We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions.
The latter occur, for instance, in the context of the curtailment of renewables or the
switching of power generation units and transmission lines.
Our approach delivers globally optimal solutions and is provably convergent.
We model AC OPF problems with discrete decisions as mixed-integer nonlinear programs.
The solution method starts from a known framework that uses piecewise linear relaxations.
These relaxations are modeled as as mixed-integer linear programs and adaptively refined until some termination criterion is fulfilled.
In this work, we extend and complement this approach by problem-specific as well as very general algorithmic enhancements.
In particular, these are mixed-integer second-order cone programs as well as primal and dual cutting planes.
For example objective cuts and no-good-cuts help to compute good feasible solutions as where outer approximation constraints tighten the relaxations.
We present extensive numerical results for various AC OPF problems where discrete decisions play a major role.
Even for hard instances with a large proportion of discrete decisions, the method is able
to generate high quality solutions efficiently.
Furthermore, we compare our approach with state-of-the-art MINLP.
Our method outperforms all other algorithms.
Robust DC Optimal Power Flow with Modeling of Solar Power Supply Uncertainty via R-Vine Copulas
(2021)
We present a robust approximation of joint chance constrained DC Optimal Power Flow in combination with a model-based prediction of uncertain power supply via R-vine copulas.
It is applied to optimize the discrete curtailment of solar feed-in in an electrical distribution network and guarantees network stability under fluctuating feed-in.
This is modeled by a two-stage mixed-integer stochastic optimization problem proposed by Aigner et al. (European Journal of Operational Research, (2021)).
The solution approach is based on the approximation of chance constraints via robust constraints using suitable uncertainty sets.
The resulting robust optimization problem has a known equivalent tractable reformulation.
To compute uncertainty sets that lead to an inner approximation of the stochastic problem, an R-vine copula model is fitted to the distribution of the multi-dimensional power forecast error, i.e., the difference between the forecasted solar power and the measured feed-in at several network nodes.
The uncertainty sets are determined by encompassing a sufficient number of samples drawn from the R-vine copula model.
Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which can be used to draw conditional samples for given solar radiation forecasts.
The experimental results obtained for real-world weather and network data demonstrate the effectiveness of the combination of stochastic programming and model-based prediction of uncertainty via copulas.
We improve the outcomes of previous work by showing that the resulting uncertainty sets are much smaller and lead to less conservative solutions while maintaining the same probabilistic guarantees.
We propose a mathematical optimization model and its solution for joint chance constrained DC Optimal Power Flow. In this application, it is particularly important that there is a high probability of transmission limits being satisfied, even in the case of uncertain or fluctuating feed-in from renewable energy sources. In critical network situations where the network risks overload, renewable energy feed-in has to be curtailed by the transmission system operator (TSO). The TSO can reduce the feed-in in discrete steps at each network node. The proposed optimization model minimizes curtailment while ensuring that there is a high probability of transmission limits being maintained. The latter is modeled via (joint) chance constraints that are computationally challenging. Thus, we propose a solution approach based on the robust safe approximation of these constraints. Hereby, probabilistic constraints are replaced by robust constraints with suitably defined uncertainty sets constructed from historical data. The uncertainty sets are calculated by encompassing randomly drawn scenarios using the scenario approach proposed by Margellos et al. (IEEE Transactions on Automatic Control, 59 (2014)). The ability to discretely control the power feed-in then leads to a robust optimization problem with decision-dependent uncertainties, i.e. the uncertainty sets depend on decision variables. We propose an equivalent mixed-integer linear reformulation for box uncertainties with the exact linearization of bilinear terms. Finally, we present numerical results for different test cases from the Nesta archive, as well as for a real network. We consider the discrete curtailment of solar feed-in, for which we use real-world weather and network data. The experimental tests demonstrate the effectiveness of this method and run times are very fast. Moreover, on average the calculated robust solutions lead only to a small increase in curtailment, when compared to nominal solutions.
Stochastic Optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. As the latter is often unknown, Distributionally Robust Optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy which converges at a rate of $ O(\log T / \sqrt{T})$, where $T$ is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations.