### Refine

#### Keywords

- Bilevel optimization (10)
- Robust optimization (6)
- Gas networks (5)
- Mixed-integer optimization (5)
- Networks (5)
- Uniqueness (5)
- Linear complementarity problems (4)
- Multilevel Optimization (4)
- Mixed-Integer Nonlinear Optimization (3)
- Pricing (3)

In the
Steiner Forest
problem, we are given a graph and a collection of source-sink
pairs, and the
goal is to find a subgraph of minimum total length such that all
pairs are connected. The problem is
APX-Hard and can be
2
-approximated by, e.g., the elegant primal-dual algorithm
of Agrawal, Klein, and
Ravi from 1995.
We give a local-search-based constant-factor approximati
on for the problem. Local search brings in
new techniques to an area that has for long not seen any improv
ements and might be a step towards
a combinatorial algorithm for the more general survivable n
etwork design problem. Moreover, local
search was an essential tool to tackle the dynamic MST/Stein
er Tree problem, whereas dynamic Steiner
Forest is still wide open.
It is easy to see that any constant factor local search algori
thm requires steps that add/drop many edges
together. We propose natural local moves which, at each step
, either (a) add a shortest path in the current
graph and then drop a bunch of inessential edges, or (b) add a s
et of edges to the current solution. This
second type of moves is motivated by the potential function w
e use to measure progress, combining the
cost of the solution with a penalty for each connected compon
ent. Our carefully-chosen local moves and
potential function work in tandem to eliminate bad local min
ima that arise when using more traditional
local moves.
Our analysis first considers the case where the local optimum
is a single tree, and shows optimality w.r.t.
moves that add a single edge (and drop a set of edges) is enough
to bound the locality gap. For the
general case, we show how to “project” the optimal solution o
nto the different trees of the local optimum
without incurring too much cost (and this argument uses opti
mality w.r.t. both kinds of moves), followed
by a tree-by-tree argument. We hope both the potential funct
ion, and our analysis techniques will be
useful to develop and analyze local-search algorithms in ot
her contexts.

Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize the flow between two designated nodes. We show that these problems can be solved for the single source and sink case by reducing the network to a single arc. However, if we additionally consider switches that allow to force the flow to 0 and decouple the potentials, these problems are NP-hard. Nevertheless, for particular series-parallel networks, one can use algorithms for the subset sum problem. Moreover, applying network presolving based on generalized series-parallel structures allows to significantly reduce the size of realistic energy networks.

We propose an equilibrium model that allows to analyze the long-run impact of the electricity market design on transmission line expansion by the regulator and investment in generation capacity by private firms in liberalized electricity markets. The model incorporates investment decisions of the transmission system operator and private firms in expectation of an energy-only market and cost-based redispatch. In different specifications we consider the cases of one vs. multiple price zones (market splitting) and analyze different approaches to recover network cost—in particular lump sum, generation capacity based, and energy based fees. In order to compare the outcomes of our multilevel market model with a first best benchmark, we also solve the corresponding integrated planner problem. Using two test networks we illustrate that energy-only markets can lead to suboptimal locational decisions for generation capacity and thus imply excessive network expansion. Market splitting heals these problems only partially. These results are valid for all considered types of network tariffs, although investment slightly differs across those regimes.

We propose a decomposition based method for solving mixed-integer nonlinear optimization problems with “black-box” nonlinearities, where the latter, e.g., may arise due to differential equations or expensive simulation runs. The method alternatingly solves a mixed-integer linear master problem and a separation problem for iteratively refining the mixed-integer linear relaxation of the nonlinear equalities. The latter yield nonconvex feasible sets for the optimization model but we have to restrict ourselves to convex and monotone constraint functions. Under these assumptions, we prove that our algorithm finitely terminates with an approximate feasible global optimal solution of the mixed integer nonlinear problem. Additionally, we show the applicability of our approach for three applications from optimal control with integer variables, from the field of pressurized flows in pipes with elastic walls, and from steady-state gas transport. For the latter we also present promising numerical results of our method applied to real-world instances that particularly show the effectiveness of our method for problems defined on networks.

We study the transient optimization of gas transport networks including both discrete controls due to switching of controllable elements and nonlinear fluid dynamics described by the system of isothermal Euler equations, which are partial differential equations in time and 1-dimensional space. This combination leads to mixed-integer optimization problems subject to nonlinear hyperbolic partial differential equations on a graph. We propose an instantaneous control approach in which suitable Euler discretizations yield systems of ordinary differential equations on a graph. This networked system of ordinary differential equations is shown to be well-posed and affine-linear solutions of these systems are derived analytically. As a consequence, finite-dimensional mixed-integer linear optimization problems are obtained for every time step that can be solved to global optimality using general-purpose solvers. We illustrate our approach in practice by presenting numerical results on a realistic gas transport network.

We consider optimal control problems for the flow of gas or fresh water in pipe networks as well as drainage or sewer systems in open canals. The equations of motion are taken to be represented by the nonlinear isothermal Euler gas equations, the water hammer equations, or the St.~Venant equations for flow. We formulate model hierarchies and derive an abstract model for such network flow problems including pipes, junctions, and controllable elements such as valves, weirs, pumps, as well as compressors. We use the abstract model to give an overview of the known results and challenges concerning equilibria, well-posedness, controllability, and optimal control. A major challenge concerning the optimization is to deal with switching on-off states that are inherent to controllable devices in such applications combined with
continuous simulation and optimization of the gas flow. We formulate the corresponding mixed-integer nonlinear optimal control problems and outline a decomposition approach as a solution technique.

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a nonoverlapping domain decomposition of the optimal control problem on the graph into local problems on smaller sub-graphs - ultimately on single edges. We prove convergence of the domain decomposition method on networks and study the wellposedness of the corresponding time-discrete optimal control problems. The point of the paper is that we establish virtual control problems on the decomposed subgraphs such that the corresponding optimality systems are in fact equal to the systems obtained via the domain decomposition of the entire optimality system.

Natural gas is important for the energy turnaround in many countries like in Germany, where it serves as a "bridging energy" towards a fossil-free energy supply in the future. About 20% of the total German energy demand is provided by natural gas, which is transported through a complex pipeline network with a total length of about 30000 km and the efficient use of the given transport infrastructure for natural gas is of political, economic, and societal importance.
As a consequence of the liberalization of the European gas market in the last decades, gas trading and transport have been decoupled. This has led to new challenges for gas transport companies, and mathematical optimization is perfectly suited for tackling many of these challenges. However, the underlying mathematical problems are by far too hard to be solved by today's general-purpose software so that novel mathematical theory and algorithms are needed. The industrial research project "ForNe: Research Cooperation Network Optimization" has been initiated and funded by Open Grid Europe in 2009 and brought together experts in mathematical optimization from seven German universities and research institutes, which cover almost the entire range of mathematical optimization: integer and nonlinear optimization as well as optimization under uncertainty.
The mathematical research results have been put together in a software package that has been delivered to Open Grid Europe at the end of the project. Moreover, the research is still continuing - e.g., in the Collaborative Research Center/Transregio 154 "Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks" funded by the German Research Foundation.

Portfolio optimization is an ongoing hot topic of mathematical optimization and management science. Due to the current financial market environment with low interest rates and volatile stock markets, it is getting more and more important to extend portfolio optimization models by other types of investments than classical assets. In this paper, we present a mixed-integer multistage stochastic model that includes investment opportunities in irreversible and long-term infrastructure projects in the context of renewable energies, which are also subject to policy risk. On realistic time scales for investment problems of this type, the resulting instances are by far too large to be solved with today's most evolved optimization software. Thus, we present a tailored moving-horizon approach together with suitable approximations and simplifications of the model. We evaluate these approximations and simplifications in a computational sensitivity analysis and derive a final model that can be tackled on a realistic instance by our moving-horizon approach.