## B08

### Refine

#### Keywords

The economics of global green ammonia trade – "Shipping Australian wind and sunshine to Germany"
(2023)

This paper contributes to understanding the transformation of global energy trade to green energy carriers, focusing on green ammonia as the foreseeable first green hydrogen carrier. We provide a comprehensive overview of today's ammonia trade and assess scaling options for the trade of green ammonia. To that aim, we develop an optimization model for the integrated assessment of the green ammonia value chain that covers all steps from green ammonia production in an exporting country, up to delivery to a harbor in an importing country. The model endogenously chooses among different technology options and determines cost minimal operation. In a case study, we apply the model to the large-scale import of ammonia from Australia to Germany in a scenario for 2030. The results show that green ammonia can reach cost parity with gray ammonia even for moderate gas prices (but not necessarily with blue ammonia) if CO2 prices are high enough. We also provide a sensitivity analysis with respect to the interest rate and other key technical and economic parameters and show that cracking ammonia to provide pure hydrogen comes at a 45 % cost markup per MWh at the destination.

Although modern societies strive towards energy systems that are entirely based on renewable energy carriers, natural gas is still one of the most important energy sources. This became even more obvious in Europe with Russia's 2022 war against the Ukraine and the resulting stop of gas supplies from Russia. Besides that it is very important to use this scarce resource efficiently. To this end, it is also of significant relevance that its transport is organized in the most efficient, i.e., cost- or energy-efficient, way. The corresponding mathematical optimization models have gained a lot of attention in the last decades in different optimization communities. These models are highly nonlinear mixed-integer problems that are constrained by algebraic constraints and partial differential equations (PDEs), which usually leads to models that are not tractable. Hence, simplifications have to be made and in this chapter, we present a commonly accepted finite-dimensional stationary model, i.e., a model in which the steady-state solutions of the PDEs are approximated with algebraic constraints. For more details about the involved PDEs and the treatment of transient descriptions we refer to Hante and Schmidt (2023). The presented finite-dimensional as well as mixed-integer nonlinear and nonconvex model is still highly challenging if it needs to be solved for real-world gas transport networks. Hence, we also review some classic solution approaches from the literature.

The optimal control of gas transport networks was and still is a very important topic for modern economies and societies. Accordingly, a lot of research has been carried out on this topic during the last years and decades. Besides mixed-integer aspects in gas transport network optimization, one of the main challenges is that a physically and technically detailed modeling of transient gas dynamics leads to theoretically and computationally highly demanding models involving nonlinear partial differential equations (PDEs). For further background on the application, historical notes and a detailed discussion of mixed-integer aspects for stationary descriptions we refer to Hante and Schmidt (2023). In this chapter, we focus on the most common modeling approaches concerning transient descriptions, point out the challenges, and summarize important contributions concerning the optimization of the most relevant control parameters for this particular class of problems.

We consider dynamic gas transport optimization problems, which lead to large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on graphs. Usually, the resulting instances are too challenging to be solved by state-of-the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple optimization problems on smaller blocks, which can be solved in parallel and which may result in simpler classes of optimization problems since not every block necessarily contains mixed-integer or nonlinear aspects. For achieving feasibility at the interfaces of the several blocks, we employ a tailored consensus-based penalty alternating direction method. Our numerical results show that such decomposition techniques can outperform the baseline approach of just solving the overall MINLP from scratch. However, a complete answer to the question of how to decompose MINLPs on graphs in dependence of the given model is still an open topic for future research.

We study network flow interdiction problems with nonlinear and nonconvex flow models. The resulting model is a max-min bilevel optimization problem in which the follower's problem is nonlinear and nonconvex. In this game, the leader attacks a limited number of arcs with the goal to maximize the load shed and the follower aims at minimizing the load shed by solving a transport problem in the interdicted network. We develop an exact algorithm consisting of lower and upper bounding schemes that computes an optimal interdiction under the assumption that the interdicted network remains weakly connected. The main challenge consists of computing valid upper bounds for the maximal load shed, whereas lower bounds can directly be derived from the follower's problem. To compute an upper bound, we propose solving a specific bilevel problem, which is derived from restricting the flexibility of the follower when adjusting the load flow. This bilevel problem still has a nonlinear and nonconvex follower's problem, for which we then prove necessary and sufficient optimality conditions. Consequently, we obtain equivalent single-level reformulations of the specific bilevel model to compute upper bounds. Our numerical results show the applicability of this exact approach using the example of gas networks.

We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate between solving a master problem, which is a mixed-integer linear relaxation of the original problem, and a subproblem, which is designed to tighten the linear relaxation of the next master problem by using the Lipschitz information about the respective functions. By doing so, we follow the ideas of Schmidt et al. (2018, 2021) and improve the tackling of multivariate constraints. Although multivariate nonlinearities obviously increase modeling capabilities, their incorporation also significantly increases the computational burden of the proposed algorithm. We prove the correctness of our method and also derive a worst-case iteration bound. Finally, we show the generality of the addressed problem class and the proposed method by illustrating that both bilevel optimization problems with nonconvex and quadratic lower levels as well as nonlinear and mixed-integer models of gas transport can be tackled by our method. We provide the necessary theory for both applications and briefly illustrate the outcomes of the new method when applied to these two problems.

We propose an algorithm for solving bilevel problems with mixed-integer convex-quadratic upper level as well as convex-quadratic and continuous lower level. The method is based on a classic branch-and-bound procedure, where branching is performed on the integer constraints and on the complementarity constraints resulting from the KKT reformulation of the lower-level problem. However, instead of branching on constraints as usual, suitably chosen penalty terms are added to the objective function in order to create new subproblems in the tree. We prove the correctness of the method and present its applicability by some first numerical results.

Bilevel problems are used to model the interaction between two decision makers in which the lower-level problem, the so-called follower's problem, appears as a constraint in the upper-level problem of the so-called leader. One issue in many practical situations is that the follower's problem is not explicitly known by the leader. For such bilevel problems with unknown lower-level model we propose the use of neural networks to learn the follower's optimal response for given decisions of the leader based on available historical data of pairs of leader and follower decisions. Integrating the resulting neural network in a single-level reformulation of the bilevel problem leads to a challenging model with a black-box constraint. We exploit Lipschitz optimization techniques from the literature to solve this reformulation and illustrate the applicability of the proposed method with some preliminary case studies using academic and linear bilevel instances.

Due to the transition towards climate neutrality, energy markets are rapidly evolving. New technologies are developed that allow electricity from renewable energy sources to be stored or to be converted into other energy commodities. As a consequence, new players enter the markets and existing players gain more importance. Market equilibrium problems are capable of capturing these changes and therefore enable us to answer contemporary research questions with regard to energy market design and climate policy.
This cumulative dissertation is devoted to the study of different market equilibrium problems that address such emerging aspects in liberalized energy markets. In the first part, we review a well-studied competitive equilibrium model for energy commodity markets and extend this model by sector coupling, by temporal coupling, and by a more detailed representation of physical laws and technical requirements. Moreover, we summarize our main contributions of the last years with respect to analyzing the market equilibria of the resulting equilibrium problems.
For the extension regarding sector coupling, we derive sufficient conditions for ensuring uniqueness of the short-run equilibrium a priori and for verifying uniqueness of the long-run equilibrium a posteriori. Furthermore, we present illustrative examples that each of the derived conditions is indeed necessary to guarantee uniqueness in general.
For the extension regarding temporal coupling, we provide sufficient conditions for ensuring uniqueness of demand and production a priori. These conditions also imply uniqueness of the short-run equilibrium in case of a single storage operator. However, in case of multiple storage operators, examples illustrate that charging and discharging decisions are not unique in general. We conclude the equilibrium analysis with an a posteriori criterion for verifying uniqueness of a given short-run equilibrium. Since the computation of equilibria is much more challenging due to the temporal coupling, we shortly review why a tailored parallel and distributed alternating direction method of multipliers enables to efficiently compute market equilibria.
For the extension regarding physical laws and technical requirements, we show that, in nonconvex settings, existence of an equilibrium is not guaranteed and that the fundamental welfare theorems therefore fail to hold. In addition, we argue that the welfare theorems can be re-established in a market design in which the system operator is committed to a welfare objective. For the case of a profit-maximizing system operator, we propose an algorithm that indicates existence of an equilibrium and that computes an equilibrium in the case of existence. Based on well-known instances from the literature on the gas and electricity sector, we demonstrate the broad applicability of our algorithm. Our computational results suggest that an equilibrium often exists for an application involving nonconvex but continuous stationary gas physics. In turn, integralities introduced due to the switchability of DC lines in DC electricity networks lead to many instances without an equilibrium. Finally, we state sufficient conditions under which the gas application has a unique equilibrium and the line switching application has finitely many.
In the second part, all preprints belonging to this cumulative dissertation are provided. These preprints, as well as two journal articles to which the author of this thesis contributed, are referenced within the extended summary in the first part and contain more details.

Bilevel optimization is a very active field of applied mathematics. The main reason is that bilevel optimization problems can serve as a powerful tool for modeling hierarchical decision making processes. This ability, however, also makes the resulting problems challenging to solve - both in theory and practice. Fortunately, there have been significant algorithmic advances in the field of bilevel optimization so that we can solve much larger and also more complicated problems today compared to what was possible to solve two decades ago. This results in more and more challenging bilevel problems that researchers try to solve today. This survey gives a detailed overview of one of these more challenging classes of bilevel problems: bilevel optimization under uncertainty. We review the classic ways of addressing uncertainties in bilevel optimization using stochastic or robust techniques. Moreover, we highlight that the sources of uncertainty in bilevel optimization are much richer than for usual, i.e., single-level, problems since not only the problem's data can be uncertain but also the (observation of the) decisions of the two players can be subject to uncertainty. We thus also review the field of bilevel optimization under limited observability, the area of problems considering only near-optimal decisions, and discuss intermediate solution concepts between the optimistic and pessimistic cases. Finally, we also review the rich literature on applications studied using uncertain bilevel problems such as in energy, for interdiction games and security applications, in management sciences, and networks.