### Refine

#### Keywords

In entry-exit gas markets as they are currently implemented in Europe, network constraints do not affect market interaction beyond the technical capacities determined by the TSO that restrict the quantities individual firms can trade at the market. It is an up to now unanswered question to what extent existing network capacity remains unused in an entry-exit design and to what extent feasible adjustments of the market design could alleviate inefficiencies. In this paper, we offer a four-level modeling framework that is capable of analyzing these issues and provide some first results on the model structure. In order to decouple gas trading from network congestion management, the TSO is required to determine technical capacities and corresponding booking fees at every entry and exit node up front. Firms book those capacities, which gives them the right to charge or discharge an amount of gas at a certain node up to this capacity in every scenario. Beyond these technical capacities and the resulting bookings, gas trade is unaffected by network constraints. The technical capacities have to ensure that transportation of traded quantities is always feasible. We assume that the TSO is regulated and determines technical capacities, fees, and transportation costs under a welfare objective. As a first step we moreover assume perfect competition among gas traders and show that the booking and nomination decisions can be analyzed in a single level. We prove that this aggregated model has a unique solution. We also show that the TSO's decisions can be subsumed in one level as well. If so, the model boils down to a mixed-integer nonlinear bilevel problem with robust aspects. In addition, we provide a first-best benchmark that allows to assess welfare losses that occur in an entry-exit system. Our approach provides a generic framework to analyze various aspects in the context of semi-liberalized gas markets. Therefore, we finally discuss and provide guidance on how to include several important aspects into the approach, such as network and production capacity investment, uncertain data, market power, and intra-day trading.

We study the transient optimization of gas transport networks including both discrete controls due to switching of controllable elements and nonlinear fluid dynamics described by the system of isothermal Euler equations, which are partial differential equations in time and 1-dimensional space. This combination leads to mixed-integer optimization problems subject to nonlinear hyperbolic partial differential equations on a graph. We propose an instantaneous control approach in which suitable Euler discretizations yield systems of ordinary differential equations on a graph. This networked system of ordinary differential equations is shown to be well-posed and affine-linear solutions of these systems are derived analytically. As a consequence, finite-dimensional mixed-integer linear optimization problems are obtained for every time step that can be solved to global optimality using general-purpose solvers. We illustrate our approach in practice by presenting numerical results on a realistic gas transport network.

Many mixed-integer optimization problems are constrained by nonlinear functions that do not possess desirable analytical properties like convexity or factorability or cannot even be evaluated exactly. This is, e.g., the case for problems constrained by differential equations or for models that rely on black-box simulation runs. For these problem classes, we present, analyze, and test algorithms that solve mixed-integer problems with only Lipschitz continuous nonlinearities. Our theoretical results depend on the assumptions made on the (in)exactness of function evaluations and on the knowledge of Lipschitz constants. If Lipschitz constants are known, we prove finite termination at approximate globally optimal points both for the case of exact and inexact function evaluations. If only approximate Lipschitz constants are known, we prove finite termination and derive additional conditions under which infeasibility can be detected. A computational study for gas transport problems and an academic case study show the applicability of our algorithms to real-world problems and how different assumptions on the constraint functions up- or downgrade the practical performance of the methods.

Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize the flow between two designated nodes. We show that these problems can be solved for the single source and sink case by reducing the network to a single arc. However, if we additionally consider switches that allow to force the flow to 0 and decouple the potentials, these problems are NP-hard. Nevertheless, for particular series-parallel networks, one can use algorithms for the subset sum problem. Moreover, applying network presolving based on generalized series-parallel structures allows to significantly reduce the size of realistic energy networks.

The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library.

We consider nonlinear and nonsmooth mixing aspects in gas transport optimization problems. As mixed-integer reformulations of pooling-type mixing models already render small-size instances computationally intractable, we investigate the applicability of smooth nonlinear programming techniques for equivalent complementarity-based reformulations. Based on recent results for remodeling piecewise affine constraints using an inverse parametric quadratic programming approach, we show that classical stationarity concepts are meaningful for the resulting complementarity-based reformulation of the mixing equations. Further, we investigate in a numerical study the performance of this reformulation compared to a more compact complementarity-based one that does not feature such beneficial regularity properties. All computations are performed on publicly available data of real-world size problem instances from steady-state gas transport.

We consider optimal control problems for the flow of gas or fresh water in pipe networks as well as drainage or sewer systems in open canals. The equations of motion are taken to be represented by the nonlinear isothermal Euler gas equations, the water hammer equations, or the St.~Venant equations for flow. We formulate model hierarchies and derive an abstract model for such network flow problems including pipes, junctions, and controllable elements such as valves, weirs, pumps, as well as compressors. We use the abstract model to give an overview of the known results and challenges concerning equilibria, well-posedness, controllability, and optimal control. A major challenge concerning the optimization is to deal with switching on-off states that are inherent to controllable devices in such applications combined with
continuous simulation and optimization of the gas flow. We formulate the corresponding mixed-integer nonlinear optimal control problems and outline a decomposition approach as a solution technique.

Nonconvex mixed-binary nonlinear optimization problems frequently appear in practice and are typically extremely hard to solve. In this paper we discuss a class of primal heuristics that are based on a reformulation of the problem as a mathematical program with equilibrium constraints. We then use different regularization schemes for this class of problems and use an iterative solution procedure for solving series of regularized problems. In the case of success, these procedures result in a feasible solution of the original mixed-binary nonlinear problem. Since we rely on local nonlinear programming solvers the resulting method is fast and we further improve its reliability by additional algorithmic techniques. We show the strength of our method by an extensive computational study on 662 MINLPLib2 instances, where our methods are able to produce feasible solutions for 60% of all instances in at most 10s.

Mathematical modeling of market design issues in liberalized electricity markets often leads to mixed-integer nonlinear multilevel optimization problems for which no general-purpose solvers exist and which are intractable in general. In this work, we consider the problem of splitting a market area into a given number of price zones such that the resulting market design yields welfare-optimal outcomes. This problem leads to a challenging multilevel model that contains a graph-partitioning problem with multi-commodity flow connectivity constraints and nonlinearities due to proper economic modeling. Furthermore, it has highly symmetric solutions. We develop different problem-tailored solution approaches. In particular, we present an extended KKT transformation approach as well as a generalized Benders approach that both yield globally optimal solutions. These methods, enhanced with techniques such as symmetry breaking and primal heuristics, are evaluated in detail on academic as well as on realistic instances. It turns out that our approaches lead to effective solution methods for the difficult optimization tasks presented here, where the problem-specific generalized Benders approach performs considerably better than the methods based on KKT transformation.