Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Habilitation (2)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- Pestizid (5)
- Pflanzenschutzmittel (5)
- agriculture (4)
- risk assessment (4)
- Landwirtschaft (3)
- Fungizid (2)
- Pestizide (2)
- Wirbellose (2)
- aquatic macrophytes (2)
- pesticide (2)
Institute
Recent EU-frameworks enforce the implementation of risk mitigation measures for nonpoint-source pesticide pollution in surface waters. Vegetated surface flow treatments systems (VTS) can be a way to mitigate risk of adverse effects in the aquatic ecosystems following unavoidable pollution after rainfall-related runoff events. Studies in experimental wetland cells and vegetated ditch mesocosms with common fungicides, herbicides and insecticides were performed to assess efficiency of VTS. Comprehensive monitoring of fungicide exposure after rainfall-related runoff events and reduction of pesticide concentrations within partially optimised VTS was performed from 2006-2009 at five vegetated detention ponds and two vegetated ditches in the wine growing region of the Southern Palatinate (SW-Germany).
Influence of plant density, size related parameters and pesticide properties in the performance of the experimental devices, and the monitored systems were the focus of the analysis. A spatial tool for prediction of pesticide pollution of surface waters after rainfall-related runoff events was programmed in a geographic information system (GIS). A sophisticated and high resolution database on European scale was built for simulation. With the results of the experiments, the monitoring campaign and further results of the EU-Life Project ArtWET mitigation measures were implemented in a georeferenced spatial decision support system. The database for the GIS tools was built with open data. The REXTOX (ratio of exposure to toxicity) Risk Indicator, which was proposed by the OECD (Organisation for Economic Co-operation and Development), was extended, and used for modeling the risk of rainfall-related runoff exposure to pesticides, for all agricultural waterbodies on European scale. Results show good performance of VTS. The vegetated ditches and wetland cells of the experimental systems showed a very high reduction of more than 90% of pesticide concentrations and potential adverse effects. Vegetated ditches and wetland cells performed significantly better than devices without vegetation. Plant density and sorptivity of the pesticide were the variables with the highest explanatory power regarding the response variable reduction of concentrations. In the experimental vegetated ditches 65% of the reduction of peak concentrations was explained with plant density and KOC. The monitoring campaign showed that concentrations of the fungicides and potential adverse effects of the mixtures were reduced significantly within vegetated ditches (Median 56%) and detention ponds (Median 38%) systems. Regression analysis with data from the monitoring campaign identified plant density and size related properties as explanatory variables for mitigation efficiency (DP: R²=0.57, p<0.001; VD:
R²=0.19, p<0.001). Results of risk model runs are the input for the second tool, simulating three risk mitigation measures. VTS as risk mitigation measures are implemented using the results for plant density and size related performance of the experimental and monitoring studies, supported by additional data from the ArtWET project. Based on the risk tool, simulations can be performed for single crops, selected regions, different pesticide compounds and rainfall events. Costs for implementation of the mitigation measures are estimated. Experiments and monitoring, with focus on the whole range of pesticides, provide novel information on VTS for pesticide pollution. The monitoring campaign also shows that fungicide pollution may affect surface waters. Tools developed for this study are easy to use and are not only a good base for further spatial analysis but are also useful as decision support of the non-scientific community. On a large scale, the tools on the one hand can help to compute external costs of pesticide use with simulation of mitigation costs on three levels, on the other hand feasible measures mitigating or remediating the effects of nonpoint-source pollution can be identified for implementation. Further study of risk of adverse effects caused by fungicide pollution and long-time performance of optimised VTS is needed.
Agricultural pesticides, especially insecticides, are an integral part of modern farming. However, these may often leave their target ecosystems and cause adverse effects in non- target, especially freshwater ecosystems, leading to their deterioration. In this thesis, the focus will be on Insect Growth Regulators (IGRs) that can in many ways cause disruption of the endocrine system of invertebrates. Freshwater invertebrates play important ecological, economic and medical roles, and disruption of their endocrine systems may be crucial, considering the important role hormones play in the developmental and reproductive processes in organisms. Although Endocrine Disruption Chemicals (EDCs) can affect moulting, behaviour, morphology, sexual maturity, time to first brood, egg development time, brood size (fecundity), and sex determination in invertebrates, there is currently no agreement upon how to characterize and assess endocrine disruption (ED). Current traditional ecotoxicity tests for Ecological Risk Assessment (ERA) show limitations on generating data at the population level that may be relevant for the assessment of EDCs, which effects may be sublethal, latent and persist for several generations of species (transgenerational).
It is therefore the primary objective of this thesis to use a test method to investigate adverse effects of EDCs on endpoints concerning development and reproduction in freshwater invertebrates. The full life-cycle test over two generations that includes all sensitive life stages of C. riparius (a sexual reproductive organism) allows an assessment of its reproduction and should be suitable for the investigation of long-term toxicity of EDCs in freshwater invertebrates. C. riparius is appropriate for this purpose because of its short life cycle that enables the assessment of functional endpoints of the organism over several generations. Moreover, the chironomid life cycle consists of a complete metamorphosis controlled by a well-known endocrine mechanism and the endocrine system of insects has been most investigated in great detail among invertebrates. Hence, the full life-cycle test with C. riparius provides an approach to assess functional endpoints (e.g. reproduction, sex ratio) that are population-relevant as a useful amendment to the ERA of EDCs. In the laboratory, C. riparius was exposed to environmentally-relevant concentrations of the selected IGRs in either spiked water or spiked sediment scenario over two subsequent generations.
The results reported in this thesis revealed significant effects of the IGRs on the development and the reproduction of C. riparius with the second (F1) generation showing greater sensitivity. These findings indicated for the first time the suitability of multigenerational testing for various groups of EDCs and strongly suggested considering the full life-cycle of C. riparius as an appropriate test method for a better assessment of EDCs in the freshwater environment. In conclusion, this thesis helps to detect additional information that can be extrapolated at population level and, thus, might contribute to better protection of freshwater ecosystems against the risks of Endocrine Disrupting Chemicals (EDCs.) It may furthermore contribute to changes in the ERA process that are necessary for a real implementation of the new European chemical legislation, REACH (Registration, Evaluation Authorization and Restriction of Chemicals). Finally, significant interactions between temperature, chemical exposure and generation were reported for the first time and, may help predict impacts that may occur in the future, in the field, under predicted climate change scenarios.
Statistical eco(-toxico)logy
(2017)
Freshwaters are of immense importance for human well-being.
Nevertheless, they are currently facing unprecedented levels of threat from habitat loss and degradation, overexploitation, invasive species and
pollution.
To prevent risks to aquatic ecosystems, chemical substances, like agricultural pesticides, have to pass environmental risk assessment (ERA) before entering the market.
Concurrently, large-scale environmental monitoring is used for surveillance of biological and chemical conditions in freshwaters.
This thesis examines statistical methods currently used in ERA.
Moreover, it presents a national-scale compilation of chemical monitoring data, an analysis of drivers and dynamics of chemical pollution in streams and, provides a large-scale risk assessment by combination with results from ERA.
Additionally, software tools have been developed to integrate different datasets used in ERA.
The thesis starts with a brief introduction to ERA and environmental monitoring and gives an overview of the objectives of the thesis.
Chapter 2 addresses experimental setups and their statistical analyses using simulations.
The results show that current designs exhibit unacceptably low statistical power, that statistical methods chosen to fit the type of data provide higher power and that statistical practices in ERA need to be revised.
In chapter 3 we compiled all available pesticide monitoring data from Germany.
Hereby, we focused on small streams, similar to those considered in ERA and used threshold concentrations derived during ERA for a large-scale assessment of threats to freshwaters from pesticides.
This compilation resulted in the most comprehensive dataset on pesticide exposure currently available for Germany.
Using state-of-the-art statistical techniques, that explicitly take the limits of quantification into account, we demonstrate that 25% of small streams are at threat from pesticides.
In particular neonicotinoid pesticides are responsible for these threats.
These are associated with agricultural intensity and can be detected even at low levels of agricultural use.
Moreover, our results indicated that current monitoring underestimates pesticide risks, because of a sampling decoupled from precipitation events.
Additionally, we provide a first large-scale study of annual pesticide exposure dynamics.
Chapters 4 and 5 describe software solutions to simplify and accelerate the integration of data from ERA, environmental monitoring and ecotoxicology that is indispensable for the development of landscape-level risk assessment.
Overall, this thesis contributes to the emerging discipline of statistical ecotoxicology and shows that pesticides pose a large-scale threat to small streams.
Environmental monitoring can provide a post-authorisation feedback to ERA.
However, to protect freshwater ecosystems ERA and environmental monitoring need to be further refined and we provide software solutions to utilise existing data for this purpose.
In the new epoch of Anthropocene, global freshwater resources are experiencing extensive degradation from a multitude of stressors. Consequently, freshwater ecosystems are threatened by a considerable loss of biodiversity as well as substantial decrease in adequate and secured freshwater supply for human usage, not only on local scales, but also on regional to global scales. Large scale assessments of human and ecological impacts of freshwater degradation enable an integrated freshwater management as well as complement small scale approaches. Geographic information systems (GIS) and spatial statistics (SS) have shown considerable potential in ecological and ecotoxicological research to quantify stressor impacts on humans and ecological entitles, and disentangle the relationships between drivers and ecological entities on large scales through an integrated spatial-ecological approach. However, integration of GIS and SS with ecological and ecotoxicological models are scarce and hence the large scale spatial picture of the extent and magnitude of freshwater stressors as well as their human and ecological impacts is still opaque. This Ph.D. thesis contributes novel GIS and SS tools as well as adapts and advances available spatial models and integrates them with ecological models to enable large scale human and ecological impacts identification from freshwater degradation. The main aim was to identify and quantify the effects of stressors, i.e climate change and trace metals, on the freshwater assemblage structure and trait composition, and human health, respectively, on large scales, i.e. European and Asian freshwater networks. The thesis starts with an introduction to the conceptual framework and objectives (chapter 1). It proceeds with outlining two novel open-source algorithms for quantification of the magnitude and effects of catchment scale stressors (chapter 2). The algorithms, i.e. jointly called ATRIC, automatically select an accumulation threshold for stream network extraction from digital elevation models (DEM) by assuring the highest concordance between DEM-derived and traditionally mapped stream networks. Moreover, they delineate catchments and upstream riparian corridors for given stream sampling points after snapping them to the DEM-derived stream network. ATRIC showed similar or better performance than the available comparable algorithms, and is capable of processing large scale datasets. It enables an integrated and transboundary management of freshwater resources by quantifying the magnitude of effects of catchment scale stressors. Spatially shifting temporal points (SSTP), outlined in chapter 3, estimates pooled within-time series (PTS) variograms by spatializing temporal data points and shifting them. Data were pooled by ensuring consistency of spatial structure and temporal stationarity within a time series, while pooling sufficient number of data points and increasing data density for a reliable variogram estimation. SSTP estimated PTS variograms showed higher precision than the available method. The method enables regional scale stressors quantification by filling spatial data gaps integrating temporal information in data scarce regions. In chapter 4, responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices for five insect orders were compared, their potential for changing distribution pattern under future climate change was evaluated and the most influential climatic aspects were identified (chapter 4). Traits of temperature preference grouping feature and the insect order Ephemeroptera exhibited the strongest response to climate as well as the highest potential for changing distribution pattern, while seasonal radiation and moisture were the most influential climatic aspects that may drive a change in insect distribution pattern. The results contribute to the trait based freshwater monitoring and change prediction. In chapter 5, the concentrations of 10 trace metals in the drinking water sources were predicted and were compared with guideline values. In more than 53% of the total area of Pakistan, inhabited by more than 74 million people, the drinking water was predicted to be at risk from multiple trace metal contamination. The results inform freshwater management by identifying potential hot spots. The last chapter (6) synthesizes the results and provides a comprehensive discussion on the four studies and on their relevance for freshwater resources conservation and management.
The estimation of the potential risk of pesticide entries into streams - and therefore the potential risk for the ecosystems - is an important requirement for the planning of risk mitigation strategies. Especially on the landscape level the required event triggered sampling methods are conjuncted with considerable efforts with regard to input data, time and personnel. To circumvent these problems simulation models form a reasonable alternative. The aims of this work were (A) the development of a simulation tool for the estimation of pesticide entries into surface waters on the landscape level, and (B) the application of the simulator for an exposure- and risk-assessment as well as the assessment of negative effects of pesticides on aquatic communities. Section 1 - Exposure-, Risk- and Effects In sections 1.1 and 1.2 the simulation model was applied to a multitude of small and medium sized streams in an agricultural impacted study area around the city of Braunschweig, Germany. Section 1.3 gives an overview of the simulators field of application and the general system structure. Section 1.1 - Scenario based simulation of runoff-related pesticide entries into small streams on a landscape level (English publication, p. 27): In this paper we present a simulation tool for the simulation of pesticide entry from arable land into adjacent streams. We used the ratio of exposure to toxicity (REXTOX) model proposed by the OECD which was extended to calculate pesticide concentrations in adjacent streams. We simulated the pesticide entry on the landscape level at 737 sites in small streams situated in the central lowland of Germany. The most significant model parameters were the width of the no-application-zone and the degree of plant-interception. The simulation was carried out using eight different environmental scenarios, covering variation of the width of the no-application-zone, climate and seasonal scenarios. The highest in-stream concentrations were predicted at a scenario using no (0 m) buffer zone in conjunction with increased precipitation. According to the predicted concentrations, the risk for the aquatic communities was estimated based on standard toxicity tests and the application of a safety factor. Section 1.2 - Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level (English publication, p. 50): In this study the average numbers of invertebrate species across an arable landscape in central Germany (surveys from 15 years in 90 streams at 202 sites) were assessed for their correlation with environmental factors such as stream width, land use (arable land, forest, pasture, settlement), soil type and agricultural derived stressors. The stress originating from arable land was estimated by the factor "risk of runoff", which was derived from a runoff-model (rainfall induced surface runoff). Multivariate analysis explained 39.9% of the variance in species number, revealing stream width as the most important factor (25.3%) followed by risk of runoff (9.7%). Section 1.3 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Systemaufbau und Anwendungsmöglichkeiten (German publication, p. 61): Section 1.3 contains a short overview of the simulation tool, the field of application and some examples of use, covering the effects of the width of the buffer zone as well as the creation of risk maps on the landscape level. Section 2 - The simulation tool An important aspect for the employment of a simulation model in the context of risk assessment is the applicability in practice: the accessibility of the needed input data, the conversion of the mathematical model into a software application that can be run on any current personnel computer and also an appropriate end-user documentation of the system. Section 1.4 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Simulationsmodell und Systemaufbau (German report, p. 67): In this section a general overview of the simulation model as well as the schematic system structure given. Section 1.5 - Benutzerhandbuch (German report, p. 71): The user manual contains details concerning the installation of the system, generation of the required input data and the general use of the system. Moreover it presents some application examples (what-if analyses). Section 1.6 - Technical documentation (German report, p. 104): The technical documentation describes internal structures and processes of the simulation system. Section 1.6 provides information regarding the required structure of input/output tables.
Fate and effects of insecticides in vegetated agricultural drainage ditches and constructed wetlands
(2006)
Studies have shown that runoff and spray-drift are important sources of nonpoint-source pesticide pollution of surface waters. Owing to this, public concern over the presence of pesticides in surface and ground water has resulted in intensive scientific efforts to find economical, yet environmentally sound solutions to the problem. The primary objective of this research was to assess the effectiveness of vegetated aquatic systems in providing buffering between natural aquatic ecosystems and agricultural landscape following insecticide associated runoff and spray-drift events. The first set of studies were implemented using vegetated agricultural ditches, one in Mississippi, USA, using pyrethroids (bifenthrin, lambda-cyhalothrin) under simulated runoff conditions and the other in the Western Cape, South Africa using the organophosphate insecticide, azinphos-methyl (AZP), under natural runoff and spray-drift conditions. The second set of studies were implemented using constructed wetlands, one in the Western Cape using AZP under natural spray-drift conditions and the other in Mississippi, USA using the organophosphate MeP under simulated runoff conditions. Results from the Mississippi-ditch study indicated that ditch lengths of less than 300 m would be sufficient to mitigate bifenthrin and lambda-cyhalothrin. In addition, data from mass balance calculations determined that the ditch plants were the major sink (generally > 90%) and/or sorption site for the rapid dissipation of the above pyrethroids from the water column. Similarly, results from the ditch study in South Africa showed that a 180 m vegetated system was effective in mitigating AZP after natural spray drift and low flow runoff events. Analytical results from the first wetland study show that the vegetated wetland was more effective than the non-vegetated wetland in reducing loadings of MeP. Mass balance calculations indicated approximately 90% of MeP mass was associated with the plant compartment. Ninety-six hours after the contamination, a significant negative acute effect of contamination on abundances was found in 8 out of the 15 macroinvertebrate species in both wetland systems. Even with these toxic effects, the overall reaction of macroinvertebrates clearly demonstrated that the impact of MeP in the vegetated wetland was considerably lower than in the non-vegetated wetland. Results from the constructed wetland study in South Africa revealed that concentrations of AZP at the inlet of the 134 m wetland system were reduced by 90% at the outlet. Overall, results from all of the studies in this thesis indicate that the presence of the plant compartment was essential for the effective mitigation of insecticide contamination introduced after both simulated and natural runoff or spray-drift events. Finally, both the vegetated agricultural drainage ditch and vegetated constructed wetland systems studied would be effective in mitigating pesticide loadings introduced from either runoff or spray-drift, in turn lowering or eliminating potential pesticide associated toxic effects in receiving aquatic ecosystems. Data produced in this research provide important information to reduce insecticide risk in exposure assessment scenarios. It should be noted that incorporating these types of best management practices (BMPs) will decrease the risk of acute toxicity, but chronic exposure may still be an apparent overall risk.
This habilitation thesis deals with the effects of toxicants on freshwater ecosystems and considers different toxicant classes (pesticides, organic toxicants, salinity) and biotic endpoints (taxonomic community structure, trait community structure, ecosystem functions).
The thesis comprises 12 peer-reviewed international publications on these topics. All of the related studies rely on mesocosm or field investigations, or the analysis of field biomonitoring or chemical monitoring data. Publications I and II are devoted to passive sampling of a neonicotinoid insecticide and polycyclic aromatic hydrocarbons (PAHs), respectively. They show that biofouling and a diffusion-limiting membrane can reduce the sampling rate of the pulsed insecticide exposure and that receiving phases of different thicknesses can be used to assess the kinetic regime during field deployment of passive samplers. Publications III to VI mainly focus on trait-based approaches to reveal toxicant effects on invertebrates in streams. An overview on the framework and several applications of a trait-based approach to detect effects of pesticides (SPEARpesticides index) are given in publication III. Publication IV describes the development of a trait database for South-East Australian stream invertebrates and its successful application in the adaptation of SPEARpesticides as well as the development of a salinity index. Moreover, a conceptual model for the future development of trait-based biomonitoring indices is proposed. Publication V reports a mesocom study on the effects of a neonicotinoid insecticide on field-realistic invertebrate communities. The insecticide had long-term effects on the invertebrate communities, which were only detected when grouping the taxa according to their life-history traits. A comprehensive field study employing different pesticide sampling methods including passive sampling and biomonitoring of the invertebrate and microbial communities is presented in publication VI. The study did not find pesticide-induced changes in the microbial communities, but detected adverse effects of current-use pesticides on the invertebrate communities using the trait-based SPEARpesticides index. This index is also applied in a meta-analysis on thresholds for the effects of pesticides on invertebrate communities in publication VII. It is shown that there is a similar dose-response relationship between SPEARpesticides and pesticide toxicity over different biogeographical regions and continents. In addition, the thresholds for effects of pesticides are lower than derived from most mesocosm studies and than considered in regulatory pesticide risk assessment. The publications VIII to X use statistical data analysis approaches to examine effects of toxicants in freshwater ecosystems. Using governmental monitoring data on 331 organic toxicants monitored monthly in 4 rivers over 11 years, publication VIII finds that organic toxicants frequently occurred in concentrations envisaging acute toxic effects on invertebrates and algae even in large rivers. Insecticides and herbicides were the chemical groups mainly contributing to the ecotoxicological risk. Publication IX introduces a novel statistical method based on a similarity index to estimate thresholds for the effects of toxicants or other stressors on ecological communities. The application of the method for deriving thresholds for salinity, heavy metals and pesticides in streams is presented in three case studies. Publication X tackles the question of interactive effects between different toxicants using data from a field study on stream invertebrates in 24 sites of South-East Australia. Both salinity and pesticides exhibited statistically significant effects on the invertebrate communities, but no interaction between the stressors was found. Moreover, salinity acted on a higher taxonomical level than pesticides suggesting evolutionary adaptation of stream invertebrates compared to pesticide stress. Publications XI and XII concentrate on the effects of toxicants on biodiversity, ecosystem functions and ecosystem services, with publication XI summarising different studies related to the ecological risk assessment for these endpoints. A field study on the effects of pesticides and salinity on the ecosystem functions of allochthonous organic matter decomposition, gross primary production and ecosystem respiration is presented in publication XII. Both pesticides and salinity reduced the breakdown of allochthonous organic matter, whereas no effects on the other ecosystem functions were detected. A chapter following these publications synoptically discusses all studies of this habilitation thesis and draws general conclusions. It is stressed that in order to advance the understanding of effects of toxicants on freshwater ecosystems more ecological realism is needed in ecotoxicological approaches and that the spatiotemporal extent of toxicant effects needs more scrutiny.
Worldwide one third to one half of the freshwater crayfish species are threatened with population decline or extinction. Besides habitat deterioration, pollution, and other man-made environmental changes, invasive species and pathogens are major threats to the survival of European crayfish species. Freshwater crayfish are the largest freshwater invertebrates and strongly influence the structure of food webs. The disappearance of crayfish from a water body may change the food web and could have dramatic consequences for an ecosystem.rnOne goal in modern species conservation strategies is the conservation of genetic diversity, since genetic diversity is an advantage for the long-term survival of a species. The main aim of my thesis was to reveal the genetic structure and to identify genetic hotspots of the endangered noble crayfish (Astacus astacus) throughout Europe (part 1 of my thesis). Since the most significant threat to biodiversity of European crayfish species is the crayfish plague pathogen Aphanomyces astaci I studied new aspects in the distribution of A. astaci (part two of my thesis). The results serve as a basis for future conservation programs for freshwater crayfish. In the first part of my thesis I conducted a phylogeographic analysis of noble crayfish using mitochondrial DNA and nuclear microsatellite data. With these methods I aimed to identify its genetic hotspots and to reconstruct the recolonization history of central Europe by this species. I detected high genetic diversities in southestern Europe indicating that noble crayfish outlasted the cold climate phases during the Pleistocene in this region (Appendix 1). Because of the high genetic diversity found there, southeastern Europe is of particular importance for the conservation of noble crayfish. The mitochondrial DNA analysis points to a bifurcated colonization process from the eastern Black Sea basin to a) the North Sea and to b) the Baltic Sea basin (Appendix 2). A second independent refugium that was localized on the Western Balkans did not contribute to the colonization of central Europe. Furthermore, I found that the natural genetic structure is dissolved, probably due to the high human impact on the distribution of noble crayfish (e.g. artificial translocation). In the second part of this thesis using real-time PCR I identified calico crayfish (Orconectes immunis) as the fourth North American crayfish species to be carrier of the agent of the crayfish plague (Appendix 3). Furthermore I detected the crayfish plague pathogen in American spiny-cheek crayfish (Orconectes limosus) and native narrow-clawed crayfish (Astacus leptodactylus) in the lower Danube in Romania (Appendix 4). The distribution of infected spiny-cheek crayfish poses a threat to the native biodiversity in southeastern Europe and shows the high invasion potential of this crayfish species. Moreover, I found that even the native narrow-clawed crayfish in the Danube Delta, about 970 km downstream of the current invasion front of American crayfish, is a carrier of A. astaci (Appendix 5). This finding is of high importance, as the native species do not seem to suffer from the infection. In Appendix 6 I elucidate demonstrate that the absence of the crayfish plague agent is the most likely explanation for the coexistence of populations of European and American crayfish in central Europe. In my thesis I show that the common assumption that all North American crayfish are carrier of A. astaci and that all native crayfish species die when infected with A. astaci does not hold true. The studies presented in my thesis reveal new aspects that are crucial for native crayfish conservation: 1) The genetic diversity of noble crayfish is highest in southeastern Europe where noble crayfish outlasted the last glacial maximum in at least two different refugia. 2) Not all American crayfish populations are carrier of A. astaci and 3) not all Europen crayish populations die shortly after being infected with the crayfish plague pathogen.rnTo conserve native crayfish species and their (genetic) diversity in the long term, further introductions of American crayfish into European waters must be avoided. However, the introduction will only decrease if the commercial trade with non-indigenous crayfish species is prohibited.
Assessment of bat activity in agricultural environments and the evaluation of the risk of pesticides
(2012)
Although agriculture dominates with around 50% area much of Europe- landscape, there is virtually no information on how bats use this farmed environment for foraging. Consequently, little is known about effective conservation measures to compensate potential negative effects of agrarian management practice on the food availability for bats in this habitat. Moreover, there are currently no specific regulatory requirements to include bats in European Union risk assessments for the registration of pesticides since no information about pesticide exposure on this mammal group is available. To evaluate the potential pesticide exposure of bats via ingestion of contaminated insects, information about bat presence and activity in agricultural habitats is required. In order to examine bat activity on a landscape scale it was necessary to establish a suitable survey method. Contrary to capture methods, telemetry, and direct observations, acoustic surveys of bat activity are a logistically feasible and cost-effective way of obtaining bat activity data. However, concerns regarding the methodological designs of many acoustic surveys are expressed in the scientific literature. The reasons are the failing of addressing temporal and spatial variation in bat activity patterns and the limitations of the suitability of the used acoustic detector systems. By comparing different methods and detector systems it was found that the set up of several stationary calibrated detector systems which automatically trigger the ultrasonic recording has the highest potential to produce reliable, unbiased and comparable data sets on the relative activity of bats.
By using the proposed survey method, bat diversity and activity was recorded in different crops and semi-natural habitats in southern Rhineland-Palatinate. Simultaneously, the availability of aerial prey insects was studied by using light and sticky traps. In more than 500 sampling nights about 110,000 call sequences were acoustically recorded and almost 120,000 nocturnal insects were sampled. A total of 14 bat species were recorded, among them the locally rare and critically endangered northern bat (Eptesicus nilssonii) and the barbastelle (Barbastella barbastellum), all of them also occurring over agricultural fields. The agricultural landscape of southern Palatinate is dominated by vineyards, a habitat that was shown to be of low quality for most bat species because of the demonstrated low availability of small aerial insects. By surveying bat activity and food availably in a pair-wise design on several rain water retention ponds and neighbouring vineyards it was demonstrated that aquatic insect emergence in artificial wetlands can provide an important resource subsidy for bats. The creation of artificial wetlands would be a possibility to create important foraging habitats for bats and mitigate negative effects of management practice in the agricultural landscape.
In several other agricultural crops, however, high abundances of suitable prey insects and high bat activity levels, comparable or even higher than in the nearby forests and meadows known to be used as foraging habitats were demonstrated. Especially high bat activity levels were recorded over several fruit orchards and vegetable fields where insects were also present. Both crops are known for high pesticide inputs, and, therefore, a pesticide exposure through ingestion of contaminated insects can not be excluded. To follow the current risk assessment approach for birds and mammals pesticide residues were measured on bat-specific food items in an apple orchard following insecticide applications and bat activity was recorded in parallel. The highest residue values were measured on foliage-dwelling arthropods which may results in a reproductive risk for all bat species that, even to a small extent, include this prey group in their diet. The presence of bats in agricultural landscapes that form a majority of the land area in Europe but also on a global scale leads to exposure of bats by contaminated food and depletion of their food resources by pesticide use. So far conservation efforts for bats focussed on securing hibernation sites and the creation of artificial roost sites since especially the latter were thought to be limiting population growth. However the potential pesticide effects might be also crucial for the population persistence in agricultural landscapes of bats and need to be addressed adequately, especially in risk assessment procedures for the regulation of pesticides.
Field margins are often the only remaining habitats of various wild plant species in agricultural landscapes. However, due to their proximity to agricultural fields, the vegetation of field margins can be affected by agrochemicals applied to the crop fields. The aim of this thesis was to investigate the individual and combined effects of herbicide, insecticide and fertilizer inputs on the plant community of a field margin. Therefore, a 3-year field experiment with a randomized block design including seven treatments (H: herbicide, I: insecticide, F: fertilizer, H+I, F+I, F+H and F+H+I) and one control was conducted on a low-production meadow. Each treatment was replicated 8 times in 8 m x 8 m plots with a distance of 2 m between each plot. The fertilizer rates (25 % of the field rate) and pesticide rates (30 % of the field rate) used for the plot applications were consistent with realistic average input rates (overspray + drift) in the first meter of a field margin directly adjacent to a wheat field.
The study revealed that fertilizer and herbicide misplacements in field margins are major factors that affect the natural plant communities of these habitats. In total, 20 of the 26 abundant species on the study site were significantly affected by the fertilizer and herbicide treatment. The fertilizer promoted plants with high nutrient uptake and decreased the frequencies of small species. The herbicide caused a nearly complete disappearance of three species directly after the first application, whereas sublethal effects (e.g., phytotoxic effects and reduced seed productions of up to 100 %) were observed for the other affected species. However, if field margins are exposed to repeated agrochemical applications over several years, then such sublethal effects (particularly reproduction effects) also reduce the population size of plant species significantly, as observed in this study.
Significant herbicide-fertilizer interaction effects were also detected and could not be extrapolated from individual effects. The fertilizer and herbicide effects became stronger over time, leading to shifts in plant community compositions after three years and to a 15 % lower species diversity than in the control. The insecticide significantly affected the frequencies of two plant species (1 positively and 1 negatively). The results of the experiment suggest that a continuous annual agrochemical application on the study site would cause further plant community shifts and would likely lead to the disappearance of certain affected plants. A clear trend of increasing grass dominance at the expense of flowering herbs was detected. This finding corresponds well with monitoring data from field margins near the study site.
Although herbicide risk assessment aims to protect non-target plants in off-field habitats from adverse effects, reproduction effects and combined effects are currently not considered. Furthermore, no regulations for fertilizer applications next to field margins exist and thus, fertilizer misplacements in field margins are likely to occur and to interact with herbicide effects.
Adaptations of the current risk assessment, a development of risk mitigation measures (e.g., in-field buffers) for the application of herbicides and fertilizers, and general management measures for field margins are needed to restore and conserve plant diversity in field margins in agricultural landscapes.