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Abstract: The paper presents a novel method of multiclass classification. The method combines the notions of
dimensionality reduction and binarization with notions of category prototype and evolutionary optimization. It
introduces a supervised machine learning algorithmm which first projects documents of the training corpus into
low-dimensional binary space and subsequently uses canonical genetic algorithm in order to find a constellation
of prototypes with highest classificatory pertinence. Fitness function is based on a cognitively plausible notion that
a good prototype of a category C should be as close as possible to members of C and as far as possible to members
associated to other categories. In case of classification of documents contained in a 20-newsgroup corpus into 20
classes, our algorithm seems to yield better results than a comparable deep learning "semantic hashing" method
which also projects the semantic data into 128-dimensional binary (i.e. 16-byte) vector space.
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1 INTRODUCTION utmost importance in any cognitively plausible (Hro-
mada 2014a) model of learning. But under these terms,
two distinct meanings are confounded and the term

categorization thus often represents both:

In computational theories and models learning, one
generally works with two types of models: regression
and classification. While in regression models one
maps continuous input domain onto continuous output
range, in models of classification, one aims to find
mappings able to project input objects onto a finite set
of discrete output categories.

1. process of learning (e.g. inducing) of categories

2. process of retrieving information from already
learned (induced) categories

This article introduces a novel means of construc-
tion of a particular type of the latter kind of learning

which crudely correspond to training, resp.
phases of supervised learning algorithms.

testing

models. Due to finite and discrete nature of its output
range, classification - also called categorization by
more cognition-oriented researchers - seems to be of

Rest of this section, as well as section 2, shall
more closely introduce an approach combining notions
of category prototype, dimensionality reduction and
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evolutionary computing in order to yield a potentially
"cognitively plausible" means of supervised machine
learning of a multiclass classifier. Sections 3 shall
present specificities of a Natural Language Processing
(NLP) simulation which was executed in order to assess
the feasibility of the algorithm and in section 4, ob-
tained results shall be compared with comparable "deep
learning" semantic hashing technique of (Salakhutdi-
nov & Hinton 2009). The article shall be concluded,
in section 5, with few remarks aiming to integrate
whole research into more generic theories of neural and
universal darwinism.

1.1 Geometrization of Categories

In contemporary cognitive science, categories are often
understood as entities embedded in an A-dimensional
feature space (Girdenfors 2004). The most funda-
mental advantage of such models, whose computer
sciences counterparts are so-called "vector symbolic ar-
chitectures" (VSAs) (Widdows & Cohen 2014), is their
ability to geometrize one’s data, i.e. to represent one’s
dataset in a form which allows to measure distances
(similarities) between individual items of the dataset.

Thus, even entities like "word meanings" or "con-
cepts" can be geometrically represented, either as
points, vectors or subspaces of the envelopping vec-
tor space S. One can subsequently measure distances
between such representations, e.g. distance of the
meaning of the word "dog" from the meaning of "wolf"
or "cat" etc. Geometrization of one’s dataset once
effectuated, space S can be subsequently partitioned
into a set R of |C| regions R = R|,R,...,Rc. In
unsupervised scenario, such partitioning is often done
by means of diverse clustering algorithms, the most
canonic among which being the k-means algorithm
(MacQueen et al. 1967). Such clustering mechanisms
often characterize candidate cluster Cy in terms of a
geometric centroid of the members of the cluster. Fea-
sibility of a certain partition is subsequently assessed in
terms of "internal clustering criteria" which often take
into account distances among such centroids.

In the rest of this article, however, we shall aim
to computationally implement a supervised learning
scenario and instead of working with the notion of
category’s geometric centroid, our algorithm shall be
based upon the notion of category’s prototype. The
notion of the prototype was introduced into science
notably by theory of categorization of Eleanore Rosch
which departed from the theoretical postulate that:

"the task of category systems is to provide maxi-
mum information with the least cognitive effort" (Rosch

1999)

In seminal psychologic and anthropologic studies
which have followed, Rosch have realized that people
often characterize categories in terms of one of their
most salient members. Thus, a prototype of category
Cx can be most trivially understood as such a member
of Cx which is the most promiment, salient member of
Cx. For example "apples" are prototypes of category
"fruit" and "roses" are prototypes of category "flowers"
in western cultural context.

But studies of Rosch had also suggested another,
more mathematic, notion of how prototypes can be
formalized and represented. A notion which is based
upon the notion of closeness (e.g. "distance") in a
certain metric space:

"items rated more prototypical of the category were
more closely related to other members of the category
and less closely related to members of other categories
than were items rated less prototypical of a category"
(Rosch & Mervis 1975)

Given that this notion is essentially geometric, the
problem of discovery of a set of prototypes can be
potentially operationalized as a problem of minimiza-
tion of a certain fitness function. The fitness function,
as well as means how it can be optimized, shall be
furnished in section 2. But before doing so, let’s first
introduce certain computational tricks which allow to
reduce the computational cost of such search of the
most optimal constellation of prototypes.

1.2 Radical Dimensionality Reduction

There is potentially an infinite number of ways how
a dataset D consisting of |[D| documents can be ge-
ometrized into a A—dimensional space S. In NLP, for
example, one often looks for occurences of diverse
words in the documents of the dataset (e.g. corpus).
Given that there are |W| distinct words occuring in |N]
documents of the corpus, one used to geometrize the
corpus by means of a N * M co-occurrence matrix M
whose X-th row vector represents the X-th document
Nx, Y-th column vector represents the Y-th word Wy
and the element on position My y represents the number
of times Wy occured in Ny.

Given the sparsity of such co-occurrence matrices as
well as for other reasons, such bag-of-words models are
more or less abandoned in contemporary NLP practice
for sake of more dense representations, whereby the di-
mensionality of the resulting space, d, is much less than
|W|, d < |W|. Renowned methods like Latent Semantic
Analysis (LSA) (Landauver & Dumais 1997) set aside
because of their computational cost, we shall use the
Light Stochastic Binarization (LSB) (Hromada 2014b)
algorithm to perform the most radical dimensionality-
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reducing geometrization possible.

LSB is an algorithm issued from the family of
algorithms based on so-called random projection (RP).
Validity and feasibility of all these algorithms, be it
Random Indexing (RI, (Sahlgren 2005)) or Reflective
Random Indexing (RRIL,(Cohen et al. 2010)) is theo-
retically founded on a so-called lemma of Johnson-
Lindenstrauss, whose corollary states that "if we project
points in a vector space into a randomly selected
subspace of sufficiently high dimensionality, the dis-
tances between the points are approximately preserved"
(Sahlgren 2005).

Methods of application of this lemma in concrete
NLP scenarios being described in references above,
we precise that LSB can be labeled as "most radical"
variant of RP-based algorithms because:

e it tends to construct spaces with as small dimen-
sionality as possible (in LSB, d < 300; in RI or
RRI models, d > 300)

e LSB tends to project the data onto binary and not
real or complex spaces

It can be, of course, the case that such dimensionality-
reduction and binarization can lead to certain decrease
of discriminative accuracy of LSB-produced spaces.
On the other hand, given that dimensionality reduction
and binarization neccessary bring about reduction of
computational complexity of any subsequent algorithm
which could be used to explore the resulting space
S, such decrease of accuracy is to be more swiftly
counteracted by subsequent optimization. The goal
of this study is to explore whether such post hoc
optimization of classifiers operating within dense, bi-
nary, LSB-produced spaces is possible, and whether the
combination of the two can be used as a novel means of
machine learning.

But before describing in more closer such evolu-
tionary optimizations, let’s precise that because of its
low-dimensional and binary nature, LSB can also be
understood as yielding a sort of "hashing function"
aiming to attribute similar hashes to similar documents
and different hashes to different documents. In this
sense, LSB is similar to approaches like Locality Sen-
sitive Hashing (LSH, Datar et al. (2004)) or Semantic
Hashing (SH, Salakhutdinov & Hinton (2009)) often
used, or at least presented, as the solution of multiclass
classification of BigData corpora. It is with the results
of the latter, "deep-learning" approach, that we shall
compare our own results in section 4.

2 GENETIC LOCALIZATION OF SEMANTIC
PROTOTYPES

Let D = {dy, ....,dp|} be a training dataset consisting of
|D| documents to which the training dataset attributes
one among |L| corresponding members of set of class
labels L = {L], ceey L\L|}.

Let I' denote a set of classes I' = Cy, ..., C|L| whose
individual members are also sets containing indices of
members of D to which a same label L; is attributed in
the training corpus (e.g. C; = {1, 2, 3} if training corpus
attributes label 1 only to dy, d> and d3).

Let H = {hy,...,hp)} be a set of A-dimensional
binary vectors attributed to members of D by a hashing
function Fy, i.e. hxy = FH(dx).

Let S be a A-dimensional binary (Hamming) space
into which members of H were projected by application
of mapping Fpy.

Then a classificatory pertinence F¢p of the candidate
prototype Pg of K-th class (K < |C|) can be calculated
as follows:

Fep(P) = @ ) Fra(hi, P) =@ ) Fua(hy, P) (1)
IECK f¢CK

whereby P denotes the position of the prototype in
S, Fjq denotes the Hamming distance', /; denotes the
hash "true" document belonging to same class as the
prototype, hy is the vector of the "false" document
belonging to some other class of the training corpus and
a and w are weighting parameters.

In simpler terms, an ideal prototype of category C is
as close as possible to members of C and as far away as
possible from members of other categories.

Given such a definition of an ideal prototype, an ideal
|C|-class classifier I can be trained by searching for such
aset P = {Py, ..., Ppj} of individual prototypes, which
minimize their overall classification pertinence:

K=|L|
I=min Y Fcp(Pg) o)

K=0
In simpler terms, an ideal |C|-class classifier / is com-
posed of |C| individual prototypes which are as close
as possible to documents of their respective categories,

and as far away as possible from all other documents.

Equations 1 and 2 taken together, one obtains a
fitness function which can be optimized by evolutionary
computing algorithms. And given that one explores
the prototypical constellations embedded in a binary
space, one can use canonical genetic algorithms (CGAs,
Goldberg (1990)) for the optimization of the problem of

1Hamming distance of two binary vectors /; and A, is the smallest number of bits of #; which one has to flip in order to obtain A,. It is

equivalent to a number of non-zero bits in a XOR(h,, h,) binary vector.
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discovery of ideal constellation of most pertinent proto-
types. We choose CGAs for three principal reasons:

Primo, we choose CGAs mainly for their property,
proven in Rudolph (1994), to converge to global op-
timum in finite time if ever they are endowed with the
best-individual protecting, elitist strategy. Secundo, one
can obtain practically useful and exploitable increase
in speed simply due to the fact that CGAs are con-
ceived to process binary vectors and do so on CPUs
which are essentially built for processing such vectors.
Tertio, CGAs offer a canonical, well-defined, "base-
line" gateway to much more sophisticated evolutionary
computing (EC) techniques and are well understood by
both neophytes as well as the most experts of the EC
community.

For this reason, we consider as superflous to describe
in closer detail the inner workings of a CGA: instead,
references (Goldberg 1990, Rudolph 1994) are to be
followed and read. Given that the particular values of
mutation and cross-over parameters shall be specified
in the following section, the only thing which in which
the reader now needs to be reassured is her correct
understanding of the nature of datas structures which
the algorithm hereby proposed shall implement, in
order to encode an individual |C|-class classifier:

Given that equation 1 defines a prototype candidate
as a position in A-dimensional Hamming space and
given that equation 2 stipulates that an ideal |C|-class
classifier is to be composed of representations of |C]
ideal prototype candidates, the data structure repre-
senting an individual solution can be constructed by
a simple concatenation of |C| A-dimensional vectors.
Thus, the individual members of the populations which
the CGA shall optimize are, in essentia, nothing else
than binary strings of length |C|*A.

3 CORPUS AND TRAINING PARAMETERS

In order to be able to compare the performance of
our algorithm with non-optimized LSB and SH, same
corpus and dimensionality parameters were chosen as
those, which are already reported in the previous stud-
ies (Salakhutdinov & Hinton 2009, Hromada 2014b).
Thus, dimensionality of the resulting binary hashes
was A=128. Every document of the corpus was hence
attributed a 16-byte long hash.

A so-called "20newsgroups" corpus” has been used.
The corpus contains 18,845 postings taken from the
Usenet newsgroup collection divided into training set
containg 11,314 postings, 7531 being the testing set
(1Dtrainingl = 11313, |Dyegtingl = 7531). Both training
and testing subsets are divided into 20 different news-

Zhttp://qwone.com/ jason/20Newsgroups/

groups which correspond each to a distinct topic. Given
that every distinct topic represents a distinct category
label, |C| = 20.

Documents of the corpus were subjected to a very
trivial form of pre-processing: documents were split
into word-tokens by means of [\w] separator. Stop-
words contained in PERL library Lingua::StopWords
were subsequently discarded. 3000 word types with
highest "inverse document frequency" value were used
as initial terms to which the initial random indexing
iteration attributed 4 non-zero values. Hashing function
Fg = LSB(A = 128,Seed = 3,Iterations = 2)
because there were 2 "reflective" iterations preceding
the ultimate stage of "binarization".

Once hashes were attributed to all documents of
the corpus, the Hamming space S was considered as
constructed and stayed unmodified during all phases of
subsequent optimizations and evaluations. As CGA-
compliant algorithm, the optimization applied gener-
ated the new generation by crossing over two parent so-
lutions chosen by the fitness proportionate (e.g. roulette
wheel) selection operator. Each among 2560 (128*20)
genes was subsequently mutated (i.e. a correspondent
bit was flipped to its opposite value) with probability
of 0.1%. Population contain 200 individuals, zeroth
generation was randomly generated. Elitist strategy was
implemented so that all individuals with equally best fit-
ness survived intact the transition to future generation.
Parameters @ and w (e.g. equation 1) used in fitness
estimation were both set to 1.

Information concerning the category labels guided
the optimization during the training phase. During
the testing phase, such information was used only
for evaluation purposes. Multiple independent runs
were executed and values of precision and recall were
averaged among the runs in order to reduce the impact
of stochastic factors upon the final results.

4 EVALUATION AND RESULTS

Every 250th generation, classificatory accuracy of an
individual solution with minimal overall classification
pertinence (c.f. equation 2) was evaluated in regards
to 7531 documents contained in the testing part of the
corpus. Following aspects of classifier’s performance
were evaluated in order to allow comparison with
the results with Precision-Recall curves presented in
(Salakhutdinov & Hinton 2009, Hromada 2014b):

. Number of retrieved relevant documents
Precision =

Total number of retrieved documents



Number of retrieved relevant documents

Recall =
|Dtesting|

The notion of relevancy is straightforward: an arbi-
trary document Dy contained in the testing corpus is
considered to be relevant to query document Dy if and
only if they were both labeled with the same category
label, LQ = LT.

On the other hand, the correct understanding of what
is meant by "retrieved" is the key to correct under-
standing of the core idea behind the functionality of the
algorithm hereby proposed. That is: the prototypes
induced by the CGA optimization are to be used as
retrieval filters.

We precise: given a hash &g of a query document
do, one can easily identify - among |C| prototypes
encoded as components of an quasi-ideal constellation
I furnished by the CGA - such a prototype Py which is
nearest to hg. Subsequently, each among N documents
whose hashes are N nearest neighbors of the prototype
Py, should be considered as retrieved by dg. Prototypes
discovered during the training phase therefore primarily
specify, during the testing phase, which documents are
to be considered as retrieved, and which not. For
all LSB curves present on Figure 1, the size of such
retrieval neighborhood was set to N=2000.

Also, in order to obtain viable precision-recall
curves, Radius R=(0, ..., A = 128) of the Hamming ball
was used as a tradeoff parameter. For every datapoint
of the plot on Fig. 1, hy was considered as retrieved by
query hg only if the hamming distance of query and the
candidate document was smaller than R (hd(hg, hy) >
R). Points on the very left of the plot correspond thus
correspond to R=0 (i.e. hg and hy collide), while points
on the right correspond to R=128 (i.e. g does not have
a single bit in common with Ay).

As comparison of curves on the figure indicates,
biggest increase in performance is attained by decision
to use prototypes as retrieval filters. Thus, when
one uses the most fit among 200 randomly chosen
prototype constellations as a retrieval filter (c.f. curve
CGAI1(LSB)), one obtains significantly better results
than when does not use any prototypes at all (c.f. curve
"Plain LSB"). If the process is followed by further ge-
netic optimization (c.f. CGAS00 for situation after 500
generations), one observes a non-negligeable increase
of precision in the high recall region of the spectrum.
But it can also be seen that the optimization has its

limits, hence there is a slight decrease between 500th
and 1000th generation which potentially corresponds to
situation whereby the induced prototype constellation
tends to overfit the training dataset. This leads to sub-
sequent decrease in overall accuracy of classification of
documents contained in the testing dataset.

Retrieval from 20newsgroup corpus

Algorithms
Binarized LSA
Semantic Hashin
— Plain LSB
------- CGA1(LSB)

kY --— CGAS00(LSB)
‘\' S — GCGA1000(LSB)

Precision (%)

20
]

T T T T T T T T T
01 02 04 08 16 32 64 128 256 512

Recall {%)

Fig. 1: Retrieval and 20-class classification performance in
128-dimensional binary spaces. Non-LSB results are
reproduced from Figure 6 of study (Salakhutdinov & Hinton
2009), plain LSB from (Hromada 2014b).

Figure 1. also suggests that the genetic discovery of sets
of prototypes - and their corresponding use as retrieval
filters - seems to produce results which are better’
than those produced by both binarized Latent Semantic
Analysis or SH.

5 CONCLUSION

Results hereby presented indicate that supervised lo-
calisation of constellations of semantic prototypes can
significantly increase accuracy of classifiers which use
such constellations as retrieval filters.

Given that the localization of such constellations is
governed by the training corpus but the increase is also
significant in case when one confronts the system with
previously unseen testing corpus, we are allowed to
state that the algorithm hereby introduce is capable

SException to this is SH’s 20% precision at recall level of 51.2%. Note, however, that since on page 6 of their article, Salakhutdinov
& Hinton (2009) claim to have used their hashes as retrieval filters of neighborhood of size N=100, and given that the every size of the
category in a 20newsgroup corpus ~ 390 documents, such a result is not even theoretically possible. This is so because even in case the
classifying system would retrieve only the relevant documents (i.e. precision would be 100%) the maximal attainable recall would still be
just 100/390 ~ 25.6%. Both authors were contacted by mail with a request to rectify possible misunderstanding. Unfortunately, none of

them replied.



of generalization. This was principially attained by
combination of following ideas:

1. projection of documents into low-dimensional
binary space

2. definition of fitness of prototype in terms of
distances to both documents of its category, as
well as distance to document of other categories

3. search for fittest prototype constellations

4. use of the most fit prototype constellation as a
sort of retrieval filter

In spite of its generalizing and thus "machine
learning" capabilities, our algorithms is essentially a
non-connectionist one. Thus, instead of introducing
synapses between neurons, or speaking about edges
between nodes of the graph, briefly, instead of speaking
about deep learning of multi-layer encoders of stacks
of Restricted Boltzmann Machines fine-tuned by back-
propagation as (Salakhutdinov & Hinton 2009) do - we
have found as more preferable to reason in geometric
and evolutionary terms. It is indeed due to this "geo-
metric" perspective that the computational complexity
of the algorithm is fairly low: A|D||C]| for evaluation of
fitness of one individual prototype constellation. #

In practical terms, it is also advantageous that both
fitness function evaluation as well as final retrieval
assess distances in terms of binary hamming distance
measure. In both cases, one can use basic logical op-
erations like XOR + some basic assembler instructions
which would furnish indices allowing to execute sort of
"conceptual goniometry" with particular swift and ease.
Given these properties + the fact that hashes which
are manipulated are fairly small (in one gigabyte of
memory, one can store hashes for 8 million documents),
one can easily predict existence of future application-
specific integrated circuit (ASIC) potentially executing
billions query2document comparisons per second.

Computational aspects aside, our primary motive
in developing the algorithm hereby proposed was to
furnish a sort of cognitively plausible (Hromada 2014a)
"experimental proof" for our doctoral Thesis which
postulates that a sort of evolutionary process exists not
only in the realm of biological species, but also in
realms populated by "species" of a completely different
kind. 1Id est, in realms of linguistic structures and
categories, in realms of word meanings, concepts and,
who knows, maybe even in the realm of mind itself.

Being uncertain about whether the results hereby
presented demonstrate, with sufficient clarity, that it
is reasonable to postulate not only neural (Edelman
1987), but also intramental evolutionary processes, we

conclude by saying that the formula hereby introduced
offers a simple yet quite effective means of solving the
problem of multiclass categorization of texts.
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