Refine
Keywords
Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize the flow between two designated nodes. We show that these problems can be solved for the single source and sink case by reducing the network to a single arc. However, if we additionally consider switches that allow to force the flow to 0 and decouple the potentials, these problems are NP-hard. Nevertheless, for particular series-parallel networks, one can use algorithms for the subset sum problem. Moreover, applying network presolving based on generalized series-parallel structures allows to significantly reduce the size of realistic energy networks.
Solving Mixed-Integer Nonlinear Programs using Adaptively Refined Mixed-Integer Linear Programs
(2017)
We propose a method for solving mixed-integer nonlinear programs (MINLPs) to global optimality by discretization of occuring nonlinearities. The main idea is based on using piecewise linear functions to construct mixed-integer linear program (MIP) relaxations of the underlying MINLP. In order to find a global optimum of the given MINLP we develope an iterative algorithm which solves MIP relaxations that are adaptively refined. We are able to give convergence results for a wide range of MINLPs requiring only continuous nonlinearities with bounded domains and an oracle computing maxima of the nonlinearities on their domain. Moreover, the practicalness of our approach is shown numerically by an application from the field of gas network optimization.
The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library.
We consider uniqueness and multiplicity of market equilibria in a short-run setup where traded quantities of electricity are transported through a capacitated network in which power flows have to satisfy the classical lossless DC approximation. The firms face fluctuating demand and decide on their production, which is constrained by given capacities. Today, uniqueness of such market outcomes are especially important in more complicated multilevel models for measuring market (in)efficiency. Thus, our findings are important prerequisites for such studies. We show that market equilibria are unique on tree networks under mild assumptions and we also present a priori conditions under which equilibria are unique on cycle networks. On general networks, uniqueness fails to hold and we present simple examples for which multiple equilibria exist. However, we prove a posteriori criteria for the uniqueness of a given solution and characterize situations in which multiple solutions exist.
We consider optimal control problems for the flow of gas or fresh water in pipe networks as well as drainage or sewer systems in open canals. The equations of motion are taken to be represented by the nonlinear isothermal Euler gas equations, the water hammer equations, or the St.~Venant equations for flow. We formulate model hierarchies and derive an abstract model for such network flow problems including pipes, junctions, and controllable elements such as valves, weirs, pumps, as well as compressors. We use the abstract model to give an overview of the known results and challenges concerning equilibria, well-posedness, controllability, and optimal control. A major challenge concerning the optimization is to deal with switching on-off states that are inherent to controllable devices in such applications combined with
continuous simulation and optimization of the gas flow. We formulate the corresponding mixed-integer nonlinear optimal control problems and outline a decomposition approach as a solution technique.
Nonconvex mixed-binary nonlinear optimization problems frequently appear in practice and are typically extremely hard to solve. In this paper we discuss a class of primal heuristics that are based on a reformulation of the problem as a mathematical program with equilibrium constraints. We then use different regularization schemes for this class of problems and use an iterative solution procedure for solving series of regularized problems. In the case of success, these procedures result in a feasible solution of the original mixed-binary nonlinear problem. Since we rely on local nonlinear programming solvers the resulting method is fast and we further improve its reliability by additional algorithmic techniques. We show the strength of our method by an extensive computational study on 662 MINLPLib2 instances, where our methods are able to produce feasible solutions for 60% of all instances in at most 10s.
Detailed modeling of gas transport problems leads to nonlinear
and nonconvex mixed-integer optimization or feasibility models
(MINLPs) because both the incorporation of discrete controls of the
network as well as accurate physical and technical modeling is
required in order to achieve practical solutions. Hence, ignoring
certain parts of the physics model is not valid for practice. In the
present contribution we extend an approach based on linear relaxations
of the underlying nonlinearities by tailored model reformulation
techniques yielding block-separable MINLPs. This combination of
techniques allows us to apply a penalty alternating direction method
and thus to solve highly detailed MINLPs for large-scale real-world
instances. The practical strength of the proposed method is
demonstrated by a computational study in which we apply the method to
instances from steady-state gas transport
including both pooling effects with respect to the mixing of gases of
different composition and a highly detailed compressor station model.
Feasibility pumps are highly effective primal heuristics for
mixed-integer linear and nonlinear optimization.
However, despite their success in practice there are only few works
considering their theoretical properties.
We show that feasibility pumps can be seen as alternating
direction methods applied to special reformulations of the original
problem, inheriting the convergence theory of these methods.
Moreover, we propose a novel penalty framework that encompasses
this alternating direction method, which allows us to refrain from random
perturbations that are applied in standard versions of feasibility
pumps in case of failure.
We present a convergence theory for the new penalty based alternating
direction method and compare the new variant of the feasibility
pump with existing versions in an extensive numerical study for
mixed-integer linear and nonlinear problems.
In this paper we analyze peak-load pricing in the presence of network constraints. In our setup, firms facing fluctuating demand decide on the size and location of production facilities. They make production decisions constrained by the invested capacities, taking into account that market prices reflect scarce transmission capacities. We state general conditions for existence and uniqueness of the market equilibrium and provide a characterization of equilibrium investment and production. The presented analysis covers the cases of perfect competition and monopoly - the case of strategic firms is approximated by a conjectural variations approach. Our result is a prerequisite for analyzing regulatory policy options with computational multilevel equilibrium models, since uniqueness of the equilibrium at lower levels is of key importance when solving these models. Thus, our paper contributes to an evolving strand of literature that analyzes regulatory policy based on computational multilevel equilibrium models and aims at taking into account individual objectives of various agents, among them not only generators and customers but also, e.g., the regulator deciding on network expansion.