## C03

### Refine

#### Year of publication

#### Language

- English (81)

#### Keywords

- optimal control (6)
- Gas Networks (3)
- Nodal Control (3)
- Probabilistic Constraints (3)
- Turnpike (3)
- Turnpike phenomenon (3)
- Kernel Density Estimator (2)
- Riccati equations (2)
- Spheric Radial Decomposition (2)
- descriptor systems (2)

The optimal control problems for the wave equation are considered on networks. The turnpike property is shown for the state equation, the adjoint state equation as well as the optimal cost. The shape and topology optimization is performed for the network with the shape functional given by the optimality system of the control problem. The set of admissible shapes for the network is compact in finite dimensions, thus the use of turnpike property is straightforward. The topology optimization is analysed for an example of nucleation of a small cycle at the internal node of network. The topological derivative of the cost is introduced and evaluated in the framework of domain decomposition technique. Numerical examples are provided.

We consider the Euler equations for a pipeline flow of a mixture of two gases. An important application is hydrogen blending. Existence and uniqueness of semi-global solutions is shown and possible boundary conditions are analyzed.
Secondly, we consider classes of associated optimal control problems and show existence of solutions.

In the operation of pipeline networks, compressors play a crucial role in ensuring the network’s functionality for various scenarios. In this contribution we address the important question of finding the optimal location of the compressors. This problem is of a novel structure, since it is related
with the gas dynamics that governs the network flow. That results in non-convex mixed integer stochastic optimization problems with probabilistic constraints.
Using a steady state model for the gas flow in pipeline networks including compressor control and uncertain loads given by certain probability distributions, the problem of finding the optimal location for the
control on the network, s.t. the control cost is minimal and the gas pressure stays within given bounds, is considered.
In the deterministic setting, explicit bounds for the pipe length and the inlet pressure, s.t. a unique optimal compressor location with minimal control cost exists, are presented. In the probabilistic setting,
an existence result for the optimal compressor location is presented and the uniqueness of the solution is discussed depending on the probability distribution. For Gaussian distributed loads a uniqueness result
for the optimal compressor location is presented.
Further the problem of finding the optimal compressor locations on networks including the number of compressor stations as variable is considered. Results for the existence of optimal locations on a graph in
both, the deterministic and the probabilistic setting, are presented and the uniqueness of the solutions is discussed depending on probability distributions and graph topology. The paper concludes with an illustrative example demonstrating that the compressor locations determined using a steady state approach are also admissible in transient settings.

On the Convergence of Optimization Problems with Kernel Density Estimated Probabilistic Constraints
(2024)

Uncertainty plays a significant role in applied mathematics and probabilistic constraints are widely used to model uncertainty in various fields, even if probabilistic constraints often demand computational challenges. Kernel density estimation (KDE) provides a data-driven approach for properly estimating probability density functions and efficiently evaluate corresponding probabilities.
In this paper, we investigate optimization problems with probabilistic constraints, where the probabilities are approximated using a KDE approach. We establish sufficient conditions under which the solution of the KDE approximated optimization problem converges to the solution of the original problem as the sample size goes to infinity.
The main results of this paper include three theorems: (1) For sufficiently large sample sizes, the solution of the original problem is also a solution of the approximated problem, if the probabilistic constraint is passive; (2) The limit of a convergent sequence of solutions of the approximated problems is a solution of the original problem, if the KDE uniformly converges; (3) We provide sufficient conditions for the existence of a convergent sequence of solutions of the approximated problems.

An Observer for pipeline flow with hydrogen blending in gas networks: exponential synchronization
(2024)

We consider a state estimation problem for gas flows in pipeline networks where hydrogen is blended into the natural gas. The flow is modeled by the quasi-linear isothermal Euler equations coupled to an advection equation on a graph. The flow through the vertices where the pipes are connected is governed by algebraic node conditions. The state is approximated by an observer system that uses nodal measurements. We prove that the state of the observer system converges to the original system state exponentially fast in the L2-norm if the measurements are exact. If measurement errors are present we show that the observer state approximates the original system state up to an error that is proportional to the maximal measurement error. The proof of the synchronization result uses Lyapunov functions with exponential weights.

The dynamical, boundary optimal control problems
on networks are considered. The domain of definition for the distributed parameter system is given by a graph G. The optimal cost function for control problem is further optimized with respect to the shape and topology of the graph Ω. The small cycle is introduced and the topological derivative of the cost with respect to the size of the cycle is determined. In this way, the singular perturbations of the graph can be analyzed in order to change the topology Ω. The topological derivative method in shape and topology optimization is a new tool which can be used to minimize the shape functionals under the Partial Differential
Equations (PDEs) constraints. The topological derivative is used as well for solution of optimum design problems for graphs. In optimal control problems the topological derivative is used for
optimum design of the domain of integration of the state equation. As an example, optimal control problems are considered on a cross with a small cycle. The state equation is the wave equation
on the graph. The boundary control problem by Neumann
conditions at a boundary vertex is solved for a tracking cost function. The shape functional is given by the optimal value of the control cost. The topological derivative of the shape functional is determined for the steady state model with the size of a cycle ε → 0. Numerical results for a model problem are presented.

In the transition to renewable energy sources, hydrogen will potentially play an important role for energy storage. The efficient transport of this gas is possible via pipelines. An understanding of the possibilities to control the gas flow in pipelines is one of the main building blocks towards the optimal use of gas.
For the operation of gas transport networks it is important to take into account the randomness of the consumers’ demand, where often information on the probability distribution is available.
Hence in an efficient optimal control model the corresponding probability should be included and the optimal control should be such that the state that is generated by the optimal control satisfies given state constraints with large probability. We comment on the modelling of gas pipeline flow and the problems of optimal nodal control with random demand, where the aim of the optimization is to determine controls that generate states that satisfy given pressure bounds with large probability. We include the H2 norm of the control as control cost, since this avoids large pressure fluctuations which are harmful in the transport of hydrogen since they can cause
embrittlement of the pipeline metal.

We analyse the turnpike properties for a general, infinite dimensional, linear-quadratic (LQ) optimal control problem, both in the deterministic and in the stochastic case.
The novelty of the paper is twofold. Firstly, it obtains positive turnpike results for
systems that are (partially) uncontrollable. Secondly, it provides turnpike results for averaged control associated to a family of problems that depend on a random parameter, which is the first turnpike type result in the averaged controllability framework.

In this paper we analyze the turnpike phenomenon for optimal boundary control problems with a linear transport equation with source term. The convex objective function depends on
the boundary traces of the transport equation and is strictly convex with respect to the boundary control. We show an integral turnpike result for an optimal Dirichlet boundary control problem in the sense that if the time horizon goes to infinity, then the dynamic optimal control converges to
the corresponding steady state optimal control.
The novelty of this work is two-sided. On the one hand, even if turnpike results for this kind of optimal boundary control problem already exist, we present a new direct proof without using adjoint calculus that leads to sharper estimates. On the other hand we consider uncertainty in
the initial data and/or in the source term. We show that the integral turnpike result also holds considering uncertainty. Throughout the paper we use numerical examples to illustrate the results.

The European gas market is governed by rules that are agreed on by the European Union. We present a mathematical market model that
takes into account this structure, where the technical system operator (TSO)
offers certain transportation capacities that can be booked and later nominated within the previously chosen bookings. The TSO also fixes booking fees and defines an operational control of the gas pipeline system in order to deliver the gas according to the nominations. Since the gas
flow is governed by a system of partial differential equations, to realize this control structure partial differential equations (PDEs) should be involved in the model.
While the four level gas market model has been discussed previously, in this
paper we take into account the
flow model by PDEs in the discussion of the model and in the reduction to a single level problem, where we also state the corresponding necessary optimality conditions.