## B06

The input parameters of an optimization problem are often affected by uncertainties. Chance constraints are a common way to model stochastic uncertainties in the constraints. Typically, algorithms for solving chance-constrained problems require convex functions or discrete probability distributions. In this work, we go one step further and allow non-convexities as well as continuous distributions. We propose a gradient-based approach to approximately solve joint chance-constrained models. We approximate the original problem by smoothing indicator functions. Then, the smoothed chance constraints are relaxed by penalizing their violation in the objective function. The approximation problem is solved with the Continuous Stochastic Gradient method that is an enhanced version of the stochastic gradient descent and has recently been introduced in the literature. We present a convergence theory for the smoothing and penalty approximations. Under very mild assumptions, our approach is applicable to a wide range of chance-constrained optimization problems. As an example, we illustrate its computational efficiency on difficult practical problems arising in the operation of gas networks. The numerical experiments demonstrate that the approach quickly finds nearly feasible solutions for joint chance-constrained problems with non-convex constraint functions and continuous distributions, even for realistically-sized instances.

Stochastic Optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. As the latter is often unknown, Distributionally Robust Optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy which converges at a rate of $ O(\log T / \sqrt{T})$, where $T$ is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations.

In many real-world mixed-integer optimisation problems from engineering, the side
constraints can be subdivided into two categories: constraints which describe a certain logic to model a feasible allocation of resources (such as a maximal number of available assets, working time requirements, maintenance requirements, contractual obligations, etc.),
and constraints which model physical processes and the related quantities (such as current,
pressure, temperature, etc.). While the first type of constraints can often easily be stated in
terms of a mixed-integer program (MIP), the second part may involve the incorporation of
complex non-linearities, partial differential equations or even a black-box simulation of the
involved physical process. In this work, we propose the integration of a trained tree-based
classifier – a decision-tree or a random forest, into a mixed-integer optimization model as a
possible remedy. We assume that the classifier has been trained on data points produced
by a detailed simulation of a given complex process to represent the functional relationship
between the involved physical quantities. We then derive MIP-representable reformulations
of the trained classifier such that the resulting model can be solved using state-of-the-art
solvers. At the hand of several use cases in terms of possible optimisation goals, we show
the broad applicability of our framework that is easily extendable to other tasks beyond
engineering. In a detailed real-world computational study for the design of stable direct-
current power networks, we demonstrate that our approach yields high-quality solutions
in reasonable computation times.

Robust DC Optimal Power Flow with Modeling of Solar Power Supply Uncertainty via R-Vine Copulas
(2021)

We present a robust approximation of joint chance constrained DC Optimal Power Flow in combination with a model-based prediction of uncertain power supply via R-vine copulas.
It is applied to optimize the discrete curtailment of solar feed-in in an electrical distribution network and guarantees network stability under fluctuating feed-in.
This is modeled by a two-stage mixed-integer stochastic optimization problem proposed by Aigner et al. (European Journal of Operational Research, (2021)).
The solution approach is based on the approximation of chance constraints via robust constraints using suitable uncertainty sets.
The resulting robust optimization problem has a known equivalent tractable reformulation.
To compute uncertainty sets that lead to an inner approximation of the stochastic problem, an R-vine copula model is fitted to the distribution of the multi-dimensional power forecast error, i.e., the difference between the forecasted solar power and the measured feed-in at several network nodes.
The uncertainty sets are determined by encompassing a sufficient number of samples drawn from the R-vine copula model.
Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which can be used to draw conditional samples for given solar radiation forecasts.
The experimental results obtained for real-world weather and network data demonstrate the effectiveness of the combination of stochastic programming and model-based prediction of uncertainty via copulas.
We improve the outcomes of previous work by showing that the resulting uncertainty sets are much smaller and lead to less conservative solutions while maintaining the same probabilistic guarantees.

In a recent article the so called continuous stochastic gradient method (CSG) for the eﬃcient solution of a class of stochastic optimization problems was introduced. While the applicability of known stochastic gradient type methods is typically limited to so called expected risk functions, no such limitation exists for CSG. The key to this lies in the computation of design dependent integration weights, which allows for an optimal usage of available information leading to stronger convergence properties. However, due to the nature of the formula for these integration weights, the practical applicability was essentially limited to problems, in which stochasticity enters via a low-dimensional and suﬁciently simple probability distribution. In this paper the scope of the CSG method is signiﬁcantly extended presenting new ways of calculating the integration weights. A full convergence analysis for this new variant of the CSG method is presented and its eﬃciency is demonstrated in comparison to more classical stochastic gradient methods by means of a number of problem classes, relevant in stochastic optimization and machine learning.

This work studies robust gas network optimization under uncertainties in demand and in the physical parameters. The corresponding optimization problems are nonconvex in node pressures and flows along the pipes. They are thus very difficult to solve for realistic instance sizes. In recent approaches, an adaptive bundle method has been developed, where one solves the occurring adversarial problems via iteratively refined piecewise linear relaxations. These subproblems need to be solved always from scratch using mixed-integer linear programming (MIP). As alternative to the MIP solver, we employ here a nonsmooth optimization approach that allows a warm start strategy such that it can profit from the results obtained for coarser relaxations. We evaluate the approach for realistic gas network topologies and outline possibilities for future research.

Pareto efficiency for robust linear programs was introduced by
Iancu and Trichakis in [9]. We generalize their approach and theoretical results
to robust optimization problems in Euclidean spaces with linear uncertainty.
Additionally, we demonstrate the value of this approach in an exemplary
manner in the area of robust semidefinite programming (SDP). In particular,
we prove that computing a Pareto robustly optimal solution for a robust SDP
is tractable and illustrate the benefit of such solutions at the example of the
maximal eigenvalue problem. Furthermore, we modify the famous algorithm of
Goemans and Williamson [8] in order to compute cuts for the robust max cut
problem that yield an improved approximation guarantee in non-worst-case
scenarios.

We consider equilibrium problems under uncertainty where firms
maximize their profits in a robust way when selling their output. Robust
optimization plays an increasingly important role when best guaranteed objective
values are to be determined, independently of the specific distributional
assumptions regarding uncertainty. In particular, solutions are to be determined
that are feasible regardless of how the uncertainty manifests itself within
some predefined uncertainty set. Our analysis adopts the robust optimization
perspective in the context of equilibrium problems. First, we consider a singlestage,
nonadjustable robust setting. We then go one step further and study the
more complex two-stage or adjustable case where a part of the variables can
adjust to the realization of the uncertainty. We compare equilibrium outcomes
with the corresponding centralized robust optimization problem where the
sum of all profits are maximized. As we find, the market equilibrium for
the perfectly competitive firms differs from the solution of the robust central
planner, which is in stark contrast to classical results regarding the efficiency of
market equilibria with perfectly competitive firms. For the different scenarios
considered, we furthermore are able to determine the resulting price of anarchy.
In the case of non-adjustable robustness, for fixed demand in every time step
the price of anarchy is bounded whereas it is unbounded if the buyers are
modeled by elastic demand functions. For the two-stage adjustable setting,
we show how to compute subsidies for the firms that lead to robust welfare
optimal equilibria.

Currently, few approaches are available for mixed-integer nonlinear robust optimization. Those that do exist typically either require restrictive assumptions on the problem structure or do not guarantee robust protection. In this work, we develop an algorithm for convex mixed-integer nonlinear robust optimization problems where a key feature is that the method does not rely on a specific structure of the inner worst-case (adversarial) problem and allows the latter to be non-convex. A major challenge of such a general nonlinear setting is ensuring robust protection, as this calls for a global solution of the non-convex adversarial problem. Our method is able to achieve this up to a tolerance, by requiring worst-case evaluations only up to a certain precision. For example, the necessary assumptions can be met by approximating a non-convex adversarial via piecewise relaxations and solving the resulting problem up to any requested error as a mixed-integer linear problem.
In our approach, we model a robust optimization problem as a nonsmooth mixed-integer nonlinear problem and tackle it by an outer approximation method that requires only inexact function values and subgradients. To deal with the arising nonlinear subproblems, we render an adaptive bundle method applicable to this setting and extend it to generate cutting planes, which are valid up to a known precision. Relying on its convergence to approximate critical points, we prove, as a consequence, finite convergence of the outer approximation algorithm.
As an application, we study the gas transport problem under uncertainties in demand and physical parameters on realistic instances and provide computational results demonstrating the efficiency of our method.

We study the robust maximum flow problem and the robust maximum flow over time problem where a given number of arcs Γ may fail or may be delayed. Two prominent models have been introduced for these problems: either one assigns flow to arcs fulfilling weak flow conservation in any scenario, or one assigns flow to paths where an arc failure or delay affects a whole path. We provide a unifying framework by presenting novel general models, in which we assign flow to subpaths. These models contain the known models as special cases and unify their advantages in order to obtain less conservative robust solutions.
We give a thorough analysis with respect to complexity of the general models. In particular, we show that the general models are essentially NP-hard, whereas, e.g. in the static case with Γ=1 an optimal solution can be computed in polynomial time. Further, we answer the open question about the complexity of the dynamic path model for Γ=1. We also compare the solution quality of the different models. In detail, we show that the general models have better robust optimal values than the known models and we prove bounds on these gaps.