Common energy system models that integrate hydrogen transport in pipelines typically simplify fluid flow models and reduce the network size in order to achieve solutions quickly. This contribution analyzes two different types of pipeline network topologies (namely, star and tree networks) and two different fluid flow models (linear and nonlinear) for a given hydrogen capacity scenario of electrical reconversion in Germany to analyze the impact of these simplifications. For each network topology, robust demand and supply scenarios are generated. The results show that a simplified topology, as well as the consideration of detailed fluid flow, could heavily influence the total pipeline investment costs. For the given capacity scenario, an overall cost reduction of the pipeline costs of 37% is observed for the star network with linear cost compared to the tree network with nonlinear fluid flow. The impact of these improvements regarding the total electricity reconversion costs has led to a cost reduction of 1.4%, which is fairly small. Therefore, the integration of nonlinearities into energy system optimization models is not recommended due to their high computational burden. However, the applied method for generating robust demand and supply scenarios improved the credibility and robustness of the network topology, while the simplified fluid flow consideration can lead to infeasibilities. Thus, we suggest the utilization of the nonlinear model for post- processing to prove the feasibility of the results and strengthen their credibility, while retaining the computational performance of linear modeling.
We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to be NP-complete even on trees. In order to obtain a tractable problem, we introduce a method for generating a finite scenario set such that optimality of a sizing for this finite set implies the sizing's optimality for the originally given infinite set of scenarios. We further prove that the size of the finite scenario set is quadratically bounded above in the number of nodes of the underlying tree and that it can be computed in polynomial time. The resulting problem can then be solved as a standard mixed-integer linear optimization problem. Finally, we show the applicability of our theoretical results by computing globally optimal arc sizes for a realistic hydrogen transport network of Eastern Germany.