University of Edinburgh
Refine
Language
- English (8)
Has Fulltext
- yes (8)
Keywords
- Adjustable Robustness (1)
- Booking (1)
- Competitive equilibrium (1)
- Computational Complexity (1)
- Continuous Optimization (1)
- Convexity (1)
- Entry-exit system (1)
- Equilibrium Problems (1)
- European Entry-Exit Gas Market (1)
- Flow models (1)
We consider equilibrium problems under uncertainty where firms
maximize their profits in a robust way when selling their output. Robust
optimization plays an increasingly important role when best guaranteed objective
values are to be determined, independently of the specific distributional
assumptions regarding uncertainty. In particular, solutions are to be determined
that are feasible regardless of how the uncertainty manifests itself within
some predefined uncertainty set. Our analysis adopts the robust optimization
perspective in the context of equilibrium problems. First, we consider a singlestage,
nonadjustable robust setting. We then go one step further and study the
more complex two-stage or adjustable case where a part of the variables can
adjust to the realization of the uncertainty. We compare equilibrium outcomes
with the corresponding centralized robust optimization problem where the
sum of all profits are maximized. As we find, the market equilibrium for
the perfectly competitive firms differs from the solution of the robust central
planner, which is in stark contrast to classical results regarding the efficiency of
market equilibria with perfectly competitive firms. For the different scenarios
considered, we furthermore are able to determine the resulting price of anarchy.
In the case of non-adjustable robustness, for fixed demand in every time step
the price of anarchy is bounded whereas it is unbounded if the buyers are
modeled by elastic demand functions. For the two-stage adjustable setting,
we show how to compute subsidies for the firms that lead to robust welfare
optimal equilibria.
The European gas market is implemented as an entry-exit system, which aims to decouple transport and trading of gas. It has been modeled in the literature as a multilevel problem, which contains a nonlinear flow model of gas physics. Besides the multilevel structure and the nonlinear flow model, the computation of so-called technical capacities is another major challenge. These lead to nonlinear adjustable robust constraints that are computationally intractable in general. We provide techniques to equivalently reformulate these nonlinear adjustable constraints as finitely many convex constraints including integer variables in the case that the underlying network is tree-shaped. We further derive additional combinatorial constraints that significantly speed up the solution process. Using our results, we can recast the multilevel model as a single-level nonconvex mixed-integer nonlinear problem, which we then solve on a real-world network, namely the Greek gas network, to global optimality. Overall, this is the first time that the considered multilevel entry-exit system can be solved for a real-world sized network and a nonlinear flow model.
While single-level Nash equilibrium problems are quite well understood nowadays, less is known about multi-leader multi-follower games. However, these have important applications, e.g., in the analysis of electricity and gas markets, where often a limited number of firms interacts on various subsequent markets. In this paper, we consider a special class of two-level multi-leader multi-follower games that can be applied, e.g., to model strategic booking decisions in the European entry-exit gas market. For this nontrivial class of games, we develop a solution algorithm that is able to compute the complete set of Nash equilibria instead of just individual solutions or a bigger set of stationary points. Additionally, we prove that for this class of games, the solution set is finite and provide examples for instances without any Nash equilibria in pure strategies. We apply the algorithm to a case study in which we compute strategic booking and nomination decisions in a model of the European entry-exit gas market system. Finally, we use our algorithm to provide a publicly available test library for the considered class of multi-leader multi-follower games. This library contains problem instances with different economic and mathematical properties so that other researchers in the field can test and benchmark newly developed methods for this challenging class of problems.
As a result of its liberalization, the European gas market is organized as an entry-exit system in order to decouple the trading and transport of natural gas. Roughly summarized, the gas market organization consists of four subsequent stages. First, the transmission system operator (TSO) is obliged to allocate so-called maximal technical capacities for the nodes of the network. Second, the TSO and the gas traders sign mid- to long-term capacity-right contracts, where the capacity is bounded above by the allocated technical capacities. These contracts are called bookings. Third, on a day-ahead basis, gas traders can nominate the amount of gas that they inject or withdraw from the network at entry and exit nodes, where the nominated amount is bounded above by the respective booking. Fourth and finally, the TSO has to operate the network such that the nominated amounts of gas can be transported. By signing the booking contract, the TSO guarantees that all possibly resulting nominations can indeed be transported. Consequently, maximal technical capacities have to satisfy that all nominations that comply with these technical capacities can be transported through the network. This leads to a highly challenging mathematical optimization problem. We consider the specific instantiations of this problem in which we assume capacitated linear as well as potential-based flow models. In this contribution, we formally introduce the problem of Computing Technical Capacities (CTC) and prove that it is NP-complete on trees and NP-hard in general. To this end, we first reduce the Subset Sum problem to CTC for the case of capacitated linear flows in trees. Afterward, we extend this result to CTC with potential-based flows and show that this problem is also NP-complete on trees by reducing it to the case of capacitated linear flow. Since the hardness results are obtained for the easiest case, i.e., on tree-shaped networks with capacitated linear as well as potential-based flows, this implies the hardness of CTC for more general graph classes.
Ongoing policy discussions on the reconfiguration of bidding zones in European electricity markets induce uncertainty about the future market design. This paper deals with the question of how this uncertainty affects market participants and their long-run investment decisions in generation and transmission capacity. Generalizing the literature on pro-active network expansion planning, we propose a stochastic multilevel model which incorporates generation capacity investment, network expansion, and market operation, taking into account uncertainty about the future bidding zone configuration. Using a stylized two-node network, we disentangle different effects that uncertainty has on market outcomes. If there is a possibility that future bidding zone configurations provide improved regional price signals, welfare gains materialize even if the change does not actually take place. As a consequence, welfare gains of an actual change of the bidding zone configuration are substantially lower due to those anticipatory effects. Additionally, we show substantial distributional effects in terms of both expected gains and risks, between producers and consumers and between different generation technologies.
Natural gas is important for the energy turnaround in many countries like in Germany, where it serves as a "bridging energy" towards a fossil-free energy supply in the future. About 20% of the total German energy demand is provided by natural gas, which is transported through a complex pipeline network with a total length of about 30000 km and the efficient use of the given transport infrastructure for natural gas is of political, economic, and societal importance.
As a consequence of the liberalization of the European gas market in the last decades, gas trading and transport have been decoupled. This has led to new challenges for gas transport companies, and mathematical optimization is perfectly suited for tackling many of these challenges. However, the underlying mathematical problems are by far too hard to be solved by today's general-purpose software so that novel mathematical theory and algorithms are needed. The industrial research project "ForNe: Research Cooperation Network Optimization" has been initiated and funded by Open Grid Europe in 2009 and brought together experts in mathematical optimization from seven German universities and research institutes, which cover almost the entire range of mathematical optimization: integer and nonlinear optimization as well as optimization under uncertainty.
The mathematical research results have been put together in a software package that has been delivered to Open Grid Europe at the end of the project. Moreover, the research is still continuing - e.g., in the Collaborative Research Center/Transregio 154 "Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks" funded by the German Research Foundation.
Exploiting complete linear descriptions for decentralized power market problems with integralities
(2019)
It is well known that linear prices supporting a competitive equilibrium exist in the case of convex markets, however, in the presence of integralities this is open and hard to decide in general. We present necessary and sufficient conditions for the existence of such prices for decentralized market problems where market participants have integral decision variables and their feasible sets are given in complete linear description. We utilize total unimodularity and the aforementioned conditions to show that such linear prices exist and present some applications. Furthermore, we compute competitive equilibria for two classes of decentralized market problems arising in energy markets and show that competitive equilibria may exist regardless of integralities.
In this work we analyze the structural properties of the set of feasible bookings in the European entry-exit gas market system. We present formal definitions of feasible bookings and then analyze properties that are important if one wants to optimize over them. Thus, we study whether the sets of feasible nominations and bookings are bounded, convex, connected, conic, and star-shaped. The results depend on the specific model of gas flow in a network. Here, we discuss a simple linear flow model with arc capacities as well as nonlinear and mixed-integer nonlinear models of passive and active networks, respectively. It turns out that the set of feasible bookings has some unintuitive properties. For instance, we show that the set is nonconvex even though only a simple linear flow model is used.