@phdthesis{Schmid2022, author = {Schmid, Josef}, title = {Learning-Based Quality of Service Prediction in Cellular Vehicle Communication}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-10772}, school = {Universit{\"a}t Passau}, pages = {xvi, 147 Seiten}, year = {2022}, abstract = {Network communication has become a part of everyday life, and the interconnection among devices and people will increase even more in the future. A new area where this development is on the rise is the field of connected vehicles. It is especially useful for automated vehicles in order to connect the vehicles with other road users or cloud services. In particular for the latter it is beneficial to establish a mobile network connection, as it is already widely used and no additional infrastructure is needed. With the use of network communication, certain requirements come along. One of them is the reliability of the connection. Certain Quality of Service (QoS) parameters need to be met. In case of degraded QoS, according to the SAE level specification, a downgrade of the automated system can be required, which may lead to a takeover maneuver, in which control is returned back to the driver. Since such a handover takes time, prediction is necessary to forecast the network quality for the next few seconds. Prediction of QoS parameters, especially in terms of Throughput (TP) and Latency (LA), is still a challenging task, as the wireless transmission properties of a moving mobile network connection are undergoing fluctuation. In this thesis, a new approach for prediction Network Quality Parameters (NQPs) on Transmission Control Protocol (TCP) level is presented. It combines the knowledge of the environment with the low level parameters of the mobile network. The aim of this work is to perform a comprehensive study of various models including both Location Smoothing (LS) grid maps and Learning Based (LB) regression ones. Moreover, the possibility of using the location independence of a model as well as suitability for automated driving is evaluated.}, language = {en} }