## Zuse-Institut Berlin (ZIB)

### Refine

#### Keywords

- gas compressor modeling (2)
- polyhedral model (2)
- Active Signature Method (1)
- Black-box Optimization (1)
- Derivative-free Optimization (1)
- Euler-Gleichungen, isotherme Euler-Gleichungen, Modellhierarchie, Netzelemente (1)
- Frank-Wolfe algorithm (1)
- Global Optimization (1)
- Lipschitz Optimization (1)
- MINLP model (1)

With this overview we want to provide a compilation of different models for
the description of gas flow in networks in order to facilitate the introduction
to the topic. Special attention is paid to the hierarchical structure inherent
to the modeling, and the detailed description of individual components such
as valves and compressors. Also included are network model classes based
on purely algebraic relations, and energy-based port-Hamiltonian models. A
short overview of basic numerical methods and concepts for the treatment
of hyperbolic balance equations is also given. We do not claim completeness
and refer in many places to the existing literature.

Optimal control problems usually involve constraints which model physical states and their possible transitions. These are represented by ordinary or partial differential equations (ODEs/PDEs) which add a component of infinite dimension to the problem. In recent literature, one method to simulate such ODEs/PDEs are physics-informed neural networks. Typically, neural networks are highly non-linear which makes their addition to optimization problems challenging. Hence, we leverage their often available Lipschitz property on a compact domain. The respective Lipschitz constants have to be computed only once and are accessible thereafter.
We present a method that, based on this property, iteratively adds cuts involving the violation of the constraints by the current incumbent and the Lipschitz constant. Hereby, the “shape” of a cut depends on the norm used. We prove the correctness of the method by showing that it either returns an optimal solution when terminating or creates a sequence with optimal accumulation points. This is complemented by a discussion about the termination in the infeasible case, as well as an analysis of the problem complexity. For the analysis, we show that the lower and upper iteration bound asymptotically coincide when the relative approximation error goes to zero. In the end, we visualize the method on a small example based on a two-dimensional non-convex optimization problem, as well as stress the necessity of having a globally optimal oracle for the sub-problems by another example.

We propose an algorithm which appears to be the first bridge between the fields of conditional gradient methods and abs-smooth optimization. Our nonsmooth nonconvex problem setting is motivated by machine learning, since the broad class of abs-smooth functions includes, for instance, the squared $\ell_2$-error of a neural network with ReLU or hinge Loss activation. To overcome the nonsmoothness in our problem, we propose a generalization to the traditional Frank-Wolfe gap and prove that first-order minimality is achieved when it vanishes. We derive a convergence rate for our algorithm which is identical to the smooth case. Although our algorithm necessitates the solution of a subproblem which is more challenging than the smooth case, we provide an efficient numerical method for its partial solution, and we identify several applications where our approach fully solves the subproblem. Numerical and theoretical convergence is demonstrated, yielding several conjectures.

Stochastic Optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. As the latter is often unknown, Distributionally Robust Optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy which converges at a rate of $ O(\log T / \sqrt{T})$, where $T$ is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations.

We propose a mathematical optimization model and its solution for joint chance constrained DC Optimal Power Flow. In this application, it is particularly important that there is a high probability of transmission limits being satisfied, even in the case of uncertain or fluctuating feed-in from renewable energy sources. In critical network situations where the network risks overload, renewable energy feed-in has to be curtailed by the transmission system operator (TSO). The TSO can reduce the feed-in in discrete steps at each network node. The proposed optimization model minimizes curtailment while ensuring that there is a high probability of transmission limits being maintained. The latter is modeled via (joint) chance constraints that are computationally challenging. Thus, we propose a solution approach based on the robust safe approximation of these constraints. Hereby, probabilistic constraints are replaced by robust constraints with suitably defined uncertainty sets constructed from historical data. The uncertainty sets are calculated by encompassing randomly drawn scenarios using the scenario approach proposed by Margellos et al. (IEEE Transactions on Automatic Control, 59 (2014)). The ability to discretely control the power feed-in then leads to a robust optimization problem with decision-dependent uncertainties, i.e. the uncertainty sets depend on decision variables. We propose an equivalent mixed-integer linear reformulation for box uncertainties with the exact linearization of bilinear terms. Finally, we present numerical results for different test cases from the Nesta archive, as well as for a real network. We consider the discrete curtailment of solar feed-in, for which we use real-world weather and network data. The experimental tests demonstrate the effectiveness of this method and run times are very fast. Moreover, on average the calculated robust solutions lead only to a small increase in curtailment, when compared to nominal solutions.

Natural gas is important for the energy turnaround in many countries like in Germany, where it serves as a "bridging energy" towards a fossil-free energy supply in the future. About 20% of the total German energy demand is provided by natural gas, which is transported through a complex pipeline network with a total length of about 30000 km and the efficient use of the given transport infrastructure for natural gas is of political, economic, and societal importance.
As a consequence of the liberalization of the European gas market in the last decades, gas trading and transport have been decoupled. This has led to new challenges for gas transport companies, and mathematical optimization is perfectly suited for tackling many of these challenges. However, the underlying mathematical problems are by far too hard to be solved by today's general-purpose software so that novel mathematical theory and algorithms are needed. The industrial research project "ForNe: Research Cooperation Network Optimization" has been initiated and funded by Open Grid Europe in 2009 and brought together experts in mathematical optimization from seven German universities and research institutes, which cover almost the entire range of mathematical optimization: integer and nonlinear optimization as well as optimization under uncertainty.
The mathematical research results have been put together in a software package that has been delivered to Open Grid Europe at the end of the project. Moreover, the research is still continuing - e.g., in the Collaborative Research Center/Transregio 154 "Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks" funded by the German Research Foundation.

Improving branching for disjunctive polyhedral models using approximate convex decompositions
(2017)

Disjunctive sets arise in a variety of optimization models and much esearch has been devoted to obtain strong relaxations for them. This paper focuses on the evaluation of the relaxation during the branch-and-bound search process. We argue that the branching possibilities (\ie binary variables) of the usual formulations are unsuitable to obtain strong bounds early in the search process as they do not capture the overall shape of the the entire disjunctive set. To analyze and exploit the shape of the disjunctive set we propose to compute a hierarchy of approximate convex decompositions and show how to extend the known formulations to obtain improved branching behavior.

Gas networks are an important application area for optimization. When considering long-range transmission, compressor stations play a crucial role in these applications. The purpose of this report is to collect and systematize the models used for compressor stations in the literature. The emphasis is on recent work on simple yet accurate polyhedral models that may replace more simplified traditional models without increasing model complexity. The report also describes an extension of the compressor station data available in GasLib (http://gaslib.zib.de/) with the parameters of these models.

Compressor machines are crucial elements in a gas transmission network, required to compensate for the pressure loss caused by friction in the pipes. Modelling all physical and technical details of a compressor machine involves a large amount of nonlinearity, which makes it hard to use such models in the optimization of large-scale gas networks. In this paper, we are going to describe a modelling approach for the operating range of a compressor machine, starting from a physical reference model and resulting in a polyhedral representation in the 3D space of mass flow throughput as well as in- and outlet pressure.

We consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. In particular, we propose a refined model that allows to precompute tighter relaxations for each operation mode. These relaxations may be used to strengthen the compressor station submodels in gas network optimization problems. We provide a procedure to obtain the refined model from the input data for the original model. This procedure is based on a nontrivial reduction of the graph representing the gas flow through the compressor station in an operation mode.