In this work, we present an exact approach for solving network design problems that is based on an iterative graph aggregation procedure. The scheme allows existing preinstalled capacities. Starting with an initial aggregation, we solve a sequence of network design master problems over increasingly fine-grained representations of the original network. In each step, a subproblem is solved that either proves optimality of the solution or gives a directive where to refine the representation of the network in the subsequent iteration. The algorithm terminates with a globally optimal solution to the original problem. Our implementation uses a standard integer programming solver for solving the master problems as well as the subproblems. The computational results on random and realistic instances confirm the profitable use of the iterative aggregation technique. The computing time often reduces drastically when our method is compared to solving the original problem from scratch.
In this work we study polyhedra in the context of network flow problems, where the flow value on each arc lies in one of several predefined intervals. This is motivated by nonlinear
problems on transportation networks, where nonlinearities are handled by piecewise linear approximation or relaxation - a common and established approach in many applications.
Several methods for modeling piecewise linear functions are known which provide a complete description for a single network arc. However, in general this property is lost when considering multiple arcs. We show how to strengthen the formulation for specific substructures consisting of multiple arcs by linear inequalities. For the case of paths of degree-two-nodes we give a complete description of the polyhedron projected to the integer variables. Our model is based on - but not limited to - the multiple choice method; we also show how to transfer our results to a formulation based on the incremental method. Computational results show that a state-of-the-art MIP-solver greatly benefits from using our cutting planes for random and realistic network topologies.
We study a single-commodity robust network design problem (sRND) defined on an undirected graph. Our goal is to determine minimum cost capacities such that any traffic demand from a given uncertainty set can be satisfied by a feasible single-commodity flow. We consider two ways of representing the uncertainty set, either as a finite list of scenarios or as a polytope. We propose a branch-and-cut algorithm to derive optimal solutions to sRND, built on a capacity-based integer linear programming formulation. It is strengthened with valid inequalities derived as {0, 1/2}-Chvátal–Gomory cuts. Since the formulation contains exponentially many constraints, we provide practical separation algorithms. Extensive computational experiments show that our approach is effective, in comparison to existing approaches from the literature as well as to solving a flow based formulation by a general purpose solver.
We study dynamic network flows with uncertain input data under a robust optimization perspective. In the dynamic maximum flow problem, the goal is to maximize the flow reaching the sink within a given time horizon T, while flow requires a certain travel time to traverse an arc. In our setting, we account for uncertain travel times of flow. We investigate maximum flows over time under the assumption that at most Γ travel times may be prolonged simultaneously due to delay. We develop and study a mathematical model for this problem. As the dynamic robust flow problem generalizes the static version, it is NP-hard to compute an optimal flow. However, our dynamic version is considerably more complex than the static version. We show that it is NP-hard to verify feasibility of a given candidate solution. Furthermore, we investigate temporally repeated flows and show that in contrast to the non-robust case (i.e., without uncertainties) they no longer provide optimal solutions for the robust problem, but rather yield a worst case optimality gap of at least T. We finally show that for infinite delays, the optimality gap is at most O(k log T), where k is a newly introduced instance characteristic. The results obtained in this paper yield a first step towards understanding robust dynamic flow problems with uncertain travel times.
A Decomposition Approach for Optimum Gas Network Extension with a Finite Set of Demand Scenarios
(2016)
Today's gas markets demand more flexibility from the network operators which in turn have to invest into their network infrastructure. As these investments are very cost-intensive and long-living, network extensions should not only focus on a single bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. In this work, we formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition in order to solve the arising challenging optimization tasks. In fact, euch subproblem consists of a mixed-integer nonlinear optimization problem (MINLP). Valid bounds are derived even without solving the subproblems to optimality. Furthermore, we develop heuristics that prove capable of improving the initial solutions substantially. Results of computational experiments on realistic network topologies are presented. It turns out that our method is able to solve these challenging instances to optimality within a reasonable amount of time.
In many real-world mixed-integer optimisation problems from engineering, the side
constraints can be subdivided into two categories: constraints which describe a certain logic to model a feasible allocation of resources (such as a maximal number of available assets, working time requirements, maintenance requirements, contractual obligations, etc.),
and constraints which model physical processes and the related quantities (such as current,
pressure, temperature, etc.). While the first type of constraints can often easily be stated in
terms of a mixed-integer program (MIP), the second part may involve the incorporation of
complex non-linearities, partial differential equations or even a black-box simulation of the
involved physical process. In this work, we propose the integration of a trained tree-based
classifier – a decision-tree or a random forest, into a mixed-integer optimization model as a
possible remedy. We assume that the classifier has been trained on data points produced
by a detailed simulation of a given complex process to represent the functional relationship
between the involved physical quantities. We then derive MIP-representable reformulations
of the trained classifier such that the resulting model can be solved using state-of-the-art
solvers. At the hand of several use cases in terms of possible optimisation goals, we show
the broad applicability of our framework that is easily extendable to other tasks beyond
engineering. In a detailed real-world computational study for the design of stable direct-
current power networks, we demonstrate that our approach yields high-quality solutions
in reasonable computation times.
Stochastic Optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. As the latter is often unknown, Distributionally Robust Optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy which converges at a rate of $ O(\log T / \sqrt{T})$, where $T$ is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations.
This work studies robust gas network optimization under uncertainties in demand and in the physical parameters. The corresponding optimization problems are nonconvex in node pressures and flows along the pipes. They are thus very difficult to solve for realistic instance sizes. In recent approaches, an adaptive bundle method has been developed, where one solves the occurring adversarial problems via iteratively refined piecewise linear relaxations. These subproblems need to be solved always from scratch using mixed-integer linear programming (MIP). As alternative to the MIP solver, we employ here a nonsmooth optimization approach that allows a warm start strategy such that it can profit from the results obtained for coarser relaxations. We evaluate the approach for realistic gas network topologies and outline possibilities for future research.
Robust DC Optimal Power Flow with Modeling of Solar Power Supply Uncertainty via R-Vine Copulas
(2021)
We present a robust approximation of joint chance constrained DC Optimal Power Flow in combination with a model-based prediction of uncertain power supply via R-vine copulas.
It is applied to optimize the discrete curtailment of solar feed-in in an electrical distribution network and guarantees network stability under fluctuating feed-in.
This is modeled by a two-stage mixed-integer stochastic optimization problem proposed by Aigner et al. (European Journal of Operational Research, (2021)).
The solution approach is based on the approximation of chance constraints via robust constraints using suitable uncertainty sets.
The resulting robust optimization problem has a known equivalent tractable reformulation.
To compute uncertainty sets that lead to an inner approximation of the stochastic problem, an R-vine copula model is fitted to the distribution of the multi-dimensional power forecast error, i.e., the difference between the forecasted solar power and the measured feed-in at several network nodes.
The uncertainty sets are determined by encompassing a sufficient number of samples drawn from the R-vine copula model.
Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which can be used to draw conditional samples for given solar radiation forecasts.
The experimental results obtained for real-world weather and network data demonstrate the effectiveness of the combination of stochastic programming and model-based prediction of uncertainty via copulas.
We improve the outcomes of previous work by showing that the resulting uncertainty sets are much smaller and lead to less conservative solutions while maintaining the same probabilistic guarantees.
Linear complementarity problems are a powerful tool for modeling many practically relevant situations such as market equilibria. They also connect many sub-areas of mathematics like game theory, optimization, and matrix theory. Despite their close relation to optimization, the protection of LCPs against uncertainties - especially in the sense of robust optimization - is still in its infancy. During the last years, robust LCPs have only been studied using the notions of strict and Γ-robustness. Unfortunately, both concepts lead to the problem that the existence of robust solutions cannot be guaranteed. In this paper, we consider affinely adjustable robust LCPs. In the latter, a part of the LCP solution is allowed to adjust via a function that is affine in the uncertainty. We show that this notion of robustness allows to establish strong characterizations of solutions for the cases of uncertain matrix and vector, separately, from which existence results can be derived. Our main results are valid for the case of an uncertain LCP vector. Here, we additionally provide sufficient conditions on the LCP matrix for the uniqueness of a solution. Moreover, based on characterizations of the affinely adjustable robust solutions, we derive a mixed-integer programming formulation that allows to solve the corresponding robust counterpart. If, in addition, the certain LCP matrix is positive semidefinite, we prove polynomial-time solvability and uniqueness of robust solutions. If the LCP matrix is uncertain, characterizations of solutions are developed for every nominal matrix, i.e., these characterizations are, in particular, independent of the definiteness of the nominal matrix. Robust solutions are also shown to be unique for positive definite LCP matrix but both uniqueness and mixed-integer programming formulations still remain open problems if the nominal LCP matrix is not positive definite.