## Friedrich-Alexander-Universität Erlangen-Nürnberg

### Refine

#### Year of publication

#### Keywords

- Bilevel optimization (8)
- Optimal control (7)
- Gas networks (6)
- Uniqueness (6)
- Convergence (5)
- Networks (5)
- Robust optimization (5)
- robust optimization (5)
- Branch-and-cut (4)
- Mixed-Integer Nonlinear Optimization (4)

Optimal control problems usually involve constraints which model physical states and their possible transitions. These are represented by ordinary or partial differential equations (ODEs/PDEs) which add a component of infinite dimension to the problem. In recent literature, one method to simulate such ODEs/PDEs are physics-informed neural networks. Typically, neural networks are highly non-linear which makes their addition to optimization problems challenging. Hence, we leverage their often available Lipschitz property on a compact domain. The respective Lipschitz constants have to be computed only once and are accessible thereafter.
We present a method that, based on this property, iteratively adds cuts involving the violation of the constraints by the current incumbent and the Lipschitz constant. Hereby, the “shape” of a cut depends on the norm used. We prove the correctness of the method by showing that it either returns an optimal solution when terminating or creates a sequence with optimal accumulation points. This is complemented by a discussion about the termination in the infeasible case, as well as an analysis of the problem complexity. For the analysis, we show that the lower and upper iteration bound asymptotically coincide when the relative approximation error goes to zero. In the end, we visualize the method on a small example based on a two-dimensional non-convex optimization problem, as well as stress the necessity of having a globally optimal oracle for the sub-problems by another example.

In the transition to renewable energy sources, hydrogen will potentially play an important role for energy storage. The efficient transport of this gas is possible via pipelines. An understanding of the possibilities to control the gas flow in pipelines is one of the main building blocks towards the optimal use of gas.
For the operation of gas transport networks it is important to take into account the randomness of the consumers’ demand, where often information on the probability distribution is available.
Hence in an efficient optimal control model the corresponding probability should be included and the optimal control should be such that the state that is generated by the optimal control satisfies given state constraints with large probability. We comment on the modelling of gas pipeline flow and the problems of optimal nodal control with random demand, where the aim of the optimization is to determine controls that generate states that satisfy given pressure bounds with large probability. We include the H2 norm of the control as control cost, since this avoids large pressure fluctuations which are harmful in the transport of hydrogen since they can cause
embrittlement of the pipeline metal.

We analyse the turnpike properties for a general, infinite dimensional, linear-quadratic (LQ) optimal control problem, both in the deterministic and in the stochastic case.
The novelty of the paper is twofold. Firstly, it obtains positive turnpike results for
systems that are (partially) uncontrollable. Secondly, it provides turnpike results for averaged control associated to a family of problems that depend on a random parameter, which is the first turnpike type result in the averaged controllability framework.

In this paper we analyze the turnpike phenomenon for optimal boundary control problems with a linear transport equation with source term. The convex objective function depends on
the boundary traces of the transport equation and is strictly convex with respect to the boundary control. We show an integral turnpike result for an optimal Dirichlet boundary control problem in the sense that if the time horizon goes to infinity, then the dynamic optimal control converges to
the corresponding steady state optimal control.
The novelty of this work is two-sided. On the one hand, even if turnpike results for this kind of optimal boundary control problem already exist, we present a new direct proof without using adjoint calculus that leads to sharper estimates. On the other hand we consider uncertainty in
the initial data and/or in the source term. We show that the integral turnpike result also holds considering uncertainty. Throughout the paper we use numerical examples to illustrate the results.

We consider a state estimation problem for gas pipeline flow modeled by the one-dimensional barotropic Euler equations. In order to reconstruct the system state, we construct an observer system of Luenberger type based on distributed measurements of one state variable. First, we show the existence of Lipschitz-continuous semi-global solutions of the observer system and of the original system for initial and boundary data satisfying smallness and compatibility conditions for a single pipe and for general networks. Second, based on an extension of the relative energy method we prove that the state of the observer system converges exponentially in the long time limit towards the original system state. We show this for a single pipe and for star-shaped networks.

The economics of global green ammonia trade – "Shipping Australian wind and sunshine to Germany"
(2023)

This paper contributes to understanding the transformation of global energy trade to green energy carriers, focusing on green ammonia as the foreseeable first green hydrogen carrier. We provide a comprehensive overview of today's ammonia trade and assess scaling options for the trade of green ammonia. To that aim, we develop an optimization model for the integrated assessment of the green ammonia value chain that covers all steps from green ammonia production in an exporting country, up to delivery to a harbor in an importing country. The model endogenously chooses among different technology options and determines cost minimal operation. In a case study, we apply the model to the large-scale import of ammonia from Australia to Germany in a scenario for 2030. The results show that green ammonia can reach cost parity with gray ammonia even for moderate gas prices (but not necessarily with blue ammonia) if CO2 prices are high enough. We also provide a sensitivity analysis with respect to the interest rate and other key technical and economic parameters and show that cracking ammonia to provide pure hydrogen comes at a 45 % cost markup per MWh at the destination.

We consider dynamic gas transport optimization problems, which lead to large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on graphs. Usually, the resulting instances are too challenging to be solved by state-of-the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple optimization problems on smaller blocks, which can be solved in parallel and which may result in simpler classes of optimization problems since not every block necessarily contains mixed-integer or nonlinear aspects. For achieving feasibility at the interfaces of the several blocks, we employ a tailored consensus-based penalty alternating direction method. Our numerical results show that such decomposition techniques can outperform the baseline approach of just solving the overall MINLP from scratch. However, a complete answer to the question of how to decompose MINLPs on graphs in dependence of the given model is still an open topic for future research.

We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate between solving a master problem, which is a mixed-integer linear relaxation of the original problem, and a subproblem, which is designed to tighten the linear relaxation of the next master problem by using the Lipschitz information about the respective functions. By doing so, we follow the ideas of Schmidt et al. (2018, 2021) and improve the tackling of multivariate constraints. Although multivariate nonlinearities obviously increase modeling capabilities, their incorporation also significantly increases the computational burden of the proposed algorithm. We prove the correctness of our method and also derive a worst-case iteration bound. Finally, we show the generality of the addressed problem class and the proposed method by illustrating that both bilevel optimization problems with nonconvex and quadratic lower levels as well as nonlinear and mixed-integer models of gas transport can be tackled by our method. We provide the necessary theory for both applications and briefly illustrate the outcomes of the new method when applied to these two problems.

Stochastic Optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. As the latter is often unknown, Distributionally Robust Optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy which converges at a rate of $ O(\log T / \sqrt{T})$, where $T$ is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations.

In many real-world mixed-integer optimisation problems from engineering, the side
constraints can be subdivided into two categories: constraints which describe a certain logic to model a feasible allocation of resources (such as a maximal number of available assets, working time requirements, maintenance requirements, contractual obligations, etc.),
and constraints which model physical processes and the related quantities (such as current,
pressure, temperature, etc.). While the first type of constraints can often easily be stated in
terms of a mixed-integer program (MIP), the second part may involve the incorporation of
complex non-linearities, partial differential equations or even a black-box simulation of the
involved physical process. In this work, we propose the integration of a trained tree-based
classifier – a decision-tree or a random forest, into a mixed-integer optimization model as a
possible remedy. We assume that the classifier has been trained on data points produced
by a detailed simulation of a given complex process to represent the functional relationship
between the involved physical quantities. We then derive MIP-representable reformulations
of the trained classifier such that the resulting model can be solved using state-of-the-art
solvers. At the hand of several use cases in terms of possible optimisation goals, we show
the broad applicability of our framework that is easily extendable to other tasks beyond
engineering. In a detailed real-world computational study for the design of stable direct-
current power networks, we demonstrate that our approach yields high-quality solutions
in reasonable computation times.