@phdthesis{ELKhoury2014, author = {EL-Khoury, Vanessa}, title = {Semantic Protection and Personalization of Video Content. PIAF: MPEG Compliant Adaptation Framework Preserving the User Perceived Quality}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:739-opus-27360}, school = {Universit{\"a}t Passau}, year = {2014}, abstract = {UME is the notion that a user should receive informative adapted content anytime and anywhere. Personalization of videos, which adapts their content according to user preferences, is a vital aspect of achieving the UME vision. User preferences can be translated into several types of constraints that must be considered by the adaptation process, including semantic constraints directly related to the content of the video. To deal with these semantic constraints, a fine-grained adaptation, which can go down to the level of video objects, is necessary. The overall goal of this adaptation process is to provide users with adapted content that maximizes their Quality of Experience (QoE). This QoE depends at the same time on the level of the user's satisfaction in perceiving the adapted content, the amount of knowledge assimilated by the user, and the adaptation execution time. In video adaptation frameworks, the Adaptation Decision Taking Engine (ADTE), which can be considered as the "brain" of the adaptation engine, is responsible for achieving this goal. The task of the ADTE is challenging as many adaptation operations can satisfy the same semantic constraint, and thus arising in several feasible adaptation plans. Indeed, for each entity undergoing the adaptation process, the ADTE must decide on the adequate adaptation operator that satisfies the user's preferences while maximizing his/her quality of experience. The first challenge to achieve in this is to objectively measure the quality of the adapted video, taking into consideration the multiple aspects of the QoE. The second challenge is to assess beforehand this quality in order to choose the most appropriate adaptation plan among all possible plans. The third challenge is to resolve conflicting or overlapping semantic constraints, in particular conflicts arising from constraints expressed by owner's intellectual property rights about the modification of the content. In this thesis, we tackled the aforementioned challenges by proposing a Utility Function (UF), which integrates semantic concerns with user's perceptual considerations. This UF models the relationships among adaptation operations, user preferences, and the quality of the video content. We integrated this UF into an ADTE. This ADTE performs a multi-level piecewise reasoning to choose the adaptation plan that maximizes the user-perceived quality. Furthermore, we included intellectual property rights in the adaptation process. Thereby, we modeled content owner constraints. We dealt with the problem of conflicting user and owner constraints by mapping it to a known optimization problem. Moreover, we developed the SVCAT, which produces structural and high-level semantic annotation according to an original object-based video content model. We modeled as well the user's preferences proposing extensions to MPEG-7 and MPEG-21. All the developed contributions were carried out as part of a coherent framework called PIAF. PIAF is a complete modular MPEG standard compliant framework that covers the whole process of semantic video adaptation. We validated this research with qualitative and quantitative evaluations, which assess the performance and the efficiency of the proposed adaptation decision-taking engine within PIAF. The experimental results show that the proposed UF has a high correlation with subjective video quality evaluation.}, subject = {MPEG-Standard}, language = {en} }