figure 4.2: A scaled and normalized word-context matrix.

DSMs are composed by dense high-dimensional vectors and benefits from

the recent advancements in machine learning techniques for extracting distribu-

tional information from very large corpora in an unsupervised manner, without

the need of human intervention in the model creation (Turney & Pantel, 2010).

DSM-based semantic similarity is, then, computed in terms of word vector sim-

ilarity. The cosine of the angle between two vectors is one of the most used

similarity measures and is given by:
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similarity(a, b) = cos(α) =
A ·B
||A|| ||B||

=

n∑
i=1

AiBi√√√√ n∑
i=1

A2
i

√√√√ n∑
i=1

B2
i

(4.1)

where A and B are the vector representations of words a and b, respectively, and

Ai and Bi are the components, or dimensions, of vectors A and B, respectively.

Following Equation 4.1 and using the vectors in Figure 4.1 (all the dimensions

considered), we would have, for example, the following similarity values:

similarity(cat, knife) = 0.5031

similarity(cat, boat) = 0.8847

similarity(cat, dog) = 0.9230

We can notice that “cat” and “dog” have the highest similarity value, be-

cause, since they belong to the same category (“pets”), they tend to occur in

the same contexts. Nevertheless, although DSMs allows us to detect that two

words are semantically related, the exact semantic association between them

remains unclear, requiring further model interpretation to be made explicit.

Even though current distributional models, which usually starts at 300 dimen-

sions, can deliver accurate word vector representations, the semantic similarity

measures they provide is only a starting point if the final goal is to reach in-

terpretability by unambiguously identifying the precise semantic relationship

between words or sentences, as is the case in the text entailment scenario.

4.1.2 The Distributional Graph Navigation Model

The Distributional Graph Navigation model is based on two main pillars: the

use of a knowledge graph automatically extracted from natural language lexical

definitions as a commonsense world knowledge base – the DKGs described in

Chapter 3 – and a navigation mechanism based on distributional semantics to

traverse this graph and find paths between the text and the hypothesis. A path

between T and H explains the semantic relationships holding between them,

confirming the entailment while also providing evidence that it is true.

As described in Section 4.1.1, DSMs can be used to compute the semantic

similarity/relatedness measure between words. This computation is used as a
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heuristic to navigate in a graph knowledge base in the approach proposed by

Freitas et al. (2014), where they define the Distributional Navigation Algorithm

(DNA), which corresponds to a selective reasoning process in the knowledge

graph. Given a pair of terms, namely a source and a target, and a threshold η,

the DNA finds all paths from source to target, with length l, formed by concepts

semantically related to the target wrt η (Freitas et al., 2014).

In the text entailment context, and, more specifically, for semantic entail-

ments, the source and target are words from the text and hypothesis, respec-

tively, which we assume have some kind of semantic relationship between them.

A path in the definition knowledge graph linking these words, then, explains

what this relationship is, confirming the entailment, or rejecting it in case no

path is found.

In this work, the DNA was implemented as a depth-first search algorithm,

exploring first the paths whose next node to be visited has the highest semantic

similarity value wrt the target. Given a node in the DKG, starting from the

source S, the algorithm retrieves all its neighbors {x1, x2, ..., xn} and computes

the similarity relatedness sr(xi, target), keeping only the nodes for which sr > η

in the set of nodes to be visited next. Each of these nodes generates a new path,

and, for each path, the search goes on until the next node to be visited is equal

to the target, or until the maximum path length is reached. If no path reaches

the target before the maximum number of paths is reached, the search stops.

The distributional graph navigation mechanism is schematized in Figure 4.3.

The DGN algorithm, which takes as inputs a definition knowledge graph G, a

source word S, a target word T , a threshold η, a maximum path length l, and

a maximum number of paths m, and outputs the set P of paths from S to T ,

is listed in Algorithm 1.

Depending on the lexical resource from which the definitions are extracted,

entity nodes in a DKG can be identified by a single word or phrase, or by a

synset, that is, a set of synonym words or phrases. Starting from the source

word S, the DGN retrieves all entity nodes identified by S or having S as one of

the words in its identifying synset (line 12). Then it retrieves all the neighbors

of each entity node, that is, the role nodes that make up its definition (line 19),

and keeps only the best ones (line 22).

The next nodes to be visited are given by words present in a role node, which

we call the head words. The head words are the most relevant words in a role,

and are identified following a lexical-syntactic rule-based heuristic:
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Algorithm 1 Distributional Graph Navigation Algorithm

1: procedure DGN(G,S, T, η, l,m)
2: P ← ∅
3: stack ← ∅
4: newPath← [S]
5: Push(stack, newPath) . adds the newPath to the stack
6: while stack 6= ∅ and P.size < m do
7: path← Pop(stack) . pulls the path at the top of the stack
8: nextNode← path.lastNode
9: while nextNode 6= T and path.length < l do

10: entityNodes← ∅
11: for all ei ∈ G do
12: if ei = nextNode then
13: Add(entityNodes, ei)
14: end if
15: end for
16: roleNodes← ∅
17: bestRoles← ∅
18: for all ei ∈ entityNodes do
19: Add(roleNodes, Neighbors(ei))
20: end for
21: for all ri ∈ roleNodes do
22: if sr(ri, T ) > η then
23: Add(bestRoles, ri)
24: end if
25: end for
26: bestRoles← Sort(bestRoles)
27: nextNodes← ∅
28: for all bi ∈ bestRoles do
29: Add(nextNodes, HeadWords(bi))
30: end for
31: nextNodes← Sort(nextNodes)
32: for xi ∈ nextNodes, i← 2, n do
33: newPath← path
34: Add(newPath, xi)
35: Push(stack, newPath)
36: end for
37: nextNode← x1
38: Add(path, nextNode)
39: if nextNode = T then
40: Add(P, path)
41: end if
42: end while
43: end while
44: return P
45: end procedure
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Figure 4.3: The distributional navigation algorithm. Gray nodes, for which
sr(xi, T ) > η, make up valid paths between the source node S and the target
node T. The path {S, x1, x4, x5, T} is the shortest one

1. For non-event-centered roles, such as supertype and differentia quality:

a. The main noun in the segment

2. For event-centered roles, such as differentia event, associated fact or pur-

pose:

a. The main verb in the segment and its noun objects, if any, or

b. The main verb and its adjective/adverb modifiers, if no noun object

is found

Figure 4.4 shows some examples of head word extraction: in (a) the main

noun “writer” is chosen as the head word for the differentia quality role; in (b)

the differentia event has “provide” as its main verb, which, in turn, has the

noun “information” as its objects, so these are the two role head words; in (c)

the main verb “memorize” has no noun objects, so the adverbs “quickly” and

“easily” qualifying it are also selected as head words along with the verb. As

can be noted across all examples, the supertype role will usually contain a single

concept, so its head word will usually be its whole content, be it a single word



136 CHAPTER 4. COMPOSITE INTERPRETABLE TEXT ENTAILMENT

or a longer phrase, as long as it exists as an entry in WordNet, the reference

dictionary as mentioned in Chapter 3.

Figure 4.4: Examples of key words extraction for different roles.

The head words are sorted according to their semantic similarity wrt the

target T . The highest scoring head word will be the next node to be visited,

that is, the next entity node to be searched, and all the other head words are

added to a copy of the current path, generating a new path which will be pushed

to the stack to be explored later.

Word sense disambiguation comes as a natural consequence of the distribu-

tional navigation mechanism while choosing the next nodes to be visited in the

graph: by looking for the word/phrases that are more semantically related to

the target T , the algorithm naturally selects the correct (or at least the closest)

word senses, since unrelated word meanings will have lower similarity scores wrt

the target, and the paths containing them will be excluded by the algorithm.

According to Freitas et al. (2014), the worst-case time complexity of the

algorithm implemented as a depth-first search “is O(bl), where b is the branch-
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ing factor and l is the depth limit”. They show that the algorithm’s selectiv-

ity ensures that the number of paths does not grow exponentially even when

the depth limit increases. In the implementation presented in this work, the

maximum number of paths and the maximum path length (depth limit) were

obtained empirically in order to optimize the search.

4.1.3 Recognizing Semantic Entailments and Interpreting

the Answer

Once both the graph knowledge base and the method to navigate over this

graph were developed, they were assembled together into the reasoning mech-

anism for recognizing and explaining a text entailment. As mentioned before,

this reasoning mechanism is aimed at semantic entailments, that is, entailments

that require world knowledge, over which some kind of inference is necessary,

rather than simple syntactic variations between the text and the hypothesis.

For recalling the characteristics of syntactic and semantic entailments, consider

the following entailment pair from the Boeing-Princeton-ISI (BPI)2 dataset:

64.2 T: Skilling was wearing a security tag on his ankle when he stepped into

the street to face the press.

64.2 H: Skilling was wearing a security tag.

In this example, the hypothesis is fully contained in the text, and no knowl-

edge external to the entailment pair is necessary, therefore no actual semantic

reasoning is required. On the other hand, in the following example, also from

the BPI dataset, a simple syntactic analysis would not suffice:

39.3 T: Many cellphones have built-in digital cameras.

39.3 H: Many cellphones can take pictures.

In this case, it is necessary to answer a question: “Given that cellphones have

digital cameras, is it true that they can take pictures?”. In order to look for the

answer to this question, it is necessary to look at the structured definitions in

the DKG to check whether the hypothesis is reached from the text in some way.

If so, the way this link is established gives a full answer to the original question.

2http://www.cs.utexas.edu/users/pclark/bpi-test-suite/
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First, it is necessary to identify the relevant elements from T and H for

which it is worth to look for a semantic relationship. If the text is too long and

includes more than one clause, a sentence simplification is performed to break

it into independent simple sentences, and then the sentence that is closest to

the hypothesis is chosen among them, using simple Levenshtein edit distance.

The edit distance proved to be sufficient at this step, as we just want to identify

what text sentence refers to the same topic as the hypothesis, and so share more

elements with it. Consider as an example the following BPI entailment pair:

3.6 T: Hanssen, who sold FBI secrets to the Russians, could face the death

penalty.

3.6 H: Hanssen received money from the Russians.

After the sentence simplification, the text is split into two sentences:

“Hanssen could face the death penalty”

“Hanssen sold FBI secrets to the Russians”

The second one is the closest to the hypothesis and is selected to compose the

new entailment pair.

Next, the core words in the text and hypothesis are identified. The core

words are similar to the head words for definition’s roles (described in Sec-

tion 4.1.2), but in this case the inputs are full sentences rather than sentence

segments, as happens with the roles, so here it is possible to perform a more

accurate syntactic analysis. Also following a rule-based heuristic, we have:

1. Get the main noun in the subject

2. Get the main verb in the predicate

3. Get the main verb’s noun objects, if any

4. Get the main verb’s adjective/adverb modifiers, if no noun object found

Back to the pair 39.3, the core words for the text “Many cellphones have

built-in digital cameras” are “cellphones”, “have” and “digital cameras”; and

for the hypothesis “Many cellphones can take pictures”, “cellphones”, “take”

and “pictures”, as shown in Figure 4.5.

We then discard the overlapping words (in Figure 4.5, “cellphones”) and

words with low inverse document frequency (IDF) (Robertson, 2004), which

are words that are too frequent and can be reached from almost any node in
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Figure 4.5: Core words extraction for an entailment pair.

the graph, leading to diverting paths, such as the verbs “get”, “put”, “cause”

or “make”, to name a few. IDF is calculated using as the corpus the same

linguistic resource that gave origin to the knowledge graph being explored by the

DGN, where each definition is considered a document. Next, all the remaining

words are normalized, resulting in two sets of core words, for the text and the

hypothesis, respectively:

CT = {t1, t2, ..., tn} (4.2)

CH = {h1, h2, ..., hm} (4.3)

Also using distributional semantics, the set S of semantic similarity measures

between all the core words is computed, as a Cartesian product between CT and

CH:

S = CT × CH (4.4)

The results are sorted and the k pairs with the highest similarity values are

chosen, being:

k = max(n,m) (4.5)

where n is the size of CT and m is the size of CH.

Table 4.1 shows the set S for the above-mentioned entailment pair 39.3, with

all the possible combinations of words and their respective relatedness scores.
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Since n = 2 and m = 2, k = max(n,m) = 2, so the two top scoring pairs

are chosen. Although in this example such pairs would be “[digital camera,

picture]” and “[have, take]”, “have” and “take” would probably have low IDF,

being excluded from the set of candidates. IDF depends on the corpus being used

but, given that these are very common verbs, we could assume that, regardless

of the corpus, they would be discarded, so the most likely final pair for this

example is only “[digital camera, picture]”.

Pair Relatedness Score
[digital camera, picture] 0.414

[digital camera, take] 0.038
[have, take] 0.263

[have, picture] 0.002

Table 4.1: Relatedness scores for the source-target pairs.

Since each pair is composed of a word (or phrase) from the text and another

from the hypothesis, these will be the input for the DGN. For each pair of

words found in the previous step, the DGN finds all the paths between them

in the definition graph. Finally, among all the paths found, the smallest one is

chosen, which is the one that offers the shortest distance between a source and

a target and, therefore, shows that their meanings are more closely related. The

procedure for recognizing an entailment through the DGN is listed in Algorithm

2 (for readability, further parameters for the DGN procedure were omitted in

line 10).

The final path is composed of a sequence of entity nodes and the role nodes

that make up those entities’ definitions and that are relevant to build a com-

pound relationship between the source and the target. This sequence of nodes

is then formatted to provide a human-readable justification explaining the rea-

soning that led from the text to the hypothesis, giving the necessary evidence

that the latter logically follows from the former.

Figure 4.6 shows an example of a path in a DKG between the source “digital

camera” and the target “picture”, from the entailment pair 39.3. Starting from

the source node, the DGN gets all the nodes linked to it, computes their semantic

similarity measures wrt the target, chooses the node with the highest value as

the next one to be visited, and do this recursively until it reaches the target.

Other nodes with high similarity values (higher than the threshold η), such as

the differentia quality node “that encodes an image digitally”, are also explored
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Algorithm 2 Semantic Entailment Recognition through the DGN Algorithm

1: procedure ProcessEntailment(T,H)
2: CT ← CoreWords(T )
3: CH ← CoreWords(H)
4: n← Size(CT )
5: m← Size(CH)
6: k ←Max(n,m)
7: S ← CT × CH

8: S′ ← TopK(Sort(S))
9: for all {ei, ej} ∈ S′ do

10: Add(allPaths,DGN(ei, ej))
11: end for
12: if allPaths = ∅ then
13: entailment← false
14: else
15: entailment← true
16: bestPath← ShortestPath(allPaths)
17: justification←WriteJustification(bestPath)
18: end if
19: return entailment, justification
20: end procedure

later, but the path indicated by the thicker lines in the figure is the shortest,

and therefore the best one.

In this path, nodes are linked either by the has supertype property, which

defines the kind of an entity, or by the has diff qual property, which introduces

a qualifier for the entity it describes. In the second case, the supertype node is

also included in the path because differentia role nodes (as well as almost all

the other role nodes) don’t make much sense without the supertype they refer

to. Since the justification takes into account the content of the nodes and the

relationships between them, that is, the role names (see Chapter 3), the final,

human-readable explanation generated by the algorithm from this sequence of

nodes is:

A digital camera is a kind of camera

A camera is an equipment for taking photographs

Photograph is synonym of picture
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Figure 4.6: A path, indicated by the gray nodes, between source node “digital
camera” and target node “picture”. Full lines represent actual edges in the
graph, while dashed lines represent the algorithm’s internal operations, in this
case the extraction of head words for multi-word expression nodes. Numbers
show the semantic relatedness between each node and the target.

4.2 A Complete Entailment System

The Distributional Graph Navigation model described in Section 4.1 addresses

an important gap in textual entailment recognition, going beyond the syntactic

and shallow semantic features to recognize and justify entailments that involve

more complex semantic relationships. Nevertheless, entailment datasets, as well

as real-world data, will include both syntactic and semantic entailment pairs

mixed together, and the DGN alone can only do so much. This led to the second

phase of the development of the entailment approach proposed in this work,

where the DGN model is integrated into a broader system capable of dealing

with any entailment pair, be it syntactic or semantic. This system is called

XTE – Explainable Text Entailment – to emphasize its interpretable nature,

since its ability to explain its reasoning process through user-oriented natural

language justifications is one of the key characteristics which distinguishes the

proposed approach from existing entailment systems. The components of XTE

are described next.
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4.2.1 Entailment Routing

One of the central points of the proposed composite interpretable text entail-

ment approach is the notion that text entailment can involve syntactic or se-

mantic phenomena, and each of these phenomena categories requires specific

approaches to be solved. In the first case, an analysis of the syntactic structure

of the sentences may be enough, while in the second it is necessary to identify

the semantic relationship holding between the text and the hypothesis. On the

other hand, looking for semantic relationships where only a syntactic variation

occurs or comparing syntactic structures of very (syntactically) different sen-

tences can be highly counterproductive, hence the importance of choosing the

suitable method first and foremost.

To pick the best approach, we need to answer the following question: Can

there be a semantic relationship between T and H? In Section 4.1, we assumed

this relationship existed between a word in T and another word in H. We now

formalize this assumption, defining that a semantic relationship must hold be-

tween two entities e1 and e2, e1 6= e2, both referring to a third entity, which we

call the referent, or r.

The routing mechanism that will check these conditions relies on the notion

of overlap between the text and the hypothesis. The overlap O is computed

over the bag-of-words representation of T and H, denoted by:

T ′ = {t1, t2, ..., tn} (4.6)

where ti are tokens in T and n is the size of T ′, and

H ′ = {h1, h2, ..., hm} (4.7)

where hi are tokens in H and m is the size of H ′. Therefore:

O = T ′ ∩H ′ = {w1, w2, ..., wk} (4.8)

where k is the size of O. Formalizing the aforementioned conditions for the

existence of a semantic relationship between T and H, we have that:

∃e1 ∈ T ′ ∧ ∃e2 ∈ H ′ ∧ e1 6= e2 (4.9)

∃r ∈ O (4.10)



144 CHAPTER 4. COMPOSITE INTERPRETABLE TEXT ENTAILMENT

In order to reduce noise, stop words are removed from both T ′ and H ′. After

computing O, three scenarios may occur:

(1) total overlap, where all the tokens of H ′ are contained in T ′ or (less com-

monly) vice-versa, that is, k = m or k = n. In this case, the condition 4.9 is

not satisfied;

(2) partial overlap, where some but not all of the of tokens of T ′ are contained in

H ′, so k < n and k < m. Both conditions 4.9 and 4.10 are met in this scenario;

(3) null overlap, that is, no tokens of T ′ are contained in H ′, so O = ∅ and

k = 0. Since O is empty, the condition 4.10 can’t be satisfied.

Given that we can look for a semantic relationship between T and H solely

when both conditions 4.9 and 4.10 are met, the entailment pair will be solved

semantically only when a partial overlap occurs. Otherwise, the pair will be

solved syntactically because, if there is a total overlap, there are no entities e1

and e2 such that e1 6= e2 for which a semantic relationship may hold, and, in

the case of a null overlap, there is no referent r, so, even if there are some po-

tential candidates e1 and e2 that could be semantically related, it is more likely

(although not certain) that they are referring to completely different entities.

4.2.2 System Architecture

For solving entailments syntactically, the Tree Edit Distance (TED) model

is used, and for dealing with entailments involving semantic phenomena the

Distributional Graph Navigation (DGN) model, described in Section 4.1,

is employed. An additional Context Analysis module feeds both models with

extra information extracted from the entailment pair.

As already discussed in Chapter 2, the Tree Edit Distance model is a straight-

forward yet efficient text entailment approach which works well when only a syn-

tactic analysis is required for the entailment recognition. As for the DGN model,

after some preliminary experiments, which will be detailed later in Chapter 5,

some limitations were identified, leading to the development of an improved

second version of the algorithm. Both the TED model and the improved DGN

model are described in Sections 4.2.3 and 4.2.4, respectively.

The general architecture of the XTE approach is shown in Figure 4.7. The

entailment pipeline, which receives as input a T-H pair, starts with a prepro-
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cessing stage that generates T ′ and H ′. Next, the router computes O and sends

the entailment pair either to the TED or to the DGN model, according to the

conditions defined in Section 4.2.1. After the entailment is solved by the suitable

model, returning yes or no as the output, an interpretability module uses the

evidence produced by the entailment algorithm to generate a natural language

justification explaining the algorithm’s decision.

Figure 4.7: General architecture of XTE (Explainable Text Entailment)

4.2.3 The Tree Edit Distance Model

Syntactic entailments are those where T and H express exactly the same infor-

mation, but in different ways. That means that the information is only organized

in different ways, and no new knowledge derived from T is expressed in H. Let’s

consider again the example given in Chapter 1:

T: The badger is burrowing a hole.

H: A hole is being burrowed by the badger.

The bag-of-words (after normalization, stop words already excluded) for

both sentences and the resulting overlap set (see Section 4.2.1)is as follows:

T ′ = {badger, burrow, hole} (4.11)

H ′ = {hole, burrow, badger} (4.12)

O = {badger, burrow, hole} (4.13)
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The total overlap between T and H confirms the absence of semantic rela-

tionships (see Condition 4.9 in Section 4.2.1), so their syntactic structures is

all that needs to be analyzed in order to detect the entailment. The validity

of the entailment in this case can be reduced to a transformation problem, as

described in Chapter 2, in which T entails H if the chosen representation of T

can be transformed into the representation of H. The Tree Edit Distance (TED)

model addresses this transformation problem by comparing the entailment pair’s

syntactic trees representation (Kouylekov & Magnini, 2005).

The Tree Edit Distance algorithm computes the minimal-cost sequence of

operations, namely insertion, deletion and replacement of nodes, necessary to

transform one tree into another one. The total cost of the transformation is

equal to the sum of the costs of each operation, which in the simplest case is

equal to 1. So, for example, for transforming the tree t1 into the tree t2 in Figure

4.8, it is necessary to delete the node e, insert the node g and replace the node c

by node f , which, considering unitary costs, results in a total cost and, hence, an

edit distance of 3. In the text entailment context, the TED task is to compute

the cost of transforming the tree representation of T into the tree that represents

H. We use the All Paths Tree Edit Distance (APTED) (Pawlik & Augsten, 2016)

TED implementation, which improves over the classical algorithm of Zhang and

Shasha (1989) by being tree-shape independent.

Figure 4.8: The Tree Edit Distance operations.

The edit distance is computed over the syntactic dependency trees of T and

H, generated by the Stanford dependency parser (D. Chen & Manning, 2014).

This parser generates a dependency graph, but it can be easily converted to

an acyclic tree, where nodes with more than one incoming edge are expanded
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only at the first time they are referenced, and represented as childless nodes in

subsequent references (similar to the pretty-print string representation provided

by the parser for the original graph).

Dependencies between terms, which are labeled edges in the original graph,

are represented as intermediary nodes between the two nodes they link, that is,

the two dependency’s arguments. Figure 4.9 shows the graph generated by the

dependency parser for the text sentence T in the example above, “The badger

is burrowing a hole”, and the resulting dependency tree which will be sent as

one of the inputs to the TED algorithm.

Figure 4.9: Dependency graph (left) and the resulting dependency tree (right)
which is sent to the tree edit distance algorithm

Given that dependencies are represented as nodes in the tree, our TED model

penalizes node replacement more than insertion and deletion, because replacing

a node x between nodes a and b in T by a node y between the same nodes a and

b in H means changing the dependency between them, or changing one of the

arguments of a dependency, if the replacement comes before or after a sequence

of two nodes a and b which are identical in T and H. As an example, consider

the following entailment pair from the BPI dataset:

34.100 T: In Pakistan, the Taliban have forbidden women to work.

34.100 H: Women have forbidden the Taliban to work.

34.100 A: NO

The dependency trees for T and H are depicted in Figure 4.10. In both trees,

“forbidden” is linked to “Taliban”, but having “nsubj” as the intermediary node

in T and “dobj” in H , that is, the dependency changed from subject in T
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to object in H. The same happens when nodes “forbidden” and “women” are

considered, and such dependency changes (which cause a complete change in

meaning) are reflected by node replacements when the edit distance is being

computed.

Figure 4.10: An example of node replacement.

The penalization over node replacement is done by a weighted cost model

with higher weight for replacements than for insertions and deletions, and by

the calculation of the relative edit distance relDist, which is the edit distance

dist relative to the difference diff between the sizes of the two trees, given by:

relDist = dist/diff (4.14)

If the two trees are roughly the same size, but many edit operations are

performed, they are probably replacements, which means many dependencies

and/or arguments are being changed, so diff is low and relDist increases. On

the other hand, if approximately the same number of operations are performed

for trees having different sizes (usually, T larger than H), there will be more

insertions and/or deletions. In this case, diff is higher and relDist decreases,

which favors scenarios where the tree for H is a subtree of the tree for T, and,

therefore, insertions/deletions will occur more often and affect the validity of

the entailment less than replacements. Consider again the BPI dataset entail-

ment pair 64.2:
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64.2 T: Skilling was wearing a security tag on his ankle when he stepped into

the street to face the press.

64.2 H: Skilling was wearing a security tag.

64.2 A: YES

Figure 4.11 depicts the trees for T and H. As can be noticed, T’s tree is

much larger than H’s, but the latter is an exact subtree of the former. In order

to transform T into H, all the gray nodes in T must be deleted, which results in

a high number of operations but, since diff is also high, the relDist between

T and H will decrease.

Figure 4.11: An example of node deletion.

The relDist is then compared against a threshold t, and the pair is classified

as an entailment if relDist < t, and as a non-entailment otherwise.

4.2.4 Improved Distributional Graph Navigation

As mentioned earlier, the goal of the Distributional Graph Navigation algo-

rithm is to find the semantic relationship holding between two entities e1 ∈ T
and e2 ∈ H that confirms and explain the entailment. Therefore, identifying

the right pair of entities e1 and e2 is crucial for finding the right relationship
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between the sentences as a whole. The first implementation of the DGN-based

entailment recognition, described in Section 4.1.3, relied on a set of syntactic

rules for identifying the core words of a sentence, which would later compose

the source-target pairs sent as input to the DGN. Although those rules work

well for relatively short and structurally simple sentences, as their size and syn-

tactic complexity increases, the rule-based heuristic can fall short of detecting

the relevant core words. Consider as an example the following entailment pair

from the GHS dataset, which is mostly composed of pairs in which at least T is

a very long sentence:

19479 T: Chilling new evidence of the torture and sexual abuse of Iraqi prison-

ers by American soldiers emerged last night in a secret report accusing the US

army leadership of failings at the highest levels.

19479 H: Shock new details of torture by US troops

19479 A: YES

According to the syntactic rule set, the main noun in the subject should be

selected as one of the core words, but, in this example, the subject is “Chilling

new evidence of the torture and sexual abuse of Iraqi prisoners by American

soldiers”, a long and complex structure from which it is not straightforward

to pick up the main noun. The same happens for the predicate: should only

“emerged” be considered the main verb? What would its objects or modifiers

be? Sentence simplification also proved to be of limited help in such scenarios,

because it also uses information from the sentence’s syntactic parse tree and

cannot always provide the optimal sentence split, especially when clear struc-

tures such as subordinate or coordinate clauses are absent. These issues could,

and indeed led to the loss of relevant information during the entailment pair

preprocessing.

The conclusions drawn from the analysis of the source-target pair selection

algorithm behavior are that, if we want to look for semantic relationships be-

tween entities, instead of picking the main syntactic components, we should look

for the most semantically related words, using the same semantic relatedness

measures already employed by the DGN for the graph search. Therefore, the

source-target pairs, that is, the pairs of entities {ei, ej} which will be sent as

input to the DGN are now identified as follows: using the information from the

sets T ′ (Equation 4.6), H ′ (Equation 4.7) and O (Equation 4.8), we compute

the sets T ′′ and H ′′, where:



4.2. A COMPLETE ENTAILMENT SYSTEM 151

T ′′ = T ′ −O (4.15)

H ′′ = H ′ −O (4.16)

Also using DSMs, we then compute the semantic similarity measures between

T ′′ and H ′′ as the Cartesian product P:

P = T ′′ ×H ′′ (4.17)

The results are then sorted and the k highest scoring pairs are selected,

making up the set P ′. Each pair {ei, ej} ∈ P ′ is sent to the DGN algorithm,

which returns a set of paths between ei and ej . The new version of the pro-

cedure for recognizing and justifying an entailment through the DGN is listed

in Algorithm 3. The differences regarding Algorithm 2 lie in lines 2 through 8,

which deal with the entailment pair preprocessing for source-target pair selec-

tion. Lines 9 through 19, where the entailment recognition itself is performed,

remain unchanged.

Algorithm 3 Semantic Entailment Recognition through the DGN Algorithm V2

1: procedure ProcessEntailment(T,H)
2: T ′ ← Tokenize(T )
3: H ′ ← Tokenize(H)
4: O ← T ′ ∩H ′
5: T ′′ ← T ′ −O
6: H ′′ ← H ′ −O
7: P ← T ′′ ×H ′′
8: P ′ ← TopK(Sort(P ))
9: for all {ei, ej} ∈ P ′ do

10: Add(allPaths,DGN(ei, ej))
11: end for
12: if allPaths = ∅ then
13: entailment← false
14: else
15: entailment← true
16: bestPath← ShortestPath(allPaths)
17: justification←WriteJustification(bestPath)
18: end if
19: return entailment, justification
20: end procedure
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The same semantic similarity-driven approach was adopted for the identifi-

cation of head words too. As described in Section 4.1.2, the head words are the

words present in a role node retrieved from a DKG and that define the next

nodes to be visited when the DGN is searching the graph. These words were

also selected through a set of syntactic rules in the first implementation and

were changed in the second version as well in order to increase the relevance of

the DGN inputs also during the graph search.

For getting the head words now, first all stop words and words with low

inverse document frequency (IDF) are removed. Again, IDF is calculated using

as the corpus the same linguistic resource that gave origin to the knowledge

graph being explored by the algorithm. After the irrelevant words are removed,

the semantic similarity sr between each remaining word and the target word

T is computed, the results are sorted and only the top k words are kept. As

before, the highest scoring head word will be the next node to be visited (line

37 in Algorithm 1), and all the other head words are added to a copy of the

current path, generating a new path which will be pushed to the stack to be

explored later (lines 32 through 36 in Algorithm 1).

Another small improvement, but which has a significant impact on the DGN

recall, is the introduction of synonym comparison against the target word. In the

DGN first implementation, the search stops successfully when the next node to

be visited is equal to the target (line 39 in Algorithm 1). In the second version,

the successful stop is also reached when the next node is one of the target’s

synonyms . This is done with the aid of a synonym table, built from synonym

lists gathered across all the tested lexical resources (see Chapter 5) and other

online resources3.

Finally, restricting the cases where the Distributional Graph Navigation is

applied, although being a system-wide feature rather than a DGN improvement,

is a refinement worth mentioning for having a positive effect on the algorithm’s

precision. The first implementation only had as a requirement the existence of

two entities e1 ∈ T and e2 ∈ H, e1 6= e2. By adding the existence of a common

referent as a mandatory requirement (Condition 4.10), it is possible to reduce

the number of the DGN model’s wrong decisions. The following example from

the SICK dataset4 illustrates a likely misclassification scenario:

3https://bit.ly/2VPkywz, https://bit.ly/2kimBWS
4http://clic.cimec.unitn.it/composes/sick.html
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8322 T: A horse is racing

8322 H: Dogs are running on a track

8322 A: NO

The bag-of-words and overlap sets for this examples are:

T ′ = {horse, race} (4.18)

H ′ = {dog, run, track} (4.19)

O = ∅ (4.20)

If the null overlap set, and, therefore, the absence of a referent is ignored, the

DGN could easily find a relationship between e1 = “race” and e2 = “run”, since

these two entities are very semantically related. As it is easily identifiable for

a human, the entailment is no true because “race” refers to “horse” and “run”

refers to “dogs”; the contents of the overlap set help to provide the system

with further hints, especially when additional context information, which will

be detailed later in Section 4.2.5, is not available.

The following final example illustrates a scenario where the improved ver-

sion of the DGN performs better than the first implementation, in this case by

eliminating ambiguity in the selection of head words:

47.4 T: Iran is a signatory to the Chemical Weapons Convention.

47.4 H: The Chemical Weapons Convention is an agreement.

47.7 A: YES

In this example (from the BPI dataset), the best source-target pair is e1 =

“signatory” and e2 = “agreement”, and the referent r = “Chemical Weapons

Convention”, since both e1 and e2 refer to this concept. The best path between

the source and the target in a DKG, as well as all the semantic similarity

measures between each node retrieved by the algorithm and the target, are

shown in Figure 4.12.

Note that the differentia quality node labeled “of ownership or obligation”

has two nouns and, following a purely syntactic-based extraction as it was done

in the first DGN version, it would be more challenging to identify the main noun
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Figure 4.12: A path, indicated by the gray nodes, between source node “sig-
natory” and target node “agreement” in a DKG. Full lines represent actual
edges in the graph, while dashed lines represent the algorithm’s internal opera-
tions, in this case the extraction of head words for multi-word expression nodes.
Numbers show the semantic relatedness between each node and the target

(in the sense of the most relevant one). By getting all the words and computing

their semantic relatedness wrt the target, the DGN can naturally choose the

best option, reducing the risk of information loss. The justification generated

from this path is as follows:

A signatory is someone who signs and is bound by a document

A document is an account of ownership or obligation

An obligation is a kind of agreement

The improvements introduced in the DGN model are a natural consequence

of the phased approach development, which allowed an incremental evolution,

but are also intended to emphasize the importance of focusing on the meaning

of words across all the steps of the semantic entailment recognition process. A

better comparison between the two versions of the DGN in quantitative terms

will be given in Chapter 5.

4.2.5 Context Analysis

The goal of the Context Analysis module is to provide both the Tree Edit

Distance and the Distributional Graph Navigation models with information they

can’t easily grasp, and that, if missed, can lead to erroneous conclusions. In the

Tree Edit Distance case, this can happen when minimal, slight modifications

completely change the meaning of a sentence. Such modifications may yield
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only a small edit distance between T and H, resulting in a wrong entailment

classification for the pair.

For semantic entailments, the extraction of further contextual information

is even more critical, since the Distributional Graph Navigation model, though

looking for common referents, primarily considers pairs of terms in isolation and

not the sentences as a whole. This means that even when there are two entities

e1 ∈ T ′ and e2 ∈ H ′ with a high semantic relatedness score, there may also

be, at another point in the sentences, contradictory or inconsistent information

which invalidates the entailment, but that the DGN won’t catch.

The Context Analysis module receives as input the tokenized output from

the preprocessing stage, discards the overlapping entities in the set O, and, us-

ing syntactic and semantic features, analyzes the remaining words/phrases in

order to look for the following phenomena5:

Simple Negation: T is a simple negation of H. Example:

1127 T: A sea turtle is not hunting for fish

1127 H: A sea turtle is hunting for fish

1127 A: NO

Negation adverbs will mostly be considered as stop words, and, therefore,

will not be included in the preprocessed T ′ and H ′ representations, so entail-

ment pairs where these are the only divergent words will be sent to the Tree

Edit Distance model. Detecting the negation allows the model to classify the

pair as a non-entailment even if the final edit distance is well below the threshold.

Opposition: T contains a term which is an antonym of a term in H. Example:

3706 T: A woman is taking off eyeshadow

3706 H: A woman is putting make-up on

3706 A: NO

Detecting opposition is an important step when entailments are solved through

the Distributional Graph Navigation model. In the above example, the DGN

would detect “eyeshadow” in T and “make-up” in H as a candidate source-

5All examples from the SICK dataset
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target pair and most likely find a path in a DKG linking both entities (since

“eyeshadow” is a kind of “make-up”), but the presence of antonym terms “take

off” in T and “put” in H prevents the pair from being misclassified as an entail-

ment. Opposition detection is performed with the aid of an antonym table, built

from antonym lists extracted from all the tested lexical resources (see Chapter

5) and other online resources6.

Inverse Specialization: H specializes some information in T. Since text en-

tailment is a directional relationship from T to H, specializations are valid only

in this direction, not the other way around. Example:

1382 T: A person is rinsing a steak with water

1382 H: A man is rinsing a large piece of meat

1382 A: NO

In this example, H specializes T since “person” is more general than “man”.

As much as opposition detection, inverse specialization detection plays an im-

portant part in preventing the DGN from misclassifying the entailment pair (in

the above example, by finding a relationship between “steak” and “meat”). In

the correct direction, that is, from T to H, specializations can be easily detected

also by the DGN model, since they are a kind of semantic relationship; for de-

tecting only inverse specializations the hypernym links from WordNet are used.

Unsatisfiable Clauses: H has more information than what can be satisfied

by T. Example:

6296 T: A large group of cheerleaders is walking in a parade

6296 H: The cheerleaders are parading and wearing black, pink and white uni-

forms

6296 A: NO

Coordinated or subordinated clauses in H can be unsatisfiable if T has fewer

clauses that H. In the above example, T is composed by a single clause while H

has two coordinated clauses and, although the first H’s clause can be fully en-

tailed by T, the second one cannot be satisfied. Mismatching number of clauses

6https://bit.ly/2Uy3eMf, https://bit.ly/2J6N1wd, https://bit.ly/2HcDK3W,
https://bit.ly/2O0GCBs, https://bit.ly/2Tv7UWN, https://bit.ly/2XSm5DN
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between T and H is detected through the analysis of the sentences’ syntactic

parse trees.

Any of the above-described phenomena is considered enough to reject the

entailment, so the TED and DGN models always take into account the output of

the Context Analysis module and, in case their conclusions diverge, the decision

made on the basis of the contextual information prevails.

4.3 Summary

In this chapter, the composite interpretable text entailment approach proposed

in this work was described. This approach develops around two main points: (i)

that text entailment can involve a wide range of different linguistic and seman-

tic phenomena, and identifying such phenomena and using the most suitable

techniques for each of them is key to better accuracy, and (ii) that, by exploring

an external knowledge base when dealing with semantic entailments, it is possi-

ble to render the system interpretable, generating human-readable justifications

which show explicitly what the semantic relationship holding between the text

and the hypothesis is.

The development was divided into two phases: first, the Distributional

Graph Navigation, an approach for dealing with semantic entailments, was

implemented. Focusing on text entailments that require reasoning over world

knowledge, this model employs Distributional Semantic Models (DSMs) for com-

puting the semantic relatedness between words, and uses these measures as a

parameter for navigating a Definition Knowledge Graph (DKG) and finding the

relationship between T and H. The path in the DKG defining this relationship is

then formatted into a natural language justification, explaining the entailment

decision. Second, a complete entailment system was developed, integrating the

DGN with other modules aimed at deciding the best method to be used, ad-

dressing syntactic entailments, and extracting additional context information

from the entailment pair.

The architecture of the complete entailment system, called XTE – Explain-

able Text Entailment – was presented and each of its components was described.

The conditions that guide the routing mechanism, which analyzes the overlap

between T and H and decides whether entailment pairs should be dealt with

syntactically or semantically, were introduced and formalized. The Relative
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Tree Edit Distance model, which deals with those pairs predominantly showing

structural – that is, syntactic – differences, was described, and the improvements

introduced in the DGN model, responsible for solving entailments where a se-

mantic relationship exists, were listed and detailed. Such improvements were

intended to address some limitations observed by the end of the first phase of

the approach development, leveraging the capabilities of the graph navigation

mechanism for privileging the meaning of words and the semantic relatedness

between them across all the entailment recognition steps, from preprocessing to

justification.

Finally, the Context Analysis module, a support component which provides

additional information to both the TED and DGN models, was described. This

module analyzes syntactic and semantic features from both T and H to detect

phenomena not easily caught by the other models, such as simple negation,

opposition, inverse specialization, and clause unsatisfiability, helping the system

to deliver a better informed entailment decision.

The approach development and the composite interpretable system gener-

ated as a result aimed at addressing all the research hypothesis. The focus was

on the importance of the injection of commonsense world knowledge for solving

more semantically complex entailments, the need for the distinction between

syntactic and semantic entailments and the use of different methods to tackle

them, and the introduction of an interpretability feature, providing natural lan-

guage, human-like justifications for the entailment decision. The last point is a

major contribution over existing entailment systems: by explaining the system’s

reasoning steps, it becomes possible to interpret and understand its underlying

inference model, taking the entailment decision out of the numerical score black

box.



Chapter 5

Evaluation

In this chapter, the experiments carried out for evaluating the proposed ap-

proach are presented. In designing the experiments, we sought to give promi-

nence to datasets where world knowledge plays an important part in the en-

tailment recognition, in line with the proposed approach emphasis on semantics

and commonsense knowledge. Nevertheless, we also deemed important to in-

clude varied types of data, represented not only by the datasets tested but also

by the knowledge bases employed, so it could be possible to assess the system

behavior in as many different scenarios as possible.

As described in Chapter 4, the development of the approach was divided into

two parts: first, an algorithm for solving semantic entailments was designed and

implemented, and then a complete entailment system, able to deal with both

syntactic and semantic phenomena, was developed. The experiments reflect the

flow of activities in the development and aim at both evaluating individually the

products of both phases, and showing the evolution and quantitative and qual-

itative gains from the first solution to the final, complete approach. Therefore,

the goals of the experiments are to:

• Evaluate how an entailment model focused on finding semantic relation-

ships between T and H with the aid of a commonsense knowledge base

performs when compared to transformation and classification algorithms

when dealing with more world knowledge-demanding datasets;

• Evaluate how an entailment system that can recognize the T-H pair’s

predominant phenomena and employ the most suitable method to solve

159
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each of them compares to approaches that use a single technique, be it

syntactic or semantic, for all pairs;

• Evaluate the interpretability dimension of the system, assessing its ability

to explain its decisions and the quality of the justifications generated; and

• Evaluate quantitatively and qualitatively how different knowledge bases

generated from distinct lexical resources compare, especially from the in-

terpretability point of view, showing their impact in both the entailment

recognition and in the generation of justifications.

Throughout this chapter, the first part of the experiments, where the DGN

model alone was assessed, is referred to as stage one, and the evaluation of XTE,

the complete entailment system, is referred to as stage two. We start with an

account of the experimental setup, detailing the definition of the system’s main

parameters and describing the resources employed, comprising knowledge bases,

datasets, and baselines. Next, the results of both phases are presented and

analyzed, including a discussion on the influences of the different characteristics

of each knowledge graph on the system accuracy and interpretability.

5.1 Datasets

The following text entailment datasets were tested throughout the execution of

the experiments:

RTE3 dataset: the dataset from the third RTE Challenge1 is one of the most

traditional and popular text entailment datasets. It contains 1,600 T-H pairs,

split into DEV (800 pairs) and TEST (800 pairs) sets, and is balanced, with

half positive and half negative examples.

SICK dataset: SICK2 (Sentences Involving Compositional Knowledge) is a

dataset aimed at the evaluation of compositional distributional semantic mod-

els, which, besides the semantic relatedness between sentences, also includes

annotations about the entailment relation for the sentence pairs (Marelli et al.,

2014). It is composed of 9,840 pairs, split into TRAIN (4,439 pairs), TRIAL

1https://www.k4all.org/project/third-recognising-textual-entailment-challenge/
2http://clic.cimec.unitn.it/composes/sick.html
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(495 pairs), and TEST (4,906 pairs). Instead of the binary entailment classifica-

tion, there are three different relations: entailment, contradiction, and neutral.

For coherence with the other datasets, we considered both the contradiction

and neutral labels as non-entailment, leading to 29% positive and 71% negative

examples (the original classification is also unbalanced: around 57% of the pairs

have the label neutral).

BPI dataset: The Boeing-Princeton-ISI 3 textual entailment test suite was de-

veloped specifically to look at entailment problems requiring world knowledge,

being syntactically simpler than RTE datasets but more challenging from the

semantic viewpoint. It is composed of 250 pairs, 50% positive and 50% negative.

GHS dataset: The Guardian Headlines Sample4 is a subset of the Guardian

Headlines dataset5, a set of 32,000 entailment pairs automatically extracted

from The Guardian newspaper but not validated. The GHS is a random sample

of 800 pairs which have been manually curated, leading to a balanced set of

400 positive and 400 negative examples. It also requires a reasonable amount

of world knowledge and is the only dataset fully composed of real-world data,

without artificially assembled hypotheses: in positive examples, T is the first

sentence of a story and H is its headline, and in negative examples T and H are

two random sentences from the same story.

The RTE3 and SICK datasets have a stronger emphasis on linguistic phe-

nomena, while BPI and GHS gather more semantic-driven entailments, demand-

ing more world knowledge in the entailment recognition process. Since at stage

one the focus of the evaluation was on semantic entailments, only BPI and GHS

datasets were tested at this point. For evaluating the complete system, at stage

two all four datasets were used in the experiments.

5.2 Knowledge Bases

To evaluate the impact of different lexical resources in the entailment results,

especially in the justifications generated, the definitions from four dictionaries

3http://www.cs.utexas.edu/users/pclark/bpi-test-suite/
4https://goo.gl/4iHdbX
5https://goo.gl/XrEwG9
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were extracted: WordNet, the Webster’s Unabridged Dictionary6, Wik-

tionary7, and the set of definitions extracted from Wikipedia pages provided

by Faralli and Navigli (2013). Each of the four resulting DKGs differs from

the others in some way: The Webster’s is an older, conventional dictionary

dating from 1913. WordNet and Wiktionary are modern on-line lexicons, but

the former is developed by professional lexicographers while the latter is built

collaboratively by lay users. Last, Wikipedia is also built collaboratively, but is

an encyclopedic, rather than lexical, resource.

The original Webster’s dictionary text file was processed so, besides the

definitions, the part-of-speech and list of synonyms (when available) for each

word could also be extracted8. For the Wikipedia dataset, definitions for named

entities were excluded with the aid of the Stanford Named Entity Recognizer

(NER), so the final content could be closer to a regular dictionary. Due to the

natural limitations of the NER, many named entity definitions remained in the

final set, but this additional filter helped to set a manageable size for the final

graph, without leaving out potentially relevant information.

All the four sets of definitions were filtered, labeled and converted to an RDF

graph9, following the knowledge graph construction methodology described in

Chapter 3, yielding four different graph knowledge bases10. Table 5.1 shows the

dimensions of each of the resulting graphs.

Resource Noun Definitions Verb Definitions Total
WordNet 79,939 13,760 93,699
Webster’s 88,620 25,290 113,910
Wiktionary 390,417 73,826 464,243
Wikipedia 859,087 - 859,087

Table 5.1: Final dimensions of the definition knowledge graphs used in the
experiments

As much as the text entailment approach development, the creation of the

knowledge graphs was also carried on in an incremental manner. WordNet,

which is also used as a reference dictionary as reported in Chapter 3, was the

first lexicon to be processed, enabling the realization of the first experiments.

Hence, at stage one, only the WordNet graph was used as a knowledge source

6http://www.gutenberg.org/ebooks/673
7https://www.wiktionary.org/
8Extraction in JSON format available at https://github.com/ssvivian/WebstersDictionary
9Tools for building the graph available at https://github.com/ssvivian/DefRelExtractor

10All knowledge graphs in RDF format available at http://tiny.cc/gvtadz
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for the DGN model. At stage two, which aimed at not only evaluating the

performance of XTE but also comparing the influence of the knowledge bases

on the system’s results, all four graphs were employed.

5.3 Computing the Thresholds

Two of the most important parameters of the proposed approach are the Tree

Edit Distance model’s threshold t and the Distributional Graph Navigation

algorithm’s semantic relatedness threshold η (see Chapter 4). The definition of

t was only necessary at stage two, where the TED model was introduced, while

η is used at both stages one and two.

The TED threshold t is computed previously through a training procedure

which performs a sequential search to look for the distance that better sepa-

rates positive examples from the negative ones, and is aimed at maximizing

the algorithm’s accuracy, in our case, the F1-score. For training the model,

the training portions of the RTE3 and SICK datasets were combined. This

combined dataset, herein called RTE+SICK train dataset, compensates for the

lack of training data in the other two datasets while still being representative of

their syntactic characteristics: the RTE3 is closer in format to the GHS, both

having very long text sentences and usually short hypothesis, while the SICK

data is more similar to the BPI entries, with both datasets having short to

medium-sized text and hypothesis sentences, and usually not a big difference in

size between the two sentences composing an entailment pair. After the training

is performed over the RTE+SICK dataset, the learned threshold t is used to

compute the syntactic entailments for all the four tested datasets (for the RTE3

and SICK datasets, the evaluation is performed on their test portions).

The DGN threshold η is computed dynamically so the algorithm can always

retrieve the highest scoring entries from a list of candidates. While navigating

the knowledge graph, the DGN always retrieves a set of nodes and computes

the semantic relatedness sr between each node and the target (see Chapter 4),

which results in a ranked list of scores. Over this list, we perform a Seman-

tic Differential Analysis, adapting the method proposed in (Freitas, Curry, &

O’Riain, 2012) to identify score gaps which discriminate between highly seman-

tically related nodes and non-related ones. Given a list of ranked nodes, S0

is the score for the node with the maximum relatedness value, Sk is the score
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for the k + 1 ranked node and δSk,k+1 is the semantic differential between two

adjacent ranked nodes, that is:

δSk,k+1 = Sk − Sk+1 (5.1)

The gap in the list, occurring between Sn and Sn+1, is given by δSmax,

the maximum semantic differential. Sn and Sn+1 define the top and bottom

relatedness values of δSmax, denoted by S>n and S⊥n+1. Figure 5.1 illustrates the

Semantic Differential Model.

Figure 5.1: The Semantic Differential Model. δSmax defines a gap in a ranked
list of scores.

To determine η at each step of the graph navigation, δSmax is computed

over the current ranked list of nodes and the bottom value is selected as the

semantic threshold, therefore:

η = S⊥n+1 (5.2)

We choose the bottom value, and not the top, which is the one immediately

before the gap, in order to keep at least one moderately related node in the

list. Since semantic similarity scores depend on the DSM model used to com-

pute them, and, by extension, on the corpus from where the DSM was learned,
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average (immediately after the gap) scores can have varying meanings when

considered in different contexts. By including the bottom relatedness value in

the list, we ensure potential relevant nodes won’t be missed. If such nodes prove

to be irrelevant, the DGN manages to abort their paths at subsequent steps,

eliminating any eventual noise.

5.4 Baselines

To show the improvements provided by both the DGN model alone and, subse-

quently, the composite XTE system, the results of both experiment stages were

compared with two well-established entailment approaches: a transformation-

based purely syntactic algorithm and a classification-based syntactic approach

that employs linguistic resources from where shallow semantic information is

extracted.

The Edit Distance (Kouylekov & Magnini, 2005) is the state-of-the-art

implementation of the tree edit distance algorithm for recognizing textual en-

tailment, and only considers the syntactic structures of T and H, given by their

dependency trees. This approach implements the Zhang and Shasha (1989) tree

edit distance algorithm and adopts a cost function based on the weight, given

by the IDF (inverse document frequency), of the words representing the nodes

to be inserted, deleted or replaced.

The Maximum Entropy Classifier (R. Wang & Neumann, 2008b) also

uses the syntactic dependency trees as features in a classifier which also employs

lexical-semantic features from WordNet and VerbOcean (different configurations

are available, the Base+WN+TP+TPPos+TS EN configuration, reported to

be the one that yields the best results, was used in the experiments). In this

approach, structural features are extracted from the tree representations to feed

a subsequence-kernel-based classifier. Further features feed individual modules

designed to analyze only a specific aspect, such as named entities or temporal

expressions. Each module returns its own decision, and the set of decisions are

ranked according to their confidence scores so the final decision, which is the

highest ranking one, can be chosen.

Both implementations are provided by the text entailment framework Ex-

citement Open Platform (EOP) (Magnini et al., 2014). At stage one, where

only BPI and GHS datasets were used, both models were trained on the default
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RTE3 training set, following the EOP documentation instructions11. At stage

two, for consistency with the syntactic-driven TED module in XTE, they were

also trained on the combined RTE+SICK training dataset (Section 5.3).

Given that one of the main goals of the experiments was to compare an

approach supported by a composition of techniques with single-technique algo-

rithms, at stage two the first version of the DGN was also added as a baseline

in the XTE evaluation.

5.5 Additional Settings

As detailed in Chapter 4, the first version of the DGN employed syntactic sen-

tence simplification in the entailment pair preprocessing. This was done through

the Sentence Simplification service (Niklaus, Bermeitinger, Handschuh, & Fre-

itas, 2016) in the information extraction pipeline Graphene12.

For computing the semantic relatedness between words/phrases, word2vector

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) was used as the DSM. The

measures were obtained through the Indra13 (Sales et al., 2018) service, using

the w2v model pre-trained on the Wikipedia 2018 English dump, and the cosine

as the score function.

5.6 Results

In all the experiments, we compute the precision, recall, and F1-score (rounded

to two decimal places). Results for the Edit Distance and Maximum Entropy

Classifier baselines vary from the first to the second stage due to the different

training datasets used to generate the model, as described in Section 5.4. The

discussions that follow the results are intended to provide a comparison between

the proposed approach and the baselines; a detailed analysis of the approach

outputs through a review of the system’s misclassifications will be presented in

Chapter 6.

11https://github.com/hltfbk/EOP-1.2.3/wiki/Quick-Start
12https://github.com/Lambda-3/Graphene
13https://github.com/Lambda-3/Indra
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5.6.1 Stage One: Stand-alone DGN

Table 5.2 shows the results of the first round of experiments, where the stand-

alone version of the DGN was evaluated and compared against the syntactic-

driven baselines.

BPI GHS
Pr Re F1 Pr Re F1

EditDistance 0.44 0.65 0.53 0.96 0.30 0.45
MaxEntClassifier 0.46 0.57 0.51 0.50 1.00 0.66
DGN 0.65 0.54 0.59 0.56 0.50 0.53

Table 5.2: Stage one evaluation results. The upper part shows the baselines,
and at the bottom are the stand-alone DGN results.

As can be noticed, the first version of the DGN presents better precision

an F1-score for the BPI dataset, which is the most semantically-oriented one,

favoring the world knowledge exploration. Nevertheless, it still contains pairs

where only a syntactic analysis is necessary, and which the DGN can’t deal with,

hence the lowest recall.

The GHS is a challenging dataset since it contains longer and more complex

sentences, and frequently shows substantial vocabulary variation between text

(the first line of a story) and hypothesis (the story’s headline), given that jour-

nalists tend to avoid repetition of words. The Edit Distance algorithm shows

high precision on this dataset, possibly because it has no “tricky” negative ex-

amples from the syntactic point of view (i.e., examples intended to exploit the

known weaknesses of popular entailment algorithms), as BPI does, but presents

very low recall. The Maximum Entropy Classifier shows higher F1-score, but

it classifies all but two of the 800 pairs as entailment, hence the 100% recall

and 50% precision, since the dataset is balanced. Given that positive pairs are

structurally very different from negative ones in this dataset (in positive pairs,

H is a short piece of text and T is usually a very long sentence, and in negative

pairs both T and H are often long sentences) it is somewhat hard to grasp the

Maximum Entropy Classifier’s operating principles behind those decisions.

Although these first results are only comparable to those yielded by the

baselines, they pointed to the potential of exploring the semantic relationships

between T and H, besides providing insights into the DGN strengths and weak-

nesses so a second improved version could be planned and implemented, before

being integrated into the final complete solution.
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5.6.2 Stage Two: The Complete XTE System

Table 5.3 shows the results of the second round of experiments, where the com-

posite interpretable XTE system14 was compared with the single-technique ap-

proaches. The different XTE configurations are identified by the DKG used

by the Distributional Graph Navigation component, that is, the knowledge

bases derived from WordNet (WN), Webster’s dictionary (WBT), Wiktionary

(WKT), and Wikipedia (WKP).

RTE3 SICK BPI GHS
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

ED 0.61 0.51 0.55 0.41 0.76 0.54 0.41 0.45 0.43 0.97 0.15 0.26
MEC 0.56 0.58 0.57 0.65 0.47 0.55 0.29 0.18 0.23 0.99 0.20 0.33
DGN 0.48 0.32 0.38 0.31 0.35 0.33 0.65 0.54 0.59 0.56 0.50 0.53
XTE (WN) 0.57 0.68 0.62 0.50 0.70 0.58 0.56 0.78 0.65 0.70 0.53 0.60
XTE (WBT) 0.58 0.65 0.61 0.51 0.69 0.59 0.53 0.62 0.57 0.69 0.46 0.55
XTE (WKT) 0.59 0.67 0.63 0.51 0.70 0.59 0.54 0.70 0.61 0.70 0.45 0.55
XTE (WKP) 0.62 0.52 0.56 0.58 0.55 0.57 0.50 0.41 0.45 0.74 0.27 0.40

Table 5.3: Stage two evaluation results. The upper part shows the baselines,
and at the bottom are the proposed composite entailment approach results. ED
= Edit Distance, MEC = Maximum Entropy Classifier, DGN = Distributional
Graph Navigation, XTE = Explainable Text Entailment

The first thing that can be noticed is how the results vary across datasets

for those baselines that rely on training data, that is, the Edit Distance and the

Maximum Entropy Classifier algorithms. Both approaches present homogeneous

results for the RTE3 and SICK datasets, for which training data is available, but

their accuracy falls significantly for the BPI and GHS datasets. Their accuracy

regarding these two datasets also drops considerably when compared with the

results in Table 5.2, where both models were trained on the default training set,

indicating a dependency on the kind of data they were designed and developed

upon.

Meanwhile, XTE presents consistent results across all datasets, because it

does not rely exclusively on the syntactic information learned at the training

phase, but rather balances it with the semantic knowledge extracted from the

DKGs. Since these knowledge graphs are commonsense and independent re-

sources, they work homogeneously in an unbiased fashion for any unseen data,

making the proposed approach less training data-dependent. Moreover, for the

BPI and GHS datasets, which require more world knowledge, both baseline

algorithms show low recall and are outperformed by XTE, adding to the im-

14Source code available at https://github.com/ssvivian/XTE
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portance of combining and balancing syntactic and semantic information while

solving the entailments.

When compared with the semantic-only stand-alone Distributional Graph

Navigation approach, XTE also presents much better results, especially for the

RTE3 and SICK datasets, which don’t have a heavy focus on world knowledge-

based entailments. Besides not dealing well with entailments that don’t show

any semantic relationship (that is, purely syntactic entailments), as described

in Chapter 4, the DGN also uses a syntax-based heuristic to define the source-

target input pairs and the head words for multi-word expression graph nodes.

This heuristic uses part-of-speech tags to find the main components (subject,

verb, objects) in a sentence, which does not work well for long, complex sen-

tences, as is the case in the RTE3 and GHS datasets. By evolving to a semantic

similarity-based heuristic, the second version of the DGN, and, consequently,

the XTE, can now retrieve better source-target pairs and a higher number of

relevant head words, what leads to much better recall and overall F1-score.

5.7 Justification Analysis

The justifications generated for the positive entailments solved by the Distribu-

tional Graph Navigation model were systematically analyzed in order to asses

their correctness and consistency. This analysis was performed over the outputs

of stage two of the experiments, that is, the complete XTE system.

This evaluation was intended to assess the explanations from a functional

point of view, that is, to determine if they were accomplishing the task of

establishing the right relationship between the right terms in T and H. A deeper,

psychological evaluation to assess trustworthiness was out of the scope of this

work. That means justifications were evaluated to be “right” or “wrong” on

a high level, but not “good” or “bad” according to a more subjective user’s

judgment.

Evaluators were asked to first point the entities establishing a connection

between T and H. Then, they should judge if the justification met two require-

ments: (1) it linked the previously identified entities, and (2) the relationship it

describes is the same one intended by the context given by T and H (according

to the human judgment).

They then classified justifications into correct or incorrect. Correct justifi-

cations meet both conditions, establishing the right relationship between the
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relevant entities e1 ∈ T and e2 ∈ H, presenting the pertinent information about

it and making the reasoning clear. Examples15:

1.4 T: A council worker cleans up after Tuesday’s violence in Budapest.

1.4 H: There was damage in Budapest.

1.4 A: YES

Entailment: yes

Justification:

A violence is a state resulting in injuries and destruction etc.

A destruction is a termination of something by causing so much damage to

it that it cannot be repaired or no longer exists

116 T: Vasquez Rocks Natural Area Park is a northern Los Angeles County

park acquired by LA County government in the 1970s.

116 H: The Vasquez Rocks Natural Area Park is a property of the LA County

government.

116 A: YES

Entailment: yes

Justification:

To acquire is to come into the possession

A possession is an act of having and controlling property

Incorrect justifications do not meet one or both aforementioned conditions,

establishing a relationship between the wrong pair of entities, that is, entities

that, although being semantically related, do not establish a logical link be-

tween T and H, or being too vague, linking the correct pair of entities e1 ∈ T
and e2 ∈ H but giving only superficial and insufficient information about their

semantic relationship. Examples16:

149 T: Joining Pinkerton at the Chamber of Commerce, is Lindsey Beverly, who

will be the new executive assistant.

149 H: Pinkerton works with Beverly.

149 A: YES

Entailment: yes

15Examples from the BPI and RTE3 datasets, respectively.
16Examples from the RTE3 dataset.
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Justification:

An assistant is a person who contributes to the fulfillment of a need or fur-

therance of an effort or purpose

Effort is synonym of work

110 T: Leloir was promptly given the Premio de la Sociedad Cient́ıfica Argentina,

one of few to receive such a prize in a country in which he was a foreigner.

110 H: Leloir won the Premio de la Sociedad Cient́ıfica Argentina.

110 A: YES

Entailment: yes

Justification:

To receive is a way of to take

To take is synonym of to win

In the first example, even though the semantic relationship between “as-

sistant” and “work” may seem consistent, the expressions that establish the

entailment relation are “join” and “work with”. In the second case, although

the justification links the correct entities establishing the entailment, that is,

“receive” and “win”, the explanation, made through the verb “take” with no

complements, sounds vague and not informative enough. Definitions for verbs

tend to be less detailed than those for nouns, and many times expressed in terms

of very broad supertypes (like “take” in the second example), leading justifica-

tions generated from paths containing verb entity nodes to be more prone to

vagueness.

The distribution of correct and incorrect justifications is given in Table 5.4.

The evaluation was performed over the full results obtained with the WordNet

graph, which is the knowledge base that yields the overall best results across

datasets. A more detailed comparison of all the tested DKGs is given in Section

5.8.

Dataset Correct Justifications Incorrect Justifications
RTE3 50.3% 49.7%
SICK 77.1% 22.9%
BPI 61.3% 38.7%
GHS 43.3% 56.7%

Table 5.4: Distribution of correct and incorrect justifications
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As can be seen in Table 5.4, the distribution of correct and incorrect jus-

tifications varies depending on the dataset, with SICK and BPI showing the

best results. In common, these two datasets have relatively short text and hy-

pothesis sentences, which favors the correct identification of source-target word

pairs. On the other hand, the RTE3 and GHS datasets have short hypothesis

sentences but very long text sentences. The larger the sentence, the bigger the

number of possible source-target pairs, so the likelihood of finding a relationship

that doesn’t necessarily lead to the entailment increases. The GHS is a partic-

ularly challenging dataset because the text T corresponds to the first sentence

of a news story, usually expanding the idea highly condensed in the headline,

that is, the hypothesis H. The two sentences are very semantically related as a

whole, so many concepts in T will have some strong relationship with (some-

times the same) concepts in H, leading to many explanations where, although

the relationship by itself may be right, it is not the most suitable answer for

the entailment decision, as already shown in the example 149 above, hence the

higher number of incorrect justifications.

Although there is still much room for improvement, the proposed approach

for generating natural language justifications proved to be a viable solution

especially in view of the fact that it employs an unsupervised technique and

relies on already existing knowledge sources, yielding reasonable results without

the costs and training data-dependency of supervised methods.

5.8 Comparing Definition Knowledge Graphs

Besides the improvements in the quantitative results, the interpretable charac-

teristic of XTE represents a fundamental contribution towards Explainable AI:

providing human-like explanations for the entailment decisions whenever a more

complex semantic relationship is involved translates into a concrete gain for the

final user, who can understand and judge the system’s inference process. The

justifications, though, depends heavily on the graph knowledge base employed

in the entailment recognition. Overall, WordNet, Webster’s and Wiktionary

graphs deliver close results for the RTE3 and SICK datasets, but WordNet

stands out for the more world knowledge-demanding BPI and GHS datasets, as

can be seen in Table 5.3.

The impact of each DKG can be better measured by the recall obtained

when they are queried: the more useful information the graph contains, the
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more paths (meaning semantic relationships between source and target words)

can be found and, consequently, more entailments can be recognized. Again,

WordNet, Webster’s and Wiktionary graphs show comparable recalls for the

RTE3 and SICK datasets, but WordNet presents a much better recall for BPI

and GHS. The Wikipedia graph, on the other hand, shows lower recall for all of

the datasets, especially for the more knowledge-oriented BPI and GHS, despite

being the larger knowledge base. This happens because Wikipedia, besides not

defining verbs, privileges the definitions of people, places, arts and entertainment

artifacts (films, books, songs, etc.) and other entities expressed by proper nouns.

In fact, Wikipedia lacks definitions for many concepts present in the datasets

for which relationships are sought: “violence” and “damage”, “signatory” and

“agreement”, “decontamination” and “contaminants”, or “bet” and “gamble”,

to name a few. This shows that, for the entailment task, the content type

is more relevant than the amount of information in the graph. The WordNet

graph, for example, corresponds to roughly only 10% of the Wikipedia graph,

but contains far more common nouns denoting basic language concepts, better

matching the task requirements.

The Wiktionary graph has a good coverage of common nouns, comparable

to WordNet, but in some cases the completeness of its definitions may represent

an issue: if not enough information regarding essential attributes is contained in

the definition, that is, the definition of an entity fails to mention other entities

it is essentially related to, paths will start but won’t reach the target. Built

by expert lexicographers, the WordNet definitions tend to follow some patterns

and are more prone to cover essential attributes. On the other hand, in a

collaborative environment, despite the larger volume of information that can be

generated, high-quality standards cannot always be ensured. This is the reason

why, in spite of its much larger dimensions, the Wiktionary graph cannot always

surpass the WordNet one, yielding lower recall for the BPI and GHS datasets.

Again, the coverage and regularity of the knowledge base contents prove to be

more important than its size.

As for the Webster’s graph, what was observed as an issue is the oldness of its

source: dating from 1913, the Webster’s Unabridged Dictionary naturally also

covers all the most common language concepts, but, besides sometimes regis-

tering obsolete forms, like “camera obscura” for [photographic] “camera”, lacks

many modern concepts or concepts that were not of widespread use back then,

such as “WMD” (Weapons of Mass Destruction), “website”, “terrorist act” or

“recall” (in the sense of “defective products callback”). Such modern concepts
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are frequent in press content, so datasets like the GHS, totally generated from

newspaper content, and the BPI, also derived from news content, may pose a

challenge to this knowledge graph, which is confirmed by the lower recall (com-

pared to WordNet) returned for these two datasets when the Webster’s graph

is used.

The justifications generated by each of the graphs are comparable in quality,

with WordNet and Wikipedia graphs offering slightly more detailed explana-

tions. An example from the GHS dataset, explained by the WordNet graph:

18623 T: GlaxoSmithKline has been forced to set aside £220m to settle anti-

trust cases in the US over its anti-inflammatory drug Relafen.

18623 H: Glaxo hit by £220m US court blow

18623 A: YES

Entailment: yes

Justification:

A case is a term for any proceeding in a court of law whereby an individual

seeks a legal remedy

Court of law is synonym of court

From the RTE3 dataset, explained by the Webster’s graph:

158 T: Mr. Gotti, who is already serving nine years on extortion charges, was

sentenced to an additional 25 years by Judge Richard D. Casey of Federal Dis-

trict Court.

158 H: Gotti was accused of extortion.

158 A: YES

Entailment: yes

Justification:

A charge is a kind of accusation

An accusation is an act of accusing or charging with a crime or with a lighter

offense

From the SICK dataset, explained by the Wiktionary graph:

1459 T: A man is exercising

1459 H: A man is doing physical activity
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1459 A: YES

Entailment: yes

Justification:

To exercise is to perform physical activity for health or training

From the BPI dataset, explained by the Wikipedia graph:

17.4 T: A Union Pacific freight train hit five people.

17.4 H: The train was moving along a railroad track.

17.4 A: YES

Entailment: yes

Justification:

A freight train is a group of freight cars or goods wagons hauled by one or

more locomotives on a railway [...]

Railway is synonym of railroad track

Summing up, the WordNet graph presents the best recall across all datasets,

due to its good term coverage and definitions’ completeness. The Wiktionary

and Webster’s graphs also show good recall but their performance can be weak-

ened by the incompleteness resulting from the amateur nature of the defini-

tions creation process, in the Wiktionary case, or by the lack of modern terms

which are frequent in contemporary language, in the Webster’s instance. The

Wikipedia graph, due to its encyclopedic nature, has well constructed and com-

plete definitions, but lacks many basic concepts, yielding the lowest recall re-

gardless of the dataset.

5.9 Summary

In this chapter, the experiments performed for evaluating the proposed text

entailment approach were described. Like the approach development, the ex-

periments were also split into two phases so the semantic-oriented Distributional

Graph Navigation model and the complete composite interpretable XTE entail-

ment system could be evaluated separately and then compared.

The experiments involved distinct types of datasets and knowledge bases

in order to assess the approach behavior in different scenarios. Four text en-

tailment datasets were tested: RTE3 and SICK, which are more focused on
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linguistic phenomena, and BPI and GHS, which are more semantically complex

and demand a larger amount of world knowledge for the entailment recognition.

All four datasets mix syntactic and semantic entailment pairs but in different

proportions, and the entailment pairs structural characteristics also vary among

them: while SICK and BPI contain pairs composed of short to medium size T

and H sentences, RTE3 and GHS have very long T sentences for usually short

H statements. As for the knowledge bases, definition graphs were built from

four different lexical resources: WordNet, the Webster’s Unabridged Dictio-

nary, Wiktionary and Wikipedia, allowing an assessment on how each of them

impact the proposed approach results and influenced its interpretability.

From the evaluation of the first version of the DGN, it was observed that it

delivered better precision and F1-score for highly world knowledge-demanding

datasets when compared with syntactic-oriented approaches, but yielded lower

recall for not being able to deal with syntactic entailments. This first round

of experiments also allowed the identification of some limitations in the DGN

first implementation, which could be fixed before the model was integrated

into the complete entailment system. The main conclusion of this experiment

stage is that looking for the semantic relationship between T and H

improves the precision, but a complimentary syntactic approach is

still necessary.

The second round of experiments evaluated the performance of the complete

composite interpretable text entailment system. All the possible combinations

of datasets and knowledge graphs were tested, and both the quantitative results

and the natural language justifications were analyzed. The main conclusions of

the quantitative analysis are:

• The XTE composite approach outperforms entailment algorithms that

employ a single technique, be it syntactic or semantic, to tackle all types

of entailments. It shows an improvement of, on average, around 6% in

F1-score when compared to the best performing baselines.

• It is less dependent on training data, since it combines learned parameters

with independent, external commonsense knowledge which works well re-

gardless of the dataset. This leads to less variability among the results

obtained for different datasets, including those for which no training data

is available.
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Regarding the influence of the knowledge bases in the system outputs, given

that text entailment deals with language variability, it could be observed that

knowledge graphs covering the most basic, everyday language concepts yield the

best results, so regular dictionaries, such as WordNet, Webster’s and Wiktionary

are more useful than encyclopedic KBs like Wikipedia for this task. We also

found that definitions created by lexicographers under a controlled environment

tend to be more complete and, consequently, provide better recall and somewhat

more detailed justifications than those created in collaborative environments

by lay users. Furthermore, contemporary resources can show some advantage

over older dictionaries for containing modern terms frequently occurring in the

present-day language but absent from ancient lexicons like Webster’s dictionary.

As a summary, the ideal resource for the textual entailment task would have

the following characteristics:

• High coverage of common, basic language concepts;

• Completeness of definitions, which should always include, as a minimum,

the type and the essential attributes of the definiendum;

• Regularity in the syntactic and semantic structure of definitions, which

usually follows from the work of a limited set of professional lexicographers;

• Content constantly updated to include modern terms or new meanings for

existing terms.

The experiments proved the hypothesis that a combination of techniques

aimed at dealing with different entailment phenomena performs better than

single-method approaches, and, by testing and comparing several graph knowl-

edge bases, we also showed that the use of external world knowledge not only

improve quantitative results, but is also a valuable feature for increasing the

system interpretability.





Chapter 6

Error Analysis

In this chapter, the results of a detailed error analysis are presented. The sys-

tematic error analysis was carried out with the aim of identifying the proposed

approach limitations, as well as their nature and causes. This study refers to the

results obtained at the stage two of the experiments, where the final, complete

entailment system was evaluated, as described in Chapter 5.

The chapter starts with the description of the principles that guided the

execution of the analysis. A classification of the error types is given next,

followed by the distribution of each type across datasets and a discussion about

the results pointing out the main error triggers and the directions for possible

future developments.

6.1 Analysis Guiding Principles

The error analysis was performed over the full results obtained in the experi-

ments employing the WordNet definition graph, since this is the knowledge base

that delivers the overall best results (see Chapter 5). All false negatives and

false positives for each of the four tested datasets – RTE3, SICK, BPI, and GHS

– were examined to uncover the source of the error, with the aid of further data

extracted from the system’s internal flow, be it information exchanged between

modules, such as the Preprocessing or Context Analysis modules results trans-

mitted to the Distributional Graph Navigation (DGN) module, or intra-module

information, like the definition of source-target input word pairs.

179
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While errors in entailments solved by the Tree Edit Distance (TED) module

are directly and exclusively linked to the edit distance threshold t, in the DGN

module case, many different parameters and factors external to the algorithm

itself can have an influence over a wrong entailment decision. The TED model

relies on the information extracted from training data to compute average edit

distances for both positive and negative entailments, and then, based on these

values, assess the validity of the entailment for new data. Therefore, errors occur

either when an entailment has a higher-than-average edit distance, generating

false negatives, or when a non-entailment has a lower-than-average edit distance,

yielding a false positive.

On the other hand, the DGN model results depend on, besides the algorithm

itself, the preprocessing stage results, the distributional model used to compute

semantic relatedness measures, and the graph knowledge base employed for

finding the semantic relationships. The analysis was, then, concentrated on the

entailment pairs solved by the DGN module, since in this scenario the errors

can be caused by a wider range of factors.

6.2 Error Classification

6.2.1 False Negatives

False negatives occur when there is a semantic relationship between T and H

that could not be detected, resulting in an entailment being classified as a non-

entailment. The decision can happen before or during the DGN procedure,

caused by syntactic or semantic factors.

6.2.1.1 Syntactic Factors

Syntactic errors refer to misclassifications while the structure of the sentences

composing the entailment pair is being analyzed. Such errors occur mostly in

preprocessing stages and affect the quality of the inputs sent to subsequent steps

in the entailment workflow.

Tokenization/POS Tagger/Splitting Error

Tokenization and part-of-speech (POS) tagging are performed by the Stanford

parser and are mainly used to generate the bag-of-words used to compute the

overlap set that is, in turn, used by the model router to decide which module
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the pair is sent to. Splitting is a utility function implemented within the sys-

tem and built upon the WordNet stemmer, intended to split the sentences into

phrases when applicable, detecting multi-word expressions rather than always

considering only single words. Splitting is used for building the source-target

pairs which is sent as inputs to the DGN.

Errors occur when the splitting procedure does not identify the correct

phrases, when the tokenizer does not stem the words correctly, or when words

are assigned the wrong part-of-speech tag during the tokenization procedure.

Wrong splitting and tokenization make the search start at the wrong node in

the graph, not reaching the target. Wrong tokenization can also result in the

entailment pair being sent to the wrong module to be solved. The wrong POS

tag can prevent the start of the path search, in case the source word is a noun

or verb incorrectly classified as an adjective or adverb, or keep a path from

reaching the target, if such target word wasn’t correctly stemmed and tagged.

Examples1:

24864 T: Lorraine Heggessey today said she had no regrets over chasing ratings

and said accusations that she had “dumbed down” BBC1 had hurt.

24864 H: Heggessey: Dumbing down accusations hurt

24864 A: YES

371 T: A man is resting on a chair and rubbing his eyes

371 H: A man is sitting on a chair and rubbing his eyes

371 A: YES

14.4 T: Britain puts curbs on immigrant labor from Bulgaria and Romania.

14.4 H: Britain restricted workers from Bulgaria.

14.4 A: YES

In the first example, the tokenizer correctly stems “dumbed” in T, return-

ing the verb “dumb” as a token, but fails to do the same for “dumbing” in H,

keeping the token as it is and classifying it as a noun. The tokenization error

leads to a wrong routing decision since all the tokens in H are also contained

in T, therefore this pair should be sent to the Tree Edit Distance model and

not to the Distributional Graph Navigation. In the second example, the cor-

1Examples from GHS, SICK, and BPI datasets, respectively.
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rect source-target pair is “rest” and “sit”, for which there is a clear semantic

relationship, but the splitting function returns “rest on” instead of “rest” as

a token. Since “rest on” has a different meaning, paths starting at this node

don’t reach the target. In the third example, the entailment is given by the

source-target pair “curb” (noun) and “restrict” (verb), but the tokenizer/POS

tagger does not recognize “restrict” as a verb or stems it as expected, but rather

returns “restricted” as a token, classifying it as an adjective. The path between

the noun “curb” and the verb “restrict” indeed exists in the WordNet graph,

but since the target word is misclassified and not stemmed, the path between

the text and the hypothesis can’t be found. To illustrate the impact of wrong

syntactic preprocessing, when “restricted” is replaced by “restricts” in the hy-

pothesis in the last example, the entailment decision correctly changes to yes,

because “restrict” is accurately classified as a verb, and the following justifica-

tion is generated:

Entailment: yes

Justification:

A curb is an act of restraining power or action or limiting excess

To restrain is synonym of to restrict

6.2.1.2 Semantic Factors

Semantic errors refer to a misinterpretation or lack of information about the

correct meaning of terms and, consequently, a failure to establish the correct

semantic relationship between them. They can be caused by limitations in the

system, but also by external factors such as knowledge base incompleteness or

dataset inaccuracy.

Wrong Context Analysis Decision

This error happens when the Context Analysis module finds some information

which it considers to be inconsistent, classifying the pair as a non-entailment,

but the intended meaning is different from that detected by the module. Ex-

amples2:

2Examples from BPI and SICK datasets, respectively.
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4.4 T: Iran purchased plans for building a nuclear reactor from A.Q. Khan.

4.4 H: Khan sold some plans to Iran.

4.4 A: YES

66 T: Two people wearing snowsuits are on the ground making snow angels

66 H: Two people in snowsuits are lying in the snow and making snow angels

66 A: YES

In the first example, the Context Analysis module identifies “purchase” and

“sell” as antonym concepts, while the actual intended relationship between these

terms is one of dependency and not opposition. In the second example, it

concludes that H has an unsatisfiable clause, since it has more clauses that T,

although both coordinated clauses in H are fully satisfied by the single clause

in T.

Correct Source-Target Pair not Found

This error occurs when the source-target pair that establishes the entailment

relationship is not identified as a relevant input for the DGN because, although

being semantically related, the relatedness score returned for it by the DSM

(in this case, word2vector) is not high enough to place it among the top k best

scoring pairs, or because one of the terms is a multi-word expression not caught

by the splitting algorithm. A suitable source-target pair, in the form expected

by the DGN model, may not even be present in the entailment pair at all. Ex-

amples3:

27599 T: The Leeds coach Tony Smith has added spice to tonight’s meeting

of Super League’s top two at St Helens with the strongest criticism yet from

within the game of the weak team Saints sent to Bradford on Easter Monday.

27599 H: Smith slams Saints over weak team

27599 A: YES

2443 T: Pete Doherty found himself languishing behind bars for a fourth night

yesterday after his record label bosses again struggled to raise his £100,000 bail.

2443 H: Fourth night in jail for Pete Doherty

3Examples from GHS (first and second) and SICK (third) datasets.
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2443 A: YES

7605 T: A brown dog and a gray dog are playing in the snow

7605 H: Two dogs are playing in the snow

7605 A: YES

In the first example, the best pair is given by the words “criticism” in T and

“slam” in H, but other highly semantically related pairs (according to the DSM’s

judgment, and mostly because of another, sports-related meaning of “slam”),

such as “game” and “slam”, “league” and “slam”, or “coach” and “slam”, among

others, push the correct entry to the end of the list, excluding it from the input

set. In the second example, the entailment is established by the pair “behind

bars” and “jail”, but the splitting algorithm, which considers as a token the

longest sequence of words that exists as an entry in WordNet, does not identify

“behind bars” as a valid phrase (since it is not in WN), so the right pair cannot

be found. In the third example, rather than a semantic relationship between

concepts in T and H, what exists is an arithmetic correspondence between the

sentences, since “a brown dog and a gray dog” = “two dogs”. No suitable pair

can be found to be sent as input to the DGN, leaving this entailment scenario

out of the proposed approach scope.

Path not Found by the DGN

In this case, although the correct source-target pair was identified, both source

and target words were correctly tokenized and POS tagged, and the path be-

tween them exists in the definition knowledge graph, the DGN wasn’t able to

find such path, because the relatedness values returned by the DSM for the

relevant role nodes were too low. Low semantic relatedness scores can either

exclude a role node from the set of nodes to be visited next, or make such nodes

to be located far from the top of the stack of paths to be explored by the DGN.

In the last case, the maximum number of paths can be reached before the cor-

rect path is explored, and the search ends returning a non-entailment decision.

Examples4:

16.2 T: Satomi Mitarai bled to death.

16.2 H: Satomi Mitarai died.

4Examples from BPI and SICK datasets, respectively.
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16.2 A: YES

7916 T: A dog is running towards a ball

7916 H: A dog is running towards a toy

7916 A: YES

In the first example, “death” and “die” are correctly identified as the source-

target pair, but “death” has eight different senses in WordNet, hence eight

different definitions, but the nodes for the most relevant one – “the event of

dying or departure from life” – are not the highest scoring ones, pushing the

paths containing them to the bottom of the stack and leaving them unexplored.

The same happens in the second example where the semantic relationship holds

between “ball” and “toy”, but “ball” has twelve different definitions and the

relevant one – “a spherical object used as a plaything” (“plaything” is, in turn,

synonym of “toy”) – does not have its role nodes scoring high enough to be

explored in the path search.

Source Word Category not Covered by DKG

This error happens when the part of speech of the source word in the source-

target pair that establishes the entailment relationship is not covered by the

definition knowledge graphs. Currently, the DKGs include definitions only for

nouns and verbs, so if the source word is an adjective or adverb it will not be

possible to look for a path in the DKG starting from it. Examples5:

6.3 T: Armed men kidnapped an Associated Press photographer on Tuesday as

he was walking in Gaza City.

6.3 H: There was a group of men who possessed guns.

6.3 A: YES

616 T: The world’s population is set to reach a staggering 10bn by the middle

of the next century up from 5.7bn now.

616 H: The current world population is 5.7 billion.

616 A: YES

5Examples from BPI and RTE3 datasets, respectively.
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In the first example, the entailment is established by the pair “armed” and

“gun”, but since “armed” is an adjective, the search in the DKG can’t proceed

for this pair. In the second one, the best pair is given by the words “now” and

“current”, which also prevents the start of the search, for the source word is an

adverb.

This only happens for source words because the search always begins with

an entity node. If the target word is an adjective or adverb, it can still be found

by the DGN, because, although it does not exist as an entity node, it may be

part of a role node, and every head word in a role node is compared against the

target regardless of its part-of-speech.

Absent or Insufficient Information in the DKG

This error occurs when the definition for the source word is not present in the

resource that gave origin to the DKG, so it will not be found as an entity node,

despite being a noun or verb. It also occurs when the source word exists an

entity in the graph but the information encoded in its role nodes is insufficient

to derive a path that reaches the target. Examples6:

7.1 T: Sony is doing a huge retail rollout of their new Playstation.

7.1 H: Sony is rolling out their new Playstation.

7.1 A: YES

35 T: A Revenue Cutter, the ship was named for Harriet Lane, niece of Presi-

dent James Buchanan, who served as Buchanan’s White House hostess.

35 H: Harriet Lane was a relative of President James Buchanan.

35 A: YES

In the first example, the pair “rollout” (noun) and “roll out” (verb) estab-

lishes the entailment, but the definition for “rollout” is not included in WordNet,

so the graph search cannot proceed. It is, nevertheless, present in Wiktionary,

so when this graph is used the DGN successfully finds a path between the

source and the target and confirms the entailment. In the second example, the

source-target pair is given by the words “niece” and “relative” but, although the

definition for “niece” exists in WordNet, it does not include the word “relative”

or any other word whose definition leads, directly or indirectly, to “relative”.

6Examples from BPI and RTE3 datasets, respectively.
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The DGN generated from the Webster’s Dictionary does contain such path, so

this entailment pair is correctly classified as an entailment when this graph is

employed.

Dataset Classification Error

This error happens when the entailment pair has the wrong classification in

the dataset, clearly identifiable by the positive label being inconsistent with the

information contained in the pair of sentences. Although counted as an error,

since the system’s answer differs from the dataset’s gold standard, this kind of

false negative is actually a correct entailment decision. Examples7:

19 T: A person in a black jacket is doing tricks on a motorbike

19 H: A man in a black jacket is doing tricks on a motorbike

19 A: YES

977 T: A man is falling off a horse on a track and is laid in the wild

977 H: A man is getting on a horse on a track laid in the wild

977 A: YES

In the first example, H is more specific than T, and it cannot be concluded

that “a person” is “a man”. The Context Analysis module correctly identifies

this as an inverse specialization, rejecting the entailment, but since the pair

is erroneously classified as an entailment in the dataset, it counts as a false

negative. In the second example, there is a clear contradiction, since “fall off”

is the opposite of “get on” in this context, but the pair is nonetheless also

classified as an entailment.

Classification errors only occur in the SICK dataset. In this dataset, an

initial set of sentences was expanded for creating similar, contradictory and

neutral versions of the original sentences, which were then combined pairwise

(Marelli et al., 2014). The entailment relationship holding between each pair was

validated through crowdsourcing and the final label was decided by a majority

vote schema. The lack of expert manual validation on the final data could

possibly explain the classification errors in the dataset.

7Examples from SICK dataset
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6.2.2 False Positives

False positives occur either when T and H are contradictory sentences, or when

there is no relationship between T and H at all, that is, given that T is true

it cannot be said whether H is true or false, but the DGN nonetheless finds

a semantic relationship classifying the pair as an entailment. As with false

negatives, the wrong decision can be due to syntactic or semantic factors, which

can arise before or during the DGN procedure.

6.2.2.1 Syntactic factors

Again, syntactic errors refer to the wrong processing of the structure of the sen-

tences composing the entailment pair, occurring mostly during the preprocess-

ing stage and affecting the quality of the inputs sent forward in the entailment

workflow.

Tokenization/POS Tagger/Splitting Error

This kind of error happens when sentences are split into the wrong phrases by the

splitting procedure, or when words are stemmed incorrectly and/or assigned the

wrong part of speech tag during the tokenization procedure. Differently from

the false negative scenario, in false positives the most common tokenization-

related issue is the same word occurring in T and H being stemmed and tagged

differently in each sentence, leading the DGN to consider them as two different,

but usually semantically related, concepts. Examples8:

7308 T: There is no man wearing a straw hat who is smoking a cigarette

7308 H: A man is wearing a straw hat and smoking a cigarette

7308 A: NO

Entailment: yes

Justification:

To smoke is to inhale smoke from cigarettes, cigars or pipes

A cigarette is a kind of tobacco

Tobacco is the tobacco plant dried and prepared for smoking or ingestion

13.101 T: Eating vegetables may keep the brain young. Eating vegetables may

slow the mental decline associated with old age.

8Examples from SICK and BPI datasets, respectively.
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13.101 H: The brain is eating vegetables.

13.101 A: NO

Entailment: yes

Justification:

Eating is the act of consuming food

To consume is a way of to eat

In the first example, the verb “smoke” is present in both T and H, but it is

correctly tokenized and POS tagged only in T. In H, it is tokenized as “smoking”

and POS tagged as a noun. Being the same word, “smoke” should be included

in the overlap set, enabling the Context Analysis module to detect the negation

present in the pair (the Context Analysis module can only detect simple nega-

tions, where the only non-overlapping tokens are negation words or expressions).

Yet, the wrong tokenization leaves “smoke” and “smoking” out of the overlap

set as two different entities and, since they are semantically related, the DGN

can find a path between them falsely confirming the entailment. Similarly, in

the second example, “eating” is returned as a token and POS tagged as a noun

in T, but in H what is returned in the verb “eat”. In this case, if “eat” was

correctly tokenized and POS tagged, the pair should be sent to the Tree Edit

Distance module, since every word in H is also present in T and there is only a

(big) difference in the sentences’ syntactic structure.

6.2.2.2 Semantic Factors

Semantic errors regard the misinterpretation of the meaning of the sentences as

a whole, leading to the establishment of a semantic relationship between them

when the entailment cannot be confirmed. They are mainly caused by system

limitations, but also by dataset inaccuracy.

Undetected Context Information

This kind of error occurs when, although there is a pair of entities e1 ∈ T

and e2 ∈ H for which a semantic relationship exists, there is also some context

information that invalidates the entailment but that involves more complex phe-

nomena out of the scope of the Context Analysis module and, hence, cannot be
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detected. Examples9:

4.101 T: Iran purchased plans for building a nuclear reactor from A.Q. Khan.

4.101 H: Iran did not buy plans for a nuclear reactor.

4.101 A: NO

Entailment: yes

Justification:

To purchase is synonym of to buy

10.101 T: New mum Madonna finally broke her silence today over the row sur-

rounding her adoption of African baby David Banda.

10.101 H: Madonna was silent today.

10.101 A: NO

Entailment: yes

Model: GraphNavigation

Justification:

A silence is a state of being silent

In the first example, the text is a negation of the hypothesis but there is also

a semantic relationship between them established by the concepts “purchase”

and “buy”. Since the Context Analysis module currently only detects simple

negations, the other elements involved lead the DGN to look for a path in

the definition graph and reach an incorrect decision. In the second example,

although there is a relationship between “silence” and “‘silent”, the presence

of the verb “break” having “silence” as its objects makes T contradicts H, a

context change not yet detected by the Context Analysis module either.

Wrong Semantic Relationship Assumption

This error happens when, although there is no entailment relation between the

text and the hypothesis, there is a pair of entities e1 ∈ T and e2 ∈ H which

have a high semantic relatedness score and for which the DGN can indeed find a

path in the definition graph. If the pair does not include any of the phenomena

that can be detected by the Context Analysis module for preventing a misclas-

9Examples from BPI dataset.
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sification, the DGN erroneously concludes it is an entailment. Examples10:

710 T: In the US the Salvation Army offers shelters for the homeless in most

areas of the country.

710 H: The US Army provides shelters for the homeless.

710 A: NO

Entailment: yes

Justification:

To offer is synonym of to provide

108 T: A player is throwing the ball

108 H: A player is running with the ball

108 A: NO

Entailment: yes

Justification:

To throw is a way of to move

To move is synonym of to run

30.100 T: There was an explosion on Panam flight 103.

30.100 H: Panam was flying 103 airplanes.

30.100 A: NO

Entailment: yes

Justification:

A flight is a kind of plane

Plane is synonym of airplane

Unlike undetected context information, which involves some kind of infor-

mation that makes T contradict H, such as negation, opposition, etc., a wrong

semantic relationship assumption occurs when it is not possible to conclude that

H follows from T but there is no clear contradiction either, so no context infor-

mation could be detected whatsoever. It may happen when e1 and e2, although

semantically related, refer to different entities, as in the first example, where

“offer” and “provide” have a synonymy relationship, but “offer” has “Salvation

Army” as subject and “provide” refers to “US Army” instead. It may also oc-

10Examples from RTE3, SICK and BPI datasets, respectively.
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cur when the target word is a common and frequent concept which will have a

high semantic relatedness score with a wide range of concepts, as in the second

example, where the target is “run”, a word that can appear in many different

contexts. Nevertheless, as can be seen in the last example, where “flight” and

“airplane” are indeed related, none of them is too generic and both have the

same referent (“Panam”), sometimes, given the DGN model rationale, it is sim-

ply too hard to identify a non-entailment if the sentences are highly semantically

related and lack contradictory context information.

Dataset Classification Error

As in the false negative case, this kind of misclassification occurs when the en-

tailment pair has the wrong classification in the dataset, having a negative label

when the hypothesis can indeed be inferred from the text, characterizing a pos-

itive entailment. Examples11:

1522 T: A woman is cutting some flowers

1522 H: A woman is cutting some plants

1522 A: NO

Entailment: yes

Justification:

A flower is a kind of plant

1699 T: A kitten is drinking fresh milk

1699 H: The cat is drinking some milk

1699 A: NO

Entailment: yes

Justification:

A kitten is a young cat

In the first example, H is a generalization of T, since “plant” is more general

than “flower”, as correctly detected and justified by the DGN, hence the entail-

ment is valid but, due to the wrong label, it is counted a false positive. The

same happens in the second example, where, despite the non-entailment label,

H is also a generalization of T and the DGN accurately finds and explains the

11Examples from SICK dataset
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relationship between “kitten” and “cat”. Again, such classification errors only

occur in the SICK dataset.

It is important to emphasize that only the primary error is being considered,

that is, the error that happens earlier in the entailment pipeline. For example, if

the Context Analysis module makes a wrong decision, it does not mean the pair

would be solved successfully otherwise, because the path could not be found in

the DKG either, for instance. That means that, although there are still some

limitations regarding the algorithms that could be further explored in future

work, the system performance also depends on external factors beyond our

control, such as the quality and completeness of the linguistic resources used

in the construction of the knowledge bases. Table 6.1 summarizes the main

characteristics of the errors identified in the analysis.

Error Nature Origin Source

False
Negatives

Tokenization/POS Tagger/Splitting Error syntactic
internal/
external

util algorithm/
parser

Wrong Context Analysis Decision semantic internal core algorithm

Correct Source-Target Pair not Found semantic
internal/
external

core algorithm/
DSM

Path not Found by the DGN semantic
internal/
external

core algorithm/
DSM

Source Word Category not Covered by DKG semantic external knowledge base
Absent or Insufficient Information in the DKG semantic external knowledge base
Dataset Classification Error semantic external dataset

False
Positives

Tokenization/POS Tagger/Splitting Error syntactic
internal/
external

util algorithm/
parser

Undetected Context Information semantic internal core algorithm
Wrong Semantic Relationship Assumption semantic internal core algorithm
Dataset Classification Error semantic external dataset

Table 6.1: Error classification.

As can be noted in Table 6.1, there is a balance between internal and ex-

ternal factors. Internal factors indicate the current limitations of the proposed

approach, while external factors refer to third-party resources for which no fine-

tuning is possible. Some errors are caused by a mix of both types of factors, like

the syntactic errors for both false negatives and false positives, which can be

caused by an internally implemented utility algorithm (for multi-word expres-

sions sentence splitting) or by the Stanford parser (for tokenization and POS

tagging). The same happens for the errors of types “Correct Source-target Pair

not Found” and “Path not Found by the DGN”, which are heavily influenced

by the semantic similarity scores provided by the DSM (word2vec), but also

by the system parameters whose computations are embedded in the core algo-
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rithm: the maximum number of source-targets pairs k, in the first case, and the

semantic relatedness threshold η in the second.

Purely internal errors are mainly related to the extent to which the system

can grasp context information: the Context Analysis module can either mis-

interpret such information, yielding false negatives (Wrong Context Analysis

Decision), or be unable to catch more complex contradictions, resulting in false

positives (Undetected Context Information). Wrong Semantic Relationship As-

sumption errors are also related to context information but they occur when the

entailment relationship between T and H is neutral rather than contradictory,

making such context much subtler and harder to identify.

Finally, purely external errors are caused by either the contents (or lack

thereof) of the graph knowledge base employed by the DGN or the quality of

the dataset tested. While incompleteness is an inherent characteristic of many

knowledge bases, dataset issues could possibly be associated with their growing

size: as most datasets introduced lately are machine learning-oriented, large-

scale resources, validation becomes a challenging task, which can compromise

the final data quality.

6.3 Error Analysis Results

Table 6.2 presents the results of the error analysis for the four tested datasets.

As mentioned before, these numbers refer to the outcome of the experiments

employing the WordNet DKG. Figures 6.1 and 6.2 present the same results

graphically, divided into false positives and false negatives, respectively.

Error RTE3 SICK BPI GHS

False
Negatives

Tokenization/POS Tagger/Splitting Error 9% 12% 20% 2%
Wrong Context Analysis Decision 37% 19% 36% 69%
Correct Source-Target Pair not Found 32% 9% 8% 14%
Path not Found by the DGN 1% 5% 4% 1%
Source Word Category not Covered by DKG 5% 10% 8% 4%
Absent or Insufficient Information in the DKG 16% 34% 24% 10%
Dataset Classification Error 0% 11% 0% 0%

False
Positives

Tokenization/POS Tagger/Splitting Error 4% 5% 3% 1%
Undetected Context Information 10% 15% 14% 0%
Wrong Semantic Relationship Assumption 86% 77% 83% 99%
Dataset Classification Error 0% 3% 0% 0%

Table 6.2: Error distribution.

As can be noted in Table 6.2 and Figure 6.1, most false negatives are due

to either a wrong Context Analysis decision or DKG incompleteness. Correctly
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Figure 6.1: Error distribution for false negatives.

Figure 6.2: Error distribution for false positives.

interpreting context information is especially challenging for the GHS dataset,

where T is usually a very long sentence often composed of multiple clauses.

Most context misinterpretations in this dataset involve concepts denoting in-

verse specialization or antonyms, which are indeed present but do not affect

the validity of the entailment because, in T, the “offending” terms appears in

a clause that does not directly entail H, but rather presents complementary

related information.

Another phenomenon worth mentioning involving context information errors

is the one observed in the SICK dataset, where many pairs of terms are used as

synonyms, but there is also a specialization relationship between them. For ex-

ample, “path” and “trail”, “group” and “team”, “pan” and “skillet”, “aircraft”

and “plane”, “man” and “guy”, “fire” and “bonfire”, among others, are used

as synonyms, but formally it is also true that a “trail” is a kind of “path”, a
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“team” is a kind of “group”, and so on. When the first term in the pair appears

in T and the second one in H, the Context Analysis module identifies it as an

inverse specialization, which cannot be considered altogether wrong, but does

not account for spoken language subtleties and variations that not always ad-

here to the formal language specifications. This phenomenon is only observed in

the SICK dataset, possibly because its pairs were created from descriptions of

images and videos. The way its sentences are written is closer to the way people

speak when making such descriptions, while all the other datasets are derived

from press content and therefore present more formal written language. This

suggests that detecting entailment in spoken language may require additional

resources and a more flexible interpretation of language usage, which may not

always obey the formal recorded structures and semantics.

Regarding the errors attributed to the knowledge base used by the DGN,

while the source word category-related error rate is constant for all DKGs (all

graphs, regardless of the lexicon it is derived from, only contains noun and

verb definitions), the absent or insufficient information-related misclassification

refers exclusively to the knowledge graph analyzed: entailments that cannot be

recognized due to a missing path in the WordNet graph may be successfully

identified when another graph is employed. Table 6.3 shows how other DKGs

perform when the WordNet graph fails for each tested dataset.

Dataset
WordNet

Misses
Hits

Webster’s Wiktionary Wikipedia
RTE3 20 8 7 1
SICK 103 47 16 4
BPI 6 1 1 0
GHS 18 3 5 1

Table 6.3: Comparison between WordNet misses and other DKGs hits for the
analyzed experiment results.

Table 6.3 shows that other DKGs contain the information absent in WordNet

in only a fraction of the cases. For example, for the RTE3 dataset a total of 20

pairs were misclassified due to absent or insufficient information in WordNet.

Out of these 20 pairs, 8 could be correctly solved when Webster’s graph was used,

7 when Wiktionary was employed and only 1 when Wikipedia was the chosen

knowledge base. At a maximum, for the WordNet graph misses, there is a hit

43% of the times another DKG is used for the RTE3 and SICK datasets, which

are semantically simpler. When we consider the BPI and GHS datasets, which
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are semantically more complex and require a larger amount of world knowledge,

the other DKGs maximum hit rate falls to 16% of the WordNet graph misses.

This confirms that WordNet is the best knowledge base for querying semantic

relationships, but also suggests that a combination of resources could boost

accuracy. Nevertheless, combining resources for increasing information coverage

also leads to increased graph size, so more advanced graph query methods are

necessary for not impairing the system performance.

At the other end of the false negative error spectrum, misclassifications due

exclusively to the right path not being found by the DGN account for the

smallest portion of the proposed approach failures. There is a single occurrence

of this kind of error for the RTE3, BPI and GHS datasets each, and 14 for the

SICK dataset (this dataset contains many similar pairs with very slight syntactic

variations among them, which could be solved by the same path, so a single path

that could not be found ends up accounting for multiple false negatives). For

most of these occurrences, we observed that the main hindrance is the lower-

than-appropriate (considering the context set by the sentences) similarity scores

returned by the DSM. This shows that the Distributional Graph Navigation

algorithm is a robust and reliable model for exploring external knowledge bases,

which succeeds at least 95% of the times when provided with the right inputs.

As evidenced by Figure 6.2, false positives are predominantly caused by a

wrong semantic relationship assumption between T and H. As described earlier,

this kind of error happens for pairs with a neutral relationship, that is, nor

entailment neither contradiction, so no marked context information which can

clearly indicate a non-entailment is available. This is the most challenging

scenario for the proposed entailment approach, and points to the need of the

identification of further, subtler syntactic and semantic evidence that can be

extracted from T and H so a negative entailment can be classified as so even

when the sentences are very semantically related.

6.4 Summary

In this chapter a systematic error analysis focused on the Distributional Graph

Navigation model was presented, including a classification of the types of errors

found during the experiments and a quantitative evaluation of the impact of

each type across all the tested datasets.
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Errors leading to false negatives and false positives were divided into syn-

tactic and semantic factors and further classified as internal or external (or a

mix of both) aspects. The main error roots were also identified: for internal

errors, the Context Analysis and DGN core algorithms, or the utility sentence

splitting function are the main error sources, while external errors are caused

by the Stanford parser and POS tagger, the DSM (word2vector), the knowledge

base, or the dataset.

The quantitative analysis showed that wrong Context Analysis decisions

due to misinterpretations of context information, along with knowledge base

incompleteness are the most common problems leading to false negatives. False

positives, on the other hand, are mainly caused by wrong semantic relationship

assumptions, when, despite the non-entailment relationship between T and H,

the DGN can still find a semantic relationship between two entities e1 ∈ T and

e2 ∈ H, because no evident context information preventing the misclassification

can be detected.

Opportunities for future work, such as the exploration of more advanced

graph analysis techniques to enable the aggregation of multiple knowledge base

for better information coverage, and the use of further resources and features for

capturing more complex or subtler context information, were also highlighted.

These points indicate possible paths for increasing the accuracy of semantic,

world knowledge-demanding text entailments.



Chapter 7

Conclusion

The advances that have been helping to popularize Artificial Intelligence ap-

plications owe much to the Natural Language Processing research field. NLP

enables smooth human-machine communication, making it possible for users

to interact with smart applications and devices using their own language, as

if talking to another person. Processing human language involves many chal-

lenges, because computers should not only interpret what a text says, but also

understand what it means beyond what is explicitly said, requiring not only

natural language text interpretation at both syntactic and semantic levels, but

also inference capabilities so implicit meanings that are essential to the correct

interpretation of the message can be uncovered.

Text entailment, the task of determining whether a piece of text logically

follows from another piece of text, is a key component in NLP. It provides input

for many semantic applications such as question answering, text summarization,

information extraction, and machine translation, among others, dealing with in-

ference issues so other applications can cope with language variability. The work

presented in this thesis aimed at filling some of the gaps in the text entailment

area by proposing a way for dealing with the differences among the phenomena

present in entailment, developing a method for better addressing entailments

involving more complex relationships, including the knowledge acquisition nec-

essary for performing this task, and including explainability features to make

the final system interpretable.

Chapter 2 described the main developments in both the text entailment

recognition and the semantic interpretability areas. The text entailment re-

view showed that there is a substantial variety of approaches, but most of them
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heavily rely on sentence syntactic analysis, using bag-of-words or dependency

parse as a representation schema, and shallow semantic information, such as

synonym and hypernym links, verb frames, and semantic role labeling. Logic-

based and rule-based approaches try to incorporate further knowledge through

logical axioms or entailment rules, which are, though, usually generated from the

same shallow semantic relations. Large scale resources provide paraphrase-style

rules, which cover mostly the equivalence relationship, and hand-crafted axioms,

which encode more complex inference rules, are sometimes included in a small

number. Structured content from Wikipedia, which covers a larger variety of

relationships between (mostly named) entities, is also used by a few approaches.

It was also shown that the Natural Language Inference task, a subtask of textual

entailment, has brought great advancements, with deep leaning models achiev-

ing high accuracy, but whose performance nevertheless is being influenced by

linguistic bias in the datasets which allows supervised models to learn patterns

in hypotheses but not the correlation between premises and hypotheses, many

times correctly classifying examples without actually performing inference.

The semantic interpretability review showed that different AI fields are now

concerned about developing more interpretable models, but most of the times

the focus is on transparency, and only a few models provide post-hoc explana-

tions, in the form of text or visual cues. From the usability point of view, it

was argued that such explanations are more user-friendly, because they allow

non-experts (i.e., non-developers) to understand the rationale behind a system’s

prediction without having to go through its internal operations. A further anal-

ysis, focused on text entailment systems’ interpretability features, showed that,

as approaches moved from alignment and transformation strategies to more

complex, multiple-features classification models (including NLI systems), trans-

parency has decreased, and providing explanations is still not a concern. The

publication associated with this chapter is (Silva, Freitas, & Handschuh, 2019b).

Chapter 3 focused on the knowledge acquisition aspect of the proposed ap-

proach, describing how dictionaries definitions are processed to be represented

in a structured way so they can be used by a reasoning mechanism intended to

recognize entailments involving semantic relationships. The conceptual model

proposed aims at capturing the underlying semantic structure of lexical defini-

tions, describing their main components and the relationships among them. The

proposed construction methodology allows the automatic conversion of a set of

natural language definitions into an RDF graph, which will provide definitional

knowledge, with all the variety of relationships it can cover, to the text en-
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tailment proposed approach. The publications associated with this chapter are

(Silva, Handschuh, & Freitas, 2016) and (Silva, Freitas, & Handschuh, 2018a).

Chapter 4 detailed the development of the proposed composite interpretable

text entailment approach. It showed how the Distributional Graph Navigation

model explores a definition knowledge graph to look for semantic relationships

between a text and a hypothesis and then generates a natural language jus-

tification explaining this relationship. This model, aimed at solving semantic

entailments, was then integrated into a complete system, where syntactic en-

tailments are solved by a Tree Edit Distance model, and a routing mechanism

analyzes each entailment pair to identify the most relevant phenomena (syntac-

tic or semantic) and sent it to the suitable module. It was also described how

a complementary module extract further syntactic and semantic features from

the entailment pair so additional context information can be retrieved to bet-

ter inform the final entailment decision. The publications associated with this

chapter are (Silva, Freitas, & Handschuh, 2018b), (Silva, Freitas, & Handschuh,

2019a), and (Silva, Freitas, & Handschuh, 2020).

Chapter 5 reported the experiments carried out to evaluate the proposed

approach. It showed that the Distributional Navigation model performs bet-

ter than syntactic-oriented approaches for more knowledge-demanding datasets,

and that the composite approach, which employs different methods for solv-

ing syntactic and semantic entailment pairs, outperforms single-technique ap-

proaches, be it syntactic-only, like the transformation-based and classification-

based baselines, or semantic-only, like the DGN model, besides being less depen-

dent on training data. A qualitative evaluation assessed the correctness of the

justifications, showing that, despite the challenges imposed by some datasets,

especially those fully composed of real world data, the proposed strategy is a

viable way of generating explanations in an unsupervised manner. A further

analysis compared different knowledge resources, showing that dictionaries are

better for the entailment task than encyclopedic resources, and that lexicons

built by experts deliver better recall and slightly higher quality justifications

than those built collaboratively by lay users. The publications related to this

chapter are (Silva et al., 2018b), (Silva et al., 2019a), and (Silva et al., 2020).

Chapter 6 presented the results of a systematic error analysis, showing that

misclassifications are caused by both wrong algorithm decisions and external

factors, such as syntactic parser errors or knowledge base incompleteness. The

error quantification showed that most errors are caused by misinterpretation of

context information or absence of relevant information in the knowledge base,
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while the core graph navigation algorithm is the source of only a very small

number of errors, showing that it works satisfactorily well when provided with

the right inputs.

The work presented in this thesis introduces additions for the text entail-

ment recognition, knowledge extraction and representation, and semantic inter-

pretability areas. The main contributions of this thesis can be summarized as

follows:

• A conceptual model for representing natural language definitions in a

structured way.

• A methodology and a set of tools for filtering, labeling, and structuring

natural language definitions, allowing the automatic conversion of dictio-

naries or other domain-specific glossaries into RDF graphs.

• A set of four publicly available definition knowledge graphs that can be

used as knowledge sources not only in text entailment but also in many

other NLP applications.

• A method for traversing such definition knowledge graphs using distribu-

tional semantic models for identifying semantic relationships in entailment

pairs.

• A method for telling syntactic entailments apart from semantic ones, al-

lowing different methods to be used separately inside the same system,

without the need of specialized datasets.

• A complete entailment recognition system that can solve both syntactic

and semantic entailments using only the most relevant features of each

of them, and explain what the semantic relationship (if any) between the

text and the hypothesis is.

• A method for generating natural language explanations using knowledge

from external world knowledge bases in an unsupervised manner.

• A study of the characteristics of different lexicons and their impact on

inference and language processing tasks, which can inform other NLP

areas about their usefulness and usability.
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7.1 Hypotheses Confirmation

Recalling the hypotheses presented in Chapter 1 and considering the develop-

ments described throughout this thesis, especially the quantitative and qualita-

tive results reported in the evaluation in Chapter 5, the following conclusions

can be drawn:

H1: The use of different methods for addressing different (syntactic or se-

mantic) entailment phenomena increases the accuracy of the overall entailment

approach.

The experiments show that the proposed approach, materialized in the XTE sys-

tem, outperforms all of the three single-technique baselines for all of the tested

datasets. For the RTE3 dataset, XTE shows an increase of 6% in F1-score when

compared to the best performing syntactic baseline, and of 25% when compared

to the semantic-only approach. For the SICK dataset, the gain is of 4% and

26% regarding the best performing syntactic algorithm and the semantic-only

baseline, respectively. For the BPI dataset, XTE shows an increase of 22% in

F1-score over the best performing syntactic algorithm, and 6% when compared

to the semantic approach. For the GHS dataset, there is a gain of 27% and 7%

in relation to the best performing syntactic approach and the semantic algo-

rithm, respectively. These results, therefore, confirm hypothesis H1.

H2: Solving semantic entailments by searching for the key semantic relationship

between T and H in a knowledge graph (a knowledge base structured as a set of

concepts linked by semantic relationships) increases the accuracy of the system,

especially for world knowledge-demanding datasets.

As already shown for hypothesis H1, XTE outperforms both syntactic-oriented

approaches, but the improvement is even more noticeable for the BPI and GHS

datasets, which are the most knowledge-demanding ones: the increase in F1-

score is of 22% over the Edit Distance algorithm and of 42% over the Maximum

Entropy Classifier model when the BPI dataset is tested, and of 27% over the

Maximum Entropy Classifier model and of 34% over the Edit Distance algo-

rithm when the GHS dataset is used, also confirming hypothesis H2.

H3: Natural language dictionary definitions, extracted from lexical resources,

can provide the commonsense knowledge necessary to solve semantic entail-
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ments.

Definitional knowledge, as described in Chapter 2, does not cover all the knowl-

edge requirements for the textual entailment task, but has the potential to

cover the largest amount of different semantic relationships between entities.

With this in mind, and considering the overall quantitative results, it is pos-

sible to affirm that the definition graph satisfactorily addresses the knowledge

needs for a large number of semantic entailments. This is supported by the

fact that, on average, only around 20% of the false negatives are due to absent

or insufficient information in the knowledge graph and, even so, as pointed in

Chapter 6, knowledge base incompleteness can have more to do with a specific

linguistic resource coverage than with the nature of definitional knowledge itself.

Justifications provide further evidence that a considerable number of semantic

relationships between the relevant entities in the text and the hypothesis are

being found in the graph, confirming hypothesis H3.

H4: By traversing a definition knowledge graph to find the key semantic rela-

tionship between T and H, it is possible to generate a natural language justifi-

cation from the retrieved path, making the system decision interpretable.

Given that, as detailed in Chapter 3, nodes in the definition graph usually en-

close a self-contained and comprehensible amount of information, the concate-

nation of the nodes in the retrieved path is enough for generating intelligible

sentences. A simple rule-based formatting procedure, which takes into account

the definition semantic roles represented by the edges between nodes produces

the final justification without the need for supervision. The qualitative eval-

uation presented in Chapter 5 shows that incorrect justifications are due to

a wrong choice of source-target word pairs, which is done at the preprocess-

ing stage, therefore, when provided with the right inputs, the graph traversal

routine will always return a path (for positive entailments) that allows the gen-

eration of the correct explanation, containing all the steps that led from the

text to the hypothesis, confirming hypothesis H4.

7.2 Future Directions

The text entailment approach proposed in this work introduces important con-

tributions, especially regarding the identification of semantic relationships by

using external world knowledge and the inclusion of post-hoc explanations as
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an interpretability feature. Nevertheless, as evidenced by the error analysis pre-

sented in Chapter 6, there are some limitations that could be further explored

in future work. A point that deserves attention is the preprocessing stage,

where, among other tasks, the source-target word pairs which will be sent as

input to the Distributional Graph Navigation model are identified. Finding the

right pairs is especially challenging when the sentences are very long and there

are multiple candidates due to the large number of semantically related words.

Wrong source-target pair selection affects not only the overall system accuracy

but also the validity of the justification. Developing better ways to deal with

long sentences without being limited to syntactic analysis, filtering the portions

in T that are the most relevant in relation to H regarding their meaning so the

semantic relationship can be sought for the right concepts is a path worth of

investigation.

The coverage of the knowledge bases has also shown to impose limitations on

the system accuracy. For performance reasons, knowledge graphs were tested

only in isolation, but a combination of resources, increasing the knowledge cov-

erage, could doubtless improve accuracy. Investigating advanced graph storage

and querying mechanisms to deal with resources whose dimensions can reach

the order of millions of nodes in an efficient manner is another opportunity for

future development.

Last but probably most important is the association of the knowledge injec-

tion and interpretability features presented in this thesis with more advanced

learning techniques, such as the deep neural networks employed by Natural

Language Inference models. Such models achieve very high accuracy, but cur-

rent implementations, as observed in Chapter 2, are very vulnerable to bias in

the training data, which sometimes even prevent them from performing actual

inference. Their use of external knowledge, which could help to soften the neg-

ative effects of biased data, is still very limited. Combining the discovery of

semantic relationships through the traversal of knowledge graphs with statisti-

cal learning methods could leverage a model’s inference capabilities, while also

providing inputs for the generation of explanations for making the prediction

understandable. This is a promising direction for overcoming the trade-off be-

tween accuracy and interpretability, and that could result in models that deliver

not only accurate but also intelligible and verifiably reliable predictions.





Appendix A

POS and Non-Terminal Symbols

Lists of part-of-speech (POS) and non-terminal tags from the Penn Treebank,

provided by (Taylor, Marcus, & Santorini, 2003).

CC Coordinating conjunction TO Infinitival to
CD Cardinal number UH Interjection
DT Determiner VB Verb, base form
EX Existential there VBD Verb, past tense
FW Foreign word VBG Verb, gerund/present participle
IN Preposition VBN Verb, past participle
JJ Adjective VBP Verb, non-3rd person singular present
JJR Adjective, comparative VBZ Verb, 3rd person singular present
JJS Adjective, superlative WDT Wh-determiner
LS List item marker WP Wh-pronoun
MD Modal WP$ Possessive wh-pronoun
NN Noun, singular or mass WRB Wh-adverb
NNS Noun, plural # Pound sign
NNP Proper noun, singular $ Dollar sign
NNPS Proper noun, plural . Sentence-final punctuation
PDT Predeterminer , Comma
POS Possessive ending : Colon, semi-colon
PRP Personal pronoun ( Left bracket character
PP$ Possessive pronoun ) Right bracket character
RB Adverb ′′ Straight double quote
RBR Adverb, comparative ‘ Left open single quote
RBS Adverb, superlative “ Left open double quote
RP Particle ’ Right close single quote
SYM Symbol ” Right close double quote

Table A.1: The Penn Treebank POS tags.
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ADJP Adjective phrase
ADVP Adverb phrase
NP Noun phrase
PP Prepositional phrase
S Simple declarative clause
SBAR Subordinate clause
SBARQ Direct question introduced by wh-element
SINV Declarative sentence with subject-aux inversion
SQ Yes/no questions and subconstituent of SBARQ excluding wh-element
VP Verb phrase
WHADVP Wh-adverb phrase
WHNP Wh-noun phrase
WHPP Wh-prepositional phrase
X Constituent of unknown or uncertain category
∗ “Understood” subject of infinitive or imperative
0 Zero variant of that in subordinate clause
T Trace of wh-constituent

Table A.2: The Penn Treebank non-terminal tags.



Appendix B

RDF Model Properties

List of properties and namespaces for the RDF representations of the definition

knowledge graphs.

B.1 Namespaces

Noun and verb entity nodes are identified by synsets, a set of synonym words

which share the same definition. Synsets can have 1 to n words, and each word

is represented by a rdf:label element associated to the entity node. Noun and

verb entity nodes, as well as role nodes have each their own namespaces, where

<xx> stands for the acronym of the lexicon that gave origin to the graph:

• wn: WordNet

• wb: Webster’s Dictionary

• wt: Wikitionary

• wp: Wikipedia

Similarly, <Lex> in the full namespace URI is one of the four lexicon names:

WordNet, Websters, Wikitionary or Wikipedia.
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Namespace Full Namespace URI Usage
dsr http://nlp/resources/DefinitionSemanticRoles# Model properties

<xx>n http://nlp/resources/synsets/<Lex>NounSynset#
Resources denoting the
<Lex> noun entity nodes

<xx>v http://nlp/resources/synsets/<Lex>VerbSynset#
Resources denoting the
<Lex> verb entity nodes

<xx>e http://nlp/resources/expression/<Lex>Expression#

Resources denoting the
definition role nodes,
which can range from a
single word to a whole
sentence

Table B.1: List of namespaces for the RDF graphs.

B.2 Properties

RDF properties for the definition knowledge graphs are named after the defini-

tion semantic roles.

Property Usage
dsr:has supertype Links the entity node to a supertype role node
dsr:has diff qual Links a supertype role node to a differentia quality role node
dsr:has diff event Links a supertype role node to a differentia event role node
dsr:at time Links a differentia event role node to its event time role node
dsr:at location Links a differentia event role node to its event location role node
dsr:has qual modif Links a differentia quality role node to its quality modifier role node
dsr:has origin loc Links a supertype role node to a origin location role node
dsr:has purpose Links a supertype role node to a purpose role node
dsr:has assoc fact Links a supertype role node to a associated fact role node
dsr:has acc qual Links a supertype role node to a accessory quality role node
dsr:has acc det Links a supertype role node to a accessory determiner role node

Table B.2: List of properties for the RDF graphs.
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