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ABSTRACT

Network virtualization provides high flexibility for deploying communication services
in dense and heterogeneous environments. Two main approaches (dimensions) that are
usually combined exist: Network Function Virtualization (NFV) technologies for func-
tionality virtualization and Virtual Network Embedding (VNE) algorithms for resource
virtualization. These approaches can be applied to different network levels, such as
factory and enterprise levels of industrial networks. Several objectives and constraints,
that might be conflicting, shall be considered when network virtualization is applied,
mainly in complex topologies. This thesis proposes a network virtualization model that
considers both virtualization dimensions, two network levels, and different objectives and
constraints. The network levels considered are two primary levels in industrial networks.
However, this consideration does not restrict the model to a particular environment or
certain levels. The considered objectivities/constraints are topology, reliability, security,
performance, and resource usage.

Based on this model, we first build an overall combined solution for autonomic and
composite virtual networking. This solution considers both virtualization dimensions,
two network levels, and target objectives. Furthermore, this solution combines three novel
virtualization sub-approaches that consider performance, reliability, and performance.
However, the sub-approaches apply to different combinations of levels and dimensions,
and the reliability approach additionally considers the resource usage objective. After
presenting all solutions, we map them to the defined model.

Regarding applicability to industrial networks, the combined approach is applied to an
enterprise-level Industrial Internet of Things (IloT) use case inspired by the smart factory
concept in Industry 4.0. However, the sub-approaches are applied to more specific use
cases. The performance and reliability solutions are integrated with relevant components
of the Time Sensitive Networks (TSN) standard as a modern technology for industrial
networks. The goal is to enrich the reliability and performance capabilities of TSN with
the flexibility of network virtualization.

In the combined approach, we compose and embed an environment-aware Extended
Virtual Network (EVN) that represents the physical devices, virtual application func-
tions, and required Service Function Chains (SFCs). We use the graph transformation
method to transform abstract application requirements (represented by an Application
Request (AR)) into an EVN. Both EVN composition and embedding methods consider
the Substrate Network (SN) topology and different security, reliability, performance, and
resource usage policies. These policies are applied with a certain priority and depend
on the properties of communicating entities such as location and type. The EVN is em-
bedded using property-based node mapping, reliability-aware branching, and a greedy
chain embedding heuristic. The chain embedding heuristic is evaluated using a random
topology that represents the use case.

The performance sub-approach is NFV-based and is applied to a specific use case
with Time-critical Traffic (TCT) flows. We develop and evaluate a complete framework
for virtualizing Time-aware Shaper (TAS) using high-performance NFV. The reliability
sub-approach is VNE-based and is applied to a specific factory level use case. We develop
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minimal and maximal branching heuristics based on a reliability-aware k-shortest path
algorithm and compare them using a typical factory topology. We then integrate these
algorithms with a Frame Replication and Elimination for Reliability (FRER) simulator to
realize reliability policies by the autonomic and efficient configuration of a supporting
technology.

The security sub-approaches are related to both virtualization dimensions and are
applied to generic enterprise-level use cases. However, the applicability of the security
aspect to industrial networks is only shown in the combined (EVN) approach and
its use case. We research the autonomic security management in Network Function
Virtualization Infrastructure (NFVI) with the main goal of early reaction to threats
through SFC reconfiguration through Virtual Network Function (VNF) live migration.
This goal is approached by supporting the security measurements with a decision making
architecture that considers, on the one hand, the threats and events in the environment
and, on the other hand, the Service Level Agreement (SLA) between the NFVI provider
and user. For this purpose, we classify the VNF-specific attacks and define possible
early detectable behavior patterns. Finally, we develop a security-aware VNE heuristic
that considers the security requirements of the Virtual Network (VN) and the security
capabilities of the SN. This approach is modified in the combined approach to consider
deploying virtualized security VINFs.
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INTRODUCTION

Applying network virtualization technologies to complex and heterogeneous environ-
ments promises to reduce the Operational Expenditure (OPEX) and Capital Expenditure
(CAPEX) and satisfy the increasing requirements. However, there are different virtual-
ization techniques and different application levels in which various objectives might
be of higher importance. Furthermore, network virtualization imposes challenges such
as performance degradation; wider attack surface; considering multiple objectives and
constraints that might be conflicting [1]?*; considering multiple network levels; autonomic
composition of environment-aware virtual networks; efficient deployment algorithms;
applicability to complex environments; and integration with real, mainly modern, tech-
nologies. These challenges are mostly considered partially and separately by researchers
with a limited view on applicability.

1.1 NETWORK VIRTUALIZATION

Virtual Network Embedding (VNE) is a graph-theory-based domain that develops abstrac-
tion models of Virtual Networks (VNs) and their requirements and Substrate Networks
(SNs) and their resources. Furthermore, VNE develops graph algorithms to map the VN
requirements on physical resources. VNE algorithms calculate paths and allocations of
server and network resources to a VN composed of Virtual Nodes (VNos) and Virtual
Links (VLis) connecting them. The resulting calculations shall be used by the network
controller to realize the actual resource reservation in the SN.

In another dimension, Network Function Virtualization (NFV) is a modern network
virtualization technology that decouples the network functions from the proprietary
hardware. These functions are executed in the form of Virtual Network Functions (VNFs)
running on standard servers and chained in Service Function Chains (SFCs) to form
end-to-end communication services. The SFC might include one or more sub-SFCs that
determine the data flow paths based on traffic specifications. NFV leverages virtualization
technologies to flexibly deploy complex network functions on-demand in the required
locations. Multi-objective optimization is widely addressed by researches of network
virtualization but they target the significant constraints partially and propose heuristics
for large scale problems.

1.2 INDUSTRIAL ENTERPRISE

The traditional legacy networking paradigm of deploying proprietary and hardware-
based network functions is not flexible enough to satisfy the emerging and ever-growing
application requirements, mainly the security, performance, and resilience requirements
of 5G mobile networks and Industry 4.0. This fact is due to the complexity and high cost
of deploying new devices, upgrading devices, and service innovation.

1 The citations marked with § refer to publications authored or co-authored by the author of this thesis.



INTRODUCTION

Industry 4.0 enterprise applications will support the smart factory through data analy-
sis and autonomic decision making. For this purpose, monitoring, analysis, and man-
agement functions at different levels of the enterprise are needed. For example, remote
asset management is required when the administrators manage different distant locations
to remotely control customizable production, safety, energy consumption, utilization,
and security. IIoT enables remote asset monitoring by installing wireless sensors through-
out the factory and integrating them via an Internet gateway. The data can be remotely
accessed to take further actions in real-time.

However, in addition to the application functions in such a scenario, the service
provider shall be able to create and deploy communication services that can satisfy the
specific requirements of the industrial enterprise related to the monitoring traffic and
resultant decisions. Virtualization technologies support the flexibility of the management
applications by deploying data acquisition and analysis functions at the edge and cen-
tral data centers, respectively. In this scenario, the central data center hosts enterprise
functions, while the edge data center hosts individual factory functions.

The target applicability domain of this thesis is future dense industrial networks where
multi-objective optimization methods are not efficient. We provide the base design of a
complete virtualization system of a smart and complex enterprise. In this system, we
target the main significant objectives, propose novel heuristics, and adapt some existing
appropriate algorithms for the applicability domain.

1.3 SOLUTION APPROACH

In this thesis, we address the challenges of network virtualization with multiple com-
bined virtualization approaches. We first research the comprehensive and autonomic
network virtualization for complex environments that combines different techniques,
multiple application levels, and the main objectives/constraints: topology, security, perfor-
mance, reliability, and resource utilization. We focus on two main network virtualization
approaches (dimensions); NFV for functionality virtualization and VINE for resource
virtualization. We apply these dimensions to different levels of industrial networks un-
der multiple objectives. We first propose a combined solution, then we apply certain
technologies to certain levels under the most critical objectives/constraints. Furthermore,
we design novel virtualization solutions and algorithms that provide high efficiency
and usability. These solutions are supported by a specific use case for future industrial
enterprise and integrated with two main components from the Time Sensitive Networks
(TSN) standard.

We first develop a comprehensive VNE-NFV model for deploying an Extended Virtual
Network (EVN) on a set of data centers. We introduce the concept of EVIN that combines
the virtual application and network functions, and the application and network devices.
This EVN is built by applying a stepwise graph transformation on a simple VN (Applica-
tion Request (AR)) defined by the user to represent the application end-nodes and general
requirements. A set of policies (e.g., security policies) is also defined by the user and
processed with a particular priority to extend the AR with specific VNos, VLis, and VNFs
with the respective demands for resources. The policy represents a certain pattern in the
EVN and a specific graph transformation operation to be performed when this pattern
matches the current state of the EVN. The network model and policies consider the
locations/domains and types of nodes (topology), and security, redundancy (reliability),
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low latency and load balancing (performance) requirements. However, the cost reduction
(resource usage) objective is considered in the embedding stage. This objective directly
influences the energy consumption reduction objective. An example of a transformation
is adding specific security VINFs when the VLi connects two locations.

The following step to building the EVIN is composing the candidate SFCs based on
the required VINFs and dependencies among them and using the topological sorting
method. The embedding algorithm first allocates the virtual application nodes, and then
it maps the SFCs using a greedy heuristic that adapts to the residual SFC and path
lengths. This heuristic is designed to be feasible for our use case, and this also applies to
a random topology used for evaluating it. The solutions are implemented in the VNE tool
ALgorithms for Embedding of VIrtual Networks (ALEVIN) [11], an open-source VNE
framework written in JAVA. A typical use case, remote asset management, from the IloT
domain is leveraged to illustrate the developed methods. Remote asset management is
an enterprise application but is deployed over three levels: factory hall, edge computing,
and cloud computing. However, in the general virtualization model, the factory hall and
edge computing are merged to represent the factory level.

The comprehensive VNE-NFV solution that considers all objectives depends on three
sub-solutions that consider performance, reliability, and security objectives for different
levels and virtualization dimensions. For performance and reliability, we investigate the
applicability of NFV and VINE, respectively, to a modern industrial networks technology
(TSN). The level of applicability here is the factory in the sub-solutions and the enterprise
in the combined solution. We apply NFV to a traffic shaping component (Time-aware
Shaper (TAS)) to increase the flexibility, and we investigate the performance overhead as
the main challenge with this approach. We also apply VNE to the redundancy component
(Frame Replication and Elimination for Reliability (FRER)) to increase the flexibility while
minimizing the resource usage as a significant challenge with reliability. For the security
perspective and sub-solution, we apply both NFV and VNE at the enterprise level by
proposing approaches for autonomic security management in the Network Function
Virtualization Infrastructure (NFVI). NFV is applied via VNF migration-based defense
architecture, and VNE is applied via a mapping algorithm that is aware of the security
requirements of the VN and the security capabilities of the SN.

From the performance perspective, we study an essential traffic shaper from the TSN
standard, TAS, and its existing implementations. We then research the mechanisms
that can be used to implement virtual TAS using high-performance NFV. Based on
these studies, we design, implement, and evaluate a preliminary virtual TAS as an
SFC composed of multiple TAS-capable VINFs built using the Data Plane Development
Kit (DPDK). Furthermore, we develop a complete framework with NFV-specific TAS
controller, scheduling and transmission selection algorithms, time synchronization, and
traffic generation and performance measurement tools. We propose a new method
based on network prefetching to support the schedule calculation, mainly in virtual
environments, by measuring the real transmission and processing times in advance.
In the evaluation, we measure the frame loss and delay of Time-critical Traffic (TCT)
traversing a TAS SFC using different scenarios to judge the capability of virtual TAS in
providing comparable performance to the hardware-based TAS designed in the standard.
Additionally, we evaluate the effect of Best Effort Traffic (BET) traversing the same SFC,
and external disturbance traversing another SFC that uses the same resources. These
factors are significant in analyzing the virtualization overhead.
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From the reliability perspective, we adapt a model of the reliability as a property of
network entities and develop reliability-ware and branching-based link mapping algo-
rithms with different path disjointness policies that can be used with different industrial
traffic classes. These algorithms depend on the traditional block diagram method for
calculating path reliability. The algorithms are compared mainly in terms of resource
utilization, VN admission ratio, and achieved reliability. A typical evaluation topology
from industrial networks that includes various application types is used. Furthermore, we
analyze the TSN sub-standard IEEE Std 802.1CB FRER that defines methods for stream
replication. We build on it to develop compatible VNE models and use the VNE tool
ALEVIN to export the mapping results in a format compatible with FRER. We then test
this integration between the branching algorithms and FRER in the TSN simulator Tsim-
net [70]. We developed the minimal and maximal branching methods and applied and
evaluated them in industrial environments since these are efficient heuristics for complex
environments that can improve the reliability with minimal or reasonable resource usage.

From the security perspective, we elaborate on the VINF security. The enterprise VNFs
shall be deployed on standard servers that might expose a broader attack surface. We
analyze the main security threats on the VNFs originating from the co-hosted VNFs.
The threats under focus are side-channel, co-location, and migration exploitation attacks.
We then design a defense concept based on a decision engine and VNF migration.
The decision engine migrates the suspected VNF as a source of threat to a detailed
analysis environment. Furthermore, we develop a security-aware node and link mapping
algorithm that considers the security constraints of the VN and the security functions of
the SN. In this thesis, we discuss Service Level Agreement (SLA)-related VNF placement
policies only in the security and privacy context and relevant QoS issues.

1.4 CONTRIBUTIONS

In summary, we develop, adapt, apply, and evaluate several efficient heuristic algorithms
for complex environments in which the optimization problems are inefficient. In the
performance and reliability perspectives, we focus on the applicability of virtualization
to industrial networks technologies. In the following, we list the contributions of this
thesis to the state of the art:

¢ We propose a virtualization model that considers network levels, virtualization
dimensions, and main objectives/constraints. Furthermore, we map the developed
models and algorithms to this model. Figure 1.1 shows the proposed virtualization
model with two network levels, both virtualization dimensions, and target objectives.
The mapping of the developed approaches (combined and sub-approaches) is
discussed in Chapter 7. The order of objectives here reflects priorities discussed in
the combined approach in Chapter 3.

* We develop a comprehensive solution for combining virtualization techniques and
applying them over different network levels and with multiple objectives.

— We use graph transformation to convert the general application requirements
to a physical-topology-aware EVIN under different topology, performance,
reliability, and security objectives and constraints. However, the resource
utilization objective is addressed by the EVIN mapping stage.
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— We develop and implement a greedy heuristic algorithm to embed an SFC
depending on the chain and path length.

— We apply the combined solution to an IlIoT use case inspired by Industry 4.0
concepts and represents multiple levels and objectives.

¢ We develop a VINE model for reliability and three reliability-aware link mapping
algorithms (shortest path, maximal branching, and minimal branching) and com-
pare them in terms of VIN acceptance, resource utilization, runtime, and achieved
reliability. We use a typical factory topology with different applications for the
evaluation. Based on our findings, we propose a mapping between traffic classes
from industrial networks and these algorithms.

* We integrate theoretical network virtualization approaches with an industrial
network technology (TSN).

— We design and implement a complete framework for virtualization TAS using
a high-performance NFV technique. Our solution achieves high flexibility in
realizing TSN with accepted delay probability for enterprise-level industrial
applications.

— We integrate the mapping results of the reliability-aware link mapping algo-
rithms with the standard IEEE Std 802.1CB FRER using the TSN simulator
Tsimnet.

* We discuss VINF security threats and design a defense solution in NFVI based on
migration, which considers relevant privacy and QoS aspects.

* We develop a security-aware VNE algorithm that maps the security constraints of
the VN to the security capabilities of the SN.

1.5 THESIS STRUCTURE

This thesis is structured as follows: in Chapter 2, we introduce the work related to the
virtualization of industrial networks, our combined approach, and our sub-solutions for
performance (virtual TSN), reliability (branching and FRER), and security (migration-
based defense and security-aware VINE). In Chapter 3, we present the combined EVN
approach. In Chapter 4, we present the performance sub-solution of virtualizing TAS.
In Chapter 5, we present the reliability sub-solution of branching and integration with
FRER. In Chapter 6, we present the security perspective with the decision engine and
security-aware mapping algorithm. Chapter 7 concludes this thesis by mainly mapping
the developed methods to the virtualization model.

Figure 1.2 shows the thesis map with the logical elements and main dependencies.
The contributions are mapped to the proposed virtualization model in the conclusions
(Chapter 7) after detailing them in the respective chapters. The transformation logic in
Chapter 3 is realized by different transformations that reflect the target objectives. The
latency, redundancy, and security transformations and the EVN embedding algorithm
use algorithms and concepts from the three sub-approaches in Chapters 4, 5, and 6,
respectively. Finally, the related work aspects (EVN and the three main objectives) are
connected to the respective chapters and clarify the state of the art and our contributions.
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Figure 1.1: Proposed virtualization model

The applicability aspect in Chapter 2 (virtualization of industrial networks) is relevant to
all approaches. However, this dependency is not shown for simplifying the figure.
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BACKGROUND AND RELATED WORK

This thesis includes multiple approaches for which different related research directions
exist in the community. Since the EVN approach integrates these approaches, we combine
all addressed related work in this chapter to provide an overview of the state of the art
in the domains of network virtualization and its applicability to industrial networks.
Furthermore, we highlight our contributions by comparing our approaches. However,
due to the wide domain of relevant topics, we do not provide a complete survey rather
an overview of the significant solutions that are relevant to our work with the main
references.

2.1 VIRTUALIZATION OF INDUSTRIAL NETWORKS

The research on the virtualization of industrial networks mostly focuses on NFV. Some
researchers investigated the applicability of NFV to industrial environments. Sakic et al.
[13] proposed VirtuWind, an SDN and NFV architecture for industrial networks applied
to wind parks with the focus on security VINFs and Supervisory Control and Data
Acquisition (SCADA) as the main monitoring and management component deployed
locally on-site. The architecture addresses a multi-operator ecosystem with inter-domain
and intra-domain communication.

Although we discuss the related work on high performance NFV in Section 2.3.1, we
discuss here its applicability to industrial networks. Few researchers investigated the
capabilities of virtualization technologies for hosting real-time applications. Gundall et al.
[14]" examined the possibilities of virtualization in the industrial landscape. Performance
comparisons for bare-metal applications, Virtual Machines (VMs), and containers were
conducted and evaluated for industrial needs. The analyses indicate that the flexibility
gained by virtualization can be achieved for industrial applications without violating the
stringent real-time requirements in the industrial landscape, if Docker containers with a
suitable configuration are used. Linux real-time kernel combined with Docker can reliably
run the cyclic execution of applications in intervals of 1us — 1ms with a jitter of 15us. The
authors compare different Docker network drivers but do not develop a traffic shaper.
From a security perspective, the authors recommend traffic encryption, but conclude that
a non-negligible performance penalty does not allow network encryption for time-critical
applications, then security must be achieved through a high degree of traffic isolation and
other security measures. The authors suggest virtualizing the industrial control system at
the edge and cloud level, which opens a vast surface of attacks.

Moga et al. [15] studied the capabilities of containers to achieve flexible consolidation
and easy migration of industrial automation applications, as well as the container tech-
nology readiness with respect to the fundamental requirement of industrial automation
systems, namely performing timely control actions based on real-time data. The authors
provide an empirical study of the performance overhead imposed by containers based

1 This work is published after the author’s publications [2]fand [3]”.
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on micro-benchmarks that capture the characteristics of targeted industrial automation
applications.

Bag et al. [16] explored the capabilities of different virtualization platforms offered by
various cloud providers. The platform performance has been evaluated by conducting
experiments with an industrial application, focusing on typical industrial aspects such as
latency, jitter and availability. The findings indicate that specific application requirements
affect the performance. Hence, application-specific evaluations might be necessary before
deciding where an industrial application can be deployed.

The integration of cloud computing with industrial networks has been also addressed
by Asenjo et al. [17]. The authors introduced a cloud-based virtualization generation ser-
vice that collects data from multiple industrial automation systems of various industrial
customers for storage and analysis on a cloud platform. A virtualization management
component analyzes the data and generates a virtualized industrial automation system
based on the analysis results.

In another relevant aspect, several works focused on sensor and gateway virtualization
in wireless sensor networks in the IoT domain. Mouradian et al. [18] proposed an NFV
architecture for virtualized wireless sensor and actuator network gateways, in which
software instances of gateway modules are hosted in NFV infrastructure. Furthermore,
some works focused on virtualizing the industrial network control. For example, Lee et
al. [19] virtualized CAN controllers using containers.

In the VNE domain, Huth and Houyou [20] proposed a system architecture for network
virtualization in industrial networks. A domain controller, the Slice Manager, directly
manipulates a potentially heterogeneous network while providing a simple abstract view
to planning and management applications. The application runs in a “slice” which is a
VN with clear QoS guarantees and bandwidth policies.

In summary, the research on the virtualization of industrial networks does not combine
VNE and NFV and all important constrains, and does not autonomically build VNs
that represent different devices, gateways, VNFs, and virtual application functions.
Furthermore, TSN and virtualizing traffic shapers in the form of SFCs are not addressed.
Compared to the above-mentioned works, we consider edge and cloud computing for
data analysis with inter- and intra-domain and location communication, we combine
traditional VNE and NFV, and target the objectives of security, performance, reliability,
and resource usage. We compose an EVN that might include all types of devices, gateways,
different types of VINFs, and virtual application functions. For security considerations, we
use a VM-based approach in our virtual TAS since VMs offer higher level of isolation and
lower performance, but reasonable for enterprise applications. In the reliability aspect,
we use the concept of network slicing in industrial networks with different applications
to compare different redundancy methods.

2.2 COMBINED APPROACH

The combined EVIN approach represents an autonomic, policy-based, and multi-objective
network virtualization using traditional VINE algorithms and SFC composition and
deployment solutions. In this section, we address the related work on these topics.
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2.2.1  Autonomic and Policy-based Network Virtualization

Several works addressed the autonomic virtual networking that creates the VNs from
policies, with the focus on multiple but incomplete objectives. Davy et al. [21] presented
an approach to provision network services in an autonomic network using virtualized
routers. The approach provides business users a method of describing the requirements
and behavior of a set of network services using policies, while abstracting the users
from complicated network configuration tasks. It then dimensions a VN dedicated
to provisioning these services. The authors focus on fault tolerance, redundancy, and
security.

In a later work, Davy et al. [22] addressed a specific scenario of secure VPN services
that require a set of security-related functionality from the network to be effectively
deployed. In a similar direction, Louati et al. [23] designed an architecture of autonomic
virtual routers to support automated provisioning and management of VINs. The objective
is to automatically create virtual routers in Substrate Nodes (SNos) to support on-demand
VNs, without any human intervention.

Granelli et al. [24] proposed an architecture to realize autonomic mobile VN operators
that can be deployed by Internet service providers to guarantee efficient and effective
network adaptation to unexpected events and real-time resource requests. Mijumbi et al.
[25] proposed to use distributed artificial intelligence to make the VINs self-configuring,
self-optimizing, self-healing, and context-aware.

In comparison, we focus on both autonomic VN composition and configuration. Fur-
thermore, we consider comprehensive policies with certain priorities and different types
of VNFs and combine the traditional VN with SFCs. Our work focuses on industrial
enterprises with multiple levels and on TSN technology. Our composition stage adds
physical devices automatically and considers locations and domains. However, we don’t
target dynamic or proactive autonomic virtual networking that reconfigures the VINs
on-demand or in advance based on learning methods as discussed by Yan et al. [26] and
Rkhami et al. [27], who use graph neural networks.

2.2.2  Multi-Objective VNE

The research on multi-objective VNE focuses on optimization methods, mainly integer
linear programming, and on developing heuristics for large scale environments. Further-
more, several works consider the embedding over multiple independent domains with
the focus on limiting the domain’s information disclosure. Table 2.1 summarizes the main
existing solutions. However, solutions that focus on resilient VINE with other secondary
objectives, mainly resource utilization, are discussed in Section 2.4. Additionally, the
multi-objective and resilient SFC deployment are discussed in Section 2.2.3.

Our work considers several and comprehensive objectives and focuses on future dense
industrial environments, making optimization problems inefficient. We combine VINE
and NFV and consider physical devices that exchange data and that cannot be virtualized.
Furthermore, we develop a set of heuristic algorithms to overcome the complexity of
multi-objective optimization. However, compared to works that solve the multi-domain
embedding problem with limited information disclosure, we do not consider domain
privacy inside an industrial enterprise, and we consider both domains and locations.

11
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Table 2.1: Important existing works on multi-objective VNE

Reference

Methodologies

Main objectives/constraints

Houidi et al. [28]

Mixed integer programming

Power consumption, avail-
ability, load balancing, fault-
tolerance

Zhang et al. [29]

Artificial immune system

Revenues, energy consump-
tion

Li et al. [30]

Mathematical programming

Acceptance ratio, resource
load, profit, delay, load bal-
ancing

Gong et al. [31]

Compatibility graph

Location

Habibi et al. [32]

Graph neural networks

Scalability

Chowdhury et al.
[33]

Heuristic

Multi-domain, location

Dietrich et al. [34]

Request partitioning

Multi-domain with limited
information disclosure

Ni et al. [35]

Particle swarm optimization

Multi-domain, cost

Andreoletti et al.
[36]

Reinforcement learning

Multi-domain with limited
information disclosure

Zhang et al. [37]

Particle swarm optimization,
heuristic

Multi-domain Internet of
Drones, delay, cost

Yu et al. [38]

Heuristics: VLi  splitting,

Resource utilization, delay

path migration, VN topology
classes

Fajjari et al. [39] Greedy algorithm for VN re- | Admission, cost
configurations to minimize
the number of bottlenecked

SLis

2.2.3 SFC Deployment

We focus in this section on SFC composition and embedding. Herrera and Botero [40] pro-
vided an extensive survey on NFV resource allocation. They highlight the fact that most
of the contributions focus on chain embedding and use linear programming to optimize
the solution for a certain objective, such as runtime, end-to-end latency, and deployment
cost. However, several researchers studied the SFC composition problem.

Mehraghdam et al. [41] introduced a context-free language model to formalize the
VNF requests and a heuristic to compose the SFCs. SFC allocation is formulated as an
optimization problem with different objectives. The authors highlight the fact that placing
SFCs is complex, in particular for different, possibly conflicting, allocation objectives,
such as used number of SNos or latency. An optimal SFC composition approach based on
integer linear programming is introduced by Ocampo et al. [42]. The objective is to find
SFCs with minimal bandwidth requirements for a predefined VNF request. Gil-Herrera
and Botero [43] proposed a meta-heuristic algorithm for solving the SFC composition
stage. The solution focuses on minimizing the total bandwidth demand.
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Zheng et al. [44] studied how to optimize the latency in hybrid SFC composition and
Embedding. They proposed an approximation algorithm (Eulerian Circuit-based) to
jointly optimize the SFC construction and embedding. Furthermore, the authors propose
an efficient Betweenness Centrality based algorithm. Wang et al. [45] formulated the SFC
composition and mapping problem as a weighted graph matching problem with the
focus on resource optimization. The authors also proposed a Hungarian-based algorithm
to solve the SFC composition and mapping problem in a coordinated way.

Beck and Botero [46] introduced a heuristic coordinated approach, CoordVNE, which
tackles the chain composition and embedding problems with the objective of minimizing
the bandwidth usage. The approach uses backtracking in case of an invalid embedding
to find a valid solution starting from the last successfully embedded VNF. Hirwe and
Kataoka [47] proposed an approach, referred to as LightChain, which creates a directed
acyclic graph for a VNF request and performs topological sorting to generate a single
SFC. This SFC is then embedded on the shortest path between source and destination
devices based on the assumption that a path of length n can host n VINFs. If the current
path is consumed, another shortest path is calculated for placing the remaining VINFs.

Wang et al. [48] classified the SFC deployment problems according to the option of
sharing VNF instances. An optimization problem and a heuristic solution are presented
to find the best SFC composition scheme that achieves minimal demand of link resources
and improves the VNF instance utilization. The stages of SFC composition, placement,
and assignment are combined. Li et al. [49] presented a solution for placing VNFs in
cloud data centers. They focused on the placement of multi-tenant VINFs shared among
multiple SFCs to achieve efficient utilization of network resources in contrast to traditional
VNF placement strategies.

Wang et al. [50] introduced an SFC composition framework called Automatic Composi-
tion Toolkit. It tries to automatically detect the dependencies and conflicts among the
network functions and model their behavior. The authors define topology and processing
dependencies, and action and processing conflicts. Li et al. [51] presented a typical
three-stage coordinated optimization model for NFV resource allocation, which considers
CAPEX, OPEX, and link costs.

From another perspective, some researchers addressed the problem of resilient alloca-
tion of SFCs. Wang et al. [52] introduced a model for calculating the SFC availability and
presented a Joint Path-VNF backup model that jointly considers path and VNF backup.
Furthermore, they used a priority-based algorithm to optimize the composition and map-
ping of SECs. In this algorithm, VINF dependency is converted to a VINF priority, which
might create multiple Forwarding Graphs (FGs) generated according to these priorities.
The evaluation metrics are total data rate, acceptance ratio, maximum availability, VINF
cost, and physical node and link cost.

Beck et al. [53] discussed two main resilience strategies: VLi and VNF resilience.
The VLi resilience strategy tries to calculate a disjoint backup path when mapping a
target VLi that connects two VNFs. VNF resilience needs at least two different SNos
on which the VNF is allocated. The evaluation focused on the acceptance ratio and
embedding cost. Torkzaban and Baras [54] integrated the trustworthiness of the SN paths
into the SFC embedding problem. The authors formulated the path-based trust-aware SFC
embedding problem as a mixed integer-linear program, and provided an approximate
model based on selecting the shortest candidate SN paths.

13
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Regarding the consideration of domains and locations, Liu et al. [55] proposed a
distributed method for cross-domain SFC embedding. Besides preserving the privacy and
autonomy of domains, the authors consider fair competition and migration-based load
balancing among domains, and improving the admission ratio. The SFC is partitioned
and mapped in each domain according to its specific policies. Lange et al. [56] proposed
a multi-objective heuristic for the optimization of SFC placement. The objective is to
determine the number, location, and assignment of VINF instances and the routing of
demands. The constraints of CPU utilization and the delay of individual flows are taken
into account.

Our EVN solution contributes to the current state of the art of the three topics of
this section in different aspects. First, a policy-based transformation of an abstract
AR composes an EVN that includes the physical and virtual application nodes and
the VINF requests. Our policies consider primary topological, performance, security,
and reliability requirements. Second, we integrate location- and domain-awareness into
the EVN composition and embedding solutions. These solutions consider dependencies
among VNFs, which also reflect the locations and domains. The transformations add
security VNFs according to the domains and locations across which the traffic flows.
Third, we define a specific use case of these approaches from Industry 4.0 and design the
fixed topology that represents it. The last contribution is an SFC embedding heuristic that
tries to find a valid solution for the embedding problem while using a pre-verification
of the path. To the best of our knowledge, this is the first work that addresses the
composition of an EVN that combines the application and SFCs, based on multiple
policies, while considering domains and locations, and in the context of industrial
environments.

2.3 PERFORMANCE PERSPECTIVE - VIRTUAL TSN

Our performance solution virtualizes a TSN component using a high performance NFV
mechanism. Furthermore, we present a novel adaptive scheduling method for virtual
environments. The important related work on these topics is discussed in this section.

2.3.1 High Performance NFV

Several works and tools addressed high performance NFV. Intel presented DPDK [57];
a set of performance-boosting libraries for NFV architecture. Sun et al. [58] presented
HYPER, a framework that integrates hardware and software infrastructures to provide
flexibility while keeping high performance. Naik et al. [59] introduced libVNF as a
C++ library that uses DPDK, among other technologies, to ease the implementation of
horizontally scalable high performing VNFs. The developers of libVNF claim reducing
the source code for developing a VNF by 50% with a maximum decrease of performance
of 10%. Nakajima et al. [60] proposed a high-performance virtual NIC framework for
hypervisor-based NFV with user space virtual switch and DPDK, with the focus on
improving the virtual NIC throughput.

Kourtis et al. [61] employed deep packet inspection to evaluate the performance of
Single-root Input/Output Virtualization (SR-IOV) with DPDK- based NFV deployment.
Li [62] built a high performing software router based on DPDK to analyze the IPv4
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header of a packet and determine whether to forward it or submit it to the upper
layer protocol. The author compared his work to the Linux IP protocol stack and found
that his implementation increases the throughput by 8-10 times. Yurchenko et al. [63]
presented OpenNetVM as an open-source NFV platform designed to accelerate the
development of VNFs by creating an abstraction layer over DPDK. OpenNetVM allows
Docker container-based VINFs to be chained together and run on the same host with
minimal latency.

Yasukata et al. [64] introduced HyperNF, a high performance NFV framework to
increase server throughput when concurrently running large numbers of VNFs. HyperNF
implements hypercall-based virtual I/O, placing packet forwarding logic inside the
hypervisor to significantly reduce I/O synchronization overheads.

Some works used different hardware technologies to achieve high performance NFV.
Sun et al. [65] integrated a stateful and NetFPGA accelerated data plane into NFV.
The authors designed a performance-aware service chaining algorithm to fulfill both
functionality and performance requirements with respect to SLAs. They implemented an
SLA-NFV prototype based on OpenStack and NetFPGA. Zheng et al. [66] proposed a
GPU-based high performance framework for NFV. The elasticity of VINFs is improved by
scaling them up and down by allocating a different number of fine-grained GPU threads
to a VNF during runtime.

In comparison to these works, we use DPDK-accelerated Open vSwitch and VM-based
VNFs. We focus on delay and frame loss and develop a specific shaper from TSN with a
complete framework that includes schedule calculating and distribution methods.

2.3.2 TSN Implementations and Integration

In order to evaluate the networks implementing TSN features, few simulators have been
developed. TSN capabilities of timed transmission were addressed by Jiang et al. [67], who
presented a TSN simulation model built on top of OMNET++ [68]. TAS-enabled switches
were simulated through the calculation of Gate Control Lists (GCLs) with the opening
times of the TCT gates. The authors tried to analyze the end-to-end latency of scheduled
and non-scheduled traffic. Jarray et al. [69] presented NeSTiNg, which implements the
frame tagging according to 802.1Q; a TSN component whose functionalities include
forwarding, queuing, and two kinds of shapers (TAS, and credit-based shaper).

Heise et al. [70] presented TSimNet (on top of the Inet [71] framework) that we use in
our work with FRER. The authors implemented the non-time-based features of TSN such
as frame preemption, per-stream ingress policing, and FRER. The simulator was used for
purposes of evaluation in avionic networks. Pahlevan [72] presented another simulator
that implements the time-based and non-time-based features of TSN (time-based filtering,
TAS, policing, and FRER), based on Riverbed simulation framework. Lee and Park [73]
developed a simulator for in-vehicle networks and designed a model for autonomous
vehicles with TSN features.

Some researchers evaluated the features of TSN to understand the advantages of using
them. Pahlevan and Obermaisser [74] evaluated the safety and fault tolerance offered
by FRER in Opnet simulation framework. The authors verified that FRER is resilient in
case of transient errors (e.g., stuck transmitter) and in case of permanent errors (e.g., link
failure). The applicability of the TSN standard has been also evaluated by Pahlevan and
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Obermaisser [75], where the Opnet simulation framework has been used to compare the
obtained results to the theoretical performance defined by the standard.

Hardware with integrated TSN features also exists. An Intel Platform Designer com-
ponent [76] has been developed to make it easy to integrate TSN features in Intel Field
Programmable Gate Arrays (FPGAs). The tool can be used for time synchronization and
TCT scheduling with eight priority queues per port. Other devices from different manu-
facturers were developed to be fully (Broadcom [77]) or partially (Cisco [78]) compatible
with TSN features presented by the time of their development.

The integration between TSN and other technologies has been addressed by several
researchers. 5G-TSN integration for smart factories is currently under focus by some
researchers such as Gundall et al. [79] and Farkas et al. [80]. According to these re-
searchers, this integration is promising to fulfill the requirements of Industry 4.0 due
to the flexibility features of 5G and the TSN feature of extremely low latency. However,
these works do not address the real virtualizing of TSN using NFV, which is also a main
enabler of 5G.

Pop et al. [81] discussed using TSN as a deterministic transport mechanism for fog
computing in industrial automation. The authors proposed a configuration agent architec-
ture based on IEEE 802.1Qcc and Open Platform Communications Unified Architecture
(OPC UA). This architecture is capable of performing runtime network configuration to
address the configuration challenges for scheduled networks. The authors also proposed
a list scheduling-based heuristic to reconfigure the scheduled network at runtime for
industrial applications within the fog. Li et al. [82] also integrated TSN and OPC UA
for dynamic configuration. SDN was also used by Said et al. [83] as a solution for the
dynamic configuration of TSN, and by Boehm et al. [84] with a combined control plane
for SDN and TSN.

Regarding TSN virtualization, Fang and Obermaisser [85] implemented a TAS-capable
virtual switch as a kernel module. In comparison, we deploy TAS-capable and VM-based
SFC, use an adaptive GCL calculation method (prefetching), inject random BET and a
disturbance SFC, consider frame loss in the evaluation, consider different evaluation sce-
narios from industrial enterprises, and build a complete framework with synchronization,
schedule distribution, and performance measurement.

2.3.3 Schedule Calculation

A TSN performance aspect that is still under intensive research is the TAS schedule
calculation. Some researchers discussed the best methods to calculate the GCLs for a
network of bridges hosting multiple TCT flows. The goal is to reserve time slots for flows
along their paths such that: the delay constraints of flows are respected, no overlap in
the transmission of any pair of flows, and the total length of the schedule is minimized.
Craciunas et al. [86] used Satisfiability Modulo Theories (SMT), a decision-making
methodology, to calculate the schedule and assignment of flows to the existing queues
on the ports. The flows are periodic with pre-defined cycles and frame sizes. The flow
scheduling constraints are end-to-end delay, transmitting the frame inside the flow cycle,
no overlapping of frames, and preserving the order of frames in the flow. Additionally,
the authors introduced the flow isolation constraint; a queue is reserved for a flow until
all its frames in the queue are transmitted. However, the SMT method is not scalable,
and the authors used an incremental backtracking algorithm that schedules one flow
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in each step using SMT. The results for each flow are considered when the next flow is
processed. In case no scheduling for one flow is found, a step backward is made, and the
last scheduled flow is mapped with the current flow in one step.

As an improvement to [86], Farzaneh et al. [87] proposed an approach to track the
unsatisfiable flows and correct the schedule. Gavrilut [88] proposed a Greedy Randomized
Adaptive Search Procedure (GRASP) to calculate the GCLs. Their meta-heuristic approach
generates a set of feasible solutions iteratively, and a candidate is randomly chosen as an
initial solution. The solutions are then enhanced to reach the locally optimal solutions
using the Hill Climbing strategy. The resulting solutions are compared based on an
objective function that reflects the difference between the worst-case end-to-end delay
and the delay threshold of a flow. This approach considers both the TCT and Audio
Video Bridging (AVB) traffic. The resulting schedules respect TCT constraints with an
accepted increase in the AVB delay.

Pahlevan et al. [89] presented a heuristic algorithm that routes the flows and creates
the GCLs in one phase. However, they only consider TCT, and it is treated as tasks that
can be assigned to the available nodes. In each node, one queue is used for TCT, and the
flow isolation method is adopted. Scheduling a flow respects the periods of the already
scheduled flows on the same link. Diirr [go] adapted the No-Wait Job Scheduling Problem
(NW-JSP) to the TAS scheduling problem. The NW-JSP problem deals with scheduling a
set of jobs on a set of machines. A heuristics algorithm is used to minimize the schedule
length. Barzegaran et al. [91] used constraint programming for quality-of-control-aware
scheduling of communication in TSN-based fog computing platforms.

Hellmanns et al. [92] proposed a scalable scheduling model for converged networks
supporting different traffic types. They introduced a procedure for schedule planning
of isochronous traffic, which exploits the hierarchical structure of factory networks. The
authors split the network into sub-networks and use a two-stage approach based on
a heuristic and a tracing mechanism. Arestova et al. [93] discussed a hybrid genetic
algorithm including chromosome representation for the routing and scheduling problems
in TSN. Additionally, the authors introduced an approach to compress the resulting
schedules. Serna Oliver et al. [94] discussed how the synthesis of communication sched-
ules for GCLs defined in IEEE 802.1Qbv can be formalized as a system of constraints
expressed via the first-order theory of arrays.

In this thesis, the goal is not improving theoretical schedule calculation approaches but
implementing and evaluating an efficient method in a real and virtual environment. We
design and compare two scheduling algorithms that use a new mechanism of measuring
the actual transmission and processing times in advance. This mechanism is significant
in controlling the fluctuations, mainly in virtual environments. Our algorithms consider
TCT and BET, and each port in a node includes one queue per traffic class. The first
algorithm is empirical and uses experimental network prefetching data to calculate the
GCL, and the second algorithm is hybrid and additionally uses the flow’s frame size and
link bandwidth.

We evaluate the performance of DPDK-based VINF implementation under the time-
aware functionality and scenarios of TSN. While most of the high performance NFV
works (such as [61] and [62]) evaluate the implementations in terms of computational
overhead and throughput, we focus on delay and frame loss. Furthermore, we develop a
complete framework that can be used to evaluate the performance of TSN and its future
improvements in a real environment, with low cost and high flexibility.
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2.4 RELIABILITY PERSPECTIVE - RESILIENT VNE

The research on resilient VNE focuses on the efficient reservation of backup resources
and single Substrate Link (SLi) failure. However, some works consider reconfiguration as
a defense mechanism against attacks, reliability values, locations, domains with privacy,
and improving the VN topology. A summary of some important existing solutions is
shown in Table 2.2.

In comparison to these works, we consider reliability values, VLi reliability, locations,
domains, resource usage, and extending the VN topology in one approach. Furthermore,
we develop minimal * and maximal branching as efficient heuristics and apply, compare,
and evaluate them in industrial networks. We discuss a mapping between industrial
traffic classes and these redundancy policies. Finally, we use the mapping results to
compute the required network configurations according to 802.1CB FRER.

2.5 SECURITY PERSPECTIVE

The security solutions presented in this thesis consider SLA-aware and migration-based
suspicious VM isolation, and security-aware VNE. The important related work on these
topics is discussed in this section.

2.5.1  Cloud Security

Serious vulnerability concerns have arisen from the VM co-residence architecture of the
IoT cloud (Xing et al. [110]). Co-residence attacks enable an attacker to access and corrupt
a user’s sensitive data by co-locating his VM on the same physical server [110]. In this
thesis, we assume that the VM is the preferred technology for hosting VINFs that process
industrial data for security considerations. This issue is further discussed and applied
mainly with virtual TSN in Chapter 4. We assume here that the research about VM
security applies to VNF security. However, we extend our VM security considerations to
the SFC.

There are several attack vectors, threats, and defense mechanisms in IaaS clouds, but we
focus on attacks on VMs from co-hosted VMs as the most relevant for sensitive industrial
data. We don’t target the threat of compromising the VM monitor and the management
VM. We assume that the probability of a malicious co-located VM is higher. An overview
of such attacks and specific defense mechanisms is presented in Chapter 6. Since this
chapter includes a general defense architecture against malicious VMs while considering
the SLAs, we focus on related work on similar cloud defense mechanisms and security
SLA management in cloud computing. However, these topics consider other types of
attacks performed by malicious VMs, such as DDoS. The exact detection mechanisms of
such attacks are out of the scope of this thesis, rather the behavior patterns and reasonable
reactions according to the SLA.

Many researchers addressed the behavior study of both traditional malware and virtual
environment-specific malware in cloud environments. For example, Dolgikh et al. [111]
propose an efficient behavioral modeling scheme to detect suspicious processes in client

Liu et al. [12] presented a similar concept in 2019. However, we developed the minimal branching algorithm
in cooperation with Siemens in 2018.
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Table 2.2: Important existing solutions for resilient VNE

Reference

Methodologies

Main objectives/constraints

Jarray et al

Column Generation, protection cy-

Single link failure, minimiz-

[95] cle ing the backup resources
Chen et al | Heuristic, restoration path selec- | Cost-effective usage of net-
[96] tion work resources

Jiang et al. [97]

Bipartite graph matching, re-
source sharing among working
and backup facilities

Location, single facility fail-
ure, minimizing the band-
width consumption

Oliveira et al.

[98]

Multiple substrate paths, capacity
reallocation

DoS attack

Chai et al. [99]

Multi-objective optimization
problem, single-objective sub-
problems, discrete particle swarm
optimization

Malicious attacks in SDN,
minimizing network load,
maximizing embedding relia-

bility

Rahman and
Boutaba [100]

Heuristic, node migration, restora-
tion

Single SLi failures

Guo et al

[101]

Heuristics, failure dependent pro-
tection, enhanced VN by backup
facility nodes, resources sharing,
binary quadratic programming,
mixed integer linear program-
ming

Single facility node failure, ef-
ficient resource usage

Liu et al. [12]

Availability model, integer lin-
ear programming, heuristic, k-
shortest paths, backup paths

Minimizing resource cost

Liu et al. [102]

Backup VN topology, resource
sharing

SLi failure

Ergenc et al

Mixed integer linear program,

Arbitrary node failures, at-

[103] heuristics, dynamic function mi- | tacks
gration
Chen et al | Reliability-aware mapping, partial | Reliability, resource usage
[104] protection, mapping permutation
to adjust the reliability
Wu et al. [105] | Heuristic, reliability-aware map- | Reliability
ping and backup of nodes, fault
recovery by backup switching
Zhang et al. | topology- and reliability-aware | Reliability
[106] node ranking, shortest path

Rahman et al.

[107]

Backup paths with bandwidth
rerouting

Single SLi failure, delay

Gomes et al.

[108]

Spanning tree, redundant paths,
shortest path with bandwidth
weight

Overall VN reliability, SLi
failure

Yu et al. [109]

VNo migration, disjoint backup
path

SLi failure, resource usage
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VMs by monitoring system calls. Marnerides et al. [112] describe how to detect the
traditional Kelihos malware in VMs by monitoring the memory usage and number of
processes. According to the authors, Kelihos malware causes a memory explosion for few
seconds, which is not a normal behavior for traditional applications. Zhang et al. [113]
use machine learning to deploy a lightweight mechanism in a VM to detect the behavior
of L2-cache side-channel attacks performed by other VMs. Several works address the
defense mechanisms against suspicious/malicious VMs and co-location attacks 3. The
main existing solutions are summarized in Table 2.3.

Several researchers addressed the security SLAs in IaaS clouds. For example, Kaaniche
et al. [130] proposed an extension to an existing SLA description language, rSLA, to
describe the security requirements and needed security mechanisms that allow the
automatic management of the security SLAs. The proposed system dynamically inspects
the SLA document and activates the needed security monitoring tools to collect the
data. The data is evaluated against the objectives to execute enforcement and reporting
actions. De Benedictis et al. [131] discussed how to define a per-service security SLA in
the cloud. Zhou et al. [132] presented a privacy-based SLA violation detection model for
cloud computing based on Markov decision process theory. This model can recognize
and regulate the provider’s actions based on the specific requirements of various users.
Additionally, the model can evaluate the credibility of the provider by monitoring the
actions that violate the user’s privacy. Basile et al. [133] studied the integration of
network and security policy management into an NFV framework by enabling and
configuring security VINFs based on the user requirements. Ullah and Ahmed [134]
proposed integrating security levels in SLAs and VM placement.

Compared to the above mentioned works on defense and security SLAs, our primary
defense mechanism tries to migrate a suspicious VM to a dedicated analysis environment,
while respecting the downtime allowed by the SLA and migration history. However, we
define a set of SLA policies described with our own format, and respective deployment
decisions and actions to be taken based on the environment conditions. Our policies are
defined at the VN /VM-level and cover different QoS, privacy, and security concerns in
Iaa$S clouds.

2.5.2  Security-aware VNE

The research on security-aware VNE focuses on defining and mapping security levels.
Bays et al. [135] considered locations, resource usage, and three distinct confidentiality
levels in an optimization problem. In a following work, Bays et al. [136] developed a
heuristic with end-to-end and hop-to-hop cryptography while considering processing
and bandwidth costs. Zhang et al. [137] proposed a security-aware VINE algorithm based
on reinforcement learning. The authors defined security levels for VNos and SNos. The
VNo can only be mapped to a SNo with equal or higher security level. The training
phase is used to assign SNos a certain security level probability. Wang et al. [138] used
security-level-based node filtering. Liu et al. [139] presented an optimization problem
and a heuristic that considers security levels and resource usage.

Some solutions improved the traditional security level-based solutions. Besiktas et al.
[140] mapped VNs of conflicting operators to different SN entities. Liu et al. [141] defined

Works that suggest migration-based isolation and detailed analysis of suspicious VMs are published after
the author’s publication [4]%.



2.5 SECURITY PERSPECTIVE

Table 2.3: Main defense mechanisms against suspicious VMs and co-location

Reference

Methods

Main objectives/constraints

Hou et al. [114]

Recognizing potentially risky VMs
based on historical data, consolidating
risky VMs into specialized servers, risk-
ware VNE heuristic

Risk detection and isolation

Mohamed et al
[115]

Risk-based VM placement

Selecting the host that leads
to minimum risk increase

Bardas et al. [116]

Moving target defense: automated re-
newal of the instances

Preventing co-location and
side-channels

Han et al. [117]

Learning techniques to classify users,
two-player security game

Increasing the cost of co-
location

Han et al. [118]

Security game with probabilistic selec-
tion of different VM allocation policies

Minimizing co-location pos-
sibility, workload balance,
power consumption

Miao et al. [119]

Security-aware VM placement: rules,
allocation, and migration based on con-
flicting tenants

Minimizing  co-residency,
load balancing, power con-
sumption

Agarwal and Binh
Duong [120]

Previously co-located users first

Minimizing co-location

Feizollahibarough
and Ashtiani [121]

Security-aware VM placement based
on VM vulnerability and importance
levels and server vulnerability and ca-

pacity

Reducing the risk of co-
location

Azab and El-
toweissy [122]

Moving target defense by probabilistic
random migrations

Minimizing the probability
of co-residency and side-
channels

Zhang et al. [123]

Moving target defense by periodic mi-
gration

Increasing co-location diffi-
culty, optimal migration in-
tervals

Anwar et al. [124]

Game theory and periodic migration

Increasing co-location cost

Atya et al. [125]

Experimental study on co-residency
and side-channels in Amazon EC2,
guidelines for migration-based defense

Co-location, side-channels,
migration costs

Liu et al. [126]

Optimization problem

Minimizing co-residence of
multiple users, power con-
sumption, workload balanc-

ing

Bedi
[127]

and Shiva

Two-player game

Co-location with DoS

Deyannis et al
[128]

Offload the processing of malware anal-
ysis to a remote server

User data privacy, perfor-
mance overhead

Casola et al. [129]

Moving target defense by automatically
switching among different admissible
application configurations

Security SLA
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an optimization problem and two heuristics that consider physical isolation, security
levels, splittable VLis, and resource usage. Wang et al. [142] discussed the security issues
at nodes, topology, and network levels. The authors presented flexible and fine-granular
security plans and used a path-based mathematical model and node filtering.

In comparison to these works, we consider locations and domains (in the EVN) and
add the required security VINFs according to certain policies. However, our original
security-aware VINE algorithm maps specific security demands to the respective security
functions offered by the hosts and substrate domains. Furthermore, this algorithm forces
Cross-domain Links (CDLs) to be mapped across firewalls.

2.6 CONCLUSION

Network virtualization solutions use optimization problems in addition to heuristics and
approximation methods for efficiency. The solutions either consider only VNE or combine
it with NFV, and consider some important objectives. However, there is no comprehensive
and efficient solution for complex environments that considers all significant constraints.
Furthermore, there is no solution for the autonomic creation of VNs that combine the
network and the applications and consider different prioritized policies. Finally, the
integration with industrial networks focuses on security VINFs, control, and analyzing
the performance without virtualizing the communication technologies in the form of
isolated VMs. This thesis addresses these challenges.



EVN COMPOSITION AND EMBEDDING

This chapter is an extension of the author’s publication [3]".

The autonomic composition of VNs and SFCs based on application requirements
is significant for complex environments. In this chapter, we use graph transformation
in order to compose an environment-aware EVN based on comprehensive objectives
and constraints. The EVIN can represent physical devices and virtual application and
network functions. We build a generic VNE framework for transforming an AR into an
EVN. Subsequently, we define a set of transformations that reflect primary topological,
performance, reliability, and security policies. The resource usage objective is considered
by the EVN embedding stage and is directly related to energy consumption. Furthermore,
we further discuss privacy-aware cloud security policies in Chapter 6. The transformations
update the entities and demands of the VN and add SFCs that include the required
VNFs.

Additionally, we propose a greedy heuristic for path-aware embedding of the composed
SFCs. This heuristic is appropriate for real complex environments, such as industrial
networks. Furthermore, we present an IIoT use case inspired by Industry 4.0 concepts.
In this use case, EVNs for remote asset management are deployed over three levels;
manufacturing halls and edge and cloud computing. We also implement the developed
methods in ALEVIN and show exemplary mapping results from our use case. Finally, we
evaluate the chain embedding heuristic using a random topology that is typical for such
a use case, and show that it can improve the admission ratio and resource utilization
with minimal overhead.

3.1 INTRODUCTION

The SFC composition problem has already been discussed by researchers without ad-
dressing different application- and service provider-driven policies. Such policies might
be required, for example, to place certain VINFs in certain locations or to add certain
security functions according to the traffic path and application security requirements.
From another perspective, solving the SFC composition problem without considering the
application functions imposes inconsistency between the composed SFCs and the appli-
cation requirements. For example, when the application functions are also virtualized,
some functions might need to be instantiated over multiple servers for fault tolerance,
load balancing, or server capacity constraints. Such a case requires modifications to the
composed SFC, for example, by adding a load balancing VNF between the SFC and
instances of the application function.

The problem of embedding an SFC is similar to traditional VNE problems. In VNE,
the physical network (SN) and the VN to be embedded (overlay with VNos and VLis)
are represented as graphs. VINE algorithms apply optimization and heuristic methods to
find the optimal mapping of the VN on the SN with different objective functions, such
as admission ratio, embedding costs, path length, or delay. VNE algorithms are needed
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in NFV to perform the autonomic composition and embedding of SFCs based on the
application requirements and service provider policies.

In this chapter, we present a model that combines NFV with the node and link
mapping approaches from VINE. This model transforms an abstract AR that defines
certain properties of end-nodes, such as type and location/domain, and it might define
primary security, low latency, and redundancy requirements. The AR is converted using
the graph transformation method to an EVN that combines the application end-nodes
(physical or virtual) with the composed SFCs based on the rules defined by the service
provider. The graph transformation sequentially builds the EVN from the AR based on
policies related to devices’/functions’ types and locations/domains, redundancy, low
latency, security-related network functions, and load balancing. The communication
services among VNos are realized via VNF requests where needed.

Several FGs are possible based on the created VINF request and dependencies among
VNFs. We present an approach for creating all possible FGs using topological sorting,
and location/domain-based verification of the candidate FGs. The EVIN embedding
algorithm first embeds the application VNos and VLis that do not include VNF requests.
Subsequently, the SECs (FGs) are embedded using a greedy heuristic that depends on the
chain and path lengths. The model is supported by a use case, remote asset management,
inspired by the smart factory concepts in Industry 4.0 and based on IloT concepts.

The motivation behind these methods is to enable autonomic virtual networking
in complex environments with minimal user intervention and complexity in defining
the application requirements. Furthermore, such a set of polices enables the service
provider to satisfy several objectives with feasible priorities. A complete combined VNE-
NFV framework that considers the topology and properties of the physical network
and application requirements is needed for service provides to be able to flexibly and
seamlessly deploy applications in a complex environment.

The rest of this chapter is organized, as follows; Section 3.2 describes our problem,
use case, and system model. Section 3.3 details our VNE methodologies related to AR
transformation and EVN and chain embedding, and discusses the algorithmic complexity
of these methodologies. Section 3.5 presents our implementation in ALEVIN, the compo-
sition and mapping results for a representative AR from the use case, and the evaluation
of the chain embedding algorithm with a random topology. Section 3.6 concludes this
chapter.

3.2 PROBLEM DESCRIPTION

The addressed problem is an autonomic conversion of user-driven application require-
ments to provider-driven network requirements. This conversion is done by first defining
a simple graph that represents the application end-points and abstract topological, per-
formance, security, and reliability demands. The graph is then stepwise converted to a
VN that represents the physical devices and application virtual nodes with their con-
nectivity, types, locations, and security domains. The connectivity might be simple links
or composite links realized by adding chains of network functions that satisfy both
application requirements and provider policies, and according to the topologies of the
application and physical network. This virtual network is then mapped onto the physical
network by first mapping its nodes according to their properties and resource require-
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ments. Subsequently, the simple and composite links are mapped using the branching
algorithms.

The composite links with SFCs are mapped using a greedy method that checks the
remaining length and next available resources of the target path to make placement
decisions in advance. This adaptive method spreads or consolidates the VINFs over
the path according to its length. Consolidating VINFs on servers saves network band-
width and reduces the delay, even if the traffic will traverse a long remaining network
path after traversing the chain. However, functions that should be placed in different
locations/domains cannot be consolidated in one location/domain.

The target use case is remote asset management in industrial environments with three
ICT levels: IIoT/factory hall level, edge computing level, and cloud computing level.
The used chain mapping method considers the limited resources and dense traffic at the
edge computing level. The random topology used for evaluating the chain embedding
heuristic reflects such a topology.

3.2.1  Use Case

Asset management is the process of tracking the physical assets and making smart deci-
sions based on the gathered data from the assets and environment. Asset management
has been listed as one of the five top industrial IloT use cases by IBM [143]. In asset
management, information about assets is actively tracked without any human involve-
ment. Several types of sensors, such as temperature, humidity, pressure, and proximity
sensors, are used to gather data that is transferred to edge/cloud computing for making
smart decisions.

Three levels of data processing are represented in this use case: factory hall, edge
computing, and cloud computing. Furthermore, the factory hall includes an IloT gateway
and several types of devices (such as sensors and cameras) that produce or consume
certain rates of data. The use case also represents multiple locations, and each location
might include either multiple factory halls and one edge computing center, or a cloud
computing center. The edge and cloud computing levels are assumed to host data
analysis and decision making functions. Our use case includes three locations with
multiple domains that belong to the three mentioned levels, as depicted in Figure 3.1.

The cloud computing level located in a separate location (location 1 here) performs
detailed analysis on the gathered data from the manufacturing locations (2 and 3 here).
The analysis results are used for making strategical enterprise decisions, for example,
related to customized production.

The edge computing level located in each manufacturing location (2 and 3) performs
analysis on the gathered data from the factory halls of this location. The analysis results
are used to track the locations of assets and employees and environmental data to
predict/detect anomalies in real-time, which are mainly related to safety and security.
Edge computing can provide local data analysis with accepted latency in order to
activate certain actions in real-time using the actuators in the factory hall. These actions
are required for cases that cannot be detected by the devices in the factory hall and
require data gathering and analysis. For example, detecting physical security breaches
by tracking the placement of certain assets. Additionally, because industrial big data
are often unstructured, they can be compressed and filtered by edge computing before
sending it to the cloud [144].
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In the factory hall level, the IloT platform allows for easy control and management.
The factory halls in locations 2 and 3 might include IIoT hubs, sensors, actuators, cameras,
assets with beacons, and employees with Bluetooth low energy bracelets, as shown
in Figure 3.1. The environmental information, such as temperature and pressure, are
captured by sensors. There might also be cameras in the factory halls to capture images to
make decisions through image processing in the edge. For example, facial recognition of
employees as an additional security measure and detecting manufacturing problems that
cannot be directly detected by the factory sensors or devices. The locations of assets and
employees are assumed to be broadcasted by beacons and bracelets. IloT hubs receive
this information and send it to the edge computing in the same location to be analyzed.
The actuators might activate/deactivate certain devices (such as fans) either based on
local decisions or edge or cloud decisions.

3.2.2  System Model

Our main system model (Figure 3.2) includes a system user who provides the AR and SN
definition, the transformation patterns and rules, and VNFs” dependencies. The AR is an
abstraction level that only defines the application entities and its high-level requirements.
It is used to avoid involving the application user in the definition of all required details
to realize the application from the networking perspective. The AR can be defined as
a directed acyclic graph with VNos and VLis AR(Nag, Ear), where Nag is the set of
nodes and E g is the set of edges. The demands are represented as 1}, p.demand Name and

eZR.demandName, where nqu € Nygr and ei{m € E4r. The properties are also represented
as ny.propertyName and eZR.propertyName.

We use the same notation for the EVIN that results from extending the AR. The SN
can be defined as a directed acyclic graph with SNos and SLis SN(Ngy, Esy), where
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Ngy is the set of nodes and Egsy is the set of edges. The resources are represented as
i i i i
ngy-resourceName and egy.resourceName, where ngy; € Nsy and egy, € Esy. The proper-

ties are also represented as n,,.propertyName and ely,.propertyName.

The AR is transformed into an EVN that might include additional application VNos,
VLis, and a VNF request per VLi, where needed. The VNF request defines the required
VNFs and their dependencies that represent a mandatory order of VNFs, such as encryp-
tion before decryption. The dependencies are predefined in a general VNF graph that
defines all available VNFs and their dependencies.

The proposed approach is based on graph transformation [145] in the network virtual-
ization context. The transformation logic applies certain operations (rules) to generate
the EVN from a given AR. The transformation is a formalization of a certain policy
that is defined by the service provider. It is composed of a pattern and a set of rules.
The pattern is a set of conditions to be checked on the input networks, and the rules are
the operations to be applied to network entities that match the pattern. These operations
are adding, deleting, and updating specific VNos, VLis, VNFs, and demands in the
AR and intermediate EVNs. We apply one transformation function per pattern in a
predefined order of patterns. A transformation function can take the SN, a pattern P, AR,
and intermediate EVN as inputs and return the intermediate/final EVN as output.

After the transformation, we use topological sorting to create all possible FGs for each
VNF request based on the VNF dependencies. The FG is also modeled as an acyclic
directed graph FG = (Ngg, Erg) with VNFs n%G, and edges that represent data flow egc.
Usually, multiple FGs are possible, but one valid FG is selected for each VLi based on
location/domain constraints. The embedding logic first maps the application VNos on
selected SNos. Subsequently, it finds the mapping paths for each VLi using the branching
algorithms. Then it maps each VNF request holding VLi using the chain embedding
heuristic, and each simple VLi by verifying its demands.

The problem definition is summarized in the following list and Algorithm 1. The trans-
formations, EVN embedding, and FG embedding are detailed in Section 3.3:

* A physical topology SN(Nsy, Esy) is defined by the service provider.
 The application requirements AR(Nag, Ear) are defined by the user.

¢ A set of policies (defined by the service provider), where each policy is composed of:

— A pattern P: conditions on the SN and EVN for checking and comparison of
properties, demands, and resources.

- Transformation T: if P match is found, then perform T(EVN;_1,SN) = EVN;,
where EVNy = AR, and T is a set of rules.

— A rule R adds or copies VLis or VNos, adds or changes the properties or
demands, or adds VNFs to the VNF demand of a VLi.

¢ The policies are applied with a predefined order on the input AR and SN.

e EVN mapping:

— For each VLi in the final EVN, if the VLi has a VNF demand, perform topolog-
ical sorting on the VNF demand:

TS(vnfDemand, vnfDependencies) = List of FGs
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— For each VLi in the final EVN, if the VLi has a VNF demand, verify the created
FGs for location and domain constraints and select a valid FG.

— Map EVN nodes on the SN based on their properties and demands.
— Map EVN simple VLis based on their properties and demands.

— For each VLi with a VNF demand, map a selected FG using the chain embed-
ding greedy heuristic.

Algorithm 1: Main EVN algorithm

1+ Input: SN(Nsn, Esn), AR(NaR, Ear)
EVN = AR

2
3
4
5
6
7
8

9
10
11

12
13
14
15
16
17
18
19
20
21

22

for

policy™ & policies do
if policy™.pattern = True then
for R € policy™ .trans formation.rules do
| R(EVN,SN) = EVN
end
end

end

for

n’AR € EVN.nodes do
Map(n'yp) = n’éN

end

for

end

¢/l € EVN.links do
if eZR.vanamand = NULL then )
‘ Map(e'}) = Branching (e} p.source, '} o .destination)
end
else

FG = AllTopologicalSort(eZR.vnfDamand) [0]
paths = Branching(e') p source, €'} . destination)
ChainEmbedding(paths, FG)

end

Figure 3.3 shows an exemplary scenario of the main EVIN algorithm. The SN includes

two locations with compute instances (servers), where location 1 includes sensors with
specific types and data loads. The AR requests connecting all sensors from location 1 to a
compute instance from location 2. The node type transformer adds VNos and VLis that
represent all matching sensors and adds an application gateway that connects them to
the compute instance in location 2. The application gateway is allowed to be mapped
on an IoT Hub. The security transformer adds the required security VINFs to the VLi
between the locations. Then, the bandwidth and CPU transformers adapt the demands
of all VLis and VNos (including those inside the security SFC here) accordingly. Finally,
the EVN embedding algorithm maps the VNos and VNFs according to locations and
maps the VLis accordingly.
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Figure 3.3: An exemplary scenario of the main EVN algorithm
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3.2.3 General Dependency Graph

The generic dependency graph includes all possible VINFs, as depicted in Figure 3.4,
where NM = network monitoring, ENC = encryption, DEC = decryption, FW = firewall,
and DPI = deep packet inspection. The similar VINFs distinguished by “source” and
”destination” represent the placement of the same functions in different domains/loca-
tions according to the traffic direction. The transformations add these security functions
only for cross-domain SFCs [5]%. The arrows show the dependencies between VNFs,
which is a transitive relation. For instance, the arrow from the source firewall to the
encryption function means that the firewall VNF depends on the encryption VNF and
must, therefore, be executed after it. Note here that the dependencies are in the reversed
direction from the assumed traffic direction.

B EEB <

TAS NM ENC FW FW
Source Source Destination Destination Destination

Figure 3.4: General dependency graph [3]°

Furthermore, the network monitoring VNF is assumed to have no dependencies to
create a scenario in which several FGs are possible. The TAS VNF is a latency reduction
function (see Section 3.3.1.4) without dependency and it shall be allocated on each server
hosting the FG. Therefore, the FG composition method only adds it to the beginning of
the FG. We assume that deploying a virtual TAS on a host means adding its functionality
to all other VINFs that should be customizable to perform multiple tasks. The multi-
objective goal here means that we can perform security and scheduling functions by one
VNF. We note here that using virtual TAS in real environments requires either using
only standard servers as network hardware or TAS-capable network hardware with the
deployment of a schedule synchronized with the TAS SEC schedule. Figure 3.5 presents
the FGs that are possible from the general dependency graph.

3.3 METHODOLOGY

In this section, we detail the graph transformation methods used to compose the EVN,
the FG composition, EVN embedding, and FG embedding algorithms. Furthermore, we
present a detailed calculation of the complexity of the whole approach in addition to the
branching algorithms from Chapter 5.

3.3.1 Transformations

The following transformations are applied with the same order on the AR and SN. This
order reflects a service provider general policy. First, the redundancy policy is only
applied to the main VLis in the AR. Second, the target devices are added based on
type, location, and domain. Third, the security VNFs are added to cross-location and
cross-domain VLis. Fourth, a low latency specific VNF is added to the chain if needed.
Fifth, the bandwidth is updated for all VLis based on data sources and bandwidth
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Figure 3.5: Possible FGs for the general dependency graph [3]°

multipliers, then the CPU demands based on bandwidth demands. Finally, the required
load balancing at a destination application VNo is added. For each transformation,
the whole SN is checked for the pattern match, and a new EVN is created and given to
the next transformation.

3.3.1.1  Redundancy

This transformation copies the VLi with redundancy demand. Original and new VLis are
both provided with a property “redundant link” that holds an identifier of the backup
link. This is used, for example, by the mapping algorithm to find the most disjoint path
(maximal branching) for the second link from the k shortest paths between the source and
destination, found by Dijkstra algorithm. The chain embedding forces the most disjoint
paths, even if the VLi holds a VNF demand. However, the details of the reliability-aware
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minimal and maximal branching including the reliability values are left to Chapter 5 to
reduce the complexity in this chapter.

pP: {egR\eZR.redundancyDemand = True}

T(SN, AR) : {ARU copy(e'l 1)}

3.3.1.2 Nodes Types

A single VNo in the AR might represent multiple required devices in the SN. For example,
the administrator might need to include all of the sensors from a certain type in a factory
hall in an AR, but this is very complex. This transformation adds to the EVN the VNos
that represent certain physical devices using the ID demand. The ID demand in VNE and
ALEVIN forces a certain VNo to be mapped on a certain SNo. This mapping is required
to create the respective VLi and map it. This transformation is applied on each VNo
and the pattern match is checked for each SNo. A new VNo is added to the AR with an
ID demand that matches the ID of the compared SNo if the types of both are "device”,
and the subtypes, locations, and domains are equal. Subsequently, a VLi between the
new VINo and the original VINo is added.

The new VNo and VLi are copies of the original to hold the same requirements.
However, in our SN definition format, we attach a data resource to all devices with the
parameters of cycle time and frame size. These parameters are copied to the matching
new VNo to calculate its bandwidth demand by the bandwidth transformation. Here, we
assume that each VINo defined in the original AR to represent a physical device has one
outgoing edge. When the pattern is checked for all SNos, the original VNo is converted to
type “application” and subtype "gateway”. This method will force mapping the original
VNo that represents a set of devices to a gateway.

P : {ny.type = "device” N nQR.type = "device” A\ nfy.subtype = nQR.subtype

Anky location = niqR.location A nf . .domain = n{qR.domain}
T(SN,AR) : {ARUn)g|n'sg = copy(n{qR),nqu.ID_Demand = nf\.ID,
n'y.dateDamand = n¥y.dateResource} { AR U é'l|e'l = copy(e')}

After T is applied to all SNos:
{n{m.type = "application”, n{qR.subtype = "qateway” }

3.3.1.3 Security VNFs

In this transformation, we assume that the service provider defines certain security
policies. For example, for a cross-location or cross-domain VLi, an SFC with certain
security VNFs must be attached to this VLi. Our transformation policies presented here
consider both cases. For cross-location VLis, encryption, firewall, deep packet inspection,
and monitoring VINFs are added to the VNF demand of the VLi. We assume that
encryption is not needed for cross-domain VLis in the same location. Except for the
network monitoring function, each type of VNF is attached to the source or destination
location/domain. Specific location/domain demands are attached to the added VNFs
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based on the location/domain demands of the AR. However, the general dependency
graph forces the order of these VNFs in the FG. The VNFs in the link FG are assigned
the node type "VNEF”.

P {egR|ni4R.location # nqu.location}

T(SN, AR) : {¢] ,.vfnDemand.add(ENC, FWS, FND,NM, DEC, DPI)}

PR S | : i : j ;
P : {e,g|n'ar-location = . location N\ n'yg.domain # n ,.domain}

T(SN, AR) : {¢| .onfDemand.add(FWS, FWD, NM, DPI)}

3.3.1.4 Low Latency VNF

When a VLi in the AR has a low latency demand, a specific type of VNF is added to
its VNF demand, virtual TAS [2]%, which can reduce the latency of traffic processed by
servers by scheduling it based on its cycle and load. However, the order of this VNF
in the chain is based on the mapping results. This means that it shall be instantiated
at each server that hosts the VNF demand. For this reason, the chain composition
algorithm executed after the transformations adds this VINF to the beginning of the FG.
Subsequently, the EVN embedding algorithm maps this VINF on each server as the last
VNF from the FG.

P: {ezR|eZR.latencyDemand = True}

T(SN, AR) : {ezR.vnfDemand.add(TAS)}

3.3.1.5 Bandwidth

Adding VNos, VLis, and VNFs to the EVN requires the adaptation of the resource
requirements. For example, adding a VNo that represents a certain device requires
adapting the bandwidth demand of the new and original VLis based on the parameters
of the data resource of the device. Subsequently, all of the next VLis shall be updated,
including these inside the FG. This approach can be applied to feed-forward VNs, which
we assume in our use case and use in defining our exemplary ARs.

We consider two types of VNos, VNos that have no incoming edges and intermediate
VNos that have incoming edges. For each VNo that has no incoming edges, its produced
load per interval, if exists, is used to calculate the required bandwidth that is assigned to
all of its outgoing edges.

P {ezR|ezR.bandwidthDemand = 0 An'yp.inEdges = 0}
T(SN, AR) : {eZR.bandwidthDemand =

nlyr.dataDemand.size /n'yg.dataDemand.cycle}

For intermediate VNos that have incoming edges, we sum the required bandwidth
of all incoming edges and set it as demanded bandwidth for all outgoing edges. If the
VNo has the property of multiplier, then it is considered during the calculation for the
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outgoing bandwidth demand. In our work, we define a specific bandwidth multiplier for
each specific VNF type as a property. The default value is 1.

p: {eZR|eZR.bandwidthDemand = 0 A Je € n'yg.inEdges : e.bandwidthDemand # 0}

T(SN,AR) : {eZR.bandwidthDemand =

nyg-inEdges '
Y (efig.bandwidthDemand x n'yg bandwidthMultiplier)}
k=0

3.3.1.6 CPU and Load Balancing

After adapting the bandwidth demands, we adapt the CPU demands of the VNos and
VNFs using the CPU factor property, which is used to determine the CPU demand from
the incoming bandwidth.

{T(SN, AR) : n'yr.CPUDemand = n'yp.incomingBandwidth x n'yz.CPUFactor}

When the resulting CPU demand of a VNo is larger than the minimum CPU capacity of
all application SNos (servers) in the same domain, this VNo is copied k times, where k is
the ratio of the CPU demand and minimum CPU capacity. The original VINo is converted
to type “loadBalancer” and a link between it and each new VNo is created. This is a
form of coordination between the EVIN composition and embedding stages to avoid the
re-transformation of the AR to an EVN as a result of a failed mapping in the embedding
stage due to a lack of resources. However, and for simplicity, we currently only apply
this to application VNos with incoming edges and no outgoing edges. This exemplary
scenario represents a data analyzer that is an application end-node in the AR.

P : {n'yg.type = "application” A n'yp.inEdges > 0 A n'yp.outEdges = 0

Anly o .CPUDemand > (C = min(anN.CPUResouce|néN.domain = n'yp.domain))}
T(SN,AR) : {ARU {nz, ..n4g, .8 |nhr = copy(nisz),
n;‘R.CPUDemand’ r— n'yg-CPUDemand 1
k C
n'yg-incomingBandwidth
k

1k r.CPUDemand =

{ARU {ellg, ....e’z, ..., €% | g bandwidthDemand =

nlyr.subtype = loadBalancer}}

3.3.2 Creating FGs Using Topological Sorting

In the chain composition stage, the possible FGs are calculated. The authors in [41]
introduce a context-free grammar to formalize the request. Topological sorting is a
known graph method to sort a directed acyclic graph. This method is used in several
works on SFC composition, such as [47] and [146], in order to generate the FG. Our
proposed approach is also based on topological sorting, but we calculate all possible
FGs. Based on [147], the topological ordering of a graph G = (V,E): ord : V — 1..n
for n = |V| exists, if V(v, w) € E: ord(v) < ord(w). For each acyclic graph, a topological
ordering exists, and each graph that has a topological ordering is acyclic.
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Using topological sorting for the chain composition enables us to prove whether the
VNF request is cycle free and if a possible FG can be calculated. It might happen that the
dependencies among VINFs are not defined correctly by the service provider leading to
cyclic VNF requests. For example, for a VNF request including encryption and decryption,
where both functions depend on each other, no valid chaining is applicable due to the
dependency loop. A simplified approach for calculating the topological ordering is to
iterate over all VNos and taking a VNo v in each iteration, where inDegree(v) = 0, and
adding it to an array. Afterward, v and its outgoing edges are removed from the graph.
This operation is repeated until there is no VNo left with inDegree = 0. If the graph is
empty, then a topological ordering exists, otherwise it is not cycle free. The associated
pseudo-code, which is based on [147], is presented in Algorithm 2.

Algorithm 2: Topological sorting

1 TopologicalSort (G)

2 index =0

3 ordering]]

4 while G has at least one node n where inDegree(n) = o do

5 orderingindex] :=n

6 index 4+ +

7 G:=G—{n}; // Remove node and its outgoing edges from G
8 end

In the context of chain composition under the location and domain constraints, it is
essential to calculate all possible sortings for a given graph G. Then, the resulting FGs
are verified against the domain and location constraints. The verification checks the
consistent order of domains and locations in the FG. This means that the first continuous
part of the FG shall belong to the source domain/location, and a second continuous part
of the FG shall belong to the destination domain/location. Then, a valid FG is selected
for mapping the SFC. To the best of our knowledge, this method of finding all sortings
and verifying FGs based on location and domain constraints is not addressed by the NFV
community.

For this purpose, the above-mentioned pseudo-code has to be adapted to calculate
another ordering when the graph has multiple VNos where the inDegree = 0. Algorithm 3
represents a pseudo-code for calculating all of the possible sortings for a given graph. This
Algorithm recursively calculates all possible orderings for a given graph G. The algorithm
iterates over all VINos in the graph. For each VNo, if indegree = 0, it is added to the
tentative result and removed with all outgoing edges from the graph. If the graph is not
empty, the function is recursively called until all VNos are visited or the graph is empty,
then the tentative result is assumed to be a valid ordering and is added to the result.

3.3.3 EVN Embedding

EVN embedding is the combination of VNE and NFV resource allocation, and it can
be separated into two stages. The first stage is to embed all of the nodes and simple
VLis, and the second stage is to embed the VLis with a VNF request. The node map-
ping first considers the ID demand to map devices (specific VNo on a specific SNo).
Subsequently, the type, subtype, location, and domain are considered for mapping the
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Algorithm 3: Finding all topological sortings

1 ordering(]

2 AllTopologicalSort (G, tentativeResult)

3 | G =copy(G)

4 while G’ has at least one node n where inDegree(n) = o do
5 tentativeResult’ = tentativeResult

6 tentativeResult'.add(n)

7 Gl = Gl — {Vl}

8 if G’ = @ then

9 ‘ ordering U tentativeResult'

10 else

Ee! ‘ AllTopologicalSort (G’, tentativeResult)
12 end
13 end
14 end

other nodes. For the nodes of type “application” and subtype “computelnstance”, the CPU
demand/resource is considered.

The link mapping uses the branching algorithms that use Eppstein’s algorithm [148]
for finding k shortest paths between the source and destination VNos of the VLi. For the
simple link mapping (without VNF demand), the candidate paths are additionally
verified for the bandwidth demand. For mapping the VLis with VNF demand (VNF
request), the candidate paths are given to the chain embedding heuristic. In both cases,
the redundant VLi is mapped on another candidate path from the k shortest paths. This
path is chosen based on the branching policy used, for example, as the path with the
least number of common SNos with the path used for the original VLi.

3.3.4 Chain Embedding Heuristic

In [47], the authors assume that each SNo on the path can host one VINF. The algorithm
presented in [46] is based on backtracking and, in the case of rejection, tries a different
path starting from the last successfully embedded VINo. Finding a path where the number
of hops exactly matches or is greater than the number of VINFs might be impossible or
inefficient, in particular with our use case. Our proposed embedding algorithm tries
to find a solution based on the FG or path length. It is assumed that a SNo can host
multiple VNFs when the resource capacity allows. Based on this assumption, a path with
fewer hops than the FG can be utilized. On the other hand, for a path longer than the
FG, the algorithm tries the next hop on the path in case of lack of resources. Algorithm 4
represents the pseudo-code for our proposed algorithm.

As input, a path connecting two VNos embedded onto different SNos and the FG are
given. Initially, the algorithm takes the first nodes in the FG and the path. If the target VINF
can be allocated on the current SNo, then the algorithm verifies if the number of residual
VNFs is smaller or equal to the residual hops on the path. If possible, the algorithm tries
to embed multiple VNFs on a target SNo when the residual path length is less than the
residual FG length. This is intended to find a valid embedding to avoid backtracking.
If available, the next FG’s node and the next hop on the path are verified.
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Algorithm 4: Greedy chain embedding algorithm
1 ChainEmbedding (path, FG)

2 path; // Including all nodes (source, destination, and intermediate nodes)
and links on the path
3 Tsn = path.getFirst()
4 for n}G € FG do
5 if verify(ny-, Tsn) then
6 mapping(1gg, Tsn))
if residualChainLength <= residualPathLength AND verify( n?cl, path.next()) then
| Tsn = path.next()
9 end
10 else
11 while (fulfilled = false) OR (path.next() € SN) do
12 fulfilled = Verify(n%c, TsN)
13 if fulfilled then
14 mapping(nt, Tsn))
15 if residualChainLength <= residualPathLength AND verify( n?g,
path.next()) then
16 | Tsn = path.next()
17 end
18 break;
19 end
20 Tsn = path.next()
21 end
22 if fulfilled = false then
23 ‘ Reject request;
24 end
25 end
26 verifyResidual Path(dr oy, residual Path) ; // If available, verify residual
links on the path with respect to the bandwidth output of the last
node in the FG
27 end
28 end

If the verification is successful, then the target SNo is set to the successor of the current
one. This verification is intended in this context to prevent setting the target SNo to the
next SNo if it might not be able to fulfill the requirements. If the residual FG is shorter
than the residual target substrate path, we try a balanced embedding over all SNos on the
path to avoid consolidation. However, because the path might include SNos from different
domains/locations or can not host the next VNF, it is necessary to verify whether the
next SNo is able to provide enough resources and fulfills the special requirements of the
next FG element.

In the next step, the algorithm takes the next VNo in the FG and verifies whether a
successful allocation is possible. In case of no possible allocation, it tries to verify whether
the next SNo on the path can fulfill the requirements and, otherwise, it tries the next
SNo until the last SNo is reached. In addition to VNo verification, the links inside FGs
are verified against the SLis. When the last VNF is not mapped to the destination SNo
on the path, then the outgoing data rate dr,,; of the last VNF has to be verified over the
residual path.
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Figure 3.6: FG embedding example [3]°

Figure 3.6 presents an example of the FG embedding. The initial FG contains four VNos
(V1, V2, V3, V4) and the target substrate path has four SNos (S1, S2, 53, S4). Resources
and demands are assigned to nodes and links in both the FG and substrate path. Nodes
and links currently under investigation are dotted. The embedding starts by checking
whether V1 can be hosted on S1. Because enough resources are available, the assignment
is made here and the new target SNo is set to S2. Again, the algorithm verifies whether
V2 can be embedded on 52 and performs the assignment. The target SNo remains Sz
since the link bandwidth demand between V2 and V3 cannot be fulfilled on the link
between S2 and 53.

In the next step, VINo V3 is assigned to Sz and the target SNo is set to S3. Next, the al-
gorithm verifies whether V4 can be hosted on the target SNo S3. In this case, it is not
possible since S3 has no enough CPU resources. Therefore, the algorithm keeps V4 as
the target FG VINo and verifies whether the next SNo on the path S provides sufficient
resources. S4 provides enough resources and the assignment is performed. Because all
FG VNos are embedded, the algorithm returns true and terminates. For simplicity, this
example considers resource capacities and not domains and locations.

The presented example shows that assuming the same length of the FG and substrate
path is not reasonable. It might be required in certain scenarios to embed multiple VINFs
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on a single SNo in order to find a valid solution. The proposed algorithm performs an
embedding while taking link and node constraints into account through forward verifica-

tion.

3.3.5 Complexity of the Proposed Methods

We first make the following assumptions to estimate the complexity of the proposed
algorithms:

Neglecting the operations applied by the rule on only a small subset of the EVIN
entities.

Considering that the maximum size of the final EVN (nodes M, links L) is known
and used to estimate the complexity even for intermediate EVNSs.

(D, D) is the size of the dependency graph. We consider that, in NFV, a function
typically has one dependency, so the number of edges in the dependency graph
can be approximated to the number of VNFs. The size of the dependency graph is
considered as the size of each VNF demand.

P is the diameter of the SN graph (N,E), which is the number of edges in the
shortest path between the most distant vertices. We use this worst-case value as the
length of the shortest path on which the chain will be embedded.

We are calculating the complexities in the worst cases without considering locations
and domains that might reduce the search space for node and link mapping,
in particular, in specific topologies, like in our use case.

We estimate first the complexity of each step in our system model:

Transformations:

- Redundancy — O(L): checking the redundancy demand of all EVN links and
copying them when needed.

— Node types - O(N.M): comparing certain properties of SNos and VNos and
adding the required entities to the EVN with their demands.

— Security — O(L): comparing the source and destination locations/domains of
the EVN links and adding the required VNFs.

— Low latency — O(L): checking the latency demand of the EVN links and adding
the TAS VNF where needed.

- Bandwidth — O(L): checking the bandwidth demand of each VLi and adjusting
it based on the bandwidth demands of the incoming edges to its source VNo.

- CPU - O(M): adjusting the CPU demand of all EVN nodes based on the
incoming bandwidth, cloning certain nodes, and then adding a load balancing
function.

— Total complexity of the transformations: O(4L+M (1+N)) = O(L + M.N), when
considering that N > 1.
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¢ Topological sorting and FG verification: the complexity of finding all topological
sortings depends in the worst case on the number of permutations in the group
of VNF types D (D!). In our work, we define 7 VNF types and this value is 5040.
The verification of each FG takes D steps. In the worst case, these operations shall
be performed for each VLi. The worst-case complexity is O(L.D.D!). However, we
simplified this method and reduced the effect of D by integrating the FG verification
with finding the topological sortings. In our scenario, we can find a valid FG after
few sortings, and we can neglect the effect of D to reduce the real complexity to
O(L).

* Node mapping — O (N.M): finding the SNo with the matching ID, properties,
or resources of each VNo.

¢ Chain embedding - O (2P)=0O(P): when mapping a VNF is tried on a SNo, the de-
mands are compared to the resources. A VINF can be mapped on the latest SNo
used from the path or any other previous node. In the worst case, all path SNos
are checked twice for each placed VNF and next VNF that cannot be placed on the
same SNo, so a following one is checked. The P value varies with the SN size.

¢ Link mapping: the complexity of the k-shortest path algorithm is O(E+N.log N))
[148]. This algorithm is used for mapping all VLis. The branching methods in
Chapter 5 process each pair from the k-shortest paths and check the number of
common nodes, and check the reliability of the path pair. Finding the pairs is equal
to finding combinations (k,2), which has the complexity of k!/2(k —2)! = k.k—1/2.
Since k is small, this value is small and has no effect on the O notation. For
example, if we are selecting 5 paths, this value is 10. For each pair, the nodes
of the paths are compared, with the complexity of P!/2(P —2)! = P.P —1/2 =
O(P?). We assume for the worst case that all VLis have VNF demands for which
chain embedding will be performed. The total complexity of link mapping is:
O(L.(E + N.logN + P + P?)) = O(L.(E + N.logN + P?)). In tree-like topologies
like in our use case, P < E, and the complexity of the link mapping is O(L.(E+N.log
N)).

The total complexity of the solution is:

O(L+ N.M+ L+ N.M+ L.(E+ N.ogN)) = O(N.M + L.(E + N.logN))
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3.4 IMPLEMENTATION

ALEVIN [11] is an open-source framework written in JAVA and used to develop, compare,
and analyze VINE algorithms. The SN and VN are represented as directed or undirected
graphs in which the network entities hold demands and resources that represent either
consumable resources or properties, such as ID. In this work, we add type, location,
domain, redundancy, latency, and VNF demands and resources. The embedding of each
node/link in the VN only succeeds when there are enough resources and matching
properties in SN nodes/paths. The Visitor Pattern method is used in ALEVIN to map
demands on the respective resources and to occupy (reserve) consumable resources.

An extension with NFV support is available for ALEVIN and developed in [46]. How-
ever, we developed our own NFV extension that fits our system model and transformation
methods. We added a generic structure to ALEVIN to define transformations that are
based on an abstract transformation class and method that takes the VN and SN as input.

ALEVIN implements several node and link mapping algorithms, including coordinated
node and link mapping. It also implements several evaluation metrics, such as runtime,
admission ratio, and cost. However, ALEVIN is highly flexible for adding new algorithms
and metrics. It also provides an evaluation framework, in which different forms of
random topologies can be defined with specific parameters. This framework also enables
the definition of used mapping algorithms, metrics, and ranges of values for consumable
resources and demands. ALEVIN supports multiple data formats, mainly Extensible
Markup Language (XML), for representing the SN and VN and mapping the results.

For fixed topologies that represent our use case, we use the easier JavaScript Object
Notation (JSON) format to represent the AR, SN, and mapping results. For this purpose,
we developed the required parsers that convert the JSON structures to the respective
networks, entities, and resources and demands. The AR JSON definition format defines
the application end-points and connectors. For each node, an ID, name, type, subtype, lo-
cation, domain, and, if applicable, CPU demand are defined. For the connector, the source
and destination nodes are defined, and whether redundancy and low latency are required.
The SN JSON definition format is similar but includes resources instead of demands,
data resources with cycle and size, and bandwidth resources for SLis. Listings 3.1 depicts
an exemplary definition of an AR from the use case in Figure 3.1. This AR connects the
temperature sensors from a factory hall to a compute instance in the edge computing
level.

Listing 3.1: JSON format for AR definition

"applicationRequest": {
"applicationEndPoints": [
{
"id": "1",
"name": "src",
"demands": [{
"name": "typeDemand",
"demandedNodeType": "device",
"demandedNodeSubType": "temperatureSensor",
"function": "temperatureSensor",
"location": "Location3",
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"domain": "Domain3"
iyl
1
{
"id": "2",
"name": "dst",
"demands": [{
"name": "typeDemand",
"demandedNodeType": "application",
"demandedNodeSubType": "computeInstance",
"function": "dataAnalyzer",
"location": "Location3",
"domain": "Domain2"
I
{
"name": "cpuDemand",
"demandedCPU": "20"
iyl
H,
"applicationConnectors": [{
"id": "1",
"name": "link1",
"srcNode": "1",
"dstNode": "2",
"demands": [
{
"name": "redundancyDemand",
"parameters": []
}
{
"name": "lowLatencyDemand",
"parameters": []
}
]
]
}
}

3.4 IMPLEMENTATION

43

Our SN topology that represents the use case is depicted in Figure 3.7. Listing 3.2 depicts
the map of the SN represented by our JSON structure, which is only partially showed
for simplicity. The JSON definition format of the mapping results is further detailed in
Section 3.5.1.
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Figure 3.7: Substrate network topology
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Listing 3.2: JSON format for SN definition

3.4 IMPLEMENTATION

"substrateNetwork": {
"substrateNodes": [
{
"id": "2",
"name": "SNo 2",
"resources": [{
"name": "typeResource",
"nodeType": "device",
"nodeSubType": "temperatureSensor",
"function": "temperatureSensor",
"location": "Location2",
"domain": "Domain3"
+
{
"name": "dataResource",
"cycle": "1",
"size": "20"
11
+
{
"id": 4",
“name": "SNo 4",
"resources": [{
"name": "typeResource",
"nodeType": "application",
"nodeSubType": "gateway",
"function": "gateway",
"location": "Location2",
"domain": "Domain3"
+
{
“name": "cpuResource",
"cycles": "1000"
iy
+
{
"id": "e",
"name": "SNo 6",
"resources": [{
"name": "typeResource",
"nodeType": "network",
"nodeSubType": "switch",
"function": "switch",
"location": "Location2",
"domain": "Domain3"
iyl
T
{
"id": "8",
"name": "SNo 9",
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"resources": [{

"name": "typeResource",
"nodeType": "application",
"nodeSubType": "computeInstance",
"function": "computeInstance",
"location": "Location2",
"domain": "Domain2"
+
{
"name": "cpuResource",
"cycles": "3000"
]
}
1,
"substrateLinks": [{
"id": "2",
"name": "SLi 2",
"srcNode": "2",
"dstNode": "4",
"resources": [{
"name": "bandwidthResource",
"bandwidth": "100000000"
iyl
+
{
"id": "4",
"name": "SLi 4",
"srcNode": "4",
"dstNode": "6",
"resources": [{
"name": "bandwidthResource",
"bandwidth": "1000000000"
11
+
{
"id": "8",
"name": "SLi 8",
"srcNode": "6",
"dstNode": "9",
"resources": [{
"name": "bandwidthResource",
"bandwidth": "1000000000"
11
+
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3.5 EVALUATION

The evaluation considers the validation of the approaches using the fixed topology of the
use case, and the runtime, acceptance ratio, and path utilization metrics for the chain
embedding heuristic.

3.5.1 Applying the Methods to the Use Case

Our fixed topology that represents the use case includes 12 ARs, as shown in Figure 3.1.
These ARs represent the communication between the factory hall level and edge comput-
ing level, and communication between the edge computing level and cloud computing
level. The ARs in Figure 3.1 represent AR categories, but the real ARs in the definition
tiles include specific end-points, for example, a certain type of sensors. We show in this
section the generated EVN for a specific AR (AR11) in Figure 3.8. We also show the
relevant part of our substrate topology defined in ALEVIN with the mapping results for
ARz11 in Figure 3.9.

VNF Request <
NM TAS
Ty == = P
% i REaE '
Z° B 2 o]
C T B : ;
ENC FW_Source FW_Destination DEC DPI Ceeeee
Location 2 Location 2 Location 1 Location 1 Location 1 Location 1
D in2 D in 2 D in1 D in 1 D inl Domainl
Application
(ﬁ Compute instance

: : NN [ ] (Data analysis)
Location 2 .' -1 [ [ | .. Location 1 .
Domain 2 o T T P Domain1 "\ : ;
Application C T B Application ]
Compute instance ENC FW_Source  FW_Destination DEC DPI Load bal : :
(Data gathering) Location 2 Location 2 Location 1 Location 1 Location1 {  o=eeeee
D in2 D in2 D inl D inl D in1 Location 1

Domainl
Application
Compute instance
N (Data analysis)
VNF Request NM TAS

Figure 3.8: Generated EVN for AR11 [3]°

AR11 connects an application VNo (data gathering) from the edge computing level
(location 2, domain 2) to an application VNo (data analysis) from the cloud computing
level (location 1, domain 1). AR11 defines redundancy and low latency requirements and
connects different locations and domains. For these requirements, two redundant VNF
requests are created with encryption, firewall, DPI, and monitoring VINFs. Furthermore,
TAS VNF is added.

The resulting FGs from the chain composition stage are similar to Figure 3.5. As men-
tioned before, TAS VINF is only added to the beginning of the FG and the chain embedding
algorithm adds it to each server that hosts the FG. A load balancer is added and the
target data analysis VNo is cloned, according to the calculated CPU demand and server
capacity. The mapping results in Figure 3.9 show the mapping of the two redundant FGs
over two completely disjoint paths (dotted line for FG1 and dashed line for FG2).
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Figure 3.9: Embedding AR11 in the SN [3]°

The mapping results are represented using a JSON format that shows for each VNo
the mapping SNo and for each simple VLi the mapping path. However, for VLis with
VNF demand, the node and link mappings of the FG are combined. For the FG internal
VLis, the types of the source and destination VNFs are shown. The SNo that hosts a set
of VNFs and relevant FG VLis are shown by SLis for which the source and destination
are that SNo. Listing 3.3 depicts a partial embedding result for one SFC from AR11 that

O 0Ny ol A~ WON R
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belongs to one of the VLis between the DG and LB applications functions.

Listing 3.3: Mapping result

{
"nodeMapping": [
{
"ip": "1",
"name": "DG",
"MappingSNo": "1"
+
{
"Ip": "2",
"name": "LB",
"MappingSNo": "10"
}
]
"linkMapping": [
{
"ip": "1",
"VNFDemand": "yes",
"SrcSNo": "1",
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"DstSNo": "10"
"mapping": [
{

"linkType": "SLi"
"SrcNode": "1",
"DstNode": "2"

"linkType": "SLi"
"SrcNode": "2",
"DstNode": "2"

"linkType": "FG"

"srcNetworkFunction":
"dstNetworkFunction":

"linkType": "FG"

"srcNetworkFunction":
"dstNetworkFunction":

"linkType": "FG"

"srcNetworkFunction":
"dstNetworkFunction":

"linkType": "FG"

"srcNetworkFunction":
"dstNetworkFunction":

"linkType": "SLi"
"sSrcNode": "2",
"sDstNode": "5"

"linkType": "SLi"
"sSrcNode": "5",
"sDstNode": "7"

"linkType": "SLi"
"sSrcNode": "7",
"sDstNode": "7"

"linkType": "FG"

"srcNetworkFunction":
"dstNetworkFunction":

"NM“,
uENcu

"ENC",
"FWS"

"FWS",
uTAsu

“TAS",

HFWDH

3.5 EVALUATION

49



50

72
73
74
75
76
77
78
79
8o
81
82
83
84
85
86
87
88
89
90
91
92
93

EVN COMPOSITION AND EMBEDDING

"linkType": "FG"
"srcNetworkFunction": "FwWD",
"dstNetworkFunction": "DEC"

T

{
"linkType": "FG"
"srcNetworkFunction": "DEC",
"dstNetworkFunction": "DPI"

3

{
"linkType": "FG"
"srcNetworkFunction": "DPI",
"dstNetworkFunction": "TAS"

+

{
"linkType": "SLi"
"sSrcNode": "7",
"sDstNode": "10"

1

With such a complex environments and set of constraints, evaluating the algorithms
with random topologies and using traditional VINE metrics is challenging. The efficiency
of the approach can be judged through the theoretical complexity. What is significant
to both the provider and customer is the validation of the mapping results. In this
perspective, we suggest using validation policies mapped to the original policies. The
input of these policies shall be the SN topology, the initial AR, the final EVN, and the
mapping results. The patterns are validated without rules or transformations and without
considering intermediate EVNSs. These policies can be described using a mix between an
algorithmic language and our transformation patterns. Another main difference between
the transformation and validation patterns is that there is no need to follow a pre-defined
order when applying the validation patterns.

Algorithm 5 depicts an exemplary validation pattern to check if all and only all
devices required by a certain AR are included in the EVN and its mapping results. This
algorithm shall be called for each EVIN. However, the validation is more complex than the
transformations but less complex than chain composition and EVIN embedding algorithm.
Several similar validation policies/algorithms are required to check all policies.

3.5.2 Runtime with Fixed SN

In this evaluation scenario, we check the runtime of the whole approach with the previous
fixed SN topology and two different representative ARs. In each step, we add another
copy of this set of ARs. The runtime results are depicted in Figure 3.10, and show
linear and low runtime with this fixed topology. This is expected from the complexity
calculation’ that shows that the runtime is linear with the EVN size.
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Algorithm 5: Node type validation
1 ValidateNodeType ()

2 Input: SN(NSN, ESN)/ AR(NAR, EAR)/ EVN(NEVN, EEVN)/ EVN mappmg results
3 forn € Ny do
4 if n.type = "device” then
5 for m € Ngy do
6 if m.type = "device” then
7 if n.subtype = m.subtype AND n.domain = m.domain AND
n.location = m.location then
8 if m € Npyny OR m & nodeMapping(EVN) then
9 ‘ return False
10 end
11 end
12 end
13 end
14 end
15 end
16 for m € Ngy do
17 if m.type = "device” then
18 forn € N do
19 if n.type = "device” then
20 if n.subtype # m.subtype OR n.domain # m.domain OR
n.location # m.location then
21 if m € Npyn OR m € nodeMapping(EVN) then
22 ‘ return False
23 end
24 end
25 end
26 end
27 end
28 end
29 return True
30 end

3.5.3 Evaluation of the Chain Embedding Using a Random Topology

Our chain embedding algorithm is a form of greedy heuristics, since it adapts to the
remaining path length and next path resources when making the placement decision.
When the path is long, the algorithm tries to spread the VINFs over the path. When
the path is short, the algorithm tries to place the VINFs on the least possible number of
servers. We compare it to an existing similar solution to show its feasibility. Our VNF
consolidation method, the random topology, and the distribution of resources are chosen
to represent hierarchical edge computing where the resources might be limited and paths
are short. Comparison to the results of other works might be challenging, since there are
differences in the objectives and topologies.

The evaluation structure in ALEVIN enables the comparison of different algorithms
using random topologies and several metrics. This structure also enables the definition
of the number of runs and the assignment of random resource/demand values from
specified ranges. The created SN and VNS, their demands and resources, mapping results,

51



52

EVN COMPOSITION AND EMBEDDING

350

300

250

200

150

Runtime in milliseconds

100

50

1 2 3 4 5 6
Number of EVN pairs

Figure 3.10: Runtime with varying number of EVN (pairs)

and resulting metrics’ values are exported to an XML file that includes the results for all
runs.

In the SFC embedding domain, two graph models are used for generating random
networks. The Waxman model [149] used in [46], creates highly randomized networks by
placing in each step two nodes on a two-dimensional plane and connecting them with
a certain probability. This probability is calculated from their distance and two model
parameters « and B, where the large f increases the edge density and small « increases
the probability of shorter edges.

The Barabasi Albert model [150] used in [53] creates random scale-free networks by
taking preferential attachment into account. With preferential attachment, the degree
distribution follows a power law and the probability of connecting two nodes is based
on individual nodes’ degrees. Initially, a certain number of nodes (m), time steps, and
edges to be added per time step are defined. Based on the defined number of time steps,
a new node with m < mg edges is added to the network in each step. A new node is
connected to an already existing node i that has a degree k; with a probability:

_ ki
Lk,

Figure 3.11 is an exemplary generated topology with the parameters:

P(i)

¢ Initial number of nodes: my = 1
¢ Number of time steps: 20
* Number of new edges per time step: 1

ALEVIN uses directed graphs and the generator adds the reversed edge for each
created edge. The Barabasi Albert model is better for representing industrial network
levels (as in our use case). We use it for generating the SN for evaluating the chain



3.5 EVALUATION

Figure 3.11: A random topology generated by Barabasi-Albert generator [3]°

embedding algorithm. Each VN has two VNos and a VLi with a VNF demand, in which
we vary the chain length. We adapted our EVN embedding algorithm for this evaluation
by just performing node mapping for VNos based on ID demand and using the k-shortest
path algorithm to select the path. Subsequently, the chain embedding heuristic is used to
map the FG without the locations, domains, and types of nodes. Creating random SN
that includes such properties to evaluate the whole system and choosing algorithms to
compare with is a challenging future work.

Our system runs in an offline mode, where the SN and EVNs are defined in advance.
Each test run is repeated 30 times and the mean values with confidence intervals (0.95%)
are graphically depicted. We use two typical metrics from VINE; the runtime and accep-
tance ratio. The runtime is the time needed by the algorithm to embed a number of EVNs
on a SN. The acceptance ratio is the ratio of successfully embedded EVNs to the total
number of EVNs in the scenario. We define a new metric to represent the efficiency in
utilizing SN resources for chain embedding. Average path utilization is the ratio of SNos
that are utilized multiple times to embed the FGs. The metric value is o if each VNF from
a FG is mapped to a different substrate node:

Number of multi-utilized SNos
Number of VNFs in all FGs

Average Path Utilization =

3.5.3.1  Runtime

Runtime evaluation is performed for an increased SN size and increased number of
EVNs to be embedded. The resource/demand values for these scenarios are adjusted,
such that there is no rejection of EVINs. We compare the runtime of the chain embedding
to a scenario with the same parameters in which there is no VNF demand and only
bandwidth is verified over the path.

RUNTIME FOR INCREASING SN SIZE In this scenario, the number of EVNSs is fixed to
50, where each FG contains four to eight VINFs. The SN size is increased in each simulation
to judge how much time it takes to embed a fixed number of EVNs with increasing
SN size. The results are presented in Figure 3.12 and they show a small overhead of
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the chain embedding, on average 250 ms for medium-size SN of 300 SNos. However,
the runtime grows with a linearithmic trend. This matches the total complexity of the
solution O(N.M + L(E + N.logN)). linearithmic time complexity O(nlogn) is slightly
worse than a linear complexity O(n), but much better than a quadratic complexity O(n?).

Runtime in seconds
N
- (8] N (0] w (9]

50 100 150 200 250 300
Number of substrate nodes

—&—k-shortest paths —o—Greedy With VNFs

Figure 3.12: Runtime for increased SN size [3]h

RUNTIME FOR INCREASED NUMBER OF EVNS In this experiment, the SN size is fixed
to 200 SNos and the number of EVNs to be embedded is varied. The number of VNFs in
each FG is a random number between four and eight. Figure 3.13 depicts the results for
this evaluation. For fixed SN size, the runtime is linear and there is no overhead of chain
embedding for this size.

3.5.3.2 Comparison to LightChain

A simplified version of LightChain from [47] is implemented to compare our greedy
chain embedding algorithm to another algorithm. LightChain algorithm tries to allocate
the FG on the shortest path between two end-points. If the chosen shortest path is
consumed, then the algorithm calculates another shortest path and the remaining VNFs
are allocated. LightChain approach does not allow for placing multiple VNFs on a single
SNo. Our algorithm can place multiple VNFs that might belong to different SFCs on a
single substrate node as long as enough capacity is available. If the selected path cannot
be used, then another shortest path is tried. The behavior of the algorithm reduces the
probability of path rejection.

ACCEPTANCE RATIO WITH INCREASING FG LENGTH In this scenario, we evaluate
how the acceptance ratio changes when the number of nodes in the FG increases. The SN
size is fixed to 100 nodes and 100 EVNs are to be embedded. The FG length varies in



3.5 EVALUATION

Runtime in seconds
= N
(8, ] N (8, ]

=

o
]

o

20 40 60 80 100
Number of EVNs
—&—k-shortest paths —o—Greedy With VNFs

Figure 3.13: Runtime for increased number of EVNs [3]?

the range 1—12. The resources and demands are highly relaxed, such that rejection is not
because of resources, but due to the VINF mapping strategy. The results in Figure 3.14
show that the acceptance ratio of the LightChain solution highly decreases with increasing
FG length and fixed SN size. These rejections are met when the paths are shorter than the
FG. Our chain embedding algorithm keeps a 100% acceptance ratio since it is adaptive to
FG length.

AVERAGE PATH UTILIZATION WITH INCREASING FG LENGTH  With the same ex-
periment parameters, Figure 3.15 shows the average path utilization with increasing FG
length. The value for the LightChain approach is constantly zero, since the embedding
strategy does not allow to place multiple VINFs of a FG on the same SNo. This is different
from our greedy approach, where the utilization of SNos increases for longer chains.

ACCEPTANCE RATIO FOR INCREASING CPU CAPACITY Comparing the acceptance
ratio for scenarios where resources are limited is also important. Therefore, in this
scenario, we measure the acceptance ratio with increasing CPU resources, while the
bandwidth is highly relaxed. The SN includes 100 SNos and the number of EVNs is 100.
Based on the results in Figure 3.14, when each FG has five nodes, both algorithms can
reach a high acceptance ratio when the resources are highly relaxed. The CPU demand
of each VNF is fixed to one. As depicted in Figure 3.16, the acceptance ratio for our chain
embedding approach is rapidly increasing and it reaches 100% acceptance for a CPU
capacity of 15. For the LightChain approach, the acceptance ratio is also increasing, but
at a lower rate. The results clearly depict that occupying multiple SNos on a path results
in a much higher acceptance ratio.
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Figure 3.14: Acceptance ratio for increased FG size [3]"
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Figure 3.15: Average path utilization for increased FG size [3]°
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3.6 CONCLUSION

Remote asset management is important for future industries and requires flexible and reli-
able network services that can be provided by means of network virtualization. However,
the underlying network infrastructure imposes several performance, security, and re-
silience challenges. To address these challenges, NFV that supports flexible composition
and deployment of SFCs can be used. However, these NFV procedures shall be automated
for large industries based on the application requirements and network service provider
policies, such as the location of VNFs and required security mechanisms.

This chapter presents a model that flexibly creates and deploys EVNs and SFCs based
on these requirements and policies. The model applies a set of rules sequentially on
an AR using graph transformation. The resulting graph is an EVIN that includes the
application nodes and the composed SFCs based on its requirements. The chapter also
proposes a topology-aware heuristic to embed the SFC based on path early verification.
We implement the developed methods and our use case in ALEVIN and present an
exemplary mapping result. This result shows that our system can correctly compose and
map the EVN and SFCs while satisfying all policies.

An evaluation of the chain embedding heuristic using a typical random topology, shows
that it is promising for such environments in terms of admission, resource utilization,
and performance. A main challenge for future work is evaluating the entire approach
using random topologies that hold the required properties of entities. Furthermore,
determining and implementing comparable solutions from the existing works is required.
Another challenge is more coordination of the stages by SFC recomposition according
to the embedding results. Finally, the future work will focus on completely defining
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the validation policies that check the correctness of the whole EVN composition and
embedding approach.
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This Chapter is an extension of the author’s publication [2]°.

In this chapter, we discover the feasible methods of using NFV to reduce the complexity
and cost of implementing and deploying the TAS. TAS is one of the traffic shapers
presented in the recent IEEE TSN standard for industrial Ethernet [151]. Virtualizing
network functions decouples them from proprietary hardware but imposes performance
challenges. We research high performance NFV techniques and use DPDK to implement
a virtual TAS with a feasible performance for enterprise-level industrial applications.

Furthermore, we design a complete framework that provides schedule calculation,
transmission selection, TAS controller, and time synchronization. Additionally, the frame-
work includes evaluation tools; traffic generation and performance measurement. We
evaluate our virtual TAS using delay and frame loss metrics, and a small SFC. The
evaluation considers different loads of BET and external disturbance, and varied TCT
specifications.

4.1 INTRODUCTION

NFV decouples network functions from physical devices using standard virtualization
techniques. A network function becomes a piece of software running inside a VM that
is easy to configure and deploy in different locations. This mechanism provides the
flexibility to chain the functions to build the required network services dynamically.
Furthermore, network functions running inside the VMs are easy to upgrade according
to new standards (or their updates) and to adapt to changes in the requirements without
broad investment in equipment. However, virtualization can degrade the performance
of network functions by randomly delaying the processing. Additionally, the standard
hardware is not optimized for network functions.

TSN [151] is a set of new standards from IEEE that enhance the Ethernet allowing
it, among several aspects, to handle TCT together with the lower priority traffic (BET)
on the same network. A traffic shaper from the standard, TAS, achieves this through
pre-planning of the exact times of arrival and transmission of TCT in each port, and
reserving the required time slots in which BET is blocked. Theoretically, TAS guarantees
zero queuing delay and very low jitter for TCT (deterministic latency). However, to
achieve that, an exact schedule calculation is needed, global time synchronization is
mandatory, and no randomness in the processing time of the frames is allowed.

The concept of smart factory in Industry 4.0 is based on data analysis and autonomic
decision making in real-time. For example, data can be collected from sensors and
leveraged to control customizable production, safety, energy consumption, and security.
These applications might impose different classes of traffic (in terms of time-criticality)
that share the same network, making TSN a feasible technology to realize them. However,
such scenarios require high network reliability and availability, and acceptable energy
consumption. These objectives can be supported by edge computing and virtualization
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technologies, for example, by deploying real-time network services using NFV. This can
be achieved by leveraging specific capabilities of virtualization technologies, such as
auto-scaling, live migration, and latency-aware SFC composition and deployment.

The combination of both technologies, TSN and NFV, applies the flexibility and scala-
bility of NFV to TSN. Furthermore, this will ease the adaptation to the changing needs
without broad investment in equipment, as well as upgrading the internal functioning of
TSN to the future changes in the standard. However, TSN requires highly performing
hardware with deterministic behavior, and NFV introduces processing overhead that
might be stochastic. Nevertheless, some enhancements exist in the area of high perfor-
mance NFV, such as DPDK that bypasses the network stack of the OS (see Section 4.4.4).
A motivation to virtualize TSN is that the target smart factory applications might have
less strict latency requirements than the manufacturing control applications.

In this chapter, we research the mechanisms that can be used to implement virtual TAS
using high performance NFV. Then we design, implement, and evaluate a virtual TAS as
an SFC composed of multiples TAS-capable VNFs. Furthermore, we develop a complete
framework with an NFV-specific TAS controller, scheduling and transmission selection
algorithms, time synchronization, and traffic generation and performance measurement
tools. We propose a new method to support the schedule calculation, mainly in virtual
environments, by measuring the real transmission and processing times in advance
(prefetching).

In the evaluation, we measure the packet loss and delay of TCT traversing a TAS SFC.
We use different scenarios to judge the capability of virtual TAS in providing comparable
performance to the hardware-based TAS designed in the standard. Additionally, we
evaluate the effect of BET traversing the same SFC, and external disturbance traversing a
secondary SFC that uses the same server. These factors are significant in analyzing the
virtualization overhead.

4.2 HIGH PERFORMANCE VNF

The deployment of a high performance VNF is possible using two different technologies,
hypervisor/VM based and container-based. The container-based approach is particularly
questionable with security issues. For an industrial enterprise that transfers data to the
edge or cloud, data security is critical. On the other hand, the hypervisor/VM approach
is the basis on which the architecture of NFV and its standards have been developed.
The main advantage of the containers is that they are light weighted. Containers
require less resources than VMs and impose less overhead since they run the guest
applications directly on top of a host OS while keeping them isolated. VMs run their
guest applications on top of a guest OS and need a hypervisor to provide isolation and
management. Besides eliminating the guest OS, a container does not need a hypervisor
to manage the VNFs. Instead, by means of OS-level virtualization, containers can present
the same functionalities as VMs in a very light manner. The container-based approach
supports the NFV deployment in terms of scalability thanks to the easiness of adding
new virtual functions and dividing the VNFs into smaller entities that have certain
degree of independence (microservices). Furthermore, sharing the same OS between
different containers removes all the hypervisor overhead in packet processing and the
guest OS and allows Direct Memory Access (DMA) techniques, which speed up the
communication among the VINFs themselves and with the external network elements.



4.2 HIGH PERFORMANCE VNF

VNF VNF VNF VNF VNF VNF
A A A A A A
5 i VSwitch
: vSwitch (DPDK)
Hypervisér Hypervisor Hypervisor
; '+ |CPU CPU CPU
- N IC - RAM RAM RAM
Host Host Host
Traditional cloud vSwitch standalone Accelerated vSwitch
VNF VNF VNF VNF
VNE VINE (DPDK) (DPDK) (DPDK) (DPDK)
A A A A A A
Hy'pervisori Hybervisori Hypervisor
eSWétch CPU esW;:tch CPU CPU
it : (SR-IOV, | |
(SRAQV)L L T RaM DPDK) "1 |RAM RAM
NIC Host NIC Host Host
SR-IOV standalone SR-IOV + DPDK DPDK standalone

Figure 4.1: Existing high performance NFV mechanisms

The main deficiency of the container-based approach is the intolerable multi-tenancy
security threats resulting from sharing the host OS.

The standard NFV architecture from the European Telecommunications Standards
Institute (ETSI) [152] presents a VNF layer that uses the virtual resources offered by the
NFVI. High performance VNF can be achieved by increasing the number of VNFs or
their components but unless obliged, this method is not recommended [153]. A better
method is to enhance all the layers from the hardware to the applications running on the
VM. We focus on the possible improvements on the application level and referring to
the changes required in the other layers for the enhancements to take effect. Figure 4.1
summarizes the primary high performance NFV approaches existing in the literature. In
the following, we summarize and compare these approaches.

DPDK STANDALONE This approach integrates data processing acceleration libraries
into the network stack of the VINF or relies on protocols that use them and use drivers
compatible with the operating CPU. One tool discussed in [61] and [154] and [155],
is DPDK [57]. This set of libraries and drivers works with a different logic than the
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traditional network stack that waits for interruption and reacts to them (interrupt-driven
mode). DPDK polls the data coming to the Network Interface Card (NIC) (poll-mode)
directly to the user space where it is processed. Consequently, it avoids the kernel
space and all the imposed overhead. Two conditions are to be verified before using this
approach. The NIC should support poll mode, and the processor should be compatible
with DPDK.

ACCELERATED VSWITCH This approach does not apply any changes to the application
itself rather it changes the user domain in the hypervisor, namely the vSwitch. A vSwitch
is a software running in the hypervisor to enable virtual networking for the VMs. Each
VM has its own vSwitch’s socket that allows it to communicate with the other VMs via
the hypervisor without using the NIC. For this approach, the vSwitch will be assisted by
data processing acceleration libraries (e.g., DPDK ) in forwarding the packets between
the application and the physical NIC and between the VMs. With the accelerated vSwitch,
all the networking (VM /NIC or north-south traffic and VM /VM or east-west traffic) is
conducted in the user-space. One example of vSwitch is the Open vSwitch.

SINGLE ROOT I/0 VIRTUALIZATION (SR-10V) This approach treats the performance
problem from the hardware (NIC) side by enhancing the computing capabilities of the
hardware to allow application direct access and bypass the hypervisor. It also offloads
the packet processing from the CPU to the NIC, contrary to previous approaches that
treat the problem from the software (VINF or vSwitch) side and reduce the CPU usage by
migrating the packet processing to the user domain. Enabling SR-IOV in the NIC card
allows it to provide multiple virtual copies of the PCI function, named Virtual Functions
(VFs). Every VF can be attached to a VM, allocating it a direct access to the physical
resource. With such a method, multiple VMs can use the same NIC without the need for
the hypervisor since the virtualization is provided by the NIC itself. Consequently, All
VMs are offered a line-rate networking performance and have direct and full control of
the network resource part assigned to them.

COMBINED APPROACH Another interesting approach is to combine SR-IOV with
DPDK without using a virtual switching since most of the functions offered by virtual
switches can be executed by the eSwitchs coming with the SR-IOV solution. The authors
of [61] applied this technique in implementing Deep Packet inspection (DPI) of network
traffic in the form of a VINF. The authors showed a very good performance compared to
the traditional cloud architecture. Unfortunately, they did not compare their approach to
the SR-IOV standalone approach or the accelerated vSwitch approach.

APPROACHES COMPARISON In a comparative study performed by INTEL [61], the
DPDK-accelerated vSwitch approach and the SR-IOV standalone approach were com-
pared under the same exact setup with two different traffic flow patterns (north-south
pattern and east-west pattern). The results showed that for the north-south flow pattern,
SR-IOV is a better choice than DPDK-accelerated vSwitch. However, for the case of
east-west flow pattern, DPDK-accelerated vSwitch performed better than SR-IOV. The
reason behind these results is the nature of the traffic itself:

* North-south traffic is the traffic between the server on which the VM is deployed and
the external network. Thus, every transmission or reception of a frame should travel
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from the VM to the NIC. In the DPDK-accelerated vSwitch solution, each frame
should pass through the hypervisor. Although the procedure is accelerated, the
CPU processes all the frames while SR-IOV establishes a direct mapping between
the VM and the NIC.

¢ East-west traffic is the traffic within the same server between the different VMs. If
SR-IOV is used, each frame is forwarded to the NIC to be processed and forwarded
back to the destination VM. In this case, the vSwitch is faster since the NIC is not
needed and the whole operation can be performed in the user domain.

We choose to combine two of the suggested architectures to build DPDK-accelerated
VNFs running on top of a DPDK-accelerated virtual switch. Our implementation has
been evaluated on a single server. Thus, the communication is inside the same hypervisor
domain and there is no need for a physical NIC.

4.3 ASSUMPTIONS AND SIMPLIFICATIONS

TSN standard [151] specifies the implementation details, such as data models and
functions. In our work, we adopt several simplifications and assumptions and adapt the
implementation to our tools and context. However, we implement the main functionality
of TAS in traffic scheduling, and the required tools for performance evaluation. According
to the standard, the main TSN traffic scheduling capabilities are: supporting multiple
traffic classes, enhancements for scheduled traffic (gating mechanism), state machines for
scheduled traffic (gating mechanism), and frame preemption. A possible extension is to
implement per-stream filtering and policing.

From another perspective, and according to the standard, the forwarding process
inside a bridge is composed of eight stages: topology enforcement; ingress filtering;
frame filtering; egress filtering; flow metering; frame queuing; queue management; and
transmission selection. In an outbound queue, First-In-First-Out (FIFO) transmission is
used, and one traffic class is queued. The standard defines a range of eight traffic classes,
and this can be adopted partially or totally by an implementation. The queuing algorithm
decides where to enqueue a frame based on its internal priority value. The transmission
selection method uses three state machines.

The first state machine watches the time and initiates the GCL execution that is per-
formed by the second state machine. The third state machine is for the GCL configuration.
Since the focus of this work is on handling scheduled traffic through gating mechanism
and performance measurement in the context of NFV, we work on the last three stages:
queuing frames, queue management, and transmission selection. However, we perform
metering at the traffic class level in our controller.

In this work, we implement two stages, enqueuing/dequeuing, for inserting/removing
the frames in/from the queues, respectively. The queue management is simplified into
removing each frame after one sending trial, regardless of the result. It is also combined
with the transmission selection. Our transmission selection algorithm merges the first
two state machines in a "select and watch" method. Our algorithm reads the GCL entry
and keeps watching the clock until its respective execution time. Then it applies the entry,
reads the next, and starts selecting frames for transmission while watching the clock. We
implement the GCL configuration state machine in the control plane, and it is executed
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only once before the start of each experiment. Furthermore, we define one Rx-queue and
one Tx-queue per port and one FIFO queue per traffic class.

Another simplification in this work is the flow routing and deployment of the VINFs.
We pre-configure the routes in Open vSwitch, which interconnects the pre-deployed VMs
that execute TAS. Thus, no routing information is required. Only VLAN tags are used to
identify the types of frames (TCT, BET, control frame and its type).

The last simplification is that our schedule calculation algorithms consider one path
for all flows, do not try to compress/minimize the schedule length, and do not use
delay constraints in the schedule calculation. However, the advanced schedule calculation
methods that try to minimize the length of the GCL are more important for hardware
than software that has high flexibility. Currently, we don’t have an estimation of frame
processing time, and we schedule each frame based on its expected transmission time
using experimental data.

4.4 FRAMEWORK DESIGN

Our solution has two main independent but complementary components. The first
component is the control and measurement unit that plays the role of the Precision Time
Protocol (PTP) master node [156] for synchronizing the clocks of VINFs. This unit also
generates and distributes the TCT schedule, generates TCT traffic based on the schedule,
and records statistics on the received frames (talker and listener roles). The second
component is the TAS-capable virtual bridge or VNF that applies the pre-configured
schedule to forward the frames. It also synchronizes its clock with the master clock before
starting the forwarding. For evaluation purposes, a third component is a BET generator
that produces randomly-sized frames with a random Inter-Arrival Time (IAT).

4.4.1  Control and Measurement Unit

The controller runs three main processes, as depicted by Fig. 4.2. The control process
performs the synchronization and scheduling using the information gathered by a
prefetch message per TCT flow. The second process is the frame generation process.
This process generates and transmits frames for all scheduled flows according to the
pre-calculated schedule. An identifier of the frame is included to recognize the frames
by the reception process. The exact sending time of each frame and the count of frames
sent during the experiment are also recorded. The third process is the frame reception
process that receives frames, identifies them, and records their reception times as well as
the count of the successfully received frames per traffic class. In the synchronization and
schedule distribution operations, two modes are used; centralized or chained.

In the centralized mode, the synchronization and schedule configuration for each VNF
is performed in a separate round by the controller. In the chained mode, each VNF in the
chain is configured by the previous VNF. The centralized and chained SFC configuration
(TCT deployment) are inspired by the TSN Centralized Network Configuration (CNC)
and TSN distributed configuration, respectively. Chained deployment is vital for handling
several long chains.

In the network prefetch operation, the controller sends a prefetch frame through the
SFC. Each VNF forwards this frame after inserting its exact reception and transmission
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times. After receiving back the frame, the controller uses this timing information from the
SFC for schedule calculation. In the schedule calculation operation, GCL is constructed in
two steps. The first step is the calculation of the Sending Control List (SCL) that includes
the talker sending times for all flows. The second step is the adaption of the SCL to
the VNFs, which results in a different copy of the GCL for each. This list is dynamic,
and it depends on the way we estimate the start and the end times of the transmission
operation of each frame in each VINF. Theoretically, the start of transmission time shall
be synchronized with the TAS gate opening event, and the end of transmission shall be
synchronized with the TAS gate closing event. In our work, we use two algorithms that
are adapted to our context. Both algorithms use the SCL in building the GCL. However,
the first algorithm is empirical, and it is based only on the information gathered by the
prefetch phase. The second algorithm is hybrid, and it has limited use of the prefetch
data (see Section 4.5.2).

4.4.2 TAS-capable VNF

As shown in Fig. 4.3, the TAS-capable VINF separates the data plane and the control
plane, and has separate queues for TCT, BET, and control frames. The traffic frames are
inserted into the reception ring (Rx-ring) until the enqueue thread sorts them. This thread
identifies the priority class of incoming frames and inserts the TCT and BET frames in
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their respective queues. The dequeue process retrieves and sends the frames based on
the GCL entries and the synchronized clock.

/ Control thread

Ilueue

H BET Hueue

Control Plan

o o
K 25—~
/7

[ e

@)rx call func()4)0'|= rx_ring =—
_ - i ]

FaADY

: tx_call func() @
]

Data Plan
Figure 4.3: Architecture of the TAS-capable VNF [2]"

The control thread establishes the GCL and the globally synchronized clock required
for the dequeuing operation. We have five types of VINF control frames and respective
operations on them:

¢ Prefetch frame: the frame is forwarded after inserting its reception and transmission
time.

e PTP frames: the required/received time-stamps are inserted /recorded, or the clock
is synchronized.

¢ GCL frames: a GCL entry that includes gate opening and closing times is added.

4.4.3 BET Generator

The BET has two parameters, generation rate (number of frames per second) and frame
size. The frame generation follows the Poisson distribution pattern [157]. The choice of
Poisson distribution is conventional when characterizing traffic within a data center [158].
The IAT between two frames in a Poisson distribution follows an exponential distribution:

IAT:_Tl*ln(l—u)

Where A is the Poisson rate, and u is a random number. Generating random frame sizes
using Poisson distribution can be done using the formula:

x=u 67/\ * AX

Size =)

|
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4.4.4 Tools

DPDK [57] is a set of libraries written in C programming language. It offers a complete
framework for fast packet processing in the data plane. It uses the poll mode that allows
the DPDK based application to avoid the overhead of the traditional interruption-based
mode. DPDK controls the NIC and buffers the incoming frames using Direct Memory
Access (DMA) in the user space, which bypasses the network stack of the OS. The
throughput is highly improved for DPDK-based applications, but the NIC cannot be
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shared with other applications. DPDK treats packets in bursts and can balance between
throughput and latency. DPDK uses huge memory pages, and the resources needed by
an application must be reserved Before launching it. DPDK offers several functions to
handle the memory, packets, queues (rings), and timing (Table 4.1).

Table 4.1: Main DPDK functions used in our implementation

Function Role

rte_rdtsc() Returns the value of the time stamp
counter

rte_eth_rx_burst () Reads a burst of packets from an input
queue

rte_eth_tx_burst() Writes a burst of packets to an output
queue

rte_ring_create () Creates a packet ring (i.e. TCT-queue)

rte_pktmbuf_free() Frees the storage of a packet into the
mempool

rte_ring_sp_enqueue () Appends a packet to a ring

rte_ring_sc_dequeue_burst() Retrieves several packets from a ring

rte_eth_add_rx_callback() Defines a callback function in a port

rte_pktmbuf_pool_create() Creates memory pool for packet stor-
age

rte_eal_mp_remote_launch() Launches a function on a logical core

The second tool we used is Open vSwitch [159]. It is an open-source multilayer virtual
switch that can be used to interconnect VMs over multiple physical servers across the
network. It is usually combined with a Hypervisor to offer massive networking. The
configuration of the vSwitch simplifies the routing of frames and setting up the evaluation
chain without using MAC addressing. This configuration of the vSwitch includes the
following steps:

¢ Setting up vSwitch to use DPDK acceleration.
¢ Constructing a bridge.
¢ Adding sockets to the bridge and attributing them to the specific VNFs to use them.

¢ Setting up the flows among the sockets.

Finally, the Kernel-based Virtual Machine (KVM) hypervisor is used to host the VINFs.
KVM allows for high-performance and low latency [160], and is the most widely adopted
compute hypervisor in the OpenStack community [161]. OpenStack is a typical NFVI
supported by ETSI. From another perspective, container-based virtualization is light-
weight but imposes security challenges to industrial networks, since it does not provide
a similar isolation level to hypervisors.

4.5 SCHEDULING ALGORITHMS

The scheduling logic first calculates the SCL used for flow transmission at the talker,
then it calculates the GCL for each VNF using two different methods and the prefetching
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information. Finally, the runtime logic is applying the SCL at the talker and the GCLs at
the VINFs to select the frames for transmission.

4.5.1 SCL Calculation Algorithm

The SCL includes the periods of sending TCT frames by the talker (controller generation
process). These periods are based on the cycles of flows and are repeated in an SCL cycle
that is the least common multiple of the flows’ cycles. Each flow might have multiple
sending periods inside the SCL cycle. Algorithm 6 checks the next sending time of all
flows and inserts the soonest in the SCL while prioritizing the flows with the smallest
cycles. Even if the flows have equal cycles and frame sizes, they are scheduled sequentially.
We also assume that a set that includes one frame from each flow can be transmitted
during the smallest flow cycle. This assumption and the scheduling method prevent the
overlapping of flows, and the same applies to the GCL calculation. The TCT specifications
in the evaluation scenarios are chosen accordingly.

In Algorithm 6: N' is the number of sending periods of flow i in the SCL cycle; LCM is
the least common multiple; TTs is the list of transmission times of all flows in the SCL
cycle; TT is the transmission time of a flow in an SCL entry; T is the current time; and
FTP is one flow transmission period in an SCL entry. Figure 4.4 shows an exemplary SCL
calculation for three flows with different cycle times (periods). Only a portion of the SCL
is shown with the numbers of frames refer to their order in the calculated SCL. We notice
for time-overlapping entries (such as 12 and 13), that the flow with the smaller cycle is
prioritized.

O Flow 1 (T =3ms)
<> Flow 2 (T = 5ms)
O [] Flow 3 (T = 7ms)
@ Order of an entry
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Figure 4.4: Example of SCL calculation

4.5.2 GCL Calculation Algorithms

The empirical algorithm is based only on the information gathered in the prefetch phase
(Fig. 4.5). The prefetch method is a form of calibration of the virtualization overhead,
randomness of processing delay in servers, and the fluctuation of network bandwidth
at the beginning of each experiment. This calibration is performed using one prefetch
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Algorithm 6: SCL calculation

1 CalculateSCL ()
2 //Initialization
SCL.cycle = LCM(AII flow'.cycle)

3

4 for flow' in flows do

5 N = SCL.cycle/ flow' .cycle

6 fork =0To N' do

7 //Entries of transmission times: (flow ID, flow cycle, transmission
time)

8 TTs.append(flow'.ID, flow'.cycle, k * flow'.cycle)

9 end

10 end

11 //0rdering the list of transmisson times based on the times then flow

cycle for equal entries
12 AscendingOrder(TTs, TT, cycle)
13 for entry/ in TTs do

14 //SCL entry: (Transmisson time, flow ID)

15 //Adding a flow sending time to the SCL

16 SCL.append(max(SCL.T, entry!.TT), entry!.FlowID)

17 //Updating the current time point in the SCL based on the flow’'s frame
transmission period (frame size/bandwidth)

18 SCL.T = SCL.T + entryl.flowID.FTP

19 end

20 //Updating the SCL cycle to be the reached scedule length
21 SCL.cycle = SCL.T
22 end

frame per flow that is treated as TCT. An assumption here is that the loads on the servers
used for TAS and on the network are not highly fluctuating such that this calibration is
valid during the experiment. Based on this, if an SCL entry m is related to flow i, the
respective GCL entry in the VNFF of the SFC is:

VNFK.GCL[m].OT = SCL[m].TT + (Tx¥ — SendT;)

VNF*.GCL[m].CT = VNF*.GCL[m].OT + (Rx¥™1 — Tx})

Where OT/CT are the TCT gate opening/closing times, Txf/Rx¥ are the transmis-
sion/reception times of the prefetch message of flow i in VNFX, and SendT; is the
transmission time of the prefetch message of flow i in the controller. This GCL entry
represents the TAS gate opening/closing events that match the respective SCL entry
in a certain VNF. The added value (Tx¥ — SendT;) represents the time required for the
flow-specific prefetch message to start its transmission by VNF¥, which represents the
previous transmission and processing delays in the SFC. The closing event depends on
the time required until the next VINF receives the prefetch frame (in.<+1 — Txb).

The hybrid algorithm mixes the theoretical calculation with prefetching data that are
only used to estimate the processing time of a frame in a VNF. The algorithm calculates
the transmission period of each frame based on its size and the link bandwidth. Then, it

combines the prefetching information to calculate the GCL entries. Consequently:
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where FS is the frame size of a flow, and VNF/.BW is the bandwidth of the incoming
link to VNF/. In the OT equation, right side, the second and third forms represent the
frame transmission and processing periods in the SFC, respectively. For both algorithms,
the current time value is also used for the GCL calculation to avoid the overlapping of
flows:

If (OT < GCL.T) then OT = GCL.T
GCL.T=CT

4.5.3 VNF Transmission Selection Algorithm

The transmission selection (dequeuing) process has a default behavior of forwarding BET
while waiting for the schedule (GCL). Once the GCL is received, the entries are processed
sequentially, and this processing is repeated after each scheduling cycle. For each entry,
queued TCT frames are transmitted in bursts until the gate closing time. Then the queued
BET frames are transmitted in bursts before the next gate opening time. These operations
are shown in Algorithm 7, where BS is the burst size, Ts is the schedule cycle start time,
SC is the scheduling cycle, TP is the total experiment period.

4.6 EVALUATION

Our evaluation scenarios are designed based on the following objectives:

¢ Evaluating the performance of the virtual TAS for TCT with different traffic specifi-
cations.

¢ Comparing our two schedule calculation algorithms.

¢ Measuring the mutual influence between TCT and BET traversing the same SFC.
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* Measuring the effect of external disturbance.

The evaluation SFC, as depicted by Fig. 4.6, contains three TAS-capable virtual bridges

(VNFs) besides the controller and a BET generator. All the links are configured in the
Open vSwitch to be bidirectional except the link from the BET generator to the first TAS
bridge, which injects the non-scheduled BET in one direction. The transmission of TCT is
unidirectional starting from controller port 1, entering the SFC through port o of Bridge

1,

and received at controller port o.

Algorithm 7: Transmission selection

1
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Transmit ()
while GCL not received do

frames < dequeue(BET_queue, BS)

send( frames)
end
// Apply schedule
Ts < TO
// Handling BET before any gate opening time
while ref_clock() < Ts+ GCLI[0].0OT do
frames < dequeue(BET_queue, BS)
send( frames)
end
while ref_clock() < TP do
for i = 0 To GCL.Size do
// Handling queued TCT frames before the gate closing time
while ref_clock() < Ts+ GCLIi].CT do
frames < dequeue(TCT_queue, BS)
send( frames)
end
// Handling BET before the next gate opening time
while ref_clock() < Ts+ GCL[i+ 1].0T do
frames < dequeue(BET_queue, BS)
send(frames)
end

end
Ts + Ts+ SC

end

end

o}

2
Controller
2
1

0 1 0 1 0
TAS I TAS D TAS

Bridge 1 Bridge 2 Bridge 3

‘ BET Generator

Figure 4.6: Evaluation SFC [2]F

For scenarios 2 and 3, we use three TCT flows with specific cycles and frame sizes, as

shown in Table 4.2. However, the third scenario considers different TCT specifications.
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The cycle times are chosen to be prime numbers to increase the length of the scheduling
cycles and represent the worst scenarios.

Table 4.2: Specifications of TCT flows

Flow | Cycle (ms) | Frame size (bytes)
flow o 3 128
flow 1 5 512
flow 2 7 1024

The effect of BET is evaluated by varying A; the rate of BET flowing in the main SFC.
The results are gathered in the controller node by recording the sending and reception
times of each frame. In our experiments, we send at least 10000 TCT frames. For the
delay values, we count the frames in a certain delay range and confidence intervals are
not applicable.

Our evaluation has been performed on a single server. We estimate that using multiple
servers that are either directly connected or through TAS hardware, will not significantly
change the results since using DPDK allows direct NIC access. We note here that using
virtual TAS in real environments requires either using only standard servers as network
hardware or TAS-capable network hardware with the deployment of a schedule synchro-
nized with the TAS SFC schedule. Furthermore, we emulate the network disturbance in
our evaluation, and our empirical scheduling algorithm considers bandwidth fluctuation.
We use a burst size of one for the transmission selection, such that each frame can be
transmitted in time to achieve low latency.

4.6.1  Scenario 1 - Deployment Time

In the first scenario, we evaluate the SFC configuration time or TCT deployment time.
This is the time needed for synchronizing the bridges, the prefetch phase, and calculating
and distributing the schedule. This is the period between the experiment’s start and
the beginning of forwarding TCT frames. In this scenario, we compare the centralized
deployment performed through direct virtual links between the controller and TAS
bridges, and the chained deployment performed across the SFC. We record the average
deployment time for both modes over ten experiments. The results depicted in Table 4.3
show better performance with the centralized deployment due to the time needed for the
TAS bridges to configure the next bridges sequentially.

Table 4.3: Deployment time results

Average time (ms) | Confidence interval

Chained deployment 9022.4 0.52

Centralized deployment 6025.6 2.95
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4.6.2  Scenario 2 - TCT Delay and the Effect of BET

In this scenario, we compare the empirical and hybrid scheduling algorithms in terms of
frame delay for TCT. Furthermore, we evaluate the effect of the BET rate on this delay. In
Fig. 4.7, we compare the cumulative percentage of frames per delay value (Cumulative
Distribution Function (CDF)) for TCT when using the empirical and hybrid scheduling
algorithms and A = 600. The results show that 97% of the frames have a delay value less
than 8gms when the hybrid algorithm is used, and less than 73ms when the empirical
algorithm is used. The performance of the empirical algorithm is better since it depends
on the prefetch information for both the transmission and processing time, while the
hybrid algorithm uses the theoretical bandwidth. However, we have noticed high jitter in
the delay, which requires further investigation.
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Figure 4.7: TCT delay CDF with different scheduling algorithms [2]°

In the following experiments, we use the less performing scheduling algorithm (hybrid)
to check the effects of BET and external disturbance. In Fig. 4.8, we compare the TCT
delay CDF for different values of the BET rate (A). The results show that this effect is
limited but random due to the virtualization (processing) overhead.

4.6.3 Scenario 3 - External Disturbance

In this scenario, we evaluate the robustness of the virtual TAS by deploying a secondary
SFC composed, as depicted by the figure 4.9, of two VNFs: a noise traffic generator and
a traffic relay. The first node generates traffic of rate y and forwards it to the second
node that forwards it back to the source. The primary and secondary SFCs share the
Open vSwitch but not the links and the ports. We compare the delay and frame loss
with different disturbance levels in the secondary SFC. These levels are zero external
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Figure 4.8: TCT delay CDF with varying BET rate [2]°
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Figure 4.9: Disturbance chain topology
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disturbance y = 0f/s (frames per second), Mega-disturbance y = 1600f /s and Giga-
disturbance y = 1600000 /s, with an average frame size of 750 Bytes.

FRAME LOSS Lost frames are the frames that are not received during the experiment
time. In Figures 4.10 and 4.11, we show the frame loss percentage for TCT and BET with
the three disturbance levels, when varying the BET rate A. For TCT, when A < 600, the
BET and disturbance cause small increasing effects. When A = 800, frame loss is high due
to the processing overhead on the VNFs, and the impact of disturbance is random. For
the BET loss, its rate has an approximately linear effect, mainly with external disturbance.
However, the exact causes of the frame loss need further investigation.
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Figure 4.10: TCT frame loss ratio under external disturbance [2]°

DELAY In Fig. 4.12, we show the delay CDF for TCT, A = 400, and the three disturbance
levels. 95% of the frames have delays of 76ms, 92ms, 154ms for zero, Mega, and Giga
disturbance, respectively. These results show that the external disturbance has a significant
effect on the delay due to the processing overhead. However, this effect does not grow
fast with the growth of disturbance. When the disturbance is 1000 times higher (Mega to
Giga), the delay range of 95% of frames increases with 62ms. These observations lead to
the conclusion that a server should be dedicated to one TAS SFC that hosts TCT flows
and a low rate of BET (less than 200 frames per second).

4.6.4 Scenario 4 - TCT Specifications

In this scenario, we perform four experiments with different numbers of flows and
various specifications, as shown in Table 4.4. We evaluate TCT delay with A = 400. The
results are presented in Fig. 4.13 and show that adding one flow with a cycle of 1ms and
a small frame size improves the delay (about 100% of frames with delay < 73ms). This
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Figure 4.11: BET frame loss ratio under external disturbance [2]F
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result is due to more frequent TAS gate opening events. For experiments 3 and 4, we
add more flows with larger cycles and frame sizes, but reduce the frame size of some
flows with small cycles (5 and 7 ms) by half. These traffic specifications lead to lower
traffic density, and the delay is significantly improved (about 100% of frames with delay
< 10ms). However, the high frequency of the TAS gate opening increases the frame loss
of BET, which needs further evaluation.

Table 4.4: TCT specifications for scenario 4

Experiment | Flow | Cycle (ms) | Frame size (Bytes)

Exp 1 flow o 3 128
(3 Flows) | flow 1 5 512
flow 2 7 1024

Exp 2 flow o 1 64
(4 Flows) flow 1 3 128
flow 2 5 512
flow 3 7 1024

Exp 3 flow o 1 64
(5 Flows) flow 1 3 128
flow 2 5 256

flow 3 7 512
flow 4 11 1024

Exp 4 flow o 1 64
(6 Flows) | flow 1 3 128
flow 2 5 256

flow 3 7 512

flow 4 9 768
flow 5 11 1024

The results mentioned above show that with a typical TCT density, high frequency of
gate opening, and a small SFC, our virtual TAS can guarantee a delay of 1oms with a
high probability. This delay value is large compared to the theoretical end-to-end delay
in the standard. The standard assumes that the scheduled traffic is only delayed by
transmission time plus a small processing time in the bridges. For example, a frame of
size 512 bytes transmitted over four hobs (controller and 3 VNFs), and using Gigabit
Ethernet, has a total theoretical delay of 31 microseconds, assuming that the processing
delay in TAS hardware switches is 5 microseconds. The positive aspect is that this virtual
shaper has very high flexibility, acceptable stability with disturbance, and can provide
guarantees that are feasible for factory level applications but not control applications.

4.7 CONCLUSION

Implementing and deploying TAS using high performance NFV provides high flexibility
and lower effort and cost. The current performance and deployment times are feasible
for factory level applications under certain constraints, mainly TCT density and gate
opening frequency. The evaluation showed that calculating a TCT schedule based on the
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Figure 4.13: TCT delay CDF with A = 400 and different specifications [2]*

calibration of the environment improves the performance. Our virtual TAS is robust, for
TCT, against medium BET traversing the same SFC, and medium external disturbance
traversing a different SFC that uses the same computational resources. However, high
BET load has a significant effect on the TCT frame loss, and high external disturbance has
a significant impact on the TCT delay. This is due to the processing overhead resulting
from virtualization, which also results in limited randomness in the delay. Several
improvements to this work are significant:

¢ Implementing and comparing different scheduling algorithms that can consider
nested SFCs and different paths.

¢ Comparing the performance to the TSN hardware.

* Making the clock synchronization and schedule dynamic by adjusting them during
the experiment, to better control the environmental fluctuations.

¢ Investigating the virtualization overhead and its random effect on the delay (jitter)
and frame loss, and researching techniques to control it.

* Implementing frame preemption and guardband methods.

¢ Implementing an interface of the framework to add/remove TCT flows dynamically.
¢ Using longer SFCs deployed over multiple servers.

¢ Flow identification and metering (per-flow statistics).

¢ Evaluating the effect of DPDK burst size.



RELIABILITY PERSPECTIVE - BRANCHING AND FRER

Link and node failures in the physical network are inevitable, at some point of time some
entity might fail. In particular, having VNs on top of the physical infrastructure makes
the failures very costly since one single failure can affect multiple paths of different VNs.
In fact, different VLi mapping algorithms shall be used depending on the requirements
of certain traffic classes. For traffic that requires high reliability, algorithms that maximize
the reliability shall be used. For traffic that requires medium reliability, algorithms
that satisfy reliability with reasonable resource utilization shall be used. For traffic that
requires low reliability, traditional reliability-aware link mapping algorithms shall be
used.

In this chapter, two algorithms for redundant path calculation are presented. In the
first algorithm, Minimal Branching (MinBr), in case the reliability demand cannot be
achieved by a single path, the smallest possible branching that satisfies this demand is
computed. The second algorithm, Maximal Branching (MaxBr), searches for the longest
path branching making the redundant paths as disjoint as possible and, in that way,
adding more reliability to mapped path. Calculation of a backup path makes the VN
resilient to any number of failures in one of the resulting branches. These two algorithms
are compared to the Reliability Shortest Path (RSP) algorithm that calculates shortest paths
using reliability as a weight, and therefore, improves the path reliability in comparison
to reliability-agnostic solutions. Moreover, the path calculation method of this algorithm
is used also by the two redundant path algorithms.

Our findings show that using redundancy algorithms increases the overall acceptance
ratio of the Virtual Network Requests (VNRs) with high reliability demand. The MinBr
mapping algorithm, with the least branching calculation, utilizes