Refine
Year of publication
Document Type
- Diploma Thesis (27)
- Study Thesis (17)
- Bachelor Thesis (13)
- Doctoral Thesis (8)
- Master's Thesis (6)
Has Fulltext
- yes (71)
Is part of the Bibliography
- no (71)
Keywords
- Bildverarbeitung (9)
- Robotik (7)
- Mustererkennung (3)
- 3D (2)
- Bildanalyse (2)
- Kamera (2)
- Klassifikation (2)
- Laserscanner (2)
- Mikroskopie (2)
- Roboter (2)
Institute
In dieser Arbeit wird die Umsetzung und Modifikation des Verfahrens von Finlayson et al. zur Schattenentfernung in einzelnen Farbbildern unter Verwendung des Retinex-Algorithmus vorgestellt. Für die benötigte Detektion von Schattenkanten wurde ein Verfahren von Finlayson et al. umgesetzt und angepasst. Die erforderliche Kamerakalibrierung wurde dabei nicht mit Tageslicht, sondern unter Verwendung künstlicher Lichtquellen realisiert. Anhand von Campus-Bildsequenzen wird ein qualitativer Vergleich des umgesetzten Verfahrens mit dem von Weiss zur Schattenentfernung in Bildserien vorgenommen. Außerdem wird ein erster Ansatz vorgestellt, wie Verfahren zur Schattenentfernung quantitativ bewertet werden können. Die Erzeugung der benötigten Ground-truth-Daten wird mit Hilfe von Laboraufnahmen realisiert, sodass keine manuelle Segmentierung von Schatten erforderlich ist. Anhand der Ergebnisse von Experimenten wird gezeigt, inwieweit die definierten Maße eine Bewertung und einen Vergleich der beiden Verfahren erlauben.
Die Erstellung räumlicher Abbilder aus planaren Ansichten gewinnt immer mehr Bedeutung in der modernen Medizintechnik. 3D-Rekonstruktionen haben wesentlich zur besseren Detektion,wie auch zu Optimierung und Innovation in der Diagnostik und Behandlungsmethodik bestimmter Krankheitsbilder beigetragen. Durch die Verfahren der Bildverarbeitung ist es möglich, aus Bildsequenzen eine 3D-Abbildung der gefilmten Szene zu erstellen. Ziel dieser Diplomarbeit soll es sein, zu untersuchen, inwieweit sich aus der Aufnahmetechnik aus einer Reihe unkalibrierter Endoskopiebilder weitere Rückschlüsse über die Oberflächenbeschaffenheit des betrachteten Gewebes ziehen lassen. Hierbei wird das Phänomen zugrundegelegt, daß bei der Aufnahme der Bilder Glanzlichter auftreten, wenn die Beleuchtung am Kamerakopf orthogonal zur Gewebeoberfläche auftrifft. Diese Glanzlichter geben daher implizit Aufschluss über die Oberflächenorientierung des Gewebes. Aufgabe ist es nun, diese Glanzlichter in einer Reihe von unkalibrierten Endoskopieaufnahmen zu finden, die Bilder aus der Sequenz einander zuzuordnen, also Korrespondenzen zwischen den Bildern zu finden, und unter Einbeziehung der Kamerageometrie Rückschlüsse auf die Gewebeoberfläche zu ziehen. Zuerst müssen hierfür die Glanzlichter in den Einzelbildern der Sequenz gefunden werden. Dazu wird ein Verfahren verwendet, welches die Glanzlichter durch eine Zerlegung des HSV-Farbraums detektiert und deren Mittelpunkt errechnet. Um die Kamerageometrie zu schätzen, werden mihilfe eines Punktverfolgers Punktkorrespondenzen zwischen den Einzelbildern erstellt, anhand derer sich die Fundamentalmatrix durch RANSAC errechnen läßt. Unter Anwendung eines Autokalibrierungsverfahrens werden aus den geschätzten Fundamentalmatrizen dann in einem abschließenden Schritt die internen Kameraparameter ermittelt. So sollte möglich sein, die Glanzlichter durch eine Sequenz von Bildern zu verfolgen und die Oberflächennormalen einem Referenzbild zuzuordnen.
Das Forschungsprojekt Bildanalyse zur Ornamentklassifikation hat es sich zur Aufgabe gemacht, ornamentale Strukturen in Bildern computergestützt zu lokalisieren, analysieren und klassifizieren. Grundlage des Projekts bildet eine umfangreiche Bilddatenbank, deren Abbildungen manuell vorsortiert sind. Durch Kombinationen mit Methoden der Bildverabeitung und der Verwendung von Wissensdatenbanken (Knowledge Databases) soll diese Kategorisierung weiter verfeinert werden. Sämtliche Bilder durchlaufen bis zum Prozess der Ornamentklassifikation mehrere Vorverarbeitungsschritte. Beginnend mit einem Normalisierungsprozess, bei dem das Bild u. a. entzerrt und entrauscht wird, werden im Anschluss Interessensregionen selektiert. Diese Regionen bilden die Grundlage für das spätere Lokalisieren der Ornamente. Aus ihnen werden mit unterschiedlichen Verfahren Merkmale extrahiert, die wiederum in der Datenbank gespeichert werden. In dieser Arbeit wurde ein weiteres solches Verfahren implementiert und auf seine mögliche Verwendung in dem Projekt untersucht.
In dieser Studienarbeit wurde ein Algorithmus vorgestellt, um sich mit einem Roboter in unbekanntem Gebiet zu lokalisieren und gleichzeitig eine Karte von der Umgebung zu erstellen. Die Lokalisation des Roboters geschieht auf 2D Ebene und errechnet die (x, y, θ)T Position des Roboters zu jedem Zeitpunt t inkrementell. Der Algorithmus baut auf dem FastSLAM 2.0 Algorithmus auf und wurde abgeändert, um eine möglichst genaue Lokalisation in Gebäuden zu ermöglichen. Hierfür wurden mehrere verschieden Arten von möglichen Landmarken untersucht, verglichen und kombiniert. Schwerpunkt dieser Studienarbeit war das Einarbeiten in das Extended Kalman-Filter und die Selektion von Landmarken, die für den Einsatz in Gebäuden geeignet sind.
The automatic detection of position and orientation of subsea cables and pipelines in camera images enables underwater vehicles to make autonomous inspections. Plants like algae growing on top and nearby cables and pipelines however complicate their visual detection: the determination of the position via border detection followed by line extraction often fails. Probabilistic approaches are here superior to deterministic approaches. Through modeling probabilities it is possible to make assumptions on the state of the system even if the number of extracted features is small. This work introduces a new tracking system for cable/pipeline following in image sequences which is based on particle filters. Extensive experiments on realistic underwater videos show robustness and performance of this approach and demonstrate advantages over previous works.
Der Hokuyo URG-04LX Laserscanner wird auf der mobilen Roboterplattform "Robbie" der Arbeitsgruppe Aktives Sehen zur Kartenerstellung und Kollisionsvermeidung eingesetzt. Die Navigation auf Grundlage der 2D-Scans wird den gewachsenen Anforderungen der Rescue-Arenen nicht mehr gerecht. Eine Verwendung von kommerziellen 3D-Laserscannern kommt wegen der hohen Anschaffungskosten nicht in Frage. Idee: Einsatz von mehreren günstigen 2D-Laserscannern mit unterschiedlichen Blickwinkeln oder aber die aktive Veränderung der Scanebene. Das Variieren der Scanebene erfolgt durch Schwenken oder Drehen des Laserscanners. Die Orientierung des Laserscanners im Raum liefert die dritte Dimension. Im Rahmen dieser Arbeit soll eine Plattform entwickelt werden, die es durch rotative Lagerung des Laserscanners ermöglicht, 3D-Laserscans der Umgebung zu erzeugen. Hierbei soll ein möglichst einfacher Aufbau erreicht werden, der es weiterhin ermöglicht, den Laserscanner zur Erzeugung von 2D-Karten zu benutzen. Um das Stereokamerasystem des Roboters nicht zu beeinträchtigen, wird zusätzlich ein sehr kompakter Aufbau angestrebt.
Die Selbstlokalisation von Robotern ist schon seit Jahren ein aktuelles Forschungsthema, das insbesondere durch immer weiterentwickelte Techniken und Verfahren verbessert werden kann. Insbesondere finden Laserscanner in der Robotik immer häufiger Anwendung. In dieser Arbeit wird untersucht, ob durch die Fusionierung von Kamerabildern und 3D-Laserscannerdaten eine robuste und schnelle Selbstlokalisation theoretisch sowie praktisch realisierbar ist.
Im Rahmen der Arbeit wurde ein mehrstufiger Algorithmus entwickelt, der es ermöglicht, aus Bildfolgen eine Trajektorie der Kamerabewegung zu rekonstruieren. Die Kalibrierung der Kamera beruht auf dem Verfahren von Zhang und ermöglicht den Ausgleich der durch das Objektiv entstehenden radialen Verzerrung der Bilder. Die sich anschließende Detektion prägnanter Merkmale wird durch den SIFT-Operator geleistet, welcher neben subpixelgenauer Lokalisation der Merkmale zusätzlich einen stark markanten Deskriptor zu deren Beschreibung liefert. Außerdem sind die Merkmale invariant gegenüber Rotationen, was für einige mögliche Anwendungsfälle sehr relevant ist. Die Suche nach Korrespondenzen wurde auf Basis der Distance Ratio ausgeführt. Hier wurde eine komplette Formalisierung der Korrelationsbeziehung zwischen Merkmalsvektoren präsentiert, welche eindeutig eine symmetrische Beziehung zwischen SIFT-Merkmalsvektoren definiert, die den an eine Korrespondenz gestellten Ansprüchen gerecht wird. Zusätzlich wurde motiviert, warum die sonst in der Bildverarbeitung gängige Methode der Hierarchisierung zur Reduktion des Aufwands in diesem speziellen Fall zu schlechteren Inlier-Raten in den gefundenen Korrespondenzen führen kann. Anschließend wurde ein genereller Überblick über den RANSAC-Algorithmus und die aus ihm entspringenden Derivate gegeben.
Große Gebiete lassen sich auf Grund von Schattenbildung und begrenzter Scanreichweite nicht mit einem einzigen 3D-Scan aufnehmen. Um konsistente dreidimensionale Karten dieses Gebietes zu erzeugen müssen also mehrere Scans zusammengefügt werden. Soll dieses Matchen der Scans automatisch geschehen, so kann es wegen fehlerhaften Translations- und Rotationsdaten, die die unterschiedlichen Positionen der Scans beschreiben,zu inkonsistenten Karten kommen. Um dies zu vermeiden wird in dieser Arbeit ein schneller Iterativ Closest Points Algorithmus implementiert, der versucht, Fehler in diesen sechs Freiheitsgraden zu korrigieren. Das Verfahren soll im Rahmen dieser Arbeit in die schon vorhandene Software unseres Roboters eingebunden werden.