TY - THES A1 - Garchery, Mathieu T1 - User-centered intrusion detection using heterogeneous data N2 - With the frequency and impact of data breaches raising, it has become essential for organizations to automate intrusion detection via machine learning solutions. This generally comes with numerous challenges, among others high class imbalance, changing target concepts and difficulties to conduct sound evaluation. In this thesis, we adopt a user-centered anomaly detection perspective to address selected challenges of intrusion detection, through a real-world use case in the identity and access management (IAM) domain. In addition to the previous challenges, salient properties of this particular problem are high relevance of categorical data, limited feature availability and total absence of ground truth. First, we ask how to apply anomaly detection to IAM audit logs containing a restricted set of mixed (i.e. numeric and categorical) attributes. Then, we inquire how anomalous user behavior can be separated from normality, and this separation evaluated without ground truth. Finally, we examine how the lack of audit data can be alleviated in two complementary settings. On the one hand, we ask how to cope with users without relevant activity history ("cold start" problem). On the other hand, we seek how to extend audit data collection with heterogeneous attributes (i.e. categorical, graph and text) to improve insider threat detection. After aggregating IAM audit data into sessions, we introduce and compare general anomaly detection methods for mixed data to a user identification approach, designed to learn the distinction between normal and malicious user behavior. We find that user identification outperforms general anomaly detection and is effective against masquerades. An additional clustering step allows to reduce false positives among similar users. However, user identification is not effective against insider threats. Furthermore, results suggest that the current scope of our audit data collection should be extended. In order to tackle the "cold start" problem, we adopt a zero-shot learning approach. Focusing on the CERT insider threat use case, we extend an intrusion detection system by integrating user relations to organizational entities (like assignments to projects or teams) in order to better estimate user behavior and improve intrusion detection performance. Results show that this approach is effective in two realistic scenarios. Finally, to support additional sources of audit data for insider threat detection, we propose a method representing audit events as graph edges with heterogeneous attributes. By performing detection at fine-grained level, this approach advantageously improves anomaly traceability while reducing the need for aggregation and feature engineering. Our results show that this method is effective to find intrusions in authentication and email logs. Overall, our work suggests that masquerades and insider threats call for different detection methods. For masquerades, user identification is a promising approach. To find malicious insiders, graph features representing user context and relations to other entities can be informative. This opens the door for tighter coupling of intrusion detection with user identities, roles and privileges used in IAM solutions. KW - Anomalie KW - Authenitifikation KW - Computersicherheit Y1 - 2021 UR - https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/870 UR - https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-8704 ER -