### Refine

#### Year of publication

#### Keywords

We propose an equilibrium model that allows to analyze the long-run impact of the electricity market design on transmission line expansion by the regulator and investment in generation capacity by private firms in liberalized electricity markets. The model incorporates investment decisions of the transmission system operator and private firms in expectation of an energy-only market and cost-based redispatch. In different specifications we consider the cases of one vs. multiple price zones (market splitting) and analyze different approaches to recover network cost—in particular lump sum, generation capacity based, and energy based fees. In order to compare the outcomes of our multilevel market model with a first best benchmark, we also solve the corresponding integrated planner problem. Using two test networks we illustrate that energy-only markets can lead to suboptimal locational decisions for generation capacity and thus imply excessive network expansion. Market splitting heals these problems only partially. These results are valid for all considered types of network tariffs, although investment slightly differs across those regimes.

We propose a decomposition based method for solving mixed-integer nonlinear optimization problems with “black-box” nonlinearities, where the latter, e.g., may arise due to differential equations or expensive simulation runs. The method alternatingly solves a mixed-integer linear master problem and a separation problem for iteratively refining the mixed-integer linear relaxation of the nonlinear equalities. The latter yield nonconvex feasible sets for the optimization model but we have to restrict ourselves to convex and monotone constraint functions. Under these assumptions, we prove that our algorithm finitely terminates with an approximate feasible global optimal solution of the mixed integer nonlinear problem. Additionally, we show the applicability of our approach for three applications from optimal control with integer variables, from the field of pressurized flows in pipes with elastic walls, and from steady-state gas transport. For the latter we also present promising numerical results of our method applied to real-world instances that particularly show the effectiveness of our method for problems defined on networks.

We study the transient optimization of gas transport networks including both discrete controls due to switching of controllable elements and nonlinear fluid dynamics described by the system of isothermal Euler equations, which are partial differential equations in time and 1-dimensional space. This combination leads to mixed-integer optimization problems subject to nonlinear hyperbolic partial differential equations on a graph. We propose an instantaneous control approach in which suitable Euler discretizations yield systems of ordinary differential equations on a graph. This networked system of ordinary differential equations is shown to be well-posed and affine-linear solutions of these systems are derived analytically. As a consequence, finite-dimensional mixed-integer linear optimization problems are obtained for every time step that can be solved to global optimality using general-purpose solvers. We illustrate our approach in practice by presenting numerical results on a realistic gas transport network.

In this paper, we study the transient optimization of gas networks, focusing in particular on maximizing the storage capacity of the network. We include nonlinear gas physics and active elements such as valves and compressors, which due to their switching lead to discrete decisions. The former is described by a model derived from the Euler equations that is given by a coupled system of nonlinear parabolic partial differential equations (PDEs). We tackle the resulting mathematical optimization problem by a first-discretize-then-optimize approach. To this end, we introduce a new discretization of the underlying system of parabolic PDEs and prove well-posedness for the resulting nonlinear discretized system. Endowed with this discretization, we model the problem of maximizing the storage capacity as a non-convex mixed-integer nonlinear problem (MINLP). For the numerical solution of the MINLP, we algorithmically extend a well-known relaxation approach that has already been used very successfully in the field of stationary gas network optimization. This method allows us to solve the problem to global optimality by iteratively solving a series of mixed-integer problems (MIPs). Finally, we present two case studies that illustrate the applicability of our approach.

In this article, we continue our work (Krug et al., 2021) on time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations in that we now consider mixed two-point boundary value problems and provide an in-depth well-posedness analysis. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems on metric graphs with cycles. We design an iterative method based on the optimality systems that can be interpreted as a decomposition method for the original optimal control problem into virtual control problems on smaller time domains.

Time-Domain Decomposition for Optimal Control Problems Governed by Semilinear Hyperbolic Systems
(2020)

In this article, we extend the time-domain decomposition method described by Lagnese and Leugering (2003) to semilinear optimal control problems for hyperbolic balance laws with spatio-temporal varying coefficients. We provide the design of the iterative method applied to the global first-order optimality system, prove its convergence, and derive an a posteriori error estimate. The analysis is done entirely on the continuous level. A distinguishing feature of the method is that the decomposed optimality system can be interpreted as an optimality system of a local "virtual" optimal control problem. Thus, the iterative time-domain decomposition of the optimality system can be interpreted as an iterative parallel scheme for virtual optimal control problems on the subintervals. A typical example and further comments are given to show the range of potential applications. Moreover, we provide some numerical experiments to give a first interpretation of the role of the parameters involved in the iterative process.

We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions.
The latter occur, for instance, in the context of the curtailment of renewables or the
switching of power generation units and transmission lines.
Our approach delivers globally optimal solutions and is provably convergent.
We model AC OPF problems with discrete decisions as mixed-integer nonlinear programs.
The solution method starts from a known framework that uses piecewise linear relaxations.
These relaxations are modeled as as mixed-integer linear programs and adaptively refined until some termination criterion is fulfilled.
In this work, we extend and complement this approach by problem-specific as well as very general algorithmic enhancements.
In particular, these are mixed-integer second-order cone programs as well as primal and dual cutting planes.
For example objective cuts and no-good-cuts help to compute good feasible solutions as where outer approximation constraints tighten the relaxations.
We present extensive numerical results for various AC OPF problems where discrete decisions play a major role.
Even for hard instances with a large proportion of discrete decisions, the method is able
to generate high quality solutions efficiently.
Furthermore, we compare our approach with state-of-the-art MINLP.
Our method outperforms all other algorithms.

The operation of gas pipeline flow with high pressure and small Mach numbers allows to model the flow by a semilinear hyperbolic system of partial differential equations. In this paper we present a number of transient and stationary analytical solutions of this model. They are used to discuss and clarify why a pde model is necessary to handle certain dynamic situations in the operation of gas transportation networks. We show that adequate numerical discretizations can capture the dynamical behavior sufficiently accurate. We also present examples that show that in certain cases an optimization approach that is based upon multi-period optimization of steady states does not lead to approximations that converge to the optimal state.

We consider optimal control problems for the flow of gas or fresh water in pipe networks as well as drainage or sewer systems in open canals. The equations of motion are taken to be represented by the nonlinear isothermal Euler gas equations, the water hammer equations, or the St.~Venant equations for flow. We formulate model hierarchies and derive an abstract model for such network flow problems including pipes, junctions, and controllable elements such as valves, weirs, pumps, as well as compressors. We use the abstract model to give an overview of the known results and challenges concerning equilibria, well-posedness, controllability, and optimal control. A major challenge concerning the optimization is to deal with switching on-off states that are inherent to controllable devices in such applications combined with
continuous simulation and optimization of the gas flow. We formulate the corresponding mixed-integer nonlinear optimal control problems and outline a decomposition approach as a solution technique.

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a nonoverlapping domain decomposition of the optimal control problem on the graph into local problems on smaller sub-graphs - ultimately on single edges. We prove convergence of the domain decomposition method on networks and study the wellposedness of the corresponding time-discrete optimal control problems. The point of the paper is that we establish virtual control problems on the decomposed subgraphs such that the corresponding optimality systems are in fact equal to the systems obtained via the domain decomposition of the entire optimality system.