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1 Introduction

1.1 Motivation

The theory of complex analysis has its beginnings in the first part of the
19th century. The main cofounders of this area are Augustin-Louis Cauchy,
Bernhard Riemann and Karl Weierstraß. It is the theory that investigates
functions on complex numbers and sets itself strictly apart from the theory of
real analysis. A very remarkable result is given by William Fogg Osgood in the
year 1899. He proved the famous theorem that a function defined on an open
subset of Cn is holomorphic if it is continuous and holomorphic in every single
variable (see [42]). This is in general not true in the real setting. (Compare
with [26] for general properties of real analytic functions.)

Example

Consider the function

f : R2 → R, (x, y) 7→

{
xy√
x2+y2

, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

Then f is continuous at (0, 0) and real analytic in every single variable, but it
is not real analytic at (0, 0).

Friedrich Moritz Hartogs could even strengthen the result of Osgood. He
showed that a function defined on an open subset of Cn is holomorphic if it is
holomorphic in every single variable (see [42]). So one may even dispense with
the continuity property. Furthermore Hartogs recognized that there are many
phenomenas in complex analysis which hold in several variables but not in one
variable. They are called Hartogs phenomena. An example is the following
extension theorem which can be found in [29] (see [18] for the original version
for polydiscs).

Theorem [Hartogs’s Extension Theorem]

Let n ≥ 2, U ⊂ Cn be open and K ⊂ U be compact. Let f : U \ K → C
be holomorphic. If U \ K is connected then there is a unique holomorphic
F : U → C such that F |U\K = f .

Consequently one sees that isolated singularities of meromorphic functions in
several variables are removeable. Examples for non-Hartogs phenomenas are
for example the Cauchy’s integral formula and consequently the theorem of
Liouville and the Maximum principle (see [42]). A theorem which holds in
one variable, but not in several variables is for example the Riemann map-
ping theorem. One can show that the unit ball in higher dimensions is not
biholomorphic to polydiscs.
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The study of complex analysis has many applications in commutative algebra,
functional analysis, algebraic topology or sheaf theory (see [42]) and also in
physics, for example to give formal solutions for partial differential equations
like the heat conduction equation.

We combine the theory of complex analysis with o-minimality. The designation
o-minimal is the abbreviation for order-minimal. O-minimality was cofounded
by Lou van den Dries in the early 1980’s and connects different areas of pure
mathematics like the area of analysis, real algebra, algebraic geometry, number
theory and originates in mathematical logic and model theory (see [11]). An
o-minimal structure M is a family of sets (Mn)n∈N which fulfill specific axioms
in which the sets M1 are precicely the finite unions of intervals and points on
the reals. They are an elegant and surprisingly efficient generalization of the
category of semialgebraic and of globally subanalytic sets. Lou van den Dries
writes in [11]: ”I had noticed that many properties of semialgebraic sets and
maps could be derived from a few simple axioms”. He also recognized that
an o-minimal structure exhibits nice topological properties. This includes for
example the cell decomposition theorem, the fact that every definable set is
homeomorphic to a finite union of hypercubes and that every definable set
has finitely many connected components which are again definable. Definable
sets can also be triangulated and trivialized. So o-minimal structures have a
kind of tame character, nice finiteness properties and offer great potential for
research in different areas.

The major line of research was based on discovering o-minimal structures on
the reals. For example the pure real field R is o-minimal. The definable sets
are exactly the semialgebraic sets since they are closed under projections by
Alfred Tarski (see [41], this was popularized by Abraham Seidenberg in [36]).
But there are much bigger o-minimal structures on R. Together with a theo-
rem of Gabrielov, Van den Dries could prove the remarkable result that Ran,
the expansion of the real field by all restricted analytic functions, is o-minimal
(see [10]). The definable sets in Ran are precisely the globally subanalytic ones.
For example the restriction of the global sine function on a compact interval is
globally subanalytic. In [10] it is shown that Ran is polynomially bounded. So
the global exponential function is not definable in there. Lou van den Dries
and Chris Miller could even show in [15] that we stay in the o-minimal con-
text if we add the global exponential function (see also [13]). Then we obtain
the o-minimal structure Ran,exp. This is one of the most important o-minimal
structures, because in addition to the restricted analytic functions all elemen-
tary functions like polynomial functions, the global arctangent function, the
global logarithm, the global exponential function and hyperbolic functions are
definable in there. They have crucial application in diophantine geometry (see
for example [44] where definable functions with special diophantine properties
and growth rates are investigated or [35] for the treatment of the André-Oort
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conjecture for Cn from the viewpoint of o-minimality).

Kobi Peterzil and Sergei Stepanovich Starchenko designed the development of
complex analysis within the o-minimal framework also in non-standard set-
ting (see [34]). One obtains analogies of classical results as well as strong
differences, due to the o-minimality assumption. For example the maximum
principle, the open mapping theorem, the theorem of Liouville, the identity
theorem and Riemann’s removeable theorem hold in this setting (see [34]).
However the key feature is that a definable holomorphic function in an o-
minimal expansion of R does not have an essential singularity. So the entire
definable holomorphic functions are exactly the polynomials. Further results
of Peterzil and Starchenko concern analytic geometry. For example they gave
some stronger version of Chow’s theorem which states that a definable ana-
lytic subset of Cn is already an algebraic variety (see [33]). All this theory
can be formulated for an arbitrary real closed field R with algebraic closure
K = R[

√
−1]. But to describe such features in this non-standard setting it is

necessary to use ”Topological Analysis” instead of power series and integration
(see [34]).

So it would be desirable to understand definability in the complex setting out-
going from definability on the reals. A very interesting question in this context
is the following. Are real analytic functions definable in an o-minimal struc-
ture on the reals reducts of definable holomorphic functions? To investigate
this question one has to find a definable holomorphic extension for a given
definable real analytic function. Of course finding a holomorphic extension is
not difficult simply by power series expansion, but the crucial point is that
this extension needs not to be definable. Tobias Kaiser affirmed this question
for the o-minimal structure Ran. In his paper [19] he proved the deep techni-
cal result that every real analytic globally subanalytic function extends in a
globally subanalytic way to a holomorphic function. He could even establish
a parametric version of this result. However there is no general concept to
solve such difficult problems and this can’t be generalized easily to arbitrary
o-minimal structures on the reals. For example for Ran,exp issues regarding
global complexifixation are not solved at present. But there is the deep model
theoretical fact that every definable function in Ran,exp is piecewise given by
Lan(exp, log)-terms. Kaiser used this fact to show that univariate real analytic
functions which are definable in Ran,exp extend in a definably way to a holo-
morphic function. A quantitative version of this result was given by Kaiser
and Speissegger in [24] (compare also with Wilkie in [44]). But especially for
this big structure it would be desirable to have an analoguous result as in
the globally subanalytic case to cover a huge class of real analytic functions,
because there are many fields of application.
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1.2 Outline and Results

In the next paragraphs we give a short overview of this thesis and its research
results. More detailed information can be found in the respective chapter and
section. Chapter 2 presents the preliminaries. First we investigate o-minimal
structures on the reals and take a closer look at global complexification in
such structures, give the most important definitions and facts. The dividing
line from the structure Ran and the structure Ran,exp comes from the global
exponential function. The exponential function gives non-flatness, C∞ but not
real analyticity and definable holomorphic extensions in one variable on small
areas as an example at the end of this chapter shows.

So the idea is to consider compositions of globally subanalytic functions and
the global logarithm at first. We call such functions log-analytic. Then we
take a closer look at compositions of log-analytic functions and exponentials
whose arguments are locally bounded which we call restricted log-exp-analytic
(compare Chapter 3).

Example

The function

f : R2 → R, (x, y) 7→ arctan(log(max{log(x4 + log(y2 + 2)), 1})),

is log-analytic. The function

g : ]0, 1[2→ R, (x, y) 7→ arctan(log(e1/x·log
2(1/y) + log(ee

1/x

+ 2))),

is restricted log-exp-analytic, but the function

h : R → R, x 7→
{
e−1/x x > 0,
0, else,

is not.

In Chapter 4, the first main chapter, we will formulate and prove preparation
theorems for log-analytic functions, definable functions in Ran,exp and restricted
log-exp-analytic functions. This theorems come from Lion and Rolin (see [28])
and give very nice representations for definable functions in one variable.

Examining this preparation theorems we obtain nice differentiability proper-
ties for restricted log-exp-analytic functions like strong quasianalyticity, non-
flatness and the following parametric version of Tamm’s theorem which has
been formulated by Van den Dries and Miller in [14] for globally subanalytic
functions (compare Chapter 5).
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Theorem A

Let X ⊂ Rn × Rm be definable such that Xt is open for t ∈ Rn. Let f : X →
R, (t, x) 7→ f(t, x), be a restricted log-exp-analytic function in x. Then there
is N ∈ N such that for all t ∈ Rn if f(t,−) is CN at x then f(t,−) is real
analytic at x.

In Chapter 6 we show that a real analytic restricted log-exp-analytic function
has a holomorphic extension which is again restricted log-exp-analytic. This
is the main result of our research.

Theorem B

Let n ∈ N and let U ⊂ Rn be open. Let f : U → R be a real analytic restricted
log-exp-analytic function. Then there is an open definable Z ⊂ Cn with U ⊂ Z
and a holomorphic restricted log-exp-analytic F : Z → C with F |U = f .

The idea of the proof is considering unary functions with parameters and then
doing an induction on the number of variables (see [19]). This requires a
rather sophisticated set-up. The arguments for the univariate case require the
preparation theorems from Chapter 4 which are deep geometrical results for
restricted log-exp-analytic functions, integration of restricted log-exp-analytic
functions and methods from complex analysis. The arguments for the mul-
tivariate case require theorem A. We finally obtain a parametric version of
theorem B. (see also Kaiser in [19] for a version of theorem B and C in the
globally subanalytic setting.)

Theorem C

Let n ∈ N0, m ∈ N and X ⊂ Rn × Rm be definable such that Xt is open for
all t ∈ Rn. Let f : X → R, (t, x) 7→ f(t, x), be restricted log-exp-analytic in
x such that ft is real analytic for every t ∈ Rn. Then there is a definable
Z ⊂ Rn × Cm with X ⊂ Z such that Zt is open for all t ∈ Rn and a function
F : Z → C, (t, z) 7→ F (t, z), which is restricted log-exp-analytic in z such that
Ft is holomorphic for every t ∈ Rn and F |X = f .

Finally, in Chapter 7 we give a short conclusion and discuss some open ques-
tions.
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Notations

The empty sum is by definition 0 and the empty product is by definition
1. By Q we denote the set of rational numbers, by R we denote the set of
real numbers, by C the set of complex numbers, by N = {1, 2, ...} the set of
natural numbers and by N0 = {0, 1, 2, ...} the set of nonnegative integers. Let
R∗ := R \ {0}. For a ∈ R we set R>a := {x ∈ R | x > a}. Given x ∈ R let ⌈x⌉
be the smallest integer which is not smaller than x and let sign(x) ∈ {±1} its
sign if x ̸= 0. For a ∈ R we have a < ∞, −∞ < a and we set a + ∞ := ∞
and a − ∞ := −∞. For a, b ∈ R with a ≤ b we denote by [a, b] the closed
interval and by ]a, b[ the open interval with endpoints a, b, respectively. Given
a subset A of Rn we denote by A its closure . By logk we denote the k-
times iterated of the natural logarithm and by expk the k-times iterated of the
natural exponential (where log0 = exp0 = id). Given x = (x1, ..., xn) ∈ Rn and
r > 0, we define the box

Qn(x, r) := {(y1, ..., yn) ∈ Rn | |yj − xj| < r for all j ∈ {1, ..., n}}.

Form ∈ N andX ⊂ Rm we consider the following: For x ∈ Rm let dist(x,X) :=
inf{|x− y| | y ∈ X}. For two functions f, g : X → R we say that f > g if
f(x) > g(x) for every x ∈ X. For a set E of positive real valued functions on
X we set log(E) := {log(g) | g ∈ E}. For C ⊂ Rm with C ⊂ X and a set E of
real valued functions on X we set E|C := {g|C | g ∈ E}.
For X ⊂ Rn × R let X ̸=0 := {(x, y) ∈ X | y > 0} .

For X ⊂ Rn × Rm and t ∈ Rn we set Xt := {x ∈ Rm | (t, x) ∈ X} and for a
function f : X → R, (t, x) 7→ f(t, x), and t ∈ Rn let ft : Xt → R, x 7→ f(t, x).

We set sup(∅) = −∞ and inf(∅) = ∞. Form,n ∈ N we denote byM(m×n,Q)
the set ofm×n-matrices with rational entries. For P ∈M(m×n,Q) we denote
by tP ∈ M(n ×m,Q) its transpose. By the symbol ∼ we denote asymptotic
equivalence.

We set C− := C \ R≤0 and C−
a := C \ R≤a and C+

a := C \ R≥a for a ∈ R. Let
z range over C. We denote by arg : C \ {0} →]− π, π] the standard argument
function and define log : C− → C, z 7→ log(z) := log(|z|) + iarg(z), (i.e. z is
mapped on the principal value of the complex logarithm) and zq := eq log(z) for
z ∈ C− and q ∈ Q . For r1, r2 ∈ R≥0 and c ∈ C we set

A(c, r1, r2) := {z ∈ C | r1 < |z − c| < r2}.

For r ∈ R>0 and c ∈ R we set

B(c, r) := {z ∈ C | |z − c| < r}.

Given z = (z1, ..., zn) ∈ Cn and r > 0, we define the polydisc

Dn(z, r) := {(w1, ..., wn) ∈ Cn | |wj − zj| < r for all j ∈ {1, ..., n}}.
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Terminology from model theory

By L := (≤,+, ·,−, 0, 1) we denote the language of ordered rings, by Lan the
language of ordered rings augmented by symbols for all restricted analytic func-
tions (compare with Definition 2.7 for the notion of a restricted analytic func-
tion), by Lan(exp, log) the language Lan augmented by symbols for the global
exponential function and the global logarithm and by Lan(

−1, ( n
√
...)n=2,3,..., log)

the language Lan augmented by a function symbol −1 for taking reciprocals with
respect to ”·”, by function symbols n

√
... for taking the n’th root for n ∈ N

with n ≥ 2, and by a symbol for the global logarithm.

Let L′ ∈ {Lan,Lan(
−1, ( n

√
...)n=2,3,..., log),Lan(exp, log)}. An L′-term is induc-

tively defined as follows.

(i) 0 and 1 (i.e. every constant symbol in L′) are L′-terms.

(ii) Let x1, x2, ... be the infinite list of variables in L′. Then x1, x2, ... are
L′-terms.

(iii) If f is an m-ary function symbol in L′ for m ∈ N and t1, ..., tm are
L′-terms then f(t1, ..., tm) is an L′-term.

2 Preliminaries

In this chapter we take up some necessary preliminaries. First we will intro-
duce o-minimal structures, give basic definitions, theorems, explain its ”tame
character” and speak about parameterized integrals. Then we will combine
this theory with complex analysis and take holomorphic extensions of defin-
able real analytic functions within an o-minimal structure on the reals into
account, give facts, definitions and some results.

2.1 O-Minimal Structures

2.1 Definition

A subset A of Rn, n ≥ 1, is called semialgebraic if there are k, l ∈ N0 and
real polynomials fi, gi,1, ..., gi,k ∈ R[X1, ..., Xn] for 1 ≤ i ≤ l such that

A =
l⋃

i=1

{x ∈ Rn | fi(x) = 0, gi,1(x) > 0, ..., gi,k(x) > 0}.

A map is called semialgebraic if its graph is semialgebraic.
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2.2 Definition

A subset A of Rn, n ≥ 1, is called semianalytic if for each a ∈ Rn there
are open neighbourhoods U, V of a with U ⊂ V , k, l ∈ N0 and real analytic
functions fi, gi,1, ..., gi,k on V for 1 ≤ i ≤ l, such that

A ∩ U =
l⋃

i=1

{x ∈ U | fi(x) = 0, gi,1(x) > 0, ..., gi,k(x) > 0}.

A map is called semianalytic if its graph is semianalytic.

2.3 Definition

A subset B of Rn, n ≥ 1, is called subanalytic if for each a ∈ Rn there is
an open neighbourhood U of a, some p ≥ n and some bounded semianalytic
set A ⊂ Rp such that B ∩ U = πn(A) where πn : Rp → Rn, (x1, ..., xp) 7→
(x1, ..., xn), is the projection on the first n coordinates. A map is called sub-
analytic if its graph is subanalytic.

2.4 Remark

A semialgebraic set is semianalytic. A semianalytic set is subanalytic.

See [2] and [37] for geometrical descriptions of semianalytic resp. subanalytic
sets and functions.

2.5 Definition

A subset B of Rn, n ≥ 1, is called globally subanalytic if it is subanalytic
after applying the semialgebraic homeomorphism

Rn → ]− 1, 1[n, xi 7→
xi√
1 + x2i

,

for i ∈ {1, ..., n}. A map is called globally subanalytic if its graph is globally
subanalytic.

2.6 Example

(1) A semialgebraic set is globally subanalytic.

(2) The restriction of the global sine function on a compact interval is glob-
ally subanalytic.

10



2.7 Definition

A function f : Rn → R is called restricted analytic if there is a real conver-
gent power series p in n variables which converges on an open neighbourhood
of [−1, 1]n such that

f(x) =

{
p(x), x ∈ [−1, 1]n,
0, else.

2.8 Definition

For n ∈ N let Mn be a set of subsets of Rn and let M := (Mn)n∈N. Then M
is a structure on R if the following holds for all m,n, p ∈ N.

(S1) If A,B ∈ Mn then A∪B, A∩B and Rn \A ∈Mn. (So Mn is a Boolean
algebra of subsets of Mn.)

(S2) If A ∈Mn and B ∈Mm then A×B ∈Mn+m.

(S3) IfA ∈Mp and p ≥ n then πn(A) ∈Mn where πn : Rp → Rn, (x1, ..., xp) 7→
(x1, ..., xn), denotes the projection on the first n coordinates.

(S4) Mn contains the semialgebraic subsets of Rn.

The structure M = (Mn)n∈N on R is called o-minimal if additionally the
following holds.

(O) The sets in M1 are exactly the finite unions of intervals and points.

2.9 Definition

Let M = (Mn)n∈N be a structure. Let n ∈ N.

a) A subset A of Rn is called definable in M if A ∈Mn.

b) Let B ⊂ Rn and m ∈ N. A function f : B → Rm is definable in M if
its graph {(x, f(x)) | x ∈ B} is definable in M.

2.10 Remark

The global sine or cosine function is not definable in an o-minimal expansion
of R.
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2.11 Example

(1) The smallest o-minimal structure on R is given by the semialgebraic sets
(see [41] and [36]). This is the pure real field and it is denoted by R.

(2) Rexp, the structure generated on the real field by the global exponential
function exp : R → R>0 (i.e. the smallest structure containing the semi-
algebraic sets and the graph of the exponential function), is o-minimal.
(With a theorem of Khovanskii from [25] we obtain o-minimality together
with a result from [45] that the theory of Rexp is model complete.)

(3) Ran, the structure generated on the real field by the restricted analytic
functions, is o-minimal (see [10] together with Gabrielov’s theorem from
[17] that the complement of a globally subanalytic function is again glob-
ally subanalytic; see also [28], Section 1 for an analytic proof). The sets
definable in Ran are precisely the globally subanalytic ones (see [11]).

(4) Ran,exp, the structure generated by Ran and Rexp, is o-minimal (see for
example [13] for a model theoretic proof respectively [28], Section 2 for
an analytic proof).

Especially the o-minimal structure Ran,exp is very important, because a huge
class of elementary functions is definable in there. With the following fact we
understand completely how the definable functions in Ran,exp look like.

2.12 Fact (Van den Dries/Macintyre/Marker, [13], Corollary 4.7)

Let n ∈ N and let f : Rn → R be definable in Ran,exp. Then there are s ∈ N and
Lan(exp, log)-terms t1, ..., ts such that for every x ∈ Rn there is j ∈ {1, ..., s}
with f(x) = tj(x). So f is piecewise given by Lan(exp, log)-terms.

Subsequently, we exhibit the tame geometric behaviour of o-minimal struc-
tures. An essential role in this context plays the cell decomposition theorem
which states that we can decompose every definable set in finitely many dis-
joint subsets of a special form called cells. This concept is very helpful for
technical proofs: The idea is to do calculation on every single cell at first and
finally obtain the result by considering all of them.

For the rest of the section ”definable” means always ”definable in M” if the
underlying o-minimal structure M on R is clear from the context.
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2.13 Definition

Let M be an o-minimal structure on R. By induction on n we define a defin-
able cell C ⊂ Rn as follows.

n = 1: C is either a singleton or an open interval.

n→ n+ 1: C has one of the following form.

i) C = graph(f),

ii) C = {(t, x) ∈ B × R | f(t) < x < g(t)} := ]f, g[B,

iii) C = {(t, x) ∈ B × R | f(t) < x <∞} := ]f,∞[B,

iv) C = {(t, x) ∈ B × R | −∞ < x < f(x)} := ]−∞, f [B,

v) C = {(t, x) ∈ B × R | −∞ < x <∞} := ]−∞,∞[B,

where B ⊂ Rn is a definable cell called the base of C in Rn and f, g : B → R
are continuous definable functions with additionally f < g in ii).

Figure 2.1 Different cell types in Rn+1 on the base B

2.14 Definition

Let M be an o-minimal structure on R. Let m ∈ N and A ⊂ Rm be non-
empty and definable. A finite partition C of A into definable cells is called a
definable cell decomposition C of A.

13



2.15 Theorem

Let M be an o-minimal structure on R. Let n ∈ N and A ⊂ Rn be definable.
The following holds.

(1) There is a definable cell decomposition C of A.

(2) Let m ∈ N. If f : A→ Rm is a definable function then the definable cell
composition C of A can be chosen in this way that f |C is continuous for
every C ∈ C.

Proof

We refer to Van den Dries (see [11], Chapter 3). ■

Since a definable cell is definably connected an immediate consequence from
this theorem is that every definable set is the union of finitely many connected
components and these are again definable. We refer to the book of Van den
Dries in [11], Coste in [9] or Miller/Rolin/Speissegger in [32] for more on the
general properties of o-minimal structures.

To close this chapter we pick up results on definability of parameterized inte-
grals over the reals which will be important for our purposes in Chapter 6.2.
The class of constructible functions which was introduced by Cluckers and
Miller in [7] plays a major role in this context.

2.16 Definition

Let n ∈ N. Let A ⊂ Rn be a globally subanalytic set. A function f : A→ R is
called constructible if there are k ∈ N, li ∈ N for i ∈ {1, ..., k} and globally
subanalytic functions gi : A → R and hij : A → R>0 for i ∈ {1, ..., k} and
j ∈ {1, ..., li} such that

f(x) =
k∑

i=1

gi(x)

li∏
j=1

log(hij(x))

for every x ∈ A.

2.17 Remark

A globally subanalytic function is constructible.

Let n ∈ N0 and m ∈ N. Let u range over Rn and v over Rm.

2.18 Definition

Let f : Rn × Rm → R be globally subanalytic. We set

Fin(f) :=
{
u ∈ Rn |

∫
Rm

|f(u, v)|dv <∞
}
.
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2.19 Fact (Comte/Lion/Rolin, [8], Theorem 1)

Let f : Rn × Rm → R be globally subanalytic. The following holds.

(1) The set Fin(f) is globally subanalytic.

(2) The function

h : Fin(f) → R, u 7→
∫
Rm

f(u, v)dv,

is constructible.

2.20 Fact (Cluckers/Miller, [6], Theorem 2.5)

The class of constructible functions is stable under parametric integration.

This means that the class of constructible functions is the smallest subclass of
all definable functions in Ran,exp which contains all the globally subanalytic ones
and is stable under parametric integration. Further and more deep theory on
integration of constructible functions where loci of integrability and Lebesque
classes of constructible functions are studied can be found in [5] and [6].

However it is in general not possible to extend this result within Ran,exp beyond
the constructible setting as the following fact indicates.

2.21 Fact (Van den Dries/Macintyre/Marker, [12] Theorem 5.11)

The function R → R, u 7→
∫ u

0
e−v2dv, is not definable in Ran,exp.

An important consequence of this fact is that parameterized integrals of func-
tions which are piecewise given by Lan(

−1, ( n
√
...)n=2,3,..., log)-terms are in gen-

eral not definable in Ran,exp. (Compare Chapter 3 for an analytic definition of
this class of functions.)

2.22 Example

Consider

f : R× R → R≥0, (u, v) 7→


1

2v2
√

log(v)
, 1 < v < u,

if
0, else.

We obtain for 1 < u∫ √
log(u)

0

e−v2dv =

∫ log(u)

0

e−v

2
√
v
dv

=

∫ u

1

1

2v2
√

log(v)
dv.
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For u ∈ R let

g(u) :=

∫
R
f(u, v)dv.

We have g(u) = 0 for u ≤ 1 and

g(u) =

∫ √
log(u)

0

e−v2dv ≤
√
π

for u > 1. So we see that Fin(f) = R. By Fact 2.21 we obtain that R → R, u 7→∫ u

0
e−v2dv, is not definable in Ran,exp. Therefore R → R, u 7→

∫
R f(u, v)dv, is

also not definable in Ran,exp. ■

Note that the antiderivative of a continuous function f : R → R can be
considered as a special parameterized integral:∫ x

0

f(t)dt =

∫
R
f̃(x, t)dt

where f̃(x, t) = f(t)1[0,x](t). For an o-minimal structure M on R consider
P(M), the Pfaffian closure of M, which is an o-minimal expansion of M. It
goes beyond the scope of this thesis to give the exact definition. For more
details we refer to [32] and [39].

2.23 Fact (Speissegger, [39], Corollary on p.1)

Let n = 1 and m = 1. Let M be an o-minimal structure on R and let f :
R → R be definable in M. Then the function F : R → R, x 7→

∫ x

0
f(t)dt, is

definable in P(M).

This shows that the parameterized integrals from Fact 2.21 and Example 2.22
are indeed definable in P(Ran,exp). Questions about this matter regarding de-
finability of such integrals in more than one variable are quite open. Compare
for example [23] for parameterized exponential integrals given by the Brownian
motion on globally subanalytic sets.

2.2 Complexification and Global Complexification

In this section M denotes a fixed o-minimal structure on R and the expression
”definable” means always ”definable in M” if not otherwise mentioned. We
identify C with R2 via x+ iy 7→ (x, y). So ”definable in Cm” means ”definable
in R2m” for m ∈ N .
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2.24 Definition

We say that M has complexification if the following holds. Let l ∈ N. Let
U ⊂ Rl be open and let f : U → R be a definable real analytic function. Then
for every x ∈ U there is a definable open neighbourhood B ⊂ Rl of x, an open
set V ⊂ Cl with B ⊂ V , and a definable holomorphic function F : V → C
such that F |B = f |B.

2.25 Example

(1) Let M be an o-minimal expansion of Ran (e.g. M = Ran,exp). Then M
has complexification.

(2) The o-minimal structure Rexp does not have complexification.

Proof

(1): This follows simply by power series expansion of a real power series in the
complex numbers.

(2): We denote by f the real exponential function which is definable in Rexp.
Consider

exp : C → C, x+ iy 7→ exp(x)(cos(y) + i sin(y)),

which is holomorphic. Let x ∈ R and let V be an open ball around x in C. By
the identity theorem we see that exp|V is the unique holomorphic extension of
f |V ∩R on V . But Bianconi showed in [1] that no restriction of the global sine
function on a non-empty open interval is definable in Rexp. ■

We mention that such questions are not answered completely. A field of open
problems in this context are for example o-minimal structures which are gen-
erated by so called convergent Weiherstrass systems. We refer to [30] for the
details.

2.26 Definition

Let l ∈ N. We say thatM has l-ary global complexification if the following
holds. Let U ⊂ Rl be open and let f : U → R be a definable real analytic
function. Then there is a definable open set V in Cl with U ⊂ V and a
definable holomorphic function F : V → C such that F |U = f . Moreover we
call F a global complexification of f .

2.27 Remark

Let l ∈ N. If M has (l+1)-ary global complexification then it has l-ary global
complexification.

By Fact 2.12 we have that every definable function in Ran,exp is piecewise given
by Lan(exp, log)-terms. A consequence is the following.
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2.28 Fact (Kaiser, [19] Theorem C)

The o-minimal structure Ran,exp has unary global complexification.

2.29 Definition

We say that M has global complexification if M has l-ary global complex-
ification for every l ∈ N.

2.30 Remark

If M has global complexification then it has complexification.

It is not known to us whether there is an o-minimal structure which has com-
plexification but no global complexification. The problem is that there is no
general concept how definable functions in o-minimal structures look like. But
for the case that M is the pure real field all definable real analytic functions
are so called Nash functions. For this class of functions there are strong results
like the implicit function theorem or the Artin-Mazur description (compare [3],
Chapter 8).

2.31 Fact (Kaiser, [21] Theorem B)

The pure real field R has global complexification.

(See also Shiota [38], Chapter I.6.7.)

For the o-minimal structure Ran the situation is much more complicated since
there are only piecewise nice representations for definable functions (compare
Fact 2.12). Fortunately there are deep geometrical results for globally suban-
alytic functions. These are the preparation theorems of Lion and Rolin which
give a nice representation of a globally subanalytic function in one variable and
are precise enough to establish global complexification: The idea is to consider
unary functions at first and then do a non-trivial induction on the number
of variables. Therefore in [19] Tobias Kaiser set up the notion of parametric
global complexification.

2.32 Definition

Let l ∈ N. We say that M has l-ary parametric global complexification
if the following holds. Let n ∈ N0, X ⊂ Rn × Rl be definable such that Xt is
open for all t ∈ Rn. Let f : X → R be definable such that ft : Xt → R is real
analytic for all t ∈ Rn. Then there is a definable Z ⊂ Rn × Cl with X ⊂ Z
such that Zt = {z ∈ C | (t, z) ∈ Z} is open for every t ∈ Rn and a definable
function F : Z → C such that Ft : Zt → C, z 7→ F (t, z), is holomorphic for
all t ∈ Rn and F |X = f . We call F : Z → C an l-ary parametric global
complexification of f .
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2.33 Remark

Let l ∈ N.

(1) If M has (l+1)-ary parametric global complexification then it has l-ary
parametric global complexification.

(2) If M has l-ary parametric global complexification then it has l-ary global
complexification.

2.34 Definition

We say that M has parametric global complexification if M has l-ary
parametric global complexification for every l ∈ N.

2.35 Remark

If M has parametric global complexification then it has global complexifica-
tion.

If one deals with parametric global complexification there is the problem to
”lift” the open property and the holomorphy from the univariate case into the
multivariate case since piecewise open does not imply open. So we set up the
concept of high parametric global complexification.

For m,n, l ∈ N let t range over Rn, u over Rm and x over Rl.

2.36 Definition

(a) Let l ∈ N. We say that M has l-ary high parametric global com-
plexification if the following holds. Let n,m ∈ N0 andX ⊂ Rn×Rm×Rl

be definable such that Xt = {(u, x) ∈ Rm ×Rl | (t, u, x) ∈ X} is open in
Rm×Rl for every t ∈ Rn. Let f : X → R be definable such that ft : Xt →
R, (u, x) 7→ f(t, u, x), is real analytic for every t ∈ Rn. Then there is an l-
ary parametric global complexification F : Z → C, (t, u, z) 7→ F (t, u, z),
of f such that Zt = {(u, z) ∈ Rm ×Cl | (t, u, z) ∈ Z} is open in Rm ×Cl

for t ∈ Rn. We call F an l-ary high parametric global complexifi-
cation of f with respect to (u, x).

(b) We say that M has high parametric global complexification if M
has l-ary high parametric global complexification for every l ∈ N.

2.37 Remark

If M has high parametric global complexification then it has parametric global
complexification and therefore global complexification.
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2.38 Fact (Kaiser, [19], Theorem 2.10)

The o-minimal structure Ran has high parametric global complexification. There-
fore Ran has parametric global complexification and global complexification.

For the rest of the chapter let M = Ran,exp.

2.39 Example

Let X := R× R and consider the definable function

f : X → R, (u, x) 7→


exp(x

u
), u > 0,

if
0, u ≤ 0.

Let
Z := {(u, z) ∈ R× C | |Im(z)| < πu if u > 0}.

Then the function

G : Z → C, (u, z) 7→


exp( z

u
), u > 0,

if
0, u ≤ 0,

is a unary parametric global complexification of f .

2.40 Remark

Let X and f be as in Example 2.39. Let Z ⊂ R × C be definable and let
F : Z → C be a unary parametric global complexification of f . Then there
is no r > 0 such that ]0, r[ × (]0, r[+i]0, r[) ⊂ Z, i.e. F is no unary high
parametric global complexification with respect to (u, x).

Proof

Note that Zt is open for all t ∈ R. Assume the contrary. Fix r > 0 such that

Q := ]0, r[×(]0, r[ + i]0, r[) ⊂ Z.

By the identity theorem we have for (u, z) ∈ Z that F (u, z) = exp(z/u) if
u > 0 and F (u, z) = 0 otherwise. Note that Q is definable, but F |Q is not
definable, because for every (u, x+ iy) ∈ Q we have

F (u, x+ iy) = exp(x/u)(cos(y/u) + i sin(y/u))

and the global sine function (or cosine function) is not definable at infinity, a
contradiction. ■

Nevertheless it is absolutely possible that Ran,exp has global complexification
since the underlying function must be real analytic and the function f in
Example 2.39 is not real analytic at zero.

20



In this thesis we investigate functions on open sets which are compositions of
globally subanalytic functions, the global logarithm and exponentials whose ar-
guments are locally bounded. We call them restricted log-exp-analytic. Since
real analytic functions are locally definable in Ran there should be a connec-
tion between real analytic functions and restricted log-exp-analytic functions.
The strategy here is also to formulate, prove and use a version of the prepa-
ration theorem of Lion and Rolin, construct the holomorphic extension of a
real analytic restricted log-exp-analytic function f by considering every single
exponential term which occurs in its preparation, construct a unary high para-
metric global complexification for f which is again restricted log-exp-analytic
and then do a technical induction on the number of variables similarly as
Kaiser did in [19].

21



3 Definable Functions in Ran,exp

3.1 Log-Analytic Functions and the Exponential Num-
ber

By Fact 2.12 every definable function is given piecewise by Lan(exp, log)-terms.
So every definable function is piecewise the composition of globally subana-
lytic functions, the global exponential function and the global logarithm. Let’s
look at logarithmic-analytic functions (log-analytic for short) at first, i.e. func-
tions which are iterated compositions from either side of globally subanalytic
functions and the global logarithm. By Kaiser and Opris they exhibit nice
differentiability properties like non-flatness (see [22]). From the viewpoint of
logic, log-analytic functions are definable in the o-minimal expansion Ran,exp

of Ran; in fact they generate the whole structure Ran,exp.

For the whole section definable means definable in Ran,exp if not otherwise
mentioned. For Section 3.1 let m ∈ N and X ⊂ Rm be definable.

3.1 Definition

Let f : X → R be a function.

(a) Let r ∈ N0. By induction on r we define that f is log-analytic of order
at most r.

Base case: The function f is log-analytic of order at most 0 if f is
piecewise the restriction of globally subanalytic functions, i.e. there is
a decomposition C of X into finitely many definable sets such that for
C ∈ C there is a globally subanalytic function F : Rm → R such that
f |C = F |C .

Inductive step: The function f is log-analytic of order at most r
if the following holds: There is a decomposition C of X into finitely
many definable sets such that for C ∈ C there are k, l ∈ N0, a glob-
ally subanalytic function F : Rk+l → R, and log-analytic functions
g1, ..., gk : C → R, h1, ..., hl : C → R>0 of order at most r − 1 such
that

f |C = F (g1, ..., gk, log(h1), ..., log(hl)).

(b) Let r ∈ N0. We call f log-analytic of order r if f is log-analytic of
order at most r but not of order at most r − 1.

(c) We call f log-analytic if f is log-analytic of order r for some r ∈ N0.
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3.2 Remark

(1) A log-analytic function is definable.

(2) The log-analytic functions are precisely those definable functions which
are piecewise given by Lan(

−1, ( n
√
...)n=2,3,..., log)-terms.

(3) A function is log-analytic of order 0 if and only if it is piecewise the
restriction of globally subanalytic functions.

(4) A constructible function is log-analytic of order at most 1.

3.3 Remark

(1) Let r ∈ N0. The set of log-analytic functions on X of order at most r is
an R-algebra with respect to pointwise addition and multiplication.

(2) The set of log-analytic functions on X is an R-algebra with respect to
pointwise addition and multiplication.

3.4 Example

The function

f : R2 → R, (x, y) 7→ arctan(log(max{log(x4 + log(y2 + 2)), 1})),

is log-analytic (of order 3).

3.5 Definition

Let f : X → R be a function. Let E be a set of positive definable functions
on X.

(a) By induction on e ∈ N0 we define that f has exponential number at
most e with respect to E.

Base Case: The function f has exponential number at most 0 with
respect to E if f is log-analytic.

Inductive Step: The function f has exponential number at most e
with respect to E if the following holds: There are k, l ∈ N0, functions
g1, ..., gk : X → R and h1, ..., hl : X → R with exponential number at
most e − 1 with respect to E and a log-analytic function F : Rk+l → R
such that

f = F (g1, ..., gk, exp(h1), ..., exp(hl))

and exp(h1), ..., exp(hl) ∈ E.
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(b) Let e ∈ N0. We say that f has exponential number e with respect
to E if f has exponential number at most e with respect to E but not
at most e− 1 with respect to E.

(c) We say that f can be constructed from E if there is e ∈ N0 such that
f has exponential number e with respect to E.

3.6 Remark

(1) Let E be a set of positive definable functions onX. A function f : X → R
which has exponential number at most e ∈ N0 with respect to E is
definable.

(2) Let E be the set of all positive definable functions on X. Then every
definable function f : X → R can be constructed from E.

Proof

Property (1) is clear. We show property (2). Every function g : X → R>0 of
the form g = exp(h) for a definable h : X → R is contained in E. Therefore
with Definition 3.5 and Fact 2.12 we obtain that every definable function can
be constructed from E. ■

3.7 Example

The function

g : ]0, 1[→ R, x 7→ arctan(log(e1/x + log(ee
1/x

+ 2))),

has exponential number (at most) 2 with respect to

E := {R 7→ R>0, x 7→ e1/x,R 7→ R>0, x 7→ ee
1/x}

and therefore can be constructed from E.

3.8 Remark

Let X1, X2 ⊂ Rm be definable and disjoint. Let X = X1 ∪X2. For j ∈ {1, 2}
let Ej be a set of positive definable functions on Xj and fj : Xj → R be a
function. Let e ∈ N0 be such that fj has exponential number at most e with
respect to Ej for j ∈ {1, 2}. Let

E := {g | g : X → R is a function with g|Xj
∈ Ej for j ∈ {1, 2}}.

Then

f : X → R, x 7→
{
f1(x), x ∈ X1,
f2(x), x ∈ X2,

24



has exponential number at most e with respect to E.

3.9 Remark

Let e ∈ N0. Let C ⊂ X be definable and f : X → R be a function. Let E be
a set of positive definable functions on X such that f has exponential number
at most e with respect to E. Then f |C has exponential number at most e with
respect to E|C .

3.10 Remark

Let f : X → R be a function. Let E1 and E2 be sets of definable functions
on X with E1 ⊂ E2. Let e ∈ N0. If f has exponential number at most e with
respect to E1 then f has exponential number at most e with respect to E2.

3.11 Proposition

Let e ∈ N0. Let E be a set of positive definable functions on X.

(1) Let f : X → R be a function with exponential number at most e with
respect to E. Then exp(f) has exponential number at most e + 1 with
respect to E ∪ {exp(f)}.

(2) Let s ∈ N0. Let f1, ..., fs : X → R be functions with exponential number
at most e with respect to E and let F : Rs → R be log-analytic. Then
F (f1, ..., fs) has exponential number at most e with respect to E.

Proof

(1): One sees with Definition 3.5 applied to g := F (exp(f)) where F = idR
that exp(f) has exponential number at most e+1 with respect to E∪{exp(f)}.
(2): We may assume e > 0. Let k, l ∈ N0, g1, ..., gk, h1, ..., hl : X → R
be functions with exponential number at most e − 1 with respect to E with
exp(h1), ..., exp(hl) ∈ E, and Gj : Rk+l → R be log-analytic such that fj =
Gj(β) for j ∈ {1, ..., s} where β := (g1, ..., gk, exp(h1), ..., exp(hl)). Let v range
over Rk+l. Then

H : Rk+l → R, v 7→ F (G1(v), ..., Gs(v)),

is log-analytic such that H(β) = F (f1, ..., fs). ■

We need this concept also in the complex setting.

We fix a definable Z ⊂ Cm. Let z := (z1, ..., zm) range over Cm. Let x :=
(x1, ..., xm) and y := (y1, ..., ym) range over Rm such that z = x+ iy. We fix a
function F : Z → C with F (z) = u(x, y) + iv(x, y) where u is the real and v
the imaginary part of F considered as real functions.
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3.12 Definition

We call F constructible if u and v are constructible. We call F log-analytic if
u and v are log-analytic.

3.13 Example

The function C− → C, w 7→ log(w), is constructible and therefore log-analytic.

Proof

Note that for every w ∈ C−

log(w) = log(|w|) + iarg(w).

We see that
R2 \ {0} → R, (u, v) 7→ log(

√
u2 + v2),

is constructible and

R2 \ {0} → R, (u, v) 7→ arg(u+ iv),

is globally subanalytic. Therefore C− → C, w 7→ log(|w|) + iarg(w), is con-
structible. ■

3.14 Definition

Let E be a set of definable functions on Z without zeros. We say that F can
be constructed from E if u and v can be constructed from

ERe := {exp(Re(g)) | g ∈ log(E)}

where log(E) := {log(h) | h ∈ E}.

3.15 Remark

Let E be a set of positive real valued definable functions on Z. Assume that
F takes only real values. Then Definition 3.14 coincides with Definition 3.5 if
one considers F and every g ∈ E as a real function.

Proof

We have F = u, v = 0 and ERe = {exp(Re(g)) | g ∈ log(E)} = E since
Re(g) = g for every g ∈ log(E). ■

We can formulate Proposition 3.11 also for the complex setting.
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3.16 Proposition

Let e ∈ N0. Let E be a set of definable functions on Z.

(1) Assume that Im(F ) is bounded and that F : Z → C can be constructed
from E. Then exp(F ) can be constructed from D := E ∪ {exp(F )}.

(2) Let F1, ..., Fl : Z → C be functions which can be constructed from E and
let G : Cl → C be log-analytic. Then G(F1, ..., Fl) can be constructed
from E.

Proof

(1): Note that exp(F ) is definable. We have

exp(F (x+ iy)) = exp(u(x, y))(cos(v(x, y)) + i sin(v(x, y)))

for x+ iy ∈ Z. By Proposition 3.11(1) exp(u) can be constructed from ERe ∪
{exp(u)}. Let M ∈ R>0 be such that |v| ≤M . Let T ∈ {cos, sin}. Then

T ∗ : R → R, x 7→
{
T (x), |x| ≤M,
0, else,

is globally subanalytic. Therefore by Proposition 3.11(2)

Z 7→ R, x+ iy 7→ exp(u(x, y))T ∗(v(x, y)),

can be constructed from ERe ∪ {exp(u)} = DRe.

(2): Let uj be the real part and vj be the imaginary part of Fj considered as
real functions, i.e.

Fj(x+ iy) = uj(x, y) + ivj(x, y)

for j ∈ {1, ..., l} and x+ iy ∈ Z. Let ũ be the real part and ṽ be the imaginary
part of G considered as real functions. Then

G(F1, ..., Fl) = ũ(u1, ..., ul, v1, ..., vl) + iṽ(u1, ..., ul, v1, ..., vl).

We are done with Proposition 3.11(2). ■

For the rest of Section 3.1 let K ∈ {R,C} and Z ⊂ Rm−1 × K. Let t range
over Rm−1, z over K and τ over R. Let π+ : Rm−1 × C → Rm−1, (t, z) 7→ t, be
the projection on the first m− 1 real coordinates.

3.17 Definition

Let l ∈ N0 and g : π+(Z) → Rl be definable. We call a function f : Z → C
globally subanalytic in z with support function g respectively con-
structible in z with support function g if there is a globally subanalytic
respectively constructible function F : Rl ×K → C such that

f(t, z) = F (g(t), z)

for every (t, z) ∈ Z.
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3.18 Remark

Let l ∈ N0 and g : π+(Z) → Rl be definable. The following holds.

(1) A globally subanalytic function resp. constructible function Z → C in z
with support function g is definable.

(2) Let q ∈ N and let G : Cq → C be a globally subanalytic function. Let
J1, ..., Jq : Z → C be globally subanalytic in z with support function g.
Then

H : Z → C, (t, z) 7→ G(J1(t, z), ..., Jq(t, z)),

is globally subanalytic in z with support function g.

Proof

(1): Clear.

(2): Let K1, ..., Kq : Rl × K → C be globally subanalytic such that Jj(t, z) =
Kj(g(t), z) for every (t, z) ∈ Z and j ∈ {1, ..., q}. Let w range over Rl. Then

F : Rl ×K → C, (w, z) 7→ G(K1(w, z), ..., Kq(w, z)),

is globally subanalytic. We obtain

F (g(t), z) = G(J1(t, z), ..., Jq(t, z))

for every (t, z) ∈ Z. ■

3.19 Remark

Let K = R. Let Y ⊂ Rm be definable. Let l ∈ N0 and let a, b ∈ R with a ≤ b.
Let Z = Y ×[a, b]. Let τ range over R and let f : Z → C be globally subanalytic
in τ with support function g : Y → Rl. Suppose that ft is bounded for every
t ∈ Y . Consider

F : Y → C, t 7→
∫ b

a

f(t, τ)dτ.

Then F is well-defined and there is a constructible H : Rl → C such that
F (t) = H(g(t)) for every t ∈ Y .

Proof

Let w range over Rl. Let J : Rl × R → C, (w, τ) 7→ J(w, τ), be globally
subanalytic such that

f(t, τ) = J(g(t), τ)

for every (t, τ) ∈ Z. Let J = J1 + iJ2 where J1 is the real part and J2 the
imaginary part of J . For j ∈ {1, 2} we consider

Gj : Rl × R → R, (w, τ) 7→


Jj(w, τ), τ ∈ [a, b],

if
0, else.
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Then Gj is globally subanalytic. Let G := G1 + iG2. By Fact 2.19(1) the set

Fin(G) := {w ∈ Rl |
∫
R
|Gj(w, τ)|dτ <∞ for j ∈ {1, 2}}

is globally subanalytic. We obtain g(Y ) ⊂ Fin(G), because ft is bounded for
every t ∈ Y . With Fact 2.19(2) we obtain that the function H : Rl → C
defined by

H(w) =

∫
R
G(w, τ)dτ =

∫ b

a

J(w, τ)dτ

if w ∈ Fin(G) and H(w) = 0 otherwise is constructible. For t ∈ Y we have
F (t) = H(g(t)). ■

3.2 Restricted Log-Exp-Analytic Functions

In this section we introduce a large non-trivial class of definable functions which
can be constructed from a set of positive definable functions whose logarithms
are locally bounded. This is a proper subclass of all definable functions, but
contains the class of log-analytic functions properly.

For Section 3.2 we fix m ∈ N. For Definition 3.20 to Definition 3.23 we fix an
open definable set X ⊂ Rm.

3.20 Definition

Let C ⊂ X be a non-empty definable set. Let f : C → R be a function. We
call f locally bounded with reference set X if for every x ∈ X there is an
open neighbourhood U of x in X such that U ∩ C = ∅ or f |U∩C is bounded.

3.21 Definition

Let C ⊂ X be a non-empty definable set. Let f : C → R be a function.

(a) Let e ∈ N0. We say that f is restricted log-exp-analytic of order
(at most) e with reference set X if f has exponential number (at
most) e with respect to a set E of positive definable functions on C such
that every h ∈ log(E) is locally bounded with reference set X.

(b) We say that f is restricted log-exp-analytic with reference set X
if f can be constructed from a set E of positive definable functions on C
such that every h ∈ log(E) is locally bounded with reference set X.
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3.22 Example

The function

g : ]0, 1[2→ R, (x, y) 7→ arctan(log(e1/x·log
2(1/y) + log(ee

1/x

+ 2))),

is restricted log-exp-analytic (of order 2).

3.23 Definition

Let f : X → R be a function.

(a) Let e ∈ N0. The function f is called restricted log-exp-analytic of
order at most e if f is restricted log-exp-analytic of order at most e
with reference set X.

(b) The function f is called restricted log-exp-analytic if f is restricted
log-exp-analytic with reference set X.

The following example shows that not every definable function is restricted
log-exp-analytic.

3.24 Example

The definable function

f : R → R, v 7→


exp(−1/v), v > 0,

if
0, v ≤ 0,

is not restricted log-exp-analytic, but f |R>0 is.

Proof

In Chapter 5 non-flatness of non-zero restricted log-exp-analytic functions is
shown, but f is flat at 0 and not the zero function. Clearly

g : R>0 → R, v 7→ −1/v,

is globally subanalytic and locally bounded. So f |R>0 is restricted log-exp-
analytic, because f |R>0 can be constructed from E := {exp(g)} by Proposition
3.11(1). ■

We will formulate and prove the main results of our research in the parametric
setting below. So we set up the concept of restricted log-exp-analytic functions
in single variables.

For the rest of Section 3 let t range over Rn and x over Rm. Fix definable sets
C,X ⊂ Rn × Rm with C ⊂ X. Suppose that Xt is open for every t ∈ Rn.
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3.25 Definition

Let f : C → R be a function.

(a) We call f locally bounded in x with reference set X if the following
holds. For t ∈ Rn and w ∈ Xt there is an open neighbourhood U of w in
Xt such that U ∩ Ct = ∅ or ft|U∩Ct is bounded.

(b) Suppose that Ct is open for every t ∈ Rm. We call f locally bounded
in x if f is locally bounded in x with reference set C.

3.26 Remark

Let Y ⊂ Rn × Rm be definable with X ⊂ Y such that Yt is open for every
t ∈ Rn. Let f : C → R be locally bounded in x with reference set Y . Then f
is locally bounded in x with reference set X.

3.27 Remark

The set of locally bounded functions in x with reference set X on C is an
R-algebra with respect to pointwise addition and multiplication.

3.28 Remark

Let C1, C2 ⊂ X be disjoint definable sets such that C = C1 ∪ C2. Let gj :
Cj → R be locally bounded in x with reference set X for j ∈ {1, 2}. Then

g : C → R, (t, x) 7→
{
g1(t, x), (t, x) ∈ C1,
g2(t, x), (t, x) ∈ C2,

is locally bounded in x with reference set X.

Proof

Let t ∈ Rn and let w ∈ Xt. Then there is an open neighbourhood U1 of w in Xt

such that U1∩C1 = ∅ or (g1)t|U1∩C1 is bounded and an open neighbourhood U2

of w in Xt such that U2 ∩C2 = ∅ or (g2)t|U2∩C2 is bounded. Let U := U1 ∩ U2.
We have that U ∩ C = ∅ or by the definition of g that gt|U∩C is bounded. ■

3.29 Definition

Let f : C → R be a function.

(a) Let e ∈ N0. We say that f is restricted log-exp-analytic in x of
order (at most) e with reference set X if f has exponential number
(at most) e with respect to a set E of positive definable functions on C
such that every g ∈ log(E) is locally bounded in x with reference set X.

(b) We say that f is restricted log-exp-analytic in x with reference
set X if f can be constructed from a set E of positive definable functions
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on C such that every g ∈ log(E) is locally bounded in x with reference
set X.

3.30 Remark

Let Y ⊂ Rn×Rm be open with C ⊂ Y . A restricted log-exp-analytic function
f : C → R with reference set Y is restricted log-exp-analytic in x with reference
set Y .

3.31 Remark

Let e ∈ N0.

(1) Let Y ⊂ Rn × Rm be definable with X ⊂ Y such that Yt is open for
every t ∈ Rn. Let f : C → R be restricted log-exp-analytic in x of order
at most e with reference set Y . Then f is restricted log-exp-analytic in
x of order at most e with reference set X.

(2) Let f : C → R be restriced log-exp-analytic in x of order at most e with
reference set X. Let W ⊂ C. Then f |W is restriced log-exp-analytic in
x of order at most e with reference set X.

Proof

Let E be a set of positive definable functions on C such that every h ∈ log(E)
is locally bounded in x with reference set Y and f has exponential number at
most e with respect to E. We obtain property (1) immediately with Remark
3.26 applied to every h ∈ log(E). Property (2) follows immediately with
Remark 3.9 applied to E. ■

3.32 Remark

Let l ∈ N. For j ∈ {1, ..., l} let fj : C → R be a function which is restricted
log-exp-analytic in x with reference set X. Let F : Rl → R be log-analytic.
Then

C → R, x 7→ F (f1(x), ..., fl(x)),

is restricted log-exp-analytic in x with reference set X.

Proof

This follows from Proposition 3.11(2) applied to a set E of positive definable
functions on C such that f can be constructed from E and every g ∈ log(E)
is locally bounded in x with reference set X. ■
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3.33 Remark

Let C1, C2 ⊂ Rm be disjoint and definable with C1 ∪ C2 = C. For j ∈ {1, 2}
let fj : Cj → R be restricted log-exp-analytic in x with reference set X. Then

f : C → R, (t, x) 7→
{
f1(t, x), (t, x) ∈ C1,
f2(t, x), (t, x) ∈ C2,

is restricted log-exp-analytic in x with reference set X.

Proof

For j ∈ {1, 2} let Ej be a set of positive definable functions on Cj such that
every gj ∈ log(Ej) is locally bounded in x with reference set X and fj can be
constructed from Ej. Let

E := {g : C → R | g is a function with g|Cj
∈ Ej for j ∈ {1, 2}}.

We see with Remark 3.28 that every g ∈ log(E) is locally bounded in x with
reference set X. We see with Remark 3.8 that f can be constructed from E.

■

3.34 Definition

A function f : X → R is called restricted log-exp-analytic in x if f is
restricted log-exp-analytic in x with reference set X.

3.35 Remark

Let k ∈ N0. Let w := (w1, ..., wk) range over Rk. Let g : Rk → Rm be
log-analytic and continuous. Let

V := {(t, x, w) ∈ X × Rk | (t, x+ g(w)) ∈ X}.

Let f : X → R, (t, x) 7→ f(t, x), be restricted log-exp-analytic in x. Then
F : V → R, (t, x, w) 7→ f(t, x+ g(w)), is restricted log-exp-analytic in (x,w).

Proof

Note that Vt is open in Rm × Rk for every t ∈ Rn. Let E be a set of positive
definable functions on X such that log(E) consists only of locally bounded
functions in x and f can be constructed from E. Consider

Ẽ := {V → R>0, (t, x, w) 7→ h(t, x+ g(w)) | h ∈ E}.

Note that F can be constructed from Ẽ. ■

Claim

Let α : X → R be locally bounded in x. Then α∗ : V → R, (t, x, w) 7→
α(t, x+ g(w)), is locally bounded in (x,w).
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Proof of the claim

Let t ∈ Rn and let (x0, w0) ∈ Vt. Note that x0 + g(w0) ∈ Xt. Then there is an
open neighbourhood Û of x0 + g(w0) in Xt such that αt|Û is bounded. Let

U := {(x,w) ∈ Xt × Rk | x+ g(w) ∈ Û}.

Since g is continuous we see that U is an open neighbourhood of (x0, w0) in Vt
such that (α∗)t|U is bounded. ■Claim

By the claim we see that log(Ẽ) is a set of locally bounded functions in (x,w)
on V and we are done. ■

Restricted Log-Exp-Analytic Functions in the Complex Setting

Finally we describe briefly this class of functions in the complex setting.

Let z := (z1, ..., zm) range over Cm. Let x := (x1, ..., xm) and y := (y1, ..., ym)
range over Rm such that z = x+ iy.

3.36 Definition

Let D ⊂ Cm be definable and let F : D → C be a function with F (z) =
u(x, y)+iv(x, y) where u is the real and v is the imaginary part of F considered
as real functions.

(a) Let Z ⊂ Cm be open and definable with D ⊂ Z. We say that F is
restricted log-exp-analytic with reference set Z if u and v are
restricted log-exp-analytic with reference set Z considered as a real set.

(b) Assume that D is open in Cm. We say that F is restricted log-exp-
analytic if u and v are restricted log-exp-analytic with reference set
D.

Let l ∈ N0 and let w range over Rl. Let D ⊂ Rn ×Rl ×Cm be a definable set
and let F : D → C be a function with F (t, w, z) = u(t, w, x, y) + iv(t, w, x, y)
where u is the real part and v is the imaginary part of F considered as real
functions.

3.37 Definition

(a) Let Z ⊂ Rn ×Rl ×Cm be definable with D ⊂ Z such that Zt is open in
Rl×Cm for every t ∈ Rn. We say that f is restricted log-exp-analytic
in (w, z) with reference set Z if u and v are restricted log-exp-analytic
in (w, x, y) with reference set Z considered as a real set.

(b) Suppose that Dt is open for every t ∈ Rn. We say that f is restricted
log-exp-analytic in (w, z) if u and v are restricted log-exp-analytic in
(w, x, y) with reference set D.
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4 Preparation Theorems in Ran and Ran,exp

One approach to investigate questions on definable functions in Ran,exp is to do
an induction on the complexity of terms which are involved in the construction
of f . For example one can show with this method that every definable function
is piecewise real analytic. But the problem is that a definable function allows
a representation by ’nice’ terms only piecewise. One consequence is that it is
hard to control a definable function on the boundary of a piece as the following
example indicates.

Example

Let f(t, x) be the definable function with f(t, x) = x − t/ log(x) if x > 0 and
zero else. Then the following asymptotics hold. For every t ̸= 0 we have
f(t,−) ∼ −t/ log(x) and f(0,−) ∼ x as x↘ 0.

Also deep technical proofs require a much better representation of definable
functions than a piecewise description by terms. Such a good representation
is given by the preparation theorems of Lion and Rolin in [28] which we will
formulate for the o-minimal structures Ran and Ran,exp. These theorems are
precise enough to obtain proofs that Ran and Ran,exp are o-minimal without
using model theory. In case of log-analytic functions it states that the log-
analytic function f(t, x) where x is the last variable can be piecewise written
as f(t, x) = a(t)|y0(t, x)|q0 · ... · |yr(t, x)|qru(t, x) where y0(t, x) = x − Θ0(t),
y1(t, x) = log(|y0(t, x)|) − Θ1(t),..., the qj’s are rational exponents and u(t, x)
is a unit of a special form. This gives roughly that the function f(t,−) be-
haves piecewise as iterated logarithms independently of t where the order of
iteration is bounded in terms of f (see also Van den Dries and Speissegger
in [16]). But the problem is that the functions a(t),Θ0(t), ...,Θr(t) although
being definable in Ran,exp are in general not log-analytic anymore. We will
present an example below. To be able to use the preparation theorems for
deep technical proofs on differentiability and global complexification our first
key result in this section is the observation that a log-analytic function can be
prepared with data of a special form. We will call them nice functions which
form a proper larger class than the log-analytic ones. For this one has to redo
the proof of the existing preparation result. Our second goal for this chapter
is to establish a preparation theorem for definable functions again by adapting
the arguments of Lion/Rolin. The starting point are log-analytic functions and
then we consider definable functions as compositions of log-analytic functions
and the exponential function. Finally we formulate the preparation theorem
for the class of restricted log-exp-analytic functions.

For the whole chapter let n ∈ N0, t := (t1, ..., tn) range over Rn, x over R
and let π : Rn+1 → Rn, (t, x) 7→ t. Definable means definable in Ran,exp if not
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otherwise mentioned.

4.1 Logarithmic Scales

Let C ⊂ Rn+1 be definable.

4.1 Definition

Let r ∈ N0. A tuple Y := (y0, ..., yr) of functions on C is called an r-
logarithmic scale on C with center Θ = (Θ0, ...,Θr) if the following holds:

(a) yj > 0 or yj < 0 for every j ∈ {0, ..., r}.

(b) Θj is a definable function on π(C) for every j ∈ {0, ..., r}.

(c) For (t, x) ∈ C we have y0(t, x) = x−Θ0(t) and yj(t, x) = log(|yj−1(t, x)|)−
Θj(t) for every j ∈ {1, ..., r}.

(d) We have Θ0 = 0 or there is ϵ0 ∈ ]0, 1[ such that 0 < |y0(t, x)| < ϵ0|x| for
all (t, x) ∈ C. For j ∈ {1, ..., r} the following holds: We have Θj = 0
or there is ϵj ∈ ]0, 1[ such that 0 < |yj(t, x)| < ϵj|log(|yj−1(t, x)|)| for all
(t, x) ∈ C.

We also write y0 instead of (y0) for a 0-logarithmic scale.

4.2 Example

Let n = 1 and consider

C := {(t, x) ∈ R× R | t ∈ ]0, 1[, 1
1+t

+ e−t−1/t < x < 1
1+t

+ e−1/t}.

Let Θ0 : π(C) → R, t 7→ 1
1+t

, Θ1 : π(C) → R, t 7→ −1
t
and Θ2 = 0. Let

y0 : C → R, (t, x) 7→ x − Θ0(t), and inductively for j ∈ {1, 2} let yj : C →
R, (t, x) 7→ log(|yj−1(t, x)|) − Θj(t). Then Y := (y0, y1, y2) is a 2-logarithmic
scale with center (Θ0,Θ1,Θ2).

Proof

Since Θ0 < C we see that y0 > 0. So we have

y1(t, x) = log(y0(t, x))−Θ1(t)

for (t, x) ∈ C. We have Θ0 + eΘ1 > C and therefore y1 < 0 since y1 is strictly
monotone increasing in x. This gives

y2(t, x) = log(−y1(t, x))−Θ2(t)

for (t, x) ∈ C. We have Θ0 + eΘ1−1 < C and therefore y2 < 0 and σ2 = −1.
An easy calculation shows that x−Θ0(t) < ϵ0x and that

|log(x−Θ0(t))−Θ1(t)| < ϵ1|log(x−Θ0(t))|
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for (t, x) ∈ C where ϵ0 := 1/2 and ϵ1 := 1/2. So one sees that (y0, y1, y2) is a
2-logarithmic scale with center (Θ0,Θ1,Θ2).

4.3 Remark

Let r ∈ N0. An r-logarithmic scale may not exist on C. For example there is
no r-logarithmic scale on Rn × R̸=0.

Proof

Suppose the contrary. Let Y be such an r-logarithmic scale. Then Θ0 = 0
since y0 ̸= 0 on C. But then y0(t, x) > 0 for (t, x) ∈ Rn × R ̸=0 with x > 0
and y0(t, x) < 0 for (t, x) ∈ Rn × R̸=0 with x < 0. This is a contradiction to
Definition 4.1(a).

4.4 Definition

Let r ∈ N0. We call C r-admissible if there is an r-logarithmic scale on C.
We call C r-unique if there is exactly one r-logarithmic scale on C.

4.5 Remark

Let r ∈ N0. Let C be r-admissible. Then C ⊂ Rn × R̸=0.
Proof

Suppose the contrary. Then there is t ∈ π(C) such that (t, 0) ∈ C. Since y0 ̸= 0
on C we have Θ0 ̸= 0. So there is ϵ0 ∈ ]0, 1[ such that 0 < |y0(t, x)| < ϵ0|x| for
(t, x) ∈ C. But then 0 < |y0(t, 0)| < 0, a contradiction. ■

Let r ∈ N0. For Chapter 4.1 we assume that C is r-admissible and we fix an
r-logarithmic scale Y := (y0, ..., yr) on C with center (Θ0, ...,Θr).

4.6 Definition

We set

CY := {(t, y0(t, x), ..., yr(t, x)) | (t, x) ∈ C} ⊂ Rn × Rr+1.

4.7 Definition

The sign sign(Y) ∈ {−1, 1}r+1 of Y is defined by

sign(Y) =
(
sign(y0), ..., sign(yr)

)
.

4.8 Definition

Let q = (q0, ..., qr) ∈ Qr+1. We set

|Y|⊗q :=
r∏

j=0

|yj|qj .
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4.9 Definition

Let D be a decomposition of C into finitely many definable sets. Let f : C → R
be a function. We set

Cf := {(t, f(t, x)) ∈ Rn × R | (t, x) ∈ C}

and
Df := {Df | D ∈ D}.

4.10 Remark

The following holds.

(1) Let f : C → R be definable. Then D := Cf is definable.

(2) Let l ∈ {1, ..., r}. We define µl : C → R, (t, x) 7→ x − Θl(t) and induc-
tively for j ∈ {l+1, ..., r} we define µj : C → R, (t, x) 7→ log(|µj−1(t, x)|)−
Θj(t). Then Yr−l,D := (µl, ..., µr) is a well-defined (r−l)-logarithmic scale
with center (Θl, ...,Θr) on D := C log(|yl−1|).

Proof

(1): Clear

(2): Note that

Y(t, x) = (y0(t, x), ..., yl−1(t, x),Yr−l,D(t, log(|yl−1(t, x)|)))

for every (t, x) ∈ C. So it is straightforward to see with Definition 4.1 that
Yr−l,D is an (r − l)-logarithmic scale on D. ■

4.11 Definition

Let M ∈ R>0. We set

C>M(Y) := {(t, x) ∈ C | |yl(t, x)| > M for all l ∈ {1, ..., r}},

and for every l ∈ {1, ..., r}

Cl,M(Y) := {(t, x) ∈ C | |yl(t, x)| ≤M}.

We often omit Y .

4.12 Remark

Let M ∈ R>0. Then C>M and C1,M , ..., Cr,M are definable.
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4.13 Remark

Assume r ∈ N. The following properties hold.

(1) Let l ∈ {1, ..., r}. We have

|yl| ≤ |log(|yl−1|)|

on C.

(2) Let c, λ1, ..., λr ∈ R. Then there is M ∈ R>1 such that

|c+
r∑

k=1

λk log(|yk|)| ≤
|y1|
2

on C>M .

Proof

(1): We find ϵl ∈ ]0, 1[ such that |yl(t, x)| ≤ ϵl|log(|yl−1(t, x)|)| for every (t, x) ∈
C or Θl = 0 by Definition 4.1. Hence |yl| ≤ |log(|yl−1|)|.
(2): Take M ≥ expr(1) to obtain with (1)

|c+
r∑

k=1

λk log(|yk|)| ≤ |c|+
r∑

k=1

|λk| · logk(|y1|)

on C>M . By increasing M if necessary we may assume |c| ≤ |y1|
4

and

|λl| logl(|y1|) ≤
|y1|
4r

for every l ∈ {1, ..., r} on C>M . This gives the result. ■

4.14 Definition

Let m ∈ N. Let D ⊂ X ⊂ Rm. Let f, g : X → R be functions. We
call f similar to g on D, written f ∼D g , if there is δ ∈ R>0 such that
1/δ · g < f < δ · g on D.

4.15 Remark

Let D ⊂ X ⊂ Rm. Let f, g : X → R be functions. If f ∼D g then f and g
don’t have a zero on D.
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4.16 Remark

Let D ⊂ X ⊂ Rm and let f, g : X → R be functions.

(1) It holds f ∼D g if and only if f
g
∼D 1.

(2) If f ∼D g then sign(f) = sign(g) on D.

(3) The relation f ∼D g is an equivalence relation on the set of all functions
on X without a zero on D.

(4) The set of functions on X which are similar to 1 on D form a divisible
group with respect to pointwise multiplication.

4.17 Remark

If Θ0 ̸= 0 then x ∼C Θ0. Let j ∈ {1, ..., r}. If Θj ̸= 0 then log(|yj−1|) ∼C Θj.

Proof

Assume Θ0 ̸= 0. Then there is ϵ ∈ ]0, 1[ such that |x−Θ0(t)| < ϵ|x| for every
(t, x) ∈ C. This gives that x ̸= 0 and

1− ϵ <
Θ0(t)

x
< 1 + ϵ

for every (t, x) ∈ C. Set δ := max{1/(1− ϵ), 1 + ϵ}. Then 1/δ < Θ0(t)
x

< δ for
every (t, x) ∈ C.

Assume Θj ̸= 0. Then there is ϵj ∈ ]0, 1[ such that

|log(|yj−1(t, x)|)−Θj(t)| < ϵj|log(|yj−1(t, x)|)|

for every (t, x) ∈ C. This gives log(|yj−1(t, x)|) ̸= 0 for every (t, x) ∈ C. Now
proceed in the same way as above. ■

4.18 Proposition

Let Ψ : π(C) → R be a function. The following properties hold.

(1) Let l ∈ {1, ..., r}. If |yl−1| ∼C>M
Ψ for some M > 1 then there is N ≥M

such that |yl| ∼C>N
|log(Ψ)−Θl|.

(2) Let E be a set of positive definable functions on π(C) such that Ψ and
Θ1, ...,Θr can be constructed from E. Let q1, ..., qr ∈ Q.

(i) Let |y1| ∼C>M
Ψ for some M > 1. There is N ≥M and a function

µ : π(C) → R>0 which can be constructed from E such that

r∏
j=1

|yj|qj ∼C>N
µ.
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(ii) Suppose

y0 ∼C Ψ
r∏

j=1

|yj|qj .

Then there is M ∈ R>1 such that |y1| ∼C>M
|log(|Ψ|)−Θ1|. Addi-

tionally there is N ≥M and a function ξ : π(C) → R which can be
constructed from E such that y0 ∼C>N

ξ.

Proof

(1): Let δ > 0 be with
1

δ
|yl−1| < Ψ < δ|yl−1|

on C>M . Note that δ > 1. By taking logarithm and subtracting Θl we get

− log(δ) + yl < log(Ψ)−Θl < log(δ) + yl

on C>M . Set N := max{M, 2 log(δ)}. If yl > 0 on C we obtain on C>N that
− log(δ) + yl > 0 and therefore

|yl| − log(δ) < |log(Ψ)−Θl| < |yl|+ log(δ).

If yl < 0 on C we obtain on C>N that log(δ) + yl < 0 and therefore

|yl| − log(δ) ≤ |log(δ) + yl| < |log(Ψ)−Θl| < |− log(δ) + yl| ≤ |yl|+ log(δ).

In both cases we obtain

|yl|
2
< |log(Ψ)−Θl| < 2|yl|

on C>N .

(2),(i): Let Ψ1 := Ψ. With (1) we find inductively for l ∈ {2, ..., r} a real
number Nl ≥ Nl−1 such that

|yl| ∼C>Nl
|log(Ψl−1)−Θl| := Ψl

where N1 := M . We see with an easy induction on l ∈ {1, ..., r} and Propo-
sition 3.11(2) that Ψl can be constructed from E for every l ∈ {1, ..., r}. For
N := Nr we obtain with Remark 4.16(4)

|y1|q1 · ... · |yr|qr ∼C>N
Ψq1

1 · ... ·Ψqr
r := µ.

Note that µ : π(C) → R>0 can be constructed from E by Proposition 3.11(2).

(2),(ii): Let δ > 0 be such that

1

δ
|y1|q1 · ... · |yr|qrΨ < y0 < δ|y1|q1 · ... · |yr|qrΨ
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on C. Let κ := max{1/δ, δ}. Taking absolute values, logarithm and subtract-
ing Θ1 we obtain

− log(κ) + L+ log(|Ψ|)−Θ1 < y1 < log(κ) + L+ log(|Ψ|)−Θ1

on C where L :=
∑r

k=1 qk log(|yk|). By Remark 4.13(2) we find M > 1 such
that

log(κ) + |L| ≤ |y1|
2

on C>M . We obtain

−|y1|
2

+ log(|Ψ|)−Θ1 < y1 <
|y1|
2

+ log(|Ψ|)−Θ1

and therefore
|y1|
2

< |log(|Ψ|)−Θ1| < 2|y1|

on C>M . Let Γ := |log(|Ψ|)−Θ1|. Then Γ : π(C) → R>0 can be constructed
from E, and |y1| ∼C Γ. By (2), (i) we find a function µ : π(C) → R>0 which
can be constructed from E and N ≥M such that

|y1|q1 · ... · |yr|qr ∼C>N
µ.

Therefore by Remark 4.16(1) Ψ · |y1|q1 · ... · |yr|qr ∼C>N
Ψ · µ and by Remark

4.16(3) y0 ∼C>N
Ψ · µ. So take ξ := Ψ · µ. Then ξ can be constructed from E.

We are done with the proof of Proposition 4.18.
■

4.2 A Preparation Theorem for Log-Analytic Functions

For Definition 4.19 we set the following: For r ∈ N0 let w = (w0, ..., wr) range
over Rr+1 and let π∗ : Rn × Rr+1 → Rn, (t, w) 7→ t.

4.19 Definition

Let r ∈ N0 and let D ⊂ Rn × Rr+1 be definable. A function u : D → R is
called r-LA-special unit on D if u = v ◦ ϕ where the following holds.

(a) The function ϕ is given by

ϕ : D 7→ [−1, 1]s, (t, w) 7→ (b1(t)
r∏

l=0

|wl|p1l , ..., bs(t)
r∏

l=0

|wl|psl),

where s ∈ N0, b1, ..., bs : π∗(D) → R are definable which have no zeros
and p1l, ..., psl ∈ Q for every l ∈ {0, ..., r}.
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(b) v is a real power series in s variables which converges absolutely on an
open neighbourhood of [−1, 1]s.

(c) It holds v([−1, 1]s) ⊂ R>0.

We call b := (b1, ..., bs) a tuple of base functions for u and

LI := (s, v, b, P )

where

P :=


p10 · · p1r
· ·
· ·
ps0 · · psr

 ∈M
(
s× (r + 1),Q)

an r-LA-describing tuple for u.

4.20 Definition

Let C ⊂ Rn × R be globally subanalytic. Let f : C → R be a function. Then
f is called globally subanalytically prepared in x with center θ if for
every (t, x) ∈ C

f(t, x) = a(t) · |x− θ(t)|q · u(t, x− θ(t))

where q ∈ Q, θ : π(C) → R is a globally subanalytic function such that either
x > θ(t) for every (t, x) ∈ C or x < θ(t) for every (t, x) ∈ C, a is a globally
subanalytic function on π(C) which is identically zero or has no zeros, and u
is a 0-LA-special unit on

Cθ := {(t, x− θ(t)) | (t, x) ∈ C}

with globally subanalytic base functions. Additionally either there is ϵ ∈ ]0, 1[
such that

|x− θ(t)| < ϵ|x|

for every (t, x) ∈ C or θ = 0.

We see that a globally subanalytic prepared function has roughly speaking the
form of a Puiseux series in one variable.

4.21 Fact (Lion/Rolin, [28], Theorem 1)

Let m ∈ N. Let X ⊂ Rn × R be definable and f1, ..., fm : X → R be globally
subanalytic. Then there is a globally subanalytic cell decomposition C of X ̸=0

such that for every C ∈ C there is a globally subanalytic θ : π(C) → R such
that f1, ..., fm are globally subanalytically prepared in x with center θ on C.
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4.22 Remark

There are similar versions of this preparation theorem for reducts of Ran like
RW where W is a convergent Weiherstrass system (see [30] for the details).

4.23 Definition

Let X ⊂ Rn × R be definable and f : X → R be a function.

(a) Let r ∈ N0. By induction on r we define that f is log-analytic in x of
order at most r.

Base case: The function f is log-analytic in x of order at most 0 if the
following holds: There is a definable cell decomposition C of X such that
f |C is globally subanalytic in x for C ∈ C.

Inductive step: The function f is log-analytic in x of order at most
r if the following holds: There is a definable cell decomposition C of X
such that for C ∈ C there are k, l ∈ N0, log-analytic functions g1, ..., gk :
C → R, h1, ..., hl : C → R>0 in x of order at most r − 1 and a globally
subanalytic function F : Rk+l → R such that

f |C = F (g1, ..., gk, log(h1), ..., log(hl)).

(b) Let r ∈ N0. The function f is log-analytic in x of order r if f is
log-analytic in x of order at most r but not log-analytic in x of order at
most r − 1.

(c) The function f is log-analytic in x if there is r ∈ N0 such that f is
log-analytic in x of order r.

4.24 Remark

Let X ⊂ Rn × R be definable.

(1) A log-analytic function in x on X is definable.

(2) A log-analytic function on X is a log-analytic function in x on X.

(3) Let r ∈ N0. The set of log-analytic functions in x of order at most r on
X is an R-algebra with respect to pointwise addition and multiplication.

(4) The set of log-analytic functions in x on X is an R-algebra with respect
to pointwise addition and multiplication.

Let C ⊂ Rn × R be definable.
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4.25 Definition

Let r ∈ N0. Let f : C → R be a function. We say that g is r-log-analytically
prepared in x with center Θ if

g(t, x) = a(t)|Y(t, x)|⊗qu(t, y0(t, x), ..., yr(t, x))

for all (t, x) ∈ C where a is a definable function on π(C) which vanishes
identically or has no zero, Y = (y0, ..., yr) is an r-logarithmic scale with center
Θ on C, q ∈ Qr+1 and u is an r-LA-special unit on CY . We call a coefficient
of g and the base functions b1, ..., bs of u are called base functions of g. We
call LJ := (r,Y , a, q,LI) where q ∈ Qr+1 and LI is an r-LA-describing tuple
for u an LA-preparing tuple for g.

4.26 Remark

Let r ∈ N0. Let g : C → R be a function. If g is r-log-analytically prepared in
x then g is log-analytic in x of order at most r.

4.27 Remark

Let f : C → R be a function. Let f ∼C g where g is r-log-analytically prepared
in x with preparing tuple (r,Y , a, q, s, v, b, P ). Then

f ∼C a|Y|⊗q.

Proof

We show g ∼C a|Y|⊗q and are done with Remark 4.16(3). Note that a does
not have a zero. There is δ > 1 such that

1

δ
< u(t, y0(t, x), ..., yr(t, x)) < δ

for every (t, x) ∈ C. We see that

1

δ
<

g(t, x)

a(t)|Y(t, x)|⊗q
< δ

for every (t, x) ∈ C and therefore

g ∼C a|Y|⊗q.

■

4.28 Definition

Let r ∈ N0 and m ∈ N. Let g1, ..., gm : C → R be functions. We say that
g1, ..., gm are r-log-analytically prepared in x in a simultaneous way if there
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is Θ : π(C) → Rr+1 such that g1, ..., gm are r-log-analytically prepared in x
with center Θ.

4.29 Remark

Let m ∈ N and r ∈ N0. Let f1, ..., fm : C → R be r-log-analytically prepared
in x in a simultaneous way. Then there are preparing tuples for f1, ..., fm which
coincide in r,Y , s, b, P .

Proof

This follows immediately with Definition 4.25 and by redefining the corre-
sponding power series v1, ..., vm. ■

4.30 Fact (Lion/Rolin, [28], Theorem 2)

Let X ⊂ Rn × R be definable. Let r ∈ N0 and m ∈ N. Let f1, ..., fm : X → R
be log-analytic functions in x of order at most r. Then there is a definable cell
decomposition C of X ̸=0 such that f1|C , ..., fm|C are r-log-analytically prepared
in x in a simultaneous way for every C ∈ C.

4.31 Definition

Let Y be an r-logarithmic scale on C with center Θ = (Θ0, ...,Θr). We call Y
pure if its center Θ is log-analytic.

4.32 Definition

Let r ∈ N0.

(a) Let f : C → R be a function. We call f : C → R purely r-log-
analytically prepared in x with center Θ if f is r-log-analytically
prepared in x with log-analytic center Θ, log-analytic coefficient and log-
analytic base functions. An LA-preparing tuple for g with log-analytic
components is then called a pure LA-preparing tuple for g.

(b) Let f1, ..., fm : C → R be functions. We call f1, ..., fm purely r-log-
analytically prepared in x in a simultaneous way if f1, ..., fm are purely
r-log-analytically prepared in x with the same center.

4.33 Remark

Let r ∈ N0. If g is r-log-analytically prepared in x then g is definable but not
necessarily log-analytic. If g is purely r-log-analytically prepared in x then g
is log-analytic.
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4.34 Definition

Let X ⊂ Rn × R be definable and let f : X → R be a function in x.

(a) Let r ∈ N0. By induction on r we define that f is strongly log-analytic
in x of order at most r.

Base case: The function f is strongly log-analytic in x of order at most
0 if the following holds: There is a definable cell decomposition C of
X such that f |C is globally subanalytic in x with log-analytic support
function for C ∈ C.

Inductive step: The function f is strongly log-analytic in x of order
at most r if the following holds: There is a definable cell decomposition
C of X such that for C ∈ C there are k, l ∈ N0, strongly log-analytic
functions g1, ..., gk : C → R, h1, ..., hl : C → R>0 in x of order at most
r − 1, and a globally subanalytic function F : Rk+l → R such that

f |C = F (g1, ..., gk, log(h1), ..., log(hl)).

(b) Let r ∈ N0. The function f is strongly log-analytic in x of order
r if f is strongly log-analytic in x of order at most r but not strongly
log-analytic in x of order at most r − 1.

(c) The function f is strongly log-analytic in x if there is r ∈ N0 such
that f is strongly log-analytic in x of order r.

4.35 Remark

Let X ⊂ Rn × R be definable. A strongly log-analytic function in x on X is
log-analytic.
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4.36 Remark

Let f : C → R be a function. Let r ∈ N0.

(1) A log-analytic function g : C → R of order at most r is strongly log-
analytic in x of order at most r.

(2) A purely r-log-analytically prepared function g : C → R in x is strongly
log-analytic in x of order at most r.

Here is the promised example that the above Fact 4.30 can in general not be
carried out in the log-analytic category.

4.37 Example

Let ϕ : ]0,∞[→ R, y 7→ y/(1 + y). Consider the log-analytic function

f : R>0 × R, (t, x) 7→ − 1

log(ϕ(x))
− t.

Then f is log-analytic of order 1, but does not allow piecewise a pure 1-log-
analytic preparation in x.

Proof

Assume that the contrary holds. Let C be the corresponding cell decomposi-
tion. Let ψ : ]0, 1[→ R, y 7→ y/(1− y). Then ψ is the compositional inverse of
ϕ. Note that f(t, ψ(e−1/t)) = 0 for all t ∈ R>0. Let α : R>0 → R, t 7→ ψ(e−1/t).
Then α is not log-analytic and α(t) =

∑∞
n=1 e

−n/t for all t ∈ R>0. By passing
to a finer definable cell decomposition we find a cell C of the form

C := {(t, x) ∈ R>0 × R>0 | 0 < t < ϵ, α(t) < x < α(t) + η(t)}

with some suitable ϵ ∈ R>0 and some definable function η : ]0, ϵ[ → R>0 such
that f is purely 1-log-analytically prepared in x on C. Let (1,Y , a, q,LI) be
a pure preparing tuple for f |C and let Θ = (Θ0,Θ1) be the center of Y .

Claim

Θ0 = 0.

Proof of the claim

Assume that Θ0 is not the zero function. By the definition of a 1-logarithmic
scale we find ε0 ∈ ]0, 1[ such that |y0| < ε0|x| on C. This implies |α(t)−Θ0(t)| ≤
ϵ0α(t) for all 0 < t < ϵ. But this is not possible since we have α = o(Θ0) at 0
by the assumption that Θ0 is log-analytic and not the zero function. ■Claim

From
f(t, x) = a(t)|Y(t, x)|⊗qu(t,Y(t, x))
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for all (t, x) ∈ C and limx↘α(t) f(t, x) = 0 for all t ∈ ]0, ϵ[ we get by o-
minimality that there is, after shrinking ϵ > 0 if necessary, some j ∈ {0, 1}
such that limx↘α(t) |yj(t, x)|qj = 0 for all t ∈ ]0, ε[. By the Claim the case j = 0
is not possible. In the case j = 1 we have, again by the Claim, that q1 > 0
and therefore Θ1 = log(α). But this is a contradiction to the assumption that
the function Θ1 is log-analytic, since the function log(α) on the right is not
log-analytic. This can be seen by applying the logarithmic series. We obtain
that log(α(t)) + 1/t ∼ e−1/t. ■

Let f , C, α and ψ be as in Example 4.37. In the following we mention that f
can be 0-log-analytically prepared on C (after shrinking ϵ and η if necessary)
with coefficient, center and base functions which can be constructed from a set
E of positive definable functions with the following property: Every g ∈ log(E)
is a component of the center of a logarithmic scale on C.

For (w2, w3, w4) ∈ R3 with w2, w4 > 0, w4/w2 ∈ ]1/2, 3/2[ and 1/(1 + w4) ∈
]1/2, 3/2[ we set

u(w2, w3, w4) := log∗(
w4

w2

) + log∗(
1

1 + w4

) + w3

where

log∗ : R → R, y 7→
{

log(y), y ∈ [1/2, 3/2],
0, else.

Consider
F : R4 → R, (w1, ..., w4) 7→

− 1
u(w2,w3,w4)

− w1, w2, w4 > 0, w4/w2 ∈ ]1/2, 3/2[, 1/(1 + w4) ∈ ]1/2, 3/2[

and u(w2, w3, w4) ̸= 0,

0, else.

Note that F is globally subanalytic since log∗ is globally subanalytic. By
shrinking ϵ and η if necessary we obtain x/α(t) ∈ ]1/2, 3/2[, 1/(1 + x) ∈
]1/2, 3/2[ and therefore

f(t, x) = F (t, α(t), log(α(t)), x)

for (t, x) ∈ C. Note that α can be constructed from E := {π(C) → R>0, t 7→
e−1/t} (since α(t) = ψ(e−1/t) for t ∈ π(C) and ψ is globally subanalytic).
Therefore log(α) can also be constructed from E (since π(C) → R, t 7→
log(ψ(t)), is log-analytic). With Fact 4.21 we find a globally subanalytic cell
decomposition D of R4 such that for every D ∈ D we have that F |D is glob-
ally subanalytically prepared in x4. By shrinking ϵ and η if necessary we may
assume that there is D ∈ D such that (t, α(t), log(α(t)), x) ∈ D for every
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(t, x) ∈ C. So we may assume that F is globally subanalytically prepared in
w4. Consequently f is 0-log-analytically prepared in x with coefficient, center
and base functions which can be constructed from E. By further shrinking ϵ
and η if necessary we may assume that

|log(x) + 1/t| < 1/2|log(x)|

for (t, x) ∈ C. Let y0 := x and y1 := log(y0) + 1/t. We have that (y0, y1) is a
1-logarithmic scale on C with center (Θ0,Θ1) where Θ0 := 0 and Θ1 : π(C) →
R, t 7→ −1/t. So E is a set of one positive definable function on π(C) whose
logarithm coincides with Θ1.

We will see in Chapter 4.3 that functions which can be constructed from a set
of positive definable functions whose logarithm coincide with a component of
the center of a logarithmic scale play a crucial role in preparing log-analytic
functions in one variable.

4.3 A Type of Definable Functions Closed Under Log-
Analytic Preparation

There is a piecewise nice preparation for log-analytic functions, but there is
no precise statement how the center, the coefficient, and the base functions of
such a log-analytic preparation look like on such a piece. So it is not possible
to do deep technical proofs on multivariate phenomenons for specific definable
functions just by using the existing preparation result. Example 4.37 shows
that there are problems even if the underlying function is log-analytic. But as
motivated at the end of Chapter 4.2 there is a class of log-analytic functions
in x closed under log-analytic preparation which we present in this chapter.

For Section 4.3 we set the following: ’Log-analytically prepared” means always
”log-analytically prepared in x”. For k, l ∈ N and s ∈ {1, ..., l} denote by
Ms(k × l,Q) the set of all k × l-matrices with rational entries where the first
s columns are zero. Let C ⊂ Rn × R be definable.

4.38 Definition

We call g : π(C) → R C-heir if there is r ∈ N0, an r-logarithmic scale Y with
center (Θ̂0, ..., Θ̂r) on C, and l ∈ {1, ..., r} such that g = exp(Θ̂l).
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4.39 Remark

Let D ⊂ Rn × R be definable with π(C) = π(D). A C-heir is not necessarily
a D-heir.

Proof

Let C := Rn×]0, 1[ andD := Rn×R̸=0. By Remark 4.3 aD-heir does not exist.
But it is streightforward to see that (y0, y1) with y0 := x and y1 := log(x) is a
1-logarithmic scale with center 0 on C and therefore that g : π(C) → R, x 7→ 1,
is a C-heir. ■

4.40 Definition

We call g : π(C) → R C-nice if there is a set E of C-heirs such that g can be
constructed from E.

4.41 Example

(1) A log-analytic function f : π(C) → R is C-nice.

(2) Let C := ]0, 1[2 and let h : ]0, 1[→ R, t 7→ e−1/t. Then h is not C-nice.

Proof

(1): Note that f can be constructed from E = ∅. Therefore f is C-nice by
Definition 4.40.

(2): Note that π(C) = ]0, 1[. Suppose the contrary. Let E be a set of C-
heirs such that h can be constructed from E. Note that C is simple (compare
Definition 5.4). The proof of Proposition 5.8 shows that the center of every
logarithmic scale on C vanishes. So we see E = ∅ or E = 1.

Claim

The function h is log-analytic.

Proof of the claim

If E = ∅ then h is clearly log-analytic by Definition 3.5(a). So suppose E =
{1}. Let e ∈ N0 be such that h has exponential number at most e with
respect to E. We do an induction on e. For e = 0 this is clear with Definition
3.5(a). So suppose e > 0. Let u1, ..., uk, v1, ..., vl : π(C) → R be functions with
exp(v1), ..., exp(vl) ∈ E which have exponential number at most e − 1 with
respect to E and F : Rk × Rl → R be log-analytic such that

h(t) = F (u1(t), ..., uk(t), exp(v1(t)), ..., exp(vl(t)))

for t ∈ π(C). Note that u1, ..., uk are log-analytic by the inductive hypothesis
and that exp(v1) = ... = exp(vl) = 1. So we obtain that h is log-analytic.
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■Claim

But we have h ∼ e−1/t at zero, a contradiction to the Claim. ■

A C-nice function which is not log-analytic can be found in Example 4.46.

4.42 Remark

Let r ∈ N0. Let (Θ0, ...,Θr) be a C-nice center of an r-logarithmic scale Y on
C. Let f = exp(Θj) for j ∈ {1, ..., r}. Then f is a C-nice C-heir.

Proof

Let E be a set of C-heirs such that Θ1, ...,Θr can be constructed from E. Then
exp(Θj) can be constructed from E∪{exp(Θj)} for j ∈ {1, ..., r} by Proposition
3.11(1) and is therefore C-nice, because π(C) 7→ R, t 7→ exp(Θj(t)), is a C-heir.

■

4.43 Remark

Let D ⊂ C be definable.

(1) Let g : π(C) → R be a C-heir. Then g|π(D) is a D-heir.

(2) Let h : π(C) → R be C-nice. Then h|π(D) is D-nice.

Proof

(1): This follows from the following fact: Let r ∈ N0. Let Y be an r-logarithmic
scale on C with center (Θ0, ...,Θr). Then Y|D is an r-logarithmic scale with
center (Θ0|π(D), ...,Θr|π(D)) on D.

(2): Let E be a set of C-heirs such that h can be constructed from E. Then by
Remark 3.9 h|π(D) can be constructed from E|π(D) which is a set of π(D)-heirs
by (1). ■

4.44 Remark

The set of C-nice functions is closed under composition with log-analytic func-
tions, i.e. let m ∈ N and F : Rm → R be log-analytic and η := (η1, ..., ηm) :
π(C) → Rm be C-nice. Then F ◦ η : π(C) → R is C-nice.

Proof

Let E be a set of C-heirs such that η1, ..., ηm can be constructed from E. By
Proposition 3.11(2) F (η1, ..., ηm) can be constructed from E. ■
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4.45 Definition

Let r ∈ N0. Let Y be an r-logarithmic scale on C. Then Y is nice if its center
Θ := (Θ0, ...,Θr) is C-nice.

The next example shows that not every nice logarithmic scale is log-analytic
in general.

4.46 Example

Consider the definable cell

C := {(t, x) ∈ R2 | 0 < t < 1, 1
1+t

+ e−2/t+2e−1/t

< x < 1
1+t

+ e−1/t}.

Then there is a nice logarithmic scale on C which is not log-analytic.

Proof
Note that π(C) = ]0, 1[, because

e−2/t+2e−1/t

< e−1/t

for every t ∈ ]0, 1[. Consider

Θ0 : π(C) → R, t 7→ 1
1+t
,

Θ1 : π(C) → R, t 7→ −1/t,

and
Θ̂1 : π(C) → R, t 7→ −1/t+ e−1/t.

For (t, x) ∈ C consider
y0(t, x) := x−Θ0(t),

y1(t, x) := log(x−Θ0(t))−Θ1(t),

and
ŷ1(t, x) := log(x−Θ0(t))− Θ̂1(t).

Claim

Y := (y0, y1) and Ŷ := (y0, ŷ1) are 1-logarithmic scales on C.

Proof of the claim

Note that y0 > 0, y1 < 0, and ŷ1 < 0 on C. Let ϵ0 := 1/2 and ϵ1 := 1/2. Let
(t, x) ∈ C. Then x < 2

1+t
, because e−1/t < 1

1+t
. Therefore |x−Θ0(t)| < ϵ0|x|.

Note that

e−2/t+2e−1/t

+
1

1 + t
< x.

So an easy calculation shows that

|log(x−Θ0(t))−Θ1(t)| < ϵ1 · |log(x−Θ0(t))|
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and
|log(x−Θ0(t))− Θ̂1(t)| < ϵ1 · |log(x−Θ0(t))|

■Claim

Note that Θ0 and Θ1 are log-analytic. Therefore Y is nice by Example 4.41(1).
Note also that Θ̂1 is not log-analytic. We see that Θ̂1 = G(1/t, e−1/t) where
G : R2 → R, (w1, w2) 7→ −w1 + w2, is log-analytic. So Θ̂1 has exponential
number 1 with respect to E := {g} where g : π(C) → R, t 7→ e−1/t (since
t 7→ −1/t is globally subanalytic). So Θ̂1 can be constructed from E. By
the Claim we see that g is a C-heir. Therefore Ŷ is an example for a nice
1-logarithmic scale which is not log-analytic. ■

4.47 Remark

Let r ∈ N0. Let Y := (y0, ..., yr) be a C-nice r-logarithmic scale with center
(Θ0, ...,Θr) on C. Let Ψ : π(C) → R be C-nice. Assume that

y0 ∼C Ψ
r∏

j=1

|yj|qj

where q1, ..., qr ∈ Q. Then there is M > 1 and a C-nice ξ : π(C) → R such
that y0 ∼C>M

ξ.

Proof

Let E be a set of C-heirs such that Ψ,Θ0, ...,Θr can be constructed from E.
The assertion follows from Proposition 4.18 (2),(ii). ■

4.48 Definition

Let f : C → R be a function. We say that f is nicely r-log-analytically
prepared with center Θ if f is r-log-analytically prepared with a nice r-
logarithmic scale Y with center Θ, C-nice coefficient and C-nice base functions.
A corresponding LA-preparing tuple for f is then called a nice LA-preparing
tuple for f .

4.49 Remark

Let r,m ∈ N and k ∈ {1, ..., r}. Let Yk−1 := (y0, ..., yk−1) be a nice (k − 1)-
logarithmic scale with center (Θ0, ...,Θk−1) on C. Let B := C log(|yk−1|). Let
α1, ..., αm : B → R be nicely (r − k)-log-analytically prepared with center
(Θk, ...,Θr). For every j ∈ {1, ...,m} consider

βj : C → R, (t, x) 7→ αj(t, log(|yk−1(t, x)|)).

Let Θ := (Θ0, ...,Θr). Then β1, ..., βm are nicely r-log-analytically prepared
with center Θ.
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Additionally there is a nice LA-preparing tuple (r,Yr, aj, qj, s, vj, b, P ) for βj
such that qj ∈ {0}k × Qr+1−k and P ∈ Mk(s × (r + 1),Q) where Yr is the
r-logarithmic scale on C with center Θ := (Θ0, ...,Θr) for j ∈ {1, ...,m}.

Proof

Let
(r − k, Ŷr−k,B, aj, qj, s, vj, b, P )

be a nice LA-preparing tuple for αj where j ∈ {1, ...,m}. (By Remark 4.29

s, b, P are independent from j.) Here Ŷr−k,B denotes the (r − k)-logarithmic
scale with center (Θk, ...,Θr) on B. We set

Yr(t, x) := (y0(t, x), ..., yk−1(t, x), Ŷr−k,B(t, log(|yk−1(t, x)|)))

for (t, x) ∈ C. With Definition 4.1 one sees immediately that Yr defines an
r-logarithmic scale with center Θ := (Θ0, ...,Θr) on C. Because Θj is C-nice
for every j ∈ {0, ..., r} we see that Yr is nice. In particular it is

|Ŷr−k,B(t, log(|yk−1(t, x)|))|⊗q = |Yr(t, x)|⊗q∗

for every q ∈ Qr−k+1 and (t, x) ∈ C where q∗ := (0, ..., 0, q) ∈ Qr+1. This ob-
servation gives the desired nice LA-preparing tuple for βj where j ∈ {1, ...,m}.

■

4.50 Remark

One may replace ”nice” by ”pure” and ”nicely” by ”purely” in Remark 4.49.

4.51 Definition

Let r ∈ N0. Let m ∈ N. Let g1, ..., gm : C → R be functions. We call
g1, ..., gm nicely r-log-analytically prepared in a simultaneous way if there
is Θ : π(C) → Rr+1 such that g1, ..., gm are nicely r-log-analytically prepared
with center Θ.

4.52 Proposition

The following properties hold.

(1) Let r ∈ N0. Let g : C → R be nicely r-log-analytically prepared. Then
there is k ∈ N, a C-nice function η : π(C) → Rk, a globally subanalytic
function G : Rk × Rr+1 → R, and a nice r-logarithmic scale Yr on C
such that

g(t, x) = G(η(t),Yr(t, x))

for all (t, x) ∈ C.

(2) Let r ∈ N. Let h : C → R>0 be nicely (r − 1)-log-analytically prepared.
Then there is k ∈ N, a C-nice function η : π(C) → Rk, a globally
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subanalytic function H : Rk ×Rr+1 → R, a nice (r− 1)-logarithmic scale
Yr−1 := (y0, ..., yr−1) on C such that

log(h(t, x)) = H(η(t),Yr−1(t, x), log(|yr−1(t, x)|))

for all (t, x) ∈ C.

Proof

(1): Let
(r,Yr, a, q, s, v, b, P )

be a nice LA-preparing tuple for g. Take k := s+ 1,

η = (η1, ..., ηk) : π(C) → Rk, t 7→ (a(t), b1(t), ..., bs(t)).

Then η is C-nice. Let z := (z0, ..., zs) range over Rs+1 and w := (w0, ..., wr)
range over Rr+1. Set

α0 : Rk × Rr+1 → R, (z, w) 7→ z0

r∏
j=0

|wj|qj .

For i ∈ {1, ..., s} let

αi : Rk × Rr+1 → R, (z, w) 7→ zi

r∏
j=0

|wj|pij .

Set
G : Rk × Rr+1 → R, (z0, ..., zs, w0, ...., wr) 7→{

α0(z, w)v(α1(z, w), ..., αs(z, w)), |αi(z, w)| ≤ 1 for all i ∈ {1, ..., s},
0, else.

Then G is globally subanalytic and for each (t, x) ∈ C we have

g(t, x) = G(η(t),Yr(t, x)).

(2): Let
(r − 1,Yr−1, a, q, s, v, b, P )

be a nice LA-preparing tuple for h where Yr−1 := (y0, ..., yr−1) is a nice (r−1)-
logarithmic scale with center (Θ0, ...,Θr−1) on C. Then a > 0 on C. Take
k := s+ r + 1,

η = (η1, ..., ηk) : π(C) → Rk, t 7→

(log(a(t)), b1(t), ..., bs(t),Θ1(t), ...,Θr−1(t), 0).
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Then η is C-nice by Remark 4.44. Let z := (z0, ..., zs+r) range over Rs+r+1 and
w := (w0, ..., wr) over Rr+1. Set

β : Rk × Rr+1 → R, (z, w) 7→ z0 +
r−1∑
j=0

qj(wj+1 + zs+j+1).

For i ∈ {1, ..., s} let

αi : Rk × Rr+1 → R, (z, w) 7→ zi

r−1∏
j=0

|wj|pij .

Set
H : Rk × Rr+1 → R, (z0, ...., zs+r, w0, ...., wr) 7→{

β(z, w) + log(v(α1(z, w), ..., αs(z, w))), |αi(z, w)| ≤ 1 for all i ∈ {1, ..., s},
0, else.

Then H is globally subanalytic since log(v) is globally subanalytic. For every
(t, x) ∈ C we have

log(h(t, x)) = H(η(t),Yr−1(t, x), log(|yr−1(t, x)|)).

■

4.53 Corollary

Let r, k, l ∈ N. Let g1, ..., gk : C → R and h1, ..., hl : C → R>0 be nicely
(r − 1)-log-analytically prepared in a simultaneous way. Let F : Rk+l → R
be globally subanalytic. Then there are m ∈ N, a C-nice η : π(C) → Rm, a
globally subanalytic J : Rm × Rr+1 → R, and a nice (r − 1)-logarithmic scale
Y := (y0, ..., yr−1) on C such that for all (t, x) ∈ C

F (g1(t, x), ..., gk(t, x), log(h1(t, x)), ..., log(hl(t, x)))

= J(η(t),Y(t, x), log(|yr−1(t, x)|)).

4.54 Remark

One may replace ”nicely prepared” by ”purely prepared”, ”C-nice” by ”log-
analytic” and ”nice r-logarithmic scale” by ” pure r-logarithmic scale” in
Proposition 4.52 and Corollary 4.53.

Here is the promised class of log-analytic functions in x which is closed under
log-analytic preparation.
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4.55 Definition

Let X ⊂ Rn × R be definable and let f : X → R be a function.

(a) Let r ∈ N0. By induction on r we define that f is nicely log-analytic
in x of order at most r.

Base case: The function f is nicely log-analytic in x of order at most
0 if the following holds: There is a definable cell decomposition C of X
such that f |C is globally subanalytic in x with C-nice support function
for C ∈ C.

Inductive step: The function f is nicely log-analytic in x of order at
most r if the following holds: There is a definable cell decomposition C of
X such that for C ∈ C there are k, l ∈ N0, nicely log-analytic functions
g1, ..., gk : C → R, h1, ..., hl : C → R>0 in x of order at most r− 1, and a
globally subanalytic function F : Rk+l → R such that

f |C = F (g1, ..., gk, log(h1), ..., log(hl)).

(b) Let r ∈ N0. The function f is nicely log-analytic in x of order r if f
is nicely log-analytic in x of order at most r but not nicely log-analytic
in x of order at most r − 1.

(c) The function f is nicely log-analytic in x if there is r ∈ N0 such that
f is nicely log-analytic in x of order r.

4.56 Remark

Let r ∈ N0. Then the following properties hold.

(1) Let f : C → R be a function. If f is strongly log-analytic in x of order
at most r then it is nicely log-analytic in x of order at most r.

(2) Let m ∈ N. Let f1, ..., fm : C → R be nicely log-analytic in x of order at
most r and let F : Rm → R be globally subanalytic. Then F (f1, ..., fm)
is nicely log-analytic in x of order at most r.

(3) Let m ∈ N. Let f1, ..., fm : C → R be nicely log-analytic in x and let
F : Rm → R be log-analytic. Then F (f1, ..., fm) is nicely log-analytic in
x.
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4.57 Proposition

Let f : C → R be a function. Then f is nicely log-analytic in x if and only if
there is a definable cell decomposition D of C such that for every D ∈ D there
is a set ED of D-heirs such that f |D can be constructed from ED.

Proof

Assume the former. Let f be nicely log-analytic in x of order at most r ∈ N0.
We do an induction on r.

r = 0: There is a definable cell decomposition D of C such that for every
D ∈ D there is m ∈ N0, a globally subanalytic function F : Rm+1 → R, and a
D-nice function g : π(D) → Rm such that f(t, x) = F (g(t), x) for all (t, x) ∈ D.
So for D ∈ D choose a set ED of D-heirs such that g can be constructed from
ED. By Proposition 3.11(2) f |D can be constructed from ED for every D ∈ D.

r−1 → r: It is enough to consider the following situation: There are k, l ∈ N0,
a globally subanalytic function F : Rk+l → R, nicely log-analytic functions
g1, ..., gk : C → R, h1, ..., hl : C → R>0 in x of order at most r − 1 such that

f = F (g1, ..., gk, log(h1), ..., log(hl))

on C. By the inductive hypothesis there is a definable cell decomposition
D of C such that for every D ∈ D there is a set ED of D-heirs such that
g1|D, ..., gk|D, h1|D, ..., hl|D can be constructed from ED. By Proposition 3.11(2)
f |D can be constructed from ED for every D ∈ D.

Assume the latter. Fix D ∈ D and a corresponding E := ED. It is enough
to show that f |D is nocely log-analytic in x. We do an induction on the
exponential number e ∈ N0 of f |D with respect to E.

e = 0: Then f |D is log-analytic and the assertion follows.

e − 1 → e: There are k, l ∈ N0, functions g1, ..., gk, h1, ..., hl : D → R with
exponential number at most e−1 with respect to E and a log-analytic function
F : Rk+l → R with

f = F (g1, ..., gk, exp(h1), ..., exp(hl))

and exp(h1), ..., exp(hl) ∈ E. Note that exp(h1), ..., exp(hl) are D-nice, de-
pend only on t and are therefore nicely log-analytic in x (since they are glob-
ally subanalytic in x with D-nice support function: We have exp(hj(t)) =
π2(exp(hj(t)), x) for (t, x) ∈ D and j ∈ {1, ..., l} where π2 : R2 → R is the
projection on the first coordinate. Clearly π2 is globally subanalytic). By the
inductive hypothesis g1, ..., gk are nicely log-analytic in x and therefore f |D
with Remark 4.56(3). ■
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4.58 Remark

A nice logarithmic scale Y := (y0, ..., yr) is nicely log-analytic. In particular yj
is nicely log-analytic in x of order at most j for j ∈ {0, ..., r}.

Proof

Let Y := (y0, ..., yr). Let (Θ0, ...,Θr) be the C-nice center of Y . We show by
induction on j ∈ {0, ..., r} that yj is nicely log-analytic in x of order at most
j.

j = 0: We have y0(t, x) = x − Θ0(t) for every (t, x) ∈ C. That y0 is nicely
log-analytic in x of order 0 is clear with Remark 4.56(2).

j − 1 → j: Note that yj(t, x) = log(|yj−1(t, x)|) − Θj(t) for every (t, x) ∈ C.
That yj is nicely log-analytic in x of order at most j is clear with Remark
4.56(2). ■

4.59 Proposition

Let k ∈ N0 and r ∈ N. Let F : Rk+r+1 → R be globally subanalytic and
η : π(C) → Rk be C-nice. Let Y := (y0, ..., yr) be a nice r-logarithmic scale
with center (Θ0, ...,Θr) on C. Let

f : C → R, (t, x) 7→ F (η(t),Y(t, x)).

Then the following properties hold.

(1) f is nicely log-analytic in x of order at most r.

(2) Assume that there is a C-nice ξ : π(C) → R such that y0 ∼C ξ. Then f
is nicely log-analytic in x of order at most r − 1.

Proof

(1): By Remark 4.58 yl is nicely log-analytic in x of order at most l for every
l ∈ {0, ..., r}. We are done with Remark 4.56(2).

(2): By Remark 4.16(1) there is δ > 1 such that 1/δ < y0
ξ
< δ on C. Set

log∗ : R → R, y 7→
{

log(y), y ∈ [1/δ, δ],
0, y ̸∈ [1/δ, δ].

Then log∗ is globally subanalytic. We have y1 = y∗1 on C where

y∗1 := log∗
(y0
ξ

)
+ log(|ξ|)−Θ1.

Then y∗1 is nicely log-analytic in x of order 0, because log(|ξ|) is C-nice by
Remark 4.44. In particular

f(t, x) = F (η(t), y0(t, x), y
∗
1(t, x), ..., y

∗
r(t, x))
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for every (t, x) ∈ C where inductively for l ∈ {2, ..., r − 1}

y∗l := log(|y∗l−1|)−Θl.

Note that y∗l is nicely log-analytic in x of order at most l − 1 for every l ∈
{2, ..., r} and therefore F (η, y0, y

∗
1, ..., y

∗
r) is nicely log-analytic in x of order at

most r − 1 by Remark 4.56(2). ■

4.60 Remark

Let r ∈ N0. Let f : C → R be a function. If f is nicely r-log-analytically
prepared in x then f is nicely log-analytic in x of order at most r.

Proof

By Proposition 4.52(1) there is k ∈ N, a C-nice function η : π(C) → R, a
globally subanalytic function G : Rk × Rr+1 → R, and a nice r-logarithmic
scale Y on C such that

g(t, x) = G(η(t),Y(t, x))

for all (t, x) ∈ C. By Proposition 4.59(1) g is nicely log-analytic in x of order
at most r. ■

4.61 Proposition

Let k ∈ N0 and r ∈ N. Let F : Rk+r → R be globally subanalytic and η :
π(C) → Rk be C-nice. Let Y := (y0, ..., yr) be a nice r-logarithmic scale with
center (Θ0, ...,Θr) on C. Let

f : C → R, (t, x) 7→ F (η(t), y1(t, x), ..., yr(t, x)).

Then the following holds.

(1) There is a nicely log-analytic function κ : C log(|y0|) → R in x of order at
most r − 1 such that f(t, x) = κ(t, log(|y0(t, x)|)) for every (t, x) ∈ C.

(2) Assume r ≥ 2. Let l ∈ {1, ..., r − 1}. Let ξ : π(C) → R be C-nice such
that yl ∼C ξ. Then there is a nicely log-analytic function λ : C log(|y0|) →
R in x of order at most r − 2 such that f(t, x) = λ(t, log(|y0(t, x)|)) for
every (t, x) ∈ C.

Proof

We set B := C log(|y0|). Let µ0 : B → R, (t, x) 7→ x− Θ1(t) and inductively for
j ∈ {1, ..., r− 1} let µj : B → R, (t, x) 7→ log(|µj−1(t, x)|)−Θj+1(t). Note that

yj(t, x) = µj−1(t, log(|y0(t, x)|))

61



for every (t, x) ∈ C and j ∈ {1, ..., r}. With Remark 4.10(2) we obtain
that Yr−1,B := (µ0, ...., µr−1) is a nice (r − 1)-logarithmic scale with center
(Θ1, ...,Θr) on B. Then

f(t, x) = F (η(t),Yr−1,B(t, log(|y0(t, x)|)))

for every (t, x) ∈ C.

(1): We set
κ : B → R, (t, x) 7→ F (η(t),Yr−1,B(t, x)).

By Proposition 4.59(1) κ is a nicely log-analytic function in x of order at most
r − 1 and we obtain

f(t, x) = κ(t, log(|y0(t, x)|))

for all (t, x) ∈ C.

(2): Since yl ∼C ξ we obtain µl−1 ∼B ξ since ξ depends only on t and π(B) =
π(C). Thus by Remark 4.10(1) there is δ > 1 such that 1/δ < µl−1

ξ
< δ on B.

Consider

log∗ : R → R, y 7→
{

log(y), y ∈ [1/δ, δ],
0, y ̸∈ [1/δ, δ].

Then log∗ is globally subanalytic. Set

µ∗
l := log∗

(µl−1

ξ

)
+ log(|ξ|)−Θl+1

and inductively for j ∈ {l + 1, ..., r − 1}

µ∗
j := log(|µ∗

j−1|)−Θj+1.

Then by Remark 4.58 and 4.56(2) µ∗
l is a nicely log-analytic function in x of

order at most l−1, because log(|ξ|) is C-nice by Remark 4.44. We see similarly
as in the proof of Remark 4.58 that µ∗

j is nicely log-analytic in x of order at
most j − 1 for every j ∈ {l, ..., r − 1}. We set

λ : B → R, (t, x) 7→ F (η(t), µ0(t, x), ..., µl−1(t, x), µ
∗
l (t, x), ..., µ

∗
r−1(t, x)).

By Remark 4.56(2) λ is nicely log-analytic in x of order at most r−2. Because
µj = µ∗

j for every j ∈ {l, ..., r − 1} on B we obtain

f(t, x) = λ(t, log(|y0(t, x)|))

for every (t, x) ∈ C. ■

An immediate consequence from the globally subanalytic preparation theorem
is the following.
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4.62 Proposition

Let X ⊂ Rn×R be definable. Let m ∈ N. Let f1, ..., fm : X → R be nicely log-
analytic functions in x of order 0. Then there is a definable cell decomposition
C of X ̸=0 such that f1|C , ..., fm|C are nicely 0-log-analytically prepared in a
simultaneous way for every C ∈ C.

Proof

It is enough to consider the following situation: Let g1, ..., gk : π(X) → R be
X-nice and Fj : Rk+1 → R be globally subanalytic such that

fj(t, x) = Fj(g1(t), ..., gk(t), x)

for every (t, x) ∈ X and j ∈ {1, ...,m}. Let g := (g1, ..., gk). Let z := (z1, ..., zk)
range over Rk. Let π∗ : Rk+1 → Rk, (z, x) 7→ z. With Fact 4.21 we find a
globally subanalytic cell decomposition D of Rk× R̸=0 such that F1|D, ..., Fm|D
are globally subanalytically prepared in x in a simultaneous way for every D ∈
D. There is a definable cell decomposition C of X such that for every C ∈ C
there is DC ∈ D such that (g(t), x) ∈ DC for every (t, x) ∈ C. Fix a C ∈ C,
the globally subanalytic center ϑ, and for j ∈ {1, ...,m} a preparing tuple
(0, y0, aj, qj, s, vj, b, P ) for Fj|DC

where y0 := y − ϑ(z) on DC , b := (b1, ..., bs),
P := (p1, ..., ps)

t, and a1, ..., am, b1, ..., bs are globally subanalytic on π∗(DC).
We have for every j ∈ {1, ...,m} and every (z, x) ∈ DC

Fj(z, x) = aj(z)|x− ϑ(z)|qjvj(b1(z)|x− ϑ(z)|p1 , ..., bs(z)|x− ϑ(z)|ps).

Let h : C → R, (t, x) 7→ x − ϑ(g(t)). Then it is immediately seen with
Definition 4.20 that h is a 0-logarithmic scale. We obtain

fj(t, x) = aj(g(t))|h(t, x)|qjvj(b1(g(t))|h(t, x)|p1 , ..., bs(g(t))|h(t, x)|ps)

for every (t, x) ∈ C and are done, because a1(g), ..., am(g), ϑ(g), b1(g), ..., bs(g) :
π(C) → R are C-nice by Remark 4.44. ■

4.63 Remark

One may replace ”nicely log-analytic” by ”strongly log-analytic” and ”nicely
0-log-analytically prepared” by ”purely 0-log-analytically prepared” in Propo-
sition 4.62.
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4.64 Proposition

Let m ∈ N and r ∈ N0. Let X ⊂ Rn×R be definable. Let f1, ...., fm : X → R be
nicely log-analytic functions in x of order at most r. Then there is a definable
cell decomposition C of X ̸=0 such that f1|C , ..., fm|C are nicely r-log-analytically
prepared in a simultaneous way for every C ∈ C.

Proof

We do an induction on r.

r = 0: Then f1, ..., fm are nicely log-analytic in x of order 0 and we are done
with Proposition 4.62.

< r → r: It is enough to consider the following situation: Assume that there
are l, l′ ∈ N0, nicely log-analytic functions g1, ..., gl : X → R and h1, ..., hl′ :
X → R>0 in x of order at most r − 1 and for every j ∈ {1, ...,m} there is a
globally subanalytic function Fj : Rl+l′ → R such that

fj = Fj(g1, ..., gl, log(h1), .., log(hl′)).

Applying the inductive hypothesis to g1, ..., gl, h1, ..., hl′ and Corollary 4.53 we
find a definable cell decomposition U of X ̸=0 such that for every U ∈ U there
is a nice (r − 1)-logarithmic scale Yr−1 := (y0, ..., yr−1) on U , a k ∈ N, a U -
nice function η : π(U) → Rk, and for every j ∈ {1, ...,m} there is a globally
subanalytic function Hj : Rk × Rr+1 → R such that

fj(t, x) = Hj(η(t),Yr−1(t, x), log(|yr−1(t, x)|))

for all (t, x) ∈ U . Fix U ∈ U and for this U a corresponding Yr−1, η, and
Hj for j ∈ {1, ...,m}. By further decomposing U if necessary we may assume
that either |yr−1| = 1 or |yr−1| > 1 or |yr−1| < 1 on U . Assume the former.
Then by Proposition 4.59(1) f |C is nicely log-analytic in x of order at most
(r − 1) and we are done with the inductive hypothesis. Assume |yr−1| > 1 or
|yr−1| < 1 on U . Then Y := (y0, ..., yr) is an r-logarithmic scale on U where
yr := log(|yr−1|).
Let (z, w) := (z1, ..., zk, w0, ..., wr) range over Rk×Rr+1. Set w′ := (w1, ..., wr).
Let π∗ : Rk × Rr+1 → Rr+k be the projection on (z1, ..., zk, w1, ..., wr). With
Fact 4.21 we find a globally subanalyic cell decomposition D of Rk × Rr ×
R ̸=0 such that H1|D, ..., Hm|D are globally subanalytically prepared in w0 in a
simultaneous way. There is a definable cell decomposition A of U such that
for every A ∈ A there is DA ∈ D such that (η(t),Yr(t, x)) ∈ DA for every
(t, x) ∈ A. Fix A ∈ A, the globally subanalytic center ϑ, and for j ∈ {1, ...,m}
an LA-preparing tuple (0, y, aj, qj, s, vj, b, P ) for Fj|DA

where y := w0−ϑ(w′, z)
on DA, b := (b1, ..., bs), P := (p1, ..., ps)

t, and a1, ..., am, b1, ..., bs are globally
subanalytic on π∗(DA). We have for every j ∈ {1, ...,m}

Hj|DA
= aj(z, w

′)|y(z, w)|qjvj(b1(z, w′)|y(z, w)|p1 , ..., bs(z, w′)|y(z, w)|ps).
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From the inductive hypothesis we will derive the following two claims.

Claim 1

Let d ∈ N and p ∈ {1, ..., r}. Let α1, ..., αd : A
log(|y0|) → R be nicely log-analytic

in x of order at most p− 1. For j ∈ {1, ..., d} consider

βj : A→ R, (t, x) 7→ αj(t, log(|y0(t, x)|)).

Then there is a definable cell decomposition Q of A such that for every Q ∈ Q
the following holds.

(1) There are Θ̂1, ..., Θ̂p : π(Q) → R such that β1|Q, ..., βd|Q are nicely p-log-

analytically prepared with center Θ̂ := (Θ0|π(Q), Θ̂1, ..., Θ̂p).

(2) Additionally for every j ∈ {1, ..., d} there is for βj|Q a nice LA-preparing

tuple (p, Ŷp, âj, q̂j, ŝ, v̂j, b̂, P̂ ) such that q̂j ∈ {0} × Qp and P̂ ∈ M1(ŝ ×
(p+1),Q) where Ŷp denotes the p-logarithmic scale with center Θ̂ on Q.

Proof of Claim 1

Set B := Alog(|y0|). Applying the inductive hypothesis to α1, ..., αd we obtain a
definable cell decomposition S of B such that α1|S, ..., αd|S are nicely (p− 1)-
log-analytically prepared in a simultaneous way for every S ∈ S. Consider the
definable set

Slog (|y0|)∗ := {(t, x) ∈ A | (t, log(|y0(t, x)|)) ∈ S}

for S ∈ S. We obtain
⋃

S∈S S
log (|y0|)∗ = A. Fix S ∈ S and the cen-

ter (Θ̂1, ..., Θ̂p) of α1|S, ..., αd|S. Let T := Slog(|y0|)∗ . Note that β1|T , ..., βd|T
are nicely p-log-analytically prepared with center (Θ0|π(T ), Θ̂1, ..., Θ̂p) and for

j ∈ {1, ..., d} there is a nice LA-preparing tuple (p, Ŷp,T , âj, q̂j, ŝ, v̂j, b̂, P̂ ) for

βj|T such that q̂j ∈ {0}×Qp and P̂ ∈M1(ŝ×(p+1),Q) by Remark 4.49 where

Ŷp,T denotes the nice p-logarithmic scale with center (Θ0|π(T ), Θ̂1, ..., Θ̂p) on T .
With the cell decomposition theorem applied to T we are done (compare with
Theorem 2.15). ■Claim 1

Claim 2

Let γ : Rk × Rr → R be globally subanalytic such that

y0 ∼A γ(η, y1, ..., yr).

Then fj|A is nicely log-analytic in x of order at most r − 1 for every j ∈
{1, ...,m}.

Proof of Claim 2
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By Proposition 4.61(1) there is a nicely log-analytic function κ : Alog(|y0|) → R
in x of order at most r − 1 such that

γ(η, y1, ..., yr) = κ(t, log(|y0|))

on A. So by Claim 1 there is a definable cell decompositionN of A such that for
every N ∈ N the function γ(η, y1, ..., yr)|N is nicely r-log-analytically prepared
and there is a nice LA-preparing tuple (r, Ỹr,Ψ, q̃, s̃, ṽ, b̃, P̃ ) for γ(η, y1, ..., yr)|N
such that q̃ ∈ {0} × Qr−1 and P̃ ∈ M1(s̃ × (r + 1),Q) where Ỹr has a center
whose first component is Θ0|π(N). Fix N ∈ N .

By Remark 4.27 it is enough to consider the following property (∗)p for p ∈
{0, ..., r} on N : There is a nice p-logarithmic scale Ỹp := (y0, ỹ1, ..., ỹp) with
center (Θ0|π(N), Θ̃1, ..., Θ̃p), and an N -nice Ψ : π(N) → R such that

y0 ∼N Ψ

p∏
l=1

|ỹl|q̃l

where q̃l ∈ Q for every l ∈ {1, ..., p}.
If p = 0 then y0 ∼N Ψ. We are done with Proposition 4.59(2) applied to
fj|N = Hj(η|N ,Y|N) for every j ∈ {1, ...,m}. Assume p > 0. By a suitable
induction on p it is enough to establish the following Subclaim.

Subclaim

There is a decomposition K of N into finitely many definable sets such that
the following holds for every K ∈ K: The function fj|K is nicely log-analytic
in x of order at most r − 1 for every j ∈ {1, ...,m} or (∗)p−1 holds on K.

Proof of the Subclaim

For M > 1 let N>M := N>M(Ỹp) and for i ∈ {1, ..., p} let Ni,M := Ni,M(Ỹp).
By Remark 4.47 there is M > 1 and an N -nice ξ : π(N) → R such that
y0 ∼N>M

ξ. Fix such a M . Since

N = N>M ∪N1,M ∪ ... ∪Np,M

it suffices to establish the Subclaim for N>M and Ni,M instead for N where
i ∈ {1, ..., p}.
B := N>M : By Remark 4.43(2) ξ|B is B-nice. Therefore with Proposition
4.59(2) applied to fj|B = Hj(η|B,Yr|B) we obtain that fj|B is a nicely log-
analytic function in x of order at most r − 1.

Bi := Ni,M for i ∈ {1, ..., p}: Set ỹ0 := y0. We have |ỹi| < M on Bi. So we
obtain

1

δ
<

|ỹi−1|
exp(Θ̃i)

< δ
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for δ := eM on Bi which gives ỹi−1 ∼Bi
exp(Θ̃i)|π(Bi).

Assume i = 1. With Remark 4.42 we see that exp(Θ̃1)|π(B1) is a B1-nice B1-
heir. Again with Proposition 4.59(2) applied to fj|B1 = Hj(η|B1 ,Y|B1) (we
have y0 ∼B1 ξ with ξ = exp(Θ̃1)|π(B1)) we see that fj|B1 is nicely log-analytic
in x of order at most r − 1 for every j ∈ {1, ...,m}.
Assume i > 1. Then p > 1. Let

Ξ : N → R, (t, x) 7→ Ψ(t)

p∏
l=1

|ỹl(t, x)|q̃l .

By (the proof of) Proposition 4.52(1) there is a globally subanalytic function
G : R× Rp → R such that Ξ = G(Ψ, ỹ1, ..., ỹp) on Bi. By Proposition 4.61(2)

there is a nicely log-analytic function λ : B
log (|y0|)
i → R in x of order at most

p− 2 such that
Ξ(t, x) = λ(t, log(|y0(t, x)|))

for every (t, x) ∈ Bi. Note that 0 ≤ p − 2 < r. With Claim 1 applied to Ξ
we find a definable cell decompositionK of Bi such that Ξ|K is nicely (p−1)-log-
analytically prepared with nice LA-preparing tuple (p−1,Yp−1, āj, q̄j, s̄, v̄j, b̄, P̄ )
where q̄j ∈ {0}×Qp−1, P̄ ∈M1(s̄×p,Q), and Yp−1 is a nice (p−1)-logarithmic
scale with center Θ̄ := (Θ0|π(K), Θ̄1, ..., Θ̄p−1). With Remark 4.27 we obtain
property (∗)p−1 applied to every K ∈ K. ■Subclaim

■Claim 2

Case 1: ϑ = 0. Let am+j := bj for j ∈ {1, ..., s}. By Proposition 4.61(1) there
are nicely log-analytic functions α1, ..., αm+s : Alog(|y0|) → R in x of order at
most r − 1 such that for every (t, x) ∈ A it is

aj(η(t), y1(t, x), ..., yr(t, x)) = αj(t, log(|y0(t, x)|))

for every j ∈ {1, ...,m+ s}. With Claim 1 applied to

βj : A→ R, (t, x) 7→ αj(t, log(|y0(t, x)|),

for j ∈ {1, ...,m + s} we obtain the desired preparation using composition of
power series.

Case 2: ϑ ̸= 0. There is ϵ ∈ ]0, 1[ such that 0 < |w0 − ϑ(z, w′)| < ϵ|w0| for
(z, w) ∈ DA. This gives with Remark 4.17 w0 ∼DA

ϑ(z, w′) and therefore

y0 ∼A ϑ(η, y1, ..., yr).

By Claim 2 fj|A is a nicely log-analytic function in x of order at most r − 1
for every j ∈ {1, ...,m}. With the inductive hypothesis applied to fj|A for
j ∈ {1, ...,m} we obtain the desired preparation.
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All in all we are done with the proof of Proposition 4.64. ■

4.65 Corollary

Let m ∈ N, r ∈ N0. Let X ⊂ Rn × R be definable. Let f1, ...., fm : X → R
be log-analytic functions of order at most r. Then there is a definable cell
decomposition C of X ̸=0 such that f1|C , ..., fm|C are nicely r-log-analytically
prepared in x in a simultaneous way for every C ∈ C.

Outgoing from Corollary 4.65 one may ask the following questions:

(1) Is there a natural bound for the exponential number of the data (the
coefficient, the center, and the base functions) of a prepared log-analytic
function depending on its log-analytic order with respect to a suitable
set of heirs?

(2) Is there a another kind of pure preparation for log-analytic functions of
order > 0, i.e. a preparation with log-analytic data only?

To investigate question 2 one notes that an interesting example is the class of
constructible functions introduced by Cluckers and Miller which is a proper
larger class than the globally subanalytic functions (compare with Definition
2.16) but a proper subclass of the class of log-analytic functions of order at
most 1 (for a function which is log-analytic of order 1 but not constructible
compare with Example 2.22: If f in Example 2.22 would be constructible then
the parameterized integral

∫
R f(u, v)dv would be definable by Fact 2.20). For

constructible functions there is a pure preparation not in terms of units but
suitable for questions on integration (compare with [5], [6] respectively [7]).
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4.4 A Preparation Theorem for Definable Functions

A Preparation Theorem of Lion and Rolin

Lion and Rolin established the following preparation theorem.

4.66 Fact (Lion/Rolin, [28], Proposition 3)

Let n ∈ N. Let X ⊂ Rn × R and f : X → R be definable. Then there is
a definable cell decomposition C of X such that for every C ∈ C there is a
log-analytic function g : C → R in x and a definable function h : C → R such
that f |C = g · exp(h).

This preparation result shows that there is a nice representation of a definable
function in x, because log-analytic functions in x are involved which can be
piecewise prepared by Fact 4.30. But there is no information how the function
h looks like. Furthermore there is no bound on the number of iterations of the
exponential in this preparation.

A Preparation Theorem of Van den Dries and Speissegger

In [16] Van den Dries and Speissegger used the syntax of terms which we will
introduce here. We fix distinct formal variables v1, ..., vn+1. ”Term” means
”Lan(exp, log)-term in which no other variable than v1, ..., vn+1 occurs”. Note
that such a term τ defines a definable function τ : Rn×R → R, (t, x) 7→ τ(t, x).

4.67 Definition (Van den Dries/Speissegger, [16], Definition 5.1)

Let τ be a term. The exponential level of τ with respect to vn+1 is the
number e(τ) ∈ N0 defined inductively as follows.

(a) If τ is a variable or a constant symbol, then e(τ) = 0.

(b) If t = g(τ1, ..., τm) where g is an m-ary function symbol of Lan, m ≥ 1,
and τ1, ..., τm are terms, then

e(τ) = max{e(τ1), ..., e(τm)}.

(c) If τ = exp(s), where s is a term, then

e(τ) =

{
e(s) + 1, if vn+1 occurs in s,
e(s), else.

(d) If τ = log(s), where s is a term, then e(τ) = e(s).

The exponential level of a term t with respect to vn+1 is the maximal number
of iterations of the exponential depending on vn+1 which occur in t. So a term
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which has exponential number at most e ∈ N0 with respect to a suitable set
E of terms (which define positive functions on Rn × R) can have exponential
level zero with respect to vn+1. Note also that for a log-analytic function
h : Rn × R → R the following holds: For every e ∈ N0 the function h can be
piecewise represented by terms which have exponential level e with respect to
vn+1.

4.68 Fact (Van den Dries/Speissegger, [16], Theorem 5.4)

Let τ be a term with e(τ) > 0. Then there is a definable cell decomposition C
of Rn×R such that for every C ∈ C there are terms σ, λ, u such that e(σ) = 0,
e(λ) < e(τ), and for all (t, x) ∈ C

τ(t, x) = σ(t, x) · exp(λ(t, x)) · u(t, x), |u(t, x)− 1| < 1/2.

Because terms with exponential level 0 with respect to vn+1 define log-analytic
functions in x we get the following conclusion with Fact 4.30.

4.69 Corollary

Let m ∈ N. Let τ1, ..., τm be terms. Then there is a definable cell decomposition
C of Rn × R ̸=0 such that for every C ∈ C there is an r-logarithmic scale
Y = (y0, ..., yr) on C, and for every j ∈ {1, ...,m} there are qj := (qj0, ..., qjr) ∈
Qr+1, a term sj, a definable aj : π(C) → R, and a definable uj : C → R with
|uj(t, x)− 1| < 1/2 for every (t, x) ∈ C such that

τj(t, x) = aj(t)|Y(t, x)|⊗qjexp(sj(t, x))uj(t, x)

for all (t, x) ∈ C where e(sj) < e(τj) if e(τj) > 0, and sj = 0 if e(τj) = 0.

So we see also that Van den Dries and Speissegger used the exponential level
as a natural bound on the number of iterations of the exponential which may
occur in its prepared form. This is strong enough to show that Ran,exp is
o-minimal, but not strong enough for our purposes since there is no precise
statement how the ”unit” looks like. So both known preparation theorems
on definable functions are not deep enough to do proofs on multivariate phe-
nomenons for specific definable functions. We will prove a similar, but more
precise preparation theorem. Furthermore we will give a connection between a
set of positive definable functions from which one can construct the underlying
definable function and the exponentials which occur in its preparation.
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A Preparation Theorem for Definable Functions

We start with some preparations.

Preparations

For this paragraph we fix m ∈ N, a tuple of variables v := (v1, ..., vm), and a
definable set X ⊂ Rm. Fix k, l ∈ N0 and definable functions g1, ..., gk : X → R
and h1, ..., hl : X → R. Set β := (g, hl, exp(h1), ..., exp(hl)). (We could also
write β = (g, exp(h1), ..., exp(hl)), but this simplifies notation below.) Note
that β(X) ⊂ Rk+l × R>0. So there exists a 0-logarithmic scale on β(X), i.e.
β(X) is 0-admissible.

Fix a log-analytic function F : Rk+l+1 → R. Let α : X → R, v 7→ F (β(v)). Let
y := (y1, ..., yk+l) range over Rk+l. Let z be another single variable such that
(y, z) ranges over Rk+l × R. Let π∗ : Rk+l × R → Rk+l, (y, z) 7→ y.

4.70 Proposition

Let Θ : Rk+l → R be log-analytic such that

exp(hl) ∼X Θ(g, hl, exp(h1), ..., exp(hl−1)).

There is a log-analytic function G : Rk+l → R such that

α = G(g, hl, exp(h1), ..., exp(hl−1))

on X.

Proof

Let κ := Θ(g, hl, exp(h1), ..., exp(hl−1)). Note that κ > 0. There is δ > 1 such
that

1

δ
<

exp(hl)

κ
< δ

on X. By taking logarithm we get with λ := log(δ)

−λ < hl − log(κ) < λ

on X. Set

exp∗ : R → R, x 7→
{

exp(x), x ∈ [−λ, λ],
0, else.

Then exp∗ is globally subanalytic and we have

α = F (g, hl, exp(h1), ..., exp(hl−1), κ · exp∗(hl − log(κ)))

on X. Consider

G : Rk+l → R, y 7→
{
F (y,Θ(y) · exp∗(yk+1 − log(Θ(y)))), y ∈ π∗(β(X)),
0, else.
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Note that G is well-defined, log-analytic and we obtain

α = G(g, hl, exp(h1), ..., exp(hl−1))

on X since for x ∈ X we have

(g(x), hl(x), exp(h1(x)), ..., exp(hl−1(x))) ∈ π∗(β(X)).

■

4.71 Proposition

Assume that F is positive and purely 0-log-analytically prepared in z with center
0 on β(X). Then there is a strongly log-analytic function H : Rk+l × R → R
in z of order 0 such that

log(F (β)) = H(β)

on X.

Proof

Let
(0,Y , a, q, s, v, b, P )

be a purely LA-preparing tuple for f where b := (b1, ..., bs) and Y := y. Note
that a > 0. Consider

η := (η0, ..., ηs) : π
∗(β(X)) → R>0 × Rs, y 7→ (a(y), b1(y), ..., bs(y)).

Note that η is log-analytic. Let w := (w0, ..., ws+2) range over Rs+3. For
w ∈ R>0 ×Rs ×R× R̸=0 with −1 ≤ wi|ws+2|p0i ≤ 1 for every i ∈ {1, ..., s} let

ϕ(w) := log(w0) + qws+1 + log(v(w1|ws+2|p01 , ..., ws|ws+2|p0s)).

Consider
G : R>0 × Rs × R× R ̸=0 → R, w 7→{

ϕ(w), −1 ≤ wi|ws+2|p0i ≤ 1 for every i ∈ {1, ..., s},
0, else.

Then G is strongly log-analytic in ws+2 of order 0 since log(v) is globally
subanalytic. Note that

log(F (β)) = G(η(g, hl, exp(h1), ..., exp(hl−1)), hl, exp(hl))

on X. Then

H : Rk+l × R → R, (y, z) 7→
{
G(η(y1, ..., yk+l), yk+1, z), (y, z) ∈ β(X),
0, else,

does the job, because H is strongly log-analytic in z of order 0. ■
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4.72 Corollary

Let c, d ∈ N. Suppose there are functions µ1, ..., µc : Rk+l × R → R and
ν1, ..., νd : Rk+l × R → R>0 which are purely 0-log-analytically prepared in z
with center Θ on β(X), and a globally subanalytic function G : Rc+d → R such
that

α = G(µ1(β), ..., µc(β), log(ν1(β)), ..., log(νd(β))).

If Θ = 0 there is a strongly log-analytic function H : Rk+l × R → R in z of
order 0 such that α = H(β) on X. If Θ ̸= 0 then we have

exp(hl) ∼X Θ(g, hl, exp(h1), ..., exp(hl−1)).

Proof

Note that y0 : β(X) → R, (y, z) 7→ z − Θ(y), is a 0-logarithmic scale with
log-analytic center Θ.

Case 1: Θ = 0. Then by Proposition 4.71 there are strongly log-analytic
functions H1, ..., Hm : Rk+l × R → R in z of order 0 such that log(νj(β)) =
Hj(β) on X for every j ∈ {1, ...,m}. By Remark 4.36(2) we see that µ1, ..., µc

are strongly log-analytic in z of order 0. Because G is globally subanalytic we
are done.

Case 2: Θ ̸= 0. By Remark 4.17 z ∼β(X) Θ. We obtain the result. ■

4.73 Corollary

Let r ∈ N0. Suppose F is strongly log-analytic in z of order r. Then there is a
decomposition C of X into finitely many definable sets such that for C ∈ C the
following holds. There is a strongly log-analytic function H : Rk+l × R → R
in z of order 0 such that α|C = H(β|C) or there is a log-analytic function
Θ : Rk+l → R such that

exp(hl) ∼C Θ(g, hl, exp(h1), ..., exp(hl−1)).

Proof

We do an induction on r.

r = 0: Then F is strongly log-analytic in z of order 0. The assertion follows.

r−1 → r: With Definition 4.34 it is enough to consider the following situation.
Let c, d ∈ N0, a globally subanalytic function G : Rc+d → R, strongly log-
analytic functions ρ1, ..., ρc : Rk+l ×R → R and σ1, ..., σd : Rk+l ×R → R>0 in
z of order at most r − 1 be such that

α = G(ρ1(β), ..., ρc(β), log(σ1(β)), ..., log(σd(β))).

Applying the inductive hypothesis to ρ1(β), ..., ρc(β), σ1(β), ..., σd(β) there is a
decomposition A of X into finitely many definable sets such that the following
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holds for A ∈ A. There are functions µ1, ..., µc : Rk+l × R → R and ν1, ..., νd :
Rk+l × R → R>0 which are strongly log-analytic in z of order 0 such that

α = G(µ1(β), ..., µc(β), log(ν1(β)), ..., log(νd(β)))

on A (G does not change) or there is a log-analytic function Θ̃ : Rk+l → R
such that

exp(hl) ∼A Θ̃(g, hl, exp(h1), ..., exp(hl−1)).

Fix such an A. If the latter holds we are done. So assume the former. Fix
the corresponding µ1, ..., µc, ν1, ..., νd. By Remark 4.63 there is a definable cell
decomposition D of Rk+l × R ̸=0 such that µ1, ..., µc, ν1, ..., νd are purely 0-log-
analytically prepared in z in a simultaneous way on every D ∈ D. There is a
definable cell decomposition C of A such that for every C ∈ C there is DC ∈ D
with β(C) ⊂ DC . Fix C ∈ C and the center Θ of the pure 0-preparation of
µ1, ..., µc, ν1, ..., νd on DC . If Θ = 0 we find with Corollary 4.72 a strongly log-
analytic function H : Rk+l × R → R in z of order 0 such that α|C = H(β|C).
If Θ ̸= 0 it is with Remark 4.17 z ∼DC

Θ(y) and therefore

exp(hl) ∼C Θ(g, hl, exp(h1), ..., exp(hl−1)).

■

Formulation and Proof of the Preparation Theorem

For the rest of Section 4.4 let m ∈ N and X ⊂ Rm be definable.

4.74 Definition

Let f : X → R be a function. Let E be a set of positive definable functions
on X.

(1) Let L be a set of log-analytic functions on X. By induction on e ∈
N0 ∪ {−1} we define that f : X → R is e-prepared with respect to
L and E.

Base Case: The function f is (−1)-prepared with respect to L and E
if f is the zero function.

Inductive step: The function f is e-prepared with respect to L and E
if

f = a · exp(c) · u

where a ∈ L, c : X → R is (e − 1)-prepared with respect to L and E,
exp(c) ∈ E and u : X → R is a function of the form

u = v(b1 · exp(d1), ..., bs · exp(ds))
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where s ∈ N0, bj ∈ L does not have any zero, dj : X → R is (e − 1)-
prepared with respect to L and E and exp(dj) ∈ E for every j ∈ {1, ..., s}.

Additionally v is a real power series which converges absolutely on an
open neighbourhood of [−1, 1]s, it holds bj(x)exp(dj(x)) ∈ [−1, 1] for
every x ∈ X and every j ∈ {1, ..., s}, and v([−1, 1]s) ⊂ R>0.

(2) We say that f is e-prepared with respect to E if there is a set L of
log-analytic functions on X such that f is e-prepared with respect to L
and E .

4.75 Remark

Let E be a set of positive definable functions and L be a set of log-analytic
functions on X. Let e ∈ N0. Let f : X → R be e-prepared with respect to L
and E. There are k ∈ N, log-analytic functions h1, ..., hk ∈ L, (e−1)-prepared
g1, ..., gk with respect to L and E with exp(g1), ..., exp(gk) ∈ E and a globally
subanalytic function G : R2k → R such that

f = G(h1, ..., hk, exp(g1), ..., exp(gk)).

Proof

There are s ∈ N, a, b1, ..., bs ∈ L and (e− 1)-prepared c, d1, ...., ds with respect
to L and E such that exp(c), exp(d1), ..., exp(ds) ∈ E and

f = aexp(c)v(b1exp(d1), ..., bsexp(ds))

where v is a real power series which converges absolutely on an open neighbour-
hood of [−1, 1]s and it holds bj(x)exp(dj(x)) ∈ [−1, 1] for every j ∈ {1, ..., s}
and every x ∈ X. Note that the function

H : Rs → R, (u1, ..., us) 7→
{
v(u1, ..., us), (u1, ..., us) ∈ [−1, 1]s,
0, else

,

is globally subanalytic. Choose k := s + 1, h1 := a, hj := bj−1 for j ∈
{2, ..., k}, g1 := c and gj := dj−1 for j ∈ {2, ..., k}. Let w := (w1, ..., wk) and
z := (z1, ..., zk) range over Rk. Consider

G : R2k → R, (w, z) 7→ w1z1H(w2z2, ..., wkzk).

Then G is globally subanalytic and we have

f = G(h1, ..., hk, exp(g1), ..., exp(gk)).

■
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4.76 Remark

(1) Let e ≥ 0. If f : X → R is e-prepared with respect to a set E of positive
definable functions then 1 ∈ E.

(2) Let f : X → R be log-analytic. Then f is 0-prepared with respect to
L := {f} and E := {1}.

(3) If f is 0-prepared with respect to a set E of definable functions then f
is log-analytic.

Proof

(1): We obtain the result immediately with Definition 4.74 and an easy induc-
tion on e.

(2): With Definition 4.74 we see immediately that f is 0-prepared with respect
to L and E.

(3): Let L be a set of log-analytic functions such that f is 0-prepared with
respect to L and E. Note that a function which is (−1)-prepared coincides with
the zero function. So by Remark 4.75 there are k ∈ N, functions h1, ..., hk ∈ L
and a globally subanalytic function G : Rk → R such that

f = G(h1, ..., hk).

So it is clear that f is log-analytic. ■

4.77 Remark

Let E be a set of positive definable functions. Let e ∈ N0. Let f : X → R be
e-prepared with respect to E. Then f has exponential number at most e with
respect to E and is therefore definable.

Proof

We do an induction on e. If e = 0 then f is log-analytic by Remark 4.76(3).
So assume e > 0. Let L be a set of log-analytic functions such that f is
e-prepared with respect to L and E. By Remark 4.75 there are k ∈ N, log-
analytic functions h1, ..., hk ∈ L, (e − 1)-prepared g1, ..., gk with respect to
L and E with exp(g1), ..., exp(gk) ∈ E and a globally subanalytic function
G : R2k → R such that

f = G(h1, ..., hk, exp(g1), ..., exp(gk)).

With the inductive hypothesis and Definition 3.5(a) we are done. ■
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4.78 Proposition

Let e ∈ N0. Let f : X → R be a function. Let E be a set of positive definable
functions on X such that f has exponential number at most e with respect to
E. Then there is a decomposition C of X into finitely many definable sets such
that for every C ∈ C there is a finite set P of positive definable functions on C
and a finite set L of log-analytic functions on C such that the following holds.

(1) f |C is e-prepared with respect to L and P and for every g ∈ log(P ) there
is l ∈ {−1, ..., e− 1} such that g is l-prepared with respect to L and P .

(2) P fulfills the following condition (∗e) with respect to E|C: If g ∈ log(P )
is l-prepared with respect to L and P for l ∈ {0, ..., e−1} then g is a finite
Q-linear combination of functions from log(E) restricted to C which have
exponential number at most l with respect to E.

Proof

We do an induction on e.

e = 0 : Then f is log-analytic and we are done by choosing P = {1} and
L = {f}.

e − 1 → e : There are k, l ∈ N, functions g1, ..., gk, h1, ..., hl : Rm → R with
exponential number at most e−1 with respect to E, and a log-analytic function
F : Rk+l → R such that

f = F (g1, ..., gk, exp(h1), ..., exp(hl))

and exp(h1), ..., exp(hl) ∈ E.

By an auxiliary induction on l and involving the inductive hypothesis we may
assume that the theorem is proven for functions of the form

κ = H(g1, ..., gk, hl, exp(h1), ..., exp(hl−1))

on X where H : Rk+l → R is log-analytic. (∗∗)
(If l = 1 then (∗∗) holds by the inductive hypothesis: g = H(g1, ..., gk, hl) has
exponential number at most e− 1 with respect to E by Proposition 3.11(2).)

(This includes also functions of the form

κ = Ĥ(g1, ..., gk, exp(h1), ..., exp(hl−1))

on X where Ĥ : Rk+l−1 → R is log-analytic.)

Let g := (g1, ..., gk). Let y := (y1, ..., yk+l) range over Rk+l. Let z be another
single variable such that (y, z) ranges over Rk+l ×R. Let y′ := (y1, ..., yk+l−1).
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Let π+ : Rk+l → Rk+l−1, y 7→ y′. Let r ∈ N0 be such that F is strongly
log-analytic in yk+l of order at most r.

Case 1: r = 0. By Remark 4.63 we find a definable cell decomposition D of
Rk+l−1 × R̸=0 such that F |D is purely 0-log-analytically prepared in yk+l for
everyD ∈ D. There is a decompositionA ofX into finitely many definable sets
such that for every A ∈ A there is DA ∈ D such that for every x ∈ A we have
(g(x), exp(h1(x)), ..., exp(hl(x))) ∈ DA. Fix A ∈ A and a purely preparing
tuple (0,Y , a, q, s, v, b, P ) for F |DA

where b := (b1, ..., bs) and P := (p1, ..., ps)
t.

Let Θ be the center of Y . Then one of the following properties holds.

(1) There is ϵ ∈ ]0, 1[ such that

0 < |yk+l −Θ(y′)| < ϵ|yk+l|

for all y ∈ DA.

(2) Θ = 0 on π+(DA).

Assume (1). Then by Remark 4.17 we have yk+l ∼DA
Θ. This gives

exp(hl) ∼A Θ(g, exp(h1), ..., exp(hl−1)).

By Proposition 4.70 there is a log-analytic function G : Rk+l → R such that

f = G(g, hl, exp(h1), ..., exp(hl−1))

on A. With (∗∗) applied to f we are done.

Assume (2). Let β := (g, exp(h1), ..., exp(hl−1)). We have

f |A = a(β)exp(qhl)v(b1(β)exp(p1hl), ..., bs(β)exp(pshl)).

Let b0 := a. Note that we can apply (∗∗) to bj(β) for j ∈ {0, ..., s} and so
there is a decomposition B of A into finitely many definable sets such that for
every B ∈ B the following holds: There is a finite set P ′ of positive definable
functions on B and a finite set L′ of log-analytic functions on B such that
b0(β)|B, ..., bs(β)|B are e-prepared with respect to L′ and P ′ and that P ′ fulfills
property (∗e) with respect to E|B. Fix such a B. Then we have for j ∈ {0, ..., s}

bj(β) = âjexp(ĉj)v̂j(b̂1jexp(d̂1j), ..., b̂sjjexp(d̂sjj))

where sj ∈ N, âj, b̂1j, ..., b̂sjj are log-analytic and ĉj, d̂1j, ..., d̂sjj are finite Q-
linear combinations of functions from log(E) restricted to B which have ex-
ponential number at most e − 1 with respect to E and v̂j is a power se-
ries which converges absolutely on an open neighbourhood of [−1, 1]sj and
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v̂j([−1, 1]sj) ⊂ R>0. Since hl ∈ log(E) has exponential number at most e − 1
with respect to E we obtain that ĉ0 + qhl and ĉj + pjhl for j ∈ {1, ..., s} are
finite Q-linear combinations of functions from log(E) restricted to B which
have exponential number at most e−1 with respect to E. (Note that hl is not
necessarily (e− 1)-prepared with respect to P ′ on B.)

Consequently we obtain by composition of power series that there are s̃ ∈ N,
log-analytic functions ã, b̃1, ..., b̃s̃ : B → R, and functions c, d1, ..., ds̃ : B → R
which are finite Q-linear combinations of elements from log(E) restricted to B
which have exponential number at most e − 1 with respect to E|B such that
the following holds.

f |B = ãexp(c)ṽ(b̃1exp(d1), ..., b̃s̃exp(ds̃))

where b̃j(x)exp(dj(x)) ∈ [−1, 1] for every x ∈ B and j ∈ {1, ..., s̃}, and ṽ is
a real power series which converges absolutely on an open neighbourhood of
[−1, 1]s̃ and ṽ([−1, 1]s̃) ⊂ R>0. Note that c and d1, ..., ds̃ have exponential
number at most e− 1 with respect to E. By the inductive hypothesis there is
a further decomposition CB of B into finitely many definable sets such that for
every C ∈ CB there is a finite set P̃ of positive definable functions on C which
fulfills property (∗e−1) with respect to E|C and a finite set L̃ of log-analytic
functions on C such that the functions c|C and d1|C , ..., ds̃|C are (e−1)-prepared
with respect to L̃ and P̃ . So choose

L := L̃ ∪ {ã|C , b̃1|C , ..., b̃s̃|C}

and
P := P̃ ∪ {exp(c)|C , exp(d1)|C , ..., exp(ds̃)|C}.

Then P fulfills property (∗e) with respect to E|C . Note that f |C is e-prepared
with respect to L and P and we are done.

Case 2: r > 0. By Corollary 4.73 there is a decomposition A of X into finitely
many definable sets such that for every A ∈ A one of the following properties
holds.

(1) There is a strongly log-analytic function H : Rk+l ×R → R in z of order
0 such that

f |A = H(g, hl, exp(h1), ..., exp(hl)).

(2) There is a log-analytic function Θ̃ : Rk+l → R such that

exp(hl) ∼A Θ̃(g, hl, exp(h1), ..., exp(hl−1)).

Let A ∈ A. If (1) holds for A then we are done with Case 1. If (2) holds for
A then by Proposition 4.70 there is a log-analytic function H : Rk+l → R such
that

f = H(g, hl, exp(h1), ..., exp(hl−1))
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on A. We are done with (∗∗) applied to f .

The treatment of the both cases above gives the proof of Proposition 4.78. ■

4.79 Definition

Let r ∈ N0. Let w := (w0, ..., wr) range over Rr+1. Let D ⊂ Rn × R × Rr+1

be definable. Let π∗ : Rn × R × Rr+1 → Rn × R, (t, x, w) 7→ (t, x) and π+ :
Rn × R× Rr+1 → Rn, (t, x, w) 7→ t. A function u : D → R is called r-special
unit if u = v ◦ ϕ where the following holds:

(a) The function ϕ is given by

ϕ : D 7→ [−1, 1]s, (t, x, w) 7→ (ϕ1(t, x, w), ..., ϕs(t, x, w)),

where s ∈ N0, and for every j ∈ {1, ..., s} we have

ϕj(t, x, w) = bj(t)exp(dj(t, x))
r∏

l=0

|wl|pjl

for every (t, x, w) ∈ D where dj : π
∗(D) → R is definable, bj : π

+(D) →
R is definable which has no zeros and pjl ∈ Q for every l ∈ {0, ..., r}.

(b) v is a real power series in s variables which converges absolutely on an
open neighbourhood of [−1, 1]s.

(c) It holds v([−1, 1]s) ⊂ R>0.

We call b := (b1, ..., bs) a tuple of base functions for u, ed := (ed1 , ..., eds) a
tuple of exponential definable functions for u, and

I := (s, v, b, ed, P )

where

P :=


p10 · · p1r
· ·
· ·
ps0 · · psr

 ∈M
(
s× (r + 1),Q

)
an r-describing tuple for u.

4.80 Remark

Let r ∈ N0. Let D ⊂ Rn × Rr+1 be definable. Let u : D → R be an r-LA
special unit. Then u is an r-special unit considered as function on

D̃ := {(t, x, w) ∈ Rn × R× Rr+1 | (t, w) ∈ D}

which does not depend on x.
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Proof

Let LI = (s, v, b, P ) be an r-LA-describing tuple for u. Let d1, ..., ds be
zero functions on D̃. Then it is easy to see that u has describing tuple
I = (s, v, b, exp(d), P ) where exp(d) := (exp(d1), ..., exp(ds)). Clearly u does
not depend on x. ■

4.81 Definition

Let C ⊂ Rn × R be definable and Y be an r-logarithmic scale on C. We set

C(x,Y) := {(t, x, y0(t, x), ..., yr(t, x)) | (t, x) ∈ C} = graph(Y).

4.82 Definition

Let r ∈ N0 and e ∈ N0 ∪ {−1}. Let C ⊂ Rn × R be definable and f : C → R
be a function. Let E be a set of positive definable functions on C.

By induction on e we define that f is (e, r)-prepared in x with center Θ with
respect to E. To this preparation we assign a preparing tuple for f .

e = −1: We say that f is (−1, r)-prepared in x with center Θ with respect to
E if f is the zero function. A preparing tuple for f is (0).

e− 1 → e: We say that f is (e, r)-prepared in x with center Θ with respect to
E if

f(t, x) = a(t)|Y(t, x)|⊗qec(t,x)u(t, x, y0(t, x), ..., yr(t, x))

for every (t, x) ∈ C where a : π(C) → R is C-nice, Y := (y0, ..., yr) is a nice
r-logarithmic scale with center Θ, q = (q0, ..., qr) ∈ Qr+1, exp(c) ∈ E where c is
(e−1, r)-prepared in x with center Θ with respect to E and u is an r-special unit
on C(x,Y) with r-describing tuple I = (s, v, b, exp(d), P ) where b = (b1, ..., bs)
is a tuple of C-nice functions on π(C), exp(d) = (exp(d1), ..., exp(ds)) ∈ Es is
a tuple of functions with (e− 1, r)-prepared d1, ..., ds in x with center Θ with
respect to E. A preparing tuple for f is then

J := (r,Y , a, exp(c), q, I).

4.83 Remark

Let e ∈ N0 ∪ {−1} and r ∈ N0. Let E be a set of positive definable functions
on C. Let f : C → R be (e, r)-prepared in x with respect to E. If e = 0 then
f is nicely log-analytically prepared in x.
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4.84 Remark

Let e ∈ N0 ∪ {−1} and r ∈ N0. Let E be a set of positive definable functions
on C. Let f : C → R be (e, r)-prepared in x with respect to E. Then there is
a set E of C-heirs such that f can be constructed from E ∪ E .

Proof

We do an induction on e. For e = −1 there is nothing to show.

e− 1 → e: Let
(r,Y , a, exp(c), q, s, v, b, exp(d), P )

be a preparing tuple for f where b := (b1, ..., bs),

exp(d) := (exp(d1), ..., exp(ds))

and exp(c), exp(d1), ..., exp(ds) ∈ E. By the inductive hypothesis there is a set
E ′ of C-heirs such that c and d1, ..., ds can be constructed from E ∪ E ′. By
Proposition 3.11(1) we see that exp(c), exp(d1), ..., exp(ds) can be constructed
from E ∪ E ′. Because a, b1, ..., bs and Θ0, ...,Θr are C-nice there is a set Ē of
C-heirs such that a, b1, ..., bs and Θ0, ...,Θr can be constructed from Ē . Set
E := Ē ∪ E ′. Then

η := (a, exp(c), b1, ..., bs, exp(d1), ..., exp(ds))

can be constructed from E ∪ E . Note also that y0, ..., yr can be constructed
from E (compare the proof of Remark 4.58). Let k := 2 + 2s+ r + 1. With a
similar argument as in the proof of Proposition 4.52(1) or Remark 4.75 we see
that there is a globally subanalytic F : Rk → R such that for every (t, x) ∈ C
it is

f(t, x) = F (η(t), y0(t, x), ..., yr(t, x)).

With Proposition 3.11(2) we are done. ■

Now we give a full formulation for our preparation theorem.

4.85 Proposition

Let e ∈ N0. Let Y ⊂ Rn×R be definable and let E be a set of positive definable
functions on Y . Let f : Y → R be a function with exponential number at most
e with respect to E. Then there is r ∈ N0 and a definable cell decomposition
C of Y ̸=0 such that for every C ∈ C there is a finite set P of positive definable
functions on C such that the function f |C is (e, r)-prepared in x with center Θ
with respect to P . Additionally the following holds.

(1) For every g ∈ log(P ) there is l ∈ {−1, ..., e − 1} such that g is (l, r)-
prepared in x with center Θ with respect to P .
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(2) The following condition (+e) is satisfied: If g ∈ log(P ) is (l, r)-prepared
in x with center Θ with respect to P for l ∈ {−1, ..., e − 1} then g is
a finite Q-linear combination of functions from log(E) restricted to C
which have exponential number at most l with respect to E.

Proof

By Proposition 4.78 we may assume that f is e-prepared with respect to a
finite set L := {g1, ..., gm} of log-analytic functions and a finite set Q of positive
definable functions with the following property:

Every g ∈ log(Q) is l-prepared with respect to L andQ for an l ∈ {−1, ..., e−1}.
Additionally if g ∈ log(Q) is l-prepared for l ∈ {−1, ..., e− 1} with respect to
L and Q then g is a finite Q-linear combination of functions from log(E) which
have exponential number at most l with respect to E. (∗e)
Let r ∈ N0 be such that g1, ..., gm are log-analytic of order at most r. By Corol-
lary 4.65 there is a definable cell decomposition C of Y̸=0 such that g1|C , ..., gm|C
are nicely r-log-analytically prepared in x in a simultaneous way for every
C ∈ C. Fix C ∈ C and the corresponding center Θ for the r-logarithmic
preparation of g1|C , ..., gm|C .

Claim

Let l ∈ {−1, ..., e} and h ∈ log(Q) ∪ {f} be l-prepared with respect to L and
Q. Then h|C is (l, r)-prepared in x with center Θ with respect to P := Q|C .

Proof of the claim

We do an induction on l. If l = −1 it is clear. So assume l ≥ 0. Since h|C is
l-prepared with respect to {g1|C , ..., gm|C} we have that

h|C = µeσṽ(ν1e
τ1 , ..., νke

τk)

where k ∈ N, the functions µ, ν1, ..., νk ∈ L|C are nicely r-log-analytically
prepared in x with center Θ, the functions σ, τ1, ..., τk ∈ log(P ) are (l − 1)-
prepared with respect to P and L|C and νj(t, x)e

τj(t,x) ∈ [−1, 1] for every
(t, x) ∈ C and j ∈ {1, ..., k}. Additionally ṽ is a real power series which
converges absolutely on an open neighbourhood of [−1, 1]k with ṽ([−1, 1]k) ⊂
R>0. By the inductive hypothesis we see that σ and τ1, ..., τk are (l − 1, e)-
prepared in x with center Θ with respect to P .

With composition of power series we see that there is a C-nice a : π(C) → R,
a nice r-logarithmic scale Y with center Θ, q ∈ Qr+1 and an r-special unit u on
C(x,Y) with r-describing tuple I = (s, v, b, exp(d), P ∗) where b = (b1, ..., bs) is a
tuple of C-nice functions on π(C) and exp(d) := (exp(d1), ..., exp(ds)) is a tuple
of definable functions on C with dj ∈ {τ1, ..., τk} ∪ {0} for every j ∈ {1, ..., s}
such that

h(t, x) = a(t)|Y(t, x)|⊗qeσ(t,x)u(t, y0(t, x), ..., yr(t, x))
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for every (t, x) ∈ C. So we see that h is (l, r)-prepared in x with respect to P .
(By Remark 4.76(1) we have e0 ∈ Q since l ≥ 0.) ■Claim

Because f is e-prepared with respect to Q we see by the Claim that f |C is
(e, r)-prepared in x with center Θ with respect to P . With the Claim we
obtain that g|C is (l, r)-prepared in x with center Θ with respect to P for
every g ∈ log(Q) which is l-prepared with respect to Q. So with (∗e) we see
that (+e) is fulfilled. ■

For some purposes we need a sharper version of Definition 4.82 when we deal
with log-analytic coefficients, base functions and a log-analytic center.

4.86 Definition

Let r ∈ N0 and e ∈ N0 ∪ {−1}. Let C ⊂ Rn × R be definable and f : C → R
be a function. Let E be a set of positive definable functions on C.

By induction on e we define that f is purely (e, r)-prepared in x with center
Θ with respect to E. To this preparation we assign a pure preparing tuple
for f .

e = −1: We say that f is purely (−1, r)-prepared in x with center Θ with
respect to E if f is the zero function. A pure preparing tuple for f is (0).

e − 1 → e: We say that f is purely (e, r)-prepared in x with center Θ with
respect to E if Θ := (Θ0, ...,Θr) is log-analytic, f is (e, r)-prepared in x with
respect to E with preparing tuple

J := (r,Y , a, exp(c), q, s, v, b, exp(d), P )

where Y is an r-logarithmic scale with center Θ, a and b := (b1, ..., bs) are
log-analytic and c, d1, ..., ds are purely (e − 1, r)-prepared in x with center Θ
with respect to E. We call then J a pure preparing tuple for f .

4.87 Remark

Let e ∈ N0∪{−1} and r ∈ N0. Let E be a set of positive definable functions on
C. Suppose that f is purely (e, r)-prepared in x with respect to E. If E = {1}
or e = 0 then f is purely r-log-analytically prepared in x.

4.88 Remark

Let C ⊂ Rn × R be definable. Let E be a set of positive definable functions
on C and let f : C → R be purely (e, r)-prepared in x with respect to E
for e, r ∈ N0. Then f is (e, r)-prepared in x with respect to E and can be
constructed from E.
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Proof

We do an induction on e. For e = −1 there is nothing to show.

e− 1 → e: Let
(r,Y , a, exp(c), q, s, v, b, exp(d), P )

be a purely preparing tuple for f where b := (b1, ..., bs),

exp(d) := (exp(d1), ..., exp(ds))

and exp(c), exp(d1), ..., exp(ds) ∈ E. Note that a, b1, ..., bs and Y are log-
analytic. So we see with the inductive hypothesis and Proposition 3.11(1)
that the function

η := (a, exp(c), b1, ..., bs, exp(d1), ..., exp(ds), y0, ..., yr)

can be constructed from E. Now adapt the proof of Remark 4.84. ■

The next example shows that not every (e, r)-prepared function in x with
respect to a set E of positive definable functions is also purely (e, r)-prepared
in x with respect to E.

4.89 Example

Consider

C := {(u, x) ∈ R2 | 0 < u < 1, 1
1+u

+ e−2/u+2e−1/u

< x < 1
1+u

+ e−1/u}.

Let
f : C → R, (u, x) 7→ ee

−1/ux

and E := {1, f}. Then the following holds.

(1) f is (1, 0)-prepared in x with respect to E.

(2) There is no e ∈ N0∪{−1} and r ∈ N0 such that f is purely (e, r)-prepared
in x with respect to E.

Proof

(1): In Example 4.46 we have shown that C → R, u 7→ e−1/u, is a C-heir and
therefore we obtain with Definition 4.82 that f is (1, 0)-prepared in x with
respect to E.

(2): We start with the following Claim.

Claim

There is no e ∈ N0 ∪ {−1} and r ∈ N0 such that the function h : C →
R, (u, x) 7→ e−1/ux, is purely (e, r)-prepared in x with respect to E.
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Proof of the claim

Since π(C) = ]0, 1[ we have that h is not log-analytic. We do an induction on
e.

e = −1: There is no r ∈ N0 such that h is purely (−1, r)-prepared in x with
respect to E since h is not the zero function.

e = 0: There is no r ∈ N0 such that h is purely (0, r)-prepared in x with respect
to E since otherwise h would be log-analytic by Remark 4.87 and Remark 4.33.

e− 1 → e: We may assume that e ≥ 1. Assume the contrary. Let

(r,Y , a, exp(c), q, s, v, b, exp(d), P )

be a purely preparing tuple for h where

exp(d) := (exp(d1), ..., exp(ds)).

Note that h is not purely (e, r)-prepared in x with respect to {1} since otherwise
h would be log-analytic by Remark 4.87 and Remark 4.33. By Definition 4.86
we have exp(c) = f or there is j ∈ {1, ..., s} such that exp(dj) = f . With
Definition 4.86 we obtain that log(f) is purely (e − 1, r)-prepared in x with
respect to E. But log(f) = h. So we obtain a contradiction to the inductive
hypothesis. ■Claim

Assume the contrary. Fix e, r ∈ N0 such that f is purely (e, r)-prepared in
x with respect to E. Similarly as in the proof of the claim we obtain with
Definition 4.86 that h = log(f) is purely (e− 1, r)-prepared in x with respect
to E, a contradiction to the Claim. ■

4.5 A Preparation Theorem for Restricted
Log-Exp-Analytic Functions

For Section 4.5 we set the following: Let m, l ∈ N0 be with n = l + m. Let
w := (w1, ..., wl) range over Rl and u := (u1, ..., um) over Rm. Let C,X ⊂
Rl ×Rm×R be definable sets with C ⊂ X. Assume that Xw is open for every
w ∈ Rl. Let πl : Rl × Rm → Rl, (w, u) 7→ w.

4.90 Remark

Assume that C is a cell such that Cw is open for every w ∈ Rl. A nicely log-
analytically prepared function f : C → R in x is restricted log-exp-analytic in
(u, x).

Proof

By Proposition 4.52(1) and the proof of Remark 4.58 we find a set E of C-heirs
such that f can be constructed from E . Let h ∈ E . Note that h depends on
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(w, u) and that there is r ∈ N and an r-logarithmic scale Y on C with center
(Θ0, ...,Θr) such that h = exp(Θj) for j ∈ {1, ..., r} (compare Definition 4.38).
We show that Θj is locally bounded in (u, x) (considered as function on C).
Let w ∈ Rl, (u0, x0) ∈ Cw and let

γ : ]0, 1[ → Cw, y 7→ (γu(y), γx(y)) := (γu1(y), ..., γum(y), γx(y)),

be a definable curve with limy↘0 γ(y) = (u0, x0). Then limy↘0Θl(w, γu(y)) ∈ R
by (Il) in Proposition 6.28 in Chapter 6 applied to the definable curve γ̂ :=
(w, γ) (since γ̂ is compatible with C, compare Definition 6.26). ■

4.91 Definition

Let e ∈ N0 ∪ {−1}. Let f : C → R, (w, u, x) 7→ f(w, u, x), be a function. We
call f (m + 1, X)-restricted e-prepared if f is e-prepared with respect to
a set E of positive definable functions such that every g ∈ log(E) is locally
bounded in (u, x) with reference set X.

4.92 Remark

Let f : C → R be a function. Let e ∈ N0 ∪ {−1}. If f is (m+ 1, X)-restricted
e-prepared then f is restricted log-exp-analytic in (u, x) of order at most e
with reference set X.

Proof

There is a set E of positive definable functions such that every g ∈ log(E) is
locally bounded in (u, x) with reference set X and f is e-prepared with respect
to E. By Remark 4.77 f can be constructed from E. ■

4.93 Proposition

Let e ∈ N0 ∪ {−1}. Let f : X → R be a restricted log-exp-analytic function
in (u, x) of order e. Then there is a decomposition C of X into finitely many
definable sets such that f |C is (m+1, X)-restricted e-prepared for every C ∈ C.

Proof

Let E be a set of positive definable functions such that every g ∈ log(E) is
locally bounded in (u, x) and f has exponential number at most e with respect
to E. By Proposition 4.78 there is a decomposition C of X into finitely many
definable sets such that the following holds for every C ∈ C. The function f |C
is e-prepared with respect to a finite set P of positive definable functions such
that every g ∈ log(P ) is l-prepared with respect to P for l ∈ {0, ..., e − 1}
and if g ∈ log(P ) is l-prepared with respect to P then g is a finite Q-linear
combination of functions from log(E) with exponential number at most l with
respect to E restricted to C for l ∈ {0, ..., e− 1}. Thus by Remark 3.27 every
g ∈ log(P ) is locally bounded in (u, x) with reference set X and we are done.

■
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4.94 Definition

Let e ∈ N0 ∪ {−1} and r ∈ N0. We call f : X → R, (w, u, x) 7→ f(w, u, x),
(m + 1, X)-restricted (e, r)-prepared in x if f is (e, r)-prepared in x with
respect to a set E of positive definable functions such that every g ∈ log(E) is
locally bounded in (u, x) with reference set X.

4.95 Corollary

Let e ∈ N0 ∪ {−1}. Let f : X → R be a restricted log-exp-analytic function in
(u, x) of order at most e. Then there is r ∈ N0 and a definable cell decompo-
sition C of X ̸=0 such that f |C is (m + 1, X)-restricted (e, r)-prepared in x for
every C ∈ C.

Proof

This follows from Proposition 4.93 and Proposition 4.85. ■

4.96 Remark

Let e ∈ N0 ∪ {−1} and r ∈ N0. Let f : C → R be (m + 1, X)-restricted
(e, r)-prepared in x. Then f is not necessarily a restricted log-exp-analytic
function in (u, x) of order at most e with reference set X. The assertion holds
if C = X.

Proof

Suppose that w = 0 and m = 1. Consider

C := {(u, x) ∈ R2 | 0 < u < 1, 1
1+u

+ e−2/u+2e−1/u

< x < 1
1+u

+ e−1/u}.

Let X ⊂ R2 be open with C ⊂ X and 0 ∈ X. Let

f : C → R, (u, x) 7→ e−1/ux.

We see that f is nicely 0-log-analytically prepared in x, because in Example
4.46 we have shown that C → R, u 7→ e−1/u, is a C-heir. We see also that the
function

f ∗ : X → R, (u, x) 7→
{
e−1/ux, (u, x) ∈ C,
0, else,

is flat at (0, 0). But in Chapter 5 we will show that nonzero restricted log-
exp-analytic functions do not exhibit this property. So f is not restricted
log-exp-analytic in (u, x) with reference set X.

Now suppose that C = X. One sees that Cw is open for every w ∈ Rl.
By Definition 4.94 and Remark 4.84 there is a set E of C-heirs and a set E of
positive definable functions where every g ∈ log(E) is locally bounded in (u, x)
with reference set X such that f can be constructed from E ∪E . By the proof
of Remark 4.90 we see that the center of every r-logarithmic scale Y on C is
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locally bounded in (u, x) with reference set X. So every g ∈ log(E) is locally
bounded in (u, x) with reference set X. So f is restricted log-exp-analytic in
(u, x) with reference set X. ■

4.97 Definition

Let e ∈ N0 ∪ {−1} and r ∈ N0. Let f : C → R be a function. We say that
f is purely (m+ 1, X)-restricted (e, r)-prepared in x if f is purely (e, r)-
prepared in x with respect to a set E of positive definable functions such that
every g ∈ log(E) is locally bounded in (u, x) with reference set X.

4.98 Remark

Let f : C → R be a function. Let e ∈ N0 ∪ {−1} and r ∈ N0. If f is purely
(m+ 1, X)-restricted (e, r)-prepared in x then f is restricted log-exp-analytic
in (u, x) with reference set X.

Proof

There is a set E of positive definable functions such that every g ∈ log(E) is
locally bounded in (u, x) with reference set X and f is purely (e, r)-prepared
in x with respect to E. By Remark 4.88 f can be constructed from E. ■

4.99 Remark

Let C ⊂ X be definable. Let e ∈ N0∪{−1} and r ∈ N0. A function f : C → R
which is (m + 1, X)-restricted (e, r)-prepared in x is not purely (m + 1, X)-
restricted (e, r)-prepared in x in general.

Proof

This is easily seen with Remark 4.96 and Remark 4.98. ■
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5 Differentiability Properties of Restricted

Log-Exp-Analytic Functions

Log-analytic functions belong to a class of definable functions which avoid the
exponential function. They do not exhibit properties of the function e−1/x as
flatness or infinite differentiability but not real analyticity.

Theorem (Kaiser/Opris, Theorem C in [22])

Let f : Rn × Rm → R, (t, x) 7→ f(t, x), be log-analytic. Then there is N ∈ N
such that the following holds for every (t, x) ∈ Rn ×Rm. If f(t,−) is CN at x
then f(t,−) is real analytic at x.

(See also [14] for a formulation of this theorem in the globally subanalytic
setting and [40] for Tamm’s original version.) Kaiser used such results to en-
able a deep technical induction on the number of variables for proving global
complexification for globally subanalytic functions. So our main goal for this
chapter is to extend Tamm’s theorem to the class of restricted log-exp-analytic
functions beyond the class of log-analytic ones. Because we deal with compo-
sitions of log-analytic functions and exponentials whose arguments are locally
bounded features like flatness but no real analyticity should also not occur. To
be able to use the preparation theorems our initial result is the key observation
that a restricted log-exp-analytic function can be log-analytically prepared on
certain ’pieces’ which we call simple. It turns out that on such a piece the coef-
ficient, the base functions and the center of such a preparation is also restricted
log-exp-analytic. An immediate consequence is that the class of restricted log-
exp-analytic functions is closed under taking derivatives and exhibits strong
quasianalyticity (see Miller in [31] for this result in polynomially bounded o-
minimal structures). With this both observations we will prove Theorem A
which implies that real analyticity of restricted log-exp-analytic functions is a
definable property. This shows that this class of functions shares its properties
from the viewpoint of analysis and of o-minimality with log-analytic and even
with globally subanalytic ones. But this is not true for definable functions in
general as remarked in [22] and in the end of [14].

Example

Consider the function

f : R× R → R, (t, x) 7→

 |x||2t|, x ̸= 0,
if

0, x = 0,

which is definable in Rexp. Then the set of all t ∈ R such that f(t,−) is
real-analytic at 0 is the set of integers.
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This chapter is organized as follows. At first we give basic properties for loga-
rithmic scales and prove a preparation theorem for restricted log-exp-analytic
functions on simple sets. Then we prove that they are closed under differenti-
ation and exhibit strong quasianalyticity. Finally we derive Theorem A.

For the whole chapter let n ∈ N0, t range over Rn and x over R. Definable
means definable in Ran,exp if not otherwise mentioned.

5.1 Simple Sets and Simple Preparation

For the following see also [22].

Let C ⊂ Rn × R be definable. Let π : Rn × R → Rn, (t, x) 7→ t, be the
projection on the first n coordinates.

Let r ∈ N0.

5.1 Definition

An r-logarithmic scale on C is called elementary if its center is vanishing.

5.2 Remark

Let Y := (y0, ..., yr) be a tuple of functions on C. Then Y is an elementary
r-logarithmic scale on C if and only if the following holds.

(1) We have yj < 0 or yj > 0 for j ∈ {0, ..., r}.

(2) For (t, x) ∈ C we have y0(t, x) = y and yj(t, x) = log(|yj−1(t, x)|) for
every j ∈ {1, ..., r}.

Notice that an elementary r-logarithmic scale may not exist on C. If it exists
it is uniquely determined and log-analytic.

5.3 Definition

If C has an elementary r-logarithmic scale then we call C r-elementary. The
elementary r-logarithmic scale on C is then denoted by Yel

r = Yel
r,C .

For the next definition compare with the setting of [14], Section 4.

5.4 Definition

We call C simple if for every t ∈ π(C) we have Ct = ]0, dt[ for some dt ∈
R>0 ∪ {+∞}.
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5.5 Remark

Let V := {(t, x) ∈ C | 0 is interior point of Ct}. Then V is definable. Let D
be a definable cell decomposition of V ̸=0. Then

π(V ) =
⋃

{π(D) | D ∈ D simple}.

We set e0 := 0 and er := exp(er−1) for r ∈ N. In the following let 1/0 := ∞.

5.6 Proposition

Let C be simple and r-elementary and let Yel
r,C = (y0, ..., yr). Then the following

holds.

(1) sup(Ct) ≤ 1/er for all t ∈ π(C).

(2) y0 = x, y1 = log(x), yj = logj−1(− log(x)) for j ∈ {2, ..., r}.

(3) sign(Yel
r,C) = (1,−1, 1, ..., 1) ∈ Rr+1.

Proof

For t ∈ π(C) let dt := sup(Ct). Let (σ0, ..., σr) be the sign of Yel
r,C . We show

by induction on k ∈ {0, ..., r} that dt ≤ ek for all t ∈ π(C), that y0 = y,
y1 = log(y), yj = logj−1(− log(y)) for all j ∈ {2, ..., k} and that (σ0, ..., σk) =
(1,−1, 1, ..., 1) ∈ Rk+1.

k = 0: We have y0 = x by Definition 4.1 and Definition 5.1. This gives σ0 = 1.
That dt ≤ ∞ = 1/e0 for all t ∈ π(C) is clear.

k = 1: Since y0 = x and σ0 = 1 by above we obtain according to Definition 4.1
and Definition 5.1 that y1 = log(x) and that dt ≤ 1 = 1/e1 for all t ∈ π(C).
This gives σ1 = −1.

k = 2: Since σ1 = −1 we have y1 < 0. According to Definition 4.1 and 5.1.
we get that y2 = log(−y1) = log(− log(x)) and therefore that dt ≤ 1/exp(1) =
1/e2 and σ2 = 1.

k → k + 1: We can assume k ≥ 2. By the inductive hypothesis we have
yk = logk−1(− log(x)) > 0 and σk = 1. According to Definition 5.1 we obtain
that yk+1 = logk(− log(x)) and that dt ≤ 1/exp(ek) = 1/ek+1 for all t ∈ π(C).
This gives also σk+1 = 1. ■

5.7 Definition

We call C r-simple if it is simple and r-admissible.
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5.8 Proposition

Let C be r-simple. Then C is r-elementary and r-unique, i.e. there is a unique
logarithmic scale Y on C whose center vanishes.

Proof

Let Y = (y0, . . . , yr) be an r-logarithmic scale on C. We show that Y is
elementary and are done by Remark 5.2. Let Θ = (Θ0, . . . ,Θr) be the center
of Y . We show by induction on k ∈ {0, ..., r} that Θ0 = ... = Θk = 0.

k = 0: Assume that Θ0 ̸= 0. Then by Definition 4.1 there is ϵ0 ∈ ]0, 1[ such
that

|x−Θ0(t)| < ε0|x|

for all (t, x) ∈ C. Let t ∈ π(C) be such that Θ0(t) ̸= 0. Then we obtain

+∞ = lim
x↘0

∣∣∣1− Θ0(t)

x

∣∣∣ ≤ ϵ0

which is a contradiction.

k = 1: Assume that Θ1 ̸= 0. By the case k = 0 and Proposition 5.6(2) we
have y0 = x. According to Definition 4.1 there is ϵ1 ∈ ]0, 1[ such that

|log(x)−Θ1(t)| < ϵ1|log(x)|

for all (t, x) ∈ C. Therefore

1 = lim
x↘0

∣∣∣1− Θ1(t)

log(x)

∣∣∣ ≤ ε1

for t ∈ π(C) which is a contradiction.

k = 2: Assume that Θ2 ̸= 0. By the case k = 1 and Proposition 5.6(2) we have
y1 = log(x). Note that y1 < 0. According to Definition 4.1 there is ϵ2 ∈ ]0, 1[
such that

|log(−y1)−Θ1(t)| < ϵ2|log(−y1)|

for all (t, x) ∈ C. Therefore

1 = lim
x↘0

∣∣∣1− Θ1(t)

log(−y1)

∣∣∣ ≤ ε2

for t ∈ π(C) which is a contradiction.

k → k + 1: We may assume that k ≥ 2. Assume that Θk+1 ̸= 0. By the
inductive hypothesis and Proposition 5.6(2) we have yk = logk−1(− log(x)).
Note that yk > 0. According to Definition 4.1 there is ϵk+1 ∈ ]0, 1[ such that

|log(yk)−Θk+1(t)| < ϵk+1|log(yk)|
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for all (t, x) ∈ C. Therefore

1 = lim
x↘0

∣∣∣1− Θk+1(t)

log(yk)

∣∣∣ ≤ ϵk+1

for t ∈ π(C) which is a contradiction. ■

5.9 Corollary

Let C be simple. Then the following are equivalent:

(1) C is r-simple.

(2) supCt ≤ 1/er for every t ∈ π(C).

Proof

(1) ⇒ (2): If C is r-simple then C is r-elementary by Proposition 5.8. By
Proposition 5.6(1) we obtain (2).

(2) ⇒ (1): Let y0 = x, y1 = log(x), yj = logj−1(− log(x)) for j ∈ {2, ..., r}.
Then it is easy to see that Y is a well-defined elementary r-logarithmic scale
on C. ■

5.10 Definition

Let q = (q0, ..., qr) ∈ Qr+1 with q ̸= 0. We set j(q) := min{j | qj ̸= 0} and
σ(q) := sign(qj(q)) ∈ {±1}. Moreover, let

qdiff := (q0 − 1, . . . , qj(q) − 1, qj(q)+1, . . . , qr).

5.11 Remark

Let C be r-simple. Let q := (q0, ..., qr) ∈ Qr+1 with q ̸= 0. Then

lim
x↘0

|Yel
r,C(x)|⊗q =


0, j(q) = 0, σ(q) = +1,

+∞, j(q) = 0, σ(q) = −1,
+∞, j(q) > 0, σ(q) = +1,
0, j(q) > 0, σ(q) = −1.

Proof

Note that for (t, x) ∈ C

|Yel
r,C(x)|⊗q = |x|q0 · |log(x)|q1 · |log(− log(x))|q2 · ... · |logr−1(− log(x))|qr .

So the assertion follows from the growth properties of the iterated logarithm.
■
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5.12 Proposition

Let C be r-simple. Let q ∈ Qr+1 with q ̸= 0. Then

lim
x↘0

∣∣∣ d
dx
|Yel

r,C(x)|⊗q

|Yel
r,C(x)|⊗qdiff

∣∣∣= qj(q).

Proof

Let Yel
r,C = (y0, . . . , yr). We get by Proposition 5.6(2) that d|y0|/dx = 1 and

that for j ∈ {1, ..., r}
d|yj|
dx

= − 1∏k−1
j=0 |yj|

.

This gives

d

dx

r∏
j=0

|yj|qj = q0|y0|q0−1 · |y1|q1 · ... · |yr|qr −
r∑

j=1

qj|yj|qj−1 1∏j−1
i=0 |yi|

∏
i ̸=j

|yi|qi

= q0|y0|q0−1
∏
i>0

|yi|qi −
r∑

j=1

qj
∏
i≤j

|yi|qi−1
∏
i>j

|yi|qi .

We obtain the assertion by the growth properties of the iterated logarithms.
■

5.13 Proposition

Let C be simple and let g : π(C) → R be C-nice. Then g is log-analytic.

Proof

Let E be a set of C-heirs such that g can be constructed from E. Let h ∈ E.
There is r ∈ N0, an r-logarithmic scale Y with center (Θ0, ...,Θr) on C and
l ∈ {1, ..., r} such that h = exp(Θl). Note that C is r-simple. With Proposition
5.8 we have Y = Yel

r,C . Therefore h = 1. So we obtain E = ∅ or E = {1}.
With the proof of the claim in Example 4.41 one sees that g is log-analytic.

■

5.14 Corollary

Let C be simple and let g : C → R be nicely r-log-analytically prepared in x.
Then g is purely r-log-analytically prepared in x.

Proof

Since C is simple and since g is r-log-analytically prepared in x we have that
C is r-simple. Let

J := (r,Y , a, q, s, v, b, P )
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be a nice LA-preparing tuple for g. We have Y = Yel
r,C by Proposition 5.8. Note

that a and b are C-nice. With Proposition 5.13 we get that the coefficient a and
the base functions b1, ..., bs are log-analytic. Since the center of Yel

r,C vanishes
we are done. ■

5.15 Proposition

Let X ⊂ Rn × R be definable and let g : X → R be nicely log-analytic in
x of order at most r. Then there is a definable cell decomposition C of X ̸=0

such that for every simple C ∈ C the cell C is r-simple and g|C is purely
r-log-analytically prepared in x.

Proof

By Proposition 4.64 there is a definable cell decomposition C of X such that
g|C is nicely r-log-analytically prepared in x for every C ∈ C. Fix a simple
C ∈ C. Then C is r-simple by Proposition 5.6(1). With Corollary 5.14 applied
to g|C we are done. ■

So we see that log-analytic functions can be prepared on simple sets (see Def-
inition 5.4 for the notion of a simple set) with log-analytic data only. (See
[22], Proposition 2.29 and Theorem 2.30 for another, but shorter proof than
Proposition 4.64. This proof is formulated explicitely for log-analytic functions
on simple sets.)

5.2 A Preparation Theorem for Restricted Log-Exp-
Analytic Functions on Simple Sets

For Section 5.2 we set the following: Let π : Rn × R → Rn, (t, x) 7→ t. Let
l,m ∈ N0 be with n = l + m. Let w range over Rl and u over Rm. Let
πl : Rl ×Rm → Rl, (w, u) 7→ w. Let X ⊂ Rn ×R be definable such that Xw is
open in Rm ×R for every w ∈ Rl. Note that π(X)w is open in Rm for w ∈ Rl.
Assume that 0 is an interior point of Xt for every t ∈ π(X).

The goal for this section is to show that a restricted log-exp-analytic function
f : X → R, (w, u, x) 7→ f(w, u, x), in (u, x) can be log-analytically prepared
in x with restricted log-exp-analytic coefficient and base functions in u with
reference set π(X) on simple sets.

5.16 Proposition

Let f : X → R be a restricted log-exp-analytic function in (u, x). Then there
are r ∈ N0, e ∈ N0 ∪ {−1} and a definable cell decomposition C of X ̸=0 such
that for every simple C ∈ C the cell C is r-simple and f |C is purely (m+1, X)-
restricted (e, r)-prepared in x.
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Proof

By Corollary 4.95 there are r ∈ N0, e ∈ N0 ∪ {−1} and a definable cell
decomposition C of X ̸=0 such that for every C ∈ C the function f |C is (m +
1, X)-restricted (e, r)-prepared in x. Fix such a simple C ∈ C and a set E
of locally bounded functions in (u, x) with reference set X such that f |C is
(e, r)-prepared in x with respect to E. Note that C is r-simple. We show by
induction on l ∈ {−1, ..., e} that g ∈ log(E) ∪ {f} is purely (l, r)-prepared in
x with respect to E. For l = −1 there is nothing to show.

l − 1 → l: Let
(r,Y , a, exp(c), q, s, v, b, exp(d), P )

be a preparing tuple for g. Note that a and b are C-nice and that Y = Yel
r,C .

Therefore Θ = 0. Additionally we have that a and b are log-analytic by
Proposition 5.13. Therefore g is purely (e, r)-prepared in x with respect to E
by the inductive hypothesis and we are done. ■

5.17 Proposition

Let f : X → R be restricted log-exp-analytic in (u, x). Then there is r ∈ N0 and
a definable cell decomposition C of X ̸=0 such that for every simple C ∈ C the
following holds. The cell C is r-simple and f |C is r-log-analytically prepared
in x with coefficient and base functions which are restricted log-exp-analytic in
u with reference set π(X).

Proof

By Proposition 5.16 there are r ∈ N0, e ∈ N0 ∪ {−1} and a definable cell
decomposition Q of X such that for every simple Q ∈ Q the cell Q is r-simple
and we have that f |Q is purely (m+ 1, X)-restricted (e, r)-prepared in x. Fix
such a simple Q ∈ Q. Let dy := sup(Qy) for y ∈ π(Q). Let E be a set of
positive definable functions on Q such that every g ∈ log(E) is locally bounded
in (u, x) with reference setX and f |Q is purely (e, r)-prepared in x with respect
to E. We need the following Claim.

Claim

Let h ∈ log(E) be r-log-analytically prepared in x with coefficient and base
functions which are restricted log-exp-analytic in u with reference set π(X).
Then there is a definable simple set D ⊂ Q with π(D) = π(Q) such that
h = h1 + h2 where

(1) h1 : π(D) → R is a function such that exp(h1) : π(D) → R is restricted
log-exp-analytic in u with reference set π(X) and

(2) h2 : D → R is a bounded function such that exp(h2) is r-log-analytically
prepared in x with coefficient 1 and base functions which are restricted
log-exp-analytic in u with reference set π(X).
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Proof of the claim

Let
(r,Y , a, q, s, v, b, P )

be a corresponding LA-preparing tuple for h where b := (b1, ..., bs) and P :=
(p1, ..., ps)

t. Note that Y = Yel
r,Q. We have

h(t, x) = a(t)|Y(x)|⊗qv(b1(t)|Y(x)|⊗p1 , ..., bs(t)|Y(x)|⊗ps)

for every (t, x) ∈ Q. We may assume that a ̸= 0. Note that q0 > 0 or if
q0 = 0 we see qj(q) ≤ 0. (Otherwise we have limx↘0 |h(w, u, x)| = ∞ for
every (w, u) ∈ π(Q) by Remark 5.11, but for every (w, u) ∈ π(Q) we have
(u, 0) ∈ Xw and therefore there is an open neighbourhood U of (u, 0) in Xw

such that hw|U∩Qw is bounded.)

We also have pi0 > 0 or if pi0 = 0 then pij(pi) ≤ 0 for every i ∈ {1, ..., s} by
Remark 5.11. (∗)

Case 1: q ̸= 0.

For t ∈ π(Q) let

d̂t := sup{x ∈ ]0, dt/2[ | |a(t)||Y(c)|⊗q ≤ 1 for every c ∈ ]0, x[}

and D := {(t, x) ∈ π(Q)× R | x ∈ ]0, d̂t[}. Note that D is definable and that
π(Q) = π(D). Set h1 := 0 and h2 := f |D. Note that h2 is bounded. By the
construction of D, using the exponential series and composition of power series
we see that exp(h2) is r-log-analytically prepared in x as desired.

Case 2: q = 0.

Subclaim 1

The coefficient a is locally bounded in u with reference set π(X).

Proof of Subclaim 1

Let π̂ : Rm+1 → Rm, (u, x) 7→ u. Let (w, u) ∈ π(X). Note that (w, u, 0) ∈ X.
Take an open ball U around (u, 0) in Xw such that either U ∩ Qw = ∅ or
hw|U∩Qw is bounded. With Definition 4.19 we see that either U ∩ Qw = ∅ or
aw|U∩Qw is bounded. Let B := π(Q). Note that π̂(Qw) = Bw.

If the former holds then π̂(U) ∩ Bw = π̂(U) ∩ π̂(Qw) = ∅. (Let u ∈ π̂(U) ∩
π̂(Qw). Since U is an open ball in Xw there is ϵ > 0 such that ]0, ϵ[⊂ Uu. So
]0,min{ϵ, d(w,u)}[⊂ Uu∩ (Qw)u and therefore U ∩Qw ̸= ∅. This shows also that
π̂(U ∩Qw) = π̂(U) ∩ π̂(Qw) = π̂(U) ∩Bw.)

If the latter holds then aw|π̂(U∩Qw) is bounded since a depends only on (w, u).
Since π̂(U ∩ Qw) = π̂(U) ∩ Bw we see that aw|π̂(U)∩Bw is bounded. So take
π̂(U) ⊂ π(X)w which is an open neighbourhood of u in π(X)w. ■Subclaim 1
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Let
∑

α∈Ns
0
cαX

α be the power series expansion of v. Let

Γ1 := {α ∈ Ns
0 | tPα = 0}

and Γ2 := Ns
0\Γ1. Set v1 :=

∑
α∈Γ1

cαX
α and v2 :=

∑
α∈Γ2

cαX
α. For l ∈ {1, 2}

let
gl : Q→ R, (t, x) 7→ a(t)vl(b1(t)|Y(x)|⊗p1 , ..., bs(t)|Y(x)|⊗ps).

Let
S := {j ∈ {1, ..., s} | pj ̸= 0}.

Subclaim 2

There is a restricted log-exp-analytic function Ψ : π(Q) → R, (w, u) 7→ Ψ(w, u),
in u with reference set π(X) which is locally bounded in u with reference set
π(X) such that g1(w, u, x) = Ψ(w, u) for every (w, u, x) ∈ Q.

Proof of Subclaim 2

For j ∈ S we have that αj = 0 for every α ∈ Γ1 by definition of Γ1. Let
{1, ..., s} \S = {l1, ..., lλ} where λ ∈ {0, ..., s} and l1, ..., lλ ∈ {0, ..., s} (if λ = 0
then S = {1, ..., s} and if λ = s then S = ∅). Note that there is a power series
v̂ which converges absolutely on an open neighbourhood of [−1, 1]λ such that

v1(b1(t)|Y(x)|⊗p1 , ..., bs(t)|Y(x)|⊗ps) = v̂(bl1(t), ..., blλ(t))

for (t, x) ∈ Q. Choose

Ψ : π(Q) → R, t 7→ a(t)v̂(bl1(t), ..., blλ(t)).

By Remark 3.32 Ψ is restricted log-exp-analytic in u with reference set π(X)
(since v̂ defines a globally subanalytic function on [−1, 1]λ). Note that Ψ has
the desired properties since a is locally bounded in u with reference set π(X).

■Subclaim 2

Let Ψ be as in Subclaim 2. If S = ∅ then g2 = 0 and we are done by taking
D = Q, h1 := Ψ and h2 := 0. So assume S ≠ ∅. Since v is a power series which
converges absolutely on an open neighbourhood of [−1, 1]s there is L ∈ R>0

such that
∑

α∈Ns |cα| < L. Fix such an L. For t ∈ π(Q) and j ∈ S let

d̂j,t := sup{x ∈ ]0, dt/2[ | |Y(c)|⊗pj <
1

L|a(t)bj(t)|
for every c ∈ ]0, x[}.

For t ∈ π(Q) set d̂t := min{d̂j,t | j ∈ S}. Consider

D := {(t, x) ∈ Q | x ∈ ]0, d̂t[}.

Note that D is a simple definable set with π(Q) = π(D).
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Subclaim 3

Note that |g2(t, x)| ≤ 1 for every (t, x) ∈ D and exp(g2|D) is r-log-analytically
prepared in x with coefficient 1 and base functions which are restricted log-
exp-analytic in u with reference set π(X).

Proof of Subclaim 3

For j ∈ {1, ..., s} and (t, x) ∈ D let ϕj(t, x) := bj(t)|Y(x)|⊗pj . For every
α := (α1, ..., αs) ∈ Γ2 fix iα ∈ {1, ..., s} with iα ∈ S and αiα ̸= 0. (By
definition of Γ2 such an iα exists.) We have

|a(t)||ϕiα(t, x)| ≤ 1/L

for (t, x) ∈ D and α ∈ Γ2. For (t, x) ∈ D we obtain

g2(t, x) = a(t)V2(ϕ1(t, x), ..., ϕs(t, x))

= a(t)
∑
α∈Γ2

cαϕiα(t, x)
αiα

∏
j ̸=iα

ϕj(t, x)
αj

=
∑
α∈Γ2

cαa(t)ϕiα(t, x)ϕiα(t, x)
αiα−1

∏
j ̸=iα

ϕj(t, x)
αj

and therefore |g2(t, x)| ≤ 1/L
∑

α∈Γ2
|cα| = 1.

Let S := {j1, ..., jk} where k ∈ N. Note that iα ∈ {j1, ..., jk} is unique for
α ∈ Ns

0. Let (zj1 , ..., zjk) be a new tuple of variables. Consider for l ∈ {1, ..., k}

ϕ̃l : D → [−1, 1], (t, x) 7→ a(t)bjl(t)|Y(x)|⊗pjl .

Consider

v̂ : [−1, 1]s+k → R, (x1, ..., xs, zj1 , ..., zjk) 7→
∑
α∈Γ2

cαziαx
αiα−1
iα

∏
j ̸=iα

x
αj

j .

Note that v̂ is a well-defined globally subanalytic function since v̂ defines a
power series which converges absolutely on an open neighbourhood of [−1, 1]s+k.
We have for (t, x) ∈ D

g2(t, x) = v̂(ϕ1(t, x), ..., ϕs(t, x), ϕ̃1(t, x), ..., ϕ̃k(t, x))

and therefore

exp(g2(t, x)) = exp∗(v̂(ϕ1(t, x), ..., ϕs(t, x), ϕ̃1(t, x), ..., ϕ̃k(t, x)))

where

exp∗ : R → R, x 7→
{

exp(x), x ∈ [−L,L],
0, else.
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is globally subanalytic. By using the exponential series and composition of
power series we see that exp(g2) has the desired properties (since a and bj are
restricted log-exp-analytic in u with reference set π(X)). ■Subclaim 3

So take h1 := Ψ where Ψ is as in Subclaim 2 and h2 := g2|D. ■Claim

Let h ∈ log(E) ∪ {f} be purely (l, r)-prepared in x with respect to E where
l ∈ {−1, ..., e}. We show by induction on l that there is a simple definable
A ⊂ Q with π(A) = π(Q) such that h|A is r-log-analytically prepared in x
with coefficient and base functions which are restricted log-exp-analytic in u
with reference set π(X). For l = −1 it is clear by choosing A := Q.

l − 1 → l : Let
(r,Y , a, ed, q, s, v, b, ec, P )

be a purely preparing tuple for h where b := (b1, ..., bs), e
c := (ec1 , ..., ecs), and

P := (p1, ..., ps)
t. Note that Y = Yel

r,C , that a, b1, ..., bs are log-analytic and
that d, c1, ..., cs are purely (l− 1, e)-prepared in x with respect to E. We have

h(t, x) = a(t)|Y(x)|⊗qed(t,x)v(b1(t)|Y(x)|⊗p1ec1(t,x), ..., bs(t)|Y(x)|⊗psecs(t,x))

for every (t, x) ∈ Q. By the inductive hypothesis and the Claim we find a
simple definable set A ⊂ Q with π(A) = π(Q) and functions d1, c11, ..., c1s :
π(A) → R and d2, c21, ..., c2s : A→ R with the following properties:

(1) The functions exp(d1) and exp(c11), ..., exp(c1s) are restricted log-exp-
analytic in u with reference set π(X),

(2) the functions exp(d2), exp(c21), ..., exp(c2s) are r-log-analytically prepared
in x with coefficient 1 and base functions which are restricted log-exp-
analytic in u with reference set π(X),

(3) we have d|A = d1 + d2 and cj|A = c1j + c2j for j ∈ {1, ..., s}.

Since a and b1, ..., bs are log-analytic we see that the functions

â : π(A) → R, (w, u) 7→ a(w, u)exp(d1(w, u)),

and
b̂j : π(A) → R, (w, u) 7→ bj(w, u)exp(c1j(w, u)),

for j ∈ {1, ..., s} are restricted log-exp-analytic in u with reference set π(X).
For (w, u, x) ∈ A we have

h(w, u, x) = â(w, u)|Y(x)|⊗qed2(w,u,x)v(ϕ̂1(w, u, x), ..., ϕ̂s(w, u, x))

where ϕ̂j(w, u, x) := b̂j(w, u)|Y(x)|⊗pjec2j(w,u,x) for (w, u, x) ∈ A and j ∈
{1, ..., s}. By composition of power series we obtain the desired r-log-analytical
preparation for h in x.
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So we find a simple definable set Ĉ ⊂ Q with π(Ĉ) = π(Q) such that f |Ĉ
is r-log-analytically prepared in x with coefficient and base functions which
are restricted log-exp-analytic in u with reference set π(X). With the cell
decomposition theorem applied to every such Ĉ (compare with Theorem 2.15)
we are done with the proof of Proposition 5.17. ■

An immediate consequence from this observation is the following.

5.18 Proposition

Let f : X → R, (w, u, x) 7→ f(w, u, x), be restricted log-exp-analytic in (u, x).
Assume that limx↘0 f(t, x) ∈ R for every t ∈ π(X). Then

h : π(X) → R, (w, u) 7→ lim
x↘0

f(w, u, x),

is restricted log-exp-analytic in u.

Proof

By Proposition 5.17 there is r ∈ N0 and a definable cell decomposition C of
X ̸=0 such that for every simple C ∈ C the cell C is r-simple, and f |C is r-
log-analytically prepared in x with coefficient and base functions which are
restricted log-exp-analytic in u with reference set π(X). Let C ∈ C be such a
simple cell. Set g := f |C and let

(r,Y , a, q, s, v, b, P )

be a corresponding LA-preparing tuple for g. Note that Y = Yel
r,C . Then

g(w, u, x) = a(w, u)|Y(x)|⊗qv(b1(w, u)|Y(x)|⊗p1 , ..., bs(w, u)|Y(x)|⊗ps)

for (w, u, x) ∈ C. By the assumption, Remark 5.11 and Definition 4.19 we see
that

A : π(C) → R, (w, u) 7→ lim
x↘0

a(w, u)|Y(x)|⊗q,

and, for j ∈ {1, ..., s}, that

Bj : π(C) → [−1, 1], (w, u) 7→ lim
x↘0

bj(w, u)|Y(x)|⊗pj ,

are well-defined restricted log-exp-analytic functions in u with reference set
π(X). We obtain for (w, u) ∈ π(C)

h(w, u) = A(w, u)v(B1(w, u), ..., Bs(w, u)).

Hence h|π(C) is restricted log-exp-analytic in u with reference set π(X) by
Remark 3.32. So by Remark 3.33 we obtain that h is restricted log-exp-analytic
in u. ■
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This gives the fact that restricted log-exp-analytic functions are closed under
taking derivatives.

5.19 Proposition

Let y := (y1, ..., ym+1) range over Rm+1. Let f : X → R be restricted log-exp-
analytic in y. Let j ∈ {1, ...,m+1} be such that fw is differentiable with respect
to yj on Xw for every w ∈ πl(X). Then ∂f/∂yj is restricted log-exp-analytic
in y.

Proof

Let π+ : Rl×Rm+1×R → Rl×Rm+1, (w, y, x) 7→ (w, y). We may assume that
f is differentiable with respect to the last variable ym+1. We have to show that
∂f/∂ym+1 is restricted log-exp-analytic in y. Let em+1 := (0, ..., 0, 1) ∈ Rm+1

be the (m+ 1)th unit vector. We define

V := {(w, y, x) ∈ X × R | (w, y + xem+1) ∈ X}.

Note that Vw is open and that 0 is an interior point of (Vw)y for every (w, y) ∈
π+(V ). Let

F : V → R, (w, y, x) 7→
{

f(w,y+xem+1)−f(w,y)
x

, x ̸= 0,
0, else.

By Remark 3.35 we see that G1 : V → R, (w, y, x) 7→ f(w, y + xem+1), and
G2 : V → R, (w, y, x) 7→ f(w, y), are restricted log-exp-analytic in (y, x). So
by Remark 3.32 we see that F is restricted log-exp-analytic in (y, x). Since

∂f

∂ym+1

(w, y) = lim
x↘0

F (w, y, x)

for (w, y) ∈ X we obtain by Proposition 5.18 that ∂f
∂ym+1

is a restricted log-

exp-analytic function in y with reference set π+(V ) = X. ■
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5.3 Strong Quasianalyticity and Real Analyticity

The Univariate Case

We start our considerations with restricted log-exp-analytic functions in one
variable and transfer our results into the multivariate case in the next para-
graph.

For this paragraph we consider the following. Let X ⊂ Rn × R be definable
such that Xt is open and 0 is an interior point of Xt for every t ∈ π(X). Let
π : Rn × R → Rn, (t, x) 7→ t.

5.20 Definition

Let N ∈ N. Let U ⊂ Rn be open and let g : U → R be a function. Let a ∈ U .
The function g is called N-flat at a if g is CN at a and all partial derivatives
of g of order at most N vanish in a. The function g is called flat at a if g is
C∞ at a and all partial derivatives of g vanish in a.

The fact that a restricted log-exp-analytic function in x can be log-analytically
prepared in x on simple definable sets implies the following.

5.21 Proposition

Let f : X → R be restricted log-exp-analytic in x. Then there is N ∈ N such
that the following holds for every t ∈ π(X). If f(t,−) is N-flat at x = 0 then
f(t,−) vanishes identically on an open interval around 0 ∈ R.

Proof

By also considering the function f(t,−x) it is enough to show that the following
holds: There is N ∈ N such that for every t ∈ π(X) with f(t,−) is N -flat at
x = 0 we have f(t, x) = 0 for all x ∈ ]0, εt[ for some ϵt ∈ R>0. By Proposition
5.17 we find r ∈ N0 and a definable cell decomposition C of X ̸=0 such that
for every simple C ∈ C the following holds: C is r-simple and f |C is r-log-
analytically prepared in x. Fix a simple C ∈ C and let(

r,Y , a, q, s, v, b, P
)

be an LA-preparing tuple for f |C where q := (q0, ..., qr). Note that Y = Yel
r,C

since the center of Y vanishes by Proposition 5.8. Choose NC ∈ N such that
NC > q0. Let t ∈ π(C). If f(t,−) is NC-flat at x = 0 then f(t,−) = o(xNC )
at x = 0 by Taylor’s theorem. But |Y(x)|⊗q/xNC ̸= o(1) by Remark 5.11.
Therefore we obtain a(t) = 0. By Remark 5.5 we are done by taking

N := max{NC | C ∈ C simple}.

■
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5.22 Remark

Proposition 5.21 does not hold in Ran,exp in general. Consider

f : R → R, x 7→
{
e−

1
x , x > 0,

0, x ≤ 0.

Then f is flat at 0, but not the zero function. Note also that f is C∞ at 0,
but not real analytic.

Another consequence from Proposition 5.17 is the following statement about
real analyticity of restricted log-exp-analytic functions in x at x = 0.

5.23 Proposition

Let f : X → R be a restricted log-exp-analytic in x. Then there is N ∈ N such
that the following holds: If f(t,−) is CN at 0 then f(t,−) is real analytic at
0.

Proof

By Proposition 5.17 we find r ∈ N0 and a definable cell decomposition C of
X ̸=0 such that for every simple C ∈ C the cell C is r-simple and f |C is r-log-
analytically prepared in x. Fix a simple cell C ∈ C and set ηt := sup Ct for
t ∈ π(C). Let

(r,Y , a, q, s, v, b, P )

be an LA-preparing tuple for g := f |C . Note that Y = Yel
r,C . Let

∑
α∈Ns

0
cαX

α

be the power series expansion of v. Let

Γ1 :=
{
α ∈ Ns

0

∣∣ tPα + q ∈ N0 × {0}r
}

and Γ2 := Ns
0\Γ1. Set v1 :=

∑
α∈Γ1

cαX
α and v2 :=

∑
α∈Γ2

cαX
α. For l ∈ {1, 2}

let

gl : C → R, (t, x) 7→ a(t)|Y(x)|⊗qvl
(
b1(t)|Y(x)|⊗p1 , . . . , bs(t)|Y(x)|⊗ps

)
.

Then g1, g2 are log-analytic in x. We have g = g1 + g2. For k ∈ N0 let

Γ1,k :=
{
α ∈ Ns

0

∣∣ tPα + q = (k, 0, . . . , 0)
}
⊂ Γ1

and

dk : π(C) → R, t 7→ a(t)
∑

α∈Γ1,k

cα

s∏
i=1

bi(t)
αi .

Then

g1(t, x) =
∞∑
k=0

dk(t)x
k
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for (t, x) ∈ C. We see that for a fixed t ∈ π(C) the series to the right has radius
of convergence at least sup(Ct) and therefore this series converges absolutely
on C. So g1 extends to a well-defined extension

ĝ1 : Ĉ :=
{
(t, x) ∈ Rn+1

∣∣ t ∈ π(C),−ηt < x < ηt
}
→ R,

(t, x) 7→
∞∑
k=0

dk(t)x
k,

such that ĝ1(t,−) is real analytic at 0 for every t ∈ π(C). Note that Ĉ is
definable. By shrinking ηt for t ∈ π(X) if necessary we may assume that
Ĉ ⊂ X.

Claim 1

The function ĝ1 is restricted log-exp-analytic in x with reference set X.

Proof of Claim 1

Note that ĝ1|Ĉ∩(Rn×{0}) = d0 is restricted log-exp-analytic in x with reference

set X (since d0 depends only on t). Let D := Ĉ ∩ (Rn × R<0). We show
that ĝ1|D is restricted log-exp-analytic in x with reference set X and are done
with Remark 3.33. Let Γ1,e :=

⋃
k even Γ1,k and Γ1,o :=

⋃
k odd Γ1,k. Set v1,e :=∑

α∈Γ1,e
cαX

α and v1,o :=
∑

α∈Γ1,o
cαX

α. Then for (t, x) ∈ Ĉ with x < 0 we
have

ĝ1(t, x) = a(t)|Y(−x)|⊗q
(
v1,e(b1(t)|Y(−x)|⊗p1 , ..., bs(t)|Y(−x)|⊗ps)−

v1,o(b1(t)|Y(−x)|⊗p1 , ..., bs(t)|Y(−x)|⊗ps)
)

which implies the desired assertion since ĝ1 is log-analytic in x (so we are done
with Remark 3.32 since ĝ1 can be constructed from a set E of positive definable
functions which depend only on t). ■Claim 1

Set
ĝ2 : Ĉ → R, (t, x) 7→ f(t, x)− ĝ1(t, x).

Then ĝ2 is restricted log-exp-analytic in x with reference set X by Claim 1.
Note that ĝ2|C = g2. Let

Λ :=
{t
Pα + q

∣∣ α ∈ Γ2

}
.

Then Λ ⊂ Qr+1 \ (N0 × {0}r). Fix t∗ ∈ π(C). For λ ∈ Λ, let

Γ2,λ :=
{
α ∈ Nr+1

0

∣∣ tPα + q = λ
}

and

et∗,λ := a(t∗)
∑

α∈Γ2,λ

cα

s∏
i=0

bi(t
∗)αi .

106



Then
ĝ2(t

∗,−) =
∑
λ∈Λ

et∗,λ|Y|⊗λ

on ]0, ηt[. Let
Λt∗ := {λ ∈ Λ | et∗,λ ̸= 0}.

If Λt∗ = ∅ then ĝ2(t∗,−) = 0 on ]0, ηt∗ [. If Λt∗ ̸= ∅ there is µt∗ = (µt∗,0, ..., µt∗,r) ∈
Λt∗ such that |Y|⊗λ = o(|Y|⊗µt∗ ) for all λ ∈ Λt∗ with λ ̸= µt∗ .

Claim 2

Let M ∈ N be such that f(t∗,−) is CM at 0. Then µt∗,0 ≥M .

Proof of Claim 2

Assume that µt∗,0 < M .

Case 1: µt∗,0 ∈ N0. Then m := µt∗,0+1 ≤M . Differentiating g2 m-times with
respect to x we see with Proposition 5.12 that there is β = (−1, β1, . . . , βr) ∈
Qr+1 such that

lim
x↘0

∂mg2/∂x
m(t∗, x)

|Y|⊗β
∈ R∗.

Since ĝ2(t
∗,−) = f(t∗,−)− ĝ1(t

∗,−) is CM at 0 we obtain that

lim
x↘0

∂mĝ2
∂xm

(t∗, x) =
∂mĝ2
∂xm

(t∗, 0) ∈ R

which contradicts that ĝ2(t
∗,−) extends g2(t

∗,−).

Case 2: µt∗,0 /∈ N0. Then m := ⌈µt∗,0⌉ ≤ M . Differentiating g2 m-times with
respect to x we see with Proposition 5.12 (note that µt∗ ̸= 0) that there is
β = (β0, β1, . . . , βr) ∈ Qr+1 with β0 < 0 such that

lim
x↘0

∂mg2/∂x
m(t∗, x)

|Y|⊗β
∈ R∗.

But ĝ2(t
∗,−) = f(t∗,−)− ĝ1(t

∗,−) is CM at 0. We get the same contradiction
as in Case 1. ■Claim 2

Claim 3

Let M ∈ N be such that f(t∗,−) is CM at 0. Then ĝ2(t
∗,−) is (M − 1)-flat at

0.

Proof of Claim 3

Case 1: Λt∗ = ∅. Then ĝ2(t∗,−) = 0 on ]0, ηt∗ [ and we are clearly done.

Case 2: Λt∗ ̸= ∅. By Claim 1 we obtain that µt∗,0 ≥ M . Hence we obtain by
Proposition 5.12 and Remark 5.11 that

lim
x↘0

∂mg2
∂xm

(t∗, x) = 0
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for all m ∈ {0, ...,M − 1}. Since ĝ2(t
∗,−) = f(t∗,−) − ĝ1(t

∗,−) is CM at 0
and since ĝ2(t

∗,−) extends g2(t
∗,−) we are done. ■Claim 3

Since the function ĝ2 is restricted log-exp-analytic in x with reference set X we
find by Proposition 5.21 some KC ∈ N such that the following holds for every
t ∈ π(C): If ĝ2(t,−) is KC-flat at x = 0 then ĝ2(t,−) vanishes identically
on some open interval around 0. Set NC := KC + 1. Assume that f(t,−)
is CNC at 0. Then by Claim 3 ĝ2(t,−) is KC-flat and hence by the above
that f(t,−) = ĝ1(t,−) on some open interval around 0. Since ĝ1(t,−) is real
analytic at 0 we get that f(t,−) is real analytic at 0. By Remark 5.5 we are
done with the proof of Proposition 5.23 by taking

N := max{NC | C ∈ C simple}.

■

5.24 Corollary

Let f : X → R be restricted log-exp-analytic in x. Assume that f(t,−) is real
analytic at 0 for every t ∈ π(X). Then there is a definable cell decomposition B
of π(X) such that B → R, t 7→ dk/dxkf(t, 0), is real analytic for every B ∈ B
and all k ∈ N0.

Proof

Using the notation of the previous proof we have f(t, x) = ĝ1(t, x) for all
(t, x) ∈ C where C is a simple cell of the constructed definable cell decompo-
sition C of X ̸=0. Since functions definable in Ran,exp are piecewise real analytic
we find a definable cell decomposition D of π(C) ⊂ Rn such that the coefficient
a and the base functions b1, . . . , bs are real analytic on every D ∈ D. Hence on
each D ∈ D the coefficients dk of ĝ1 are real analytic for every k ∈ N0. Since
dk/dxkf(t, 0) = k!dk(t) we are done by Remark 5.5. ■
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The Multivariate Case

For this paragraph we set the following. Let m ∈ N. Let u := (u1, ..., um)
and v := (v1, ..., vm) range over Rm and x over R. Let u′ := (u1, ..., um−1). Let
πn : Rn×Rm → Rn, (t, u) 7→ t and π : Rn×Rm−1×R → Rn×Rm−1, (t, u′, um) 7→
(t, u′). Let X ⊂ Rn × Rm be definable such that Xt is open for every t ∈ Rn.

With Proposition 5.21 and familiar connectivity arguments we can easily prove
the following result which gives strong quarianalyticity of a restricted log-exp-
analytic function.

5.25 Proposition

Assume that Xt is open and connected for every t ∈ Rn. Let f : X →
R, (t, u) 7→ f(t, u), be restricted log-exp-analytic in u. Then there is N ∈ N
with the following property: Let t ∈ πn(X). If f(t,−) is CN and if there is
a ∈ Xt such that f(t,−) is N-flat at a then f(t,−) vanishes identically.

Proof

We set Uϵ(a) := {t ∈ Rn | |t− a| < ϵ} where a ∈ Rn and ϵ ∈ R>0. Let y range
over R. Let

π∗ : Rn ×Rm ×Rm ×R×R → Rn ×Rm ×Rm ×R, (t, u, v, y, x) 7→ (t, u, v, y),

be the projection on the first (n+ 2m+ 1) coordinates. Let

Ṽ := {(t, u, v, y, x) ∈ X × Rm × R× R | (t, u+ (x− y)v) ∈ X},

and
G : Ṽ → R, (t, u, v, y, x) 7→ f(t, u+ (x− y)v).

By Remark 3.35 one sees that G is restricted log-exp-analytic in (u, v, y, x).
Furthermore let

V := {(t, u, v, y, x) ∈ Ṽ | 0 ∈ Ṽ(t,u,v,y)}

and F := G|V . Then F is restricted log-exp-analytic in (u, v, y, x) with refer-
ence set V . Since V(t,u,v,y) is open for (t, u, v, y) ∈ X × Rm × R we see that
F is also restricted log-exp-analytic in x. By Proposition 5.21 there is N ∈ N
such that the following holds for every (t, u, v, y) ∈ π∗(V ): If F (t, u, v, y,−) is
N -flat at x = 0 then F (t, u, v, y,−) vanishes identically on an open interval
around 0 ∈ R. Let t ∈ πn(X) be such that f(t,−) is CN on Xt. Note that then
F (t, u, v, y,−) is CN on V(t,u,v,y) for (t, u, v, y) ∈ π∗(V ). Let a ∈ Xt be such
that f(t,−) is N -flat at a. We show that this implies that f(t,−) vanishes
identically and are done. We start with the following
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Claim

There is r ∈ R>0 such that f(t,−) vanishes identically on Ur(a).

Proof of the claim

Let r ∈ R>0 be such that U4r(a) ⊂ Xt. Then

W := Ur(a)× U1(a)×]− r, r[×]− r, r[⊂ Vt.

So for v ∈ U1(a) we have that F (t, a, v, 0,−) is N -flat at x = 0. Then by
the above F (t, a, v, 0,−) vanishes on some open interval around 0. Fix such
a v ∈ U1(a) and let Av be the set of all y ∈ ] − r, r[ such that F (t, a, v, y,−)
vanishes identically on some open interval around 0. Then Av ̸= ∅ since 0 ∈ Av

by the above. Then Av is open. Let y ∈ Av ∩ ] − r, r[. Then F (t, a, v, y,−)
is N -flat at x = 0. Hence by the above F (t, a, v, y,−) vanishes identically on
some open interval around 0. Therefore Av is closed in ]− r, r[. Since intervals
are connected we obtain that Av = ] − r, r[ and hence that F (t, a, v,−,−)
vanishes identically on ] − r, r[×] − r, r[. Since v ∈ U1(a) is arbitrary we get
that f(t,−) vanishes identically on Ur(a). ■Claim

Let Wt be the set of all z ∈ Xt such that f vanishes identically on some open
ball around z. Then Wt ̸= ∅ since a ∈ Wt by the Claim. Clearly Wt is open.
Let û ∈ Wt ∩Xt. Then f(t,−) is N -flat at û. Again by the Claim we get that
û ∈ Wt. Therefore Wt is closed in Xt. Since Xt is connected we obtain that
Wt = Xt and hence that f(t,−) vanishes identically on Xt. This finishes the
proof of Proposition 5.25. ■

With our results on restricted log-exp-analytic functions above we can establish
a parametric version of Tamm’s theorem for this class of functions. For this
we adapt the reasoning of Van den Dries and Miller as in [14], Section 5 to our
setting in the same way as in [22], Section 3.3.

5.26 Definition

Let U ⊂ Rn be open and let g : U → R be a function. Let k ∈ N. Then
g is called k-times Gateaux-differentiable or Gk at a if x 7→ g(a + xu) is
Ck at x = 0 for every u ∈ Rn and

(
u 7→ dkg(a + xu)/dxk

)
(0) is given by a

homogeneous polynomial in u of degree k. The function g is called G∞ at a if
g is Gk at a for every k ∈ N.
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The following holds.

5.27 Fact (Van den Dries/Miller, [14], Section 2)

Let U ⊂ Rn be open and let g : U → R be a function. Let a ∈ U . Then the
following are equivalent:

(i) The function g is real analytic at a.

(ii) The function g is G∞ at a and there is ϵ ∈ R>0 such that for every v ∈ Rn

with |v| ≤ 1 the function x 7→ g(a + xv) is defined and real analytic on
]− ϵ, ϵ[.

5.28 Proposition

Let f : X → R, (t, u) 7→ f(t, u), be a restricted log-exp-analytic function in
u. Then there is N ∈ N such that the following holds for every (t, u) ∈ X: If
f(t,−) is GN at u then f(t,−) is G∞ at u.

Proof

Let v := (v1, ..., vm). Let

V := {(t, u, v, x) ∈ X × Rm × R | (t, u+ xv) ∈ X}.

Note that Vt ⊂ Rm × Rm × R is open and that 0 is an interior point of V(t,u,v)
for every (t, u, v) ∈ X × Rm. By Remark 3.35 we have that

g : V → R, (t, u, v, x) 7→ f(t, u+ xv),

is restricted log-exp-analytic in (u, v, x). By Proposition 5.23 there is K ∈ N
such that the following holds for every (t, u, v) ∈ X ×Rm: If x 7→ f(t, u+ xv)
is CK at 0 then x 7→ f(t, u+xv) is real analytic at 0. For k ∈ N let Wk be the
set of all (t, u) ∈ X such that x 7→ f(t, u + xv) is Ck at 0 for every v ∈ Rm.
We define

Φk : X × Rm → R, (t, u, v) 7→


dkf(t,u+xv)

dxk (0), (t, u) ∈ Wk,
if

1, (t, u) /∈ Wk.

Then we have Wk = WK for all k ≥ K. By Corollary 5.24 we find a definable
cell decomposition D of X×Rm such that Φk|D is real analytic for every D ∈ D
and all k ∈ N. Let πX : Rn+m ×Rm → Rn+m, (t, u, v) 7→ (t, u). For a definable
cell decomposition P of X × Rm we set

πX(P) := {πX(P ) | P ∈ P}

which is a definable cell decomposition of X.

111



Claim 1

There is a definable cell decomposition C of X × Rm compatible with D such
that for every B ∈ πX(C) there is a non-empty open ball U in Rm and Co ∈ C
with πX(C

o) = B such that for every z ∈ B we have U ⊂ (Co)z.

Proof of Claim 1

Let z range over Rn+m and let π̂X : Rn+m × Rm−1 → Rn+m, (z, u′) 7→ z and
π∗ : Rn+m × Rm → Rn+m × Rm−1, (z, u) 7→ (z, u′). We do an induction on m.

m = 1: Let Q ∈ πX(D). It is enough to find a definable cell decomposition
Ĉ of Q such that for every Ĉ ∈ Ĉ there is A ∈ D with Ĉ ⊂ πX(A) and a
non-empty open interval I in R such that I ⊂ Az for every z ∈ Ĉ. Of course
this induces the desired cell decomposition C of Q× R. Let

U(DQ) := {(z, u) ∈ Q×R | there is A ∈ D such that (z, u) ∈ A and Az is open}.

By uniform finiteness there are k ∈ N0 and definable continuous functions
σ1, ..., σk : Q→ R such that

U(DQ) = {(z, u) ∈ Q× R | u ̸= σj(z) for j ∈ {1, ..., k}}.

Let ϵ > 0. Pick w1, ..., wk+1 ∈ R such that |wi − wj| > ϵ for i ̸= j. For
l ∈ {1, ..., k + 1} let Ul := ]wl − ϵ, wl + ϵ[ and let

Ql := {z ∈ Q | σj(z) /∈ Ul for every j ∈ {1, ..., k}}.

Note that Ql is definable, that Ul ⊂ U(DQ)z for every z ∈ Ql and that Q =⋃k+1
l=1 Ql. For l ∈ {1, ..., k + 1} there is Do ∈ D with πX(D

o) = Q such that

Ul ⊂ (Do)z for every z ∈ Ql since Ul is connected. By choosing Ĉ in this way
that for every Ĉ ∈ Ĉ there is l ∈ {1, ..., k + 1} such that Ĉ ⊂ Ql we are done.

m− 1 → m: Note that π(D) := {π(D) | D ∈ D} is a definable cell decompo-
sition of X × Rm−1. With the base case applied to every D̂ ∈ π(D) we find a
definable cell decomposition T of X × Rm−1 compatible with π(D) such that
for every T ∈ T there is a non-empty open interval IT in R and A ∈ D with
T ⊂ π(A) such that IT ⊂ A(z,u′) for every (z, u′) ∈ T . By the inductive hy-
pothesis there is a definable cell decomposition K of X×Rm−1 compatible with
T such that for every BK ∈ π̂X(K) := {π̂X(K) | K ∈ K} there is Ko ∈ K with
π̂X(K

o) = BK and a non-empty open ball UK in Rm−1 such that UK ⊂ (Ko)z
for all z ∈ BK . For D ∈ D and K ∈ K with K ⊂ π(D) let

CK,D := {(z, u′, um) ∈ D | (z, u′) ∈ K}.

Fix K ∈ K with a corresponding Ko as above. For T ∗ ∈ T with Ko ⊂ T ∗

fix a corresponding IT ∗ and A ∈ D with IT ∗ ⊂ A(z,u′) for (z, u′) ∈ T ∗. Note
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that CKo,A is a definable cell with π̂X(K) = πX(CK,D) = πX(CKo,A). Consider
U := UK × IT ∗ . Let z ∈ πX(CK,D). By construction we have U ⊂ (CKo,A)z.
Note that

C := {CK,D | K ∈ K, D ∈ D with K ⊂ π(D)}

is a definable cell decomposition ofX×Rm with the desired properties. ■Claim 1

Let C be as in Claim 1. Let B := πX(C) and for B ∈ B let DB := {C ∈ C |
πX(C) = B}. Since C refines D we have that Φk|C is real analytic for every
k ∈ N and C ∈ C.

Claim 2

Let k ∈ N. There is a definable function wk : X × Rm → R, (t, u, v) 7→
wk(t, u, v), such that wk|C is real analytic for every C ∈ C and the following is
equivalent for every (t, u) ∈ X.

(i) The function f(t,−) is Gk at u.

(ii) wk(t, u, v) = 0 for every v ∈ Rm.

Proof of Claim 2

Let ν(k) be the dimension of the real vector space of homogeneous real polyno-
mials of degree k in the variables V := (V1, . . . , Vm) and letM1(V ), . . . ,Mν(k)(V )
be the homogeneous monomials of degree k in V . For p1, ..., pν(k) ∈ Rm let

A(p1, ..., pν(k)) :=


M1(p1) · · Mν(k)(p1)

· ·
· ·

M1(pν(k)) · · Mν(k)(pν(k))

 ∈M
(
ν(k)× ν(k),R).

Note that for p1, ..., pν(k) ∈ Rm and all s := (s1, ..., sν(k)) the linear system of
equations

ν(k)∑
j=1

κjMj(pl) = sl

where l ∈ {1, ..., ν(k)} has a unique solution (κ1, ..., κν(k)) if

det(A(p1, ..., pν(k))) ̸= 0.

We have that

T := {(p1, ..., pν(k)) ∈ (Rm)νk | det(A(p1, ..., pν(k))) = 0}

is an algebraic set. So (Rm)νκ \T is Zariski open and therefore dense in (Rm)νκ .
For B ∈ B consider the following: Fix Co ∈ DB and a non-empty open ball

113



UB such that UB ⊂ (Co)z for every z ∈ B. Note that (UB)
ν(k) ̸⊆ T . Therefore

there are points pk,1, . . . , pk,ν(k) ∈ UB such that for all (x, u) ∈ B and all
s := (s1, ..., sν(k))

Pk,B(s, V ) :=

ν(k)∑
j=1

aj(s)Mj(V ) ∈ R[V ]

is the unique homogeneous polynomial of degree k with Pk,B(s, pk,i) = si for
all i ∈ {1, . . . , ν(k)}. We have pk,j ∈ (Co)z for every z ∈ B. Set

ŵk,B : B × Rm → R, (t, u, v) 7→ Pk,B

(
Φk(t, u, pk,1), . . . ,Φk(t, u, pk,ν(k)), v

)
and

wk,B := ŵk,B − Φk|B×Rm .

We have by the choice of pk,1, ..., pk,ν(k) that B → R, z 7→ Φk(z, pk,j), is real
analytic for j ∈ {1, ..., νk} and therefore that wk,B|C is real analytic for C ∈ DB.

Letting wk : X → R be the function defined as wk(z) = wk,B(z) if z ∈ B.
Note that wk is well-defined, definable and that wk|C is real analytic for every
C ∈ C. We show that wk fulfills the remaining requirements for k ∈ N.

i) ⇒ ii): Let (t, u) ∈ X be such that f(t,−) is Gk at u. Then (t, u) ∈
Wk and v 7→ Φk(t, u, v) is a homogeneous polynomial of degree k. Let B ∈
B be with corresponding points pk,1, ..., pk,ν(k) ∈ Rm such that (t, u) ∈ B.
By the definition of ŵk,B we have ŵk,B(t, u, pk,j) = Φk(x, u, pk,j) for all j ∈
{1, . . . , ν(k)}. By the uniqueness of Pk,B we obtain that

ŵk,B(t, u, v) = Pk,B

(
Φk(t, u, pk,1), . . . ,Φk(t, u, pk,ν(k)), v

)
= Φk(t, u, v)

and therefore wk,B(t, u, v) = 0 for all v ∈ Rm.

ii) ⇒ i): Let (t, u) ∈ X be such that wk(t, u, v) = 0 for all v ∈ Rm. Let
B ∈ B be such that (t, u) ∈ B. Then Φk(t, u, v) = ŵk,B(t, u, v) for all v ∈ Rm

and therefore v 7→ Φk(t, u, v) is a homogeneous polynomial of degree k. Since
k ≥ 1 it is not constant. Hence we get that (x, u) ∈ Wk and consequently f is
Gk at u. ■Claim 2

Let wk be as in Claim 2 for k ∈ N. Since a real analytic function is quasianalytic
and Ran,exp admits C∞ cell decomposition we find for every C ∈ C someNC ∈ N
such that⋂

k∈N

{(t, u, v) ∈ C | wk(t, u, v) = 0} =
⋂

k≤NC

{(t, u, v) ∈ C | wk(t, u, v) = 0}.

(Compare with the proof of Proposition 1.6 in [14], Section 1). Let N :=
max{NC | C ∈ C}. Then⋂

k∈N

{(t, u, v) ∈ X × Rm | wk(t, u, v) = 0} =
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=
⋂
k≤N

{(t, u, v) ∈ X × Rm | wk(t, u, v) = 0}.

Hence for every (t, u) ∈ X we have that f(t,−) is G∞ at u if and only if
wk(t, u, v) = 0 for all k ∈ N and all v ∈ Rm if and only if wk(t, u, v) = 0 for all
k ≤ N and every v ∈ Rm if and only if f(t,−) is GN at u. This finishes the
proof of Proposition 5.28. ■

Finally we obtain Theorem A.

5.29 Proposition

Let f : X → R, (t, u) 7→ f(t, u), be a restricted log-exp-analytic function in u.
Then there is N ∈ N such that for all t ∈ Rn if f(t,−) is CN at u then f(t,−)
is real analytic at u.

Proof

By Proposition 5.28 there is N1 ∈ N such that for every (t, u) ∈ X if f(t,−)
is GN1 at u then f(t,−) is G∞ at u. Let

V := {(t, u, v, x) ∈ X × Rm × R | (t, u+ xv) ∈ X}

and
F : V → R, (t, u, v, x) 7→ f(t, u+ xv).

Since Xt is open we see that Vt is open for every t ∈ Rn. By Remark 3.35 F
is restricted log-exp-analytic in (u, v, x). By Proposition 5.23 there is N2 ∈ N
such that if F (t, u, v,−) is CN2 at 0 then F (t, u, v,−) is real analytic at 0.
Taking N := max{N1, N2} we are done with Fact 5.27. ■

5.30 Corollary

Let f : X → R, (t, u) 7→ f(t, u), be restricted log-exp-analytic in u. Then the
set of all (t, u) ∈ X such that f(t,−) is real analytic at u is definable.
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6 Global Complexification in Ran,exp

The goal for this chapter is to prove that a real analytic restricted log-exp-
analytic function has a global complexification which is again restricted log-
exp-analytic. Of course this answers the question ”Does Ran,exp have global
complexification?” not completely, but may be satisfactory since it may be
that every real analytic definable function is restricted log-exp-analytic (since
if the global exponential function comes not locally bounded into the game
features like flatness occur (compare with Example 3.24)). But neither real
analytic functions nor restricted log-exp-analytic functions are flat.

The first step is to construct a definable holomorphic extension of a prepared
restricted log-exp-analytic function in one variable on a single cell C. For this
we need a rather sophisticated set-up: Of course it is not difficult to construct
a definable holomorphic extension of a prepared restricted log-exp-analytic
function in one variable, but the problem is to obtain an extension which is
big enough to enable the induction on the number of variables. On the one
hand we have to deal with iterations of logarithmic scales, exponentials and
special units which occur in a prepared restricted log-exp-analytic function
and on the other hand we need also some definability results on integration
(compare also Kaiser in [19] for the ideas). We will handle all this appropriately
by introducing persistent and non-persistent functions which define ”suitable
definable subsets” of the domain of such an extension. The key feature is
that a holomorphic extension of a prepared restricted log-exp-analytic function
f(t, z) in z is complex log-analytically prepared in z on a ”suitable definable
subset”, i.e. of the form f(t, z) = a(t)(σ0z0(t, z))

q0 · ... · (σrzr(t, z))qrU(t, z)
where z0 = z − Θ0(t), z1 = log(σ0z0) − Θ1(t),..., where σj ∈ {−1, 1}, the qj’s
are rational exponents and U(t, z) is a function of a special form. It turns out
that the data of this log-analytical preparation belongs to a class of definable
functions which are an efficient generalization of nice functions. We will call
them regular functions. This helps enormously to give the desired result on
integration outgoing from considering logarithmic scales.

In the second step we consider a restricted log-exp-analytic function. We use
the preparation theorem and construct definable holomorphic extensions of
prepared restricted log-exp-analytic functions in one variable on every single
cell, glue them together and construct a unary high parametric global com-
plexification which is again restricted log-exp-analytic.

In the third step we derive Theorem B and C by a technical induction on the
number of variables (compare also Kaiser in [19] for the ideas).

This chapter is organized as follows. Chapter 6.1 is about constructing the
definable holomorphic extension of a prepared restricted log-exp-analytic func-
tion in one variable on a single cell: At first we describe geometrical proper-
ties and definable holomorphic extensions of logarithmic scales in one variable
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(Chapter 6.1.1). Before we answer the question on integration for logarith-
mic scales suitably for our purposes we define regular, persistent and non-
persistent functions and give important properties (Chapter 6.1.2). Finally we
study definable holomorphic extensions of prepared restricted log-exp-analytic
functions in one variable (Chapter 6.1.3). In Chapter 6.2 we construct the
unary high parametric global complexification of a restricted log-exp-analytic
function which is again restricted log-exp-analytic (Chapter 6.2.1) and then
we prove Theorem B and C (Chapter 6.2.2).

Further Notation:

Let n ∈ N0. Let t range over Rn and x over R if not otherwise mentioned. Let
π : Rn × R → Rn, (t, x) 7→ t. For a definable set X ⊂ Rn × R we consider the
following:

For a function g : π(X) → R we say that g > X if g(t) > x for every t ∈ π(X)
and x ∈ Xt and g < X if g(t) < x for every t ∈ π(X) and x ∈ Xt. For a
function f : X → R we say that f is continuous in x if ft is continuous on
Xt for every t ∈ π(X), (strictly) monotone increasing in x if ft is (strictly)
monotone increasing for all t ∈ π(X) and (strictly) monotone decreasing in x if
ft is (strictly) monotone decreasing for all t ∈ π(X) respectively. A subcurve
of a definable curve γ : ]0, 1[ → X is a definable curve γ̂ : ]0, 1[ → X of the
following form: There is δ > 1 such that γ̂(y) = γ(y/δ) for y ∈ ]0, 1[.

Let z range over C. Let π∗ : Rn×C → Rn, (t, z) 7→ t, be the projection on the
first n real coordinates. For Z ⊂ Rn ×C such that Zt is open for every t ∈ Rn

we say that a function F : Z → C is holomorphic in z if Ft is holomophic for
every t ∈ π∗(Z). We set

log∗ : C → C, z 7→


log(z), |z| ∈ [1/2, 3/2] \ R≤0,

if
0, else.

Note that log∗ is globally subanalytic.
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Conventions:

Definable means definable in Ran,exp if not otherwise mentioned. Let m ∈ N
and let X, Y ⊂ Rm be definable with Y ⊂ X and let f : Y → R be a function.
Let E be a set of positive definable functions on X. Then we say that f can
be constructed from E if f can be constructed from E|Y . We identify C with
R2 via x + iy 7→ (x, y). So ”definable in Cm” means ”definable in R2m” for
m ∈ N .

6.1 Preparations

For Chapter 6.1 we fix a non-empty definable cell C ⊂ Rn × R ̸=0 and an r-
logarithmic scale Y := (y0, ..., yr) on C with center Θ := (Θ0, ...,Θr). We fix
sign(Y) := σ := (σ0, ..., σr) ∈ {−1, 1}r+1.

6.1 Definition

(a) For t ∈ π(C) define the length of C with respect to x as LC(t) :=
sup(Ct)− inf(Ct) ∈ R≥0 ∪ {∞}.

(b) We say that C is fat with respect to x if LC(t) > 0 for every t ∈ π(C).

6.1.1 Geometrical Properties and Holomorphic Extensions of Log-
arithmic Scales

For the Chapter 6.1.1 we set D0 := π(C)× R and

g0 : D0 → R, (t, x) 7→ x−Θ0(t).

For l ∈ {1, ..., r} we set inductively

Dl := {(t, x) ∈ Dl−1 | σl−1gl−1(t, x) > 0}

and
gl : Dl → R, (t, x) 7→ log(σl−1gl−1(t, x))−Θl(t).

Set
D := {(t, x) ∈ Dr | σrgr(t, x) > 0}.

Geometrical Properties

6.2 Remark

We have C ⊂ D ⊂ Dr ⊂ ... ⊂ D1 and for l ∈ {0, ..., r} we have that gl|C = yl,
and (gl)t : (Dl)t → R is injective and real analytic for every t ∈ π(C).
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6.3 Definition

Let l ∈ {0, ..., r}. Let µ0,l : π(C) → R, t 7→ Θl(t), and inductively for j ∈
{1, ..., l} we set

µj,l : π(C) → R, t 7→ Θl−j(t) + σl−je
µj−1,l(t).

Set µl := µl,l.

6.4 Remark

Let l ∈ {0, ..., r}. The functions µl and µj,l for j ∈ {0, ..., l − 1} are definable.

It turns out that the graph of µl is disjoint from C and exactly the zero set of
gl for l ∈ {0, ..., r}. Additionally the sign of Y defines uniquely the position of
µl with respect to C and with respect to µj for j ̸= l. This facts are proven in
Proposition 6.5 and Corollary 6.6. (The functions µj,l for 0 ≤ j < l are needed
for technical reasons in this context.)

6.5 Proposition

Let t ∈ π(C). Let l ∈ {0, ..., r} and j ∈ {0, ..., l}. We have (t, µl(t)) ∈ Dj and

gj(t, µl(t)) = σje
µl−j−1,l(t)

if j < l.

Proof

That (t, µl(t)) ∈ D0 is clear. So suppose that l > 0. We show the statement
by induction on j ∈ {0, ..., l}.

j = 0: With Definition 6.3 we obtain

g0(t, µl(t)) = µl(t)−Θ0(t) = σ0e
µl−1,l(t).

j − 1 → j: By the inductive hypothesis (t, µl(t)) ∈ Dj−1 and

gj−1(t, µl(t)) = σj−1e
µl−j,l(t).

So we see that (t, µl(t)) ∈ Dj. If j < l we obtain

gj(t, µl(t)) = log(σj−1gj−1(t, µl(t)))−Θj(t)

= µl−j,l(t)−Θj(t) = σje
µl−j−1,l(t).

■
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6.6 Corollary

For l ∈ {0, ..., r} and t ∈ π(C) we have gl(t, µl(t)) = 0 and

Z(gl) := {(t, x) ∈ Dl | gl(t, x) = 0} = {(t, x) ∈ Dl | x = µl(t)}.

Proof

For l = 0 this is clear. So assume l > 0. With Proposition 6.5 we obtain
(t, µl(t)) ∈ Dl,

gl−1(t, µl(t)) = σl−1e
Θl(t),

and therefore

gl(t, µl(t)) = log(σl−1gl−1(t, µl(t)))−Θl(t) = 0

for every t ∈ π(C). With Remark 6.2 we are done. ■

6.7 Proposition

Let l ∈ {0, ..., r}. The following properties hold.

(1) The function gl is strictly monotone in x. It is strictly monotone in-
creasing in x if and only if

∏l−1
j=0 σj = 1.

(2) We have µl < C or µl > C. we have µl < C if and only if
∏l

j=0 σj = 1.

(3) Let k ∈ {l + 1, ..., r}. We have µl < µk or µk < µl. We have µl < µk if
and only if

∏l
j=0 σj = 1.

Proof

(1): We do an induction on l ∈ {0, ..., r}. For l = 0 it is clear.

l − 1 → l: We assume σl−1 = 1. The case ”σl−1 = −1” is handled completely
similar. Then gl is strictly monotone increasing in x if and only if gl−1 is
strictly monotone increasing in x. By the inductive hypothesis we have that
gl−1 is strictly monotone increasing in x if and only if

∏l−2
j=0 σj = 1. This gives

the result.

(2): Because gl|C = yl we obtain with Definition 4.1 gl|C > 0 or gl|C < 0.
We assume gl|C > 0, i.e. σl = 1. The case ”gl|C < 0” is handled completely
similar. By (1) we have that gl is either strictly monotone increasing in x
or strictly monotone decreasing in x. If the former holds then µl < C by
Corollary 6.6. Additionally

∏l−1
j=0 σj = 1 by (1) and therefore

∏l
j=0 σj = 1. If

the latter holds then µl > C by Corollary 6.6. Additionally
∏l−1

j=0 σj = −1 by

(1) and therefore
∏l

j=0 σj = −1.
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(3): With Proposition 6.5 we obtain

gl(t, µk(t)) = σle
µk−l−1,k(t)

for every t ∈ π(C). We assume that gl is strictly monotone increasing in x.
The case ”gl is strictly monotone decreasing” is handled completely similar. By
(1)

∏l−1
j=0 σj = 1. If σl = 1 then gl(t, µk(t)) = eµk−l−1,k(t) > 0 for every t ∈ π(C)

and consequently µl < µk by Corollary 6.6. If σl = −1 then gl(t, µk(t)) =
−eµk−l−1,k(t) < 0 for every t ∈ π(C) and consequently µk < µl by Corollary 6.6.

■

6.8 Definition

We define the change index kch for Y as follows: If there is l ∈ {0, ..., r} with
σl = −1 set

kch := max{l ∈ {0, ..., r} | σl = −1} − 1.

Otherwise set kch := −2.

6.9 Remark

If kch = −2 then σ0 = ... = σr = 1. If kch = −1 then σ0 = −1 and σ1 = ... =
σr = 1.

The next two Remarks show the geometrical meaning of the change index kch

of Y if it is nonnegative.

6.10 Remark

Let k := kch. Assume k ≥ 0.

(1) We have
∏k

j=0 σj = −1 if and only if
∏r

j=0 σj = 1.

(2) Let
∏r

j=0 σj = 1. If l ∈ {0, ..., r} \ {k} and
∏l

j=0 σj = −1 then µk < µl.

(3) Let
∏r

j=0 σj = −1. If l ∈ {0, ..., r} \ {k} and
∏l

j=0 σj = 1 then µl < µk.

Proof

(1): Follows directly from Definition 6.8.

(2): Let l ∈ {0, ..., r} \ {k} and suppose
∏l

j=0 σj = −1. Note that
∏a

j=0 σj = 1
if a ∈ {k + 1, ..., r}. So l < k. With Proposition 6.7(3) we obtain µk < µl.

(3): This is proven similarly as (2). ■
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6.11 Remark

Let k := kch. The following holds.

(1) If
∏r

j=0 σj = 1 and k < 0 then

D = {(t, x) ∈ π(C)× R | x > µr(t)}.

(2) If
∏r

j=0 σj = −1 and k < 0 then

D = {(t, x) ∈ π(C)× R | x < µr(t)}.

(3) If
∏r

j=0 σj = 1 and k ≥ 0 then

D = {(t, x) ∈ π(C)× R | µr(t) < x < µk(t)}.

(4) If
∏r

j=0 σj = −1 and k ≥ 0 then

D = {(t, x) ∈ π(C)× R | µk(t) < x < µr(t)}.

Proof

We show property (3). The rest is proven similarly. Note that
∏k

j=0 σj = −1,
µr < C < µk and σκgκ(t, x) = σκyκ(t, x) > 0 for (t, x) ∈ C and κ ∈ {k, r}.
Let (t, x) ∈ π(C)× R be with µr(t) < x < µk(t). If

∏l
j=0 σj = 1 then µl < µr

if l ̸= r by Proposition 6.7(3). If
∏l

j=0 σj = −1 then µk < µl if l ̸= k (since
then l < k). So we obtain with the intermediate value theorem, Definition 4.1
and Corollary 6.6 that σjgj(t, x) > 0 for every j ∈ {0, ..., r} since C ⊂ D and
(gj)t is continuous . Therefore (t, x) ∈ D.

Let (t, x) ∈ D. Then we have σκgκ(t, x) > 0 for κ ∈ {k, r}. Again with
Proposition 6.7(2), Corollary 6.6, the continuity of gκ in x and the monotony
property of gκ for κ ∈ {k, r} we obtain the result. ■
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Figure 6.1 The set D and the functions µj for a 2-logarithmic scale Y on C with
sign(Y) = (1,−1,−1) and continuous center.

6.12 Example

Let n = 1 and consider

C := {(t, x) ∈ R× R | t ∈ ]0, 1[, 1
1+t

+ e−t−1/t < x < 1
1+t

+ e−1/t}.

Let Θ0 : π(C) → R, t 7→ 1
1+t

, Θ1 : π(C) → R, t 7→ −1
t
and Θ2 = 0. Let

y0 : C → R, (t, x) 7→ x − Θ0(t), and inductively for j ∈ {1, 2} let yj : C →
R, (t, x) 7→ log(|yj−1(t, x)|) − Θj(t). Then Y := (y0, y1, y2) is a 2-logarithmic
scale with center (Θ0,Θ1,Θ2) and sign(Y) := (σ0, σ1, σ2) = (1,−1,−1) ∈
{−1, 1}3. Therefore kch = 1, µ0 = Θ0, µ1 = Θ0 + eΘ1 , µ2 = Θ0 + eΘ1−1,
µ0,1 = Θ1, µ0,2 = 0 and µ1,2 = Θ1 − 1.

Proof

Compare with Example 4.2 ■

Now we merge into the complex setting.

6.13 Definition

(a) Consider H0 := π(C)× C and

z0 : H0 → C, (t, z) 7→ z −Θ0(t).

Inductively for l ∈ {1, ..., r} we set

Hl := {(t, z) ∈ Hl−1 | σl−1zl−1(t, z) ∈ C−}

and
zl : Hl → C, (t, z) 7→ log(σl−1zl−1(t, z))−Θl(t).
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(b) Set
H := {(t, z) ∈ Hr | σrzr(t, z) ∈ C−}.

6.14 Remark

The following holds for l ∈ {0, ..., r}.

(1) It holds C ⊂ Dl ⊂ Hl, Hl ⊂ Hl−1 if l > 0 and (Hl)t is open for every
t ∈ π(C). Additionally zl is well-defined and holomorphic in z.

(2) It holds zl|Dl
= gl and zl|C = yl.

(3) Let E be a set of positive definable functions such that Θ0, ...,Θr can be
constructed from E. Then zl can be constructed from E.

Proof

(1): This follows by an easy induction on l and the fact that the complex
logarithm function is holomorphic on C−.

(2): This follows immediately by an easy induction on l and from Definition
6.13(a).

(3): We do an induction on l. We have z0(t, z) = z−Θ0(t) for every (t, z) ∈ H0

and are done with Proposition 3.16(2).

l − 1 → l: We have zl(t, z) = log(σl−1zl−1(t, z)) − Θl(t) for every (t, z) ∈ Hl

and are done with the inductive hypothesis and Proposition 3.16(2). ■

We often consider zl as a function on H for every l ∈ {0, ..., r}.

6.15 Remark

Let k := kch.

If
∏r

j=0 σj = 1 and k < 0 then

H = {(t, z) ∈ π(C)× C | z ∈ C−
µr(t)

}.

If
∏r

j=0 σj = −1 and k < 0 then

H = {(t, z) ∈ π(C)× C | z ∈ C+
µr(t)

}.

If
∏r

j=0 σj = 1 and k ≥ 0 then

H = {(t, z) ∈ π(C)× C | z ∈ C−
µr(t)

∩ C+
µk(t)

}.

If
∏r

j=0 σj = −1 and k ≥ 0 then

H = {(t, z) ∈ π(C)× C | z ∈ C+
µr(t)

∩ C−
µk(t)

}.
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Proof

We have
H = D ∪ (π(C)× C \ R),

because for (t, z) ∈ π(C) × C \ R we obtain σlzl(t, z) ∈ C \ R for every l ∈
{0, ..., r} by the definition of the complex logarithm function. We are done
with Remark 6.14(2) and Remark 6.11. ■

6.16 Definition

Let q := (q0, ..., qr) ∈ Qr+1. We set

(σZ)⊗q : H → C, (t, z) 7→
r∏

j=0

(σjzj(t, z))
qj .

6.17 Remark

Let q ∈ Qr+1. The following holds.

(1) Ht is open for every t ∈ π(C) and (σZ)⊗q is well-defined and holomorphic
in z. In particular it is

(σZ)⊗q|C = |Y|⊗q.

(2) Let E be a set of positive definable functions such that Θ0, ...,Θr can be
constructed from E. Then (σZ)⊗q can be constructed from E.

Proof

Note that σlzl(t, z) ∈ C− for every (t, z) ∈ H and l ∈ {0, ..., r} and that for
p ∈ Q the function C− → C, z 7→ zp = ep log(z), is holomorphic and globally
subanalytic. So property (1) follows from Remark 6.14(1) and Remark 6.14(2).
Property (2) follows immediately with Remark 6.14(3) and Proposition 3.16(2).

■

For the rest of Section 6.1.2 we fix κ = r or κ ∈ {kch, r} if kch ≥ 0.

6.18 Definition

Let H∗
0,κ := π(C)× C and P0,κ : H∗

0,κ → C, (t, z) 7→ z − µκ(t), and inductively
for l ∈ {1, ..., κ} let

H∗
l,κ := {(t, z) ∈ H∗

l−1,κ | 1 + σl−1Pl−1,κ(t, z)

eµκ−l,κ(t)
∈ C−}

and

Pl,κ : H∗
l,κ → C, (t, z) 7→ log

(
1 +

σl−1Pl−1,κ(t, z)

eµκ−l,κ(t)

)
.
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Set Pκ := Pκ,κ.

6.19 Remark

Let l ∈ {0, ..., κ}. The function Pl,κ is well-defined and definable. Furthermore
we have (t, µκ(t)) ∈ H∗

l and Pl,κ(t, µκ(t)) = 0 for t ∈ π(C).

We will see that this functions describe zl as a function of z − µκ for l ∈
{0, ..., r}. So they are very helpful for technical proofs for example to show
that there is a definable set Y ⊂ H big enough for our purposes such that
zl|Y is globally subanalytic in z for l ∈ {0, ..., κ} by using the logarithmic
series. (Compare also the second part of Chapter 6.1.2 regarding questions on
integration of logarithmic scales in the complex setting).

6.20 Proposition

Let l ∈ {0, ..., κ}. We have H∗
l,κ = Hl and if l ̸= κ then

zl(t, z) = Pl,κ(t, z) + σle
µκ−l−1,κ(t)

for (t, z) ∈ Hl.

Proof

By definition of H∗
0,κ we have H∗

0,κ = H0. If κ = 0 we are done. So assume
that κ > 0. We do an induction on l. For (t, z) ∈ H∗

0,κ we obtain

z0(t, z) = z −Θ0 − σ0e
µκ−1,κ(t) + σ0e

µκ−1,κ(t)

= z − µκ(t) + σ0e
µκ−1,κ(t) = P0,κ(t, z) + σ0e

µκ−1,κ(t).

l − 1 → l: Note that Hl−1 = H∗
l−1,κ. Let (t, z) ∈ Hl−1. We get with the

inductive hypothesis (since l − 1 ̸= κ)

σl−1zl−1(t, z) ∈ C− ⇔
(
1 +

σl−1(zl−1(t, z)− σl−1e
µκ−l,κ(t))

eµκ−l,κ(t)

)
∈ C−

⇔
(
1 +

σl−1Pl−1,κ(t, z)

eµκ−l,κ(t)

)
∈ C−.

So we obtain Hl = H∗
l,κ. Suppose l ̸= κ. Let (t, z) ∈ Hl. We obtain with the
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inductive hypothesis

zl(t, z) = log(σl−1zl−1(t, z))−Θl(t)

= log(σl−1(Pl−1,κ(t, z) + σl−1e
µκ−l,κ(t)))−Θl(t)

= log(σl−1Pl−1,κ(t, z) + eµκ−l,κ(t))−Θl(t)

= log
(
1 +

σl−1Pl−1,κ(t, z)

eµκ−l,κ(t)

)
+µκ−l,κ(t)−Θl(t)

= Pl,κ(t, z) + µκ−l,κ(t)−Θl(t)

= Pl,κ(t, z) + Θl(t) + σle
µκ−l−1,κ(t) −Θl(t)

= Pl,κ(t, z) + σle
µκ−l−1,κ(t).

■

6.21 Corollary

For (t, z) ∈ Hκ = H∗
κ,κ we have zκ(t, z) = Pκ(t, z).

Proof

Let κ = 0. Then Θκ = µκ and therefore

zκ(t, z) = z − µκ(t) = Pκ(t, z)

for (t, z) ∈ Hκ. So let κ > 0. With Proposition 6.20 we have for (t, z) ∈ Hκ

zκ(t, z) = log(σκ−1zκ−1(t, z))−Θκ(t)

= log(σκ−1(Pκ−1,κ(t, z) + σk−1e
µ0,κ(t)))−Θκ(t)

= log(σκ−1(Pκ−1,κ(t, z) + σk−1e
Θκ(t)))−Θκ(t)

= log(σκ−1Pκ−1,κ(t, z) + eΘκ(t))−Θκ(t)

= log
(
1 +

σκ−1Pκ−1,κ(t, z)

eΘκ(t)

)
= Pκ(t, z).

■

We often consider Pl,κ as a function on H for l ∈ {0, ..., κ}.

6.22 Example

Let n = 1 and consider

C := {(t, x) ∈ R× R | t ∈ ]0, 1[, 1
1+t

+ e−t−1/t < x < 1
1+t

+ e−1/t}.

Let Y := (y0, y1, y2) and Θ := (Θ0,Θ1,Θ2) be as in Example 6.12. We have

H = {(t, z) ∈ π(C)× C | 1
1+t

+ e−1−1/t < z < 1
1+t

+ e−1/t if z ∈ R}.
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For (t, z) ∈ H we have

z0(t, z) = z −Θ0(t), z1(t, z) = log(z0(t, z))−Θ1(t),

z2(t, z) = log(−z1(t, z))−Θ2(t)

and

P0,1(t, z) = z − µ1(t), P1,1(t, z) = log(1 +
z − µ1(t)

eµ0,1(t)
),

P0,2(t, z) = z − µ2(t), P1,2(t, z) = log
(
1 +

z − µ2(t)

eµ1,2(t)

)
,

P2,2(t, z) = log
(
1− P1,2(t, z)

eµ0,2(t)

)
where µ0, µ1, µ2, µ0,1, µ0,2 and µ1,2 are as in Example 6.12.

For Remark 6.23 and Remark 6.24 we fix a set E of positive definable functions
such that Θ can be constructed from E and we set

Eκ := E ∪ {π(C) → R, t 7→ eµl,κ(t) | l ∈ {0, ..., κ− 1}}.

6.23 Remark

Let l ∈ {0, ..., κ}. The function µl,κ can be constructed from Eκ.

Proof

We do an induction on l. If l = 0 this is clear, because µ0,κ = Θκ.

l − 1 → l: We have µl,κ(t) = Θκ−l(t) + σκ−le
µl−1,κ(t) for every t ∈ π(C) by

Definition 6.3. We are done with Proposition 3.11(2), because eµl−1,κ can be
constructed from Eκ by the inductive hypothesis and Proposition 3.11(1) (since
eµl−1,κ ∈ Eκ). ■

6.24 Remark

Let l ∈ {0, ..., κ}. Then the following holds.

(1) The function Pl,κ is holomorphic in z and can be constructed from Eκ.

(2) Let (t, z) ∈ H. Then (
∏κ

j=l σj)Pl,κ(t, z) ∈ C− and (
∏κ

j=l σj)Pl,κ(t, z) ∈
R>0 if z ∈ R.

Proof

(1): We do an induction on l. If l = 0 we have that P0(t, z) = z − µκ(t) for
every (t, z) ∈ H. We obtain the result with Proposition 3.16(2) and Remark
6.23. If l > 0 we have that

Pl,κ(t, z) = log
(
1− σl−1Pl−1,κ(t, z)

eµκ−l,κ(t)

)
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for every (t, z) ∈ H. We obtain the result with Proposition 3.16(2) and the
proof of Remark 6.23.

(2): If l = κ we obtain with Corollary 6.21

σκPκ(t, z) = σκzκ(t, z) ∈ C−

and if z ∈ R then (t, z) ∈ D (compare with Remark 6.15 and Remark 6.11)
and therefore σκPκ(t, z) = σκgκ(t, z) ∈ R>0 by construction of D and Remark
6.14(2). So assume l ̸= κ. Note that with Proposition 6.20

( κ∏
j=l

σj
)
Pl,κ(t, z) =

( κ∏
j=l

σj
)
zl(t, z)−

( κ∏
j=l

σj
)
σle

µκ−l−1,κ(t).

Since zl(t, z) ∈ C \ R for (t, z) ∈ C \ R we may assume z ∈ R. Therefore
(t, z) ∈ D. We show ( κ∏

j=l

σj
)
Pl,κ(t, z) ∈ R>0

by induction on l ∈ {0, ..., κ− 1}. For l = 0 we obtain

( κ∏
j=0

σj
)
P0,κ(t, z) =

( κ∏
j=0

σj
)
(z − µκ(t)).

The following is easy to see with Remark 6.15: If
∏κ

j=0 σj = 1 then µκ(t) < z
and therefore z − µκ(t) ∈ R>0. If

∏κ
j=0 σj = −1 then z < µκ(t) and therefore

µκ(t)− z ∈ R>0.

l − 1 → l : With the inductive hypothesis and Proposition 6.20 we obtain

( κ∏
j=l−1

σj
)
Pl−1,κ(t, z) =

( κ∏
j=l−1

σj
)
zl−1(t, z)−

( κ∏
j=l−1

σj
)
σl−1e

µκ−l,κ(t) ∈ R>0.

Assume
∏κ

j=l σj = 1. The case ”
∏κ

j=l σj = −1” is handled completely similar.
We obtain

σl−1zl−1(t, z) > eµκ−l,κ(t)

and by taking logarithm

log(σl−1zl−1(t, z)) > µκ−l,κ(t).

This gives
zl(t, z) > µκ−l,κ(t)−Θl(t) = σle

µκ−l−1,κ(t)

and therefore( κ∏
j=l

σj
)
Pl,κ(t, z) =

( κ∏
j=l

σj
)
zl(t, z)−

( κ∏
j=l

σj
)
σle

µκ−l−1,κ(t) ∈ R>0.
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This finishes the proof. ■

From now on we assume that C is fat with respect to x. For the rest of
Chapter 6.1 we consider the following: Let y range over R. For a definable
curve γ : ]0, 1[ → H with γ := (γ1, ..., γn+1) we set γt := (γ1, ..., γn) for the first
n real components, γz := γn+1 and if γn+1(y) ∈ R for every y ∈ ]0, 1[ we also
write γx instead of γz. ,

6.25 Remark

Let γ : ]0, 1[ → H be a definable curve. Then limy↘0 LC(γt(y)) ∈ R≥0 ∪ {∞}.

6.26 Definition

Let γ : ]0, 1[ → H be a definable curve. We say that γ is compatible with
C if limy↘0 γ(y) ∈ C, limy↘0 LC(γt(y)) > 0 and there is ϵ ∈ ]0, 1[ such that

{inf(Cγt(y)) | y ∈ ]0, ϵ[}

is bounded from above and

{sup(Cγt(y)) | y ∈ ]0, ϵ[}

is bounded from below.

Figure 6.2 The curve γ1 is compatible with C while the curves γ2 and γ3 aren’t.
(For j ∈ {1, 2, 3} the arrows show γj(y) for decreasing y ∈ ]0, 1[.)
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6.27 Remark

Let γ : ]0, 1[ → H be a definable curve compatible with C. The following
holds.

(1) There is a continuous definable function γ̃x : ]0, 1[ → R such that γ̃ :=
(γt, γ̃x) is a definable curve in C compatible with C and

lim
y↘0

dist(γ̃x(y),R \ Cγt(y)) > 0.

So for every l ∈ {0, ..., r} we have

lim
y↘0

|γ̃x(y)− µl(γt(y))| > 0.

(2) Let limy↘0 γ(y) := (t0, x0) where x0 ∈ R. Suppose that

lim
y↘0

dist(Re(γz(y)), Cγt(y)) = 0.

Then there is a definable function γ̂x : ]0, 1[ → R such that γ̂ := (γt, γ̂x)
is a definable curve in C compatible with C and limy↘0(γt(y), γ̂x(y)) =
(t0, x0).

Proof

We assume that

C = {(t, x) ∈ π(C)× R | f1(t) < x < f2(t)}

where f1, f2 : π(C) → R are definable and continuous with f1 < f2. The other
cases are handled completely similar (compare Definition 2.13 iii) - v) for the
other types of a definable cell). Note that limy↘0(f2(γt(y))− f1(γt(y))) > 0.

(1): Since γ is compatible with C we find continuous definable functions h1 :
π(C) → R and h2 : π(C) → R with h1 < h2 such that

{(t, x) ∈ π(C)× R | h1(t) < x < h2(t)} ⊂ C,

limy↘0 hj(γt(y)) ∈ R for j ∈ {1, 2} and limy↘0 h2(γt(y)) − h1(γt(y)) ∈ R>0.
(Choose h1 = f1 and h2 = min{f1 + 1, f2} if limy↘0 f1(γt(y)) ̸= −∞, h1 =
max{f1, f2 − 1} and h2 = f2 if limy↘0 f2(γt(y)) ̸= ∞ and otherwise h1 =
max{f1, 0} and h2 = min{f2, 1}.)

Consider

γ̃x : ]0, 1[ → R, y 7→ h1(γt(y)) + h2(γt(y))

2
.
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By o-minimality we obtain that ]0, 1[ → C, y 7→ (γt(y), γ̃x(y)), is a definable
curve compatible with C with

lim
y↘0

dist(γ̃x(y),R \ Cγt(y)) ≥ lim
y↘0

h2(γt(y))− h1(γt(y))

2
> 0.

We see that limy↘0 |γ̃x(y)− µj(γt(y))| > 0 since µj(γt(y)) /∈ Cγt(y) for every
y ∈ ]0, 1[ and j ∈ {0, ..., r}.

(2): There is 0 < ϵ < 1 such that Re(γz(y)) ∈ Cγt(y) for every y ∈ ]0, ϵ[
or Re(γz(y)) /∈ Cγt(y) for every y ∈ ]0, ϵ[. Assume the latter. The former is
handled completely similar.

Suppose that Re(γz(y)) > Cγt(y) for y ∈ ]0, ϵ[. The case ”Re(γz(y)) < Cγt(y)

for y ∈ ]0, ϵ[” is handled completely similar. Note that limy↘0 f2(γt(y)) =

x0. Fix a continuous definable function f̂1 with f1 < f̂1 < f2 such that
limy↘0 f̂1(γt(y)) ∈ R. Consider

γ̂x : ]0, 1[ → R, y 7→ f2(γt(y)) + y(f̂1(γt(y))− f2(γt(y))).

Note that γ̂x(y) ∈ Cγt(y) for y ∈ ]0, 1[. Since limy↘0 γ̂x(y) = x0 by construction
we see that γ̂x does the job. ■

6.28 Proposition

Let l ∈ {0, ..., r}. Let γ : ]0, 1[ → H be a definable curve compatible with C.
Then the following holds.

(Il) We have limy↘0Θl(γt(y)) ∈ R.

(IIl) We have limy↘0 |zl(γ(y))| = 0 if and only if limy↘0(γz(y)−µl(γt(y))) = 0.
We have limy↘0 |zl(γ(y))| = ∞ if and only if there is j ∈ {0, ..., l − 1}
such that limy↘0(γz(y)− µj(γt(y))) = 0.

Proof

Fix a definable curve γ̃ which fulfills the properties from Remark 6.27(1). By
o-minimality we have that limy↘0Θl(γt(y)) ∈ R ∪ {±∞}. We show both
statements by induction on l simultaneously.

l = 0: Assume limy↘0 |Θ0(γt(y))| = ∞. So Θ0 ̸= 0. By Definition 4.1 there is
ϵ0 ∈ ]0, 1[ such that

|x−Θ0(t)| < ϵ0|x|

for all (t, x) ∈ C. Since limy↘0 γ̃x(y) exists we get

+∞ = lim
y↘0

∣∣∣1− Θ0(γt(y))

γ̃x(y)

∣∣∣≤ ϵ0.
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This is a contradiction. This gives (I0). Since

z0(γz(y)) = γz(y)−Θ0(γt(y)) = γz(y)− µ0(γt(y))

for y ∈ ]0, 1[ we obtain (II0).

l − 1 → l: Assume limy↘0 |Θl(γt(y))| = ∞. So Θl ̸= 0. So there is ϵl ∈ ]0, 1[
such that

|log(σl−1yl−1(t, x))−Θl(t)| < ϵl|log(σl−1yl−1(t, x))|

for all (t, x) ∈ C. Therefore

lim
y↘0

∣∣∣1− Θl(γt(y))

log(σl−1yl−1(γ̃(y)))

∣∣∣≤ ϵl.

This gives limy↘0 σl−1yl−1(γ̃(y)) ∈ {0,∞}. With (IIl−1) we find j ∈ {0, ..., l−
1} such that

lim
y↘0

(γ̃x(y)− µj(γt(y))) = 0.

But this is a contradiction to the choice of γ̃. We obtain (Il).

We show (IIl). We have limy↘0 |zl(γ(y))| = ∞ if and only if limy↘0 |zl−1(γ(y))| ∈
{0,∞} by (Il) if and only if there is j ∈ {0, ..., l− 1} such that limy↘0(γz(y)−
µj(γt(y))) = 0 by (IIl−1). We see with (Ia) for a ∈ {1, ..., l} that

lim
y↘0

zl−j(γ(y)) = lim
y↘0

σl−je
µj−1,l(γt(y))

if and only if
lim
y↘0

zl−j−1(γ(y)) = lim
y↘0

σl−j−1e
µj,l(γt(y))

by an easy induction on j ∈ {1, ..., l − 1} (and the continuity of the global
exponential function and the global logarithm on the positive real line). So we
obtain limy↘0 zl(γ(y)) = 0 if and only if limy↘0 zl−1(γ(y)) = σl−1e

µ0,l(γt(y)) by
(Il) if and only if

lim
y↘0

z0(γ(y)) = lim
y↘0

σ0e
µl−1,l(γt(y))

if and only if

lim
y↘0

γz(y) = lim
y↘0

(Θ0(γt(y)) + σ0e
µl−1,l(γt(y))) = lim

y↘0
µl(γt(y))

with (I0). ■

We see that the center Θ of Y has the following property: If for t0 ∈ Rn there is
an open neighbourhood U of t0 in Rn, ϵ > 0 and c1, c2 ∈ R such that LC(t) > ϵ,
inf(Ct) < c1 and sup(Ct) > c2 for every t ∈ π(C)∩U then Θj is bounded at t0
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for every j ∈ {0, ..., r} (i.e. there is V ⊂ U open in Rn with t0 ∈ V such that
Θj|π(C)∩V is bounded).

6.29 Corollary

Let γ : ]0, 1[ → H be a definable curve compatible with C. The following holds.

(1) Let l ∈ {0, ..., r}.

(i) We have limy↘0 µj,l(γt(y)) ∈ R for every j ∈ {0, ..., l}.
(ii) It is

lim
y↘0

|µl(γt(y))− µj(γt(y))| > 0

for every j ∈ {0, ..., r} with j ̸= l.

(2) Let q ∈ Qr+1. Let limy↘0 |(σZ)⊗q(γ(y))| ∈ {0,∞}. Then there is l ∈
{0, ..., r} with limy↘0 γz(y)− µl(γt(y)) = 0.

Proof

(1),(i): This is clear with the continuity of the global exponential function,
(Ij) in Proposition 6.28 and the definition of µj,l for j ∈ {0, ..., l}.
(1),(ii): Let j ∈ {0, ..., l− 1}. With Definition 6.3 and (Ia) in Proposition 6.28
for a ∈ {0, ..., j − 1} we obtain that

lim
y↘0

|µl−b(γt(y))− µj−b(γt(y))| > 0

if and only if
lim
y↘0

|µl−b−1,l(γt(y))− µj−b−1,j(γt(y))| > 0

by an easy induction on b ∈ {0, ..., j − 1}. So we have

lim
y↘0

|µl(γt(y))− µj(γt(y))| > 0

if and only if

lim
y↘0

|µl−j,l(γt(y))− µ0,j(γt(y))| = lim
y↘0

eµl−j−1,l(γt(y)) > 0

with (1),(i).

(2): This is clear with (II)l in Proposition 6.28 for l ∈ {0, ..., r}. ■

The following example shows that Proposition 6.28 and Corollary 6.29 do not
hold in general if one dispenses with the property ”limy↘0(LC(γt(y))) > 0”
even if the cell is bounded.

134



6.30 Example

Let C, y0, y1 and Θ0,Θ1 be as in Example 6.12. Note that (y0, y1) is a 1-
logarithmic scale with center (Θ0,Θ1). On the other hand we have limt↘0Θ1(t) =
−∞, limt↘0 µ1(t)− µ0(t) = 0, and limt↘0 LC(t) = 0.

6.31 Corollary

Let γ : ]0, 1[ → H be a definable curve compatible with C. Assume limy↘0 γz(y)−
µκ(γt(y)) = 0. Then

lim
y↘0

Pl,κ(γ(y)) = 0

for every l ∈ {0, ..., κ}.

Proof

We do an induction on l. If l = 0 then this is clear with Definition 6.18.

l − 1 → l: By Definition 6.18 we obtain

lim
y↘0

Pl,κ(γ(y)) = lim
y↘0

log
(
1 +

σl−1Pl−1,κ(γ(y))

eµκ−l,κ(γt(y))

)
= 0

by the inductive hypothesis, Corollary 6.29(1),(i) and the continuity of the
global logarithm at 1. ■

6.32 Definition

Let q ∈ Qr+1 we with (qκ, ..., qr) ̸= 0. Assume k := kch ≥ 0. Set

lmin(q) := min{j ∈ {k + 1, ..., r} | qj ̸= 0}.

6.33 Definition

Let q ∈ Qr+1. Let l := lmin(q) if k := kch ≥ 0.

a) We call q r-positive if qr > 0.

b) Suppose k ≥ 0. We call q k-positive if qk > 0 or if qk = 0 then ql < 0.

c) We call q r-negative if qr < 0.

d) Suppose k ≥ 0. We call q k-negative if qk < 0 or if qk = 0 then ql > 0.
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6.34 Proposition

Let q := (q0, ..., qr) ∈ Qr+1. Let γ : ]0, 1[ → H be a definable curve compatible
with C. Suppose limy↘0 γz(y)− µκ(γt(y)) = 0. Then the following holds.

(1) limy↘0 |zl(γ(y))| ∈ R>0 for l < κ.

(2) If q is κ-positive then limy↘0 |(σZ)⊗q(γ(y))| = 0. If q is κ-negative then
limy↘0 |(σZ)⊗q(γ(y))| = ∞.

Proof

(1): Assume there is l ∈ {0, ..., κ − 1} such that limy↘0 |zl(γ(y))| ∈ {0,∞}.
Then with (IIl) in Proposition 6.28 we find j ∈ {0, ..., l} such that limy↘0(γz(y)−
µj(γt(y))) = 0 and therefore

lim
y↘0

(µκ(γt(y))− µj(γt(y))) = 0,

a contradiction to Corollary 6.29(1),(ii). We obtain the assertion with o-
minimality.

(2): If κ = r we obtain with (II)r in Proposition 6.28 limy↘0 zr(γ(y)) = 0.
With (1) we are done. So let 0 ≤ k := kch and suppose κ = k. Let

W := {(t, z) ∈ H | |zk(t, z)| < 1/expr−k(1)},

L1 : W → C, (t, z) 7→ log(|zk(t, z)|),

and for l ∈ {2, ..., r − k}

Ll : W → C, (t, z) 7→ logl−1(− log(|zk(t, z)|)).

Note that Ll is well-defined and definable for l ∈ {1, ..., r−k}. By o-minimality
and considering a suitable subcurve of γ if necessary we may assume that
γ(]0, 1[) ⊂ W .

136



Claim

Let l ∈ {1, ..., r − k}. There is a definable function hl : W → C with
limy↘0 hl(γ(y)) = 0 such that

zk+l(t, z) = Ll(t, z)(1 + hl(t, z))

for every (t, z) ∈ W .

Proof of the claim

We do an induction on l. Suppose l = 1. We have for (t, z) ∈ W

zk+1(t, z) = log(|zk(t, z)|)
(
1− Θk+1(t)− iarg(σkzk(t, z))

log(|zk(t, z)|)

)
.

So choose

h1 : W → C, (t, z) 7→ −Θk+1(t)− iarg(σkzk(t, z))

log(|zk(t, z)|)
.

We have limy↘0 h1(γ(y)) = 0 by (Ik+1) and (IIk) in Proposition 6.28.

l = 2: Note that σk+1 = −1. We have for (t, z) ∈ W

zk+2(t, z) = log(σk+1L1(t, z)(1 + h1(t, z)))−Θk+2(t)

= log(−L1(t, z))
(
1 +

log(1 + h1(t, z))−Θk+2(t)

log(−L1(t, z))

)
.

Choose

h2 : W → C, (t, z) 7→ log(1 + h1(t, z))−Θk+2(t)

log(−L1(t, z))
.

Then h2 is definable and by (Ik+2) in Proposition 6.28 we get limy↘0 h2(γ(y)) =
0.

l − 1 → l: We may assume that l > 2. Note that σk+l−1 = 1. With the
inductive hypothesis we obtain

zk+l(t, z) = log(σk+l−1Ll−1(t, z)(1 + hl−1(t, z)))−Θk+l(t)

= log(Ll−1(t, z))
(
1 +

log(1 + hl−1(t, z))−Θk+l(t)

log(Ll−1(t, z))

)
for every (t, z) ∈ W . Choose

hl : H → C, (t, z) 7→ log(1 + hl−1(t, z))−Θk+l(t)

log(Ll−1(t, z))
.

Then hl is definable and by (Ik+l) in Proposition 6.28 we get limy↘0 hl(γ(y)) =
0. ■Claim
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Let hl and Ll be as in the Claim for l ∈ {1, ..., r − k}. Then we obtain for
y ∈ ]0, 1[

|(σZ)⊗q(γ(y))| = d(γ(y))|zk(γ(y))|qk
r−k∏
l=1

Ll(γ(y))
qκ+l(1 + hl(γ(y)))

qκ+l

where

d(γ(y)) :=
k−1∏
l=0

|zl(γ(y))|ql .

Note that limy↘0 |zk(γ(y))| = 0 by (IIk) in Proposition 6.28. So with the
growth properties of the iterated logarithm we obtain

lim
y↘0

|zk(γ(y))|qk
r−k∏
l=1

|Ll(γ(y))|qk+l = 0

if q is k-positive and

lim
y↘0

|zk(γ(y))|qk
r−k∏
l=1

Ll(γ(y))
qk+l = ∞

if q is k-negative. So one sees with (1) that limy↘0 |(σZ)⊗q(γ(y))| = 0 if q is
k-positive and limy↘0 |(σZ)⊗q(γ(y))| = ∞ if q is k-negative. This finishes the
proof of Proposition 6.34. ■

6.35 Corollary

Let q ∈ Qr+1 with (qκ, ..., qr) ̸= 0. Let jκ(q) := min{j ∈ {κ, ..., r} | qj ̸= 0}
and

qκ,diff := (0, ..., 0, qκ − 1, ..., qj(q) − 1, qj(q)+1, ..., qr).

For t ∈ π(C) it is

lim
z→µκ(t)

∣∣∣ d
dz
(σZ)⊗q(t, z)

(σZ)⊗qκ,diff(t, z)

∣∣∣∈ R∗.

(Compare Definition 5.10 and Proposition 5.12 for the case that C is simple
and κ ̸= r: On a simple cell we have k = 0.)

Proof

Let t ∈ π(C). We have
d

dz
σlzl =

σl∏l−1
j=0 zj

.

We obtain
d

dz
(σZ)⊗q =

r∑
j=0

qj(σjzj)
qj−1 1∏j−1

i=0 zi

∏
i ̸=j

(σizi)
qi .
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Note also that limz→µκ(t) |Pj,κ(t, z)| = 0 and therefore with Proposition 6.20

lim
z→µκ(t)

|zj(t, z)| = lim
z→µκ(t)

|Pj,κ(t, z) + σje
µκ−j−1,κ(t)| = eµκ−j−1,κ(t) ∈ R∗

for j ∈ {0, ..., κ − 1}. We get the assertion with the growth properties of the
complex logarithm (compare the proof of Proposition 6.34(2)). ■

6.36 Definition

We call C near with respect to µκ if there is a definable curve γ : ]0, 1[ → C
compatible with C such that limy↘0(µκ(γt(y))−γx(y)) = 0. Otherwise we call
C far with respect to µκ .

Figure 6.3 The functions µj for a 1-logarithmic scale Y with sign(Y) = (1,−1)
where µ0 is far and µ1 is near with respect to C.

6.37 Proposition

Let k := kch ≥ 0 and let C be near with respect to µk. Then Θl = 0 for every
l ∈ {k + 1, ..., r}.

Proof

Let γ : ]0, 1[ → C be a definable curve compatible with C and let

lim
y↘0

(µk(γt(y))− γx(y)) = 0.

Then limy↘0 yk(γ(y)) = 0 by (IIk) in Proposition 6.28. We do an induction
on l ∈ {k + 1, ..., r}.

l = k + 1: Assume Θk+1 ̸= 0. Then there is ϵk+1 ∈ ]0, 1[ such that

|log(σkyk(t, x))−Θk+1(t)| < ϵk+1|log(σkyk(t, x))|
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for all (t, x) ∈ C. We obtain

lim
y↘0

∣∣∣1− Θk+1(γt(y))

log(σkyk(γ(y)))

∣∣∣≤ ϵk+1

and therefore limy↘0 |Θk+1(γt(y))| = ∞, a contradiction to (Ik+1) in Proposi-
tion 6.28.

l → l + 1: We have σk+1 = −1 and σk+2 = ... = σl = 1. So we obtain

log(σlyl) = logl−k(− log(σkyk))

on C by the inductive hypothesis. Assume Θl+1 ̸= 0. Then there is ϵl+1 ∈ ]0, 1[
such that

|logl−k(− log(σkyk(t, x)))−Θl+1(t)| < ϵl+1|logl−k(− log(σkyk(t, x)))|

for all (t, x) ∈ C. We obtain

lim
y↘0

∣∣∣1− Θl+1(γt(y))

logl−k(− log(σkyk(γ(y))))

∣∣∣≤ ϵl+1

and therefore limy↘0 |Θl+1(γt(y))| = ∞, a contradiction to (Il+1) in Proposition
6.28. ■
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6.1.2 Regularity, Persistence and Integrability of Logaritmic Scales
in the Complex Setting

For this section we set the following: Fix l,m ∈ N0 such that l +m = n. Let
w := (w1, ..., wl) range over Rl and u := (u1, ..., um) over Rm. Let C ⊂ Rn ×R
be a definable fat cell with respect to x and X ⊂ Rn × R be definable with
C ⊂ X. Assume that Xw is open for every w ∈ Rl. Let πl : Rl × Rm × R →
Rl, (w, u, x) 7→ w. For w ∈ πl(C) and a definable curve γ : ]0, 1[ → Hw =
{(u, z) ∈ Rm × C | (w, u, z) ∈ H} we set γu := (γ1, ..., γm) for the first
m real components and γz := γm+1 for the last complex component and if
γm+1(y) ∈ R for every y ∈ ]0, 1[ we also write γx instead of γz. For w ∈ πl(C)
we say that a definable curve γ : ]0, 1[ → Hw is compatible with Cw if the curve
γ̂ : ]0, 1[ → H, y 7→ (w, γ(y)), is compatible with C. Fix κ = r or κ ∈ {kch, r}
if kch ≥ 0.

6.38 Definition

Let g : π(C) → R be definable. We call g : π(C) → R C-consistent in u
with respect to X if the following holds. Let w ∈ πl(C). Then for every
definable curve γ : ]0, 1[ → Cw compatible with Cw with limy↘0 γ(y) ∈ Xw it
is

lim
y↘0

g(w, γu(y)) ∈ R.

So a C-consistent function g : π(C) → R in u with respect to X has the
following property: If for (w0, u0) ∈ π(X) there is an open neighbourhood U
of u0 in π(X)w0 and ϵ > 0 such that LC(w0, u) > ϵ for every u ∈ π(C)w0 ∩ U
then gw0 is bounded at u0, i.e. there is V ⊂ U open with u0 ∈ V such that
gw0|π(C)w0∩V is bounded. If C = X then g is locally bounded in u.

Figure 6.4 Let m = 1 and l = 0. A C-consistent function f : C → R in u with
respect to X is bounded at u0, but not necessarily bounded at u1 respectively u2.
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6.39 Remark

Let Y ⊂ Rn × R be definable with X ⊂ Y such that Yw is open for every
w ∈ Rl. A function g : π(C) → R which is C-consistent in u with respect to
Y is also C-consistent in u with respect to X.

6.40 Remark

(1) The set of C-consistent functions in u with respect to X on π(C) is an
R-algebra with respect to pointwise addition and multiplication.

(2) The set of positive C-consistent functions in u with respect to X is a
divisible monoid with respect to pointwise multiplication.

(3) Let q ∈ Q. Let f : π(C) → R be C-consistent in u with respect to X.
Then exp(q · f) is C-consistent in u with respect to X.

6.41 Example

(1) The functions Θ0, ...,Θr are C-consistent in u with respect to Rn × R.

(2) Let l ∈ {0, ..., κ}. The function π(C) 7→ R, t 7→ µj,l(t), is C-consistent in
u with respect to Rn × R for j ∈ {0, ..., l}.

(3) The logarithm of a C-heir is C-consistent in u with respect to Rn × R.

Proof

(1): Follows from (Ij) in Proposition 6.28 for j ∈ {0, ..., r}.
(2): Follows from Corollary 6.29(1),(i).

(3): Let g : π(C) → R>0 be a C-heir. Note that there is l ∈ N, an l-logarithmic
scale Ŷ with center (Θ̂0, ..., Θ̂l) such that g = exp(Θ̂j) for j ∈ {1, ..., l}. So this

property follows from (Ij) in Proposition 6.28 applied to Ŷ for j ∈ {1, ..., l}.
■

6.42 Remark

Let e ∈ N0 ∪ {−1} and r ∈ N0. Let f : C → R, (w, u, x) 7→ f(w, u, x), be
(m+ 1, X)-restricted (e, r)-prepared in x with preparing tuple

(r,Y , a, exp(c), q, s, v, b, exp(d), P )

with b = (b1, ..., bs), exp(d) = (exp(d1), ..., exp(ds)) and P = (p1, ..., ps)
t. Then

the following holds.

(1) Let j ∈ {1, ..., s}. The function bj is C-consistent in u with respect to
X.
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(2) Assume that f is locally bounded in (u, x) with reference set X. The
function a is C-consistent in u with respect to X.

Proof

For (t, x) ∈ C let

V (t, x) := v(b1(t)|Y(t, x)|⊗p1ed1(t,x), ..., bs(t)|Y(t, x)|⊗pseds(t,x)).

For (t, x) ∈ C we have

f(t, x) = a(t)|Y(t, x)|⊗qec(t,x)V (t, x).

Let w ∈ πl(C) and let γ : ]0, 1[ → Cw be a definable curve compatible with
Cw with (u0, x0) := limy↘0 γ(y) ∈ Xw. We find δ > 0 and B > 0 such that
U := Qm(u0, δ)× ]x0 − δ, x0 + δ[ ⊂ Xw, |c(w, u, x)| < B and |dj(w, u, x)| < B
for j ∈ {1, ..., s} and every (u, x) ∈ U . By passing to a suitable subcurve we
may assume that γ(y) ∈ Qm(u0, δ) × ]x0 − δ/2, x0 + δ/2[ for every y ∈ ]0, 1[.
Similarly as in the proof of Remark 6.27(1) we find a continuous definable
function γ̃x : ]0, 1[ → R such that γ̃ := (γu, γ̃x) is a definable curve in Cw ∩ U
compatible with Cw and

lim
y↘0

|γ̃x(y)− µl(w, γu(y))| > 0

for every l ∈ {0, ..., r}.
(1): Let j ∈ {1, ..., s}. Note that

lim
y↘0

|Y(w, γ̃(y))|⊗pj ∈ R \ {0}

by Corollary 6.29(2). Since

bj(t)|Y(t, x)|⊗pjedj(t,x) ∈ [−1, 1]

for every (t, x) ∈ C we obtain limy↘0 bj(w, γu(y)) ∈ R.

(2): Note that there is ρ > 1 such that V (t, x) ∈ ]1/ρ, ρ[ for every (t, x) ∈ C
and that

lim
y↘0

|Y(w, γ̃(y))|⊗q ∈ R \ {0}

by Corollary 6.29(2). Since limy↘0 f(w, γ̃(y)) ∈ R we obtain

lim
y↘0

a(w, γu(y)) ∈ R.

■

6.43 Definition

Let D ⊂ π(C) be definable. A function f : D → R is called C-regular in u
with respect to X if there is a set E of positive definable functions on π(C)
such that the following holds. The set log(E) consists only of C-consistent
functions in u with respect to X and f can be constructed from E.
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6.44 Remark

(1) LetD ⊂ π(C) be definable and f : D → R be C-regular and C-consistent
in u with respect to X. Then exp(f) is C-regular and C-consistent in u
with respect to X.

(2) Let D ⊂ π(C) be definable and f1, ..., fm : D → R be C-regular in u
with respect to X. Let G : Rm → R be log-analytic. Then G(f1, ..., fm)
is C-regular in u with respect to X.

Proof

Let E be a set of positive definable functions on π(C) such that log(E) consists
only of C-consistent functions in u with respect to X and f can be constructed
from E.

(1): With Remark 6.40(3) we see that exp(f) is C-consistent in u with respect
to X. So with Proposition 3.11(1) we see that f can be constructed from
E ∪ {exp(f)} and is therefore C-regular.

(2): Follows with Proposition 3.11(2). ■

6.45 Example

(1) A C-nice function on π(C) is C-regular in u with respect to X.

(2) Let q0, ..., qκ−1 ∈ Q. Suppose that Θ is C-regular. Then the function
π(C) → R, t 7→

∏κ−1
j=0 e

qjµj,κ(t), is C-regular and C-consistent in u with
respect to X.

(3) Suppose that X ⊂ R2 is open with 0 ∈ X. Let C := ]0, 1[2 and let
h : ]0, 1[ → R, u 7→ e−1/u. Then h is not C-regular in u with respect to
X.

Proof

(1): Follows directly with Example 6.41(1), Definition 4.40 and Definition 6.43.

(2): This follows from Example 6.41(2), Remark 6.40(3) and Remark 6.44.

(3): Suppose the contrary. Let E be a set of C-regular functions with respect
to X such that f can be constructed from E. Note that for every g ∈ log(E)
there is an open neighbourhood U of 0 in π(X) such that g|U∩π(C) is bounded.
Therefore h ∼ α for a log-analytic α : π(C) → R at zero. But we have
h ∼ e−1/u at zero, a contradiction. ■

For the rest of Chapter 6.1 we assume that Θ is C-regular.
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6.46 Definition

Let g : π(C) → R≥0 be a function.

(a) We say that g is (C,Y , κ)-persistent in u with respect to X if g
is definable and the following holds. Let w ∈ πl(C). Then for every
definable curve γ : ]0, 1[ → Cw compatible with Cw with limy↘0 γ(y) ∈
Xw and

lim
y↘0

(γx(y)− µκ(w, γu(y))) = 0

it holds limy↘0 g(w, γu(y)) > 0.

(b) We say that g is (C,Y , κ)-non-persistent in u with respect to X if
g is definable and the following holds. Let w ∈ πl(C). Then for every
definable curve γ : ]0, 1[ → Cw compatible with Cw with limy↘0 γ(y) ∈
Xw and

lim
y↘0

(γx(y)− µκ(w, γu(y))) = 0

it holds limy↘0 g(w, γu(y)) = 0.

6.47 Remark

Let g : π(C) → R≥0 be a function. Let Y ⊂ Rn × R be definable with
X ⊂ Y such that Yw is open for every w ∈ Rl. If g is (C,Y , κ)-persistent
((C,Y , κ)-non-persistent) in u with respect to Y then g is (C,Y , κ)-persistent
((C,Y , κ)-non-persistent) in u with respect to X.

Note that a function which is not (C,Y , κ)-persistent in u with respect to X
is not automatically (C,Y , κ)-non-persistent in u with respect to X in general
(compare with Remark 6.49 or Example 6.52).

Since C, Y andX are fixed we say ”κ-persistent” respectively ”κ-non-persistent”
instead of ”(C,Y , κ)-persistent in u with respect to X” respectively ”(C,Y , κ)-
non-persistent in u with respect to X” in Chapter 6.1 if not otherwise men-
tioned. We also say ”consistent” respectively ”regular” instead of ”C-consistent
in u with respect to X” respectively ”C-regular in u with respect to X” in
Chapter 6.1 if not otherwise mentioned.
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6.48 Remark

(1) The set of all κ-persistent (κ-non-persistent) functions on π(C) is closed
under pointwise addition and multiplication and closed under taking pos-
itive roots.

(2) Let f : π(C) → R≥0 be κ-persistent (κ-non-persistent). Let q ∈ Q. Then
π(C) → R≥0, t 7→ q

√
f(t), is κ-persistent (κ-non-persistent).

(3) Let f1, f2 : π(C) → R≥0 be κ-persistent (κ-non-persistent). Then

π(C) 7→ R≥0, t 7→ min{f1(t), f2(t)},

and
π(C) 7→ R≥0, t 7→ max{f1(t), f2(t)},

are κ-persistent (κ-non-persistent).

6.49 Remark

If C is far with respect to µκ then every definable function π(C) → R≥0 is
κ-persistent and κ-non-persistent.

6.50 Remark

Let g : π(C) → R>0 be a consistent function. Then π(C) → R>0, t 7→ 1/g(t),
is κ-persistent.

6.51 Remark

Let g : π(C) → R≥0 be a definable function. If for every w ∈ πl(C) and every
definable curve γ : ]0, 1[ → Cw compatible with Cw with limy↘0 γ(y) ∈ Xw and

lim
y↘0

dist(µκ(w, γu(y)), (Cw)γu(y)) = 0

we have limy↘0 g(w, γu(y)) > 0 (limy↘0 g(w, γu(y)) = 0) then g is κ-persistent
(κ-non-persistent).

6.52 Example

Let w = 0 and u = 1. Let X = R2 and l = 0. Let C and Y = (y0, y1, y2) be
as in Example 6.12 (i.e. r = 2 and kch = 1). Then g1 : ]0, 1[ → R>0, u 7→ u, is
2-persistent and g2 : ]0, 1[ → R>0, u 7→ 1− u, is 2-non-persistent. Additionally
g3 : ]0, 1[ → R≥0, u 7→ (u − 1/2)2, is neither 1-persistent nor 1-non-persistent
and there is only one 1-non-persistent function, namenly the zero function. We
have that g4 : ]0, 1[ → R≥0, u 7→ u+ 1, is 1-persistent and 2-persistent.
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Proof

We have

C = {(u, x) ∈ R× R | u ∈ ]0, 1[, 1
1+u

+ e−u−1/u < x < 1
1+u

+ e−1/u}.

For u ∈ ]0, 1[ we have LC(u) = e−1/u(1 − e−u). Note that LC(u) > 0 for
u ∈ ]0, 1[, that limu↘0 LC(u) = 0 and that limu↗1 LC(u) > 0. For u ∈ ]0, 1[ we
have µ2(u) =

1
1+u

+ e−1−1/u. We see that

lim
u↗1

dist(µ2(u), Cu) = lim
u↗1

(
e−u−1/u − e−1−1/u

)
= 0

and if u ∈ ]0, 1[ we see that dist(µ2(u), Cu) > 0. So with Remark 6.51 it is
enough to show that limu↗1 g1(u) > 0 and limu↗1 g2(u) = 0. But this is clear.

For u ∈ ]0, 1[ we have µ1(u) =
1

1+u
+ e−1/u and we see that dist(µ1(u), Cu) = 0

for every u ∈ ]0, 1[. So the zero function is the only 1-non-persistent function
on π(C). (For every u ∈ ]0, 1[ there is a definable function fu : ]0, 1[ → Cu

with limy↘0 fu(y)− µ1(u) = 0. So γ : ]0, 1[ → C, y 7→ (u, fu(y)), is a definable
curve compatible with C with limy↘0 γx(y) − µ1(u) = 0. Definition 6.46(b)
gives g(u) = 0.) Similarly one sees that if a function on π(C) is 1-persistent
it does not have any zero. So g3 is neither 1-non-persistentn nor 1-persistent.
Since g4(u) ≥ 1 for every u ∈ ]0, 1[ the assertion for g4 follows. ■

6.53 Example

Let X = Rn × R. Let l ∈ {1, ..., r} and j ∈ {0, ..., l − 1}. Then

π(C) → R>0, t 7→ eµj,l(t),

and
π(C) → R>0, t 7→ |µl(t)− µj(t)|,

are κ-persistent.

Proof

Let w ∈ πl(C). Then for every definable curve γ : ]0, 1[ → Cw compatible with
Cw we have limy↘0 e

µj,l(w,γu(y)) > 0 by Corollary 6.29(1),(i) and

lim
y↘0

|µl(w, γu(y))− µj(w, γu(y))| > 0

if j ̸= l by Corollary 6.29(1),(ii). ■
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6.54 Remark

Let e ∈ N0 ∪ {−1} and r ∈ N0. Let f : C → R, (w, u, x) 7→ f(w, u, x), be
(m+ 1, X)-restricted (e, r)-prepared in x with preparing tuple

(r,Y , a, exp(c), q, s, v, b, exp(d), P )

with b = (b1, ..., bs), exp(d) = (exp(d1), ..., exp(ds)) and P = (p1, ..., ps)
t. Then

the following holds.

(1) Let j ∈ {1, ..., s}. The function π(C) → R>0, t 7→ |1/bj(t)|, is κ-
persistent. Additionally if pj is κ-negative then |bj| is κ-non-persistent.

(2) Suppose that a ̸= 0 and that f is locally bounded in (u, x) with reference
set X. Then the function π(C) → R>0, t 7→ |1/a(t)|, is κ-persistent.
Additionally if q is κ-negative then |a| is κ-non-persistent.

Proof

For (t, x) ∈ C let

V (t, x) := v(b1(t)|Y(t, x)|⊗p1ed1(t,x), ..., bs(t)|Y(t, x)|⊗pseds(t,x)).

For (t, x) ∈ C we have

f(t, x) = a(t)|Y(t, x)|⊗qec(t,x)V (t, x).

Let w ∈ πl(C) and γ : ]0, 1[ → Cw be a definable curve compatible with Cw

such that limy↘0 γu(y) ∈ Xw and

lim
y↘0

|γx(y)− µκ(w, γu(y))| = 0.

We have limy↘0(e
c(w,γ(y))) ∈ R>0 and limy↘0(e

di(w,γ(y))) ∈ R>0 for every i ∈
{1, ..., s}.
(1): The first part follows immediately with Remark 6.42(1) and Remark
6.50. Assume that pj is κ-negative. Then by Proposition 6.34(2) we have
limy↘0 |Y(w, γ(y))|⊗pj = ∞ and therefore

lim
y↘0

bj(w, γu(y)) = 0

since
bj(t)|Y(t, x)|⊗pjedj(t,x) ∈ [−1, 1]

for every (t, x) ∈ C.

(2): The first part follows immediately with Remark 6.42(2) and Remark 6.50.
Note that there is ρ > 1 such that V (t, x) ∈ ]1/ρ, ρ[ for every (t, x) ∈ C.
Assume that q is κ-negative. Then by Proposition 6.34(2) and Remark 6.17(1)
we have

lim
y↘0

|Y(w, γ(y))|⊗q = ∞

and therefore limy↘0 a(w, γu(y)) = 0 since limy↘0 f(w, γu(y)) ∈ R. ■

148



6.55 Definition

For definable functions U,W : π(C) → R≥0 and a definable function G : H →
C we set

B(G,U) := {(t, z) ∈ H | |G(t, z)| < U(t)}

and
A(G,W,U) := {(t, z) ∈ H | W (t) < |G(t, z)| < U(t)}.

6.56 Remark

Let U,W : π(C) → R≥0 be definable. For a definable G : H → C the sets
B(G,U) ⊂ Rn × C and A(G,W,U) ⊂ Rn × C are definable. We have

B(P0,κ, U) = {(t, z) ∈ H | z ∈ B(µκ(t), U(t))}

and
A(P0,κ,W, U) = {(t, z) ∈ H | z ∈ A(µκ(t),W (t), U(t))}.

Outgoing from Definition 6.46 and Definition 6.55 we form ”suitable definable
subsets” of H which we need later in Chapter 6.1.3 to give a suitable result on
integration for holomorphic extensions of prepared restricted log-exp-analytic
function in one variable.

From Proposition 6.57 to Corollary 6.58 we fix regular functions U : π(C) →
R≥0 and W : π(C) → R≥0. Suppose that U is κ-persistent.

6.57 Proposition

The following properties hold.

(1) Let 0 < δ ≤ 1/2. There is a regular κ-persistent ζ : π(C) → R≥0 such
that K := B(P0,κ, ζ) ⊂ B(Pl,κ, U) for l ∈ {0, ..., κ} and∣∣∣Pj−1,κ(t, z)

eµκ−j,κ(t)

∣∣∣< δ

for every (t, z) ∈ K and every j ∈ {1, ..., κ}. If U > 0 then ζ > 0.

(2) Let W be κ-non-persistent. Then there is a regular κ-persistent M :
π(C) → R≥0 and a regular κ-non-persistent N : π(C) → R≥0 such that
A(P0,κ, N,M) ⊂ A(zκ,W, U).
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Proof

We start with the following claim.

Claim

Let 0 < δ ≤ 1/2. There are globally subanalytic functions λ1, λ2 : R≥0 → [0, δ]
such that the following holds.

(i) λj is monotone increasing for j ∈ {1, 2}.

(ii) For r ∈ R≥0 and z ∈ C we have |log(1 + z)| < r if |z| < λ1(r).

(iii) For r ∈ R≥0 and z ∈ C we have r < |log(1 + z)| if λ2(r) < |z| < δ for
z ∈ C.

(iv) We have λ2(0) = 0, limr↘0 λ2(r) = 0 and limr↗r0 λj(r) > 0 for r0 ∈ R>0

and j ∈ {1, 2}.

Proof of the claim

Define
λ1 : R≥0 → [0, δ], r 7→

sup{c ∈ [0, δ[ | for every z ∈ C with |z| < c it holds|log∗(1 + z)| < r}.

Note that λ1 is well-defined, monotone increasing and we have λ1(0) = 0. For
r ∈ R≥0 set

s(r) := inf{c ∈ [0, δ[ | for every z ∈ C with c < |z| < δ it holds r < |log∗(1 + z)|}.

Note that s(r1) ≤ s(r2) for 0 ≤ r1 ≤ r2. Set

λ2 : R≥0 → [0, δ], r →
{
s(r), s(r) ̸= ∞,
δ, else.

Note that λj is globally subanalytic since log
∗ is globally subanalytic and fulfills

the desired properties for j ∈ {1, 2}. ■Claim

(1): Let λ1 be as in the Claim. Let l ∈ {0, ..., κ}. Let ζl,l : π(C) → R≥0, t 7→
U(t). Define by descending induction on j ∈ {1, ..., l}

ζj−1,l : π(C) → R≥0, t 7→ λ1(ζj,l(t))e
µκ−j,κ(t).

By an easy descending induction on j ∈ {0, ..., l} one sees with the Claim
that ζj,l is a well-defined regular κ-persistent function (compare with Remark
6.48(1) and Example 6.53). If |Pj−1,κ(t, z)| < ζj−1,l(t) then∣∣∣Pj−1,κ(t, z)

eµκ−j,κ(t)

∣∣∣< λ1(ζj,l(t)) ≤ δ
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and therefore

|Pj,κ(t, z)| = |log
(
1 +

Pj−1,κ(t, z)

eµκ−j,κ(t)

)
| < ζj,l(t)

for j ∈ {1, ..., κ} and (t, z) ∈ H by definition of λ1. So we take

ζ : π(C) → R≥0, t 7→ min{ζ0,0(t), ..., ζ0,κ(t)}.

(2): Let 0 < δ ≤ 1/2. Let λ2 be as in the Claim. By (1) there is a regular κ-
persistentM : π(C) → R≥0 such thatK := B(P0,κ,M) ⊂ B(Pκ, U) = B(zκ, U)
and we have ∣∣∣Pl−1,κ(t, z)

eµκ−l,κ(t)

∣∣∣< δ

for every (t, z) ∈ K and every l ∈ {1, ..., κ}. Let Nκ := W . Define by
descending induction on l ∈ {1, ..., κ}

Nl−1 : π(C) → R≥0, t 7→ λ2(Nl(t))e
µκ−l,κ(t).

By an easy descending induction on l ∈ {0, ..., κ} one sees that Nl is a
well-defined regular κ-non-persistent function. This gives the following: If
Nl−1(t) < |Pl−1,κ(t, z)| then

λ2(Nl(t)) <
∣∣∣Pl−1,κ(t, z)

eµκ−l,κ(t)

∣∣∣< δ

and therefore

Nl(t) < |log
(
1 +

Pl−1,κ(t, z)

eµκ−l,κ(t)

)
| = |Pl,κ(t, z)|

for l ∈ {1, ..., κ} and (t, z) ∈ B(P0,κ,M) by definition of λ2. So set N := N0.
We obtain A(P0,κ, N,M) ⊂ A(zκ,W, U). This finishes the proof of Proposition
6.57 ■

For Proposition 6.58 and Corollary 6.59 we set for a definable function V :
π(C) → R≥0

Vup : π(C) → R≥0, t 7→
{

1/V (t), V (t) ̸= 0,
0, else,

and

Vdown : π(C) → R≥0, t 7→
{

1/V (t), V (t) ̸= 0,
1, else.

Note that Vup and Vdown are regular if V is regular. Furthermore let k := kch.
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6.58 Proposition

Let q ∈ Qr+1 with (qκ, ..., qr) ̸= 0. The following holds.

(1) Let qκ > 0. Then there is a regular κ-persistent M : π(C) → R≥0 such
that B(P0,κ,M) ⊂ B((σZ)⊗q, U).

(2) Let k ≥ 0. Suppose that κ = k and let q be k-positive with qk = 0.
Suppose that Uup is consistent. Then there is a regular κ-persistent M :
π(C) → R≥0 such that B(P0,κ,M) ⊂ B((σZ)⊗q, U).

(3) Suppose that Udown is κ-non-persistent and qκ < 0. Then there is a
regular κ-non-persistent N : π(C) → R≥0 and a regular κ-persistent
M : π(C) → R≥0 such that A(P0,κ, N,M) ⊂ B((σZ)⊗q, U).

Proof

We may assume that C is near with respect to µκ. Otherwise we are done with
Remark 6.49 by choosing M = 0 in (1),(2) and N = M = 0 in (3). Note that
if κ = k then σk+1 = −1 and σk+2 = ... = σr = 1 and Θκ+1 = ... = Θr = 0 by
Proposition 6.37 and therefore by definition of H

logl(1/σkzk(t, z)) = logl−1(− log(σkzk(t, z))) ∈ C−

for (t, z) ∈ H and l ∈ {1, ..., r − k}. By Proposition 6.20 we have

r∏
j=0

|zj(t, z)|qj =
κ−1∏
j=0

|σjPj,κ(t, z) + eµκ−j−1,κ(t)|qj
r∏

l=κ

|zl(t, z)|ql

for (t, z) ∈ H. We have (t, z) ∈ B((σZ)⊗q, U) if

r∏
l=κ

|zl(t, z)|ql < U(t)
κ−1∏
j=0

e−qjµκ−j−1,κ(t)

| σjPj,κ(t,z)

eµκ−j−1,κ(t) + 1|qj

for (t, z) ∈ H. By Proposition 6.57(1) there is a regular κ-persistent M+ :
π(C) → R≥0 such that for every (t, z) ∈ B(P0,κ,M

+) and j ∈ {0, ..., κ− 1} we
have ∣∣σjPj,κ(t, z)

eµκ−j−1,κ(t)

∣∣< 1/2

So we have (t, z) ∈ B((σZ)⊗q, U) if

r∏
l=κ

|zl(t, z)|ql < ρU(t)
κ−1∏
j=0

e−qjµκ−j−1,κ(t)

for (t, z) ∈ B(P0,κ,M
+) where ρ :=

∏κ−1
j=0 (1/3)

|qj |. (+)
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Set

ϕ : π(C) → R≥0, t 7→ ρU(t)
κ−1∏
j=0

e−qjµκ−j−1,κ(t).

Note that ϕ is regular by Example 6.45(2) and Remark 6.44(2) and κ-persistent
by Remark 6.48(1) (compare also with Example 6.53).

Claim 1

Let l ∈ N, m ∈ N and z ∈ C− with expl(m
2π) < |z|. Then |logl(z)| < 2lm

√
|z|.

Proof of Claim 1

For p ∈ N we set cp := exp(p2π). We do an induction on l.

l = 1: Assume cm < |z|. We show√
|z|−1/m(log2(|z|) + arg2(z)) < 1.

One sees that
[cm,∞[ → R>0, x 7→ log2(x)x−1/m,

is strictly monotone decreasing and that the function

R>0 → R>0, x 7→ x4π2/exp(xπ),

takes its values on ]0, 1/2[. Therefore

log2(cm)c
−1/m
m = log2(cm)/exp(mπ) = m4π2/exp(mπ) < 1/2

and consequently
log2(|z|)|z|−1/m < 1/2.

Clearly
arg2(z)|z|−1/m < 1/2.

l− 1 → l: Assume expl(m
2π) < |z|. We have by the definition of the complex

logarithm
c1 ≤ cm < logl−1(|z|) ≤ |logl−1(z)|.

Therefore by the base case for m = 1 applied to logl−1(z)

|logl(z)| = |log(logl−1(z))| <
√

|logl−1(z)|

and by the inductive hypothesis√
|logl−1(z)| <

√
2l−1m

√
|z| = 2lm

√
|z|.

■Claim 1
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If k ≥ 0 we set
m := max{⌈|qj/qb|⌉ | j ∈ {b+ 1, ..., r}}

where b = k if qk ̸= 0 or b = lmin(q) if qk = 0.

(1): We do two cases.

Case 1:

Assume κ = r or if κ = k (i.e. k ≥ 0) then qk+1 = ... = qr = 0. Let

M̂ : π(C) → R≥0, t 7→ qκ
√
ϕ(t).

Then M̂ is κ-persistent by Remark 6.48(2) and regular by Remark 6.44(2).
If |zκ(t, z)| < M̂(t) then |zκ(t, z)|qκ < ϕ(t) for (t, z) ∈ H (so the inequality
in (+) is fulfilled for such a (t, z)). By Proposition 6.57(1) there is a regular
κ-persistent M∗ : π(C) → R≥0 such that B(P0,κ,M

∗) ⊂ B(zκ, M̂). So take
M : π(C) → R≥0, t 7→ min{M∗(t),M+(t)}. Clearly M is regular by Remark
6.44(2) and κ-persistent by Remark 6.48(3). With (+) we have B(P0,κ,M) ⊂
B((σZ)⊗q, U).

Case 2:

Assume κ = k (i.e. k ≥ 0), qk > 0 and (qk+1, ..., qr) ̸= 0. Set

M̂ : π(C) → R≥0, t 7→ min{ s
√
ϕ(t), 1/expr−k(m

2π)},

where s := qk
2r−k . Then M̂ is regular and k-persistent. Let (t, z) ∈ B(zk, M̂).

We show that the estimation in (+) holds. We have

|zk(t, z)|
r−k∏
j=1

|zk(t, z)|−
1
2j < qk

√
ϕ(t)

and therefore

|zk(t, z)|
r−k∏
j=1

(1/|zk(t, z)|)
1
2j < qk

√
ϕ(t).

We obtain

|zk(t, z)|
r−k∏
j=1

(1/|zk(t, z)|)
∣∣ qk+j

2jmqk

∣∣
< qk

√
ϕ(t)

since 1/|zk(t, z)| > expr−k(m
2π) and | qk+j

mqk
| ≤ 1. With Claim 1 applied to

1/σkzk(t, z) we obtain

|logj(1/σkzk(t, z))| < 2jm
√

1/|zk(t, z)|
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for j ∈ {1, ..., r − k} and therefore

|zk(t, z)|
r−k∏
j=1

|logj(1/σkzk(t, z))||qk+j/qk| < qk

√
ϕ(t).

Because |logj(1/σkzk(t, z))| > 1 for every j ∈ {1, ..., r − k} we obtain

|zk(t, z)|
r−k∏
j=1

|logj(1/σkzk(t, z))|qk+j/qk < qk

√
ϕ(t).

Now define M outgoing from M̂ in the same way as in case 1. With (+) we
have B(P0,k,M) ⊂ B((σZ)⊗q, U).

(2): We have that ϕup is consistent by Example 6.41(2), Remark 6.40(3) and
Remark 6.40(1) (since Uup is consistent). Let l := lmin(q). Note that ql < 0.
Set

M̂ : π(C) → R≥0, t 7→{
min{1/expl−k(

s
√
ϕup(t)), 1/expr−k(m

2π)}, ϕup(t) ̸= 0,
0, else,

where s := −(1/2)r−lql. Since ϕup is consistent we obtain that s
√
ϕup is consis-

tent by Remark 6.40(2). By Remark 6.40(3) we see that expj(
s
√
ϕup) is also

consistent for j ∈ {1, ..., l−k}. So we see that M̂ is regular by Remark 6.44(2).

Claim 2

M̂ is κ-persistent.

Proof of Claim 2

Let γ : ]0, 1[ → Cw be a definable curve compatible with Cw with limy↘0 γ(y) ∈
Xw and

lim
y↘0

(γx(y)− µκ(w, γu(y))) = 0.

Since ϕ is κ-persistent we see limy↘0 ϕ(w, γu(y)) > 0 and therefore

lim
y↘0

ϕup(w, γu(y)) ∈ R>0.

■Claim 2

Let (t, z) ∈ B(zk, M̂). Then ϕup(t) ̸= 0. We show that the inequality in (+) is
satisfied for this (t, z). Let y := logl−k(1/σkzk(t, z)). Note that

max{ s

√
ϕup(t), expr−l(m

2π)} < |y|.
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We obtain with ϕup(t) = 1/ϕ(t)

|y|
r∏

j=l+1

|y|−
1

2j−l > ql

√
ϕ(t)

and therefore

|y|
r∏

j=l+1

(1/|y|)
1

2j−l > ql

√
ϕ(t).

This gives

|y|
r∏

j=l+1

(1/|y|)
∣∣ qj
2j−lmql

∣∣
> ql

√
ϕ(t)

since |y| > 1 and | qj
mql

| ≤ 1. Since expr−l(m
2π) < |y| we obtain with Claim 1

applied to y
|logj−l(y)| < 2j−lm

√
|y|

for j ∈ {l + 1, ..., r} and therefore

|y|
r∏

j=l+1

|logj−l(y)|−|qj/ql| > ql

√
ϕ(t).

Because |logj−l(y)| > 1 for every j ∈ {l + 1, ..., r} we obtain

r∏
j=l

|logj−k(1/σkzk(t, z))|qj/ql > ql

√
ϕ(t)

and therefore
r∏

j=l

|logj−k(1/σkzk(t, z))|qj < ϕ(t).

Now define M outgoing from M̂ in the same way as in (1) in case 1. With (+)
we have B(P0,k,M) ⊂ B((σZ)⊗q, U).

(3): Since Udown is κ-non-persistent we see with Remark 6.40(3) that ϕdown is
also κ-non-persistent.

Case 1:

Assume κ = r or if κ = k then qk+1 = ... = qr = 0. Let

N̂ : π(C) → R≥0, t 7→ −qκ
√
ϕdown(t).

Then N̂ is regular and κ-non-persistent. For (t, z) ∈ H with N̂(t) < |zκ(t, z)| <
1 we see that the inequality in (+) is satisfied (since ϕ(t) ̸= 0). By Proposi-
tion 6.57(2) there is a regular κ-non-persistent N : π(C) → R≥0 and a reg-

ular κ-persistent M∗ : π(C) → R≥0 such that A(P0,κ, N,M
∗) ⊂ A(zκ, N̂ , 1).
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So take M : π(C) → R≥0, t 7→ min{M∗(t),M+(t)}. With (+) we see that
A(P0,κ, N,M) ⊂ B((σZ)⊗q, U).

Case 2:

Assume κ = k and (qk+1, ..., qr) ̸= 0. Let s := −(2− (1/2)r−k)qk. Set

N̂ : π(C) → R>0, t 7→ s
√
ϕdown(t),

and
M̂ : π(C) → R>0, t 7→ 1/expr−k(m

2π).

Then N̂ is k-non-persistent and regular. Let (t, z) ∈ A(zκ, N̂ , M̂). Then
ϕ(t) ̸= 0. We show that the inequality in (+) is satisfied for this (t, z). We
obtain

|zk(t, z)|
r−k∏
j=1

|zk(t, z)|
1
2j > qk

√
ϕ(t)

and therefore

|zk(t, z)|
r−k∏
j=1

(1/|zk(t, z)|)−
1
2j > qk

√
ϕ(t).

We obtain

|zk(t, z)|
r−k∏
j=1

(1/|zk(t, z)|)
−
∣∣ qk+j

2jmqk

∣∣
> qk

√
ϕ(t)

since 1/|zk(t, z)| > expr−k(m
2π) and | qk+j

mqk
| ≤ 1. With Claim 1 applied to

1/σkzk(t, z) we obtain

|logj(1/σkzk(t, z))| < 2jm
√

1/|zk(t, z)|

for j ∈ {1, ..., r − k} and therefore

|zk(t, z)|
r−k∏
j=1

|logj(1/σkzk(t, z))|−|qk+j/qk| > qk

√
ϕ(t).

Because |logj(1/σkzk(t, z))| > 1 for every j ∈ {1, ..., r − k} we obtain

|zk(t, z)|
r−k∏
j=1

|logj(1/σkzk(t, z))|qk+j/qk > qk

√
ϕ(t).

Now define N and M analoguously as in case 1 (outgoing from N̂ and M̂
instead from N̂ and 1). With (+) we have A(P0,κ, N,M) ⊂ B((σZ)⊗q, U).

This finishes the proof of Proposition 6.58. ■
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6.59 Corollary

Let Udown be κ-non-persistent. Let q ∈ Qr+1 be κ-negative. Then there is
a regular κ-non-persistent N : π(C) → R≥0 and a regular κ-persistent M :
π(C) → R≥0 such that

A(P0,κ, N,M) ⊂ B((σZ)⊗q, U).

Proof

Note that
√
U is κ-persistent and that

√
Udown is κ-non-persistent. Let q∗κ :=

|qκ|+ 1. Let

Ẑ := (σκzκ)
qκ−q∗κ

∏
j ̸=κ

(σjzj)
qj .

Then we have B((σκzκ)q
∗
κ ,
√
U)∩B(Ẑ,

√
U) ⊂ B((σZ)⊗q, U). With Proposition

6.58(1) respectively Proposition 6.58(3) we find regular κ-persistent functions
M1,M2 : π(C) → R≥0 and a regular κ-non-persistent functionN : π(C) → R≥0

such that B(P0,κ,M1) ⊂ B((σκzκ)q
∗
κ ,
√
U) and A(P0,κ, N,M2) ⊂ B(Ẑ,

√
U).

Set M : π(C) → R≥0, t 7→ min{M1(t),M2(t)}. We see that A(P0,κ, N,M) ⊂
B((σZ)⊗q, U). ■

Integrability of Logarithmic Scales in the Complex Setting

In this paragraph we give some results on integration of logarithmic scales in
the complex setting ”on suitable subsets” which we will need to investigate
integrability of holomorphic extensions of prepared restricted log-exp-analyic
functions in one variable (compare with Chapter 6.1.3).

For this paragraph we set the following: Let s and τ range over R. Let
π+ : Rn × R × C → Rn × R, (t, s, z) 7→ (t, s), be the projection on the first
(n + 1) real coordinates. For (t, s) ∈ π(C) × R>0 we parameterize the circle
∂B(µκ(t), s) ⊂ C with the counterclockwise oriented curve

ρ : [−π, π] → R, τ 7→ µκ(t) + (
κ∏

j=0

σj)se
iτ .

For a function f : X → R, (t, x) 7→ f(t, x), we say that f is bounded in x if ft
is bounded on Xt for every t ∈ π(X).
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6.60 Definition

Let D ⊂ π(C)× C be definable. We set

D(µκ) :=
{
(t, s, τ) ∈ π(C)× R>0 × [−π, π] | µκ(t) + (

κ∏
j=0

σj)se
iτ ∈ Dt

}
.

6.61 Remark

Let M,N : π(C) → R≥0 be definable functions. Suppose that M < |µr − µk|
if k ≥ 0. Let D := A(P0,κ, N,M). Then

D(µκ) = {(t, s) ∈ π(C)× R>0 | N(t) < s < M(t)} × ]− π, π[.

Proof

Let
B := {(t, s) ∈ π(C)× R>0 | N(t) < s < M(t)} × ]− π, π[.

Suppose κ = r. Let
∏r

j=0 σj = 1. The case ”
∏r

j=0 σj = −1” is treated
completely similar. For t ∈ π(C), s ∈ R>0 and τ ∈ [−π, π] we set δ(t, s, τ) :=
µr(t)+se

iτ . Note that we have δ(t, s, τ) ∈ C−
µr(t)

if k < 0 respectively δ(t, s, τ) ∈
C−

µr(t)
∩ C+

µk(t)
if k ≥ 0 for (t, s, τ) ∈ B. Remark 6.15 gives B ⊂ D(µκ). Let

(t, s, τ) ∈ D(µκ). Then t ∈ π(C), N(t) < s < M(t) and since δ(t, s, τ) ∈ Dt

we have τ ∈ ]− π, π[. (If τ ∈ {−π, π} we obtain δ(t, s, τ) = µr(t)− s < µr(t),
i.e. δ(t, s, τ) /∈ C−

µr
and therefore δ(t, s, τ) /∈ Dt by Remark 6.15.) We obtain

(t, s, τ) ∈ B. The case ”κ = k” is treated completely similar. ■

6.62 Proposition

Let M,N : π(C) → R≥0 be definable functions. Suppose that M < |µr − µk| if
k ≥ 0. Let D := A(P0,κ, N,M). Let F : D → C be definable such that

F ∗ : D(µκ) → C, (t, s, τ) 7→ F (t, s+
( κ∏
j=0

σj
)
seiτ ),

is bounded in τ . Suppose that F ∗ is globally subanalytic in τ with support
function g : π+(D(µκ)) → Rl for an l ∈ N0. Let

∆ := {(t, s, z) ∈ π(C)× R>0 × C | N(t) < s < M(t), z ∈ B(µκ(t), s)}.

Then the function

Ψ : ∆ → C, (t, s, z) 7→ 1

2πi

∫
∂B(µκ(t),s)

F (t, ξ)

ξ − z
dξ,

is well-defined and constructible in z with support function

h : π+(∆) → Rl × R× R, (t, s) 7→ (g(t, s), µκ(t), s).
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Proof

Let G : Rl × R → R be globally subanalytic such that for (t, s, τ) ∈ D(µκ)

F ∗(t, s, τ) = G(g(t, s), τ).

For (t, s, z) ∈ ∆ we have∫
∂B(µκ(t),s)

F (t, ξ)

ξ − z
dξ =

∫ π

−π

F ∗(t, s, τ)

µκ(t) + (
∏κ

j=0 σj)se
iτ − z

i(
κ∏

j=0

σj)se
iτdτ

=

∫ π

−π

G(g(t, s), τ)

µκ(t) + (
∏κ

j=0 σj)se
iτ − z

i(
κ∏

j=0

σj)se
iτdτ.

Note that

∆× ]− π, π[ → C, (t, s, z, τ) 7→
(
∏κ

j=0 σj)se
iτ

µκ(t) + (
∏κ

j=0 σj)se
iτ − z

,

is bounded in τ . So Ψ is well-defined.

Let v := (v1, ..., vl) range over Rl and y over R. Set

Q := {(v, x, y, z, τ) ∈ Rl × R× R>0 × C× ]− π, π[ | |x− z| < y}

and
Ω : Rl × R× R× C× R → C, (v, x, y, z, τ) 7→{

G(v,τ)
x+(

∏κ
j=0 σj)yeiτ−z

i(
∏κ

j=0 σj)ye
iτ , (v, x, y, z, τ) ∈ Q,

0, else.

Then Ω is globally subanalytic since we have that

]− π, π[ → C, τ 7→ eiτ = cos(τ) + i sin(τ),

is globally subanalytic. Then for (t, s, z, τ) ∈ ∆×]−π, π[ we have |µκ(t)− z| <
s and therefore (h(t, s), z, τ) ∈ Q. So we obtain

G(g(t, s), τ)

µκ(t) + (
∏κ

j=0 σj)se
iτ − z

i(
κ∏

j=0

σj)se
iτ = Ω(h(t, s), z, τ)

for every (t, s, z, τ) ∈ ∆ × ] − π, π[. By Remark 3.19 there is a constructible
G : Rl × R × R × C → C such that Ψ(t, s, z) = G(h(t, s), z) for (t, s, z) ∈ ∆.
So we see that Ψ is constructible in z with support function h. ■

In the construction of the unary high parametric global complexification of a
real analytic restricted log-exp-analytic function in Chapter 6.2 the parameter
s is ”replaced” by a regular function α : π(C) → R. So every component of
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the support function g of F ∗ in Proposition 6.62 should also be log-analytic in
s with regular data.

6.63 Definition

Let D ⊂ π(C) × C be definable. We call a function f : D(µκ) → C free-
regular in s if there is l ∈ N0 such that f is globally subanalytic in τ with
support function g := (g1, ..., gl) : π+(D(µκ)) → Rl and the following holds
for g. There is p ∈ N0, a regular function β : π(C) → Rp and for every
j ∈ {1, ..., l} a log-analytic hj : Rp+1 → R such that gj(t, s) = hj(β(t), s) for
every (t, s) ∈ π+(D(µκ)).

6.64 Remark

Let D ⊂ π(C)× C be definable.

(1) Let f : D(µκ) → C be globally subanalytic. Then f is free-regular in s.

(2) Let f : D(µκ) → C be globally subanalytic in τ with log-analytic support
function. Then f is free-regular in s.

6.65 Remark

Let D ⊂ π(C)× C be definable. Let f : D(µκ) → C be free-regular in s. The
following holds.

(1) f is globally subanalytic in τ with support function g : π+(D(µκ)) → Rl

which can be constructed from a set E of positive definable functions
such that every h ∈ log(E) is consistent.

(2) Let q ∈ N and let G : Cq → C be globally subanalytic. Let J1, ..., Jq :
D(µκ) → C be functions which are free-regular in s. Then H :=
G(J1, ..., Jq) : D(µκ) → C is free-regular in s.

Proof

(1): Let g := (g1, ..., gl). Definition 6.63, Definition 6.43 and Remark 6.44(2)
show immediately that gj can be constructed from a set E of positive definable
functions such that every h ∈ log(E) is consistent for j ∈ {1, ..., l}.
(2): Follows directly with Remark 3.18(2). ■
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6.66 Proposition

There is a regular κ-persistent function M : π(C) → R≥0 with M < |µr − µk|
if k ≥ 0 such that for every l ∈ {0, ..., κ} the following holds where D :=
B(P0,κ,M).

(1) The function

P∗
l,κ : D(µκ) → C, (t, s, τ) 7→ Pl,κ(t, µκ(t) + (

κ∏
j=0

σj)se
iτ ),

is free-regular in s.

(2) The function

z∗l : D(µκ) → C, (t, s, τ) 7→ zl(t, µκ(t) + (
κ∏

j=0

σj)se
iτ ),

is free-regular in s.

Proof

By Proposition 6.57(1) there is a regular κ-persistent T : π(C) → R≥0 such
that ∣∣∣Pj−1,κ(t, z)

eµκ−j,κ(t)

∣∣∣< 1/2

for (t, z) ∈ B(P0,κ, T ) for every j ∈ {1, ..., κ}. Let M := T and D =
B(P0,κ,M). Note that a regular function h : π(C) → R considered as a
function on D(µκ) is free-regular in s.

(1): We do an induction on l. Note that P∗
0,κ is globally subanalytic, because

P∗
0,κ(t, s, τ) = (

κ∏
j=0

σj)se
iτ = (

κ∏
j=0

σj)s(cos(τ) + i sin(τ))

for (t, s, τ) ∈ D(µκ). So P∗
0,κ is free-regular in s by Remark 6.64(1).

l − 1 → l : For (t, s, τ) ∈ D(µκ) we obtain

P∗
l,κ(t, s, τ) = log∗

(
1 +

P∗
l−1,κ(t, s, τ)

eµκ−l,κ(t)

)
.

Because log∗ is globally subanalytic we see with Remark 6.65(2) that P∗
l,κ is

free-regular in s since eµκ−l,κ is regular (and therefore eµκ−l,κ is also free-regular
in s considered as a function on D(µκ) since coordinate projections are globally
subanalytic).
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(2): For (t, s, τ) ∈ D(µκ) we obtain with Proposition 6.20

z∗l (t, s, τ) = P∗
l,κ(t, s, τ) + σle

µκ−l−1,κ(t)

for l ∈ {0, ..., κ− 1} and with Corollary 6.21

z∗κ(t, s, τ) = P∗
κ,κ(t, s, τ).

So we obtain that z∗l is free-regular in s for every l ∈ {0, ..., κ} with (1) if
l = κ respectively (1) and Remark 6.65(2) if l ∈ {0, ..., κ− 1} since eµκ−l−1,κ is
regular. ■

6.67 Corollary

Let κ = r. Let q := (q0, ..., qr) ∈ Qr+1. There is a regular r-persistent function
M : π(C) → R≥0 with M < |µr − µk| if k ≥ 0 such that for D := B(P0,r,M)
the function

Z⊗q
µr

: D(µr) 7→ C, (t, s, τ) 7→ (σZ)⊗q(t, µr(t) + (
r∏

j=0

σj)se
iτ ),

is bounded in τ and free-regular in s.

Proof

By Corollary 6.66(2) we find a regular r-persistent T : π(C) → R≥0 such that

z∗l : D̂(µr) → C, (t, s, τ) 7→ zl(t, µr(t) + (
r∏

j=0

σj)se
iτ ),

is free-regular in s for l ∈ {0, ..., r} where D̂ := B(P0,r, T ). Then σlz
∗
l (t, s, τ) ∈

C− for every (t, s, τ) ∈ D̂(µr) and l ∈ {0, ..., r} by Definition 6.13(a) since
µr(t) + (

∏r
j=0 σj)se

iτ ∈ Ht for (t, s, τ) ∈ D̂(µr). Let

Ẑ⊗q
µr

: D̂(µr) 7→ C, (t, s, τ) 7→ (σZ)⊗q(t, µr(t) + (
r∏

j=0

σj)se
iτ ),

and

G : (C−)r+1 → C, (w0, ..., wr) 7→
r∏

j=0

(wj)
qj .

Note that G is globally subanalytic. We obtain

Ẑ⊗q
µr

(t, s, τ) = G(σ0z
∗
0(t, s, τ), ..., σrz

∗
r (t, s, τ))

for every (t, s, τ) ∈ D̂(µr). Therefore Ẑ⊗q
µr

is free-regular in s by Remark
6.65(2).
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Let
d : π(C) → R, t 7→ min{|µr(t)− µj(t)| | j ∈ {0, ..., r − 1}

}
.

Note that d is regular (by Example 6.45(1) and Remark 6.44(2)) and r-
persistent (by Example 6.53 and Remark 6.48(3)). Choose M : π(C) →
R≥0, t 7→ min{T (t), d(t)}. Let D := B(P0,r,M). The following claim finishes
the proof of Corollary 6.67.

Claim

The function Z⊗q
µr

= Ẑ⊗q
µr

|D(µr) is bounded in τ .

Proof of the claim

Assume the contrary. Then there is (t, s) ∈ π+(D(µκ)) and a definable curve
γτ : ]0, 1[ → ]− π, π[ such that (t, s, γτ (y)) ∈ D(µκ) for y ∈ ]0, 1[ and

lim
y↘0

|Z⊗q
µr

(t, s, γτ (y))| = lim
y↘0

|(σZ)⊗q(t, µr(t) + (
r∏

j=0

σj)se
iγτ (y))| = ∞.

Note that 0 < s < d. Consider γ : ]0, 1[ → H, y 7→ (γt(y), γz(y)) with γt(y) = t
and γz(y) = µr(t) + (

∏r
j=0 σj)se

iγτ (y) for y ∈ ]0, 1[. Note that this curve is
definable and compatible with C. Since 0 < s < d we have

lim
y↘0

γz(y)− µl(t) = lim
y↘0

µr(t) + (
r∏

j=0

σj)se
iγτ (y) − µl(t) ̸= 0

for l ∈ {0, ..., r} which is a contradiction to Corollary 6.29(2). ■

164



Before we investigate the case ”κ = k” we need the following three statements.

6.68 Proposition

Let D ⊂ H be definable such that Dt is connected and R∩Dt ̸= ∅ for t ∈ π∗(D).
Let f, g : D → C− be functions with the following properties.

(1) f and g are continuous in z.

(2) We have f(t, z) ∈ R>0 if (t, z) ∈ D ∩ (π(C)× R).

(3) It holds f(t, z)g(t, z) ∈ C− for every (t, z) ∈ D.

Then for every (t, z) ∈ D it is

log(f(t, z)g(t, z)) = log(f(t, z)) + log(g(t, z)).

Proof

Suppose there is (t, z∗) ∈ D such that

log(f(t, z∗)g(t, z∗)) ̸= log(f(t, z∗)) + log(g(t, z∗)).

So we have

log(f(t, z∗)g(t, z∗)) = log(f(t, z∗)) + log(g(t, z∗))± 2πi

and therefore
|arg(f(t, z∗)) + arg(g(t, z∗))| ≥ π.

Note that
Dt → R, z 7→ arg(f(t, z)) + arg(g(t, z)),

is continuous and that |arg(f(t, z)) + arg(g(t, z))| < π if z ∈ R for t ∈ π(C).
By the intermediate value theorem (by taking a definable curve which connects
z∗ and a point a ∈ Dt ∩ R) there is z′ ∈ Dt such that

|arg(f(t, z′)) + arg(g(t, z′))| = π.

This gives arg(f(t, z′)g(t, z′)) = π. But then f(t, z′)g(t, z′) ∈ R<0, a contra-
diction. ■

6.69 Remark

Let m ∈ N0. Let D := {z ∈ C− | |z| < 1/expm(1)} and

Lm : D → C, z 7→ logm(− log(z)).

Then Lm is well-defined , definable and holomorphic. We have logm(− log(z)) ∈
C− and logm(− log(z)) ∈ R>0 if z ∈ R>0 for z ∈ D.
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Proof

Let z ∈ D. If z /∈ R>0 it is

log(z) = log(|z|) + iarg(z) ∈ C \ R

since arg(z) ̸= 0 and therefore logm(− log(z)) ∈ C−. So assume z ∈ R>0. We
obtain expm−1(1) < − log(z) and therefore

expm−1−l(1) < logl(− log(z))

for every l ∈ {1, ...,m− 1} (where exp0 := 1). We obtain logm(− log(z)) > 0.
■

6.70 Proposition

Let m ∈ N. Let
c :=

1

expm

(
2
√
log2(1.5) + π2

)
and D := ]0, c[× ]− π, π[. The function

Tl : D → C−, (s, τ) 7→ logl(− log(seiτ )),

is a well-defined globally subanalytic function in τ with log-analytic support
function for every l ∈ {0, ...,m}.

Proof

Note that seiτ ∈ C− for every (s, τ) ∈ R>0 × ] − π, π[. So we obtain well-
definability with Remark 6.69. Set

S0 : D → C, (s, τ) 7→ iτ

log(s)
,

and inductively for l ∈ {1, ...,m− 1}

Sl : D → C, (s, τ) 7→ log(1 + Sl−1(s, τ))

logl(− log(s))
.

Claim

Let l ∈ {0, ...,m−1}. Then Sl is a well-defined globally subanalytic function in
τ with log-analytic support function. For every (s, τ) ∈ D we have |Sl(s, τ)| <
1/2 and

Tl = logl(− log(s))(1 + Sl(s, τ)).
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Proof of the claim

Let (s, τ) ∈ D. We obtain

2

√
log2(1.5) + π2 < logj(− log(s)) (∗)

for every j ∈ {0, ...,m− 1}. We do an induction on l. The case l = 0 is clear.

l − 1 → l : With the inductive hypothesis, (∗), and the definition of the
complex logarithm we see that Sl is well-defined and that |Sl(s, τ)| < 1/2 for
every (s, τ) ∈ D. We have for (s, τ) ∈ D

Sl(s, τ) =
log∗(1 + Sl−1(s, τ))

logl(− log(s))
.

With the inductive hypothesis and Remark 3.18(2) it follows that Sl is a glob-
ally subanalytic function in τ with log-analytic support function. Additionally
we obtain for (s, τ) ∈ D with the inductive hypothesis

logl(− log(s)− iτ) = log(logl−1(− log(s)− iτ))

= log(logl−1(− log(s))(1 + Sl−1(s, τ)))

= logl(− log(s)) + log(1 + Sl−1(s, τ))

= logl(− log(s))
(
1 +

log(1 + Sl−1(s, τ))

logl(− log(s))

)
= logl(− log(s))(1 + Sl(s, τ)).

■Claim

Note that by the Claim

Tm(s, τ) = log(Tm−1(s, τ))

= log(logm−1(− log(s))(1 + Sm−1(s, τ)))

= log(logm−1(− log(s))) + log(1 + Sm−1(s, τ))

= logm(− log(s)) + log∗(1 + Sm−1(s, τ)).

By the Claim and Remark 3.18(2) we obtain immediately that Tm is globally
subanalytic in τ with log-analytic support function. ■

For the rest of Subchapter 6.1.2 we assume k := kch ≥ 0 and that κ = k. For
j ∈ {0, ..., k} we set Qj := Pj,k.
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6.71 Proposition

Let k = 0. There is a regular 0-persistent function M : π(C) → R≥0 with
M < |µr − µ0| such that for D := B(Q0,M) and every l ∈ {0, ..., r} the
function

z∗l : D(µ0) → C, (t, s, τ) 7→ zl(µ0(t) + σ0se
iτ ),

is globally subanalytic in τ with log-analytic support function.

Proof

We may assume that C is near with respect to µ0 = Θ0. Otherwise we are done
with Remark 6.49 by choosing M = 0. Note that σ1 = −1, σ2 = ... = σr = 1
and that Θ1 = ... = Θr = 0 by Proposition 6.37. By Definition 6.3 we have
µ0 = Θ0, µ1 = Θ0+σ0 and for j ∈ {2, ..., r} we have µj = Θ0+σ0e

−ej−1 where
e0 := 0 and em := exp(em−1) for m ∈ N. Note that for (t, z) ∈ H

z1(t, z) = log(σ0z0(t, z))

and
zl(t, z) = logl−1(− log(σ0z0(t, z)))

for l ∈ {2, ..., r}. Let

c :=
1

expr−1(2
√
log2(1.5) + π2)

.

Then c < 1/expr−1(1) = 1/er = |µr(t)− µ0(t)| for t ∈ π(C). Consider M := c.
With Remark 6.61 we see that

D(µ0) = B(Q0, c) = π(C)× ]0, c[× ]− π, π[.

(Since D(µ0) = A(Q0, 0, c).) Note that z∗0(t, s, τ) = σ0se
iτ = σ0s(cos(τ) +

i sin(τ)) and z∗1(t, s, τ) = log(s) + iτ for (t, s, τ) ∈ D(µ0). So z∗0 and z∗1 fulfill
the desired properties since the restriction of the global sine and cosine function
on ]− π, π[ are globally subanalytic. We obtain for l ∈ {1, ..., r − 1}

z∗l+1(t, s, τ) = logl(− log(σ0z0(t,Θ0(t) + σ0se
iτ )))

= logl(− log(seiτ ))

for every (t, s, τ) ∈ D(µ0). With Proposition 6.70 we see that

]0, c[× ]− π, π[ → C, (s, τ) 7→ logl(− log(seiτ )),

is a well-defined globally subanalytic function in τ with log-analytic support
function for l ∈ {0, ..., r − 1} and we are done. ■
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6.72 Proposition

There is a regular k-persistent function M : π(C) → R≥0 with M < |µr − µk|
such that for D := B(Q0,M) and every l ∈ {0, ..., r} the function

z∗l : D(µk) → C, (t, s, τ) 7→ zl(µk(t) + (
k∏

j=0

σj)se
iτ ),

is free-regular in s.

Proof

We may assume that C is near with respect to µk. Otherwise we are done with
Remark 6.49 by choosing M = 0. Note that σk+1 = −1, σk+2 = ... = σr = 1
and that Θk+1 = ... = Θr = 0 by Proposition 6.37. So for (t, z) ∈ H we have
with Corollary 6.21

zk+1(t, z) = log(σkzk(t, z)) = log(σkQk(t, z))

and

zl(t, z) = logl−k−1(− log(σkzk(t, z))) = logl−k−1(− log(σkQk(t, z)))

for l ∈ {k + 2, ..., r}.
If k = 0 we are done with Proposition 6.71. So assume k > 0.

Fix λ ∈ ]0, 1/2[ such that ∣∣ log(1 + z)− z

z

∣∣< 1/2

for z ∈ C \ {0} with |z| < λ. For l ∈ {1, ..., k} set

ζl : π(C) → R>0, t 7→ min
{

1

e
2|µk−l,k(t)| ,

1

expr−k−1(2
√

log2(1.5)+π2)
,

λeµk−l,k(t), e
µk−l,k(t)

expr−k−1(2
√

log2(1.5)+π2)

}
.

We see that ζl is regular and k-persistent for every l ∈ {1, ..., k}. For l ∈
{1, ..., k} set

Ωl := {(t, z) ∈ H | |Ql−1(t, z)| < ζl(t)}.
By Proposition 6.57(1) there is a regular k-persistent Ml : π(C) → R≥0 such
that B(Q0,Ml) ⊂ Ωl for l ∈ {1, ..., k}. Consider

M : π(C) → R≥0, t 7→ min{|µr(t)− µk(t)|,M1(t), ...,Ml(t)}.

Then M is k-persistent and regular. We have D := B(Q0,M) ⊂
⋂k

l=1Ωl.
Clearly Dt is connected and Dt ∩ R ̸= ∅ for t ∈ π∗(D). Let for l ∈ {1, ..., k}

cl : D → C, (t, z) 7→ σl−1Ql−1(t, z)

eµk−l,k(t)
.
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Then for every (t, z) ∈ D and l ∈ {1, ..., k} it is

Ql(t, z) = log(1 + cl(t, z)).

Let V ∈ {c,Q}. By Remark 6.24(2) we have

(
k∏

j=l

σj)Vl(t, z) ∈ C−,

and

(
k∏

j=l

σj)Vl(t, z) ∈ R>0

if z ∈ R for every (t, z) ∈ D and l ∈ {1, ..., k}. (+V)

Note also that

|Vl(t, z)| <
1

expr−k−1

(
2
√

log2(1.5) + π2
)

for every (t, z) ∈ D and l ∈ {1, ..., k}. (++V)

By shrinking M if necessary we may assume with Proposition 6.66(1) that

V∗
l : D(µk) → C, (t, s, τ) 7→ Vl(t, µk(t) + (

k∏
j=0

σj)se
iτ ),

is free-regular in s for every l ∈ {0, ..., k}. (Therefore

z∗l : D(µk) → C, (t, s, τ) 7→ zl(t, s+ (
k∏

j=0

σj)se
iτ ),

is also free-regular in s.) (+ + +V)

For l ∈ {0, ..., k} and m ∈ {0, ..., r − k − 1} we define

Rm,l : D → C, (t, z) 7→ logm(− log((
k∏

j=l

σj)Ql(t, z))).

By Remark 6.69, (+Q) and (++Q) we obtain that the function Rm,l is well-
defined, continuous in z, and for (t, z) ∈ D we have Rm,l(t, z) ∈ C− and if
z ∈ R then Rm,l(t, z) ∈ R>0. (+R)

For l ∈ {1, ..., k} we define

S0,l : D → C, (t, z) 7→ µk−l,k(t),
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and inductively for m ∈ {1, ..., r − k − 1}

Sm,l : D → C, (t, z) 7→ log
(
1 +

Sm−1,l(t, z)

Rm−1,l−1(t, z)

)
.

Claim 1

Let l ∈ {1, ..., k}. The function Sm−1,l is well-defined, continuous in z and for
(t, z) ∈ D we have ∣∣∣ Sm−1,l(t, z)

Rm−1,l−1(t, z)

∣∣∣< 1/2

for every m ∈ {1, ..., r − k − 1}.

Proof of Claim 1

Note that for (t, z) ∈ D

|Ql−1(t, z)| < min
{

1

e
2|µk−l,k(t)| ,

1

expr−k−1(2
√

log(1.5)2+π2)

}
. (∗)

We show Claim 1 by induction on m ∈ {1, ..., r − k − 1}. Fix (t, z) ∈ D.

m = 1: That S0,l is well-defined and continuous in z is clear. We obtain with
(∗)

|µk−l,k(t)| < −1/2 log(|Ql−1(t, z)|)

and with the definition of the complex logarithm

|µk−l,k(t)| < 1/2|log((
k∏

j=l−1

σj)Ql−1(t, z))|.

This gives ∣∣∣ S0,l(t, z)

R0,l−1(t, z)

∣∣∣< 1/2.

m−1 → m : We obtain well-definability of Sm−1,l by the inductive hypothesis.
We get

|Sm−1,l(t, z)| =
∣∣log(1 + Sm−2,l(t, z)

Rm−2,l−1(t, z)

)∣∣
<

√
log2(1.5) + π2

by the inductive hypothesis and definition of the complex logarithm. So we
obtain by (∗)

|Ql−1(t, z)| <
1

expm(2|Sm−1,l(t, z)|)
,
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i.e.
2|Sm−1,l(t, z)| < logm−1(− log(|Ql−1(t, z)|)).

By the definition of the complex logarithm we obtain that∣∣∣ Sm−1,l(t, z)

Rm−1,l−1(t, z)

∣∣∣< 1/2

and we are done since Rm−1,l−1 is continuous in z. ■Claim 1

By Claim 1 and (+)R we have that Sm,l is well-defined, continuous in z and

1 +
Sm−1,l(t, z)

Rm−1,l−1(t, z)
∈ C−

for (t, z) ∈ D, l ∈ {1, ..., k} and m ∈ {1, ..., r − k − 1}. (+S)

Let for l ∈ {1, ..., k} and m ∈ {0, ..., r − k − 1}

Tm,l : D → C, (t, z) 7→ logm(− log((
k∏

j=l

σj)cl(t, z))).

By Remark 6.69, (+c) and (++c) we obtain that the function Tm,l is well-
defined, continuous in z, and for (t, z) ∈ D we have Tm,l(t, z) ∈ C− and if
z ∈ R then Tm,l(t, z) ∈ R>0. (+T )

Let for l ∈ {1, ..., k}

bl : D → C, (t, z) 7→ log(1 + cl(t, z))− cl(t, z)

cl(t, z)
,

U0,l : D → C, (t, z) 7→ − log(1 + bl(t, z)),

and inductively for m ∈ {1, ..., r − k − 1}

Um,l : D → C, (t, z) 7→ log
(
1 +

Um−1,l(t, z)

Tm−1,l(t, z)

)
.

Note that |cl(t, z)| < λ since |Ql−1(t, z)| < λeµk−l,k(t) for (t, z) ∈ D. So we see
that bl is well-defined, continuous in z, |bl(t, z)| < 1/2 by the choice of λ and
1 + bl(t, z) ∈ C− for (t, z) ∈ D. (+b)

Claim 2

Let l ∈ {1, ..., k}. The function Um−1,l is well-defined, continuous in z and for
(t, z) ∈ D we have ∣∣∣Um−1,l(t, z)

Tm−1,l(t, z)

∣∣∣< 1/2
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for every m ∈ {1, ..., r − k − 1}.

Proof of Claim 2

Fix (t, z) ∈ D. We have

|Ql−1(t, z)| <
eµk−l,k(t)

expr−k−1(2
√
log2(1.5) + π2)

and by (+b)

|U0,l(t, z)| <
√

log2(1.5) + π2. (∗∗)
We do an induction on m.

m = 1: With (+b) we obtain that U0,l is well-defined and continuous in z.
With (∗∗) we obtain

|Ql−1(t, z)| <
eµk−l,k(t)

exp(2
√
log2(1.5) + π2)

and therefore

|Ql−1(t, z)| <
eµk−l,k(t)

exp(2|U0,l(t, z)|)
.

This gives
|U0,l(t, z)| < −1/2 log(|cl(t, z)|)

and with the definition of the complex logarithm

|U0,l(t, z)| < 1/2|log((
k∏

j=l

σj)cl(t, z))|.

We obtain ∣∣∣U0,l(t, z)

T0,l(t, z)

∣∣∣< 1/2.

m−1 → m : We obtain well-definability of Um−1,l by the inductive hypothesis.
We get

|Um−1,l(t, z)| =
∣∣log(1 + Um−2,l(t, z)

Tm−2,l(t, z)

)∣∣
<

√
log2(1.5) + π2

by the inductive hypothesis. This gives with (∗∗)

|Ql−1(t, z)| <
eµk−l,k(t)

expm(2|Um−1,l(t, z)|)
.
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This implies
2|Um−1,l(t, z)| < logm−1(− log(|cl(t, z)|))

and with the definition of the complex logarithm we obtain∣∣∣Um−1,l(t, z)

Tm−1,l(t, z)

∣∣∣< 1/2

and are done. (We obtain the continuity of Um−1,l in z since Tm−2,l is continuous
in z.) ■Claim 2

By Claim 2 we have that Um,l is well-defined, continuous in z, and we have

1 +
Um−1,l(t, z)

Tm−1,l(t, z)
∈ C−

for (t, z) ∈ D, l ∈ {1, ..., k} and m ∈ {1, ..., r − k − 1}. (+U)

Claim 3

Let (t, z) ∈ D. Let l ∈ {1, ..., k}. For every m ∈ {0, ..., r − k − 1} it is

Tm,l(t, z) = Rm,l−1(t, z) + Sm,l(t, z).

Proof of Claim 3

We do an induction on m.

m = 0: We obtain

T0,l(t, z) = − log((
k∏

j=l

σj)cl(t, z))

= − log((
k∏

j=l−1

σj)Ql−1(t, z)) + µk−l,k(t)

= R0,l−1(t, z) + S0,l(t, z).

m − 1 → m: By Proposition 6.68, (+R), (+S), (+T ) we obtain with the
inductive hypothesis

log(Tm−1,l(t, z)) = log(Rm−1,l−1(t, z) + Sm−1,l(t, z))

= log(Rm−1,l−1(t, z)) + log
(
1 +

Sm−1,l(t, z)

Rm−1,l−1(t, z)

)
and therefore

Tm,l(t, z) = log(Tm−1,l(t, z)) = Rm,l−1(t, z) + Sm,l(t, z).
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■Claim 3

Claim 4

Let (t, z) ∈ D. Let l ∈ {1, ..., k}. For every m ∈ {0, ..., r − k − 1} it is

Rm,l(t, z) = Tm,l(t, z) + Um,l(t, z).

Proof of Claim 4

We do an induction on m.

m = 0: We obtain

R0,l = − log((
k∏

j=l

σj)Ql(t, z)) = − log((
k∏

j=l

σj) log(1 + cl(t, z)))

= − log((
k∏

j=l

σj)(cl(t, z) + log(1 + cl(t, z))− cl(t, z)))

= − log((
k∏

j=l

σj)cl(t, z)(1 + bl(t, z))).

With (+b), (+c), (+Q) and Proposition 6.68 we obtain

− log((
k∏

j=l

σj)cl(t, z)(1 + bl(t, z))) = − log((
k∏

j=l

σj)cl(t, z))− log(1 + bl(t, z)).

Therefore
R0,l = T0,l(t, z) + U0,l(t, z).

m−1 → m: By Proposition 6.68, (+R), (+T ), (+U) and the inductive hypoth-
esis we obtain

log(Rm−1,l(t, z)) = log(Tm−1,l(t, z) + Um−1,l(t, z))

= log(Tm−1,l(t, z)) + log
(
1 +

Um−1,l(t, z)

Tm−1,l(t, z)

)
and therefore

Rm,l(t, z) = log(Rm−1,l(t, z)) = Tm,l(t, z) + Um,l(t, z).

■Claim 4
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Claim 5

(Il) for l ∈ {1, ..., k}: The function

T ∗
m,l : D(µk) → C, (t, s, τ) 7→ Tm,l(t, µk(t) + (

k∏
j=0

σj)se
iτ ),

is free-regular in s for every m ∈ {0, ..., r − k − 1}.

(IIl) for l ∈ {0, ..., k}: The function

R∗
m,l : D(µk) → C, (t, s, τ) 7→ Rm,l(t, µk(t) + (

k∏
j=0

σj)se
iτ ),

is free-regular in s for every m ∈ {0, ..., r − k − 1}.

Proof of Claim 5

We start with (II0). Let (t, s, τ) ∈ D(µk). We have

0 < s < 1

expr−k−1(2
√

log(1.5)2+π2)

since
|z − µk(t)| = |Q0(t, z)| < 1

expr−k−1(2
√

log(1.5)2+π2)

for all (t, z) ∈ D. Note that

R∗
m,0(t, s, τ) = logm(− log(seiτ ))

for m ∈ {0, ..., r−k−1}. Therefore with Proposition 6.70 and Remark 6.64(2)
we are done.

Assume that (Il−1) and (IIl−1) have already been shown for l ∈ {1, ..., k}
where (I0) is any true statement. We show (Il). By Claim 3 we have Tm,l =
Rm,l−1 + Sm,l on D for every m ∈ {0, ..., r− k− 1}. With (IIl−1) and Remark
6.65(2) it suffices to show that

S∗
m,l : D(µk) → C, (t, s, τ) 7→ Sm,l(t, µk(t) + (

k∏
j=0

σj)se
iτ ),

is free-regular in s for every m ∈ {0, ..., r − k − 1}. We do an induction on m.
For m = 0 this is clear since S∗

0,m is regular considered as a function on π∗(D)
and with Definition 6.63 one sees immediately that S∗

0,m is free-regular in s.
Assume m > 0. By Claim 1 we obtain that∣∣∣ Sm−1,l(t, z)

Rm−1,l−1(t, z)

∣∣∣< 1/2
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for every (t, z) ∈ D. So

Sm,l = log∗
(
1 +

Sm−1,l

Rm−1,l−1

)
.

With (IIl−1), the inductive hypothesis and Remark 6.65(2) we are done.

We show (IIl). By Claim 4 we have Rm,l = Tm,l + Um,l on D for every m ∈
{0, ..., r − k − 1}. With (Il) and Remark 6.65(2) it suffices to show that

U∗
m,l : D(µk) → R, (t, s, τ) 7→ Um,l(t, µk(t) + (

k∏
j=0

σj)se
iτ ),

is free-regular in s for every m ∈ {0, ..., r − k − 1}. We do an induction on m.

m = 0: We have U0,l(t, z) = log∗(1 + bl(t, z)) and

bl(t, z) =
log∗(1 + cl(t, z))− cl(t, z)

cl(t, z)

for every (t, z) ∈ D (compare (+b), (++c)). With (+++c) and Remark 6.65(2)
we are done.

m− 1 → m: By Claim 4 we obtain that∣∣∣Um−1,l(t, z)

Tm−1,l(t, z)

∣∣∣< 1/2

for every (t, z) ∈ D. So

Um,l = log∗
(
1 +

Um−1,l

Tm−1,l

)
.

With (Il), the inductive hypothesis and Remark 6.65(2) we are done. ■Claim 5

We have
σk+m+1zk+m+1|D = Rm,k

for every m ∈ {0, ..., r − k − 1}. Therefore we obtain with (IIk) in Claim 5
that z∗k+m+1 is free-regular in s for every m ∈ {0, ..., r − k − 1}. By (+ + +Q)
we also have that z∗l is free-regular in s for l ∈ {0, ..., k} and we are done with
the proof of Proposition 6.72. ■
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6.73 Corollary

Let q := (q0, ..., qr) ∈ Qr+1. There is a k-persistent regular function M :
π(C) → R≥0 with M < |µr − µk| such that

Z⊗q
µk

: D(µk) 7→ C, (t, s, τ) 7→ (σZ)⊗q(t, µk(t) + (
k∏

j=0

σj)se
iτ ),

is bounded in τ and free-regular in s where D := B(Q0,M).

Proof

The proof for this Corollary is the same as the proof of Corollary 6.67. ■

178



6.1.3 Holomorphic Extensions of Prepared Restricted Log-Exp-Analytic
Functions

Fix κ = r or κ ∈ {kch, r} if kch ≥ 0.

Complex Log-Analytically Prepared Functions

For the rest of Chapter 6.1 we set the following: For m, p ∈ N and l ∈ N with
l ≤ p we denote by Ml(m × p,Q) the set of all m × p-matrices over Q where
the first l columns are zero.

6.74 Definition

Let Y ⊂ H be definable. Let r ∈ N0. Let F : Y → C be a function. We say
that F is complex r-log-analytically prepared in z with center Θ if

F (t, z) = a(t)(σZ)⊗q(t, z)U(t, z)

for all (t, z) ∈ Y where a is a definable function on π∗(Y ) which vanishes
identically or has no zero, q ∈ Qr+1, and we have U = V ◦ ϕ where the
following holds.

(a) The function ϕ is given by

ϕ : Y → Ds(0, 1), (t, z) 7→

(b1(t)
r∏

l=0

(σlzl(t, z))
p1l , ..., bs(t)

r∏
l=0

(σlzl(t, z))
psl),

where s ∈ N0, b1, ..., bs : π∗(Y ) → R are definable which have no zeros
and p1l, ..., psl ∈ Q for every l ∈ {0, ..., r}.

(b) V is a power series which converges absolutely on an open neighbourhood
of Ds(0, 1).

We call a coefficient of F and b1, ..., bs are called base functions of F . We
call LAC := (r,Z, a, q, s, V, b, P ) where Z := (z0, ..., zr) and b := (b1, ..., bs) and

P :=


p10 · · p1r
· ·
· ·
ps0 · · psr

 ∈M
(
s× (r + 1),Q)

a complex LA-preparing tuple for F .
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6.75 Remark

Let r ∈ N0. Let f : C → R be r-log-analytically prepared in x. Let LA :=
(r,Y , a, q, s, v, b, P ) be an LA-preparing tuple for f with b := (b1, ..., bs) and
P := (p1, ..., ps)

t. (So we have

f(t, x) = a(t)|Y(t, x)|⊗qv(b1(t)|Y(t, x)|⊗p1 , ..., bs(t)|Y(t, x)|⊗pl).)

Let R > 1 be such that v converges absolutely on an open neighbourhood of
Qs(0, R). For l ∈ {1, ..., s} set

Γl := {(t, z) ∈ H | |bl(t)(σZ)⊗pl(t, z)| < R}.

Set

Γ :=
s⋂

l=1

Γl

and consider

F : Γ → C, (t, z) 7→ a(t)(σZ)⊗q(t, z)V̂ (b1(t)(σZ)⊗p1(t, z), ..., bs(t)(σZ)⊗ps(t, z))

where V̂ is a complex power series in s variables which converges absolutely on
an open neighbourhood of Ds(0, R) with V̂ |Qs(0,1) = v. Then the function F
is well-defined, definable and holomorphic in z. Additionally we have C ⊂ Γ
and F |C = f . Therefore F is an extension for f which is holomorphic in
z. Additionally F is complex r-log-analytically prepared in z with preparing
tuple LAC := (r,Z, a, q, s, V, 1/R · b, P ) where V (z1, ..., zs) := V̂ (Rz1, ...., Rzs).

6.76 Proposition

Let ν := (ν0, ..., νκ−1) ∈ Qκ. There is a regular κ-persistent Mν : π(C) → R>0

such that the following holds where Dν := B(P0,κ,Mν).∏κ−1
j=0 (σjzj)

νj |Dν is complex r-log-analytically prepared in z with complex prepar-
ing tuple

(r,Z, aν , qν , sν , Vν , bν , Pν)

such that qν = 0, Pν = (pi(j−1))i,j with pij = 0 for j ∈ {0, ..., r} \ {κ} and
i ∈ {1, ..., sν}, aν ̸= 0, 1/|aν | is κ-persistent and aν respectively bν are regular.
Additionally |Vν(Dsν (0, 1))| ⊂ R>0.
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Proof

Let 0 < δ ≤ 1/2 be such that 1/2 <
∏κ−1

j=0 |1 + z|νj < 2 for z ∈ B(0, δ). By
Proposition 6.57(1) there is a regular κ-persistent Mδ : π(C) → R>0 such that∣∣∣ Pj,κ(t, z)

eµκ−j−1,κ(t)

∣∣∣< δ

for every (t, z) ∈ B(P0,κ,Mδ) and every j ∈ {0, ..., κ− 1}. We have

κ−1∏
j=0

(σjzj(t, z))
νj =

κ−1∏
j=0

eνjµκ−j−1,κ(t)
(
1 +

σjPj,κ(t, z)

eµκ−j−1,κ(t)

)νj (+)

for (t, z) ∈ B(P0,κ,Mδ) (compare with Proposition 6.20).

We say that a function g : Y → C where Y ⊂ B(P0,κ,Mδ) is definable with
π∗(Y ) = π(C) fulfills property (∗)p if the following holds:

g is complex r-log-analytically prepared in z with complex LA-preparing tuple

(r,Z, ag, qg, sg, Vg, bg, Pg)

with qg := ((qg)0, ..., (qg)r) such that (qg)κ = 1 and (qg)j = 0 for j ∈ {0, ..., r} \
{κ}, Pg = (p̂i(j−1))i,j with p̂i(j−1) = 0 for j ∈ {1, ..., r + 1} \ {κ + 1} and
i ∈ {1, ..., sg}, ag ̸= 0, 1/|ag| is κ-persistent and ag respectively bg are regular.

Let Ω :=Mδ.

Claim 1

By shrinking Ω if necessary we have that P0,κ|D fulfills property (∗)p (i.e. there
is a regular κ-persistent Ω̂ : π(C) → R>0 with Ω̂ ≤ Ω such that P0,κ|B(P0,κ,Ω̂)

fulfills property (∗)p.)

Proof of Claim 1

Let E0 := zκ|D. Inductively for l ∈ {1, ..., κ} let

El : D → C, (t, z) 7→ σk−le
µl−1,κ(t)(eEl−1(t,z) − 1).

We see by an easy induction on l ∈ {0, ..., κ} that El(t, z) = Pκ−l,κ(t, z) for
(t, z) ∈ D. We show by induction on l ∈ {0, ..., κ} that El|D fulfills property
(∗)p by shrinking Ω if necessary. For l = 0 this is clear.

l − 1 → l : Let
(r,Z, a, q, s, V, b, P )

be a corresponding complex preparing tuple for El−1|D where P := (pi(j−1))i,j.
We have for (t, z) ∈ D

El(t, z) = σk−le
µl−1,κ(t)(exp(a(t)σκzκ(t, z)Q(t, z))− 1)
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where for (t, z) ∈ D

Q(t, z) := V (b1(t)(σκzκ(t, z))
p1κ , ..., bs(t)(σκzκ(t, z))

psκ).

We see for (t, z) ∈ D

El(t, z) = σk−le
µl−1,κ(t)a(t)σκzκ(t, z)

exp(a(t)σκzκ(t, z)Q(t, z))− 1

a(t)σκzκ(t, z)
.

Since 1/|a| is κ-persistent and regular we may assume that |zκ(t, z)| < 1/|a(t)|
for (t, z) ∈ D after shrinking Ω if necessary (by Proposition 6.58(1) there is
a regular κ-persistent M̂ : π(C) → R>0 such that B(P0,κ, M̂) ⊂ B(zκ, 1/|a|)).
Since σk−le

µl−1,κa is regular and 1/(|eµl−1,κa|) is κ-persistent we see that El

fulfills property (∗)p by using the exponential series and composition of power
series. ■Claim 1

Claim 2

By shrinking Ω if necessary we have that Pl,κ|D fulfills property (∗)p for l ∈
{0, ..., κ− 1}.

Proof of Claim 2

We do an induction on l. By Claim 1 we get the assertion for l = 0.

l − 1 → l : Let
(r,Z, a, q, s, V, b, P )

be a corresponding complex preparing tuple for Pl−1,κ|D where P := (pi(j−1))i,j.
Let â := a

e
µκ−l,κ . We have for (t, z) ∈ D

Pl,κ(t, z) = log∗(1 +
Pl−1,κ(t, z)

eµκ−l,κ(t)
)

= â(t)σκzκ(t, z)
log∗(1 + â(t)σκzκ(t, z)Q(t, z))

â(t)σκzκ(t, z)

where for (t, z) ∈ D

Q(t, z) := V (b1(t)(σκzκ(t, z))
p1κ , ..., bs(t)(σκzκ(t, z))

psκ).

Note that â is regular and 1/|â| is κ-persistent since eµκ−l,κ is regular and κ-
persistent. So by shrinking Ω if necessary we may assume that |zκ(t, z)| <
1/|â(t)| for (t, z) ∈ D. We see by using the logarithmic series and composition
of power series that Pl,κ|D fulfills (∗)p. ■Claim 2

So let for j ∈ {0, ..., κ− 1}

(r,Z, aj, qj, sj, Vj, bj, Pj)
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be a complex preparing tuple for Pj,κ|D according to property (∗)p. Note
that aj(t)/e

µκ−j−1,κ(t) is regular and the absolute value of its reciprocal is κ-
persistent. So by shrinking Ω if necessary we may assume that |zκ(t, z)| <
|aj(t)|/eµκ−j−1,κ(t) for (t, z) ∈ D and j ∈ {0, ..., κ − 1}. So with (+) and com-
position of power series we obtain the desired preparation for

∏κ−1
j=0 (σjzj)

νj |D
since

∏κ−1
j=0 e

νjµκ−j−1,κ is regular and its reciprocal is κ-persistent (by writing∏κ−1
j=0 (1 + z)νj as a power series for z ∈ B(0, 1/2) which converges absolutely

on an open neighbourhood of B(0, 1/2)). This finishes the proof of Proposition
6.76. ■

For the rest of this paragraph we fix a definable Y ⊂ H. Fix a complex r-
log-analytically prepared function F : Y → C in z with complex LA-preparing
tuple (r,Z, a, q, s, V, b, P ).

6.77 Remark

Let η := (a, b1, ..., bs). Then there is a globally subanalyticG : Cs+1×Cr+1 → C
such that for every (t, z) ∈ Y we have

F (t, z) = G(η(t),Z(t, z)).

So F is definable.

Proof

Let u := (u0, ..., us) range over Cs+1 and w := (w0, ..., wr) over Cr+1. Set

α0 : Cs+1 × Cr+1 → C, (u,w) 7→{
u0

∏r
j=0(σjwj)

qj , σjwj ∈ C− for every j ∈ {0, ..., r},
0, else.

For l ∈ {1, ..., s} let

αl : Cs+1 × Cr+1 → C, (u,w) 7→{
ul
∏r

j=0(σjwj)
plj , σjwj ∈ C− for every j ∈ {0, ..., r},

0, else.

Set
G : Cs+1 × Cr+1 → C, (u0, ..., us, w0, ...., wr) 7→{

α0(u,w)V (α1(u,w), ..., αs(u,w)), |αi(u,w)| ≤ 1 for all i ∈ {1, ..., s},
0, else.

ThenG is globally subanalytic. Note that σlzl(t, z) ∈ C− for every l ∈ {0, ..., r}
and (t, z) ∈ H. So we have

F (t, z) = G(η(t),Z(t, z))

183



for every (t, z) ∈ Y . ■

For the rest of this paragraph let Y := A(P0,κ, N, T ) where N : π(C) → R≥0 is
regular and κ-non-persistent and T : π(C) → R≥0 is regular and κ-persistent.
So we may also assume that C is near with respect to µκ and consequently
Θk+1 = ... = Θr = 0 if κ = k. Let π+ : Rn×R×C → Rn×R, (t, s, z) 7→ (t, s),
be the projection on the first n+ 1 real coordinates.

6.78 Proposition

There is a regular κ-persistent M : π(C) → R≥0 such that the following holds.
Let

∆ := {(t, s, z) ∈ π(C)× R>0 × C | N(t) < s < M(t), z ∈ B(µκ(t), s)}.

Then the function

Ψ : ∆ → C, (t, s, z) 7→ 1

2πi

∫
∂B(µκ(t),s)

F (t, ξ)

ξ − z
dξ,

is well-defined. Additionally there is l ∈ N and a definable function g =
(g1, ..., gl) : π

+(∆) → Rl such that Ψ is constructible in z with support function

π+(∆) → Rl × R× R, (t, s) 7→ (g(t, s), µκ(t), s),

where the following holds for gj where j ∈ {1, ..., l}: There is p ∈ N0, a
regular function β : π(C) → Rp and a log-analytic hj : Rp+1 → R such that
gj(t, s) = hj(β(t), s) for every (t, s) ∈ π+(∆).

Proof

There is a regular κ-persistentM : π(C) → R≥0 (withM < |µr − µk| if k ≥ 0)
such that for D := A(P0,κ, N,M) we have D ⊂ Y and

z∗α : D(µκ) → C, (t, s, τ) 7→ zα(t, µκ(t) + (
κ∏

j=0

σj)se
iτ ),

is free-regular in s for α ∈ {0, ..., r} where

D(µκ) = {(t, s, τ) ∈ π(C)× R>0×]− π, π[ | N(t) < s < M(t)}.

(By Proposition 6.66(2) if κ = r respectively Proposition 6.72 if κ = k.) Let
η := (a, b1, ..., bs). Note that η is regular. Let l := s+1. By Remark 6.77 there
is a globally subanalytic function G : Cl × Cr+1 → C such that

F (t, z) = G(η(t), z0(t, z), ..., zr(t, z))
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for every (t, z) ∈ D. With Remark 6.65(2) we have that

F ∗ : D(µκ) → C, (t, s, τ) 7→ F (t, µκ(t) + (
κ∏

j=0

σj)se
iτ ),

is free-regular in s (since the components of η considered as functions on D(µκ)
are free-regular in s). By shrinking M if necessary we may assume that F ∗ is
bounded in τ . (By Corollary 6.67 if κ = r respectively Corollary 6.73 if κ = k
we obtain after shrinking M if necessary that

D(µκ) → C, (t, s, τ) 7→ (σZ)⊗q(t, µκ(t) + (
κ∏

j=0

σj)se
iτ ),

is bounded in τ .) Let l ∈ N and g := (g1, ..., gl) : π+(D(µκ)) → Rl be a
corresponding support function for F ∗. With Proposition 6.62 we see that the
function

Ψ : ∆ → C, (t, s, z) 7→ 1

2πi

∫
∂B(µκ(t),s)

F (t, ξ)

ξ − z
dξ,

is well-defined and constructible in z with support function

π+(∆) → Rl × R× R, (t, s) 7→ (g(t, s), µκ(t), s).

Since π+(D(µκ)) = π+(∆) we see with Definition 6.63 that gj fulfills the desired
properties for j ∈ {1, ..., l}. ■

6.79 Proposition

There is a regular κ-persistent M : π(C) → R≥0 such that

D := A(P0,κ, N,M) ⊂ Y

and the following holds:

(1) For (t, z) ∈ D and j ∈ {0, ..., κ− 1} we have that∣∣∣ Pj,κ(t, z)

eµκ−j−1,κ(t)

∣∣∣< 1/2.

(2) F |D is complex r-log-analytically prepared in z with preparing tuple

(r,Z, â, q̂, ŝ, V̂ , b̂, P̂ )

where q̂ := (q̂0, ..., q̂r) with q̂0 = ... = q̂κ−1 = 0 and P̂ ∈Mκ(s×(r+1),Q).
Additionally â and b̂ are regular.
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Proof

For q ∈ Qr+1 we set q∗ := (q0, ..., qκ−1). By Proposition 6.76 there is a regular
κ-persistent M̂ : π(C) → R>0 such that for ν := (ν0, ..., νκ−1) ∈ {q∗, p∗1, ..., p∗s}
the following holds. The function

∏κ−1
j=0 (σjzj)

νj |B(P0,κ,M̂) is complex r-log-
analytically prepared in z with preparing tuple

(r,Z, aν , qν , sν , Vν , bν , Pν)

such that qν = 0, Pν = ((pν)i(j−1))i,j with (pν)i(j−1) = 0 for j ∈ {1, ..., r + 1} \
{κ + 1} and i ∈ {1, ..., sν}, aν respectively bν := ((bν)1, ..., (bν)sν ) are regular
and we have |Vν(Dsν (0, 1))| ⊂ R>0. By shrinking M̂ if necessary we obtain
property (1) with Proposition 6.57(1). For ν ∈ {q∗, p∗1, ..., p∗s} we set

Sν : B(P0,κ, M̂) → C, (t, z) 7→

Vν((bν)1(t)(σκzκ(t, z))
(pν)1κ , ..., (bν)sν (t)(σκzκ(t, z))

(pν)sνκ).

So we obtain for (t, z) ∈ A(P0,κ, N,M) where

M : π(C) → R≥0, t 7→ min{T (t), M̂(t)},

F (t, z) = a(t)aq∗(t)Sq∗(t, z)
r∏

j=κ

(σjzj(t, z))
qj

V (b1(t)ap∗1(t)Sp∗1
(t, z)

r∏
j=κ

(σjzj(t, z))
p1j , ..., bs(t)αp∗s(t)Sp∗s(t, z)

r∏
j=κ

(σjzj(t, z))
psj).

By composition of power series we get property (2). ■

For Proposition 6.80 fix M and D from Proposition 6.79. Suppose that F |D
is complex r-log-analytically prepared in z as in Proposition 6.79.

6.80 Proposition

Let t ∈ π∗(D). Assume that N(t) = 0, M(t) > 0 and that F (t,−) has a
holomorphic extension at µ := µκ(t) (i.e. there is an open neighbourhood
W of µ in B(µ,M(t)) and a holomorphic J : W → C such that J |W∩Dt =
F (t,−)). Then F (t,−) has a holomorphic extension on B(µ,M(t)) (i.e. there
is a holomorphic function h : B(µ,M(t)) → C such that h|Dt = F (t,−)).

Proof

We have

F (t,−) = a(t)(σZ)⊗q(t, z)V (b1(t)(σZ)⊗p1(t, z), ..., bs(t)(σZ)⊗ps(t, z)).

Since zκ(t, z) = Pκ(t, z) we obtain by successively using the logarithmic series

zκ(t, z) = L(z − µ) (∗)
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for z ∈ Dt where L is a power series around zero which converges absolutely
on B(0,M(t)). We set Z := (Z1, ..., Zs). Let

∑
α∈Ns

0
cαZ

α be the power series
expansion of V .

We may assume that a(t) ̸= 0. Note that (pjκ, ..., pjr) = 0 or pj is κ-positive
for j ∈ {1, ..., s}. Let

Γ1 := {α ∈ Ns
0

∣∣ tPα + q ∈ {0}κ × N0 × {0}r−κ}

and Γ2 := Ns
0\Γ1. Set V1 :=

∑
α∈Γ1

cαZ
α and V2 :=

∑
α∈Γ2

cαZ
α. For l ∈ {1, 2}

let

Gl : Dt → C, z 7→ a(t)(σZ)⊗q(t, z)Vl(b1(t)(σZ)⊗p1(t, z), ..., bs(t)(σZ)⊗ps(t, z)).

So we see by composition of power series and (∗) that

G1(z) =
∞∑
j=0

dj(z − µ)j

for z ∈ Dt where dj ∈ C and the series to the right converges absolutely

on B(µ,M(t)). So G1 has a holomorphic extension Ĝ1 on B(µ,M(t)). Let
0 < ϵ < M(t) be such that F |B(µ,ϵ)∩Dt has a holomorphic extension F̂ on
W := B(µ, ϵ). Set

Ĝ2 : W → C, z 7→ F̂ (z)− Ĝ1(z).

Note that Ĝ2 is holomorphic and that Ĝ2|Dt∩W = G2. We show that Ĝ2 = 0
and we are done by the identity theorem (since Ft coincides then with G1 on
W ∩Dt). Let

Ω := {(ωκ, ..., ωr) ∈ Qr−κ+1 | there is α ∈ Γ2 such that

(tPα + q)j = ωj for j ∈ {κ, ..., r}}.

Then Ω ⊂ Qr−κ+1 \ (N0 × {0}r−κ). For ω ∈ Ω let

Γ2,ω := {α ∈ Ns
0 | (tPα + q)j = ωj for j ∈ {κ, ..., r}}.

We have

Ĝ2(z) =
∑
ω∈Ω

eω

r∏
j=κ

(σjzj(t, z))
ωj

where

eω = a(t)
∑

α∈Γ2,ω

cα

s∏
j=1

bj(t)
αj

for z ∈ W . Let
Ω∗ := {ω ∈ Ω | eω ̸= 0}.
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If Ω∗ = ∅ we are done. So assume Ω∗ ̸= ∅. There is ξ := (ξκ, ..., ξr) ∈ Ω such
that

∏r
j=κ |zj|ωj = o(

∏r
j=κ |zj|ξj) for all ω ∈ Ω with ω ̸= ξ. If ξκ ∈ N0 we

differentiate Ĝ2 m-times with respect to z where m := ξκ + 1 and we see with
Corollary 6.35 that there is β = (−1, βκ+1, ..., βr) ∈ Qr−κ+1 such that

lim
z→µ

∣∣∣dmĜ2/dz
m(t, z)∏r

j=κ z
βj

j

∣∣∣∈ R∗.

But we obtain

lim
z→µ

dmĜ2

dzm
(t, z) =

dmĜ2

dzm
(t, µ) ∈ C,

a contradiction. If ξκ /∈ N0 we get a similar contradiction by taking m := ⌈ξκ⌉.
■

Holomorphic Extensions of Prepared Restricted Log-Exp-Analytic
Functions

In the following we investigate definable holomorphic extensions of restricted
log-exp-analytic functions in one variable, show that such an extension is com-
plex log-analytically prepared on ”suitable definable subsets” and give the
desired result on integration.

For the rest of Chapter 6.1 we set the following.

Let e ∈ N0 ∪ {−1} and r ∈ N0. Let f : C → R be an (e, r)-prepared function
in x with center Θ with respect to a finite set E of positive definable func-
tions such that every g ∈ log(E) is (l, r)-prepared in x with respect to E for
a l ∈ {−1, ..., e − 1}. For g ∈ log(E) ∪ {f} we fix a corresponding prepar-
ing tuple (r,Y , ag, exp(d0,g), qg, s, vg, bg, exp(dg), Pg) where bg := (b1,g, ..., bs,g),
exp(dg) := (exp(d1,g), ..., exp(ds,g)) (compare with Definition 4.82). Fix a set
E of C-heirs such that Θ and ag, bg can be constructed from E for g ∈ log(E).

Fix R > 1 such that vg converges absolutely on [−R,R]s and a complex power

series Vg which converges absolutely on Ds(0, R) with Vg|]−1,1[s = vg for every
g ∈ log(E) ∪ {f}. By redefining ag if necessary we may suppose that |Vg| < π
(since Vg is bounded. So we have also |vg| < π).
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6.81 Definition

For an (l, r)-prepared function g ∈ log(E) ∪ {f} we define by induction on
l ∈ {−1, ..., e} a set Λg ⊂ π(C) × C and a function Φg : Λg → C which is
complex (l, r)-prepared in z and a complex preparing tuple JC for Φg.
To this preparation we assign a set EΦg of complex definable functions on
Λg.

Base Case: l = −1: We set Λg = π(C)× C, Φg = 0, Eϕg = ∅ and JC = (0).

Inductive Step: Let

(r,Y , a, ed0 , q, s, v, b, ed, P ) := (r,Y , ag, ed0,g , qg, s, vg, bg, edg , Pg)

where bg := (b1, ..., bs), e
dg := (ed1 , ..., eds), Pg := (p1, ..., ps)

t and for di the cor-
responding Λdi , the complex (l−1, r)-prepared Φdi in z and the corresponding
set Eϕdi

have already been defined for i ∈ {0, ..., s}. Set

Λ0,g := {(t, z) ∈ Λd0 ∩H | |Im(Φd0(t, z))| < π}

and for i ∈ {1, ..., s} set

Λi,g := {(t, z) ∈ Λdi∩H | |bi(t)(σZ)⊗pi(t, z)exp(Φdi(t, z))| < R, |Im(Φdi(t, z))| < π}.

Set Λg =
⋂s

i=0 Λi,g and

Φg : Λg → C, (t, z) 7→ a(t)(σZ)⊗q(t, z)eΦd0
(t,z)

V (b1(t)(σZ)⊗p1(t, z)eΦd1
(t,z), ..., bs(t)(σZ)⊗ps(t, z)eΦds (t,z)).

We set
EΦg = (EΦd0

∪ EΦd1
∪ ... ∪ EΦds

∪ {eΦd0 , ..., eΦds})|Λg

and
JC = (r,Z, a, exp(Φd0), q, s, V, b, exp(Φd), P )

for Φg where exp(Φd) := (exp(Φd1), ..., exp(Φds)).

We often write F instead for Φg and Λ instead for Λg if g = f .

189



6.82 Remark

Let g ∈ log(E)∪{f} be (l, r)-prepared in x with respect to E for l ∈ {−1, ..., e}.
We have that Λg is definable, (Λg)t is open for t ∈ π(C) and Φg is holomorphic
in z. Additionally we have Φg|C = g and Φg can be constructed from EF ∪ E .

Proof

We show that Φg can be constructed from EΦg ∪ E . The other properties are
clear. We do an induction on l. For l = −1 there is nothing to show.

l − 1 → l : Let

(r,Y , a, ed0 , q, s, v, b, ed, P ) := (r,Y , ag, ed0,g , qg, s, vg, bg, edg , Pg)

where bg := (b1, ..., bs), exp(dg) := (exp(d1), ..., exp(ds)) and Pg := (p1, ..., ps)
t.

Note that a and b can be constructed from E . Let

JC := (r,Z, a, exp(D0), q, s, V, b, exp(D), P )

be a complex preparing tuple for Φg where Dj := Φdj for j ∈ {0, ..., s} and

exp(D) := (exp(D1), ..., exp(Ds)).

Note that z0, ..., zr can be constructed from E by Remark 6.14(3) since Θ0, ...,Θr

can be constructed from E . By the inductive hypothesis we have that the func-
tions D0, ..., Ds can be constructed from ED0 ∪ ...∪EDs ∪E . So we obtain that
D0|Λg , ..., Ds|Λg can be constructed from (ED0 ∪ ... ∪ EDs)|Λg ∪ E and we see
with Proposition 3.16(1) that the functions eD0|Λg , ..., e

Ds|Λg can be constructed
from Eϕg ∪ E since the imaginary part of Dj is bounded and eDj |Λg ∈ EΦg for
j ∈ {0, ..., s}. Let

η : Λg → C× Cs × Cs+1, (t, z) 7→ (a(t), b1(t), ..., bs(t), e
D0(t,z), ..., eDs(t,z)).

Then η can be constructed from EΦg ∪E . Similarly as in Remark 6.77 one can
show that there is a globally subanalytic J : C× Cs × Cs+1 × Cr+1 → C such
that

Φg(t, z) = J(η(t, z), z0(t, z), ..., zr(t, z))

for every (t, z) ∈ Λg. With Proposition 3.16(2) we are done. ■

For the rest of Chapter 6.1 we set the following. Let l,m ∈ N0 be with
n = l+m. Let w range over Rl, u over Rm and x over R. Let X ⊂ Rn ×R be
definable with C ⊂ X such that Xw is open for w ∈ Rl. For the rest of this
paragraph we suppose that log(E) consists only of restricted log-exp-analytic
functions in (u, x) with reference set X which are locally bounded in (u, x)
with reference set X. So f : C → R, (w, u, x) 7→ f(w, u, x), is (m + 1, X)-
restricted (e, r)-prepared in x and every g ∈ log(E) is (m + 1, X)-restricted
(l, r)-prepared in x for l ∈ {0, ..., e− 1}.

190



It may happen that there is an unbounded g ∈ log(E) such that Φg has
bounded imaginary part or there can be a bounded g ∈ log(E) such that Φg

is unbounded and has a bounded imaginary part.

6.83 Example

Let w = 0. Let X = C := ]0, 1[2. Let E := {C → R, (u, x) 7→ exp(u log(x))}.
Then E is a set of one positive definable function with log(E) = {g} where
g : C → R, (u, x) 7→ u log(x), is locally bounded in (u, x) with reference set X,
but not bounded. Consider

f : C → R, (u, x) 7→ exp(u log(x)).

Then f is (2, X)-restricted (1, 1)-prepared in x with center 0 (since it is (1, 1)-
prepared in x with respect to E, the underlying logarithmic scale is Y =
(x, log(x)) and vf = vg = 1). Note that µ0 = 0 and µ1 = 1. Therefore
H = ]0, 1[×(C−

0 ∩ C+
1 ). We have Λ = Λg = H (since Im(u log(z)) < π for

(u, z) ∈ H), Φg : Λ → C, (u, z) 7→ u log(z), and

F : Λ → C, (u, z) 7→ exp(u log(z)).

Note that Φg has bounded imaginary part, but is unbounded at zero. Let

D := {(u, x) ∈ ]0, 1[× R>0 | e−1/u < x < 1}

and consider h := f |D. Then h is (2, X)-restricted (1, 1)-prepared in x since it
is (1, 1)-prepared in x with respect to E|D. Note that log(E|D) = {g|D} is a
set of one bounded function. We have Λh = Λg|D = Λ and Φh = F .

For the next two Propositions let Hsmall be defined as follows.

� If
∏r

j=0 σj = 1 and k < 0 we set

Hsmall := {(t, z) ∈ π(C)× C | Re(z) ∈ ]µr(t),∞[}.

� If
∏r

j=0 σj = −1 and k < 0 we set

Hsmall := {(t, z) ∈ π(C)× C | Re(z) ∈ ]−∞, µr(t)[}.

� If
∏r

j=0 σj = 1 and k ≥ 0 we set

Hsmall := {(t, z) ∈ π(C)× C | Re(z) ∈ ]µr(t), µk(t)[}.

� If
∏r

j=0 σj = −1 and k ≥ 0 we set

Hsmall := {(t, z) ∈ π(C)× C | Re(z) ∈ ]µk(t), µr(t)[}.
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Note that Hsmall is definable and that C ⊂ Hsmall ⊂ H.

For a definable curve γ : ]0, 1[ → Hw with γ := (γu, γz) we say that γ is real if
Im(γz) = 0. We write then γx instead of γz.

6.84 Proposition

Let g ∈ log(E). Let w ∈ Rl. Let γ, γ̂ : ]0, 1[ → (Λg)w ∩ (Hsmall)w be definable
curves compatible with Cw where γ̂ is real and γu = γ̂u. Suppose that

� limy↘0(γz(y)− γ̂z(y)) = 0,

� limy↘0 |γz(y)− µκ(w, γu(y))| > 0 for κ = r or κ ∈ {k, r} if k ≥ 0 and

� limy↘0 γ(y) ∈ Xw.

Then we have
lim
y↘0

Φg(w, γ(y)) = lim
y↘0

Φg(w, γ̂(y)) ∈ R.

Proof

Note that g is (l, r)-prepared in x with respect to E for l ∈ {−1, ..., e−1}. We
do an induction on l. For l = −1 the statement is clear.

l − 1 → l : Let

(r,Y , a, ed0 , q, s, v, b, ed, P ) := (r,Y , ag, ed0,g , qg, s, vg, bg, edg , Pg)

where bg := (b1, ..., bs), exp(dg) := (exp(d1), ..., exp(ds)) and Pg := (p1, ..., ps)
t.

Note that limy↘0 bi(w, γu(y)) ∈ R for i ∈ {1, ..., s} by Remark 6.42(1) and
Definition 6.38 and limy↘0 a(w, γu(y)) ∈ R by Remark 6.42(2) (since g is locally
bounded in (u, x) with reference set X). Let

JC := (r,Z, a, exp(D0), q, s, V, b, exp(D), P )

be a complex preparing tuple for Φg where Dj := Φdj for j ∈ {0, ..., s} and
exp(D) := (exp(D1), ..., exp(Ds)). By the inductive hypothesis we have

lim
y↘0

exp(Dj(w, γ(y))) = lim
y↘0

exp(Dj(w, γ̂(y))) ∈ R>0

for j ∈ {0, ..., s}.

Claim

Let l ∈ {0, ..., r}. Then we have

lim
y↘0

σlzl(w, γ(y)) = lim
y↘0

σlzl(w, γ̂(y)) ∈ R>0.

Proof of the claim
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Note that limy↘0 |γ̂x(y)− µj(w, γu(y))| > 0 for j ∈ {0, ..., l}. Since σlzl(w, γ̂u(y)) >
0 for every y ∈ ]0, 1[ we obtain

lim
y↘0

σlzl(w, γ̂u(y)) ∈ R>0

with (IIl) in Proposition 6.28.

We show the statement by induction on l. For l = 0 we have with (I0) in
Proposition 6.28

lim
y↘0

σ0z0(w, γ(y)) = lim
y↘0

σ0(γz(y)−Θ0(w, γu(y)))

= lim
y↘0

σ0(γ̂z(y)−Θ0(w, γu(y))) ∈ R>0.

l− 1 → l: We have with the inductive hypothesis, (Il) in Proposition 6.28 and
the continuity of the global logarithm

lim
y↘0

σlzl(w, γ(y)) = lim
y↘0

(σl(log(σl−1zl−1(w, γ(y)))−Θl(w, γu(y))))

= lim
y↘0

(σl(log(σl−1zl−1(w, γ̂(y)))−Θl(w, γu(y))))

= lim
y↘0

σlzl(w, γ̂(y)) ∈ R>0.

■Claim

By the Claim we have

lim
y↘0

(σZ)⊗ν(γ(y)) = lim
y↘0

(σZ)⊗ν(γ̂(y)) ∈ R>0

for every ν ∈ {q, p1, ..., ps} and we are done with the proof of Proposition 6.84
since V is a continuous function on Ds(0, R). ■

For a definable Z ⊂ Rn × C and (t, x) ∈ Rn × R we set

ζZ(t, x) := sup{y ∈ R≥0 | x+ iQ(0, y) ⊂ Zt}.
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6.85 Proposition

Let g ∈ log(E)∪ {f}. Let w ∈ Rl. Let γ : ]0, 1[ → (Hsmall)w be a real definable
curve compatible with Cw with

� limy↘0 γ(y) ∈ Xw,

� limy↘0 dist(γx(y), C(w,γu(y))) = 0 and

� limy↘0 γx(y)− µκ(w, γu(y)) > 0 for κ = r or κ ∈ {kch, r} if kch ≥ 0.

Then we have limy↘0 ζΛg(w, γ(y)) > 0.

Proof

Let (u0, x0) := limy↘0 γ(y). Assume that g is (l, r)-prepared in x with respect
to E for l ∈ {−1, ..., e}. We do an induction on l. The assertion is clear for
l = −1.

l − 1 → l : Let

(r,Y , a, ed0 , q, s, v, b, ed, P ) := (r,Y , ag, ed0,g , qg, s, vg, bg, edg , Pg)

where b := (b1, ..., bs), exp(dg) := (exp(d1), ..., exp(ds)) and P := (p1, ..., ps)
t.

Let
JC = (r,Z, a, exp(D0), q, s, V, b, exp(D), P )

be a complex preparing tuple for Φg where Dj := ϕdj for j ∈ {0, ..., s} and
exp(D) := (exp(D1), ..., exp(Ds)). We set for j ∈ {1, ..., s} and (t, z) ∈ Λg

ϕj(t, z) := bj(t)(σZ)⊗pj(t, z)eDj(t,z).

Note that |ϕj(t, z)| ≤ 1 if (t, z) ∈ C. By the inductive hypothesis and passing
to a suitable subcurve of γ if necessary we may assume that (w, γ(y)) ∈ Λdi

for i ∈ {0, ..., s} and every y ∈ ]0, 1[.

Assume limy↘0 ζΛg(w, γ(y)) = 0. Then there is a definable curve γ̂ : ]0, 1[ →
(Hsmall)w with γ̂u = γu, Re(γ̂) = γx, limy↘0 γ̂z(y) = x0 and 0 < ϵ < 1 such
that γ̂z(y) /∈ (Λg)(w,γu(y)) for y ∈ ]0, ϵ[.

By shrinking ϵ if necessary we may assume that γ̂(y) ∈ (Λdi)w for every y ∈
]0, ϵ[ and i ∈ {0, ..., s}. By further shrinking ϵ if necessary we find j∗ ∈ {0, ..., s}
such that

|Im(Dj∗(w, γ̂(y)))| ≥ π

for every y ∈ ]0, ϵ[ or j+ ∈ {1, ..., s} such that |ϕj+(w, γ̂(y))| ≥ R for every
y ∈ ]0, ϵ[. By Remark 6.27(2) there is a definable curve γ̃ : ]0, ϵ[ → Cw

compatible with Cw with γ̃u = γ̂u = γu and limy↘0 γ̃(y) = (u0, x0). Since
γ̃ runs through Cw we have |ϕj+(w, γ̃(y))| ≤ 1 for y ∈ ]0, ϵ[ and therefore
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limy↘0 |ϕj+(w, γ̃(y))| ≤ 1. So the latter cannot hold by Proposition 6.84 (since
R > 1). Since γ̃ runs through Cw we obtain

Im(Dj∗(w, γ̃(y))) = Im(dj∗(w, γ̃(y))) = 0

for y ∈ ]0, ϵ[. So the former cannot hold by Proposition 6.84, a contradiction.
■

For Proposition 6.86 we introduce the following notations. For a definable
function V : π(C) → R≥0 we set

Vup : π(C) → R≥0, t 7→
{

1/V (t), V (t) ̸= 0,
0, else,

and

Vdown : π(C) → R≥0, t 7→
{

1/V (t), V (t) ̸= 0,
1, else.

Note that Vup and Vdown are regular if V is regular. For a definable function
W : Y → R≥0 where Y ⊂ π(C) is definable we set

WC : π(C) → R≥0, t 7→
{
W (t), t ∈ Y,
0, else.

Note that WC is regular if W is regular. Fix κ = r or κ ∈ {kch, r} if kch ≥ 0.
Let k := kch

6.86 Proposition

Let g ∈ log(E) ∪ {f}. There is a regular κ-persistent M : π(C) → R≥0 and a
regular κ-non-persistent N : π(C) → R≥0 such that B := A(P0,κ, N,M) ⊂ Λg

and G := Φg|B is complex r-log-analytically prepared in z with a complex LA-
preparing tuple

(r,Z, aG, qG, sG, VG, bG, PG)

where qG := ((qG)0, ..., (qG)r), bG := (b1,G, ..., bsG,G) and the following holds.

(1) We have (qG)0, ..., (qG)κ−1 = 0 and PG ∈Mκ(s× (r + 1),Q).

(2) aG is regular. If g ∈ log(E) then the following holds: aG is consistent
and if qG is κ-negative then 1/((|aG|C)down) is κ-non-persistent.

(3) bG is regular, consistent and if pi,G is κ-negative for i ∈ {1, ..., sG} then
1/((|bi,G|C)down) is κ-non-persistent where PG := (p1,G, ..., psG,G)

t.
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Proof

Let g be (l, r)-prepared in x with respect to E for l ∈ {−1, ..., e}. We do an
induction on l. For l = −1 there is nothing to show.

l − 1 → l : Let

(r,Y , a, ed0 , q, s, v, b, ed, P ) := (r,Y , ag, ed0,g , qg, s, vg, bg, edg , Pg)

where bg := (b1, ..., bs), exp(dg) := (exp(d1), ..., exp(ds)) and Pg := (p1, ..., ps)
t.

We may assume that a ̸= 0. Otherwise the statement is clear. Note that di
is locally bounded in (u, x) with reference set X for every i ∈ {0, ..., s}. For
i ∈ {0, ..., s} let Λi := Λdi . Let

JC = (r,Z, a, exp(D̃0), q, s, V, b, exp(D̃), P )

be a complex preparing tuple for Φg where D̃j := Φdj for j ∈ {0, ..., s} and

exp(D̃) := (exp(D̃1), ..., exp(D̃s)).

By the inductive hypothesis there is a regular κ-non-persistent N∗ : π(C) →
R≥0 and a regular κ-persistent M∗ : π(C) → R≥0 such that for i ∈ {0, ..., s}

B∗ := A(P0,κ, N
∗,M∗) ⊂ Λi

and Di := Φdi |B∗ is complex r-log-analytically prepared in z with complex
LA-preparing tuple

(r,Z, aDi
, qDi

, sDi
, VDi

, bDi
, PDi

)

where qDi
:= ((qDi

)0, ..., (qDi
)r), PDi

:= (p1,Di
, ..., psDi

,Di
)t, bDi

:= (b1,Di
, ..., bsDi

,Di
)

and the following holds for i ∈ {0, ..., s}:

(1) (qDi
)0 = ... = (qDi

)κ−1 = 0 and PDi
∈Mκ(sDi

× (r + 1),Q).

(2) aDi
is regular. If g ∈ log(E) the following holds: aDi

is consistent and if
qDi

is κ-negative then 1/((|aDi
|C)down) is κ-non-persistent.

(3) bDi
is regular, consistent and if pj,Di

is κ-negative then 1/((|bj,Di
|C)down)

is κ-non-peristent for j ∈ {1, ..., sDi
}.

At first we deal with exp(D0), ..., exp(Ds) and start with the following

Claim 1

Let 0 < δ < 1/2. Then there is a regular κ-non-persistent Sδ : π(C) → R≥0

and a regular κ-persistent Tδ : π(C) → R≥0 with Yδ := A(P0,κ, Sδ, Tδ) ⊂ B∗

and for i ∈ {0, ..., s} definable functions Di,1 : π∗(Yδ) → R and Di,2 : Yδ → C
with the following properties.
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(1)* We have Di|Yδ
= Di,1 +Di,2.

(2)* Di,1 is regular and consistent.

(3)* Di,2 is bounded by δ. Additionally exp(Di,2) is complex r-log-analytically

prepared in z with complex LA-preparing tuple (r,Z, 1, 0, ŝ, V̂ , b̂, P̂ ) where
b̂ := (b̂1, ..., b̂ŝ) and b̂i is as in (3) for i ∈ {1, ..., ŝ}.

Proof of Claim 1

Let K ∈ {D0, ..., Ds}. It suffices to find a regular κ-non-persistent Ŝδ : π(C) →
R≥0 and a regular κ-persistent T̂δ : π(C) → R≥0 and corresponding functions
K1 : π∗(W ) → R and K2 : W → C which fulfill properties (1)* - (3)* where
W := A(P0,κ, Ŝδ, T̂δ). Let

(r,Z, a, q, s,V, b,P) := (r,Z, aK , qK , sK , VK , bK , PK).

Suppose a ̸= 0. Otherwise the claim follows. Fix R > 1 such that V converges
absolutely on Ds(0, R). Let

∑
α∈Ns

0
cαZ

α be the power series expansion of V

where Z := (Z1, ..., Zs). Fix L ∈ R with δ < L such that
∑

α∈Ns |cαwα| < L
for w ∈ Ds(0, R).

1. Case: (qκ, ..., qr) ̸= 0.

Consider the regular function

T ∗
δ : π(C) → R≥0, t 7→

{
min{ δ

L|a(t)| ,
1

|a(t)|}, t ∈ π∗(B∗),

0, else.

Subclaim 1

T ∗
δ is κ-persistent.

Proof of Subclaim 1

Let w ∈ Rl. Let γ : ]0, 1[ → Cw be a definable curve compatible with Cw

with limy↘0 γ(y) ∈ Xw and limy↘0 |γx(y)− µκ(w, γu(y))| = 0. Note that there
is 0 < ϵ ≤ 1 such that (w, γu(y)) ∈ π∗(B∗) for every y ∈ ]0, ϵ[ (since N∗ is
κ-non-persistent and M∗ is κ-persistent). Since a is consistent we see that
limy↘0 T

∗
δ (w, γu(y)) ∈ R>0. ■Subclaim 1

Note that if |(σZ)⊗q(t, z)| < T ∗
δ (t) then |K(t, z)| < δ for (t, z) ∈ B∗.

1.1 Case: q is κ-positive.

By Proposition 6.58(1) if qκ > 0 respectively Proposition 6.58(2) if κ = k ≥ 0
and qk = 0 (since (T ∗

δ )up is consistent, because a is consistent) there is a regular
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κ-persistent M+
δ : π(C) → R≥0 such that B(P0,κ,M

+
δ ) ⊂ B((σZ)⊗q, T ∗

δ ). Take

Ŝδ := N∗,
T̂δ : π(C) → R≥0, t 7→ min{M+

δ (t),M
∗(t)},

K1 := 0 and K2 := K|W where W := A(P0,κ, Ŝδ, T̂δ). Note that exp(K2) =
exp∗(K2) where

exp∗ : C → C, z 7→
{

exp(z), |z| ≤ δ,
0, else.

Note that exp∗ is globally subanalytic. Additionally we obtain |a(σZ)⊗q(t, z)| <
1 for (t, z) ∈ W . By composition of power series we get the desired preparation
for exp(K2).

1.2 Case: q is κ-negative.

Similarly as in the proof of Subclaim 1 we see that (T ∗
δ )down is κ-non-persistent

(since 1/((|a|C)down) is κ-non-persistent). By Corollary 6.59 there is a regular
κ-non-persistent N+

δ : π(C) → R≥0 and a regular κ-persistent M+
δ : π(C) →

R≥0 such that A(P0,κ, N
+
δ ,M

+
δ ) ⊂ B((σZ)⊗q, T ∗

δ ). Take Ŝδ : π(C) → R≥0, t 7→
max{N+

δ (t), N
∗(t)}, T̂δ : π(C) → R≥0, t 7→ min{M+

δ (t),M
∗(t)}, K1 := 0 and

K2 := K|W where W = A(P0,κ, Ŝδ, T̂δ). We are done in a completely similar
way as in case 1.1.

2. Case: (qκ, ..., qr) = 0.

Let
S := {i ∈ {1, ..., s} | (piκ, ..., pir) ̸= 0}.

If S = ∅ thenK = aV(b1, ..., bs) is a regular and consistent function considered
as function on π∗(B∗). So we are done by taking Ŝδ := N∗, T̂δ :=M∗, K1 := 0
and K2 := K. So suppose S ≠ ∅. Let

Γ1 := {α ∈ Ns
0 | tPα = 0}

and Γ2 := Ns
0 \ Γ1. Note that Γ2 ̸= ∅. Set V1 :=

∑
α∈Γ1

cαZ
α and V2 :=∑

α∈Γ2
cαZ

α. For l ∈ {1, 2} let

Jl := aVl(b1(σZ)⊗p1 , ..., bs(σZ)⊗ps).

Note that K = J1 + J2. Let ϕi := bi(σZ)⊗pi for i ∈ {1, ..., s}. So suppose
S ≠ ∅. For j ∈ S we define the regular function

Uj,δ : π(C) → R≥0, t 7→
{ ∣∣ δ

La(t)bj(t)

∣∣, t ∈ π∗(B∗),

0, else.

Similarly as in the proof of Subclaim 1 one sees for j ∈ S that Uj,δ is κ-
persistent (since bj and a are consistent) and that if pj is κ-negative then
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(Uj,δ)down is κ-non-persistent (since a is consistent and 1/((|bj|C)down) is κ-
non-persistent). Additionally (Uj,δ)up is consistent for j ∈ S.

We see that for j ∈ S there is a regular κ-non-persistent Ŝj,δ : π(C) → R≥0

and a regular κ-persistent T̂j,δ : π(C) → R≥0 such that

A(P0,κ, Ŝj,δ, T̂j,δ) ⊂ B((σZ)pj , Uj,δ).

(By Proposition 6.58(1) if pj is κ-positive and pjκ ̸= 0 respectively Proposition
6.58(2) if pj is κ-positive, κ = k ≥ 0 and pjk = 0 since (Uj,δ)up is consistent

respectively Corollary 6.59 if pj is κ-negative. If pj is κ-positive take Ŝj,δ = 0.)

Of course we may assume that N∗ ≤ Ŝj,δ and T̂j,δ ≤ M∗ for j ∈ S. Consider

Ŝδ : π(C) → R≥0, t 7→ max{Ŝj,δ(t) | j ∈ S} and T̂δ : π(C) → R≥0, t 7→
min{T̂j,δ(t) | j ∈ S}. Then Ŝδ is regular and κ-non-persistent and T̂δ is regular

and κ-persistent. Consider W := A(P0,κ, Ŝδ, T̂δ).

To obtain Claim 1 it remains to show that exp(J2)|W is complex r-log-analytically
prepared in z as desired (see Subclaim 2) and that J1|W coincides with a regular
and consistent function on π(W ).

Subclaim 2

For (t, z) ∈ W we have |J2(t, z)| < δ. The function exp(J2)|W is complex
r-log-analytically prepared in z as required in property (3)*.

Proof of Subclaim 2

Set ϕ := (ϕ1, ..., ϕs). For every α := (α1, ..., αs) ∈ Γ2 fix iα ∈ {1, ..., s} with
iα ∈ S and αiα ̸= 0. Therefore we have for (t, z) ∈ W

|a(t)ϕiα(t, z)| < δ/L.

We obtain

|J2(t, z)| = |a(t)V2(ϕ(t, z))|
= |a(t)

∑
α∈Γ1

cαϕiα(t, z)
αiα

∏
j ̸=iα

ϕj(t, z)
αj |

= |
∑
α∈Γ1

cαa(t)ϕiα(t, z)ϕiα(t, z)
αiα−1

∏
j ̸=iα

ϕj(t, z)
αj |

< δ/L
∑
α∈Γ1

|cαϕiα(t, z)
αiα−1

∏
j ̸=iα

ϕj(t, z)
αj |

< δ.

Let S := {j1, ..., jβ} where β ∈ N. Note that iα ∈ {j1, ..., jβ} is unique for
α ∈ Ns

0. Let (wj1 , ..., wjβ) be a new tuple of complex variables. Consider for
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γ ∈ {1, ..., β}

ϕ̃γ : W → B(0, 1), (t, z) 7→ a(t)bjγ (t)(σZ)⊗pjγ (t, z).

Consider

V̂ : Ds+β(0, 1) → C, (z1, ..., zs, wj1 , ..., wjβ) 7→
∑
α∈Γ2

cαwiαz
αiα−1
iα

∏
j ̸=iα

z
αj

j .

Note that V̂ defines a power series which converges absolutely on an open
neighbourhood of Ds+β(0, 1) (and is therefore globally subanalytic). We have
for (t, z) ∈ W

J2(t, z) = V̂ (ϕ1(t, z), ..., ϕs(t, z), ϕ̃1(t, z), ..., ϕ̃β(t, z))

and therefore

exp(J2(t, z)) = exp∗(V̂ (ϕ1(t, z), ..., ϕs(t, z), ϕ̃1(t, z), ..., ϕ̃β(t, z)))

where

exp∗ : C → C, z 7→
{

exp(z), |z| ≤ δ,
0, else.

By using the exponential series and composition of power series we see that
exp(J2) has the desired properties. ■Subclaim 2

Set

Ξ : π∗(W ) → R, t 7→
∑
α∈Γ1

a(t)cα

s∏
j=1

bj(t)
αj .

Then we obtain J1(t, z) = Ξ(t) for (t, z) ∈ W . We show that Ξ is consistent
and regular and are done with Claim 1. Note that

Ξ(t) = a(t)V1(b1(t)(σZ)⊗p1(t, λ(t)), ..., bs(t)(σZ)⊗ps(t, λ(t)))

for t ∈ π∗(W ) where

λ : π∗(W ) → R, t 7→ µκ(t) + (
κ∏

j=0

σj)
Ŝδ(t) + T̂δ(t)

2
,

is regular. (Note also that (t, λ(t)) ∈ W for t ∈ π(W ).) So we see that Ξ is
consistent since a is consistent.
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Subclaim 3

The function Ξ is regular.

Proof of Subclaim 3

Similarly as in Remark 6.77 we find a globally subanalytic function G : Cs+1×
Cr−κ+1 → C such that for t ∈ π∗(W )

Ξ(t) = G(η(t),Zκ(t, λ(t)))

where Zκ := (zκ, ..., zr) and η : π∗(W ) → Rs+1, t 7→ (a(t), b1(t), ..., bs(t)).
Note that η and Θ are regular. By Remark 6.44(2) it is enough to show that
π(C) → C, t 7→ zl(t, λ(t)), is regular. We do an induction on l ∈ {0, ..., r}.
l = 0: We have z0(t, λ(t)) = λ(t)−Θ0(t) for t ∈ π∗(W ). Remark 6.44(2) gives
the result since Θ0 is regular.

l − 1 → l: We have zl(t, λ(t)) = log(σl−1zl−1(t, λ(t))) − Θl(t) for t ∈ π∗(W ).
Remark 6.44(2) and the inductive hypothesis give the result since Θl is regular.

■Subclaim 3

So we set K1 := Ξ and K2 := J2|W .

All in all we obtain Claim 1. ■Claim 1

Fix 0 < δ < min{log( 4
√
R), π} such that

1/
4
√
R <

κ−1∏
j=0

(1 + δ)pij <
4
√
R

for every i ∈ {1, ..., s}. To this δ fix the corresponding regular κ-non-persistent
Sδ and the regular κ-persistent Tδ from Claim 1. Let Y := Yδ = A(P0,κ, Sδ, Tδ)
and let Di,1 and Di,2 be as in Claim 1 for i ∈ {0, ..., s}. (Note that 1/ 4

√
R <

|exp(Di,2(t, z))| < 4
√
R for (t, z) ∈ Y and i ∈ {0, ..., s}.) (+)

For (t, z) ∈ Λg ∩ Y we have

Φg(t, z) = a(t)exp(D0,1(t))(σZ)⊗q(t, z)exp(D0,2(t, z))

V (b1(t)exp(D1,1(t))(σZ)⊗p1(t, z)exp(D1,2(t, z)), ...,

bs(t)exp(Ds,1(t))(σZ)⊗ps(t, z)exp(Ds,2(t, z))).

Note that |Im(Di,2(t, z))| < δ < π for (t, z) ∈ Y and i ∈ {0, ..., s}. So we have

Λg ∩ Y = {(t, z) ∈ Y | |bi(t)exp(Di,1(t))(σZ)⊗pi(t, z)exp(Di,2(t, z))| < R

for every i ∈ {1, ..., s}}.
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Claim 2

There is a regular κ-persistent M+ : π(C) → R≥0 and a regular κ-non-
persistent N+ : π(C) → R≥0 such that A(P0,κ, N

+,M+) ⊂ Λg ∩ Y .

Proof of Claim 2

For i ∈ {1, ..., s} let

Φi : Y → C, (t, z) 7→ bi(t)exp(Di,1(t))(σZ)⊗pi(t, z)exp(Di,2(t, z)).

It is enough to show that there is a regular κ-persistentM+
i : π(C) → R≥0 and

a regular κ-non-persistent N+
i : π(C) → R≥0 such that A(P0,κ, N

+
i ,M

+
i ) ⊂

B(Φi, R) ∩ Y . (Take then M+ : π(C) → R≥0, t 7→ min{M1(t), ...,Ms(t)} and
N+ : π(C) → R≥0, t 7→ max{N1(t), ..., Ns(t)}.)

Case 1:

Let (piκ, ..., pir) ̸= 0. Let

U : π(C) → R≥0, t 7→

{ √
R

|bi(t)|exp(Di1(t))
, t ∈ π∗(Y ),

0, else.

By the proof of Subclaim 1 in Claim 1 we see that U is κ-persistent since
π∗(Y ) → R≥0, t 7→ |bi(t)|exp(Di1(t)), is consistent by Remark 6.42(1), (2)*
in Claim 1 and Remark 6.40(3). So Uup is also consistent. For (t, z) ∈
B((σZ)⊗pi , U) ∩ Y we have |Φi(t, z)| < R since |exp(Di,2(t, z))| < 4

√
R.

Suppose that pi is κ-positive. By Proposition 6.58(1) if piκ ̸= 0 respectively
Proposition 6.58(2) if κ = k ≥ 0 and piκ = 0 (since Uup is consistent)

there is a regular κ-persistent M̂+
i : π(C) → R≥0 such that B(P0,κ, M̂

+
i ) ⊂

B((σZ)⊗pi , U). Choose N+
i := Sδ and

M+
i : π(C) → R≥0, t 7→ min{M̂+

i (t), Tδ(t)}.

Then A(P0,κ, N
+
i ,M

+
i ) ⊂ B((σZ)⊗pi , U) ∩ Y .

Suppose that pi is κ-negative. Note that Udown is κ-non-persistent (since
|bi| is κ-non-persistent by Remark 6.54(1), compare also the proof of Sub-
claim 1 in Claim 1). With Corollary 6.59 we find a regular κ-non-persistent
N+

i : π(C) → R≥0 and a regular κ-persistent M+
i : π(C) → R≥0 such that

A(P0,κ, N
+
i ,M

+
i ) ⊂ B((σZ)⊗pi , U). The rest of the proof is similar as in the

”κ-positive”-case.

Case 2:

Let (piκ, ..., pir) = 0. Take N+
i := Sδ. By Proposition 6.20 we get

(σZ)⊗pi(t, z) =
κ−1∏
j=0

(σjPj,κ(t, z) + eµκ−j−1,κ(t))pij
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for (t, z) ∈ Y . For t ∈ π∗(Y ) let

Q(t) := bi(t)exp(Di,1(t))
κ−1∏
j=0

epijµκ−j−1,κ(t).

Note that

bi(t)exp(Di,1(t))(σZ)⊗pi(t, z) = Q(t)
κ−1∏
j=0

(
1 +

σjPj,κ(t, z)

eµκ−j−1,κ(t)

)pij
for (t, z) ∈ Y . By Proposition 6.57(1) we find a regular κ-persistent M∗∗ :
π(C) → R>0 such that ∣∣σjPj,κ(t, z)

eµκ−j−1,κ(t)

∣∣< δ

for (t, z) ∈ B(P0,κ,M
∗∗) and j ∈ {0, ..., κ− 1}. Note that if |Q(t)| <

√
R then

|Φi(t, z)| = |Q(t)
κ−1∏
j=0

(
1 +

σjPj,κ(t, z)

eµκ−j−1,κ(t)

)pijexp(Di,2(t, z))| <
√
R · 4

√
R · 4

√
R = R

for (t, z) ∈ Y ∩ B(P0,κ,M
∗∗) by (+). Let

M+
i : π(C) → R≥0, t 7→

{
min{M∗∗(t), Tδ(t)}, t ∈ π∗(Y ), |Q(t)| <

√
R,

0, else.

Note thatM+
i is regular and by construction thatA(P0,κ, N

+
i ,M

+
i ) ⊂ B(Φi, R)∩

Y . We show that M+
i is κ-persistent and are done.

Note that
|bi(t)exp(Di,1(t))(σZ)⊗pi(t, z)exp(Di,2(t, z))| ≤ 1

for every (t, z) ∈ Y ∩ C. Let w ∈ πl(C). Let γ : ]0, 1[ → Cw be a definable
curve compatible with Cw with limy↘0(γ(y)) ∈ Xw and

lim
y↘0

(γx(y)− µκ(w, γu(y))) = 0.

By passing to a suitable subcurve of γ if necessary we may assume that
(w, γu(y)) ∈ π∗(Y ) for y ∈ ]0, 1[ (compare the proof of Subclaim 1 in Claim 1)
and that there is a definable continuous γ̂x : ]0, 1[ → R with (γu(y), γ̂x(y)) ∈
Cw ∩ Yw for y ∈ ]0, 1[. We have

|bi(w, γu(y))eDi1(w,γu(y))(σZ)⊗pi(w, γu(y), γx(y))e
Di2(w,γu(y),γx(y))| ≤ 1

and therefore

|Q(w, γu(y))| ≤ 1

|exp(Di2(w, γu(y), γx(y)))
∏κ−1

j=0 (1 +
σjPj,κ(w,γu(y),γx(y))

eµκ−j−1,κ(w,γu(y)) )pij |

<
4
√
R · 4

√
R =

√
R

203



for y ∈ ]0, 1[. So we have

lim
y↘0

M+
i (w, γu(y)) = lim

y↘0
min{M∗∗(w, γu(y)), Tδ(w, γu(y))} > 0.

■Claim 2

Let N+ and M+ be as in Claim 2. Choose N := N+ and M := M+. Let
B = A(P0,κ, N,M). Define

â : π∗(B) → R, t 7→ a(t)exp(D0,1(t))

and for i ∈ {1, ..., s}

b̂i : π
∗(B) → R, t 7→ bi(t)exp(Di,1(t)).

Then by (2)∗ in Claim 1 and Remark 6.44(1) we see that exp(Di,1)|π∗(B) is
regular and consistent for i ∈ {0, ..., s}. So â is regular and if g ∈ log(E) then
â is consistent (by Remark 6.42(2)) and 1/((|â|C)down) is κ-non-persistent if
q is κ-negative (by Remark 6.54(2) and the proof of Subclaim 1). Note that
b̂1, ..., b̂s are regular and consistent by (2∗) in Claim 1 and Remark 6.40(3).
If pi is κ-negative for i ∈ {1, ..., s} then 1/((|b̂i|C)down) is κ-non-persistent
(by Remark 6.54(1) and the proof of Subclaim 1). For (t, z) ∈ B we set for
ν := (ν0, ..., νr) ∈ Qr+1

Lν := Lν(t, z) :=
κ−1∏
j=0

(σjzj(t, z))
νj =

κ−1∏
j=0

eνjµκ−j−1,κ(t)

κ−1∏
j=0

(
1 +

σjPj,κ(t, z)

eµκ−j−1,κ(t)

)νj
and Zν :=

∏r
j=κ(σjzj(t, z))

νj . So for (t, z) ∈ B we obtain

Φg(t, z) = â(t)ZqLqe
D0,2(t,z)V (b̂1(t)Zp1Lp1e

D1,2(t,z), ..., b̂s(t)ZpsLpse
Ds,2(t,z)).

By shrinking M if necessary we may assume that B → C, (t, z) 7→ Lν(t, z),
is complex r-log-analytically prepared in z as in Proposition 6.76 for ν ∈
{q, p1, ..., ps}. By composition of power series we obtain the desired preparation
since B → C, (t, z) 7→ eDj,2(t,z), fulfills property (3)* from Claim 1 for j ∈
{0, ..., s}. This finishes the proof of Proposition 6.86. ■

Let π+ : Rn ×R×C → Rn ×R, (t, s, z) 7→ (t, s), be the projection on the first
n+ 1 real coordinates.
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6.87 Corollary

There is a regular κ-non-persistent N : π(C) → R≥0 and a regular κ-persistent
M : π(C) → R≥0 such that the following holds. Let

∆ := {(t, s, z) ∈ π(C)× R>0 × C | N(t) < s < M(t), z ∈ B(µκ(t), s)}.

Then the function

Ψ : ∆ → C, (t, s, z) 7→ 1

2πi

∫
∂B(µκ(t),s)

F (t, ξ)

ξ − z
dξ,

is well-defined. Additionally there is l ∈ N and a definable function g =
(g1, ..., gl) : π

+(∆) → Rl such that Ψ is constructible in z with support function

π+(∆) → Rl × R× R, (t, s) 7→ (g(t, s), µκ(t), s),

where the following holds for gj where j ∈ {1, ..., l}: There is p ∈ N0, a
regular function β : π(C) → Rp and a log-analytic hj : Rp+1 → R such that
gj(t, s) = hj(β(t), s) for every (t, s) ∈ π+(∆).

Proof

By Proposition 6.86 there is a regular κ-persistent M : π(C) → R≥0 and a
regular κ-non-persistent N : π(C) → R≥0 such that F |B is complex r-log-
analytically prepared in z with center Θ, regular coefficient and base functions
where B := A(P0,κ, N,M). By shrinking M if necessary we are done with
Proposition 6.78. ■
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6.2 Global Complexification of Restricted
Log-Exp-Analytic Functions

Now we are able to show that a real analytic restricted log-exp-analytic func-
tion has a global complexification which is again restricted log-exp-analytic.
We start with the following result from topology.

6.88 Proposition

Let Y be a non-empty topological space. Let g : Y → R be a function that is
bounded from below. Let

f : Y → R, x 7→ lim inf
y→x

g(y).

Then f is lower semi-continuous, i.e. for every x ∈ Y and every a < f(x)
there is an open neighbourhood V of x such that a < f(y) for all y ∈ V .

Proof

See for example Bourbaki ([4], Chapter IV, §6, Section 2, Proposition 4). ■

6.2.1 The One Dimensional Case

In this section we show that a real analytic restricted log-exp-analytic function
has a unary high parametric global complexification which is again restricted
log-exp-analytic. (See also [19] for the proof in the globally subanalytic set-
ting.)

For this section let l,m ∈ N0 be with n = l + m. Let w range over Rl and
u over Rm. Let πl : Rl × Rm × R → Rl, (w, u, x) 7→ w. For a definable set
Z ⊂ Rn × C and (t, x) ∈ Rn × R we set

ζZ := sup{r ≥ 0 | x+ iQ(0, r) ⊂ Zt}.

Let π+ : Rn ×R×C → Rn ×R, (t, s, z) 7→ (t, s), be the projection on the first
n+ 1 real coordinates.

6.89 Proposition

Let X ⊂ Rn+1 be definable such that Xw is open for every w ∈ πl(X). Let
f : X → R, (w, u, x) 7→ f(w, u, x), be restricted log-exp-analytic in (u, x) such
that fw is real analytic for all w ∈ Rl. Then f has a unary high parametric
global complexification F : Z → C, (w, u, z) 7→ F (w, u, z), with respect to (u, x)
which is restricted log-exp-analytic in (u, z).
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Proof

For a definable cell C ⊂ X which is fat with respect to x we say the following:
The expression ”C-consistent” means always ”C-consistent in u with respect
to X” and ”C-regular” means always ”C-regular in u with respect to X”.

Let e ∈ N0 be such that f is restricted log-exp-analytic in (u, x) of order at
most e. By Corollary 4.95 there is r ∈ N0 and a definable cell decomposition C ′

of X ̸=0 such that f |C′ is (m+ 1, X)-restricted (e, r)-prepared in x. Let C ⊂ C ′

be the set of fat cells with respect to x.

For every C ∈ C we consider the following.

Fix a finite set EC of locally bounded functions in (u, x) with reference set
X such that every g ∈ log(EC) ∪ {f |C} is (l, r)-prepared in x with respect to
EC for l ∈ {−1, ..., e}. For g ∈ log(EC) ∪ {f |C} fix a corresponding preparing
tuple

(r,YC , aC,g, exp(dC,0,g), qC,g, s, vC,g, bC,g, exp(dC,g), PC,g)

where bC,g := (bC,1,g, ..., bC,s,g) and exp(dC,g) := (exp(dC,1,g), ..., exp(dC,s,g))
(without loss of generality s is independent of C and of the function g ∈
log(EC)). Note that the center ΘC := (ΘC,0, ...,ΘC,r) of YC and for every
g ∈ log(EC)∪{f |C} the components of bC,g are C-consistent (compare Example
6.41(1) and Remark 6.42(1)) and C-regular (since they are C-nice and every C-
nice function is C-regular by Example 6.45(1)). For every g ∈ log(EC)∪{f |C}
we have that ag is C-regular since it is C-nice and if g ∈ log(EC) then ag is
C-consistent in addition (by Remark 6.42(2)).

For every C ∈ C fix the sign σC := (σC,0, ..., σC,r) of YC , its change index

kC := kchC := min{l ∈ {0, ..., r} | σC,l = −1} − 1,

its corresponding functions µC,r and µC,kC if kC ≥ 0 from Definition 6.3 which
are C-regular by Example 6.45(2).

Step 1: Constructing a suitable holomorphic extension of f |C in the
last variable x for C ∈ C:
For C ∈ C we construct a holomorphic extension of f |C such that, after glu-
ing the single extensions together, we obtain a unary high parametric global
complexification with respect to (u, x) which is restricted log-exp-analytic
in (u, z). A very complex and detailed construction is necessary to obtain this
both properties at once.

Let HC be from Definition 6.13(b). For every g ∈ log(EC) fix ΦC,g from
Definition 6.81 and for ΦC,g a complex preparing tuple

(r,ZC , aC,g, exp(DC,0,g), qC,g, s, VC,g, bC,g, exp(DC,g), PC,g)
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where
exp(DC,g) := (exp(DC,1,g), ..., exp(DC,s,g)).

Let ΛC := ΛC,f , ΦC := ΦC,f and EΦC
:= EΦC,f

. The expression ”(C, κ)-
(non-)pesistent” means always ”(C,YC , κ)-(non-)persistent in u with respect
to X”.

By Proposition 6.86 and Corollary 6.87 there is for κ = r or κ ∈ {kC , r} if
kC ≥ 0 a C-regular (C, κ)-persistent M̂C,κ : π(C) → R≥0 and a C-regular
(C, κ)-non-persistent NC,κ : π(C) → R≥0 such that

KC,κ := {(t, z) ∈ HC | NC,κ(t) < |z − µC,κ(t)| < M̂C,κ(t)} ⊂ ΛC ,

ΦC |KC,κ
is complex r-log-analytically prepared in z as in Proposition 6.86 with

center ΘC and for

∆̂C,κ := {(t, s, z) ∈ π(C)×R>0 ×C | NC,κ(t) < s < M̂C,κ(t), z ∈ B(µC,κ(t), s)}

that

ΨC,κ : ∆̂C,κ → C, (t, s, z) 7→ 1

2πi

∫
∂B(µC,κ(t),s)

ΦC(t, ξ)

ξ − z
dξ,

is well-defined. Additionally there is lC ∈ N0 and a definable function g∗C,κ :=

((g∗C,κ)1, ..., (g
∗
C,κ)lC ) : π

+(∆̂C,κ) → RlC such that ΨC,κ is constructible in z with
support function

π+(∆̂C,κ) → RlC × R× R, (t, s) 7→ (g∗C,κ(t, s), µC,κ(t), s),

where the following holds for (g∗C,κ)j where j ∈ {1, ..., lC}: There is pC,κ ∈ N0,
a regular function βC,κ : π(C) → RpC,κ and a log-analytic hC,κ,j : RpC,κ+1 → R
such that (g∗C,κ)j(t, s) = hC,κ,j(βC,κ(t), s) for every (t, s) ∈ π+(∆̂C,κ). Fix the

C-regular coefficient âC,κ and a tuple of C-regular base functions b̂C,κ for the

complex r-log-analytical preparation of ΦC |KC,κ
. So we see by shrinking M̂C,κ

if necessary that (ΦC |KC,κ
)t has a holomorphic extension on B(µC,κ(t), M̂C,κ(t))

if NC,κ(t) = 0 and (ΦC |KC,κ
)t has a holomorphic extension at µC,κ(t) by Propo-

sition 6.80 (here we have to shrink M̂C,κ in general since one needs that zκ can

be written as a convergent power series on B(µC,κ(t), M̂C,κ(t)). This can be
done with Proposition 6.79(1) and Proposition 6.20). (+)

Let

αC,κ : π(C) → R≥0, t 7→
{

2NC,κ(t), NC,κ(t) ̸= 0,

M̂C,κ(t)/2, NC,κ(t) = 0.

Note that αC,κ is C-regular.

Fix a finite set EC of positive definable functions on π(C) such that every
g ∈ log(EC) is C-consistent and the following holds.
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(1) The functions ΘC,0, ...,ΘC,r can be constructed from EC and we have
exp(ΘC,0), ..., exp(ΘC,r) ∈ EC .

(2) For every g ∈ log(EC) ∪ {f} we have that aC,g, bC,1,g, ..., bC,s,g can be
constructed from EC and that exp(aC,g) ∈ EC if g ∈ log(EC).

(3) The functions NC,κ, M̂C,κ, βC,κ, âC,κ, b̂C,κ and µC,κ can be constructed
from EC for κ = r or κ ∈ {kC , r} if kC ≥ 0.

Since ΦC |KC,κ
is complex r-log-analytically prepared in z with coefficient, cen-

ter and base functions which can be constructed from EC we have that ΦC |KC,κ

can be constructed from EC for κ = r or κ ∈ {kC , r} if kC ≥ 0 (compare with
Remark 6.77 and Proposition 3.16(2)). (ß)

Note also that ΦC can be constructed from EC ∪ EϕC
by Remark 6.82. (ßß)

Fix l∗C ∈ N and positive definable functions eC,1, ..., eC,l∗C
on π(C) such that

EC = {eC,1, ..., eC,l∗C
}. For κ = r or κ ∈ {kC , r} if kC ≥ 0 let

M̃C,κ : π(C) → R≥0, t 7→

min{LC(t), M̂C,κ(t), exp(−|log(eC,1(t))|), ..., exp(−|log(eC,l∗C
(t))|)}

where LC denotes the length of C with respect to x. Consider

MC,κ : π(C) → R≥0, t 7→
{
M̃C,κ(t), Ct ∩B(µC,κ(t), M̃C,κ(t)) ̸= ∅,
0, else.

Note that M̃C,κ is (C, κ)-persistent by Remark 6.50 and Remark 6.48(2) (since
exp(|log(eC,j)|) is C-consistent), but not necessarily C-regular (since it depends
on LC). So one sees also that MC,κ is κ-persistent. By shrinking MC,κ if
necessary we may assume that MC,κ < 1/2|µC,r − µC,kC | if kC ≥ 0.

Let

∆C,κ := {(t, z) ∈ π(C)× C | NC,κ(t) < M̂C,κ(t), z ∈ B(µC,κ(t), αC,κ(t))}.

We have that
∆C,κ → C, (t, z) 7→ ΨC,κ(t, αC,κ(t), z),

can be constructed from EC (since µC,κ, αC,κ, βC,κ and therefore also g∗C,κ(t, αC,κ)
can be constructed from EC by construction of g∗C,κ. Note that a constructible
function is log-analytic). Set

Λ̂C := {(t, z) ∈ ΛC | |Im(z)| <

min{LC(t), exp(−|log(eC,1(t))|), ..., exp(−|log(eC,l∗C
(t))|)}}
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and

Γ̃C := {(t, z) ∈ Λ̂C | z is in the same connected component of (Λ̂C)t as Ct}.

Note that Γ̃C is definable with C ⊂ Γ̃C and (Γ̃C)t is open and connected
for t ∈ π(C). Additionally we have A(µκ, NC,κ,MC,κ) ⊂ Γ̃C for κ = r or
κ ∈ {kC , r} if kC ≥ 0.

Let κ = r or κ ∈ {kC , r} if kC ≥ 0. We set

BC,κ := {t ∈ π(C) | αC,κ(t) < M̂C,κ(t) and B(µC,κ(t), αC,κ(t)) → C,

z 7→ ΨC,κ(t, αC,κ(t), z), is holomorphic}.

Then BC,κ is definable since ΨC,κ is definable, αC,κ is definable and since the
property of being holomorphic is definable by the Cauchy-Riemann equations.
We set

GC,κ := {(t, z) ∈ HC | t ∈ BC,κ and z ∈ B(µC,κ(t),min{αC,κ(t),MC,κ(t)})}.

Note that GC,κ ⊂ ∆C,κ. Consider

χC,κ : GC,κ → C, (t, z) 7→ ΨC,κ(t, αC,κ(t), z).

Note that χC,κ can be constructed from EC . (ßßß)
Let

B̂C,κ := {t ∈ BC,κ | (ΦC)t = (χC,κ)t on (Γ̃C)t ∩ (GC,κ)t}

and
TC,κ := {(t, z) ∈ HC | t ∈ B̂C,κ and z ∈ B(µC,κ(t),MC,κ(t))}.

Note that TC,κ ⊂ Γ̃C ∪ GC,κ and if t ∈ B̂C,κ then (TC,κ)t = (KC,κ)t ∪ (GC,κ)t.
Further let dC,κ(t) := dist(µC,κ(t), Ct)/2 for t ∈ π(C). Let HC,small be defined
in the following way.

� If
∏r

j=0 σC,j = 1 and kC < 0 we set

HC,small := {(t, z) ∈ π(C)× C | Re(z) ∈ ]µC,r(t) + dC,r(t),∞[}.

� If
∏r

j=0 σC,j = −1 and kC < 0 we set

HC,small := {(t, z) ∈ π(C)× C | Re(z) ∈ ]−∞, µC,r(t)− dC,r(t)[}.

� If
∏r

j=0 σC,j = 1 and kC ≥ 0 we set

HC,small := {(t, z) ∈ π(C)×C | Re(z) ∈ ]µC,r(t)+dC,r(t), µC,kC (t)−dC,kC (t)[}.
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� If
∏r

j=0 σC,j = −1 and kC ≥ 0 we set

HC,small := {(t, z) ∈ π(C)×C | Re(z) ∈ ]µC,kC (t)+dC,kC (t), µC,r(t)−dC,r(t)[}.

Note that HC,small ⊂ HC and that HC,small is definable. Consider ΓC :=
HC,small ∩ Γ̃C .

Suppose that k := kC < 0. We set

(Ξ̂C)t :=


(ΓC)t ∪ (TC,r)t, t ∈ B̂C,r,

(ΓC)t, t ∈ π(C) \ B̂C,r,
∅, t /∈ π(C).

We define GC : Ξ̂C → C by letting

(GC)t(z) :=


(ΦC)t(z) if z ∈ (ΓC)t ∪ (TC,r)t and

(χC,r)t(z) if z ∈ (GC,r)t, t ∈ B̂C,r,

(ΦC)t(z), t ∈ π(C) \ B̂C,r.

Note that (Ξ̂C)t is open for every t ∈ π(C) and that GC is a well-defined unary
parametric global complexification of f |C : C → R.

Suppose that k := kC ≥ 0. Let for t ∈ Rn

(Ξ̂C)t :=



(ΓC)t ∪ (TC,k)t ∪ (TC,r)t, t ∈ B̂C,k ∩ B̂C,r,

(ΓC)t ∪ (TC,k)t, t ∈ B̂C,k \ B̂C,r,

(ΓC)t ∪ (TC,r)t, t ∈ B̂C,r \ B̂C,k,

(ΓC)t, t ∈ π(C) \ (B̂C,k ∪ B̂C,r),
∅, t /∈ π(C).

Finally define GC : Ξ̂C → C by letting

(GC)t(z) :=
(ΦC)t(z) if z ∈ (ΓC)t ∪ (TC,k)t ∪ (TC,r)t and (χC,r)t(z)

if z ∈ (GC,r)t and (χC,k)t(z) if z ∈ (GC,k)t, t ∈ B̂C,k ∩ B̂C,r,

(ΦC)t(z) if z ∈ (ΓC)t ∪ (TC,k)t and (χC,k)t(z) if z ∈ (GC,k)t, t ∈ B̂C,k \ B̂C,r,

(ΦC)t(z) if z ∈ (ΓC)t ∪ (TC,r)t and (χC,r)t(z) if z ∈ (GC,r)t, t ∈ B̂C,r \ B̂C,k,
(ΦC)t(z), else.

Note that (Ξ̂C)t is open for every t ∈ π(C) and that GC is a well-defined unary
parametric global complexification of f |C : C → R.
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Claim 1

Let C ∈ C. Let κ = r or κ ∈ {kC , r} if kC ≥ 0. Let t ∈ π(C) be with NC,κ(t) =
0 and 0 < MC,κ(t). Suppose there is ϵ > 0 such that Q(µC,κ(t), ϵ) ⊂ Xt and
ft(x) = p(x−µC,κ(t)) for x ∈ Q(µC,κ(t), ϵ) where p is a convergent power series

on ]− ϵ, ϵ[. Suppose that Ct ∩ B(µC,κ(t), ϵ) ̸= ∅. Then t ∈ B̂C,κ and therefore

B(µC,κ(t),MC,κ(t)) ∩ (HC)t ⊂ (Ξ̂C)t.

Proof of Claim 1

By (+) and the identity theorem we see that (ΦC |KC
)t has a holomorphic ex-

tension h on B(µC,κ(t), M̂C,κ(t)). Since αC,κ(t) = M̂C,κ(t)/2 we get by Cauchy’s
integral formula that

h(z) =
1

2πi

∫
∂B(µC,κ(t),αC,κ(t))

(ΦC)t(ξ)

ξ − z
dξ

for all z ∈ B(µC,κ(t), αC,κ(t)). So we get that

B(µC,κ(t), αC,κ(t)) → C, z 7→ ΨC,κ(t, αC,κ(t), z),

coincides with h and is therefore holomorphic. Hence t ∈ B̂C,κ. This gives

B(µC,κ(t),MC,κ(t)) ∩ (HC)t ⊂ (Ξ̂C)t.

■Claim 1

Claim 2

Let C ∈ C. Let κ = r or κ ∈ {kC , r} if kC ≥ 0. Let t ∈ π(C) be with
NC,κ(t) ̸= 0. Suppose there is ϵ > 0 such that Q(µC,κ(t), ϵ) ⊂ Xt and ft(x) =
p(x − µC,κ(t)) for x ∈ Q(µC,κ(t), ϵ) where p is a convergent power series on

]−ϵ, ϵ[. Suppose that αC,κ(t) < min{M̂C,κ(t), ϵ} and that Ct∩B(µC,κ(t), ϵ) ̸= ∅.
Then t ∈ B̂C,κ and therefore B(µC,κ(t),MC,κ(t)) ∩ (HC)t ⊂ (Ξ̂C)t.

Proof of Claim 2

Note that αC,κ(t) = 2NC,κ(t). By power series expansion there is a holomorphic
extension h : B(µC,κ(t), ϵ) → C of ft : Q(µC,κ(t), ϵ) → R. We have h = (ΦC)t
on B(µC,κ(t), ϵ) ∩ (Γ̃C)t by the identity theorem (since B(µC,κ(t), ϵ) ∩ (Γ̃C)t is
connected). By Cauchy’s integral formula we get for all z ∈ B(µC,κ(t), αC,κ(t))
that

h(z) =
1

2πi

∫
∂B(µC,κ(t),αC,κ(t))

(ΦC)t(ξ)

ξ − z
dξ

since NC,κ(t) < αC,κ(t) < min{M̂C,κ(t), ϵ}. So we get that

B(µC,κ(t), αC,κ(t)) → C, z 7→ ΨC,κ(t, αC,κ(t), z),
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coincides with h and is therefore holomorphic. Hence t ∈ B̂C,κ. We obtain

B(µC,κ(t),MC,κ(t)) ∩ (HC)t ⊂ (Ξ̂C)t.

■Claim 2

Step 2: Constructing a unary high parametric global complexifica-
tion G : Z → R of f with respect to (u, x).

Now we are ready to construct a unary high parametric global complexification
G : Z → C of f with respect to (u, x) by gluing the single functions GC

together. In step 3 below we show that G can be ”redefined” to a function F
which is indeed restricted log-exp-analytic in (u, z) (i.e. there is a restricted
log-exp-analytic function F : Z → R in (u, z) which coincides with G).

We say that (t, z) ∈ Ξ̂C fulfills property (ω) if the following holds.

(ω1) We have (t,Re(z)) ∈ X.

(ω2) There is an open neighbourhood U of z in (Ξ̂C)t such that for every
v1 + iv2 ∈ U we have that v1 + i]0, v2[ ⊂ (Ξ̂C)t if Re(v2) > 0 or v1 +
i]v2, 0[ ⊂ (Ξ̂C)t if Re(v2) < 0.

(ω3) The point z is in the same connected component of (Ξ̂C)t as Ct.

Let
ΞC := {(t, z) ∈ Ξ̂C | (t, z) fulfills property (ω)}.

Then ΞC is definable, Ct ⊂ (ΞC)t and (ΞC)t is open for t ∈ π(C). Let

Ω := X ∪
⋃
C∈C

ΞC .

Then Ω is definable and it is easy to check with Proposition 6.85 and Claim 1
that Ωt is open for every t ∈ π(C). We define

G : Ω → C, (t, z) 7→
{
GC(t, z), (t, z) ∈ ΞC ,
f(t, z), (t, z) ∈ X.

By definition of Ω and the identity theorem we see that G : Ω → C is a
well-defined unary parametric global complexification of f : X → R.

We show that G is a unary high parametric global complexification of f : X →
R with respect to (u, x). This is done with the following

Claim 3

Let w ∈ Rl and (u0, x0) ∈ Xw. Then

lim inf
(s,v)→(u0,x0)

ζΩ(w, s, v) > 0.
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Proof of Claim 3

We find ϵ > 0 such that W ∗ := Qm(u0, ϵ)×]x0− ϵ, x0+ ϵ[ ⊂ Xw and fw(u, x) =
p(u−u0, x−x0) for (u, x) ∈ W ∗ for a convergent power series p on Qm+1(0, ϵ).
We assume

lim inf
(s,v)→(u0,x0)

ζΩ(w, s, v) = 0.

Then there is a definable curve γ : ]0, 1[ → Qm(u0, ϵ)×]x0 − ϵ/2, x0 + ϵ/2[, y 7→
(γu(y), γx(y)), with limy↘0 γ(y) = (u0, x0) such that limy↘0 ζΩ(w, γ(y)) = 0.
For y ∈ ]0, 1[ let

I(y) := {C ∈ C | C(w,γu(y)) ∩ ]x0 − ϵ/2, x0 + ϵ/2[ ̸= ∅}.

By passing to a suitable subcurve of γ if necessary we may assume that I(y)
is independent of y. We set

Ibig := {C ∈ I : lim
y↘0

LC(w, γu(y)) > 0}

and
Ismall := {C ∈ I : lim

y↘0
LC(w, γu(y)) = 0}.

Because
∑

C∈I LC(w, γu(y)) ≥ ϵ for all y ∈ ]0, 1[ we see that Ibig ̸= ∅. For

y ∈ ]0, 1[ we choose Cy ∈ C such that (w, γ(y)) ∈ Cy. We may assume that
C∗ := Cy is independent of y by passing to a suitable subcurve of γ if necessary.

We also have (u0, x0) ∈ (C∗)w. Let k
∗ := kC∗ . We consider two cases.

Case 1: C∗ ∈ Ibig. Note that γ is compatible with (C∗)w.

Subcase 1.1:

Assume limy↘0 |γx(y)− µC∗,κ(w, γu(y))| > 0 for κ = r or κ ∈ {k∗, r} if k∗ ≥ 0.
By passing to a suitable subcurve of γ if necessary we may assume that γ(y) ∈
(HC∗,small)w for y ∈ ]0, 1[. So by Proposition 6.85 we obtain

lim
y↘0

ζΛC∗ (w, γ(y)) > 0.

Note also that
lim
y↘0

exp(−|log(eC∗,j(w, γu(y)))|) > 0

for j ∈ {1, ..., l∗C∗} since (u0, x0) ∈ Xw, eC∗,j ∈ EC∗ (and so eC∗,j is C∗-
consistent) and γ is compatible with (C∗)w. Since C∗ ∈ Ibig and ΓC∗ =

Γ̂C∗ ∩HC∗,small we obtain

lim
y↘0

ζΓC∗ (w, γ(y)) > 0.

Therefore
lim
y↘0

ζΩ(w, γ(y)) ≥ lim
y↘0

ζΓC∗ (w, γ(y)) > 0

214



by construction of Ω, a contradiction.

Subcase 1.2:

Suppose that
lim
y↘0

|γx(y)− µC∗,κ(w, γu(y))| = 0

for κ = r or κ ∈ {k∗, r} if k∗ ≥ 0. Fix this κ. Since MC∗,κ is (C∗, κ)-
persistent respectively NC∗,κ is (C∗, κ)-non-persistent we have with Definition
6.46 that limy↘0MC∗,κ(w, γu(y)) > 0 and limy↘0NC∗,κ(w, γu(y)) = 0 (by con-
sidering a definable curve γ̂ in C∗

w converging to (u0, x0) with γ̂u = γu. Such
a definable curve is compatible with C∗

w and exists by Remark 6.27(2) since
limy↘0 dist(γx(y), (C

∗)(w,γu(y))) = 0). For y ∈ ]0, 1[ set

S(y) := min{MC∗,κ(w, γu(y)), ϵ/2}.

By passing to a suitable subcurve of γ if necessary we may assume that

|γx(y)− µC∗,κ(w, γu(y))| < 1/2S(y), (∗)

that
B(µC∗,κ(w, γu(y)),S(y)) ∩ C∗

(w,γu(y)) ̸= ∅ (∗∗)

and that 2NC∗,κ(w, γu(y)) < 1/2S(y) for y ∈ ]0, 1[. Additionally we may
suppose that either NC∗,κ(w, γu(y)) > 0 for all y ∈ ]0, 1[ or NC∗,κ(w, γu(y)) = 0
for all y ∈ ]0, 1[.

Assume the former. Then we have αC∗,κ(w, γu(y)) = 2NC∗,κ(w, γu(y)) and
therefore αC∗,κ(w, γu(y)) < 1/2S(y) for every y ∈ ]0, 1[. By Claim 2 and (∗∗)
it is

B(µC∗,κ(w, γu(y)),MC∗,κ(w, γu(y))) ∩ (HC∗)(w,γu(y)) ⊂ (Ξ̂C∗)(w,γu(y))

for all y ∈ ]0, 1[. We have with the construction of ΞC∗ and MC∗,κ

B(µC∗,κ(w, γu(y)),S(y)) ∩ (HC∗)(w,γu(y)) ⊂ (ΞC∗)(w,γu(y))

and therefore
B(µC∗,κ(w, γu(y)),S(y)) ⊂ Ω(w,γu(y))

for all y ∈ ]0, 1[. This gives with (∗) and Pythagoras

{γx(y) + iv ∈ C | v ∈ ]0,

√
3

2
S(y)[} ⊂ Ω(w,γu(y))

for all y ∈ ]0, 1[. So we have

lim
y↘0

ζΩ(w, γ(y)) ≥ lim
y↘0

√
3

2
S(y) = lim

y↘0

√
3

2
min{MC∗,κ(w, γu(y)), ϵ/2} > 0,
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since MC∗,κ is (C∗, κ)-persistent, a contradiction. The latter case is handled
completely similar.

Case 2: C∗ ∈ Ismall.

Note that there is CL ∈ Ibig with CL < C∗ such that

lim
y↘0

dist(γx(y), (CL)(w,γu(y))) = 0.

So (u0, x0) ∈ (CL)w.

Subcase 2.1:

Suppose that
lim
y↘0

|γx(y)− µCL,κ(w, γu(y))| > 0

for κ = r or κ ∈ {kCL , r} if kCL ≥ 0. By passing to a suitable subcurve of γ if
necessary we may assume that γ runs through (HCL,small)w since for µCL,κ ≥ CL

lim
y↘0

dist(µCL,κ(w, γu(y)), (CL)(w,γu(y))) > 0

for κ = r or κ ∈ {kCL , r} if kCL ≥ 0. So γ is compatible with (CL)w. By
Proposition 6.85 we obtain

lim
y↘0

ζΛCL
(w, γu(y)) > 0.

A completely similar argument as in Subcase 1.1 applied to CL gives the desired
contradiction.

Subcase 2.2:

Suppose
lim
y↘0

|γx(y)− µCL,κ(w, γu(y))| = 0

for κ = r or a κ ∈ {kCL , r} if kCL ≥ 0. Fix such a κ. Then

lim
y↘0

NCL,κ(w, γu(y)) = 0

and limy↘0MCL,κ(w, γu(y)) > 0 by Definition 6.46 (by considering a suitable
definable curve γ̂ in (CL)w converging to (u0, x0) with γ̂u = γu. Such a curve
is compatible with (CL)w and exists by Remark 6.27(2) since

lim
y↘0

dist(γx(y), (CL)(w,γu(y))) = 0.)

A completely similar argument as in subcase 1.2 applied to CL gives the desired
contradiction. ■Claim 3
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We set

Z := {(w, u, z) ∈ Rl × Rm × C | (w, u,Re(z)) ∈ X and

Im(z) ∈ Q(0, ρΩ(w, u,Re(z)))}

where for (w, u, x) ∈ Rl × Rm × R

ρΩ(w, u, x) := lim inf
(s,v)→(u,x)

ζΩ(w, s, v).

Note that Z is definable with X ⊂ Z by Claim 3.

Claim 4

Zw is open for every w ∈ Rl (considered as a subset of Rm × R2).

Proof of Claim 4

Let w ∈ Rl and (u0, z0) ∈ Zw. Let z0 := x0 + iy0 for x0, y0 ∈ R. Then there is
r > 0 such that y0 < r < ρΩ(w, u0, x0). Since the function

ρΩ : Rm × R → R, (u, x) 7→ lim inf
(s,v)→(u,x)

ζΩ(w, s, v),

is lower semi-continuous by Proposition 6.88 we find an open neighbourhood
U of (u0, x0) contained in the open set Xw such that ρΩ(w, u, x) > r for every
(u, x) ∈ U . This shows that V := U + iQ(0, r) ⊂ Zw and we have (u0, z0) ∈ V .

■Claim 4

Claim 4 shows that F |Z is a unary high parametric global complexification of
f with respect to (u, x).

Step 3: Constructing a unary high parametric global complexifica-
tion F : Z → R of f with respect to (u, x) which is restricted log-exp-
analytic in (u, z).

Now we are able to redefine G suitably in order to obtain the desired function
F .

Let
π∗ : Rn × C → Rn, (t, z) 7→ t.

Let B := {π(C) | C ∈ C}. Then B is a definable cell decomposition of π(X).
For B ∈ B consider the following.

Set
CB := {C ∈ C | π(C) = B}

and let XB := {(t, x) ∈ X | t ∈ B} and ZB := {(t, z) ∈ Z | t ∈ B}.
Then X =

⋃̇
B∈BXB and Z =

⋃̇
B∈BZB. Let uB be the cardinality of CB.

Let CB,1, ..., CB,uB
∈ CB be the unique cells with CB,1 < ... < CB,uB

. Note
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that CB,j is fat with respect to x for j ∈ {1, ..., uB}. For j ∈ {1, ..., uB} we
set ΓB,j := ΓCB,j

, ΞB,j := ΞCB,j
, EB,j := ECB,j

, ΦB,j := ΦCB,j
, kB,j := kCB,j

,
GB,j := GCB,j

and for κ = r or κ ∈ {kB,j, r} if kB,j ≥ 0 we set TB,j,κ := TCB,j ,κ.
From now on we consider every g ∈ EB,j as a function on ΞB,j.

Let YB,j := (XB ∪ ΞB,j) ∩ Z for j ∈ {1, ..., uB}. We define

ZB,1 := {(t, z) ∈ YB,1 | ζYB,1
(t,Re(z)) ≥ ζYB,j

(t,Re(z))

for every j ∈ {2, ..., uB}}
and inductively for l ∈ {2, ..., uB}

ZB,l := {(t, z) ∈ YB,l | ζYB,l
(t,Re(z)) ≥ ζYB,j

(t,Re(z)) for every

j ∈ {l + 1, ..., uB} and (t, z) /∈ ZB,1 ∪ ... ∪ ZB,l−1}.

Note that ZB,j is definable for j ∈ {1, ..., uB} and that ZB =
⋃̇uB

j=1ZB,j. Note
also that for (t, x) ∈ XB there is a unique j ∈ {1, ...., l} such that (t, x+ iy) ∈
ZB,j for every y ∈ R with (t, x+ iy) ∈ ZB. For j ∈ {1, ..., uB} set

XB,j := {(t, x) ∈ XB | (t, x) ∈ ZB,j}.

Note that XB =
⋃̇uB

j=1XB,j. Fix j ∈ {1, ..., uB}. We have

lim
y↘0

ζZB,j
(w, γu(y), γx(y)) > 0

for (w, u0, x0) ∈ X and a real definable curve γ : ]0, 1[ → (XB,j)w converging
to (u0, x0). (++)

(Otherwise
lim inf

(u,x)→(u0,x0)
ζZ(w, u, x) = 0

by construction of ZB,j which is a contradiction to the fact that F is a unary
high parametric global complexification of f which respect to (u, x).)

If kB,j < 0 we set ZB,j,T := TB,j,r ∩ ZB,j. If kB,j ≥ 0 we set ZB,j,T :=
(TB,j,kB,j

∪̇ TB,j,r) ∩ ZB,j. Set ZB,j,Γ := (ΓB,j ∩ ZB,j) \ ZB,j,T . Then ZB,j =
ZB,j,T ∪̇ ZB,j,Γ.

For B ∈ B and j ∈ {1, ..., uB} let

EB,j,T := EB,j|ZB,j,T \X

and
EB,j,Γ := (EB,j ∪ EΦB,j

)|ZB,j,Γ\X .

Additionally consider

FB,j,T : ZB,j,T \X → C, (t, z) 7→ GB,j(t, z),
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and
FB,j,Γ : ZB,j,Γ \X → C, (t, z) 7→ ΦB,j(t, z).

Note that FB,j,Γ can be constructed from EB,j,Γ by (ßß).

Claim 5

FB,j,T can be constructed from EB,j,T .

Proof of Claim 5

For κ = r or κ ∈ {kB,j, r} if kB,j ≥ 0 we set Wκ := GB,j|TB,j,κ
. Then we have

for (t, z) ∈ TB,j,κ

Wκ(t, z) =

{
ΦB,j(t, z), (t, z) ∈ KCB,j ,κ,
χCB,j ,κ(t, z), (t, z) ∈ GCB,j ,κ.

We have that ΦB,j|KCB,j,κ
can be constructed from EB,j by (ß) and that χCB,j ,κ

can be constructed from EB,j by (ßßß) for κ = r or κ ∈ {kB,j, r} if kB,j ≥ 0.
So with Remark 3.8 we see that Wκ can be constructed from EB,j since every
g ∈ EB,j is a positive definable function which depends only on t.

If kB,j < 0 we have that FB,j,T = Wr|ZB,j,T \X . So FB,j,T can be constructed
from EB,j,T and we are done. So suppose kB,j ≥ 0. Since for κ ∈ {kB,j, r}

FB,j,T |(TB,j,κ∩ZB,j)\X = Wκ|(TB,j,κ∩ZB,j)\X

we have that FB,j,T |(TB,j,κ,∩ZB,j)\X can be constructed from EB,j,T |(TB,j,κ∩ZB,j)\X .
By Remark 3.8 we see that FB,j,T can be constructed from EB,j,T since every
g ∈ EB,j,T is a positive definable function which depends only on t. ■Claim 5

Finally we define F : Z → C in the following way.

If (t, z) ∈ ZB,j,T \X for B ∈ B and j ∈ {1, ..., uB} let F (t, z) = FB,j,T (t, z). If
(t, z) ∈ ZB,j,Γ \ X for B ∈ B and j ∈ {1, ..., uB} let F (t, z) = FB,j,Γ(t, z). If
(t, z) ∈ X set F (t, z) = f(t, z).

Then F : Z → C, (w, u, z) 7→ F (w, u, z), is a unary high parametric global
complexification of f with respect to (u, x) since we have F (t, z) = G(t, z) for
every (t, z) ∈ Z. Let

E := {g | g : Z → C is a function with g|X ∈ Ef , g|ZB,j,T \X ∈ EB,j,T ,

g|ZB,j,Γ\X ∈ EB,j,Γ for B ∈ B, j ∈ {1, ..., uB}}

where Ef is a set of positive definable functions on X such that every g ∈
log(Ef ) is locally bounded in (u, x) and f can be constructed from Ef .

By Remark 3.8 we see that F can be constructed from E (compare also with
Definition 3.14).
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Claim 6

Let h ∈ Ef and t ∈ π∗(Z). Then the function log(h) is locally bounded in
(u, z) with respect to Z.

Proof of Claim 6

Note that h is defined on X. Let w ∈ Rl. Let (u0, z0) ∈ Zw. We show that
log(hw) is bounded at (u0, z0) and are done.

If Im(z0) ̸= 0 we are clearly done by taking an open neighbourhood of (u0, z0)
in Zw disjoint from X. So assume Im(z0) = 0. Then (u0, z0) ∈ Xw and we find
an open neighbourhood U of (u0, z0) in Xw such that log(g)|U is bounded. So
take an open neighbourhood V of (u0, z0) in Zw with V ∩X ⊂ U . ■Claim 6

For B ∈ B and j ∈ {1, ..., uB} we set ÊB,j,Γ := {exp(Re(g)) | g ∈ log(EB,j,Γ)}.

Claim 7

Let B ∈ B and j ∈ {1, ..., uB}. Let h ∈ ÊB,j,Γ. The function log(h) is locally
bounded in (u, z) with respect to Z.

Proof of Claim 7

Let C := CB,j, K := ZB,j,Γ \X, w ∈ Rl and (u0, z0) ∈ Zw. If (u0, z0) /∈ Kw we
are clearly done. So assume (u0, z0) ∈ Kw. We show that log(hw) is bounded
at (u0, z0).

Case 1:

Let h ∈ EB,j|K. Suppose that log(hw) is not bounded at (u0, z0) (i.e. at u0).
Then there is a definable curve γ : ]0, 1[ → Kw such that limy↘0 γ(y) = (u0, z0)
and limy↘0 |log(h(w, γu(y)))| = ∞. Note that (γu,Re(γz)) runs through XB,j.
By construction of ZB,j (since ζZB,j

is bounded by exp(−|log(h)|)) we have
limy↘0 Im(γz(y)) = 0 and thus z0 ∈ R. So we see

lim
y↘0

ζZB,j
(w, γu(y),Re(γz(y))) = 0,

a contradiction to the property (++).

Case 2:

Assume that h ∈ EΦC
|K. Then h = exp(Φg)|K for a g ∈ log(EC) where Φg is

complex (l, r)-prepared in z for r ∈ N0 and l ∈ {−1, ..., e − 1}. We show the
statement by induction on l. If l = −1 then g = 0 and the assertion follows.

l − 1 → l: Let
(r,Z, a, exp(D0), q, s, V, b, exp(D), P ) :=

(r,ZC,g|K, aC,g|K, exp(DC,0,g)|K, qC,g, s, VC,g, bC,g|K, exp(DC,g)|K, PC,g).
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Let b := (b1, ..., bs), exp(D) := (exp(D1), ..., exp(Ds)) and P := (p1, ..., ps)
t. So

we have
h(t, z) = a(t)Z⊗q(t, z)exp(D0(t, z))

V (b1(t)Z⊗p1(t, z)exp(D1(t, z)), ..., bs(t)Z⊗ps(t, z)exp(Ds(t, z)))

for (t, z) ∈ K where t := (w, u). Let U ⊂ Rm × C be an open neighbourhood
of (u0, z0) such that (D0)w, ..., (Ds)w are bounded on Û := U ∩ Kw. We may
also assume that aw and (Θ0)w, ..., (Θr)w are bounded on Û . (Since we have
that exp(a) ∈ EC and exp(Θj) ∈ EC for j ∈ {0, ..., r}. Otherwise we derive the
same contradiction as in case 1.) Assume that there is an open neighbourhood
W ⊂ U of (u0, x0) such that hw is not bounded on Ŵ := W ∩Kw. Then there
is a definable curve γ : ]0, 1[ → Ŵ such that limy↘0 |Z⊗q(w, γ(y))| = ∞. Note
that γ runs through (ΓC)w \ (TC,r)w respectively (ΓC)w \ ((TC,r)w ∪ (TC,kC )w)
if kC ≥ 0. Therefore γ runs also through (HC,small)w. By the proof of (IIl) in

Proposition 6.28 for l ∈ {0, ..., r} (since (Θ0)w, ..., (Θr)w are bounded on Ŵw)
and by construction of ΓC we have that limy↘0 |γz(y)− µC,κ(w, γu(y))| = 0 for
κ = r or a κ ∈ {kC , r} if kC ≥ 0 (since limy↘0 µC,κ(w, γu(y)) ∈ R, compare
also Corollary 6.29).

Fix such a κ. We see (u0, z0) ∈ Xw. Let x0 := z0. By definition of (HC,small)w
we see that

lim
y↘0

dC,κ(w, γu(y)) = lim
y↘0

dist(µC,κ(w, γu(y)), C(w,γu(y))) = 0.

So (u0, x0) ∈ Cw. Fix ϵ > 0 such that Qm+1((u0, x0), ϵ) ⊂ Xw and fw(u, x) =
p((u, x)− (u0, x0)) for (u, x) ∈ Qm+1((u0, x0), ϵ) where p is a convergent power
series on Qm+1(0, ϵ).

We have limy↘0 LC(w, γu(y)) > 0 since otherwise we see that

lim
y↘0

ζZB,j
(w, γu(y),Re(γz(y))) = 0

(since (ZB,j)t ⊂ R+ iQ(0, LC(t)) for t ∈ π(C)). But this is a contradiction to
property (++).

So we see that γ is compatible with Cw. We have limy↘0MC,κ(w, γu(y)) > 0
and limy↘0NC,κ(w, γu(y)) = 0. (Since MC,κ is (C, κ)-persistent and NC,κ is
(C, κ)-non-persistent: Consider a suitable definable curve γ̂ in Cw converging
to (u0, x0) with γ̂u = γu. Such a curve is compatible with Cw and exists by
Remark 6.27(2) since

lim
y↘0

dist(γx(y), C(w,γu(y))) = 0.)

By passing to a suitable subcurve of γ if necessary we may suppose the follow-
ing.
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(1) We have γu(y) ∈ Qm(u0, ϵ/2) for every y ∈ ]0, 1[.

(2) We have |µC,κ(w, γu(y))− γz(y)| < 1/2min{MC,κ(w, γu(y)), ϵ/2} and
C(w,γu(y)) ∩B(µC,κ(w, γu(y)), ϵ) ̸= ∅ for every y ∈ ]0, 1[.

(3) We have either NC,κ(w, γu(y)) > 0 for every y ∈ ]0, 1[ or NC,κ(w, γu(y)) =
0 for every y ∈ ]0, 1[.

Assume the former in (3). The latter is handled completely similar. Then
αC,κ(w, γu(y)) = 2NC,κ(w, γu(y)) for y ∈ ]0, 1[. Therefore

αC,κ(w, γu(y)) < 1/2min{MC,κ(w, γu(y)), ϵ/2}

for every y ∈ ]0, 1[ after passing to a suitable subcurve of γ if necessary. We
obtain with Claim 2 that (w, γu(y)) ∈ B̂C,κ and therefore

B(µC,κ(w, γu(y)),MC,κ(w, γu(y))) \X(w,γu(y)) ⊂ (TC,r)(w,γu(y)) \X(w,γu(y))

respectively

B(µC,κ(w, γu(y)),MC,κ(w, γu(y)))\X(w,γu(y)) ⊂ (TC,r∪TC,kC )(w,γu(y)) \X(w,γu(y))

if kC ≥ 0 for every y ∈ ]0, 1[. This gives (w, γ(y)) ∈ TC,r \ X respectively
(w, γ(y)) ∈ (TC,r ∪ TC,kC ) \X for every y ∈ ]0, 1[ if kC ≥ 0 with property (2).
But this is a contradiction since γ runs through (ΓC)w \ (TC,r)w respectively
through (ΓC)w \ ((TC,r)w ∪ (TC,kC )w) if kC ≥ 0. ■Claim 7

Similarly as in Claim 7 one sees that log(h) is locally bounded in (u, z) with
respect to Z if h ∈ EB,j,T for B ∈ B and j ∈ {1, ..., uB}. By Remark 3.28 one
sees that E is a set of locally bounded functions in (u, z) and we are done with
the proof of Proposition 6.89. ■

6.2.2 The Higher Dimensional Case

We show by induction on the number of variables that the class of restricted
log-exp-analytic functions exhibits parametric global complexification. The
”highness” from the unary case above is necessary to enable the induction. We
adapt Kaiser’s arguments from [19] to our situation and establish Theorem C.

6.90 Proposition

Let m ∈ N. Let w over Rm and v over Cm. Let X ⊂ Rn × Rm be definable.
Assume that Xt is open for all t ∈ Rn. Let f : X → R, (t, w) 7→ f(t, w), be
restricted log-exp-analytic in w such that ft is real analytic for every t ∈ Rn.
Then f has an m-ary parametric global complexification F : Z → C, (t, v) 7→
F (t, v), which is restricted log-exp-analytic in v.
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Proof

For l ∈ {1, ...,m} let u range over Rm−l and x over Rl. Let πn : Rn × Rm →
Rn, (t, u, x) → t, be the projection on the first n real coordinates. We show by
induction on l ∈ {1, ...,m} that f : X → R, (t, u, x) 7→ f(t, u, x), has an l-ary
high parametric global complexification F : Z → C, (t, u, z) 7→ F (t, u, z), with
respect to (u, x) where F is restricted log-exp-analytic in (u, z).

l = 1: This follows from Proposition 6.89.

l − 1 → l: Given x = (x1, ..., xl) ∈ Rl we set x′′ := (x2, ..., xl). The set

X(t,u,x1) = {x′′ ∈ Rl−1 | (t, u, x1, x′′) ∈ X} ⊂ Rl−1

is open and the function f(t,u,x1) : X(t,u,x1) → R is real analytic since it coincides
with (ft)(u,x1) for (t, u, x1) ∈ Rn × Rm−l × R. Let Rn+m−l+1 be the parameter

space and write X̂ if we consider X as a subset of Rn+m−l+1 ×Rl−1. Moreover
we write f̂ if we consider f as a function on X̂. By the inductive hypothesis
we find a definable set Ŷ ⊂ Rn+m−l+1 × Cl−1 such that Ŷt ⊂ Rm−l+1 × Cl−1

is open for t ∈ Rn and an (l − 1)-ary high parametric global complexification
Ĝ : Ŷ → C, (t, u, x1, z′′) 7→ Ĝ(t, u, x1, z

′′), of f with respect to (u, x) which is
restricted log-exp-analytic in (u, x1, z

′′). We set G1 := Re(Ĝ) : Ŷ → R and
G2 := Im(Ĝ) : Ŷ → R. Note that G1|X = f and G2|X = 0. By Definition 3.37
G1 and G2 are restricted log-exp-analytic in (u, x1, z

′′). Let

Y := {(t, u, x1, z′′) ∈ Ŷ | (Gj)t is real analytic at (u, x1, z
′′) for j ∈ {1, 2}}.

Then Y is definable by Theorem A (respectively by Corollary 6.30). We have
X ⊂ Y ⊂ Ŷ . Since real analytiticity is an open property we have that Yt is
open in Rm−l+1 × Cl−1 for all t ∈ Rn.

Considering z′′ as a tuple of 2(l − 1) real variables we find with Proposition
6.89 a unary high parametric global complexification

Fj : Zj → C, (t, u, ẑ, z′′) 7→ Fj(t, u, ẑ, z
′′),

forGj|Y with respect to (u, x1, z
′′) which is restricted log-exp-analytic in (u, ẑ, z′′)

where j ∈ {1, 2}. (Here ẑ is an additional variable which ranges over C. Note
also that (Zj)t is open in Rm−l × Cl for t ∈ Rn with X ⊂ Zj for j ∈ {1, 2}.)
(∗)
Let

Z̃ := {(t, u, z) ∈ Z1 ∩ Z2 | (F1 + iF2)(t,u) is holomorphic at z}.

Then Z̃ is definable and F := (F1 + iF2)|Z̃ : Z̃ → C is restricted log-exp-
analytic in (u, z) with reference set Z1 ∩ Z2 by Remark 3.32 and Definition
3.37.
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Let
ζZ̃(t, u, x) := sup{r ∈ R≥0 | x+ iQl(0, r) ⊂ Z̃(t,u)}.

Claim

Let (t, u, x) ∈ X. Then

lim inf
(s,y)→(u,x)

ζZ̃(t, s, y) > 0.

Proof of the claim

We find some 0 < r and an open neighbourhood V of (u, x) in Xt such that
ft(s, y) = p((s, y)− (u, x)) for (s, y) ∈ V where p is a convergent power series
on Qm(0, r). We find some 0 < r′ < r/2 such that

U := Qm−l(u, r′)× ]x1 − r′, x1 + r′[× (Ql−1(x′′, r′) + iQl−1(0, r′)) ⊂ Ŷt

and that G̃t(s, y1, z
′′) = p((s, y1, z

′′) − (u, x)) for all (s, y1, z
′′) ∈ U . So for

(s, y) ∈ Qm((u, x), r′) we see that

y′′ + iQl−1(0, r′) ⊂ Y(t,s,y1).

So by (∗) we find some 0 < ϵ < r′/2 and an open neighbourhood W of (u, x)
in Xt with W ⊂ Qm((u, x), r′) such that for (s, y) ∈ W we have the following.
We have y + iQl(0, ϵ) ⊂ (Zj)(t,s) for j ∈ {1, 2} and F(t,s)(z) = ps−u(z − x) for

all z ∈ Dl(y, ϵ). So by construction y + iQl(0, ϵ) ⊂ Z̃(t,s) for all (s, y) ∈ W .
Hence

lim inf
(s,y)→(u,x)

ζZ̃(t, s, y) ≥ ϵ > 0.

■Claim

Let
Z := {(t, u, z) ∈ Rn × Rm−l × Cl | (t, u,Re(z)) ∈ X

and Im(z) ∈ Ql(0, ρ(t, u,Re(z)))}

where
ρ(t, u, x) := lim inf

(s,y)→(u,x)
ζZ̃(t, s, y)

for (t, u, x) ∈ Rn × Rm−l × Rl. Note that Zt is open for all t ∈ Rn. (Compare
with the proof of Claim 4 in Proposition 6.89: The function Rm−l×Rl, (u, x) 7→
ρ(t, u, x), defines a lower semi-continuous function for every t ∈ Rn.) By the
Claim we have X ⊂ Z. So we see that F |Z is an l-ary high parametric global
complexification of f with respect to (u, x). By the above we see that F is
restricted log-exp-analytic in (u, z). This finishes the proof of Proposition 6.90.

■
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So Theorem B is also established.

6.91 Corollary

Let U ⊂ Rn be definable and open. Let f : U → R be a real analytic restricted
log-exp-analytic function. Then there is an open definable V ⊂ Cn with U ⊂ V
and a restricted log-exp-analytic F : V → C such that F |U = f .

Proof

This follows directly from Proposition 6.90. ■

6.92 Corollary

(1) Let X ⊂ Rn×Rm be definable such that Xt is open for every t ∈ Rn and
let f : X → R, (t, x) 7→ f(t, x), be log-analytic. Suppose that ft is real
analytic for every t ∈ Rn. Then there is a definable V ⊂ Rn × Cm with
U ⊂ V such that Vt is open for every t ∈ Rn and a restricted log-exp-
analytic F : V → C, (t, z) 7→ F (t, z), in z such that Ft is holomorphic
for every t ∈ Rn and F |U = f .

(2) Let U ⊂ Rn be open. Let g : U → R be a real analytic log-analytic
function. Then there is an open definable V ⊂ Cn with U ⊂ V and a
restricted log-exp-analytic G : V → C such that G|U = g.

Proof

(1): This follows directly from Proposition 6.90 since f is restricted log-exp-
analytic in x.

(2): This follows directly from Theorem B (resp. Corollary 6.91) since g is
restricted log-exp-analytic. ■
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7 Conclusion and Outlook

We conclude this thesis with a short summary of the shown results. Moti-
vated by the research of Kaiser, Lion, Rolin, Van den Dries and Miller we
found a big non-trivial class of definable functions in Ran,exp which show the
same behaviour as the globally subanalytic ones from the viewpoint of analy-
sis. These are functions which are compositions of log-analytic functions and
exponentials whose arguemnts are locally bounded. We called them restricted
log-exp-analytic. Our first step was to establish a preparation theorem for
this class of functions. Then we could prove a parametric version of Tamm’s
theorem by considering an easier form of this preparation theorem on so called
simple sets. Finally we could show that a restricted log-exp-analytic function
has a global complexification which is again restricted log-exp-analytic, the
main result of this thesis. We also gave a version for parameters.

Now we briefly want to discuss open questions for further research in this
context outgoing from Theorem B and Theorem C.

(1) Does a real analytic log-analytic function have a global complexification
which is again log-analytic?

(2) Has the structure Ran,exp global complexification?

We have the vague assumption that question (1) is true simply by the ob-
servation that a log-analytic function extends piecewise to a holomorphic log-
analytic function (by considering the single Lan(

−1, ( n
√
...)n=2,3,..., log)-terms).

But to enable the induction on the number of variables one needs a preparation
theorem for log-analytic functions with log-analytic data only. So one has to
get better control on the exponentials which are involved in the construction
of the coefficient, the center and the base functions of such a preparation. But
such questions are pretty unsolved at present. An idea would be to adapt some-
how the preparation theorem of Cluckers and Miller for constructible functions
from [5], [6] respectively [7] on the log-analytic case.

With our results above Question 2 can be reformulated in the following way:
Is every real analytic definable function restricted log-exp-analytic? This may
be true from the point of analysis: If the global exponential function comes
not locally bounded into the game features like flatness may occur (compare
with Example 3.24). But neither real analytic functions nor restricted log-exp-
analytic functions are flat.
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2002.
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