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1 Introduction

This dissertation deals with geostatistical, time series, and regression analytical approaches

for modelling spatio-temporal processes, using air quality data in the applications. The

work is structured into four essays the abstracts of which are given in the following.

The first essay is titled “Spatial detrending revisited: Modelling local trend patterns in

NO2-concentration in Beglium and Germany”. It is written in co-authorship by Prof. Dr.

Harry Haupt and Dr. Angelika Schmid and published in 2018 in Spatial Statistics 28, pp.

331-351 (https://doi.org/10.1016/j.spasta.2018.04.004).

Abstract. Short-term predictions of air pollution require spatial modelling of trends,

heterogeneities, and dependencies. Two-step methods allow real-time computations by

separating spatial detrending and spatial extrapolation into two steps. Existing methods

discuss trend models for specific environments and require specification search. Given

more complex environments, specification search gets complicated by potential nonlinear-

ities and heterogeneities. This research embeds a nonparametric trend modelling approach

in real-time two-step methods. Form and complexity of trends are allowed to vary across

heterogeneous environments. The proposed method avoids ad hoc specifications and po-

tential generated predictor problems in previous contributions. Examining Belgian and

German air quality and land use data, local trend patterns are investigated in a data

driven way and are compared to results computed with existing methods and variations

thereof. An important aspect of our empirical illustration is the heterogeneity and superior

performance of local trend patterns for both research regions. The findings suggest that a

nonparametric spatial trend modelling approach is a valuable tool for real-time predictions

of pollution variables: it avoids specification search, provides useful exploratory insights

and reduces computational costs.

The second essay is titled “Predictability of hourly nitrogen dioxide concentration”. It is

written in co-authorship with Prof. Dr. Harry Haupt and published in 2020 in Ecological

Modelling 428, 109076 (https://doi.org/10.1016/j.ecolmodel.2020.109076).
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Abstract. Temporal aggregation of air quality time series is typically used to investigate

stylized facts of the underlying series such as multiple seasonal cycles. While aggregation

reduces complexity, commonly used aggregates can suffer from non-representativeness or

non-robustness. For example, definitions of specific events such as extremes are subjec-

tive and may be prone to data contaminations. The aim of this paper is to assess the

predictability of hourly nitrogen dioxide concentrations and to explore how predictability

depends on (i) level of temporal aggregation, (ii) hour of day, and (iii) concentration level.

Exploratory tools are applied to identify structural patterns, problems related to com-

monly used aggregate statistics and suitable statistical modeling philosophies, capable of

handling multiple seasonalities and non-stationarities. Hourly times series and subseries

of daily measurements for each hour of day are used to investigate the predictability of

pollutant levels for each hour of day, with prediction horizons ranging from one hour to

one week ahead. Predictability is assessed by time series cross validation of a loss function

based on out-of-sample prediction errors. Empirical evidence on hourly nitrogen diox-

ide measurements suggests that predictability strongly depends on conditions (i)-(iii) for

all statistical models: for specific hours of day, models based on daily series outperform

models based on hourly series, while in general predictability deteriorates with exposure

level.

The third essay is titled “Agglomeration and infrastructure effects in land use regression

models for air pollution – Specification, estimation, and interpretations”. It is written in

co-authorship with Dr. Markus Fritsch and published in 2021 in Atmospheric Environment

253, 118337 (https://doi.org/10.1016/j.atmosenv.2021.118337).

Abstract. Established land use regression (LUR) techniques such as linear regression

utilize extensive selection of predictors and functional form to fit a model for every data

set on a given pollutant. In this paper, an alternative to established LUR modeling

is employed, which uses additive regression smoothers. Predictors and functional form

are selected in a data-driven way and ambiguities resulting from specification search are

mitigated. The approach is illustrated with nitrogen dioxide (NO2) data from German

monitoring sites using the spatial predictors longitude, latitude, altitude and structural

predictors; the latter include population density, land use classes, and road traffic intensity

measures. The statistical performance of LUR modeling via additive regression smoothers

is contrasted with LUR modeling based on parametric polynomials. Model evaluation
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is based on goodness of fit, predictive performance, and a diagnostic test for remaining

spatial autocorrelation in the error terms. Additionally, interpretation and counterfactual

analysis for LUR modeling based on additive regression smoothers are discussed.

Our results have three main implications for modeling air pollutant concentration levels:

First, modeling via additive regression smoothers is supported by a specification test

and exhibits superior in- and out-of-sample performance compared to modeling based on

parametric polynomials. Second, different levels of prediction errors indicate that NO2

concentration levels observed at background and traffic/industrial monitoring sites stem

from different processes. Third, accounting for agglomeration and infrastructure effects

is important: NO2 concentration levels tend to increase around major cities, surrounding

agglomeration areas, and their connecting road traffic network.

The fourth essay is titled “Outlier detection and visualisation in multi-seasonal time se-

ries and its application to hourly nitrogen dioxide concentration”. It is written in single

authorship and has not been published yet.

Abstract. Outlier detection in data on air pollutant recordings is conducted to un-

cover data points that refer to either invalid measurements or valid but unusually high

concentration levels. As air pollutant data is typically characterised by multiple season-

alities, the task of outlier detection is associated with the question of how to deal with

such non-stationarities. The present work proposes a method that combines time series

segmentation, seasonal adjustment, and standardisation of random variables. While the

former two are employed to obtain subseries of homoskedastic data, the latter ensures

comparability across the subseries. Further, the standardised version of the seasonally

adjusted subseries represents a scaled measure for the outlyingness of each data point in

the original time series from its mean and therefore forms a suitable basis for outlier de-

tection. In an empirical application to data on hourly NO2 concentration levels recorded

at a traffic monitoring site in Cologne, Germany, over the years 2016 to 2019, the common

boxplot criterion is used to examine each standardised seasonally adjusted subseries for

positive outliers. The results of the analyses are put into their natural temporal order and

displayed in a heatmap layout that provides information on when single and sequential

outliers occur.
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2 Spatial detrending revisited: Modelling local trend pat-

terns in NO2-concentration in Belgium and Germany

Abstract. Short-term predictions of air pollution require spatial modelling of trends,

heterogeneities, and dependencies. Two-step methods allow real-time computations by

separating spatial detrending and spatial extrapolation into two steps. Existing methods

discuss trend models for specific environments and require specification search. Given

more complex environments, specification search gets complicated by potential nonlinear-

ities and heterogeneities. This research embeds a nonparametric trend modelling approach

in real-time two-step methods. Form and complexity of trends are allowed to vary across

heterogeneous environments. The proposed method avoids ad hoc specifications and po-

tential generated predictor problems in previous contributions. Examining Belgian and

German air quality and land use data, local trend patterns are investigated in a data

driven way and are compared to results computed with existing methods and variations

thereof. An important aspect of our empirical illustration is the heterogeneity and superior

performance of local trend patterns for both research regions. The findings suggest that a

nonparametric spatial trend modelling approach is a valuable tool for real-time predictions

of pollution variables: it avoids specification search, provides useful exploratory insights

and reduces computational costs.

Keywords. Stationarity, RIO model, Air pollution, Land use, Nonparametrics.
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2.1 Introduction

Industrial parks, roads and other sources of fossil fuel combustion processes are responsible

for a large share of nitrogen oxides and particulate matters that pollute the air and create

severe health risks (Wolf et al., 2017). Information on the location of pollution sources

can enhance the identification of local pollution hotspots and trend patterns, even at

points where no direct observations are available. Detailed spatial pollution maps have a

considerable impact on health policy. An example is the German legislation on banning

pollution-intensive cars from cities and its major impact on air pollution (Fensterer et al.,

2014).

A well-established source of information for air quality assessment are land use classes.

Land use data such as the CORINE land cover inventory encode the usage of a particu-

lar territory in land use classes (e.g., Feranec et al., 2016). Frequently, these classes are

combined with complementary information on traffic density, demography, topography,

and other geographic variables (e.g., Gilliland et al., 2005; Hooyberghs et al., 2006; Sah-

suvaroglu et al., 2006; Janssen et al., 2008; Wang et al., 2013; Hennig et al., 2016). A key

advantage of land use data is that information on single land use classes can be scaled

down when granular data are available, for example on individual exposure to air pollution

within a single urban residence (Hennig et al., 2016).

The crucial role of land use information in regression-based models has lead to the notion

Land Use Regression (LUR). The difference between using land use indicators in regression

and LUR is that the latter usually relies on the assumption of independence and station-

arity of the regression errors (e.g., Gilliland et al., 2005; Ryan and LeMasters, 2007; Hoek

et al., 2008). Neglecting such assumptions carries severe potential for ignoring bias and

inefficiencies (Montero et al., 2015). Air pollution data are likely to exhibit spatial depen-

dence, because the closer two monitoring sites are located, the more likely they share a

common source of pollution or dominant wind direction. There are two main alternatives

to combining a regression framework with the modelling of spatial dependencies among

individual sites.

(a) In two-step or residual kriging methods, a first spatial detrending step allows to filter

nonstationarities driven by phenomena such as titration (e.g., Hooyberghs et al., 2006).

This is followed by a second (ordinary) kriging step to include the dependence structure
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in the spatial prediction. Hooyberghs et al. (2006) and Janssen et al. (2008) suggest

to use historical data to produce real-time spatial predictions within a two-step residual

interpolation optimised (RIO) modelling framework. To account for nonstationarities in

O3-concentration across Belgium, Hooyberghs et al. (2006) compute a local spatial trend

based on historical measurements using population density as auxiliary data. Janssen

et al. (2008) use CORINE land use data instead of population density data in the de-

trending step and analyse the three pollutants NO2, O3, and PM10. The RIO residual

kriging procedure has two advantages: First, trend and semivariogram estimation can be

done in two separated steps. Second, as long as the crucial assumption of stable spatial

trend and semivariogram over time holds, it allows real-time predictions at basically zero

computational cost.

(b) Alternatively, universal kriging is a one-step method, where the spatial dependence

structure and the impacts of the predictors are estimated simultaneously. However, the

difference between two-step methods and universal kriging is not always clear-cut (e.g.,

Mercer et al., 2011), and the latter can also be applied to filtered data. As Montero et al.

(2015) point out, splitting up detrending and kriging in two steps is a recommended al-

ternative to avoid ambiguities in universal kriging with regard to the interplay of trend

specification and semivariogram estimation. While a correct trend specification is im-

portant in both methods to fulfill the requirements for kriging, it remains unclear how

to specify the relationship between predictors and pollution with regard to optimising

predictive performance.

Two-step methods provide a simple and useful tool for real-time predictions. Their key

assumption seems to hold, as average pollution levels are quite stable over time and in-

dependent of short term influences, for example over different seasons (e.g., Sahsuvaroglu

et al., 2006), or over the span of several years (e.g., Wang et al., 2013). Our work aims at

providing further insights into two-step methods such as the RIO residual kriging method,

and generalises the method of Janssen et al. (2008) theoretically and empirically. The

quality of the trend filter in the first step is crucial for any inferences drawn from the sec-

ond step. Hence we suggest nonparametric generalisations to adapt the trend modelling

step to general environments, exhibiting different degrees of complexity and heterogeneity

in spatial patterns. In particular we suggest to simplify the inclusion of land use classes

in the trend estimation step.
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In Janssen et al. (2008), every monitoring site is assigned a pollutant-specific land use in-

dicator that describes average pollution based on the relative share of every land use class

within the sites’ vicinity. This indicator summarises the interplay of constant local char-

acteristics contained in the predictors and is interpreted as a proxy for the long-term total

pollution load a single location has to carry. The authors assume that mean and standard

deviation of the pollutant can be described by polynomials in the indicator. They do not

consider additional predictors controlling for further sources of heterogeneity in spatial

trend patterns. To avoid the consequences of misspecifying the trends, we propose to use

nonparametric trend regressions. Nonparametrics allow for a data-driven exploration of

trend patterns while avoiding specification search based on ad hoc polynomials (and in-

teractions if further predictors are used). We show that multivariate generalisations of the

trend functions can be easily accomplished by allowing for different trends for background,

industrial and traffic environments.

The simultaneous estimation of a trend function and a pollutant-specific land use indicator

(weighting single land use classes) in prediction employed by Janssen et al. (2008) leads

to a generated predictor problem. Hence we propose direct inclusion of the information

on land use classes as predictors in our trend function. We thoroughly discuss estimation,

prediction and comprehensive empirical evidence for Belgian and German air quality and

land use data. Our empirical analysis reproduces existing results of Janssen et al. (2008) for

Belgium and provides evidence for Belgium and Germany that the suggested modifications

perform very well.

The remainder of this article is organised as follows: Section 2 discusses the database

used for our empirical investigation. Section 3 explains the statistical theory, including an

overview on Janssen et al. (2008) and indicator-based two-step spatial prediction methods.

Section 4 provides detailed insights into our results and section 5 concludes.

2.2 Data

In the application to German air pollution, we investigate daily maxima of the recorded

hourly NO2-concentration over the time period 1st Jan 2007 to 31st Dec 2012. The data

have been obtained from the European Environment Agency (EEA), who maintains Air-

Base, the European air quality database ([dataset] EEA, European Environment Agency,

2016). The database consists of monitoring data from fixed monitoring sites, measured at
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regular intervals, as well as meta-information on the monitoring sites involved. One meta-

information is the sites’ type that can either be “Background”, “Industrial”, or “Traffic”.

For a complete description of the meta-data on monitoring site characteristics, we refer

to 2.7.B.1. Further, we use the CORINE Land Cover 2006 (CLC2006) data layer in a

100 × 100 meter resolution ([dataset] EEA, European Environment Agency, 2010b). For

detailed information on CLC data including changes between the four different data layers

CLC1990, CLC2000, CLC2006, CLC2012, see Feranec et al. (2016).

In order to make our empirical findings comparable to those of Janssen et al. (2008),

we also analyse Belgian hourly NO2-concentration from AirBase over the time period 1st

Jan 2001 to 31st Dec 2006, and the CLC2000 layer, i.e. land use classification in the year

2000 version ([dataset] EEA, European Environment Agency, 2010a). Table 2.1 shows that

German data contain a considerably higher number of monitoring sites and exhibit a quite

different distribution over measuring sites’ types in comparison to Belgium. While both

countries have an equivalent share of background sites, the relative shares of industrial

and traffic sites are inverted.

Table 2.1: Numbers of monitoring sites in Belgium (Germany) that were active within the
period 1st Jan 2001 to 31st Dec 2006 (1st Jan 2007 to 31st Dec 2012).

Background Industrial Traffic Total

Belgium 37 (52.85%) 23 (32.86%) 10 (14.29%) 70

Germany 276 (51.49%) 38 (7.09%) 222 (41.42%) 536

In our analysis we omit daily maximum NO2 values above 500 µg/m3 as well as negative

values. Based on the remaining daily maximum values the mean and standard deviation

of each monitoring site is calculated, separately for weekdays and weekends. For supple-

mentary information about the data quality of the German and Belgian air pollution data

and the data preprocessing we refer to 2.7.B.2. Fig. 2.1 displays the respective boxplots for

Belgium and Germany. While the four statistics (mean weekday, mean weekend, st.dev.

weekday, st.dev. weekend) for Belgium and Germany differ only slightly with respect to

their medians, the interquartile ranges and the ranges between the whiskers are remark-

ably higher for the German data compared to Belgian data. For both research regions we

observe differences between the mean of daily maximum NO2 concentrations on weekdays

and weekends. For the standard deviation of daily maximum NO2 concentrations only a

small difference between weekdays and weekends occurs. In Figs. 2.A.1-2.A.3 we explore
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Figure 2.1: Top: Boxplots of the mean and standard deviation over the daily maximum
NO2 values of each Belgian monitoring site, separately for weekdays and weekends. Bot-
tom: Analogous boxplots for German data.

the distribution of the means and standard deviations differentiating by the sites’ type.

We find that observed differences between Belgium and German data can be traced back

to measurements at traffic sites.

Considering the usage of the CLC data in air pollution studies, it is common practice

to reclassify the 44 land use classes in the CLC inventory (e.g. Beelen et al., 2009, 2013;

Wolf et al., 2017). Following the suggestion of Janssen et al. (2008), we group the 44

classes into eleven more general land use classes. The European Monitoring and Evalu-

ation Programme (EMEP) provides emission data concerning national total, sector and

gridded emissions for Europe (see [dataset] EMEP and CEIP, 2014, for detailed infor-

mation). Those data are classified with regard to their relationship to air pollution, and

the classification results in so-called sectors, referred to as SNAP (Selected Nomenclature

for reporting of Air Pollutants). Table 2.2 summarises the resulting classifications and

descriptions.

The empirical analysis is conducted with the statistical software R (R Core Team, 2013)

using the packages broom (Robinson, 2017), GISTools (Brunsdon and Chen, 2014), gstat
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Table 2.2: Relationship between grouped CLC classes and the equivalent groups in the
SNAP sector classification (according to Janssen et al., 2008).

Grouped class Description CLC classes SNAP sectors

class 1 Continuous urban fabric 1 S2

class 2 Discontinuous urban fabric, green 2,10,11 S2

and sport

class 3 Industrial or commercial units 3 S3+S4

class 4 Road and rail networks and associated 4 S7

land

class 5 Port areas 5 S8

class 6 Airports 6 S8

class 7 Mine, dump and construction sites 7-9 S1+S4+S5+S9

class 8 Arable land 12-14 S10

class 9 Agricultural areas 15-22 S10

class 10 Forest and semi natural areas 23-34 S11

class 11 Wetlands and water bodies 35-44 S11

(Pebesma, 2004; Gräler et al., 2016), np (Hayfield and Racine, 2008), optimx (Nash

and Varadhan, 2011; Nash, 2014), raster (Hijmans, 2016), rgdal (Bivand et al., 2017),

spatstat (Baddeley et al., 2015), and timeDate (Rmetrics Core Team et al., 2015).

2.3 Statistical modelling

Assume air pollution at time t ∈ Dt to be a latent geostatistical random process

Yt(·) = {Yt(s) : s ∈ Ds ⊂ R2},

where Ds refers to the study area. Within the study region Ds define the locations

s1, . . . , sn, n ∈ N. Let Zt(s), where

Zt(·) = {Z(s, t) : s ∈ Ds},

denote the data process at time t ∈ Dt. In our computations below let zi,t denote a realisa-

tion of Zt(si) at location si at time t ∈ Dt. The vector zi = (zi,1, . . . , zi,T ), i ∈ 1, . . . , N,

defines the time series at monitoring site i, the vector zt = (z1,t, . . . , zn,t), t ∈ {1, . . . , T},

defines measurements for all cross-sectional units or monitoring sites recorded at time t.

Following Cressie (1993) and Diggle and Ribeiro Jr (2007), the relationship between
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the unobserved geostatistical process and the data process is given by

Zt(s) = Yt(s) + ϵt(s) (2.1)

with ϵt(s)
iid∼ N(0, σ2ϵ ). If the unobserved geostatistical process Yt(·) at time t ∈ Dt is

assumed to be a stationary and isotropic Gaussian process, it holds ∀s, s′ ∈ Ds, s ̸= s′,

E[Yt(s)] = µ, (2.2a)

Var[Yt(s)] = σ2, (2.2b)

C(h) = Cov[Yt(s), Yt(s
′)] = σ2ρ(h), (2.2c)

where the autocorrelation function ρ(h) = Corr[Yt(s), Yt(s
′)] depends on the distance h =

||s− s′||, E[·] denotes the expected value, Var[·] the variance, and C(·) the autocovariance

function. Under the assumptions stated above, analogous stationarity conditions hold for

the data process Zt(·), and the ordinary kriging predictor Ŷt(s0) can be calculated for any

s0 ∈ Ds, t ∈ Dt.

2.3.1 Spatial trend modelling: Parametric polynomials

The RIO technique proposed by Hooyberghs et al. (2006) and Janssen et al. (2008) starts

with a detrending step in order to filter the data process Zt(·) such that stationarity

conditions analogous to (2.2a)-(2.2c) hold. The grouped land use classes (see Table 2.2)

enter the equation for the pollutant specific β-index according to

β(s, r) = log

[
1 +

11∑
k=1

ak · shk(s, r)

]
, (2.3)

where shk(s, r) describes the share of the k-th class within a circular buffer zone with

radius r around location s. For the sake of simplicity we omit r and s and write βi for

β(si, r), β for β(s, r) and shk for shk(s, r). The class weights ak, k = 1, . . . , 11, define

the relative impact of the respective class on the concentration of the air pollutant under

investigation. Eq. (2.3) shows how the relative contribution of every land use class is

summed up to an overall indicator. This means that a certain share of roads can be

equivalent to a certain share of industrialised area, or a larger share of residential area (as

the latter are usually relatively small sources of air pollution). Further details on the class
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weights are given in Table 2.A.1 in the Appendix.

Janssen et al. (2008) assume that spatial trends of mean and standard deviation are

functions of the pollutant specific β-index. For the sake of a more general exposition

covering the extensions in Section 3.2, we consider trend functions including potential

further predictors X,

µ ≈ mµ(β,X), (2.4a)

σ ≈ mσ(β,X). (2.4b)

In their application to Belgian data, Janssen et al. (2008) assume that mean and standard

deviation in Eqs. (2.4a) and (2.4b) can be described by a second and first order polynomial

of β, respectively, and do not consider additional predictors X. The functions mµ and

mσ are estimated in regressions using estimates z̄ and s of µ and σ, respectively, based

on the time series observed for each measuring site where a distinction is made between

weekdays and weekends. For the sake of simplicity we omit further notation.

For both statistics, β is calculated via Eq. (2.3) and therefore depends on s and a1, . . . , a11.

Under assumption (2.4a) the coefficients a1, . . . , a11 in Eq. (2.3) are optimised through the

following numerical optimisation procedure, after defining suitable termination criteria

1. Specify a starting set a
(1)
1 , . . . , a

(1)
11 of a1, . . . , a11 (see Janssen et al., 2008).

2. Regress z̄i on mµ(β
(1)
i , Xi) where β(1) is computed using the set a

(1)
1 , . . . , a

(1)
11 , and

obtain the predictor m̂
(1)
µ (β

(1)
i , Xi).

3. Calculate the value of the RMSE =

√
1
n

∑n
i=1(m̂

(1)
µ (β

(1)
i , Xi)− z̄i)2.

4. If none of the termination criteria is fulfilled, restart the procedure with a different

set a
(2)
1 , . . . , a

(2)
11 , otherwise the optimal set is found.

Denoting the optimised class weights by ã1, . . . , ã11 and the corresponding β-index by

β̃1, . . . , β̃n, the trend functions for mean and standard deviation can be computed, for

every i, as µ̂i = m̂µ(β̃i, Xi) and σ̂i = m̂σ(β̃i, Xi), respectively.

According to Janssen et al. (2008), using the fitted values µ̂i and σ̂i, and given pre-defined

reference levels µref and σref , detrending of the measurement values zi,t can be achieved

12



according to

z∗i,t = zi,t + (µref − µ̂i), (2.5a)

z∗∗i,t = (z∗i,t − z̄∗i )
σref

σ̂i
+ z̄∗i . (2.5b)

After filtering the monitored data zi,t according to Eqs. (2.5a) and (2.5b), we obtain the

transformed data z∗∗i,t , which we interpret as realisations of Z∗∗
t (si), the filtered data process

at time t ∈ Dt. Hence, for each s ∈ Ds,

E[Z∗∗
t (s)] = µ(s) + (µref − µ̂(s)) ≈ µref , (2.6)

relying on assumption (2.4a) in the last transformation, and

V ar[Z∗∗
t (s)] =

(
σref

)2
V ar

[
Z∗
t (s)− Z̄∗(s)

σ̂(s)

]
≈

(
σref

)2
, (2.7)

since the middle term describes the standardisation of Z∗
t (s). Eqs. (2.6) and (2.7) show

that the filtered data process approximately satisfies the (weak) stationarity properties

(2.2a)-(2.2c) and can be used in the kriging procedure.

Based on all historical detrended measurements z∗∗i,t , the semivariogram required for ordi-

nary kriging is estimated. For any s0 ∈ Ds at time t ∈ Dt an interpolated value Ŷ ∗∗
t (s0)

can be calculated and retrended with regard to the local mean and local standard deviation

of the originally monitored process. The retrending formulas can be written as

Ŷ ∗
t (s0) = (Ŷ ∗∗

t (s0)−
¯̂
Y

∗∗
(s0))

σ̂(s0)

σref
+

¯̂
Y

∗∗
(s0), (2.8a)

Ŷt(s0) = Ŷ ∗
t (s0)− (µref − µ̂(s0)). (2.8b)

The RIO technique rests on the crucial assumption that both spatial trends and the

semivariogram are stable over time, enabling real-time predictions at basically zero com-

putational cost. Real-time predictions are produced in the following way: detrend a new

set of observations (at monitoring sites) using the fitted trend functions, interpolate the

detrended values using the fitted semivariogram and retrend the interpolated values using

the fitted trend functions.
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2.3.2 Spatial trend modelling: A general nonparametric approach

There are several options to include further predictors in Eqs. (2.4a) and (2.4b). In gen-

eral, the functionsmµ andmσ can be approximated by higher-order parametric expansions

using polynomials of β interacting with (the levels of) X. Such a strategy, however, re-

quires assumptions on the degree of the approximation and a high number of parameters.

In order to avoid ad hoc assumptions, potential underspecification, or potentially exten-

sive specification search, a straightforward alternative is to estimate mµ and mσ using a

nonparametric trend model. Such a model should deliver a more accurate representation

of the trend patterns than a specification based on a parametric expansion if the latter

is underspecified and the data are sufficiently informative for nonparametric regression

(e.g., Haupt et al., 2010). More important and evident from our empirical illustration,

nonparametric methods provide explorative insights about the trend patterns driven by β

and potential further predictors such as the type of monitoring sites X.

Hence, as nonparametric methods can help to identify the best parametric approximation

and to avoid problems of misspecifying the trend functions, we employ a local linear kernel

smoothing estimator of E(Z̄|β,X) = m(β,X) in the trend regression model

Z̄ = m(β,X) + U with E(U |β,X) = 0, (2.9)

based on Eq. (2.4a). A generalised least squares estimator is denoted as m̂LL, where

(m̂LL, γ̂) minimises
n∑

i=1

[Z̄i −m− γ(βi − β)]2K(W ,W i,h),

where W = (β,X) denotes the vector of regressors, K = kβ · kX is a product kernel,

and h = (hβ, hX)′ is a vector of bandwidths which we estimate using least squares cross

validation (see Li and Racine, 2004). The use of mixed continuous (i.e. pollutant specific

β-index) and categorical (i.e. type of monitoring site X) predictors in nonparametric

regressions has been discussed extensively in the various works of Li and Racine (e.g., Li

and Racine, 2007).

The β-index in Eq. (2.9) is unknown and has to be computed according to the proce-

dure described in section 3.1. Hence the estimated β-index β̃ is a generated predictor.

The potential consequences for estimation and inference in parametric models have been
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discussed in an abundant literature following the seminal paper of Pagan (1984). In a

nonparametric context Sperlich (2009) and Mammen et al. (2012) provide authoritative

treatments (see Haupt et al., 2018, for a discussion in the mixed predictor context). De-

pending on the problem at hand, researchers may prefer to use an aggregated index, but

should be aware that generated regressor problems may invalidate the interpretation of

the β-index. In the current context the problems can be avoided from the outset if the

β-index is not considered. We propose to directly include the information on land use

classes and define the categorical predictors

X1 = argmax
k∈{1,...,11}

shk, (2.10)

X2 = argmax
k∈{1,...,11}\X1

shk, (2.11)

determining which classes have the largest and second largest share (within the circular

buffer zone around a certain location), respectively. Note that including the third largest

class has no remarkable effect. In our application for 534 of 536 German sites and for 69

of 70 Belgian sites, the sum of the shares of the first and second largest class is larger than

50%. The continuous predictor

S = shX1 + shX2 . (2.12)

is defined as the sum of the shares of the first and second largest class. Then, instead of

the predictors used in Eq. (2.9), we consider the categorical predictors X1, X2, and the

sites’ type, and the continuous predictor S.

2.4 Results

For the sake of exposition, we introduce the following abbreviations: “QL” (“LL”) refers

to a quadratic (linear) trend for the mean and a linear trend for the standard deviation;

“TypeQL” (“TypeLL”) allows local trend differing with respect to the type of a moni-

toring site (“Background”, “Industrial”, or “Traffic”); “NP” refers to the nonparametric

approach with β−index together with the sites’ type; “NPnoBeta” refers to the nonpara-

matric approach without β−index but with the predictors defined in Eqs. (2.10)-(2.12)

together with the sites’ type.
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The estimated QL trend functions for Belgian data are displayed in Fig. 2.2 and replicate

results of Janssen et al. (2008, right plot of Fig. 5 and middle plot of Fig. 8), while

Fig. 2.3 shows the corresponding QL estimates using German data. A global second

order polynomial fits the Belgian data quite well, while we observe considerably more

heterogeneity in the German data. The curvature is less pronounced in the plots of

Fig. 2.3 and bear no visible difference to the LL trend functions displayed for Germany in

Fig. 2.A.8 in 2.7.A.

Comparing the trend functions for weekdays and weekends for Belgian as well as for

German data, we observe a shift along the y-axis (for both specifications LL and QL). This

is in accordance with the boxplots displayed in Fig. 2.1 and indicates that, on average,

the concentration level of NO2 drops from weekdays to weekends.
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Figure 2.2: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends (top
left to bottom right); β̃i and the fitted trend functions correspond to a quadratic trend
for the mean and a linear trend for the standard deviation (specification QL).

The replication of the results of Janssen et al. (2008) in a narrow sense for Belgian data and

in a wider sense for German data suggests that the assumption of global trend forms is too

restrictive. Determining a global trend form requires an ad hoc specification of polynomial

degree and specification search. Previous contributions such as Janssen et al. (2008) do
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not explicitly discuss this issue. The optimisation of the class weights ak affects the values

of β̃, the position of the points along the x-axis and thus the fitted trend function (e.g.,

compare the range of β̃ in Fig. 2.3 and Fig. 2.A.8). To avoid ad hoc specification search

and to widen the scope of applicability to heterogeneous environments, we discuss a more

general approach to spatial trend fitting and illustrate it with German data. Note that

further results for Belgium, completing our empirical analysis, are provided in 2.7.A.
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Figure 2.3: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends (top
left to bottom right); β̃i and the fitted trend functions correspond to a quadratic trend
for the mean and a linear trend for the standard deviation (specification QL).

An encompassing approach to trend analysis is the nonparametric regression, following

the mixed kernel estimation approach for continuous and categorical predictors of Li and

Racine (2004, 2007), compare Eq. (2.9). Fig. 2.4 shows estimated NP trend functions for

German data based on local linear kernel regressions, where bandwidths are estimated

by least squares cross-validation using the default kernel functions proposed by Hayfield

and Racine (2008). Trends are calculated by simultaneously smoothing over β̃ and the

three categories of the sites’ type contained in X. We observe substantial differences in

local levels and slopes between traffic sites and all other sites indicating that the NO2

concentration at traffic sites is on average larger than at background or industrial sites.
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Figure 2.4: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends (top
left to bottom right); β̃i and the fitted trend functions correspond to the nonparametric
approach (specification NP).

Apart from minor boundary effects visible in the plots for weekend data, the estimates

suggest that a piecewise quadratic trend may be sufficiently flexible. The finding of het-

erogeneity in local trend patterns in Germany based on our visual analysis is confirmed by

the quantitative results from the nonparametric approach including the sites’ type. The

corresponding results on predictive performance are discussed in detail below.

Based on the exploratory insights obtained from the nonparametric regressions, we add

dummy variables and interactions as indicators for the monitoring sites’ type to the specifi-

cation QL. The resulting TypeQL trend estimates are shown in Fig. 2.5. Visual inspection

of the results and comparison to Fig. 2.3 suggest that the specification TypeQL allowing

local quadratic trend patterns provides a superior fit to the German data. Again, this

finding is supported by an analysis of predictive performance. Equivalent plots for speci-
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Figure 2.5: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends (top
left to bottom right); β̃i and the fitted trend functions correspond to a quadratic trend for
the mean and a linear trend for the standard deviation; both are allowed to differ with an
indicator for the sites’ type (specification TypeQL).

fications LL and TypeLL for Germany are provided in Figs. 2.A.8 and 2.A.9 in 2.7.A.

The trend functions corresponding to the specifications TypeQL and TypeLL reveal sub-

stantial differences in local levels and slopes between traffic sites and all other sites in

Germany. For Belgian data such clear differences cannot be observed (see Figs. 2.A.6 and

2.A.7 in 2.7.A).

For specification NPnoBeta trends are calculated by simultaneously smoothing over S and

the categories X1, X2, and the sites’ type. This specification entails considerably lower

computational costs compared to those of NP, as the optimisation of group weights is

not required. For German (Belgian) data computation time equals 3.45 hours (7 min-

utes) to derive the trend functions using NP, compared to 16 seconds (4.3 seconds) for

19



NPnoBeta. For NPnoBeta it is not possible to display the estimated trend functions in

two-dimensional space, as they depend on one continuous and three unordered categor-

ical predictor variables. In order to evaluate the predictive performance of NPnoBeta

compared to the approaches including the β-index, we carry out a leave-one-out cross-

validation (LOOCV). In each loop of LOOCV one monitoring site is omitted and the

entire RIO technique – consisting of the four steps of optimising group weights, detrend-

ing, kriging and retrending (as described in Section 3 above) – is applied to the remaining

sites. For NPnoBeta the optimisation of group weights is no longer necessary and therefore

each loop of LOOCV consists of the steps detrending, kriging and retrending. Table 2.3

summarises the results of LOOCV. As suggested by our visual inspection of the nonpara-

metric trend estimates, allowing the trend functions to differ with the sites’ type enhances

the predictive performance. Adding an indicator for the sites’ type to specifications QL

(LL) leads to a performance gain of 13.7% (12.5%) with regard to RMSE for Germany. For

Belgium, it lowers the RMSE by 2.0% when the indicator is added to LL, and increases the

RMSE by 14.0% when the indicator is added to QL. The latter deterioration of predictive

performance in Belgium is due to a single outlier produced in the optimisation process.

Avoiding the generated predictor problem by including the information on land use classes

directly in NPnoBeta improves (reduces) the predictive performance by 3.4% (1.6%) for

German (Belgian) data compared to NP. Table 2.A.2 in 2.7.A provides further and more

detailed results on our LOOCV analysis, revealing that the inclusion of the third largest

LUC class has no remarkable effect on the predictive performance with regard to RMSE.

Overall we observe that NPnoBeta has a superior (equal) LOOCV performance for Ger-

many (Belgium) while it does not require specification search, avoids generated predictor

problems and causes almost zero computational costs.

Table 2.3: Results of LOOCV for different specifications and their predictive performance.

RMSE QL LL TypeQL TypeLL NP NPnoBeta

Germany 20.84 20.82 17.99 18.21 19.07 18.43

Belgium 13.76 13.79 15.69 13.51 13.66 13.88
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2.5 Discussion and conclusions

Approaches for spatial interpolation of air pollutant data require assumptions on station-

arity or on trend patterns of the underlying geostatistical random processes. Step-wise

procedures based on filtering known or estimated spatial trends bear the advantage of

real-time applicability due to their computational and interpretational simplicity. The

RIO framework of Hooyberghs et al. (2006) and Janssen et al. (2008) enhances spatial in-

terpolation and predictive performance by exploiting pollution relevant information from

local land use patterns. The general applicability of the method hinges on assumptions

about ad hoc global trend patterns defined by land use related pollution indicators. Ex-

isting methods discuss trend models for specific environments and require specification

search. In practice, however, research environments of different size and level of aggrega-

tion may exhibit complex nonlinear local trend patterns, driven by spatial heterogeneities

and dependencies. Specification search then becomes a troublesome endeavour.

Based on the spatial detrending employed by Janssen et al. (2008), we propose the use

of a simple flexible framework for data driven trend modelling and subsequent filtering of

the data. A crucial assumption is the selection of further predictors driving the spatial

complexity of trend patterns. The various types of monitoring sites are an obvious initial

choice for such a predictor. This approach has the advantage of preserving the intuition

of larger values of the land use indicator β representing higher local – that is type-specific

– levels of pollution, while allowing for type-specific trend levels and slopes.

We propose a nonparametric spatial trend modelling approach using all available predic-

tors. The approach is computationally feasible and does not require ad hoc assumptions on

the functional form. It can be used in an exploratory way to identify potential parametric

approximations of trend generating mechanisms. In addition, we propose to avoid poten-

tial generated predictor problems. This can be done by directly including the information

on land use classes, instead of computing a pollution-specific indicator. The performance

of the proposed method, existing methods, and variants thereof can be studied by using

leave-one-out cross-validation analysis of the predictive performance.

We find that a simple generalisation of the existing methods by using multiple nonpara-

metric regression methods leads to considerable gains in predictive performance while com-

putational costs remain low. Furthermore, the proposed method bears a large potential
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for exploratory analysis of trending mechanisms while avoiding lengthy trend specification

search.

In an empirical study, we first successfully replicate existing results of Janssen et al. (2008)

for Belgium using similar but not the same data, and then apply the proposed method

to German data. We investigate the assumption of global trend patterns and find strong

(weak) evidence against such an assumption for German (Belgian) data. The nonparamet-

ric approach can be used to identify local parametric approximations of trend patterns.

The overall performance of the proposed method suggests that the nonparametric method

is a very good choice for research environments with considerably different complexity.

Obvious advantages are that it does not require specification search, avoids generated

predictor problems and has almost zero computational costs.

Potential extensions can be considered in several directions. First, it should be kept

in mind that the β-values change simultaneously with the functional form, and hence

a monotonicity restriction is necessary to preserve the intuition of β as an index repre-

senting mean pollution. A non-monotonic functional form resulting from polynomial or

nonparametric trend fits stresses plausibility of this theoretical rationale. The question of

imposing monotonicity constraints or not depends on the problem at hand; i.e. whether

predictive performance or interpretability is the main objective. Second, statistical tools

could be used to provide live monitoring of the crucial assumption of stable trend functions

for mean and standard deviation over time. Third, the robustness of the results could be

assessed with regard to the choice and aggregation of land use categories as well as the

choice of variables determining the trend forms. Fourth, further diagnostics could refer to

the uncertainty arising from the stepwise nature of the analysis. There is no clear indi-

cation in the original application on how to calculate the uncertainty arising from errors

due to trend elimination and kriging, as well as their potential dependence structure.

A flexible two-step procedure reduces the computational demand for spatial now- and

forecasts and allows researchers to explore and test suitable trend specifications. The

approach is transparent in its single steps and sufficiently general for a wide range of

applications.
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2.7 Appendix

2.7.A Tables and figures

Table 2.A.1: Optimised class weights. Following Janssen et al. (2008), class weights a2,
a10 and a11 are set to 1, 0 and 0, respectively. Therefore the optimisation procedure
returns optimal values for the other eight class weights.

Germany a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

QL 2.77 1.00 0.92 0.73 0.71 0.09 0.34 0.10 0.36 0.00 0.00

LL 2.96 1.00 0.92 0.80 0.67 0.08 0.31 0.10 0.35 0.00 0.00

TypeQL 1.76 1.00 1.39 2.09 1.52 1.47 0.91 0.12 0.13 0.00 0.00

TypeLL 3.53 1.00 1.77 3.65 2.21 2.31 1.25 0.33 0.47 0.00 0.00

NP 0.05 1.00 2.07 5.07 1.16 1.17 4.25 2.21 0.81 0.00 0.00

Belgium

QL 3.49 1.00 1.49 6.00 2.75 1.38 1.73 0.35 0.00 0.00 0.00

LL 1.62 1.00 1.63 3.65 2.10 1.30 1.80 0.40 0.00 0.00 0.00

TypeQL 0.83 1.00 0.96 2.42 1.65 0.95 1.11 0.27 0.00 0.00 0.00

TypeLL 0.89 1.00 1.09 3.16 1.91 0.91 0.13 0.36 0.00 0.00 0.00

NP 0.98 1.00 2.61 6.02 1.10 1.12 3.78 0.75 0.63 0.00 0.00

Table 2.A.2: Results of LOOCV for different specifications and their predictive perfor-
mance with regard to RMSE.

Germany QL LL TypeQL TypeLL NP NPnoBeta∗ NPnoBeta∗∗

Background 16.70 16.70 12.79 12.93 14.18 13.16 13.18

Industrial 14.52 14.46 13.10 13.25 14.25 15.29 15.45

Traffic 27.06 27.02 25.30 25.63 25.98 25.52 25.16

Overall 20.84 20.82 17.99 18.21 19.07 18.43 18.31

Belgium

Background 13.16 13.02 12.88 12.80 13.40 13.33 13.57

Industrial 14.63 14.92 14.33 14.09 13.99 14.86 15.10

Traffic 14.02 14.04 29.19 14.81 13.84 13.69 14.35

Overall 13.76 13.79 15.69 13.51 13.66 13.88 14.19

∗ with first and second largest LUC ∗∗ with first, second and third largest LUC
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Figure 2.A.1: Top: Boxplots of the mean and standard deviation over the daily maximum
NO2 values of each Belgian background site, separately for weekdays and weekends. Bot-
tom: Analogous boxplots for German data.

20

40

60

80

m
ea

n 
[i

n 
mg

/m
3 ]

Belgium Germany

5

10

15

20

25

st
.d

ev
. [

in
 m

g/
m

3 ]

weekday weekend weekday weekend

Figure 2.A.2: Top: Boxplots of the mean and standard deviation over the daily maximum
NO2 values of each Belgian industrial site, separately for weekdays and weekends. Bottom:
Analogous boxplots for German data.
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Figure 2.A.3: Top: Boxplots of the mean and standard deviation over the daily maximum
NO2 values of each Belgian traffic site, separately for weekdays and weekends. Bottom:
Analogous boxplots for German data.
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Figure 2.A.4: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends (top
left to bottom right); β̃i and the fitted trend functions correspond to the nonparametric
approach (specification NP).
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Figure 2.A.5: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the fitted trend functions correspond to a linear trend
for the mean and a linear trend for the standard deviation (specification LL).
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Figure 2.A.6: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the fitted trend functions correspond to a quadratic
trend for the mean and a linear trend for the standard deviation; both are allowed to
differ with an indicator for the sites’ type (specification TypeQL).
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Figure 2.A.7: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the fitted trend functions correspond to a linear trend
for the mean and a linear trend for the standard deviation; both are allowed to differ with
an indicator for the sites’ type (specification TypeLL).
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Figure 2.A.8: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the fitted trend functions correspond to a linear trend
for the mean and a linear trend for the standard deviation (specification LL).
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Figure 2.A.9: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the fitted trend functions correspond to a linear trend
for the mean and a linear trend for the standard deviation; both are allowed to differ with
an indicator for the sites’ type (specification TypeLL).

2.7.B Data related descriptions

2.7.B.1 Metadata in AirBase

AirBase consists of monitoring data from fixed monitoring sites as well as meta-information

on the monitoring sites involved. The following meta-information is provided by AirBase:

station european code, station local code, country iso code, country name, station name,

station start date, station end date, type of station, station ozone classification, station

type of area, station subcat rural back, street type, station longitude deg, station latitude

deg, station altitude, station city, lau level1 code, lau level2 code, lau level2 name, EMEP

station.

With regard to air pollution analysis the following variables might be of interest:

· type of station - Background, Industrial, Traffic

· station ozone classification - rural, rural background, suburban, urban (the pollu-

tants NO2 and O3 are strongly correlated, see Janssen et al., 2008, p. 4889)

· station type of area - rural, suburban, urban
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· station subcat rural back - near city, regional, remote

· street type - Canyon street (L/H< 1.5), Highway (average speed vehicles> 80km/h),

Unknown, Wide street (L/H > 1.5); length (L) of the canyon usually expresses the

road distance between two major intersections; height (H) of the canyon

· station longitude deg

· station latitude deg

· station altitude

In our work we consider station longitude deg, station latitude deg and type of station.

2.7.B.2 Data processing and data quality AirBase

In the following we describe how we have processed the hourly recorded NO2 values and

provide information about the data quality. Quality flags in the raw data of the AirBase

statistics indicate the quality of each measurement value. A quality flag > 0 indicates

valid measurement data. A quality flag <= 0 indicates invalid or missing data ([dataset]

EEA, European Environment Agency, 2016).

Belgian AirBase data: The time period 1st Jan 2001 to 31st Dec 2006 has 24 · (365 ·

6 + 1) = 52 584 hours. A full sample with recorded hourly values for each of the 70

monitoring sites would therefore consist of 52 584 · 70 = 3 680 880 observations. There is

no entry in the source data for 815 064 site-date-hour combinations, which corresponds to

about 22.14%. This is partly due to the fact that some sites have not recorded the NO2

concentrations over the whole period, either they have been built up after 1st Jan 2001

or switched off before 31st Dec 2006 or for some time between the 1st Jan 2001 and the

31st Dec 2006. The percentage of either missing or not validated entries in the source

data is equal to 371 497/(3 680 880−815 064) =̂ 13.43%. We have omitted missing and non

validated values from further analysis and have extracted from the daily maximum NO2

concentration for each site-day combination the remaining data which results in 112 340

maximum values, compared to 70 · (365 ·6+1) = 153 370 maximum values if data for each

site-date combination existed. The Belgian data do not contain any extremely high values

(above 500 µg/m3) nor any negative daily maximum values.

German AirBase data: The time period 1st Jan 2007 to 31st Dec 2012 has 24 · (365 ·

6 + 2) = 52 608 hours. A full sample with recorded hourly values for each of the 537

monitoring sites would therefore consist of 52 608 ·537 = 28 250 496 observations. There is
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no entry in the source data for 5 391 528 site-date-hour combinations, which corresponds

to about 19.08%. This is partly due to the fact that some sites have not recorded the NO2

concentrations over the complete time, either they have been built up after 1st Jan 2001

or switched off before 31st Dec 2006 or for some time between the 1st Jan 2001 and the

31st Dec 2006. The percentage of either missing or not validated entries in the source data

is equal to 1 547 472/(28 250 496 − 5 391 528) =̂ 6.77%. We have omitted missing and non

validated values from further analysis and have extracted from the daily maximum NO2

concentration for each site-day combination the remaining data which results in 920 343

maximum values, compared to 537 · (365 · 6 + 2) = 1 177 104 maximum values if data for

each site-date combination existed. Omitting missing and non validated values reduces

the number of sites from 537 to 536. Further investigation has shown that the source data

do not contain any validated data for site DETH082. Three daily maximum values have

been removed as they are extremely high (above 500 µg/m3) and 58 as they are negative

such that finally 920 282 maximum values and 536 sites remain for further analysis.
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3 Predictability of hourly nitrogen dioxide concentration

Abstract. Temporal aggregation of air quality time series is typically used to investigate

stylized facts of the underlying series such as multiple seasonal cycles. While aggregation

reduces complexity, commonly used aggregates can suffer from non-representativeness or

non-robustness. For example, definitions of specific events such as extremes are subjec-

tive and may be prone to data contaminations. The aim of this paper is to assess the

predictability of hourly nitrogen dioxide concentrations and to explore how predictability

depends on (i) level of temporal aggregation, (ii) hour of day, and (iii) concentration level.

Exploratory tools are applied to identify structural patterns, problems related to com-

monly used aggregate statistics and suitable statistical modeling philosophies, capable of

handling multiple seasonalities and non-stationarities. Hourly times series and subseries

of daily measurements for each hour of day are used to investigate the predictability of

pollutant levels for each hour of day, with prediction horizons ranging from one hour to

one week ahead. Predictability is assessed by time series cross validation of a loss function

based on out-of-sample prediction errors. Empirical evidence on hourly nitrogen diox-

ide measurements suggests that predictability strongly depends on conditions (i)-(iii) for

all statistical models: for specific hours of day, models based on daily series outperform

models based on hourly series, while in general predictability deteriorates with exposure

level.

Keywords. Air pollution prediction, Nitrogen dioxide, Predictability, Aggregation level,

Multiple seasonality.
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3.1 Introduction

Many environmental and socio-economic processes are shaped by seasonal variations in

annual cycles, while anthropogenic influences typically contribute daily and weekly sea-

sonal patterns. Air pollutants are a particularly complex example of such processes. For

example, nitrogen dioxide (NO2) concentrations have a pronounced daily cycle layered

on top of weekly and annual cycles. Assessment and prediction of such processes is of

considerable public and political interest. To protect human health, the European Air

Quality Directive (2008/50/EC) requires that the member states of the European Union

are obliged to monitor air quality and take action if the limit values for air pollutant con-

centrations are (expected to be) exceeded (Council of the European Union, 2008). The

projects “Review of evidence on health aspects of air pollution — REVIHAAP” (WHO,

2013) and “Health risks of air pollution in Europe – HRAPIE” (WHO, 2013) are car-

ried out by the World Health Organization (WHO) to provide a comprehensive scientific

evidence-based overview of the links between air pollution and adverse health effects and

the associated economic consequences. In the realm of REVIHAAP and HRAPIE so

called concentration-response functions are defined to quantify the health impacts due to

air pollution and then used as a basis for a cost-benefit analysis of EU air quality policy

(Héroux et al., 2015). The reports of REVIHAAP and HRAPIE give evidence that short-

and long-term exposure to NO2 may encourage respiratory and cardiovasular diseases.

Recent works reviewing epidemiological studies are, among others, Hoek et al. (2013) and

Atkinson et al. (2018). According to the 2018 report on air quality in Europe (EEA, 2018)

the ambient air concentrations of particulate matter (PM), ozone (O3), NO2 and further

pollutants decreased between 2000 and 2016. There are, however, still exceedances of the

critical values and related health risks require further research. Hence the development

of accurate and reliable methods for assessment and prediction of air quality indicators

remains to be an important field of research.

The prediction of local air quality indicators such as NO2 concentrations is a particularly

challenging problem due to the requirement of statistical modeling of periodic components

and their potential variation over time. Although air quality data are typically available

as hourly time series, analyses often rely on aggregated data, using statistics such as daily

maxima or averages. Various modeling frameworks can be used to address the inherent
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non-stationarities and to produce predictions for different time horizons (e.g., Cabaneros

et al., 2019; Gocheva-Ilieva et al., 2014; Lawson et al., 2011; Moisan et al., 2018; Sharma

et al., 2009; Zhao et al., 2018) such as hourly exposure, daily maxima or annual averages.

Consequences of aggregation are on the one hand a reduction of the number of seasonal

cycles, but on the other hand an inability to predict the precise hour and not only the

level of the maximum exposure on the next day. Hence, relevant information can be

masked, biased or even deleted in the aggregation process. For times series with multiple

seasonal patterns such as local NO2 concentrations, simple aggregates such as time series

of daily maxima still exhibit cyclical patterns of weekly and annual length and hence

require complex modeling approaches.

In the literature on multiple seasonal patterns in air quality processes, the focus of re-

moving one or more components of the underlying time series often is on descriptive data

analysis: visualizations at different levels of temporal aggregation are used to detect sea-

sonal patterns and discuss their anthropogenic and meteorological drivers. Mayer (1999)

conducts an exploratory analysis of hourly data on four air pollutants (nitrogen monoxide

(NO), NO2, ozone (O3) and the sum of NO2 and O3 (Ox)), recorded in Stuttgart, southern

Germany, over the period 1981-1993, and identifies annual, weekly and daily cycles. De-

Gaetano and Doherty (2004) analyze data on meteorology and hourly PM concentration

levels at 20 monitoring sites in New York City with respect to their spatial and temporal

variation. They consider extreme concentration percentiles and the median concentration

level for each day-hour combination. Their findings suggest that the amplitudes of the

seasonal patterns vary with percentiles and that daily and weekly patterns are mainly

caused by anthropogenic factors whereas annual patterns arise rather due to meteorolog-

ical variations. Liu et al. (2015) investigate hourly PM2.5 and PM10 concentration levels

in Beijing over the period 2004-2012. They explore the daily and annual seasonal patterns

in the data using heatmaps to visualize the distribution of the pollutants in dependence

of the month and the time of the day. Further, they provide a thorough discussion about

the extent to which the patterns can be traced back to meteorological phenomena using

bivariate polar plots and correlations. Moisan et al. (2018) account for multiple seasonal-

ities and predict PM2.5 but use multivariate techniques which require auxiliary variables

and corresponding predictions, and may thus suffer from additional sources of bias.

One of the few studies dealing with univariate air quality prediction under consideration
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of multiple seasonalities is the recent work of Zhao et al. (2018). They use a time series

analysis procedure called Prophet to investigate weekly and annual seasonality of daily

PM2.5 concentrations measured at 220 monitoring sites across the United States over the

period 2007-2015. Prophet was initially developed for smoothing and predicting daily

business data and relies on the generalized additive modeling approach assuming the time

series to be additively decomposable into trend, seasonality, holiday, and error component

(Taylor and Letham, 2018). Lawson et al. (2011) apply structural time series models to

hourly nitrogen oxide data recorded at a monitoring site in Dublin to predict one day (i.e.

24 hourly steps) ahead. Due to the short time period of just 40 days of data, a single

daily seasonal pattern is considered and data referring to weekend days are not included

in the analysis. In addition, they use separate models for the series of morning and

evening peak values for some ad hoc selected hours. As this can be seen as an aggregation

of hourly to daily data, the one day ahead predictions correspond to one step ahead

predictions. Applications of the Box-Jenkins modeling approach can be found, among

others, in Sharma et al. (2009), Kumar and Jain (2010), or Gocheva-Ilieva et al. (2014).

They employ seasonal autoregressive integrated moving average (SARIMA) models based

on hourly data for six pollutants (over one year) and monthly maxima values of three

pollutants (over 15 years), respectively. The prediction horizon is one hour to three days

ahead and one month to two years ahead, respectively.

The aim of this work is to assess the predictability of local concentration levels of NO2

based on hourly measurements generated by local monitoring sites. For the protection

of the public against adverse health effects caused by high exposure levels, not only the

value of a daily statistic is important for assessing the exposure, but also the hour of day

at which a specific exposure (such as the maximum) occurs. Hence our analysis maintains

the hour of day reference and considers one hourly time series yt as well as 24 daily series

yt(ι) (for each hour ι), for every monitoring station in our sample. We identify daily and

weekly seasonal patterns and apply suitable state-of-the-art univariate time series modeling

techniques capable of handling multiple seasonalities and nonstationarities. Predictability

is defined by a loss function based on out-of-sample h-step prediction errors. Using time

series cross-validation, we produce out-of-sample predictions for NO2 concentration levels

for each hour of day, with prediction horizons h ranging from one hour to one week. We

thoroughly discuss the relation between predictability and hour of day and respective NO2
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concentration level. In detail, concerning a prediction horizon between one and 24 h, the

root mean squared error (RMSE) is calculated over the prediction errors that refer to the

specific hour of day to be predicted. With regard to a prediction horizon between one and

seven days, the hourly and daily models are evaluated under consideration of the hour of

day reference. The comparison between daily and hourly models is used to assess whether,

and if so, for which hours of the day the aggregation of hourly to daily data improves the

predictive performance. To check the robustness of our results, we conduct the analysis

for different monitoring sites. In addition to reporting the predictive performance over

all h-step prediction errors, we evaluate the models’ predictive performance separately for

each hour of day to be predicted.

The remainder of the paper is organized as follows: Section 3.2 describes data and ex-

ploratory visualization tools to gain insights into the complex seasonal patterns of the data.

Section 3.3 introduces modeling framework and methods used to calculate and evaluate

predictions. Section 3.4 discusses the estimated models and their corresponding predictive

performance, while Section 3.5 concludes.

3.2 Material

In our empirical application, we consider data on the hourly NO2 concentration level

(in µg/m3) recorded by the European Environment Agency in four cities in the south

eastern part of Bavaria (Germany) over the years 2014 and 2015. The four selected

cities differ with respect to population density and monitoring site environment, leading

to sufficiently heterogeneous exposure levels for the purposes in this study. In addition,

following Cabaneros et al. (2020), sites with a low percentage of missing values between

2004 and 2015 were selected. Tables 3.1 and 3.2 display the characteristics of the selected

monitoring sites and descriptive statistics of the raw data, respectively.

Table 3.1: Air quality monitoring sites: population density, coordinates (latitude, longi-
tude, altitude), environment type, and distance from road.

City Pop. dens. Lat. Long. Alt. Environ. type Dist.

Passau 750 48.57363 13.42204 299 m Urban background 22 m

Regensburg 1890 49.01523 12.10157 337 m Urban traffic 6.6 m

Landshut 1100 48.53988 12.15700 390 m Urban traffic 7.4 m

Burghausen 940 48.17718 12.82931 419 m Suburban background 30 m
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Table 3.2: Order statistics (minimum, median, maximum), mean, standard deviation (SD),
SD/Mean, and signal-to-noise ratio (SNR) of the hourly data on NO2 concentrations.

City Min. Median Max. Mean SD SD/Mean SNR Missing

Passau 2.04 27.98 121.00 30.94 16.38 0.53 5.53 0.11%

Regensburg 2.47 36.48 173.19 39.27 19.21 0.49 6.21 0.35%

Landshut 2.24 25.58 115.80 27.56 13.60 0.49 6.14 0.66%

Burghausen 0.48 20.21 105.59 22.29 12.83 0.58 4.80 0.30%

Missing values are imputed by applying the R function na.approx(). Alternative impu-

tations were calculated using the functions na.seadec() (from R package imputeTS) and

na.interp() (from R package forecast), both developed for seasonal time series. The

use of different imputation techniques did not lead to changes in the interpretation of

our empirical results. Predictive gains, especially in situations with higher percentages of

missing values, may be obtained by using more complex and computationally demanding

imputation techniques specifically designed for certain constellations of missings and data

types. Examples are procedures requiring geo-referenced data (e.g. Yi et al., 2016) or

methods based on recurrent dynamics, which do not rely on assumptions about the data

generating process (e.g. Cao et al., 2018). A novel procedure proposed by Cabaneros et al.

(2020) allows spatiotemporal interpolation and hence may also be used for imputation.

Following this avenue is, however, beyond the scope of this paper.

All visualizations and the empirical analysis are produced with the statistical software

R (R Core Team, 2013), in particular the packages cowplot (Wilke, 2019), data.table

(Dowle and Srinivasan, 2019), forecast (Hyndman and Khandakar, 2008, Hyndman et al.,

2019), fpp2 (Hyndman, 2018), ggplot2 (Wickham, 2016), imputeTS (Moritz and Bartz-

Beielstein, 2017), lubridate (Grolemund and Wickham, 2011), RColorBrewer (Neuwirth,

2014), reshape2 (Wickham, 2007), and xts (Ryan and Ulrich, 2018).

In our exposition we discuss empirical findings exemplarily for data recorded in Passau,

Germany, and provide a summary of results for other monitoring sites used in this study

at the end of Section 3.4. Fig. 3.1 exemplarily displays the complete (and imputed) time

series of hourly data for Passau.

Due to the complexity of temporal air quality processes, some key properties of the data

can hardly be detected by visual inspection of the complete hourly time series. Fig. 3.2

provides a more comprehensive picture of NO2 variation over daily and weekly cycles. We
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Figure 3.1: Hourly data on NO2 recorded in 2014 and 2015 at the monitoring site in
Passau.

observe differences in the average and median concentration level and the amplitude of

the daily series indicating the presence of daily seasonality (e.g. Abdullah et al., 2019;

Cabaneros et al., 2020). Between 5pm and 10pm higher mean and median values and

higher amplitudes occur in comparison to the other times of day. With all daily series

the mean is above the median where the gap between mean and median increases in the

evening hours implying an increase in right-skewness. Specifically we highlight the daily

time series for 7pm referring to the 60 min between 6pm and 7pm (in the bottom left

display), as the typical peak characterizing the bimodal shape of the NO2 concentration

distribution over the hours of a day. Other stylized facts of the daily seasonal pattern, we

will use in our discussion, are the 8am series, representing the morning peak, and the 1pm

series as the minimum between the peaks. In the bottom right, the boxplots of the daily

series for 7pm illustrate the weekly cycle over the days of the week.

The polar plots shown in Fig. 3.3 represent the hourly (left display) and the 7pm daily

(right display) time series in a circular layout. Each color refers to a specific week and the

corresponding line connects the 24 · 7 = 168 measurements for the hourly and the seven

measurements for the daily time series, respectively. The polar plots reveal the variation

of daily and weekly seasonality. We observe higher values in the evening hours, both

on weekdays and weekend days. This might be due to an increasing traffic load, people

returning from work, or going out on weekends. The NO2 concentration on Saturday and

Sunday mornings usually is remarkably lower as compared to the mornings of the working

days.

Fig. 3.4 displays the variation in daily and weekly seasonal patterns over the NO2 concen-

tration distribution. The plot is constructed by building a weekly series for each day-hour
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Figure 3.2: Hourly boxplots of daily NO2 time series for each hour of day over 2014 and
2015 (top); orange and red horizontal lines depict the mean and median values of the daily
series, respectively. Daily series for each hour of day over 2014 and 2015 (middle). Daily
time series of measurements at 7pm over 2014 and 2015 (bottom left). Daily boxplots of
time series of measurements at 7pm over 2014 and 2015 (bottom right).

combination which results in 168 weekly series over 2014 and 2015. For each weekday,

the mean and median curves exhibit the typical bimodal shape caused by anthropogenic

factors whereas on weekends just one peak occurs in the evening. With regard to the

pollution peaks, i.e. values in the top decile (q90 max), we observe more variability as

compared to other quantiles (min q50, q50 q75 and q75 q90) and values that are twice as

high as the respective mean and median. In contrast to the smooth curves for mean and

central quantiles, the tails of the NO2 concentration distribution exhibit more wiggliness

and remarkable variations in the amplitude. An analysis based on daily mean or median

values may draw an overly simplified picture of air pollutant distributions. Vice versa, an

analysis based only on daily maxima may be prone to outlier problems and in general may

give an unrepresentative picture of air pollutant concentrations since it just incorporates

one of the 24 values occurring each day. In any case, the aggregation of the 24 hourly
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Figure 3.3: Polar plot of hourly NO2 concentration, where each line refers to a specific
week with 168 measurements (left display). Polar plot of daily NO2 concentration at 7pm,
where each line refers to a specific week with seven measurements (right display).

values to a daily statistic such as mean, median, or maximum, causes the hour of day

reference to disappear. Based on existing health evidence even one hour peak exposures

can have adverse health effects (WHO, 2013). This means that not only the level of daily

peaks is relevant to protect the population from exposure to harmful levels, but also the

time at which these levels occur.
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Figure 3.4: Quantiles and mean value of the weekly NO2 time series for each day-hour
combination of the years 2014 and 2015.

If an artificial time series is constructed based on ranks over several series, such as daily
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maxima, the resulting series in general does not correspond to an observable time series

and has only limited scope for ecological policies. An illustrative example for this claim

is given by the two panels in Fig. 3.5: Exemplarily for 8am, 1pm, and 7pm, and two

weeks, the NO2 data is shown in form of boxplots (over 24 NO2 measurements), one

for each day of week. The pink and lightgreen dotted lines connect the median and

maximum values, respectively, and the darkgreen, purple and orange solid lines connect

the measurements referring to 8am, 1pm, and 7pm. We observe changes in the seasonal

figure and the amplitude of the daily series, in particular with respect to the 8am and

7pm series. Regarding the 7pm values, e.g., the sequence of the increases and decreases

from Tuesday to Sunday in the left and right panel is exactly reversed. The amplitude of

the 8am series is noticeably higher in the left panel than in the right panel. In the left

panel, the 7pm values coincide with the maximum values and are remarkably higher as

compared to the median values, on five of the seven days they are even marked as outliers.

Considering the right panel, the maximum values are outliers on five of the seven days

but do not match a specific hour of day. Since the daily maximum values correspond to

different hours of the day, it is not possible to provide a hour of day reference using this

daily statistic in air quality assessment.
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Figure 3.5: Boxplots over NO2 values for each day of the respective week; dashed and
solid lines indicate weekly course of the daily median and maximum values and of the
8am, 1pm, and 7pm values, respectively.

Fig. 3.6 displays the empirical density curves for the 8am, 1pm, and 7pm series indicating

remarkable differences in the properties of the three time series. Whereas the values of the

1pm series exhibit a narrow and almost symmetrical distribution, the variation of the 8am

series is larger and we observe a tendency to produce more extreme values. This tendency
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peaks for the 7pm series, which exhibits by far the largest variation and a pronounced

skewness to the right.
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Figure 3.6: Empirical density curves of the daily NO2 time series referring to 8am, 1pm,
and 7pm.

A more detailed picture of the empirical densities is given by Fig. 3.7, where the density

curves are estimated for every quarter of each of the two years under consideration. For

all three series, the empirical densities vary over the quarters with respect to their mean,

variance, and skewness. The 7pm series appears to be less stable over time than the

8am and 1pm series. In particular, the empirical density curve of the 7pm concentration

appears to be most volatile over quarters. For our data we do not observe relevant annual

changes and hence we will focus on the daily and weekly seasonality.

The exploratory analysis reveals the presence of a pronounced daily and weekly seasonality

in the data with slightly changing features over time. This suggests the application of

time series modeling techniques capable of dealing with nonstationarities due to complex

seasonal patterns. We illustrate that the hour of day reference plays an important role

in short-term prediction in order to protect citizens from harmful levels of pollutants.

Hence, we will not aggregate from hourly data to daily statistics, e.g. mean, median, or

maximum, as the latter statistics do not provide a complete and representative picture

of the practically most relevant daily distribution of air pollutants. Therefore, the hour

of day reference is maintained when considering hourly models and daily models built

upon time series for specific hours, in our exposition exemplarily for 8am, 1pm, and 7pm.
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Figure 3.7: Conditional empirical density curves for all eight quarters in 2014 and 2015 of
the daily series referring to 8am (top), 1pm (middle), and 7pm (bottom).

According to Figs. 3.5-3.7, the daily series differ with respect to their time series properties,

exhibiting non-stationarities of varying degrees and changes in the seasonal figure and the

amplitude over time. Due to the observed differences, it seems reasonable to take hourly

and daily models into account and to assess whether, and specifically for which hours of

the day, the daily models enhance the predictability with respect to predicting the hourly

NO2 concentration level for a specific hour and prediction horizon.

3.3 Methods

The statistical problems arising from the pronounced anthropogenic structures inherent in

air pollutant time series bear a resemblance to other areas of research such as the modeling

of (local) electricity demand. Examples of resulting modeling tasks are multiple seasonal-

ities, trends, nonlinearities, and associations to related phenomena such as meteorological

processes. As a consequence, similar approaches for modeling complex time series can be

applied (e.g., Arora and Taylor, 2018; Taylor, 2003, 2010; Taylor and McSharry, 2007).

Basically, there are two ways to handle the prediction task in presence of seasonalities (see,
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e.g., Bell and Hillmer, 1984, or Harvey, 1989, p. 29). One way is to decompose the time

series into seasonal and non-seasonal components which entails three steps with respect to

prediction, i.e., de-seasonalizing, prediction, and re-seasonalizing. This approach relies on

the crucial assumptions of additivity and orthogonality of the seasonal and non-seasonal

components (see Proietti and Riani, 2009). The other way is to incorporate the seasonal

patterns in the time series model. In the present work, we consider one modeling approach

based on additive decomposition and two approaches that incorporate seasonal structures

directly.

We consider observed time series yt(ι,d,m), t = 1, . . . , T , where ι refers to hour (ι = 1, . . . , 24,

corresponding to 1am,...,12pm), d refers to day, and m refers to month, reflecting the

different cycles typically present in NO2 concentration data. As we will not model annual

seasonal effects, all models allow for ARIMA structures to remedy the potential problems

of serial correlation in the error process. In our empirical analysis, we study hourly time

series yt, t = 1, . . . , T , and daily time series yt(ι), t = 1(ι), . . . , T (ι), for a given hour ι. For

ease of exposition, we will omit ι whenever the context is clear. We assume a simple but

flexible model structure where yt depends on trend Tt, season St, and perturbation Rt.

A well known member of this model class is the univariate unobserved components model

yt = h(Tt, St, Rt). (3.1)

This model is most frequently considered in its additive form h(Tt, St, Rt) = Tt + St +Rt

and Rt modeled as an ARIMA process. The model can be extended to include a cyclical

component and exogenous variables (see e.g., Young et al., 1999). There is a huge litera-

ture on models of this type, allowing for different mixtures of deterministic and stochastic

model components, degrees of flexibility, and computational burdens. The three model-

ing approaches used in this paper follow the assumption that a linear decomposition of

Eq. (3.1) exists, but allow for some nonlinearities by considering the transformed response

variable y
(λ)
t , with Box-Cox parameter λ, where

y
(λ)
t =


yλt −1
λ , λ ̸= 0,

log(yt), λ = 0.

(3.2)

As a consequence, we study regression models where we assume that y
(λ)
t can be approxi-
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mated by functions of trend and seasonal components, such that a dynamically complete

specification arises, i.e. a remainder process et can be assumed to be Gaussian white noise.

Our baseline predictions are generated using seasonal autoregressive integrated moving av-

erage (SARIMA) models under the assumption of unchanging seasonal and non-seasonal

parameters over time (e.g., Taylor and McSharry, 2007) (see Section 3.1). Second, un-

der the same assumption, we employ harmonic regression models with ARIMA errors

(denoted by HarmReg), which rely on decomposing the time series into a seasonal and

a non-seasonal component (see Section 3.2). Third, allowing for time varying patterns

in all components, we employ the TBATS model of De Livera et al. (2011), which in-

corporates trigonometric seasonality, Box-Cox transformation, ARIMA errors, trend and

seasonal components into a state space framework. Related approaches can be found in

Taylor (2003) or Gould et al. (2008) (see Section 3.3). Predictability is analyzed using the

cross-validated out-of-sample prediction errors êt+h to calculate the RMSE (see Section

3.4) for 75 models (i.e. three hourly and 3 · 24 = 72 daily models), for each monitoring

site in our sample.

3.3.1 Seasonal ARIMA model

The extension of classical ARIMA models to allow for seasonal cycles of various length be-

longs to the toolbox of many applied researchers and is a frequently employed benchmark

in various fields of application, despite the cumbersome structure of seasonal lag poly-

nomials. We employ the formulation of Hyndman and Khandakar (2008) and definition

(3.2), and consider a SARIMA(p, d, q)(P,D,Q)m model given by

Φ(Lm)ϕ(L)(1− Lm)D(1− L)dy
(λ)
t = Θ(Lm)θ(L)et, (3.3)

where ϕ(L) = 1 − ϕ1L − . . . − ϕpL
p and θ(L) = 1 + θ1L + . . . + θqL

q are AR and MA

lag polynomials of order p and q, respectively, Φ(Lm) = 1 − Φ1L
m − . . . − ΦPL

P ·m and

Θ(L) = 1 + Θ1L
m + . . . + ΘQL

Q·m denote the seasonal AR and MA lag polynomials of

order P and Q, respectively, and et
iid∼ N(0, σ2) is Gaussian white noise.

The estimation of a SARIMA(p, d, q)(P,D,Q)m requires to solve several interrelated

problems: first, identifying the lag lengths p and q and the relevant mode of filtering

for stationarity d, second, estimating the parameters in Φ(Lm) and Θ(L), and third, test-
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ing model validity. In our application, we use the R-function Arima() and select optimal

orders according to the AIC (Akaike Information Criterion) due to its asymptotic effi-

ciency and asymptotic equivalence to the final prediction error criterion, which results in

testing 324 combinations (p, q, P,Q ∈ {0, 1, 2} and d,D ∈ {0, 1}).

The estimated model, exemplarily for a SARIMA(1, 0, 1)(0, 1, 1)24 model, is given by

y
(λ̂)
t = ϕ̂1y

(λ̂)
t−1 + y

(λ̂)
t−24 − ϕ̂1y

(λ̂)
t−25 + et + θ̂1et−1 + Θ̂1et−24 + θ̂1Θ̂1et−25. (3.4)

The corresponding equations for a h-step ahead prediction are given by

ŷ
(λ)
T+h|T =



ϕ̂1y
(λ̂)
T + y

(λ̂)
T−23 − ϕ̂1y

(λ̂)
T−24 + θ̂1eT

+Θ̂1eT−23 + θ̂1Θ̂1eT−24, h = 1,

ϕ̂1ŷ
(λ̂)
T+h−1|T + y

(λ̂)
T+h−24 − ϕ̂1y

(λ̂)
T+h−25

+Θ̂1eT+h−24 + θ̂1Θ̂1eT+h−25, 1 < h ≤ 24,

ϕ̂1ŷ
(λ̂)
T+24|T + ŷ

(λ̂)
T+1|T − ϕ̂1y

(λ̂)
T + θ̂1Θ̂1eT , h = 25,

ϕ̂1ŷ
(λ̂)
T+h−1|T + ŷ

(λ̂)
T+h−24|T − ϕ̂1ŷ

(λ̂)
T+h−25|T , h > 25.

(3.5)

Note that the prediction equations for 1 < h ≤ 24 can also be written as

ŷ
(λ)
T+h|T =ϕ̂h1y

(λ̂)
T + y

(λ̂)
T−(24−h) − ϕ̂h1y

(λ̂)
T−24 + ϕ̂h−1

1 θ̂1eT + Θ̂1eT−(24−h) + ϕ̂h−1
1 Θ̂1θ̂1eT−24

+
h−1∑
j=1

ϕ̂h−1−j
1 (ϕ̂1 + θ̂1)Θ̂1eT−(24−j). (3.6)

Applying the inverse Box-Cox transformation of Wooldridge (1992) to the prediction yields

ŷT+h|T =


(
λ̂y

(λ̂)
T+h|T + 1

)1/λ̂

, λ̂ ̸= 0,

exp
(
y
(λ̂)
T+h|T

)
, λ̂ = 0.

(3.7)

To apply the SARIMA model stated in Eq.(3.3) to yt(ι), substitute yt by yt(ι) and set

m = 7.
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3.3.2 Harmonic regression model with ARIMA errors

For this model class we assume that yt is additively separable and can be decomposed into

a seasonal component St, that corresponds to a sum of seasonal terms sj,t, j = 1, . . . , J,

and a non-seasonal component zt modeled as an ARIMA(p, d, q) process. Under these

assumptions and definition (3.2), a harmonic regression model with ARIMA errors can be

stated as

y
(λ)
t = St + zt, (3.8a)

ϕ(L)(1− L)dzt = θ(L)et, (3.8b)

where ϕ(L) = 1− ϕ1L− . . .− ϕpL
p and θ(L) = 1 + θ1L+ . . .+ θqL

q are AR and MA lag

polynomials of order p and q, respectively, et
iid∼ N(0, σ2) is Gaussian white noise, and the

seasonal component in (3.8a) is defined by

St =

J∑
j=1

sj,t =

J∑
j=1

kj∑
k=0

(
aj,k cos

(
2πtk

mj

)
+ bj,k sin

(
2πtk

mj

))
. (3.9)

The seasonal component St is assumed to be a periodic process with multiple frequencies

and amplitudes. The frequency of sj,t is denoted by mj and the number of harmonics

required for sj,t is denoted by kj , where 0 < kj ≤ mj/2 for even values of mj , and

0 < kj ≤ (mj − 1)/2 for odd values of mj (e.g., Harvey, 1989, Ch. 3.2, and Shumway and

Stoffer, 2017, Ch. 4). The hourly NO2 time series have two seasonal cycles with frequencies

24 and 168 (i.e., J = 2, m1 = 24, and m2 = 168). To apply model (3.8a) and (3.8b) to

daily time series yt(ι), substitute yt by yt(ι) and set J = 1 and m1 = 7. For estimation, the

R function auto.arima() is applied to hourly data for different combinations of k1 and k2

and to daily data for different numbers of k1 in order to identify the optimal number(s) of

harmonics minimizing AIC (see Section 3.1). This includes three steps: first, estimating

λ̂ for pre-specified k1 and k2, second, regressing the transformed response y
(λ̂)
t on the

harmonics cos
(
2πtk
mj

)
and sin

(
2πtk
mj

)
k = 0, . . . , kj , j = 1, 2, to obtain the residuals z̃t, and

third, fitting a family of ARIMA models to the residuals z̃t in order to identify the optimal

order in Eq. (3.8b) according to AIC.

The equations for a h-step ahead prediction, exemplarily with ARIMA(1, 0, 2) errors, are
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given by

ŷ
(λ̂)
T+h|T = E

(
y
(λ̂)
T+h|z̃T , z̃T−1, . . . , z̃1, ŜT+h

)
(3.10a)

= ŜT+h +


ϕ̂1z̃T + θ̂1eT + θ̂2eT−1, h = 1,

ϕ̂1̂̃zT+1|T + θ̂2eT , h = 2,

ϕ̂1̂̃zT+h−1|T , h > 2.

(3.10b)

Eq. (3.10a) states that the predicted value corresponds to the expected value conditional on

the residuals from the auxiliary regression and the prediction for ST+h, which is, according

to Eq. (3.9), obtained by

ŜT+h =
J∑

j=1

kj∑
k=0

(
âj,k cos

(
2π(T + h)k

mj

)
+ b̂j,k sin

(
2π(T + h)k

mj

))
.

Note that the procedure described above substantially differs from the dynamic harmonic

regression model of Young et al. (1999), which allows for stochastic time-varying parame-

ters in Eq. (3.9) in a state space framework.

3.3.3 TBATS model

De Livera et al. (2011) propose a state space framework to deal with multiple seasonality

extending earlier exponential smoothing approaches. Their approach allows for complex

(non-integer) seasonality, provides a simple remedy for neglected cycles causing serially

correlated errors, and avoids issues with nonlinear exponential smoothing models. The

TBATS model is given by

y
(λ)
t = lt−1 + ψbt−1 +

J∑
j=1

s
(j)
t−1 + dt, (3.11a)

lt = lt−1 + αdt, (3.11b)

bt = (1− ψ)b+ ψbt−1 + βdt, (3.11c)

s
(j)
t =

kj∑
k=1

s
(j)
k,t , (3.11d)

dt =

p∑
i=1

ϕidt−i +

q∑
i=1

θiet−i + et, (3.11e)
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where the seasonal components in (3.11d) are calculated according to

s
(j)
k,t = s

(j)
k,t−1 cos

(
2πtk

mj

)
+ s

∗(j)
k,t−1 sin

(
2πtk

mj

)
+ γ

(j)
1 dt, (3.12a)

s
∗(j)
k,t = −s(j)k,t−1 sin

(
2πtk

mj

)
+ s

∗(j)
k,t−1 cos

(
2πtk

mj

)
+ γ

(j)
2 dt. (3.12b)

Eq. (3.11a) denotes the measurement equation, Eqs. (3.11b) to (3.11d) are the smooth-

ing equations for level, trend, and seasonality, where b denotes the long-term trend,

and Eq. (3.11e) incorporates ARIMA structures in the error component, where again

et
iid∼ N(0, σ2) is Gaussian white noise. The smoothness of the seasonal component s

(j)
t

is controlled by the number of harmonics kj . For NO2 data, we observe two seasonalities

with frequencies 24 and 168 and have to estimate the Box-Cox parameter λ, the damp-

ening parameter ψ, the smoothing parameters α, β, γ
(j)
1 , γ

(j)
2 , j = 1, 2, the number of

harmonics k1 and k2, the ARIMA parameters ϕ1, . . . , ϕp and θ1, . . . , θq, as well as starting

values for the level, for the fourier coefficients sjk,t−1 and s
∗(j)
k,t−1, j = 1, 2, and for the error

term. For the application of the TBATS model to yt(ι), we substitute yt by yt(ι) and set

J = 1 and m1 = 7.

In matrix notation the TBATS model (3.11a) to (3.11e) is given by

y
(λ)
t = w′xt−1 + et, (3.13a)

xt = Fxt−1 + get. (3.13b)

The h-step ahead prediction is given by

ŷ
(λ)
T+h|T = w′F h−1xT , (3.14)

and the re-transformation is carried out according to Eq. (3.7).

3.3.4 Procedure for evaluation of predictability

For model evaluation, we conduct a time series out-of-sample cross-validation with ex-

tending windows. In each validation loop, the training sample is extended by one time

unit; i.e. one hour for hourly (hly) time series and one day for daily (dly) time series,

respectively. In order to get reliable initial estimates for further iteration, we split the
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data after the first 69 weeks. The resulting training sample then has length 69·168=11592

(69· 7=483) for hourly (daily) models, respectively, which corresponds to approx. 66%

(66%) of the data. Given that we consider prediction horizons ranging between 1 and 168

h for hly time series (1 and 7 days for dly time series), we can conduct 5000 hly (240

dly) cross-validation steps, which implies that the testing uses approx. 28.5% (33%) of

the data. Note that k-fold cross-validation is not feasible, as all models employed in this

study are fully iterative (see Bergmeir et al., 2018). In the following we provide details on

the evaluation algorithm.

Hourly time series:

hly 1. Fit the model to an initial training sample yt0 , . . . , yt1 where t0 = 1 and t1 = 69·168 =

11592, i.e. the training sample comprises 69 weeks of data, and denote the estimated

model by modt1 .

hly 2. In the n-th loop, n = 0, . . . , N, N = 4999, of the time series cross-validation,

· extend the training sample by n hours;

· update modt1 for the new training sample and use the updated model to predict

one hour to one week ahead, which yields the predicted values ŷt1+n+h|t1+n for

each h = 1, . . . , 168;

· calculate the out-of-sample prediction errors êt1+n+h|t1+n = yt1+n+h−ŷt1+n+h|t1+n.

hly 3. After 5000 loops, for each prediction horizon h, calculate the out-of-sample RMSE

RMSEhly
h =

√√√√ 1

N + 1

N∑
n=0

ê2t1+n+h|t1+n . (3.15)

hly 4. Filter the estimated prediction errors for hour ι of the respective day and calculate,

for each combination of ι and h, the respective RMSE

RMSEhly
h,ι =

√√√√√ 1

⌊(N + 1)/24⌋

4992−1∑
n=0

t1+n+h refers to ι

ê2t1+n+h|t1+n , (3.16)

where the upper bound is set to 4991 to ensure that the subseries of prediction errors

are of equal length for each ι, ι = 1, . . . , 24.
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Daily time series:

dly 1. Fit the model to an initial training sample yt0(ι), . . . , yt1(ι) where t0 = 1 and t1 =

69 · 7 = 483, i.e. the training sample comprises 69 weeks of data, and denote the

estimated model by modt1 .

dly 2. In the n-th loop, n = 0, . . . , N, N = 239, of the time series cross-validation,

· extend the training sample by n days;

· update modt1 for the new training sample and use the updated model to predict

one day to one week ahead, which yields ŷt1(ι)+n+h|t1(ι)+n for each h = 1, . . . , 7;

· calculate the out-of-sample errors êt1(ι)+n+h|t1(ι)+n = yt1(ι)+n+h− ŷt1(ι)+n+h|t1(ι)+n.

dly 3. After 240 loops, for each prediction horizon h, calculate the out-of-sample RMSE

RMSEdly
h,ι =

√√√√ 1

N + 1

N∑
n=0

ê2t1(ι)+n+h|t1+n. (3.17)

The flowchart in Fig. 3.8 graphically summarizes the steps of our empirical analysis.

Data
hourly (hly) series yt and daily (dly) series yt(ι)

Split each series into training and test samples

Model estimation (training samples)
Estimate SARIMA (Sec. 3.1), HarmReg (Sec. 3.2) and TBATS (Sec. 3.3)

Model evaluation (test samples)
Calculate prediction errors for specific hour of day

hly prediction errors

RMSEhly
h

, RMSEhly
h,ι

dly prediction errors

RMSEdly
h,ι

Figure 3.8: Flowchart summarizing the empirical analysis.
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3.4 Results and discussion

In this section, we discuss the prediction accuracy of the estimated models using hourly

data, yt, and daily data, yt(ι), exemplarily for the hours ι = 8am, 1pm, 7pm, as motivated

in Section 3.2. Further details are given in the appendix. The evaluation of the models

is carried out according to the procedure described in the preceding Section. Note that,

due to the estimation procedure of the implemented R functions, the fitted values and

the residuals refer to one-step ahead predictions and one-step ahead prediction errors,

respectively, corresponding to one-hour ahead (using hourly data) and one-day ahead

(using daily data) prediction horizons.

As shown in Fig. 3.9, the hourly SARIMA model outperforms the daily SARIMA models

for all hours of day concerning the in-sample RMSE values. However, when the focus lies

on predicting the air pollutant concentration one-day ahead, it might be reasonable to

consider 24-step ahead prediction errors and 1-step ahead prediction errors for the hourly

and daily models, respectively, to provide an appropriate comparison between hourly and

daily models.
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Figure 3.9: In-sample RMSE for each hour of day derived from hourly and daily SARIMA
models.

The upper panel of Fig. 3.10 displays, for the last week of the initial training sample and

the first week of the initial test sample, the fitted and predicted values derived from the

hourly models. Concerning the training period, all models fit the data remarkably well.

As SARIMA just incorporates the daily seasonality the pattern in the predicted values

repeats every 24 h. Differences in the daily course of the NO2 concentration levels from

weekdays to weekend days can clearly be seen in the predicted values referring to HarmReg

and TBATS. The morning and evening modes are less pronounced between T + 72 and
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T + 120 which correspond to Saturday and Sunday. The lower panel of Fig. 3.10 zooms

into the upper panel and displays the last day of the initial training sample and the first

day of the initial test sample.
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Figure 3.10: Fitted and predicted values derived from hourly models where the upper
(lower) panel refers to last week (day) of training sample and first week (day) of test
sample; the respective cutoff is marked by the vertical dashed line and the course of
observed data is drawn in gold colour.

Fig. 3.11 displays boxplots of the fitted SARIMA model values for each hour of day de-

rived from the hourly (upper panel) and the 24 daily (lower panel) models. Both panels in

Fig. 3.11 reveal the bimodal daily pattern. The (interquartile) range, the gap between me-

dian and mean value and the number of outliers are higher for the hourly model compared

to the daily models, in particular concerning the evening hours.

Analogous plots for the residuals in Fig. 3.12 reveal a tendency that the use of hourly

data provides a more accurate fit to the training data in comparison to the use of daily

data. Figures such as Fig. 3.11 and Fig. 3.12 for the fitted values and the residuals derived

from the other two modeling approaches, HarmReg and TBATS, provide an analogous

conclusion.

Fig. 3.13 shows the out-of-sample RMSE values for a prediction horizon from 1 to 24 h
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Figure 3.11: Boxplots of fitted values for each hour of day derived from the hourly (upper
panel) and daily (lower panel) SARIMA models; the orange and red horizontal lines indi-
cate the mean and median of the fitted values, respectively.
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Figure 3.12: Boxplots of residuals for each hour of day derived from the hourly (upper
panel) and daily (lower panel) SARIMA models; the orange and red horizontal lines indi-
cate the mean and median of the residuals, respectively.
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calculated according to Eq. (3.15) and reveals that SARIMA outperforms the other two

models with respect to the RMSE values built over all prediction errors.
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Figure 3.13: RMSE of hourly models in dependence of prediction horizon (compare
Eq. (3.15)).

According to Fig. 3.14, there is no remarkable change in the out-of-sample RMSE values

concerning a prediction horizon from 1 to 7 days. SARIMA still outperforms the other

two models with respect to the RMSE values built over all prediction errors.
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Figure 3.14: RMSE of hourly models in dependence of prediction horizon (compare
Eq. (3.15)).

Regarding the panels in Fig. 3.15, a different conclusion is drawn. The prediction perfor-

mance of each model depends on the hour of day to be predicted. In terms of RMSE for

8am (upper panel of Fig. 3.15), HarmReg outperforms TBATS and SARIMA for h > 4.

Concerning 1pm (middle panel of Fig. 3.15), HarmReg slightly outperforms SARIMA and

TBATS for h > 8. According to the lower panel of Fig. 3.15, the 7pm values are best

predicted by SARIMA. There are remarkable differences in the RMSE values for different

hours of day, which might be due the various degrees of variability and complexity in the

daily series yt(ι) (compare Fig. 3.6 and Fig. 3.7).
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Figure 3.15: RMSE of hourly models in dependence of prediction horizon and hour of day
to be predicted (compare Eq. (3.16)).

A comparison of the model performance in terms of the aggregation level of the data is

shown in Fig. 3.16, where the RMSE for prediction horizons h = 1, . . . , 7 is depicted for

the daily and hourly models. The formulas to obtain the RMSE values correspond to

those stated in Eqs. (3.16) and (3.17). Note that the scale of the ordinate in the panels of

Fig. 3.16 is fixed in order to ease model comparison with respect to the predictability of

the hours of day. The left and right panel suggest to build models based on daily series,

whereas the middle panel shows the lowest RMSE values for the hourly HarmReg model.

In the right panel, in particular, RMSE values are remarkably lower for models using daily

series.

We conclude our discussion with Tables 3.3 and 3.4, summarizing the previous results and

contrasting them for all four monitoring sites in this study.

For a prediction horizon of 1, 24 and 168 h(s), the overall RMSE for each hourly model is

reported in Table 3.3. There are no remarkable differences in the RMSE values between
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Figure 3.16: RMSE of daily and hourly models in dependence of prediction horizon and
hour of day to be predicted (compare Eqs. (3.16) and (3.17)).

the three modeling techniques. The RMSE increases with the prediction horizon up to

24 h ahead and changes only slightly afterwards. This can be explained as follows: The

underlying time series is stationary at every position (hour) s of the seasonal cycle. Hence,

with increasing prediction horizon h beyond h = 24, for a prediction

ŷT+h|T , h = 25, 26, . . .

only the predictive power of the long-term mean of the time series (at every position s)

remains and the prediction error converges to the long-run variance of the underlying

process. Note that this prediction only has information up to time period T but not

about the latest seasonal cycle (i.e., yT+1, . . . , yT+24). Theoretically, and given a consistent

estimate of the long-term mean, the predictive power of the long-term mean should not

deteriorate (substantially) as long as the properties of the underlying process do not change

(substantially) (see Brockwell and Davis, 1991, Sec. 5.2).

Exemplarily for SARIMA and a prediction horizon of 24 h (1 day) and 168 h (7 days),

the RMSE in dependence of the hour of day to be predicted is shown in Table 3.4. For

SARIMA (as well as HarmReg and TBATS) and several hours we observe a tendency that
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Prediction horizon

City Method 1 h 24 h 168 h

Passau SARIMA 8.11 14.36 15.11

HarmReg 8.36 14.76 15.76

TBATS 8.36 15.11 15.99

Regensburg SARIMA 9.78 19.01 19.59

HarmReg 9.85 18.95 20.77

TBATS 10.07 20.90 22.18

Landshut SARIMA 6.62 11.50 11.78

HarmReg 6.85 11.90 12.57

TBATS 6.60 11.38 11.63

Burghausen SARIMA 6.91 10.68 11.31

HarmReg 6.96 10.61 11.73

TBATS 6.81 10.56 11.72

Table 3.3: RMSE of hourly models for all monitoring sites and different prediction horizons
(compare Eq. (3.15)).

Prediction horizon: hly Prediction horizon: dly

City Hour of day 24 h 168 h 1 day 7 days

Passau 8am 11.97 12.37 10.74 11.43

1pm 9.38 9.26 9.44 9.68

7pm 23.37 25.17 20.60 22.51

Regensburg 8am 17.19 17.64 16.11 16.36

1pm 13.39 13.71 12.35 12.83

7pm 30.64 32.21 26.28 27.35

Landshut 8am 12.24 12.17 10.79 10.58

1pm 9.82 10.40 9.54 10.05

7pm 13.64 13.97 14.92 15.02

Burghausen 8am 8.89 9.33 9.74 10.10

1pm 7.00 7.36 6.68 7.13

7pm 15.86 17.01 12.23 13.05

Table 3.4: RMSE of daily and hourly models for all monitoring sites for SARIMA model
and different prediction horizons and hours of day to be predicted (compare Eqs. (3.16)
and (3.17)).
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the use of daily data reduces RMSE in comparison to the use of hourly data. Further

results are available from the authors upon request.

3.5 Conclusions

Predictions of air pollutant concentrations play an important role in protecting the pop-

ulation from potential adverse health effects. The development of appropriate prediction

models is challenging as temporal air quality processes exhibit multiple seasonal patterns

and non-stationarities. There are many studies on predicting air quality taking into ac-

count one seasonality but few on multi-seasonal prediction models. Furthermore, model

evaluation is generally based on all prediction errors without reference to the hour to be

predicted, e.g. time of day. We propose a framework to assess the predictability of lo-

cal concentration levels of NO2 (or other air pollutants) based on hourly measurements

generated by local monitoring sites. Our analysis maintains the hour of day reference

and considers hourly time series and daily series (for each hour) and every monitoring

site. Predictability is assessed via loss functions based on out-of-sample h-step predic-

tion errors. Using time series cross-validation, we produce out-of-sample predictions for

NO2 concentration levels for each hour of day, with prediction horizons h ranging from

one hour to one week. In an empirical analysis, we apply state-of-the art multi-seasonal

univariate prediction models to hourly NO2 data from four monitoring sites in Germany.

We thoroughly discuss the relation between predictability and hour of day and respective

NO2 concentration level separately for each hour of day to obtain a comprehensive picture

of the model performance. We find that prediction accuracy strongly depends on the hour

of day to be predicted. For hours that tend to exhibit relatively high pollutant levels the

predictability of both, hourly and daily models, deteriorates. For some hours, a prediction

gain can be achieved by building the models on daily instead of hourly data. Similar find-

ings for the other monitoring sites suggest at least some regional robustness of our results.

In future extensions of this work, further performance criteria can be investigated, such

as a hit or success rate for correct forecasts of the hour of maximal exposure. The use of

univariate methods has the advantage of being independent of additional and potentially

costly predictors. On the other hand, the inclusion of covariates, e.g. information on

weather or traffic, may improve the predictability in general and of hours of day with high

exposure in particular.
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3.7 Appendix A

This appendix provides details on estimation setups and results for models based on hourly

and daily data recorded in 2014 and 2015 at the monitoring site in Passau. Table 3.A.1

gives an overview over the meta parameters of the estimated hourly and daily models. We

focus on details for HarmReg and TBATS, further results are available upon request.

Table 3.A.1: Overview over the number of harmonics and the order of ARIMA, SARIMA
and ARMA processes of the estimated hourly and daily models.

Data Method Number of harmonics and/or order of ARIMA, SARIMA or

ARMA process

yt HarmReg k1 = 11, k2 = 13, p = 5 , d = 1, q = 1

SARIMA p = 1, d = 0, q = 1, P = 1, D = 1, Q = 1

TBATS k1 = 5, k2 = 5, p = 0, q = 0

yt(8am) HarmReg k1 = 3, p = 1, d = 1, q = 2

SARIMA p = 1, d = 1, q = 1, P = 1, D = 1, Q = 1

TBATS k1 = 3, p = 1, q = 0

yt(1pm) HarmReg k1 = 3, p = 1, d = 1, q = 1

SARIMA p = 0, d = 1, q = 1, P = 0, D = 1, Q = 1

TBATS k1 = 3, p = 0, q = 0

yt(7pm) HarmReg k1 = 2, p = 0, d = 1, q = 2

SARIMA p = 0, d = 1, q = 2, P = 0, D = 1, Q = 1

TBATS k1 = 3, p = 0, q = 1

Details HarmReg

We have applied the function auto.arima() to the training sample yt for 192 different

combinations of k1 and k2 with k1 = 1, . . . , 12 and k2 = 1, . . . , 16 to identify the optimal

number of harmonics in HarmReg. Fig. 3.A.1 displays how the deciles of the resulting

AIC values are distributed over the combinations of k1 and k2 where the combination
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k1 = 11 and k2 ∈ {13, 14} returns the minimum AIC value. The residuals derived from

the harmonic regression with k1 = 11 and k2 = 13 harmonics, representing daily and

weekly seasonal patterns, respectively, follow an ARIMA(5, 1, 1)-process.
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Figure 3.A.1: Distribution of the AIC deciles over different combinations of k1 and k2
in HarmReg obtained by applying auto.arima() with fourier terms as regressors to the
training sample.

For the daily models the identification of the optimal number of harmonics is less cum-

bersome since the weekly seasonality implies m1 = 7 and thus 0 < k1 ≤ 3 (see subsection

3.3.2).

Details TBATS

An extract from the output of the estimated TBATS model for the hourly data is given

by

TBATS(0.207, {0,0}, 0.801, {<24,5>, <168,5>})

Lambda: 0.206589

Alpha: 1.204514

Beta: -0.2897133

Damping Parameter: 0.80129

Gamma-1 Values: 0.004004553 -0.001977883

Gamma-2 Values: 0.001286855 0.0001531337

The estimated number of harmonics is five for both, the daily and weekly seasonal compo-

nent, the Box-Cox and damping parameter equals 0.207 and 0.801, respectively, and the

estimated error follows a white noise process. The smoothing parameters of the seasonal

components are quite small, the smoothing parameter for the level and trend equation
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is equal to 1.205 and -0.290, respectively. Fig. 3.A.2 shows for the first five weeks of

the initial training sample the components of the hourly TBATS model. The component

observed refers to the Box-Cox transformed data that are decomposed into level, slope,

season1 (daily seasonality), season2 (weekly seasonality), and residuals; season refers to

the sum of season1 and season2. Note that the first day of the data under consideration,

1st January 2014, is a Wednesday and the drops in season2 refer to the weekends. The

component level changes much faster than the seasonal components which is in accordance

to the values of the corresponding smoothing parameters. Further, we observe that the

value range of season is about a fifth of the value range of level. We may understand level

as the baseline NO2 exposure and season as the variation due to the day of the week and

the hour of day.
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Figure 3.A.2: Components of the hourly TBATS model for the first five weeks of the initial
training sample.

The estimated daily TBATS models for 8am, 1pm, and 7pm are TBATS(0.108, 1,0, -,

<7,3>), TBATS(0.512, 0,0, -, <7,3>) and TBATS(0.234, 0,1, -, <7,3>), respec-

tively.
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4 Agglomeration and infrastructure effects in land use re-

gression models for air pollution – Specification, estima-

tion, and interpretations

Abstract. Established land use regression (LUR) techniques such as linear regression

utilize extensive selection of predictors and functional form to fit a model for every data

set on a given pollutant. In this paper, an alternative to established LUR modeling

is employed, which uses additive regression smoothers. Predictors and functional form

are selected in a data-driven way and ambiguities resulting from specification search are

mitigated. The approach is illustrated with nitrogen dioxide (NO2) data from German

monitoring sites using the spatial predictors longitude, latitude, altitude and structural

predictors; the latter include population density, land use classes, and road traffic intensity

measures. The statistical performance of LUR modeling via additive regression smoothers

is contrasted with LUR modeling based on parametric polynomials. Model evaluation

is based on goodness of fit, predictive performance, and a diagnostic test for remaining

spatial autocorrelation in the error terms. Additionally, interpretation and counterfactual

analysis for LUR modeling based on additive regression smoothers are discussed.

Our results have three main implications for modeling air pollutant concentration levels:

First, modeling via additive regression smoothers is supported by a specification test

and exhibits superior in- and out-of-sample performance compared to modeling based on

parametric polynomials. Second, different levels of prediction errors indicate that NO2

concentration levels observed at background and traffic/industrial monitoring sites stem

from different processes. Third, accounting for agglomeration and infrastructure effects

is important: NO2 concentration levels tend to increase around major cities, surrounding

agglomeration areas, and their connecting road traffic network.

Keywords. Land use regression, Additive regression smoothers, Spatial cross-validation,

Counterfactual analysis, Nitrogen dioxide, Exposure to air pollution.
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4.1 Introduction

Results from epidemiology suggest that exposure to air pollution is a risk factor for de-

veloping malign tumours, respiratory and cardiovascular diseases (see, e.g., Tang et al.,

2017; Amini et al., 2020 and the review articles Hoek et al., 2013; Atkinson et al., 2018)

that increase mortality and may even offset positive effects attributed to outdoor physical

exercise (Sinharay et al., 2018). Health effects of long-term exposure to air pollution are

typically assessed by tracking the health of a study cohort while monitoring its exposure

to pollutants by: Direct measurement via portable devices (Sinharay et al., 2018), mea-

surements of nearby air quality monitoring sites (Ostro et al., 2010 use the closest site;

Pope III et al., 2002 average over all sites in a city), satellite remote sensing (Wang et al.,

2017), indicators of exposure (Beelen et al., 2014), or approximation based on the char-

acteristics of the surroundings of a participant by, e.g., regression-based techniques such

as land use regression (LUR; Johnson et al., 2010); for an extensive overview, see Hoek

(2017). A number of recent applications of LUR modeling of air pollutant concentration

levels employed standardized model selection techniques to choose predictors and func-

tional form based on empirical data (Beelen et al., 2009, 2013; Wu et al., 2015; Eeftens

et al., 2016; Rahman et al., 2017; Wolf et al., 2017; Lu et al., 2020b). The techniques

in the studies relied on parametric polynomials of degree one to approximate air pollu-

tant concentration levels and provided a reasonable fit to the data. The approaches were

frequently verified by comparing expected and estimated effect signs. Drawbacks result

from extensive specification search: Implementing the specification search process leads to

ambiguities; additionally, substantial effort needs to be spent when developing large-scale

models to match the study area of national cohorts, as the models are fitted separately

for each pollutant and area (Hoek, 2017).

Other applications of LUR modeling used techniques from statistical learning: Approaches

based on regularization and shrinkage like lasso and ridge regression reduce the predictor

space by employing loss functions that rely on a fit term and a penalty term; nonparametric

techniques such as random forests, (tree-based) boosting, artificial neural networks, sup-

port vector regression; and ensembles (models consisting of multiple individual models),

which produce predictions by computing the (weighted) average of predictions obtained

from individual models (see, e.g., Russo et al., 2013; Singh et al., 2013; Brokamp et al.,
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2017; Alimissis et al., 2018; Vizcaino and Lavalle, 2018; Chen et al., 2019; Berrocal et al.,

2020; Lu et al., 2020a). The techniques often exhibit black-box character and so-called

meta-parameters need to be tuned. This typically requires profound knowledge of the

algorithms in context with, e.g., comparable data structures; checking for confounders;

or appropriate setup for meta-parameter tuning and evaluation of predictive performance

(Riley, 2019).

Further applications of LUR modeling utilized regression smoothers in generalized addi-

tive models (GAM; see Hastie and Tibshirani, 1990; Wood, 2017). Within the framework,

complex multivariate functionals are approximated by additive decompositions of uni-

variate and bivariate smooths (see, e.g., Hart et al., 2009; Yanosky et al., 2009, 2014;

Zhang et al., 2018; Chen et al., 2019). Modeling approaches based on additive regres-

sion smoothers are able to account for typical characteristics of continuous environmental

processes such as air pollution: Local heterogeneity, potential nonlinearities, and complex

dependence structures which vary over geographic space. We also refer to the latter as

complex spatial association structures – structures that are captured by spatial predictors,

while controlling for structural predictors.

Popular alternatives to LUR modeling not considered in this paper are dispersion modeling

(DM) (see, e.g., de Hoogh et al., 2014; Fallah-Shorshani et al., 2017) and the geostatistical

approach kriging (see, e.g, Mercer et al., 2011; Behm et al., 2018); for comparison studies

of DM and LUR, see Gulliver et al. (2011); de Hoogh et al. (2014); for kriging and LUR,

see Beelen et al. (2009); Mercer et al. (2011).

In this paper, we propose to decompose the effects of the spatial and structural predictors

into additively linked univariate and bivariate smooths. LUR models based on parametric

polynomials and additive regression smoothers are estimated. We include structural and

spatial characteristics into the models and account for different monitoring site types. The

statistical performance of the models is evaluated by their fit, a specification test, and

prediction error measures. We characterize the performance of the models and provide

empirical evidence that mean annual nitrogen dioxide (NO2) concentration levels observed

at different monitoring site types arise from different processes. We illustrate the processes

based on three exemplary locations, elaborate on model interpretations, and compare our

results with previous LUR studies.

The remainder of this paper is organized as follows: Section 4.2 reviews LUR modeling
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based on parametric polynomials and highlights structural differences of LUR modeling

based on additive regression smoothers; we further describe how response and predictors

were obtained and detail model evaluation and software. Section 4.3 characterizes the

empirical distribution of the response and correlations among the predictors; the section

then illustrates the statistical performance of the two LUR approaches: In-sample and out-

of-sample metrics are obtained from different validation schemes and monitoring site types.

Section 4.4 focuses on LUR modeling based on additive regression smoothers. The section

discusses interpolation maps and counterfactual analysis, compares our modeling results

with previous LUR studies, and details the strengths and limitations of the approach.

Section 4.5 concludes.

4.2 Material and methods

This section discusses the structural modeling assumptions involved in LUR modeling

based on additive regression smoothers and parametric polynomials. Additionally, we in-

troduce the data and detail how we evaluate the out-of-sample performance of the models.

The functions and data used to generate the results in this paper are provided in an R

package (Fritsch and Behm, 2021b; https://github.com/markusfritsch/smoothLUR).

4.2.1 Modeling based on additive regression smoothers

We estimated LUR models to predict conditional mean annual NO2 concentration levels

(in µg/m3) using spatial and structural predictors. The former were longitude, latitude,

and altitude; the latter were population density, land use classes, and road traffic intensity

measures. We modeled mean annual NO2 concentration levels Y via

Y = µ(Z,X) + ε, (4.1)

where Z andX denote structural and spatial characteristics and ε is a remainder term. The

Kolmogorov-Arnold representation theorem (Kolmogorov, 1956; Arnol’d, 1957) suggests

that functions of multiple predictors can be approximated by additively linked functions

of lower dimension (i.e., a smaller number of predictors). We decomposed function µ(·)

from Equation (4.1) into a structural component g(·) and a spatial component η(·):
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Y = g(Z) + η(X) + ε. (4.2)

By analogous reasoning, we decomposed the functions g(·) and η(·) into additively linked

smooth functions of low-dimension. Note that we assume additive separability of the two

modeling components Z and X. In principle, any desired interactions of the components

could be included – yet, this requires additional degrees of freedom. We modeled the

response Y via univariate or bivariate smooth functions of Z and X and obtained the

LUR model based on additive regression smoothers

Y = β0 +
∑
p

su,p(Zp) + sb(XLon, XLat) + su,A(XAlt) + ε. (4.3)

This yields a generalized additive model (GAM) structure (Hastie and Tibshirani, 1990;

Wood, 2017). The model components s(·) represent smooth functions; su,p and su,A are

univariate smooths and sb is a bivariate smooth. We used splines to model the smooth

functions in Equation (4.3) to account for the typical characteristics of continuous environ-

mental processes such as air pollution: Local heterogeneity, potential nonlinearities, and

complex dependence structures which vary over geographic space. The degree of smooth-

ness of the splines is chosen data-driven by trading-off goodness of fit to the data with a

so-called “roughness penalty”, which penalizes variation of the slope of the function. We

used univariate and bivariate regression splines to model univariate and bivariate smooths

(for details see, e.g., Ruppert et al., 2003; Wood, 2003; Hastie et al., 2009).

4.2.2 Modeling based on parametric polynomials

A special case of Equation (4.3) are LUR models based on parametric polynomials, for

example,

Y = β0 +
∑
i

βiZi +
∑
j

δjXj + ε. (4.4)

In Equation (4.4), βi and δj denote coefficients of parametric polynomials corresponding

to structural predictors Zi and spatial predictors Xj . Models of the form of Equation (4.4)
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were frequently employed in LUR studies (see, e.g., Hoek et al., 2008; Beelen et al., 2009,

2013; Eeftens et al., 2016; Wolf et al., 2017). In these studies, choosing the functional form

– the predictors to include in the model via a parametric polynomial from a large set of

potential predictors and the corresponding degree of the polynomial – was conducted by

a forward stepwise procedure.

An established procedure utilizing linear regression modeling is the standardized ESCAPE

procedure (see, e.g., Beelen et al., 2013; Eeftens et al., 2016; Wolf et al., 2017). This

procedure consists of the following steps: First, specify a univariate model for the condi-

tional distribution of the response Y including only the predictor that maximizes adjusted

R-squared (R
2
). At subsequent steps, add the predictor to the model that yields the max-

imum increase in R
2
and fulfills three criteria simultaneously: (i) R

2
increases by at least

one percent, (ii) estimated coefficient conforms with pre-specified direction of effect, and

(iii) directions of effects of predictors already included in the model do not change. When

the procedure is stopped, all predictors included in the model with p-value larger than 0.1

are removed sequentially. Note that many alternative criteria could be used to guide spec-

ification search in forward stepwise procedures. Examples are other in- and out-of-sample

metrics and corresponding thresholds for including predictors, further procedures for ex-

cluding predictors such as residual-based checks and formal tests, and different thresholds

(for an overview of various metrics and criteria, see, e.g., Bennett et al., 2013).

4.2.3 Response and predictors

We obtained data on mean annual NO2 concentration levels (response) from the German

air quality monitoring network provided by the European Environment Agency (EEA,

2017). We constructed predictor data by dividing Germany into a 1 x 1 km grid and used

values computed for grid cell centers to represent the predictor values for the whole grid

cell. The values were computed based on considering relative fractions of areas, numeric

values, or total lengths within a circle of radius (also referred to as buffer) 1 km around

each grid cell center. In our LUR models, we used CORINE land cover data, shapefiles

on administrative regions, a digital terrain model grid, population density at municipality

key level, and road traffic network data. Table 4.1 shows the potential predictors, their

units, and the data sources: Land cover classes which indicate the percentage of area in

a buffer that is covered by residential areas of high population density such as residential
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blocks (HighDens), low population density such as detached and semi-detached houses

(LowDens), industrial areas (Ind), traffic infrastructure besides seaports and airports

(Transp), seaports (Seap), airports (Airp), areas currently under construction (Constr),

urban green spaces (UrbGreen), agriculture (Agri), forest (Forest); population density

measured via inhabitants per km2 (PopDens); a proxy for road traffic intensity obtained

by adding up lengths of federal autobahn (FedAuto), primary roads (PriRoad), secondary

roads (SecRoad), and local routes (LocRoute) within each buffer; longitude (Lon), and lat-

itude (Lat) expressed via geocoordinates, and altitude in meters (Alt). Similar to studies

by Beelen et al. (2009, 2013); Wolf et al. (2017); Vizcaino and Lavalle (2018), the right-

most column of Table 4.1 contains expected directions of effect (on average and ceteris

paribus) of predictors on the response. With an increase in population density, e.g., mean

annual NO2 concentration levels are expected to increase on average – holding all other

observable and unobservable influences constant. A thorough description of the data is

given in Fritsch and Behm (2021a).

4.2.3.1 Air pollution measurement data

Mean annual NO2 concentration levels were collected at 246 (19) background and 157

(22) traffic and industrial monitoring sites across Germany (Rhine-Ruhr metropolitan

area). There are particular positioning requirements for the two types of monitoring sites:

Background monitoring sites are representative of a wider area; traffic and industrial sites

are located in close proximity to local pollution sources such as major roads or industrial

areas (EEA, 2017). The left (right) plot in Fig. 4.1 displays spatial locations of monitoring

sites across Germany (Rhine-Ruhr metropolitan area), where the border of the Rhine-

Ruhr metropolitan area is depicted by the darkbronze line. Dots indicate background

(bronze) and traffic/industrial monitoring sites (gold).

Germany covers an area of 357,386 km2 (as of December 31, 2015; see Statistisches Bun-

desamt, 2020), with the Rhine-Ruhr metropolitan area contributing an area of roughly

7,000 km2 (computed in R). As depicted by Fig. 4.1, monitoring sites are unevenly dis-

tributed across Germany – being more frequently located in large cities and relatively

sparse in rural areas.
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Table 4.1: Overview of potential predictors and data sources; CORINE classes 1-25
grouped into 10 classes according to Beelen et al. (2009); buffer radius 1 km; area mea-
sured as relative area within buffer (%), length as absolute length within buffer (meters).
Rightmost column indicates expected directions of effect (on average and ceteris paribus)
of predictors on mean annual NO2 concentration levels.

GIS dataset Predictor Name Unit Effect

Land cover (EEA, 2016) High density residential HighDens area (%) +

Low density residential LowDens area (%) +

Industry Ind area (%) +

Transport Transp area (%) +

Seaports Seap area (%) +

Airports Airp area (%) +

Construction Constr area (%) +

Urban Greenery UrbGreen area (%) −
Agriculture Agri area (%) ±
Forest Forest area (%) −

German administrative regions Population density PopDens inhabitants +

(BKG, 2015b) per km2

Road traffic network Federal autobahn FedAuto length (m) +

(EuroGeographics, 2018) Primary roads PriRoad length (m) +

Secondary roads SecRoad length (m) +

Local routes LocRoute length (m) +

Geocoordinates (EEA, 2017) Longitude, Latitude Lon, Lat WGS84 ±
Topography Altitude Alt m −
(EEA, 2017; BKG, 2015a)

4.2.3.2 Land use proxies

We employed CORINE land cover data 2012, Version 18 in raster format (resolution

100 x 100m) as proxy for land use. The raw data are available from the European Envi-

ronment Agency (EEA, 2016) and contain information on land cover over Europe: One

of 44 CORINE land cover classes is attributed to each raster cell. We grouped CORINE

classes 1-25 into ten classes according to Beelen et al. (2009) and computed the proportion

of surface area of each grouped class in a buffer of radius 1 km around each grid cell center.

We excluded Seap, Airp, and Constr in model estimation, as mostly zeros were observed

for these predictors.
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Figure 4.1: Map of Germany (left) and Rhine-Ruhr metropolitan area (right) represent-
ing population density at municipality key level; darker shades of green indicate higher
population density; maps also show locations of monitoring sites for which mean annual
NO2 concentration levels were available for 2015; background monitoring sites given as
bronze, traffic/industrial as gold dots; border of Rhine-Ruhr metropolitan area is depicted
by darkbronze line (left).

4.2.3.3 Population density and road traffic network

The maps shown in Fig. 4.1 are colored according to population density at municipality

key level, where population density increases with darker shades of green. As indicated

by the right plot of Fig. 4.1, the Rhine-Ruhr metropolitan area is constituted of areas

with high population density. We derived the number of inhabitants per km2 from data

provided by the Federal Government for Geo-Information and Geodesy (BKG, 2015b).

For traffic intensity, we used a proxy computed by total length of four different types of

roads in buffers of radius 1 km around each grid cell center: Federal autobahn, primary

roads, secondary roads, and local routes. Data on the German road traffic network were

obtained from EuroGeographics (2018).
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4.2.3.4 Topography and geocoordinates

The meta information on monitoring sites contained geocoordinates and altitudes. Lon-

gitude and latitude of each grid cell of the 1 x 1 km grid across Germany were represented

by the respective grid cell centers based on the World Geodetic System (WGS84). We

derived values for altitude for each grid cell center from the digital terrain model grid

of width 200m obtained from the Federal Government for Geo-Information and Geodesy

(BKG, 2015a).

4.2.4 Model evaluation and software

We evaluated model performance by computing the in-sample metric R
2
and derived the

out-of-sample metrics root mean square error (RMSE) and mean absolute error (MAE)

from different validation schemes: Leave-one-out cross-validation (LOOCV), repeated spa-

tially stratified k-fold cross-validation (KFCV), and repeated spatially stratified hold-out

validation (HOV). We conducted KFCV by adjusting the following algorithm for spatial

stratification:

Algorithm 1: Algorithm for repeated k-fold cross-validation

Data: (y, z,x) of sample size n, with z = (z1, . . . ,zP ) and x = (x1, . . . ,xJ)

Result: Out-of-sample metrics RMSE and MAE

Initialization: Set the number of seeds R and the number of folds K;

for r = 1, . . . , R do

draw random vector ι of length n containing numbers 1, . . . ,K with identical frequency;

add ι as a column to data;

for k = 1, . . . ,K do

assign all rows of the data for which ι ̸= k to training set: (y, z,x)r,k; sample size nk;

assign all rows of the data for which ι = k to test set: (y, z,x)r,−k; sample size n−k;

use training set to fit parr,k and smoothr,k;

compute RMSEr,k =
√

1
n−k

∑n−k

i=1 (ŷi,r,k − yi,r,k)2;

compute MAEr,k = 1
n−k

∑n−k

i=1 |ŷi,r,k − yi,r,k|;

average over k to obtain RMSEr and MAEr;

average over r to obtain RMSE and MAE;

return RMSE and MAE
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In Algorithm 1, vector ι is used for constructing K folds from the data. To adjust the

algorithm for spatial stratification, draw the random vector ι such that it balances across

the desired feature(s) or geographic regions. We balanced over the 16 German federal

states and carried out the spatially stratified sampling such that each observation is held

out exactly once; we used the function create folds() from the R-package splitTools

(Mayer, 2020) to obtain spatially stratified samples. Additionally, we set the number of

folds K = 10, the number of seeds R = 100, and chose the numbers from 1 to 100 as seeds.

The LOOCV and repeated HOV procedures deviate just slightly from Algorithm 1: For

repeated HOV, averaging over K folds is not necessary; for LOOCV, set K equal to the

number of observations n: Sampling, setting a seed, and computing the corresponding

averages is redundant.1

We also computed Moran’s I statistic with function Moran.I() from R-package ape (Par-

adis and Schliep, 2019). The null hypothesis considered is that there is no remaining

spatial autocorrelation in the error terms. A rejection of the null is frequently interpreted

as an indication that the model specification under consideration is spatially incomplete

(or misspecified).

All computations in this paper were carried out with the statistical software R, version 4.0.2

(R Core Team, 2013) using packages ape (Paradis and Schliep, 2019), cowplot (Wilke,

2019), data.table (Dowle and Srinivasan, 2020), ggplot2 (Wickham, 2016), ggpubr

(Kassambara, 2020), mgcv (Wood, 2003, 2017), raster (Hijmans, 2020), RColorBrewer

(Neuwirth, 2014), rgdal (Bivand et al., 2020), rgeos (Bivand and Rundel, 2020),

RgoogleMaps (Löcher, 2020), sp (Pebesma and Bivand, 2005; Bivand et al., 2013), and

splitTools (Mayer, 2020).

4.3 Results

The flow chart shown in Fig. 4.2 gives an overview of the input data and the modeling

stages of the empirical analysis. The following section depicts the results of the individual

modeling stages.

We illustrate descriptives on mean annual NO2 concentration levels, depending on the

type of monitoring site. We consider all monitoring sites, background monitoring sites,

1For further reading on validation schemes in the context of modeling air pollutant concentration levels,
we refer the interested reader to Johnson et al. (2010), Huang et al. (2018), Zhang et al. (2018), Chen
et al. (2019), Berrocal et al. (2020), and Ren et al. (2020).
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exploratory data analysis: consider all (A) monitoring sites
vs. background (B) and traffic/industrial (TI) monitoring sites

predictorsresponse

fit land use regression (LUR) models for different monitoring site types based on

parametric polynomials:
parA, parB, parTI

additively linked smooths:
smoothA, smoothB, smoothTI

mean
annual NO2

conc. levels
land use population
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network

geoco-
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diagnostics and test:
- nonlinearity
- spatial autocorrelation
in error terms

evaluate and illustrate modeling results based on

statistical performance:
- goodness of fit
- spatially stratified cross-
and hold-out validation

visualizations:
- partial effects
- interpolation maps

Figure 4.2: Flow chart of input data and modeling stages of empirical analysis.

and traffic/industrial monitoring sites. Pairwise correlations among the predictors are

investigated. We contrast LUR modeling based on parametric polynomials and additive

regression smoothers in terms of model fit and predictive performance for different valida-

tion schemes and types of monitoring sites; additionally, results from a specification test

are given.

4.3.1 Model input data

Table 4.2 provides descriptives on mean annual NO2 concentration levels for all 403, 246

background, and 157 traffic/industrial monitoring sites.
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Table 4.2: Descriptives characterizing empirical distribution of mean annual NO2 con-
centration levels depending on type of monitoring site; measures include mean, standard
deviation, five number summary, and total number of observations n; lines give figures for
all, background, and traffic/industrial monitoring sites.

Type of monitoring site n Mean SD Min q25 Median q75 Max

All 403 25.39 14.79 2.53 14.73 22.41 33.24 87.23

Background 246 17.39 7.74 2.53 11.34 17.62 22.90 39.00

Traffic/Industrial 157 37.92 14.51 10.69 27.49 37.17 47.20 87.23

Table 4.2 shows higher mean annual NO2 concentration levels, variations, and (interquar-

tile) ranges for traffic/industrial sites as compared to background monitoring sites. Fig. 4.3

provides histograms and corresponding empirical density curves for mean annual NO2 con-

centration levels recorded at background (bronze) and traffic/industrial (gold) monitoring

sites.
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Figure 4.3: Histogram and empirical density curve for mean annual NO2 concentration
levels at background (bronze) and traffic/industrial (gold) monitoring sites.

Since high correlations (collinearities) among predictors lead to imprecisely estimated co-

efficient estimates, we considered pairwise Bravais-Pearson correlations for all predictors

employed in our LUR models. Fig. 4.4 displays a correlation plot, where negative correla-

tions are indicated in bronze and positive correlations in gold. The color shade represents

the strength of correlation, with light colors reflecting correlations that are close to zero

and dark colors indicating correlations close to one in absolute value. We excluded the

predictors Airp, Seap, and Constr since we observed mostly zeros. There were no indi-
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cations of collinearity problems. Pairwise correlations across predictors observed at all

monitoring sites ranged from −0.62 to 0.53.
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Figure 4.4: Pairwise Bravais-Pearson correlations of predictors observed at all monitoring
sites; Airp, Seap, and Constr, where mostly zeros were observed, are excluded; color scale
ranges from darkbronze to darkgreen corresponding to correlations from −1 to 1; light
colors represent correlations close to zero, dark colors correlations close to one in absolute
value; minimum (maximum) observed correlation −0.62 (0.53).

4.3.2 Modeling results

We modeled mean annual NO2 concentration levels with two different LUR approaches:

LUR modeling based on parametric polynomials of degree one and LUR modeling based on

additive regression smoothers. First, we fitted models on data from all monitoring sites and

evaluated the statistical performance. We then used only background or traffic/industrial

monitoring site data and illustrated the differences in estimated concentration levels across

monitoring site types.
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4.3.2.1 Modeling based on all monitoring sites

Table 4.3 shows results for fitting a LUR model based on parametric polynomials by the

ESCAPE procedure. Similar to recent LUR studies of Beelen et al. (2013); Eeftens et al.

(2016); Wolf et al. (2017), we only considered parametric polynomials of degree one and

used data observed at all monitoring sites for model fitting. We referred to the LUR model

as parA; the capital letter indicates the data used for model fitting.

Table 4.3: LUR model based on parametric polynomials parA fitted by ESCAPE proce-
dure; only polynomials of degree one of structural and spatial predictors are considered;

data from all monitoring sites used for model fitting; R
2
and Moran’s I statistic to test

for spatial autocorrelation in error terms given for parA.

Pred. Est. SE

(Int.) 16.795 2.425

PopDens 0.006 0.001

PriRoad 0.002 < 0.001

HighDens 41.810 5.382

LowDens 13.160 1.997

Lon −0.988 0.216

SecRoad 0.002 0.001

R
2

0.57

Moran’s I (p-value) -0.18 (< 0.001)

Six predictors reflecting agglomeration and infrastructure effects were selected when fit-

ting parA. The model yields an R
2
of 0.57; Moran’s I statistic rejected the null of no

spatial autocorrelation in the error terms and indicated model misspecification. When an

interaction of Lon and Lat is included in the LUR model, the effect is selected instead of

Lon. All other modeling results remain qualitatively identical.

We also fitted a LUR model based on additive regression smoothers smoothA to the data.

The model accounts for nonlinearities and complex spatial association structures: We

included Lon and Lat via a bivariate smooth; all other predictors are included via uni-

variate smooths. Fig. 4.5 illustrates the partial effects of smoothA and corresponding 95%

confidence intervals. According to the partial effects plots, there are no clear indications

for nonlinearities. Five predictors were smoothed out, as the estimated degrees of free-

dom (edf) reduced to zero; similar to parA, the predictors included in smoothA reflect

agglomeration and infrastructure effects.

The interpolation maps displayed in Fig. 4.6 were derived from smoothA. Both maps
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Figure 4.5: Partial effects of LUR model based on additive regression smoothers smoothA;
darkgreen line depicts univariate regression spline estimate of su,p for respective zp, grey
area marks corresponding 95% pointwise confidence bands. Numbers in parentheses refer
to estimated degrees of freedom (edf) for spline estimates and indicate curvature of effect
of predictors (details, see Wood, 2017); roughness of spline effect increases with edf, where
1 corresponds to linear parametric effect; 0 implies effect is smoothed out.

were created based on gridded data. The right map visualizes conditional mean annual

NO2 concentration level across all grid cells. Values were obtained by adding all structural

effects for a grid cell to the corresponding spatial effect and ranged from roughly 2.5 to 65.1.

We replaced 951 out-of-range predictions (0.3% of the 356, 791 predictions) by minimum

or maximum observed concentration level. Values tended to be higher in two particular

areas: (1) In cities and surrounding agglomeration areas compared to rural areas; (2) In
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grid cells which include the road traffic network linking the agglomeration areas. The latter

results from the positive partial effect of the road traffic intensity predictors (in particular

PriRoad and SecRoad) on mean annual NO2 concentration levels (see Fig. 4.5). In the

right map of Fig. 4.6, the effect is visible through thin orange and red lines. The left plot of

Fig. 4.6 displays the part of conditional mean annual NO2 concentration levels attributable

to the spatial effect. Values for the grid cells were obtained by adding up the bivariate

smooth of Lon, Lat and the univariate smooth of Alt and ranged from roughly −12.9 to

3.9. The spatial effect tended to decrease when moving from southwest to northeast. This

highlights the presence of complex spatial association structures which were captured by

the bivariate and univariate smooth of the spatial predictors.

Figure 4.6: Interpolation maps derived from LUR model based on additive regression
smoothers smoothA in 1 x 1 km resolution; all monitoring site types used for model fitting;
maps visualize conditional mean annual NO2 concentration levels (right) and part which
is attributable to spatial effect (left); the latter consists of sum of bivariate smooth of Lon
and Lat sb(XLon, XLat) and univariate smooth of Alt su,A(XAlt); out-of-range predictions
replaced by minimum (maximum) observed mean annual NO2 concentration level; border
of Rhine-Ruhr metropolitan area depicted by darkbronze line.
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We evaluated models parA and smoothA based on LOOCV, repeated spatially stratified

K-fold cross-validation (KFCV, with K = 10), and repeated spatially stratified HOV; out-

of-sample metrics RMSE and MAE were computed for all validation schemes; we used the

16 federal states of Germany as geographic regions for spatial stratification and balanced

the observations in the training and test sample accordingly. Table 4.4 illustrates the

results together with R
2
and the Moran’s I statistic.

Table 4.4: In-sample metric R
2
, Moran’s I statistic, and out-of-sample metrics RMSE

and MAE for LUR model based on parametric polynomials parA and LUR model based
on additive regression smoothers smoothA; all monitoring site types used for model fit-
ting; validation schemes: Leave-one-out cross-validation (LOOCV), K-fold cross-validation
(KFCV, with K = 10), and hold-out validation (HOV).

LOOCV KFCV HOV

R
2

Moran’s I (p-value) RMSE MAE RMSE MAE RMSE MAE

parA 0.57 −0.18 (< 0.001) 9.87 7.30 9.92 7.37 9.68 7.20

smoothA 0.59 −0.23 (< 0.001) 9.98 7.27 9.96 7.25 9.72 7.12

The metrics displayed in Table 4.4 are similar for both LUR models; Moran’s I statis-

tic indicates that the models are misspecified. As monitoring sites are divided into two

categories, we considered the predictive performance for both types of monitoring sites

separately.
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Figure 4.7: Histogram and empirical density curve for LOOCV prediction errors at back-
ground (bronze) and traffic/industrial (gold) monitoring sites for LUR model based on
additive regression smoothers smoothA.

Fig. 4.7 shows histograms and empirical density curves for LOOCV prediction errors based
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on smoothA for background (bronze) and traffic/industrial monitoring sites (gold). The

plot illustrates that prediction errors and their dispersion tend to be higher for the latter

sites. The results are robust across validation schemes and qualitatively identical for parA.

This indicates that concentration levels observed at background and traffic/industrial mon-

itoring sites may stem from two different processes.

4.3.2.2 Modeling depending on the type of monitoring site

We fitted LUR models for concentration levels observed at background and

traffic/industrial monitoring sites. We estimated a LUR model based on parametric poly-

nomials and additive regression smoothers for both types of sites. We refer to the former

models with parB and parTI and to the latter models with smoothB and smoothTI; the

capital letters indicate the data used for model fitting. Table 4.5 shows coefficient esti-

mates, R
2
and the Moran’s I statistic for parB and parTI.

Table 4.5: LUR models based on parametric polynomials parB and parTI fitted by ES-
CAPE procedure using parametric polynomials of structural and spatial predictors; only
polynomials of degree one are considered; parB uses data observed at background moni-

toring sites; parTI uses traffic/industrial monitoring site data; R
2
and Moran’s I statistic

to test for spatial autocorrelation in error terms given for both models.

parB parTI

Pred. Est. SE Pred. Est. SE

(Int.) 129.151 9.894 (Int.) 97.005 26.505

PopDens 0.002 < 0.001 PopDens 0.008 0.001

Forest −9.760 1.061 PriRoad 0.002 0.001

FedAuto 0.003 0.001 HighDens 20.503 7.056

Agri −7.013 0.968 LowDens 17.446 3.864

Lat −2.143 0.190 Lat −1.651 0.512

Alt −0.010 0.002

R
2

0.76 0.54

Moran’s I (p-value) 0.19 (< 0.001) 0.12 (0.06)

Both models contain structural and spatial predictors. Six predictors were selected in

model parB, five in parTI. While R
2
was higher for model parB, Moran’s I statistic

indicated model misspecification for both models (α = 0.1).

We only provide a brief summary of the modeling results of smoothB and smoothTI in

the following, as the key characteristics of the models were similar to smoothA (see Sec-

tion 4.3.2.1; more detailed results are included in the Appendix). Five predictors were
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smoothed out in both models. Nonlinearities were present for predictor PopDens for

smoothB, while there were no clear deviations from nonlinearity for smoothTI. The two

models captured agglomeration and infrastructure effects and complex spatial associa-

tion structures. Predicted conditional mean annual NO2 concentration levels based on

smoothTI exceeded those based on smoothB.

Table 4.6: In-sample metric R
2
, Moran’s I statistic, and out-of-sample metrics RMSE and

MAE for LUR models based on parametric polynomials parB, parTI and LUR models
based on additive regression smoothers smoothB, smoothTI; capital letters indicate moni-
toring site types used for model fitting: Background (B), traffic/industrial (TI); validation
schemes include leave-one-out cross-validation (LOOCV), K-fold cross-validation (KFCV,
with K = 10), and hold-out validation (HOV).

LOOCV KFCV HOV

R
2

Moran’s I (p-value) RMSE MAE RMSE MAE RMSE MAE

parB 0.76 0.19 (< 0.001) 3.88 2.99 3.94 3.02 3.88 2.99

smoothB 0.85 −0.03 (0.44) 3.34 2.55 3.33 2.54 3.35 2.58

parTI 0.54 0.12 (0.06) 10.04 8.15 10.35 8.37 10.01 8.12

smoothTI 0.62 0.05 (0.37) 10.23 8.22 10.31 8.31 9.90 8.04

Table 4.6 shows R
2
, Moran’s I statistic, and out-of-sample metrics RMSE and MAE for the

LUR models based on parametric polynomials of degree one and the LUR models based on

additive regression smoothers. The main implications of the table are: (i) R
2
is higher for

LUR models based on additive regression smoothers; (ii) for background monitoring sites,

RMSE and MAE are lower for smoothB compared to parB – while there are only minor

differences between smoothTI and parTI; (iii) there are no substantial differences across

validation schemes or out-of-sample metrics; (iv) Moran’s I statistic does not indicate

model misspecification for smoothB and smoothTI. Overall, the results support the more

flexible specifications: Additively linked univariate and bivariate smooths are suitable to

account for spatial heterogeneity in mean annual NO2 concentration levels. Additionally,

fitting separate LUR models for background and traffic/industrial monitoring site data

improves the statistical performance of the models.

We used the two LUR models based on additive regression smoothers smoothB and

smoothTI to create interpolation maps for the Rhine-Ruhr metropolitan area in 1 x 1 km

resolution. Fig. 4.8 shows the maps. The left plot was created by predicting mean annual

NO2 concentration levels for all grid cells with smoothB; for the right plot, smoothTI was

used. Values range from 10.2 to 37.3 (left map) and from 11.6 to 57.1 (right map); simi-
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Figure 4.8: Interpolation maps for background (left) and traffic/industrial (right) con-
ditional mean annual NO2 concentration levels across Rhine-Ruhr metropolitan area in
1 x 1 km resolution; predictions derived from LUR models based on additive regression
smoothers smoothB and smoothTI; out-of-range predictions replaced by minimum (max-
imum) observed concentration level; points 1, 2, and 3 mark grid cell centers located in
Cologne city center, southern countryside of Mühlheim an der Ruhr, and suburb of Dort-
mund.

lar to Fig. 4.6, the interpolation maps highlight agglomeration and infrastructure effects:

Mean annual NO2 concentration levels are higher in large cities, the surrounding areas,

and at locations of the connecting road traffic network. Predictions from smoothTI clearly

exceeded those from smoothB.

4.3.2.3 Modeling city, suburban, and rural regions

We illustrate our modeling results based on three exemplary locations marked in Fig. 4.8:

Cologne city center (point 1), southern countryside of Mühlheim an der Ruhr (point 2),

and suburb of Dortmund (point 3). Fig. 4.9 gives a visual impression of the grid cells

corresponding to the three points.

For point 1, the area is characterized by inhabited areas and primary roads. The area

around point 2 is covered mostly by agricultural areas and green spaces; for point 3 it
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(a) City center of Cologne (point 1)

(b) Southern countryside of Mühlheim an der Ruhr (point 2)

(c) Suburb of Dortmund (point 3)

Figure 4.9: Satellite (left) and map (right) images extracted from Google Maps for grid
cells centered around points 1, 2, and 3.
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is mostly inhabited areas, green spaces, industrial areas, and infrastructure. Table 4.7

summarizes structural predictor values for the grid cells corresponding to the three points.

Table 4.7: Structural predictors of three locations marked in Fig. 4.8 which indicate grid
cell centers located in Cologne city center (point 1), southern countryside of Mühlheim an
der Ruhr (point 2), and suburb of Dortmund (point 3). Predictors HighDens, LowDens,
Ind, Transp, UrbGreen, Agri, and Forest in %; PopDens in inhabitants per km2; PriRoad
in meters road length; predictors with only zero values for all three points omitted.

Point HighDens LowDens Ind Transp UrbGreen Agri Forest PopDens PriRoad

1 0.36 0.38 0.03 0.01 0.00 0.00 0.00 2,607 3,702

2 0.00 0.17 0.00 0.00 0.13 0.67 0.00 1,855 771

3 0.00 0.37 0.15 0.14 0.27 0.00 0.08 2,095 3,849

Some predictors showed considerable variation across grid cells. For predictors measured

on relative scale (area in %), predictor variations ranged from 0.08 (Forest) to 0.67 (Agri).

For PopDens, values ranged from 1, 855 to 2, 607 (inhabitants per km2) and for PriRoads,

values ranged from 771 to 3, 849 (meters road length); we omitted predictors which had

values of zero for all three points.

We used the LUR models based on additive regression smoothers smoothB and smoothTI

to predict conditional mean annual NO2 concentration levels for the three points. Table 4.8

shows the values and illustrates that the predictions varied substantially across models:

Predictions from smoothTI clearly exceed those from smoothB, with differences decreasing

from point 1 (urban area) to point 3 (suburban area) to point 2 (rural location). Values

from smoothA are given for comparison.

Table 4.8: Predictions from LUR models based on additive regression smoothers smoothB,
smoothTI, and smoothA for three locations marked in Fig. 4.8; locations indicate grid cell
centers located in Cologne city center (1), southern countryside of Mühlheim an der Ruhr
(2), and suburb of Dortmund (3).

Point smoothB smoothTI smoothA

1 (Cologne, city center) 32.58 51.32 52.07

2 (Mühlheim an der Ruhr, countryside) 19.52 31.10 24.69

3 (Dortmund, suburb) 23.50 42.51 36.49

4.4 Discussion

The focus of the following discussion is on LUR models based on additive regression

smoothers. We discuss interpretation of the complex effects arising from the interplay of
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multiple predictors: We illustrate how interpolation maps can be used for counterfactual

analysis of individual exposure to air pollution. Additionally, we compare our modeling

results to previous LUR studies and point out the strengths and limitations of the approach

employed in this paper.

4.4.1 Interpretation and counterfactual analysis for LUR models based on

additive regression smoothers

Interpolation maps can be generated by evaluating LUR models based on additive regres-

sion smoothers on a given grid. The maps are a concise visual summary of the fitted

models. As such, they illustrate the complex effects arising from the interplay of multiple

predictors. When suitable models are employed, interpolation maps provide a comprehen-

sive picture of exposure to air pollutant concentration levels and their spatial variation:

Fig. 4.6 highlights the effect of agglomeration areas and the connecting road traffic network

on mean annual NO2 concentration levels. Potential applications for interpolation maps

reach beyond visual representations of modeling results; the maps can be employed for

counterfactual analysis. We use points 1, 2, 3 and LUR models smoothB and smoothTI

to provide an example motivated by recent results from epidemiology: Assume an in-

dividual takes a walk through an urban green space or roams a street with high traffic

intensity. The effect on exposure to air pollution can be approximated by contrasting

the two maps displayed in Fig. 4.8. Recent results by Sinharay et al. (2018) suggest that

taking these differences into account is important. They linked walking in highly polluted

areas with adverse health effects, which may even offset positive effects attributed with

outdoor physical exercise.

Besides counterfactual analysis, interpolation maps may also be useful in a number of

further settings. First, trends in air pollutant concentrations levels over time can be inves-

tigated for past data by comparing maps across years (see, e.g., Hart et al., 2009); second,

potential future outcomes resulting from different scenarios for particular predictors can

be considered based on predicted air pollutant concentration levels (see, e.g., Vizcaino and

Lavalle, 2018); third, interpolation maps of background air pollutant concentration levels

could be used to reflect baseline exposure of individuals in epidemiologic studies which

is enriched by more detailed information – for example, models for work-place exposure,

more fine-grained effects such as regional anthropogenic factors (harbors, airports, and
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fossil power plants), or regional natural factors (such as proximity to the ocean).

4.4.2 Comparison to previous LUR studies

Recent studies which modeled mean annual NO2 concentration levels were conducted by,

e.g., Beelen et al. (2013); Eeftens et al. (2016); Wolf et al. (2017); Vizcaino and Lavalle

(2018); Chen et al. (2019). These studies used data from monitoring sites located in

Germany, Switzerland, or the European Union. The studies by Beelen et al. (2013);

Eeftens et al. (2016); Wolf et al. (2017) employed parametric polynomials of degree one

together with predictor selection (ESCAPE procedure). Beelen et al. (2013) summarized

the application of the ESCAPE procedure to 36 major cities across the EU-25 based on

data measured from October 2008 until April 2011. Different models resulted for different

cities, where R2 ranged from 0.55 to 0.92 (R
2
not reported) and RMSE (obtained from

LOOCV) ranged from 2.1 to 12.0 (µg/m3). Eeftens et al. (2016) employed the procedure to

data from Switzerland collected from January 2011 until December 2012. They considered

fitting separate models to alpine and non-alpine regions and fitting separate models to

different regions. According to Eeftens et al. (2016), the latter yielded superior predictive

performance; R
2
ranged from 0.46 to 0.89 and RMSE (obtained from LOOCV) ranged

from 3.0 to 8.9 (µg/m3). Wolf et al. (2017) used data from Augsburg (Germany) measured

in between March 2014 and April 2015 and obtained an R
2
of 0.94 (RMSE not reported).

Vizcaino and Lavalle (2018) employed data from 2010 and fitted LUR models based on

random forests across the EU-28. They reported R2 ranging from 0.4 to 0.64 (R
2
and

RMSE not reported). Chen et al. (2019) also used data from 2010 and fitted various

statistical learning models such as artificial neural networks, boosted regression trees, and

support vector regression besides approaches that are based on GAM. Reported R2 ranged

from 0.59 to 0.95 (R
2
not reported); for the out-of sample metrics, RMSE ranged from

9.0 to 9.6 (µg/m3) for 5-fold cross-validation and from 11.5 to 14.6 (µg/m3) for hold-out

validation.

We fitted model smoothA based on data from all monitoring sites. The model yielded an

R
2
of 0.59, RMSE was in between 9.72 and 9.98 (µg/m3), and MAE ranged from 7.20 to

7.27 (µg/m3). When we considered models fitted for different types of monitoring sites,

model smoothB exhibited the best statistical performance for the considered metrics. The

model yielded an R
2
of 0.85, RMSE was in between 3.33 and 3.35 (µg/m3), and MAE
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ranged from 2.54 to 2.58 (µg/m3). Overall, our results were similar to the LUR stud-

ies mentioned above. Note, that comparability of modeling results across all mentioned

studies is limited for the following reasons: (i) Data from different sources and years were

employed; (ii) data from different monitoring site types were used; (iii) studies focused on

different regions; (iv) different model performance metrics were reported (not all studies

reported out-of-sample metrics) or different techniques were used to obtain the metrics

(LOOCV, KFCV, and HOV based on different seeds, choices for the number of folds, and

their stratification).

4.4.3 Strengths and limitations

There are a number of strengths and limitations of LUR modeling based on additive

regression smoothers employed in this paper. First, as we used a 1 x 1 km grid in our

analysis, our models miss out on fine-scale variation of the process inducing mean annual

NO2 concentration levels. The resolution is likely too coarse to account for the leveling

off of the effects of local pollution sources at traffic/industrial monitoring sites. This

may partly explain why there are no substantial differences in Table 4.6 between the

LUR models based on parametric polynomials and additive regression smoothers regarding

predictive performance. To overcome this drawback, the background concentration levels

captured by LUR models based on additive regression smoothers could be complemented

by models which capture regional particularities and pollutant-specific behavior.

Second, we only considered a single buffer of radius 1 km in our analysis. Investigating

further buffers may be valuable when considering mean annual NO2 concentration levels

observed at traffic/industrial monitoring sites in greater detail. We plan to return to this

aspect in subsequent work and incorporate more detailed data on traffic intensity. Note

that including further buffer sizes into the analysis may lead to increased correlations

among the predictors. We recommend a careful correlation analysis similar to the one

carried out in our empirical application, as the predictor chosen by the algorithm may be

arbitrary in the presence of high correlations.

Third, LUR modeling based on additive regression smoothers determines the appropri-

ate number of degrees of freedom for the different effects based on the data. Basically,

the functional form and its flexibility for approximating mean annual NO2 concentra-

tion levels are determined based on the data. This is a key difference to LUR modeling
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based on parametric polynomials, where specifying the functional form and/or predictor

selection are delicate tasks which need to be performed by the analyst. Compared to

the ambiguities resulting from specification search in LUR modeling based on parametric

polynomials, LUR modeling based on additive regression smoothers “let’s the data speak

for themselves”. This carries the potential of uncovering interesting effects, e.g., nonlinear

and non-monotonic relationships between response and predictors, and can also illustrate

limitations of the data (when yielding implausible effect shapes).

Fourth, we impose additive separability of the different model components in the empirical

analysis. In principle, arbitrary interactions between predictors can be included in LUR

models based on additive regression smoothers by using additional degrees of freedom. Due

to the infinitely large number of possible combinations of interaction depth and involved

predictors, this is generally not advisable. Instead, including interaction effects should be

guided by subject-matter knowledge on phenomena which impact dispersion and decay of

different pollutants.

Clear advantages of data-driven modeling in LUR based on additive regression smoothers

are: (i) the approach provides a data-driven way to validate conventional LUR models

based on parametric polynomials or improve the models based on the modeling insights;

(ii) no knowledge about physical and chemical processes is required; (iii) the approach is

straightforward to apply and provides a comparable and reliable methodology for modeling

background air pollution concentration levels – an aspect which was outlined by adminis-

trators of major cities across the European Union as an important obstacle when estimat-

ing background air pollution concentration levels (Viana et al., 2020); (iv) in contrast to

techniques from statistical learning, which often yield black-box models, LUR modeling

based on additive regression smoothers yields interpretable effects that can be visualized

and investigated regarding their plausibility. Since we provide all codes, functions, and

datasets employed in the empirical analysis in a freely accessible online repository, our

work is fully reproducible. We provide a comprehensive illustration of the employed mod-

eling approach, which forms the basis for further analysis and can be extended in various

directions such as different regions and pollutants.
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4.5 Conclusions

LUR modeling based on additive regression smoothers allows to account for typical char-

acteristics of air pollution processes, i.e., local heterogeneity, potential nonlinearities, and

spatial heterogeneity and dependence, in a flexible, data-driven way. We illustrated the ap-

proach based on mean annual NO2 concentration levels, visualized the estimated effects,

and evaluated the statistical performance of the models. Overall, our results indicate

that mean annual NO2 concentration levels observed at background and traffic/industrial

monitoring sites stem from two different processes. Comparisons with LUR models based

on parametric polynomials and a test for spatial misspecification support LUR model-

ing based on additive regression smoothers. Finally, we generated interpolation maps of

resolution 1 x 1 km based on LUR models employing additive regression smoothers. The

interpolation map of the total effects shows higher mean annual NO2 concentration lev-

els in major cities and surrounding agglomeration areas compared to rural locations. A

similar effect is visible for the road traffic network connecting the different agglomeration

areas.
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4.7 Appendix

4.7.A Employed R-packages

Table 4.A.1 shows all employed R-packages, the corresponding package versions, release

dates and the corresponding references. All packages given in the table below are

hosted on “The Comprehensive R Archive Network” (CRAN; accessible via https://

cran.r-project.org/). Using the package versions given in Table 4.A.1 together

with the datasets and codes provided in the online repository https://github.com/

markusfritsch/smoothLUR ensures full reproducibility of the reported results.
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Table 4.A.1: Overview of employed R-packages, corresponding package versions, release
dates, and references.

R-package Version Date Reference

ape 5.4 2020-06-03 Paradis and Schliep (2019)

cowplot 1.1.0 2020-09-08 Wilke (2019)

data.table 1.13.0 2020-07-24 Dowle and Srinivasan (2020)

ggplot2 3.3.2 2020-06-19 Wickham (2016)

ggpubr 0.4.0 2020-06-27 Kassambara (2020)

mgcv 1.8-31 2019-11-09 Wood (2003, 2017)

raster 3.3-13 2020-07-17 Hijmans (2020)

RColorBrewer 1.1-2 2014-12-07 Neuwirth (2014)

rgdal 1.5-15 2020-08-04 Bivand et al. (2020)

rgeos 0.5-3 2020-05-08 Bivand and Rundel (2020)

RgoogleMaps 1.4.5.3 2020-02-12 Löcher (2020)

sp 1.4-2 2020-05-20 Pebesma and Bivand (2005); Bivand et al. (2013)

splitTools 0.2.1 2020-04-18 Mayer (2020)

4.7.B Supplementary material

4.7.B.1 Modeling based on parametric polynomials

Table 4.B.1 shows LUR models based on parametric polynomials for modeling mean an-

nual NO2 concentration levels and combines Tables 4.3 and 4.5. The models were fitted

according to the ESCAPE procedure. The set of potential predictors employed structural

and spatial predictors. Similar to recent LUR studies of Beelen et al. (2013); Eeftens

et al. (2016); Wolf et al. (2017), we only considered parametric polynomials of degree one.

The table shows models fitted based on all monitoring sites (parA), background moni-

toring sites (parB), and traffic/industrial monitoring sites (parTI). All models displayed

in Table 4.B.1 include PopDens, at least one predictor reflecting road traffic intensity,

and at least one spatial predictor. Model parB provided the best fit to the data and R
2

was similar to values reported in literature (see, e.g., Beelen et al., 2013). According to

Moran’s I statistic, there were indications for model misspecification for parA and parB

(significance level α = 0.1). We also fitted LUR models based on parametric polynomials

without spatial predictors. Compared to the results shown in Table 4.B.1, R
2
was lower

and there were similar indications for model misspecification.

Model misspecification may result from neglected nonlinearities in one or multiple predic-

tors (i.e., inappropriate chosen functional form). Fig. 4.B.1 displays a diagnostic tool for
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investigating parB for neglected nonlinearities: Partial residual plots. The plots are based

on modeling results from parB and constructed by plotting the sum of the residuals of

parB and partial fits of predictors (β̂i · zi for structural predictors and β̂j · xj for spatial

predictors) against the corresponding predictor values (zi or xj). The dashed bronze line

results from fitting a simple linear regression model to the data, while the solid darkgreen

line displays the fit of a univariate smooth. The partial residual plots in Fig. 4.B.1 suggest

that there are nonlinearities in the data that parB cannot account for and that the func-

tional form of the model may be misspecified. For models parA and parTI, there were no

clear indications for nonlinearities.

Agri Lat Alt

PopDens Forest FedAuto

0.00 0.25 0.50 0.75 1.00 49 51 53 55 0 250 500 750 1000 1250

0 1000 2000 3000 4000 0.00 0.25 0.50 0.75 1.00 0 500 1000 1500 2000

-10
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10

-10

0

10

Figure 4.B.1: Partial residual plots derived from LUR model based on parametric poly-
nomials parB, which includes structural and spatial predictors; for respective predictor,
ordinate refers to sum of residuals of parB and values of β̂i · zi (for structural predictors)
or β̂j · xj (for spatial predictors); abscissa refers to values of zi or xj ; dashed bronze line
indicates linear fit, smooth darkgreen curve depicts univariate smooth fit for respective
scatterplot.
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Table 4.B.1: LUR models based on parametric polynomials parA, parB, and parTI fitted by ESCAPE procedure using parametric
polynomials of degree one; set of potential predictors includes structural and spatial predictors; parA uses all, parB background, and

parTI traffic/industrial monitoring sites for model fitting; R
2
and statistic to test for spatial autocorrelation in error terms (Moran’s I)

given for both models.

parA parB parTI

Pred. Est. SE Pred. Est. SE Pred. Est. SE

(Int.) 16.795 2.425 (Int.) 129.151 9.894 (Int.) 97.005 26.505

PopDens 0.006 0.001 PopDens 0.002 < 0.001 PopDens 0.008 0.001

PriRoad 0.002 < 0.001 Forest −9.760 1.061 PriRoad 0.002 0.001

SecRoad 0.002 0.001 FedAuto 0.003 0.001 HighDens 20.503 7.056

HighDens 41.810 5.382 Agri −7.013 0.968 LowDens 17.446 3.864

LowDens 13.160 1.997 Lat −2.143 0.190 Lat −1.651 0.512

Lon −0.988 0.216 Alt −0.010 0.002

R
2

0.57 0.76 0.54

Moran’s I (p-value) -0.18 (< 0.001) 0.19 (< 0.001) 0.12 (0.06)
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4.7.B.2 Modeling based on additive regression smoothers

We estimated three different LUR models based on additive regression smoothers us-

ing data observed at different types of monitoring sites: smoothA (all), smoothB (back-

ground), and smoothTI (traffic/industrial monitoring sites). We obtained the LUR mod-

els, by modeling all structural and spatial effects in Equation (4.3) via regression splines.

For all structural predictors and the spatial predictor Alt, we used univariate smooths,

while we modeled Lon and Lat via a bivariate smooth. Note that the employed smoothers

choose the curvature of individual components data-driven; this may lead to smooths

being effectively reduced to parametric polynomials of degree one.

Partial effects of individual univariate smooths for specification smoothB and correspond-

ing 95% confidence intervals are shown in Fig. 4.B.2. For univariate smooths, we found:

(i) nonlinearities in PopDens; (ii) effect of predictors HighDens, Ind, Forest, PriRoad,

and FedAuto effectively reduced to parametric polynomials of degree one (edf roughly 1);

(iii) predictors Transp, UrbGreen, Agri, SecRoad, and LocRoute were smoothed out (edf

roughly 0). There were no indications for nonlinear effects for smoothTI.

The left plot of Fig. 4.B.3 displays the part of estimated background mean annual NO2

concentration levels attributed to the spatial component only, when simultaneously ac-

counting for all structural predictors. The map visualizes the sum of the spatial effects of

smoothB consisting of a bivariate smooth of Lon, Lat and a univariate smooth of Alt. To

obtain the maps, two steps were required: First, a LUR model based on additive regression

smoothers was fitted to mean annual NO2 concentration levels. Second, predicted values

for conditional mean annual NO2 concentration levels were computed based on observed

predictors for each 1 x 1 km grid cell in which no monitoring site was positioned. The

interpolation maps visualize two types of values: Fitted values for grid cells that contain

monitoring sites – when the location of the grid cell center and the monitoring site coin-

cides – and predicted values for all other grid cells. In Fig. 4.B.3, values range from −11.0

to 5.3 and tend to decrease when moving from southwest to northeast. This highlights the

presence of complex spatial association structures which are captured by the bivariate and

univariate smooths of the spatial predictors. Conditional mean annual NO2 concentration

level estimates for a grid cell by smoothB resulted from adding all structural effects for a

respective grid cell to the corresponding spatial effect and are visualized in the right plot

of Fig. 4.B.3. Values ranged from 2.5 to 39.0. We replaced 385 out-of-range predictions
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Figure 4.B.2: Partial effects derived from LUR model based on additive regression
smoothers smoothB; darkgreen line depicts univariate thin plate regression spline esti-
mate of su,p for respective zp, grey area marks corresponding 95% pointwise confidence
bands. Numbers in parentheses refer to estimated degrees of freedom (edf) for spline esti-
mates and indicate curvature of effect of predictors (details, see Wood, 2017); roughness of
spline effect increases with edf, where 1 corresponds to linear parametric effect; 0 implies
predictor is smoothed out.

(0.1% of the 356, 791 predictions) by minimum or maximum observed mean annual NO2

concentration level. Fig. 4.B.3 highlights that estimated mean annual NO2 concentration

levels are higher in cities and surrounding agglomeration areas compared to rural areas.

Further, the road traffic network (in particular federal autobahn) linking agglomeration

areas is visible across Germany through darker thin lines. This observation is in accor-
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dance to Fig. 4.B.2, which indicates a positive partial effect of FedAuto on mean annual

NO2 concentration levels. Maps based on model smoothTI showed higher concentration

levels and also highlighted agglomeration and infrastructure effects.

Figure 4.B.3: Interpolation maps derived from LUR model based on additive regression
smoothers smoothB in 1 x 1 km resolution; all monitoring site types used for model fitting;
maps visualize conditional mean annual NO2 concentration levels (right) and part which
is attributable to spatial effect (left); the latter consists of sum of bivariate smooth of Lon
and Lat sb(XLon, XLat) and univariate smooth of Alt su,A(XAlt); out-of-range predictions
replaced by minimum (maximum) observed mean annual NO2 concentration level; border
of Rhine-Ruhr metropolitan area depicted by darkbronze line.

The interpolation map displayed on the right-hand side in Fig. 4.6 is based on smoothA

and highlights the effect of major cities, the surrounding agglomeration areas, and the

connecting road traffic network for conditional mean annual NO2 concentration levels. In

contrast to Fig. 4.B.3, smoothA accounts for the road traffic network by including the

predictors PriRoad and SecRoad into the model. For smoothTI, the interpolation maps

also highlight major cities, surrounding agglomeration areas, and infrastructure effects

and are not displayed here.
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4.7.B.3 Interpretation of univariate and bivariate smooths

Consider the LUR model based on parametric polynomials given in Equation (4.4). The

effect of a one unit increase of Zi on Y (on average, c.p.) may be interpreted globally as

∂ E(Y |Z,X)

δZi
= βi. (4.B.1)

For Equation (4.3), we suggest to interpret the effects of predictors based on differences in

effects relative to corresponding changes in predictors. The effect of a change in Zp on Y

(on average, c.p.) in Equation (4.3) is

∂ E(Y |Z,X)

zp2 − zp1
=
su,p(zp2)− su,p(zp1)

zp2 − zp1
, (4.B.2)

where zp1 , zp2 are located in the domain of Zp; su,p(Zp) denote univariate smooth functions.

The interpretation can be transferred to the bivariate smooth effect of (XLon, XLat) on Y

in Equation (4.3) accordingly: The numerator contains the difference of two bivariate

effects evaluated at the respective (XLon, XLat) and the numerator is a suitable distance

metric (e.g., Euclidean or Manhattan distance of the two locations).

Fig. 4.B.4 exemplarily illustrates the interpretation of spatial effect sb(XLon, XLat)+

su,A(XAlt) (left plot) and structural effect su,p(PopDens) (right plot) for two locations

based on the proposition in Equation (4.B.2). At location 1 (Cologne city center), popula-

tion density is higher than at location 2 (southern countryside of Mühlheim an der Ruhr).

In order to derive the effect of a change in location, we divided the difference of the esti-

mated spatial effects at the two locations by a suitable distance metric. For the univariate

smooth of PopDens, we computed differences of the partial effect of PopDens evaluated at

both locations; then, we divided this by the difference of PopDens between both locations.

When differences of predictor values in the denominator of Equation (4.B.2) tend to zero,

the effect of the change in location corresponds to the local slope of the approximating

smooth and, therefore, has a similar interpretation as Equation (4.B.1) in a sufficiently

small region.
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Figure 4.B.4: Estimated spatial effect consisting of sb(XLon, XLat) + su,A(XAlt) over Ger-
many in 1 x 1 km resolution (left) and univariate smooth su,p(PopDens) – both derived
from LUR models based on additive regression smoothers smoothB; orange dots indicate
grid cell centers located in Cologne city center (point 1), southern countryside of Mühlheim
an der Ruhr (point 2) (left) and corresponding population densities (right).
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M., Dons, E., Jerrett, M., Fischer, P., Wang, M., Brunekreef, B., de Hoogh, K., 2013.

Development of NO2 and NOx land use regression models for estimating air pollution

exposure in 36 study areas in Europe – the ESCAPE project. Atmospheric Environment

72, 10–23. doi:10.1016/j.atmosenv.2013.02.037.

Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z.J., Weinmayr, G., Hoffmann,

B., Wolf, K., Samoli, E., Fischer, P., Nieuwenhuijsen, M., Vineis, P., Xun, W.W.,

Katsouyanni, K., Dimakopoulou, K., Oudin, A., Forsberg, B., Modig, L., Havulinna,

A.S., Lanki, T., Turunen, A., Oftedal, B., Nystad, W., Nafstad, P., De Faire, U.,
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5 Outlier detection and visualisation in multi-seasonal time

series and its application to hourly nitrogen dioxide con-

centration

Abstract. Outlier detection in data on air pollutant recordings is conducted to un-

cover data points that refer to either invalid measurements or valid but unusually high

concentration levels. As air pollutant data is typically characterised by multiple season-

alities, the task of outlier detection is associated with the question of how to deal with

such non-stationarities. The present work proposes a method that combines time series

segmentation, seasonal adjustment, and standardisation of random variables. While the

former two are employed to obtain subseries of homoskedastic data, the latter ensures

comparability across the subseries. Further, the standardised version of the seasonally

adjusted subseries represents a scaled measure for the outlyingness of each data point in

the original time series from its mean and therefore forms a suitable basis for outlier de-

tection. In an empirical application to data on hourly NO2 concentration levels recorded

at a traffic monitoring site in Cologne, Germany, over the years 2016 to 2019, the common

boxplot criterion is used to examine each standardised seasonally adjusted subseries for

positive outliers. The results of the analyses are put into their natural temporal order and

displayed in a heatmap layout that provides information on when single and sequential

outliers occur.

Keywords. Outlier detection; Multiple seasonality; Time series segmentation; Boxplot

criterion; Nitrogen dioxide
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5.1 Introduction

Today, air pollution is one of the major concerns in regard to its adverse effects on ecology

and human health with poor air quality particularly affecting urban dwellers. In terms

of human health, nitrogen dioxide (NO2) is the air pollutant of most relevance as it is

a “key precursor of a range of secondary pollutants” (WHO, 2006, Ch. 12). There is

empirical evidence that increased short-term exposure to NO2 is associated with adverse

health outcomes, e.g. admission to hospital for stroke or mortality from stroke (Shah

et al., 2015) and a lower lung function (Rice et al., 2013; Panis et al., 2017; Dauchet

et al., 2018; Strassmann et al., 2021). The latter studies refer to cohorts of healthy adults

and areas with relatively low concentration levels that are mostly below the official WHO

limit of 200µg/m3 for hourly and 40µg/m3 for annual NO2 concentration levels (WHO,

2006, Ch. 12). To reduce air pollution burdens, monitoring and assessment of air quality

is an ongoing task (Council of the European Union, 2008). Thereby, the detection of

outliers, i.e. unusually high concentration levels, is of particular interest. A detected

outlier indicates either unwanted data, e.g. measurement errors, or a valid but unusually

high concentration level (Van Zoest et al., 2018). In the former case, outlier detection may

act as an auxiliary tool for data validation (Čampulová et al., 2018). Outliers of the second

category may help decision-makers in formulating effective mitigation strategies, insofar

as the causes of outliers can also be investigated and efforts can be made to prevent their

occurrence (Mart́ınez Torres et al., 2020). Concerning outlier detection in NO2 processes,

the question arises on how to deal with the presence of non-stationarities, in particular

multiple seasonalities, i.e. intra-day and intra-week cycles that are mainly driven by

anthropogenic factors and an intra-year cycle that is rather caused by natural conditions

(see, e.g., Behm and Haupt, 2020, and references therein).

In the literature, there are few studies on outlier detection in univariate hourly air pollutant

processes that account for the cyclical behaviour in various ways.Van Zoest et al. (2018)

examine outliers in hourly data on NO2 over one year. They group the measurements

into temporal categories to account for anthropogenically driven seasonalities. For every

category, they construct confidence intervals where points falling outside the confidence

interval are labelled outliers. Čampulová et al. (2017) and Čampulová et al. (2018) employ

nonparametric regression to hourly data on particulate matter over one month. While the
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former use methods from statistical process control to investigate the regression residuals

for outliers, the latter divide the regression residuals into homogeneous segments via change

point analysis and investigate each segment for outliers. Functional data analysis provides

an alternative approach to outlier detection in hourly data on air pollutants (Febrero

et al., 2008; Sguera et al., 2016; Mart́ınez Torres et al., 2020). Thereby, the hourly data

are summarised to, for example, daily curves that are called functional trajectories. Ahead

of outlier detection, Febrero et al. (2008) and Sguera et al. (2016) separate the trajectories

into two groups referring to weekdays and weekend days, while Mart́ınez Torres et al.

(2020) consider one group of trajectories. Outlier detection is carried out by using depth

measures for functional data that quantify the centrality of a given curve within each

group of trajectories.

The aim of the present work is to conduct outlier detection in multi-seasonal data based

on a scaled measure for the deviation of each data point from its mean. For this ob-

jective, a generic method that relies on time series segmentation, seasonal adjustment,

and standardisation of random variables is proposed and illustrated in an application to

hourly data on NO2 concentration levels recorded at a traffic monitoring site in Cologne,

Germany, over the years 2016 to 2019. In a first step, the hourly time series is divided into

24 · 7 = 168 weekly subseries whereby each subseries refers to a specific combination of

hour of day and day of week and exhibits only an intra-year cycle. The idea of dividing a

multi-seasonal time series according to its cyclical patterns goes back to Gladyshev (1961)

and is also discussed in, e.g., Jones and Brelsford (1967), Pagano (1978), and Franses

(1994). In a second step, each subseries is seasonally adjusted using the framework of

an additive components model, i.e. by decomposing the time series into a seasonal and

a non-seasonal component, defining an appropriate estimate for the seasonal component,

and subtracting this estimate from the time series (Bell and Hillmer, 1984). In the present

study, the seasonal component is estimated by regressing the subseries on fourier terms.

In a third step, the regression residuals are standardised which yields a scaled measure for

the deviation of each data point in the respective weekly time series from its mean, i.e. a

suitable basis for outlier detection. In the present study, the common boxplot criterion is

chosen to examine each set of standardised regression residuals for positive outliers. As the

data under consideration are already validated, the outliers detected with the proposed

method correspond to hourly concentration levels that are unusually high for the combi-
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nation of hour of day and day of week the subseries refers to. The results from the 168

separate analyses are put into their natural temporal order and presented in a heatmap

layout which provides insights into when single and sequential outliers occur. Thereby,

the length of an outlier sequence can be understood as an indicator for the persistence of

unusually high concentration levels and long sequences may be of particular interest with

respect to developing mitigation strategies, insofar as the causes thereof can be investi-

gated. The statistical software R, version 4.0.5 (R Core Team, 2013), is used to conduct

the empirical analyses and produce the visualisations. Details on the employed packages

are given in the Appendix.

The remainder of this article is organised as follows: Section 5.2 introduces the heatmap

layout and outlines the modelling framework. In Section 5.3, the empirical data are de-

scribed and results of the empirical application are presented and discussed. Section 5.4

sums up, gives an outlook on potential extensions, and concludes.

5.2 Methods

Let yt, t = 1, . . . , T, denote the observed hourly time series that is divided into subseries

yt(ι,ν), t(ι, ν) = 1(ι, ν), . . . , T (ι, ν), where ι refers to hour of day (ι = 1, . . . , 24, corre-

sponding to 1am, . . . ,12pm) and ν refers to day of week (ν = 1, . . . , 7 corresponding to

Monday, . . . , Sunday). Each weekly subseries is analysed separately, but the 24 · 7 = 168

subseries are put into their natural temporal order and presented in form of a heatmap to

visualise the results of each analysis step.

5.2.1 Heatmap layout

Fig. 5.1 introduces the heatmap layout that is used throughout this work and refers to

the time series of hourly data on NO2 concentration levels recorded over years 2016 to

2019 at monitoring site Turiner Straße in Cologne. Fig. 5.1(a) shows a classical time series

plot that provides little information about the time series apart from the presence of

some obvious peaks. In particular, it remains unclear how the hourly data are distributed

over the seasonal cycles. Fig. 5.1(b) provides a more comprehensive picture. It displays

the hourly data in form of a heatmap and illustrates the distribution of the hourly data

across hours of day, days of week, and weeks of observation. Each row refers to a specific

combination of hour of day and day of week, i.e. each row represents one of the 168
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(a) Time series plot.

(b) Heatmap where each row refers to specific combination of hour of day and day of week and
each column refers to specific week of observation; cells are coloured according to recorded NO2

concentration levels.

Figure 5.1: Time series plot (a) and heatmap (b) referring to hourly data on NO2 con-
centration levels recorded over years 2016 to 2019 at monitoring site Turiner Straße in
Cologne.
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subseries, and each column refers to a specific week of observation. Each cell corresponds

to one specific combination of date and hour and is coloured according to the recorded

NO2 concentration level. To ease the readability of the matrix, observations recorded

on Mondays between midnight and 1am are arranged in the first row. As 1st January

2016 was a Friday the most left column is empty for Monday to Thursday, and, as 31st

December 2019 was a Tuesday, the most right column is empty for Wednesday to Sunday.

With regard to the present example, most cells in Fig. 5.1(b) are coloured green indicating

relatively low or moderate NO2 concentration levels. With decreasing proportions, cells

are coloured yellow, orange, and red indicating that the number of observations decreases

towards the upper tail of the distribution of the observed NO2 concentration levels. The

darkred cells correspond to the peaks that are visible in the time series plot with the

maximum value referring to Tuesday, 3rd July 2018, 11pm, in observation week 132.

5.2.2 Modelling framework

Henceforth, each weekly time series yt(ι,ν), i.e. each row in Fig. 5.1(b), is examined for

outliers separately. Therefore, remaining seasonalities are removed from each weekly time

series and the seasonally adjusted data are standardised to obtain a scaled measure for the

deviation of the weekly time series from its mean. Based on the standardised data, the

cutoff, i.e. the upper fence of the common boxplot, is computed and data points exceeding

this cutoff are labelled outliers. To simplify the formal exposition, ι and ν are omitted

whenever the context is clear. For given ι and ν, the following assumptions are made.

Assumption 5.1 The weekly time series yt is additively separable and can be decom-

posed into a systematic term µt (seasonal component) and an error term et (non-seasonal

component)

yt = µt + et. (5.2.1)

Assumption 5.2 The systematic component µt in Eq. (5.2.1) corresponds to the sum of

fourier terms

µt =

K∑
k=0

(ak cos (ωkt) + bk sin (ωkt)) = a0 +

K∑
k=1

(ak cos (ωkt) + bk sin (ωkt)) , (5.2.2)

where ωk = (2πk)/m, k = 1, . . . ,K, and m = 365.25/7.
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The parameter K in Eq. (5.2.2) determines the number of fourier terms that are superim-

posed to approximate the seasonal component µt and the coefficients ak and bk indicate

the amplitude of the k-th cosine and sine curve, respectively. The idea to approximate the

seasonal component of a time series by a sum of fourier terms goes back to Slutzky (1937)

who showed that the summation of sine curves is a suitable way to express the regular

behaviour of cyclic processes. It follows from Eq. (5.2.2) that the coefficients ak and bk

are assumed to be time-invariant which is why the model stated in Eq. (5.2.4) is a fixed

frequency regression model. Note that this fixed modelling design substantially differs

from the harmonic regression model of Young et al. (1999) which allows for stochastic

time-varying coefficients in Eq. (5.2.2).

Assumption 5.3 The error term et in Eq. (5.2.1) follows a stationary ARMA(p, q) pro-

cess

ϕ(L)et = θ(L)ϵt, (5.2.3)

where ϕ(L) = 1 − ϕ1L − . . . − ϕpL
p and θ(L) = 1 + θ1L + . . . + θqL

q are AR and MA

lag polynomials of order p and q, respectively, and ϵt
iid∼ WN(0, σ2ϵ ) is white noise with

E(ϵ4t ) <∞, ∀t.

In matrix notation, Eq. (5.2.1) can be stated as

y = Xβ + e, (5.2.4)

with y, β, and ϵ being a Tx1, a (2K + 1)x1, and a Tx1 vector, respectively,

y =


y1
...

yT

 , β =



β0

β1

β2
...

β2K−1

β2K


=



a0

a1

b1
...

aK

bK


, e =


e1
...

eT

 ,

and X the Tx(2K + 1) design matrix
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X =


1 x1,1 x1,2 · · · x1,2K−1 x1,2K
...

...
...

. . .
...

...

1 xT,1 xT,2 · · · xT,2K−1 xT,2K

 =


1 cos(ω1) sin(ω1) · · · cos(ωK) sin(ωK)
...

...
...

. . .
...

...

1 cos(Tω1) sin(Tω1) · · · cos(TωK) sin(TωK)

 .

The ordinary least squares (OLS) estimator

β̂ = (X ′X)−1X ′y (5.2.5)

is used to obtain the seasonally adjusted weekly subseries, i.e. the vector of residuals

ê = y −Xβ̂. (5.2.6)

Theorem 5.1 The OLS estimator defined in Eq. (5.2.5) is an unbiased estimator of β.

Proof 5.1 It follows from Assumption 5.2 that the design matrix X has deterministic

entries and is of full rank. Further, it follows from Assumption 5.3 that e has zero mean.

Thus, it is

E
(
β̂
)
= E

[
(X ′X)−1X ′y

]
= E

[
(X ′X)−1X ′Xβ + (X ′X)−1X ′e

]
= β.

Theorem5.1 confirms that the OLS estimator is an appropriate choice to approximate the

systematic component in Eq.(5.2.1) and thus to seasonally adjust the weekly subseries.

While the original weekly time series is non-stationary and heteroskedastic, the set of

regression residuals is homoskedastic and reflects the deviation of the data from its mean.

To ensure comparability across the 168 series of regression residuals, each series of OLS

residuals is scaled according to

ês =
ê

σ̂e
, (5.2.7)

with

σ̂e =

(
1

T
ê′ê

)1/2

. (5.2.8)

As the OLS residuals have zero mean, the scaled residuals in Eq. (5.2.8) correspond to

the standardised residuals. Basically, any distance-based outlier criterion is applicable to

the standardised residuals ês. Using the most common boxplot criterion, a standardised
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residual is labelled a positive outlier when it exceeds the cutoff cU defined by

cU = q0.75(ϵ̂
s) + 1.5 · IQR(ϵ̂s), (5.2.9)

with q0.75(·) and IQR(·) denoting the upper quartile and the interquartile range, respec-

tively. Outliers that are detected based on the cutoff defined in Eq. (5.2.9) correspond to

outliers in the observed hourly time series.

Theorem 5.2 Given Assumptions A.1-A.3, the estimator σ̂e defined in Eq. (5.2.8) is a

consistent estimator of σe.

Proof 5.2 The proof relies on Wold’s representation theorem and the law of large numbers

for L1-mixingales. Details are given in the Appendix.

Theorem5.2 provides a rationale for the standardisation of the residuals according to

Eq. (5.2.7). Although, in the present work, the boxplot criterion is also applicable to non-

standardised regression residuals and the main reason for standardising the residuals is

to ensure comparability across the subseries, it should be mentioned that standardised

variables are the general starting point for a wide range of approaches to outlier detection.

The standardised version of the regression residuals represents a scaled measure for the

deviation of each data point from its mean and therefore a scaled measure for the outly-

ingness of each data point which is why the standardised version of the residuals forms a

suitable basis for outlier detection. An early work on outlier criteria based on standardised

samples is published by Thompson (1935). The findings of Thompson (1935) and their

extension by Pearson and Sekar (1936) are later used to develop two well known outlier

tests, namely the extreme studentised deviate test, also known as Grubb’s test (Grubbs,

1950), and the generalised extreme studendised deviate test, also known as Rosner’s test

(Rosner, 1983). For a comprehensive overview over outlier tests and issues involved with

outlier detection, the interested reader is referred to Hawkins (1980) and Barnett and

Lewis (1994).

Today, apart from outlier tests, the boxplot criterion that became popular with the work

of Tukey (1977) is widely used for outlier detection. Its application is simple and does not

require a priori information on the number of outliers to be detected. It is to be noted

that the definition stated by Eq. (5.2.9) is one of many options to specify the boxplot-

based cutoff point. When the interest lies in more extreme values, one could increase
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the multiplier constant of the interquartile range or substitute the interquartile range by,

e.g., the interdecile range. Using very high percentiles is not advisable as they might be

distorted by outlying data points, a problem in outlier detection that is called masking

(Hoaglin et al., 1986). Generally, the boxplot criterion is resistant against the problem of

masking since it relies on the first, second, and third quartile. Though, the problem of

masking might arise when the sample size is small or the data is highly skewed. Alternative

boxplot-based definitions for such data settings are discussed in, e.g., Carling (2000);

Hubert and Vandervieren (2008); Walker et al. (2018).

5.3 Empirical application

The empirical data refer to validated hourly NO2 concentration levels (in µg/m3) recorded

at a traffic monitoring site in Cologne, Germany, over the years 2016 to 2019, and are re-

trieved from the air quality database provided by the European Environment Agency

(EEA, 2021). The monitoring site is located in the northern part of the city center in

the direction of the main train station on the sidewalk of a six-lane main street running

from north to south. Its surrounding is continuously built up with multistory residen-

tial and commercial buildings.1 The percentage of missing entries in the source data is

equal to 5.03% and the longest sequence of missing values in the 168 weekly subseries

is equal to three. Therefore, it is reasonable to impute missing values by applying the

function na.approx() to each weekly subseries where leading/trailing missing values are

substituted by the nearest non-missing value.

Fig. 5.2 illustrates the methodology described in Section 5.2 exemplarily for the subseries

referring to Monday 8pm (ι = 20 and ν = 1). The function tslm() from the package

forecast (Hyndman and Khandakar, 2008; Hyndman et al., 2021) is used to derive the

OLS estimator β̂ defined in Eq. (5.2.5). The number of harmonicsK in Eq. (5.2.2) is chosen

between one and four such that the AIC (Akaike Information Criterion) is minimised. In

the top left display of Fig. 5.2, the time series of hourly NO2 measurements is shown where

the green curve depicts the harmonic fit Xβ̂. The top right display refers to the series of

regression residuals ê, while the two bottom displays refer to the standardised regression

residuals ês. The cutoff based on the boxplot criterion cU is depicted by the dashed

1The description of the monitoring sites’ location is taken from https://www.lanuv.nrw.de/umwelt/

luft/immissionen/messorte-und-werte (accessed 28th June 2021).
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Figure 5.2: Illustration of the methodology for, exemplarily, the subseries referring to
Monday 8pm; top left: time series of hourly NO2 measurements and harmonic fit depicted
by green curve; top right: series of regression residuals; bottom left: boxplot of standard-
ised regression residuals; bottom right: series of standardised regression residuals; cutoff
based on boxplot criterion depicted by dashed horizontal orange line and outliers marked
by orange diamonds.

horizontal orange line. For the considered subseries, five single outliers are detected and

marked by the orange diamonds.

Fig. 5.3 displays, in an analogous heatmap layout to Fig. 5.1(b), the harmonic fit Xβ̂

for ι = 1, . . . , 24 and ν = 1, . . . , 7. Placing the 168 subseries of estimated mean hourly

NO2 concentration levels back in their natural temporal order reveals some interesting

patterns. While there is an overall tendency to lower values in summer2, the yearly

repetitive patterns strongly depend on day of week and hour of day. They are more

prominent for weekdays as compared to weekend days and for morning and evening hours

as compared to the remaining hours. These findings suggest that the intra-day and intra-

week patterns of NO2 concentration levels are strongly driven by anthropogenic factors. It

is worth noting that although a separate model is estimated for each of the 168 subseries,

the distribution of fitted values shown in Fig. 5.3 is smooth across the models with no

visible discontinuity.

2The weeks of observation 23-36, 75-88, 127-140, and 179-192 refer to the German summer period June
to August.
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Figure 5.3: Heatmap showing distribution of estimated mean hourly NO2 concentration
levels over years 2016 to 2019 at monitoring site Turiner Straße in Cologne; each row refers
to specific combination of hour of day and day of week; each column refers to specific week
of observation; cells are coloured according to fitted values obtained from 168 harmonic
regression models where a separate model is developed for each row, i.e. weekly subseries
of recorded NO2 concentration levels.

Fig. 5.4 displays a heatmap that illustrates the distribution of the standardised residuals

according to Eq. (5.2.7), i.e. ês = (ês1, . . . , ê
s
T )

′, and the occurrence of the outliers based

on the boxplot criterion defined by the cutoff cU in Eq. (5.2.9). Cells coloured green

correspond to negative standardised residuals indicating an overestimation of the observed

NO2 concentration level for the specific combination of date and hour. From yellow to

orange to red, the values of standardised residuals are positive and increase where outliers,

i.e. standardised residuals for which it holds êst > cU , are marked by cells bordered black.

Overall, it appears that there is a slight tendency to overestimation in the last year of

the observation period (2019, weeks of observation 158-210). Referring to Fig. 5.1(b), this
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Figure 5.4: Heatmap showing distribution of standardised residual values over years 2016
to 2019 at monitoring site Turiner Straße in Cologne; each row refers to specific combina-
tion of hour of day and day of week; each column refers to specific week of observation;
cells are coloured according to standardised residual values obtained from 168 harmonic
regression models where a separate model is developed for each row, i.e. weekly subseries
of recorded NO2 concentration level; cells bordered black refer to outliers based on boxplot
criterion.

may be due to the fact that very low NO2 concentration values (dark green coloured

cells) tend to be observed in 2019. Regarding the outliers, Fig. 5.4 provides for each

outlier information on when it occurs and whether it is a single outlier, i.e. the preceding

and succeeding value is a non-outlier, or an element of an outlier sequence, i.e. at least

the preceding or succeeding value is also an outlier. Note that in order to provide this

information not only the analysis results of the subseries from which the outlier originates

are needed but also the analysis results of the subseries that refer to the preceeding and

succeeding hours.
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Taking together the results of the 168 separate analyses, a total of 555 outliers are detected,

which corresponds to 1.58% of the data. For nine of the 168 subseries, no outlier is

detected. Table 5.1 summarises how often outlier sequences of a certain length are detected.

An outlier sequence of length equal to one is synonymous with a single outlier. According

Table 5.1: Overview over occurrence of detected outlier sequences depending on sequence
length.

Length of outlier sequence 1 2 3 4 5 7 8 10 11 13
Number of occurrences 156 68 30 14 6 2 2 2 1 2

to the figures in Table 5.1, less than one third of the outliers (156) are single outliers while

the majority of outliers (399) occurs in sequences of length equal or larger than two. In

the observation period under consideration, there are two outlier sequences of length equal

to 13 which means that 13 sequential hourly recordings of NO2 concentration levels are

outliers based on the boxplot criterion.

To improve the visibility of the outliers and ease the investigation of their occurrence,

an alternative to Fig. 5.4 is given by Fig. 5.5. Cells are coloured according to the length

of the outlier sequence they refer to. An outlier sequence of length equal to zero (grey)

and one (lightgreen) is synonymous with a non-outlier and a single outlier, respectively.

From yellow to orange to red, the length of the outlier sequence increases. The first

(second) outlier sequence of length equal to 13 starts on Sunday, 22nd January 2017, at

4pm (Sunday, 9th April 2017, at 6pm) in week of observation 56 (67) and ends on Monday,

23rd January 2017, at 5am (Monday, 10th April 2018, at 7pm) in week of observation 57

(68). An accumulation of outliers can be observed on the weekdays Monday to Wednesday

of observation weeks 120 to 150. The proportion of outliers in this period is 4.43% which

is remarkably higher than the average proportion of 1.58%.

5.4 Discussion and conclusions

The introduced method for outlier detection in multi-seasonal time series combines time se-

ries segmentation, seasonal adjustment, and standardisation of random variables. Hourly

data is divided into weekly subseries and each subseries is seasonally adjusted via har-

monic regression. Standardisation of the regression residuals ensures comparability across

the subseries and yields a scaled measure for the deviation of each data point from its

mean, i.e. each standardised residual represents a scaled measure for the outlyingness
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Figure 5.5: Heatmap showing distribution of outlier sequences over years 2016 to 2019
at monitoring site Turiner Straße in Cologne; each row refers to specific combination of
hour of day and day of week; each column refers to specific week of observation; cells are
coloured according to length of outlier sequence they refer to; length equal to zero (grey
cells) and one (lightgreen cells) indicates non-outlier and single outlier, respectively.

of the corresponding data point in the weekly subseries. In an empirical application to

hourly data on NO2 concentration levels recorded at a traffic monitoring site in Cologne,

Germany, over the years 2016 to 2019, the common boxplot criterion is used to examine

the standardised regression residuals for positive outliers that correspond to unusually

high concentration levels for given combination of hour of day and day of week. At every

modelling step, a heatmap is presented where the 168 subseries are put into their natural

temporal order. The structure of the heatmaps illustrates the temporal distribution of

the observed data, the modelling fit, and the occurrence of outliers across observation

weeks, days of week, and hours of day. In particular, the heatmaps provide information

on when an outlier occurs and how long it persists, i.e. they visualise outlier sequences
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of various lengths. In the data under consideration, a total of 555 positive outliers are

detected, which corresponds to 1.58% of the data, while, for nine of the 168 subseries, no

outliers are detected. Less than one third of the detected outliers are singles outliers and

the longest sequence of detected outliers has a length equal to 13 which occurs twice in

the period under consideration.

Dividing the hourly data on NO2 concentration levels into 168 weekly subseries has some

advantages. First, since the hourly series is subdivided to the extent that the subseries

are free of intra-day and intra-week cycles one circumvents the ambiguity of choosing

appropriate time windows in order to account for anthropogenically induced seasonalities.

Second, the subseries only reveal one seasonality which facilitates the step of seasonal

adjustment. For a time horizon of four years, each subseries still consists of over 200

observations such that estimating up to nine regression coefficients in a harmonic regression

model with up to four fourier terms is reasonable and does not bear the risk of overfitting.

Third, sequential observations in the weekly subseries are separated by a time span of a

week which allows, from a climatological point of view, to assume potential autocorrelation

to be negligibly small.

The introduced methodology relies on the assumption that a harmonic regression model

with fourier terms and time-invariant regression coefficients is an appropriate choice to

approximate the systematic component. From visual inspection of the heatmap showing

the distribution of the estimated mean hourly NO2 concentration levels (Fig. 5.3), the

harmonic regression approach seems to work well. The heatmap reveals the typical sea-

sonal patterns of NO2 concentration levels and is smooth across the 168 models, with

no visible discontinuities. Nevertheless, it is clear that any misspecification errors made

in the regression step are passed on to the residuals which may cause data points to be

erroneously identified as outliers. Evaluating the robustness of the introduced methodol-

ogy against misspecification is beyond the scope of this paper and remains the subject of

further research.

The proposed method can be extended into the spatial dimension by applying it to several

spatial locations in a study region, e.g. to all monitoring sites in Cologne. This way of

examining spatio-temporal data for outliers can provide insights into whether detected

outliers and, in particular, long outlier sequences occur contemporaneously at several

locations or whether they are spatially local events. Although the focus of the present
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work lies on detecting positive outliers in hourly NO2 dioxide concentration levels, the

proposed method is also suitable for detecting negative outliers and applicable to any

multi-seasonal time series data. Examples are, among others, data on other air pollutants,

weather phenomena such as cloud cover, wind speed, and temperature, electricity demand

and consumption, traffic volume, taxi rides, or call volumes to hospitals. In particular,

the application of the introduced method to data that is known to be correlated with the

NO2 concentration level, e.g. metereological data, may uncover the causes for the outliers

detected in the present work.

Overall, this paper presents a generic procedure for outlier detection in univariate time

series with multiple seasonalities that forms a suitable basis for a variety of applications

and extensions.
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5.6 Appendix A

R-packages

Detailed information on the employed R-packages is given in Table 5.A.1.

Table 5.A.1: Overview of employed R-packages, corresponding package versions, release
dates, and references.

R-package Version Date Reference

forecast 8.14 2021-03-11 Hyndman and Khandakar (2008);

Hyndman et al. (2021)

ggplot2 3.3.2 2020-06-19 Wickham (2016)

gridExtra 2.3 2017-09-09 Auguie (2017)

lubridate 1.7.10 2021-02-26 Grolemund and Wickham (2011)

RColorBrewer 1.1-2 2014-12-07 Neuwirth (2014)

scales 1.1.1 2020-05-11 Wickham and Seidel (2020)

zoo 1.8-8 2020-05-02 Zeileis and Grothendieck (2005)
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Proof of Theorem5.2

The proof relies strongly on Hamilton (2020, Ch.7). Under Assumption 5.3 and according

to the Wold representation theorem (Wold, 1938), the error term can also be stated as

et =

∞∑
j=0

Ψjϵt−j , (5.A.1)

where ϵt
iid∼ WN(0, σ2ϵ ), Ψ0 = 1, and

∑∞
j=0Ψ

2
j < ∞. Using Eq. (5.A.1), the population

variance can be written as

E(e2t ) = E

 ∞∑
j=0

Ψjϵt−j

∞∑
j′=0

Ψj′ϵt−j′

 (5.A.2a)

= E

 ∞∑
j=0

∞∑
j′=0

ΨjΨj′ϵt−jϵt−j′

 (5.A.2b)

=

∞∑
j=0

∞∑
j′=0

ΨjΨj′ E
(
ϵt−jϵt−j′

)
. (5.A.2c)

The last step (interchange of limits and expectations) is allowed because E(|ϵt−jϵt−j′ |) <∞

and
∑∞

j=0

∑∞
j′=0 |ΨjΨj′ | =

∑∞
j=0 |Ψj |

∑∞
j′=0 |Ψj′ | <∞. Define

ηt = e2t − E(e2t ) (5.A.3a)

=

 ∞∑
j=0

∞∑
j′=0

ΨjΨj′ϵt−jϵt−j′

−

 ∞∑
j=0

∞∑
j′=0

ΨjΨj′ E
(
ϵt−jϵt−j′

) (5.A.3b)

=
∞∑
j=0

∞∑
j′=0

ΨjΨj′
[
ϵt−jϵt−j′ − E

(
ϵt−jϵt−j′

)]
. (5.A.3c)

The expectation of ηt conditional on Ωt−m = {ϵt−m, ϵt−m−1, . . .} for m > 1 is given by

E(ηt|Ωt−m) =

∞∑
j=m

∞∑
j′=m

ΨjΨj′
[
ϵt−jϵt−j′ − E(ϵt−jϵt−j′)

]
. (5.A.4)
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The expected absolute value of the expression in Eq. (5.A.4) is bounded by

E|E(ηt|Ωt−m)| = E

∣∣∣∣∣∣
∞∑

j=m

∞∑
j′=m

ΨjΨj′
[
ϵt−jϵt−j′ − E(ϵt−jϵt−j′)

]∣∣∣∣∣∣ (5.A.5a)

≤ E

 ∞∑
j=m

∞∑
j′=m

|ΨjΨj′ | · |ϵt−jϵt−j′ − E(ϵt−jϵt−j′)|

 (5.A.5b)

≤
∞∑

j=m

∞∑
j′=m

|ΨjΨj′ | ·M, (5.A.5c)

for some M <∞. With

lim
m→∞

∞∑
j=m

∞∑
j′=m

|ΨjΨj′ | = lim
m→∞

∞∑
j=m

|Ψj |
∞∑

j′=m

|Ψj′ | = 0,

it follows that ηt is an L
1-mixingale with respect to Ωt. Further, ηt is uniformly integrable

as

E(η2t ) = E
{
e4t − 2e2t E(e

2
t ) +

[
E(e2t )

]2}
(5.A.6a)

= E(e4t )−
[
E(e2t )

]2
(5.A.6b)

=
∞∑
j=0

∞∑
j′=0

∞∑
l=0

∞∑
l′=0

ΨjΨj′ΨlΨl′ E
(
ϵt−jϵt−j′ϵt−lϵt−l′

)
−

 ∞∑
j=0

∞∑
j′=0

ΨjΨj′ E
(
ϵt−jϵt−j′

)2

(5.A.6c)

<∞. (5.A.6d)

By the law of large numbers for L1-mixingales it follows

1

T

T∑
t=1

ηt =
1

T

T∑
t=1

[
e2t − E(e2t )

] p→ 0, (5.A.7)

from which
1

T

T∑
t=1

e2t
p→ E(e2t ). (5.A.8)

Substituting et in Eq. (5.A.8) by the regression residuals yields the estimator given in

Eq. (5.2.8). ■
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