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Abstract. This study compares performance of different speech com-
mand classification systems which can be executed on an Raspberry
Pi Zero ARMv6 architecture. Three systems are evaluated: first one,
TREELITE_MFCC, is based on Treelite system cross-compiles a MFCC-
classifying Random Forest into a highly optimized shared library; second,
TFLITE_MFCC, performs classification of MFCC inputs by means of
convolutional neural network encoded as a lightweight TensorFlow Lite
model while the third one - labeled as TFLITE_RAW - uses more com-
plex network to directly classify the audio signal. We evaluate models
not only in terms of their accuracy and precision, but also in terms of
execution time, voltage, current and energy consumed. We observe that
while TFLITE_RAW offers superior performance in terms of accuracy,
TREELITE_RAW is also worth of consideration for low-latency real-
life applications since it offers relatively good performance (avg. micro-
precision=0.917) but its predictions, when executed on Raspberry Pi
Zero, are significantly faster and cost less energy than TensorFlow Lite
models.

Keywords: speech command classification, power consumption, ARMv6,
random forests, TensorFlow Lite, TreeLite, precision-over-energy

1 Introduction

1.1 Motivations

Speech command classification (SCC) is a process wherein a classifier system
attributes a label to an audio input sequence. SCC can be interpreted either as
an information-theoretical phenomenon, or as physical, power consuming phe-
nomenon, or both. While evaluation by means of information-theoretical metrics
like accuracy, precision, recall, F-score etc. is a well established practice in SCC
and its envelopping automatic speech recognition (ASR) community, the phys-
ical, power-consuming aspect of the process of sound classification is much less
explored. It is often the case that the only bridge between the computer-scientific
aspect of a certain method and its real-world performance is constrained to dis-
cussion of the algorithm in terms of its computational complexity (e.g. [12], [15]).
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But given that there is, indeed, a long way between theoretical complexity of
the algorithm and its material realization, a more concrete, empiric method for
bridging the informational and physical is surely needed. To address this need
is the first motivation of our study.

The other motivation behind this study arose in relation to a research project
whose goal is the construction of a do-it-yourself (DIY) digital education arte-
fact for elementary school pupils known as “Digital Primer” (DP). In their DP
roadmap, the inceptors of the project define the property “speech-based” as one
of the most important attributes of the DP and make it quite clear that cor-
porate, cloud-based generic ASR systems are to be dismissed and replaced by
offline, personalized models: “Internal speech models of the Primer should de-
velop locally, through and by means of interaction with human Children. Ideally,
speech faculties of the Primer are to adapt to speech faculties of the Child. The
Child shall, in a certain sense, teach the artefact her own language, she will
become its language teacher.” [11]

In their later paper, the authors precise that the DP is based on a well-known
off-the-shelf platform Raspberry Pi Zero [10]. Being built on top of a spartan
ARMv6 architecture, the Pi Zero is an interesting piece of hardware located
somewhere in the middle between task-specific microcontrollers with very low
power consumption on one hand (ESP32, Artemis, Cortex) and embedded sys-
tems for generic computation (Raspberry Pi 4, Rock64) generally based on more
power hungry architectures such as ARMv7 and beyond. It is most probably the
combination of its low price (the cheapest variant of Pi Zero costs 5 euros), its
generic computation capability, its low power consumption and its wide adop-
tion allowing one to consider Pi Zero as a standard of sorts, which motivated
the authors of the DP to base their project on the Pi Zero platform.

On the other hand, it may be the case that the authors of the DP project raise
unwarranted expectations while in reality, classifiers running on Pi Zero which
could offer accurate answers maybe do not even exist. Sporadic information
for sound classification on microcontrollers exists [8] but often focuses on one
particular method. Hence, as of March 2021, we are not aware of any study
which would address the question “Is ASR on ARMv6 feasible?” in the depth
its merit.

Additionally, we are not aware of any empiric study which compares different
methods of sound classification on low-power architecture and does so not only in
terms of information-theoretic metrics like accuracy, but also in terms of physical
units describing the classifier’s power consumption. The aim of the current study
is to fill these gaps.

1.2 State of the art

Within this article, we compare an ASR approach based on Random Forests
with connectionist ”deep learning” methods. With exception of the TFLITE_-
RAW model (c.f. section 3.4) where no feature extraction is necessary and the
signal is fed directly to the neural network, Mel Frequency Cepstral Coefficients
(MFCCs) features were extracted.
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Since their introduction in 1980’s in [7], MFCCs are considered to be state-of-
the-art ever since [1]. As such, MFCCs are considerd to be ubiquitous in speech
processing and analyzing harmonic content. [14, p. 3].

Random Forests (RFs) is an ensemble-based classifier learning method that
is based on the idea of combining the votes of a multitude of decision trees.
Introduced in [9], RFs have since then proven themselves as an efficient and useful
classification mechanism in many domains, including acoustic event detection
[13], acoustic modeling [18] or speech emotion recognition [5].

On the other hand, the domain of machine learning is currently dominated
by approaches based on neural network architectures. A well-known example
are machine learning systems based on TensorFlow [2] which presents a graph-
oriented framework, utilizable in diverse computational enviroments. With the
main goal of providing a solid core for deep neural network applications and
tools to build these for different underlying hardware architectures, TensorFlow
becomes relevant for the domain of natural language processing and speech recog-
nition. With the emergence of Convolutional Neural Networks, Deep Keyword
Spotting Systems were proposed and implemented in 2014[4]. The development
of TensorFlow Lite makes it possible to deploy TensorFlow models on mobile,
embedded and IoT devices “at the edge” of the network. With an interpreter
size of ca. 1 MB, and a conversion mechanism to lite models there is a grown
interest to expedite ML even on small edge devices. [6]

2 Dataset

Table 1. Summary of the dataset

Name Files Labels Format Length
Speech commands 64721 30 wav, 16bit, mono, 16kHz 1s3

We use the Speech Commands dataset which has been compiled by the Ten-
sorFlow team at Google and is available under an open source license4. “[It] has
65,000 one-second long utterances of 30 short words, by thousands of different
people, contributed by members of the public [...]”[16]. One of the main focus
points of the dataset is to enable testing and creation of ML models on the ac-
tual device and providing the ability to create baseline models quickly through
a standardized dataset[17].

3 Roughly 90% of the files are exactly 1 second long, the rest being shorter. For
the random forest and the TensorFlow based approach that uses the raw signal the
shorter files were padded with silence at the end. For the TensorFlow based approach
that uses MFCCs the feature vector was padded to ensure equal shape for all files.

4 The dataset can be downloaded from http://download.tensorflow.org/data/speech_
commands_v0.01.tar.gz

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
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Table 2. Number of files per class

bed bird cat dog down eight five four go happy house left marvin nine no
1713 1731 1733 1746 2359 2352 2357 2372 2372 1742 1750 2353 1746 2364 2375
off on one right seven sheila six stop three tree two up wow yes zero
2357 2367 2370 2367 2377 1734 2369 2380 2356 1733 2373 2375 1745 2377 2376

As common to other publications dealing with the Speech Commands datasets
80% of the dataset is used for training, 10% for validation and 10% for testing.

3 Method(s)

3.1 Wald_ASR

Wald_ASR is our own baseline solution based on a random forest classifier. It
uses Mel Frequency Cepstral Coefficents (MFCCs) as features which we extract
from the audio files using the python_speech_features 5 library. One of the
biggest challenges one encounters when dealing with speech data is the fact that
length of a speech signal may vary while the vector which the classifier expects
as input is of a fixed size N . Wald_ASR solves this problem by choosing the
appropriate “window step” parameter for the MFCC extraction:

step = Duration/Segments

whereby step corresponds to the step between successive windows, duration
corresponds to length of the recording and segments is a parameter of the
Wald_ASR model.

Wald_ASR has four tuneable parameters: (1) the number of MFCCs, (2)
the number of segments the audio signal is divided into, (3) the number of
trees (estimators) that make up the random forest, and (4) the maximum tree
depth. The optimal settings were determined experimentally using a brute-force
approach. To find the combination of MFCCs and segments that yield the best
results we ran 5 rounds of cross-validation (90:10 split) on the training data and
averaged the results. The accuracy scores we obtained are visualized as heatmap
in fig. 1.

In order to slightly reduce the noisiness a gaussian filter was applied. The
result of this is shown in fig. 2.

In the third step we incrementally increased the number of trees to determine
for which number of estimators we would reach the highest accuracy score (using
the best combination of segments and cepstra from the previous step).

Going forward, we used n = 350 estimators, for which we capped the maxi-
mum tree depth at 25, beyond which no further improvement of accuracy could
be observed.
5 https://github.com/jameslyons/python_speech_features

https://github.com/jameslyons/python_speech_features
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Fig. 1. Heatmap of the mean accuracy scores. The cross marks the highest value.

Fig. 2. Heatmap of results with a gaussian filter applied.

Fig. 3. Accuracy scores for different numbers of estimators
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3.2 TREELITE_MFCC

As training the model on the device itself is not feasible, training was done on
significantly faster multi-core machines. However, the generated files (Random-
ForestClassifier objects, serialized with Python’s pickle module) are incompatible
because of the hardware architecture mismatch (X86-64 instead of the targeted
ARMv6). To be able to deploy the model to the Raspberry Pi, we used the
Treelite6 library to first convert the scikit-learn model to C code, which we
then cross-compiled as a library for ARMv6. For a model with 350 estimators
this yields a ca. 300 MB file which can be loaded into memory of the Pi Zero
in order to perform the classification. Treelite model mentioned in this article
was not further optimized with CPU branch prediction nor for float-to-integer
quantization.

3.3 TensorFlow Lite

The TensorFlow model we trained broadly follows the implementation of a Con-
volutional Neural Network for Deep keyword spotting. “The deep neural network
model is a standard feed-forward fully connected neural network with k hidden
layers and hidden nodes per layer, each computing a non-linear function of the
weighted sum of the output of the previous layer.” [4]

Two Models with different parameters for different features were trained and
converted to TensorFlow Lite (TFLITE) models, which can be run on most edge
devices. To run TFLITE models on ARMv6 architecture we built bindings for the
TensorFlow Lite interpreter for Python 3.7. These bindings have the advantage
of not requiring the entire TensorFlow libary to be loaded but only the reduced
tflite_runtime which significantly reduces the memory consumption 7.

For the purpose of this article, we have built two TFLITE models: TFLITE_-
MFCC which involves the MFCC extraction component and TFLITE_RAW
which does not.

3.4 TFLITE_RAW

The first Model was trained on data which consisted of the PCM waveform
with a choosen number of samples and fixed sample rate. The model has 847244
parameters and its underlying structure corresponds to a convolutional neural
network (CNN) including two preprocessing layers: resizing and normalization.

The 1D CNN is suitable for the processing of pure PCM waveforms as these
only require two dimensions and one direction as time series data. Given that
TFLITE_RAW does not require a feature extraction step, we measure execution
time and energy consumption only for the prediction phase.
6 https://treelite.readthedocs.io/
7 URL to public repository where these bindings are available will be provided in
camera-ready version of the article

https://treelite.readthedocs.io/


Pi Zero / ARMv6 Speech Command Classification 7

3.5 TFLITE_MFCC

The second 2D CNN Model was trained with 416199 parameters on MFCC fea-
tures which were extracted using the python_speech_features library. 16 cepstra
where used in the feature extraction, as well as an nfft size of 4096. To deal with
the problem of samples having different length, the resulting matrices were zero-
padded to math the shape (16, 20) whereby 16 represents the number of cepstra
and 20 corresponds to maximum anticipated number of frames within the sam-
ple. For this model we measure execution time and energy consumption for the
feature extraction process as well as the prediction process.

4 Experimental protocol

Each simulation was repeated on three different Pi Zero devices with identical
hardware and software setup. Each run consisted a of batch of measurements
in which the entirety of the testing portion of the dataset (6835 samples) was
forwarded to the classifier.

As will be further elaborated in the following subsections, every classification
act was measured in terms of time and power consumption. Power consumption
measurements were done a separate thread which was initiated right before the
input feature vector is passed to classifier. The same is true for the time mea-
surement, except it was done on the main thread.

The stop time measurement, i.e. the assessment of time after classification
is over, takes place immediately after the classifier prediction function returns
the label prediction vector. An instruction immediately following the stop time
measurement sends the stop message to the voltage & current measurement
thread. Operations happening after the prediction vector is returned - e.g. the
overall statistical evaluation of the dataset in terms of prediction accuracy, etc.
- were not part of the measurements.

In case the simulation includes a feature extraction (FE) component, the
same experimental protocol applies for feature extraction stage as it applies for
classification stage. Thus, FE measurement starts immediately before the audio
signal sequence is forwarded from the buffer to the FE function and stops as
soon as possible after the FE function returns. Loading of data from the SD
card into the buffer was not part of the measurements.

4.1 Time measurement

The elapsed time was measured with the perf_counter()8 function from the time
module of the Python standard library, as it provides higher resolution than other
functions, such as time.time() or time.clock() (for which the accuracy can vary
depending on to the operating system).

8 https://docs.python.org/3/library/time.html#time.perf_counter

https://docs.python.org/3/library/time.html#time.perf_counter
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The time.perf_counter() function used in the solution provides the highest-
resolution timer possible on a given platform. However, it still measures
wallclock time, and can be impacted by many different factors, such as
machine load. [3, p. 589]

In order not to incur any additional system load the device was not interacted
with while the simulation was running. The simulations were started in a Tmux
session which was detached right after the initial script invocation and only
reconnected to again after the script completed.

4.2 Power consumption measurements

For the measurement of the power consumption we used a Witty Pi 3 Rev2
module9. This extension board adds power management functionalities to the
Raspberry Pi and among other things makes it possible to get readings of the
output voltage and current which feed the PiZero itself. The Witty Pi connects
to the Pi Zero’s GPIO pins and works as an I2C slave. The Pi Zero can read
the information about from respective registers via the smbus210 Python library.
Within all simulations reported in this study, interval between such ”read from
registers” was 50 miliseconds.

Fig. 4. Raspberry Pi Zero and WittyPi module separate (left) and assembled (right)

9 http://www.uugear.com/product/witty-pi-3-realtime-clock-and-power-
management-for-raspberry-pi/

10 https://pypi.org/project/smbus2/

http://www.uugear.com/product/witty-pi-3-realtime-clock-and-power-management-for-raspberry-pi/
http://www.uugear.com/product/witty-pi-3-realtime-clock-and-power-management-for-raspberry-pi/
https://pypi.org/project/smbus2/
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4.3 Precision-over-energy

From the current, voltage, and time measurements we calculated the energy
consumption (as the product of the three).

As an experimental measure we introduce precision over energy (PoE):

α ∗ Precision

β ∗ Energy
=

α ∗ Precision

β ∗Avg(V oltage) ∗Avg(Current) ∗Avg(Time)

as a way of expressing the classification quality in relation to the energy
required to run the prediction. Given that precision - which is to be maximized
by an ideal classifier - is defined in the numerator of the equation and energy -
which is to be minimized by an optimally efficient classifier - is defined in the
denumerator of the equation, it is obvious that increase of PoE corresponds to
increase in classifier’s efficiency and ”intelligence”.

Values for weighting parameters α and β specifying one’s preference for pre-
cision or energetic efficiency were - for the purpose of didactic simplicity of this
introductory study - both set to α = β = 1.

5 Results

All tested models successfully ran on Pi Zero, with <1s mean processing time.
As indicated by table 3, the TFLITE_RAW is able to correctly classify highest
amount of testing samples (i.e. accuracy). However, this approach takes 8 times
longer and thus necessitates significantly more energy than TREELITE_MFCC.
TFLITE_MFCC outperforms TREELITE_MFCC in terms of precision while
being about 4 times more energy efficient than TFLITE_RAW. While being the
cleanest solution when it comes to time and energy, the Treelite approach comes
at the cost of loading and keeping a 313MB model in RAM.

Table 3. Summary comparison of Random Forest Treelite and Tensorflow Lite speech
command classification pipelines.

TREELITE_MFCC TFLITE_MFCC TFLITE_RAW
Avg. time (s) 0.0912 (100%) 0.1727 (189%) 0.7898 (866%)
Avg. current (A) 0.0471 (100%) 0.0725 (154%) 0.0789 (167%)
Avg. voltage (V) 5.1368 (100%) 5.1301 (100%) 5.1249 (100%)
Avg. energy (W * s) 0.0221 (100%) 0.0643 (291%) 0.3192 (1446%)
Avg. micro-precision 0.9171 (100%) 0.9722 (106%) 0.9975 (109%)
Accuracy 0.6803 (100%) 0.8834 (130%) 0.9422 (138%)
AUC 0.8357 (100%) 0.8526 (102%) 0.9637 (115%)
PoE 41.5414 (100%) 15.1311 (36%) 3.1247 (8%)
Model size (MB) 313 (100%) 1.6 (0.5%) 3.4 (1%)

Values in parentheses are percentages of baseline (Treelite). Time, voltage and
current information includes both feature extraction as well as class prediction phase.
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Fig. 5. Energy to Micro-precision plot.

Fig. 6. Observed values yielded by TREELITE_MFCC classifier (prediction phase
only). Classes are sorted in order of chronological exposure to classifier, reason for
higher prediction times of samples which were tested first (e.g. ”eight”, ”sheila” and
”nine”) is not fully understood yet.
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Fig. 7. Observed values yielded by TFLITE_MFCC classifier (prediction phase only).

Fig. 8. Observed values yielded by TFLITE_RAW classifier (prediction phase only).
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6 Conclusion

In a situation where it is clear that artificial systems, including AIs and ML
classifiers account for an ever-growing amount of CO2 emissions, every respon-
sible scientist is obliged to keep the environmental impact of their work as low
as possible.

One of the aspects to consider when developing ML models is how big the
energy consumption is, not only for training but also continously using those
models. Provided that established classifiers may well lead to execution of thou-
sands or even millions of predictions on billions of individual devices, a reasonable
choice of an appropriate classifier could potentially lead to palpable reduction
in resulting carbon footprint.

As our experiments have shown, speech command classification is possible
even on very low-powered devices such as the Raspberry Pi Zero. Furthermore,
depending on which of the two needs to be prioritized – precision or lowest
possible power consumption – there are different options to choose from and
there are trade-offs to be done.

At last but not least, it may be the case that line of research analyzing and
comparing different classifiers not only in terms of their classificatory score, but
also in terms of other aspects physical and processual aspects like time or power
consumption may yield many unexpected or even counter-intuitive surprises.
For example, in spite of significant amount of effort on our side, it is still not
completely clear to us why does TREELITE_MFCC tends to execute early
classifications more slowly than later ones, a phenomenon which is marked - in
Figure 5 - by increased average execution times of samples belonging to those
classes (e.g. “eight”, “sheila”, “nine”) which were analyzed as first during the
testing phase.

Be it as it may, we conclude that the execution of a domain-specific, 30-class
classification of 1 second long speech commands is indeed feasible in real-time
on a Raspberry Pi Zero / ARMv6 architecture with sufficient accuracy and
precision. Thus, with a little bit of luck and a sufficient dose of engineering
ingenuity, it can be, indeed, possible, to construct a speech-based, offline, Pi
Zero-driven artefact like a Digital Primer.
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