
Dissertation
submitted to the

Faculty of Computer Science and Mathematics
University of Passau

Towards Storing 3D Model Graphs in Relational
Databases

Matthias Schmid

July 21, 2021

Supervisor: Prof. Dr. Burkhard Freitag





A dissertation submitted to the faculty of computer science and mathematics in partial
fulfillment of the requirements for the degree of doctor of engineering sciences.

1st reviewer: Prof. Dr. Burkhard Freitag
2nd reviewer: Prof. Dr. Alfons Kemper





Abstract

The increasing relevance of massive graph data reinforces the need for adequate graph data
management. While several graph database engines have been developed, the storage of graph
data in a relational database management system, and therefore the seamless integration into
existing information systems remains an open challenge.

Motivated by the use case to integrate Building Information Modeling (BIM) data into the
MonArch system, we propose a solution that transforms the BIM data into a property graph
and stores this graph in the database system.

We present a novel approach to efficiently store property graph data in a relational database
management system using JSON functionality and redundant storage of edges in adjacency
lists and show how to import huge data sets into this schema. Applying this approach, we
import data sets of up to nearly 1 TB of disk space within the relational database, while only
having 96 GB of main memory available.

We also present a new approach of how to retrieve data from this database schema, translating
queries written in the popular property graph query language Cypher into SQL. Hence, we
provide an intuitive way to write semantically complex queries.

We also demonstrate the efficiency of our approach using the standardized Linked Data
Benchmark Council – Social Network Benchmark (LDBC - SNB) framework. Our approach in-
creases the throughput for this benchmark by up to 85 times, compared to existing approaches
for RDBMS.

In addition, we propose a new method to transform BIM data into the property graph model
and how to apply the aforementioned property graph storage to this data. We can import IFC
models of up to 300 MB within five minutes.

We show the suitability of our approach using our own use case specific benchmark, which
we integrated into the previously mentioned Social Network Benchmark. For our interactive
use case-specific queries, we achieve response times faster than 5 ms in 99% of all executions.

Finally, we present how the aforementioned approach to store BIM data in a relational
database management system is integrated into the existing MonArch system by splitting the
different functionalities of our approach into a microservice architecture.

i





Kurzfassung

Die steigende Relevanz von riesigen Graphdatenmengen verstärkt die Notwendigkeit von
adäquatem Graphdaten Management. Während bereits mehrere Graphdatenbanken entwickelt
wurden, bleibt die Speicherung von Graphdaten in relationalen Datenbanken und die damit
verbundene nahtlose Integration in bereits existierende Informationssysteme eine ungelöste
Herausforderung.

Motiviert durch unseren eigenen Anwendungsfall Building Information Modeling (BIM)
Daten in das MonArch Informationssystem zu integrieren, schlagen wir einen Ansatz vor, BIM
Daten in eine Property Graph Form umzuwandeln und diesen in der Datenbank zu speichern.

Um dies zu erreichen, stellen wir einen neuartigen Ansatz vor, um Property Graphen in
einem relationalen Datenbanksystem zu speichern, indem wir Funktionalitäten wie JSON
und die redundante Speicherung von Kanten in Adjazenzlisten kombinieren und zeigen wie
große Mengen dieser Daten in das Schema importiert werden können. Durch die Anwendung
unseres Ansatzes können wir Datensätze von bis zu 1 TB in das Datenbanksystem importieren,
während wir nur 96 GB Hauptspeicher zur Verfügung haben.

Wir stellen außerdem einen neuen Ansatz vor, um Daten aus dem zuvor genannten Schema ab-
zufragen, indem wir die beliebte Graphanfragesprache Cypher in die Sprache SQL übersetzen.
Dadurch erreichen wir eine intuitive Art semantisch komplexe Anfragen zu schreiben.

Zusätzlich zeigen wir die Effizienz unseres Ansatzes, indem wir das standardisierte Eva-
luationsframework Social Network Benchmark des Linked Data Benchmar Council (LDBC
– SNB) verwenden. Unser Ansatz erhöht den Durchsatz dieses Benchmarks, im Vergleich
zu existierenden Ansätzen für relationale Datenbanksysteme, auf einen bis zu 85-fachen
Durchsatz.

Zusätzlich schlagen wir eine neue Methode vor, um BIM Daten in das Property Graph Modell
zu übertragen und wie das zuvor vorgestellte Speichermodel verwendet werden kann, um
diese Daten zu speichern. Damit können wir IFC Modelle mit bis zu 300 MB in unter 5
Minuten in unser System importieren.

Schließlich zeigen wir die Eignung unseres Ansatzes, indem wir einen eigenen Benchmark
spezifisch für unseren Anwendungsfall verwenden, welchen wir in den zuvor erwähnte Social
Network Benchmark integriert haben. Für unsere anwendungsfallspezifischen Anfragen
erreichen wir Antwortzeiten von unter 5 ms in 99% der Ausführungen.

iii



Zu guter Letzt präsentieren wir, wie der zuvor vorgestellte Ansatz zur Speicherung von BIM
Daten in einem relationalen Datenbankmanagementsystem in das existierende MonArch Sys-
tem integriert werden kann, indem wir die verschiedenen Funktionalitäten unseres Ansatzes
in Microservices aufteilen.



Contents

I. Preface 1

1. Introduction 3
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. Property Graphs in Relational Databases 9

2. Related Work 11
2.1. Storing Graphs in Relational Database Management Systems . . . . . . . . 11
2.2. Graph Bulk Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Graph Query Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4. Graph Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. The Relational Property Graph Model 17
3.1. Property Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. The Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1. Indexing the Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2. Using the Database Schema for Graph Queries . . . . . . . . . . . . . . . . 29

4. Data Import 35
4.1. Hash Functions Based on Data Models . . . . . . . . . . . . . . . . . . . . 36
4.1.1. Computing Conflict-Free Hash Functions for a Given Data Model . . . . . . 38
4.2. Import Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1. Parsing the Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2. Preprocessing of the Input Data . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3. Converting the Data into the Internal Representation . . . . . . . . . . . . . 49
4.2.4. Writing the Data into the Database Management System (DBMS) . . . . . . 51
4.3. Import Algorithm Performance Evaluation . . . . . . . . . . . . . . . . . . 60
4.3.1. Runtime Complexity Analysis and Evaluation . . . . . . . . . . . . . . . . 62

5. Data Retrieval 65
5.1. Basic Graph Queries and Operations . . . . . . . . . . . . . . . . . . . . . 65
5.2. Query Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1. Integrating an Additional Query Language . . . . . . . . . . . . . . . . . . 71
5.2.1.1. Introducing the Cypher Query Language . . . . . . . . . . . . . . . . . . . 74

v



Contents

5.2.1.2. The Cypher Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1.3. Cypher Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.1.4. Cypher Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2. General Approach to Translating Cypher Queries . . . . . . . . . . . . . . . 96
5.2.2.1. Translating Cypher Match Clauses . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2.2. Constructing SQL Queries from Cypher . . . . . . . . . . . . . . . . . . . 114
5.2.2.3. Optimizing the Resulting Queries . . . . . . . . . . . . . . . . . . . . . . . 120

6. Performance Evaluation 123
6.1. The Linked Data Council - Social Network Benchmark: Interactive Workload 123
6.2. The Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.1. Performance Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . 126
6.2.2. Application Specific Indexes . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.3. Preliminary Evaluation: Redundant Edge Data . . . . . . . . . . . . . . . . 130
6.3. Query Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.1. Overall Throughput and Query Performance . . . . . . . . . . . . . . . . . 131
6.3.2. Read Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.3. Update Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4. Required Disk Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.5. LDBC - SNB: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

III. The Building Information Management Model Store 147

7. Use Case: Building Information Modeling 149
7.1. The MonArch System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2. Building Information Modeling . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3. The Industry Foundation Classes (IFC) Data Model . . . . . . . . . . . . . 152
7.3.1. The EXPRESS Data Modeling Language . . . . . . . . . . . . . . . . . . . 153
7.3.2. General IFC Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8. Related Work 159
8.1. IFC Model Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.2. Querying IFC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.3. IFC as a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9. Storing IFC in the Relational Database 163
9.1. Mapping IFC into the Property Graph Model . . . . . . . . . . . . . . . . . 163
9.2. Importing IFC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3. Storing Multiple Building Models . . . . . . . . . . . . . . . . . . . . . . . 174
9.4. Spatial Queries on the Building Model . . . . . . . . . . . . . . . . . . . . 178

10. Evaluation of the IFC Store 181
10.1. Import Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

vi



Contents

10.2. Query Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.2.1. Methodology and Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . 186
10.2.2. IFC Benchmark Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.2.3. IFC Application Specific Indexes . . . . . . . . . . . . . . . . . . . . . . . 192
10.2.4. Query Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11. Integration into the MonArch System 197
11.1. Microservice Architecture for the IFC Integration . . . . . . . . . . . . . . 200
11.2. The MonArch Building Information Modeling (BIM) Prototype . . . . . . . 204

IV. Summary and Conclusion 207

12. Summary 209
12.1. Future Work and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
12.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A. Detailed Evaluation Results for the Linked Data Benchmark Council -
Social Network Benchmark (LDBC-SNB) 213

Bibliography 221

List of Figures 231

List of Definitions 235

List of Tables 237

Listings 239

List of Algorithms 241

vii





Part I.

Preface

1





1. Introduction

The increasing relevance of massive graph data reinforces the need for adequate graph data
management. To meet this requirement of property graph storage, several graph databases
engines have been developed. Some of the more popular1 examples of databases with graph
storage capability include Neo4j2, Microsoft Azure Cosmos DB3, and OrientDB4.

While most of the existing work targets the support of the graph data model in native stores or
in key-value stores, only few make use of the well-researched relational systems. Relational
databases offer a number of significant advantages, because they have full ACID compliance,
concurrency support and sophisticated query optimization while performing well — mostly
independent of data size. Most native graph solutions offer good performance as long as
the data fits into main memory. However, due to the fast growth of graph data we cannot
assume that we will be able to fully load graphs into main memory. This leads to another
significant advantage of relational systems. The seamless integration of graph data with
classical relational data is not well researched and remains an open challenge – especially
when graph data needs to be integrated with already existing information systems.

1.1. Motivation

The research for this thesis was originally triggered by a use case in which we need to store
building data, Resource Description Framework (RDF) data that describes additional infor-
mation about those buildings and relational data that originates from an existing application
into a single information system: The MonArch System [FS17].

MonArch is an information system designed for documenting structures such as architectural
objects, urban situations, and archaeological sites. A screenshot of the MonArch user interface
is depicted in Figure 1.1. A MonArch database contains a digital model of the structure, i.e. a
digital representation of the building, ensemble or site.

The trend to use 3D models as a source of information in the field of building construction and
maintenance through the method of Building Information Modeling (BIM) can be observed
for several years now. The central piece of the BIM process is a 3D model of the building.

1from https://db-engines.com/de/ranking/graph+dbms, if not explicitly stated, all websites were accessed
in July 2021

2https://www.neo4j.com/
3https://azure.microsoft.com/de-de/services/cosmos-db/
4https://orientdb.org

3



1. Introduction

Figure 1.1.: The original user interface of MonArch.

In contrast to other 3D model approaches, a model originating from BIM already offers a
segmentation in components of the building, which is required to link additional information
to the building components. The model also provides complex spatial and logical relationships
between those components. The standardized Industry Foundation Classes (IFC) offers an
open exchange format for this type of 3D building data, which makes the data accessible for
any application.

As depicted in Figure 1.2, our goal was to integrate 3-dimensional building data into the
MonArch information system. The building model is created in specialized Computer Aided
Design (CAD) software tools. Using an appropriate exchange format, the building should be
imported into the MonArch building store. Here it can be linked with additional information
like arbitrary digital documents, topic and semantic information. In addition, the MonArch
system should be able to retrieve information about the building like the building structure
and properties of components. These can then be displayed to the user and individual values
can also be altered.

Using an export mechanism, the same building can then be exported and be edited again in the
CAD software. After repeating the building model import, the previously created persistent
links should still be viable. The MonArch system is implemented using the PostgreSQL
Relational Database Management System (RDBMS) and therefore one of our goals was to
integrate the building data directly into a RDBMS. A more detailed description of our use
case can be found in Chapter 7.

While a standardized exchange format exists as the Industry Foundation Classes (IFC) data
model, there are only few database-based solutions to store and query IFC data. To the best
of our knowledge, none of those solutions offer support to query arbitrary data.

4



1.1. Motivation

MonArch
System

Building Model Additional
Information

persistent link

import export

import

Creation/change of 
model in CAD Software

export

Figure 1.2.: The desired import/export cycle for building models in the MonArch system.

During our initial research we found that storing the IFC data as a property graph is an elegant
and efficient method to store the building data. Subsequently, we needed to find a way to store
a property graph efficiently in a Relational Database Management System (RDBMS). Since
writing queries for this storage approach can get tedious, we also propose an efficient method
to write queries for our storage approach using the Cypher query language.

5



1. Introduction

1.2. Contributions

The contributions of this work can be split into two parts:

The first part of our work targets the storage of property graph data in standard state-of-the-
art Relational Database Management System. While existing work achieves good perfor-
mance [Sun+15], it can be improved provided certain assumptions hold. In particular, our
approach significantly improves the performance for workloads that mainly require read-only
queries. For the remainder of this work, we call our approach Relational Adjacency Table
Graph (RATG). Notably, we achieve the following goals:

1. We present a novel schema for storing arbitrary property graphs in any desired
state-of-the-art relational database management systems. The schema uses the wide-
spread JavaScript Object Notation (JSON)-support of current database systems. No
other particular requirements for the relational database have to be met. By shredding
different edge types into the columns of adjacency tables using a hashing function we
minimize the number of tuples that have to be fetched to query all neighbors of a given
node.

2. We show how the required hash functions can be computed from underlying data
models. The approach offers two outputs: First, the number of required columns
needed to store all edges of any vertex in a single row and second, the associated hash
function.

3. We present an efficient data import for huge graph data sets. Since our schema requires
the redundant storage of edges in three different tables (edge attributes, outgoing and
incoming adjacency) and the data normally does not fit in main memory, the efficient
import of data is a challenge in itself.

4. The schema is evaluated based on the LDBC-SNB Interactive Workload, a standard-
ized property graph benchmark. First results show:

• Our approach offers excellent performance on read-only queries.

• We achieve an overall significant throughput improvement over the original
approach for the given benchmark, which also includes update operations.

5. Because the complexity of SQL queries for the schema can be a major hindrance, we
show how to make the expressive Cypher query language (from Neo4j [Fra+18a])
available for the schema.

The second part of our work targets the integration of IFC building data as a property graph
in a relational database. Therefore, we enable the future integration into the MonArch System.
The transformation to a property graph is necessary to reduce the storage complexity: The
data is represented in a very complex and not intuitive data model (containing several hundred
classes and references).The interpretation as a graph reduces this complexity to the challenge
of storing vertices and edges. The graph storing and querying solution proposed in this work
leads to a number of improvements of the storage of IFC in database systems:

6



1.2. Contributions

1. We define a mapping of EXPRESS/IFC data into the property graph model. Thereby,
we achieve the lossless storage of EXPRESS/IFC data in a relational database by using
the previously introduced schema.

2. The resulting system is the only known IFC model store that supports arbitrary
declarative queries. Through providing the graph query language Cypher, an abstract
and intuitive way to construct arbitrary queries is available. No other system that stores
IFC/BIM data provides the capability to formulate arbitrary queries on the data.

3. Reduction of application complexity: The data is not stored in several hundred classes
and references, but as a property graph. By using the property graph model, standard
graph algorithms like shortest path search can be applied. The advantages of using the
property graph model have also been stated by Angles [AG08]. Therefore, very little
specific knowledge about the BIM data format is required to start exploring and using
the data, while the data is still stored lossless.

4. Storing multiple graphs without losing efficiency on single graphs is possible by
applying horizontal fragmentation and query rewriting.

5. In contrast to other systems, like BIMServer, our approach supports declarative queries,
including queries that target several models at the same time.

6. We created a workload to evaluate the query performance for the given IFC use case.

7. Through the use of Geographic Information System (GIS) capabilities offered by
most DBMS, we enable spatial queries on the building model within the same system.
The topological model is computed directly from the property graph representation of
the data.

In summary, we have developed a novel approach to storing property graphs in relational
database systems. We show how to make the approach usable for software development by
providing algorithms for data import and enable the use of the query language Cypher for
relational property graph stores. Afterwards, we apply the approach to a relevant specific use
case. Through this application we present a novel approach to an IFC model server based on
a relational database. This IFC model server offers a number of novel features compared to
other stores and is highly efficient.

7





Part II.

Property Graphs in Relational
Databases

9





2. Related Work

In this work we focus on the relational-based storage of property graph data. We do not
consider graph processing frameworks like Apache Giraph1 in our work, since we focus on
the storage and retrieval of graph data and not its parallel processing. We consider solutions
adequate for more general data models than RDF since, we require to assign arbitrary
properties to edges.

2.1. Storing Graphs in Relational Database Management
Systems

Since 2017, Microsoft’s SQL Server2 offers a feature to store graphs in their relational
database system. Standard relational tables can be declared as node-tables, which implies
that normal restrictions apply to those tables. Edges are also declared as tables, but standard
relational restrictions regarding references do not apply to edge tables. This means source and
target nodes of an edge table can be any table declared as a node table. To query the graph the
MATCH clause can be used, but it does not support path queries of variable length, as well as
queries along edges without specifying its edge type [Shk].

Another approach to store property graphs in relational databases is presented by Chen [Che13].
This approach uses arrays to represent the neighborhood of a vertex in a single table column.
According to the authors this approach is well suited for sparse graphs since it avoids NULL
values. On the other hand, Bornea et al. argue, that NULL values do not cause high costs in
state-of-the-art RDBMS. The authors did only explore scenarios in which all vertices have a
small degree. We do not consider this assumption in our work and perform an experimental
evaluation with a data set that has a highly heterogeneous number of vertice degrees.

In Edge-k [Sca+18] Scabora et al. present a relational-based approach to store weighted
graphs. They describe how to store k edges of vertex in a single row. Their graph model is
limited to a fixed amount of weights for an edge and can not handle arbitrary properties.

Bornea et. al first proposed the approach of shredding graph edges into adjacency tables
in [Bor+13]. Sun et al. base their work in [Sun+15] on the previously mentioned work
of Bornea et. al and outlined a novel schema layout for storage of property graph data in
relational databases, which is generalized from the approach to store RDF data. They combine

1http://giraph.apache.org/
2https://www.microsoft.com/en-us/sql-server/sql-server-2017

11



2. Related Work

the shredding of edges into adjacency tables with the use of JSON-based attribute storage to
overcome the limitations of fixed columns. To make the retrieval of data more convenient,
they propose a translation mechanism that converts Gremlin [Rod15] queries to SQL queries,
which can be run on the proposed relational schema. The adjacency tables are the major
difference between the approach by Sun et al. and the Microsoft SQL Server feature. Since
SQL Server supports JSON data, the approach by Sun et al. could be implemented on top of
the SQL Server graph feature. We have refined this approach for read-query heavy workloads
in this thesis. A preliminary evaluation can be found in [Sch19a].

The Apache AGE (A Graph Extension for PosgreSQL) [Apa21] is a new extension for
PostgreSQL for the storage of graph data. It is in the early development phase and had its
first official Apache incubator release in early 2021. The project plans a number of features
similar to our approach, like openCypher support, storage of multiple graphs, and queries that
that target several graphs at the same time. In contrast to our approach, they currently create a
table for each label type that is used. Their approach is also limited to specific versions of the
database and currently only supports PostgreSQL 11, while the support for newer versions is
currently planned. Our own approach is mostly independent of database versions, as long
as the database supports JSON and array functionality. During the course of this work, we
have successfully applied our approach to every PostgreSQL version from PostgreSQL 10
through PostgreSQL 13 without the need for modifications.

In particular, our approach offers a number of advantages over the storage in the native graph
database Neo4j. First, we can store multiple graphs in the same database (or schema in our
case), while in Neo4j the creation of several databases is required. This directly implies the
second advantage: We can access several graphs with a single query. To do this in Neo4j
we would have to create a single huge graph and distinguish between the different graphs
using labels. This leads to the third advantage: we can easily and very efficiently delete single
graphs.

While our general goal was to store the graph data in a RDBMS, even assuming that storing
the data in e.g. Neo4j offers a performance advantage, our approach still comes with a number
of advantages.

2.2. Graph Bulk Loading

The general field of graph bulk loading is largely neglected in the scientific literature, as
confirmed by the few publication available (e.g. [The+16]).

In [Müh+13], Mühlbauer et al. present an approach that focuses on using all the available
bandwidth while loading huge data sets over the network. Assuming that the server’s main
memory and hard drive speeds are not the bottleneck, they present an approach to use hardware
level optimizations (e.g. CPU specific instruction sets) and highly parallelizing the import
process to speed up the loading process for their relational main memory database system
HyPer.

12



2.3. Graph Query Languages

In their work, Then et al. [The+16] discuss that for many workloads the actual loading of the
data is the dominant cost factor, yet it is not point of focus in literature. They present various
loading strategies for in-memory graph representation. While we identified similar import
process stages, their work focuses on in-memory representation, while our work assumes that
the data set does not fit into main memory.

Durand et al. [Dur+18] examined that server-side loading is best suited for loading huge
amount of data into property graph database management systems. While they mostly
identified the same import phases as we did, their approach is a general concept for loading
graph data. They do not consider the specific target schema, which in our case contains
redundantly stored data.

2.3. Graph Query Languages

As stated before, we focus on storing property graph data. Therefore, we only consider graph
query languages that are designed to handle queries for the property graph model or are
closely related to those. Even though we store the data in a relational database, our research
showed that SQL is not a language that is very well suited to intuitively formulate queries.
The strong focus on Join operations and the table based model results in very complicated
SQL queries. The last decade has brought forth a number of abstract graph query languages
that have not be considered when talking about a property graph database.

In contrast to the existence of a standard query language like SQL [CB74] for relational
databases and SPARQL [PAG09] for the RDF, no standardized query language for the property
graph model exists [Tha+19]. Besides SPARQL, several other languages were proposed to
query property graphs.

An early example of a graph query language is Glide. The authors combined features from
Xpath and Smart, which resulted in a query language based on regular expressions [GS02]. In
2008, He et. al proposed GraphQL [HS08]. The query language is based on a graph algebra
that ist extended from the relational algebra, relationally complete and contained in Datalog.

Nonetheless, none of the aforementioned query languages has managed to assert itself as a
standard query language, yet. Currently, three languages have come closest to becoming the
standard query language for property graphs: Gremlin is a low level graph traversal language
developed by Tinkerpop [Tha+19]. Several graph databases like Neo4j and OrientDB offer
Gremlin interfaces. Even though many systems offer an interface for the use with the Gremlin
query language, many application developers prefer other languages like Cypher [HP13] due
to its non-declarative nature.

Created by Facebook, GraphQL [Fac16] (not to be confused with the aforementioned
GraphQL [HS08]) is a conceptual framework for providing a graph data access interface on
the Web. This framework includes a graph query language that was first formally specified
by Hartig et al. [HP18]. To write a query, the user defines a JSON-like skeleton including

13



2. Related Work

so-called fields that can contain values. The fields that are defined but not bound with values
are then filled by the query engine with corresponding result values [HP17].

The Cypher graph query language was originally developed by the Neo4j team and is a
declarative graph query language [Fra+18a]. The main operator of the query language is the
MATCH which is used to describe the graph pattern that we are searching for, much like
the way we describe patterns in SPARQL. The Cypher query language has moved on to the
openCypher project [Gre+18].

2.4. Graph Benchmarks

In the field of RDF there exist numerous benchmarking efforts. But to the best of our
knowledge the benchmarks provided by the Linked Data Benchmark Council (LDBC) are the
only benchmarks that directly address the problem of benchmarking property graph stores.

The LDBC is an EU project with the goal to develop benchmarks for graph structured data.
They strife to find the acceptance benchmarks like the TPC [PF00] have achieved. The
LDBC-SNB is a benchmark framework being developed by the LDBC that uses a generated
social network graph as its data set and represents the data as a property graph. The benchmark
suite provides a data set generator that can create test data with different scale factors.

In contrast to most generated graphs, the generator tries to generate data as realistically as
possible. To this end different strategies to correlate attribute values and the graph structure
are applied. For example two people studying at the same university are more likely to know
each other, than people who have no common place. An overview of different scale factors
and the corresponding number of vertices and edges is depicted in Table 2.1.

SF Approx. #Vertices Approx. #Edges
1 3,200,000 17,300,000
3 9,300,000 52,700,000

10 30,000,000 176,600,000
30 99,400,000 655,400,000

100 317,700,000 2,154,900,000
300 907,600,000 6,292,500,000

Table 2.1.: Approximate number of vertices and edges generated for different LDBC-SNB
scale factor (SF).

Works on the Social Network Benchmark are not finished yet, but the Interactive Workload
has been released in draft stage [Erl+15]. This workload can be partitioned into three types
of queries: First, simple queries request a small part of the graph, while most of the time
starting at a single vertex and only considering a small neighbourhood around this vertex.
Second, complex queries take a big part of the graph into account and often include complex

14



2.4. Graph Benchmarks

aggregations. Last, update queries create new vertice(s) and insert edges connecting those
new vertices.

In contrast to relational databases and RDF triple stores, no de facto standard query language
for property graph stores exists. Therefore, all queries are defined in natural language in a
specification document [Ang+20]. Naturally this introduces a source for variance, depending
on the quality of the implementation of the queries for the system being benchmarked. Other
workloads, like the business intelligence workload, are currently under development [Szá+18].

15





3. The Relational Property Graph Model

In this chapter we describe our storage approach for huge property graphs in relational
database managements systems.

As we described in Section 1.1, we were motivated to store property graph data in a RDBMS
due to our use case to integrate BIM data into the MonArch system [FS17]. Based on a
preliminary feasibility study, we had shown the advantages of storing IFC data as a property
graph. We validated this by implementing a proof of concept using Neo4j. Nevertheless, the
requirements of the BIM use case required integrating the data into a relational database (in
this specific case we used PostgreSQL).

We first present the definition of a property graph we used for our work. Then we introduce
our database schema. Afterwards we propose a set of indices for use with RATG. We finish
the chapter with a section describing how the database schema can be used for data querying,
data insertion and deleting data.

3.1. Property Graphs

Many definitions of a property graph can be found in literature, but to the best of our
knowledge there is no generally accepted definition, though most of the definitions only differ
in minor details. For this thesis we use the definition given by Angles [Ang18]:

We assume that L is an infinite set of labels, P is an infinite set of property names (which are
also called keys), and V is an infinite set of atomic values.

Definition 3.1 [Property Graph]
A property graph consists of a set of vertices and directed edges. Every edge has a label
assigned to it. Each vertex or edge can additionally have multiple key-value pairs assigned
that serve as attributes. More formally, a property graph is a tuple G = (N,E,ρ,λ ,σ)
where:

1. N is the finite set of nodes (also called vertices);

2. E is the finite set of directed edges such that N∩E = /0;

17



3. The Relational Property Graph Model

3. ρ : E→ (N×N) is a total function that associates each edge r ∈ E with a pair of nodes
n1,n2 ∈ N (therefore ρ is the well-known incidence function from graph theory). We
also call n1 the source node and n2 the target node of the edge r.

Additionally, for the sake of readability we define src : E → N as the function that
associates the source vertex n1 with the edge r and target : E→ N as the function that
associates the target vertex n2 with the edge r;

4. λ : E→ L is a total function that associates an edge with a label l ∈ L. We also call this
label the type of the edge;

5. σ : (N ∪E)×P→P(V ) is a partial function that associates nodes and edges with
properties. For each property it assigns a set of values from V . As in [Fra+18b], we
assume that σ is a total function, but there are only finitely many x ∈ (N∪E) and k ∈ P
such that σ(x,k) 6= null.

Remark 3.1
We use a reserved property key "type" to assign types to vertices. For the sake of a clear de-
piction, we will color the text representation of vertex types blue (e.g. person), of relationship
types green (e.g. knows), of vertex properties orange (e.g. name = "Yamamoto"), and of edge
properties red (e.g. since = "14.06.2018"). We will use this highlighting for the remainder of
this thesis.

We will base most examples given in this thesis on the same small example graph. Therefore,
we now introduce this graph.

Example 3.2 [Example Graph for this Thesis]
Figure 3.3 depicts an example of a simple property graph that describes a social network
graph. The graph describes three people (nodes identified by 1, 2 and 3). The person with
the name = "Yamamoto" knows the person with the name = "Silva" since = "14.06.2018",
which is described by the directed edge between the two vertices. The nodes identified by 1
and 2 like the node identified by 7 that describes a post, but no attributes are assigned to those
edges. The rest of the example can be interpreted analogously.

This graph is formally represented in the previously presented model as G = (N,E,ρ,λ ,σ)
with

• N = {n1,n2,n3,n7,n13} as the set of nodes;

• E = {r4,r5,r6,r11,r12,r14} as the set of edges;

• ρ = {r4→ (n1,n2),r5→ (n1,n3),r6→ (n2,n7),r11→ (n13,n1),r12→ (n1,n7),
r14→ (n13,n7)} as the total function that associates each edge with its corresponding
source and target vertex;

18



3.1. Property Graphs

Figure 3.3.: A property graph example modeling a social network.

• src = {r4→ n1,r5→ n1,r6→ n2,r11→ n13,r12→ n1} as the total function that assigns
each edge its source node;

• target = {r4 → n2,r5 → n3,r6 → n7,r11 → n1,r12 → n7} as the total function that
assigns each edge its target node;

• λ = {r4→ knows,r5→ knows,r6→ likes,r11→ hasCreator,r12→ likes,r14→ replyO f}
as the total function that assigns a label to each edge;

• and
σ(n1, type) = Person,
σ(n1,name) = Yamamoto,
σ(n1, f irstName) = Akira,
σ(n2, type) = Person,
σ(n2,name) = Silva,
σ(n2, f irstName) = Ana,
. . .
σ(r4,since) = 14.06.2018,

19



3. The Relational Property Graph Model

σ(r5,since) = 21.03.2016
as the partial function that assigns properties to vertices and edges.

Note that we have to represent undirected edges by using exactly two directed reciprocal
edges. To avoid the definition of an additional function, we assume that comparison operators
like < can be applied to two vertices (or edges respectively) to compare the IDs of vertices
(and edges respectively), for example n1 < n2 and n2 ≥ n1. We will use this example graph as
a running example for the rest of this part of the thesis.

20



3.2. The Database Schema

3.2. The Database Schema

Our goal was to find a storage schema for property graph data in a relational database with
an emphasis on supporting efficient read-only queries. We apply relational data storage and
combine it with the JSON functionality of relational DBMS, which is by now available in
almost every relational DBMS.

We store edges redundantly in an edge list table and two tables that represent incoming and
outgoing adjacency lists of the vertices. We achieve high read-query performance, because
the neighborhood of a vertex can usually be found by loading a single tuple of the adjacency
table. Our work significantly improves the efficiency of the work described in [Sun+15]. An
overview of the tables included in our schema is depicted in Table 3.4.

Vertices : {[
VID : LONG,
Attributes : JSON

]}

OutgoingAdjacency : {[
VID : LONG (→ Vertices.VID),
EID1 : LONG[],
Label1 : VARCHAR,
TID1 : LONG[],
. . .
EIDk : LONG[],
Labelk : VARCHAR,
TIDk : LONG[]

]}

Edges : {[
EID : LONG,
SID : LONG (→ Vertices.VID),
TID : LONG (→ Vertices.VID),
Label : VARCHAR,
Attributes : JSON

]}

IncomingAdjacency : {[
VID : LONG (→ Vertices.VID),
EID1 : LONG[],
Label1 : VARCHAR,
SID1 : LONG[],
. . .
EIDp : LONG[],
Labelp : VARCHAR,
SIDp : LONG[]

]}

Table 3.4.: The relational property graph database schema.

We will now describe the different tables including our optimization for read-only focused
workloads. For the storage of vertex data and the storage of edge attributes we apply the
concept presented in [Sun+15].

Storing Vertices The vertex table stores the internal vertex identifier and the attributes
for each vertex. The internal vertex identifier VID is automatically generated at load time
and solely used for internal referencing purposes. It should not be used to represent actual
data. In our prototypical implementation the attributes are implemented as the jsonb data

21



3. The Relational Property Graph Model

type provided by PostgreSQL. To describe vertex types we can reserve a key for the jsonb
document.

An example for the vertex table is depicted in Table 3.5: For our evaluation data set (see
Section 6.1) we reserved the property key type for the label of a vertex, in order to model
vertex types like Person, Post, and Message. The table also contains other attributes like the
name of a Person and the creationDate of a Post. For example, the vertex V ID = 3 is of type
Person and has the name = "Lepland".

VID Attributes
1 {"type": "Person", "name": "Yamamoto", "firstName": "Akira"}
2 {"type": "Person", "name": "Silva", "firstName": "Ana"}
3 {"type": "Person", "name": "Lepland", "firstName": "Carmen"}
7 {"type": "Post", "creationDate": "03.03.2020"}
13 {"type": "Post", "creationDate": "02.03.2020"}

Table 3.5.: The vertex attributes table of the graph in Figure 3.3.

Storing Edges as an Edge List We store edge attributes analogously. In contrast to the
vertex table, we do not only store attributes in this table, but also additional information about
the edges like the source vertex SID and the target vertex TID. Since in our definition of a
property graph (see Definition 3.1) every edge has exactly one label, we also store these in
a designated column. In [Sun+15] it is claimed that queries which require tracing along a
variable number of edges are significantly more efficiently computed when the edge table is
used instead of the adjacency table. We performed a preliminary evaluation supporting this
claim [Kor17].

EID SID TID Label Attributes
4 1 2 knows {"since" : "14.06.2018"}
5 1 3 knows {"since" : "21.03.2016"}
6 2 7 likes null
11 13 1 hasCreator null
12 1 7 likes null
14 13 7 replyOf null

Table 3.6.: The edge attributes table of the graph shown in Figure 3.3.

An example for the edge list is depicted in Table 3.6: The edge with EID = 5 has the source
vertex with V ID = 1, target vertex with V ID = 3, the relation type knows and the attribute
value ”21.03.2016” for the key since.

We assumed that in most graph applications queries will most commonly access a huge part of
the neighborhood of a vertex and not just single edges. Quite often these queries are restricted
to a set of edge labels, but rarely access single edges. We want to leverage this property by

22



3.2. The Database Schema

storing edges in such a way that they can be quickly accessed. To this end we apply the
concept of adjacency lists to our database schema.

Storing Edges Using Adjacency Tables Our solution differs from SQLGraph in respect
to how adjacency tables are implemented. In their work, Sun et al. [Sun+15] claim that
shredding vertex adjacency lists into a relational schema provides a significant advantage over
other mechanisms, for example mechanisms that store all edge information in a single table.
To this end a hash function has to be defined that matches edge labels to a corresponding
column triple of the adjacency table.

In addition, we generalize the approach to compute a hash function through the use of
coloring heuristics as described in [Bor+13] for data models. Note that, since the LDBC-SNB
data set includes a data model, it is possible to compute a conflict-free hash function for this
specific data set. We will present our approach to construct this hash function in Section 4.1.

Sun et al. [Sun+15] store adjacency data in two types of tables, namely the primary adjacency
tables and secondary adjacency tables. If only a single edge of a label exists for the vertex, its
edge-id EID, label and target vertex-id TID are stored in the outgoing primary table (OPA) and
incoming primary table (IPA), respectively. If a vertex is only the source of each edge type a
single time, then all outgoing neighbors of the vertex can be found by simply retrieving the
single tuple that stores all of the neighbors. According to Sun et al. [Sun+15] this leads to a
significant performance improvement, even in comparison to native graph databases (like for
example Neo4j) for these kinds of data sets.

However, by studying available data sets and use cases one can easily see that single occur-
rences of edges are usually not the case. For example, consider the LDBC-SNB data set that
we used for our performance evaluation (see Chapter 6): The data set mainly contains edges
like knows, isLocatedIn, worksAt, hasCreator, etc. all of which are relationships that can
target or originate from several vertices.

OPA
VID EID1 Label1 TID1 ... EIDk Labelk TIDk
1 12 likes 7 null knows -1
2 6 likes 7 null null null
13 11 hasCreator 1 14 replyOf 7

OSA
TMP EID TID
-1 4 2
-1 5 3

Table 3.7.: The outgoing adjacency tables of the original SQLGraph for the graph in Fig-
ure 3.3.

23



3. The Relational Property Graph Model

Therefore, if the vertex has multiple outgoing edges of the same label, the edge-ids and
target vertices must be stored in the outgoing secondary adjacency table (OSA) and incoming
secondary adjacency table (ISA) respectively, while the target vertex id of the outgoing
primary table or incoming primary table is set to a generated abstract value that serves as the
JOIN partner for the outgoing secondary adjacency table and incoming secondary adjacency
table [Sun+15].

An example for multiple outgoing edges with the same label is depicted in Table 3.7: In our
example graph the vertex with V ID = 1 knows the two vertices with V ID = 2 and V ID = 3.
This leads to both edges being outsourced to the secondary adjacency table. In turn, this
means that in order to retrieve the neighborhood of a vertex using the adjacency tables, the
user needs to use a potentially expensive JOIN operation.

The example also demonstrates the two major drawbacks of SQLGraph:

1. A query to receive all outgoing or incoming neighbors requires the use of an OUTER
JOIN operation. This is necessary, since the user cannot be sure if the data is outsourced
to the secondary adjacency table. In order to provide a query that works in any case,
this JOIN is mandatory. If there exists only a single edge, the OUTER JOIN will
not find a corresponding partner in the secondary adjacency table and therefore use
the data in the primary adjacency table. If more edges do exist, the JOIN results will
represent the resulting edges. This query works independently of the number of edges
per label and the hash function. Therefore, for every edge-hop a potentially expensive
JOIN operation is required. Because retrieving the neighborhood of a vertex is one of
the most essential operations for graph pattern queries, this will occur in nearly every
query. Our evaluation (see Section 6.3) confirms the statement from [Sun+15] that big
intermediate result sets are a bottleneck for their approach.

2. The unoptimized approach assumes that many of the edges only occur once for a
vertex. But for every type of edge that occurs n > 1 times, the respective secondary
adjacency table contains n tuples. Therefore, in a data set that mainly contains edges
that primarily occur several times, the corresponding secondary adjacency table is
nearly the same size as the edge list table. For the worst case, the secondary adjacency
table contains exactly the same amount of tuples as the edge list table, which in turn
defeats the original purpose of shredding the edges in the primary adjacency table,
thereby reducing the search space to retrieve the neighborhood of a query.

We eliminate the need for this OUTER JOIN-operation, and thus optimize query evaluation
by storing all edges of one type in the corresponding columns using arrays (e.g. PostgreSQL
offers a JSON-array data type which can be used to implement the proposed schema). We trade
the overhead of always performing an OUTER JOIN-operation for the cost of unwrapping the
values of arrays. Doing this, we overcome the bottleneck of always having to perform the
aforementioned OUTER JOIN operations. We can confirm this using our evaluation results
(see Section 6.3)

24



3.2. The Database Schema

Assuming we have found a hash function with a very low amount of conflicts, the number
of entries in the adjacency tables is very close to the number of vertices of the graph. This
is due to the fact that without hash conflicts we can store the complete neighborhood of a
vertex in a single tuple. The number of vertices in a graph is usually much lower than the
number of edges in the graph and therefore our adjacency tables have a lot less entries than
the secondary adjacency entries. Therefore, we greatly reduce the search space required to
find the neighborhood of a vertex for most data sets.

VID EID1 Label1 TID1 ... EIDk Labelk TIDk
1 [12] likes [7] [4, 5] knows [2, 3]
2 [6] likes [7] null null null
13 [11] hasCreator [1] [14] replyOf [7]

Table 3.8.: The outgoing adjacency table for the graph in Figure 3.3.

Table 3.8 shows an example of our adjacency tables: The graph contains two knows edges
with edge identifiers EID = 4 and EID = 5 that point from the vertex with V ID = 1 to the
vertices V ID = 2 and V ID = 3. The complete outgoing neighborhood of the vertex can be
stored in a single tuple.

VID EID1 Label1 SID1 ... EIDp Labelp SIDp
1 null null null [11] hasCreator 13
2 [4] knows [1] null null null
3 [5] knows [1] null null null
7 [12, 6] likes [1,2] [14] replyOf [13]

Table 3.9.: The incoming adjacency table belonging to the graph depicted in Figure 3.3.

Table 3.9 depicts an example for an incoming adjacency table for the graph in Figure 3.3. The
two knows edges with EID = 4 and EID = 5 can be found in the respective tuples for the
vertices with V ID = 2 and V ID = 3, because these are the target vertices of the edges. In
particular, it should be noted that the hash function for the incoming adjacency table is not the
same hash function as is used for the outgoing table. For example, in this case it is possible to
map both the knows and the likes edges to the first column triple, since these types of edges
always target different types of vertices (Person and Post, respectively). Not only can the
assignment of labels to column triples be different from the outgoing hash function, but the
number of required columns can divert from the amount of the outgoing table, too.

However, if two labels are hashed to the same column triple, we need to insert a second
row for this vertex. For examples sake, let us assume that the labels knows and likes of our
example graph (see Figure 3.3) are both mapped to the first column triple of the outgoing
adjacency table. The result of inserting both types of edges into the table can be seen in
Table 3.10: Since the first column triple is already filled with likes edges and the given hash
function also maps the knows edges to the first column triple, we have to insert a second tuple
for the vertex with V ID = 1 to be able to also store edges of the type knows for this vertex.

25



3. The Relational Property Graph Model

VID EID1 Label1 TID1 ... EIDk Labelk TIDk
1 [12] likes [7] ... ... ...
1 [4, 5] knows [2, 3] null null null
2 [6] likes [7] null null null
13 [11] hasCreator [1] [14] replyOf [7]

Table 3.10.: The outgoing adjacency table depicted in Table 3.8 with a hash conflict high-
lighted in red for the labels knows and likes.

We could omit this by providing a conflict-free hash function or possibly by providing more
columns.

An evaluation of optimal numbers of columns has not been part of our research yet and
will have to be addressed in the future. If no hash function with a low number of resulting
conflicts for a given amount of columns can be found, additional columns could be required.
Nevertheless, we were able to find such a hash function for our IFC use case (see Chapter 7),
as well as for the LDBC-SNB data set [Bon13], which we used for our evaluation. We will
present our approach to compute such a conflict-free hash function in Section 4.1 and present
our evaluation results in Chapter 6.

In conclusion, we eliminate the need for the OUTER JOIN-operation by storing all neigh-
bors in arrays instead of a reference to a secondary adjacency table. We expected the
overhead we create by using arrays to be much lower than the overhead created by performing
the JOIN-operations necessary to use SQLGraph. This even holds true for the existence of
single edges, which is the strong point of the approach. By eliminating the need of an OUTER
JOIN for any edge hop, a major drawback of the original schema is overcome. We present
our findings regarding the performance of our optimization in Chapter 6.

26



3.2. The Database Schema

3.2.1. Indexing the Graph

As in any application of relational databases, the use of indexes to access the data is vital to
achieve good performance. Since the stored graphs are huge, and for example searching for
specific nodes needs to be done in the shortest amount of time possible, indexes relieve the
database system of loading all data from the hard drive and therefore help to narrow down the
search. The utilized indexes in our proposed approach RATG can be split into two types:

1. Indexes that will be useful in any application regarding the property graph data. Those
indexes offer a general improvement of access time for the graph data that is independent
of the use case at hand. They enable the fast search for vertices, access to the vertices’
attributes and associated edges. In this section we describe the indexes we propose to
use for any application.

2. Indexes that are specific to a certain use case. For example, in the LDBC-SNB a very
frequent query searches for a node with a specific id that is only unique in combination
with the type of the node. A specialized index that contains the id and type of vertices
can speed up query processing significantly. Examples for use case specific indexes for
the LDBC-SNB can be found in Section 6.2.2 and for the IFC use case in Section 10.2.3.

We now describe the set of indexes we propose to always use in combination with our
approach.

The vertex table is indexed as follows:

Index on VID Any time attribute values regarding a vertex that is source or target of an edge
are requested, an Equi-Join between the vertex table and source/target id of the edge
based on the id must be performed. Since accessing the neighborhood of a vertex is an
essential operation in a graph, we index the global graph vertex id using an index. We
do not expect range queries (which would make a B-Tree preferable) on the vertex id,
since this id is strictly used for internal referencing mechanisms and should not carry
application information.

Inverted Index on attributes We index the attributes of a node with an inverted index. This
enables us to search for vertices using attribute values efficiently. If the expected
workload targets specific attributes, we suggest creating additional indexes.

Then we index the edge list as follows:

Hash Index on EID We need to use an Equi-Join of edge list table with intermediate query
results every time we need to access edge attributes. Because no range queries should
occur on this attribute, we propose to use a hash index.

Hash Index on SID As mentioned before, outside of accessing attributes of edges the edge
list is mainly used for recursive SQL queries to traverse paths of variable length. These
recursive queries once again heavily use Equi-Joins. To speed up this process we
propose a hash index on the source vertex id of the edges.

27



3. The Relational Property Graph Model

Hash Index on TID Due to the same reason, we propose a hash index on the target id of an
edge. This speeds up recursive queries in the opposite direction.

Lastly we index the outgoing adjacency table and incoming adjacency table the same way:

Hash Index on VID For most edge hops in the graph we will join the outgoing adjacency
table or incoming adjacency table to the current intermediate result by use of an
Equi-Join. Therefore, we propose to use a hash index on the vertex id of both tables.

These indexes are the base for the graph schema. Additional workload-specific indexes
can speed up query processing further by, for example, enabling the DBMS to answer (sub-
)queries using index-only-lookups. Examples for these application-specific indexes can be
found in Section 6.2.2.

28



3.2. The Database Schema

3.2.2. Using the Database Schema for Graph Queries

Now that we have introduced our database schema, we will take a brief look at how to retrieve
and manipulate graph data stored in our schema using SQL for data retrieval and Procedural
Language/PostgreSQL Structured Query Language (PL/pgSQL) for data modification. For this
purpose, we will use examples written in the PostgreSQL dialect. While the implementation
for this work mainly focused on PostgreSQL, Shanmugam has also created a proof of concept
for OracleDB [Sha21].

Retrieving Data In order to construct queries that represent graph pattern queries, we
have to be able to perform three basic graph queries: Retrieving a vertex and its attributes
(e.g. using the vertex id or attribute values), retrieving an edge and its attributes, and the
neighborhood of a vertex (for either outgoing or incoming edges). All other types of queries
can then be constructed from these basic operations using Common Table Expression (CTE)s
and (OUTER) JOIN operations.

Listing 3.11 depicts a query that searches for vertices using the type person and that has the
name ’Yamamoto’.

SELECT a.vid, a.attributes
FROM vertices a
WHERE a.attributes->>’type’ = ’person’
AND a.attributes->>’name’ = ’Yamamoto’

Listing 3.11: Example query that searches for a Vertex.

Querying for vertices and their attributes can be achieved using standard SQL and JSON
functions provided by the DBMS. Analogously, the same can be achieved for edges and their
attributes.

To be able to apply the concept of adjacency lists, we now consider the query depicted in
Listing 3.12: This query searches for the outgoing neighborhood of the vertex with V ID = 3,
but only edges of type likes.

The first sub-query unshred_edges retrieves the relevant adjacency lists for the vertex with
V ID = 3. If we have a hashing function available that produces a low amount of conflicts, the
number of rows that have to be loaded is very low. By applying the combination of UNNEST
and array functions, we split the single row that contains k column-triples into k rows that
each contain a single column-triple.

The next sub-query gather_edges uses the DBMS specific function array_elements() to split
each of the rows, which contains a single column-triple, which in turn contains arrays of
length n into n rows of which each contains a single edge. The results are filtered to remove
any edges that do not have the label likes.

29



3. The Relational Property Graph Model

WITH unshred_edges AS (
SELECT vid,
UNNEST(array[EID1, . . . ,EIDk]) AS eidTmp,
UNNEST(array[Label1, . . . ,Labelk]) AS label,
UNNEST(array[T ID1, . . . ,T IDk]) AS tidTmp

FROM OutgoingAdjacency
WHERE vid = 3

),
gather_edges AS (
SELECT unshred_edges.vid,
array_elements(eidTmp) AS eid,
label,
array_elements(tidTmp) AS target

FROM unshred_edges
WHERE label = ’likes’

),
SELECT vid, eid, label, target
FROM gather_edges

Listing 3.12: Example query to search for the outgoing neighborhood of a vertex.

Remark 3.2
In the course of this work we will use abbreviated versions of PostgreSQL functions to make
the listings and examples more readable. The queries can not be used in this exact form.
We also use the jsonb array instead of the original PostgreSQL array data type, since more
predefined functions are provided for jsonb arrays.

Remark 3.3
For a detailed description of how to construct complex SQL queries that are equivalent to
complex Cypher queries, please consider Section 5.2.1.

30



3.2. The Database Schema

Inserting Data In order to insert new vertices into the graph, we can use standard SQL
update queries. Therefore, we will only take a closer look at the creation of new edges.

Since RATG leverages redundant storage of edges to improve query performance, we need to
make sure that each new edge is inserted three times. To this end we assume that we already
know the vids of the source and target vertex, the label and the corresponding column-triple
numbers for the incoming and outgoing adjacency tables.

1. The edge has to be inserted into the edge list table. We can do this using standard SQL.
Doing this we can also let the DBMS handle the generation of an edge id;

2. Using the edge id, source vertex id and target vertex id, we need to insert the edge into
the outgoing adjacency list of the source vertex;

3. We need to analogously insert the edge into the incoming adjacency list of the target
vertex.

We assume that we have a hash function that maps each edge to a column triple. We describe
how to obtain such a mapping in Section 4.1.

To do this we implemented prepared functions in PostgreSQL using PL/pgSQL. An abbre-
viated example of the function that inserts an edge into the graph is depicted in Listing 3.13.

Deleting Data Since deleting data was not part of our IFC use case, we did not focus on
the evaluation of vertex and edge deletion.

In order to delete an edge, we have to make sure that the following three actions are performed:

1. The edge is removed from the edge list table. We can achieve this using standard SQL;

2. The edge is removed from the outgoing adjacency table of the source vertex. We can do
this by performing a similar query as depicted in Listing 3.13, but removing the value
from the array instead of appending it;

3. And the edge is removed from the incoming adjacency table of the target vertex. This
can be done analogously to deleting data from the outgoing adjacency table.

When we want to delete a vertex we have to perform the following steps:

1. The vertex is removed from the vertex table. We can easily achieve this by performing
a standard SQL query;

2. All edges with the removed vertex are deleted:

a) All edges that contain the vertex are removed from the edge list using standard
SQL;

31



3. The Relational Property Graph Model

b) We change the id x of the outgoing adjacency list entry for the given vertex to
−1 ∗ x; this means we do not have to remove the edge entries from the edge
target’s incoming adjacency list right now. These edges will from now on not be
included in query results, since they will not successfully join on existing vertices.
A maintenance job can clean up those remaining entries later on when the system
is not under stress.

c) And we remove the incoming adjacency list entries for the given vertex using the
same approach as we use for the outgoing adjacency list.

Up to this point we have assumed that we already know the hash functions for the incoming
and outgoing adjacency tables. We will now present how to compute suitable hash functions.

32



3.2. The Database Schema

CREATE OR REPLACE FUNCTION insertEdge(source bigint, target bigint,
label text, attributes text, incolumn integer, outcolumn integer)
RETURNS bigint
LANGUAGE plpgsql

AS
$function$
DECLARE

generatededgeid bigint;
insert_opa_command text := ’UPDATE outgoingAdjacency SET eid’
|| outcolumn ||’ = COALESCE(eid’ || outcolumn ||
’, jsonb_build_array()) || jsonb_build_array($4),’
...
’WHERE vid = $1 AND InsertTuple = true’;

insert_ipa_command text := ...
BEGIN

INSERT INTO edges (incomingedge, outgoingedge, label,
edgeattributes) VALUES ($1, $2, $3, $4::jsonb)
RETURNING edgeid INTO generatededgeid;

-- ensure that adjacency tuples for the source vertex exist
INSERT INTO outgoingAdjacency (vertexid, InsertTuple)

SELECT SOURCE, true
WHERE NOT EXISTS (

SELECT 1
FROM outgoingAdjacency
WHERE vid = SOURCE

);
INSERT INTO incomingAdjacency (vertexid, InsertTuple)

SELECT SOURCE, true
WHERE NOT EXISTS (

SELECT 1
FROM incomingprimaryadjacency_1
WHERE vid = SOURCE

);
-- repeat same for target vertex
...
-- append edge triple to the corresponding arrays
EXECUTE insert_opa_command USING SOURCE, target, label,

generatededgeid;
EXECUTE insert_ipa_command USING SOURCE, target, label,

generatededgeid;
RETURN generatededgeid;

END;
$function$;

Listing 3.13: Example implementation of a prepared function to insert a new edge.

33





4. Data Import

The time-efficient import of huge amounts of data is imperative and a challenge for every
database system. In the case of huge data graphs additional challenges arise: Most use cases
for graph data consider particularly huge amounts of data, while at the same time data locality
in graphs is a particularly difficult topic. Our approach stores the adjacency of a vertex in a
single row. Since we want to minimize random accesses to the permanent storage, as well as
round trip times to the database, we need to gather all edges of a vertex before we can create
its adjacency entry. This also limits streaming capabilities for the data import and calls for
specialized import strategies.

In this chapter we present an approach that describes how to compute suitable hash functions
that are based on a given data model. At the same time the number of required columns to
store the data is computed, such that we can avoid any conflicting hash values, and therefore
the need to overload columns. Afterwards, we show our approach of how to import huge
amounts of data efficiently into RATG using the previously described hash functions.

Figure 4.1.: LDBC-SNB data model excerpt.

Since our approach relies on the presence of a data model, we first need to clarify our
understanding of a data model for this work. With the term data model we refer to the
entity types that are present in the structure of the data, as well as the relationship types
that exist between those entities and the direction of the relationships. We use a UML class
diagram style notation, but omit the specification of attributes and methods, since those are
not necessary, nor relevant to our approach. An example for this illustration is depicted in
Figure 4.1. We decided to use UML diagrams over Entity-relationship models, because the

35



4. Data Import

direction of the relationships is relevant for our approach and most readers should be familiar
with this type of diagram.

In contrast to the data model, a data instance in accordance to a given data model is the actual
data that follows the structure defined by the model. An example for a data instance that
follows the structure defined by the data model in Figure 4.1 is depicted as a property graph
in Figure 4.3.

Our approach is model-based. This means our approach relies solely on the use of a given
data model. Therefore, we can initialize the schema and everything necessary (e.g. hash
functions) to start processing data, before we have any data instances. In contrast to this an
instance-based approach (like [Sun+15]) uses data instances as the basis for any decision.

We extend the work of Sun et al., who did not present an approach that shows how data can
efficiently be imported into their database schema. In their work they use data instances to
derive a mapping of edges to corresponding columns. Nevertheless, they do not present how
to determine a suitable number of columns, which is necessary to use the approach.

Note that we present our approach based on RATG, but it can also easily be applied to the
approach of Sun et al [Sun+15].

4.1. Hash Functions Based on Data Models

To use the previously presented approach (see Section 3.2), we require hash functions for the
outgoing and incoming adjacency tables respectively.

Definition 4.2 [Hash Function from Label to Column]
Let L be the set of labels as defined in Definition 3.1. Then

• δin : L→ N0 is the function that associates each edge type with a natural number for
the incoming adjacency table, and analogously

• δout : L→ N0 is the function that associates each edge type with a natural number for
the outgoing adjacency table.

The associated numbers represent the column triple. We will store this type of edge for the
incoming adjacency table and outgoing adjacency table, respectively.

Example 4.4
Recalling the example graph from Section 3.1 here depicted in Figure 4.3, we can see that
edges of the two types likes and knows, as well as hasCreator and replyOf, never have the
same vertex as a target.

If we find a way to confirm this fact, we could store those two types of edges in the same
column, since no vertices are the target of both. Therefore, the hash function would never
create any conflict for the incoming adjacency table regarding these edge types. Assuming

36



4.1. Hash Functions Based on Data Models

Figure 4.3.: A property graph example modeling a social network.

this fact holds, a suitable hash function could be
δin = {knows→ 0, likes→ 0,hasCreator→ 1,replyO f → 1}.
The result for the incoming adjacency table by applying this hash function is depicted in
Table 4.5.

For that purpose we move away from the strict schemaless approach of most NoSQL databases.
In most applications some kind of data model is used. For our work we assume that a data
model is given. This is also the case for the LDBC-SNB and the excerpt in accordance to
Figure 4.3 is depicted in Figure 4.1. By considering this data model, we can verify our
previous observation. We can store edges of the types likes and knows in the same column of
the incoming adjacency table.

In contrast to the approach of Bornea et al. [Bor+13], we do not use data instances to compute
the hash function, but work on data model level. Therefore, we can initialize the database
schema and compute hash functions, before we receive any data instances. We can also be
sure to have knowledge of all types of edges, and hence can provide robust hash functions
that will not create any unforeseeable conflicts. In contrast to this, [Bor+13] rely on using
data instances to compute the hash functions. They first need to choose a suitable subset of

37



4. Data Import

VID EID1 Label1 SID1 ... EIDp Labelp SIDp
1 null null null [11] hasCreator 13
2 [4] knows [1] null null null
3 [5] knows [1] null null null
7 [12, 6] likes [1,2] [14] replyOf [13]

Table 4.5.: The desired incoming adjacency table belonging to the graph depicted in Fig-
ure 4.3.

the data (since all the data usually is too huge), which is a hard problem on its own. If the
subset is not chosen correctly or the data is not yet complete and missing types of vertices or
edges types, those types cannot be considered while computing the hash function. Those new
types have to be dealt with during runtime of the system, which can be time-consuming and
make reorganization of the data necessary.

Our approach does not rely on the suitable choice of a subset of the data, but can be applied
without any data instances at all. If we do not have a data model at our disposal, we can fall
back on the approach presented by Bornea et al [Bor+13].

Therefore, we can summarize: The goal is to find a hash function based on a given data
model that generates a small amount of conflicts (at best none), but at the same time overloads
columns whenever two labels do not co-occur at the same type of vertex. Our approach to
achieve this goal is described in the next section.

4.1.1. Computing Conflict-Free Hash Functions for a Given Data Model

We regard the data model as a graph and generate an interference graph from the data model
graph (as proposed by Bornea et al. [Bor+13]), with the difference that we do not rely on
choosing a suitable subset of a data instance, but work on the data model itself.

The input of the algorithm is the data model of the graph that we want to store. The output of
the algorithm is the number of columns we require to provide a collision-free hashing function
and the aforementioned hash function. This way we provide a mapping that assigns each
label (that can occur at an edge of the graph) to a column triple of the adjacency lists. Hence,
we construct a hash function for the outgoing and incoming adjacency tables, respectively. To
this end we use a graph coloring algorithm on the graph we constructed from the data model.

38



4.1. Hash Functions Based on Data Models

Algorithm 4.6: Algorithm to generate the incoming hash function δin from a class
diagram.

Input: The set of classes C, the function ρC that assigns to each class its set of associations.
/* Step 1: Convert the data model into the schema graph

Gschema = (Vschema,Eschema). */
Vschema← /0;
Eschema← /0;
/* Create a node with label L(c) for each class c in the data

model. */
foreach c ∈C do

Vschema←Vschema∪{L(c)};
end
/* Create an edge with Label L(a) for each association a in the

data model. */
foreach c ∈C do

foreach a ∈ ρC(c) do
Eschema← Eschema∪{(sourc(a), targt(a),L(a))};

end
end
/* Step 2: Convert the schema graph Gschema into the incoming

interference graph Gin = (Vin,Ein). */
Vin← /0;
Ein← /0;
Gin←{(Vin,Ein)};
/* Create a node for each type of edge in the schema graph. */
foreach e ∈ Eschema do

Vin←Vin∪{λschema(e)};
end
/* Create an edge in the interference graph, if there exists an

edge in the schema graph with the same target vertex. */
foreach v1 ∈ Eschema do

foreach v2 ∈ Eschema do
if v1 6= v2∧ target(v1) = target(v2) then

Ein← Ein∪{(v1,v2)};
end

end
end
/* As step 3 the outgoing interference graph can analogously be

created. */
/* Step 4: Finally, apply a coloring heuristic to get a hash

function. */
δin← Dsatur(Gin);
Result: The hash function δin.

39



4. Data Import

To this end we apply Algorithm 4.6. For the sake of brevity, the algorithm only depicts the
generation of the incoming hash function δin. The computation of the outgoing hash function
δout can be performed analogously. The overall process is split into four steps:

1. As a preprocessing step, we construct a vertex and edge labeled
directed graph Gschema = (Vschema,Eschema) representing the data model, where
Eschema ⊆Vschema×Vschema. Associated with each e ∈ Eschema and v ∈Vschema is a label
L(e) and L(v).

For every class in the data model, we create a vertex to represent the class and assign
the class name as its label. For every association, we insert edges for every occurrence
this type of association can have (this includes inherited associations) and assign the
association’s name as label.

2. We construct the undirected interference graph Gin = (Vin,Ein) for the hash function
of the incoming adjacency table. For every type of edge in the schema graph Gschema
we want to create a vertex representing the type. Therefore, for every edge e ∈ Eschema
from Gschema we construct a node that represents the type of edge and add it to the
interference graph, if it is not yet present.

Formally this means:

• Gin = (Vin,Ein);

• with Vin = {L(e)|e ∈ Eschema};
• and Ein = {((L(e1),L(e2))|∃e1,e2 ∈ Eschema, such that

e,k1,k2 ∈Vschema∧ e1 = (k1,e),e2 = (k2,e)∧L(e1) 6= L(e2)}.
Note that we allow k1 = k2 for Ein. We do this, because if there exist edges of different
types between the same two vertices, we want those edges to be mapped to different
columns.

3. Analogously, we construct the undirected interference graph Gout = (Vout ,Eout) for the
hashing function for the outgoing adjacency table from Gschema. Formally:

• Gout = (Vout ,Eout);

• with Vout = {L(e)|e ∈ Eschema};
• and Eout = {((L(e1),L(e2))|∃e1,e2 ∈ Eschema such that

e,k1,k2 ∈Vschema∧ e1 = (e,k1),e2 = (e,k2)∧L(e1) 6= L(e2)}.
4. We apply a graph coloring heuristic (e.g., Dsatur by Brélaz [Bré79]) on both interfer-

ence graphs Gout and Gin to obtain the hash functions δout and δin. We use the definition
of graph coloring given by Bornea et al. [Bor+13]. A graph coloring is defined by the
interference graph Gout and a set of colors C. Each edge e ∈ E denotes a pair of nodes
in Vout that must be given different colors. A coloring is a mapping that assigns each
vertex v ∈Vout to a color c ∈C. The graph coloring for Gin is defined analogously.

40



4.1. Hash Functions Based on Data Models

Since we construct Gout and Gin from the underlying data model, we consider any possible
type of edge and therefore compute hash functions (and the number of required colors/columns
respectively) that do not produce any conflicts. We acquire hash functions that assign each
label to a triple of columns by arbitrarily assigning each color to a different triple of columns.

Remark 4.1
This approach also enables us to derive a suitable number of columns for a given data model
in such a way that we can utilize hash functions that do not produce any conflicts. We do this
by supplying the graph coloring algorithm an amount of colors that is higher than necessary.
We chose a heuristic that tries to minimize the number of colors in use. Therefore, the number
of colors in use may not be optimal. In our experience, this does not negatively influence the
efficiency of the approach.

The number of colors the algorithm used to color the graph is the number of column triples
required to store the corresponding adjacency list without generating any conflicts.

At the same time, the algorithm constructs the mapping. If the number of required columns is
applicable as the number of columns, all neighboring vertices of a given vertex can be retrieved
by the database system by loading a single tuple of the according adjacency table.

Example 4.7
We now apply the presented algorithm to (for the sake of brevity) a simplified excerpt of
the underlying data model for the LDBC-SNB. This excerpt is depicted in Figure 4.8 as an
UML class diagram. The data contains Messages that can be specified further in Posts and

Figure 4.8.: LDBC-SNB data model excerpt

Comments. Both types of Messages can have creators that are Persons. Persons can like both
types of Messages. Only Comments can be replies of Messages and a Person can know other
Persons.

41



4. Data Import

We follow the four steps previously described:

1. First, we create a vertex for every class in the data model to represent the class and
assign the class name as its label. For every association we insert edges for every
occurrence this type of association can have (this includes inherited associations) into
the graph and assign the association’s name as label.

This results in Gschema = (Vschema,Eschema,ρschema,λschema):

• Vschema = {Person,Message,Post,Comment}
• Eschema = {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10}
• ρschema = {

e1→ (Person,Person),e2→ (Person,Comment),e3→ (Person,Post),
e4→ (Person,Message),e5→ (Message,Person),e6→ (Post,Person),
e7→ (Comment,Comment),e8→ (Comment,Person),e9→ (Comment,Post),
e10→ (Comment,Message)
}

• λschema = {
e1→ knows,e2→ likes,e3→ likes,e4→ likes,e5→ hasCreator,
e6→ hasCreator,e7→ replyO f ,e8→ hasCreator,e9→ replyO f ,e10→ replyO f
}

The result is also depicted in Figure 4.9. Both Post and Comment receive incoming
edges with the label likes that were not explicitly given in the original diagram.

2. We compute the incoming interference graph. For every edge e ∈ Eschema from Gschema
we construct a node in the interference graph. We construct an edge between two
vertices v1,v2 ∈Vout , if and only if there exist two edges in the schema graph that have
the same target vertex and different labels.

The resulting incoming interference graph Gin we constructed from the graph in Fig-
ure 4.9 is depicted in Figure 4.10. Since the label types likes and replyOf occur at the
same vertex, the corresponding nodes in the interference graph are connected. Because
hasCreator has no common target vertices with edges of the types likes and replyOf, no
connection between the nodes representing hasCreator and the nodes representing likes
and replyOf is included. But it has a common target vertex Person with the edge type
knows, therefore the nodes representing hasCreator and knows are connected.

The formal representation of the undirected graph is Gin = (Vin,Ein,ρin) with

• Vin = {knows,hasCreator, likes,replyO f};
• Ein = {e1,e2};
• and ρin = {e1→ (knows,hasCreator),e2→ (likes,replyO f )}.

3. The generation of the outgoing interference graph is done analogously to the generation
of the outgoing interference graph.

42



4.1. Hash Functions Based on Data Models

Figure 4.9.: Schema graph constructed from the data model.

4. Finally, we apply a graph coloring heuristic to both interference graphs. An example
for the coloring acquired from Figure 4.10 is depicted in Figure 4.11. Since knows and
hasCreator are connected, different colors are applied. hasCreator is not connected to
replyOf and therefore the same color can be used for both vertices. This means that
those two types of edges can be stored in the same columns of the incoming adjacency
table. By assigning green to column 0 and blue to 1 we obtain:

δin = {knows→ 0, likes→ 0,hasCreator→ 1,replyO f → 1}.

Figure 4.10.: Incoming interference graph generated from the data model in Figure 4.8.

43



4. Data Import

Figure 4.11.: Graph coloring generated from the (partial) interference graph depicted in
Figure 4.10.

Example 4.12
Let us consider the example graph depicted in Figure 4.3 and the resulting hash function
δin = {knows→ 0, likes→ 0,hasCreator→ 1,replyO f → 1} of Example 4.7 again.

By considering the range of δin defined in Definition 4.2, we see that for l ∈ L : 0≤ δin(l)< 2.
Therefore, we only need two column triples to store the edges of the example graph in the
incoming adjacency table.

Let us now take a closer look at the different edges of the example graph. The vertex
with V ID = 7 has two incoming edges of the type likes and one incoming edge of the type
replyOf. We just computed the incoming hash function δin, which maps δin(likes) = 0 and
δin(replyO f ) = 1. Hence, we place edges of the type likes and replyOf in different columns.

On the other hand, the nodes with V ID = 2 and V ID = 3 have one incoming edge of the type
knows with δin(knows) = 0 and the vertex with V ID = 1 has an incoming edge of the type
hasCreator with δin(hasCreator) = 1.

VID EID0 Label0 SID0 EID1 Label1 SID1
1 null null null [11] hasCreator 13
2 [4] knows [1] null null null
3 [5] knows [1] null null null
7 [12, 6] likes [1,2] [14] replyOf [13]

Table 4.13.: The resulting incoming adjacency entries by applying the hash function δin.

At first glance this looks like edges of the types likes and knows could potentially produce
conflicts, but since our algorithm is based on the data model, these types of edges never occur
at the same vertex as incoming edges. The adjacency table resulting from applying δin is
depicted in Table 4.13.

By applying this process to the complete LDBC-SNB data model we have constructed a
hashing function for the outgoing adjacency that requires six column triples and a hash

44



4.1. Hash Functions Based on Data Models

function for the incoming adjacency table that requires four column triples [Sch19b].

45



4. Data Import

4.2. Import Strategy

We redundantly store edges such that every edge is stored in the edge table, the incoming
adjacency table and the outgoing adjacency table. Since we have to deal with huge amounts of
data, we cannot keep the input data in main memory. Therefore, we need to store intermediate
data in permanent storage. Accessing this storage is an expensive operation, and therefore
we should keep the amount of required accesses low. At the same time, we need to know all
the incoming (respectively outgoing) edges of a vertex, before we can create the associated
INSERT statement. Otherwise, we would need to update the same statement many times
while it has possibly already been stored to disk, resulting in an overhead of disk accesses.

In order to tackle this challenge, several strategies have to be employed. First, we have to make
the decision if we want to import data on the client side or on the server side. Since we have
to handle data with at least several million nodes and edges, we have to minimize round-trip
times. Durand et. al analyzed the efficiency of server-side data loading in comparison to
client-side data loading in [Dur+18]. They found that server-side loading usually is orders of
magnitude faster than client-side loading. The reasons for this are clear. Server-side loading
avoids millions of round-trip times for huge data sets. Therefore, we completely omit the
network as a bottleneck and only consider server-side loading for the rest of this work.

Input Graph Data

Parsing

Internal 
Representation

DBMS Import

Preprocessing

Database 
Management System

Figure 4.14.: Phases of the bulk data import.

We use the same general approach as [The+16] and [Dur+18] by dividing the import process
into several self-contained phases. Since there is no standardized and generally accepted
format for the exchange of graph data, we cannot make many assumptions regarding the input
data. In particular, we cannot assume that we have a globally unique identifier for every node
and edge, which is essential for our storage approach.

46



4.2. Import Strategy

We only assume that the following characteristics are given:

• The data can be transformed to a property graph that complies with Definition 3.1 of
Section 3.1;

• and the target database does not yet contain data.

In particular, we do not assume that

• the data is given in the property graph format;

• a unique identifier for every node and edge exists;

• or we receive a specific number of files or can rely on a specific file structure.

We now describe the running example that we use for this chapter.

Example 4.15
We will use the following data set (a simplified LDBC-SNB instance) as input files for a
running example in this chapter. It is based on the graph depicted in Figure 3.3.

Persons
id name firstName
1 Silva Ana
2 Yamamoto Akira
3 Lepland Carmen

Person knows Person
source target since
1 2 14.06.2018
1 3 21.03.2016

Person likes Post
source target
2 2
1 2

Posts
id creationDate
1 02.03.2020
2 03.03.2020

Post has Creator
source target
1 2

Post replyOf Post
source target
1 2

Person e-Mail
id email
1 silva.ana@gmail.com
1 ana.silva@outlook.com

Table 4.16.: Example LDBC-SNB comma-seperated values (CSV) files.

The import of LDBC-SNB data is challenging and contains most of the interesting aspects of
data import into our graph schema. Since the data is generated, we can consider different data
set sizes. The LDBC-SNB data is provided in three different types of CSV files.

47



4. Data Import

Vertex files Vertices are labeled. This specifically means that vertices can be grouped into
types. For example, vertices of type Person, Place, or Post exist in the data set. For each
type an input file is provided. This file describes the set of vertices, the vertex identifier
and its single-valued attributes as a CSV list. An important aspect of the LDBC-SNB
data set is the property that identifiers are only unique within the specific vertex type.
In particular this means that new identifiers have to be assigned, since our approach
requires global identifiers (see Section 3.2).

Multi-valued attribute files If an attribute can contain multiple values (in this case e.g.,
e-mail addresses), these are provided in additional files. For every vertex type and every
multi-valued attribute an additional file has to be accessed.

Edge file Just as vertices, edges are labeled. For every type of edge a CSV file is provided. In
contrast to our approach, edges in the LDBC-SNB data set do not possess an identifier
at all. If the edge type has additional information attached, those attributes are also
provided in the file. Multi-valued attributes do not exist for edges.

As information about a single vertex can be distributed among different files and a globally
unique identifier is not provided, we have to include a preprocessing step. As we can see, the
identifiers 1 and 2 are both used for vertices of type Person and Post, while edges do not have
an identifier assigned. Therefore, during the import process we need to make sure that we can
assign unique identifiers for vertices as well as edges.

In the subsequent sections the four phases of the data import (depicted in Figure 4.14) is
shown in the following sections: First, how the data can be parsed. Second, how it can be
preprocessed. Third, the internal representation and finally, our graph import algorithm that
shows how data can be imported in RATG as well as SQLGraph and therefore makes both
approaches usable for arbitrary graph data sets.

4.2.1. Parsing the Input Data

The first phase parses the input data. We interpret the data as a property graph according to
Definition 3.1. This means that the data does not have to be supplied as a property graph, as
long as an applicable mapping into the property graph model can be provided. For example,
we can import RDF data as a property graph by defining a suitable mapping. This has been
discussed by Hillinger in [Hil20]. Since we do not assume a specific input format, this step
is vital to assure the efficient import of the whole graph. In many cases this step and the
preprocessing of the data can and should be performed in a single process.

Data parsing is highly dependent on the input data set. For example, the LDBC-SNB provides
multi-valued attributes in separate files (see Table 4.16). To this end, we merge the vertices
with their attributes in the parsing phase in order to avoid costly update operations later
on. Since we perform the parsing and the preprocessing phase in a single step to increase
performance, we will show an example in the next section describing the preprocessing.

48



4.2. Import Strategy

4.2.2. Preprocessing of the Input Data

After the data has been parsed, we perform an optional preprocessing step. In this phase we
assure the integrity of constraints. Other tasks that are performed during this phase can include
checking of integrity constraints, existence of vertices connected by edges or aggregation
tasks [Hil20].

Specifically in the case of the LDBC-SNB, the reassignment of unique identifiers is required.
The LDBC-SNB provides a file for every type of vertex included in the data set. But the
identifier assigned to the vertices is only unique within the type of the vertex. This phase is
also highly dependent on the input data and the interleaved execution with parsing can be
beneficial for performance.

Example 4.17
Considering that the data is available in a CSV format as depicted in Example 4.15, we can
use standard technology to parse the data. For this data set we perform three tasks in the
preprocessing phase of the LDBC-SNB data import:

1. We sort input files containing edges by the source vertex id. This step is not crucial to
be able to import the data, but it simplifies the process to transform the input data to
our internal representation. Because we have to merge data from several files to obtain
all data regarding a single node, sorted files enable us to transform all data in a single
pass for every file. Since data size can easily exceed available main memory, we can
use an external sorting algorithm like Knuth describes in [Knu73]. As can be seen in
Table 4.16, vertex data is distributed in several files (the vertex data itself in one file and
multi-valued attributes in additional files). We use a Merge sort approach to merge
vertice and attribute data.

2. For each vertex we assign a globally unique identification number.

3. We assign a globally unique identifier to each edge of the input data.

After preprocessing, we are ready to convert the input data into our internal property graph
model.

4.2.3. Converting the Data into the Internal Representation

We create an internal property graph representation of the input data. After the parsing and
preprocessing has been finished, we create an internal representation of the property graph
that is independent of the input data format. This model represents a graph according to
Definition 3.1. In particular, at this point we can assume that we have a unique identifier for
every vertex and edge. Once we have the data available in our internal representation, the
process is completely independent of the input format. Among other things, this means that
we can store this internal representation and restart the process from this point on for future

49



4. Data Import

loading. One should take note that this representation provides a very simple graph format
and is not intended for other uses than intermediate storage. From this point on, the import
process is independent of the input data format.

Example 4.18
The input data is transformed into an internal graph representation. Examples of the data
after preprocessing and conversion to the internal representation are depicted in Tables 4.19
and 4.20

Vertices
VID Attributes
1 type: Person; name: Yamamoto; firstName: Akira
2 type: Person; name: Silva; firstName: Ana
3 type: Person, name: Lepland; firstName: Carmen
7 type: Post, creationDate: 03.03.2020
13 type: Post, creationDate: 02.03.2020

Table 4.19.: Vertices after preprocessing and conversion into the internal representation.
Edges
EID SID TID Label Attributes
4 1 2 knows since: 14.06.2018
5 1 3 knows since: 21.03.2016
6 2 7 likes
11 13 1 hasCreator
12 1 7 likes
14 13 7 replyOf

Table 4.20.: Edges after preprocessing and conversion into the internal representation.

As described in Section 1.1, our work is partly motivated by the storage of huge amounts
of data that do not fit in main memory. Therefore, we applied an outsourcing technique to
store the internal representation on hard drive. Particularly this is necessary to import the
LDBC-SNB data sets, since generating the data using higher scale factors creates up to several
hundred gigabytes of data. The number of vertices or edges that can be held in-memory varies
greatly from machine to machine. To this end, we performed a short evaluation to determine
the influence of the number of elements that are held within memory on the run-time of the
import process, since writing to disk too often has a negative influence on import efficiency.
A short evaluation analyzing the influence of the number of internally stored elements can be
found in Section 4.3.

50



4.2. Import Strategy

4.2.4. Writing the Data into the DBMS

Finally, the data is imported into the database. The algorithm presented in this section can
be used to import data into RATG, as well as SQLGraph, and therefore lets us use both
approaches on arbitrary data sets that satisfy the assumptions we presented in Section 4.2.

The data is read from the internal representation and converted into the desired format. From
here on, the process is once again depending on the target database system. Different strategies
for writing the data into the database can be applied. We propose to use the bulk loading
mechanisms that most current database systems offer. Since these mechanisms are specifically
designed to load huge amounts of data in the most efficient manner, we leverage this advantage.
We create files suited for the specific database system loading mechanism from our internal
representation. Since there is no standardized bulk loading mechanism, even in the context of
RDBMS, there is no way to design this phase independent of the database system.

This is the last task that could potentially be performed on the client machine. If the process
was carried out on the client, we now need to transfer those files to the database server
machine. We can now use the bulk loading mechanism to populate the database.

Algorithm 4.21: Steps of the database import.
Input: A property graph G = (N,E,ρ,λ ,σ) and the hash functions δout ,δin
dropIndices();
createVertices(N, σ );
createOutgoingAdjacency(E, ρ , λ , σ , δout );
createIncomingAdjacency(E, ρ , λ , σ , δin);
createIndices();
Result: A database instance containing G.

For our algorithm, we assume the following properties:

• The property graph data we need to import into the database is huge, and we are not
able to fit the data into main memory. This means that our algorithm has to store
intermediate results (e.g. insert statements) on hard drive. We also have to load the
data we want to import in chunks. If the data size of the data set that is to be imported
is smaller, we can use the same approach. We then set parameters that handle the
externalization of data to values high enough, such that the import is mostly handled
in-memory.

• The resulting database instance and intermediate files fit into the available disk
space.

• Since we need to load data from disk and store intermediate results on disk, access time
to the permanent storage is a major bottleneck. Therefore, we need to minimize the
number of times the same vertex or edge has to be accessed.

• If too many database commands are sent, round-trip time is another bottleneck
we need to avoid. This even is the case while running the import program on the

51



4. Data Import

database machine. Therefore, we try to keep the number of messages to the database
limited. This means that we want to only import complete vertex, edge and adjacency
tuples in order to avoid update operations on existing data. Those insert operations
can be performed by means of batch processing or DBMS-dependent bulk-loading
mechanisms.

• We already have suitable hash functions available (which can be computed as described
in Section 4.1) and we therefore know their range and the number of columns required
(as described in Remark 4.1).

• The database schema has already been created.

• Finally, we assume that we can hold the adjacency for an arbitrary single vertex in
main memory. If this is not the case, we can adjust our import algorithm by primarily
sorting by source vertex and secondarily sorting by edge label. We sort labels by the
order in which they are assigned to columns. We can then process one label at a time
and write the corresponding import files to disk. Although, we assume that once a
graph reaches the size that the neighborhood of a single vertex does not fit into main
memory, the overall performance of any graph database will not be adequate on that
particular hardware configuration.

Algorithm 4.22: Creation of insert statements for the vertices.
Input: The set of vertices N and σ

vertices← /0;
foreach (n ∈ N) do

vertices← vertices∪ createInsertStatement(n,σ);
end
importData(vertices);
Result: A database instance that contains the vertex data.

Note that we use database bulk import functionality instead of SQL insert-statements.
Bergmüller [Ber19] demonstrates that this is a far more time-efficient import method than
using batch inserts. Since the file format for this import varies highly from DBMS to DBMS,
we use insert statements for the description of the algorithms in this section. Those statements
can be easily replaced with the corresponding bulk import lines required for the desired target
database.

The overall process is depicted in Algorithm 4.21 and can be divided into 5 steps:

1) Dropping existing indices We assume that we are importing huge amounts of data. Since
the constant reorganization of existing indices is a considerable overhead, we drop all
indices on the tables. Newly creating the indices again after the data import has finished
proved to be a much more efficient strategy.

2) Importing vertices Next we import the vertices into the database (see Algorithm 4.22).
Because we have already performed cleanup and the assignment of unique identifiers
to the vertices in the previous phases, the only task to perform for vertices is the
transformation into the syntax compatible to the target DBMS.

52



4.2. Import Strategy

3) Importing edges and creating the outgoing adjacency Because we want to minimize
disk access, we perform the creation of the input format for the edge list and the
outgoing adjacency in the same step (see Algorithm 4.24). First, the edges of the graph
are sorted by their source vertex using an external sorting algorithm (e.g. see [Knu98]).
After sorting, every time we encounter a new vertex identifier we know that we have
seen all outgoing edges for the last vertex and we can create the final adjacency entry
for this vertex.

Therefore, we gather all edges belonging to the currently handled vertex until we find a
new identifier. When we found a new id, we finalize the adjacency of the last vertex by
creating the associated adjacency entry.

Algorithm 4.25 depicts the creation of adjacency entries. First, we iterate over all edges
of the input vertex and sort them into buckets corresponding to the available column
triples in the database schema. Then each bucket is transformed into the corresponding
columns for the input statement and appended to the statement.

Note that it can be necessary to temporarily store the statements to disk, because we do
not want to create a query for every single tuple in order to avoid round-trip times. The
frequency with which data is written to disk is a tuning parameter that depends on the
hardware the algorithm is running on.

While we loop over all edges, we create – in analogy to the creation of the vertex
statements – the statements for the edge list table. Once we have created all the
statements, we start the import to the database. By applying this algorithm, we only
have to stream the edge data once from disk in order to create all edge list and outgoing
adjacency entries.

4) Creating incoming adjacency Analogously to the creation of the outgoing adjacency we
can create the incoming adjacency (see Algorithm 4.23). To this end, we sort the set
of edges E by target vertex. Afterwards we can create the import statements vertex by
vertex as seen in the creation step for the outgoing adjacency.

5) Creating indices As the last step of the import process, we create the indices we have
previously described in Section 3.2.1.

53



4. Data Import

Algorithm 4.23: Import for the incoming adjacency tables.
Input: The set of edges E, the functions ρ , λ , σ and the hash function δin.
/* The result list file for the insert statements */
resultAdjacency← /0;
/* A not existing id to initialize the loop */
currentVertexId←MINIMUM_V ERT EXID−1;
/* The current set of edges for a single vertex */
adjacency← /0;
/* Sort edges ascending by target id in order to create the

incoming adjacency entries for each vertex. An external sorting
algorithm is used. */

Esorted ← sortByTargetVertex(E,ρ);
foreach e ∈ Esorted do

/* Are we still processing the same vertex? */
if (currentVertexId ≥ target(e)) then

adjacency← adjacency∪{e}
else

/* Create entries for the now finished vertex */
resultAdjacency←

resultAdjacency∪ createIAStatement(currentVertexId,ad jacency,ρ,λ ,δin);
/* Start the collection of edges for the next vertex */
adjacency←{e} ;
currentVertexId← target(e) ;

end
end
/* Create statements for last vertex */
resultAdjacency← resultAdjacency∪ createIAStatement(ad jacency,ρ,λ ,δout);
/* Write data to the database */
importData(resultAdjacency);
Result: A database instance that contains the incoming adjacency entries for G.

54



4.2. Import Strategy

Algorithm 4.24: Import for the edge list and outgoing adjacency tables.
Input: The set of edges E, the functions ρ , λ and the hash function δout .
/* The result list files for the insert statements */
resultList← /0;
resultAdjacency← /0;
/* A not existing id to initialize the loop */
currentVertexId←MINIMUM_V ERT EXID−1;
/* The current set of edges for a single vertex */
adjacency← /0;
/* Sort edges ascending by source id in order to create the

outgoing adjacency entries for each vertex. An external sorting
algorithm is used. */

Esorted ← sortBySourceVertex(E,ρ);
foreach e ∈ Esorted do

resultList← resultList ∪ createListStatement(e,ρ,λ ,σ);
/* Are we still processing the same vertex? */
if (currentVertexId ≥ src(e)) then

adjacency← adjacency∪{e}
else

/* Create entries for the now finished vertex */
resultAdjacency←

resultAdjacency∪ createOAStatement(currentVertexId,ad jacency,ρ,λ ,δout);
/* Start the collection of edges for the next vertex */
adjacency←{e} ;
currentVertexId← src(e) ;

end
end
/* Create statements for last vertex */
resultList← resultList ∪ createListStatement(ad jacency,ρ,λ ,σ);
resultAdjacency← resultAdjacency∪ createOAStatement(currentVertexId,adjacency,ρ,λ ,δout);
/* Write data to the database */
importData(resultList,resultAdjacency);
Result: A database instance that contains the edge list and outgoing adjacency entries for G.

55



4. Data Import

Algorithm 4.25: Creation of incoming adjacency statements.
Input: The list of incoming edges Ev for node v, the functions ρ , λ , σ and the hash function δin.
/* Create an array that can hold all column triples. */
edgeBuckets← Array[max(range(δin))+1];
/* Organize triples. */
foreach (e ∈ Ev) do

position← δin(λ (e));
edgeBuckets[position]← add(edgeTriples[position],e);

end
/* Initialize the import statement with the vertex id. */
adjacencyStatement← appendSourceId(v);
foreach (bucket ∈ edgeBuckets) do

eIdColumn← [];
labelColumn← λ (bucket. f irst());
sIdColumn← [];
foreach (edge ∈ bucket) do

eIdColumn← appendEdgeId(eIdColumn,edge);
sIdColumn← appendSourceId(tIdColumn,src(edge));

end
ad jacencyStatement← append(ad jacencyStatement,eIdColumn, labelColumn, tIdColumn);

end
adjacencyStatement← f inish(adjacencyStatement);
return adjacencyStatement;
Result: A statement that creates the adjacency entry for vertex v.

56



4.2. Import Strategy

Example 4.26
Since the creation of the INSERT statements for the vertex and edge table is straightforward,
we only take a closer look at the generation of the incoming adjacency table (see Algo-
rithm 4.23). Creation of the outgoing adjacency table statements can be done essentially the
same way.

Let us assume the list of edges depicted in Table 4.20 provides the input data for the example.

Edges
EID SID TID ↑ Label Attributes
11 13 1 hasCreator
4 1 2 knows since: 14.06.2018
5 1 3 knows since: 21.03.2016
6 2 7 likes
12 1 7 likes
14 13 7 replyOf

Table 4.27.: Edges sorted ascending by the target id TID.

After initializing the variables, the first step of the algorithm is to sort the set of edges E
by the target vertex target(e) with e ∈ E. The result of the sorting algorithm is depicted in
Table 4.27.

Then we iterate over the edges in sorted order with the initial values resultList = /0, resultAd jacency=
/0, currentVertexId = 0 and ad jacency = /0:

• e = e11:
Since currentVertexid = 0 and target(e11) = 1 we move to the else branch. Because
ad jacency = /0, no statement is created. Result of this iteration:

– resultAd jacency = /0
– ad jacency = {e11}
– currentVertexId = n1

• e = e4:
Since currentVertexid = n1 and target(e4) = n2 we skip to the else branch. Because
ad jacency = {e11}, an import statement is1 = iscurrentVertexId is created and added to
the list of already created import statements. Result of this iteration:

– resultAd jacency = {is1}
– ad jacency = {e4}
– currentVertexId = n2

• e = e5:
Since currentVertexid = n2 and target(e5) = n3 we skip to the else branch. Because
ad jacency = {e4}, an import statement iscurrentVertexId is created and added to the list
of already created import statements. Result of this iteration:

57



4. Data Import

– resultAd jacency = {is1, is2}
– ad jacency = {e5}
– currentVertexId = n3

• e = e6:
Since currentVertexid = n3 and target(e6) = n7 we skip to the else branch. Because
ad jacency = {e5}, an import statement iscurrentVertexId is created and added to the list
of already created import statements. Result of this iteration:

– resultAd jacency = {is1, is2, is3}
– ad jacency = {e6}
– currentVertexId = n7

• e = e12:
Since currentVertexid = n7 and target(e12) = n7 with n7 ≥ n7, we add the current edge
to the incoming adjacency set for n7. Result of this iteration:

– resultAd jacency = {is1, is2, is3}
– ad jacency = {e6,e12}
– currentVertexId = n7

• e = e14:
Since currentVertexid = n7 and target(e12) = n7 with n7 ≥ n7, we add the current edge
to the incoming adjacency set for n7. Result of this iteration:

– resultAd jacency = {is1, is2, is3}
– ad jacency = {e6,e12,e14}
– currentVertexId = n7

After we have iterated over all edges, the last processed vertex is finished and the IN-
SERT statement is7 for node n7 is added to the list of adjacency statements resulting in
resultAd jacency = {is1, is2, is3, is7}. We take a closer look at the creation of the import state-
ment for n7 in the following example. The list of import statements can now be transferred to
the database and executed.

Example 4.28
As mentioned in Example 4.26 we now take a closer look at the creation of a single INSERT
statement for the incoming adjacency table depicted in Algorithm 4.25.

Let’s assume δin = {likes→ 0,hasCreator→ 0,knows→ 1,replyO f → 1} in accordance
with the hash function generated in Example 4.7. Also let the current vertex be n7 with Ev =
{e6,e12,e14}. We initialize edgeBuckets = Array[max(range(δin))+1] = Array[2] = [ /0, /0].

Then we iterate over the adjacent edges for the current vertex and sort them into the buckets,
resulting in: edgeBuckets = [{e6,e12},{e14}].

58



4.2. Import Strategy

The first part of the INSERT statement, which is not depending on the edges of the v vertex,
is created as
ad jacencyStatement = ”INSERT INTO IncomingAd jacency VALUES [...](7”.

Afterwards, we sequentially append each bucket:

• bucket = {e6,e12}:
We initialize eIdColumn = [], labelColumn = likes and sIdColumn = [].

Now, we iterate over the edges gathered in the bucket and gather all edge ids and source
vertex ids in order resulting in:

– eIdColumn = [6,12]
– sIdColumn = [2,1]

Before proceeding to the next bucket we can append those columns to the INSERT
statement:
ad jacencyStatement = "INSERT INTO [...] VALUES (7, [6, 12], likes, [2, 1]".

• bucket = {e14}:
We initialize eIdColumn= [], labelColumn= replyO f and sIdColumn= []. Gathering
the edges in the bucket results in:

– eIdColumn = [14]
– sIdColumn = [13]

We append the collected column to the statement:
ad jacencyStatement = "INSERT INTO [...] VALUES (7, [6, 12], likes, [2, 1], [14],
replyOf, [13]".

After all buckets have been appended to the statement, the statement is finalized and returned
with the result:
"INSERT INTO [...] VALUES (7, [6, 12], likes, [2, 1], [14], replyOf, [13])".

In the course of this work we applied this import concept on the LDBC-SNB data set, RDF
(see [Hil20]) and our IFC use case (see Chapter 7) in various forms to store the data in our
database schema.

Remark 4.2
As we have stated above, we do not use batches of INSERT statements to achieve the best data
import performance. The most efficient way to import data is using DBMS internal functions
like the PostgreSQL COPY mechanism, which is a CSV import mechanism. The presented
import algorithm can easily be adapted by writing the created insert statements to a CSV file
that can then be used as input for the DBMS file import mechanism.

59



4. Data Import

4.3. Import Algorithm Performance Evaluation

To show the applicability of our approach described in Section 4.2, we performed an evaluation
using the LDBC-SNB data set described in Section 2.4. This shows that our approach to
import data works for arbitrarily large data sets, as long as the assumptions presented in
Section 4.2.4 hold.

In addition, all examples in the previous sections were based on this data set. The following
evaluations were performed on a dedicated server with two Intel Xeon 2.6GHz CPUs (in total
8 cores), 96GB memory and a 6 SSD RAID-0 running 64-bit Linux.

101 102 103 104 105

110

120

130

Batch size for externalizing to disk in number of nodes and vertices

Ti
m

e
fo

ri
m

po
rt

in
[m

in
]

Figure 4.29.: Time required to perform a complete data import for LDBC-SNB data set (scale
factor 30) in regard to the configured batch size.

As described above, intermediate results for the insert statements are periodically written to
disk. We conducted a short preliminary evaluation to analyze the behavior of import times in
regard to the size of batches written to disk. We expected to find that if we increase batch
size, performance also increases up to a certain threshold. Once we reach this batch size,
the import performance remains the same. At this point we have minimized the overhead of
disk access while we can already start preparing the next batch that will be written to disk.
For data sets that are small enough, choosing a very high batch size transforms this import
mechanism into an in-memory approach.

The performance in regard to the batch size is depicted in Figure 4.29. As we can see, choosing
a small number (like internally processing ten vertices or edges) leads to an overhead by
writing to disk too often. Increasing the number of vertices kept in memory also increased
the performance of the import mechanism. At around 1,000 internally processed elements
we reach the best performance for this hardware configuration. Additional increases in used
memory do not shorten the time required to import data, since parallelism in writing data

60



4.3. Import Algorithm Performance Evaluation

SF Approx. #Vertices Approx. #Edges
1 3,200,000 17,300,000
3 9,300,000 52,700,000

10 30,000,000 176,600,000
30 99,400,000 655,400,000

100 317,700,000 2,154,900,000
300 907,600,000 6,292,500,000

Table 4.30.: Approximate number of vertices and edges of different LDBC-SNB scale factors.

to disk and preparing the next batch to write cannot be used further to our advantage. One
should note that the optimal value depends on the hardware configuration used for the data
import. We used this preliminary evaluation to find a good configuration for our available
hardware for further evaluations.

1 3 10 30 100

0

500

1,000

1,500

LDBC-SNB scale factor

Ti
m

e
in

[m
in

]

Int. Rep.
Vertices
Sorting
Edges
Indices

Figure 4.31.: Required time of the different import phases depending on the LDBC-SNB
scale factor.

Afterwards, we performed a performance evaluation of our data import algorithm. We
imported the data set for scale factors 1, 3, 10, 30, and 100 into an empty database. Each
import was performed at least five times and the mean duration is discussed here, since the
required time did not vary significantly . An overview of the number of vertices and edges of
the different scale factors is depicted in Table 4.30.

61



4. Data Import

4.3.1. Runtime Complexity Analysis and Evaluation

We assume that the hash function computation has been performed as a preliminary step.
Therefore, we expect the algorithm to have a runtime behavior in O(m log(m)) with m = |E|
where we assume |N|≤ |E|.

0 1 2 3

·108

0

200

400

Number of vertices

Ti
m

e
in

[m
in

]
Int. Rep.
Vertices
Sorting
Edges
Indices

Figure 4.32.: Required time for the data import depending on the number of vertices.

Step 1 (dropping indices, if created beforehand) can be performed in constant time and is
handled by the DBMS. Creating the internal representation (see Algorithm 4.22) is a linear
routine processing each node and edge once. Afterwards the edge list needs to be sorted
twice: First, to create the outgoing adjacency table (see Algorithm 4.24) and second to create
the incoming adjacency table (see Algorithm 4.23). Since we sorted the edges accordingly,
we can create the adjacency lists for each vertex in one step and only need to handle each
edge once. Therefore, this computation step is dominated by the sorting algorithm and is well
known to require O(m log(m)) with m being the number of edges. Step 5 (creating the indices
again) is handled by the DBMS and usually requires O(n log(n)) (applying the worst case by
inserting all elements into a B-Tree [Com79]). Since these steps are performed sequentially,
the overall runtime is dominated by the sorting algorithm and requires O(m log(m)) with m
being the number of edges.

Figure 4.31 depicts the time required to import different scale factors, split into the different
import phases as described above in Section 4.2. Creating the edge list, the outgoing adjacency
and the incoming adjacency tables are aggregated into a single phase, since the complete
execution is necessary to properly leverage the advantages of RATG. As we can see the
overall time that is required to import the data grows nearly linearly in regard to the scale
factor.

Yet, the scale factor alone is not a sound parameter in regard to our previous runtime analysis.
To get a better insight of the behavior of the different import phases consider Figure 4.32

62



4.3. Import Algorithm Performance Evaluation

0 0.5 1 1.5 2

·109

0

200

400

Number of edges

Ti
m

e
in

[m
in

]

Int. Rep.
Vertices
Sorting
Edges
Indices

Figure 4.33.: Required time for the data import depending on the number of edges.

and Figure 4.33, which depict the required import time in regard to the number of vertices
and edges of the imported data graph. As it was expected, we can see the time required to
generate the import statements for vertices and edges grows linearly in the number of vertices
and edges respectively. The time for sorting the edges grows surprisingly slowly and only
slightly faster than linear, even though the theoretical runtime is in O(m log(m)). The overall
import performance is in O(m log(m)).

63





5. Data Retrieval

One of the main applications for database systems has always been data retrieval. In this
chapter, we describe the different ways data can be retrieved from our property graph storage
schema. We first describe how to retrieve data using SQL. Since even simple graph pattern
matching SQL queries for the proposed schema can get very complicated and lengthy, we
introduce a way to integrate the Cypher query language into our system. Cypher is a dedicated
property graph query language that is intuitive and powerful. Through the integration of
Cypher we achieve an easily applicable approach.

5.1. Basic Graph Queries and Operations

To retrieve data from RATG in an effective way, we need to be able to fetch data about nodes
and edges that connect those nodes. The database schema is depicted in Table 3.4. Since
we have three different tables that store edge data, we can use different options to query
neighborhoods of vertices.

Retrieving Vertices All vertex data is stored in the vertex table. An example for the table
is depicted in Table 3.5. We can retrieve the data using standard SQL by e.g. accessing the
vertex’s VID, or we can receive vertices by leveraging the inverted index we create and use
JSON query functionality.

Example 5.1
An example of how to search for a vertex with a specific name and return the first name and
name of the vertex (in PostgreSQL dialect) is depicted in Listing 5.2.

SELECT attributes->>’firstName’, attributes->>’name’
FROM vertices
WHERE attributes @> ’{"name":"<?>"}’

Listing 5.2: Example neighbourhood query for a single node using the edge list table.

65



5. Data Retrieval

Retrieving the Neighborhood of a Vertex Whenever we want to retrieve the (outgoing)
neighborhood of a query we have to make a choice: Either we use the edge list (an example
is depicted in Table 3.6) or the adjacency representation. As depicted in Listing 5.4, we
can easily query the neighborhood of a vertex using the edge list table and a standard SQL
query. We can also search for edges by using the attribute’s column the same way as shown in
Listing 5.2 for vertices.

Example 5.3
The example depicted in Listing 5.4 shows, how to retrieve the source vertex id, the lable and
the target vertex id of an edge.

SELECT SID, LABEL, TID
FROM edges
WHERE SID = <?> AND label = <?>

Listing 5.4: Example neighbourhood query for a single node using the edge list table.

Remark 5.1
Any time we need to access the attributes of edges, we have to use the edge list, since the
adjacency lists do not store edge attributes.

Using the Adjacency Lists for Neighborhood Queries Whenever it’s not needed to
consider the attributes of an edge while retrieving the neighboring vertices, we can use the
adjacency lists (examples depicted in Tables 3.8 and 3.9). Our evaluations have shown that
for queries that retrieve paths of fixed length, it is more efficient to use the adjacency lists than
using the edge list. For a detailed description of our graph store evaluation see Chapter 6.

Even though we need to have a mapping from edge types to columns, a very useful property
of the previously described schema (see Section 3.2) is the ability to query the adjacency of
a vertex without requiring knowledge about the applied hash function. We can achieve this
by using array functionality that most up-to-date database systems support. We created a
prototypical implementation for both PostgreSQL and OracleDB [Kid20].

Example 5.6
An example of the general query structure implemented in the PostgreSQL dialect is depicted
in Listing 5.5: The first CTE unshred_edges converts the list of tuples belonging to one vertex,
of which every row contains k edge types, into a list of rows that contains one edge type per
row. The second CTE gather_edges then splits those tuples into a list of edges that represents
a well-known edge structure that is the same as the result of the query depicted in Listing 5.4.
Analogously, we can query the incoming neighborhood of a vertex (see Listing 5.7).

66



5.1. Basic Graph Queries and Operations

WITH unshred_edges AS (
SELECT vertexid AS sourceid,
UNNEST(array[label_0, ..., label_k]) AS label,
UNNEST(array[target_0, ..., target_k]) AS tmp

FROM OutgoingAdjacency
WHERE vertexid = <?>

),
gather_edges AS (

SELECT sourceid, label, array_elements(tmp) AS targetid
FROM unshred_edges
WHERE label = <?>

)
SELECT sourceid, label, targetid
FROM gather_edges

Listing 5.5: Example outgoing neighbourhood query for a single node using the outgoing
adjacency table.

WITH unshred_edges AS (
SELECT vertexid AS targetid,
UNNEST(array[label_0, ..., label_l]) AS label,
UNNEST(array[source_0, ..., source_l]) AS tmp

FROM IncomingAdjacency
WHERE vertexid = <?>

),
gather_edges AS (

SELECT targetid, label, array_elements(tmp) AS sourceid
FROM unshred_edges
WHERE label = <?>

)
SELECT targetid, label, sourceid
FROM gather_edges

Listing 5.7: Example incoming neighbourhood query for a single node using the outgoing
adjacency table.

67



5. Data Retrieval

Remark 5.2
It should be noted that up to PostgreSQL 11, the query optimizer was not able to optimize
queries across different temporary views (CTE) that are building upon each other. This leads
to the effect that the order in which the temporary views are defined determines the order in
which edges are joined to the intermediate results. On the one hand this gives us leverage to
control the join order, on the other hand it reduces the impact a highly sophisticated query
optimizer has. PostgreSQL 12 now has the capability to perform those optimizations. By
using MATERIALIZED temporary views, we can obtain the original behavior. Even though
the evaluation presented in Chapter 6 is performed on PostgreSQL 13, it is based on our own
performance optimization using the order of CTEs. The query optimizer of PostgreSQL 13
was not able to handle the complexity of the queries that are required for our evaluations
and use case.

We will use the previously described query patterns extensively in order to construct complex
SQL queries from Cypher queries in the next sections.

68



5.2. Query Language Support

5.2. Query Language Support

As previously presented in Section 5.1, SQL queries that have to trace along several edges soon
become very lengthy and complicated, and therefore hard to maintain during the development
and maintenance of an application. Consider Listing 5.8 just to get an impression of the
complexity of queries that a user would have to write to use RATG. The example shows an
implementation of Complex Query 2 of the LDBC-SNB: "Given a start Person, find (the most
recent) Messages from all of that Person’s friends. Only consider Messages created before the
given maxDate (excluding that day)" [Cou20]. In this section, we will describe an approach
to use the query language Cypher for RATG.

The language Cypher was specifically designed to query property graph data, and therefore
is much more compact and intuitively understandable. The same query as shown before in
Listing 5.8 can be expressed with Cypher using the query depicted in Listing 5.9. In this
query, the complete graph matching pattern is described in the first two lines, while the rest of
the query only defines which values to return in what order.

MATCH (:Person {id:$personId})-[:KNOWS]-(friend:Person)
<-[:HAS_CREATOR]-(message:Message)

WHERE message.creationDate <= $maxDate
RETURN

friend.id AS personId,
friend.firstName AS personFirstName,
friend.lastName AS personLastName,
message.id AS messageId,
CASE exists(message.content)

WHEN true THEN message.content
ELSE message.imageFile

END AS messageContent,
message.creationDate AS messageCreationDate

ORDER BY messageCreationDate DESC, toInteger(messageId) ASC
LIMIT 20

Listing 5.9: LDBC SNB Query 2 using Cypher.

To provide an access method with high usability, we set the goal to integrate the query
language Cypher and make it available for RATG. We decided on Cypher over other query
languages (e.g. Gremlin [Rod15]) due to its intuitive declarative nature, its growing support
in the database community, and the fact that an open-source version is available [Gre+18].

69



5. Data Retrieval

WITH p a t t e r n _ v i e w _ 0 AS (
WITH edge_2 AS (

(
WITH query1 AS (

SELECT o u t g o i n g p r i m a r y a d j a c e n c y . v e r t e x i d AS id_0 ,
UNNEST( array [ . . . ] ) AS l a b e l _ 2 , UNNEST( array [ . . . ] ) AS nodeIdTmp

FROM o u t g o i n g p r i m a r y a d j a c e n c y , v e r t e x a t t r i b u t e s v e r t e x a t t r i b u t e s 0
WHERE CAST ( v e r t e x a t t r i b u t e s −>> ’ i d ’ AS b i g i n t ) = ?

AND v e r t e x a t t r i b u t e s −>> ’ Type ’ = ’ p e r s o n ’
AND v e r t e x a t t r i b u t e s 0 . v e r t e x i d = o u t g o i n g p r i m a r y a d j a c e n c y . v e r t e x i d

) ,
que ry2 AS (

SELECT query1 . id_0 , j s o n b _ a r r a y _ e l e m e n t s _ t e x t ( nodeIdTmp ) : : BIGINT AS i d_1
FROM query1
WHERE l a b e l _ 2 = ’KNOWS’

)
SELECT query2 . id_0 , query2 . i d_1 AS id_1 ,

v e r t e x a t t r i b u t e s 1 . v e r t e x a t t r i b u t e s AS a t t r _ 1
FROM query2 , v e r t e x a t t r i b u t e s v e r t e x a t t r i b u t e s 1
WHERE ( v e r t e x a t t r i b u t e s 1 . v e r t e x a t t r i b u t e s −>> ’ Type ’ = ’ p e r s o n ’ )

AND ( ( v e r t e x a t t r i b u t e s 1 . v e r t e x i d = query2 . i d_1 )
)

UNION
(

WITH query1 AS (
SELECT i n c o m i n g p r i m a r y a d j a c e n c y . v e r t e x i d AS id_0 ,

UNNEST( array [ . . . ] ) AS l a b e l _ 2 , UNNEST( array [ . . ] ) AS nodeIdTmp
FROM i n c o m i n g p r i m a r y a d j a c e n c y , v e r t e x a t t r i b u t e s v e r t e x a t t r i b u t e s 0
WHERE CAST ( v e r t e x a t t r i b u t e s −>> ’ i d ’ AS b i g i n t ) = ?

AND v e r t e x a t t r i b u t e s −>> ’ Type ’ = ’ p e r s o n ’
AND v e r t e x a t t r i b u t e s 0 . v e r t e x i d = i n c o m i n g p r i m a r y a d j a c e n c y . v e r t e x i d

) ,
que ry2 AS (

SELECT query1 . id_0 , j s o n b _ a r r a y _ e l e m e n t s _ t e x t ( nodeIdTmp ) : : BIGINT AS i d_1
FROM query1
WHERE l a b e l _ 2 = ’KNOWS’

)
SELECT query2 . id_0 , query2 . i d_1 AS id_1 ,

v e r t e x a t t r i b u t e s 1 . v e r t e x a t t r i b u t e s AS a t t r _ 1
FROM query2 , v e r t e x a t t r i b u t e s v e r t e x a t t r i b u t e s 1
WHERE ( v e r t e x a t t r i b u t e s 1 . v e r t e x a t t r i b u t e s −>> ’ Type ’ = ’ p e r s o n ’ )

AND ( ( v e r t e x a t t r i b u t e s 1 . v e r t e x i d = query2 . i d_1 ) )
)

) ,
edge_4 AS (

WITH query1 AS (
SELECT i n c o m i n g p r i m a r y a d j a c e n c y . v e r t e x i d AS id_1 , edge_21 . a t t r _ 1 ,

UNNEST( array [ . . . ] ) AS l a b e l _ 4 , UNNEST( array [ . . . ] ) AS nodeIdTmp
FROM i n c o m i n g p r i m a r y a d j a c e n c y , edge_2 edge_21
WHERE edge_21 . i d_1 = i n c o m i n g p r i m a r y a d j a c e n c y . v e r t e x i d

) ,
que ry2 AS (

SELECT query1 . id_1 , query1 . a t t r _ 1 ,
j s o n b _ a r r a y _ e l e m e n t s _ t e x t ( nodeIdTmp ) : : BIGINT AS i d_3

FROM query1
WHERE l a b e l _ 4 = ’HASCREATOR’

)
SELECT query2 . id_1 , query2 . a t t r _ 1 , que ry2 . i d_3 AS id_3 ,

v e r t e x a t t r i b u t e s 3 . v e r t e x a t t r i b u t e s AS a t t r _ 3
FROM query2 , v e r t e x a t t r i b u t e s v e r t e x a t t r i b u t e s 3
WHERE ( ( v e r t e x a t t r i b u t e s 3 . v e r t e x a t t r i b u t e s −>> ’ Type ’ = ’ p o s t ’ )

OR ( v e r t e x a t t r i b u t e s 3 . v e r t e x a t t r i b u t e s −>> ’ Type ’ = ’ comment ’ ) )
AND ( v e r t e x a t t r i b u t e s 3 . v e r t e x i d = query2 . i d_3 )
AND ( (CAST ( v e r t e x a t t r i b u t e s 3 . v e r t e x a t t r i b u t e s −>> ’ c r e a t i o n D a t e ’ AS BIGINT ) < = ? ) )

)
SELECT DISTINCT edge_4 . a t t r _ 3 , edge_4 . id_1 , edge_4 . a t t r _ 1 , edge_2 . id_0 , edge_4 . i d_3
FROM edge_4 , edge_2
WHERE ( edge_4 . i d_1 =edge_2 . i d_1 )

)
SELECT CAST ( p a t t e r n _ v i e w _ 0 . a t t r _ 1 −>> ’ i d ’ AS BIGINT ) AS p e r s o n I d ,

p a t t e r n _ v i e w _ 0 . a t t r _ 1 −>> ’ f i r s t N a m e ’ AS pe r sonF i r s tName ,
p a t t e r n _ v i e w _ 0 . a t t r _ 1 −>> ’ las tName ’ AS personLastName ,
CAST ( p a t t e r n _ v i e w _ 0 . a t t r _ 3 −>> ’ i d ’ AS BIGINT ) AS messageId ,
CAST ( p a t t e r n _ v i e w _ 0 . a t t r _ 3 −>> ’ c r e a t i o n D a t e ’ AS BIGINT ) AS messageDate ,
COALESCE( p a t t e r n _ v i e w _ 0 . a t t r _ 3 −>> ’ c o n t e n t ’ , p a t t e r n _ v i e w _ 0 . a t t r _ 3 −>> ’ i m a g e F i l e ’ ) AS messageCon ten t

FROM p a t t e r n _ v i e w _ 0
ORDER BY CAST ( p a t t e r n _ v i e w _ 0 . a t t r _ 3 −>> ’ c r e a t i o n D a t e ’ AS BIGINT ) DESC ,

CAST ( p a t t e r n _ v i e w _ 0 . a t t r _ 3 −>> ’ i d ’ AS BIGINT ) ASC
LIMIT 2 0 ;

Listing 5.8: LDBC SNB Query 2 using SQL.

70



5.2. Query Language Support

5.2.1. Integrating an Additional Query Language

In order to easily integrate an additional query language into any software application we
used the same approach as Ehlers [Ehl15] and made it accessible through a Java Database
Connectivity (JDBC) interface. This way our query language mechanism can be used from
any Java Software and by many standard database clients, for example DBeaver1. A first
proof of concept for the integration into the JDBC interface was created by Kornev [Kor16].

Our overall integration concept for Cypher into RATG is depicted in Figure 5.10:

1) Cypher Query Parser: First, the query in Cypher syntax is parsed. To parse the state-
ments we use the open-source parser provided by the openCypher project2, which is
described in [MSV17]. The parser returns an abstract syntax tree which we in turn
convert into an internal graph pattern representation. The overall result of this step is
an internal representation of the Cypher query that can be used for further processing.

2) Internal Query Optimizer: The internal representation of the query is then used to ana-
lyze the query structure and determine accessed attributes and returned vertices and
edges. We analyze the query structure mainly in regard to the required graph pattern.

Since Cypher offers many ways to describe the same graph pattern, we normalize the
description internally and build a single graph pattern that describes the query. Using
information about the paths and their length, the optimizer decides which target tables
should be used for the translation. This is necessary, since we can decide to use the
edge list, the incoming, or the outgoing adjacency list for every addition of a new edge
to the intermediate results. Well-known concepts like early projection can and should
also be applied in this step. The result of this step is the internal representation of
the query, including (among others) the order in which edges should be joined, what
attributes need to be carried to the final result, and hints on what tables to use for the
final translation to SQL.

3) SQL Converter: As the next step, the query is converted into a SQL representation of the
query compatible with the target relational database system. We created prototypical
implementations of the converter for PostgreSQL [Kor17] and optimized the translation
mechanism in [Goj21]. We also created a proof of concept for OracleDB [Sha21].

4) Third-party JDBC Driver: Finally, the generated query string is handed to a third-party
JDBC driver, for example the PostgreSQL JDBC driver. From this point on, the
process is the same as with any JDBC driver. Therefore, we can use this driver in any
application that expects a JDBC interface, for example we can use the graphical user
interface of DBeaver.

In the following sections, we will describe our approach to translate Cypher queries into SQL
queries.

1https://dbeaver.io/
2https://www.opencypher.org/

71

https://dbeaver.io/
https://www.opencypher.org/


5. Data Retrieval

RATG

Cypher Query

Cypher Query
Parser

Internal Query 
Optimizer

[Internal Representation]

SQL Converter

[Int. Rep. Including Edge Order]

Third-party JDBC Driver

Figure 5.10.: Integration concept for the Cypher query language

72



5.2. Query Language Support

To achieve the translation from Cypher to SQL statements, we need to map the available
Cypher constructs to corresponding SQL features. Therefore, we first describe the general
idea of Cypher. For this work we only consider queries that do not alter the data, hence the
data is only access in a reading manner. Since Cypher is a very extensive query language, we
will focus on the essential operations and features of the query language in this work. For
detailed semantics of the Cypher query language see [Fra+18b] and for a detailed description
of the query language itself see The Neo4j Cypher Manual v4.03.

We make the following assumptions:

1. We will present an approach to inductively construct SQL queries from given Cypher
queries. Our approach makes extensive use of CTEs (which are often called temporary
views) to construct the queries from preconstructed query skeletons. Therefore, we
assume that we are able to use CTEs in the target database system.

2. In order to backtrack some result paths and to make sure that each edge is only used
a single time for every solution, we need to have some type of array or list datatype
available in the target system. This should naturally be the case, since our database
schema already relies on the use of arrays to store adjacency lists.

3. Finally, to be able to translate queries that retrieve paths of variable length, we assume
that the target database system offers recursive queries.

To describe our translation mechanism, we first deconstruct Cypher queries down to their
building blocks. Then we take a look at the semantics of those elemental parts. Afterwards,
we give translation skeletons to translate the Cypher query parts into SQL temporary views.
We use those temporary views to then construct the whole query in SQL. The following
sections of this chapter are:

First, we describe the most important operators of the language followed by an abbreviated
description of the syntax of the language. Names of different Cypher constructs are directly
taken from the Cypher grammar available at the openCypher homepage.4

Afterwards, we describe the semantics of parts of the Cypher query language: We describe
the semantics of the MATCH clauses of Cypher in detail, while we omit to present the
semantics for most of the other language constructs. We present the MATCH semantics in
more detail, since this is the central concept of the query language and is the main difference
to SQL. The other language constructs behave very similarly, if not exactly the same, as in
SQL (ignoring syntactical differences). For the complete description of the Cypher semantics
please consider [Fra+18b].

Finally, we present our translation of the Cypher MATCH clause to SQL and show that the
translated queries return the semantically correct results. Using this central building block,
we then describe how to construct entire Cypher queries.

3https://neo4j.com/docs/cypher-manual/4.0/
4https://www.opencypher.org/

73

https://neo4j.com/docs/cypher-manual/4.0/
https://www.opencypher.org/


5. Data Retrieval

5.2.1.1. Introducing the Cypher Query Language

Cypher is designed to offer an easy and intuitive way to query data from a property graph (as
defined in Definition 3.1). A Cypher query engine takes a Cypher query or clause, a property
graph, and a table as input and returns a table containing the results of the query for the given
input graph. The input table can be understood as a table containing the intermediate results.
In the case of the initial Cypher query, the input table is a table containing a single empty
tuple. The general idea is depicted in Figure 5.11.

Cypher 
Engine

Property 
Graph

Cypher Query Tout

Tin

Figure 5.11.: Concept of the Cypher query language.

More formally, we can describe the semantics of Cypher by defining one relation and two
functions (see [Fra+18b]):

• The pattern matching relation is the central piece to understand Cypher. This relation
checks if a path p in a graph G satisfies a path pattern π using an assignment u of
values to the free variables f ree(π) of the pattern. We then write (p,G,u) |= π. The
formal definition of the pattern matching relation can be found in Definition 5.43.

• The semantics of expressions associates an expression expr, a graph G, and a variable
assignment u with a value JexprKG,u.

• The semantics of clauses associates a clause C and a graph G with a function JCKG that
takes a table Tin as input and returns a possibly modified table Tout . The new table can
have a different number of rows or columns. Tables are defined very similary to tables
in SQL. The exact definition can be found in [Fra+18b].

74



5.2. Query Language Support

The output of a query (Figure 5.11) can then be described as the composition of those functions
defining the semantics of clauses contained in the query. We can start the evaluation of a
query by using the table that only contains one empty tuple Tunit as input and successively
applying the functions that provide the semantics for the clauses contained in the query.

In the following sections we will first describe the essential Cypher operators that are necessary
to understand queries relevant to this work. Next, we provide a short description of the syntax,
since our translation mechanism will construct the corresponding SQL query using the
construction rules provided by the Cypher syntax. Afterwards we take a closer look at the
semantics of Cypher. We will define everything necessary to understand the semantics of the
pattern matching relation. Using the pattern matching relation as our central building block,
we can then construct the corresponding SQL query that represents the MATCH clause. We
will use the semantics of this relation to argue the correctness of our translation. Using our
knowledge about Cypher syntax, we then construct the complete SQL query.

75



5. Data Retrieval

5.2.1.2. The Cypher Operators

The following section shortly describes the most important operators of the Cypher query
language. These operators are necessary to describe the graph matching patterns of Cypher
queries, and therefore the most vital feature of the query language.

MATCH starts most queries and is the most essential operator of Cypher. Using this operator,
we can define the sub-graph to search for. Those sub-graphs are defined "using ASCII-
Art syntax"5. In Listing 5.12 a query that will match vertices that have the specified
attribute value is depicted.

MATCH (p1:Person{name:"Yamamoto"})

Listing 5.12: Vertex match example.

Listing 5.13 depicts a MATCH clause that queries for all nodes of the type Person that
is connected to another Person by a directed edge of type KNOWS.

MATCH (p1:Person) -[:KNOWS]-> (p:Person)

Listing 5.13: Directed edge example.

Finally, we have to mention that it is also possible to query for paths of variable length.
Listing 5.14 depicts a query that matches, starting from a specific Person, all Persons
that can be reached by the use of one to three edges of type KNOWS (disregarding the
direction of the edge).

MATCH (p1:Person{id:""})-[KNOWS*1..3]-(p2:Person)

Listing 5.14: Example path with variable length.

This operator can also be used in combination with the examples above, for paths
including different edge types, and other cases. For more detailed view of the operator
we recommend consulting Francis et al. [Fra+18b].

WITH is used to combine different sub-queries of a Cypher query by propagating selected
elements to the next sub-query. The results of the WITH sub-query can then be used as a
starting point for further search. Additionally, like in SQL the results can be aggregated,
filtered, or limited before returning them. For the sake of brevity we will not discuss
the required operators further and refer the interested reader to the official Cypher
documentation. The WITH sub-query therefore fulfills the same role as a temporary
view in SQL (or CTE in PostgreSQL).

MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WITH p1, COUNT(p) AS numberOfFriends

Listing 5.15: WITH Example including aggregation.

5See https://neo4j.com/developer/cypher/

76

https://neo4j.com/developer/cypher/


5.2. Query Language Support

Listing 5.15 depicts a WITH sub-query that passes all Persons p1 that KNOW another
Person p with the aggregated (COUNT) number of friends (counting p) on to the next
part of the query.

WHERE adopts the roles of two operators of SQL. Therefore, we have to distinguish the
following two cases:

1. Using WHERE without a WITH clause. In this case WHERE fulfills the same
role as the WHERE statement in SQL and filters the result applying the given
logical expression before returning the result.

MATCH (p1:Person)
WHERE p1.name = "Yamamoto"

Listing 5.16: Standard WHERE usage example.

Listing 5.16 depicts an alternative to the query in Listing 5.12. Here the MATCH
clause binds all vertices of type Person while the WHERE filters the matched
vertices by accessing the attribute name and comparing it to the value "Yamamoto".

2. Using WHERE in combination with/after a WITH statement. In this case, the
WHERE statement acts like the HAVING statement of SQL and can be used
to further filter the results returned by the WITH statement, including logical
expressions like filtering aggregation results computed by the WITH sub-query.

MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WITH p1, COUNT(p) AS numberOfFriends
WHERE numberOfFriends > 1

Listing 5.17: WHERE example functioning as HAVING.

Listing 5.17 depicts an example of WHERE in combination with the WITH clause.
Here it acts like the HAVING keyword in SQL filtering the results based on the
aggregation and only passing on p1 that have more than one friend.

RETURN finishes the description of a Cypher query and defines the schema of the result
set, which is a so-called graph relation [MSV17]. It is a combination of vertices, edges,
and (possibly aggregated) values organized in rows. Like the results of a WITH clause,
the results of a RETURN can be ordered (ORDER BY), de-duplicated (DISTINCT),
and modified very similarly to SQL. This is done using designated keywords, which we
will not discuss further for the sake of brevity.

MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WITH p1, COUNT(p) AS numberOfFriends
WHERE numberOfFriends > 1
RETURN p1

Listing 5.18: Return example.

77



5. Data Retrieval

Listing 5.18 depicts a complete example query. Since the WITH clause projects the
intermediate results to vertice p1 and the result of the aggregation, the final RETURN
can only access those two intermediate results columns. These are filtered further and
the query only returns the vertex p1.

Since we now know the operators available in Cypher we can use these to define the Cypher
syntax.

78



5.2. Query Language Support

5.2.1.3. Cypher Syntax

In this section we introduce part of the Cypher query syntax. We only introduce those parts
of the grammar that are necessary for understanding this work. Later, we will use the Cypher
syntax to construct the SQL query that returns the appropriate results. We will do this by
using the building blocks and construction rules defined by the Cypher syntax.

Cypher Query A query consists of one or more Single Queries, combined with a UNION
operator. The result of this query is the UNION of the results of all included Single
Queries. The results must meet the same requirements as for the UNION operator in
SQL. Therefore, the resulting tuples must have the same arity, the same data type, and
the same name for each position. Figure 5.19 depicts a syntax diagram of the Cypher
Query.

Single Query

UNION

Figure 5.19.: Cypher Query Syntax.

Listing 5.20 depicts an example of a Cypher Query that combines two Single Queries
using the UNION operator. Since the first Single Query returns vertices of the type

MATCH (p1:Person{name:"Yamamoto"})
WITH p1
MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WITH p1, COUNT(p) AS numberOfFriends
WHERE numberOfFriends > 1
RETURN p1

UNION
MATCH (p2:Person{name:"Silva"})
RETURN p2

Listing 5.20: Example cypher query including UNION.

79



5. Data Retrieval

Person the result set of the second Single Query must conform to this schema, and
therefore can also only return vertices that follow the schema of Persons. Note that
Cypher does not offer an intersection operator. If desired, the intersection must be
achieved using WHERE clauses or other constructs.

Single Query A Single Query (see Figure 5.21) can be a Single Part Query or a Multi
Part Query. Note that since each Multi Part Query is concluded with a Single Part
Query, each Single Query query includes a Single Part Query as its last element (see
Figure 5.24).

SinglePartQuery

MultiPartQuery

Figure 5.21.: Cypher SingleQuery Syntax.

Single Part Query For our purpose, a Single Part Query is composed of one Reading
Clause (since we do not consider updates or function calls). The query part is finished
with a RETURN statement defining the result set of the Single Part Query. Figure 5.23
depicts a syntax diagram of the Single Part Query.

Building upon Listing 5.27, we depict a Single Part Query that only uses the Reading
Clause from above in Listing 5.22. The return describes that all nodes matching the
requirements described in the Reading Clause are delivered.

Multi Part Query As the name suggests, a Multi Part Query (see Figure 5.24) consists of
several parts. Since we do not consider updates, it therefore consists of one or more
Reading Clauses each followed by a WITH clause and is concluded with a Single

MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WITH p1, COUNT(p) AS numberOfFriends
WHERE numberOfFriends > 1
RETURN p1

Listing 5.22: Example Single Part Query.

80



5.2. Query Language Support

ReadingClause

RETURN

Figure 5.23.: Cypher Single Part Query Syntax.

ReadingClause

WITH SinglePartQuery

Figure 5.24.: Cypher Multi Part Query syntax.

Part Query. The results of the consecutive Reading Clauses are handed to the next
clause by using WITH and can be used as input data for the next clause. For the sake
of completeness, one should note that WITH can be used to deliver constants without
the need of a Reading Clause. We will not consider this case for the rest of this work.

Listing 5.25 depicts an example where an earlier Reading clause that returns all vertices
that have the name "Yamamoto" assigned is included in the Multi Part Query.

The second MATCH describes that the result relation of this Reading Clause contains
the vertex p1 and the aggregated number of vertices, which are reachable from the first
vertex through KNOWS edges. In context of the WITH clause, the WHERE clause acts
like the HAVING clause of SQL and filters the results that do not KNOW at least two
vertices of type Person.

Variables are matched by name, therefore the second MATCH clause will only affect
vertices that have been returned from the first MATCH clause, resulting in returning

81



5. Data Retrieval

only vertices with the name "Yamamoto" that KNOW more than one Persons.

MATCH (p1:Person{name:"Yamamoto"})
WITH p1
MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WITH p1, COUNT(p) AS numberOfFriends
WHERE numberOfFriends > 1
RETURN p1

Listing 5.25: Example Single Query.

Reading Clause The Reading Clause is the main building block of Cypher queries for this
work, since we do not consider update queries. These in turn use MATCH clauses as
their main component. Although it is technically possible to create a Cypher query
without a MATCH clause, it can only return constants and therefore we will not consider
these types of statements in the rest of this section. Figure 5.26 depicts a syntax diagram
of the Reading Clause.

OPTIONALWHERE MATCH

Figure 5.26.: ReadingClause syntax.

Listing 5.27 depicts an example of a simple Reading Clause with a single MATCH
clause. The MATCH clause describes the graph patterns in which all vertices of the
type Person that are connected to another vertex of type Person by using an edge of
type KNOWS. The WHERE clause selects only those paths, in which the vertex p1 has
the name "Yamamoto".

MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WHERE p1.name = "Yamamoto"

Listing 5.27: Example Reading Clause

82



5.2. Query Language Support

MATCH Finally, we want to define the syntax of the MATCH operator. Figure 5.28 depicts
the syntax of the MATCH operator, which consists of at least a single node pattern
and continues with alternating relation patterns and node patterns and always ends
with a node pattern.

RelationPattern

NodePattern

Figure 5.28.: MATCH syntax.

Now, after we have introduced the most important Cypher operators and syntax rules, we can
describe the semantics of the Cypher query language:

We will describe the semantics of the MATCH clauses of Cypher in detail, while we omit to
present the semantics for most of the other language constructs. We present the semantics of
the MATCH operator in more detail, since this is the central concept of the query language
and is the main difference to SQL. Other language constructs behave very similarly, if not
exactly the same as in SQL. For the complete description of the Cypher semantics please
consider [Fra+18b].

83



5. Data Retrieval

5.2.1.4. Cypher Semantics

We now present the Cypher semantics defined by Francis et al. [Fra+18b] adapted to our
property graph definition in Definition 3.1.

In this work we focus on the semantics of graph pattern matching, while we omit the details
of handling the WHERE clause, SELECT clause, data types, lists, etc. for the purpose of
brevity. These can be applied straightforward. Therefore, we first define pattern matching
and semantics according to the definition in [Fra+18b]. In Section 5.2.2, we will use this
definition to show the correctness of our translation mechanism.

Concept Instance Set

Vertices/Nodes n N
Edges/Relationships r E
Label of edge e l L
Property keys k P
Names a N
Path in the graph p
Direction d
Node pattern χ

Relationship pattern ρ

Path pattern π

Table 5.29.: Overview of the names we use for instances and sets of concepts.

In order to define the syntax, as well as the semantics of Cypher, we use a number of names for
different concepts. An overview of the names for concepts like vertices or edges is depicted
in Table 5.29. The table contains both, the names previously defined in Definition 3.1 and
new names used in this section.

Relation/Function Name Domain Codomain

Source vertex of an edge src E N
Target vertex of an edge target E N
Label of an edge λ E L
Properties of vertices and edges σ (N∪E)×P P(V )

Table 5.30.: Overview of the relations we use.

For look up purposes, we also give an overview of the relations and (partial) functions in
Table 5.30, with the power set written as P . We have previously defined these in Definition 3.1
and are used in this section.

We will now first define the formal syntax of the different types of patterns. Then we will
define the satisfaction of patterns, which in turn is necessary to define the pattern matching

84



5.2. Query Language Support

function. Later on, we can use the definition of the pattern matching function to define
the SQL skeleton that we use to construct SQL queries representing the MATCH clause of
Cypher.

Formal Syntax of Patterns We now define the syntax of patterns (see the description of
MATCH in Section 5.2.1.2 and Section 5.2.1.3) in a more formal manner, which we adopted
from [Fra+18b]. This is the most basic building block for our translation algorithm. The most
complex pattern is a path pattern, which in turn consists of node patterns and relationship
patterns. Therefore, we will first describe node and relationship patterns and then base the
definition of a path pattern on those. After we have defined node patterns, relationship
patterns and path patterns we will present an example including all of the above.

Definition 5.31 [Node Pattern]
A node pattern χ is a triple χ = (a, l,K) where:

• a ∈N ∪{null} is an optional name, where N is a finite set of names;

• l ∈ L∪{null} is an optional label;

• K is a possibly empty finite partial mapping from the set of property keys P to expres-
sions. It is the Cypher equivalent for patterns to our definition of the assignment of
properties to vertices and edges σ as defined in Definition 3.1.

Definition 5.32 [Free Variables of a Node Pattern]
The set of free variables f ree(χ) of the node pattern χ is defined as f ree(χ) = {a}, if
a 6= null, else f ree(χ) = /0.

Remark 5.3
Since the following examples will require a substantial amount of indices to describe the
different instances, we will use the node pattern (and later on relationship pattern) as the
index to increase readability. For example, we will write aχ1 to describe the aforementioned
optional name a that belongs to the node pattern χ1.

Example 5.33
Let us consider the part of a Cypher query depicted in Listing 5.34: This MATCH clause
describes the node p1 of the type Person, which has an attribute name with the value "Ya-
mamoto".

MATCH (p1:Person{name:"Yamamoto"})

Listing 5.34: Node pattern example.

We can then formally describe this pattern using Definition 5.31 as the node pattern
χ1 = (aχ1 , lχ1 ,Kχ1):

85



5. Data Retrieval

• aχ1 = p1, identifying the matched node with the name p1,

• lχ1 = Person, defining the desired type of the node as Person, and

• Kχ1 = {name→ ”Yamamoto”}, describing that the desired value for the property key
name is "Yamamoto".

The set of free variables for this node pattern is f ree(χ1) = p1.

As we described in Section 5.2.1.3, the MATCH operator can be applied to a combina-
tion of node patterns and relation patterns. Therefore, we now define relationship pat-
terns [Fra+18b].

Definition 5.35 [Relationship Pattern]
A relationship pattern ρ is a tuple ρ = (d,a,T,K, I) where

• d ∈ {→,←,↔} specifies the direction of the pattern (left-to-right, right-to-left, or
undirected);

• a ∈N ∪{null} is an optional name;

• T ⊂ L is a possibly empty finite set of labels describing the relationship types that
should be applied;

• K is a possibly empty finite partial mapping from the set of property names N to
expressions;

• I is either null or (m,n) with m,n ∈ N∪{null} and m≤ n describing the range of the
relationship pattern (the number of hops). For m = null we default to m = 1 and for
n = null we default to n = ∞. If (m,n) = (null,null) we default to (m,n) = (1,1).

We call a relationship pattern rigid if its range satisfies m = n.

Definition 5.36 [Free variables of a Relationship Pattern]
The set of free variables f ree(ρ) of the relationship pattern ρ is defined as f ree(ρ) = {a},
if a 6= null, else f ree(ρ) = /0.

Example 5.37
The relationship pattern described in the relation part of the Cypher query depicted in
Listing 5.38 describes a relationship k of the type knows. The edge has the property since
with the value "14.06.2018" and the direction left-to-right.

MATCH (p1:Person{name:"Yamamoto"})
-[k:knows {since:"14.06.2018"}]-> () -[:likes]- (p3)

Listing 5.38: Relationship pattern example.

Formally, we can describe this relationship pattern using Definition 5.35 as
ρ1 = (dρ1 ,aρ1 ,Tρ1 ,Kρ1 , Iρ1) with

86



5.2. Query Language Support

• dρ1 =→, defining the direction left-to-right;

• aρ1 = k, assigning the name k to the relationship pattern;

• Tρ1 = {knows}, setting the type of the relationship to knows;

• Kρ1 = {since→ ”14.06.2018”}, making sure that only relationships are considered for
which σ(k,since) = ”14.06.2018” holds;

• and Iρ1 = (null,null) and therefore (m,n) = (1,1). This also makes this relationship
pattern rigid.

The set of free variables for this relationship pattern is f ree(ρ1) = k.

After having defined node patterns and relationship patterns, we can now define path pat-
terns [Fra+18b]:

Definition 5.39 [Path Pattern]
A path pattern π is an alternating sequence of the form

χ1ρ1χ2 . . .ρn−1χn

where each χi is a node pattern and each ρ j is a relationship pattern. We call a path pattern
rigid if all its relationship patterns are rigid and of variable length otherwise.

Definition 5.40 [Free Variables of a Path Pattern]
The set of free variables f ree(π) of the path pattern π is defined as the union of all free
variables occurring in the path pattern π:

f ree(π) =
⋃

i∈{1,...,n}
f ree(χi)∪

⋃
j∈{1,...,n−1}

f ree(ρ j)

After we have now defined everything we need to describe a path pattern, we want to take a
look at the example path pattern depicted in Listing 5.42.

Example 5.41
The path pattern describes a path that starts at the node p1 of the type Person that has an
attribute name with the value "Yamamoto". With p1 as its source, a relationship of the type
knows, the attribute since with value "14.06.2018", and targets a node p2. This node itself is
connected to a third node p3 by a relationship of unspecified direction and type likes.

MATCH (p1:Person{name:"Yamamoto"})
-[k:knows {since:"14.06.2018"}]-> () -[:likes]- (p3)

Listing 5.42: Path pattern example.

87



5. Data Retrieval

Using Definitions 5.31, 5.35 and 5.39 we can formally describe this pattern as follows.
Listing 5.42 depicts the path pattern χ1ρ1χ2ρ2χ3 with:

• χ1 = (aχ1 , lχ1 ,Kχ1):

– aχ1 = p1, identifying the matched node with the name p1;

– lχ1 = Person, defining the desired type of the node as Person;

– and Kχ1 = {name→ ”Yamamoto”}, describing that the desired value for the
property key name is "Yamamoto".

• ρ1 = (dρ1 ,aρ1 ,Tρ1 ,Kρ1 , Iρ1) with

– dρ1 =→, defining the direction left-to-right;

– aρ1 = k, assigning the name k to the relationship pattern;

– Tρ1 = {knows}, setting the type of the relationship to knows;

– Kρ1 = {since→ ”14.06.2018”}, making sure that only relationships are consid-
ered for which σ(k,since) = 14.06.2018 holds;

– and Iρ1 = (null,null) and therefore (m,n) = (1,1). This also makes this relation-
ship pattern rigid.

• χ2 = (aχ2 , lχ2 ,Kχ2) with:

– aχ2 = null, not assigning any name to the described node;

– lχ2 = null, not defining a type for this node;

– and Kχ2 = {}, also not making any assumptions about the properties of this node.

• ρ2 = (dρ2 ,aρ2 ,Tρ2 ,Kρ2 , Iρ2) with

– dρ2 =↔, defining the direction as undirected;

– aρ2 = null, assigning no name to the relationship pattern;

– Tρ2 = {likes}, setting the type of the relationship to likes;

– Kρ2 = {}, not making any assumptions about the properties of this relationship;

– and Iρ2 = (null,null) and therefore (m,n) = (1,1). This also makes this relation-
ship pattern rigid.

• χ3 = (aχ3 , lχ3 ,Kχ3):

– aχ3 = p3 assigning the name p3 to the described node;

– lχ3 = null not defining a type for this node;

– and Kχ3 = {} also not making any assumptions about the properties of this node.

88



5.2. Query Language Support

And we have

f ree(π) = f ree(χ1)∪ f ree(ρ1)∪ f ree(χ2)∪ f ree(ρ2)∪ f ree(χ3)

= {p1,k, p3}

as the set of free variables.

Now that we have defined everything, we can now define the pattern matching relation, which
corresponds to the syntax defined for the reading clause in Section 5.2.1.3.

Definition 5.43 [Pattern Matching Relation]
The pattern matching relation (p,G,u) |= π checks, if a path p in a property graph G
satisfies a path pattern π under an assignment u of values to free variables of the pattern,
with u : f ree(π)→ N∪E mapping the set of free variables to the combined set of nodes and
edges.

We can now take a look at the semantics of path patterns. After that we will examine the
pattern matching relation and how we can translate it from Cypher to our schema in SQL.

89



5. Data Retrieval

Satisfaction of Path Patterns The satisfaction relation for path patterns is defined (same
as by Francis et al. [Fra+18b]) with regard to a property graph G = (N,E,ρ,λ ,σ) (as defined
in Definition 3.1), a path p = n1 · r1 · · ·nk−1 · rk−1 ·nn consisting of nodes n1, . . .nk ∈ N and
relationships r1, . . . ,rk−1 ∈E and an assignment u in compliance to our definition of a property
graph.

Definition 5.44 [Satisfaction of Node Patterns]
Let p be a path in which all relationships are distinct, with G = (N,E,ρ,λ ,σ) be a property
graph, and u be an assignment. The relationships contained in a path are distinct, if the path
does not contain any relationship more than a single time.

We define the satisfaction of rigid patterns inductively, with the base case given by node pat-
terns. Let χ = (a, l,K) be a node pattern within the path pattern π, then the path (n,G,u) |= χ

if all the following hold:

• either a is null or u(a) = n,
meaning either a is not named or u assigns n to a;

• l = σ(n, type),
making sure the label of the vertex in the node pattern matches the type of the node in
the graph. Since we do not directly assign types to nodes in our definition of the property
graph, we use the reserved property key ’type’ for this purpose (see Definition 3.1);

• and Jσ(n,k) = K(k)KG,u = true for each k such that K(k) is defined in χ,
checking if all properties defined in the pattern match the assigned vertex.

We then say the node n satisfies the path pattern χ in the graph G with the assignment u. A
node pattern is the smallest valid path pattern.

Remark 5.4
The property that the relationships in a path have to be distinct is a characteristic of Cypher.
Due to this, the resulting paths obtained from a Cypher query can never contain the same
relation twice, but can still contain the same node several times.

Let us revisit the example path pattern χ1ρ1χ2ρ2χ3 described in Example 5.41 obtained
from Listing 5.42 with χ1 = (p1,Person,{name→ Yamamoto}), χ2 = (null,null,{}), and
χ3 = (p3,null,{}).

Example 5.45
By assigning the unique name p2 to χ2 we obtain χ1 = (p1,Person,{name→ Yamamoto}),
χ2 = (p2,null,{}), and χ3 = (p3,null,{}).

Let G = (N,E,ρ,λ ,σ) be the graph defined in Example 3.2 with N = {n1,n2,n3,n7,n13} and
σ(n1, type) = Person,σ(n1,name) = Yamamoto, . . ..

90



5.2. Query Language Support

Using Definition 5.44 (rigid satisfaction of node patterns) we can infer from the graph that

(n1,G,uχ1
1 ) |= χ1 (n1,G,uχ2

1 ) |= χ2 (n1,G,uχ3
1 ) |= χ3

(n2,G,uχ1
2 ) 6|= χ1 (n2,G,uχ2

2 ) |= χ2 (n2,G,uχ3
2 ) |= χ3

(n3,G,uχ1
3 ) 6|= χ1 (n3,G,uχ2

3 ) |= χ2 (n3,G,uχ3
3 ) |= χ3

(n7,G,uχ1
7 ) 6|= χ1 (n7,G,uχ2

7 ) |= χ2 (n7,G,uχ3
7 ) |= χ3

(n13,G,uχ1
13) 6|= χ1 (n13,G,uχ2

13) |= χ2 (n13,G,uχ3
13) |= χ3

hold for mappings uχk
k (pi) = nk defined as described above. As one can see, for χ1 only n1

qualifies, while for χ2 and χ3 any node can be chosen.

Definition 5.46 [Satisfaction of Rigid Paths]
Let p be a path in which all relationships are distinct, G = (N,E,ρ,λ ,σ) be a property graph,
u be an assignment, and list() be the list constructor.

Also let χ be a node pattern for the inductive case, let π be a rigid path pattern, and let
ρ = (d,a,T,K, I) be a rigid relationship pattern. Since ρ is rigid, I is (m,m) with m ∈N0. We
distinguish two cases:

1. For m = 0, we have that (n · remainder,G,u) |= χρπ, if

a) a is null or a = list();

b) and (n,G,u) |= χ and (remainder,G,u) |= π.

2. For m≥ 1, we have that (n1 · · ·rmnm+1 · remainder,G,u) |= χρπ, if all of the following
hold for every i ∈ {1, . . . ,m}:

a) either a is null or u(a) = list(r1, . . . ,rm),
meaning that a is not named or u assigns exactly the first m relationships of the
path to a;

b) (n1,G,u) |= χ and (remainder,G,u) |= π,
matching the first node with the first node pattern χ and the remainder of the input
path matches the remaining node and relationship patterns of the path pattern π;

c) λ (ri) ∈ T ,
checking if the label of all relations fit the label of the relationship pattern ρ;

d) Jσ(ri,k) = K(k)KGu = true for every key k such that K(k) is defined in the rela-
tionship pattern ρ,
checking if all expressions defined in the relationship pattern fit the given rela-
tionships of the path in the graph;

91



5. Data Retrieval

e) (src(ri), target(ri))


(ni,ni+1),(ni+1,ni) if d is ↔,

(ni,ni+1) if d is →,

(ni+1,ni) if d is ← .
last, making sure that the direction of the relationship conforms to the direction
of the relationship pattern ρ.

Example 5.47
Let us now take a look at the remaining two relationship patterns of the path pattern
χ1ρ1χ2ρ2χ3 that we have considered in Example 5.45. The same as for nodes, we assign the
unique name l to p2 and obtain the following two relationship patterns:

• ρ1 = (dρ1 ,aρ1 ,Tρ1 ,Kρ1 , Iρ1) with

– dρ1 =→, defining the direction of this relationship pattern as left-to-right;

– aρ1 = k, assigning the name k to this relationship pattern;

– Tρ1 = {knows}, setting the label of the matched relations to knows;

– Kρ1 = {since→ ”14.06.2018”} restricting matched relations to those that have
the value "14.06.2018" assigned to the key "since";

– and Iρ1 = (null,null) and therefore (m,n) = (1,1) which defines this pattern as
exactly one edge hop.

• ρ2 = (dρ2 ,aρ2 ,Tρ2 ,Kρ2 , Iρ2) with

– dρ2 =↔, setting the direction of the pattern to undirected (or both directions);

– aρ2 = l, defining the name of this pattern as l;

– Tρ2 = {likes}, restricting the matched relations to those that are of the type likes;

– Kρ2 = {}, not defining any restrictions on property values;

– and Iρ2 = (null,null) and therefore (m,n) = (1,1) to only match a path of
length 1.

Let G = (N,E,ρ,λ ,σ) be the graph defined in Example 3.2 with

• N = {n1,n2,n3,n7,n13}

• E = {r4,r5,r6,r11,r12,r14}

• ρ = {r4→ (n1,n2),r5→ (n1,n3),r6→ (n2,n7),r11→ (n13,n1),r12→ (n1,n7),
r14→ (n13,n7)}

• λ = {r4→ knows,r5→ knows,r6→ likes,r11→ hasCreator,r12→ likes,r14→ replyO f}

• . . .σ(r4,since) = 14.06.2018

92



5.2. Query Language Support

We know that the only suitable choice for χ1 is n1 and because of dρ1 =→ the only suitable
edge instances are r4,r5 and r12. Since only λ (r4),λ (r5) ∈ Tρ1 , we can exclude r12 from the
list of suitable edges for ρ1. Finally, only σ(r4,since) = Kρ1(since) = 14.06.2018.

Therefore, the only possible solution, assuming there exist r? and n? with (π2(target(r4) · r? ·
n?,G,u) |= π) is (n1 · r4 ·n2 · r? ·n?,G,u) |= χ1ρ1π. This also fixates n2 for χ2, since otherwise
this would not represent a path in the graph.

The task remains to find all paths (n2 · r? · n?) |= π, which is the same as (n2 · r? · n?) |=
χ2ρ2χ3. First, we have to makes sure that (n2,G,u) |= χ2, which we know to be true from
Example 5.45.

Since dρ2 =↔, we can only choose from the two edges r4 and r6 to construct a suitable path.
Any edge is allowed to occur a single time in a path. This leaves us with r6 as the only option.
We know that λ (r6) = knows ∈ Tρ2 = {likes} and that there is no constraint on the attributes
of the relationship. This leaves us with n7 as the only option for χ3.

At last, we need to show that (n7,G,u) |= χ3, which we have already demonstrated in
Example 5.45.

Therefore, we can overall conclude that n1 · r4 · n2 · r6 · n7 is the only path that satisfies the
given path pattern χ1ρ1χ2ρ2χ3 given a suitable assignment u:

(n1 · r4 ·n2 · r6 ·n7,G,u) |= χ1ρ1χ2ρ2χ3

with G = (N,E,ρ,λ ,σ) and u = {p1→ n1,k→ r4, p2→ n2, l→ r6, p3→ n7}

Satisfaction of Variable Length Path Patterns Up to now, we have only considered rigid
relationship patterns. Therefore, we now define the satisfaction of variable length relationship
patterns based on the definition of the satisfaction of rigid patterns [Fra+18a].

Definition 5.48 [Satisfaction of Paths of Variable Lengths]
Let ρ = (d,a,T,K,(m,n)) be a relationship pattern with m,n ∈ N and m < n. We then call
ρ a relationship pattern of variable length. A path pattern is called of variable length, if it
includes a relationship pattern of variable length.

Let ρ ′ = (d,a,T,K,(m′,m′)) be a rigid relationship pattern. We then say that ρ subsumes ρ ′

(ρ A ρ ′), if m′ ∈ [m,n]. This subsumption is extended to variable length path patterns:

Let π = χ1ρ1χ2 . . .χk−1ρk−1χk be a path pattern of variable length and
π ′ = χ1ρ ′1χ2 . . .χk−1ρ ′k−1χk be a rigid path pattern, then π A π ′ if ρi A ρ ′i for every
i ∈ {1, . . . ,k−1}.

Then the rigid extension of π is defined as

rigid(π) = {π ′|π ′ is rigid and π A π
′}

93



5. Data Retrieval

Finally, we know for any π ′ and (p,G,u), that if (p,G,u) |= π ′ then also (p,G,u) |= π

holds.

Example 5.49
Let’s consider the modified example in Listing 5.50.

MATCH (p1:Person{name:"Yamamoto"})
-[k:knows|likes*1..2]-> () -[:likes]- (p3)

Listing 5.50: Relationship pattern with variable length.

Then we have the path pattern π = χ1ρ1χ2ρ2χ3 with the relationship patterns

ρ1 = (→,aρ1 ,Tρ1 ,Kρ1 , Iρ1), with Iρ1 = (1,2) and

ρ2 = (↔,aρ2 ,Tρ2 ,Kρ2 , Iρ2), with Iρ2 = (1,1).

Using Definition 5.48 and the fact that ρ2 is rigid, we can see that the only relationship pattern
that ρ2 subsumes is ρ2: ρ2 A ρ2.

Because Iρ1 = (1,2), the only two possible relationship patterns that ρ1 subsumes are ρ1
′ =

(→,aρ1 ,Tρ1 ,Kρ1 ,(1,1)) and ρ1
′′ = (→,aρ1 ,Tρ1 ,Kρ1 ,(2,2)). Therefore, we can find two rigid

path patterns that are subsumed by π:

π
′ = χ1ρ1

′
χ2ρ2χ3 with π A π

′

π
′′ = χ1ρ1

′′
χ2ρ2χ3 with π A π

′′

Therefore, rigid(π) = {π ′,π ′′}.

94



5.2. Query Language Support

The Match Operator for Path Patterns After having defined all the required components
of a pattern, we can now define the pattern matching function the same way as it is defined
in [Fra+18b].

Definition 5.51 [Match Operator for Path Patterns]
For a path pattern π and a graph G, we define

match(π,G,u) =
⊎

p∈G
π ′∈rigid(π)

{dom(u′)= f ree(π)−dom(u) and
u such that (p,G,u·u′)|=π ′ }

We use
⊎

as the bag union (same as in SQL). This means the result can possibly contain a
solution for u several times.

We use the path pattern π , graph G, and an input variable assignment u that contains the
intermediate results forwarded to this match operator. The additional conditions make sure
that the already defined variable assignments are not changed and that the new variable
assignment (u extended with the assignment u’) satisfies the current path pattern.

Finally, we can go back to the semantics of clauses, which we have described in Section 5.2.1.1
and take a closer look at the semantics of the MATCH clause.

JMATCH(π)KG(T) =
⊎
u∈T

{u ·u′|u′ ∈ match(π,G,u)}

The semantics of a MATCH clause take an input table T, a path pattern π, and a graph G
and returns a table. As mentioned before, the tuples in the table represent the input variable
assignments. Each of the input variable assignments is extended with viable resulting variable
assignments u’ computed by using the definition of the match operator for path patterns. We
thereby extend the intermediate results with new columns that represent the variable names
that correspond to names occurring in the pattern, but do not yet occur in the intermediate
result or with new tuples.

95



5. Data Retrieval

5.2.2. General Approach to Translating Cypher Queries

To translate Cypher queries we leverage the concept introduced in Section 5.2.1.1. The input
for evaluating a Cypher clause (respectively query) is a table that contains the already existing
intermediate results, a property graph, and the Cypher clause C.

We model the semantic function that represents the semantics of clause C with the creation
of an associated CTE that uses the intermediate results Tin (in form of another CTE) in the
FROM clause, the graph in the FROM clause (in form of the graph’s different tables), and
encode the Cypher clause in form of an SQL query. Then the SQL query engine will compute
the output table Tout as the result of the CTE. In turn, the output table can then be used as the
input table for the next clause.

SQL Engine

Property 
Graph 
Tables

Cypher Clause C Tout

Tin

WITH Ccte AS {
SELECT
...
FROM
...
WHERE
...

}
SQL Clause

T
r
a
n
s
l
a
t
o
r

Figure 5.52.: General translation concept.

Same as previously described in Section 5.2.1.1, we then let the RDBMS compute the output
of a Cypher query by composing the CTEs representing the clauses in order to obtain a CTE
that represents the complete query. To do this, we gradually build up the complete query
by constructing CTEs. Each CTE represents a clause or a combination of those using the
syntax rules presented in Section 5.2.1.3 and takes the previous CTE as input. This input CTE
represents the input table Tin for the Cypher query engine, the database instance represents
the property graph, and the Cypher clause is encoded in the CTE itself.

We will now describe the construction rules that we use to create the CTEs described in this
section and argue their correctness.

96



5.2. Query Language Support

5.2.2.1. Translating Cypher Match Clauses

We construct a SQL query that returns all the paths satisfying the given path pattern using
Definitions 5.44 and 5.46, which define when a given path satisfies a path pattern. We let the
RDBMS compute the mapping u. The resulting mapping is represented by the output table
Tout in Figure 5.52.

In order to build a CTE that describes the complete set of MATCH clauses, we reduce the
construction of the complete clause to the composition of CTEs that describe the node patterns
and relationship patterns used in the MATCH clauses. This means we have to construct a
temporary view for every node and relationship pattern.

We will reduce the translation of rigid relationship patterns to patterns of length 1, since we
can rewrite any rigid Cypher query into a Cypher query that only uses relationship patterns
of length 1.

Example 5.53
For example, consider the Cypher query in Listing 5.54: The query returns the persons’s
firstName together with the id of posts that friends of a friend like. One can easily see that the
query depicted in Listing 5.55 will return the same results, but only uses relationship patterns
of length 1.

MATCH (p:Person) -[:KNOWS*2]- (m:Person) -[:LIKES]-> (o:Post)
RETURN p.firstName, o.id

Listing 5.54: Rigid Cypher Query Example.

MATCH (p:Person) -[:KNOWS]- (tmp)
MATCH (tmp) -[:KNOWS]- (m:Person)
MATCH (m:Person) -[:LIKES]-> (o:Post)
RETURN p.firstName, o.id

Listing 5.55: Split MATCH Clause Example.

The general idea of the construction of SQL queries that correspond to MATCH clauses is
depicted in Listing 5.56. We translate each of the MATCH clauses into a separate CTE that
represents this single clause. We then use the already constructed CTE as input table for
the next CTE as can be seen in Figure 5.52, since the table resulting from the previous CTE
already contains bindings. These bindings will be used to compute further bindings required
for the results of the query. Then the results received by evaluating the last CTE contains
bindings that fulfill all requirements defined by the MATCH clauses of the query.

97



5. Data Retrieval

MATCH (p) -[e1:KNOWS]- (tmp)
MATCH (tmp) -[e2:KNOWS]- (m)
MATCH (m) -[e3:LIKES]- (o)
. . .

match1cte AS {
SELECT . . .
FROM . . .
WHERE . . .

},
match2cte AS {

SELECT . . .
FROM match1cte, . . .
WHERE . . .

},
match3cte AS {
SELECT . . .
FROM match2cte, . . .
WHERE . . .

}, . . .

Listing 5.56: General Idea of the Cypher Match Clause Translation.

We will now first describe how to translate node patterns, since those are the smallest
components required. Afterwards, using the previously described translation of node patterns,
we will describe the translation of rigid path patterns and then the translation of path patterns
of variable length.

98



5.2. Query Language Support

Translating Node Patterns We first take a look at the translation of node patterns accord-
ing to Definition 5.44: Let χ = (a, l,K) be a node pattern and ki with i ∈ 1, . . . ,n all keys for
which K(ki) is defined. We assume that a 6= null, otherwise we assign a unique name that is
not yet in use.

We construct the corresponding CTE by using the skeleton in pseudo SQL code depicted in
Listing 5.57.

WITH χcte AS (
SELECT a.vid AS χvid, a.attributes AS χatt
FROM vertices a
WHERE a.attributes(type) = l

AND a.attributes(k1) = K(k1)
... AND a.attributes(kn) = K(kn)

)

Listing 5.57: Node pattern translation skeleton.

For simplicity (ignoring efficiency at this point), we select everything from the vertex table.
At the same time, we restrict the selection under consideration of the type of the vertex. Then
we add a filter for every occurrence of a constraint K(k) in χ.

Each row returned by this CTE represents one (n,G,u) for which (n,G,u) |= (a, l,K) holds:

• n = χvid: Each returned row represents one node;

• G is the database instance representing the graph;

• and u(a) = n: The node n is bound to the given variable name a.

Then the results of this CTE trivially represent all nodes satisfying χ.

Example 5.58
By applying the skeleton CTE described before, we obtain the CTEs shown in Listings 5.59
and 5.61.

WITH χ1cte
AS (

SELECT p1.vid AS χ1vid, p1.attributes AS χ1att
FROM vertices p1
WHERE p1.attributes(type) = Person

AND p1.attributes(name) = Yamamoto
)

Listing 5.59: Node pattern for χ1.

As we can see, χ1cte
(depicted in Table 5.60) will only return the tuple representing n1, since

this is the only vertex of the type Person that has "Yamamoto" assigned to the key name.

99



5. Data Retrieval

χ1vid χ1att
1 {"type": "Person", "name": "Yamamoto", "firstName": ...}

Table 5.60.: The output of χ1cte
.

WITH χ2cte
AS (

SELECT p2.vid AS χ2vid, p2.attributes AS χ2att
FROM vertices p2

)

Listing 5.61: Node pattern for χ2.

WITH χ3cte
AS (

SELECT p3.vid AS χ3vid, p3.attributes AS χ3att
FROM vertices p3

)

Listing 5.62: Node pattern for χ3.

At the same time, χ2cte
and χ3cte

both return the whole vertex table (depicted in Table 5.63).
Therefore, all three CTEs return exactly the nodes that satisfy the given node patterns.

χ2vid / χ3vid χ2att / χ3att
1 {"type": "Person", "name": "Yamamoto", "firstName": "Akira"}
2 {"type": "Person", "name": "Silva", "firstName": "Ana"}
3 {"type": "Person", "name": "Lepland", "firstName": "Carmen"}
7 {"type": "Post", "creationDate": "03.03.2020"}
13 {"type": "Post", "creationDate": "02.03.2020"}

Table 5.63.: The output of χ2cte
. / χ3cte

.

100



5.2. Query Language Support

Translating Rigid Patterns Second, we consider the translation of rigid path patterns that
include relationship patterns according to Definition 5.46.

Let χ be a node pattern that we have already translated, let π be a rigid path pattern, and let
ρ = (d,a,T,K, I) be a relationship pattern in the path pattern πcomplete = χρπ. Since ρ is
rigid, I is (m,m) with m ∈ N0.

Assume m> 1, then we can transform ρ =(d,a,T,K, I) into the path pattern χρ1χ2 . . .χmρmπ

with ρi = (d,a,T,K,(1,1)), i∈ {1, . . . ,m}, and χ j = (null,null,{}) with j ∈ {2, . . . ,m}. This
means we split the relationship pattern of length m into m separate relationship patterns of
length 1, not further restricting the intermediate nodes. We can then inductively construct
a SQL query that computes all paths that satisfy χρ1χ2 . . .χmρmπ. We also assume that
ai 6= null, otherwise we assign a unique name.

Consequently, we can assume m = 1 for the translation of rigid path patterns. For the sake of
simplicity, let us assume the direction d =→. The case d =← can analogously be computed
using the incoming adjacency table or the edge list table (by switching source and target).
Also, if the direction is d =↔, we construct the CTE for both directions and create the
UNION of both results.

For the base case of the translation of relationship patterns we have two different options.

• Assuming the direction is d =→, the straight forward method is to use the edge list
table as depicted in Listing 5.64.

• Assuming the direction is d =→ and K = /0 defines that we do not have any restrictions
on the properties of the edge, so we can alternatively use the outgoing adjacency table.
This is depicted in Listing 5.65.

The CTEs representing the base case returns only results that satisfy the given (part of the)
path pattern, because:

• We assume a 6= null. This means u(a) = list(r1) must hold (since m = 1). We can
ensure this by setting u(a) = ρ1eid;

• (n1,G,u) |= χ follows by construction of χcte and (remainder,G,u) |= π follows by
construction of the remaining path pattern;

• λ (ri) ∈ T holds, because of label ∈ T ;

• Jσ(ri,k) = K(k)KGu = true holds, because of attributes(ki) = K(ki);

• and (src(ri), target(ri)) = (ni,ni+1) holds, because of sid = χ1vid (and respectively
vertexid = χ1vid for the adjacency list skeleton) and tid = χ2vid (respectively ρ1target =
χ2vid).

After we have translated the starting point, we iteratively construct the rest of the path pattern.
As before, we can choose between the edge list table and the adjacency tables to translate the
next relationship pattern.

101



5. Data Retrieval

WITH ρ1cte AS (
SELECT

sid AS ρ1source,
χ1att,
eid AS ρ1eid, label AS ρ1label, att AS ρ1att,

χ2att,
tid AS ρ1target

FROM χ1cte, edges, χ2cte

WHERE sid = χ1vid
AND tid = χ2vid
AND label ∈ T
AND attributes(k1) = K(k1)

. . . AND attributes(kn) = K(kn)
)

Listing 5.64: The relationship pattern skeleton using the edge list table for the base case.

WITH unshred_edges AS (
SELECT vertexid AS ρ1source, χ1att

UNNEST(array[label_0, ..., label_k]) AS label,
UNNEST(array[eid_0, ..., eid_k]) AS eidTmp,
UNNEST(array[target_0, ..., target_k]) AS tmp

FROM χ1cte
, outgoing_adjacency

WHERE vertexid = χ1vid
),
gather_edges AS (
SELECT ρ1source, χ1att, array_elements(eidTmp) AS ρ1eid,

label AS ρ1label, array_elements(tmp) AS ρ1target
FROM unshred_edges
WHERE label ∈ T

),
ρ1cte AS (
SELECT

ρ1source,
χ1att,

ρ1eid, ρ1label,
χ2att,

ρ1target
FROM gather_edges, χ2cte

WHERE ρ1target = χ2vid
)

Listing 5.65: The relationship pattern skeleton using the adjacency list table for the base case.

102



5.2. Query Language Support

• Let us assume again that d =→. As before, we can analogously translate the pattern
for d =← by switching the source and target ids of the edge list table. The inductive
case using the edge list is depicted in Listing 5.66.

• Assuming d =→ and K = /0, we can alternatively use the outgoing adjacency table.
This is depicted in Listing 5.67. If d =←, we analogously use the incoming adjacency
table.

The results of the inductively constructed CTE satify the given path pattern, because:

• We assume a 6= null. This means u(a) = list(r1) must hold (since m = 1). We achieve
this by defining u(a) = ρieid;

• (ni−1,G,u) |= χi−1cte follows by construction of χi−1cte and (remainder,G,u) |= π

follows by construction of the remaining path pattern;

• λ (ri) ∈ T holds because of label ∈ T ;

• Jσ(ri,k) = P(k)KGu = true holds because of attributes(ki) = K(ki);

• and (src(ri), target(ri)) = (ni,ni+1) holds because of sid = ρi−1target (respectively
vertexid = ρi−1target) and ρ1target = χi+1vid.

The overall finished translation for the pattern πcomplete is depicted in Listing 5.68. Note
that we need to add a final set of conditions to make sure that none of the resulting edge
translations use the same edge twice, since this is restricted by Definition 5.46.

WITH match(π,G) AS (
SELECT *
FROM ρkcte

WHERE ∀i, j ∈ {1, . . . ,k}, i 6= j : (ρieid 6= ρ jeid)
)

Listing 5.68: The complete match skeleton.

Remark 5.5
The structure of both ways to translate a relationship pattern is exactly the same. This means
we are not restricted by the decision which type of table to use. Therefore, we can use both
the edge list and adjacency lists to translate a single path pattern. This gives us a huge amount
of chances for optimization later on.

Also, we do not consider the case m = 0 here, since we can simply return the translation of χ

to compute the results.

103



5. Data Retrieval

WITH ρicte AS (
SELECT

ρi−1cte.*,
eid AS ρieid, label AS ρilabel,
attributes AS ρiatt,

χi+1cte.attributes AS χi+1att,
tid AS ρitarget

FROM ρi−1cte, edges, χi+1cte

WHERE sid = ρi−1target
AND tid = χi+1vid
AND label ∈ T
AND attributes(k1) = K(k1)

. . . AND attributes(kn) = K(kn)
)

Listing 5.66: The relationship pattern skeleton using the edge list table for the inductive case.

WITH unshred_edges AS (
SELECT ρi−1cte.*,

UNNEST(array[label_0, ..., label_k]) AS label,
UNNEST(array[eid_0, ..., eid_k]) AS eidTmp,
UNNEST(array[target_0, ..., target_k]) AS tmp

FROM ρi−1cte, outgoing_adjacency
WHERE vertexid = ρi−1target

),
gather_edges AS (

SELECT ρi−1cte.*, array_elements(eidTmp) AS ρieid,
label AS ρilabel, array_elements(tmp) AS ρitarget

FROM unshred_edges
WHERE label ∈ T

),
ρicte AS (
SELECT

ρi−1cte.*,
ρieid, ρilabel,

χi+1att,
ρitarget

FROM gather_edges, χi+1cte

WHERE ρitarget= χi+1vid
)

Listing 5.67: The relationship pattern skeleton using the adjacency list table for the inductive
case.

104



5.2. Query Language Support

Example 5.69
The goal is to translate the rigid path pattern χ1ρ1χ2ρ2χ3 of which we have already translated
χ1,χ2, and χ3 and therefore have the CTEs χ1cte,χ2cte, and χ3cte available.

First, we start translating the base case χ1ρ1χ2 with ρ1 = (dρ1 ,aρ1 ,Tρ1 ,Kρ1 , Iρ1) where

• dρ1 =→ is the direction left-to-right;

• aρ1 = k defines the name of this pattern as k;

• Tρ1 = {knows} restricts the relations that should be considered to those of the type
knows;

• Kρ1 = {since→ ”14.06.2018”} allowing only relations that have the value "14.06.2018"
assigned to the property key since;

• and Iρ1 = (null,null) and therefore (m,n) = (1,1), which makes this relation pattern
rigid.

Since Kρ1 6= /0, we have to access edge attributes and therefore need to use the edge list
table. We check if the label of the edge is knows and if the value assigned to the key since is
"14.06.2018". The resulting CTE ρ1cte is depicted in Listing 5.70.

Next we inductively translate ρ2 = (dρ2 ,aρ2 ,Tρ2 ,Kρ2 , Iρ2) with

• dρ2 =↔ defining the direction of this relation pattern as undirected (or both directions);

• aρ2 = l assigning the name l to this relation pattern;

• Tρ2 = {likes}, which restricts the considered relations to those of type likes;

• Kρ2 = {} not putting any restrictions on properties of the edges;

• and Iρ2 = (null,null) and therefore (m,n) = (1,1) defining the relation pattern as rigid.

Because Kρ2 = /0 we do not need to access the attributes of the edge and therefore, we can use
the adjacency tables. However, the direction dρ2 =↔ is defined as undirected. This means we
need to construct a CTE that covers both edge directions. The only remaining restriction is
that the relationship has to be of the type likes. The CTE ρ→2cte

that computes the results for the
left-to-right direction is depicted in Listing 5.71. Analogously, the CTE ρ←2cte

that computes
the results for the right-to-left direction can be constructed using the incoming adjacency
table.

This finally leads to ρ2cte combining both directions depicted in Listing 5.72.

As the last step, we need to make sure that no edge is used twice in the computed paths. The
final resulting CTE is depicted in Listing 5.73

105



5. Data Retrieval

WITH ρ1cte AS (
SELECT

sid AS ρ1source,
χ1att,
eid AS ρ1eid, label AS ρ1label, att AS ρ1att,

χ2att,
tid AS ρ1target

FROM χ1cte, edges, χ2cte

WHERE sid = χ1vid
AND tid = χ2vid
AND label ∈ {knows}
AND attributes(since) = ’14.06.2018’

)

Listing 5.70: The first relationship pattern ρ1.

WITH unshred_edges AS (
SELECT ρ1cte.*,
UNNEST(. . .) AS label,
UNNEST(. . .) AS eidTmp,
UNNEST(. . .) AS tmp

FROM ρ1cte, outgoing_adjacency
WHERE vertexid = χ2vid

),
gather_edges AS (
SELECT ρ1cte.*, array_elements(eidTmp) AS ρ2eid,

label AS ρ2label, array_elements(tmp) AS ρ2target
FROM unshred_edges
WHERE label ∈ {likes}

),
ρ→2cte

AS (
SELECT

ρ1cte.*,
ρ2eid, ρ2label,

χ3att,
ρ2target

FROM gather_edges, χ3cte

WHERE ρ2target = χ3vid
)

Listing 5.71: The first direction ρ→2cte
second relationship pattern ρ2.

106



5.2. Query Language Support

WITH ρ2cte AS (
SELECT *
FROM ρ→2cte

UNION
SELECT *
FROM ρ←2cte

)

Listing 5.72: The completed second relationship pattern ρ2.

WITH match(π,G) AS (
SELECT *
FROM ρ2cte

WHERE ρ1eid 6= ρ2eid
)

Listing 5.73: The final match(π,G) CTE.

107



5. Data Retrieval

Translating Relationship Patterns of Variable Length The translation of Cypher path
patterns that contain paths of variable length brings an additional requirement to the translation
mechanism: Up to now, we have only considered rigid patterns, for which we know the
number of required JOIN operations beforehand.

For the translation of variable length patterns we use recursive SQL queries. To do this, we
differentiate between two cases.

First, the relationship pattern of variable length is the first relationship pattern of the path
pattern.

Let χi be a node pattern that we already have translated, let π be a path pattern and let
ρ = (d,a,T,K, I) be a relationship pattern that is part of the path pattern πcomplete = χρπ:

• Since we know that ρ is not rigid, we can assume that I = (m,n) with m,n ∈ N0 and
m < n;

• We also assume d =→ for a simplified presentation. As described before, we can
analogously generate the required CTEs for other directions by tracing along the edge
list entries in flipped order;

• Let k ∈ {k1, . . . ,ko} be all keys for which K(k) is defined;

• and last, we assume that a 6= null, otherwise we assign a unique name.

The pseudo SQL code in Listing 5.74 depicts the skeleton that we use, if the variable length
relationship pattern is the first of the path. The base case of the recursion is nearly equal
to the CTE of a rigid pattern, except that we need to add a column for the current recursion
depth, as well as collecting the already used edge ids.

All results returned by this CTE satisfy the given (part of) the path pattern, because

• We assume a 6= null. This means u(a) = list(r1, . . . ,rm) must hold. This is achieved by
defining u(a) = ρ1route;

• (n,G,u) |= χ follows by construction of χcte and (remainder,G,u) |= π follows by
construction of the remaining path pattern;

• λ (ri) ∈ T holds because of label ∈ T in both the base, as well as in the recursive case;

• Jσ(ri,k) = P(k)KGu = true holds, because of attributes(ki) = K(ki) for every ki that is
defined in K;

• and (src(ri), target(ri) = (ni,ni+1) holds because of sid = χ1vid and tid = χ2vid.

Using the recursion depth parameter we make sure, that the computed paths have the correct
length. Because of the restriction that edges must not be used more than once in a single path
(defined in Definition 5.46), we need to track already used edges. We can check this in every
step of the recursive step by using the route result column.

108



5.2. Query Language Support

WITH RECURSIVE varpath (ρ1source, χ1att, ρ1label,
ρ1att, ρ1target, depth, route) AS (

(
SELECT

sid AS ρ1source,
χ1att,
eid AS ρ1eid, label AS ρ1label, att AS ρ1att,

χ2att,
tid AS ρ1target,
1 , ARRAY[eid] AS route

FROM χ1cte, edges
WHERE χ1vid = sid
AND label ∈ T

AND attributes(k1) = K(k1)
. . . AND attributes(ko) = K(ko)

)
UNION ALL

(
SELECT

sid AS ρ1source,
χ1att,
eid AS ρ1eid, label AS ρ1label, att AS ρ1att,

χ2att,
tid AS ρ1target,
depth + 1, route || eid

FROM edges, varpath, χ2cte

WHERE ρ1target = sid AND tid = χ2vid
AND label ∈ T

AND attributes(k1) = K(k1)
. . . AND attributes(ko) = K(ko)
AND NOT eid = ANY(route)
AND depth < n

)
), ρ1cte AS (
SELECT ρ1source, χ1att,

null, null, ρ1route, χ2att, ρ1target
FROM varpath
WHERE depth >= m

)

Listing 5.74: The base case for a variable relationship pattern.

109



5. Data Retrieval

WITH RECURSIVE varpath (ρisource, χiatt, ρilabel,
ρiatt, ρitarget, depth, route) AS (

(
SELECT

sid AS ρisource,
χiatt,
eid AS ρieid, label AS ρilabel, att AS ρiatt,

χi+1att,
tid AS ρitarget,
1 , ARRAY[eid] AS route

FROM ρi−1, edges
WHERE ρi−1target = sid
AND label ∈ T

AND attributes(k1) = K(k1)
. . . AND attributes(ko) = K(ko)

)
UNION ALL

(
SELECT

sid AS ρisource,
χiatt,
eid AS ρieid, label AS ρilabel, att AS ρiatt,

χi+1att,
tid AS ρitarget,

depth + 1, route || eid
FROM edges, varpath, χi+1
WHERE ρi−1target = sid AND tid = χi+1vid
AND label ∈ T

AND attributes(k1) = K(k1)
. . . AND attributes(ko) = K(ko)

AND NOT eid = ANY(route)
AND depth < n

)
), ρicte AS (
SELECT ρisource, χiatt,

null, null, ρiroute, ρitarget, χi+1att
FROM varpath
WHERE depth >= m

)

Listing 5.75: The inductive case for a variable relationship pattern.

110



5.2. Query Language Support

Second, if the relationship pattern is not the first of the path, we can analogously construct a
CTE by replacing χ1cte with the already constructed relation CTE ρi−1. This CTE skeleton is
depicted in Listing 5.75.

After we have now defined the translation of arbitrary relationship patterns, we can combine
the building blocks constructed by the translation mechanism for rigid path patterns and the
building blocks that are generated by the mechanism for relationship patterns of variable
length. This is possible, because as before we do not restrict the input CTE ρi−1 to be of the
same relationship pattern type.

We create the final CTE for the match operator by selecting the results of the last CTE we
created for the match clause. Since we always use the previously built CTE as input for the
next CTE, it contains all necessary results. Finally, we have to make sure that every edge id
does only occur once in every path. To this end, we can create a suitable WHERE clause.

The skeleton for the final match(π,G) CTE is depicted in Listing 5.76. As before, we have to
make sure that no edge is used more than once in a single result path. Here we need to apply
the different cases depicted in Listing 5.76 depending on what types of relationship patterns
have been used.

Example 5.77
Let us revisit the example introduced in Example 5.49 using the MATCH clause in Listing 5.50.
Therefore, we are considering the path pattern π = χ1ρ1χ2ρ2χ3. The first relationship pattern
ρ1 = (→,aρ1 ,Tρ1 ,Kρ1 , Iρ1) with Iρ1 = (1,2) is the only relationship pattern in the given path
pattern that is not rigid. Therefore, let us assume that we have already constructed χ1cte

,χ2cte

and χ3cte
.

We use the skeleton for the base case described above using the already translated node
pattern χ1cte

as the start node. Since we do not have any restrictions on attributes, we do not
need to add constraints for Kρ1 . We have Tρ1 = {knows, likes}, therefore we add constraints
for this and also include the path length restrictions for Iρ1 = (1,2). The result CTE ρ1cte for
the construction is depicted in Listing 5.78.

WITH match(π,G) AS (
SELECT *
FROM ρkcte

WHERE ∀i, j ∈ {1, . . . ,k}, i 6= j :


(ρieid 6= ρ jeid) ,if ρi,ρ j rigid,

(ρieid 6∈ ρ jroute) ,if only ρi rigid,

(ρ jeid 6∈ ρiroute) ,if only ρ j rigid,

(ρiroute∩ρ jroute = /0 ,if ρi,ρ j variable.

)

Listing 5.76: The complete CTE to compute an arbitrary match(π,G).

111



5. Data Retrieval

WITH RECURSIVE varpath (ρ1source, χ1att, ρ1label,
ρ1att, ρ1target, depth, route) AS (

(
SELECT

sid AS ρ1source,
χ1att,
eid AS ρ1eid, label AS ρ1label, att AS ρ1att,

χ2att,
tid AS ρ1target,
1 , ARRAY[eid] AS route

FROM χ1cte, edges
WHERE χ1vid = sid

AND label ∈ {knows, likes}
)

UNION ALL
(
SELECT

sid AS ρ1source,
χ1att,
eid AS ρ1eid, label AS ρ1label, att AS ρ1att,

χ2att,
tid AS ρ1target,

depth + 1, route || eid
FROM edges, varpath, χ2cte

WHERE ρ1target = sid AND tid = χ2vid
AND label ∈ {knows, likes}

AND NOT eid = ANY(route)
AND depth < 2

)
), ρ1cte AS (

SELECT ρ1source, χ1att,
null, null, ρ1route, χ2att, ρ1target

FROM varpath
WHERE depth >= 1

)

Listing 5.78: Example base case for the variable relationship pattern ρ1.

112



5.2. Query Language Support

WITH match(π,G) AS (
SELECT *
FROM ρ2cte

WHERE ρ2eid 6∈ ρ1route
)

Listing 5.79: Finished translated match relation for π.

We translate the rigid relationship pattern ρ2 as we have shown in Example 5.69 using ρ1cte

as the input CTE and retrieve ρ2cte . After we have done this, we have constructed all parts of
the path pattern π and can now construct the CTE match(π,G) that computes all valid results
for π and the graph G. This final CTE is depicted in Listing 5.79.

Mapping Cypher Query Operators We will now describe the mapping of Cypher queries
to SQL queries for RATG based on the syntax described in Section 5.2.1.3. The general
concept is depicted in Figure 5.80:

We translate the MATCH clause into a CTE as we have described in Section 5.2.2.1. For the
WHERE clause we have to differentiate between the use of WHERE as an SQL selection and
the use of HAVING for the GROUP BY operator. Finally, the RETURN clause can directly
be translated to the SELECT clause of SQL.

MATCH

WHERE

RETURN SELECT

Path 
Pattern CTE

WHERE

HAVING

Figure 5.80.: Mapping of basic Cypher clauses.

Let us now have a closer look at the translation based on the Cypher syntax (see Sec-
tion 5.2.1.3).

113



5. Data Retrieval

5.2.2.2. Constructing SQL Queries from Cypher

We have already described our translation of MATCH clauses in the previous section. There-
fore, we now take a look at the translation of the next building block of Cypher: The Reading
Clause.

We will need to remember, which of the CTE represents a specific named node or relationship.
We describe this for the node or relationship a in the CTE SubQuerycte by using the function
τ(a,SubQuerycte).

In our database schema, the complete representation of a node is the combination of the
columns VID and attributes, while the complete representation of an edge consists of the
edge’s id EID, its source id SID, the target id TID, the label, and the set of attributes. In
Cypher we can simply return a whole node or relationship using the variable that is used
within the query.

To shorten the representation of the SELECT clauses in the following sections, we define
T(a,SubQuerycte) (with a either a name for a node or a relationship) as the function that
returns the complete representation of a node or relationship.

For the sake of simplicity, we also assume that we always use the complete node or relationship
data for RETURN and WITH clauses. If this is not the case, the selected columns in the SQL
queries can easily be adapted by projecting the results to the desired columns.

Reading Clause As we know from Figure 5.26, a Reading Clause can consist of (OP-
TIONAL) MATCH clauses, possibly followed by a WHERE clause. Let π1cte , . . . ,πncte be the
already translated MATCH clauses.

We can now construct a CTE that computes the results for a given Reading Clause. We do
this by using all CTEs that we constructed to represent the different MATCH clauses contained
in the current Reading Clause as source tables. Then we make sure to only return every
variable (defined in the MATCH clauses) once to avoid redundant data flow. Additionally,
we have to make sure that variables that have the same name contain the same values (or are
bound to the same instances). To this end, we create a WHERE clause that makes sure of that.

The skeleton we use to translate the Reading Clause is depicted in Listing 5.81. We create
another CTE in which we perform a JOIN using all common free variables of the different
path patterns. Those JOIN operations are necessary, because in Cypher (just like in SPARQL)
variables that have the same name assigned are implicitly joined.

The WHERE conditions of the Reading Clause can directly be applied using the correct
SQL syntax, since the semantics of SQL and Cypher do not differ here. For the previously
mentioned listing, we use WHEREReadingClause to describe the set of conditions defined in the
ReadingClause.

Note that if a MATCH clause is marked as OPTIONAL we perform an OUTER JOIN instead
of a normal join.

114



5.2. Query Language Support

WITH ReadingClausecte AS {
SELECT {T(a,π1)| such that a ∈ {⋂i∈{1,...,n} f ree(πi)}},
{T(a,πi)| such that i ∈ {1, . . . ,n},a ∈ { f ree(πi)\

⋃
j∈{1,...,n},i6= j f ree(π j)}}

FROM π1cte , . . . ,πncte

WHERE ∀i, j ∈ {1, . . . ,n}, i < j:

∀a ∈ ( f ree(πi)∩ f ree(π j)) :


τ(a,πicte)id = τ(a,π jcte)id,

if a part of a node pattern

τ(a,πicte)eid = τ(a,π jcte)eid,
if a part of a relationship pattern

AND WHEREReadingClause
}

Listing 5.81: Translation skeleton for a Reading Clause.

Example 5.82
Let us reconsider the example from Section 5.2.1.3. The corresponding Cypher fragment is
depicted in Listing 5.83.

Let πcte be the CTE that we have already translated from the MATCH clause with χ1cte the
CTE representing p1, χ2cte the CTE representing p, and ρ1cte the CTE representing the edge.

MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WHERE p1.name = "Yamamoto"

Listing 5.83: Example Cypher Reading Clause.

Then we construct the CTE depicted in Listing 5.84, in which we only have to set a condition
for p1.name. In our translation, we can access this node using the naming convention used
for χ1cte .

WITH ReadingClauseExamplecte AS {
SELECT *
FROM π1cte

WHERE χ1att(name) = "Yamamoto"
}

Listing 5.84: Example Translation of a Reading Clause.

Single Part Query From Figure 5.23 we know that a Single Part Query (not considering
update, deletion or function call queries) only consists of a Reading Clause that is completed
with a RETURN clause.

115



5. Data Retrieval

Let a1, . . . ,ai be all elements of the RETURN clause of the Cypher query. By remembering
which node pattern (respectively relationship pattern) represents the different named nodes
(and respectively relationships), we can easily construct the corresponding SELECT clause.

WITH SinglePartQuerycte AS (
SELECT {T(a,ReadingClausecte)| such that a ∈ RETURNReadingClausecte}
FROM ReadingClausecte

)

Listing 5.85: Translation skeleton for a Single Part Query.

Since the Single Part Query only further restricts the set of returned variables, we omit an
example at this point.

Multi Part Query As seen in Figure 5.24, a Multi Part Query can combine several Read-
ing Clauses by using WITH and ends with a Single Part Query. We can observe that the
WITH statement acts exactly like the RETURN statement of a CTE in SQL.

WITH MultiPartQuery1cte AS (
SELECT {T(a,ReadingClause1cte)| such that a ∈WIT HReadingClause1cte

}
FROM ReadingClause1cte

)

Listing 5.86: Translation skeleton for the Multi Part Query base case.

As we have done several times before, we inductively construct the CTE representing this
Multi Part Query. Therefore, let us assume that we have already translated the corresponding
Reading Clauses: For i ∈ {1, . . . ,n} let ReadingClauseicte be the Reading Clause used in
the i’th part of the Multi Part Query. We describe the set of returned elements of a given
part MultiPartQueryicte of the Multi Part Query as WIT HMultiPartQueryicte

.

WITH MulitPartQueryncte AS (
SELECT {T(a,ReadingClausencte)| such that a ∈WIT HReadingClausencte

}
FROM MultiPartQueryn−1cte, ReadingClausencte

WHERE ∀a ∈ (WIT HReadingClausencte
∩WIT HMultiPartQueryn−1) :{

τ(a,MultiPartQueryn−1cte)id = τ(a,ReadingClausencte)id,if a is a node

τ(a,MultiPartQueryn−1cte)eid = τ(a,ReadingClausencte)eid,if a is an edge

Listing 5.87: Translation skeleton for the Multi Part Query inductive case.

The first Reading Clause/WITH combination of the Multi Part Query is translated the
same way a Single Part Query is translated. We create a CTE that represents this part by
projecting the results to the set of variables defined in the corresponding WITH statement
WIT HReadingClause1cte

. The skeleton for this is depicted in Listing 5.86.

116



5.2. Query Language Support

WITH MulitPartQuery f inalcte AS (
SELECT {T(a,MultiPartQueryncte)| such that a ∈ RETURN}
FROM MultiPartQueryncte

)

Listing 5.88: Translation skeleton for the Multi Part Query final case.

For the inductive case (depicted in Listing 5.87) we create a join between the already trans-
lated MultiPartQueryn−1cte and the current Reading Clause ReadingClausecte. To do this,
we perform an equi-JOIN on any id for which the same named variable occurs in both,
MultiPartQueryn−1cte and ReadingClausecte. We have to do this for the same reason for
which we had to perform the joins in the Reading Clause before. Variables that are named
identically represent the same vertex, and therefore describe an implicit JOIN. We can achieve
this using a mapping between the names of the variables and the names of the node and
relationship CTEs that are available in the respective Multi Part Query and Reading Clause
CTEs. To finish the inductive construction, we project the results in such a way that we carry
all vertice and edge data that is contained in the result.

Finally, we complete the translation of the Mulit Part Query by applying the skeleton
depicted in Listing 5.88, which uses the last Reading Clause in combination with its corre-
sponding RETURN clause (this combination also represents a Single Part Query) to project
the results of the previous temporary view to the correct set of returned columns.

Example 5.89
Consider the example in Section 5.2.1.3 again. The corresponding query is depicted in
Listing 5.90. Let ReadingClause1cte be the CTE representing the first MATCH of the Cypher
fragment, which contains π1cte . In turn, π1cte contains χ1cte that represents p1.

MATCH (p1:Person{name:"Yamamoto"})
WITH p1
MATCH (p1:Person) -[:KNOWS]-> (p:Person)
WITH p1, COUNT(p) AS numberOfFriends
WHERE numberOfFriends > 1
RETURN p1

Listing 5.90: Example Multi Part Query.

Let ReadingClause2cte be the CTE that represents the second Reading Clause, including π2cte .
π2cte contains χ2cte (that also represents p1), χ3cte (representing p) and ρ1cte which represents
the relationship of type KNOWS. In addition, an aggregation function call (COUNT(p)) is
used in this example.

Note that the given example Cypher query contains an aggregation operator. This aggregation
works exactly the same as in SQL, except that Cypher does not explicitly define the GROUP
BY clause. Instead, exactly the variables that are returned by the WITH clause are part of the
GROUP BY.

117



5. Data Retrieval

WITH MulitPartQueryExample1cte AS (
SELECT χ1id, χ1att
FROM ReadingClause1cte

), MultiPartQueryExample2cte AS (
SELECT χ1id, χ1att, COUNT(χ1vid) AS numberOfFriends
FROM MulitPartQuery1cte, ReadingClause2cte

WHERE χ1id = χ2id
GROUP BY χ1vid, χ1att
HAVING COUNT(χ1vid) > 1

), MultiPartQueryExample f inalcte AS (
SELECT χ1id, χ1att
FROM MultiPartQueryExample2cte

)

Listing 5.91: An Example for the Translation of a Multi Part Query.

This leads to the resulting temporary view depicted in Listing 5.91. MultiPartQueryExample1cte

represents the first MATCH/WITH pair, and therefore also the base case for our inductive con-
struction. We already have translated ReadingClause1 into ReadingClause1cte , and therefore
ready for use. Hence, we only need to project on the variables defined by the WITH phrase. It
only defines the vertex p1 to be returned, therefore we SELECT the complete representation
of p1 defined by χ1id and χ1att. These are available through χ1cte , which in turn is part of
ReadingClause1cte .

Next, we apply the inductive case skeleton to the second Reading Clause/WITH pair. We
also have already translated the Reading Clause into the temporary view ReadingClause2cte .
To this end, we JOIN ReadingClause2cte and MultiPartQueryExample1cte on all variables
the corresponding WITH statements have in common. In this case, the only common
variable is p1, which is represented by χ1cte in MultiPartQueryExample1cte and by χ2cte

in ReadingClause2cte .

Because the WITH clause that we are currently translating contains the aggregation operator
COUNT, we need to apply the corresponding GROUP BY and COUNT operators of SQL.
The attributes we GROUP BY are defined by the WITH clause – in this case p1. We also have
to translate the condition numberO f Friends > 1, which we can do by using the HAVING
clause of SQL. Finally, we set the variables defined by WIT HReadingClause2cte

as the returned
values.

For the final temporary view MultiPartQueryExample f inalcte , we simply project on the set of
variables defined by the RETURN clause, which is p1 and is represented by χ1cte . Because
the complete vertex is represented by two columns of our schema, we return both χ1id and
χ1att.

118



5.2. Query Language Support

Single Query The translation of the Single Query is simply the choice between translating
a Multi Part Query or a Single Part Query. Therefore, we can query the results of the input
CTE. The complete skeleton for the Single Query is depicted in Listing 5.92.

SELECT *
FROM MultiPartQuery f inalcte

Listing 5.92: The Translation Skeleton for a Single Query.

Cypher Query Finally, we can translate the complete Cypher Query. From Figure 5.19
we know that a Cypher query is the UNION of an arbitrary number of Single Queries.
Since the UNION operator of Cypher and SQL have the same conditions we can construct a
simple UNION between the CTEs that represent the Single Queries of the Cypher query. Let
SingleQuery1cte , . . . ,SingleQueryncte be the Single Queries of the given Cypher query. Then
the resulting SQL query is depicted in Listing 5.93.

SELECT *
FROM SingleQuery1cte

UNION
· · ·
UNION

SELECT *
FROM SingleQueryn−1cte

UNION
SELECT *
FROM SingleQueryncte

Listing 5.93: Translation skeleton for the final Translated Cypher Query.

Remark 5.6
Please note that the translation procedure previously described in this chapter does not include
efficiency considerations. Obviously, the resulting SQL queries offer ample opportunity for
optimization. Some of those optimizations we will describe in the next Section.

119



5. Data Retrieval

5.2.2.3. Optimizing the Resulting Queries

The mechanism we have described in Sections 5.2.2.1 and 5.2.2.2 did not include any
performance considerations. As we have described before, we make massive use of CTEs.
Up to version 11 PostgreSQL’s query optimizer was not capable of optimizing queries across
different CTEs. This means the optimizer would try to make each CTE itself efficient, but for
example, would not perform selection pushing as known from Relational Algebra. [Kem15]

From version 12 onward, PostgreSQL’s query optimizer is able to optimize across CTEs.
Unfortunately, a short preliminary evaluation has shown that the optimizer is overtaxed with
the optimization of the complicated queries resulting from our translation mechanism. In
some cases, this can even lead to serious performance degradation. This results in some
queries that should terminate in a few seconds not terminating at all. Therefore, we need to
apply our own query optimization.

To achieve this, we have to consider two questions: First, when do we use adjacency lists or
the edge lists. Second, in what order do we create the CTEs representing the egdes of the
Cypher patterns.

In order to achieve good performance using our translation mechanism, we optimize the
resulting SQL queries using standard optimization techniques known from Relational Algebra
(see e.g. [Kem15] and System R [Ast+76]).

We will now give a short overview of optimizations we apply to the Cypher to SQL query
translation mechanism. A detailed description of the optimizations we apply can be found
in [Goj21].

Early Projection The first optimization we apply is early projection. The translation
mechanism described in Section 5.2.2.1 does not consider, which attributes or labels are
required to return the results for a given query. While this is not necessary to compute the
correct results for a given query, it can massively impact the size of intermediate results.

Let us revisit the example from Section 5.2.2.1 depicted in Listing 5.94:

MATCH (p:Person) -[:KNOWS*2]- (m:Person) -[:LIKES]-> (o:Post)
RETURN p.firstName, o.id

Listing 5.94: Rigid Cypher Query Example.

Using the translation mechanism exactly as described in Section 5.2.2.1, the resulting SQL
query would look like the query depicted in Listing 5.95. All attributes that belong to the
nodes that are matched to the first node pattern are carried to the end of the query, at which
point the result set is projected to the desired columns.

We can apply early projection, since we know that we do not need any attributes from Person
type nodes other than the firstName. The resulting query is depicted in Listing 5.96.

120



5.2. Query Language Support

WITH χ1cte AS {
SELECT p1.vid AS χ1vid, p1.attributes AS χ1att
FROM vertices p1
WHERE p1.attributes(type) = Person

},
. . .
,
SELECT χ1att( f irstName), . . .
. . .

Listing 5.95: SQL Query Without Early Projection.

WITH χ1cte AS {
SELECT p1.vid AS χ1vid, p1.attributes( f irstName) AS χ1firstName
FROM vertices p1
WHERE p1.attributes(type) = Person

},
. . .
,
SELECT χ1firstName, . . .
. . .

Listing 5.96: SQL Query Without Early Projection.

Here we only keep the firstName attribute when matching for suitable Person vertices.

In addition to early projection, we can also apply the well known optimization concept Early
Selection (also known as Selection Pushing) to the resulting queries. For further details
please see [Goj21].

Choosing Target Tables and Edge Order Optimization Choosing the correct order in
which to construct the CTEs representing the Cypher query is the most impactful optimization
we can apply. Our tests showed improvements of up to several orders of magnitude.

In order to find a good edge order, we applied a heuristic dynamic programming approach
adapted from the-well known join-order-optimization problem [SMK97]. First results show
great promise but exceed the frame of this work. For a detailed look at our findings
see [Goj21].

121





6. Performance Evaluation

For this part of our work, the main goal was to compare the read-query performance of our
adaptation with the SQLGraph schema. In addition, we were interested in the performance
our approach achieves with regard to update queries. To this end, we used the Interactive
Workload of the LDBC-SNB [Bon13; Erl+15; Szá+18].

The evaluation of the performance of our approach in regard to the IFC building data use case
can be found in Chapter 10.

6.1. The Linked Data Council - Social Network Benchmark:
Interactive Workload

In order to fully evaluate the performance of the presented approach we required different
data set sizes: First, we needed to evaluate our solution on data sets that fit into main memory
of the system. Second, we also wanted to evaluate the performance on data sets that are much
too big to fit into main memory.

The LDBC-SNB provides a data set generator that can generate data sets of arbitrary size.
We chose the LDBC-SNB Interactive Workload, because it fulfills the following criteria:

• Many of the queries have paths of fixed length as their main pattern and use edges of
known label. This criterion is desired, because preliminary evaluations (see [Kor17])
have shown, that in other cases the use of the attribute table performs better than the
adjacency tables. The Interactive Workload offers a variety of different queries that
contain both: paths of fixed length and paths of variable length. In some queries both
types of paths occur.

• All combinations of adjacency tables and the edge table are required. Therefore, the
set of queries requires the use of incoming, outgoing and undirected edges to cover all
combinations of the redundant edge storage. The chosen benchmark contains queries
with edges in different directions, as well as undirected edges.

• Different lengths of paths are contained in the set of queries to determine, if the
difference in path length makes one of the two schema versions preferable. The
Interactive Workload contains queries that only query a single vertex as well as queries
with paths of considerable length and optional parts.

123



6. Performance Evaluation

• Because [Sun+15] qualifies this type of query as a potential bottleneck of the original
approach, queries with big intermediate result sets are part of our chosen query set. Part
of the complex queries of the workload are designed with huge intermediate result sets
in mind.

• The set of queries contains updates. This should include edges between already existing
vertices and also queries that insert edges to new vertices. The workload’s update
queries contain both of those cases.

6.2. The Methodology

First, we confirmed the requirement of redundant representation of edges. To this end, we
defined path queries with different fixed lengths and also path queries of variable lengths.
After we confirmed the necessity of the edge tables, we evaluated our approach with the
LDBC-SNB (version 0.3.1).

The parameters required by the queries are produced by the LDBC-SNB data set generator in
advance. Therefore, exactly the same parameters were used for both approaches.

To make the performance of the two schemas as comparable as possible, we first implemented
all queries for RATG. Then we replaced only the necessary subqueries that concern the
differences between the schemas, changing as little of the query as possible. We confirmed
the correctness of our query implementations by comparing the results with results returned
by a reference implementation provided for Neo4j, of which correctness has been validated.1

Since even the insertion of a single edge requires updates on several tables, we implemented
the update queries using PostgreSQL functions (the PostgreSQL equivalent to stored proce-
dures). This way, several round trip times between the client and the server can be omitted. All
update queries are based on a basic insertEdge()-function that handles all the insertions in the
edge attribute table and the adjacency tables. This still leaves room for future improvement.
If a query inserts multiple edges for a single vertex the same array has to be updated multiple
times. Therefore, query specific functions, that do not need to perform multiple updates on
the same adjacency list should lead to further improvement.

We ran the benchmark on the same hardware using the same data set. The evaluation was
conducted on a dedicated server with the following specifications.

• Two Intel Xeon 2.6GHz CPUs (in total 8 cores);

• 96 GB main memory;

• A 6 SSD RAID-0 (other RAID configurations would not have left enough storage
capacity for the biggest data set);

• Running 64-bit Ubuntu (version 18.04 LTS).

1https://github.com/PlatformLab/ldbc-snb-impls/tree/master/snb-interactive-neo4j

124



6.2. The Methodology

We used PostgreSQL 13 and Neo4j 3.4 on the aforementioned server, while we ran the client
program of the benchmark on a standard desktop PC that connected to the database over
LAN with a 1 Gbit/s connection and both machines connected to the same switch. We tuned
both databases to the best of our abilities by using the evaluation framework described in
Section 6.2.1.

All queries that were performed for performance evaluation purposes were preceded by
several hundred warm-up queries as advised by Dominguez [Dom+10].

125



6. Performance Evaluation

6.2.1. Performance Evaluation Framework

The efficiency of a relational database can vary greatly depending on various tuning parame-
ters, data set size and many other variables. In order to achieve conclusive results, we wanted
our benchmark executions to be easily repeatable and therefore also reproducible. Hereby,
we are able to compare different values and settings for the numerous parameters and find a
suitable configuration of the database.

Thus, we designed an evaluation framework that automates most of the benchmark execution
process. We then used this framework to repeatedly run benchmark executions to find the best
tuning parameters and application-specific indexes for the LDBC-SNB. The main components
and tasks of this framework are depicted in Figure 6.1.

Evaluation 
Coordinator

Benchmark Client 
Program

1. Prepare database

2. Import data set

3. Prepare configuration 

4. Start benchmark 
execution

5. Execute benchmark queries

PostgreSQL/Neo4j 
Server

6. Save results

7. Clean up database

JDBC connection

SSH  connection

Figure 6.1.: Components and tasks of the evaluation framework.

126



6.2. The Methodology

Our framework contains three components that can freely be distributed across different
machines.

Evaluation Coordinator: The evaluation coordinator is the program that coordinates the
whole benchmark run cycle. To this end, it creates Secure Shell (SSH) and JDBC
connections to the different machines used in the evaluation process. It starts the
database services, triggers the different tools required to set up a run, runs the benchmark
program, and saves results. We used a standard desktop computer running Ubuntu
18.04. The computer was connected to the other machines through a 1 Gbit/s LAN
connection and all computers were connected to the same switch. Thus, network delay
was minimized.

Application Server: The application server is the machine that executes the benchmark
program. For this role we used the same computer as we used for the evaluation
coordinator. Since the evaluation coordinator is inactive while the benchmark client
program is running and starts its next task only after the benchmark run has finished,
this does not hinder performance.

Benchmark Server: The benchmark server is the machine that runs the database manage-
ment systems. This means the server ran both, PostgreSQL and Neo4j. Depending on
which benchmark execution is chosen, the evaluation coordinator makes sure that only
the database system under test is active while the other service is stopped.

In this thesis we use the term benchmark run for the complete execution of the benchmark
client program for a single data set size on a single database system. For example to compare
the results of RATG , the SQLGraph, and Neo4j, we need to execute three benchmark runs.
To perform a single run, the evaluation framework performs the following tasks in order (see
Figure 6.1):

• The first list of tasks initializes the database and configures the benchmark client
program:

1. The coordinator connects to the server machine and starts the database system
that is going to be evaluated. It also makes sure that the other database system
is stopped. This guarantees that no other unnecessary processes influence the
measured performance results.

2. Afterwards, the coordinator imports the current data set into the database system.
The data set is freshly imported into the database for every execution, so that it
is the only data that is present in the system. Before the coordinator proceeds to
the next step, it makes sure that necessary database maintenance tasks have been
performed. These tasks for example comprise the analysis of the stored data for
index selection during query optimization. Since we import huge data sets, this
significantly influences performance.

3. After the data has been imported into the database, the coordinator connects
to the client machine and prepares the benchmark configuration. This step is

127



6. Performance Evaluation

necessary, because some parameters that are required for a benchmark execution
(for example, parameters that are used for queries) are generated with the data set
and therefore depend on the data set size.

• After the systems have been initialized, the benchmark run is started:

4. The coordinator connects to the client machine and starts the LDBC-SNB run for
the current data set with the prepared configuration.

5. The benchmark client program connects to the database and performs the bench-
mark execution for the current data set. The results of this execution are stored in
a temporary folder.

• Next the current benchmark run is finalized:

6. The results of the current run are moved from the temporary to a persistent folder.

7. Finally, the evaluation coordinator connects to the database machine, deletes the
data set from the database, and stops the database service. Now both, the database
server and the client machine are ready for the next run.

The evaluation framework can be configured to automatically perform the benchmark runs
for different data set sizes and database systems.

We used this framework to automatically execute runs for the scale factors 1, 3, 10, 30 and
100 on RATG, the original SQLGraph and Neo4j. We tuned all systems under test to the
best of our abilities and then performed final benchmark runs on the best configurations we
found. Note that we did not evaluate complex query 14, because the given implementation of
Neo4j relied on a specific internal implementation of a shortest path algorithm. We do not
intend to compare SQL queries to internal database functions. Therefore, we deactivated this
query for the given benchmark executions. The results can be found in Section 6.3.

128



6.2. The Methodology

6.2.2. Application Specific Indexes

Using the aforementioned evaluation framework, we also analyzed the queries in order to
create application-specific indices as described in Section 3.2.1. These types of index are
inevitable in order to achieve high performance for a given application.

To obtain the best performance we could achieve for the LDBC-SNB benchmark, we added
the following application-specific indices to the vertex table:

Composite Index on ID and Type Most of the LDBC-SNB queries start at a given vertex.
Most of the time, this vertex is queried by its identifier in the data set. This identifier
consists of the ID attribute combined with the Type attribute. In order to speed up the
process of finding the starting point for the query, we add an index on the complex
identifier using a B-Tree. Note that this ID attribute originates in the data set and is not
the vertex’s VID.

Composite Index on VID and Type Some of the queries contain neighborhood queries that
only search for a certain vertex Type of neighbors. Since this information is not stored
in the adjacency list tables that we use to achieve this kind of query, a JOIN with
the vertex table is required. Creating a composite B-Tree index on the V ID that is
required to join the vertex table to the targets of the adjacency list and the Type attribute
enables the DBMS to check the Type of the target vertex using an index-only-look-up.
Therefore, the vertex data does not need to be loaded, which leads to a speed-up of this
type of query.

We also added the following application specific-indexes to the edge list table. Since the
edge list table is mainly used for recursive queries, these indices essentially improved the
performance of queries that use graph patterns of variable length:

Composite Index on SID and Label In order to speed up queries that use graph patterns of
variable length, we add a composite index on the source id SID and Label. These
queries result in complex recursive queries that use the edge list and nearly all of these
queries only use specific labels.

Composite Index on TID and Label Since some of the queries in the LDBC-SNB use graph
patterns of variable length with undirected edges, we also need to be able to efficiently
traverse along edges in the opposite direction, while some of the queries require to trace
along the edge from target to source. Therefore, we also add a combined index on TID
and Label.

Composite Index on SID, TID and Label We add this composite index to speed up some
queries that need to check for the existence of an edge between two vertices that have
already been added to the intermediate result set. Consider Listing 6.2 for an example
of such an edge. Assume that the DBMS starts at Person vertex p1, follows the edges to
the intermediate Person vertices and from there finds possibly relevant Person vertices
p3. Now the existence of the knows edge r between p1 and p3 must be verified. Using

129



6. Performance Evaluation

this index, the DBMS can check the existence of this edge using an index-only-lookup
without the need to load the table itself.

Composite Index on TID, SID and Label We add this index analogously to the previously
described composite index.

We did not find any additional indexes for the outgoing adjacency table and the incoming
adjacency table that had a positive effect on the benchmark execution performance.

MATCH (p1:Person) -[:KNOWS]- (:Person) -[:KNOWS]- (p3:Person)
MATCH (p1:Person) -[r:KNOWS]- (p3:Person)
RETURN p3

Listing 6.2: Example query that can use an index-only-lookup.

We verified that all indexes we added are used frequently during benchmark executions using
PostgreSQL’s internal statistics collection functionality.

6.2.3. Preliminary Evaluation: Redundant Edge Data

Before we started the actual performance evaluation of our schema, we first conducted a
preliminary evaluation to verify the need for the redundant storage of the edge data. This was
claimed to be necessary by [Bor+13]. To this end, Kornev [Kor17] conducted an extensive
evaluation that examined when to use the edge list table in favor of the adjacency lists. We
found a general tendency for queries to perform significantly better with the use of adjacency
tables, whenever the queried path is of fixed length. While this is true for paths of fixed
length, the opposite holds for paths of variable length. This type of query requires recursive
SQL queries. Kornev’s work has shown that recursive queries using the edge attributes table
outperform any recursive query that uses our adjacency tables. Therefore, our approach
combines the use of adjacency tables with an edge table.

130



6.3. Query Performance

6.3. Query Performance

The following sections present the results we achieved using the previously described evalua-
tion framework and the LDBC-SNB. Results for query performance are depicted in box plot
diagrams. If not stated differently, the upper bound of the box shows the 75th percentile, the
line within the box shows the 50th percentile and the lower bound of the box shows the 25th
percentile, while the whiskers show the maximal and minimal execution time respectively.

We will first take a look at the overall throughput of the different approaches when evalu-
ated with the LDBC-SNB. Afterwards, we will take a closer look at the performance the
approaches offer in accordance to the different types of queries the LDBC-SNB provides.

6.3.1. Overall Throughput and Query Performance

Since we optimized our schema for read-only queries and heavy workloads, we expected
update query performance to diminish in comparison to the approach of Sun et al. [Sun+15].
Therefore, we analyzed query execution times and found that the management of huge arrays
stored in PostgreSQL columns can lead to performance limitations. We address this problem
by introducing a new configuration parameter to limit the amount of edges stored in each
array. If an array is full, a new tuple for the vertex is introduced and the additional edges are
stored there.

Our assumption was that the database system can manage smaller arrays more efficiently
and that this will mainly improve update-query performance. Nevertheless, the results we
obtained using the LDBC-SNB show that this optimization barely influences update-query
performance. On the other hand, it greatly improved read-query execution for several queries.

Again, this led to a significant improvement of overall throughput for benchmark executions.
The achieved throughput is depicted in Figure 6.3 and is up to nearly four times higher than
before the array element limit optimization.

The increasing throughput performance of the runs with scale factor 10 compared to the
throughput of runs with scale factor 3 can be explained as follows: The workload of the
LDBC-SNB is generated through the use of a model that emulates a realistic social network.
This also means that networks that are used by more users also generate more input queries.

The throughput achieved for the scale factor 3 workload is the highest achievable throughput
for this scale factor. Since the workload for scale factor 10 simulates more concurrent users
and therefore also generates more queries per second, the highest achievable throughput for
scale factor 10 is much higher than the throughput that can be achieved for scale factor 3.

Our findings show, that RATG performs significantly better for the LDBC-SNB in all scale
factors compared to SQLGraph. While we achieve similar results to Neo4j for scale factor 3
and 10, Neo4j performs better for higher scale factors.

131



6. Performance Evaluation

3 10 30 100

0

2

4

6

8

10

LDBC SNB Scale Factor

Th
ro

ug
hp

ut
in

[o
p/

s]

SQLGraph
RATG
RATG not optimized
Neo4j

Figure 6.3.: Significantly improved throughput of the LDBC-SNB depending on the scale
factor.

We want to emphasize that only Neo4j and RATG managed to successfully complete the
workload at scale factor 100, while neither the unmodified SQLGraph approach, nor the not
optimized version of RATG terminated.

While Neo4j also performs slightly better on most read-only queries, the majority of the
throughput difference between RATG and Neo4j results from the difference of update queries.
As we have stated before, our use case mainly relies on the efficiency of read-only queries
and will only in extreme cases exceed the complexity of the data set with scale factor 3.

While we can see a difference in achieved throughput between RATG and Neo4j, most of
the discrepancy is due to a few queries that perform worse on RATG than Neo4j. This also
means that most of the queries perform comparatively well.

The LDBC-SNB (version 0.3.1) contains 14 Complex Queries, 7 Short Queries and 7 Update
Queries. For the rest of this chapter, we will abbreviate these to CQ1 - CQ14 for Complex
Queries, SQ1 - SQ7 for Short Queries and UQ1 - UQ7 for Update Queries.

Let us now take a closer look at the read-only query performance of the different approaches,
which was the focus and main assumption for our use case. In this chapter, we will mainly
focus on the results we achieved using the data set of scale factor 10, because our results
already show big enough differences for this data size. The general trend of the query
performance between the different approaches does not change for bigger data sets, but the
efficiency differences only get more extreme. Also, the results we obtained for scale factor 10
can be displayed in figures in such a way that the reader can obtain a general impression of
the results, while for bigger data sets the scaling of the graphs can be a major challenge.

To review the results we obtained for all scale factors the reader is encouraged to consider
Tables A.1 to A.6. For every run we used an operation count of 10,000 operations, following

132



6.3. Query Performance

several hundred warm-up queries. If a query type was not generated by the benchmark
framework, we mark the times with −. The benchmark run that did not terminate (the SF100
run on SQLGraph) is marked with E.

133



6. Performance Evaluation

6.3.2. Read Performance

As described before, we optimized RATG for read-only queries. Therefore, we expected our
approach to perform significantly better for this type of queries. To confirm this we have
evaluated our approach with the use of the LDBC-SNB and performed benchmark runs on
data sets of the scale factors 1, 3, 10, 30 and 100.

Short Query Results Figure 6.4 depicts the results of our conducted tests for of all Short
Queries of the LDBC-SNB (SF10), except SQ2. This type of query usually requires the
system under test to evaluate a realtively low amount of vertices and edges to compute the
result set. Typically, the neighbors of one entity for the data set is accessed [Erl+15].

SQ1 SQ3 SQ4 SQ5 SQ6 SQ7

0

2

4

6

8

LDBC SNB Queries - Scale Factor 10 - Short Queries

Ti
m

e
in

[m
s]

SQLGraph
RATG
Neo4j

Figure 6.4.: Runtime of the Interactive Workload Short Queries - SF10.

We expected our approach to perform very well on these simpler queries, since the selectivity
of the (sub-) queries is high, which is a strength of relational databases. Our findings show
that RATG performs much better than SQLGraph in every Short Query.

SQ1, SQ4 and SQ5 select a single vertex and trace along a relation type that only has one
target vertex. Especially in those queries we can observe the advantage of not requiring a join.
Even compared to Neo4j, those queries perform exceptionally well. Note that SQ4 and SQ5
in the majority of executions are answered in less than a millisecond, which is the smallest
unit we measured.

134



6.3. Query Performance

SQ6 and SQ7 search for a graph pattern that represents a path that contains three different
vertices, while only SQ7 contains a vertex with a high degree of edges of the queried type
and in addition an optional edge that forms a cycle with the main path of the graph pattern.
SQLGraph performed so significantly worse on SQ6 and SQ7 that the resulting execution
times lie outside of Figure 6.4. As we expected, the more edge hops a query performs, we can
observe a bigger difference in execution time. We can see that RATG still performs similarly
to Neo4j while both outperform SQLGraph.

SQ3 uses an undirected edge. Since RATG does not directly support undirected edges, this
query results in a SQL query that uses both the incoming adjacency and outgoing adjacency
tables and therefore is similar to a 2-edge-hop. In addition, SQ3 selects a relation type with a
high degree of neighboring vertices.

In comparison to the other short queries, SQ2 produces a relatively huge intermediate result.
While RATG outperforms SQLGraph by a factor over 30, Neo4j significantly outperforms
both for this query. We did not include SQ2 in Figure 6.4, because only the results for Neo4j
would lie within the boundaries of the figure.

In conclusion one can see that our approach outperforms SQLGraph in every single Short
Query, while it is still similarly efficient as the specialized graph database Neo4j. A result to
keep in mind for the analysis of the Complex Queries is the fact that we found a major factor
for the query performance of RATG:

• The more selective (sub-)queries are, the more efficient RATG is. If intermediate
results become too big, our approach suffers in comparison to Neo4j.

With this in mind, let us now consider the Complex Queries provides by the LDBC-SNB.

135



6. Performance Evaluation

Complex Queries Results To get an impression of the different runtimes of all Complex
Queries consider Figure 6.8.

As we can see, CQ2, CQ7 and CQ8 (see Figure 6.5) take the least amount of time to compute.
The common features these queries show, are the low amount of edge-hops that are required
to compute their results. CQ2, CQ7 and CQ8 all only require 2 or 3 edge-hops using edges
with relatively high selectivity (e.g. hasCreator which always only has one target vertex).

CQ2 CQ7 CQ8
0

100

200

300

400

500

Ti
m

e
in

[m
s]

SQLGraph
RATG
Neo4j

Figure 6.5.: Runtime of fastest Interactive Workload Complex Queries - Scale Factor 10.

Let us consider Figure 6.5 for the results of CQ2, CQ7 and CQ8. All of those queries show the
same efficiency: Our approach RATG is much faster than the original SQLGraph approach.
So much so that our results for both, CQ2 and CQ8 lie outside of the figure. In all queries
Neo4j performs slightly better than RATG.

Next, we want to take a look at CQ6 and CQ9, which are depicted in Figure 6.6. The slowest
group of queries consists of CQ6 and CQ9, while CQ6 is by far the hardest query to answer
for all three systems that we tested.

CQ6 performs a complex aggregation computation over Post vertices (of which a huge number
of instances exist in the data set) that includes a friend-of-a-friend path and a comparison
between two Tag vertices that are connected to each of the Post vertices. As we can see,
RATG performs better and the response times are much more reliable than for SQLGraph,
while both systems get significantly outperformed by Neo4j for this type of query.

CQ9 looks for Message vertices created by a friend-of-a-friend. While [Cou20] states that
the size of the result set of this query can vary hugely in size, our approach RATG as well
as Neo4j show a very robust query evaluation time for this query. While Neo4j performs
slightly better on CQ6, SQLGraph nearly takes twice as long to answer this query.

136



6.3. Query Performance

CQ6 CQ9
0

1

2

3

4

5

6
·105

Ti
m

e
in

[m
s]

SQLGraph
RATG
Neo4j

Figure 6.6.: Runtime of the slowest Interactive Workload Complex Queries - SF10.

By far the biggest group of queries is represented by CQ1, CQ3, CQ4, CQ5, CQ10, CQ11,
CQ12, and CQ13, which all take a similar amount of time. Without an exception, this group of
queries makes use of the knows edge type. In contrast to the other edge-types in the data set,
the knows edge-type models an undirected relation. CQ3, CQ4, CQ5, and CQ12 combine the
use of the knows relation with some kind of aggregation of the number of Post or Comment
vertices associated with those friends. The overall number of Post and Comment vertices
in the data set is very high. Therefore, the selectivity of these queries is much lower than
the selectivity of the fastest group of queries, but still higher than the selectivity of CQ6 and
CQ9. CQ11 applies a similar pattern of searching for friends-of-a-friend, but looks for their
work places. The complexity of the graph pattern of CQ11 is relatively low and uses two
edge hops that in most cases only have to consider a single edge (worksAt and locatedAt).
CQ10 and CQ13 both make use of path patterns of variable length using the undirected knows
edge-type. This leads to complex recursive queries that have to consider the edge list table in
both directions. While one could suspect that this would make the queries slow, the relatively
low amount of knows edges in the data still leads to a considerably fast response time for
these two queries.

Overall, we can observe a general trend for this group of queries: For most cases our approach
RATG performs better than SQLGraph, while Neo4j performs slightly better than RATG.

Queries CQ3, CQ4 and CQ5 display an interesting case: For these queries, RATG performs

137



6. Performance Evaluation

C
Q

1
C

Q
3

C
Q

4
C

Q
5

C
Q

10
C

Q
11

C
Q

12
C

Q
13

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

2
.2

2
.4

2
.6

2
.8 3

3
.2

3
.4
·10

4

Time in [ms]

SQ
L

G
raph

R
AT

G
N

eo4j

Figure
6.7.:R

untim
e

ofm
edium

Interactive
W

orkload
-C

om
plex

Q
ueries

forSF10.

138



6.3. Query Performance

equally well as Neo4j, for CQ3 RATG even performs better than Neo4j. These three queries
are similar in their use of the hasCreator edge-type. Most Person vertices are associated with
a huge amount of Comment vertices through the use of hasCreator edges. This can lead to
possibly huge intermediary result sets. For CQ3 and CQ4 SQLGraph even performs better
than RATG.

Looking at CQ13 it is clearly visible that neither our approach RATG, nor SQLGraph can
compete with a native graph database like Neo4j in regard to graph specific algorithms that
have been implemented in the database itself: CQ13 searches for the shortest path between
two nodes of type Person. While Neo4j offers a predefined internal method to find this path,
both RATG and SQLGraph have to rely on recursive SQL queries to find the result for this
query.

To summarize, our findings confirm an increase in read performance of RATG compared to
SQLGraph in almost all queries. We can observe this effect strengthening when the data set
size increases. Considering complex queries, the difference in execution time becomes even
more apparent, which confirms the findings in [Sun+15]. In their work, they stated that big
intermediate join results (that are a point of focus for the set of complex queries) can be a
bottleneck for their approach. Interestingly enough, for a few select queries like CQ4, this
finding does not seem to take effect.

139



6. Performance Evaluation

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

·10
5

Time in [ms]

SQ
L

G
raph

R
AT

G
N

eo4j

Figure
6.8.:R

untim
e

ofallInteractive
W

orkload
C

om
plex

Q
ueries

-Scale
Factor10.

140



6.3. Query Performance

6.3.3. Update Performance

As we have described above, we consciously chose to optimize RATG for read-query perfor-
mance and therefore accepted a trade-off between read-query performance and update-query
performance. We expected this trade-off to affect the time that is required to write updates to
the graph. We will now present the results we obtained for update-queries provided by the
LDBC-SNB. An overview of the results is depicted in Figure 6.9.

We implemented the update-queries using stored procedures (PL/pgSQL2). We decided to
deviate from the usage of pure SQL, because the given update-queries can create several
vertices and edges. In our schema the execution for these queries depends on several interme-
diary results (e.g. the internal VID of a Person node that is identified by its name). To avoid
round trip times between the benchmark client and the database, we decided to use stored
procedures. All the given update-queries are implemented using basic building blocks like
createVertex() and createEdge(). Using specialized stored procedures for each query would
most likely improve performance further.

UQ2 UQ3 UQ4 UQ5 UQ6 UQ7 UQ8
0

100

200

300

400

500

Ti
m

e
in

[m
s]

SQLGraph
RATG
Neo4j

Figure 6.9.: Runtime of all Interactive Workload Update Queries - Scale Factor 10.

Let us first consider the five similarly fast executing queries depicted in Figure 6.10. The
picture is not as clear as our targeted optimization goals would indicate.

UQ2, UQ3, UQ5 and UQ8 insert an edge between two already existing vertices. Therefore,
for RATG the required time to insert the new edge depends on the amount of edges that have

2https://www.postgresql.org/docs/current/plpgsql.html

141



6. Performance Evaluation

already been stored for the given vertices. SQLGraph only requires an insert-query to the
secondary adjacency tables. In all three systems the execution time for this type of query only
differs a few milliseconds. UQ4 creates a new vertex and inserts several new edges’ between
the new vertex and already existing vertices. Since the new edges target vertices do not have
many connected edges, the insertion time remains very stable.

UQ2 UQ3 UQ4 UQ5 UQ8
0

5

10

15

20

25

30

Ti
m

e
in

[m
s]

SQLGraph
RATG
Neo4j

Figure 6.10.: Runtime of fast Update Queries - Scale Factor 10.

When we consider Figure 6.9, we can clearly see that the exeuction time of update-queries is
dominated by two specific queries. Update Query 6 and Update Query 7. A detailed view
of the execution times of UQ6 and UQ7 is depicted in Figure 6.11.

We can clearly see that in the case of UQ6 and UQ7, RATG performs significantly worse than
both SQLGraph and Neo4j. In contrast to the previously discussed update queries, these two
queries create a new vertex and both introduce a number of new edges to the graph, as well as
creating edges to and from nodes that already have a high number of edges attached. This
means that for RATG a number of big arrays have to be altered, which explains the worse
performance compared to SQLGraph and Neo4j.

In the case of SQLGraph the number of already existing edges of a node does not change
the work required to insert a new tuple to the secondary adjacency tables, while Neo4j only
has to alter the internal lists of edges [RWE15]. Overall, UQ6 and UQ7 show the behavior
we initially expected from updates on RATG.

142



6.3. Query Performance

UQ6 UQ7
0

200

400

600

800

Ti
m

e
in

[m
s]

SQLGraph
RATG
Neo4j

Figure 6.11.: Runtime of Slower Update Queries - Scale Factor 10.

In conclusion, we see that we can differentiate between two insert operation cases:

• For cases in which edges are added to vertices that do not yet have a big set of edges,
our optimization does not negatively influence the performance of insert operations.
Therefore, it performs well for most update queries of the LDBC-SNB.

• On the other hand, insert operations for vertices with a lot of edges are massively
impacted. While a more efficient implementation of the applied stored procedures
could reduce the difference in execution times, we do not think that the performance of
the other approaches could be achieved for these types of operations.

In contrast to our assumption that our read-query optimization would slow down update
performance, in many cases RATG performs as well or even better than SQLGraph, while
none of the two approaches can perform better than Neo4j in regards to the efficiency of insert
operations. This is not surprising, since Neo4j barely uses indexing (only for attributes) and
does not have redundant storage.

143



6. Performance Evaluation

6.4. Required Disk Space

Our approach reduces the number of tables in use. Therefore, we expected a reduction in the
amount of disk space required to store the same data in comparison to SQLGraph. While
the number of redundantly stored edges does not change, we can omit the storage of indices
required to join the primary adjacency tables and secondary adjacency tables.

To confirm this, we imported different sizes of generated data sets provided by the LDBC-SNB
data set generator. The generator creates data sets according to an input scale factor
(1,3,10,30,100, . . .). We then sampled the required storage capacity using internal Post-
greSQL functions.

1 3 10 30 100
0

200

400

600

800

1,000

SNB Scale Factor

R
eq

ui
re

d
D

is
k

Sp
ac

e
in

[G
B

] SQLGraph
RATG

Figure 6.12.: Required storage capacity.

The numbers shown in Figure 6.12 represent the complete graph schema, including all indices
and constraints. Our findings show that our optimization of the schema not only increases
overall data retrieval efficiency, but also reduces the required storage space by over 10%.

As stated above, this is mainly due to the reduced overhead by reducing the amount of required
tables and the associated index structures that are required to efficiently join the outgoing
primary table/incoming primary table and outgoing secondary table/incoming secondary
table.

144



6.5. LDBC - SNB: Conclusion

6.5. LDBC - SNB: Conclusion

In this chapter we have described our methodology and results to evaluate the suitability of
our optimized approach RATG and compared its performance to SQLGraph and the native
graph database Neo4j.

Since our method reduces the number of joins that are required for most graph pattern queries,
we expected our approach to perform much more efficiently than SQLGraph. Our evaluation
confirms this assumption. At the same time, RATG performs very well compared to Neo4j
on smaller data sets and reasonably well on huge data sets. The difference in throughput can
mainly be traced back to single queries that perform significantly worse on our system.

The storage of edges in an array data structure leads us to the assumption that our approach
should perform worse than SQLGraph on update queries. While this is true for the creation of
edges at vertices that already have a high degree, we cannot confirm this for less used vertices.
For a complete LDBC-SNB workload, our approach RATG still significantly outperforms
SQLGraph.

Due to the reduction in the amount of required tables we also achieve a reduction in required
index structures. This leads to a reduced disk space requirement of our approach.

Sun et al. [Sun+15] stated that one advantage over most native graph databases is the presence
of sophisticated query optimizers. Our findings starkly contrast this statement: For nearly
all of the LDBC-SNB queries, both the PostgreSQL optimizer, as well as the OracleDB
optimizer (see [Sha21]), are unable to handle the complexity of these queries well. This can
lead to intermediary results that are bigger than the available disk space and therefore queries
that should be answered in a few seconds do not terminate. Therefore, manual optimization
or a specifically implemented query optimization method for the translated Cypher queries is
required.

The characteristics of the data originating from our use case fits the strength of our proposed
solution: First, the building models we have investigated so far rarely exceeded a few hundred
MB of data. The resulting data set therefore is smaller than the LDBC-SNB SF1 data set.
Second, the degree of most vertices in the resulting data sets is not very high, but is more than
a single edge for most relevant edge types. Third, most queries that we need to compute have
the characteristics of LDBC-SNB Short Queries (for a detailed look at the queries for our
use case see Section 10.2.2). For those RATG performed particularly well. As described in
Section 3.2 we have optimized RATG for exactly this kind of data set.

Our evaluations show the suitability of our approach for the LDBC-SNB data set and therefore
looked highly promising for our use case. For a detailed evaluation of a specialized version of
our approach RATG on real world IFC data see Chapter 10.

145





Part III.

The Building Information
Management Model Store

147





7. Use Case: Building Information Modeling

This research was triggered by the requirement to integrate three-dimensional building data
into the MonArch system. We will first describe the MonArch system and then the type of
data we want to integrate into the system, namely Building Information Modeling (BIM) data.
Afterwards, we will describe the data model leveraged to achieve this goal: The Industry
Foundation Classes (IFC).

7.1. The MonArch System

MonArch is an information system designed for documenting structures such as architec-
tural objects, urban situations, and archaeological sites. A MonArch database consists of a
digital model of the structure, i.e. a digital representation of the building, ensemble or site,
together with a (potentially huge) body of information and digital documents. Any digital
or digitized information or document can be attached to the digital model or specific parts
of it. Thus MonArch provides a space-related organization of information, documents and
artefacts [FS17].

Figure 7.1.: The user interface of MonArch displaying the 2D navigational map.

149



7. Use Case: Building Information Modeling

So far, the digital representation of the model contained a two-dimensional building plan (also
called navigation plan), a hierarchical structural representation of the building and a topical
context. The hierarchical structure and the building plan are linked in such a way that both can
be used to interchangeably navigate through the building. Each document can be assigned to
multiple structural objects and topics. These can then be used to find the documents intuitively
by selecting the part of the building and the topics the user is interested in. The user interface
of the MonArch system is depicted in Figure 7.1. For a detailed description of the MonArch
system and its data model we would like to refer the reader to Stenzer [Ste18].

One of the goals of this thesis was to extend the capabilities of the system and realize the
seamless integration of 3D building models that can then be used for navigation through
the building and hence through the body of documents.

Figure 7.2.: An exploded view drawing of a 3D building model.

The current version of the data model of MonArch is implemented in the relational database
management system PostgreSQL. To achieve the seamless integration we had to meet the
following conditions:

• The building model data has to be stored in the relational database system.

• To achieve the linking of additional information with the building model, we have to
be able to split the model into different segments. Optimally, these segments structure

150



7.2. Building Information Modeling

the building hierarchically starting at the whole and stopping at specific components
and parts. An example of such a segmentation can be seen in Figure 7.2 depicted as an
exploded view drawing of the components.

• Each of the objects resulting from the aforementioned segmentation needs to be identifi-
able in order to be able to reference the segments and therefore be able to link additional
information, e.g. documents or topics, to these.

To achieve the goal of integrating 3D building data into the MonArch system, we used models
resulting from the Building Information Modeling approach. Therefore, we will now give a
short overview of what BIM represents.

7.2. Building Information Modeling

Contrary to popular belief, BIM is not a software or a collection of different applications but
rather a general approach to the continuous use of digital building models. In theory, these
models should be used to manage the entire life-cycle of a building which starts at the early
conceptual design phase, accompanies the construction phase, the phase of operation and
ends with a potential demolition of the building.

Figure 7.3.: A rendering of a Conference Center in Archicad.

In modern BIM, the central tool is a comprehensive digital representation of the building
and includes great depth of information. This comprises extensive structural and semantic
information about the building, as well as a three-dimensional representation of the facil-
ity [Bor+18].

151



7. Use Case: Building Information Modeling

These three-dimensional building models are created in specialized CAD software like
Autodesk Revit1, Graphisoft Archicad2 by highly trained experts. A rendering of the BIM
model of a Conference Center in Archicad is depicted in Figure 7.3.

In order to use a single central building model, the data exchange is necessary between
different specialized software tools (possibly from different vendors). Because of this, some
of these BIM software vendors have agreed upon a standardized open data exchange format
and started to develop the Industry Foundation Classes (IFC).

7.3. The Industry Foundation Classes (IFC) Data Model

The Industry Foundation Classes (IFC) are a data model developed by buildingSmart3. It
was developed to serve as an open Building Information Modeling (BIM) exchange format
that can model a complete building. Therefore, it does not only include geometric data, but
also information about the building components, their associated properties and relation-
ships. It is registered with the International Organization for Standardization (ISO) as
ISO 16739 [ISO18]. IFC is an object-oriented and semantic data model that contains several
hundred classes. These are organized in a complex hierarchy that includes numerous abstract
layers [The11].

As described before, the IFC data model is a complex hierarchically structured data model.
This makes it difficult for application developers to correctly use the data model, since the
hierarchy contains a high number of abstract elements.

Within the scope of this thesis, the amount of classes and the complexity of the IFC data
model is too large to discuss in detail. Instead, we will take a look at a few examples. To get a
general impression of the number of different modules in which the IFC classes are organized
consider Figure 7.44. The approach proposed in this thesis generalizes from the concrete
data instances and works on a property graph model of the data, which makes handling this
number of different classes possible in the first place. We will describe this approach in the
following sections.

Remark 7.1
For the remainder of this work, we will color the textual representation of abstract IFC classes
in brown (e.g. IfcProduct), classes that can be instantiated in blue (e.g. IfcWindow), and
objectified relationship classes in green (e.g IfcRelConnectsElements).

1see https://www.autodesk.de/products/revit
2see https://graphisoft.com/de/archicad
3https://www.buildingsmart.org/
4Figure taken from https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC2/HTML/

152



7.3. The Industry Foundation Classes (IFC) Data Model

Figure 7.4.: IFC version 4.3.x Architecture overview.

7.3.1. The EXPRESS Data Modeling Language

Since the Industry Foundation Classes are defined using the EXPRESS data modeling lan-
guage [SW94], we will give a very brief overview of the modeling language so that the reader
of this work is able to understand our basic mapping of IFC data to a property graph model.
The EXPRESS data modeling language is registered with the International Organization for
Standardization (ISO) [ISO04].

The EXPRESS data modeling language is a data modeling language for use in engineering
data exchange standards. It combines the entity-attribute-relationship and object modeling
paradigms [BL01]. Objects of the real world are then described as strongly-typed entities.
These entities then describe objects with common properties. Properties are modeled with
attributes and constraints [Her94]. For this work we will not consider constraints defined in
EXPRESS, since we assume that the data sets we receive are syntactically and semantically
correct.

153



7. Use Case: Building Information Modeling

We can describe an entity using EXPRESS by using four types of attributes [Her94]:

Simple data types are attributes that are defined as values like numbers or strings.

Collection data types are also called aggregates. We can differentiate between ordered
aggregation data types like lists or arrays, and unordered data types like sets.

Named data types can denote user-defined data type attributes (especially other entities) that
are then referenced using an identifier. This is the only way to model a relationship to
another entity using EXPRESS. Note that a collection data type can contain a collection
of references.

Inverse attributes define that this entity is stored as a named data type attribute in another
entity. Although, it is not required to define an inverse attribute in the target entity
of a reference, this enables the restriction of the cardinality of the reverse direction
of relationships. Also, if the EXPRESS data model is directly translated to an object-
oriented class implementation, this allows for simple traversal of relations in the inverse
direction.

An example of an EXPRESS definition is depicted in Listing 7.5: The EXPRESS definition
describes the entity IfcProduct, which is an abstract representation of any object that relates
to a geometric or spatial context [ISO18].

The ABSTRACT keyword defines this class as abstract and by using the SUPERTYPE OF
construct, all subtypes of IfcProduct are listed (e.g. IfcStructuralItem). IfcProduct is a subtype
of the (abstract) entity IfcObject. For IfcProduct itself, two attributes are defined:

1. ObjectPlacement is an OPTIONAL reference to an IfcObjectPlacement, which is used
to define a placement for objects. This means that there can be a single reference or
none;

2. and Representation is an OPTIONAL reference to an IfcProductRepresentation. The
IfcProductRepresentation can, for example, be used to assign a geometric representation
to a product.

As described before, the definition of an entity can also describe INVERSE relationships.
This is a way to restrict the cardinality of IfcRelAssignsToProduct relations between entities.
IfcProduct defines two INVERSE relations:

1. ReferencedBy is a SET (and therefore unordered collection) of references from IfcRe-
lAssignsToProduct. This objectified relationship is used to handle the assignment
(of subtypes) of IfcObject to (subtypes of) IfcProduct entities. It also defines that
ReferencedBy is the inverse reference for the RelatingProduct attribute of the IfcRe-
lAssignsToProduct entity.

2. PositionedRelativeTo is defined as a SET of references from IfcRelPositions. This
objectified relationship is used to position a (subtype of an) IfcProduct relative to
an IfcPositioningElement. The cardinality of the set is bound by a maximum of 1.
Therefore, an IfcProduct entity can only be positioned relative to a maximum of one

154



7.3. The Industry Foundation Classes (IFC) Data Model

IfcPositioningElement. It is also defined that PositionRelativeTo is the inverse attribute
to the RelatedProducts attribute of the IfcRelPositions entity.

The WHERE clause can be used to define constraints for the entities. Since we will not use this
in our work, we will not describe this further. The interested reader should consider [ISO04]
for a more detailed description.

The STEP File Format IFC data is usually exchanged using the STEP file format, but an
XML representation can also be used. The STEP file format is a text based human readable
file format that is also registered with the International Organization for Standardization (ISO)
as a group of standardized exchange formats [ISO21]. Lines are terminated by a ";" and every
line of a STEP file describes a complete instance of an EXPRESS entity.

An example for an IfcWallStandardCase represented in STEP directly taken from one of our
evaluation models is depicted in Listing 7.6: The line starts with the identifier #28966 of
the entity that will be described, followed by the entity type IfcWallStandardCase. Then the
global identifier "3_YR89Qiz6UgyQsBcI$FJy" is defined, followed by a reference to the
entity with identifier #42.

Remark 7.2
STEP files do not contain any schema information. Also, inverse attributes as described in
Section 7.3.1 are not represented in the STEP file. Since we do not want to include inverse
relations into the property graph representation anyway, this does not restrict us, and we also
do not have to compute inverse relations at import time.

155



7. Use Case: Building Information Modeling

ENTITY IfcProduct
ABSTRACT SUPERTYPE OF (ONEOF(IfcStructuralItem, ...))
SUBTYPE OF (IfcObject);

ObjectPlacement : OPTIONAL IfcObjectPlacement;
Representation : OPTIONAL IfcProductRepresentation;

INVERSE
ReferencedBy : SET OF IfcRelAssignsToProduct

FOR RelatingProduct;
PositionedRelativeTo : SET [0:1] OF IfcRelPositions

FOR RelatedProducts;

WHERE
PlacementForShapeRepresentation :
(EXISTS(Representation) AND EXISTS(ObjectPlacement))

END_ENTITY;

Listing 7.5: The EXPRESS definition of the abstract class IfcProduct in IFC4x2.

#28966= IFCWALLSTANDARDCASE(’3_YR89Qiz6UgyQsBcI$FJy’,#42,
’Basic Wall:Reinforced Concrete"[...]);

Listing 7.6: The STEP file representaiton of an IfcWallStandardCase in IFC4x2.

156



7.3. The Industry Foundation Classes (IFC) Data Model

7.3.2. General IFC Structure

As described before, the IFC contains hundreds of (abstract) classes and relationships that
are objectified as classes. We will now take a quick look at an example that illustrates how
building data is stored using IFC and should be sufficient to be able to understand our approach
of storing IFC data in a relational database.

Figure 7.7.: Industry Foundation Classes (IFC) data model excerpt.

Consider the example excerpt of the IFC data model depicted in Figure 7.7. The figure shows
the required classes to model a window that is placed inside a wall. Both classes, IfcWall and
IfcWindow are subclasses of the abstract IfcElement, while the relations IfcRelVoidsElement
and IfcRelFillsElement both are subclasses of the abstract relation IfcRelation. Note, that both
classes and relations are implemented using classes known from object oriented languages.
The actual relationships between those are then constructed using references.

In order to place the IfcWindow in the wall we need to create an opening in the wall. We
can achieve this using IfcOpeningElement. We need to use IfcOpeningElement instead of
its superclass IfcFeatureElementSubtraction, because we can only fill an IfcOpeningElement

157



7. Use Case: Building Information Modeling

with another IfcElement but the schema does not allow us to fill an IfcFeatureElementSub-
traction. We can place the IfcOpeningElement in an IfcElement using an IfcRelVoidsElement
relation that has references to both, the IfcElement and the IfcOpeningElement. Using the
IfcRelFillsElement relation, we can then place the IfcWall in the IfcOpeningElement.

Figure 7.8.: Industry Foundation Classes (IFC) instance example placing a window in a wall.

An example of the instances that could be used to create the aforementioned example that
places a window inside a wall is depicted in Figure 7.8.

Remark 7.3
We do not include inverse relationships in our examples and excerpts of the IFC data model,
since we will not make use of inverse relationships in our approach. Because the property
graph model allows for simple traversal of edges in both directions, we thereby reduce
the number of edges required to map the data into our storage model while not losing any
information. For the complete definition of the IFC entities please consider the official IFC
documentation.

158



8. Related Work

In this work we focus on the relational-based storage of IFC data. We do not consider
closed vendor specific stores that are only available within a single software vendors software
landscape.

8.1. IFC Model Stores

The IFC data model is a standardized (ISO 16739:2013 [ISO18]) model for the representation
of a building and its life-cycle. It was developed with the purpose of enabling the exchange of
data for the information produced during the design, construction and remaining life-cycle of
buildings. Since the file-based data storage obviously has a number of drawbacks, there have
been several attempts at storing the data in different types of database systems.

Among few others, the most prominent IFC model store is the open source software BIM-
Server [Bee+10b; Bee+10a]. It uses a NoSQL approach to store IFC building data. The
general approach they apply is to store every entry of the IFC data in a key-value-based
database (Berkeley DB), using the internal object id (provided by the EXPRESS STEP file) as
the key. They offer functionalities like model revisions and merging. An important feature
that distinguishes the BIMServer from other approaches is the possibility to execute queries
on the building models. Nevertheless, these queries either have to be written in a Java-based
query framework created using the eclipse modeling framework, which requires BIMServer
implementation specific knowledge, or the use of BimQL [MB13]. While the Java-based
query framework has been discontinued, the use of BimQL is hardly documented for the
system. The result of each query is exactly one IFC file. Therefore, no simple values can
be the result of a query. This also implies that only a single revision of a single building
model can be queried at a time. To the best of our knowledge, this system achieves the
best performance (in the sense of import performance and query performance) compared to
other approaches [Lee+14], but at the same time is very hardware resource demanding. In
addition, BimServer is based on Java 9 and an upgrade to the most current long term support
version Java 11 or newer versions is not foreseeable for the near future, since the single
original developer is not taking part in the development anymore. Due to the aforementioned
restrictions regarding queries and hardware, this approach is not viable to our use case.

Lee et al. present an Object-relational Database Management System (ORDBMS) approach
to store IFC data [Lee+14]. They use the BUCKY benchmark [Car+97] to show the validity of
their approach, which is a query-based benchmark designed for comparing the performance

159



8. Related Work

of ORDBMS and RDBs, but not designed for IFC use cases [Maa09]. The query performance
presented in [Lee+14] is overall not satisfactory and the ORDBMS approach does not seem
viable for an interactive information system.

Solihin et al. [Sol+17] present another approach to store IFC data in the RDBMS OracleDB.
They automatically transform the data into an established star schema model (see e.g. [Ada10]),
which is well-defined within the data warehouse domain. The goal of this approach is to allow
flexible and efficient queries. Therefore, the data is transformed with the goal of analysis, not
considering later retrieval of the original data. The linking of additional data to the IFC data
is not considered, either. In addition, the modification of the data is generally not possible. In
addition, in [SEL17] integrates different geometric representations using GIS functionality
with the aforementioned data-warehouse storage concept.

8.2. Querying IFC Data

To the best of our knowledge, no open system exists that enables the user to perform arbitrary
queries on given IFC data. With the development of [MB13], the authors started an effort to
create a domain specific, open query language for IFC data. This work has not been finished
and its only reference implementation can be found in [Bee+10b]. Since it is designed for
IFC specifically, the user needs to have detailed knowledge about the structure of the IFC
data model.

General query mechanisms for EXPRESS data exist in the Express Query Language (EQL)
proposed by Huang et al. [KHJ98]. It is designed as a generic query mechanism for STEP
files. The language has a complex grammar and syntax and therefore does not offer the same
advantages as our approach of intuitively writing queries in Cypher.

The Partial Model Query Language (PMQL) [Ada03] is a query language that provides
selection, update, and deletion functionality that supports recursive expressions and has been
a major influence for the development of BimQL [MB13]. Because of its domain specific
nature, a potential user must have detailed domain-specific knowledge to be able to write
queries in PMQL.

8.3. IFC as a Graph

Since existing approaches to query IFC data required predefined queries or schema-based
filters and therefore a profound knowledge about the IFC data model, Tauscher et.al [TBS16]
approach the usage of graph theory to extract knowledge from IFC building models. They
propose an approach to extract a graph representation from the IFC data in order to perform
queries, using for example Dijkstra’s the shortest path algorithms. Their approach relies
upon filtering out unnecessary relationships (that could also produce wrong results) at graph
generation time. While this enables them to easily find e.g. the IfcMaterial related to an

160



8.3. IFC as a Graph

IfcDoors, much of the information contained in the IFC model is not present in the graph. In
contrast to our approach, the graph data structure is also not used as the main data model to
store IFC data.

Ismail et al. [INS17; ISS18] transform the IFC data into the property graph model and use
Neo4j as its database backend. In their work, they extract a subset of the IFC data, building
a subgraph of the graph that would be stored in our IFC store. Additional information or
geometric information is not included in the graph representation. In contrast to our approach,
they do not directly store the IFC data in the property graph format and do not give a general
mapping approach to transform the data. Also, only a subset of the data is accessible through
the graph query interface.

161





9. Storing IFC in the Relational Database

We will now describe our approach to storing Industry Foundation Classes (IFC) data in a
Relational Database Management System (RDBMS). Since our work does not focus on the
creation or validation of IFC data, we assume that the following properties hold:

1. The IFC data that is presented is syntactically, geometrically, as well as semantically
correct. When using any parser library to read IFC data, it is the parsers task to
ensure the syntactical correctness of the IFC STEP file. The validation of IFC data
in a semantical and geometrical manner is still a subject of ongoing research (see
e.g. [YL21]) and out of the scope of this thesis.

2. As previously mentioned in Section 7.3.1, the EXPRESS modeling language offers
functionality to describe constraints and other value dependencies for EXPRESS entities.
We do not consider those for our data management and assume that those criteria are
met at import time.

After having stated our assumptions for the given IFC data and introduced the data modeling
language and file format, we can now describe how we map EXPRESS STEP data into the
property graph model.

9.1. Mapping IFC into the Property Graph Model

As previously described in Section 7.3.1, the EXPRESS model language describes entities
with four types of attributes. We therefore perform the following mapping:

We map each entity on its own vertex type. This means that we will have a vertex type of
every class of IFC that can be instantiated. Then we have to map the four types of attributes
that can be defined in EXPRESS:

Simple data types We convert these attributes associated to an entity instance to properties
of the vertex that represents the EXPRESS entity and use the name of the EXPRESS
entity attribute as property key.

Named data types Since these attributes represent relations to other EXPRESS entites, we
map these data types to relations. The source of the relation is the current EXPRESS
entity instance and the target is the referenced EXPRESS entity instance. We then
assign the name of the attribute to the relation as its label.

163



9. Storing IFC in the Relational Database

Collection data types Since we map simple data types and named data types in different
ways, we need to differentiate between two cases:

1. A collection of named data types: We do not differentiate between ordered and
unordered collections for named data types. We store both as an array in the
property set of the vertex representing the EXPRESS entity instance and assign
the name of the attribute as property key.

2. A collection of named data types: We create a relation for each of the references
included in the collection the same way as we created a relation for a single
named data type attribute. If the collection is an ordered collection, we add a
property to the relation that stores the position of the current reference in the
collection.

Inverse attributes We do not directly represent inverse attributes in the property graph
representation of the IFC EXPRESS data. Since each inverse attribute is the inverse of
the attribute in the referenced EXPRESS entity instance, the other direction is already
included in the property graph. Because we can traverse edges in the inverse direction,
we do not need to explicitly store these.

Let us now consider an example to illustrate the mapping.

164



9.1. Mapping IFC into the Property Graph Model

Example 9.1
Consider the previous IFC instance example again that describes an IfcWindow in an IfcWall
depicted in Figure 9.2: The example contains 5 EXPRESS entity instances: An IfcWall

Figure 9.2.: Industry Foundation Classes (IFC) instance example placing a window in a wall.

instance that is referenced from an IfcRelVoidsElement instance. That instance references an
IfcOpeningElement, which in turn is referenced by a IfcRelFillsElement that finally references
the IfcWindow in the wall.

First, our mapping produces the vertices depicted in Figure 9.3. The intermediate result
contains 5 vertices, each of which represents one of the EXPRESS entity instances of the data
sample. Simple data type attributes and aggregation type attributes of simple data types
have already been converted into property-value pairs.

For example, the EXPRESS entity instance of the IFC class IfcWall has been converted to
a vertex with the automatically generated V ID = 1 and the instance of IfcRelVoidsElement
to the vertex with V ID = 2. The EXPRESS entity type IfcWall has been converted into the
key-value pair type : IfcWall. The simple data type attribute "GlobalId" has been converted
into the key-value pair GlobalId : 33SZS....

165



9. Storing IFC in the Relational Database

Figure 9.3.: Vertices resulting from the IFC instance depicted in Figure 9.2.

Second, we include named data type attributes and aggregation type attributes of named
data types: The RelatingBuildingElement named data type attribute that describes the
reference from the IfcRelVoidsElement instance to the IfcWall instance is converted to an edge
from vertex V ID = 2 to V ID = 1, which is given the label RelatingBuildingElement.

166



9.1. Mapping IFC into the Property Graph Model

Figure 9.4.: Example property graph resulting from the IFC instance depicted in Figure 9.2.

167



9. Storing IFC in the Relational Database

Example 9.5
Let us additionally consider the small excerpt from the IFC data model depicted in Fig-
ure 9.6 to illustrate the mapping of collection data type attributes: This example shows how
IfcPolyloop containing IfcCartesianPoint are described in IFC. The IfcPolyLoop contains a
collection data type attribute of references to IfcCartesianPoint instances. Since the order of
the points in a polyloop is essential, the collection is ordered. The IfcCartesianPoint contains

Figure 9.6.: Example of ordered references in IFC.

the collection data type attribute Coordinates, which contains a list of coordinate values that
are simple data type values.

The mapping of simple data type attributes and named data type attributes works the same
way as shown in Example 9.1. Since the Polygon attribute is a collection data type attribute
that is also ordered, our mapping to the propery graph model results in the graph depicted
in Figure 9.7. Several edges of the type Polygon originate from the IfcPolyloop vertex
that represents the original EXPRESS entity instance. Those target the different EXPRESS
entity instances referenced in the ordered collection. Therefore, we need to preserve the
original order by introducing properties and specifying the original position of the target in
the collection.

Additionally, the Coordinates attribute of the IfcCartesianPoint EXPRESS entity instance is
an ordered collection of a simple data type. Therefore, we store these values as an array for
the key Coordinates of our IfcCartesianPoint property graph vertex.

168



9.1. Mapping IFC into the Property Graph Model

Figure 9.7.: Example property graph resulting from the IFC instance depicted in Figure 9.6.

169



9. Storing IFC in the Relational Database

9.2. Importing IFC Data

As we have described earlier in Chapter 4, the general concept to store data in our schema
(depicted in Figure 9.8) consists of two processes:

1. We need to generate mapping functions in order to decide which type of relation is
stored in which column triple. This is done in advance and is only necessary once per
data model.

2. The actual data import then parses the IFC data, transforms it into a graph and writes
the data to the database. For writing the data to the database, we apply the previously
computed hash functions.

To compute the hash functions, we can use exactly the same approach previously that has
been previously described in Section 4.1.1. Therefore, we only need to take a closer look at
importing the actual data into the system.

As described in Section 4.2, our approach to efficiently import graph data into our schema is
layered. This implies that we only have to provide the suitable parsing and the preprocessing
layers to import the IFC data into our graph schema.

We can use existing parsing libraries for the IFC data to implement the parsing layer (e.g. the
parsing component of BimServer [Bee+10b]). Therefore, for the IFC scenario we only need
to create the preprocessing layer.

In our use case the preprocessing layer handles the transformation of the IFC data into the
property graph model, using the mapping described in Section 9.1. Contrary to the import of
LDBC-SNB data (as described in Example 4.17) we do not need to automatically generate
identifiers for the vertices of our graph, because each EXPRESS entity described in a STEP
file has its own unique (within this single model) id. Hence, we can use this identifier as our
VID in the graph. Since we assumed that the input data is correct (see Chapter 9), we can
furthermore assume that referential integrity of the references from an EXPRESS entity to
another EXPRESS entity is not violated. Therefore, we can directly create edges as soon as
we encounter them in the data, since we already know the VID of the target vertex in the
graph and also know that this vertex exists.

For the sake of a clear description of the algorithm, we use a list of EXPRESS entities as input.
In the real world application we use a stream of entities so that we do not have to keep the
whole building model in main memory. A pseudo code description of our preprocessing layer
is depicted in Algorithm 9.9.

Because we do not have to assign new identifiers to the EXPRESS entities in order to convert
them to a vertex, we are able to import the IFC data in a single pass over the list of entities.
Our internal representation builder only supports the creation of finished vertices, since we
want to be able to stream the internal representation to the next layer (or for intermediate
storage to the hard drive). Therefore, we gather all attributes in a set before we create the
actual vertex.

170



9.2. Importing IFC Data

IFC FileIFC Schema

Internal graph 
representation

Hash functions

[Hash function algorithm]

[Parsing & preprocssing]

RATG

[write to DB]

Database 
importer

Figure 9.8.: Import concept for IFC data applying the concept presented in Section 4.2.

For each entity we process each attribute entry as follows: We check if it is a simple data
type attribute. If this is the case, we store this attribute as a simple property in the property

171



9. Storing IFC in the Relational Database

Algorithm 9.9: The preprocessing layer of the IFC data import.
Input: The list of EXPRESS entities EX and a builder for the internal representation IRB.
/* Iterate over all EXPRESS entities. */
foreach (e ∈ EX) do

/* Keep key-value pairs until all attributes of this entity are
processed. */

properties← /0;
foreach (a ∈ e.getAttributes()) do

if a is a simple data type attribute then
/* Add the value as a simple property value to the set of

key-value pairs. */
properties← properties∪{(a.getName(),a.getValue())};

else if (a is a collection of a simple data type) then
/* Add the collection of values as an array to the set of

key-value pairs. */
properties← properties∪{(a.getName(),a.getValuesAsArray())};

else if (a is a named data type attribute) then
/* Create an edge from the current entity to the entity

referenced in the attribute value. */
IRB.createEdge(e.getExpressId(),a.getName(),a.getValue(), /0);

else if (a is a collection of named data type attributes) then
/* Create an edge for each reference also storing the

position of the reference in the collection. */
i← 0;
foreach re f ∈ e.getValuesAsArray() do

IRB.createEdge(e.getExpressId(),a.getName(),re f ,{(position, i)});
i← i+1;

end
end
/* We have now processed all attributes of the entity and can

therefore create the vertex in a single operation. */
IRB.createVertex(e.getExpressId(), properties);

end
Result: An internal graph representation (as described before in Section 4.2.3) of the input list of

EXPRESS entities EX .

set. If it is not a simple data type attribute, but a collection of simple data type attributes, we
transform the collection to an array of values and store this key-array pair in the properties set
for later processing.

If the attribute is a named data type attribute or a collection of named data type attributes
we can immediately create the edge in the property graph representation builder. We can do
this, since references in EXPRESS themselves cannot have attributes and therefore we already
know all the information we require to create the edge. In the case of a collection of named
data type attributes we also number the edges in order to be able to reconstruct the order of
the references later on.

After we have finished processing the last attribute of the EXPRESS entity, we are sure that we
have found all attributes that should be converted to vertex properties. Therefore, we can now

172



9.2. Importing IFC Data

create the vertex that represents the current entity. We repeat this process for every EXPRESS
entity that is part of the IFC model.

Remark 9.1
We let the parser library handle the validation of the correctness of the input IFC data. This
also includes that referential integrity is not violated, as we assumed before.

173



9. Storing IFC in the Relational Database

9.3. Storing Multiple Building Models

Since we want to be able to store multiple buildings in our information system (see Sec-
tion 7.1), we need to modify the schema presented in Section 3.2. Our new schema is depicted
in Table 9.10 and modifications are highlighted in red:

Graphs : {[
GID : INT,
IFC_Header : VARCHAR

]}

Vertices : {[
GID : INT (→ Graphs.GID),
VID : LONG,
Attributes : JSON

]}

OutgoingAdjacency : {[
GID : INT (→ Graphs.GID) ,
VID : LONG (→ Vertices.VID),
EID1 : LONG[],
Label1 : VARCHAR,
TID1 : LONG[],
. . .
EIDk : LONG[],
Labelk : VARCHAR,
TIDk : LONG[]

]}

Edges : {[
GID : INT (→ Graphs.GID),
EID : LONG,
SID : LONG (→ Vertices.VID),
TID : LONG (→ Vertices.VID),
Label : VARCHAR,
Attributes : JSON

]}

IncomingAdjacency : {[
GID : INT (→ Graphs.GID),
VID : LONG (→ Vertices.VID),
EID1 : LONG[],
Label1 : VARCHAR,
SID1 : LONG[],
. . .
EIDp : LONG[],
Labelp : VARCHAR,
SIDp : LONG[]

]}

Table 9.10.: The relational property graph database schema.

We introduce an additional table Graphs that stores metadata about the different graphs (or
building models) in the database. For example, this includes the IFC file header. Next, we
modify all tables to have an additional column that assigns each vertex and edge to the graph
they belong to.

Using this altered schema we achieve the following properties:

1. We can store multiple IFC models in the same system.

2. We can query single models using the graphs GID as previously described in Chapter 5.

3. We can create queries that access data from multiple models.

While this modification enables us to simultaneously store several building models, it comes
with a number of drawbacks:

174



9.3. Storing Multiple Building Models

1. Even though the models and hence graphs are completely disjunctive, in order to import
additional models the existing tables and indices have to be modified. In particular,
indices and constraints on the database schema significantly slow down the import of
huge amounts of data. We could avoid this problem by temporarily deleting the indices
and creating them after the data is imported. Still, the size of the indices and therefore
their creation time will increase with each additional model and hence each successive
model import will become slower.

2. Deleting single models comes with the same challenge as adding new models. We
could avoid this by marking models as deleted and perform a cleanup task during times
of low system load.

3. Although all queries from our use case only target single models (see Section 10.2.2),
each query has to access the tables (or indices) containing all models. The increasing
data size will therefore also slow down queries on single models.

Because the building models are disjunctive, we have a natural segmentation into the different
available models. Leveraging this property of the graph, we can apply the concept of
horizontal fragmentation well-known from distributed databases (e.g. see [ÖV20; Zha93]).
We horizontally fragment the Graphs along the GID and apply the concept of derived
fragmentation to the vertex and edge tables and store these locally in our database. We
can use widely available features of database managements systems to automatically make
our queries target the correct tables.

Example 9.11
Let us assume that our current database instance is not fragmented yet and contains multiple
building models, including the models with the GID = 223 and GID = 226 as depicted in
Table 9.12. For the sake of brevity we only present the vertex table as an example, the other
tables are fragmented analogously.

Vertices
GID VID Attributes
223 6447 "Name": "Rathaus", "Type": "IfcBuilding", ...
... ... ...
226 6447 "Name": "Bauhof", "Type": "IfcBuilding", ...
226 7158 "Name": "OG 1 - Ebene 3", "Type": "IfcBuildingStorey", ...
.. ... ...

Table 9.12.: Example vertex table before applying horizontal fragmentation.

We now derive the fragmentation along the GID. This results in the tables depicted in
Table 9.13. Each of the two resulting tables only contains vertices of a single graph and the
table contains all vertices of the graph.

175



9. Storing IFC in the Relational Database

Vertices223

GID VID Attributes
223 6447 "Name": "Rathaus", "Type": "IfcBuilding", ...
... ... ...

Vertices226

GID VID Attributes
226 6447 "Name": "Bauhof", "Type": "IfcBuilding", ...
226 7158 "Name": "OG 1 - Ebene 3", "Type": "IfcBuildingStorey", ...
.. ... ...

Table 9.13.: Two of the tables resulting from horizontally fragmenting the table depicted in
Table 9.12 derived from the graph identifier GID.

By applying this horizontal fragmentation we overcome the drawbacks described before:

1. New IFC models are stored as a separate graph and will therefore be stored in their
own set of tables. Hence, old indices do not have to be altered in order to insert the new
data, but new indices for the new tables will be created and only the new data has to be
considered. This also means that the import of new data will not be influenced by the
amount of already imported models.

2. Deleting models from the IFC store is as simple as deleting the entry from the Graphs
table and dropping the corresponding set of tables.

3. By using the well-known mechanisms for fragmentation, the query optimizer will only
include relevant tables in the query evaluation. Therefore, if a single IFC model is the
target of a query, only the tables containing data for this individual model (and the
according indices) have to be loaded. It is still possible to include several or all models
as targets of a query, which will be handled automatically by the query optimizer.

Overall we have found a way to simultaneously store numerous IFC models in the IFC store.
The efficiency of queries performed in the system is not hindered by the number of models,
but mainly influenced by the complexity of the target models of the query. For a detailed
evaluation of the performance for up to 20 different models simultaneously see Chapter 10.

Remark 9.2
Our prototypical implementation uses the table inheritance mechanism [OH12] combined
with check constraints available in PostgreSQL to implement local horizontal fragmentation.

By using this mechanism, the PostgreSQL optimizer is able to exclude tables that do not
contain vertices or edges of the currently accessed graph, whenever we define queries with
the filter WHERE GID = x.

176



9.3. Storing Multiple Building Models

PostgreSQL Inheritance 
MechanismSELECT *

FROM  Vertices
WHERE GID = 1

SELECT *
FROM  Vertices1

WHERE GID = 1

Database

Figure 9.14.: Query processing for horizontally fragmented tables as depicted in Table 9.13.

The query processing for a query targeting a single graph is depicted in Figure 9.14: Post-
greSQL automatically translates the query that targets a GID into a new version that only
targets the relevant tables. Therefore, only the graph data that is necessary to answer the query
has to be loaded.

177



9. Storing IFC in the Relational Database

9.4. Spatial Queries on the Building Model

So far we have presented how we store IFC building models in a RDBMS and given a general
idea how the structural and semantical data can be queried using the approach presented in
Chapter 5. But the data retrieved from an IFC file contains only the information the creator of
the model included in the CAD software and also differs between different BIM software.

For example, the structural connection between two IfcWalls or the containment relation
between an IfcWall and an IfcWindow does not have to be included in the data. At the same
time, the geometric complexity of the building models can be very high. Therefore, direct
spatial computation within a database in an interactive application context to retrieve this kind
of information is not feasible.

Therefore, we abstract from the detailed geometric data and propose an approach to use GIS
functionality and bounding boxes. These features are also widely available in most Rela-
tional Database Management Systems. To this purpose Bay [Bay18] created a prototypical
implementation using PostGIS [Mar15].

The modified schema using PostGIS is depicted in Table 9.15: We add a table IfcProduct-
BoundingBoxes, because only a few vertices of the large amount of vertices in the graph have
a graphical representation. More specifically, only vertices representing IfcProduct entities
can have a geometric representation assigned. These usually only account for a few hundred
to thousands of vertices in a several hundred thousand vertex graph.

Bay compared the use of the GeoJSON data type, the Geometry data type and the Box3D data
type to store bounding box information. The use of GeoJSON was an interesting approach,
because using this format would not require a schema alteration. Nevertheless, Bay’s work
showed that using the Geometry data type is by far the most efficient for 3D GIS queries. For
the case of the ST_3DFullyWithin operation provided by PostGIS, execution times using the
Geometry approach were up to 200 times faster than the GeoJSON storage and up to 5 times
faster than the Box3D approach [Bay18].

IFC File RATG + PostGIS

Import Mechanism

[load geometry]

[store bounding boxes]

Bounding Box 
Generation

Figure 9.16.: The bounding box generation concept for RATG.

Our concept for the bounding box generation is depicted in Figure 9.16: We wanted to
make the process independent of the import process, since not every instance of our use case

178



9.4. Spatial Queries on the Building Model

Graphs : {[
GID : INT,
IFC_Header : VARCHAR

]}

Vertices : {[
GID : INT (→ Graphs.GID),
VID : LONG,
Attributes : JSON

]}

IfcProductBoundingBoxes : {[
GID : INT (→ Vertices.GID),
VID : LONG (→ Vertices.VID),
BoundingBox : Geometry

]}

OutgoingAdjacency : {[
GID : INT (→ Graphs.GID) ,
VID : LONG (→ Vertices.VID),
EID1 : LONG[],
Label1 : VARCHAR,
TID1 : LONG[],
. . .
EIDk : LONG[],
Labelk : VARCHAR,
TIDk : LONG[]

]}

Edges : {[
GID : INT (→ Graphs.GID),
EID : LONG,
SID : LONG (→ Vertices.VID),
TID : LONG (→ Vertices.VID),
Label : VARCHAR,
Attributes : JSON

]}

IncomingAdjacency : {[
GID : INT (→ Graphs.GID),
VID : LONG (→ Vertices.VID),
EID1 : LONG[],
Label1 : VARCHAR,
SID1 : LONG[],
. . .
EIDp : LONG[],
Labelp : VARCHAR,
SIDp : LONG[]

]}

Table 9.15.: The relational property graph database schema extended with GIS functionality.

application will require this feature. If it becomes necessary in the future, this process could
be performed in parallel to the import process and use GPU acceleration. Then after the graph
data was inserted into the database, bounding box data can be added. The geometry data is
extracted from the database and bounding boxes are computed. These bounding boxes are
then stored in the database. The prototype was usually able to generate bounding box models
of up to 7,000 bounding boxes within a few minutes.

An example bounding box model of the Conference Center model is depicted in Figure 9.18
and was generated from the building model depicted in Figure 9.17. In order to make different
bounding boxes visually distinct the boxes are colored with random colors.

Using GIS functionality enables us to estimate relations like containment or whether two
IfcProduct instances are connected on the fly whenever these are not explicitly stated in the
model data. Our first results look very promising, but further research is required, therefore

179



9. Storing IFC in the Relational Database

Figure 9.17.: A rendering of the Conference Center building model.

Figure 9.18.: A rendering of the bounding box representation of the building in Figure 9.17
taken from [Bay18].

we will not go into further detail in the scope of this work. Spatial queries will also not be part
of our evaluation in the following chapter. For a more detailed description of our prototype
we advise the reader to take a look at [Bay18].

180



10. Evaluation of the IFC Store

After having presented our use case in Chapter 7 and our approach to store IFC models as
a property graph in Chapter 9, we now want to examine the performance of our approach.
Therefore, we wanted to evaluate our storage approach for IFC data as we did with our general
approach to store property graph data in a Relational Database Management System (RDBMS)
(see Chapter 6).

We ran all tests on the same hardware as described in Chapter 6. The evaluation was conducted
on a dedicated server with:

• two Intel Xeon 2.6GHz CPUs (in total 8 cores),

• 96 GB main memory,

• a 6 SSD RAID-0 (other RAID configurations would not have left enough storage
capacity for the biggest data set),

• running 64-bit Ubuntu (version 18.04 LTS).

We used PostgreSQL 13 on the aforementioned server, while we ran the client program of
the benchmark on a (virtual) desktop computer that connected to the database over a 1Gbit/s
LAN and both machines were connected to the same switch.

To evaluate the system on different building models, we used 25 different IFC models (a
mixture of both IFC version 2x3 and 4) we had available ranging from 1MB to 280MB in size.
The more complex models originate from tech demonstrations offered by various vendors and
scientific institutes (and one from a future business partner), while the less complex models
originated from our project partners. Since most of the models have been provided by project
partners, we cannot publicly disclose the model files with this thesis. For the interested reader
who wants to acquire the model files for their own test purposes, the author can forward any
request for data release to the data owning party.

An overview of the IFC models we used for our use case evaluation is depicted in Table 10.2.
The table is ordered by file size. Please note that a bigger file size cannot always be traced
back to a more complex model. A major factor for the file size of a model includes but
is not limited to the complexity of the geometric representation of the model. However,
for our use case the complexity of the structural and semantical information contained in
the model is more interesting. Therefore, the two most complex models are DBK20 and
the OTC-Conference Center, while for example the Clinic_MEP model contains much less
semantic information even though having more than double the file size.

181



10. Evaluation of the IFC Store

0 50 100 150 200 250 300

0

2

4

6

·106

Model size in MB

N
um

be
ro

fe
le

m
en

ts

Vertices
Edges

Figure 10.1.: Dependency between model size in MB and the number of vertices and edges
in the model.

Taking a closer look at the data, we can see that the number of edges in the resulting graph
is similar to the number of vertices (see e.g. Figure 10.1). Nevertheless, the queries that we
require for our use case nearly always target vertices and edge types with a higher degree
(for a detailed description of the queries see Section 10.2.2). With a few exceptions (e.g.
DC_Riverside_Bldg) the relation between the number of vertices and number of edges is
often predictable. We will see in the following evaluation that we can use the file size (or
the number of vertices) to get a general idea of the time the import will require. In any case,
the time required to import a model was lower than 10 minutes, which fulfills our use case’s
requirements.

182



Model Name Version Size in MB Nr. of Vertices Nr. of Edges
Bauhof2 IFC2x3 1MB 6,074 7,605

Kläranlage IFC2x3 1MB 12,190 13,381
Kindergarten IFC2x3 1MB 12,429 15,363

FWH-Gschwendt IFC2x3 1MB 12,923 15,130
FWH-Ascha IFC2x3 2MB 19,598 22,139
Bürgerhaus IFC2x3 2MB 22,495 25,943

Grundschule IFC2x3 2MB 25,071 31,778
Mehrzweckhalle IFC2x3 2MB 25,081 28,371

Rathaus IFC2x3 2MB 28,059 35,187
Vereinsheim-Sportheim IFC2x3 2MB 28,150 32,090

AC20-FZK-Haus IFC4 3MB 48,786 72,801
Mittelschule IFC2x3 4MB 56,525 64,785

Domek-jednorodzinny IFC2x3 4MB 70,920 119,002
Institute IFC2x3 7MB 110,805 120,692

AC20-Institute-Var-2 IFC4 11MB 194,845 222,702
DC_Riverside_STRUC IFC2x3 12MB 213,625 373,265

Clinic_A IFC2x3 19MB 315,935 509,948
Clinic_S IFC2x3 20MB 320,069 647,252

Ettenheim-GIS IFC2x3 32MB 532,973 656,945
Schependomlaan IFC2x3 50MB 879,530 1,138,890

HITOS IFC2x3 65MB 1,265,059 1,742,271
OTC-Conference Center IFC4 72MB 1,298,393 2,259,226

DBK20 IFC2x3 94MB 1,701,674 2,606,837
Clinic_MEP IFC2x3 208MB 3,700,014 5,768,342

DC_Riverside_Bldg IFC2x3 298MB 5,283,000 5,458,041

Table 10.2.: All IFC models that were used to evaluate the suitability for our use case.

183



10. Evaluation of the IFC Store

10.1. Import Performance

Our first prototypes to import the IFC data into a RDBMS took several hours for the OTC-
Conference Center (∼ 72MB). While this prototype enabled us to perform preliminary tests
and a good estimation for the suitability of our approach, a runtime like this is still not
acceptable for any practical application, even though it is only performed once for every
building model.

Applying the general import concept presented in Chapter 4 to our use case as described in
Section 9.2, we achieved a comparatively very fast import time of around 1.5 minutes for the
same model. To get an impression of the import performance of our storage concept for IFC
data, consider Figure 10.3.

0 50 100 150 200 250 300

0

100

200

300

Size of the model in MB

Ti
m

e
in

[m
in

]

Figure 10.3.: Required time for the IFC data import depending on the size in MB.

Each import was performed several times and the mean import time is displayed, since the
import times did never differ more than a second.

We know that the graphs that result from a IFC model contain a nearly linear number of
vertices in relation to the file size of the building model. We are also aware that the resulting
graphs are relatively thin. Therefore, the number of edges grows only slightly stronger than
linear. From our general import performance evaluation using the LDBC-SNB benchmark
data presented in Section 4.3 we know that the import time is in O(m log(m)) where m is the
number of edges.

Considering our findings depicted in Figure 10.3, our evaluation confirms that the import time
mainly depends on the file size of the IFC model. Most of the building models we obtained
from our project work could be imported in a few seconds, while even the biggest models
(e.g. DC_Riversid_Bldg) was imported in less than 5 minutes. This is acceptable for our use

184



10.1. Import Performance

case, since the import of a building model into the information system is only performed a
single time.

It is noted here that in contrast to other IFC stores like BIMServer [Bee+10b] (which required
at least 1GB of main memory in order to load the biggest model), we only require 400MB of
main memory to import any of the models, while most of this is due to a constant overhead
that is necessary to initialize the IFC parsing mechanism.

185



10. Evaluation of the IFC Store

10.2. Query Performance

To the best of our knowledge, there is no benchmark or comparable approach to evaluate
IFC stores. There are several reasons for this: First, most IFC data servers use proprietary
software and are closed systems that can only be used within the vendor software landscape.
Second, there is no generally accepted query language or even query support for IFC servers,
since the vendor’s software solutions exchange the data in a closed and not accessible manner.
Third, to the best of our knowledge no other IFC store is able to evaluate arbitrary queries on
models or even across several models.

Consequently, we created our own evaluation setup to help us evaluate the approach tailored
to our use case. As a proof of concept, Hartanto [Har20] created an IFC workload within
the LDBC-SNB framework. We then built our own benchmark based on the queries we
required for our MonArch use case. This will also enable us to compare our approach to future
approaches. We will now present our approach to evaluating the suitability of our IFC store.

10.2.1. Methodology and Evaluation Setup

We used the LDBC-SNB benchmark framework and created our own workload within this
framework. We can then use the LDBC-SNB framework to automatically initialize, execute,
and measure the results for this workload. The general concept of our workload is depicted in
Figure 10.4. The workload contains three major components:

The set of IFC queries Each of the query component represents a blueprint for a type of
query that will be executed during a benchmark run. The query describes the parameters
that have to be filled out in order to execute the query and contains the actual query that
will be sent to the database. In addition, the IFC query skeleton also contains an SQL
query that computes a list of parameters that can be filled in.

The workload executor The execution of queries is handled by the query executor. It also
performs execution measurements. In order to execute a query, it automatically reads
the set of parameters from parameter files. The parameters are read from files and not
queried from the database for every execution in order to be able to make the workload
executions repeatable, since we cannot guarantee that the queries that generate the
parameters return those in the same order for every run.

The parameter generator In order to be able to create repeatable benchmark runs we can
trigger the parameter generator to create a set of parameters. To do this, the parameter
generator retrieves the queries that are provided by the query components and retrieves
the set of parameters from the database. These are then stored in files that are repeatably
used by the workload executor. This task is run as a preprocessing step of the benchmark
execution and does not influence the actual results obtained using the benchmark.

186



10.2. Query Performance

Parameter 
Generator

Workload 
Executor

IFC Query...
IFC Query2

IFC Query1

retrieve parameter 
query

retrieve benchmark
query

Parameter 
File ...

Parameter 
File 2

Parameter 
File 1

creates loads

IFC Database

execute parameter queries
and retrieve parameters

execute benchmark queries

Figure 10.4.: The Industry Foundation Classes (IFC) workload concept.

The LDBC-SNB data set generator automatically generates a set of parameters for the queries
of the LDBC-SNB workloads. In contrast, our IFC data is not generated, but was created in
specialized CAD software. Therefore, we have to extract a set of parameters that we can use
for the benchmark queries. We found that we can provide queries that can compute these
sets of parameters from a given database instance. Within a few minutes we can extract
the parameter from any number of models stored within the database. We verified this for
database instances of up to 25 different IFC models.

This way we can automatically generate a set of parameters for a given database. This
provides us a high level of flexibility regarding the data stored in the IFC database, since we
can easily exchange the IFC models in the target database, generate a new set of parameters
for this database instance and then perform a benchmark run.

187



10. Evaluation of the IFC Store

Remark 10.1
The queries in our workload are all executed the same number of times, regardless of the
distribution of occurrence in the real use case application, since we do not have data about
that distribution from the real life application, yet.

188



10.2. Query Performance

10.2.2. IFC Benchmark Queries

For now, we have identified 6 query types required for our use case. Since there is no
standardized query language for IFC data, we use the property graph model and Cypher to
describe the queries. The (simplified) Cypher descriptions of these queries are depicted in
Listings 10.5 to 10.10.

Complete Building Hierarchy (IFC1) The first IFC query computes the complete building
hierarchy starting at the IfcBuilding component. This query is implemented as a
recursive SQL query that combines edges in two different directions and has to make
sure that no cycles are returned. The building hierarchy is by far the most complex
query that is required for our use case and is usually only computed once at application
startup.

Partial Building Hiearchy (IFC2) The second IFC query computes the building hierarchy
as did the first query, but does not start at the root node of the building. Therefore,
this query starts at an arbitrary IfcProduct as a recursive SQL query that has to make
sure, that the edges are traced in the correct direction (from complex to simple building
elements) while using different edge types in different directions. We included this query
in order to check if our approach would be suitable for lazy loading of the building
hierarchy in the final application.

Space Boundaries (IFC3) The third IFC query searches for the bounding elements of a
IfcSpace, like IfcWall, IfcWindow or IfcDoor elements. This can for example be used to
find common walls between two rooms.

Property Sets (IFC4) The fourth IFC query retrieves IfcPropertySets that belong to an
IfcProduct that contains IfcSingleValues. This is the most used mechanism to store
property sets that we have found for IFC2x3 models in the set of models we encountered
for our use case.

Quantity Property Sets (IFC5) The fifth IFC query we evaluated retrieves property sets
that store quantity properties like volumes, lengths, or areas. Both the fourth and fifth
query represent three edge-hop queries with defined edge labels. Our use case requires
these queries in order to be able to display properties of building components.

Windows in Walls (IFC6) The sixth and last IFC query we wanted to evaluate retrieves all
IfcWindows (and additionally other elements like IfcDoors) that are placed in a given
IfcWall. This query represents a four edge-hop query. Our use case requires this query
in order to display a more detailed and user group specific depiction of the building
hierarchy and its components.

We used this set of query templates to evaluate the suitability of our approach for our given use
case. We will now describe the application specific indexes we used in addition to the indices
described in Section 3.2.1. Afterwards, we present our findings regarding the performance of
our approach using the aforementioned queries.

189



10. Evaluation of the IFC Store

MATCH (b:IfcBuilding)
-[:RelatedElements

|RelatedObjects
|RelatingStructure
|RelatingObject*]- (p)

RETURN b.GlobalId, p.GlobalId

Listing 10.5: IFC benchmark query 1: Compute the complete building hierarchy starting at
the IfcBuilding.

MATCH (start:{GlobalId : ?})
-[:RelatedElements

|RelatedObjects
|RelatingStructure
|RelatingObject*]- (p)

RETURN start.GlobalId, p.GlobalId

Listing 10.6: IFC benchmark query 2: Compute the building hierarchy starting at an IfcProd-
uct.

MATCH (space:{GlobalId : ?})
<-[:RelatingSpace]- ()
-[:RelatedBuildingElement]-> (b)

RETURN b.GlobalId

Listing 10.7: IFC benchmark query 3: Get the boundary IfcProducts of an IfcSpace.

MATCH (product:{GlobalId : ?})
<-[:RelatedObjects]- ()
-[:RelatingPropertyDefinition]-> (propertySet:IfcPropertySet)
-[:HasProperties]-> (property:IfcPropertySingleValue)

RETURN propertySet.name, property.name, property.value

Listing 10.8: IFC benchmark query 4: Get the IfcSingleValue IfcPropertySets of an IfcProd-
uct.

190



10.2. Query Performance

MATCH (product:{GlobalId : ?})
<-[:RelatedObjects]- ()
-[:RelatingPropertyDefinition]-> (propertySet:IfcPropertySet)
-[:Quantities]-> (property)

WHERE (property:IfcQuantityVolume)
OR (property:IfcQuantityLength)
OR (property:IfcQuantityArea)

RETURN propertySet.name, property.name, property.value

Listing 10.9: IFC benchmark query 5: Get the IfcQuantityPropertySets of an IfcProduct.

MATCH (wall:{GlobalId : ?})
<-[:RelatingBuildingElement]- (:IfcRelVoidsElement)
-[:RelatedOpeningElement]-> (:IfcOpeningElement)
<-[:RelatingOpeningElement]- ()
-[:RelatedBuildingElement]-> (filler)

RETURN filler.GlobalId, filler.name

Listing 10.10: IFC benchmark query 6: Get all IfcWindows, IfcDoors, etc. placed in an
IfcWall.

191



10. Evaluation of the IFC Store

10.2.3. IFC Application Specific Indexes

As we have described the application specific indexes for the LDBC-SNB evaluation in
Section 6.2.2, we also additionally created indexes for our use case evaluation.

To obtain the best performance we could achieve for the IFC benchmark, we added the
following application specific indices to the vertex table:

Hash Index on GlobalId IFC2 through IFC6 all start at a given IfcProduct that must be
retrieved using the GlobalId. In order to speed up the process of finding the starting
point for the query, we add an index on the GlobalId using a hash index.

Composite Index on VID and Type Some of the queries contain neighborhood queries that
only search for a certain vertex Type of neighbors. Since this information is not stored
in the adjacency list tables that we use to achieve this kind of query, a JOIN with the
vertex table is required. Creating a composite B-tree index on the VID that is required
to join the vertex table to the targets of the adjacency list and the Type attribute enables
the DBMS to check the Type of the target vertex using an index-only-lookup. Therefore,
the vertex data does not need to be loaded, which leads to a speedup of this type of
queries.

We also added the following application specific indexes to the edge list table. Since the edge
list table is only used for IFC1 and IFC2, these indexes improved the performance of the two
most complex queries:

Composite Index on SID and Label In order to speed up queries that use graph patterns
of variable length, we add a composite index on the source id SID and Label. More
precisely, IFC1 and IFC2 both use graph patterns of variable length with undirected
edges of a specified type.

Composite Index on TID and Label Because IFC1 and IFC2 both use edge traversals in
both directions, we also need to be able to efficiently traverse along edges in the
opposite direction. Due to this, we also add a combined index on TID and Label.

No additional indexes have a positive effect on the benchmark execution performance for the
outgoing adjacency table and the incoming adjacency table.

192



10.2. Query Performance

10.2.4. Query Performance Results

We evaluated our solution using the queries mentioned before by using the same approach
as we did for evaluating RATG with the LDBC-SNB (see Chapter 6). We let the framework
first perform several hundred warm-up queries, before the actual workload started. The actual
workload consisted of 10,000 query executions that are roughly uniformly distributed across
both the six different query types and the different building models that were imported in the
IFC store.

Our goal was to verify the following two assumptions:

1. The approach answers queries fast enough for an interactive system that is used by
several users at the same time. Since IFC1 will be performed a single time at application
startup and only in rare cases during usage of the application itself, IFC1 should
be answered in a few seconds. The rest of the queries needs to be answered in
moments time, since the user will trigger these queries by selecting building parts
in the application.

2. The throughput of the overall system is limited by the complexity of the most complex
model and not by the number of models stored in the IFC store. This means that storing
more models does not or barely influence the efficiency of queries that target a single
building model.

We first imported two of the most complex building models we had available into the system
and performed a benchmark execution. Then we successively added models that got lower
in complexity. The throughput we achieved depending on the number of IFC models in the
database is depicted in Figure 10.11.

2 5 10 15 20 25

20

40

60

Number of models in the database

Th
ro

ug
hp

ut
in

[o
p/

s]

RATG

Figure 10.11.: Throughput of the IFC store depending on the number of different IFC models
that have been imported.

193



10. Evaluation of the IFC Store

We assumed that the most complex model in the system will limit the efficiency of the overall
system due to the database design we described in Section 9.3. For our use case we expect
the number of models in the system realistically to be up to a hundred models. This should
not lead to any problems, since models that are currently not accessed do not have to be
loaded by the database system due to the fragmentation design. Therefore, we expected that
the throughput we can observe will not drop if we load additional models, which are not as
complex as the models that are already in the system. Not only did the throughput not drop,
but the throughput actually significantly increased when loading additional, less complex
models. This is mainly due to the less complex building hierarchies present in the smaller
models and a much faster evaluation of queries IFC1 and IFC2.

2 4 6 8 10 12 14 16 18 20

8.1

8.2

8.3

Number of models in the database

Th
ro

ug
hp

ut
in

[o
p/

s]

RATG

Figure 10.12.: Throughput of the IFC store depending on the number of times the same two
models have been imported.

In order to further verify our assumption that a higher number of building models in the
system will not negatively influence the performance of our approach, we applied the following
approach: We chose the most complex building model we had and imported this building
together with a second very complex model into the system. The second model was necessary,
since the first model did not contain IfcSpaces and therefore IFC3 would not have been
executed. We then executed the workload on those two models. Afterwards, we successively
imported those same two models again and ran the benchmark. The throughput while having
those two models loaded 2 to 20 times into the system is depicted in Figure 10.12.

Once again, the findings confirm our assumption that additional (less or equally complex)
building models will not influence the throughput of the overall system. All runs achieved a
throughput between 8 and 8.4 operations per second with expectable small fluctations that are
normal for a database system that is evaluated over an extended period of time.

Let us now take a look at the execution times of the six queries. We can split the six queries
into two groups:

194



10.2. Query Performance

IFC1 and IFC2 The first two queries result in complex recursive SQL queries that need
to traverse incoming edges, as well as outgoing edges of vertices. In the use case
application these two queries are either executed at application startup and the results
cached in the client application, or run in the background to prefetch data that will be
shown to the user in the near future. Therefore, the runtime requirements for those two
queries are softer and a few seconds are easily acceptable.

IFC3 through IFC6 The second group of queries will be triggered by user interaction in the
client user interface. Therefore, fast response times for these types of queries are of
utmost importance. A well-known threshold for response times that does not impact
user productivity is 150 ms [TAS06]. Therefore, our goal is to be able to answer these
types of queries in under 150 ms.

The runtime of the first two queries with the first 10 IFC models loaded into the system is
depicted in Figure 10.13 in a boxplot diagram.

IFC1 IFC2
0

500

1,000

IFC Query

Ti
m

e
in

[m
s]

RATG

Figure 10.13.: Runtime of IFC1 and IFC2 on 10 different building models.

In contrast to the boxplot diagrams we used in Section 6.3, we chose the following configura-
tion: The lower boundary of the box depicts the 25th percentile, the line in the box the 90th
percentile and the upper bound of the box the 99th percentile. The two whiskers show the
minimal and maximal execution times respectively.

Our findings show, that in 90% of query executions IFC1 and IFC2 return their results within
250ms and both return within 1,200 ms in 99% of cases. In very rare exceptions the extraction
of the building hierarchy (represented by IFC1) required 1.4 seconds. This only happens in
rare executions on the most complex building model we had available. These execution times
are perfectly suitable for our use case.

195



10. Evaluation of the IFC Store

Our findings for IFC3 through IFC6 are depicted in Figure 10.14. Since these queries all
require a few milliseconds, we chose to represent the 25th percentile as the bottom of the box,
the 95th percentile as the line in the box and the 99th percentile as the top of the box. As
before the whiskers represent the minimal and maximal execution times respectively.

IFC3 IFC4 IFC5 IFC6
−1

0

1

2

3

4

5

6

IFC Query

Ti
m

e
in

[m
s]

RATG

Figure 10.14.: Runtime of IFC3 through IFC6 of the IFC workload on 10 different building
models.

As we can see, all interactively triggered queries are executed in under 5ms in 99% of cases.
The absolute worst cases that occured in 10,000 query executions required just under 100ms
to execute. As up to 150ms user productivity is not impacted by response time (see for
example [TAS06]), even the worst case is more than appropriate for our application.

In conclusion, our evaluation on IFC data shows that our approach performs very well for the
given use case. Especially for queries that will be interactively triggered by user interaction,
the queries perform more than fast enough. Therefore, we have found a suitable solution to
store the IFC building data of our use case in a Relational Database Management System.

196



11. Integration into the MonArch System

After having presented our approach to storing IFC data in a Relational Database Management
System in Chapter 9 and having shown that the query performance we achieve is suitable for
our use case, we will now present the integration of our IFC store into the MonArch system.

Our goal was to make the building data provided by the BIM methodology available in the
MonArch System (see Figure 11.1): The building models are created in highly specialized
CAD software, like for example Graphisoft Archicad1.

[upload IFC]

MonArch Client

MonArch IFC Services

[download IFC]

[export to IFC]

[load IFC]

Figure 11.1.: The import/export cycle for IFC data in MonArch.

Because we did not want to depend on a specific software vendor, we adopt the OpenBIM
approach and use the IFC data exchange format to export the data from the CAD software

1see https://graphisoft.com/de/archicad

197



11. Integration into the MonArch System

and make it accessible for the MonArch client application. However, keep in mind that the
MonArch client is not a BIM editor and the creation and modification of the building models
themselves should take place in software specifically created for this purpose.

The MonArch client then sends the IFC file to the corresponding MonArch IFC Services
located at the MonArch Server. The MonArch server now provides different services for
accessing, modifying, and linking the building data with additional semantic information or
simply linking digital documents to the building components.

ENTITY IfcProduct;
ENTITY IfcRoot;

GlobalId : IfcGloballyUniqueId;
OwnerHistory : IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;

ENTITY IfcObjectDefinition;
[...]

ENTITY IfcObject;
[...]

ENTITY IfcProduct;
[...]

END_ENTITY;

Listing 11.2: The EXPRESS inheritance graph of the abstract class IfcProduct in IFC4x2.

Using the client, we want to be able to extract an IFC file that represents a building in the
MonArch. This model can then be modified further in CAD software.

After importing the model into the MonArch system again, previously added information
should still be available without the need to perform the linking again. We published a
more detailed description of our concept for integrating the 3D building model data into the
MonArch system in [SES19].

As we have previously described in Section 7.1, the main requirements for integrating the
building data into the MonArch system with the aforementioned properties are:

1. We need to be able to segment the building into components. Since the BIM method-
ology itself is based upon a component based construction of the building model, the
open exchange format IFC naturally also is segmented into building elements.

2. We must be able to identify each component in order to reference it within the MonArch
system and attach additional semantic information. IfcProduct is the abstract superclass
of the classes that represent any object that relates to a geometric or spatial context.
Therefore, also all physical building components, as well as conceptual components
like IfcSpace, are a subclass of IfcProduct. The IfcProduct (the inheritance hierarchy
is depicted in Listing 11.2) class is derived from the abstract IfcRoot class. This
class defines the mandatory attribute GlobalId, which is an IFC specific encoding

198



of a Universally Unique Identifier (UUID) [LMS05] and hence makes each physical
building component identifiable. CAD software is supposed to import this UUID and
not change it during modification of the model. We have verified this assumption for
the two widely adopted CAD solutions AutoDesk Revit and Graphisoft Archicad.

Within the MonArch PostgreSQL instance we can then use a composite foreign key mecha-
nism containing the GID and UUID (see Table 9.10 for a depiction of the database schema)
to link additional information to the vertices in the IFC store.

We assume that these UUIDs are stable as defined in [ISO21]. Then we can simply exchange
the GID component of the foreign key and redirect the reference to the newly imported graph
in the system. Because the UUID did not change all references to IFC vertices now point to
the correct vertex in the newly imported building model.

Remark 11.1
If the modification of an already imported building model deletes an IfcProduct we cannot
just redirect the reference to the same building element. We will then redirect the pointer
to the next higher element of the building hierarchy, which we can extract using the query
depicted in Listing 10.6.

199



11. Integration into the MonArch System

11.1. Microservice Architecture for the IFC Integration

Since we wanted to seamlessly integrate our approach to storing IFC data into a RDBMS, we
decided on a microservice architecture [Nad+16]. Our MonArch client application then acts
as the coordinator and communicates with the microservices using the Representational State
Transfer (REST) Application Programming Interface (API) [RR08].

Our decision of using the design of loosely-coupled services is based on a number of reasons
and advantages:

1. The Industry Foundation Classes are rather extensive. Therefore, we use open-source
software to parse the data and to generate the 3D data for rendering. New open-
source software tools that support IFC data are developed and released constantly. The
microservice architecture allows us to easily replace components that have a single task
whenever better suited open-source software tools emerge.

2. IFC is still actively developed and extended. Again, the microservice architecture
makes it possible to easily adapt single components to new versions of the IFC schema.

3. This type of architecture enables us to deploy different tasks to different machines. We
can for example separate the generation of the 3D geometry and deploy it to a different
machine than the IFC store for graph data. Then the computation-intensive task of
generating the geometric 3D model can be performed on its own GPU machine and
does not influence the performance of the rest of the MonArch system.

4. We can perform different tasks on different servers: While the expensive preparation
for the IFC data import described in Section 9.2, the extraction of the 3D rendering
model can be performed on a different machine while none of the processes impede
each other. At the same time, the service offering query capability for already imported
data is fully available.

Due to these reasons, we decided to split the integration of the IFC data into a set of microser-
vices. Since the MonArch system follows a classical client-server architecture, the client
application assumes the role of the coordinator for the first prototypical implementation. In
future versions of the system the services themselves will start communicating between each
other, for example in order to coordinate the order of the import of the graph data and the
attachment of bounding box information to the vertices once the graph import has concluded.

200



11.1. Microservice Architecture for the IFC Integration

IF
C

 G
e

o
m

e
tr

y 
Se

rv
ic

es
IF

C
 Q

u
er

y
Se

rv
ic

es
IF

C
 Im

p
o

rt
/E

xp
o

rt
 

Se
rv

ic
e

s

M
o

n
A

rc
h

 D
o

cu
m

en
t

St
o

re

M
o

n
A

rc
h

 S
e

m
an

ti
c

Se
rv

ic
es

R
el

at
io

n
al

 A
d

ja
ce

n
cy

 
Ta

b
le

 G
ra

p
h

M
o

n
A

rc
h

 D
at

ab
as

e
Sc

h
em

a

M
o

n
A

rc
h

 C
li

e
n

t

Fo
re

ig
n

 K
ey

s

..
.

Fi
gu

re
11

.3
.:

T
he

in
te

gr
at

io
n

co
nc

ep
tf

or
in

te
gr

at
in

g
th

e
IF

C
st

or
e

in
M

on
A

rc
h.

201



11. Integration into the MonArch System

The complete microservice landscape and the components resulting from our integration of
IFC data into the MonArch system is depicted in Figure 11.3. We use Spring Boot [Wal15] to
implement the different server microservice components:

IFC Import/Export Services (based on Chapters 4 and 9) This service offers functional-
ity to import and export IFC data to RATG. To do this it uses the concepts presented
in Chapter 4 and Section 9.2. We use the BimServer [Bee+10b] parsing component
to implement the parsing layer of the import algorithm. This is a prime example for
the advantage of our microservice architecture: Unfortunately, while BimServer works
well for older IFC versions it is not well maintained and still runs on Java 9. It does
not work on current Java versions and we can not be sure if it will work with future
IFC releases. Therefore, will replace this component in the near future.

IFC Query Services (based on Chapters 5 and 10) The query service offers an interface
to perform the queries described in Section 10.2.2 and uses the translation concept
presented in Chapter 5. Due to security measures, currently only predefined queries
can be sent to this service. When more work has been we will offer a direct Cypher
interface through this service.

IFC Geometry Services (partly based on Section 9.4) We use the open-source tool IfcOpen-
Shell to generate the 3D rendering model [Kri]. IfcOpenShell creates a Blender [Mul11]
model that contains each IfcProduct including its UUID. In future application releases
this service will also contain the concepts presented in Section 9.4.

Relational Adjacency Table Graph (based on Chapter 3) The actual graph data is stored
in its own schema within the MonAarch PostgreSQL instance. Therefore, the additional
information stored in the MonArch database schema can reference the data in RATG
using the standard RDBMS mechanisms.

MonArch Client (not directly part of this work) The client assumes the role of the coor-
dinator. We implemented the prototypical client using the Eclipse Modelling Frame-
work (EMF) [Ste+08] to create the client side model and generate most of the user
interface. To render the 3D models we use jMonkeyEngine [Kus13].

In order to import an IFC file into the MonArch system, the client application sends the
IFC file to the IFC Import/Export Services. While this service performs the import
work, the client sends the IFC file to the IFC Geometry Services. The IFC Geometry
Service generates a .blender file and sends it back to the client. When the import is
finished, the client application sends the request to the IFC Query Services to extract
the building hierarchy and caches the results and creates proxy objects in the MonArch
schema. Whenever the properties of a building element are requested, the client uses
the IFC Query Services to retrieve the property sets of the building component. In
addition, the IFC file is stored in the MonArch Document Store and linked to the
building root node for quick export of the original data.

202



11.1. Microservice Architecture for the IFC Integration

Together with the original MonArch services the whole system is now able to integrate IFC
data with arbitrary digital documents, semantic data (including open linked data [BVS18])
and GIS data.

203



11. Integration into the MonArch System

11.2. The MonArch BIM Prototype

Finally, we created a prototypical application based on the research and concepts previously
presented in this work in the context of the project BaBeDo.

Figure 11.4.: A screenshot of the final prototype application for the IFC integration.

Figure 11.4 depicts a screenshot of the final prototype client:

• On the left-hand side, we see a list of the buildings documented in the system. All these
buildings are imported BIM models using the aforementioned IFC Import Services
microservice (see Section 11.1). The full hierarchy of each building can be viewed
in a file explorer-like manner (can be seen in Figure 11.5) and is retrieved from the
MonArch server component using the IFC Query Services.

• In the middle of the interface the JMonkeyEngine [Kus13] renders the graphical rep-
resentation of the building. Because we can link all building components using the
UUIDs provided by the model, a user can both select a building component in the
component tree, as well as in the 3D model. The list of building components in the
explorer-like hierarchy, the 3D rendering and an optional two dimensional navigation
map are fully synchronized. Therefore, a selection in one of the three mechanisms
results in a selection in the other two UI components. The 3D model is an addition
to the previously available 2D navigation maps available in MonArch and neither are
strictly necessary to use the system.

• On the right-hand side, two different semantic topic trees are visible and can freely
be linked with the building components, as well as with the documents stored in the

204



11.2. The MonArch BIM Prototype

system. The semantic linking of documents and building components is a feature of the
original MonArch system.

• The documents that are available for the current selection of building elements and
topics is visible at the bottom of the screenshot. Thereby, the selection of documents
that is presented to the user is defined by the chosen building components as well as
the topics chosen in the topic trees on the right-hand side.

Figure 11.5 depicts another view of the final prototype application:

• The middle of the application now shows the rendering of the property sets assigned to
the building component chosen in the component tree on the left side. This propery set
can be retrieved from the server component using the IFC Query Service microservice
presented in Section 11.1.

• On the right top side the GIS component of the MonArch system is visible. Each
building can be located on an Open Street Map [Ben10] rendering. The selection
mechanism on the location markers is also synchronized with the building tree, the
3D rendering, and the 2D navigation map and can therefore also be used to select the
desired building.

Figure 11.5.: A screenshot of the final prototype application displaying a property set retrieved
from RATG.

Project BaBedo and therefore part of this research was supported by the "Bayrische Staatsmin-
isterium für Wirtschaft, Energie und Technologie" in the context of "BaBeDo" (IUK568/001)
which we conduct in partnership with VEIT Energie GmbH.2.

2https://www.veit-energie.de/

205





Part IV.

Summary and Conclusion

207





12. Summary

In this chapter we summarize the main aspects and results of this thesis and discuss possible
future work.

12.1. Future Work and Outlook

Many applications for graph databases are not based on writing declarative queries, but need
to use APIs. In consideration of this requirement, Nguetsa [Dom20] has developed a prototype
for a API for RATG. While Nguetsa’s approach already considers prefetching strategies to
improve the efficiency of the API, more research is needed to make the approach viable in
comparison to native graph databases.

Our approach to store property graph data, Relational Adjacency Table Graph (RATG),
could be enhanced by further improvement of the Cypher mechanism. Gojayev [Goj21]
developed a concept to integrate query optimization using a dynamic programming approach.
Hereby, only the selectivity of targeted vertices were considered. Enhancing upon Gojayev’s
approach by also considering the selectivity of e.g. edge types could improve query optimiza-
tion for our system.

Shanmugam [Sha21] started to complete the translation mechanism for Cypher queries with
features of Cypher that had not been considered, yet. Currently, spatial queries using the GIS
capability of the RDBMS have to be written manually. Integrating GIS query functionality
into Cypher and the translation mechanism, would further increase the usability of our
approach.

Vogt [Vog19] has already started to work on a view concept for the IFC graph. Further work
in this area could enable us to restrict queries on predefined views of the graph or even to
export parts of the building. Discussions with users of the MonArch system have shown that
especially functionality to export parts of a building are of interest for possible use cases, since
this would enable us to provide limited data access to different stakeholders of a building.

Finally, by getting more user data from our applications we could make our workload for the
IFC store more realistic and increase its suitability to compare our IFC store to other future
solutions.

209



12. Summary

12.2. Conclusion

Motivated by our building information system use case MonArch (see Chapter 1), we found a
way to store IFC building models in a RDBMS using a transformation of the building data
into the property graph model. Hence, we extensively investigated the storage of property
graphs in Relational Database Management System.

To this end, we surveyed related work regarding the storage, query possibilities and existing
means to evaluate property graphs in RDBMS (see Chapter 2).

Afterwards, in Chapter 3 we defined the property graph model used for this work and
introduced our novel database schema Relational Adjacency Table Graph (RATG). Our
approach leverages the widely-available database features to store and query JSON data in
relational tables and hence circumvents the restrictions of the fixed number of columns to
store vertex and edge properties. We also use redundant storage of edge data in adjacency
lists, shredding different edge labels into a fixed set of column triples. This is done by
applying hash functions to edge labels and so manages in most cases to store the complete
adjacency of a vertex within a single tuple. We also gave an overview of how to use the
schema for querying data in a property graph manner.

Then we presented the concept for importing huge data sets into RATG in Chapter 4. We have
presented a novel algorithm to compute hash functions based on UML-like data models.
Using these hash functions, we described an algorithm to efficiently import huge data sets
into the database. Using this algorithm, we are able to load data sets into the database with
the size of the finished database exceeding the main memory by more than factor 10.

Since SQL queries targeting RATG become rather massive in shear text size, we presented an
approach to integrate the intuitive property graph query language Cypher into our system
(see Chapter 5). To this end, we presented the syntax, the semantics, and a formal translation
mechanism to convert Cypher queries into their SQL equivalent, which can then be executed
on the RDBMS.

Furthermore, in Chapter 6 we evaluated the efficiency of RATG using the standardized bench-
mark framework Linked Data Benchmark Council - Social Network Benchmark (LDBC-SNB)
and shown the validity of our approach to store general property graph data.

After having focused on the storage of general property graph data in the first part of this
work, we then took a closer look at RATG for our use case. Hence, in Chapter 7 we presented
our use case in more detail. To this end, we have described the data model of the Industry
Foundation Classes (IFC), which are the basis for our 3D building data integration.

We then described related work regarding the storage and query capability of the few available
open IFC store approaches and the concepts to interpret an IFC model as a graph in Chapter 8.

Afterwards, in Chapter 9 we described our approach to storing IFC data in the property
graph schema RATG in detail. We have defined a mapping from an EXPRESS data model
to the property graph model and described an algorithm to perform this conversion. We

210



12.2. Conclusion

also showed, how we can store multiple building models within the same RATG instance
without losing import efficiency or query performance on single models, as well as a concept
to enable spatial queries on the building models using GIS features of the RDBMS.

After having described our concept to store IFC data in our property graph schema, we then
presented our approach to evaluating IFC model stores in Chapter 10. We integrated our
own novel workload into the LDBC-SNB benchmark framework. Using this workload, we
can evaluate the IFC store using queries directly required by our use case MonArch. We
have been able to show that even in the absolute worst case we encountered during our
evaluation, our approach performs exceedingly well and enables the integration of IFC data
into MonArch and can smoothly be used interactively.

Finally, in Chapter 11 we described our integration of the developed IFC model store into
the MonArch system using a microservice architecture and showed how this integration
looks in the client application prototype.

In conclusion, we have found a highly suitable way to integrate BIM building data into the
MonArch system using the IFC exchange format by converting the data into a property graph
model and storing this within the RDBMS.

211





A. Detailed Evaluation Results for the
LDBC-SNB

The following tables show the results we achieved using the LDBC-SNB. We disabled CQ14,
which is displayed by "-" instead of a value. E symbols mark executions that did not terminate,
and we therefore got no results from the benchmark framework.

213



A. Detailed Evaluation Results for the LDBC-SNB

L
D

B
C

-SN
B

SF1
L

D
B

C
-SN

B
SF3

L
D

B
C

-SN
B

SF10
Q

uery
25%

-Q
uantile

M
edian

75%
-Q

uantile
25%

-Q
uantile

M
edian

75%
-Q

uantile
25Q

uantile–index7
M

edian–index8
75Q

uantile–index9
C

Q
1

366
396

429
1010

1060
1097

7089
7198

7428
C

Q
2

1363
1448

1509
3593

3721
3856

10964
11563

12157
C

Q
3

5034
5349

5716
13844

14854
15704

7310
8422

10223
C

Q
4

158
239

417
939

1761
3417

968
1706

5362
C

Q
5

1698
2305

4530
3313

5417
11369

1656
1892

2995
C

Q
6

16073
16407

19069
85572

96408
106556

381472
499760

538848
C

Q
7

179
305

492
11

11
12

11
12

17
C

Q
8

4307
4567

4662
17536

17742
18015

53872
55560

56580
C

Q
9

17438
19336

21657
48850

49228
54130

73952
75824

77896
C

Q
10

2272
2298

2344
4783

6233
8324

10957
12654

19250
C

Q
11

1345
1380

1418
343

373
403

830
897

1003
C

Q
12

1189
1299

1470
1907

2097
2271

4889
6277

7133
C

Q
13

216
248

264
570

636
673

6697
7023

7253
C

Q
14

-
-

-
-

-
-

-
-

-
SQ

1
0

1
1

0
0

1
1

1
2

SQ
2

2235
2266

2302
9158

9257
9367

30480
31031

31691
SQ

3
1

2
2

1
1

2
2

3
4

SQ
4

0
0

1
0

0
0

0
0

1
SQ

5
0

0
1

0
0

0
0

1
1

SQ
6

2215
2245

2275
9124

9214
9306

30294
30790

31298
SQ

7
10

13
2246

9
14

9218
30646

34722
61384

U
Q

1
12

12
12

-
-

-
U

Q
2

2
3

3
2

3
3

4
4

5
U

Q
3

2
2

3
2

3
3

4
4

5
U

Q
4

4
4

4
4

4
4

5
6

10
U

Q
5

2
2

3
2

2
3

3
4

5
U

Q
6

4
4

5
4

4
6

5
8

11
U

Q
7

5
6

8
6

8
19

7
8

13
U

Q
8

2
2

3
2

2
2

3
3

4

Table
A

.1.:A
llSF

1-10
R

esults
forSQ

L
G

raph.

214



L
D

B
C

-S
N

B
SF

30
L

D
B

C
-S

N
B

SF
10

0
Q

ue
ry

25
%

-Q
ua

nt
ile

M
ed

ia
n

75
%

-Q
ua

nt
ile

25
Q

ua
nt

ile
–i

nd
ex

4
M

ed
ia

n–
in

de
x5

75
Q

ua
nt

ile
–i

nd
ex

6
C

Q
1

41
50

8
49

76
4

62
32

0
E

E
E

C
Q

2
62

66
8

70
82

8
76

24
8

E
E

E
C

Q
3

87
53

92
12

72
83

2
18

69
95

2
E

E
E

C
Q

4
24

35
8

33
20

6
41

12
2

E
E

E
C

Q
5

28
65

76
39

62
40

48
91

68
E

E
E

C
Q

6
37

24
80

0
40

06
40

0
46

17
21

6
E

E
E

C
Q

7
46

66
92

E
E

E
C

Q
8

21
58

56
26

24
96

30
10

08
E

E
E

C
Q

9
52

06
72

12
93

63
2

13
96

28
8

E
E

E
C

Q
10

55
52

6
60

37
0

70
06

8
E

E
E

C
Q

11
75

83
89

05
96

55
E

E
E

C
Q

12
59

02
0

77
44

8
88

43
2

E
E

E
C

Q
13

20
21

0
30

84
7

47
10

6
E

E
E

C
Q

14
-

-
-

E
E

E
SQ

1
2

3
4

E
E

E
SQ

2
95

08
0

97
88

8
10

12
08

E
E

E
SQ

3
7

16
38

E
E

E
SQ

4
1

1
1

E
E

E
SQ

5
1

2
2

E
E

E
SQ

6
25

28
96

25
80

48
26

48
96

E
E

E
SQ

7
96

39
2

10
66

64
19

40
40

E
E

E
U

Q
1

-
-

-
E

E
E

U
Q

2
5

6
8

E
E

E
U

Q
3

5
6

7
E

E
E

U
Q

4
7

9
10

E
E

E
U

Q
5

5
6

8
E

E
E

U
Q

6
4

5
7

E
E

E
U

Q
7

9
12

18
E

E
E

U
Q

8
4

5
6

E
E

E

Ta
bl

e
A

.2
.:

A
ll

SF
30

-1
00

R
es

ul
ts

fo
rS

Q
L

G
ra

ph
.

215



A. Detailed Evaluation Results for the LDBC-SNB

L
D

B
C

-SN
B

SF1
L

D
B

C
-SN

B
SF3

L
D

B
C

-SN
B

SF10
Q

uery
25%

-Q
uantile

M
edian

75%
-Q

uantile
25%

-Q
uantile

M
edian

75%
-Q

uantile
25Q

uantile–index7
M

edian–index8
75Q

uantile–index9
C

Q
1

600
627

662
903

942
979

1712
1806

1885
C

Q
2

393
410

432
353

372
392

427
447

453
C

Q
3

4932
5307

5484
11418

12201
12649

8748
8796

9994
C

Q
4

580
861

1657
4852

12325
59242

4332
11550

21706
C

Q
5

1559
2080

4085
3746

5885
11701

1544
1718

3209
C

Q
6

11840
13360

15697
53640

66896
67048

352576
370336

391136
C

Q
7

170
269

422
3

5
6

4
8

9
C

Q
8

4
4

5
154

198
229

3
4

5
C

Q
9

8491
8872

9627
16883

18322
19193

34152
39364

39364
C

Q
10

3543
3635

3695
1404

1507
1588

3282
3604

4333
C

Q
11

459
485

503
13109

14812
16177

3345
10038

16339
C

Q
12

976
1110

1209
1198

1310
1449

3536
4252

7158
C

Q
13

172
191

205
435

483
513

4735
5040

5215
C

Q
14

150
150

150
150

150
150

150
150

150
SQ

1
0

1
1

0
0

1
0

0
0

SQ
2

7
16

32
2389

2514
2577

744
809

886
SQ

3
1

1
2

1
2

2
1

2
3

SQ
4

0
0

0
0

0
0

0
0

0
SQ

5
0

0
0

0
0

0
0

0
0

SQ
6

0
1

1
0

0
0

1
1

1
SQ

7
79

80
84

0
0

1
0

1
2

U
Q

1
12

12
12

-
-

-
-

-
-

U
Q

2
2

3
3

2
3

3
4

4
6

U
Q

3
2

3
3

2
2

3
3

4
5

U
Q

4
5

6
6

5
7

8
23

23
23

U
Q

5
2

3
3

2
2

3
3

4
5

U
Q

6
21

70
90

59
246

1298
152

218
317

U
Q

7
27

81
415

70
234

1318
206

290
792

U
Q

8
2

2
3

2
2

2
2

3
3

Table
A

.3.:A
llSF

1-10
R

esults
forR

AT
G

.

216



L
D

B
C

-S
N

B
SF

30
L

D
B

C
-S

N
B

SF
10

0
Q

ue
ry

25
%

-Q
ua

nt
ile

M
ed

ia
n

75
%

-Q
ua

nt
ile

25
Q

ua
nt

ile
–i

nd
ex

4
M

ed
ia

n–
in

de
x5

75
Q

ua
nt

ile
–i

nd
ex

6
C

Q
1

34
30

38
84

43
33

53
99

80
8

53
99

80
8

53
99

80
8

C
Q

2
54

0
62

4
68

3
56

96
64

62
30

40
65

60
00

C
Q

3
72

03
2

76
20

0
80

91
2

53
99

80
8

53
99

80
8

53
99

80
8

C
Q

4
24

41
8

44
32

8
21

40
08

28
88

06
4

29
43

61
6

29
68

44
8

C
Q

5
18

92
7

32
70

0
62

44
2

42
59

58
4

53
99

80
8

53
99

80
8

C
Q

6
16

03
20

0
19

25
56

8
19

25
56

8
79

31
84

93
57

76
96

35
52

C
Q

7
13

17
26

82
59

20
84

27
84

88
36

16
C

Q
8

25
34

27
44

31
06

-
-

-
C

Q
9

73
44

0
73

44
0

73
71

6
53

99
80

8
53

99
80

8
53

99
80

8
C

Q
10

42
09

4
52

75
8

56
45

8
52

79
74

4
53

99
80

8
53

99
80

8
C

Q
11

24
59

26
73

29
11

53
99

80
8

53
99

80
8

53
99

80
8

C
Q

12
13

54
4

16
06

7
18

58
9

35
11

04
0

36
90

62
4

37
40

67
2

C
Q

13
19

79
24

81
32

22
15

0
15

0
15

0
C

Q
14

-
-

-
-

-
-

SQ
1

0
0

1
26

71
36

29
20

16
30

90
88

SQ
2

17
9

32
6

66
6

42
19

39
2

46
12

60
8

50
73

15
2

SQ
3

1
2

3
58

93
44

63
43

04
11

22
17

6
SQ

4
0

0
0

3
5

13
SQ

5
0

0
0

28
05

12
30

34
88

32
26

08
SQ

6
1

1
2

13
50

78
4

14
18

43
2

20
06

97
6

SQ
7

0
0

2
45

28
48

56
22

08
17

72
35

2
U

Q
1

-
-

-
-

-
-

U
Q

2
5

5
6

76
85

44
90

45
12

97
70

24
U

Q
3

4
4

5
71

37
28

81
06

24
93

86
24

U
Q

4
8

60
65

83
50

08
20

22
59

2
20

22
59

2
U

Q
5

3
4

5
81

60
32

88
85

44
10

07
90

4
U

Q
6

58
2

74
9

78
6

21
95

07
2

24
87

55
2

29
02

40
0

U
Q

7
57

7
72

9
79

8
26

28
73

6
29

25
31

2
38

70
08

0
U

Q
8

3
3

4
46

58
08

46
67

52
46

67
52

Ta
bl

e
A

.4
.:

A
ll

SF
30

-1
00

R
es

ul
ts

fo
rR

AT
G

.

217



A. Detailed Evaluation Results for the LDBC-SNB

L
D

B
C

-SN
B

SF1
L

D
B

C
-SN

B
SF3

L
D

B
C

-SN
B

SF10
Q

uery
25%

-Q
uantile

M
edian

75%
-Q

uantile
25%

-Q
uantile

M
edian

75%
-Q

uantile
25Q

uantile–index7
M

edian–index8
75Q

uantile–index9
C

Q
1

253
289

323
625

653
708

1065
1118

1163
C

Q
2

53
59

65
84

87
90

101
107

115
C

Q
3

7068
8696

10143
17576

22551
25500

7762
18501

19565
C

Q
4

84
213

356
1495

2953
5789

5278
10900

17361
C

Q
5

1541
2488

4263
3072

5126
9661

1489
1732

2352
C

Q
6

2703
2953

3250
11714

13260
14637

72392
91752

98864
C

Q
7

22
36

52
2

2
3

1
1

2
C

Q
8

2
2

3
33

43
53

1
1

2
C

Q
9

5524
5917

6647
13949

15155
16665

30912
31087

34824
C

Q
10

249
281

338
535

603
699

943
1104

1358
C

Q
11

20
26

31
36

45
57

54
71

85
C

Q
12

574
695

825
914

1025
1217

1217
1322

1397
C

Q
13

2
3

4
2

4
4

2
2

3
C

Q
14

-
-

-
-

-
-

-
-

-
SQ

1
1

1
2

1
1

1
0

1
1

SQ
2

3
5

9
3

5
11

3
6

14
SQ

3
1

2
2

1
2

2
1

2
2

SQ
4

1
1

1
1

1
1

0
1

1
SQ

5
1

1
1

1
1

1
0

1
1

SQ
6

1
1

1
1

1
1

0
1

1
SQ

7
1

1
1

1
1

1
0

1
1

U
Q

1
96

96
96

-
-

-
-

-
-

U
Q

2
2

3
3

2
2

3
2

2
3

U
Q

3
2

3
3

2
2

3
2

2
3

U
Q

4
3

4
4

3
4

5
3

3
4

U
Q

5
2

3
3

2
2

3
2

2
3

U
Q

6
3

3
4

3
3

4
3

3
4

U
Q

7
3

4
4

3
4

4
3

3
4

U
Q

8
2

3
3

2
2

3
2

2
2

Table
A

.5.:A
llSF

1-10
R

esults
forN

eo4j.

218



LDBC-SNB SF30
Query 25%-Quantile Median 75%-Quantile

CQ1 1915 2024 2077
CQ2 137 143 149
CQ3 48976 55202 90392
CQ4 35632 63828 104804
CQ5 17108 26532 46608
CQ6 528128 580544 597888
CQ7 1 1 2
CQ8 95 119 167
CQ9 45620 58496 63142

CQ10 1695 1930 2707
CQ11 74 87 104
CQ12 541 672 772
CQ13 6 6 7
CQ14 - - -

SQ1 0 1 1
SQ2 5 13 27
SQ3 2 3 7
SQ4 1 1 1
SQ5 0 1 1
SQ6 0 1 1
SQ7 0 1 1
UQ1 2 3 3
UQ2 2 3 3
UQ3 3 11 12
UQ4 2 2 3
UQ5 3 3 4
UQ6 12 12 13
UQ7 2 2 3
UQ8

Table A.6.: All SF 30-100 Results for Neo4j.

219





Bibliography

[Ada03] Yoshinobu Adachi. “Overview of partial model query language.” In: ISPE CE.
2003, pp. 549–555 (cit. on p. 160).

[Ada10] Christopher Adamson. Star schema the complete reference. McGraw Hill Pro-
fessional, 2010. Chap. 1 (cit. on p. 160).

[AG08] Renzo Angles and Claudio Gutiérrez. “Survey of graph database models”.
In: ACM Comput. Surv. 40.1 (2008), 1:1–1:39. DOI: 10.1145/1322432.
1322433. URL: https://doi.org/10.1145/1322432.1322433
(cit. on p. 7).

[Ang+20] Renzo Angles et al. “The LDBC Social Network Benchmark”. In: CoRR
abs/2001.02299 (2020). arXiv: 2001.02299. URL: http://arxiv.org/
abs/2001.02299 (cit. on p. 15).

[Ang18] Renzo Angles. “The Property Graph Database Model”. In: Proceedings of the
12th Alberto Mendelzon International Workshop on Foundations of Data Man-
agement, Cali, Colombia, May 21-25, 2018. Ed. by Dan Olteanu and Barbara
Poblete. Vol. 2100. CEUR Workshop Proceedings. CEUR-WS.org, 2018. URL:
http://ceur-ws.org/Vol-2100/paper26.pdf (cit. on p. 17).

[Apa21] Apache Software Foundation. AGE - A Graph Extension For PostgreSQL.
2021. URL: https://age.incubator.apache.org/# (visited on
07/11/2021) (cit. on p. 12).

[Ast+76] Morton M. Astrahan et al. “System R: Relational Approach to Database Manage-
ment”. In: ACM Trans. Database Syst. 1.2 (1976), pp. 97–137. DOI: 10.1145/
320455.320457. URL: https://doi.org/10.1145/320455.
320457 (cit. on p. 120).

[Bay18] Matthias Bay. “Vergleich von PostGIS und GeoJSON zur Speicherung von
Gebäudegeometrieinformationen”. Bachelor’s Thesis. Universtität Passau, 2018
(cit. on pp. 178, 180).

[Bee+10a] J. Beetz et al. “Towards an open building information model server: report
on the progress of an open IFC framework”. English. In: Proceedings of the
10th International Conference On Design and Decision Support Systems in
Architecture and Urban Planning. Eindhoven University of Technology, 2010
(cit. on p. 159).

[Bee+10b] Jakob Beetz et al. “BIMserver. org–An open source IFC model server”. In:
Proceedings of the CIP W78 conference. 2010, p. 8 (cit. on pp. 159, 160, 170,
185, 202).

221

https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1322432.1322433
https://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
http://ceur-ws.org/Vol-2100/paper26.pdf
https://age.incubator.apache.org/#
https://doi.org/10.1145/320455.320457
https://doi.org/10.1145/320455.320457
https://doi.org/10.1145/320455.320457
https://doi.org/10.1145/320455.320457


Bibliography

[Ben10] Jonathan Bennett. OpenStreetMap. Packt Publishing Ltd, 2010 (cit. on p. 205).

[Ber19] Florian Bergmüller. “Importing huge graphs into SQLGraph in OracleDB”.
Bachelor Thesis. University of Passau, 2019 (cit. on p. 52).

[BL01] Edward Barkmeyer and Joshua Lubell. “XML representation of EXPRESS
models and data”. In: ICSE Workshop on XML Technologies and Software
Engineering. 2001 (cit. on p. 153).

[Bon13] Peter A. Boncz. “LDBC: benchmarks for graph and RDF data management”. In:
17th International Database Engineering & Applications Symposium, IDEAS
’13, Barcelona, Spain - October 09 - 11, 2013. 2013, pp. 1–2. DOI: 10.1145/
2513591.2527070. URL: https://doi.org/10.1145/2513591.
2527070 (cit. on pp. 26, 123).

[Bor+13] Mihaela A. Bornea et al. “Building an efficient RDF store over a relational
database”. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013. Ed. by Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias. ACM,
2013, pp. 121–132. DOI: 10.1145/2463676.2463718. URL: https:
//doi.org/10.1145/2463676.2463718 (cit. on pp. 11, 23, 37, 38, 40,
130).

[Bor+18] André Borrmann et al. “Building information modeling: Why? what? how?” In:
Building information modeling. Springer, 2018, pp. 1–24 (cit. on p. 151).

[Bré79] Daniel Brélaz. “New Methods to Color Vertices of a Graph”. In: Commun.
ACM 22.4 (1979), pp. 251–256. DOI: 10.1145/359094.359101. URL:
https://doi.org/10.1145/359094.359101 (cit. on p. 40).

[BVS18] Christian Bizer, Maria-Esther Vidal, and Hala Skaf-Molli. “Linked Open Data”.
In: Encyclopedia of Database Systems. Ed. by Ling Liu and M. Tamer Özsu.
New York, NY: Springer New York, 2018, pp. 2096–2101. ISBN: 978-1-4614-
8265-9. DOI: 10.1007/978-1-4614-8265-9_80603. URL: https:
//doi.org/10.1007/978-1-4614-8265-9_80603 (cit. on p. 203).

[Car+97] Michael J. Carey et al. “The BUCKY Object-Relational Benchmark (Experience
Paper)”. In: SIGMOD 1997, Proceedings ACM SIGMOD International Confer-
ence on Management of Data, May 13-15, 1997, Tucson, Arizona, USA. Ed. by
Joan Peckham. ACM Press, 1997, pp. 135–146. DOI: 10.1145/253260.
253283. URL: https://doi.org/10.1145/253260.253283 (cit.
on p. 159).

[CB74] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured English
Query Language”. In: Proceedings of 1974 ACM-SIGMOD Workshop on Data
Description, Access and Control, Ann Arbor, Michigan, USA, May 1-3, 1974, 2
Volumes. Ed. by Randall Rustin. ACM, 1974, pp. 249–264. DOI: 10.1145/
800296.811515. URL: https://doi.org/10.1145/800296.
811515 (cit. on p. 13).

222

https://doi.org/10.1145/2513591.2527070
https://doi.org/10.1145/2513591.2527070
https://doi.org/10.1145/2513591.2527070
https://doi.org/10.1145/2513591.2527070
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/359094.359101
https://doi.org/10.1145/359094.359101
https://doi.org/10.1007/978-1-4614-8265-9_80603
https://doi.org/10.1007/978-1-4614-8265-9_80603
https://doi.org/10.1007/978-1-4614-8265-9_80603
https://doi.org/10.1145/253260.253283
https://doi.org/10.1145/253260.253283
https://doi.org/10.1145/253260.253283
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515


Bibliography

[Che13] Ruiwen Chen. “Managing massive graphs in relational DBMS”. In: Proceedings
of the 2013 IEEE International Conference on Big Data, 6-9 October 2013,
Santa Clara, CA, USA. Ed. by Xiaohua Hu et al. IEEE Computer Society,
2013, pp. 1–8. DOI: 10.1109/BigData.2013.6691776. URL: https:
//doi.org/10.1109/BigData.2013.6691776 (cit. on p. 11).

[Com79] Douglas Comer. “The Ubiquitous B-Tree”. In: ACM Comput. Surv. 11.2 (1979),
pp. 121–137. DOI: 10.1145/356770.356776. URL: https://doi.
org/10.1145/356770.356776 (cit. on p. 62).

[Cou20] Linked Data Benchmark Council, ed. The LDBC Social Network Benchmark
(version 0.3.2). 2020. URL: http://ldbc.github.io/ldbc_snb_
docs/ldbc-snb-specification.pdf (cit. on pp. 69, 136).

[Dom+10] David Dominguez-Sal et al. “A Discussion on the Design of Graph Database
Benchmarks”. In: Performance Evaluation, Measurement and Characterization
of Complex Systems - Second TPC Technology Conference, TPCTC 2010, Singa-
pore, September 13-17, 2010. Revised Selected Papers. Ed. by Raghunath Oth-
ayoth Nambiar and Meikel Poess. Vol. 6417. Lecture Notes in Computer Science.
Springer, 2010, pp. 25–40. DOI: 10.1007/978-3-642-18206-8\_3.
URL: https://doi.org/10.1007/978-3-642-18206-8%5C_3
(cit. on p. 125).

[Dom20] Michael Klaus Nguetsa Domo. “Using prefetching strategies to increase perfor-
mance of algorithms in graph databases”. MA thesis. University of Passau, 2020
(cit. on p. 209).

[Dur+18] Gabriel Campero Durand et al. “Piecing Together Large Puzzles, Efficiently:
Towards Scalable Loading Into Graph Database Systems”. In: Proceedings of
the 30th GI-Workshop Grundlagen von Datenbanken, Wuppertal, Germany, May
22-25, 2018. Ed. by Gerhard Klassen and Stefan Conrad. Vol. 2126. CEUR
Workshop Proceedings. CEUR-WS.org, 2018, pp. 95–100. URL: http://
ceur-ws.org/Vol-2126/paper15.pdf (cit. on pp. 13, 46).

[Ehl15] Christoph Ehlers. “Top-k Semantic Caching”. PhD thesis. Universität Passau,
2015, p. 266 (cit. on p. 71).

[Erl+15] Orri Erling et al. “The LDBC Social Network Benchmark: Interactive Work-
load”. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives. ACM,
2015, pp. 619–630. DOI: 10.1145/2723372.2742786. URL: https:
//doi.org/10.1145/2723372.2742786 (cit. on pp. 14, 123, 134).

[Fac16] Facebook Inc. GraphQL. 2016. URL: http://facebook.github.io/
graphql (visited on 07/08/2021) (cit. on p. 13).

223

https://doi.org/10.1109/BigData.2013.6691776
https://doi.org/10.1109/BigData.2013.6691776
https://doi.org/10.1109/BigData.2013.6691776
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://doi.org/10.1007/978-3-642-18206-8\_3
https://doi.org/10.1007/978-3-642-18206-8%5C_3
http://ceur-ws.org/Vol-2126/paper15.pdf
http://ceur-ws.org/Vol-2126/paper15.pdf
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/2723372.2742786
http://facebook.github.io/graphql
http://facebook.github.io/graphql


Bibliography

[Fra+18a] Nadime Francis et al. “Cypher: An Evolving Query Language for Property
Graphs”. In: Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
Ed. by Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein. ACM,
2018, pp. 1433–1445. DOI: 10.1145/3183713.3190657. URL: https:
//doi.org/10.1145/3183713.3190657 (cit. on pp. 6, 14, 93).

[Fra+18b] Nadime Francis et al. “Formal Semantics of the Language Cypher”. In: CoRR
abs/1802.09984 (2018). arXiv: 1802.09984. URL: http://arxiv.org/
abs/1802.09984 (cit. on pp. 18, 73, 74, 76, 83–87, 90, 95).

[FS17] Burkhard Freitag and Alexander Stenzer. “MonArch – A Digital Archive for
Cultural Heritage”. In: Das Digitale und die Denkmalpflege: Bestandserfassung
- Denkmalvermittlung - Datenarchivierung - Rekonstruktion verlorener Objekte.
Ed. by Gerhard Vinken and Birgit Franz. 2017. ISBN: 978-3-95954-030-8.
URL: http://books.ub.uni-heidelberg.de/arthistoricum/
catalog/book/263 (cit. on pp. 3, 17, 149).

[Goj21] Sabir Gojayev. “Efficiently executing data graph queries in SQL”. MA thesis.
University of Passau, 2021 (cit. on pp. 71, 120, 121, 209).

[Gre+18] Alastair Green et al. “openCypher: New Directions in Property Graph Querying”.
In: Proceedings of the 21st International Conference on Extending Database
Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018. Ed. by Michael H.
Böhlen et al. OpenProceedings.org, 2018, pp. 520–523. DOI: 10.5441/002/
edbt.2018.62. URL: https://doi.org/10.5441/002/edbt.
2018.62 (cit. on pp. 14, 69).

[GS02] Rosalba Giugno and Dennis E. Shasha. “GraphGrep: A Fast and Universal
Method for Querying Graphs”. In: 16th International Conference on Pattern
Recognition, ICPR 2002, Quebec, Canada, August 11-15, 2002. IEEE Computer
Society, 2002, pp. 112–115. DOI: 10.1109/ICPR.2002.1048250. URL:
https://doi.org/10.1109/ICPR.2002.1048250 (cit. on p. 13).

[Har20] Natasha Hartanto. “Benchmarking IFC Stores with the LDBC SNB Framework”.
Bachelor’s Thesis. Universtität Passau, 2020 (cit. on p. 186).

[Her94] Axel Herbst. “Long-Term Database Support for EXPRESS Data”. In: Sev-
enth International Working Conference on Scientific and Statistical Database
Management, September 28-30, 1994, Charlottesville, Virginia, USA, Proceed-
ings. Ed. by James C. French and Hans Hinterberger. IEEE Computer Society,
1994, pp. 207–216. DOI: 10.1109/SSDM.1994.336946. URL: https:
//doi.org/10.1109/SSDM.1994.336946 (cit. on pp. 153, 154).

[Hil20] Ben Hillinger. “Ein Konzept zur Speicherung von RDF-Graphen als Property
Graph”. Bachelor Thesis. University of Passau, 2020 (cit. on pp. 48, 49, 59).

224

https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://arxiv.org/abs/1802.09984
http://arxiv.org/abs/1802.09984
http://arxiv.org/abs/1802.09984
http://books.ub.uni-heidelberg.de/arthistoricum/catalog/book/263
http://books.ub.uni-heidelberg.de/arthistoricum/catalog/book/263
https://doi.org/10.5441/002/edbt.2018.62
https://doi.org/10.5441/002/edbt.2018.62
https://doi.org/10.5441/002/edbt.2018.62
https://doi.org/10.5441/002/edbt.2018.62
https://doi.org/10.1109/ICPR.2002.1048250
https://doi.org/10.1109/ICPR.2002.1048250
https://doi.org/10.1109/SSDM.1994.336946
https://doi.org/10.1109/SSDM.1994.336946
https://doi.org/10.1109/SSDM.1994.336946


Bibliography

[HP13] Florian Holzschuher and René Peinl. “Performance of graph query languages:
comparison of cypher, gremlin and native access in Neo4j”. In: Joint 2013
EDBT/ICDT Conferences, EDBT/ICDT ’13, Genoa, Italy, March 22, 2013,
Workshop Proceedings. Ed. by Giovanna Guerrini. ACM, 2013, pp. 195–204.
DOI: 10.1145/2457317.2457351. URL: https://doi.org/10.
1145/2457317.2457351 (cit. on p. 13).

[HP17] Olaf Hartig and Jorge Pérez. “An Initial Analysis of Facebook’s GraphQL Lan-
guage”. In: Proceedings of the 11th Alberto Mendelzon International Workshop
on Foundations of Data Management and the Web, Montevideo, Uruguay, June
7-9, 2017. Ed. by Juan L. Reutter and Divesh Srivastava. Vol. 1912. CEUR
Workshop Proceedings. CEUR-WS.org, 2017. URL: http://ceur-ws.
org/Vol-1912/paper11.pdf (cit. on p. 14).

[HP18] Olaf Hartig and Jorge Pérez. “Semantics and Complexity of GraphQL”. In:
Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW
2018, Lyon, France, April 23-27, 2018. Ed. by Pierre-Antoine Champin et al.
ACM, 2018, pp. 1155–1164. DOI: 10.1145/3178876.3186014. URL:
https://doi.org/10.1145/3178876.3186014 (cit. on p. 13).

[HS08] Huahai He and Ambuj K. Singh. “Graphs-at-a-time: query language and access
methods for graph databases”. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008. Ed. by Jason Tsong-Li Wang. ACM, 2008, pp. 405–
418. DOI: 10.1145/1376616.1376660. URL: https://doi.org/
10.1145/1376616.1376660 (cit. on p. 13).

[INS17] Ali Ismail, Ahmed Nahar, and Raimar Scherer. “Application of graph databases
and graph theory concepts for advanced analysing of BIM models based on IFC
standard”. In: Proceedings of EGICE (2017) (cit. on p. 161).

[ISO04] ISO/TC 184/SC 4 Industrial data. Industrial automation systems andintegration
- Product data representation and exchange- Part 11: Description methods: The
EXPRESS language reference manual. Standard. Geneva, CH: International
Organization for Standardization, 2004 (cit. on pp. 153, 155).

[ISO18] ISO/TC 59/SC 13 Organization and digitization of information about buildings
and civil engineering works, including building information modelling (BIM).
Industry Foundation Classes (IFC) for data sharing in the construction and
facility management industries — Part 1: Data schema. Standard. Geneva, CH:
International Organization for Standardization, 2018 (cit. on pp. 152, 154, 159).

[ISO21] ISO/TC 184/SC 4 Industrial data. Industrial automation systems and integra-
tion — Product data representation and exchange — Part 1: Overview and
fundamental principles. Standard. Geneva, CH: International Organization for
Standardization, 2021 (cit. on pp. 155, 199).

225

https://doi.org/10.1145/2457317.2457351
https://doi.org/10.1145/2457317.2457351
https://doi.org/10.1145/2457317.2457351
http://ceur-ws.org/Vol-1912/paper11.pdf
http://ceur-ws.org/Vol-1912/paper11.pdf
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1145/1376616.1376660
https://doi.org/10.1145/1376616.1376660
https://doi.org/10.1145/1376616.1376660


Bibliography

[ISS18] Ali Ismail, Barbara Strug, and Grazyna Slusarczyk. “Building Knowledge
Extraction from BIM/IFC Data for Analysis in Graph Databases”. In: Arti-
ficial Intelligence and Soft Computing - 17th International Conference, ICAISC
2018, Zakopane, Poland, June 3-7, 2018, Proceedings, Part II. Ed. by Leszek
Rutkowski et al. Vol. 10842. Lecture Notes in Computer Science. Springer,
2018, pp. 652–664. DOI: 10.1007/978-3-319-91262-2\_57. URL:
https://doi.org/10.1007/978-3-319-91262-2%5C_57 (cit. on
p. 161).

[Kem15] Alfons Kemper. Datenbanksysteme - Eine Einführung, 10. Auflage. De Gruyter
Studium. de Gruyter Oldenbourg, 2015. ISBN: 978-3-11-044375-2. URL: https:
//www.degruyter.com/view/product/462324?rskey=RKIg0w%
5C&result=1 (cit. on p. 120).

[KHJ98] David Koonce, Lizhong Huang, and Robert Judd. “EQL an Express Query
Language”. In: Computers and Industrial Engineering 35.1 (1998), pp. 271–
274. ISSN: 0360-8352. DOI: https://doi.org/10.1016/S0360-
8352(98)00050-3. URL: https://www.sciencedirect.com/
science/article/pii/S0360835298000503 (cit. on p. 160).

[Kid20] Omar Kidar. “Incremental Indexing of Very Large Graphs in Relational Databases”.
MA thesis. University of Passau, 2020 (cit. on p. 66).

[Knu73] Donald E. Knuth. “The Art of Computer Programming, Volume III: Sorting and
Searching”. In: (1973) (cit. on p. 49).

[Knu98] Donald E. Knuth. The Art of Computer Programming - Volume 3: Sorting
and Searching. Second Edition. Boston: Addison-Wesley Professional, 1998.
Chap. Section 5.4: External Sorting, 254–ff. ISBN: 0-201-89685-0 (cit. on p. 53).

[Kor16] Lana Sophia Kornev. “Anfragen relationaler Algebra in SQL”. Bachelor Thesis.
University of Passau, 2016 (cit. on p. 71).

[Kor17] Lana Sophia Kornev. “Cypher für SQLGraph”. MA thesis. University of Passau,
2017 (cit. on pp. 22, 71, 123, 130).

[Kri] Thomas Krijnen. URL: http://ifcopenshell.org/ (cit. on p. 202).

[Kus13] Ruth Kusterer. jMonkeyEngine 3.0 Beginner’s Guide. Packt Publishing Ltd,
2013 (cit. on pp. 202, 204).

[Lee+14] Ghang Lee et al. “Query Performance of the IFC Model Server Using an Object-
Relational Database Approach and a Traditional Relational Database Approach”.
In: Journal of Computing in Civil Engineering 28 (Mar. 2014), pp. 210–222.
DOI: 10.1061/(ASCE)CP.1943-5487.0000256 (cit. on pp. 159, 160).

[LMS05] Paul J. Leach, Michael Mealling, and Rich Salz. “A Universally Unique IDen-
tifier (UUID) URN Namespace”. In: RFC 4122 (2005), pp. 1–32. DOI: 10.
17487/RFC4122. URL: https://doi.org/10.17487/RFC4122
(cit. on p. 199).

226

https://doi.org/10.1007/978-3-319-91262-2\_57
https://doi.org/10.1007/978-3-319-91262-2%5C_57
https://www.degruyter.com/view/product/462324?rskey=RKIg0w%5C&result=1
https://www.degruyter.com/view/product/462324?rskey=RKIg0w%5C&result=1
https://www.degruyter.com/view/product/462324?rskey=RKIg0w%5C&result=1
https://doi.org/https://doi.org/10.1016/S0360-8352(98)00050-3
https://doi.org/https://doi.org/10.1016/S0360-8352(98)00050-3
https://www.sciencedirect.com/science/article/pii/S0360835298000503
https://www.sciencedirect.com/science/article/pii/S0360835298000503
http://ifcopenshell.org/
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000256
https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC4122


Bibliography

[Maa09] Abdelsalam M. Maatuk. “Migrating relational databases into object-based and
XML databases”. PhD thesis. Northumbria University, Newcastle upon Tyne,
UK, 2009. URL: http://nrl.northumbria.ac.uk/3374/ (cit. on
p. 160).

[Mar15] Angel Marquez. PostGIS essentials. Packt Publishing Ltd, 2015 (cit. on p. 178).

[MB13] Wiet Mazairac and Jakob Beetz. “BIMQL - An open query language for building
information models”. In: Adv. Eng. Informatics 27.4 (2013), pp. 444–456. DOI:
10.1016/j.aei.2013.06.001. URL: https://doi.org/10.
1016/j.aei.2013.06.001 (cit. on pp. 159, 160).

[MSV17] József Marton, Gábor Szárnyas, and Dániel Varró. “Formalising openCypher
Graph Queries in Relational Algebra”. In: Advances in Databases and Infor-
mation Systems - 21st European Conference, ADBIS 2017, Nicosia, Cyprus,
September 24-27, 2017, Proceedings. Ed. by Marite Kirikova, Kjetil Nørvåg,
and George A. Papadopoulos. Vol. 10509. Lecture Notes in Computer Science.
Springer, 2017, pp. 182–196. DOI: 10.1007/978-3-319-66917-5\_13.
URL: https://doi.org/10.1007/978-3-319-66917-5%5C_13
(cit. on pp. 71, 77).

[Müh+13] Tobias Mühlbauer et al. “Instant Loading for Main Memory Databases”. In:
Proc. VLDB Endow. 6.14 (2013), pp. 1702–1713. DOI: 10.14778/2556549.
2556555. URL: http://www.vldb.org/pvldb/vol6/p1702-
muehlbauer.pdf (cit. on p. 12).

[Mul11] Tony Mullen. Mastering blender. John Wiley & Sons, 2011 (cit. on p. 202).

[Nad+16] Irakli Nadareishvili et al. Microservice architecture: aligning principles, prac-
tices, and culture. " O’Reilly Media, Inc.", 2016 (cit. on p. 200).

[OH12] Regina Obe and Leo Hsu. PostgreSQL - Up and Running: a Practical Guide to
the Advanced Open Source Database. O’Reilly, 2012. ISBN: 978-1-449-32633-
3. URL: http://www.oreilly.de/catalog/9781449326333/
index.html (cit. on p. 176).

[ÖV20] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems, 4th Edition. Springer, 2020. Chap. 3.3. ISBN: 978-3-030-26252-5.
DOI: 10.1007/978-3-030-26253-2. URL: https://doi.org/10.
1007/978-3-030-26253-2 (cit. on p. 175).

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. “Semantics and complexity
of SPARQL”. In: vol. 34. 3. 2009, 16:1–16:45. DOI: 10.1145/1567274.
1567278. URL: https://doi.org/10.1145/1567274.1567278
(cit. on p. 13).

[PF00] Meikel Pöss and Chris Floyd. “New TPC Benchmarks for Decision Support and
Web Commerce”. In: SIGMOD Rec. 29.4 (2000), pp. 64–71. DOI: 10.1145/
369275.369291. URL: https://doi.org/10.1145/369275.
369291 (cit. on p. 14).

227

http://nrl.northumbria.ac.uk/3374/
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1007/978-3-319-66917-5\_13
https://doi.org/10.1007/978-3-319-66917-5%5C_13
https://doi.org/10.14778/2556549.2556555
https://doi.org/10.14778/2556549.2556555
http://www.vldb.org/pvldb/vol6/p1702-muehlbauer.pdf
http://www.vldb.org/pvldb/vol6/p1702-muehlbauer.pdf
http://www.oreilly.de/catalog/9781449326333/index.html
http://www.oreilly.de/catalog/9781449326333/index.html
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/369275.369291


Bibliography

[Rod15] Marko A. Rodriguez. “The Gremlin Graph Traversal Machine and Language (In-
vited Talk)”. In: Proceedings of the 15th Symposium on Database Programming
Languages. DBPL 2015. Pittsburgh, PA, USA: Association for Computing Ma-
chinery, 2015, pp. 1–10. ISBN: 9781450339025. DOI: 10.1145/2815072.
2815073. URL: https://doi.org/10.1145/2815072.2815073
(cit. on pp. 12, 69).

[RR08] Leonard Richardson and Sam Ruby. RESTful web services. " O’Reilly Media,
Inc.", 2008 (cit. on p. 200).

[RWE15] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new oppor-
tunities for connected data. " O’Reilly Media, Inc.", 2015. Chap. 6 (cit. on
p. 142).

[Sca+18] Lucas C. Scabora et al. “Cutting-edge Relational Graph Data Management with
Edge-k: From One to Multiple Edges in the Same Row”. In: J. Inf. Data Manag.
9.1 (2018), pp. 20–35. URL: https://periodicos.ufmg.br/index.
php/jidm/article/view/413 (cit. on p. 11).

[Sch19a] Matthias Schmid. “An Approach to Efficiently Storing Property Graphs in
Relational Databases”. In: Proceedings of the 31st GI-Workshop Grundlagen
von Datenbanken, Saarburg, Germany, June 11-14, 2019. Ed. by Ralf Schenkel.
Vol. 2367. CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 56–61.
URL: http://ceur-ws.org/Vol-2367/paper%5C_8.pdf (cit. on
p. 12).

[Sch19b] Matthias Schmid. “On efficiently storing huge property graphs in relational
database management systems”. In: Proceedings of the 21st International Con-
ference on Information Integration and Web-based Applications & Services,
iiWAS 2019, Munich, Germany, December 2-4, 2019. ACM, 2019, pp. 344–352.
DOI: 10.1145/3366030.3366046. URL: https://doi.org/10.
1145/3366030.3366046 (cit. on p. 45).

[SEL17] Wawan Solihin, Charles Eastman, and Yong-Cheol Lee. “Multiple representation
approach to achieve high-performance spatial queries of 3D BIM data using a
relational database”. In: Automation in Construction 81 (2017), pp. 369–388
(cit. on p. 160).

[SES19] Alexander Stenzer, Christina Ehrlinger, and Matthias Schmid. “Ansätze zur
semantischen 3D-Repräsentation von Bauwerken in Datenbanken”. In: Der
Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als virtueller Raum der ar-
chitekturhistorischen Forschung. Ed. by Piotr Kuroczyński, Mieke Pfarr-Harfst,
and Sander Münster. Vol. 2. Computing in Art and Architecture. Jan. 1, 2019,
pp. 371–390. ISBN: 978-3-947449-70-5. DOI: https://doi.org/10.
11588/arthistoricum.515.c7581. URL: https://books.ub.
uni- heidelberg.de/arthistoricum/catalog/book/515/
c7581. published (cit. on p. 198).

228

https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://periodicos.ufmg.br/index.php/jidm/article/view/413
https://periodicos.ufmg.br/index.php/jidm/article/view/413
http://ceur-ws.org/Vol-2367/paper%5C_8.pdf
https://doi.org/10.1145/3366030.3366046
https://doi.org/10.1145/3366030.3366046
https://doi.org/10.1145/3366030.3366046
https://doi.org/https://doi.org/10.11588/arthistoricum.515.c7581
https://doi.org/https://doi.org/10.11588/arthistoricum.515.c7581
https://books.ub.uni-heidelberg.de/arthistoricum/catalog/book/515/c7581
https://books.ub.uni-heidelberg.de/arthistoricum/catalog/book/515/c7581
https://books.ub.uni-heidelberg.de/arthistoricum/catalog/book/515/c7581


Bibliography

[Sha21] Anand Kumar Shanmugam. “Efficiently Executing Data Graph Queries in Oracle
SQL”. Master Thesis. University of Passau, 2021 (cit. on pp. 29, 71, 145, 209).

[Shk] Shkale-Msft. Graph processing with SQL Server and Azure SQL Database -
SQL Server. URL: https://docs.microsoft.com/en-us/sql/
relational-databases/graphs/sql-graph-overview?view=
sql-server-2017 (cit. on p. 11).

[SMK97] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. “Heuristic and
Randomized Optimization for the Join Ordering Problem”. In: VLDB J. 6.3
(1997), pp. 191–208. DOI: 10.1007/s007780050040. URL: https:
//doi.org/10.1007/s007780050040 (cit. on p. 121).

[Sol+17] Wawan Solihin et al. “A simplified relational database schema for transfor-
mation of BIM data into a query-efficient and spatially enabled database”. In:
Automation in Construction 84 (2017), pp. 367–383 (cit. on p. 160).

[Ste+08] Dave Steinberg et al. EMF: eclipse modeling framework. Pearson Education,
2008 (cit. on p. 202).

[Ste18] Alexander Stenzer. “Ein Ansatz zur semantik-basierten Anfragerelaxation für
hierarchische Strukturen”. PhD thesis. Universität Passau, Jan. 1, 2018. URL:
https://opus4.kobv.de/opus4-uni-passau/files/574/
Alexander_Stenzer+_Anfrage-Relaxation.pdf. published (cit.
on p. 150).

[Sun+15] Wen Sun et al. “SQLGraph: An Efficient Relational-Based Property Graph
Store”. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives. ACM,
2015, pp. 1887–1901. DOI: 10.1145/2723372.2723732. URL: https:
//doi.org/10.1145/2723372.2723732 (cit. on pp. 6, 11, 21–24, 36,
124, 131, 139, 145).

[SW94] Douglas A. Schenck and Peter R. Wilson. Information Modeling: The EXPRESS
Way. USA: Oxford University Press, Inc., 1994. ISBN: 0195087143 (cit. on
p. 153).

[Szá+18] Gábor Szárnyas et al. “An early look at the LDBC social network benchmark’s
business intelligence workload”. In: Proceedings of the 1st ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Sys-
tems (GRADES) and Network Data Analytics (NDA), Houston, TX, USA, June
10, 2018. Ed. by Akhil Arora et al. ACM, 2018, 9:1–9:11. DOI: 10.1145/
3210259.3210268. URL: https://doi.org/10.1145/3210259.
3210268 (cit. on pp. 15, 123).

[TAS06] Niraj Tolia, David G. Andersen, and Mahadev Satyanarayanan. “Quantifying
Interactive User Experience on Thin Clients”. In: Computer 39.3 (2006), pp. 46–
52. DOI: 10.1109/MC.2006.101. URL: https://doi.org/10.
1109/MC.2006.101 (cit. on pp. 195, 196).

229

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-2017
https://doi.org/10.1007/s007780050040
https://doi.org/10.1007/s007780050040
https://doi.org/10.1007/s007780050040
https://opus4.kobv.de/opus4-uni-passau/files/574/Alexander_Stenzer+_Anfrage-Relaxation.pdf
https://opus4.kobv.de/opus4-uni-passau/files/574/Alexander_Stenzer+_Anfrage-Relaxation.pdf
https://doi.org/10.1145/2723372.2723732
https://doi.org/10.1145/2723372.2723732
https://doi.org/10.1145/2723372.2723732
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1109/MC.2006.101
https://doi.org/10.1109/MC.2006.101
https://doi.org/10.1109/MC.2006.101


Bibliography

[TBS16] Eike Tauscher, Hans-Joachim Bargstädt, and Kay Smarsly. “Generic BIM
queries based on the IFC object model using graph theory”. In: Proceedings of
the 16th International Conference on Computing in Civil and Building Engi-
neering, Osaka, Japan. 2016, pp. 6–8 (cit. on p. 160).

[Tha+19] Harsh Thakkar et al. “Towards an Integrated Graph Algebra for Graph Pattern
Matching with Gremlin (Extended Version)”. In: vol. abs/1908.06265. 2019.
arXiv: 1908.06265. URL: http://arxiv.org/abs/1908.06265
(cit. on p. 13).

[The+16] Manuel Then et al. “Evaluation of parallel graph loading techniques”. In: Pro-
ceedings of the Fourth International Workshop on Graph Data Management
Experiences and Systems, Redwood Shores, CA, USA, June 24 - 24, 2016.
Ed. by Peter A. Boncz and Josep Lluís Larriba-Pey. ACM, 2016, p. 4. DOI:
10.1145/2960414.2960418. URL: https://doi.org/10.1145/
2960414.2960418 (cit. on pp. 12, 13, 46).

[The11] Volker Thein. “Industry foundation classes (IFC)”. In: BIM interoperability
through a vendor-independent file format (2011) (cit. on p. 152).

[Vog19] Andreas Vogt. “Ein View-Konzept für Graphdatenbanken am Beispiel IFC”.
MA thesis. University of Passau, 2019 (cit. on p. 209).

[Wal15] Craig Walls. Spring Boot in action. Simon and Schuster, 2015 (cit. on p. 202).

[YL21] Huaquan Ying and Sanghoon Lee. “A rule-based system to automatically val-
idate IFC second-level space boundaries for building energy analysis”. In:
Automation in Construction 127 (2021), p. 103724. ISSN: 0926-5805. DOI:
https://doi.org/10.1016/j.autcon.2021.103724. URL:
https://www.sciencedirect.com/science/article/pii/
S0926580521001758 (cit. on p. 163).

[Zha93] Yanchun Zhang. “On Horizontal Fragmentation of Distributed Database Design”.
In: Advances in Database Research - Proceedings of the 4th Australian Database
Conference, ADC ’93, Griffith University, Brisbane, Queensland, Australia,
February 1-2, 1993. Ed. by Maria E. Orlowska and Mike P. Papazoglou. World
Scientific, 1993, pp. 121–130 (cit. on p. 175).

230

https://arxiv.org/abs/1908.06265
http://arxiv.org/abs/1908.06265
https://doi.org/10.1145/2960414.2960418
https://doi.org/10.1145/2960414.2960418
https://doi.org/10.1145/2960414.2960418
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103724
https://www.sciencedirect.com/science/article/pii/S0926580521001758
https://www.sciencedirect.com/science/article/pii/S0926580521001758


List of Figures

1.1. The original user interface of MonArch. . . . . . . . . . . . . . . . . . . . 4
1.2. The desired import/export cycle for building models in the MonArch system. 5

3.3. A property graph example modeling a social network. . . . . . . . . . . . . 19

4.1. LDBC-SNB data model excerpt. . . . . . . . . . . . . . . . . . . . . . . . 35
4.3. A property graph example modeling a social network. . . . . . . . . . . . . 37
4.8. LDBC-SNB data model excerpt . . . . . . . . . . . . . . . . . . . . . . . 41
4.9. Schema graph constructed from the data model. . . . . . . . . . . . . . . . 43
4.10. Incoming interference graph generated from the data model in Figure 4.8. . 43
4.11. Graph coloring generated from the (partial) interference graph depicted in

Figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.14. Phases of the bulk data import. . . . . . . . . . . . . . . . . . . . . . . . . 46
4.29. Time required to perform a complete data import for LDBC-SNB data set

(scale factor 30) in regard to the configured batch size. . . . . . . . . . . . 60
4.31. Required time of the different import phases depending on the LDBC-SNB

scale factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.32. Required time for the data import depending on the number of vertices. . . 62
4.33. Required time for the data import depending on the number of edges. . . . 63

5.10. Integration concept for the Cypher query language . . . . . . . . . . . . . 72
5.11. Concept of the Cypher query language. . . . . . . . . . . . . . . . . . . . 74
5.19. Cypher Query Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.21. Cypher SingleQuery Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.23. Cypher Single Part Query Syntax. . . . . . . . . . . . . . . . . . . . . . . 81
5.24. Cypher Multi Part Query syntax. . . . . . . . . . . . . . . . . . . . . . . . 81
5.26. ReadingClause syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.28. MATCH syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.52. General translation concept. . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.80. Mapping of basic Cypher clauses. . . . . . . . . . . . . . . . . . . . . . . 113

6.1. Components and tasks of the evaluation framework. . . . . . . . . . . . . . 126
6.3. Significantly improved throughput of the LDBC-SNB depending on the scale

factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4. Runtime of the Interactive Workload Short Queries - SF10. . . . . . . . . . 134
6.5. Runtime of fastest Interactive Workload Complex Queries - Scale Factor 10. 136
6.6. Runtime of the slowest Interactive Workload Complex Queries - SF10. . . . 137

231



List of Figures

6.7. Runtime of medium Interactive Workload - Complex Queries for SF10. . . 138
6.8. Runtime of all Interactive Workload Complex Queries - Scale Factor 10. . . 140
6.9. Runtime of all Interactive Workload Update Queries - Scale Factor 10. . . . 141
6.10. Runtime of fast Update Queries - Scale Factor 10. . . . . . . . . . . . . . . 142
6.11. Runtime of Slower Update Queries - Scale Factor 10. . . . . . . . . . . . . 143
6.12. Required storage capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1. The user interface of MonArch displaying the 2D navigational map. . . . . 149
7.2. An exploded view drawing of a 3D building model. . . . . . . . . . . . . . 150
7.3. A rendering of a Conference Center in Archicad. . . . . . . . . . . . . . . 151
7.4. IFC version 4.3.x Architecture overview. . . . . . . . . . . . . . . . . . . . 153
7.7. Industry Foundation Classes (IFC) data model excerpt. . . . . . . . . . . . 157
7.8. Industry Foundation Classes (IFC) instance example placing a window in a

wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.2. Industry Foundation Classes (IFC) instance example placing a window in a
wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.3. Vertices resulting from the IFC instance depicted in Figure 9.2. . . . . . . . 166
9.4. Example property graph resulting from the IFC instance depicted in Figure 9.2.167
9.6. Example of ordered references in IFC. . . . . . . . . . . . . . . . . . . . . 168
9.7. Example property graph resulting from the IFC instance depicted in Figure 9.6.169
9.8. Import concept for IFC data applying the concept presented in Section 4.2. . 171
9.14. Query processing for horizontally fragmented tables as depicted in Table 9.13.177
9.16. The bounding box generation concept for RATG. . . . . . . . . . . . . . . 178
9.17. A rendering of the Conference Center building model. . . . . . . . . . . . . 180
9.18. A rendering of the bounding box representation of the building in Figure 9.17

taken from [Bay18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.1. Dependency between model size in MB and the number of vertices and edges
in the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.3. Required time for the IFC data import depending on the size in MB. . . . . 184
10.4. The Industry Foundation Classes (IFC) workload concept. . . . . . . . . . 187
10.11.Throughput of the IFC store depending on the number of different IFC models

that have been imported. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.12.Throughput of the IFC store depending on the number of times the same two

models have been imported. . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.13.Runtime of IFC1 and IFC2 on 10 different building models. . . . . . . . . 195
10.14.Runtime of IFC3 through IFC6 of the IFC workload on 10 different building

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

11.1. The import/export cycle for IFC data in MonArch. . . . . . . . . . . . . . . 197
11.3. The integration concept for integrating the IFC store in MonArch. . . . . . . 201
11.4. A screenshot of the final prototype application for the IFC integration. . . . 204

232



List of Figures

11.5. A screenshot of the final prototype application displaying a property set
retrieved from RATG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

233





List of Definitions

3.1. Definition (Property Graph) . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2. Definition (Hash Function from Label to Column) . . . . . . . . . . . . . . 36

5.31. Definition (Node Pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.32. Definition (Free Variables of a Node Pattern) . . . . . . . . . . . . . . . . 85
5.35. Definition (Relationship Pattern) . . . . . . . . . . . . . . . . . . . . . . . 86
5.36. Definition (Free variables of a Relationship Pattern) . . . . . . . . . . . . . 86
5.39. Definition (Path Pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.40. Definition (Free Variables of a Path Pattern) . . . . . . . . . . . . . . . . . 87
5.43. Definition (Pattern Matching Relation) . . . . . . . . . . . . . . . . . . . . 89
5.44. Definition (Satisfaction of Node Patterns) . . . . . . . . . . . . . . . . . . 90
5.46. Definition (Satisfaction of Rigid Paths) . . . . . . . . . . . . . . . . . . . . 91
5.48. Definition (Satisfaction of Paths of Variable Lengths) . . . . . . . . . . . . 93
5.51. Definition (Match Operator for Path Patterns) . . . . . . . . . . . . . . . . 95

235





List of Tables

2.1. Approximate number of vertices and edges generated for different LDBC-SNB
scale factor (SF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4. The relational property graph database schema. . . . . . . . . . . . . . . . 21
3.5. The vertex attributes table of the graph in Figure 3.3. . . . . . . . . . . . . 22
3.6. The edge attributes table of the graph shown in Figure 3.3. . . . . . . . . . 22
3.7. The outgoing adjacency tables of the original SQLGraph for the graph in

Figure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8. The outgoing adjacency table for the graph in Figure 3.3. . . . . . . . . . . 25
3.9. The incoming adjacency table belonging to the graph depicted in Figure 3.3. 25
3.10. The outgoing adjacency table depicted in Table 3.8 with a hash conflict

highlighted in red for the labels knows and likes. . . . . . . . . . . . . . . 26

4.5. The desired incoming adjacency table belonging to the graph depicted in
Figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.13. The resulting incoming adjacency entries by applying the hash function δin. 44
4.16. Example LDBC-SNB CSV files. . . . . . . . . . . . . . . . . . . . . . . . 47
4.19. Vertices after preprocessing and conversion into the internal representation. 50
4.20. Edges after preprocessing and conversion into the internal representation. . 50
4.27. Edges sorted ascending by the target id TID. . . . . . . . . . . . . . . . . . 57
4.30. Approximate number of vertices and edges of different LDBC-SNB scale

factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.29. Overview of the names we use for instances and sets of concepts. . . . . . . 84
5.30. Overview of the relations we use. . . . . . . . . . . . . . . . . . . . . . . . 84
5.60. The output of χ1cte

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.63. The output of χ2cte

. / χ3cte
. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.10. The relational property graph database schema. . . . . . . . . . . . . . . . 174
9.12. Example vertex table before applying horizontal fragmentation. . . . . . . . 175
9.13. Two of the tables resulting from horizontally fragmenting the table depicted

in Table 9.12 derived from the graph identifier GID. . . . . . . . . . . . . . 176
9.15. The relational property graph database schema extended with GIS functionality.179

10.2. All IFC models that were used to evaluate the suitability for our use case. . 183

A.1. All SF 1-10 Results for SQLGraph. . . . . . . . . . . . . . . . . . . . . . 214

237



List of Tables

A.2. All SF 30-100 Results for SQLGraph. . . . . . . . . . . . . . . . . . . . . 215
A.3. All SF 1-10 Results for RATG. . . . . . . . . . . . . . . . . . . . . . . . . 216
A.4. All SF 30-100 Results for RATG. . . . . . . . . . . . . . . . . . . . . . . 217
A.5. All SF 1-10 Results for Neo4j. . . . . . . . . . . . . . . . . . . . . . . . . 218
A.6. All SF 30-100 Results for Neo4j. . . . . . . . . . . . . . . . . . . . . . . . 219

238



Listings

3.11. Example query that searches for a Vertex. . . . . . . . . . . . . . . . . . . 29
3.12. Example query to search for the outgoing neighborhood of a vertex. . . . . 30
3.13. Example implementation of a prepared function to insert a new edge. . . . . 33

5.2. Example neighbourhood query for a single node using the edge list table. . 65
5.4. Example neighbourhood query for a single node using the edge list table. . 66
5.5. Example outgoing neighbourhood query for a single node using the outgoing

adjacency table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7. Example incoming neighbourhood query for a single node using the outgoing

adjacency table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.9. LDBC SNB Query 2 using Cypher. . . . . . . . . . . . . . . . . . . . . . . 69
5.8. LDBC SNB Query 2 using SQL. . . . . . . . . . . . . . . . . . . . . . . . 70
5.12. Vertex match example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.13. Directed edge example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.14. Example path with variable length. . . . . . . . . . . . . . . . . . . . . . . 76
5.15. WITH Example including aggregation. . . . . . . . . . . . . . . . . . . . . 76
5.16. Standard WHERE usage example. . . . . . . . . . . . . . . . . . . . . . . 77
5.17. WHERE example functioning as HAVING. . . . . . . . . . . . . . . . . . 77
5.18. Return example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.20. Example cypher query including UNION. . . . . . . . . . . . . . . . . . . 79
5.22. Example Single Part Query. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.25. Example Single Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.27. Example Reading Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.34. Node pattern example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.38. Relationship pattern example. . . . . . . . . . . . . . . . . . . . . . . . . 86
5.42. Path pattern example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.50. Relationship pattern with variable length. . . . . . . . . . . . . . . . . . . 94
5.54. Rigid Cypher Query Example. . . . . . . . . . . . . . . . . . . . . . . . . 97
5.55. Split MATCH Clause Example. . . . . . . . . . . . . . . . . . . . . . . . . 97
listings/cyphertranslation/match_translation_overview_example.cypher . . . . . 98
listings/cyphertranslation/match_translation_overview_example.cypher . . . . . 98
5.56. General Idea of the Cypher Match Clause Translation. . . . . . . . . . . . . 98
5.57. Node pattern translation skeleton. . . . . . . . . . . . . . . . . . . . . . . 99
5.59. Node pattern for χ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.61. Node pattern for χ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.62. Node pattern for χ3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

239



Listings

5.64. The relationship pattern skeleton using the edge list table for the base case. 102
5.65. The relationship pattern skeleton using the adjacency list table for the base

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.68. The complete match skeleton. . . . . . . . . . . . . . . . . . . . . . . . . 103
5.66. The relationship pattern skeleton using the edge list table for the inductive case.104
5.67. The relationship pattern skeleton using the adjacency list table for the induc-

tive case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.70. The first relationship pattern ρ1. . . . . . . . . . . . . . . . . . . . . . . . 106
5.71. The first direction ρ→2cte

second relationship pattern ρ2. . . . . . . . . . . . . 106
5.72. The completed second relationship pattern ρ2. . . . . . . . . . . . . . . . . 107
5.73. The final match(π,G) CTE. . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.74. The base case for a variable relationship pattern. . . . . . . . . . . . . . . 109
5.75. The inductive case for a variable relationship pattern. . . . . . . . . . . . . 110
5.76. The complete CTE to compute an arbitrary match(π,G). . . . . . . . . . . 111
5.78. Example base case for the variable relationship pattern ρ1. . . . . . . . . . 112
5.79. Finished translated match relation for π. . . . . . . . . . . . . . . . . . . . 113
5.81. Translation skeleton for a Reading Clause. . . . . . . . . . . . . . . . . . 115
5.83. Example Cypher Reading Clause. . . . . . . . . . . . . . . . . . . . . . . 115
5.84. Example Translation of a Reading Clause. . . . . . . . . . . . . . . . . . 115
5.85. Translation skeleton for a Single Part Query. . . . . . . . . . . . . . . . . 116
5.86. Translation skeleton for the Multi Part Query base case. . . . . . . . . . . 116
5.87. Translation skeleton for the Multi Part Query inductive case. . . . . . . . 116
5.88. Translation skeleton for the Multi Part Query final case. . . . . . . . . . . 117
5.90. Example Multi Part Query. . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.91. An Example for the Translation of a Multi Part Query. . . . . . . . . . . 118
5.92. The Translation Skeleton for a Single Query. . . . . . . . . . . . . . . . . 119
5.93. Translation skeleton for the final Translated Cypher Query. . . . . . . . . 119
5.94. Rigid Cypher Query Example. . . . . . . . . . . . . . . . . . . . . . . . . 120
5.95. SQL Query Without Early Projection. . . . . . . . . . . . . . . . . . . . . 121
5.96. SQL Query Without Early Projection. . . . . . . . . . . . . . . . . . . . . 121

6.2. Example query that can use an index-only-lookup. . . . . . . . . . . . . . . 130

7.5. The EXPRESS definition of the abstract class IfcProduct in IFC4x2. . . . . 156
7.6. The STEP file representaiton of an IfcWallStandardCase in IFC4x2. . . . . 156

10.5. IFC benchmark query 1: Compute the complete building hierarchy starting at
the IfcBuilding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.6. IFC benchmark query 2: Compute the building hierarchy starting at an
IfcProduct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.7. IFC benchmark query 3: Get the boundary IfcProducts of an IfcSpace. . . . 190
10.8. IFC benchmark query 4: Get the IfcSingleValue IfcPropertySets of an IfcProduct.190
10.9. IFC benchmark query 5: Get the IfcQuantityPropertySets of an IfcProduct. 191
10.10.IFC benchmark query 6: Get all IfcWindows, IfcDoors, etc. placed in an IfcWall.191

240



Listings

11.2. The EXPRESS inheritance graph of the abstract class IfcProduct in IFC4x2. 198

241





List of Algorithms

4.6. Algorithm to generate the incoming hash function δin from a class diagram. . 39

4.21. Steps of the database import. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.22. Creation of insert statements for the vertices. . . . . . . . . . . . . . . . . . 52

4.23. Import for the incoming adjacency tables. . . . . . . . . . . . . . . . . . . . 54

4.24. Import for the edge list and outgoing adjacency tables. . . . . . . . . . . . . 55

4.25. Creation of incoming adjacency statements. . . . . . . . . . . . . . . . . . . 56

9.9. The preprocessing layer of the IFC data import. . . . . . . . . . . . . . . . . 172

243


	Preface
	Introduction
	Motivation
	Contributions


	Property Graphs in Relational Databases
	Related Work
	Storing Graphs in Relational Database Management Systems
	Graph Bulk Loading
	Graph Query Languages
	Graph Benchmarks

	The Relational Property Graph Model
	Property Graphs
	The Database Schema
	Indexing the Graph
	Using the Database Schema for Graph Queries


	Data Import
	Hash Functions Based on Data Models
	Computing Conflict-Free Hash Functions for a Given Data Model

	Import Strategy
	Parsing the Input Data
	Preprocessing of the Input Data
	Converting the Data into the Internal Representation
	Writing the Data into the dbms

	Import Algorithm Performance Evaluation
	Runtime Complexity Analysis and Evaluation


	Data Retrieval
	Basic Graph Queries and Operations
	Query Language Support
	Integrating an Additional Query Language
	Introducing the Cypher Query Language
	The Cypher Operators
	Cypher Syntax
	Cypher Semantics

	General Approach to Translating Cypher Queries
	Translating Cypher Match Clauses
	Constructing SQL Queries from Cypher
	Optimizing the Resulting Queries



	Performance Evaluation
	The Linked Data Council - Social Network Benchmark: Interactive Workload
	The Methodology
	Performance Evaluation Framework
	Application Specific Indexes
	Preliminary Evaluation: Redundant Edge Data

	Query Performance
	Overall Throughput and Query Performance
	Read Performance
	Update Performance

	Required Disk Space
	LDBC - SNB: Conclusion


	The Building Information Management Model Store
	Use Case: Building Information Modeling
	The MonArch System
	Building Information Modeling
	The Industry Foundation Classes (IFC) Data Model
	The EXPRESS Data Modeling Language
	General ifc Structure


	Related Work
	IFC Model Stores
	Querying ifc Data
	IFC as a Graph

	Storing IFC in the Relational Database
	Mapping ifc into the Property Graph Model
	Importing IFC Data
	Storing Multiple Building Models
	Spatial Queries on the Building Model

	Evaluation of the ifc Store
	Import Performance
	Query Performance
	Methodology and Evaluation Setup
	ifc Benchmark Queries
	ifc Application Specific Indexes
	Query Performance Results


	Integration into the MonArch System
	Microservice Architecture for the ifc Integration
	The MonArch bim Prototype


	Summary and Conclusion
	Summary
	Future Work and Outlook
	Conclusion

	Detailed Evaluation Results for the snb
	Bibliography
	List of Figures
	List of Tables
	Listings
	List of Algorithms


