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A B S T R A C T

Network virtualization provides high flexibility for deploying communication services
in dense and heterogeneous environments. Two main approaches (dimensions) that are
usually combined exist: Network Function Virtualization (NFV) technologies for func-
tionality virtualization and Virtual Network Embedding (VNE) algorithms for resource
virtualization. These approaches can be applied to different network levels, such as
factory and enterprise levels of industrial networks. Several objectives and constraints,
that might be conflicting, shall be considered when network virtualization is applied,
mainly in complex topologies. This thesis proposes a network virtualization model that
considers both virtualization dimensions, two network levels, and different objectives and
constraints. The network levels considered are two primary levels in industrial networks.
However, this consideration does not restrict the model to a particular environment or
certain levels. The considered objectivities/constraints are topology, reliability, security,
performance, and resource usage.

Based on this model, we first build an overall combined solution for autonomic and
composite virtual networking. This solution considers both virtualization dimensions,
two network levels, and target objectives. Furthermore, this solution combines three novel
virtualization sub-approaches that consider performance, reliability, and performance.
However, the sub-approaches apply to different combinations of levels and dimensions,
and the reliability approach additionally considers the resource usage objective. After
presenting all solutions, we map them to the defined model.

Regarding applicability to industrial networks, the combined approach is applied to an
enterprise-level Industrial Internet of Things (IIoT) use case inspired by the smart factory
concept in Industry 4.0. However, the sub-approaches are applied to more specific use
cases. The performance and reliability solutions are integrated with relevant components
of the Time Sensitive Networks (TSN) standard as a modern technology for industrial
networks. The goal is to enrich the reliability and performance capabilities of TSN with
the flexibility of network virtualization.

In the combined approach, we compose and embed an environment-aware Extended
Virtual Network (EVN) that represents the physical devices, virtual application func-
tions, and required Service Function Chains (SFCs). We use the graph transformation
method to transform abstract application requirements (represented by an Application
Request (AR)) into an EVN. Both EVN composition and embedding methods consider
the Substrate Network (SN) topology and different security, reliability, performance, and
resource usage policies. These policies are applied with a certain priority and depend
on the properties of communicating entities such as location and type. The EVN is em-
bedded using property-based node mapping, reliability-aware branching, and a greedy
chain embedding heuristic. The chain embedding heuristic is evaluated using a random
topology that represents the use case.

The performance sub-approach is NFV-based and is applied to a specific use case
with Time-critical Traffic (TCT) flows. We develop and evaluate a complete framework
for virtualizing Time-aware Shaper (TAS) using high-performance NFV. The reliability
sub-approach is VNE-based and is applied to a specific factory level use case. We develop
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minimal and maximal branching heuristics based on a reliability-aware k-shortest path
algorithm and compare them using a typical factory topology. We then integrate these
algorithms with a Frame Replication and Elimination for Reliability (FRER) simulator to
realize reliability policies by the autonomic and efficient configuration of a supporting
technology.

The security sub-approaches are related to both virtualization dimensions and are
applied to generic enterprise-level use cases. However, the applicability of the security
aspect to industrial networks is only shown in the combined (EVN) approach and
its use case. We research the autonomic security management in Network Function
Virtualization Infrastructure (NFVI) with the main goal of early reaction to threats
through SFC reconfiguration through Virtual Network Function (VNF) live migration.
This goal is approached by supporting the security measurements with a decision making
architecture that considers, on the one hand, the threats and events in the environment
and, on the other hand, the Service Level Agreement (SLA) between the NFVI provider
and user. For this purpose, we classify the VNF-specific attacks and define possible
early detectable behavior patterns. Finally, we develop a security-aware VNE heuristic
that considers the security requirements of the Virtual Network (VN) and the security
capabilities of the SN. This approach is modified in the combined approach to consider
deploying virtualized security VNFs.
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MaxBr Maximal Branching - The maximal branching al-
gorithm that uses the reliability-aware k-shortest
paths algorithm.

MinBr Minimal Branching - The minimal branching al-
gorithm that uses the reliability-aware k-shortest
paths algorithm.

NF Network Function - A networking procedure or
protocol that executes a specific service.

NFV Network Function Virtualization - Executing net-
work functions in a virtualized form using VMs or
containers running on standard servers.

NFVI Network Function Virtualization Infrastructure -
The IaaS cloud environment hosting the SFCs.

PTP Precision Time Protocol - A time synchronization
protocol with high accuracy.

RSP Reliability Shortest Path - Reliability-aware k-
shortest paths algorithm.

R-TAG Redundancy Tag - A sequence number encoding
method in FRER.

RU Resource Utilization - The degree of efficiency in
using SN resources for embedding a VN.

SCL Sending Control List - The list of TCT transmission
times at the talker (for TAS).

SFC Service Function Chain - A sequence of VNFs that
provide an end-to-end network service.
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provider and user.
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SN.
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SNo Substrate Node - A node in a SN with a specific lo-
cation/domain and a specific type (server, network
device, or application device).
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TAS Time-aware Shaper - A traffic shaper from the TSN
standard that provides deterministic latency using
traffic scheduling.

TCT Time-Critical Traffic - The traffic flows with strict
timing requirements.

TSN Time-Sensitive Networks - A recent IEEE standard
for industrial Ethernet.

VLi Virtual Link - A directed point-to-point link in a
VN.

VM Virtual Machine - An operating system hosted on
top of another operating system using a hypervisor.

VN Virtual Network - A graph that represents the
nodes and links requested by the user with their
requirements.

VNE Virtual Network Embedding - Algorithms for allo-
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VNF Virtual Network Function - A network service ex-
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VNo Virtual Node - A node in a VN that represents the
demand for computational capacity, certain capabil-
ity of the host, or a specific type of phyical devices
in a specific location/domain.

VNR Virtual Network Request - The user-defined request
for deploying a VN including VNos and VLis with
their demands.





1
I N T R O D U C T I O N

Applying network virtualization technologies to complex and heterogeneous environ-
ments promises to reduce the Operational Expenditure (OPEX) and Capital Expenditure
(CAPEX) and satisfy the increasing requirements. However, there are different virtual-
ization techniques and different application levels in which various objectives might
be of higher importance. Furthermore, network virtualization imposes challenges such
as performance degradation; wider attack surface; considering multiple objectives and
constraints that might be conflicting [1]♮1; considering multiple network levels; autonomic
composition of environment-aware virtual networks; efficient deployment algorithms;
applicability to complex environments; and integration with real, mainly modern, tech-
nologies. These challenges are mostly considered partially and separately by researchers
with a limited view on applicability.

1.1 network virtualization

Virtual Network Embedding (VNE) is a graph-theory-based domain that develops abstrac-
tion models of Virtual Networks (VNs) and their requirements and Substrate Networks
(SNs) and their resources. Furthermore, VNE develops graph algorithms to map the VN
requirements on physical resources. VNE algorithms calculate paths and allocations of
server and network resources to a VN composed of Virtual Nodes (VNos) and Virtual
Links (VLis) connecting them. The resulting calculations shall be used by the network
controller to realize the actual resource reservation in the SN.

In another dimension, Network Function Virtualization (NFV) is a modern network
virtualization technology that decouples the network functions from the proprietary
hardware. These functions are executed in the form of Virtual Network Functions (VNFs)
running on standard servers and chained in Service Function Chains (SFCs) to form
end-to-end communication services. The SFC might include one or more sub-SFCs that
determine the data flow paths based on traffic specifications. NFV leverages virtualization
technologies to flexibly deploy complex network functions on-demand in the required
locations. Multi-objective optimization is widely addressed by researches of network
virtualization but they target the significant constraints partially and propose heuristics
for large scale problems.

1.2 industrial enterprise

The traditional legacy networking paradigm of deploying proprietary and hardware-
based network functions is not flexible enough to satisfy the emerging and ever-growing
application requirements, mainly the security, performance, and resilience requirements
of 5G mobile networks and Industry 4.0. This fact is due to the complexity and high cost
of deploying new devices, upgrading devices, and service innovation.

1 The citations marked with ♮ refer to publications authored or co-authored by the author of this thesis.
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Industry 4.0 enterprise applications will support the smart factory through data analy-
sis and autonomic decision making. For this purpose, monitoring, analysis, and man-
agement functions at different levels of the enterprise are needed. For example, remote
asset management is required when the administrators manage different distant locations
to remotely control customizable production, safety, energy consumption, utilization,
and security. IIoT enables remote asset monitoring by installing wireless sensors through-
out the factory and integrating them via an Internet gateway. The data can be remotely
accessed to take further actions in real-time.

However, in addition to the application functions in such a scenario, the service
provider shall be able to create and deploy communication services that can satisfy the
specific requirements of the industrial enterprise related to the monitoring traffic and
resultant decisions. Virtualization technologies support the flexibility of the management
applications by deploying data acquisition and analysis functions at the edge and cen-
tral data centers, respectively. In this scenario, the central data center hosts enterprise
functions, while the edge data center hosts individual factory functions.

The target applicability domain of this thesis is future dense industrial networks where
multi-objective optimization methods are not efficient. We provide the base design of a
complete virtualization system of a smart and complex enterprise. In this system, we
target the main significant objectives, propose novel heuristics, and adapt some existing
appropriate algorithms for the applicability domain.

1.3 solution approach

In this thesis, we address the challenges of network virtualization with multiple com-
bined virtualization approaches. We first research the comprehensive and autonomic
network virtualization for complex environments that combines different techniques,
multiple application levels, and the main objectives/constraints: topology, security, perfor-
mance, reliability, and resource utilization. We focus on two main network virtualization
approaches (dimensions); NFV for functionality virtualization and VNE for resource
virtualization. We apply these dimensions to different levels of industrial networks un-
der multiple objectives. We first propose a combined solution, then we apply certain
technologies to certain levels under the most critical objectives/constraints. Furthermore,
we design novel virtualization solutions and algorithms that provide high efficiency
and usability. These solutions are supported by a specific use case for future industrial
enterprise and integrated with two main components from the Time Sensitive Networks
(TSN) standard.

We first develop a comprehensive VNE-NFV model for deploying an Extended Virtual
Network (EVN) on a set of data centers. We introduce the concept of EVN that combines
the virtual application and network functions, and the application and network devices.
This EVN is built by applying a stepwise graph transformation on a simple VN (Applica-
tion Request (AR)) defined by the user to represent the application end-nodes and general
requirements. A set of policies (e.g., security policies) is also defined by the user and
processed with a particular priority to extend the AR with specific VNos, VLis, and VNFs
with the respective demands for resources. The policy represents a certain pattern in the
EVN and a specific graph transformation operation to be performed when this pattern
matches the current state of the EVN. The network model and policies consider the
locations/domains and types of nodes (topology), and security, redundancy (reliability),
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low latency and load balancing (performance) requirements. However, the cost reduction
(resource usage) objective is considered in the embedding stage. This objective directly
influences the energy consumption reduction objective. An example of a transformation
is adding specific security VNFs when the VLi connects two locations.

The following step to building the EVN is composing the candidate SFCs based on
the required VNFs and dependencies among them and using the topological sorting
method. The embedding algorithm first allocates the virtual application nodes, and then
it maps the SFCs using a greedy heuristic that adapts to the residual SFC and path
lengths. This heuristic is designed to be feasible for our use case, and this also applies to
a random topology used for evaluating it. The solutions are implemented in the VNE tool
ALgorithms for Embedding of VIrtual Networks (ALEVIN) [11], an open-source VNE
framework written in JAVA. A typical use case, remote asset management, from the IIoT
domain is leveraged to illustrate the developed methods. Remote asset management is
an enterprise application but is deployed over three levels: factory hall, edge computing,
and cloud computing. However, in the general virtualization model, the factory hall and
edge computing are merged to represent the factory level.

The comprehensive VNE-NFV solution that considers all objectives depends on three
sub-solutions that consider performance, reliability, and security objectives for different
levels and virtualization dimensions. For performance and reliability, we investigate the
applicability of NFV and VNE, respectively, to a modern industrial networks technology
(TSN). The level of applicability here is the factory in the sub-solutions and the enterprise
in the combined solution. We apply NFV to a traffic shaping component (Time-aware
Shaper (TAS)) to increase the flexibility, and we investigate the performance overhead as
the main challenge with this approach. We also apply VNE to the redundancy component
(Frame Replication and Elimination for Reliability (FRER)) to increase the flexibility while
minimizing the resource usage as a significant challenge with reliability. For the security
perspective and sub-solution, we apply both NFV and VNE at the enterprise level by
proposing approaches for autonomic security management in the Network Function
Virtualization Infrastructure (NFVI). NFV is applied via VNF migration-based defense
architecture, and VNE is applied via a mapping algorithm that is aware of the security
requirements of the VN and the security capabilities of the SN.

From the performance perspective, we study an essential traffic shaper from the TSN
standard, TAS, and its existing implementations. We then research the mechanisms
that can be used to implement virtual TAS using high-performance NFV. Based on
these studies, we design, implement, and evaluate a preliminary virtual TAS as an
SFC composed of multiple TAS-capable VNFs built using the Data Plane Development
Kit (DPDK). Furthermore, we develop a complete framework with NFV-specific TAS
controller, scheduling and transmission selection algorithms, time synchronization, and
traffic generation and performance measurement tools. We propose a new method
based on network prefetching to support the schedule calculation, mainly in virtual
environments, by measuring the real transmission and processing times in advance.
In the evaluation, we measure the frame loss and delay of Time-critical Traffic (TCT)
traversing a TAS SFC using different scenarios to judge the capability of virtual TAS in
providing comparable performance to the hardware-based TAS designed in the standard.
Additionally, we evaluate the effect of Best Effort Traffic (BET) traversing the same SFC,
and external disturbance traversing another SFC that uses the same resources. These
factors are significant in analyzing the virtualization overhead.
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From the reliability perspective, we adapt a model of the reliability as a property of
network entities and develop reliability-ware and branching-based link mapping algo-
rithms with different path disjointness policies that can be used with different industrial
traffic classes. These algorithms depend on the traditional block diagram method for
calculating path reliability. The algorithms are compared mainly in terms of resource
utilization, VN admission ratio, and achieved reliability. A typical evaluation topology
from industrial networks that includes various application types is used. Furthermore, we
analyze the TSN sub-standard IEEE Std 802.1CB FRER that defines methods for stream
replication. We build on it to develop compatible VNE models and use the VNE tool
ALEVIN to export the mapping results in a format compatible with FRER. We then test
this integration between the branching algorithms and FRER in the TSN simulator Tsim-
net [70]. We developed the minimal and maximal branching methods and applied and
evaluated them in industrial environments since these are efficient heuristics for complex
environments that can improve the reliability with minimal or reasonable resource usage.

From the security perspective, we elaborate on the VNF security. The enterprise VNFs
shall be deployed on standard servers that might expose a broader attack surface. We
analyze the main security threats on the VNFs originating from the co-hosted VNFs.
The threats under focus are side-channel, co-location, and migration exploitation attacks.
We then design a defense concept based on a decision engine and VNF migration.
The decision engine migrates the suspected VNF as a source of threat to a detailed
analysis environment. Furthermore, we develop a security-aware node and link mapping
algorithm that considers the security constraints of the VN and the security functions of
the SN. In this thesis, we discuss Service Level Agreement (SLA)-related VNF placement
policies only in the security and privacy context and relevant QoS issues.

1.4 contributions

In summary, we develop, adapt, apply, and evaluate several efficient heuristic algorithms
for complex environments in which the optimization problems are inefficient. In the
performance and reliability perspectives, we focus on the applicability of virtualization
to industrial networks technologies. In the following, we list the contributions of this
thesis to the state of the art:

• We propose a virtualization model that considers network levels, virtualization
dimensions, and main objectives/constraints. Furthermore, we map the developed
models and algorithms to this model. Figure 1.1 shows the proposed virtualization
model with two network levels, both virtualization dimensions, and target objectives.
The mapping of the developed approaches (combined and sub-approaches) is
discussed in Chapter 7. The order of objectives here reflects priorities discussed in
the combined approach in Chapter 3.

• We develop a comprehensive solution for combining virtualization techniques and
applying them over different network levels and with multiple objectives.

– We use graph transformation to convert the general application requirements
to a physical-topology-aware EVN under different topology, performance,
reliability, and security objectives and constraints. However, the resource
utilization objective is addressed by the EVN mapping stage.
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– We develop and implement a greedy heuristic algorithm to embed an SFC
depending on the chain and path length.

– We apply the combined solution to an IIoT use case inspired by Industry 4.0
concepts and represents multiple levels and objectives.

• We develop a VNE model for reliability and three reliability-aware link mapping
algorithms (shortest path, maximal branching, and minimal branching) and com-
pare them in terms of VN acceptance, resource utilization, runtime, and achieved
reliability. We use a typical factory topology with different applications for the
evaluation. Based on our findings, we propose a mapping between traffic classes
from industrial networks and these algorithms.

• We integrate theoretical network virtualization approaches with an industrial
network technology (TSN).

– We design and implement a complete framework for virtualization TAS using
a high-performance NFV technique. Our solution achieves high flexibility in
realizing TSN with accepted delay probability for enterprise-level industrial
applications.

– We integrate the mapping results of the reliability-aware link mapping algo-
rithms with the standard IEEE Std 802.1CB FRER using the TSN simulator
Tsimnet.

• We discuss VNF security threats and design a defense solution in NFVI based on
migration, which considers relevant privacy and QoS aspects.

• We develop a security-aware VNE algorithm that maps the security constraints of
the VN to the security capabilities of the SN.

1.5 thesis structure

This thesis is structured as follows: in Chapter 2, we introduce the work related to the
virtualization of industrial networks, our combined approach, and our sub-solutions for
performance (virtual TSN), reliability (branching and FRER), and security (migration-
based defense and security-aware VNE). In Chapter 3, we present the combined EVN
approach. In Chapter 4, we present the performance sub-solution of virtualizing TAS.
In Chapter 5, we present the reliability sub-solution of branching and integration with
FRER. In Chapter 6, we present the security perspective with the decision engine and
security-aware mapping algorithm. Chapter 7 concludes this thesis by mainly mapping
the developed methods to the virtualization model.

Figure 1.2 shows the thesis map with the logical elements and main dependencies.
The contributions are mapped to the proposed virtualization model in the conclusions
(Chapter 7) after detailing them in the respective chapters. The transformation logic in
Chapter 3 is realized by different transformations that reflect the target objectives. The
latency, redundancy, and security transformations and the EVN embedding algorithm
use algorithms and concepts from the three sub-approaches in Chapters 4, 5, and 6,
respectively. Finally, the related work aspects (EVN and the three main objectives) are
connected to the respective chapters and clarify the state of the art and our contributions.
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Figure 1.1: Proposed virtualization model

The applicability aspect in Chapter 2 (virtualization of industrial networks) is relevant to
all approaches. However, this dependency is not shown for simplifying the figure.
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Figure 1.2: Thesis logical elements and their main dependencies





2
B A C K G R O U N D A N D R E L AT E D W O R K

This thesis includes multiple approaches for which different related research directions
exist in the community. Since the EVN approach integrates these approaches, we combine
all addressed related work in this chapter to provide an overview of the state of the art
in the domains of network virtualization and its applicability to industrial networks.
Furthermore, we highlight our contributions by comparing our approaches. However,
due to the wide domain of relevant topics, we do not provide a complete survey rather
an overview of the significant solutions that are relevant to our work with the main
references.

2.1 virtualization of industrial networks

The research on the virtualization of industrial networks mostly focuses on NFV. Some
researchers investigated the applicability of NFV to industrial environments. Sakic et al.
[13] proposed VirtuWind, an SDN and NFV architecture for industrial networks applied
to wind parks with the focus on security VNFs and Supervisory Control and Data
Acquisition (SCADA) as the main monitoring and management component deployed
locally on-site. The architecture addresses a multi-operator ecosystem with inter-domain
and intra-domain communication.

Although we discuss the related work on high performance NFV in Section 2.3.1, we
discuss here its applicability to industrial networks. Few researchers investigated the
capabilities of virtualization technologies for hosting real-time applications. Gundall et al.
[14]1 examined the possibilities of virtualization in the industrial landscape. Performance
comparisons for bare-metal applications, Virtual Machines (VMs), and containers were
conducted and evaluated for industrial needs. The analyses indicate that the flexibility
gained by virtualization can be achieved for industrial applications without violating the
stringent real-time requirements in the industrial landscape, if Docker containers with a
suitable configuration are used. Linux real-time kernel combined with Docker can reliably
run the cyclic execution of applications in intervals of 1µs− 1ms with a jitter of 15µs. The
authors compare different Docker network drivers but do not develop a traffic shaper.
From a security perspective, the authors recommend traffic encryption, but conclude that
a non-negligible performance penalty does not allow network encryption for time-critical
applications, then security must be achieved through a high degree of traffic isolation and
other security measures. The authors suggest virtualizing the industrial control system at
the edge and cloud level, which opens a vast surface of attacks.

Moga et al. [15] studied the capabilities of containers to achieve flexible consolidation
and easy migration of industrial automation applications, as well as the container tech-
nology readiness with respect to the fundamental requirement of industrial automation
systems, namely performing timely control actions based on real-time data. The authors
provide an empirical study of the performance overhead imposed by containers based

1 This work is published after the author’s publications [2]♮and [3]♮.
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on micro-benchmarks that capture the characteristics of targeted industrial automation
applications.

Bag et al. [16] explored the capabilities of different virtualization platforms offered by
various cloud providers. The platform performance has been evaluated by conducting
experiments with an industrial application, focusing on typical industrial aspects such as
latency, jitter and availability. The findings indicate that specific application requirements
affect the performance. Hence, application-specific evaluations might be necessary before
deciding where an industrial application can be deployed.

The integration of cloud computing with industrial networks has been also addressed
by Asenjo et al. [17]. The authors introduced a cloud-based virtualization generation ser-
vice that collects data from multiple industrial automation systems of various industrial
customers for storage and analysis on a cloud platform. A virtualization management
component analyzes the data and generates a virtualized industrial automation system
based on the analysis results.

In another relevant aspect, several works focused on sensor and gateway virtualization
in wireless sensor networks in the IoT domain. Mouradian et al. [18] proposed an NFV
architecture for virtualized wireless sensor and actuator network gateways, in which
software instances of gateway modules are hosted in NFV infrastructure. Furthermore,
some works focused on virtualizing the industrial network control. For example, Lee et
al. [19] virtualized CAN controllers using containers.

In the VNE domain, Huth and Houyou [20] proposed a system architecture for network
virtualization in industrial networks. A domain controller, the Slice Manager, directly
manipulates a potentially heterogeneous network while providing a simple abstract view
to planning and management applications. The application runs in a “slice” which is a
VN with clear QoS guarantees and bandwidth policies.

In summary, the research on the virtualization of industrial networks does not combine
VNE and NFV and all important constrains, and does not autonomically build VNs
that represent different devices, gateways, VNFs, and virtual application functions.
Furthermore, TSN and virtualizing traffic shapers in the form of SFCs are not addressed.
Compared to the above-mentioned works, we consider edge and cloud computing for
data analysis with inter- and intra-domain and location communication, we combine
traditional VNE and NFV, and target the objectives of security, performance, reliability,
and resource usage. We compose an EVN that might include all types of devices, gateways,
different types of VNFs, and virtual application functions. For security considerations, we
use a VM-based approach in our virtual TAS since VMs offer higher level of isolation and
lower performance, but reasonable for enterprise applications. In the reliability aspect,
we use the concept of network slicing in industrial networks with different applications
to compare different redundancy methods.

2.2 combined approach

The combined EVN approach represents an autonomic, policy-based, and multi-objective
network virtualization using traditional VNE algorithms and SFC composition and
deployment solutions. In this section, we address the related work on these topics.
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2.2.1 Autonomic and Policy-based Network Virtualization

Several works addressed the autonomic virtual networking that creates the VNs from
policies, with the focus on multiple but incomplete objectives. Davy et al. [21] presented
an approach to provision network services in an autonomic network using virtualized
routers. The approach provides business users a method of describing the requirements
and behavior of a set of network services using policies, while abstracting the users
from complicated network configuration tasks. It then dimensions a VN dedicated
to provisioning these services. The authors focus on fault tolerance, redundancy, and
security.

In a later work, Davy et al. [22] addressed a specific scenario of secure VPN services
that require a set of security-related functionality from the network to be effectively
deployed. In a similar direction, Louati et al. [23] designed an architecture of autonomic
virtual routers to support automated provisioning and management of VNs. The objective
is to automatically create virtual routers in Substrate Nodes (SNos) to support on-demand
VNs, without any human intervention.

Granelli et al. [24] proposed an architecture to realize autonomic mobile VN operators
that can be deployed by Internet service providers to guarantee efficient and effective
network adaptation to unexpected events and real-time resource requests. Mijumbi et al.
[25] proposed to use distributed artificial intelligence to make the VNs self-configuring,
self-optimizing, self-healing, and context-aware.

In comparison, we focus on both autonomic VN composition and configuration. Fur-
thermore, we consider comprehensive policies with certain priorities and different types
of VNFs and combine the traditional VN with SFCs. Our work focuses on industrial
enterprises with multiple levels and on TSN technology. Our composition stage adds
physical devices automatically and considers locations and domains. However, we don’t
target dynamic or proactive autonomic virtual networking that reconfigures the VNs
on-demand or in advance based on learning methods as discussed by Yan et al. [26] and
Rkhami et al. [27], who use graph neural networks.

2.2.2 Multi-Objective VNE

The research on multi-objective VNE focuses on optimization methods, mainly integer
linear programming, and on developing heuristics for large scale environments. Further-
more, several works consider the embedding over multiple independent domains with
the focus on limiting the domain’s information disclosure. Table 2.1 summarizes the main
existing solutions. However, solutions that focus on resilient VNE with other secondary
objectives, mainly resource utilization, are discussed in Section 2.4. Additionally, the
multi-objective and resilient SFC deployment are discussed in Section 2.2.3.

Our work considers several and comprehensive objectives and focuses on future dense
industrial environments, making optimization problems inefficient. We combine VNE
and NFV and consider physical devices that exchange data and that cannot be virtualized.
Furthermore, we develop a set of heuristic algorithms to overcome the complexity of
multi-objective optimization. However, compared to works that solve the multi-domain
embedding problem with limited information disclosure, we do not consider domain
privacy inside an industrial enterprise, and we consider both domains and locations.
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Table 2.1: Important existing works on multi-objective VNE

Reference Methodologies Main objectives/constraints

Houidi et al. [28] Mixed integer programming Power consumption, avail-
ability, load balancing, fault-
tolerance

Zhang et al. [29] Artificial immune system Revenues, energy consump-
tion

Li et al. [30] Mathematical programming Acceptance ratio, resource
load, profit, delay, load bal-
ancing

Gong et al. [31] Compatibility graph Location

Habibi et al. [32] Graph neural networks Scalability

Chowdhury et al.
[33]

Heuristic Multi-domain, location

Dietrich et al. [34] Request partitioning Multi-domain with limited
information disclosure

Ni et al. [35] Particle swarm optimization Multi-domain, cost

Andreoletti et al.
[36]

Reinforcement learning Multi-domain with limited
information disclosure

Zhang et al. [37] Particle swarm optimization,
heuristic

Multi-domain Internet of
Drones, delay, cost

Yu et al. [38] Heuristics: VLi splitting,
path migration, VN topology
classes

Resource utilization, delay

Fajjari et al. [39] Greedy algorithm for VN re-
configurations to minimize
the number of bottlenecked
SLis

Admission, cost

2.2.3 SFC Deployment

We focus in this section on SFC composition and embedding. Herrera and Botero [40] pro-
vided an extensive survey on NFV resource allocation. They highlight the fact that most
of the contributions focus on chain embedding and use linear programming to optimize
the solution for a certain objective, such as runtime, end-to-end latency, and deployment
cost. However, several researchers studied the SFC composition problem.

Mehraghdam et al. [41] introduced a context-free language model to formalize the
VNF requests and a heuristic to compose the SFCs. SFC allocation is formulated as an
optimization problem with different objectives. The authors highlight the fact that placing
SFCs is complex, in particular for different, possibly conflicting, allocation objectives,
such as used number of SNos or latency. An optimal SFC composition approach based on
integer linear programming is introduced by Ocampo et al. [42]. The objective is to find
SFCs with minimal bandwidth requirements for a predefined VNF request. Gil-Herrera
and Botero [43] proposed a meta-heuristic algorithm for solving the SFC composition
stage. The solution focuses on minimizing the total bandwidth demand.



2.2 combined approach 13

Zheng et al. [44] studied how to optimize the latency in hybrid SFC composition and
Embedding. They proposed an approximation algorithm (Eulerian Circuit-based) to
jointly optimize the SFC construction and embedding. Furthermore, the authors propose
an efficient Betweenness Centrality based algorithm. Wang et al. [45] formulated the SFC
composition and mapping problem as a weighted graph matching problem with the
focus on resource optimization. The authors also proposed a Hungarian-based algorithm
to solve the SFC composition and mapping problem in a coordinated way.

Beck and Botero [46] introduced a heuristic coordinated approach, CoordVNF, which
tackles the chain composition and embedding problems with the objective of minimizing
the bandwidth usage. The approach uses backtracking in case of an invalid embedding
to find a valid solution starting from the last successfully embedded VNF. Hirwe and
Kataoka [47] proposed an approach, referred to as LightChain, which creates a directed
acyclic graph for a VNF request and performs topological sorting to generate a single
SFC. This SFC is then embedded on the shortest path between source and destination
devices based on the assumption that a path of length n can host n VNFs. If the current
path is consumed, another shortest path is calculated for placing the remaining VNFs.

Wang et al. [48] classified the SFC deployment problems according to the option of
sharing VNF instances. An optimization problem and a heuristic solution are presented
to find the best SFC composition scheme that achieves minimal demand of link resources
and improves the VNF instance utilization. The stages of SFC composition, placement,
and assignment are combined. Li et al. [49] presented a solution for placing VNFs in
cloud data centers. They focused on the placement of multi-tenant VNFs shared among
multiple SFCs to achieve efficient utilization of network resources in contrast to traditional
VNF placement strategies.

Wang et al. [50] introduced an SFC composition framework called Automatic Composi-
tion Toolkit. It tries to automatically detect the dependencies and conflicts among the
network functions and model their behavior. The authors define topology and processing
dependencies, and action and processing conflicts. Li et al. [51] presented a typical
three-stage coordinated optimization model for NFV resource allocation, which considers
CAPEX, OPEX, and link costs.

From another perspective, some researchers addressed the problem of resilient alloca-
tion of SFCs. Wang et al. [52] introduced a model for calculating the SFC availability and
presented a Joint Path-VNF backup model that jointly considers path and VNF backup.
Furthermore, they used a priority-based algorithm to optimize the composition and map-
ping of SFCs. In this algorithm, VNF dependency is converted to a VNF priority, which
might create multiple Forwarding Graphs (FGs) generated according to these priorities.
The evaluation metrics are total data rate, acceptance ratio, maximum availability, VNF
cost, and physical node and link cost.

Beck et al. [53] discussed two main resilience strategies: VLi and VNF resilience.
The VLi resilience strategy tries to calculate a disjoint backup path when mapping a
target VLi that connects two VNFs. VNF resilience needs at least two different SNos
on which the VNF is allocated. The evaluation focused on the acceptance ratio and
embedding cost. Torkzaban and Baras [54] integrated the trustworthiness of the SN paths
into the SFC embedding problem. The authors formulated the path-based trust-aware SFC
embedding problem as a mixed integer-linear program, and provided an approximate
model based on selecting the shortest candidate SN paths.
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Regarding the consideration of domains and locations, Liu et al. [55] proposed a
distributed method for cross-domain SFC embedding. Besides preserving the privacy and
autonomy of domains, the authors consider fair competition and migration-based load
balancing among domains, and improving the admission ratio. The SFC is partitioned
and mapped in each domain according to its specific policies. Lange et al. [56] proposed
a multi-objective heuristic for the optimization of SFC placement. The objective is to
determine the number, location, and assignment of VNF instances and the routing of
demands. The constraints of CPU utilization and the delay of individual flows are taken
into account.

Our EVN solution contributes to the current state of the art of the three topics of
this section in different aspects. First, a policy-based transformation of an abstract
AR composes an EVN that includes the physical and virtual application nodes and
the VNF requests. Our policies consider primary topological, performance, security,
and reliability requirements. Second, we integrate location- and domain-awareness into
the EVN composition and embedding solutions. These solutions consider dependencies
among VNFs, which also reflect the locations and domains. The transformations add
security VNFs according to the domains and locations across which the traffic flows.
Third, we define a specific use case of these approaches from Industry 4.0 and design the
fixed topology that represents it. The last contribution is an SFC embedding heuristic that
tries to find a valid solution for the embedding problem while using a pre-verification
of the path. To the best of our knowledge, this is the first work that addresses the
composition of an EVN that combines the application and SFCs, based on multiple
policies, while considering domains and locations, and in the context of industrial
environments.

2.3 performance perspective - virtual tsn

Our performance solution virtualizes a TSN component using a high performance NFV
mechanism. Furthermore, we present a novel adaptive scheduling method for virtual
environments. The important related work on these topics is discussed in this section.

2.3.1 High Performance NFV

Several works and tools addressed high performance NFV. Intel presented DPDK [57];
a set of performance-boosting libraries for NFV architecture. Sun et al. [58] presented
HYPER, a framework that integrates hardware and software infrastructures to provide
flexibility while keeping high performance. Naik et al. [59] introduced libVNF as a
C++ library that uses DPDK, among other technologies, to ease the implementation of
horizontally scalable high performing VNFs. The developers of libVNF claim reducing
the source code for developing a VNF by 50% with a maximum decrease of performance
of 10%. Nakajima et al. [60] proposed a high-performance virtual NIC framework for
hypervisor-based NFV with user space virtual switch and DPDK, with the focus on
improving the virtual NIC throughput.

Kourtis et al. [61] employed deep packet inspection to evaluate the performance of
Single-root Input/Output Virtualization (SR-IOV) with DPDK- based NFV deployment.
Li [62] built a high performing software router based on DPDK to analyze the IPv4
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header of a packet and determine whether to forward it or submit it to the upper
layer protocol. The author compared his work to the Linux IP protocol stack and found
that his implementation increases the throughput by 8-10 times. Yurchenko et al. [63]
presented OpenNetVM as an open-source NFV platform designed to accelerate the
development of VNFs by creating an abstraction layer over DPDK. OpenNetVM allows
Docker container-based VNFs to be chained together and run on the same host with
minimal latency.

Yasukata et al. [64] introduced HyperNF, a high performance NFV framework to
increase server throughput when concurrently running large numbers of VNFs. HyperNF
implements hypercall-based virtual I/O, placing packet forwarding logic inside the
hypervisor to significantly reduce I/O synchronization overheads.

Some works used different hardware technologies to achieve high performance NFV.
Sun et al. [65] integrated a stateful and NetFPGA accelerated data plane into NFV.
The authors designed a performance-aware service chaining algorithm to fulfill both
functionality and performance requirements with respect to SLAs. They implemented an
SLA-NFV prototype based on OpenStack and NetFPGA. Zheng et al. [66] proposed a
GPU-based high performance framework for NFV. The elasticity of VNFs is improved by
scaling them up and down by allocating a different number of fine-grained GPU threads
to a VNF during runtime.

In comparison to these works, we use DPDK-accelerated Open vSwitch and VM-based
VNFs. We focus on delay and frame loss and develop a specific shaper from TSN with a
complete framework that includes schedule calculating and distribution methods.

2.3.2 TSN Implementations and Integration

In order to evaluate the networks implementing TSN features, few simulators have been
developed. TSN capabilities of timed transmission were addressed by Jiang et al. [67], who
presented a TSN simulation model built on top of OMNET++ [68]. TAS-enabled switches
were simulated through the calculation of Gate Control Lists (GCLs) with the opening
times of the TCT gates. The authors tried to analyze the end-to-end latency of scheduled
and non-scheduled traffic. Jarray et al. [69] presented NeSTiNg, which implements the
frame tagging according to 802.1Q; a TSN component whose functionalities include
forwarding, queuing, and two kinds of shapers (TAS, and credit-based shaper).

Heise et al. [70] presented TSimNet (on top of the Inet [71] framework) that we use in
our work with FRER. The authors implemented the non-time-based features of TSN such
as frame preemption, per-stream ingress policing, and FRER. The simulator was used for
purposes of evaluation in avionic networks. Pahlevan [72] presented another simulator
that implements the time-based and non-time-based features of TSN (time-based filtering,
TAS, policing, and FRER), based on Riverbed simulation framework. Lee and Park [73]
developed a simulator for in-vehicle networks and designed a model for autonomous
vehicles with TSN features.

Some researchers evaluated the features of TSN to understand the advantages of using
them. Pahlevan and Obermaisser [74] evaluated the safety and fault tolerance offered
by FRER in Opnet simulation framework. The authors verified that FRER is resilient in
case of transient errors (e.g., stuck transmitter) and in case of permanent errors (e.g., link
failure). The applicability of the TSN standard has been also evaluated by Pahlevan and
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Obermaisser [75], where the Opnet simulation framework has been used to compare the
obtained results to the theoretical performance defined by the standard.

Hardware with integrated TSN features also exists. An Intel Platform Designer com-
ponent [76] has been developed to make it easy to integrate TSN features in Intel Field
Programmable Gate Arrays (FPGAs). The tool can be used for time synchronization and
TCT scheduling with eight priority queues per port. Other devices from different manu-
facturers were developed to be fully (Broadcom [77]) or partially (Cisco [78]) compatible
with TSN features presented by the time of their development.

The integration between TSN and other technologies has been addressed by several
researchers. 5G-TSN integration for smart factories is currently under focus by some
researchers such as Gundall et al. [79] and Farkas et al. [80]. According to these re-
searchers, this integration is promising to fulfill the requirements of Industry 4.0 due
to the flexibility features of 5G and the TSN feature of extremely low latency. However,
these works do not address the real virtualizing of TSN using NFV, which is also a main
enabler of 5G.

Pop et al. [81] discussed using TSN as a deterministic transport mechanism for fog
computing in industrial automation. The authors proposed a configuration agent architec-
ture based on IEEE 802.1Qcc and Open Platform Communications Unified Architecture
(OPC UA). This architecture is capable of performing runtime network configuration to
address the configuration challenges for scheduled networks. The authors also proposed
a list scheduling-based heuristic to reconfigure the scheduled network at runtime for
industrial applications within the fog. Li et al. [82] also integrated TSN and OPC UA
for dynamic configuration. SDN was also used by Said et al. [83] as a solution for the
dynamic configuration of TSN, and by Boehm et al. [84] with a combined control plane
for SDN and TSN.

Regarding TSN virtualization, Fang and Obermaisser [85] implemented a TAS-capable
virtual switch as a kernel module. In comparison, we deploy TAS-capable and VM-based
SFC, use an adaptive GCL calculation method (prefetching), inject random BET and a
disturbance SFC, consider frame loss in the evaluation, consider different evaluation sce-
narios from industrial enterprises, and build a complete framework with synchronization,
schedule distribution, and performance measurement.

2.3.3 Schedule Calculation

A TSN performance aspect that is still under intensive research is the TAS schedule
calculation. Some researchers discussed the best methods to calculate the GCLs for a
network of bridges hosting multiple TCT flows. The goal is to reserve time slots for flows
along their paths such that: the delay constraints of flows are respected, no overlap in
the transmission of any pair of flows, and the total length of the schedule is minimized.
Craciunas et al. [86] used Satisfiability Modulo Theories (SMT), a decision-making
methodology, to calculate the schedule and assignment of flows to the existing queues
on the ports. The flows are periodic with pre-defined cycles and frame sizes. The flow
scheduling constraints are end-to-end delay, transmitting the frame inside the flow cycle,
no overlapping of frames, and preserving the order of frames in the flow. Additionally,
the authors introduced the flow isolation constraint; a queue is reserved for a flow until
all its frames in the queue are transmitted. However, the SMT method is not scalable,
and the authors used an incremental backtracking algorithm that schedules one flow
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in each step using SMT. The results for each flow are considered when the next flow is
processed. In case no scheduling for one flow is found, a step backward is made, and the
last scheduled flow is mapped with the current flow in one step.

As an improvement to [86], Farzaneh et al. [87] proposed an approach to track the
unsatisfiable flows and correct the schedule. Gavriluţ [88] proposed a Greedy Randomized
Adaptive Search Procedure (GRASP) to calculate the GCLs. Their meta-heuristic approach
generates a set of feasible solutions iteratively, and a candidate is randomly chosen as an
initial solution. The solutions are then enhanced to reach the locally optimal solutions
using the Hill Climbing strategy. The resulting solutions are compared based on an
objective function that reflects the difference between the worst-case end-to-end delay
and the delay threshold of a flow. This approach considers both the TCT and Audio
Video Bridging (AVB) traffic. The resulting schedules respect TCT constraints with an
accepted increase in the AVB delay.

Pahlevan et al. [89] presented a heuristic algorithm that routes the flows and creates
the GCLs in one phase. However, they only consider TCT, and it is treated as tasks that
can be assigned to the available nodes. In each node, one queue is used for TCT, and the
flow isolation method is adopted. Scheduling a flow respects the periods of the already
scheduled flows on the same link. Dürr [90] adapted the No-Wait Job Scheduling Problem
(NW-JSP) to the TAS scheduling problem. The NW-JSP problem deals with scheduling a
set of jobs on a set of machines. A heuristics algorithm is used to minimize the schedule
length. Barzegaran et al. [91] used constraint programming for quality-of-control-aware
scheduling of communication in TSN-based fog computing platforms.

Hellmanns et al. [92] proposed a scalable scheduling model for converged networks
supporting different traffic types. They introduced a procedure for schedule planning
of isochronous traffic, which exploits the hierarchical structure of factory networks. The
authors split the network into sub-networks and use a two-stage approach based on
a heuristic and a tracing mechanism. Arestova et al. [93] discussed a hybrid genetic
algorithm including chromosome representation for the routing and scheduling problems
in TSN. Additionally, the authors introduced an approach to compress the resulting
schedules. Serna Oliver et al. [94] discussed how the synthesis of communication sched-
ules for GCLs defined in IEEE 802.1Qbv can be formalized as a system of constraints
expressed via the first-order theory of arrays.

In this thesis, the goal is not improving theoretical schedule calculation approaches but
implementing and evaluating an efficient method in a real and virtual environment. We
design and compare two scheduling algorithms that use a new mechanism of measuring
the actual transmission and processing times in advance. This mechanism is significant
in controlling the fluctuations, mainly in virtual environments. Our algorithms consider
TCT and BET, and each port in a node includes one queue per traffic class. The first
algorithm is empirical and uses experimental network prefetching data to calculate the
GCL, and the second algorithm is hybrid and additionally uses the flow’s frame size and
link bandwidth.

We evaluate the performance of DPDK-based VNF implementation under the time-
aware functionality and scenarios of TSN. While most of the high performance NFV
works (such as [61] and [62]) evaluate the implementations in terms of computational
overhead and throughput, we focus on delay and frame loss. Furthermore, we develop a
complete framework that can be used to evaluate the performance of TSN and its future
improvements in a real environment, with low cost and high flexibility.
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2.4 reliability perspective - resilient vne

The research on resilient VNE focuses on the efficient reservation of backup resources
and single Substrate Link (SLi) failure. However, some works consider reconfiguration as
a defense mechanism against attacks, reliability values, locations, domains with privacy,
and improving the VN topology. A summary of some important existing solutions is
shown in Table 2.2.

In comparison to these works, we consider reliability values, VLi reliability, locations,
domains, resource usage, and extending the VN topology in one approach. Furthermore,
we develop minimal 2 and maximal branching as efficient heuristics and apply, compare,
and evaluate them in industrial networks. We discuss a mapping between industrial
traffic classes and these redundancy policies. Finally, we use the mapping results to
compute the required network configurations according to 802.1CB FRER.

2.5 security perspective

The security solutions presented in this thesis consider SLA-aware and migration-based
suspicious VM isolation, and security-aware VNE. The important related work on these
topics is discussed in this section.

2.5.1 Cloud Security

Serious vulnerability concerns have arisen from the VM co-residence architecture of the
IoT cloud (Xing et al. [110]). Co-residence attacks enable an attacker to access and corrupt
a user’s sensitive data by co-locating his VM on the same physical server [110]. In this
thesis, we assume that the VM is the preferred technology for hosting VNFs that process
industrial data for security considerations. This issue is further discussed and applied
mainly with virtual TSN in Chapter 4. We assume here that the research about VM
security applies to VNF security. However, we extend our VM security considerations to
the SFC.

There are several attack vectors, threats, and defense mechanisms in IaaS clouds, but we
focus on attacks on VMs from co-hosted VMs as the most relevant for sensitive industrial
data. We don’t target the threat of compromising the VM monitor and the management
VM. We assume that the probability of a malicious co-located VM is higher. An overview
of such attacks and specific defense mechanisms is presented in Chapter 6. Since this
chapter includes a general defense architecture against malicious VMs while considering
the SLAs, we focus on related work on similar cloud defense mechanisms and security
SLA management in cloud computing. However, these topics consider other types of
attacks performed by malicious VMs, such as DDoS. The exact detection mechanisms of
such attacks are out of the scope of this thesis, rather the behavior patterns and reasonable
reactions according to the SLA.

Many researchers addressed the behavior study of both traditional malware and virtual
environment-specific malware in cloud environments. For example, Dolgikh et al. [111]
propose an efficient behavioral modeling scheme to detect suspicious processes in client

2 Liu et al. [12] presented a similar concept in 2019. However, we developed the minimal branching algorithm
in cooperation with Siemens in 2018.
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Table 2.2: Important existing solutions for resilient VNE

Reference Methodologies Main objectives/constraints

Jarray et al.
[95]

Column Generation, protection cy-
cle

Single link failure, minimiz-
ing the backup resources

Chen et al.
[96]

Heuristic, restoration path selec-
tion

Cost-effective usage of net-
work resources

Jiang et al. [97] Bipartite graph matching, re-
source sharing among working
and backup facilities

Location, single facility fail-
ure, minimizing the band-
width consumption

Oliveira et al.
[98]

Multiple substrate paths, capacity
reallocation

DoS attack

Chai et al. [99] Multi-objective optimization
problem, single-objective sub-
problems, discrete particle swarm
optimization

Malicious attacks in SDN,
minimizing network load,
maximizing embedding relia-
bility

Rahman and
Boutaba [100]

Heuristic, node migration, restora-
tion

Single SLi failures

Guo et al.
[101]

Heuristics, failure dependent pro-
tection, enhanced VN by backup
facility nodes, resources sharing,
binary quadratic programming,
mixed integer linear program-
ming

Single facility node failure, ef-
ficient resource usage

Liu et al. [12] Availability model, integer lin-
ear programming, heuristic, k-
shortest paths, backup paths

Minimizing resource cost

Liu et al. [102] Backup VN topology, resource
sharing

SLi failure

Ergenc et al.
[103]

Mixed integer linear program,
heuristics, dynamic function mi-
gration

Arbitrary node failures, at-
tacks

Chen et al.
[104]

Reliability-aware mapping, partial
protection, mapping permutation
to adjust the reliability

Reliability, resource usage

Wu et al. [105] Heuristic, reliability-aware map-
ping and backup of nodes, fault
recovery by backup switching

Reliability

Zhang et al.
[106]

topology- and reliability-aware
node ranking, shortest path

Reliability

Rahman et al.
[107]

Backup paths with bandwidth
rerouting

Single SLi failure, delay

Gomes et al.
[108]

Spanning tree, redundant paths,
shortest path with bandwidth
weight

Overall VN reliability, SLi
failure

Yu et al. [109] VNo migration, disjoint backup
path

SLi failure, resource usage
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VMs by monitoring system calls. Marnerides et al. [112] describe how to detect the
traditional Kelihos malware in VMs by monitoring the memory usage and number of
processes. According to the authors, Kelihos malware causes a memory explosion for few
seconds, which is not a normal behavior for traditional applications. Zhang et al. [113]
use machine learning to deploy a lightweight mechanism in a VM to detect the behavior
of L2-cache side-channel attacks performed by other VMs. Several works address the
defense mechanisms against suspicious/malicious VMs and co-location attacks 3. The
main existing solutions are summarized in Table 2.3.

Several researchers addressed the security SLAs in IaaS clouds. For example, Kaaniche
et al. [130] proposed an extension to an existing SLA description language, rSLA, to
describe the security requirements and needed security mechanisms that allow the
automatic management of the security SLAs. The proposed system dynamically inspects
the SLA document and activates the needed security monitoring tools to collect the
data. The data is evaluated against the objectives to execute enforcement and reporting
actions. De Benedictis et al. [131] discussed how to define a per-service security SLA in
the cloud. Zhou et al. [132] presented a privacy-based SLA violation detection model for
cloud computing based on Markov decision process theory. This model can recognize
and regulate the provider’s actions based on the specific requirements of various users.
Additionally, the model can evaluate the credibility of the provider by monitoring the
actions that violate the user’s privacy. Basile et al. [133] studied the integration of
network and security policy management into an NFV framework by enabling and
configuring security VNFs based on the user requirements. Ullah and Ahmed [134]
proposed integrating security levels in SLAs and VM placement.

Compared to the above mentioned works on defense and security SLAs, our primary
defense mechanism tries to migrate a suspicious VM to a dedicated analysis environment,
while respecting the downtime allowed by the SLA and migration history. However, we
define a set of SLA policies described with our own format, and respective deployment
decisions and actions to be taken based on the environment conditions. Our policies are
defined at the VN/VM-level and cover different QoS, privacy, and security concerns in
IaaS clouds.

2.5.2 Security-aware VNE

The research on security-aware VNE focuses on defining and mapping security levels.
Bays et al. [135] considered locations, resource usage, and three distinct confidentiality
levels in an optimization problem. In a following work, Bays et al. [136] developed a
heuristic with end-to-end and hop-to-hop cryptography while considering processing
and bandwidth costs. Zhang et al. [137] proposed a security-aware VNE algorithm based
on reinforcement learning. The authors defined security levels for VNos and SNos. The
VNo can only be mapped to a SNo with equal or higher security level. The training
phase is used to assign SNos a certain security level probability. Wang et al. [138] used
security-level-based node filtering. Liu et al. [139] presented an optimization problem
and a heuristic that considers security levels and resource usage.

Some solutions improved the traditional security level-based solutions. Beşiktaş et al.
[140] mapped VNs of conflicting operators to different SN entities. Liu et al. [141] defined

3 Works that suggest migration-based isolation and detailed analysis of suspicious VMs are published after
the author’s publication [4]♮.
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Table 2.3: Main defense mechanisms against suspicious VMs and co-location

Reference Methods Main objectives/constraints

Hou et al. [114] Recognizing potentially risky VMs
based on historical data, consolidating
risky VMs into specialized servers, risk-
ware VNE heuristic

Risk detection and isolation

Mohamed et al.
[115]

Risk-based VM placement Selecting the host that leads
to minimum risk increase

Bardas et al. [116] Moving target defense: automated re-
newal of the instances

Preventing co-location and
side-channels

Han et al. [117] Learning techniques to classify users,
two-player security game

Increasing the cost of co-
location

Han et al. [118] Security game with probabilistic selec-
tion of different VM allocation policies

Minimizing co-location pos-
sibility, workload balance,
power consumption

Miao et al. [119] Security-aware VM placement: rules,
allocation, and migration based on con-
flicting tenants

Minimizing co-residency,
load balancing, power con-
sumption

Agarwal and Binh
Duong [120]

Previously co-located users first Minimizing co-location

Feizollahibarough
and Ashtiani [121]

Security-aware VM placement based
on VM vulnerability and importance
levels and server vulnerability and ca-
pacity

Reducing the risk of co-
location

Azab and El-
toweissy [122]

Moving target defense by probabilistic
random migrations

Minimizing the probability
of co-residency and side-
channels

Zhang et al. [123] Moving target defense by periodic mi-
gration

Increasing co-location diffi-
culty, optimal migration in-
tervals

Anwar et al. [124] Game theory and periodic migration Increasing co-location cost

Atya et al. [125] Experimental study on co-residency
and side-channels in Amazon EC2,
guidelines for migration-based defense

Co-location, side-channels,
migration costs

Liu et al. [126] Optimization problem Minimizing co-residence of
multiple users, power con-
sumption, workload balanc-
ing

Bedi and Shiva
[127]

Two-player game Co-location with DoS

Deyannis et al.
[128]

Offload the processing of malware anal-
ysis to a remote server

User data privacy, perfor-
mance overhead

Casola et al. [129] Moving target defense by automatically
switching among different admissible
application configurations

Security SLA
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an optimization problem and two heuristics that consider physical isolation, security
levels, splittable VLis, and resource usage. Wang et al. [142] discussed the security issues
at nodes, topology, and network levels. The authors presented flexible and fine-granular
security plans and used a path-based mathematical model and node filtering.

In comparison to these works, we consider locations and domains (in the EVN) and
add the required security VNFs according to certain policies. However, our original
security-aware VNE algorithm maps specific security demands to the respective security
functions offered by the hosts and substrate domains. Furthermore, this algorithm forces
Cross-domain Links (CDLs) to be mapped across firewalls.

2.6 conclusion

Network virtualization solutions use optimization problems in addition to heuristics and
approximation methods for efficiency. The solutions either consider only VNE or combine
it with NFV, and consider some important objectives. However, there is no comprehensive
and efficient solution for complex environments that considers all significant constraints.
Furthermore, there is no solution for the autonomic creation of VNs that combine the
network and the applications and consider different prioritized policies. Finally, the
integration with industrial networks focuses on security VNFs, control, and analyzing
the performance without virtualizing the communication technologies in the form of
isolated VMs. This thesis addresses these challenges.
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E V N C O M P O S I T I O N A N D E M B E D D I N G

This chapter is an extension of the author’s publication [3]♮.

The autonomic composition of VNs and SFCs based on application requirements
is significant for complex environments. In this chapter, we use graph transformation
in order to compose an environment-aware EVN based on comprehensive objectives
and constraints. The EVN can represent physical devices and virtual application and
network functions. We build a generic VNE framework for transforming an AR into an
EVN. Subsequently, we define a set of transformations that reflect primary topological,
performance, reliability, and security policies. The resource usage objective is considered
by the EVN embedding stage and is directly related to energy consumption. Furthermore,
we further discuss privacy-aware cloud security policies in Chapter 6. The transformations
update the entities and demands of the VN and add SFCs that include the required
VNFs.

Additionally, we propose a greedy heuristic for path-aware embedding of the composed
SFCs. This heuristic is appropriate for real complex environments, such as industrial
networks. Furthermore, we present an IIoT use case inspired by Industry 4.0 concepts.
In this use case, EVNs for remote asset management are deployed over three levels;
manufacturing halls and edge and cloud computing. We also implement the developed
methods in ALEVIN and show exemplary mapping results from our use case. Finally, we
evaluate the chain embedding heuristic using a random topology that is typical for such
a use case, and show that it can improve the admission ratio and resource utilization
with minimal overhead.

3.1 introduction

The SFC composition problem has already been discussed by researchers without ad-
dressing different application- and service provider-driven policies. Such policies might
be required, for example, to place certain VNFs in certain locations or to add certain
security functions according to the traffic path and application security requirements.
From another perspective, solving the SFC composition problem without considering the
application functions imposes inconsistency between the composed SFCs and the appli-
cation requirements. For example, when the application functions are also virtualized,
some functions might need to be instantiated over multiple servers for fault tolerance,
load balancing, or server capacity constraints. Such a case requires modifications to the
composed SFC, for example, by adding a load balancing VNF between the SFC and
instances of the application function.

The problem of embedding an SFC is similar to traditional VNE problems. In VNE,
the physical network (SN) and the VN to be embedded (overlay with VNos and VLis)
are represented as graphs. VNE algorithms apply optimization and heuristic methods to
find the optimal mapping of the VN on the SN with different objective functions, such
as admission ratio, embedding costs, path length, or delay. VNE algorithms are needed

23
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in NFV to perform the autonomic composition and embedding of SFCs based on the
application requirements and service provider policies.

In this chapter, we present a model that combines NFV with the node and link
mapping approaches from VNE. This model transforms an abstract AR that defines
certain properties of end-nodes, such as type and location/domain, and it might define
primary security, low latency, and redundancy requirements. The AR is converted using
the graph transformation method to an EVN that combines the application end-nodes
(physical or virtual) with the composed SFCs based on the rules defined by the service
provider. The graph transformation sequentially builds the EVN from the AR based on
policies related to devices’/functions’ types and locations/domains, redundancy, low
latency, security-related network functions, and load balancing. The communication
services among VNos are realized via VNF requests where needed.

Several FGs are possible based on the created VNF request and dependencies among
VNFs. We present an approach for creating all possible FGs using topological sorting,
and location/domain-based verification of the candidate FGs. The EVN embedding
algorithm first embeds the application VNos and VLis that do not include VNF requests.
Subsequently, the SFCs (FGs) are embedded using a greedy heuristic that depends on the
chain and path lengths. The model is supported by a use case, remote asset management,
inspired by the smart factory concepts in Industry 4.0 and based on IIoT concepts.

The motivation behind these methods is to enable autonomic virtual networking
in complex environments with minimal user intervention and complexity in defining
the application requirements. Furthermore, such a set of polices enables the service
provider to satisfy several objectives with feasible priorities. A complete combined VNE–
NFV framework that considers the topology and properties of the physical network
and application requirements is needed for service provides to be able to flexibly and
seamlessly deploy applications in a complex environment.

The rest of this chapter is organized, as follows; Section 3.2 describes our problem,
use case, and system model. Section 3.3 details our VNE methodologies related to AR
transformation and EVN and chain embedding, and discusses the algorithmic complexity
of these methodologies. Section 3.5 presents our implementation in ALEVIN, the compo-
sition and mapping results for a representative AR from the use case, and the evaluation
of the chain embedding algorithm with a random topology. Section 3.6 concludes this
chapter.

3.2 problem description

The addressed problem is an autonomic conversion of user-driven application require-
ments to provider-driven network requirements. This conversion is done by first defining
a simple graph that represents the application end-points and abstract topological, per-
formance, security, and reliability demands. The graph is then stepwise converted to a
VN that represents the physical devices and application virtual nodes with their con-
nectivity, types, locations, and security domains. The connectivity might be simple links
or composite links realized by adding chains of network functions that satisfy both
application requirements and provider policies, and according to the topologies of the
application and physical network. This virtual network is then mapped onto the physical
network by first mapping its nodes according to their properties and resource require-
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ments. Subsequently, the simple and composite links are mapped using the branching
algorithms.

The composite links with SFCs are mapped using a greedy method that checks the
remaining length and next available resources of the target path to make placement
decisions in advance. This adaptive method spreads or consolidates the VNFs over
the path according to its length. Consolidating VNFs on servers saves network band-
width and reduces the delay, even if the traffic will traverse a long remaining network
path after traversing the chain. However, functions that should be placed in different
locations/domains cannot be consolidated in one location/domain.

The target use case is remote asset management in industrial environments with three
ICT levels: IIoT/factory hall level, edge computing level, and cloud computing level.
The used chain mapping method considers the limited resources and dense traffic at the
edge computing level. The random topology used for evaluating the chain embedding
heuristic reflects such a topology.

3.2.1 Use Case

Asset management is the process of tracking the physical assets and making smart deci-
sions based on the gathered data from the assets and environment. Asset management
has been listed as one of the five top industrial IIoT use cases by IBM [143]. In asset
management, information about assets is actively tracked without any human involve-
ment. Several types of sensors, such as temperature, humidity, pressure, and proximity
sensors, are used to gather data that is transferred to edge/cloud computing for making
smart decisions.

Three levels of data processing are represented in this use case: factory hall, edge
computing, and cloud computing. Furthermore, the factory hall includes an IIoT gateway
and several types of devices (such as sensors and cameras) that produce or consume
certain rates of data. The use case also represents multiple locations, and each location
might include either multiple factory halls and one edge computing center, or a cloud
computing center. The edge and cloud computing levels are assumed to host data
analysis and decision making functions. Our use case includes three locations with
multiple domains that belong to the three mentioned levels, as depicted in Figure 3.1.

The cloud computing level located in a separate location (location 1 here) performs
detailed analysis on the gathered data from the manufacturing locations (2 and 3 here).
The analysis results are used for making strategical enterprise decisions, for example,
related to customized production.

The edge computing level located in each manufacturing location (2 and 3) performs
analysis on the gathered data from the factory halls of this location. The analysis results
are used to track the locations of assets and employees and environmental data to
predict/detect anomalies in real-time, which are mainly related to safety and security.
Edge computing can provide local data analysis with accepted latency in order to
activate certain actions in real-time using the actuators in the factory hall. These actions
are required for cases that cannot be detected by the devices in the factory hall and
require data gathering and analysis. For example, detecting physical security breaches
by tracking the placement of certain assets. Additionally, because industrial big data
are often unstructured, they can be compressed and filtered by edge computing before
sending it to the cloud [144].
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Figure 3.1: Use case [3]♮
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Figure 3.2: System architecture [3]♮

In the factory hall level, the IIoT platform allows for easy control and management.
The factory halls in locations 2 and 3 might include IIoT hubs, sensors, actuators, cameras,
assets with beacons, and employees with Bluetooth low energy bracelets, as shown
in Figure 3.1. The environmental information, such as temperature and pressure, are
captured by sensors. There might also be cameras in the factory halls to capture images to
make decisions through image processing in the edge. For example, facial recognition of
employees as an additional security measure and detecting manufacturing problems that
cannot be directly detected by the factory sensors or devices. The locations of assets and
employees are assumed to be broadcasted by beacons and bracelets. IIoT hubs receive
this information and send it to the edge computing in the same location to be analyzed.
The actuators might activate/deactivate certain devices (such as fans) either based on
local decisions or edge or cloud decisions.

3.2.2 System Model

Our main system model (Figure 3.2) includes a system user who provides the AR and SN
definition, the transformation patterns and rules, and VNFs’ dependencies. The AR is an
abstraction level that only defines the application entities and its high-level requirements.
It is used to avoid involving the application user in the definition of all required details
to realize the application from the networking perspective. The AR can be defined as
a directed acyclic graph with VNos and VLis AR(NAR, EAR), where NAR is the set of
nodes and EAR is the set of edges. The demands are represented as ni

AR.demandName and
eij

AR.demandName, where ni
AR ∈ NAR and eij

AR ∈ EAR. The properties are also represented
as ni

AR.propertyName and eij
AR.propertyName.

We use the same notation for the EVN that results from extending the AR. The SN
can be defined as a directed acyclic graph with SNos and SLis SN(NSN , ESN), where
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NSN is the set of nodes and ESN is the set of edges. The resources are represented as
ni

SN .resourceName and eij
SN .resourceName, where ni

SN ∈ NSN and eij
SN ∈ ESN . The proper-

ties are also represented as ni
SN .propertyName and eij

SN .propertyName.
The AR is transformed into an EVN that might include additional application VNos,

VLis, and a VNF request per VLi, where needed. The VNF request defines the required
VNFs and their dependencies that represent a mandatory order of VNFs, such as encryp-
tion before decryption. The dependencies are predefined in a general VNF graph that
defines all available VNFs and their dependencies.

The proposed approach is based on graph transformation [145] in the network virtual-
ization context. The transformation logic applies certain operations (rules) to generate
the EVN from a given AR. The transformation is a formalization of a certain policy
that is defined by the service provider. It is composed of a pattern and a set of rules.
The pattern is a set of conditions to be checked on the input networks, and the rules are
the operations to be applied to network entities that match the pattern. These operations
are adding, deleting, and updating specific VNos, VLis, VNFs, and demands in the
AR and intermediate EVNs. We apply one transformation function per pattern in a
predefined order of patterns. A transformation function can take the SN, a pattern P, AR,
and intermediate EVN as inputs and return the intermediate/final EVN as output.

After the transformation, we use topological sorting to create all possible FGs for each
VNF request based on the VNF dependencies. The FG is also modeled as an acyclic
directed graph FG = (NFG, EFG) with VNFs ni

FG, and edges that represent data flow eij
FG.

Usually, multiple FGs are possible, but one valid FG is selected for each VLi based on
location/domain constraints. The embedding logic first maps the application VNos on
selected SNos. Subsequently, it finds the mapping paths for each VLi using the branching
algorithms. Then it maps each VNF request holding VLi using the chain embedding
heuristic, and each simple VLi by verifying its demands.

The problem definition is summarized in the following list and Algorithm 1. The trans-
formations, EVN embedding, and FG embedding are detailed in Section 3.3:

• A physical topology SN(NSN , ESN) is defined by the service provider.

• The application requirements AR(NAR, EAR) are defined by the user.

• A set of policies (defined by the service provider), where each policy is composed of:

– A pattern P: conditions on the SN and EVN for checking and comparison of
properties, demands, and resources.

– Transformation T: if P match is found, then perform T(EVNi−1, SN) = EVNi,
where EVN0 = AR, and T is a set of rules.

– A rule R adds or copies VLis or VNos, adds or changes the properties or
demands, or adds VNFs to the VNF demand of a VLi.

• The policies are applied with a predefined order on the input AR and SN.

• EVN mapping:

– For each VLi in the final EVN, if the VLi has a VNF demand, perform topolog-
ical sorting on the VNF demand:

TS(vn f Demand, vn f Dependencies) = List o f FGs
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– For each VLi in the final EVN, if the VLi has a VNF demand, verify the created
FGs for location and domain constraints and select a valid FG.

– Map EVN nodes on the SN based on their properties and demands.

– Map EVN simple VLis based on their properties and demands.

– For each VLi with a VNF demand, map a selected FG using the chain embed-
ding greedy heuristic.

Algorithm 1: Main EVN algorithm
1 Input: SN(NSN , ESN), AR(NAR, EAR)
2 EVN = AR
3 for policym ∈ policies do
4 if policym.pattern = True then
5 for R ∈ policym.trans f ormation.rules do
6 R(EVN, SN) = EVN
7 end
8 end
9 end

10 for ni
AR ∈ EVN.nodes do

11 Map(ni
AR) = nk

SN
12 end

13 for eij
AR ∈ EVN.links do

14 if eij
AR.vn f Damand = NULL then

15 Map(eij
AR) = Branching(eij

AR.source, eij
AR.destination)

16 end
17 else
18 FG = AllTopologicalSort(eij

AR.vn f Damand)[0]

19 paths = Branching(eij
AR.source, eij

AR.destination)
20 ChainEmbedding(paths, FG)

21 end
22 end

Figure 3.3 shows an exemplary scenario of the main EVN algorithm. The SN includes
two locations with compute instances (servers), where location 1 includes sensors with
specific types and data loads. The AR requests connecting all sensors from location 1 to a
compute instance from location 2. The node type transformer adds VNos and VLis that
represent all matching sensors and adds an application gateway that connects them to
the compute instance in location 2. The application gateway is allowed to be mapped
on an IoT Hub. The security transformer adds the required security VNFs to the VLi
between the locations. Then, the bandwidth and CPU transformers adapt the demands
of all VLis and VNos (including those inside the security SFC here) accordingly. Finally,
the EVN embedding algorithm maps the VNos and VNFs according to locations and
maps the VLis accordingly.
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Figure 3.3: An exemplary scenario of the main EVN algorithm
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3.2.3 General Dependency Graph

The generic dependency graph includes all possible VNFs, as depicted in Figure 3.4,
where NM = network monitoring, ENC = encryption, DEC = decryption, FW = firewall,
and DPI = deep packet inspection. The similar VNFs distinguished by ”source” and
”destination” represent the placement of the same functions in different domains/loca-
tions according to the traffic direction. The transformations add these security functions
only for cross-domain SFCs [5]♮. The arrows show the dependencies between VNFs,
which is a transitive relation. For instance, the arrow from the source firewall to the
encryption function means that the firewall VNF depends on the encryption VNF and
must, therefore, be executed after it. Note here that the dependencies are in the reversed
direction from the assumed traffic direction.

Figure 3.4: General dependency graph [3]♮

Furthermore, the network monitoring VNF is assumed to have no dependencies to
create a scenario in which several FGs are possible. The TAS VNF is a latency reduction
function (see Section 3.3.1.4) without dependency and it shall be allocated on each server
hosting the FG. Therefore, the FG composition method only adds it to the beginning of
the FG. We assume that deploying a virtual TAS on a host means adding its functionality
to all other VNFs that should be customizable to perform multiple tasks. The multi-
objective goal here means that we can perform security and scheduling functions by one
VNF. We note here that using virtual TAS in real environments requires either using
only standard servers as network hardware or TAS-capable network hardware with the
deployment of a schedule synchronized with the TAS SFC schedule. Figure 3.5 presents
the FGs that are possible from the general dependency graph.

3.3 methodology

In this section, we detail the graph transformation methods used to compose the EVN,
the FG composition, EVN embedding, and FG embedding algorithms. Furthermore, we
present a detailed calculation of the complexity of the whole approach in addition to the
branching algorithms from Chapter 5.

3.3.1 Transformations

The following transformations are applied with the same order on the AR and SN. This
order reflects a service provider general policy. First, the redundancy policy is only
applied to the main VLis in the AR. Second, the target devices are added based on
type, location, and domain. Third, the security VNFs are added to cross-location and
cross-domain VLis. Fourth, a low latency specific VNF is added to the chain if needed.
Fifth, the bandwidth is updated for all VLis based on data sources and bandwidth
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Figure 3.5: Possible FGs for the general dependency graph [3]♮

multipliers, then the CPU demands based on bandwidth demands. Finally, the required
load balancing at a destination application VNo is added. For each transformation,
the whole SN is checked for the pattern match, and a new EVN is created and given to
the next transformation.

3.3.1.1 Redundancy

This transformation copies the VLi with redundancy demand. Original and new VLis are
both provided with a property ”redundant link” that holds an identifier of the backup
link. This is used, for example, by the mapping algorithm to find the most disjoint path
(maximal branching) for the second link from the k shortest paths between the source and
destination, found by Dijkstra algorithm. The chain embedding forces the most disjoint
paths, even if the VLi holds a VNF demand. However, the details of the reliability-aware
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minimal and maximal branching including the reliability values are left to Chapter 5 to
reduce the complexity in this chapter.

P : {eij
AR|e

ij
AR.redundancyDemand = True}

T(SN, AR) : {AR ∪ copy(eij
AR)}

3.3.1.2 Nodes Types

A single VNo in the AR might represent multiple required devices in the SN. For example,
the administrator might need to include all of the sensors from a certain type in a factory
hall in an AR, but this is very complex. This transformation adds to the EVN the VNos
that represent certain physical devices using the ID demand. The ID demand in VNE and
ALEVIN forces a certain VNo to be mapped on a certain SNo. This mapping is required
to create the respective VLi and map it. This transformation is applied on each VNo
and the pattern match is checked for each SNo. A new VNo is added to the AR with an
ID demand that matches the ID of the compared SNo if the types of both are ”device”,
and the subtypes, locations, and domains are equal. Subsequently, a VLi between the
new VNo and the original VNo is added.

The new VNo and VLi are copies of the original to hold the same requirements.
However, in our SN definition format, we attach a data resource to all devices with the
parameters of cycle time and frame size. These parameters are copied to the matching
new VNo to calculate its bandwidth demand by the bandwidth transformation. Here, we
assume that each VNo defined in the original AR to represent a physical device has one
outgoing edge. When the pattern is checked for all SNos, the original VNo is converted to
type ”application” and subtype ”gateway”. This method will force mapping the original
VNo that represents a set of devices to a gateway.

P : {nk
SN .type = ”device”∧ nj

AR.type = ”device”∧ nk
SN .subtype = nj

AR.subtype

∧nk
SN .location = nj

AR.location ∧ nk
SN .domain = nj

AR.domain}

T(SN, AR) : {AR ∪ ni
AR|ni

AR = copy(nj
AR), ni

AR.ID_Demand = nk
SN .ID,

ni
AR.dateDamand = nk

SN .dateResource}{AR ∪ eij|eij = copy(ejl)}

After T is applied to all SNos:

{nj
AR.type = ”application”, nj

AR.subtype = ”gateway”}

3.3.1.3 Security VNFs

In this transformation, we assume that the service provider defines certain security
policies. For example, for a cross-location or cross-domain VLi, an SFC with certain
security VNFs must be attached to this VLi. Our transformation policies presented here
consider both cases. For cross-location VLis, encryption, firewall, deep packet inspection,
and monitoring VNFs are added to the VNF demand of the VLi. We assume that
encryption is not needed for cross-domain VLis in the same location. Except for the
network monitoring function, each type of VNF is attached to the source or destination
location/domain. Specific location/domain demands are attached to the added VNFs
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based on the location/domain demands of the AR. However, the general dependency
graph forces the order of these VNFs in the FG. The VNFs in the link FG are assigned
the node type ”VNF”.

P : {eij
AR|n

i
AR.location ̸= nj

AR.location}

T(SN, AR) : {eij
AR.v f nDemand.add(ENC, FWS, FWD, NM, DEC, DPI)}

P : {eij
AR|n

i
AR.location = nj

AR.location ∧ ni
AR.domain ̸= nj

AR.domain}

T(SN, AR) : {eij
AR.vn f Demand.add(FWS, FWD, NM, DPI)}

3.3.1.4 Low Latency VNF

When a VLi in the AR has a low latency demand, a specific type of VNF is added to
its VNF demand, virtual TAS [2]♮, which can reduce the latency of traffic processed by
servers by scheduling it based on its cycle and load. However, the order of this VNF
in the chain is based on the mapping results. This means that it shall be instantiated
at each server that hosts the VNF demand. For this reason, the chain composition
algorithm executed after the transformations adds this VNF to the beginning of the FG.
Subsequently, the EVN embedding algorithm maps this VNF on each server as the last
VNF from the FG.

P : {eij
AR|e

ij
AR.latencyDemand = True}

T(SN, AR) : {eij
AR.vn f Demand.add(TAS)}

3.3.1.5 Bandwidth

Adding VNos, VLis, and VNFs to the EVN requires the adaptation of the resource
requirements. For example, adding a VNo that represents a certain device requires
adapting the bandwidth demand of the new and original VLis based on the parameters
of the data resource of the device. Subsequently, all of the next VLis shall be updated,
including these inside the FG. This approach can be applied to feed-forward VNs, which
we assume in our use case and use in defining our exemplary ARs.

We consider two types of VNos, VNos that have no incoming edges and intermediate
VNos that have incoming edges. For each VNo that has no incoming edges, its produced
load per interval, if exists, is used to calculate the required bandwidth that is assigned to
all of its outgoing edges.

P : {eij
AR|e

ij
AR.bandwidthDemand = 0∧ ni

AR.inEdges = 0}

T(SN, AR) : {eij
AR.bandwidthDemand =

ni
AR.dataDemand.size/ni

AR.dataDemand.cycle}

For intermediate VNos that have incoming edges, we sum the required bandwidth
of all incoming edges and set it as demanded bandwidth for all outgoing edges. If the
VNo has the property of multiplier, then it is considered during the calculation for the
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outgoing bandwidth demand. In our work, we define a specific bandwidth multiplier for
each specific VNF type as a property. The default value is 1.

P : {eij
AR|e

ij
AR.bandwidthDemand = 0∧ ∃e ∈ ni

AR.inEdges : e.bandwidthDemand ̸= 0}

T(SN, AR) : {eij
AR.bandwidthDemand =

ni
AR.inEdges

∑
k=0

(eki
AR.bandwidthDemand× ni

AR.bandwidthMultiplier)}

3.3.1.6 CPU and Load Balancing

After adapting the bandwidth demands, we adapt the CPU demands of the VNos and
VNFs using the CPU factor property, which is used to determine the CPU demand from
the incoming bandwidth.

{T(SN, AR) : ni
AR.CPUDemand = ni

AR.incomingBandwidth× ni
AR.CPUFactor}

When the resulting CPU demand of a VNo is larger than the minimum CPU capacity of
all application SNos (servers) in the same domain, this VNo is copied k times, where k is
the ratio of the CPU demand and minimum CPU capacity. The original VNo is converted
to type ”loadBalancer” and a link between it and each new VNo is created. This is a
form of coordination between the EVN composition and embedding stages to avoid the
re-transformation of the AR to an EVN as a result of a failed mapping in the embedding
stage due to a lack of resources. However, and for simplicity, we currently only apply
this to application VNos with incoming edges and no outgoing edges. This exemplary
scenario represents a data analyzer that is an application end-node in the AR.

P : {ni
AR.type = ”application”∧ ni

AR.inEdges > 0∧ ni
AR.outEdges = 0

∧ni
AR.CPUDemand > (C = min(nj

SN .CPUResouce|nj
SN .domain = ni

AR.domain))}

T(SN, AR) : {AR ∪ {n1
AR, ...nl

AR, ...nk
AR|nl

AR = copy(ni
AR),

nl
AR.CPUDemand =

ni
AR.CPUDemand

k
, k =

ni
AR.CPUDemand

C
}}

{AR ∪ {ei1
AR, ....eil

AR, ...., eik
AR|eil

AR.bandwidthDemand =
ni

AR.incomingBandwidth
k

ni
AR.subtype = loadBalancer}}

3.3.2 Creating FGs Using Topological Sorting

In the chain composition stage, the possible FGs are calculated. The authors in [41]
introduce a context-free grammar to formalize the request. Topological sorting is a
known graph method to sort a directed acyclic graph. This method is used in several
works on SFC composition, such as [47] and [146], in order to generate the FG. Our
proposed approach is also based on topological sorting, but we calculate all possible
FGs. Based on [147], the topological ordering of a graph G = (V, E): ord : V → 1...n
for n = |V| exists, if ∀(v, w) ∈ E: ord(v) < ord(w). For each acyclic graph, a topological
ordering exists, and each graph that has a topological ordering is acyclic.
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Using topological sorting for the chain composition enables us to prove whether the
VNF request is cycle free and if a possible FG can be calculated. It might happen that the
dependencies among VNFs are not defined correctly by the service provider leading to
cyclic VNF requests. For example, for a VNF request including encryption and decryption,
where both functions depend on each other, no valid chaining is applicable due to the
dependency loop. A simplified approach for calculating the topological ordering is to
iterate over all VNos and taking a VNo v in each iteration, where inDegree(v) = 0, and
adding it to an array. Afterward, v and its outgoing edges are removed from the graph.
This operation is repeated until there is no VNo left with inDegree = 0. If the graph is
empty, then a topological ordering exists, otherwise it is not cycle free. The associated
pseudo-code, which is based on [147], is presented in Algorithm 2.

Algorithm 2: Topological sorting
1 TopologicalSort (G)
2 index = 0
3 ordering[]
4 while G has at least one node n where inDegree(n) = 0 do
5 ordering[index] := n
6 index ++
7 G := G− {n} ; // Remove node and its outgoing edges from G

8 end
9 end

In the context of chain composition under the location and domain constraints, it is
essential to calculate all possible sortings for a given graph G. Then, the resulting FGs
are verified against the domain and location constraints. The verification checks the
consistent order of domains and locations in the FG. This means that the first continuous
part of the FG shall belong to the source domain/location, and a second continuous part
of the FG shall belong to the destination domain/location. Then, a valid FG is selected
for mapping the SFC. To the best of our knowledge, this method of finding all sortings
and verifying FGs based on location and domain constraints is not addressed by the NFV
community.

For this purpose, the above-mentioned pseudo-code has to be adapted to calculate
another ordering when the graph has multiple VNos where the inDegree = 0. Algorithm 3

represents a pseudo-code for calculating all of the possible sortings for a given graph. This
Algorithm recursively calculates all possible orderings for a given graph G. The algorithm
iterates over all VNos in the graph. For each VNo, if indegree = 0, it is added to the
tentative result and removed with all outgoing edges from the graph. If the graph is not
empty, the function is recursively called until all VNos are visited or the graph is empty,
then the tentative result is assumed to be a valid ordering and is added to the result.

3.3.3 EVN Embedding

EVN embedding is the combination of VNE and NFV resource allocation, and it can
be separated into two stages. The first stage is to embed all of the nodes and simple
VLis, and the second stage is to embed the VLis with a VNF request. The node map-
ping first considers the ID demand to map devices (specific VNo on a specific SNo).
Subsequently, the type, subtype, location, and domain are considered for mapping the
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Algorithm 3: Finding all topological sortings
1 ordering[]
2 AllTopologicalSort (G, tentativeResult)
3 G′ = copy(G)
4 while G’ has at least one node n where inDegree(n) = 0 do
5 tentativeResult′ = tentativeResult
6 tentativeResult′.add(n)
7 G′ := G′ − {n}
8 if G′ = ∅ then
9 ordering ∪ tentativeResult′

10 else
11 AllTopologicalSort (G’, tentativeResult)
12 end
13 end
14 end

other nodes. For the nodes of type ”application” and subtype ”computeInstance”, the CPU
demand/resource is considered.

The link mapping uses the branching algorithms that use Eppstein’s algorithm [148]
for finding k shortest paths between the source and destination VNos of the VLi. For the
simple link mapping (without VNF demand), the candidate paths are additionally
verified for the bandwidth demand. For mapping the VLis with VNF demand (VNF
request), the candidate paths are given to the chain embedding heuristic. In both cases,
the redundant VLi is mapped on another candidate path from the k shortest paths. This
path is chosen based on the branching policy used, for example, as the path with the
least number of common SNos with the path used for the original VLi.

3.3.4 Chain Embedding Heuristic

In [47], the authors assume that each SNo on the path can host one VNF. The algorithm
presented in [46] is based on backtracking and, in the case of rejection, tries a different
path starting from the last successfully embedded VNo. Finding a path where the number
of hops exactly matches or is greater than the number of VNFs might be impossible or
inefficient, in particular with our use case. Our proposed embedding algorithm tries
to find a solution based on the FG or path length. It is assumed that a SNo can host
multiple VNFs when the resource capacity allows. Based on this assumption, a path with
fewer hops than the FG can be utilized. On the other hand, for a path longer than the
FG, the algorithm tries the next hop on the path in case of lack of resources. Algorithm 4

represents the pseudo-code for our proposed algorithm.

As input, a path connecting two VNos embedded onto different SNos and the FG are
given. Initially, the algorithm takes the first nodes in the FG and the path. If the target VNF
can be allocated on the current SNo, then the algorithm verifies if the number of residual
VNFs is smaller or equal to the residual hops on the path. If possible, the algorithm tries
to embed multiple VNFs on a target SNo when the residual path length is less than the
residual FG length. This is intended to find a valid embedding to avoid backtracking.
If available, the next FG’s node and the next hop on the path are verified.
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Algorithm 4: Greedy chain embedding algorithm
1 ChainEmbedding (path, FG)
2 path ; // Including all nodes (source, destination, and intermediate nodes)

and links on the path

3 TSN = path.getFirst()
4 for ni

FG ∈ FG do
5 if verify(ni

FG, TSN) then
6 mapping(ni

FG, TSN))
7 if residualChainLength <= residualPathLength AND verify(ni+1

FG , path.next()) then
8 TSN = path.next()
9 end

10 else
11 while (fulfilled = false) OR (path.next() ∈ SN) do
12 fulfilled = verify(ni

FG, TSN)
13 if fulfilled then
14 mapping(ni

FG, TSN))
15 if residualChainLength <= residualPathLength AND verify(ni+1

FG ,
path.next()) then

16 TSN = path.next()
17 end
18 break;
19 end
20 TSN = path.next()
21 end
22 if fulfilled = false then
23 Reject request;
24 end
25 end
26 veri f yResidualPath(drout, residualPath) ; // If available, verify residual

links on the path with respect to the bandwidth output of the last

node in the FG

27 end
28 end

If the verification is successful, then the target SNo is set to the successor of the current
one. This verification is intended in this context to prevent setting the target SNo to the
next SNo if it might not be able to fulfill the requirements. If the residual FG is shorter
than the residual target substrate path, we try a balanced embedding over all SNos on the
path to avoid consolidation. However, because the path might include SNos from different
domains/locations or can not host the next VNF, it is necessary to verify whether the
next SNo is able to provide enough resources and fulfills the special requirements of the
next FG element.

In the next step, the algorithm takes the next VNo in the FG and verifies whether a
successful allocation is possible. In case of no possible allocation, it tries to verify whether
the next SNo on the path can fulfill the requirements and, otherwise, it tries the next
SNo until the last SNo is reached. In addition to VNo verification, the links inside FGs
are verified against the SLis. When the last VNF is not mapped to the destination SNo
on the path, then the outgoing data rate drout of the last VNF has to be verified over the
residual path.
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Figure 3.6: FG embedding example [3]♮

Figure 3.6 presents an example of the FG embedding. The initial FG contains four VNos
(V1, V2, V3, V4) and the target substrate path has four SNos (S1, S2, S3, S4). Resources
and demands are assigned to nodes and links in both the FG and substrate path. Nodes
and links currently under investigation are dotted. The embedding starts by checking
whether V1 can be hosted on S1. Because enough resources are available, the assignment
is made here and the new target SNo is set to S2. Again, the algorithm verifies whether
V2 can be embedded on S2 and performs the assignment. The target SNo remains S2
since the link bandwidth demand between V2 and V3 cannot be fulfilled on the link
between S2 and S3.

In the next step, VNo V3 is assigned to S2 and the target SNo is set to S3. Next, the al-
gorithm verifies whether V4 can be hosted on the target SNo S3. In this case, it is not
possible since S3 has no enough CPU resources. Therefore, the algorithm keeps V4 as
the target FG VNo and verifies whether the next SNo on the path S4 provides sufficient
resources. S4 provides enough resources and the assignment is performed. Because all
FG VNos are embedded, the algorithm returns true and terminates. For simplicity, this
example considers resource capacities and not domains and locations.

The presented example shows that assuming the same length of the FG and substrate
path is not reasonable. It might be required in certain scenarios to embed multiple VNFs
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on a single SNo in order to find a valid solution. The proposed algorithm performs an
embedding while taking link and node constraints into account through forward verifica-
tion.

3.3.5 Complexity of the Proposed Methods

We first make the following assumptions to estimate the complexity of the proposed
algorithms:

• Neglecting the operations applied by the rule on only a small subset of the EVN
entities.

• Considering that the maximum size of the final EVN (nodes M, links L) is known
and used to estimate the complexity even for intermediate EVNs.

• (D, D) is the size of the dependency graph. We consider that, in NFV, a function
typically has one dependency, so the number of edges in the dependency graph
can be approximated to the number of VNFs. The size of the dependency graph is
considered as the size of each VNF demand.

• P is the diameter of the SN graph (N,E), which is the number of edges in the
shortest path between the most distant vertices. We use this worst-case value as the
length of the shortest path on which the chain will be embedded.

• We are calculating the complexities in the worst cases without considering locations
and domains that might reduce the search space for node and link mapping,
in particular, in specific topologies, like in our use case.

We estimate first the complexity of each step in our system model:

• Transformations:

– Redundancy – O(L): checking the redundancy demand of all EVN links and
copying them when needed.

– Node types - O(N.M): comparing certain properties of SNos and VNos and
adding the required entities to the EVN with their demands.

– Security – O(L): comparing the source and destination locations/domains of
the EVN links and adding the required VNFs.

– Low latency – O(L): checking the latency demand of the EVN links and adding
the TAS VNF where needed.

– Bandwidth – O(L): checking the bandwidth demand of each VLi and adjusting
it based on the bandwidth demands of the incoming edges to its source VNo.

– CPU - O(M): adjusting the CPU demand of all EVN nodes based on the
incoming bandwidth, cloning certain nodes, and then adding a load balancing
function.

– Total complexity of the transformations: O(4L+M (1+N)) = O(L + M.N), when
considering that N ≫ 1.
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• Topological sorting and FG verification: the complexity of finding all topological
sortings depends in the worst case on the number of permutations in the group
of VNF types D (D!). In our work, we define 7 VNF types and this value is 5040.
The verification of each FG takes D steps. In the worst case, these operations shall
be performed for each VLi. The worst-case complexity is O(L.D.D!). However, we
simplified this method and reduced the effect of D by integrating the FG verification
with finding the topological sortings. In our scenario, we can find a valid FG after
few sortings, and we can neglect the effect of D to reduce the real complexity to
O(L).

• Node mapping – O (N.M): finding the SNo with the matching ID, properties,
or resources of each VNo.

• Chain embedding - O (2P)=O(P): when mapping a VNF is tried on a SNo, the de-
mands are compared to the resources. A VNF can be mapped on the latest SNo
used from the path or any other previous node. In the worst case, all path SNos
are checked twice for each placed VNF and next VNF that cannot be placed on the
same SNo, so a following one is checked. The P value varies with the SN size.

• Link mapping: the complexity of the k-shortest path algorithm is O(E+N.log N))
[148]. This algorithm is used for mapping all VLis. The branching methods in
Chapter 5 process each pair from the k-shortest paths and check the number of
common nodes, and check the reliability of the path pair. Finding the pairs is equal
to finding combinations (k,2), which has the complexity of k!/2(k− 2)! = k.k− 1/2.
Since k is small, this value is small and has no effect on the O notation. For
example, if we are selecting 5 paths, this value is 10. For each pair, the nodes
of the paths are compared, with the complexity of P!/2(P− 2)! = P.P− 1/2 =

O(P2). We assume for the worst case that all VLis have VNF demands for which
chain embedding will be performed. The total complexity of link mapping is:
O(L.(E + N.logN + P + P2)) = O(L.(E + N.logN + P2)). In tree-like topologies
like in our use case, P≪ E, and the complexity of the link mapping is O(L.(E+N.log
N)).

The total complexity of the solution is:

O(L + N.M + L + N.M + L.(E + N.logN)) = O(N.M + L.(E + N.logN))
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3.4 implementation

ALEVIN [11] is an open-source framework written in JAVA and used to develop, compare,
and analyze VNE algorithms. The SN and VN are represented as directed or undirected
graphs in which the network entities hold demands and resources that represent either
consumable resources or properties, such as ID. In this work, we add type, location,
domain, redundancy, latency, and VNF demands and resources. The embedding of each
node/link in the VN only succeeds when there are enough resources and matching
properties in SN nodes/paths. The Visitor Pattern method is used in ALEVIN to map
demands on the respective resources and to occupy (reserve) consumable resources.

An extension with NFV support is available for ALEVIN and developed in [46]. How-
ever, we developed our own NFV extension that fits our system model and transformation
methods. We added a generic structure to ALEVIN to define transformations that are
based on an abstract transformation class and method that takes the VN and SN as input.

ALEVIN implements several node and link mapping algorithms, including coordinated
node and link mapping. It also implements several evaluation metrics, such as runtime,
admission ratio, and cost. However, ALEVIN is highly flexible for adding new algorithms
and metrics. It also provides an evaluation framework, in which different forms of
random topologies can be defined with specific parameters. This framework also enables
the definition of used mapping algorithms, metrics, and ranges of values for consumable
resources and demands. ALEVIN supports multiple data formats, mainly Extensible
Markup Language (XML), for representing the SN and VN and mapping the results.

For fixed topologies that represent our use case, we use the easier JavaScript Object
Notation (JSON) format to represent the AR, SN, and mapping results. For this purpose,
we developed the required parsers that convert the JSON structures to the respective
networks, entities, and resources and demands. The AR JSON definition format defines
the application end-points and connectors. For each node, an ID, name, type, subtype, lo-
cation, domain, and, if applicable, CPU demand are defined. For the connector, the source
and destination nodes are defined, and whether redundancy and low latency are required.
The SN JSON definition format is similar but includes resources instead of demands,
data resources with cycle and size, and bandwidth resources for SLis. Listings 3.1 depicts
an exemplary definition of an AR from the use case in Figure 3.1. This AR connects the
temperature sensors from a factory hall to a compute instance in the edge computing
level.

Listing 3.1: JSON format for AR definition

1 {

2 "applicationRequest": {

3 "applicationEndPoints": [

4 {

5 "id": "1",

6 "name": "src",

7 "demands": [{

8 "name": "typeDemand",

9 "demandedNodeType": "device",

10 "demandedNodeSubType": "temperatureSensor",

11 "function": "temperatureSensor",

12 "location": "Location3",
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13 "domain": "Domain3"

14 }]

15 },

16 {

17 "id": "2",

18 "name": "dst",

19 "demands": [{

20 "name": "typeDemand",

21 "demandedNodeType": "application",

22 "demandedNodeSubType": "computeInstance",

23 "function": "dataAnalyzer",

24 "location": "Location3",

25 "domain": "Domain2"

26 },

27 {

28 "name": "cpuDemand",

29 "demandedCPU": "20"

30 }]

31 }],

32 "applicationConnectors": [{

33 "id": "1",

34 "name": "link1",

35 "srcNode": "1",

36 "dstNode": "2",

37 "demands": [

38 {

39 "name": "redundancyDemand",

40 "parameters": []

41 }

42 {

43 "name": "lowLatencyDemand",

44 "parameters": []

45 }

46 ]

47 }]

48 }

49 }

Our SN topology that represents the use case is depicted in Figure 3.7. Listing 3.2 depicts
the map of the SN represented by our JSON structure, which is only partially showed
for simplicity. The JSON definition format of the mapping results is further detailed in
Section 3.5.1.
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Figure 3.7: Substrate network topology
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Listing 3.2: JSON format for SN definition

1 {

2 "substrateNetwork": {

3 "substrateNodes": [

4 {

5 "id": "2",

6 "name": "SNo 2",

7 "resources": [{

8 "name": "typeResource",

9 "nodeType": "device",

10 "nodeSubType": "temperatureSensor",

11 "function": "temperatureSensor",

12 "location": "Location2",

13 "domain": "Domain3"

14 },

15 {

16 "name": "dataResource",

17 "cycle": "1",

18 "size": "20"

19 }]

20 },

21 {

22 "id": "4",

23 "name": "SNo 4",

24 "resources": [{

25 "name": "typeResource",

26 "nodeType": "application",

27 "nodeSubType": "gateway",

28 "function": "gateway",

29 "location": "Location2",

30 "domain": "Domain3"

31 },

32 {

33 "name": "cpuResource",

34 "cycles": "1000"

35 }]

36 },

37 {

38 "id": "6",

39 "name": "SNo 6",

40 "resources": [{

41 "name": "typeResource",

42 "nodeType": "network",

43 "nodeSubType": "switch",

44 "function": "switch",

45 "location": "Location2",

46 "domain": "Domain3"

47 }]

48 },

49 {

50 "id": "8",

51 "name": "SNo 9",
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52 "resources": [{

53 "name": "typeResource",

54 "nodeType": "application",

55 "nodeSubType": "computeInstance",

56 "function": "computeInstance",

57 "location": "Location2",

58 "domain": "Domain2"

59 },

60 {

61 "name": "cpuResource",

62 "cycles": "3000"

63 }]

64 }

65 ],

66 "substrateLinks": [{

67 "id": "2",

68 "name": "SLi 2",

69 "srcNode": "2",

70 "dstNode": "4",

71 "resources": [{

72 "name": "bandwidthResource",

73 "bandwidth": "100000000"

74 }]

75 },

76 {

77 "id": "4",

78 "name": "SLi 4",

79 "srcNode": "4",

80 "dstNode": "6",

81 "resources": [{

82 "name": "bandwidthResource",

83 "bandwidth": "1000000000"

84 }]

85 },

86 {

87 "id": "8",

88 "name": "SLi 8",

89 "srcNode": "6",

90 "dstNode": "9",

91 "resources": [{

92 "name": "bandwidthResource",

93 "bandwidth": "1000000000"

94 }]

95 },

96

97 ]

98 }}
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3.5 evaluation

The evaluation considers the validation of the approaches using the fixed topology of the
use case, and the runtime, acceptance ratio, and path utilization metrics for the chain
embedding heuristic.

3.5.1 Applying the Methods to the Use Case

Our fixed topology that represents the use case includes 12 ARs, as shown in Figure 3.1.
These ARs represent the communication between the factory hall level and edge comput-
ing level, and communication between the edge computing level and cloud computing
level. The ARs in Figure 3.1 represent AR categories, but the real ARs in the definition
files include specific end-points, for example, a certain type of sensors. We show in this
section the generated EVN for a specific AR (AR11) in Figure 3.8. We also show the
relevant part of our substrate topology defined in ALEVIN with the mapping results for
AR11 in Figure 3.9.

Figure 3.8: Generated EVN for AR11 [3]♮

AR11 connects an application VNo (data gathering) from the edge computing level
(location 2, domain 2) to an application VNo (data analysis) from the cloud computing
level (location 1, domain 1). AR11 defines redundancy and low latency requirements and
connects different locations and domains. For these requirements, two redundant VNF
requests are created with encryption, firewall, DPI, and monitoring VNFs. Furthermore,
TAS VNF is added.

The resulting FGs from the chain composition stage are similar to Figure 3.5. As men-
tioned before, TAS VNF is only added to the beginning of the FG and the chain embedding
algorithm adds it to each server that hosts the FG. A load balancer is added and the
target data analysis VNo is cloned, according to the calculated CPU demand and server
capacity. The mapping results in Figure 3.9 show the mapping of the two redundant FGs
over two completely disjoint paths (dotted line for FG1 and dashed line for FG2).
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Figure 3.9: Embedding AR11 in the SN [3]♮

The mapping results are represented using a JSON format that shows for each VNo
the mapping SNo and for each simple VLi the mapping path. However, for VLis with
VNF demand, the node and link mappings of the FG are combined. For the FG internal
VLis, the types of the source and destination VNFs are shown. The SNo that hosts a set
of VNFs and relevant FG VLis are shown by SLis for which the source and destination
are that SNo. Listing 3.3 depicts a partial embedding result for one SFC from AR11 that
belongs to one of the VLis between the DG and LB applications functions.

Listing 3.3: Mapping result

1 {

2 "nodeMapping": [

3 {

4 "ID": "1",

5 "name": "DG",

6 "MappingSNo": "1"

7 },

8 {

9 "ID": "2",

10 "name": "LB",

11 "MappingSNo": "10"

12 }

13 ]

14 "linkMapping": [

15 {

16 "ID": "1",

17 "VNFDemand": "yes",

18 "SrcSNo": "1",
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19 "DstSNo": "10"

20 "mapping": [

21 {

22 "linkType": "SLi"

23 "SrcNode": "1",

24 "DstNode": "2"

25 },

26 {

27 "linkType": "SLi"

28 "SrcNode": "2",

29 "DstNode": "2"

30 },

31 {

32 "linkType": "FG"

33 "srcNetworkFunction": "NM",

34 "dstNetworkFunction": "ENC"

35 },

36 {

37 "linkType": "FG"

38 "srcNetworkFunction": "ENC",

39 "dstNetworkFunction": "FWS"

40 },

41 {

42 "linkType": "FG"

43 "srcNetworkFunction": "FWS",

44 "dstNetworkFunction": "TAS"

45 },

46 {

47 "linkType": "FG"

48 "srcNetworkFunction": "TAS",

49 "dstNetworkFunction": ""

50 },

51 {

52 "linkType": "SLi"

53 "sSrcNode": "2",

54 "sDstNode": "5"

55 },

56 {

57 "linkType": "SLi"

58 "sSrcNode": "5",

59 "sDstNode": "7"

60 },

61 {

62 "linkType": "SLi"

63 "sSrcNode": "7",

64 "sDstNode": "7"

65 },

66 {

67 "linkType": "FG"

68 "srcNetworkFunction": "",

69 "dstNetworkFunction": "FWD"

70 },

71 {
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72 "linkType": "FG"

73 "srcNetworkFunction": "FWD",

74 "dstNetworkFunction": "DEC"

75 },

76 {

77 "linkType": "FG"

78 "srcNetworkFunction": "DEC",

79 "dstNetworkFunction": "DPI"

80 },

81 {

82 "linkType": "FG"

83 "srcNetworkFunction": "DPI",

84 "dstNetworkFunction": "TAS"

85 },

86 {

87 "linkType": "SLi"

88 "sSrcNode": "7",

89 "sDstNode": "10"

90 }]

91 }

92 ]

93 }

With such a complex environments and set of constraints, evaluating the algorithms
with random topologies and using traditional VNE metrics is challenging. The efficiency
of the approach can be judged through the theoretical complexity. What is significant
to both the provider and customer is the validation of the mapping results. In this
perspective, we suggest using validation policies mapped to the original policies. The
input of these policies shall be the SN topology, the initial AR, the final EVN, and the
mapping results. The patterns are validated without rules or transformations and without
considering intermediate EVNs. These policies can be described using a mix between an
algorithmic language and our transformation patterns. Another main difference between
the transformation and validation patterns is that there is no need to follow a pre-defined
order when applying the validation patterns.

Algorithm 5 depicts an exemplary validation pattern to check if all and only all
devices required by a certain AR are included in the EVN and its mapping results. This
algorithm shall be called for each EVN. However, the validation is more complex than the
transformations but less complex than chain composition and EVN embedding algorithm.
Several similar validation policies/algorithms are required to check all policies.

3.5.2 Runtime with Fixed SN

In this evaluation scenario, we check the runtime of the whole approach with the previous
fixed SN topology and two different representative ARs. In each step, we add another
copy of this set of ARs. The runtime results are depicted in Figure 3.10, and show
linear and low runtime with this fixed topology. This is expected from the complexity
calculation‘ that shows that the runtime is linear with the EVN size.
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Algorithm 5: Node type validation
1 ValidateNodeType ()
2 Input: SN(NSN , ESN), AR(NAR, EAR), EVN(NEVN , EEVN), EVN mapping results
3 for n ∈ NAR do
4 if n.type = ”device” then
5 for m ∈ NSN do
6 if m.type = ”device” then
7 if n.subtype = m.subtype AND n.domain = m.domain AND

n.location = m.location then
8 if m ̸∈ NEVN OR m ̸∈ nodeMapping(EVN) then
9 return False

10 end
11 end
12 end
13 end
14 end
15 end
16 for m ∈ NSN do
17 if m.type = ”device” then
18 for n ∈ NAR do
19 if n.type = ”device” then
20 if n.subtype ̸= m.subtype OR n.domain ̸= m.domain OR

n.location ̸= m.location then
21 if m ∈ NEVN OR m ∈ nodeMapping(EVN) then
22 return False
23 end
24 end
25 end
26 end
27 end
28 end
29 return True
30 end

3.5.3 Evaluation of the Chain Embedding Using a Random Topology

Our chain embedding algorithm is a form of greedy heuristics, since it adapts to the
remaining path length and next path resources when making the placement decision.
When the path is long, the algorithm tries to spread the VNFs over the path. When
the path is short, the algorithm tries to place the VNFs on the least possible number of
servers. We compare it to an existing similar solution to show its feasibility. Our VNF
consolidation method, the random topology, and the distribution of resources are chosen
to represent hierarchical edge computing where the resources might be limited and paths
are short. Comparison to the results of other works might be challenging, since there are
differences in the objectives and topologies.

The evaluation structure in ALEVIN enables the comparison of different algorithms
using random topologies and several metrics. This structure also enables the definition
of the number of runs and the assignment of random resource/demand values from
specified ranges. The created SN and VNs, their demands and resources, mapping results,
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Figure 3.10: Runtime with varying number of EVN (pairs)

and resulting metrics’ values are exported to an XML file that includes the results for all
runs.

In the SFC embedding domain, two graph models are used for generating random
networks. The Waxman model [149] used in [46], creates highly randomized networks by
placing in each step two nodes on a two-dimensional plane and connecting them with
a certain probability. This probability is calculated from their distance and two model
parameters α and β, where the large β increases the edge density and small α increases
the probability of shorter edges.

The Barabasi Albert model [150] used in [53] creates random scale-free networks by
taking preferential attachment into account. With preferential attachment, the degree
distribution follows a power law and the probability of connecting two nodes is based
on individual nodes’ degrees. Initially, a certain number of nodes (m0), time steps, and
edges to be added per time step are defined. Based on the defined number of time steps,
a new node with m ≤ m0 edges is added to the network in each step. A new node is
connected to an already existing node i that has a degree ki with a probability:

P(i) =
ki

∑jk j

Figure 3.11 is an exemplary generated topology with the parameters:

• Initial number of nodes: m0 = 1

• Number of time steps: 20

• Number of new edges per time step: 1

ALEVIN uses directed graphs and the generator adds the reversed edge for each
created edge. The Barabasi Albert model is better for representing industrial network
levels (as in our use case). We use it for generating the SN for evaluating the chain
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Figure 3.11: A random topology generated by Barabasi-Albert generator [3]♮

embedding algorithm. Each VN has two VNos and a VLi with a VNF demand, in which
we vary the chain length. We adapted our EVN embedding algorithm for this evaluation
by just performing node mapping for VNos based on ID demand and using the k-shortest
path algorithm to select the path. Subsequently, the chain embedding heuristic is used to
map the FG without the locations, domains, and types of nodes. Creating random SN
that includes such properties to evaluate the whole system and choosing algorithms to
compare with is a challenging future work.

Our system runs in an offline mode, where the SN and EVNs are defined in advance.
Each test run is repeated 30 times and the mean values with confidence intervals (0.95%)
are graphically depicted. We use two typical metrics from VNE; the runtime and accep-
tance ratio. The runtime is the time needed by the algorithm to embed a number of EVNs
on a SN. The acceptance ratio is the ratio of successfully embedded EVNs to the total
number of EVNs in the scenario. We define a new metric to represent the efficiency in
utilizing SN resources for chain embedding. Average path utilization is the ratio of SNos
that are utilized multiple times to embed the FGs. The metric value is 0 if each VNF from
a FG is mapped to a different substrate node:

Average Path Utilization =
Number of multi-utilized SNos

Number of VNFs in all FGs

3.5.3.1 Runtime

Runtime evaluation is performed for an increased SN size and increased number of
EVNs to be embedded. The resource/demand values for these scenarios are adjusted,
such that there is no rejection of EVNs. We compare the runtime of the chain embedding
to a scenario with the same parameters in which there is no VNF demand and only
bandwidth is verified over the path.

runtime for increasing sn size In this scenario, the number of EVNs is fixed to
50, where each FG contains four to eight VNFs. The SN size is increased in each simulation
to judge how much time it takes to embed a fixed number of EVNs with increasing
SN size. The results are presented in Figure 3.12 and they show a small overhead of
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the chain embedding, on average 250 ms for medium-size SN of 300 SNos. However,
the runtime grows with a linearithmic trend. This matches the total complexity of the
solution O(N.M + L(E + N.logN)). linearithmic time complexity O(nlogn) is slightly
worse than a linear complexity O(n), but much better than a quadratic complexity O(n2).
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Figure 3.12: Runtime for increased SN size [3]♮

runtime for increased number of evns In this experiment, the SN size is fixed
to 200 SNos and the number of EVNs to be embedded is varied. The number of VNFs in
each FG is a random number between four and eight. Figure 3.13 depicts the results for
this evaluation. For fixed SN size, the runtime is linear and there is no overhead of chain
embedding for this size.

3.5.3.2 Comparison to LightChain

A simplified version of LightChain from [47] is implemented to compare our greedy
chain embedding algorithm to another algorithm. LightChain algorithm tries to allocate
the FG on the shortest path between two end-points. If the chosen shortest path is
consumed, then the algorithm calculates another shortest path and the remaining VNFs
are allocated. LightChain approach does not allow for placing multiple VNFs on a single
SNo. Our algorithm can place multiple VNFs that might belong to different SFCs on a
single substrate node as long as enough capacity is available. If the selected path cannot
be used, then another shortest path is tried. The behavior of the algorithm reduces the
probability of path rejection.

acceptance ratio with increasing fg length In this scenario, we evaluate
how the acceptance ratio changes when the number of nodes in the FG increases. The SN
size is fixed to 100 nodes and 100 EVNs are to be embedded. The FG length varies in
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Figure 3.13: Runtime for increased number of EVNs [3]♮

the range 1–12. The resources and demands are highly relaxed, such that rejection is not
because of resources, but due to the VNF mapping strategy. The results in Figure 3.14

show that the acceptance ratio of the LightChain solution highly decreases with increasing
FG length and fixed SN size. These rejections are met when the paths are shorter than the
FG. Our chain embedding algorithm keeps a 100% acceptance ratio since it is adaptive to
FG length.
average path utilization with increasing fg length With the same ex-
periment parameters, Figure 3.15 shows the average path utilization with increasing FG
length. The value for the LightChain approach is constantly zero, since the embedding
strategy does not allow to place multiple VNFs of a FG on the same SNo. This is different
from our greedy approach, where the utilization of SNos increases for longer chains.
acceptance ratio for increasing cpu capacity Comparing the acceptance
ratio for scenarios where resources are limited is also important. Therefore, in this
scenario, we measure the acceptance ratio with increasing CPU resources, while the
bandwidth is highly relaxed. The SN includes 100 SNos and the number of EVNs is 100.
Based on the results in Figure 3.14, when each FG has five nodes, both algorithms can
reach a high acceptance ratio when the resources are highly relaxed. The CPU demand
of each VNF is fixed to one. As depicted in Figure 3.16, the acceptance ratio for our chain
embedding approach is rapidly increasing and it reaches 100% acceptance for a CPU
capacity of 15. For the LightChain approach, the acceptance ratio is also increasing, but
at a lower rate. The results clearly depict that occupying multiple SNos on a path results
in a much higher acceptance ratio.
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Figure 3.14: Acceptance ratio for increased FG size [3]♮
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Figure 3.15: Average path utilization for increased FG size [3]♮
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Figure 3.16: Acceptance ratio for increased CPU capacity and FG length of 5 [3]♮

3.6 conclusion

Remote asset management is important for future industries and requires flexible and reli-
able network services that can be provided by means of network virtualization. However,
the underlying network infrastructure imposes several performance, security, and re-
silience challenges. To address these challenges, NFV that supports flexible composition
and deployment of SFCs can be used. However, these NFV procedures shall be automated
for large industries based on the application requirements and network service provider
policies, such as the location of VNFs and required security mechanisms.

This chapter presents a model that flexibly creates and deploys EVNs and SFCs based
on these requirements and policies. The model applies a set of rules sequentially on
an AR using graph transformation. The resulting graph is an EVN that includes the
application nodes and the composed SFCs based on its requirements. The chapter also
proposes a topology-aware heuristic to embed the SFC based on path early verification.
We implement the developed methods and our use case in ALEVIN and present an
exemplary mapping result. This result shows that our system can correctly compose and
map the EVN and SFCs while satisfying all policies.

An evaluation of the chain embedding heuristic using a typical random topology, shows
that it is promising for such environments in terms of admission, resource utilization,
and performance. A main challenge for future work is evaluating the entire approach
using random topologies that hold the required properties of entities. Furthermore,
determining and implementing comparable solutions from the existing works is required.
Another challenge is more coordination of the stages by SFC recomposition according
to the embedding results. Finally, the future work will focus on completely defining
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the validation policies that check the correctness of the whole EVN composition and
embedding approach.



4
P E R F O R M A N C E P E R S P E C T I V E - V I RT UA L T S N

This Chapter is an extension of the author’s publication [2]♮.

In this chapter, we discover the feasible methods of using NFV to reduce the complexity
and cost of implementing and deploying the TAS. TAS is one of the traffic shapers
presented in the recent IEEE TSN standard for industrial Ethernet [151]. Virtualizing
network functions decouples them from proprietary hardware but imposes performance
challenges. We research high performance NFV techniques and use DPDK to implement
a virtual TAS with a feasible performance for enterprise-level industrial applications.

Furthermore, we design a complete framework that provides schedule calculation,
transmission selection, TAS controller, and time synchronization. Additionally, the frame-
work includes evaluation tools; traffic generation and performance measurement. We
evaluate our virtual TAS using delay and frame loss metrics, and a small SFC. The
evaluation considers different loads of BET and external disturbance, and varied TCT
specifications.

4.1 introduction

NFV decouples network functions from physical devices using standard virtualization
techniques. A network function becomes a piece of software running inside a VM that
is easy to configure and deploy in different locations. This mechanism provides the
flexibility to chain the functions to build the required network services dynamically.
Furthermore, network functions running inside the VMs are easy to upgrade according
to new standards (or their updates) and to adapt to changes in the requirements without
broad investment in equipment. However, virtualization can degrade the performance
of network functions by randomly delaying the processing. Additionally, the standard
hardware is not optimized for network functions.

TSN [151] is a set of new standards from IEEE that enhance the Ethernet allowing
it, among several aspects, to handle TCT together with the lower priority traffic (BET)
on the same network. A traffic shaper from the standard, TAS, achieves this through
pre-planning of the exact times of arrival and transmission of TCT in each port, and
reserving the required time slots in which BET is blocked. Theoretically, TAS guarantees
zero queuing delay and very low jitter for TCT (deterministic latency). However, to
achieve that, an exact schedule calculation is needed, global time synchronization is
mandatory, and no randomness in the processing time of the frames is allowed.

The concept of smart factory in Industry 4.0 is based on data analysis and autonomic
decision making in real-time. For example, data can be collected from sensors and
leveraged to control customizable production, safety, energy consumption, and security.
These applications might impose different classes of traffic (in terms of time-criticality)
that share the same network, making TSN a feasible technology to realize them. However,
such scenarios require high network reliability and availability, and acceptable energy
consumption. These objectives can be supported by edge computing and virtualization
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technologies, for example, by deploying real-time network services using NFV. This can
be achieved by leveraging specific capabilities of virtualization technologies, such as
auto-scaling, live migration, and latency-aware SFC composition and deployment.

The combination of both technologies, TSN and NFV, applies the flexibility and scala-
bility of NFV to TSN. Furthermore, this will ease the adaptation to the changing needs
without broad investment in equipment, as well as upgrading the internal functioning of
TSN to the future changes in the standard. However, TSN requires highly performing
hardware with deterministic behavior, and NFV introduces processing overhead that
might be stochastic. Nevertheless, some enhancements exist in the area of high perfor-
mance NFV, such as DPDK that bypasses the network stack of the OS (see Section 4.4.4).
A motivation to virtualize TSN is that the target smart factory applications might have
less strict latency requirements than the manufacturing control applications.

In this chapter, we research the mechanisms that can be used to implement virtual TAS
using high performance NFV. Then we design, implement, and evaluate a virtual TAS as
an SFC composed of multiples TAS-capable VNFs. Furthermore, we develop a complete
framework with an NFV-specific TAS controller, scheduling and transmission selection
algorithms, time synchronization, and traffic generation and performance measurement
tools. We propose a new method to support the schedule calculation, mainly in virtual
environments, by measuring the real transmission and processing times in advance
(prefetching).

In the evaluation, we measure the packet loss and delay of TCT traversing a TAS SFC.
We use different scenarios to judge the capability of virtual TAS in providing comparable
performance to the hardware-based TAS designed in the standard. Additionally, we
evaluate the effect of BET traversing the same SFC, and external disturbance traversing a
secondary SFC that uses the same server. These factors are significant in analyzing the
virtualization overhead.

4.2 high performance vnf

The deployment of a high performance VNF is possible using two different technologies,
hypervisor/VM based and container-based. The container-based approach is particularly
questionable with security issues. For an industrial enterprise that transfers data to the
edge or cloud, data security is critical. On the other hand, the hypervisor/VM approach
is the basis on which the architecture of NFV and its standards have been developed.

The main advantage of the containers is that they are light weighted. Containers
require less resources than VMs and impose less overhead since they run the guest
applications directly on top of a host OS while keeping them isolated. VMs run their
guest applications on top of a guest OS and need a hypervisor to provide isolation and
management. Besides eliminating the guest OS, a container does not need a hypervisor
to manage the VNFs. Instead, by means of OS-level virtualization, containers can present
the same functionalities as VMs in a very light manner. The container-based approach
supports the NFV deployment in terms of scalability thanks to the easiness of adding
new virtual functions and dividing the VNFs into smaller entities that have certain
degree of independence (microservices). Furthermore, sharing the same OS between
different containers removes all the hypervisor overhead in packet processing and the
guest OS and allows Direct Memory Access (DMA) techniques, which speed up the
communication among the VNFs themselves and with the external network elements.
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Figure 4.1: Existing high performance NFV mechanisms

The main deficiency of the container-based approach is the intolerable multi-tenancy
security threats resulting from sharing the host OS.

The standard NFV architecture from the European Telecommunications Standards
Institute (ETSI) [152] presents a VNF layer that uses the virtual resources offered by the
NFVI. High performance VNF can be achieved by increasing the number of VNFs or
their components but unless obliged, this method is not recommended [153]. A better
method is to enhance all the layers from the hardware to the applications running on the
VM. We focus on the possible improvements on the application level and referring to
the changes required in the other layers for the enhancements to take effect. Figure 4.1
summarizes the primary high performance NFV approaches existing in the literature. In
the following, we summarize and compare these approaches.

dpdk standalone This approach integrates data processing acceleration libraries
into the network stack of the VNF or relies on protocols that use them and use drivers
compatible with the operating CPU. One tool discussed in [61] and [154] and [155],
is DPDK [57]. This set of libraries and drivers works with a different logic than the
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traditional network stack that waits for interruption and reacts to them (interrupt-driven
mode). DPDK polls the data coming to the Network Interface Card (NIC) (poll-mode)
directly to the user space where it is processed. Consequently, it avoids the kernel
space and all the imposed overhead. Two conditions are to be verified before using this
approach. The NIC should support poll mode, and the processor should be compatible
with DPDK.

accelerated vswitch This approach does not apply any changes to the application
itself rather it changes the user domain in the hypervisor, namely the vSwitch. A vSwitch
is a software running in the hypervisor to enable virtual networking for the VMs. Each
VM has its own vSwitch’s socket that allows it to communicate with the other VMs via
the hypervisor without using the NIC. For this approach, the vSwitch will be assisted by
data processing acceleration libraries (e.g., DPDK ) in forwarding the packets between
the application and the physical NIC and between the VMs. With the accelerated vSwitch,
all the networking (VM/NIC or north-south traffic and VM/VM or east-west traffic) is
conducted in the user-space. One example of vSwitch is the Open vSwitch.

single root i/o virtualization (sr-iov) This approach treats the performance
problem from the hardware (NIC) side by enhancing the computing capabilities of the
hardware to allow application direct access and bypass the hypervisor. It also offloads
the packet processing from the CPU to the NIC, contrary to previous approaches that
treat the problem from the software (VNF or vSwitch) side and reduce the CPU usage by
migrating the packet processing to the user domain. Enabling SR-IOV in the NIC card
allows it to provide multiple virtual copies of the PCI function, named Virtual Functions
(VFs). Every VF can be attached to a VM, allocating it a direct access to the physical
resource. With such a method, multiple VMs can use the same NIC without the need for
the hypervisor since the virtualization is provided by the NIC itself. Consequently, All
VMs are offered a line-rate networking performance and have direct and full control of
the network resource part assigned to them.

combined approach Another interesting approach is to combine SR-IOV with
DPDK without using a virtual switching since most of the functions offered by virtual
switches can be executed by the eSwitchs coming with the SR-IOV solution. The authors
of [61] applied this technique in implementing Deep Packet inspection (DPI) of network
traffic in the form of a VNF. The authors showed a very good performance compared to
the traditional cloud architecture. Unfortunately, they did not compare their approach to
the SR-IOV standalone approach or the accelerated vSwitch approach.

approaches comparison In a comparative study performed by INTEL [61], the
DPDK-accelerated vSwitch approach and the SR-IOV standalone approach were com-
pared under the same exact setup with two different traffic flow patterns (north-south
pattern and east-west pattern). The results showed that for the north-south flow pattern,
SR-IOV is a better choice than DPDK-accelerated vSwitch. However, for the case of
east-west flow pattern, DPDK-accelerated vSwitch performed better than SR-IOV. The
reason behind these results is the nature of the traffic itself:

• North-south traffic is the traffic between the server on which the VM is deployed and
the external network. Thus, every transmission or reception of a frame should travel



4.3 assumptions and simplifications 63

from the VM to the NIC. In the DPDK-accelerated vSwitch solution, each frame
should pass through the hypervisor. Although the procedure is accelerated, the
CPU processes all the frames while SR-IOV establishes a direct mapping between
the VM and the NIC.

• East-west traffic is the traffic within the same server between the different VMs. If
SR-IOV is used, each frame is forwarded to the NIC to be processed and forwarded
back to the destination VM. In this case, the vSwitch is faster since the NIC is not
needed and the whole operation can be performed in the user domain.

We choose to combine two of the suggested architectures to build DPDK-accelerated
VNFs running on top of a DPDK-accelerated virtual switch. Our implementation has
been evaluated on a single server. Thus, the communication is inside the same hypervisor
domain and there is no need for a physical NIC.

4.3 assumptions and simplifications

TSN standard [151] specifies the implementation details, such as data models and
functions. In our work, we adopt several simplifications and assumptions and adapt the
implementation to our tools and context. However, we implement the main functionality
of TAS in traffic scheduling, and the required tools for performance evaluation. According
to the standard, the main TSN traffic scheduling capabilities are: supporting multiple
traffic classes, enhancements for scheduled traffic (gating mechanism), state machines for
scheduled traffic (gating mechanism), and frame preemption. A possible extension is to
implement per-stream filtering and policing.

From another perspective, and according to the standard, the forwarding process
inside a bridge is composed of eight stages: topology enforcement; ingress filtering;
frame filtering; egress filtering; flow metering; frame queuing; queue management; and
transmission selection. In an outbound queue, First-In-First-Out (FIFO) transmission is
used, and one traffic class is queued. The standard defines a range of eight traffic classes,
and this can be adopted partially or totally by an implementation. The queuing algorithm
decides where to enqueue a frame based on its internal priority value. The transmission
selection method uses three state machines.

The first state machine watches the time and initiates the GCL execution that is per-
formed by the second state machine. The third state machine is for the GCL configuration.
Since the focus of this work is on handling scheduled traffic through gating mechanism
and performance measurement in the context of NFV, we work on the last three stages:
queuing frames, queue management, and transmission selection. However, we perform
metering at the traffic class level in our controller.

In this work, we implement two stages, enqueuing/dequeuing, for inserting/removing
the frames in/from the queues, respectively. The queue management is simplified into
removing each frame after one sending trial, regardless of the result. It is also combined
with the transmission selection. Our transmission selection algorithm merges the first
two state machines in a "select and watch" method. Our algorithm reads the GCL entry
and keeps watching the clock until its respective execution time. Then it applies the entry,
reads the next, and starts selecting frames for transmission while watching the clock. We
implement the GCL configuration state machine in the control plane, and it is executed
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only once before the start of each experiment. Furthermore, we define one Rx-queue and
one Tx-queue per port and one FIFO queue per traffic class.

Another simplification in this work is the flow routing and deployment of the VNFs.
We pre-configure the routes in Open vSwitch, which interconnects the pre-deployed VMs
that execute TAS. Thus, no routing information is required. Only VLAN tags are used to
identify the types of frames (TCT, BET, control frame and its type).

The last simplification is that our schedule calculation algorithms consider one path
for all flows, do not try to compress/minimize the schedule length, and do not use
delay constraints in the schedule calculation. However, the advanced schedule calculation
methods that try to minimize the length of the GCL are more important for hardware
than software that has high flexibility. Currently, we don’t have an estimation of frame
processing time, and we schedule each frame based on its expected transmission time
using experimental data.

4.4 framework design

Our solution has two main independent but complementary components. The first
component is the control and measurement unit that plays the role of the Precision Time
Protocol (PTP) master node [156] for synchronizing the clocks of VNFs. This unit also
generates and distributes the TCT schedule, generates TCT traffic based on the schedule,
and records statistics on the received frames (talker and listener roles). The second
component is the TAS-capable virtual bridge or VNF that applies the pre-configured
schedule to forward the frames. It also synchronizes its clock with the master clock before
starting the forwarding. For evaluation purposes, a third component is a BET generator
that produces randomly-sized frames with a random Inter-Arrival Time (IAT).

4.4.1 Control and Measurement Unit

The controller runs three main processes, as depicted by Fig. 4.2. The control process
performs the synchronization and scheduling using the information gathered by a
prefetch message per TCT flow. The second process is the frame generation process.
This process generates and transmits frames for all scheduled flows according to the
pre-calculated schedule. An identifier of the frame is included to recognize the frames
by the reception process. The exact sending time of each frame and the count of frames
sent during the experiment are also recorded. The third process is the frame reception
process that receives frames, identifies them, and records their reception times as well as
the count of the successfully received frames per traffic class. In the synchronization and
schedule distribution operations, two modes are used; centralized or chained.

In the centralized mode, the synchronization and schedule configuration for each VNF
is performed in a separate round by the controller. In the chained mode, each VNF in the
chain is configured by the previous VNF. The centralized and chained SFC configuration
(TCT deployment) are inspired by the TSN Centralized Network Configuration (CNC)
and TSN distributed configuration, respectively. Chained deployment is vital for handling
several long chains.

In the network prefetch operation, the controller sends a prefetch frame through the
SFC. Each VNF forwards this frame after inserting its exact reception and transmission



4.4 framework design 65

Figure 4.2: Controller flowchart [2]♮

times. After receiving back the frame, the controller uses this timing information from the
SFC for schedule calculation. In the schedule calculation operation, GCL is constructed in
two steps. The first step is the calculation of the Sending Control List (SCL) that includes
the talker sending times for all flows. The second step is the adaption of the SCL to
the VNFs, which results in a different copy of the GCL for each. This list is dynamic,
and it depends on the way we estimate the start and the end times of the transmission
operation of each frame in each VNF. Theoretically, the start of transmission time shall
be synchronized with the TAS gate opening event, and the end of transmission shall be
synchronized with the TAS gate closing event. In our work, we use two algorithms that
are adapted to our context. Both algorithms use the SCL in building the GCL. However,
the first algorithm is empirical, and it is based only on the information gathered by the
prefetch phase. The second algorithm is hybrid, and it has limited use of the prefetch
data (see Section 4.5.2).

4.4.2 TAS-capable VNF

As shown in Fig. 4.3, the TAS-capable VNF separates the data plane and the control
plane, and has separate queues for TCT, BET, and control frames. The traffic frames are
inserted into the reception ring (Rx-ring) until the enqueue thread sorts them. This thread
identifies the priority class of incoming frames and inserts the TCT and BET frames in



66 performance perspective - virtual tsn

their respective queues. The dequeue process retrieves and sends the frames based on
the GCL entries and the synchronized clock.

Figure 4.3: Architecture of the TAS-capable VNF [2]♮

The control thread establishes the GCL and the globally synchronized clock required
for the dequeuing operation. We have five types of VNF control frames and respective
operations on them:

• Prefetch frame: the frame is forwarded after inserting its reception and transmission
time.

• PTP frames: the required/received time-stamps are inserted/recorded, or the clock
is synchronized.

• GCL frames: a GCL entry that includes gate opening and closing times is added.

4.4.3 BET Generator

The BET has two parameters, generation rate (number of frames per second) and frame
size. The frame generation follows the Poisson distribution pattern [157]. The choice of
Poisson distribution is conventional when characterizing traffic within a data center [158].
The IAT between two frames in a Poisson distribution follows an exponential distribution:

IAT =
−1
λ
∗ ln (1− u)

Where λ is the Poisson rate, and u is a random number. Generating random frame sizes
using Poisson distribution can be done using the formula:

Size =
x=u

∑
x=0

e−λ ∗ λ−x

x!

4.4.4 Tools

DPDK [57] is a set of libraries written in C programming language. It offers a complete
framework for fast packet processing in the data plane. It uses the poll mode that allows
the DPDK based application to avoid the overhead of the traditional interruption-based
mode. DPDK controls the NIC and buffers the incoming frames using Direct Memory
Access (DMA) in the user space, which bypasses the network stack of the OS. The
throughput is highly improved for DPDK-based applications, but the NIC cannot be
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shared with other applications. DPDK treats packets in bursts and can balance between
throughput and latency. DPDK uses huge memory pages, and the resources needed by
an application must be reserved Before launching it. DPDK offers several functions to
handle the memory, packets, queues (rings), and timing (Table 4.1).

Table 4.1: Main DPDK functions used in our implementation

Function Role

rte_rdtsc() Returns the value of the time stamp
counter

rte_eth_rx_burst () Reads a burst of packets from an input
queue

rte_eth_tx_burst() Writes a burst of packets to an output
queue

rte_ring_create () Creates a packet ring (i.e. TCT-queue)

rte_pktmbuf_free() Frees the storage of a packet into the
mempool

rte_ring_sp_enqueue () Appends a packet to a ring

rte_ring_sc_dequeue_burst() Retrieves several packets from a ring

rte_eth_add_rx_callback() Defines a callback function in a port

rte_pktmbuf_pool_create() Creates memory pool for packet stor-
age

rte_eal_mp_remote_launch() Launches a function on a logical core

The second tool we used is Open vSwitch [159]. It is an open-source multilayer virtual
switch that can be used to interconnect VMs over multiple physical servers across the
network. It is usually combined with a Hypervisor to offer massive networking. The
configuration of the vSwitch simplifies the routing of frames and setting up the evaluation
chain without using MAC addressing. This configuration of the vSwitch includes the
following steps:

• Setting up vSwitch to use DPDK acceleration.

• Constructing a bridge.

• Adding sockets to the bridge and attributing them to the specific VNFs to use them.

• Setting up the flows among the sockets.

Finally, the Kernel-based Virtual Machine (KVM) hypervisor is used to host the VNFs.
KVM allows for high-performance and low latency [160], and is the most widely adopted
compute hypervisor in the OpenStack community [161]. OpenStack is a typical NFVI
supported by ETSI. From another perspective, container-based virtualization is light-
weight but imposes security challenges to industrial networks, since it does not provide
a similar isolation level to hypervisors.

4.5 scheduling algorithms

The scheduling logic first calculates the SCL used for flow transmission at the talker,
then it calculates the GCL for each VNF using two different methods and the prefetching
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information. Finally, the runtime logic is applying the SCL at the talker and the GCLs at
the VNFs to select the frames for transmission.

4.5.1 SCL Calculation Algorithm

The SCL includes the periods of sending TCT frames by the talker (controller generation
process). These periods are based on the cycles of flows and are repeated in an SCL cycle
that is the least common multiple of the flows’ cycles. Each flow might have multiple
sending periods inside the SCL cycle. Algorithm 6 checks the next sending time of all
flows and inserts the soonest in the SCL while prioritizing the flows with the smallest
cycles. Even if the flows have equal cycles and frame sizes, they are scheduled sequentially.
We also assume that a set that includes one frame from each flow can be transmitted
during the smallest flow cycle. This assumption and the scheduling method prevent the
overlapping of flows, and the same applies to the GCL calculation. The TCT specifications
in the evaluation scenarios are chosen accordingly.

In Algorithm 6: Ni is the number of sending periods of flow i in the SCL cycle; LCM is
the least common multiple; TTs is the list of transmission times of all flows in the SCL
cycle; TT is the transmission time of a flow in an SCL entry; T is the current time; and
FTP is one flow transmission period in an SCL entry. Figure 4.4 shows an exemplary SCL
calculation for three flows with different cycle times (periods). Only a portion of the SCL
is shown with the numbers of frames refer to their order in the calculated SCL. We notice
for time-overlapping entries (such as 12 and 13), that the flow with the smaller cycle is
prioritized.

Figure 4.4: Example of SCL calculation

4.5.2 GCL Calculation Algorithms

The empirical algorithm is based only on the information gathered in the prefetch phase
(Fig. 4.5). The prefetch method is a form of calibration of the virtualization overhead,
randomness of processing delay in servers, and the fluctuation of network bandwidth
at the beginning of each experiment. This calibration is performed using one prefetch
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Algorithm 6: SCL calculation
1 CalculateSCL ()
2 //Initialization

3 SCL.cycle = LCM(All f lowi.cycle)
4 for f lowi in f lows do
5 Ni = SCL.cycle/ f lowi.cycle
6 for k = 0 To Ni do
7 //Entries of transmission times: (flow ID, flow cycle, transmission

time)

8 TTs.append( f lowi.ID, f lowi.cycle, k ∗ f lowi.cycle)
9 end

10 end
11 //Ordering the list of transmisson times based on the times then flow

cycle for equal entries

12 AscendingOrder(TTs, TT, cycle)
13 for entryj in TTs do
14 //SCL entry: (Transmisson time, flow ID)

15 //Adding a flow sending time to the SCL

16 SCL.append(max(SCL.T, entryj.TT), entryj.FlowID)
17 //Updating the current time point in the SCL based on the flow’s frame

transmission period (frame size/bandwidth)

18 SCL.T = SCL.T + entryj. f lowID.FTP
19 end
20 //Updating the SCL cycle to be the reached scedule length

21 SCL.cycle = SCL.T
22 end

frame per flow that is treated as TCT. An assumption here is that the loads on the servers
used for TAS and on the network are not highly fluctuating such that this calibration is
valid during the experiment. Based on this, if an SCL entry m is related to flow i, the
respective GCL entry in the VNFk of the SFC is:

VNFk.GCL[m].OT = SCL[m].TT + (Txk
i − SendTi)

VNFk.GCL[m].CT = VNFk.GCL[m].OT + (Rxk+1
i − Txk

i )

Where OT/CT are the TCT gate opening/closing times, Txk
i /Rxk

i are the transmis-
sion/reception times of the prefetch message of flow i in VNFk, and SendTi is the
transmission time of the prefetch message of flow i in the controller. This GCL entry
represents the TAS gate opening/closing events that match the respective SCL entry
in a certain VNF. The added value (Txk

i − SendTi) represents the time required for the
flow-specific prefetch message to start its transmission by VNFk, which represents the
previous transmission and processing delays in the SFC. The closing event depends on
the time required until the next VNF receives the prefetch frame (Rxk+1

i − Txk
i ).

The hybrid algorithm mixes the theoretical calculation with prefetching data that are
only used to estimate the processing time of a frame in a VNF. The algorithm calculates
the transmission period of each frame based on its size and the link bandwidth. Then, it
combines the prefetching information to calculate the GCL entries. Consequently:
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Figure 4.5: Prefetch information for one flow [2]♮

VNFk.GCL[m].OT = SCL[m].TT+

k

∑
j=1

SCL[m].FlowID.FS
VNFj.BW

+
k

∑
j=1

(Txj
i − Rxj

i)

VNFk.GCL[m].CT = VNFk.GCL[m].OT+

SCL[m].FlowID.FS
VNFk+1.BW

where FS is the frame size of a flow, and VNFj.BW is the bandwidth of the incoming
link to VNFj. In the OT equation, right side, the second and third forms represent the
frame transmission and processing periods in the SFC, respectively. For both algorithms,
the current time value is also used for the GCL calculation to avoid the overlapping of
flows:

I f (OT < GCL.T) then OT = GCL.T

GCL.T = CT

4.5.3 VNF Transmission Selection Algorithm

The transmission selection (dequeuing) process has a default behavior of forwarding BET
while waiting for the schedule (GCL). Once the GCL is received, the entries are processed
sequentially, and this processing is repeated after each scheduling cycle. For each entry,
queued TCT frames are transmitted in bursts until the gate closing time. Then the queued
BET frames are transmitted in bursts before the next gate opening time. These operations
are shown in Algorithm 7, where BS is the burst size, Ts is the schedule cycle start time,
SC is the scheduling cycle, TP is the total experiment period.

4.6 evaluation

Our evaluation scenarios are designed based on the following objectives:

• Evaluating the performance of the virtual TAS for TCT with different traffic specifi-
cations.

• Comparing our two schedule calculation algorithms.

• Measuring the mutual influence between TCT and BET traversing the same SFC.
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• Measuring the effect of external disturbance.

The evaluation SFC, as depicted by Fig. 4.6, contains three TAS-capable virtual bridges
(VNFs) besides the controller and a BET generator. All the links are configured in the
Open vSwitch to be bidirectional except the link from the BET generator to the first TAS
bridge, which injects the non-scheduled BET in one direction. The transmission of TCT is
unidirectional starting from controller port 1, entering the SFC through port 0 of Bridge
1, and received at controller port 0.

Algorithm 7: Transmission selection
1 Transmit ()
2 while GCL not received do
3 f rames← dequeue(BET_queue, BS)
4 send( f rames)
5 end
6 // Apply schedule

7 Ts← T0
8 // Handling BET before any gate opening time

9 while re f _clock() < Ts + GCL[0].OT do
10 f rames← dequeue(BET_queue, BS)
11 send( f rames)
12 end
13 while re f _clock() < TP do
14 for i = 0 To GCL.Size do
15 // Handling queued TCT frames before the gate closing time

16 while re f _clock() < Ts + GCL[i].CT do
17 f rames← dequeue(TCT_queue, BS)
18 send( f rames)
19 end
20 // Handling BET before the next gate opening time

21 while re f _clock() < Ts + GCL[i + 1].OT do
22 f rames← dequeue(BET_queue, BS)
23 send( f rames)
24 end
25 end
26 Ts← Ts + SC
27 end
28 end

Controller

BET Generator

TAS
Bridge 1

TAS
Bridge 2

TAS
Bridge 3

0

0

0

0 0

1
1 1 1

2

2

Figure 4.6: Evaluation SFC [2]♮

For scenarios 2 and 3, we use three TCT flows with specific cycles and frame sizes, as
shown in Table 4.2. However, the third scenario considers different TCT specifications.
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The cycle times are chosen to be prime numbers to increase the length of the scheduling
cycles and represent the worst scenarios.

Table 4.2: Specifications of TCT flows

Flow Cycle (ms) Frame size (bytes)

flow 0 3 128

flow 1 5 512

flow 2 7 1024

The effect of BET is evaluated by varying λ; the rate of BET flowing in the main SFC.
The results are gathered in the controller node by recording the sending and reception
times of each frame. In our experiments, we send at least 10000 TCT frames. For the
delay values, we count the frames in a certain delay range and confidence intervals are
not applicable.

Our evaluation has been performed on a single server. We estimate that using multiple
servers that are either directly connected or through TAS hardware, will not significantly
change the results since using DPDK allows direct NIC access. We note here that using
virtual TAS in real environments requires either using only standard servers as network
hardware or TAS-capable network hardware with the deployment of a schedule synchro-
nized with the TAS SFC schedule. Furthermore, we emulate the network disturbance in
our evaluation, and our empirical scheduling algorithm considers bandwidth fluctuation.
We use a burst size of one for the transmission selection, such that each frame can be
transmitted in time to achieve low latency.

4.6.1 Scenario 1 - Deployment Time

In the first scenario, we evaluate the SFC configuration time or TCT deployment time.
This is the time needed for synchronizing the bridges, the prefetch phase, and calculating
and distributing the schedule. This is the period between the experiment’s start and
the beginning of forwarding TCT frames. In this scenario, we compare the centralized
deployment performed through direct virtual links between the controller and TAS
bridges, and the chained deployment performed across the SFC. We record the average
deployment time for both modes over ten experiments. The results depicted in Table 4.3
show better performance with the centralized deployment due to the time needed for the
TAS bridges to configure the next bridges sequentially.

Table 4.3: Deployment time results

Average time (ms) Confidence interval

Chained deployment 9022.4 0.52

Centralized deployment 6025.6 2.95
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4.6.2 Scenario 2 - TCT Delay and the Effect of BET

In this scenario, we compare the empirical and hybrid scheduling algorithms in terms of
frame delay for TCT. Furthermore, we evaluate the effect of the BET rate on this delay. In
Fig. 4.7, we compare the cumulative percentage of frames per delay value (Cumulative
Distribution Function (CDF)) for TCT when using the empirical and hybrid scheduling
algorithms and λ = 600. The results show that 97% of the frames have a delay value less
than 89ms when the hybrid algorithm is used, and less than 73ms when the empirical
algorithm is used. The performance of the empirical algorithm is better since it depends
on the prefetch information for both the transmission and processing time, while the
hybrid algorithm uses the theoretical bandwidth. However, we have noticed high jitter in
the delay, which requires further investigation.

0

10

20

30

40

50

60

70

80

90

100

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

C
D

F
 o

f 
fr

am
es

Delay [ms]

Empirical algorithm Hybrid algorithm

Figure 4.7: TCT delay CDF with different scheduling algorithms [2]♮

In the following experiments, we use the less performing scheduling algorithm (hybrid)
to check the effects of BET and external disturbance. In Fig. 4.8, we compare the TCT
delay CDF for different values of the BET rate (λ). The results show that this effect is
limited but random due to the virtualization (processing) overhead.

4.6.3 Scenario 3 - External Disturbance

In this scenario, we evaluate the robustness of the virtual TAS by deploying a secondary
SFC composed, as depicted by the figure 4.9, of two VNFs: a noise traffic generator and
a traffic relay. The first node generates traffic of rate µ and forwards it to the second
node that forwards it back to the source. The primary and secondary SFCs share the
Open vSwitch but not the links and the ports. We compare the delay and frame loss
with different disturbance levels in the secondary SFC. These levels are zero external
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Figure 4.8: TCT delay CDF with varying BET rate [2]♮

Figure 4.9: Disturbance chain topology
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disturbance µ = 0 f /s (frames per second), Mega-disturbance µ = 1600 f /s and Giga-
disturbance µ = 1600000 f /s, with an average frame size of 750 Bytes.

frame loss Lost frames are the frames that are not received during the experiment
time. In Figures 4.10 and 4.11, we show the frame loss percentage for TCT and BET with
the three disturbance levels, when varying the BET rate λ. For TCT, when λ ≤ 600, the
BET and disturbance cause small increasing effects. When λ = 800, frame loss is high due
to the processing overhead on the VNFs, and the impact of disturbance is random. For
the BET loss, its rate has an approximately linear effect, mainly with external disturbance.
However, the exact causes of the frame loss need further investigation.
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Figure 4.10: TCT frame loss ratio under external disturbance [2]♮

delay In Fig. 4.12, we show the delay CDF for TCT, λ = 400, and the three disturbance
levels. 95% of the frames have delays of 76ms, 92ms, 154ms for zero, Mega, and Giga
disturbance, respectively. These results show that the external disturbance has a significant
effect on the delay due to the processing overhead. However, this effect does not grow
fast with the growth of disturbance. When the disturbance is 1000 times higher (Mega to
Giga), the delay range of 95% of frames increases with 62ms. These observations lead to
the conclusion that a server should be dedicated to one TAS SFC that hosts TCT flows
and a low rate of BET (less than 200 frames per second).

4.6.4 Scenario 4 - TCT Specifications

In this scenario, we perform four experiments with different numbers of flows and
various specifications, as shown in Table 4.4. We evaluate TCT delay with λ = 400. The
results are presented in Fig. 4.13 and show that adding one flow with a cycle of 1ms and
a small frame size improves the delay (about 100% of frames with delay ≤ 73ms). This
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Figure 4.11: BET frame loss ratio under external disturbance [2]♮
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Figure 4.12: TCT delay CDF for varying disturbance and for λ = 400 [2]♮
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result is due to more frequent TAS gate opening events. For experiments 3 and 4, we
add more flows with larger cycles and frame sizes, but reduce the frame size of some
flows with small cycles (5 and 7 ms) by half. These traffic specifications lead to lower
traffic density, and the delay is significantly improved (about 100% of frames with delay
≤ 10ms). However, the high frequency of the TAS gate opening increases the frame loss
of BET, which needs further evaluation.

Table 4.4: TCT specifications for scenario 4

Experiment Flow Cycle (ms) Frame size (Bytes)

Exp 1 flow 0 3 128

(3 Flows) flow 1 5 512

flow 2 7 1024

Exp 2 flow 0 1 64

(4 Flows) flow 1 3 128

flow 2 5 512

flow 3 7 1024

Exp 3 flow 0 1 64

(5 Flows) flow 1 3 128

flow 2 5 256

flow 3 7 512

flow 4 11 1024

Exp 4 flow 0 1 64

(6 Flows) flow 1 3 128

flow 2 5 256

flow 3 7 512

flow 4 9 768

flow 5 11 1024

The results mentioned above show that with a typical TCT density, high frequency of
gate opening, and a small SFC, our virtual TAS can guarantee a delay of 10ms with a
high probability. This delay value is large compared to the theoretical end-to-end delay
in the standard. The standard assumes that the scheduled traffic is only delayed by
transmission time plus a small processing time in the bridges. For example, a frame of
size 512 bytes transmitted over four hobs (controller and 3 VNFs), and using Gigabit
Ethernet, has a total theoretical delay of 31 microseconds, assuming that the processing
delay in TAS hardware switches is 5 microseconds. The positive aspect is that this virtual
shaper has very high flexibility, acceptable stability with disturbance, and can provide
guarantees that are feasible for factory level applications but not control applications.

4.7 conclusion

Implementing and deploying TAS using high performance NFV provides high flexibility
and lower effort and cost. The current performance and deployment times are feasible
for factory level applications under certain constraints, mainly TCT density and gate
opening frequency. The evaluation showed that calculating a TCT schedule based on the



78 performance perspective - virtual tsn

0

10

20

30

40

50

60

70

80

90

100

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

C
D

F
 o

f 
fr

am
es

Delay [ms]

3 flows 4 flows 5 flows 6 flows

Figure 4.13: TCT delay CDF with λ = 400 and different specifications [2]♮

calibration of the environment improves the performance. Our virtual TAS is robust, for
TCT, against medium BET traversing the same SFC, and medium external disturbance
traversing a different SFC that uses the same computational resources. However, high
BET load has a significant effect on the TCT frame loss, and high external disturbance has
a significant impact on the TCT delay. This is due to the processing overhead resulting
from virtualization, which also results in limited randomness in the delay. Several
improvements to this work are significant:

• Implementing and comparing different scheduling algorithms that can consider
nested SFCs and different paths.

• Comparing the performance to the TSN hardware.

• Making the clock synchronization and schedule dynamic by adjusting them during
the experiment, to better control the environmental fluctuations.

• Investigating the virtualization overhead and its random effect on the delay (jitter)
and frame loss, and researching techniques to control it.

• Implementing frame preemption and guardband methods.

• Implementing an interface of the framework to add/remove TCT flows dynamically.

• Using longer SFCs deployed over multiple servers.

• Flow identification and metering (per-flow statistics).

• Evaluating the effect of DPDK burst size.



5
R E L I A B I L I T Y P E R S P E C T I V E - B R A N C H I N G A N D F R E R

Link and node failures in the physical network are inevitable, at some point of time some
entity might fail. In particular, having VNs on top of the physical infrastructure makes
the failures very costly since one single failure can affect multiple paths of different VNs.
In fact, different VLi mapping algorithms shall be used depending on the requirements
of certain traffic classes. For traffic that requires high reliability, algorithms that maximize
the reliability shall be used. For traffic that requires medium reliability, algorithms
that satisfy reliability with reasonable resource utilization shall be used. For traffic that
requires low reliability, traditional reliability-aware link mapping algorithms shall be
used.

In this chapter, two algorithms for redundant path calculation are presented. In the
first algorithm, Minimal Branching (MinBr), in case the reliability demand cannot be
achieved by a single path, the smallest possible branching that satisfies this demand is
computed. The second algorithm, Maximal Branching (MaxBr), searches for the longest
path branching making the redundant paths as disjoint as possible and, in that way,
adding more reliability to mapped path. Calculation of a backup path makes the VN
resilient to any number of failures in one of the resulting branches. These two algorithms
are compared to the Reliability Shortest Path (RSP) algorithm that calculates shortest paths
using reliability as a weight, and therefore, improves the path reliability in comparison
to reliability-agnostic solutions. Moreover, the path calculation method of this algorithm
is used also by the two redundant path algorithms.

Our findings show that using redundancy algorithms increases the overall acceptance
ratio of the Virtual Network Requests (VNRs) with high reliability demand. The MinBr
mapping algorithm, with the least branching calculation, utilizes the resources in a
very efficient way while satisfying the required reliability. While the longest branching
algorithm, MaxBr, improves path resilience without increasing the rejections since fully
disjoint paths are not mandatory.

From another perspective, integrating theoretical graph theory-based resilient VNE
solutions with existing technologies is very important to make these solutions applicable
in real networks to configure the redundancy policies in order to satisfy more complex
requirements. We present in this chapter the integration of our resilient VNE solutions
with the standard IEEE Std. 802.1CB FRER. Having four main functions (sequence
encode/decode, sequencing, stream splitting, individual recovery), the FRER mechanism
can increase the overall reliability of the physical infrastructure. Furthermore, we use
an FRER-capable TSN simulator to integrate and test our algorithms implemented in
ALEVIN. In ALEVIN, we compute network configurations compatible with this simulator.

5.1 introduction

While providing high reliability to the applications, it is equally important not to congest
the network with unnecessary replicated traffic and cause needless delays and inefficient
use of resources. To avoid these issues, the traffic class shall define the level of required

79



80 reliability perspective - branching and frer

redundancy. For non-deterministic traffic, we propose to use traditional link mapping
algorithms with reliability as a weight and without redundant path calculation. Redun-
dant paths shall be calculated for deterministic traffic. For cyclic traffic, we propose to
always calculate a backup path. Whereas for the acyclic traffic, we propose to calculate a
backup path only if a single path cannot fulfill the requirements of the VNR. Thus, for
deterministic traffic, FRER capabilities of TSN shall be used.

We tackle the problem of efficient stream path calculation by means of network
virtualization. There are different mapping algorithms in the field of VNE, which try
to solve the problem of resilient VNs, such as online network re-configuration, and tree
redundancy algorithms. Many of the proposed solutions take an assumption that the
link and node failures occur randomly, and thus, they map a VLi on a path that might
be prone to frequent failures. In this chapter, we introduce algorithms that take into
consideration the reliability of each network component and redundant paths calculation
when needed.

Based on the mapping results, the required configurations for FRER are computed.
FRER provides two options to configure the network: manually creating all configuration
tables, or auto-configuration which limits the flexibility of FRER to some extent. In this
work, we automate the generation of all configuration tables while keeping the flexibility
of FRER. Moreover, for validating this work, a TSN simulator is used and adapted to
import and apply the generated configurations.

The goals of the chapter can be summarized as follows:

• Investigating branching techniques in order to provide more resilience to VNs.

• Evaluating these algorithms with a typical factory topology.

• Calculating network configurations in accordance with the IEEE Std. 802.1CB FRER
based on the mapping results of the algorithms used.

• Validating the calculated network configurations using a network simulator.

The remainder of the chapter is organized as follows: Section 5.2 provides detailed
background on FRER. Section 5.3 describes the different link mapping algorithms. Section
5.4 describes the methods of computation of network configurations. The implementation
tools and details are described in Section 5.5. The evaluation scenarios and their results
are discussed in Section 5.6.

5.2 frer standard

The focus of this work is on the TSN sub-standard 802.1CB FRER [162], which is specifi-
cally designed for the purpose of increasing network reliability by reducing the frame loss
rates. The general idea is replicating frames of a stream at the source end system and/or
in relay systems in the network, and eliminating those replicates in the destination end
system and/or in relay systems. Additional objectives of the standard are the flexible
deployment of its functions, latent error detection, robustness, dynamic capabilities,
in-order delivery, and ease of use. In order to fulfill these goals, four main functions are
defined:

• Sequencing function with two sub-functions: sequence generation function that
generates the sequence number, and sequence recovery function that uses the
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sequence number to decide which frame to pass and which to discard, operating
on a set of member streams.

• Stream splitting function replicates frames of the input stream, assigning each repli-
cated stream a different ID. It is allowed to have at most one replicated stream with
the same ID as the original stream.

• Individual recovery function inspects the sequence number of an arriving frame. If it
is a duplicate of an already received frame, the frame is discarded. This function
operates on a single stream.

• Sequence encode/decode function encodes the generated sequence number into the
frame by e.g. a Redundancy Tag (R-TAG), and extracts it and possibly removes the
encapsulation from the frame.

Additionally, FRER requires stream identification function described by IEEE Std. 802.1AC.
It is responsible for generating a stream ID from a received frame from lower layers,
passing it up the stack. This function modifies the frame if enforced by the encapsulation
method.

In this section, only a brief summary of the functions is presented. The above-mentioned
functions as well as the respective configuration tables are further explained in subsections
5.2.3 and 5.2.4. The standard defines recommended and required functions of different
parts of the network. Thus, not all functions have to be implemented in all network
entities.

5.2.1 System Types, Requirements and Recommendations

As shown in Figure 5.1, the standard differentiates five types of systems in a network:
talker end systems (originating compound streams), relay systems (forwarding or dis-
carding packets of compound streams), listener end systems (consuming compound
streams), stream identification components, and FRER C-components. In this work, the
focus is on the talker, relay, and listener systems. The standard defines requirements and
recommendations for each of them.

Figure 5.1: System types in FRER, adapted from IEEE 802.1CB ([162])
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The requirements of the talker end system are the following out-facing functions on at
least one port, and for at least one compound stream:

• stream identification,

• null stream identification,

• sequence generation, and

• R-tag sequence encode/decode.

The requirements of the listener end system are the following out-facing functions on
at least one port, and for at least one compound stream:

• stream identification,

• null stream identification,

• sequence recovery,

• at least two instances of the individual recovery function, and

• R-tag sequence encode/decode.

Furthermore, the relay system’s requirements include the following functions as in-
facing and on at least two ports, for both transmit and receive direction, for at least one
stream:

• stream identification,

• null stream identification,

• sequence generation,

• R-tag sequence encode/decode,

• sequence recovery, and

• at least two instances of the individual recovery function.

Moreover, each of the three systems has recommended and optional functions. For
example, the splitting function is a recommendation for the talker end system and an
option for the relay system. A simple example of a packet’s journey through the talker,
relay, and listener systems is presented in the following section.

5.2.2 Packet Flow

The stream is generated in the talker end system, therefore the flow is described firstly in
the talker end system, then relay, and finally in the listener end system. We make here the
following assumptions: each relay and listener runs an instance of the individual recovery
function, and the listener runs additionally an instance of a sequence recovery function.
Moreover, it is assumed that the splitting occurs only in the talker end system, and that
merging member streams occurs at the listener end system. However, both functions are
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allowed to be invoked in the relay system as well. These assumptions hold in this section
only for an easier packet flow description. They do not hold for the entire chapter.

Figure 5.2 represents a packet flow in the network from the perspective of the talker
end system. Firstly, a compound stream originates in the talker and is assigned a stream
ID (stream_handle). Each packet of the stream is assigned a sequence number, which is
encoded into the packet. If the stream shall split, all stream packets are duplicated. The
new member streams get new stream_handles and sequence numbers are generated and
encoded. Otherwise, the stream is forwarded further to the relay system of the network.

Figure 5.2: Packet processing at the talker end system

The processing of an incoming packet in the relay systems is depicted in Figure 5.3.
When the packet is received, it is decoded and, if a duplicate is received previously, it is
discarded by the individual recovery function. Otherwise, it is forwarded further to the
listener end system.

Figure 5.3: Packet processing at the relay system

The packet processing in the listener-end system is represented by Figure 5.4. When the
packet is decoded, the same check as in the relay system is performed since the listener
end-system also runs an individual recovery function for each member stream. Moreover,
at this point in the network, merging the member streams occurs. Therefore, a sequence
recovery function eliminates the incoming duplicated packets, and only one copy of
each packet remains. This function recognizes the duplicates by checking the entries in
the sequence recovery table for which the function is instantiated and examining the
stream_handle and sequence_number parameters.

As an additional measure for increasing reliability and easier tracking of possible
failures of a network entity, a latent error detection function as a part of the sequencing
function can be instantiated. This function examines the numbers of passed and discarded
packets, and if the difference between these counters exceeds a defined threshold, then
an error state is triggered. With this method, the error informs the system that a failure
occurred, and one of the member streams has not reached the listener end system at all.
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Figure 5.4: Packet processing at the listener end-system

This section briefly explained one possible scenario of a packet flow according to the
standard. There are many other possible scenarios with FRER due to the flexibility in
positioning its functions.

5.2.3 Functions of FRER

In the following, the functions of 802.1CB are presented in terms of their goals and
principles of operation. For more detailed description of the functions (events triggering
the function, and events being triggered by the function, their variables, as well as the
implementations of required algorithms) please refer to the Sections 7.4 - 7.7 of the
standard.

stream identification function Each system type in the network requires a
stream identification function. The basic requirement is having a null stream identification
function, which is a passive stream identification. Null stream identification function
generates a stream_handle sub-parameter for frames passed up the stack based on the
frame’s destination MAC address and VLAN ID. It does not change any of the packet’s
other parameters. Other identification types defined by the standard are: source MAC and
VLAN stream identification, active destination MAC and VLAN stream identification,
IP-based stream identification, and extended stream identification [163].

sequencing function This function is required to identify the order of packets in a
stream. Furthermore, a network component might resend the same packets due to errors.
Therefore, it is necessary to discard the resent packets to avoid network congestion. The
sequencing function has two types of component functions: sequence generation and
sequence recovery. The sequence generation function is a required function for the talker
and relay systems. It generates the sequence_number sub-parameter for the packets
coming from higher layers passed down the protocol stack.

The sequence recovery function operates on a merged set of member streams for which
the sequence_number values are generated by a single instance of a sequence generation
function. The function shall be instantiated at the port where the original stream meets
its duplicates. For example, with two fully disjoint paths for two member streams, the
function shall be instantiated at the listener. The sequence recovery function itself has
two component functions:

• The base recovery function discards duplicate packets by checking the sequence_number
parameter.
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• The latent error detection function detects possible deviations by monitoring the
objects of a single base recovery function. The assumption taken is that a compound
stream having n paths in the network will discard n− 1 packets for each packet
processed by the base recovery function. In case of violation, the latent error
detection function signals an error that notifies the system that a member stream
has not completely reached the port where the member streams are supposed to be
merged, and that a failure in some of the redundant paths has occurred.

The sequence recovery function operates on a merged set of member streams, and
therefore, it shall be instantiated at the listener or, in case of partially disjoint paths of
member streams belonging to the same compound stream, at the port where the original
stream meets its duplicates.

individual recovery function Individual recovery function operates on a single
member stream. Its objective is to fulfill the goal of robustness of the standard by removing
the repeated packets received from a stuck transmitter. By discovering the erroneous
streams early, further pollution of the compound streams is avoided. The individual
recovery function operates on a single member stream and the latent error detection
function shall not be instantiated. Individual recovery function shall be instantiated at
each port of the relays and listener.

sequence encode/decode function After the sequence_number is generated by
the sequencing function, it is encoded into the packet and later decoded by the sequence
encode/decode function. The required encapsulation type is the R-TAG, but two optional
formats are additionally defined in the standard. Other encapsulation types are High-
availability Seamless Redundancy (HSR) sequence tag, and Parallel Redundancy Protocol
(PRP) sequence trailer. The standard requires each of the systems (talker, relay system,
and listener) to have the R-TAG sequence encode/decode function. Thus, it needs to be
instantiated at all entities of the paths of the streams.

stream splitting function In order to introduce redundancy to the network, a
stream can be duplicated. The role of the stream splitting function is to accept packets
from an upper layer and make zero or more copies of the packets, passing them to the
next lower layer. The function examines the stream_handle sub-parameter of the packet.
If this stream_handle is configured in the stream splitting table, the stream is duplicated,
and at most one duplicate has the same stream_handle as the original stream. At the port
where the replicated streams meet, the duplicates are filtered by a base recovery function.

5.2.4 Configuration Tables

There are two methods by which the functions can be configured in a system:

1. Explicit configuration of entries in the stream identity table, sequence recovery
table, and sequence identification table.

2. Autonomic configuration of entries in these tables using the sequence auto-configuration.

The auto-configuration method can be used only with source MAC and VLAN stream
identification, and the MatchRecoveryAlgorithm for the recovery functions. However, this
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limits the flexibility of the standard. For the purpose of this work, the explicit configura-
tion of the table entries is preferred, and two tables need to be configured additionally:
stream splitting table, and sequence generation table. However, we automatically gen-
erate these table by ALEVIN as a result of the mapping algorithms. In the following
paragraphs, the configuration tables are summarized. For the list of all variables and
their detailed explanations, refer to the sections 9.1 and 10.3-10.7 of the standard ([162]).

stream identity table The stream identity table consists of a tsnStreamIdEntry
object per single stream (specified by the stream_handle), and the points in the network
where the stream identification method shall be instantiated. The tsnStreamIdEntry object
is defined by the following: stream_handle, input and output port lists that show where
the function shall be instantiated, and identification function type. Moreover, depending
on the identification function, additional variables are introduced. The main additional
parameters for the null stream identification function are the destination MAC address
and VLAN ID.

sequence generation table One entry in the sequence generation table, called as
frerSeqGenEntry, defines on which streams shall a single sequence generation function
operate, regardless from the port on which it will be received. Additionally, the direction
of the port where the function is to be instantiated is defined.

sequence recovery table An entry in the sequence recovery table, called as
frerSeqRcvyEntry, exists for each sequence recovery or individual recovery function
instance in the network. Some of the properties of the frerSeqRcvyEntry are: list of
stream_handles on which the function will operate, list of ports where the function is to be
instantiated, if a packet without a sequence_number is to be accepted or not, if the function
is an individual recovery function, and if latent error detection is active.

sequence identification table There is one entry in the sequence identification
table, called as frerSeqEncEntry, for each port and direction on which the sequence
encode/decode shall be invoked. Some of the values to be configured for each entry
are: list of streams for which the same encapsulation method is to be used, the port and
direction on which the function is to be instantiated, if it is active (used to both encode
and decode information of the packet) or passive (only decodes the sequence_number),
and the encapsulation type.

stream split table An entry in the stream split table, called as frerSplitEntry,
defines the ports at which a stream splitting function is to be instantiated, and on which
set of streams. The frerSplitEntry is described by: port and direction on which the function
will be invoked, list of input streams which are to be split, and list of output streams to
which to split the input streams.

5.3 link mapping algorithms

The focus of this chapter is on link mapping algorithms that map a VLi to a path in the SN
as a defense mechanism against failures. All algorithms are based on a reliability-aware
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k-shortest path algorithm. For each main traffic class in industrial networks, we suggest
using a certain defense mechanism. These classes are defined in [164]:

• Deterministic cyclic traffic class: calculation of a pair from the k-shortest paths that
can satisfy the reliability demand and with the maximal disjointness (branching ).
This will maximize the reliability that can be achieved by a pair of k-shortest paths,
which on the other hand reduces the resource usage.

• Deterministic acyclic traffic class: in case no single path can fulfill the reliability
demand of the VLi, calculating a pair from the k-shortest paths that can satisfy the
reliability demand and with the minimal disjointness (branching).

• Non-deterministic traffic class: using only the reliability-aware k-shortest path algo-
rithm. In case no single path from these paths can satisfy the reliability demand of
the VLi, it is rejected.

For all classes, the user is assumed to define the appropriate reliability demand value.

5.3.1 VNE Problem

The SN is defined as a graph consisting of a set of edges (SLis) es ∈ Es and a set of
vertices (SNos) ns ∈ Ns. The SNo properties/resources are ID and reliability. The SLi
properties/resources are the ID, source node, destination node, available bandwidth,
occupied bandwidth, and reliability. The VN is defined as a graph consisting of a set of
edges (VLis) ev ∈ Ev and set of vertices (VNos) nv ∈ Nv. The VNo has only an ID demand.
The VLi properties/demands are the ID, source node, destination node, bandwidth,
traffic class, and reliability. The node mapping in this chapter is only based on one-to-one
ID mapping. The link mapping can map a VLi on multiple paths between the source and
destination, where each path is verified for the bandwidth demand and the set of paths
is verified for the reliability demand.

The reliability of a set of paths is calculated using the Reliability Block Diagram method
[165]. We clarify this method for two paths with partial disjointness, as the typical case in
this work. In Figure 5.5, we have four blocks. The first block, R1, includes the common
links of both paths starting from the source node to the last common node of the two
paths in the sequence. R2 and R3 include the distinct links of the paths starting from
the spiting point to the merging point. The last block, R4, contains the common links of
both paths after merging. The reliability of each block is calculated as a multiplication of
reliability resource values of all block entities. Two branches can be recognized: the first
branch includes the blocks R1, R2, and R4, whereas the second branch is formed only by
block R3.

Path Reliability (PR) for a single path is defined as:

PR =
m

∏
i=1

ei.reliability ∗
m

∏
i=1

ni.reliability

where m is the length of the path, and n is a destination node of each edge e in the
path. For Figure 5.5, the point-to-point reliability (talker -> listener) is calculated as:

PR = R1.reliability * (1 - (1 - R2.reliability) * (1 - R3.reliability)) * R4.reliability
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Figure 5.5: Mapping path pair with reliability blocks, adapted from [165]

The RSP algorithm maps the VLis without redundancy. It calculates the paths using
the k-shortest paths algorithm with reliability as additional weight (k shortest paths are
ordered according to their reliability). The k-shortest paths algorithm is also used for the
redundant mapping algorithms, but pairs are selected instead of a single path.

5.3.2 Maximal Branching

The MaxBr link mapping algorithm finds a backup path for each ev ∈ Ev to be as disjoint
from the main mapped path Ps as possible. For each ev, a set of k-shortest paths is
calculated. Each found path is verified for the demands of ev. When a verified path is
found, it is mapped onto the SN. Subsequently, a disjoint backup path is calculated, as
shown in Algorithm 8.

The algorithm first removes the already used edges by the main path from the SN
except the first and last edges. These are the edges connecting the talker and listener
end-points to the network, and finding a disjoint path that excludes them is impossible.
The algorithm then searches (and verifies) for k disjoint paths in the reduced substrate
SN′. If no path is found or no path is verified, the edges of the main path are iteratively
restored to SN′. At each iteration, the algorithm tries again to find and verify one shortest
path and stops when this is achieved. Then, all edges from the main path are restored
and the disjoint path is returned. As a path pair {main path, disjoint path} is found, the
paths are verified for reliability using block digram and then mapped onto the SN if the
verification is successful.

5.3.3 Minimal Branching

The MinBr link mapping algorithm tries to avoid VLi rejection due to reliability demand
when using a single path. It finds from the k shortest paths (ordered according to
reliability) the pair with the largest number of common nodes (minimal branching) but
still satisfies the reliability demand. With this method, the SN resources are efficiently
utilized. If none of the calculated k shortest paths can satisfy the reliability demand,
calculating a branch is required as depicted in Algorithm 9.
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Algorithm 8: Calculation of maximal branching
1 MaxBr ()
2 for es ∈ ev.mainPath.edges do
3 if es == ev.mainPath.edges[0] ∨ es == ev.mainPath.edges[ev.mainPath.size] then
4 continue
5 end
6 Es = Es \ {es}
7 end
8 disjointPaths = shortestPaths(ev.src, ev.dst, k)
9 for disjointPath ∈ disjointPaths do
10 if pathVerified(disjointPath) then
11 restoreRemovedEdges()
12 return disjointPath
13 end
14 end
15 for es ∈ ev.mainPath.edges do
16 disjointPath = shortestPaths(ev.src, ev.dst, 1)
17 if disjointPath == null ∨ ¬pathVeri f ied(disjointPath) then
18 Es = Es ∪ {es}
19 else
20 restoreRemovedEdges()
21 return disjointPath
22 end
23 end
24 end

The minimal branching calculation algorithm iterates over the set of the k paths to find
all possible path pairs. Each path pair consists of the main path, which offers the higher
reliability of the two paths, and a branch. For each pair, two values are calculated: the
reliability using blocks, and the branch length as the number of distinct branch nodes
(not shared with the main path). The pairs are sorted with ascending branch length, and
the first pair that satisfies the reliability demand is taken.

5.4 network configuration

After executing the link mapping algorithms, we calculate the network configurations in
accordance with FRER. We distinguish five node types in the network:

• talker node,

• stream splitting node SNode,

• forwarding node,

• streams merging node MNode, and

• listener node.

The forwarding nodes, SNode, and MNode belong to the relay system or TSN network.
According to the standard, the required configurations shall be applied to the ports.
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Algorithm 9: Calculation of minimal branching
1 MinBr ()
2 for path1 ∈ paths do
3 for path2 ∈ paths do
4 if path1!=path2 then
5 if path1.reliability > path2.reliability then
6 mainPath = path1
7 branch = path2
8 else
9 mainPath = path2
10 branch = path1
11 end
12 pathPair = (mainPath, branch)
13 pathPair.reliability = calculateReliability(pathPair)
14 pathPair.branchLength = calculateBranchLenght(pathPair)
15 pathPairs.add(pathPair)
16 end
17 end
18 end
19 pathPairs.sort(ascending, branchLength)
20 for pathPair ∈ pathPairs do
21 if pathPair.reliability ≥ ev.reliability then
22 return pathPairs
23 end
24 end
25 return NULL
26 end

However, each function has either an in-facing or out-facing direction at the port. The
stream transfer function is defined as a two-port function that transfers service indications
on one port to service requests on the other port with all TSN sub-parameters included
in the service. An in-facing function is below the stream transfer function on the port and
not above the link layer. An out-facing function is below the stream transfer function on
the port and above the link layer. When a system has no stream transfer function, all its
functions are out-facing. Functions to be invoked in the talker and listener end systems
are out-facing functions, and functions to be invoked at the relay system are in-facing
functions.

An exemplary scenario is presented in Figure 5.6. Two streams can be observed by
stream_handle values 10 and 20. In our notation, all input ports of the nodes are assigned
the port ID nodeName:1. MNode has an additional input port, MNode:2, at which it
receives the stream with stream_handle = 20. All output ports are assigned the port ID
nodeName:2, except for output port Mnode:3, and the additional output port SNode:3
from which it sends the stream with stream_handle = 20. For configuring the network,
calculating five configuration tables is required: stream identity, sequence generation,
sequence identification, sequence recovery, and stream splitting.

The entry in the stream identity table for the stream with stream_handle = 10 is
presented in Table 5.1. As shown, the stream identification function is invoked at the
out-facing side of the ports only at the talker and the listener end systems. The type of
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Figure 5.6: Exemplary scenario

the identification function is set as a null stream identification because it is the required
identification type common between all systems, according to the standard. Another
entry for the same stream can be added with a different identification type. The property
tsnCpeNullDownTagged can have 3 values: tagged (a VLAN tag is required to recognize
the frame as belonging to the stream), priority (a frame must not have a VLAN tag), and
all (a frame is recognized as belonging to the stream, independent from the presence
of the VLAN tag). The value depends on the desired configuration, and there is no
recommendation from the side of the standard. The property tsnCpeNullDownVlan
stands for the VLAN ID.

Table 5.1: Stream identity table entry for stream 10

Property Value

tsnStreamIdHandle 10

tsnStreamIdInFacOutputPortList SNode:2, Node1:2, Node2:2, MNode:3

tsnStreamIdOutFacOutputPortList Talker:2

tsnStreamIdInFacInputPortList SNode:1, Node1:1, Node2:1, MNode:1

tsnStreamIdOutFacInputPortLis Listener:1

tsnStreamIdIdentificationType Null stream identification

tsnCpeNullDownTagged All

tsnCpeNullDownVlan 1

The sequence generation table entry specifies an instance of the sequence generation
function which is responsible for generating the sequence_number of the incoming packets.
For our exemplary scenario, the f rerSeqGenEntry for the first stream is presented in Table
5.2. The direction of the function, specified by a boolean value according to the standard,
is out-facing (true) since the stream is generated at the talker node. For the stream with
stream_handle = 20, the direction would be in-facing (false) since it is generated at the
relay system’s port.

The sequence recovery table, according to the standard, holds entries for two functions:
the sequence recovery and the individual recovery functions. Therefore, for describing
the table properly, two entries are explained, one for the individual recovery and another
for the sequence recovery function. The entry shown in Table 5.3 describes the individual
recovery function for the stream with stream_handle = 10 in the relay system. The listener
node is omitted from this entry because the function has the opposite direction as the
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Table 5.2: Sequence generation table entry for stream 10

Property Value

frerSeqGenStreamList 10

frerSeqGenDirection True

relay system, as defined according to the standard, and therefore, a separate table entry
is required.

The instance at the listener node has similar entries, except for the port list, and the
direction set to true. The property f rerSeqRcvyReset is a boolean value describing whether
the function is to be reset by resetting the sequence_number counter. There are two options
for the recovery algorithms defined in the standard: vector and match recovery. The
vector recovery algorithm accepts the first packet after the recovery reset immediately,
and the subsequent packets are accepted under the condition that their sequence_number
values are within the range of the previous packet number ± f rerSeqRcvyHistoryLength
with the default value of 2, according to the standard.

The match recovery algorithm accepts the first packet after the recovery reset, and
the next packet number either matches the last accepted packet number and it is
eliminated, or it does not match and it is accepted. The variable ResetMSec defines
the timeout period in milliseconds after which the recovery function is to be reset.
InvalidSequenceValue defines a value that cannot be decoded as a sequence_number,
that is equal to or larger than the defined recovery sequence space, which is a con-
stant value 65 536. The property f rerSeqRcvyTakeNoSequence is a boolean indicating
whether a packet without a sequence_number is to be accepted (true), or discarded
(false). The default value in the standard is set to f alse. The next value from the table,
f rerSeqRcvyIndividualRecovery, indicates if the function is an individual or a sequence
recovery function, and f rerSeqRcvyLatentErrorDetection indicates if a latent error detec-
tion function is to be invoked or not.

Table 5.3: Sequence recovery table entry - an individual recovery function instance

Property Value

frerSeqRcvyStreamList 10

frerSeqRcvyPortList SNode:1, Node1:1, Node2:1, MNode:1

frerSeqRcvyDirection False

frerSeqRcvyReset False

frerSeqRcvyAlgorithm Match recovery algorithm

frerSeqRcvyHistoryLength 2

frerSeqRcvyResetMSec 3000

frerSeqRcvyInvalidSequenceValue 65536

frerSeqRcvyTakeNoSequence False

frerSeqRcvyIndividualRecovery True

frerSeqRcvyLatentErrorDetection False
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The second exemplary entry of the sequence recovery table presented in Table 5.4
describes the sequence recovery function instantiated at port MNode:3. Properties with
the same values as in the first entry are omitted.

The property f rerSeqRcvyLatentErrorDetection is set to true in order to catch failures
in the network. Still, it is up to the network administrator to decide whether to activate it
or not. If it is set to true, additional parameters need to be set. The LatentErrorDi f f erence
is defined as the maximum allowed value of:

numDiscardedPackets− (numPassedPackets ∗ (LatentErrorPaths− 1))

LatentErrorPeriod, with the default value of 2000 defined in the standard, specifies the
time in millisecond between the invocation of two instances of latent error test function,
which checks if the number of discarded packets is as expected. LatentErrorPaths is the
number of paths over which FRER operates for this function instance. LatentResetPeriod
specifies the time in millisecond between the invocation of two instances of latent
error reset function, and default value, according to the standard, is 30 000. The entry
configuration for the sequence recovery table is also presented in Algorithm 10.

Table 5.4: Sequence recovery table entry - a sequence recovery function instance

Property Value

frerSeqRcvyStreamList 10, 20

frerSeqRcvyPortList MNode:3

frerSeqRcvyIndividualRecovery False

frerSeqRcvyLatentErrorDetection True

frerSeqRcvyLatentErrorDifference 10

frerSeqRcvyLatentErrorPeriod 2000

frerSeqRcvyLatentErrorPaths 2

frerSeqRcvyLatentResetPeriod 30000

Sequence encode/decode function inserts the sequence_number, generated by the
sequence generation function, into the packet, and extracts it from the packet. The
function is required for each entity included in the path of the packet, except with a
stream identification method that already inserts and extracts the sequence_number, such
as the active destination MAC and VLAN stream identification. For each instance of
the function, an entry in the sequence identification table is created. Two entries for our
exemplary scenario are presented in Table 5.5.

The first entry describes the properties of the function at port Talker:2, and the second
entry describes the function instance at port SNode:1. The list of streams for which an
instance of the function is to be instantiated at the port noted in f rerSeqEncPort, in
the given direction and encapsulation type, is specified by f rerSeqEncStreamList. The
direction is specified in f rerSeqEncDirection with a boolean value, indicating whether
the function is on the out-facing side of the port. For our scenario, for the port Talker:2, it
shall be set to True, and for the SNode:1 to False since it is a part of the relay system. The
property f rerSeqEncActive indicates if the function is to be used to encode and decode
packets (and it is set to True, as it is the case at port Talker:2) or only for decoding (as it is
the case at port SNode:1).
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Algorithm 10: Configuration of a sequence recovery table entry
1 ConfigureSeqRecovery ()
2 f rerSeqRcvyEntry. f rerSeqRcvyStreamList = streamList
3 for stream ∈ streamList do
4 for port ∈ stream.ports do

// set the entry for the listener port

5 if port == listener.port then
6 f rerSeqRcvyEntry. f rerSeqRcvyDirection = true
7 else

// set the entry for the relay port

8 f rerSeqRcvyEntry. f rerSeqRcvyDirection = f alse
9 end
10 f rerSeqRcvyEntry. f rerSeqRcvyPortList.add(port)
11 end
12 f rerSeqRcvyEntry. f rerSeqRcvyReset = f alse
13 f rerSeqRcvyEntry. f rerSeqRcvyAlgorithm = MatchRecovery
14 f rerSeqRcvyEntry. f rerSeqRcvyResetMSec = 3000
15 f rerSeqRcvyEntry. f rerSeqRcvyInvalidSequenceValue = 65536
16 f rerSeqRcvyEntry. f rerSeqRcvyTakeNoSequence = f alse
17 if individualRecovery == true then
18 f rerSeqRcvyEntry. f rerSeqRcvyIndividualRecovery = true
19 f rerSeqRcvyEntry. f rerSeqRcvyLatentErrorDetection = f alse
20 else
21 f rerSeqRcvyEntry. f rerSeqRcvyIndividualRecovery = f alse
22 if latentErrorDetection == true then
23 f rerSeqRcvyEntry. f rerSeqRcvyLatentErrorDetection = true
24 f rerSeqRcvyEntry. f rerSeqRcvyLatentErrorDi f f erence = 10
25 f rerSeqRcvyEntry. f rerSeqRcvyLatentErrorPeriod = 2000
26 f rerSeqRcvyEntry. f rerSeqRcvyLatentErrorPaths = 2
27 f rerSeqRcvyEntry. f rerSeqRcvyLatentErrorResetPeriod = 30000
28 end
29 end
30 end
31 end

Note that at SNode three instances of the function are required to be invoked, one at each
port, two active encode/decode functions at the output ports, and one passive at the input
port. Next, the encapsulation type is set by f rerSeqEncEncapsType. The standard defines
three possible encapsulation types: R-TAG (value = 1), HSR sequence tag (value = 2),
and PRP sequence trailer (value = 3). The R-TAG is required by the standard for the
three system types, therefore, it shall be used as the default value. Other types can be
used only as an addition to the R-TAG. In case of a passive function (active = f alse) with
any of the two optional encapsulation types, the f rerSeqEncPathIdLanId shall be set as
the path ID or LAN ID. For more details about the types, refer to sections 7.8, 7.9, and
7.10 of the standard.

The stream split function is configured in the stream split table. The entry values
for our exemplary scenario are given in Table 5.6. The port at which the function
is to be instantiated is specified by f rerSplitPort, which is in this case SNode:1. The
f rerSplitDirection indicates whether the function is at the out-facing side of the port.
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Table 5.5: Sequence identification table - an active and a passive function instance

Property Value 1 Value 2

frerSeqEncStreamList 10 10

frerSeqEncPort Talker:2 SNode:1

frerSeqEncDirection True False

frerSeqEncActive True False

frerSeqEncEncapsType 1 1

frerSeqEncPathIdLanId 0 0

Since, in our case, the function is in the relay system, the direction is defined as f alse.
The stream to be split, noted in f rerSplitInputIdList, has a stream_handle = 10, and is
split into streams with stream_handles 10, and 20, as noted in the f rerSplitOutputIdList.

Table 5.6: Stream split table entry

Property Value

frerSplitPort SNode:2

frerSplitDirection False

frerSplitInputIdList 10

frerSplitOutputIdList 10, 20

5.5 implementation

As mentioned before, we have two main goals: to improve the resilience of VNs with effi-
cient methods, and to integrate the embedding results with the Std. IEEE 802.11CB FRER.
Firstly, the required tools for implementation are presented, then further implementation
details of the main tasks are provided. For implementing the reliability methods and
validating the configurations of the network via a simulator, two frameworks have been
used: ALEVIN and TSimNet. In the following sections, the most important features of
the frameworks are described.

5.5.1 Link Mapping Algorithms

Most of the implementation of the reliability methods is performed in the framework
ALEVIN, including: the implementation of the link mapping algorithms, their evaluation,
and computing and exporting the network configurations. Firstly, ALEVIN parses JSON
definition files for the generation of the SN and VNs. The format of the definition file for
the SN is presented in Listing 5.1. The SN consists of two types of elements: nodes and
links. A node has the following properties: ID, x and y coordinates, and resource attribute
which is the node’s reliability in this case. A link of the SN is defined according to Listing
5.2. The linkResource property holds the following information: the maximum, available,
and reserved bandwidth, and the link’s reliability. The link properties additionally include
the IDs of the source and destination SNos and ports.
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Listing 5.1: SN JSON definition format

1 "network":{

2 "elements":{

3 "nodes":[

4 {

5 "id": "host1",

6 "X": 0.323,

7 "Y": 3.172,

8 "resource": {"reliability": 0.99 }

9 },

10 ...

11 ],

12 "links": [{ .... }]

13 }

14 }

Listing 5.2: SLi JSON definition format

1 "links":[

2 {

3 "id": "host1:1/host2:1",

4 "linkResource": {

5 "maximumBandwidth_BitsPerSec": "1000000000",

6 "availableBandwidth_BitsPerSec": "1000000000",

7 "reservedBandwidth_BitsPerSec": "0",

8 "linkReliability": 0.99

9 }

10 "src": {

11 "srcNodeId": "host1",

12 "srcPort": "host1:1"

13 },

14 "dst": {

15 "dstNodeId": "host2",

16 "dstPort": "host2:1"

17 }

18 },

19 ...

20 ]

The VN JSON definition format is presented in Listing 5.3. Each VN in this reliability
work represents a network slice deployed in a factory network to represent resource
reservations for the VLis [6]♮. The sliceEndPoints property holds the {Talker, Listeners}
tuple, and the property reliabilityAlgorithm refers to the link mapping algorithm to be
used. We define a slice per talker and our VNE tool creates a VLi from this talker to each
listener.

Listing 5.3: VN JSON definition format

1 [

2 {

3 "sliceId": "Video1",

4 "sliceEndPoints": [



5.5 implementation 97

5 {"Talker": "Camera161",

6 "Listeners": ["Video_Server121","Video_Server221"]},

7 ...

8 ],

9 "reliability": "0.8",

10 "reliabilityAlgorithm": "MinBr",

11 "demandedBandwidth":"10000000"

12 },

13 ...

14 ]

After the network definition files are read and the network stack, consisting of the
SN and slices, is created, the slices are mapped using the algorithms defined in Section
5.3. Finally, the configuration tables are computed and exported in XML format for the
network simulation framework TSimNet.

5.5.2 Network Configuration

TSimNet is an open-source network simulation framework based on OMNET++ and
INET frameworks. It implements the following parts of TSN standards family: 802.11Qbu
Frame Preemption, 802.11CB FRER, and 802.11Qci Per-Stream Filtering and Policing
[166].

A project within this framework requires a .ned file and an .ini file to be defined. The
.ned file is the network definition file: the nodes and links are defined, and names of ports
are automatically assigned. Additionally, the .ned file includes a graphical representation
of the network, and for that purpose, coordinates of the nodes are required to be set as
well. The network can be either manually written using the NED language or imported
from one of the other file formats such as CSV, JSON, and XML; each of the file formats
is precisely defined. For the purposes of this work, the XML file format is used because it
is the default file format of ALEVIN and, therefore, the required changes of the exported
network stack from ALEVIN for the simulator are minimal.

Further, the .ini file is used for the general network configurations such as the address
resolution protocol, if UDP or TCP is used, packet sending interval, and length of
the message. The file is also used to define the TSN capabilities of the network such
as recovery functions, encapsulation types, stream splitting and merging, and others.
Besides the .ini file, the main class responsible for the network configuration is the
TSNCon f igurator. This class is responsible for network configurations by reading the
topology, computing the interface and routing tables, configuring addresses of the
network entities, and computing static routes or importing TSN routes from a file.

In order to configure the network according to the calculated paths, the simula-
tor requires tsn− route to be computed and imported. In case of no tsn− routes, the
TSNCon f igurator calculates static routes as unweighted shortest paths. Therefore, com-
putation of tsn− route elements is equally important as the configuration tables from
the standard in order to run the simulation properly. This element is required for the
simulator, but it is not specified by the standard. The element is represented as:

<tsn-route src="host1" dst="host2" path="node1 node2" stream-id="1"

sequence-filtering="enabled" rate="200000" burst="40000"/>
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As shown, the tsn− route tag has a source, destination, path, and stream-id (which is
the stream_handle). The other attributes are not relevant for this work. For one mapped
VLi with redundancy, three tsn− route elements are required: from the talker to the node
where splitting occurs, and two paths from splitting node to the listener. Besides the
tsn− route tag, other required configuration entries are implemented as described in
Section 5.4.

After calculating the configuration tables by ALEVIN, they are exported to be imported
into the network simulator. The simulator imports the configuration as an XML file, as
a property of the TSNCon f igurator class. The file initially includes the network mask,
addresses, and the tsn− routes. For the purpose of this work, the configurator is extended
to read the computed configuration tables. The FRER capabilities of the simulator are
implemented in a manner that the nodes are configured differently from the standard,
which configures the specific ports. Therefore, properties such as the direction of a
function (in- or outing-facing side) in a port cannot be set. Moreover, not all functions can
be configured, such as sequence encode/decode function, since the simulator implements
them in the structure of the port itself. We modified the simulator to configure the stream
splitting function and the recovery functions (the individual and sequence recovery).

The general method of accessing entries of the configuration tables is presented in
Algorithm 11. The configuration file is read and, for example, for the stream split table
each split entry is found in the file, and its attributes are assigned to certain variables.
Further, the matching node from the topology holding the specified port of the entry is
found and the configuration is applied.

Algorithm 11: Setting the configuration tables
1 SetConfTables ()
2 XMLElementList entryElements = config.childrenByTagName("entry")
3 for entryElement ∈ entryElements do
4 readEntryAttributes()
5 host = entry.port
6 for i = 0; i<topology.numNodes; i++ do
7 Node node = topology.nodes[i]
8 if node ̸= host then
9 continue

10 end
11 setCon f igurationTable()
12 end
13 end
14 end

Besides setting the variables from the configuration tables in the nodes, additional
properties are required to be set due to the structure of the simulator. For the stream
split table, a property of type TSNSplitTable_t is required. This table holds the pairs
of {input stream, output stream_handle list}. For example, in the case of a stream with
stream_handle 1 is to be split into streams 2 and 3, the entry would be {1, {2, 3}}. Moreover,
a forwarding entry for the TSNForwardingTable_t is set. Each entry is defined by the
stream to be forwarded and the forwarding port of the node on which the configuration
is applied. In case of a stream 2 to be forwarded on port 24, the entry would be {2, 24}.
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For the sequence recovery table, a TSNMergeTable_t is required to be set. It consists of
pairs of {the stream to be merged, the stream into which to merge}. For example, if stream
2 is required to be merged into stream 1, the entry in the merge table is {2, 1}. It is to note
that the simulator does not implement the latent error detection function, which is part
of the sequence recovery function.

5.6 evaluation of link mapping algorithms

5.6.1 Metrics

The performance of the VNE algorithms is assessed in terms of acceptance ratio, SN
utilization, and path reliability. Acceptance Ratio (ARa) shows the ratio of mapped slices
to the total number of slices:

ARa =
Number o f mapped slices

Number o f requested slices

We define a new application Resource Utilization (RU) metric that represents the degree
to which a certain link mapping algorithm improves (decreases) the total length of paths
(number of links) used to embed the accepted application slices. It is defined as:

RU = ARa ∗ Total demanded bandwidth
Total reserved bandwidth

Where ARa is the acceptance ratio of the application, the demanded bandwidth is the
total demanded bandwidth of all VLis of all slices of the application, and the reserved
bandwidth refers to the total reserved bandwidth for all application slices. For example,
if we have six video slices and two VLis in each slice and with a bandwidth demand of 1,
we have a total bandwidth demand of 12. We assume in this metric that the bandwidth
demands of the same application are very close. If RSP algorithm accepts 2 out of 6

slices (ARa = 0.33), and uses 24 SLis for mapping the 4 accepted VLis (average path
length is 6 hobs, reserved bandwidth is 24), then RU = 0.33 ∗ (12/24) = 0.16. If MaxBr
algorithm uses doubled average number of SLis per VLi (12) and accepts all slices, then
RU = 1 ∗ (12/144) = 0.08. In this case, RSP doubles the resource utilization. Although
this metric is affected by the distances among application SNo, it is useful in comparing
different link mapping algorithms with the same application. The path reliability, as a
property of a mapped path, is as defined in Section 5.3.1. Additionally, the runtime of
the algorithms is compared.

5.6.2 Evaluation SN Topology

As shown in Figure 5.7, the factory topology includes four sub-networks: the plant
backbone with multiple connected rings, and three cells with different topologies. The
plant backbone includes two Internet nodes, three video servers, two cameras, three
PLCs, and Human-Machine Interface (HMI) devices. The cells include bridges to the
plant backbone, PLCs, cameras, and general IO devices. The reliability value of all SN
entities is 0.99. The IDs of backbone bridges are numbered with the ring number first
then the bridge order in the ring. The IDs of cells bridges are numbered with the cell
number first then the order of the bridge in the line/ring. All devices are numbered with
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the numeric ID of the attached bridge then the order of this device for this bridge. For
this evaluation, the parameter k of the k-shortest path algorithm is set to 3 to exclude
very long paths and, at the same time, allow multiple path pairs.

We define slices from five application types: video, Internet, control, PLC, and best
effort (BE). Each slice connects a talker to a set of listeners. The purpose of having multiple
listeners in a slice is building a tree for the slice in another work that is not included
in this thesis. A video slice transfers video from a camera to multiple video servers.
An Internet slice connects an Internet gateway to multiple HMIs. A BE slice connects a
HMI to multiple IO devices for configuration and monitoring. A PLC slice connects a
backbone PLC to multiple cell PLCs. A control slice connects a cell PLC to multiple IO
devices from the same cell. The assumed reliability demand of each application type and
the {Talker, Listeners} tuples are presented in Table 5.7.

Table 5.7: Application types and their descriptions

Type Talker Listeners Reliability demand

Video Camera Video servers 0.8

Internet Internet HMIs 0.7

BE HMI IO devices 0.7

IO devices
from the
same cell

Control Cell PLC 0.85

PLC Plant PLC Cell PLCs 0.85

The slice definition file contains in total 30 slices with 6 slices from each application
(video, Internet, BE, control, PLC). The evaluation scenario has been run 30 times for
each of the three link mapping algorithms, and in each run, a new order of VNs/slices
arrival is used. The reason behind different orders of slice arrivals is that some slices
need more resources (for example, the video slices need more bandwidth, and control
slices require more reliable paths). Thus, slices might be mapped on different paths in
each run. However, the confidence intervals of 95% in such a fixed topology were too
small to be seen in the results figures.

5.6.3 Results and Discussion

In this section, we present and discuss the evaluation results that compare the three
algorithms in terms of acceptance ratio and resource utilization per application, path
reliability per VLi, and runtime per slice.

5.6.3.1 Acceptance Ratio

The effect of redundant paths is visible from the values of acceptance ratio in Figure
5.8. RSP maps 73% of requested slices, whereas the MinBr and MaxBr algorithms both
achieve 100% mapping. The reason is low admission ratio with RSP for the PLC and
video slices (2 from 6 slices mapped (33%)) that have high reliability demand (0.85 and
0.8) and relatively some long paths from the cell cameras to the video serves and from
cell PLCs to the backbone PLCs. The path length decreases the reliability, as discussed in
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Figure 5.7: Evaluation scenario - SN topology
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Section 5.3.1. In this case, the branching can increase the reliability but still cannot always
guarantee 100% mapping.
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Figure 5.8: Acceptance ratio per application type

5.6.3.2 Path Reliability

We observe the path reliability for each VLi of the evaluation scenario. The average
values for all VLis from each application are presented in the following figures. The path
reliability value is calculated from both VLis and VNos and is 0 for rejected VLis. Since
we have rejected PLC and video slices with RSP, we see 0 reliability for some PLC and
video VLis when RSP is used. In general, the path reliability is improved by MinBr and
the best with MaxBr. However, we see some overlapping points (similar reliability value)
in the following cases:

• For RSP and MinBr, when RSP is able to map the VLi on a single path that satisfies
the reliability demand. In this case, MinBr will not try to branch and will also use
the same single path.

• For MaxBr and MinBr, when the path pair with minimal branching that can satisfy
the reliability demand is the same pair with maximal branching.

• For the three algorithms, when there is only one possible path for the VLi, and this
path satisfies the reliability demand. This might be due to the topology itself or
available bandwidth. In this case, MinBr will not try to branch, and MaxBr will not
find a backup path.

Figure 5.9 shows the path reliability of the VLis belonging to the video slices. We see
for RSP that reliability = 0 for ∼66,67% of the VLis, implying that these are not mapped.
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For these rejected VLis, both branching algorithms can find a mapping that satisfies
the reliability demand. However, MaxBr improves the reliability with the maximum
difference of ∼0.094 to MinBr.
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Figure 5.9: Path reliability per VLi for video slices

Figure 5.10 shows the path reliability of the VLis belonging to the Internet slices. Since
the reliability demand is relatively low and all end-nodes are in the backbone, there is
always a possibility to find a single mapping path and we see a complete overlapping
between RSP and MinBr. However, MaxBr highly improves the reliability (maximum
difference to MinBr is 0.16). This improvement is due to the higher possibility of path
(partial) disjointness in the backbone.

In Figure 5.11, we see that the RSP algorithm maps all BE VLis due to relatively low
reliability demand; therefore it overlaps with MinBr completely. Moreover, we also notice
an improvement when using MaxBr with the maximum increase in reliability of ∼0.11.
However, this improvement is less than what we see for the Internet slices since the
possibility of path (partial) disjointness is less between the cells and backbone than inside
the backbone.

For the control slices, from Figure 5.12, we can observe the overlapping of the three
algorithms for two VLis from Cell 2 since there are only single paths among IO devices
and the PLC. Although the reliability demand is relatively high for control slices, the
paths inside the cells are relatively short, and RSP (and MinBr) is always able to find a
single mapping path. In cell 1, MaxBr maps the other direction in the ring as a branch.
In most cases of Cell3, the length of the branch is equal to the length of the main path.
MaxBr improves the reliability compared to RSP with a maximum of 0.09.

Figure 5.13 shows the path reliability for the PLC VLis. We note that RSP cannot map
66% of the slices due to some long paths (between backbone PLCs and lower cell PLCs)
and high reliability demand. For the VLis that RSP can map (for upper cell PLCs), the
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Figure 5.10: Path reliability per VLi for Internet slices
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Figure 5.11: Path reliability per VLi for BE slices
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Figure 5.12: Path reliability per VLi for control slices

results of RSP and MinBr overlap, and the minimal and maximal branches have close
length. For the other VLis (for lower cell PLCs in cells 1 and 3), MaxBr can use highly
disjoint paths and improve the reliability with a maximum of 0.067, which is smaller
than other applications due to the length of paths.

5.6.3.3 Resource Utilization

The results of the RU metric presented in Figure 5.14 give an overview of the efficient
usage of resources by the different link mapping algorithms for each application. For all
applications, we consider the bandwidth demand as 1 unit and each reservation on an
SLi as 1 unit. This is true even if the real values are different according to the resource
utilization equation. Each application has 6 slices with two VLis leading to a bandwidth
demand of 12. The total reserved bandwidth in this case is the number of mapped VLis
multiplied with the average application path length when using a certain algorithm.

For video slices and RSP, 4 VLis are mapped with average path length of 6 leading
to RU = 0.33 ∗ (12/(4 ∗ 6)) = 0.165. MinBr maps all VLis with average path length of
6 for the 4 VLis that RSP can map, and of 9 for the remaining 8 VLis due to a branch
of additional 3 VLis. Then the total average path length for video slices with MinBr is
(4 ∗ 6 + 8 ∗ 9)/12 = 8, leading to RU = 1 ∗ (12/(12 ∗ 8)) = 0.125. MaxBr maps all VLis
with average path length of 10 due to a branch of additional 4 VLis in average leading
to RU = 1 ∗ (12/(12 ∗ 10)) = 0.1. This average branch length is due to the topology that
forces some common hobs among the k-shortest paths.

For Internet slices, the reliability demand is relatively low and RSP (and MinBr) are able
to map all VLis with an average path length of 8.5 (all in the backbone but we connect the
HMIs to the distant Internet gateway to compare the algorithms). The resource utilization
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Figure 5.13: Path reliability per VLi for PLC slices
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Figure 5.14: Resource utilization per application type
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for RSP and MinBr is RU = 1 ∗ (12/(12 ∗ 8.5)) = 0.117. MaxBr in such a backbone and
long path adds branches of similar length. The two SLis to the end-nodes are replaced
with the two SLis that split and merge the parallel branch. For this reason, MaxBr maps
all VLis with an average path length of 17, and RU = 1 ∗ (12/(12 ∗ 17)) = 0.058

For BE slices, the reliability demand is relatively low and RSP (and MinBr) are able
to map all VLis with an average path length of 8 (different path length values between
the cells and backbone HMIs). The resource utilization for RSP and MinBr is RU =

1 ∗ (12/(12 ∗ 8)) = 0.125. For the lower IO devices of cells 1 and 3 to the backbone HMIs,
there a possibility to map long maximal branches. From the upper IO devices of cells 1

and 3 and all cell 2, and with k=3, the maximal branching mainly happens inside the
backbone. In this case, MaxBr will not select the longest branch in the backbone but
the shortest. The logic of MaxBr removes the SLis of the main path and then applies
k-shortest path again on the SN. When no path is found, the SLis of the main path are
restored sequentiality until a branch is found. This means that if multiple branches have
the same number of common SLis with the main path, MaxBr will choose the shortest
branch, and maximal here means shortest path with the maximal disjointness from the
main path or least number of common SLis. In average, the branch length with MaxBr
and BE slices is 7.3 and RU = 1 ∗ (12/(12 ∗ (7.3 + 8)) = 0.065

For control slices, we deploy slices with short paths between the IO devices and PLCs
(average path length is 4.5). For RSP and MinBr, RU = 1 ∗ (12/(12 ∗ 4.5)) = 0.222. MaxBr
uses the same single path in cell 2 for two VLis and the ring size plus the edge nodes
connections in cell 1 (12). In cell 3, MaxBr adds as a branch one bridge (2 SLis) for paths
with length of 4, and two bridges (3 SLis) for the paths with length of 5. We have 3 slices
in cell 1, 1 slice in cell 2, and 2 slices in cell 3. Then the average path length of control
slices with MaxBr is (12 ∗ 6 + 4.5 ∗ 2 + 7 ∗ 4)/12 = 9, and RU = 1 ∗ (12/(12 ∗ (9)) = 0.11.

For PLC slices, we have two slices that RSP (and MinBr) can map and which connect
the upper cell PLCs with an average path length of 5.5. The utilization for RSP is
RU = 0.33 ∗ (12/(4 ∗ 5.5) = 0.18. The other four slices connect the lower PLCs with
an average length of the direct path of 9.5. MinBr adds 2.5 SLis from the backbone
in average as branches and the average path length (4*5.5+8*(9.5+2.5))/12 =9.8 and
RU = 1 ∗ (12/(12 ∗ (9.8)) = 0.102. MaxBr adds mostly equal length branches (9.5), and
RU = 1 ∗ (12/(12 ∗ 19) = 0.053.

To average resource utilization for all applications and for RSP, MinBr, and MaxBr is
0.162, 0.138, 0.077, respectively. In general, MinBr improves the resource utilization with
6% compared to MaxBr and achieves a similar acceptance ratio and average maximum
reduction of reliability per application of 0.16. However, the specific values depend on
the application and SN topology and nature of paths. The differences between RSP and
MinBr depend on the reliability demands and distances among end-nodes, which affect
the possibility of using one path.

5.6.3.4 Runtime

Figure 5.15 shows the runtime metric results measured by ALEVIN for two representative
slices from each application. The runtime of RSP and MinBr is very close except when
there is rejection by RSP (in slices video2 and PLC2). In this case, RSP takes a bit less
time than the case of accepting the slice since the k-shortest paths are also found and
checked for reliability but no path is really mapped. In the same case, MinBr takes a bit
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longer time than its time in the case of RSP admission, but clearly longer time than RSP
here since it finds a pair of paths with the minimal branching. The main time-consuming
operations are Dijkstra, and in MinBr finding the number of common nodes in each
path pair, and in MaxBr removing the main path from the topology and restoring it
sequentially until the k-shortest path algorithm finds a path. However, calculating the
reliability of a single path or pair of paths and sorting paths/pairs according to reliability
or number of common nodes are less time-consuming operations.
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Figure 5.15: Runtime per slice

In general, the exact runtime of RSP is affected by the distance among end nodes. For
this reason, we have close runtime for video and Internet slices that have close direct
path lengths in our evaluation setup. Furthermore, we have a bit longer paths for BE and
PLC slices, and the shortest paths for control slices. These differences can be seen in the
RSP runtime for these applications.

The runtime of MaxBr depends on the length of paths and possibility of disjointness.
However, we notice for control slices that there is either a small difference in cells 1 and
3 where finding the maximal branch is fast, or a large difference when there is only a
single path (in cell 2) and MaxBr restores all edges trying to find a path, but at the end it
uses the same path.

5.6.3.5 Discussion

Based on our findings, we suggest a mapping among the three algorithms and the men-
tioned traffic classes. RSP shall be used for non-deterministic traffic that usually demand
lower reliability. MinBr shall be used for deterministic aperiodic traffic with unknown
arrival time and high reliability demand with low bandwidth reservation. MinBr can sat-
isfy the reliability while saving resources. MaxBr shall be used for deterministic periodic
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traffic that has the highest reliability and bandwidth demand. MaxBr can increase the
reliability with accepted costs since is finds the maximal branching in a set of k-shortest
paths.

5.7 testing network configuration

In this section, the calculated configuration tables according to FRER are validated. The
validation is performed in the aforementioned network simulator, TSimNet. The SN
topology used for the purpose of evaluation is the same topology from Section 5.6.2. For
calculating the configuration tables, we use the slice definition format shown in Listing
5.4.

Listing 5.4: Slice JSON definition format

1 [{

2 "sliceId": "Video",

3 "sliceEndPoints":

4 [{"Talker": "C3_Camera31","Listeners": ["Video_Server121"]}],

5 "reliability": "0.8",

6 "reliabilityAlgorithm": "MinBr"

7 }]

The slice has only one {Talker, Listeners} tuple and only one listener for easier graphical
representation in the simulator. In Figure 5.16, only the mapped paths of the substrate
are shown.

Figure 5.16: Part of the SN topology in Tsimnet

As noted in the slice definition, the link mapping algorithm used is MinBr and two
paths are computed. After calculating the mapped paths in ALEVIN and exporting only
the relevant portion of the SN, the configuration tables: stream identification, sequence
generation, stream identity, stream splitting, and stream recovery are computed. Because
of the long list of variables in some tables, the entries are presented only partially.

Firstly, the stream identity table is presented. It includes all streams in a system, and
since the slice used includes only one VLi, two streams are generated. Table 5.8 shows the
most important computed values of the stream identity table entries. The identification
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type is taken as null stream identification since it is the required type for each network
entity, and VLAN ID is the ID of the VN in ALEVIN.

Table 5.8: Stream identity table

Stream ID Identification type VLAN ID

21 Null_stream_identification 1

4 Null_stream_identification 1

The sequence generation table shows for which streams is a sequence generation
function to be instantiated, and in which direction (whether on in- or out-facing side of
the ports). The values are shown in Table 5.9. The direction infers whether the sequence
generation function is in- (false) or out-facing (true). The stream with stream_handle=21
is out-facing because it is generated at the talker-end system, whereas the stream with
stream_handle=4 is generated at the relay system.

Table 5.9: Sequence generation table

Stream list Direction

21 True

4 False

The sequence identification table instructs the system where to instantiate the sequence
encode/decode function. Table 5.10 shows which stream packets are to be encapsulated
by the noted encapsulation type at which port with the direction. The boolean variable
"active" shows whether it is an encode/decode (true) or only decode (false) function.
Moreover, according to the standard, it is recommended to encode the packets with the
R-TAG; therefore it is used as the default value for the configuration.

From the last table, we can find the nodes at which the two streams split and merge.
Those are the nodes with both streams [21, 4] in the stream list. Since the entries are
generated following the mapped paths, the main stream splits at the node BB_Br36,
and the member streams meet at the node BB_Br13. Another information which can be
obtained from the table is the listener node (Video_Server121) since it is the only node
that has only the decode function instantiated (active=False).

The stream splitting table instructs the system at which ports which streams need to
be split and into which member streams to split them. Table 5.11 shows that the stream
with stream_handle=21 duplicates at the BB_Br36:1 and it is split into streams 21 and
4. According to the standard, it is allowed for at most one duplicate to have the same
stream_handle (21). The event log from Figure 5.17 shows the splitting of the stream and
forwarding of the new streams at the common node of the redundant paths BB_Br36.

At this point, the system has information about which streams exist, for which streams
is it required to generate the sequence_number parameters, at which ports to encode and
decode packets of which streams, and about the splitting of the streams. Next step is to
instruct the system where to instantiate the recovery functions. Both recovery functions,
individual and cumulative, are presented in the sequence recovery table. The values of
the important variables are given in Table 5.12.

The stream list contains the list of stream handles on which the recovery functions will
operate. The standard gives two options for the recovery algorithm: VectorRecovery and
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Table 5.10: Sequence identification table

Stream list Port Direction Active Encaps. type

21 C3_Camera31:1 True True R_TAG

21 C3_Br3:1 False True R_TAG

21 C3_Br8:1 False True R_TAG

21 C3_Br9:1 False True R_TAG

21 C3_Br10:1 False True R_TAG

21, 4 BB_Br36:1 False True R_TAG

21 BB_Br31:1 False True R_TAG

21 BB_Br23:1 False True R_TAG

21 BB_Br22:1 False True R_TAG

21, 4 BB_Br13:1 False True R_TAG

21 BB_Br12:1 False True R_TAG

21 Video_Server121:1 True False R_TAG

4 BB_Br24:1 False True R_TAG

4 BB_Br25:1 False True R_TAG

4 BB_Br26:1 False True R_TAG

4 BB_Br14:1 False True R_TAG

Table 5.11: Stream split table

Split port list Direction Input stream list Output stream list

BB_Br36:1 False 21 21, 4

Figure 5.17: Stream splitting function instantiation at the splitting node
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Table 5.12: Sequence recovery table

Stream
list

Port list Algorithm Individual
Latent er-
ror

21

C3_Br3:1, C3_Br8:1,
C3_Br9:1, C3_Br10:1,
BB_Br36:1, BB_Br31:1,
BB_Br23:1, BB_Br22:1,
BB_Br21:1, BB_Br13:1,
BB_Br12:1

Vector True False

21 Video_Server121:1 Vector True False

4

BB_Br24:1, BB_Br25:1,
BB_Br26:1, BB_Br14:1,
BB_Br13:2

Vector True False

21, 4 BB_Br13:3 Vector False True

MatchRecovery algorithm. Moreover, individual recovery is instantiated for both streams
on all forwarding nodes of the calculated paths. The cumulative recovery is instantiated
only on the BB_Br13 because it is the merging node of the calculated paths. The latent
error function is activated only with the cumulative recovery. Node C3_Camera31 does
not exist in the table since it is the origin of the stream, and a recovery function at the
talker node is not required. The recovery functions are necessary because of two reasons:
the individual recovery is important for faults in one member steams such as a stuck
transmitter, and sequence/cumulative recovery is needed for eliminating the duplicate
packets when merging the member streams.

Figure 5.18 shows the instantiation of an individual recovery function at node BB_Br14.
The sequence number of the received frame from stream 4 is verified (delta from old seq
num), then the frame is forwarded.

Figure 5.18: Individual recovery function instantiation - packet forwarding

In order to enable the sequence recovery function on the compound stream, a merge
table is added to the simulator. It includes lists of streams to be merged and to which
stream_handle. As shown in the event log in Figure 5.19, stream 4 is merged with stream
21 in node BB_Br13, and the frames are further forwarded with the stream_handle=21. All
packets coming at the node BB_Br13 with stream_handle=4 will be overwritten with the
new stream_handle value. In this case, the individual recovery function at node BB_Br13
will treat the framed received with stream_handle=4 as duplicates and will drop them as
seen in figure 5.20.

The sequence recovery function can be instantiated with or without a latent error
detection function. In general, the computed configurations imply a latent error detection
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Figure 5.19: Sequence recovery function - merging two streams

Figure 5.20: Sequence recovery function - elimination of duplicate packets

function in the case of a cumulative recovery function since the latent error detection
provides additional reliability by counting the discarded packets. In case there are less
discarded packets than expected, it means there is a failure in one of the redundant paths.
TSimNet simulator is not a complete implementation of the FRER and one of the missing
components is the latent error detection function, and therefore, its instantiation is not
possible.

The validation of our configuration tables in the simulator is performed partially. In
spite of its incompleteness, TSimNet is the best option for simulating FRER at the time
of this work. The tested configuration tables in the simulator are the sequence recovery
table and the stream split table. However, all configuration tables have been assessed for
conformance to the standard.

5.8 conclusion

In this chapter, we presented two link mapping algorithms with different levels of
redundancy. MaxBr calculates a redundant path with a minimal number of common
links with the main path. MinBr calculates a minimally disjoint backup path (branch) that
can satisfy the reliability demand. The calculation of the shortest paths is performed by a
traditional k-shortest paths algorithm, with reliability as a weight (RSP). The algorithms
work under the assumption that the reliability of each entity of the physical topology is
known. The evaluation of our work showed the necessity of using different algorithms
according to the reliability requirements of the traffic classes and the topology. We
showed a trade-off between resource utilization of the SN, and the achieved reliability
and acceptance ratio of the slices.

Furthermore, in order to make our results applicable to future industrial networks,
the embedding results were integrated with the TSN standard IEEE 802.1CB FRER. The
advantages of FRER components in a network are numerous, as discussed by researchers
and companies in the networking field. Therefore, the integration of our embedding
results can contribute to more efficient use of TSN networks that incorporate the FRER
capabilities. For validating the computed network configurations, TSimNet simulator
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has been used and some adaptations were required in order to import and apply the
configurations properly.

Using this work, the mapping results of VNE algorithms, with the assignment of
reliability values to network components, can be integrated with the FRER with a
reasonable effort, since the network configurations are generated automatically. Future
work might focus on extending TSimNet to apply all network configuration tables in
accordance with FRER. The complete applicability of branching in the combined solution
(EVN) requires virtualizing FRER in a similar approach to virtualizing TAS. The mapping
results from ALEVIN are already the configuration method of such a virtual FRER.



6
S E C U R I T Y P E R S P E C T I V E

Two significant challenges in NFVI are how to achieve a comprehensive and autonomic
Service-level Agreement (SLA) management, and how to flexibly deploy and activate
security mechanisms on-demand. The main research problem in this chapter is autonomic
security management in NFVI. The main goal is early reaction to threats through SFC
reconfiguration via VNF live migration. This goal is approached by supporting the
security measurements with a decision making architecture that considers, on the one
hand, the threats and events in the environment, and on the other hand, the SLA between
the communication service provider and customer. We design a decision engine and
identify the significant SLA metrics and relevant SFC placement policies. We realize the
security-aware placement policies using VNE algorithms. Furthermore, we analyze the
VM-specific attacks and define possible early detectable behavior patterns [7]♮. Since we
chose the VM technology to realize the VNF, we consider that the VM-specific threat
analysis applies to the VNF. These threats mainly exist in public clouds that might host
VNFs at the cloud level in our main use case. These VNFs might process critical data or
decisions for the industrial enterprise.

6.1 vm-specific attacks

This section is an extension of sections "Co-location", "Attacks on migrated VMs", "Cross-VM
side-channel attacks", "Exploiting live migration" in the author’s publication [7]♮.

A literature survey about attack vectors, attack behavior, defense measurements, and
technical reports about attacks has been conducted, and a first behavior pattern has
been identified [7]♮. Typical VM-specific attacks are cross-VM cache-based side-channel
attacks. In these attacks, the attacker needs first to gain and verify co-location with the
victim VM. The methods of forcing and verifying co-location with a victim VM use VM
instance types, availability zones, IP addresses, and Internet Control Message Protocol
(ICMP). Those methods expect the behavior of the VM placement algorithms and also use
side-channels. For example, by applying a varying load on the victim VM and measuring
the memory access time of the attacker’s VM. The noise of other VMs and the host
are challenges to these attacks. An example of defense measurements is VM location
obfuscation using user-defined or dynamic VM placement algorithms.

A typical cache-based side-channel attack is Prime and Probe attack. The attack fills
the cache then measures the memory access time. If the access time of a certain memory
address is higher than a threshold, a memory page associated with the respective cache
line was accessed by the victim. A researcher demonstrated a Prime and Probe attack
used to recover a full 2048 bit RSA key in Amazon EC2 cloud [167]. Another cache-
based side-channel attack is Flush and Reload attack [178]. The attack relies on memory
deduplication feature (sharing common system libraries in the memory). It flushes
certain known library memory lines from the cache, waits, then measures the access time.
Frequent flushing of the cache is a candidate behavior pattern of such an attack.
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6.1.1 Cross-VM Side-Channel Attacks

A security-critical property in NFVI is the isolation between co-residing VNFs of different
customers. Co-hosting creates an attack surface that is impossible or at least harder to
exploit in a non-virtualized environment. In traditional external side-channel attacks,
the attacker tries to gain information about the victim from the network traffic, power
consumption, response time, etc. In virtual environments, malicious VMs can perform
sophisticated side-channel attacks by monitoring the computing resources in the host.
However, this requires the attacker to place his VM in the same host as the victim VM.
Most of the research about cross-VM side-channel attacks focuses on memory- and cache-
based side-channels, since memory and cache are shared among VMs of costumers and
hold easily accessible run-time data of VMs. The known attacks are discussed in the
following paragraphs. We present an overview of cache- and memory-based side-channel
attacks discussed in the literature and the main mitigation measurements proposed to
hinder these attacks or make them difficult.

prime and probe attack Prime and probe attack operates in three steps. In the
Prime phase, the attacker fills a portion of the cache with his data. In the Trigger
phase, the attacker waits for the victim to access the memory. In the Probe phase, the
attacker measures the time of each memory access he makes. If this is higher than a
threshold, the accessed memory page is not cached anymore. Therefore, a memory
page associated with this cache line was accessed by the victim (or other VMs). The
first experimental illustration of cache-based side-channel attacks has been presented in
[167]. Such attacks has been shown to recover a full 2048 bit Rivest–Shamir–Adleman
(RSA) key in a vulnerable cloud environment [167]. To perform the attack efficiently,
the authors analyzed the last-level cache structure of the Intel Xeon E5-2670 v2 CPU,
which was dominant on Amazon EC2 cloud servers for the target instance types. The
authors adapted the Prime and Probe attack presented in [168] and expanded it to show
its applicability to Libgcrypt implementation of RSA. For the key recovery, the authors
used the Prime and Probe attack to leak the accessed positions of the table that stores
the decrypted ciphertext, and synchronized the decryption with the spy process by
requesting decryptions using Transport Layer Security (TLS) requests.

The authors in [169] presented a cache-based side-channel attack to extract SSH
keystrokes from another VM. They have been able to observe the keystrokes sent with
5% missed keystrokes and 0.3 false triggers per second and an observation resolution
of 13ms . The authors adapted a network-based SSH keystroke timing attack presented
in [170]. This attack uses timing differences between letters typed by different fingers
and hands to determine what the user is typing. The original attack uses a network tap
to monitor the inter-packet timing and assumes every packet sent to the SSH server
to be a keystroke. The authors generated a map of timings between certain character
pairs and divided them into different categories according to the hands and fingers used.
The authors used a training data-set to train the algorithm. This data-set should not be
necessarily created by a victim. The experiments discovered certain human behavior
patterns in typing passwords and reached a significant reduction in the password search
space. As a counter measurement, they mentioned introducing dummy traffic between
the server and the client to introduce additional noise to the cache.
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The authors of [169] adapted the original attack to exploit cache usage and timing
information gathered by the Prime and Probe attack. The time measurement is done by
repeatedly running the Prime and Probe attack and observing how long a specific cache
usage pattern resides in the cache. The authors assume that every keystroke processed by
the victim results in a cache usage spike. To simplify, they performed the attack on a local
testbed to ensures that the attacker and the victim co-reside on a single CPU core and
that the system is idle. To apply the attack in real environments, it had to be optimized
to be more robust against noise introduced by the system and other applications running
on the machine, and against core migration (switching CPU core for one process or VM).
Another challenge for this attack is that the noise introduced by the response messages
from the SSH server has to be detected and filtered. The authors filter cache activities
according to a certain duration range.

cryptographic library cache timing attack The authors of [171] used cache
timings of Advanced Encryption Standard (AES) operations performed by widely used
cryptographic libraries. The attack is divided into four stages. First, the attacker creates
a profiling server that uses the same software and hardware as its victim. The attacker
starts encrypting the plaintext using a known key and stores the timing information for
each byte of the key into a table. In the attack stage, the attacker sends a known plaintext
to it’s victim and stores timing information just like in the profiling stage. Afterward, the
attacker correlates the timings measured in the first two stages and stores the correlation
coefficients for every possible key byte in a new table. Finally, the attacker brute forces
all possible key combinations using the correlation table.

To blindfold this attack, the authors suggest using available hardware extensions
such as the AES-NI, which is available in most modern CPUs. The AES-NI performs
a full round of AES without accessing cache or memory in an atomic operation. This
makes timing and other cache-based side-channel attacks useless against AES, as the
computed data is not fetched to the cache and the computation can’t be intercepted
by an attacker. However, it is impossible to provide special instruction sets for every
cryptographic algorithm. If such instruction sets are unavailable, the authors suggest
using cache prefetching, in which all necessary information for the computation are
fetched to the cache before starting the computation. Prefetching has to be repeated every
time the attacking VM runs a Prime phase. This can be done by the VM monitor by
refilling the CPU cache after each context switch between residing VMs. This process is
called cache warming.

flush/reload attack . Memory deduplication is a memory utilization optimization
technique introduced in [172]. It seeks memory pages with the same content and merges
them into one physical memory page. Merged memory pages are tagged as read-only to
prevent one owner from modifying them. If the page needs to be modified, its modified
version is stored in another memory page. Depending on the special implementation,
not all memory pages can be deduplicated. The Linux implementation, for example, only
deduplicates memory areas that are allowed to be shared by a system call [173]. This
approach has been later adapted and modified to get rid of the client-side modifications
needed and implemented for VMWare ESX VM monitor in [174]. A similar method has
been introduced in [173] for Linux kernel version 2.6.32, and hence available for KVM.
For XEN, two approaches have been presented in [175] and [176].
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As deduplication is used for shared libraries, the attacker can access and cache the
memory pages used by the victim and use an attack technique called Flush/Reload. This
technique has been first described in [177] and later named in [178]. The Flush/Reload
attack also has three stages. In the Flush stage, the attacker flushes the CPU cache lines
that might be accessed by the victim. This can be done using the clflush instruction that
flushes the CPU cache line for the given virtual memory address. The addresses can be
identified, for example, for a certain shared library that the victim needs to access to
provide a certain service. The clflush instruction also flushes the CPU cache lines in
all cache levels across all cores. In the Trigger stage, the attacker waits for some time to
give the victim the chance to access the memory portion. In the reload stage, the attacker
accesses the previously flushed memory addresses and measures the time needed for
this to figure out if the victim accessed these addresses or not.

As the clflush instruction flushes the cache lines from all cache levels, the attack can
use the last-level cache to work across the CPU cores. An attack that exploits memory
deduplication is presented in [179]. The authors stated that this attack can be used for all
block ciphers that use a table lookup followed by a key addition. The demonstrated attack
on AES works as follows: first, the attacker needs to get the offset of the tables for the
last round with respect to the first address of the library. With these offsets, the attacker
can access each memory line of the tables even if address space layout randomization
is enabled. Afterward, the attacker requests encryptions from the victim and uses the
Flush/Reload technique to determine the table which was accessed. This information
is stored with the ciphertext. In order to recover the full key and to reduce noise, these
measurements are repeated several times. Finally, the attacker can recover the encryption
key using his measurements and the knowledge about the public tables. The experiments
show that a full AES key can be recovered by observing 219 encryptions in the cross-VM
testbed.

6.1.2 Co-location

Co-location with the victim VM in the same host is a prerequisite for shared resource
cross-VM side-channel attacks. In general, an attacker might exploit the weaknesses in
VM placement algorithms and the lack of location privacy in cloud environments to gain
and verify co-location. Using network-based methods, internal IP addresses assigned
to instances can be mapped to availability zones and instance types, as described by
the case for Amazon’s EC2 in [169]. The internal IP was easily resolved by looking up
the Hostname of a VM using an EC2 internal DNS resolver. As the internal IP depends
on availability zone and instance type, the attacker is able to use this map to make
an educated guess about the parameters of instance creation to raise the probability
of gaining co-location by flooding instances of the determined type and availability
zone. This method can be mitigated by assigning randomized internal IP’s to each VM
independently from availability zones and instance types, or by restricting the visibility
of internal IP’s. Furthermore, Amazon provides information on the availability zone
and their current IP address ranges publicly as a JSON file. Another method to check
co-location is measuring the round-trip-time. The round-trip-time should be lower if
the attacker’s VM and its victim’s VM co-reside. This approach is hard to defeat as low
response times are highly important for most services on the Internet.
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According to [169], each physical machine is assigned to one or two instance types,
and each machine can support a specific number of VMs of this type. This makes it
easier for an attacker to gain co-location as it reduces the number of physical machines a
specific VM of a known instance type and availability zone may reside on. This makes the
brute-force-based placement of malicious instances cheaper. Additionally, it is not highly
probable that two instances of one customer are placed on a single physical machine.
This is intended to avoid a single point of failure for the customer and balance the load
over different physical machines. For an attacker, this strategy has the advantage that
the created malicious instances will probably not co-reside, which raises the probability
of gaining co-location to a specific VM. On the other side, the attacker can’t isolate the
victim by filling the hosting physical machine with his own malicious instances. This
introduces noise to the measurements by other VMs that might not be important for the
attacker. The attacker can also use the parallel placement locality. This means if two or
more instances are created from different customer accounts shortly after each other, it is
more likely that these instances co-reside. The authors show that this short time can be
more than an hour between the creation of the two instances. An attacker can wait until
the victim creates a new instance or can try to force the victim to create new instances by
introducing load to the victim’s service if the victim automatically creates instances to
balance the load.

As a counter measurement, the authors propose that each customer should decide
about the placement of his own VM. This counter measurement is taken by Amazon
using the virtual private cloud, which provides all the benefits of Amazon’s cloud API
on single-tenant hardware. The authors of [180] and [181] introduced new placement
algorithms that are more robust against these attacks. In [180], the algorithm marks all
servers as ’on’ or ’off’. Additionally, all ’on’ marked servers are marked as ’open’ or
’closed’, indicating if a server can still accept new VMs. The controller instance always
keeps λ servers online (’on’), which can still host new VMs (’open’). Every newly created
VM is assigned at random to one of these ’open’ servers. In [181], all physical servers are
assigned to a group of an adjustable size. A new group of servers is only started if all
running groups of servers can’t run a newly created VM. The algorithm prefers to place
newly created instances in servers on which the customer’s VM resides on or resided
on in the past. Finally, if a new customer never created a VM before, the newly created
VM is assigned to the server with the least number of VMs from all available groups of
servers.

The authors of [169] also presented a modified and simplified cache-Based side-channel
method to verify co-location. First, the attacker loads a buffer into the cache, the so-called
Prime phase. In their experiments, the authors use a buffer of a size that fills a significant
portion of the cache. Afterward, the attacker’s spy process waits some time to give
the victim the chance to access the memory. Finally, the attacker measures the time (in
number of CPU cycles) needed to access the buffer, the so-called Probe phase. If the victim
was active in between, the access time is considerably higher since the victim accessed
the memory and therefore replaced the cache lines. This method requires knowledge
about the load on the victim VM or the services provided by it. The attacker tries to
introduce varying loads to the victim VM and identify the variation in the cache hit/miss
rate. The authors used a simple Apache 2.0 web server serving one 1024 byte text-only
HTML file as a victim. The attacker introduces varying loads to the server using HTTP
get requests. If both VMs co-reside, the load should result in higher memory access times
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(higher cache miss rate) in the Probe phase. The attacker might also profile the services
provided by the target, such as en-/decryption.

By observing cache usage patterns, the authors of [182] were able to verify co-location
with a certainty of 50% in the worst case and up to 90% in the best case. The authors also
introduce memory bus locking to degrade the server’s memory performance to verify
co-location. Memory bus locking uses an atomic operation that forces the CPU to flush
all running memory transactions. To increase the effect, the attacker needs to choose an
instruction with a long execution time. As the server’s memory performance is degraded,
the performance of all residing VMs is degraded depending on their memory usage.
The authors show a performance degradation with a factor higher than 4 for an Apache
web server. As the performance is degraded, the service can’t handle many requests. An
attacker can then verify co-location by profiling the performance of the target.

Another method that could be used to verify co-location is presented in [183] using
energy consumption. The authors use a metered rack power distribution unit, a common
hardware in data centers to monitor the power consumption, that they access using
Simple Network Management Protocol (SNMP). The attacker can introduce varying load
to the target VM to identify the server on which the target resides. The varying load
should be visible through correlating a varying power consumption. The authors showed
that the power consumption profile is almost independent of the used CPU and mostly
depends on the service provided by a specific VM. However, this method is sensitive to
noise produced by other VMs that can blindfold the detection of a VM with a low power
consumption profile.

6.1.3 Exploiting VM Migration

One of the main features of IaaS clouds is the live migration of VMs in which a running
VM is moved to another server with the least possible interruption. Live migration
improves the flexibility of the virtual environment and allows the provider to keep
the VM running with the required performance when the original host is overloaded
or has to be isolated for maintenance or because of an error or attack. Live migration
can also be utilized for improving the OPEX (e.g., energy) by consolidating VMs. The
security challenges in the cloud are more serious when migration is used, in particular, if
migration is performed between servers of different widely distributed data centers [184].
Two main threats are imposed by live migration: the exploitation of the migration itself,
and attacks on the customer VMs during migration. In the second threat, the migrated
VMs might face different attacks such as man-in-the-middle, denial-of-service, and stack
over-flow [185]. These attacks can be either active attacks that change the migrated data
or passive attacks that perform eavesdropping on the VM to extract sensitive data such as
passwords [186]. The migration data such as kernel memory, application state, sensitive
data such as passwords and keys, can be sniffed or tampered easily if transmitted without
encryption, thus compromising the integrity and confidentiality of the VM data [185].

6.2 slas and deployment policies

Public NFVIs enable flexible resource sharing among customers but open a wide surface
of threats on customer’s data from both the provider and co-hosted customers. Quality
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of Service (QoS), Privacy, and Security (QPS) are main challenges in public NFVIs that
might be conflicting. For example, privacy is threatened when the provider applies
certain security measurements to protect the environment and other customers. The
NFVI provider needs placement policies for SFCs and security mechanisms to conform
to SLAs, avoid financial and reputation losses, protect the environment, and maximize
the revenue. However, a comprehensive view that covers QPS issues through SLAs and
placement policies, mainly for SFCs, is still missing. In this chapter, we research the
existing SLA metrics and placement policies in public IaaS and define new metrics and
policies that consider the SFCs.

SLA is a formal contract between the service provider and a subscriber that contains
detailed specifications called service level specifications in order to guarantee a certain
QoS [187]. The SLAs are contractually binding and the service provider strives to prevent
SLA violations to enhance customer satisfaction and to avoid penalty payments [188].
The dependencies between QPS issues need deep investigation to define the best forms
of SLAs that satisfy both the NFVI provider and customer. In this section, we describe
essential QPS requirements for both NFVI provider and customer who deploys a SFC.
Furthermore, we propose the placement policies that the provider should apply to fulfill
these requirements. The QoS SLA metrics and deployment policies discussed here are
mainly related to security measurements. However, we mention the main policies from
the previous chapters in the context of a comprehensive SLA. Furthermore, we do not
implement all these metrics and policies in our approaches.

sla metrics The provider and customer need to agree on five types of metrics related
to QPS, financial issues, and exceptional measurements. In the following, we list these
types and target metrics:

• QoS SLA metrics cover the customer’s service availability and responsiveness:

– VNF availability: can be interpreted as the total downtime (interruption) within
a certain period. This downtime might result, for example, from live migration
of a running VNF to another host for many reasons such as maintenance and
suspicious behavior. An example of this metric is an availability of 99.99% that
allows a maximum downtime of 53 minutes per year.

– SFC availability: related to the downtime of any VNF of a linear sub-chain
within a certain period.

– SFC response time.

• Protection of customer data from other customers:

– Service co-location with another customer: this metric specifies whether the
VNFs are allowed to be co-hosted with VNFs belonging to other customers on
the same host.

– Availability of certain security mechanisms such as Virtual Machine Introspec-
tion (VMI) and trusted hardware in the host.

• Privacy of customer data against the provider itself:

– Restricting the processing of customer data in certain geographical locations.
For example, processing the German financial data only in Germany.
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– Full scan of the VNF by security mechanisms such as anti-virus programs.

– Tracing/logging VNF activities, for example, by hypercall-tracing that moni-
tors all VNF activities in the virtualized hardware.

• Financial commitments of both the cloud provider and customer:

– The price of hosting the customer service. This price is usually determined by
the reserved computing resources and the time period (e.g., Amazon EC2).

– Financial penalty for the provider under the violation of each SLA metric.
In general, the violation of data privacy and security metrics shall impose
an absolute penalty. On the other hand, the violation of QoS metrics shall
impose a penalty relative to the measured service degradation. For example,
the provider shall return a certain rate from the service price for each minute
of service downtime that exceeds the availability threshold defined in the
respective metric.

– Financial penalty when the VNF causes damage to the environment. This
penalty should also be fixed for a severe damage, or relative to a measured
damage such as host performance degradation for a certain period of time.
However, in this case, there shall be a clear evidence on the malicious behavior
of the VNF and the source of infection.

• Exceptional conditions that dominate any other metric. These metrics define the
conditions under which the provider can violate a certain metric. For example,
a suspicious behavior by a VNF, or a direct damage to the environment such as
performance degradation in Denial of Service (DoS) attacks. The SLA should define
certain rights for the provider in such cases. For example, moving the VNF to a
more protected environment to perform full scanning, even if this will violate a
privacy or a QoS metric.

deployment policies After defining the SLA metrics for all five aspects (QPS,
financial, and exceptions), the NFVI provider shall define the policies used to place the
customer’s SFCs in its hosts. These policies shall be mapped to respective SLA metrics,
and managed by SFC deployment algorithms that force this mapping and maximize the
provider’s revenue. We define QPS policies that satisfy the customer requirements, and
provider-specific policies to increase the revenue and minimize the financial penalties
and losses. The policies might be either applied by the deployment algorithm at the first
instantiating of the SFC, or applied on-demand as a reaction to certain events in the
environment or the SFC. Some of these policies are applied by the EVN composition
and embedding algorithms presented in Chapter 3. The on-demand based application of
policies also needs mechanisms to monitor the behavior and performance of deployed
SFCs. In the following, we list a set of proposed policies for each type and map each
policy to a certain SLA metric.

• QoS policies (customer-oriented):

– Instantiating service VNFs in nodes with certain computational capacities to
satisfy service response time metrics.

– Instantiating service VNFs in customer dedicated hosts to satisfy service
response time metrics.
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– Instantiating service VNFs in certain geographical locations (e.g., edge) where
many requests come from to achieve the required response time.

– Instantiating backup SFCs permanently (branching) or during downtime.

– Placing service VNFs such that the required communication delay in not
violated. For example, by placing a TAS VNF on each host to schedule the
traffic.

– Instantiating service VNFs in different hosts to force load balancing among
hosts and improve the performance. Such a policy is applied in our chain
embedding heuristic in Chapter 3.

• Security policies (customer-oriented):

– Instantiating service VNFs in customer dedicated nodes.

– Instantiating service VNFs in nodes that provide the required security mecha-
nisms.

– Adding certain security VNFs to the SFC.

• Privacy policies (customer-oriented):

– Avoid tracing or scanning service VNFs.

– Instantiating service VNFs only in certain geographical locations.

Provider policies:

– Scanning/tracing a VNF/SFC under exceptional conditions such as suspicious
behavior.

– Stopping a VNF/SFC under confirmed attacks.

– Prioritizing VNFs/SFCs according to the revenue from hosting customer’s
services and penalties imposed by SLA violation for this customer. These
priorities might help the deployment algorithms when responding to certain
events. For example, if a certain VNF with high penalty for service response
time violation, is co-hosted with other customer VNFs, and goes through a
performance degradation, it shall be prioritized over the other VNFs. In this
case, the other VNFs might be migrated to other hosts.

scenario Figure 6.1 depicts a practical scenario that combines a set of the discussed
QPS SLA metrics and policies. The figure also presents a set of assumed QPS monitoring
and management components that are needed to help the NFVI provider to force the
policies that protect the environment and at the same time satisfy the SLAs. A typical data
center tree topology is used with two types of nodes. The first type is production nodes
that host customer VNFs and VMI to perform a lightweight monitoring of the VNFs. The
second type of nodes is protected nodes (analysis nodes) that run additional protection
components such as anti-virus programs. A QPS management node receives events from
VMI, the VNFs placement status and nodes types from the NFVI management system,
and the network topology from a network management system. The QPS management
node shall also be aware of the deployed SFCs with their SLAs and the respective
placement policies. The customer deploys an SFC with three VNFs. The SLA of this SFC
has the following metrics:
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Figure 6.1: An example of the proposed SFC deployment policies

• The SFC has a latency constraint of 4 hobs between each two adjacent VNFs (for
simplicity).

• The availably of the service is 99,99%. This means the service cannot be down for
more than 53 minutes over a year.

• No co-hosting of two VNFs in the same node.

• The VNFs cannot be co-hosted with another customer.

• The VNFs cannot be fully scanned under normal conditions; this means that they
cannot be hosted in a fully protected environment.

• The exception for the last metric is when the VNFs show a suspicious behavior that
might threaten the environment.

According to this SLA, if a certain VNF from the customer service shows a suspicious
behavior, the QPS management can migrate it to a protected node. The migration should
consider the other constraints. For example, a protected node that hosts VNFs for other
customers cannot be chosen. Another example is when the nearest protected node will
violate the latency constraints. In this case, the whole SFC needs to be replaced.

However, many challenges arise from this research domain and still need deep investi-
gation:

• Collecting evidences about suspicious behavior by the customer’s service VNFs.
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• How the customer can check the provider’s compliance with security and privacy
SLA metrics?

• How the conflict between customer’s privacy and the security of other customers
and the cloud provider can be balanced?

6.3 decision engine

This section is an extension of Sections 3.3 of the author’s publication [4]♮, mainly with the
prototype description.

The decision engine in Figure 6.2 is a component and a central coordinator in a complete
malware defense architecture presented in [4]♮. This decision engine reacts to a possible
indicator of an attack by initiating certain actions according to the expected attack, SLAs,
and policies defined by the provider. The most significant action is migrating a suspicious
VNF to a dedicated analysis environment, to protect the production environment from
the suspicious VNF and avoid overloading it with heavy analysis mechanisms. In this
case, a full SFC reconfiguration might be required to fulfill the customer’s SLA. The
interfaces, inputs, and outputs of the decision engine are defined.

Figure 6.2: Decision engine structure[4]♮

The engine receives events from an assumed NFVI monitoring system that deploys
lightweight tracing mechanisms to monitor VNF activities in the production environment.
The events represent certain suspected attacks based on predefined suspicious behavior
patterns. The engine reacts to events according to user-defined policies. The event defines
the suspected VNF and suspected attack/malware. We assume that the provider needs
individual policies for each VNF according to its SLA. The policy defines a set of reactions
to a predefined event. The main threat reaction under focus in this work is isolating
a suspicious VNF in a dedicated analysis environment (protected host) to protect the
production environment from attacks and performance degradation. The engine uses a
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migration algorithm to select the protected host that does not host any VNF and offers
enough computing resources to host the target VNF.

The distribution of specialized investigation hosts plays a main role in the decision
process. Finding an efficient distribution of these hosts is also an economic challenge of
the proposed architecture. This requires a detailed analysis of the target environments
and expected attack scenarios. The trade-off between protection costs and attack costs
will be a major output of this analysis. Another economic aspect is the minimization of
the VNF’s downtime during the migration to prevent a monetary [189] and a reputation
loss [190] for the provider. The service provider commits to a certain level of service,
which is described by an SLA.

Usually, the SLA expresses the VNF availability. For example, 99.999% guaranteed
availability means 5 minutes of downtime per year. Non-compliance to such SLAs can
lead to (monetary) penalties for the providers and can harm their reputation [191].
Reputational damage leads to economic long-term consequences, because the consumer’s
trust in the service might be lost and fewer customers might use the provider’s services
in the future. Therefore, the downtime and migration time of the VNF need to be
minimized. Although live migration usually causes only a short downtime to a VNF,
small interruptions ranging from 60 milliseconds to 3 seconds are inevitable [192]. In
order to guarantee a certain QoS it is, therefore, essential to predict the worst-case
downtime as precisely as possible [193].

6.3.1 Inputs

The decision engine depicted in Figure 6.2 is the central component of the proposed ar-
chitecture. It has communication interfaces with the NFVI management system, detection
mechanisms deployed in the nodes, a set of databases, and the NFVI administrator and
customer. The main role of this engine is to react to alarms received from the detection
mechanisms when certain behavior patterns are detected. The reaction can be a certain
reconfiguration action in the cloud environment, or raising an alarm to the administrator
or customer. To perform this task, the decision engine needs four main inputs.

The first input is the configuration and monitoring data acquired from the NFVI
management system and contains four data sets. The physical network defines the NFVI
hosts and analysis nodes and detection mechanisms deployed in them, the resource
capacities and usage, and the network topology. The SFCs deployed in the environment
define their topology, resource demands, and constraints. The resource allocation defines
how resources are allocated to the SFCs. The SLAs define the QPS requirements of the
SFCs.

The second input comes from three databases. The behavior patterns database is main-
tained by the administrator and by the analysis nodes that update the information about
possible attacks based on the analysis results. This database includes predefined behavior
patterns that refer to a probability of a certain attack. This database consists of records of
the form:

{Pattern, parameter ranges, suspected malware, possible attacks, suspicion level}

An exemplary pattern represents the memory usage spike for more than 5 seconds by
the Kelihos malware that performs a DDOS attack:
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{memory usage spike, period > 5 seconds, Kelihos, DoS, 50%}

The policy database is maintained by both the administrator and customer. It specifies
a list of actions that should be executed by the decision engine when an event from
a detection mechanism or an analysis result from an analysis node is received for a
specified VNF. This database consists of records of the form:

{Pattern, VNF ID, Actions}

An example of such a record is:

{memory usage spike, VNF 100, block}

The detection mechanisms database is maintained by the cloud administrator. It is used
by the decision engine mainly to find the estimated resource requirements of each
mechanism. The structure of this database can only be determined after an extensive
evaluation of the resource utilization by the required detection mechanisms.

The third input of the decision engine is the events received from detection mechanisms.
The detection mechanisms running in nodes should have access to the behavior patterns
database. When a certain behavior is detected, an event is reported to the decision engine.
The event includes the following information:

{VNF ID, node ID, pattern, parameters}

An example of such an event is:

{VNF 100, Node 1, memory usage spike, period:5 seconds}

The last input is the analysis results received from analysis nodes. When a suspicious
VNF is migrated to an analysis node, the node sends the analysis results to the decision
engine that executes further actions defined in the policy.

6.3.2 Actions

The decision engine includes an action module that receives the events from the detection
mechanism, reads the behavior and policy database, and determines the required list of
actions to respond to this event. Possible simple actions are:

• Blocking the network connections of a VNF when the VNF is suspected to be
performing a network attack.

• Restarting a VNF when facing a transient attack.

• Shutting down the VNF immediately and taking a snapshot for later analysis/prove
when an attack is highly probable and the damage that might be caused to the
environment cannot be easily recovered. This is required when the infection is
probably propagated to the virtual disk and it cannot be recovered. This is the case,
for example, when a malicious VNF is deployed in the virtual environment.
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• Activating additional detection mechanisms in the cloud node to perform a more
detailed analysis on the VNF if the required resources for running these mechanisms
are available in the node. The decision engine reads the information about the
target mechanism from the detection mechanisms database to estimate the possible
overhead. The resource capacity and the current resource allocation in the target
cloud node should also be read from the cloud management system and considered
before this action is performed.

• The most important action in the decision engine is migrating the VNF to a
dedicated analysis node where an extensive analysis can be performed without
interrupting the functionality of this VNF.

• A similar action is cloning the VNF and moving the copy to an analysis node when
service interruption is not feasible and the suspicion level is low. One important
action after receiving an analysis result of a migrated or cloned VNF is recovering
the VNF in case the analysis identifies the VNF as harmless.

6.3.3 Reconfiguration Algorithm

To perform the cloning and migration actions, the decision engine uses a reconfiguration
algorithm that reads the configuration and monitoring data for the affected SFC and
finds the available analysis nodes. In the cloning action, the algorithm has only to find
an analysis node that has enough resource capacities to host the VNF and perform a
detailed analysis. In the migration action, the algorithm is more complex, and three main
factors should be considered in the decision making.

The first factor is the migration downtime. The live migration of VNFs usually causes
a small downtime. However, a maximum downtime should be estimated before the
migration is performed. The migration downtime mainly depends on the memory usage
of the VNF, the network bandwidth, and migration strategy. This downtime should be
then compared with the downtime budget of the VNF. The second factor is the resource
capacities of the analysis nodes that have to match the requirements of the VNF. The
last factor is VNFs dependencies in the SFC. The dependencies might require a full or
partial reconfiguration of the SFC when a VNF is migrated to an analysis node. The
reconfiguration might need to migrate other VNFs to keep the constraints of the SFC
satisfied. The migration downtime and resource requirements of these VNFs should also
be considered.

The decision engine waits for the events or analysis results from the production
environment and the analysis environment, respectively. On one hand, when an event is
received, the appropriate action will be performed according to the event parameters,
detected behavior, and security policies. The migration action needs to adhere to the
service requirements of the VNF. It might also require a reconfiguration of the SFC
according to its dependencies. On the other hand, when an analysis result is received,
the appropriate action is performed depending on the VNF state by either recovering
the original configuration of the SFC if no attack is identified, or performing a certain
action according to the policies if an attack is identified. An overview of the decision
engine algorithm is depicted in Figure 6.3. The simple actions are blocking, restarting,
and shutting down a VNF.
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Figure 6.3: Flowchart of the decision engine algorithm

The decision engine uses the management system API to read the configuration and
monitoring data and perform the required actions. If the required action is not possible
for a certain reason such as the lack of resources, a simple approach is to inform the
system administrator.

6.3.4 Prototype

The decision engine parses the user-defined policies from a policy fie using XML format.
The policy defines multiple action sets per event. All action sets related to a certain
event are executed (in parallel). The decision engine tries the actions in a set sequentially
and only the first possible action is executed. In Listing 6.1, an exemplary policy file is
presented. If VNF 53 shows a behavior pattern that refers to a side-channel attack, the
decision engine first tries to migrate it to a protected host. If this action fails, the VNF is
stopped. If VNF 100 shows a behavior pattern that refers to a DDOS attack, the decision
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engine tries to both block the VNF and take a snapshot. If any of these action fails, the
VNF is stopped.

Listing 6.1: Policy XML schema

<?xml version="1.0"?>

<policyFile>

<policy>

<VNF>53</VNF>

<attackPattern>SideChannel</attackPattern>

<actionSets>

<set>

<action>migrate</action>

<action>stop</action>

</set>

</actionSets>

</policy>

<policy>

<VNF>100</VNF>

<attackPattern>DDOS</attackPattern>

<actionSets>

<set>

<action>block</action>

<action>stop</action>

</set>

<set>

<action>snapshot</action>

<action>stop</action>

</set>

</actionSets>

</policy>

</policyFile>

The decision engine prototype is provided with a generic interface to cloud Application
Programming Interfaces (APIs). A communication interface to each API type (such as
Remote Procedure Call (RPC)/XML in OpenNebula) is required to parse the functions
needed to monitor and configure the environment. The interface uses an environment-
specific driver that defines the required API functions with their parameters and returned
data structures. The interface and driver for OpenNebula have been developed.

Listing 6.2 sketches the required functions from the OpenNebula driver: the API
information, VM status and operations, cluster and host status. The prototype parses the
functions (using the RPC/XML interface) and replaces the missing parameters (such as
VNF− ID) with the required values.

Listing 6.2: OpenNebula driver

[API_Info]

API = XMLRPC|OpenNebula

Server = http://$CloudIP$:2633/RPC2

[VM]

VM_Status_URL = one.vm.info

VM_Status_Parameter = $username$:$password$,$VMID$|int
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VM_Start_URL = one.vm.action

VM_Start_Parameter = $username$:$password$,resume,$VMID$|int

VM_Stop_URL = one.vm.action

VM_Stop_Parameter = $username$:$password$,poweroff-hard,$VMID$|int

VM_Hold_URL = one.vm.action

VM_Hold_Parameter = $username$:$password$,hold,$VMID$|int

VM_Resume_URL = one.vm.action

VM_Resume_Parameter = $username$:$password$,resume,$VMID$|int

VM_Delete_URL = one.vm.action

VM_Delete_Parameter = $username$:$password$,delete,$VMID$|int

VM_Snapshot_URL = one.vm.snapshotcreate

VM_Snapshot_Parameter = $username$:$password$,$VMID$|int,$snapshotName$

VM_Migrate_URL = one.vm.migrate

VM_Migrate_Parameter = $username$:$password$,$VMID$|int,$Target$|int,True|bool,True

|bool

[Cluster]

Cluster_Status_URL = one.cluster.info

Cluster_Status_Parameter = $username$:$password$,$CLID$|int

[Host]

Host_Status_URL = one.host.info

Host_Status_Parameter = $username$:$password$,$HOID$|int

6.4 security-aware vne

This section includes parts of the author’s publication [5]♮.

In this section, we model a basic set of security requirements of VNs. We define the
topological constraints [5]♮as a new type of constraints that requires additional support by
VNE. A topology constraint affects an entire subnet. For example, the VN might specify
network domains that should be separated. The CDLs in this case shall be mapped
through firewalls by the link mapping stage of VNE.

Another topological constraint is that virtual domains must not be split by a firewall
and must be mapped onto a single physical domain. In this model, mapping the security
requirements of the VLi shall check for certain properties along its physical path. The
typical VNE demand/resource model has been extended to model security capabilities
and demands. We model the typical security requirements (such as Trusted Hardware
(TH), Network Intrusion Detection System (NIDS), and firewall) as VNE node, link, and
topological demands. Furthermore, we provide a proof-of-concept implementation of
this new security-aware VNE model in our VNE tool, ALEVIN, and incorporate the
constraints into VNE algorithms.
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6.4.1 Scenario

An exemplary scenario is presented in Figure 6.4 to illustrate the integration of security
requirements in VNE. A cloud provider offers computing resources distributed over
three data centers. Two of those data centers are protected by a firewall. One of those
data centers offers two separated subnets. Domains are defined to identify the subnets
that are protected by a firewall, with one domain offering NIDS. Two nodes in the SN
are labeled as firewall nodes and three other nodes are labeled as providing TH.

A client wants to implement a web service that consists of a load balancer, two web
servers, a database, and an authentication service. These components are interconnected
and should be deployed in the cloud infrastructure. The VN represents the specified web
service with three different domains: authentication and database, load balancer and web
servers, and the Internet. The load balancer should connect to the Internet to receive the
web requests from the service users. Intra- and inter-domain VLis are depicted.

Each of the components has its specific demands, which have to be adhered to by the
cloud provider. Some of these demands reflect the security requirements of the underlying
software. For example, the web servers have to be protected from the Internet by a firewall.
Since a firewall cannot prevent all attacks, a NIDS should provide information about
potential malicious actions. The authentication service requires TH, as it is highly security-
critical. Both the authentication service and the data-base should be protected from the
web servers by a firewall.

Figure 6.4: Cloud provider infrastructure and a VN for a web service [5]♮



6.4 security-aware vne 133

6.4.2 Implementation

Security requirements specific to individual nodes and links can be modeled by adapting
the concept of resource/demand pair. Qualitative security requirements such as “needs
protection by a NIDS” are matched with respective security features such as “offers pro-
tection by a NIDS”. For the presented scenario, a NIDS demand and a TH demand are
implemented.

For the topological requirements, the simple resource/demand model has to be ex-
tended. The simulator has to verify the mapping path of the VLi. The path is considered
valid only if the path can satisfy the security requirements of the VLi. Firewall demands
are implemented through the definition of different domains. These domains are repre-
sented as identifiers that are attached to the nodes. Firewall resources are attached to the
respective SNos. A check for CDLs and firewall constraints is necessary and performed
by the algorithm presented in Figure 6.5.

The check is performed during the link mapping stage and forces all CDLs to go
through a firewall. First, the algorithm filters the VNR to find CDLs by comparing the
domain identifiers of the source and destination nodes of the VLi. Then, for each VLi,
a set of possible physical paths is selected according to the link mapping method. The
possible paths are then checked to assert if at least one of the nodes along the path
provides a firewall service. The generic embedding algorithm enforces the following
embedding constraints:

• The virtual domain is not split by a firewall and is mapped in one physical domain.

• CDLs are forced to go through a firewall.

• VNos that require a TH are mapped only to SNos that offer it.

• VNos that require a NIDS are mapped only in domains in which at least one SNo
offers NIDS.

Figure 6.6 shows the results of the mapping when implementing the motivational
scenario for security-aware VNE shown in Figure 6.4. To ensure readability, only mapped
CDLs are represented.

The scenario is realized in ALEVIN to test the functionality of the new security-aware
VNE structure and algorithm. For demonstration, a commonly known mapping algorithm
is used to perform the actual embedding. Here, the vnmFlib algorithm by Lischka and
Karl [194] was chosen. When the original topology does not contain firewall resources,
the mapping procedure will not succeed since CDLs can only be mapped over nodes
containing a firewall. However, when a firewall is added to the node that connects the
first data center to the Internet, the mapping is successful.

Fig. 6.7 depicts the ALEVIN GUI with the constructed topology and the procedure of
adding the property of a firewall to a SNo. For simplicity, only CDLs are shown in the
VN, and only links to the firewall in the data centers and Internet links are shown in the
SN. The CPU and bandwidth capacities and demands are included in the topology and
allow the mapping, but are neglected from the figure for clarity.
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Figure 6.5: Flowchart of the embedding algorithm for CDLs [5]♮

6.5 conclusion

In this chapter, an architecture for migration-based isolation of specious VNFs, which
considers the SFC-level SLAs is presented. This defense mechanism is significant for
industrial enterprises where sensitive data might be processed in shared cloud hosts.
Completely integrating this solution with the EVN solution requires developing the
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Figure 6.6: Mapping results of the motivational scenario [5]♮

Figure 6.7: Scenario implementation in ALEVIN [5]♮
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EVN embedding algorithm to be dynamic with on-demand reconfiguration policies as
responses to failures or attacks. This aspect is a significant future work for both our EVN
approach and migration-based defense approach.

Furthermore, several related QoS, privacy, and security SLA metrics and respective SFC
deployment policies are proposed. Finally, a topology- and capability-aware algorithm for
security-aware VNE is developed. The future work will focus on integrating the proposed
SLA metrics and deployment policies completely in the prototype; considering the typical
VNE evaluation scenarios; developing specific validation algorithms; integrating the
security-aware VNE algorithm with the security-aware NFV presented in the combined
approach; and integrating these theoretical algorithms with real security mechanisms,
mainly from industrial networks.



7
C O N C L U S I O N S

In this chapter, we map the presented approaches in this thesis to the proposed virtu-
alization model, as shown in Figure 7.1. This model represents the general concept of
this thesis of a holistic approach of applying different network virtualization techniques
to different network levels while considering the significant objectives. We map here
our contributions to two primary industrial network levels (factory and enterprise),
both considered virtualization dimensions (NFV and VNE), and the target objectives of
topology, reliability, security, performance, and resource usage.

These objectives are applied in our work with the same order in the respective axis
in the model. This order is based on best practice and our transformations in Chapter 3

where redundancy is applied before topology as a policy to reduce resource usage by
only adding redundancy to the main AR VLis and not to the VLis added by the following
transformations. However, this policy can be changed by the system user according to
the target use case. Then, the topology transformations are applied to add the relevant
devices. Then, and based on the new EVN, the required security functions are added. The
performance transformations are applied at the end to add the virtual TAS if required,
adapt the demands for consumable resources (bandwidth and CPU), and finally add
load balancing if needed. The resource usage objective is more considered by the EVN
mapping stage than during the composition stage (transformations).

Before we discuss the mapping, it shall be mentioned that a complete separation
between NFV and VNE is not always possible since the SFCs are mapped using VNE
algorithms. Furthermore, a complete separation between factory and enterprise levels
in not possible in the main use case since the data and decisions flow among the three
processing levels; factory hall, edge, and cloud computing. For these reasons, we consider
approaches that are not limited to the internal factory network to be enterprise-level
approaches that also process data from the factory level. In Figure 7.1, we distinguish
such scenarios with the dashed-line boxes (combined with higher levels).

Furthermore, although the sub-solution of branching algorithms is used for mapping
the redundant EVN links, we map it separately in this model. The sub-solution of virtual
TSN is used by the combined solution (EVN) at the enterprise SFC level but discussed in
Chapter 4 at the TAS VNF level, which is additionally mapped to the model. The security
approaches from Chapter 6 have been used in a modified form in the combined approach
and applied to industrial networks only with the EVN. We map the developed methods
according to the following reasoning:

• EVN composition: applied to all objectives except resource usage, and to both
network levels. However, we have a different mapping for each objective:

– With the reliability objective, we consider transforming redundant links a VNE
solution.

– For the topology constraints, we consider adding VLis and VNos based on
types of devices and locations/domain as a VNE solution.

137
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Figure 7.1: Mapping of approaches to the network virtualization model

– With the security objective, we consider adding the required security VNFs an
NFV solution.

– With the performance objective, we consider adding the TAS VNF and adding
load balancing VNF as NFV solutions. Furthermore, we consider updating the
CPU and bandwidth demands in the EVN as VNE procedures.

• EVN embedding: we discuss here the traditional mapping of EVN nodes and
links and chain embedding without considering the branching and security-aware
mapping algorithms.



conclusions 139

– With the topology constraints, we consider the node mappings (devices, ap-
plication VNos, VNFs) and traditional link mapping as VNE solutions that
embed the composed EVN onto the SN topology.

– With the performance objective, we consider deploying the TAS VNF on each
server hosting the SFC as an NFV solution. However, the development of
virtual TAS and deploying it on certain servers can also be only a factory level
solution.

– With the resource usage objective, the traditional node and link mappings and
chain embedding are VNE algorithms that try to reduce the resource usage.

• Branching: The branching algorithms are VNE solutions that can be applied only
inside the factory or combined with the enterprise. These algorithms are related to
the reliability and resource usage objectives since the goal is either to satisfy the
reliability demand with minimal resource usage or to improve it with reasonable
resource usage.

• Security-aware mapping: the original security-aware mapping algorithm is a VNE
solution that is mainly at the enterprise level and considers factory data.

• Decision engine: the decision engine for migration-based defense in NFVI is an
NFV solution mainly at the enterprise level and considers factory data.

• Virtual TSN: The development of the virtual TAS itself is an NFV and performance
solution that can be applied only inside the factory or combined with the enterprise.

In summary, we present in this thesis a base of a complete system for autonomic
virtualization of an enterprise that considers all significant objectives and constraints
and the existing topologies and data sources and flows. Such a system can provide the
maximal benefit of the flexibility of virtualization. Furthermore, we investigate how
to apply this system to a typical smart and complex enterprise represented by a use
case inspired by the smart factory concept. Furthermore, we focus on TSN as a modern
networking technology for deterministic latency and high reliability and integrate it
into two sub-solutions. We develop several novel and efficient virtualization algorithms
(heuristics) and perform in-depth evaluations. These evaluations show that: the EVN is
correctly composed and mapped with low overhead; the chain embedding algorithm
improves the admission with low overhead; the branching methods can improve the
reliability and its demand admission with reasonable resource usage and these shall be
determined based on the application and topology; virtual TAS can add high flexibility
to TSN with reasonable performance for enterprise applications. Our solutions are
developed to address the challenges of virtualization mentioned in Chapter 1:

• Considering multiple objectives and constraints that might be conflicting.

• Considering multiple network levels.

• Autonomic composition of environment-aware virtual networks.

• Efficient deployment algorithms.

• Applicability to complex environments.
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• Integration with real, mainly modern, technologies.

• Performance degradation.

• Wider attack surface.

We propose significant future works for each approach in the respective chapter.
However, a general future work is to extend the virtualization model with more objectives
and constraints; compare and map it to existing domain-specific models such as RAMI
4.0; investigate its applicability to other domains such as smart grids; and use it to classify
and compare network virtualization solutions and exactly identify the research gaps.
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[140] C. Beşiktaş, D. Gözüpek, A. Ulaş, and E. Lokman. “Secure virtual network em-
bedding with flexible bandwidth-based revenue maximization.” In: Computer
Networks 121 (2017), pp. 89 –99. issn: 1389-1286. doi: https://doi.org/10.1016/
j.comnet.2017.04.020.

https://doi.org/10.1145/3268966.3268975
https://doi.org/10.1109/IEEE.EDGE.2017.20
https://doi.org/10.1109/INCoS.2016.61
https://doi.org/10.1109/CC.2017.8068773
https://doi.org/10.1109/NETSOFT.2015.7116152
https://doi.org/10.1109/CCGrid.2014.39
https://doi.org/10.1109/NOMS.2014.6838360
https://doi.org/10.1109/TNSE.2020.2995863
https://doi.org/https://doi.org/10.1016/j.comnet.2016.04.023
https://doi.org/https://doi.org/10.1016/j.comnet.2016.04.023
https://doi.org/https://doi.org/10.1016/j.comnet.2017.04.020
https://doi.org/https://doi.org/10.1016/j.comnet.2017.04.020


bibliography 153

[141] S. Liu, Z. Cai, H. Xu, and M. Xu. “Towards security-aware virtual network em-
bedding.” In: Computer Networks 91 (2015), pp. 151 –163. issn: 1389-1286. doi:
http://dx.doi.org/10.1016/j.comnet.2015.08.014.

[142] Y. Wang, P. Chau, and F. Chen. “A Framework for Security-Aware Virtual Network
Embedding.” In: 2015 24th International Conference on Computer Communication and
Networks (ICCCN). 2015, pp. 1–7. doi: 10.1109/ICCCN.2015.7288361.

[143] IBM - 5 top industrial IoT use cases. 2017. url: https://www.ibm.com/blogs/
internet-of-things/top-5-industrial-iot-use-cases/. (Online; accessed:
20.04.2020).

[144] M. Aazam, S. Zeadally, and K. A. Harras. “Deploying fog computing in industrial
internet of things and industry 4.0.” In: IEEE Transactions on Industrial Informatics
14.10 (2018), pp. 4674–4682.

[145] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transformation.
World Scientific Books, 1997. isbn: 9789812384720. url: https://books.google.
de/books?id=P3r82gfRf8MC.

[146] X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou. “P4SC: Towards High-
Performance Service Function Chain Implementation on the P4-Capable Device.”
In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
2019, pp. 1–9.

[147] T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen, 4. Auflage. Book -
Spektrum Akademischer Verlag, 2002. isbn: 3-8274-1029-0.

[148] D. Eppstein. “Finding the k shortest paths.” In: SIAM Journal on computing 28.2
(1998), pp. 652–673.

[149] B. M. Waxman. “Routing of multipoint connections.” In: IEEE Journal on Selected
Areas in Communications 6.9 (1988), pp. 1617–1622. issn: 0733-8716. doi: 10.1109/
49.12889.

[150] R. Albert and A.-L. Barabási. “Statistical mechanics of complex networks.” In: Rev.
Mod. Phys. 74 (1 2002), pp. 47–97. doi: 10.1103/RevModPhys.74.47.

[151] “IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged
Networks.” In: IEEE Std 802.1Q-2018 (2018).

[152] “Network functions virtualization (nfv) infrastructure overview.” In: ETSI GS
NFV-INF. ETSI. 2015.

[153] “Network Functions Virtualisation.” In: White Paper. ETSI. 2014.

[154] Ð. Vladislavić, D. Huljenić, and J. Ožegović. “Enhancing VNF’s performance using
DPDK driven OVS user-space forwarding.” In: 2017 25th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM). IEEE. 2017, pp. 1–5.

[155] S. Shanmugalingam, A. Ksentini, and P. Bertin. “DPDK Open vSwitch perfor-
mance validation with mirroring feature.” In: 2016 23rd International Conference on
Telecommunications (ICT). IEEE. 2016, pp. 1–6.

[156] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.” In: IEEE Std 1588-2019 (2019).

[157] M. Hosamo. “A study of the source traffic generator using poisson distribution
for ABR service.” In: Modelling and Simulation in Engineering 2012 (2012).

https://doi.org/http://dx.doi.org/10.1016/j.comnet.2015.08.014
https://doi.org/10.1109/ICCCN.2015.7288361
https://www.ibm.com/blogs/internet-of-things/top-5-industrial-iot-use-cases/
https://www.ibm.com/blogs/internet-of-things/top-5-industrial-iot-use-cases/
https://books.google.de/books?id=P3r82gfRf8MC
https://books.google.de/books?id=P3r82gfRf8MC
https://doi.org/10.1109/49.12889
https://doi.org/10.1109/49.12889
https://doi.org/10.1103/RevModPhys.74.47


154 bibliography

[158] D.-C. Juan, L. Li, H.-K. Peng, D. Marculescu, and C. Faloutsos. “Beyond poisson:
Modeling inter-arrival time of requests in a datacenter.” In: Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer. 2014, pp. 198–209.

[159] Open vSwitch official website. url: http://www.openvswitch.org/. (Online; ac-
cessed: 20.04.2020).

[160] Red Hat Solution for NFV. url: https://access.redhat.com/. (Online; accessed:
20.04.2020).

[161] OpenStack - Choosing a hypervisor. url: https://docs.openstack.org/arch-
design/design-compute/design-compute-hypervisor.html. (Online; accessed:
20.04.2020).

[162] “IEEE Standard for Local and metropolitan area networks - Frame Replication
and Elimination for Reliability.” In: IEEE Std 802.1CB-2017 (2017). doi: 10.1109/
IEEESTD.2017.8091139.

[163] “IEEE Standard for Local and metropolitan area networks - Frame Replication
and Elimination for Reliability - Amendment: Extended Stream identification
functions - Draft.” In: IEEE P802.1CBdb (2019).

[164] Project German BMBF FIND - Future Industrial Network Architecture. http://www.
future-industrial-internet.de. 2017-2020.
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