### Refine

#### Keywords

We introduce and study the turnpike property for time-varying shapes, within the viewpoint of optimal control. We focus here on
second-order linear parabolic equations where the shape acts as a source term and we seek the optimal time-varying shape that
minimizes a quadratic criterion. We first establish existence of optimal solutions under some appropriate sufficient conditions. We
then provide necessary conditions for optimality in terms of adjoint equations and, using the concept of strict dissipativity, we prove
that state and adjoint satisfy the measure-turnpike property, meaning that the extremal time-varying solution remains essentially
close to the optimal solution of an associated static problem. We show that the optimal shape enjoys the exponential turnpike
property in term of Hausdorff distance for a Mayer quadratic cost. We illustrate the turnpike phenomenon in optimal shape design
with several numerical simulations.

We address the application of stochastic optimization methods for the simultaneous control of parameter-dependent systems. In particular, we focus on the classical Stochastic Gradient Descent (SGD) approach of Robbins and Monro, and on the recently developed Continuous Stochastic Gradient (CSG) algorithm. We consider the problem of computing simultaneous controls through the minimization of a cost functional defined as the superposition of individual costs for each realization of the system. We compare the performances of these stochastic approaches, in terms of their computational complexity, with those of the more classical Gradient Descent (GD) and Conjugate Gradient (CG) algorithms, and we discuss the advantages and disadvantages of each methodology. In agreement with well-established results in the machine learning context, we show how the SGD and CSG algorithms can significantly reduce the computational burden when treating control problems depending on a large amount of parameters. This is corroborated by numerical experiments.

In this work, we analyze the consequences that the so-called turnpike property has on the long-time behavior of the value function corresponding to an optimal control problem. As a by-product, we obtain the long-time behavior of the solution to the associated Hamilton-Jacobi-Bellman equation.
In order to carry out our study, we use the setting of a finite-dimensional linear-quadratic optimal control problem, for which the turnpike property is well understood. We prove that, when the time horizon T tends to infinity, the value function converges to a travelling-front like solution of the form W(x) + c T + λ. In addition, we provide a control interpretation of each of these three terms in the spirit of the turnpike theory. Finally, we compare this asymptotic decomposition with the existing results on long-time behavior for Hamilton-Jacobi equations. We stress that in our case, the Hamiltonian is not coercive in the momentum variable, a case rarely considered in the classical literature about Hamilton-Jacobi equations.

Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations
(2020)

Dynamic phenomena in social and biological sciences can often be modeled employing reaction diffusion equations. Frequently in applications, their control plays an important role when avoiding population extinction or propagation of infectious diseases, enhancing multicultural features, etc. When addressing these issues from a mathematical viewpoint one of the main challenges is that, because of the intrinsic nature of the models under consideration, the solution, typically a proportion or a density function, needs to preserve given lower and upper bounds (taking values in [0; 1])).
Controlling the system to the desired final configuration then becomes complex, and sometimes even impossible. In the present work, we analyze the controllability to constant steady states of spatially homogeneous semilinear heat equations, with constraints in the state, and using boundary controls, which is indeed a natural way of acting on the system in the present context. The nonlinearities considered are among the most frequent: monostable and bistable ones. We prove that controlling the system to a constant steadystate may become impossible when the diffusivity is too small (or when the domain is large), due to the existence of barrier functions. When such an obstruction does not arise, we build sophisticated control strategies combining the dissipativity of the system, the existence of traveling waves, some connectivity of the set of steady states. This connectivity allows building paths that the controlled trajectories can follow, in a long time, with small oscillations, preserving the natural constraints of the system.
This kind of strategy was successfully implemented in one space dimension, where phase plane analysis techniques allowed to decode the nature of the set of steady states. These techniques fail in the present multidimensional setting. We employ a fictitious domain technique, extending the system to a larger ball, and building paths of radially symmetric solution that can then be restricted to the original domain. The results are illustrated by numerical simulations of these models that find several applications, such as the extinction of minority languages or the survival of rare species in sufficiently large reserved areas.

We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space.
The numerical simulation of such models quickly becomes unfeasible for a large number of interacting agents. To reduce the computational cost, we use the Random Batch Method (RBM), which provides a computationally feasible approximation of the dynamics. At each time step, the RBM randomly divides the set of particles into small subsets (batches), considering only the interactions inside each batch. Due to the averaging effect, the RBM approximation converges to the exact dynamics as the time discretization gets finer. We propose an algorithm that leads to the optimal control of a fixed RBM approximated trajectory using a classical gradient descent. The resulting control is not optimal for the original complete system, but rather for the reduced RBM model. We then adopt a Model Predictive Control (MPC) strategy to handle the error in the dynamics. While the system evolves in time, the MPC strategy consists in periodically updating the state and computing the optimal control over a long-time horizon, which is implemented recursively in a shorter time-horizon. This leads to a semi-feedback control strategy. Through numerical experiments we show that the combination of RBM and MPC leads to a significant reduction of the computational cost, preserving the capacity of controlling the overall dynamics.

In these lecture notes, we address the problem of large-time asymptotic behaviour of the solutions to scalar convection-diffusion equations set in [katex]\mathbb{R}^N[/katex]. The large-time asymptotic behaviour of the solutions to many convection-diffusion equations is strongly linked with the behavior of the initial data at infinity. In fact, when the initial datum is integrable and of mass [katex]M[/katex], the solutions to the equations under consideration oftentimes behave like the associated self-similar profile of mass [katex]M[/katex], thus emphasising the role of scaling variables in these scenarios. However, these equations can also manifest other asymptotic behaviors, including weakly non-linear, linear or strongly non-linear behavior depending on the form of the convective term. We give an exhaustive presentation of several results and techniques, where we clearly distinguish the role of the spatial dimension and the form of the nonlinear convective term.

This paper deals with an optimal control problem associated with the Kuramoto model describing the dynamical behavior of a network of coupled oscillators. Our aim is to design a suitable control function allowing us to steer the system to a synchronized configuration in which all the oscillators are aligned on the same phase. This control is computed via the minimization of a given cost functional associated with the dynamics considered. For this minimization, we propose a novel approach based on the combination of a standard Gradient Descent (GD) methodology with the recently-developed Random Batch Method (RBM) for the efficient numerical approximation of collective dynamics. Our simulations show that the employment of RBM improves the performances of the GD algorithm, reducing the computational complexity of the minimization process and allowing for a more efficient control calculation.

The concept of turnpike connects the solution of long but finite time horizon optimal control problems with steady state optimal controls. A key ingredient of the analysis of the turnpike is the linear quadratic regulator problem and the convergence of the solution of the associated differential Riccati equation as the terminal time approaches infinity. This convergence has been investigated in linear systems theory in the 1980s. We extend classical system theoretic results for the investigation of turnpike properties of standard state space systems and descriptor systems. We present conditions for turnpike in the nondetectable case and for impulse controllable descriptor systems. For the latter, in line with the theory for standard linear systems, we establish existence and convergence of solutions to a generalized differential Riccati equation.

It is by now well-known that practical deep supervised learning may roughly be cast as an optimal control problem for a specific discrete-time, nonlinear dynamical system called an artificial neural network. In this work, we consider the continuous-time formulation of the deep supervised learning problem, and study the latter’s behavior when the final time horizon increases, a fact that can be interpreted as increasing the number of layers in the neural network setting.
When considering the classical regularized empirical risk minimization problem, we show that, in long time, the optimal states converge to zero training error, namely approach the zero training error regime, whilst the optimal control parameters approach, on an appropriate scale, minimal norm parameters with corresponding states precisely in the zero training error regime. This result provides an alternative theoretical underpinning to the notion that neural networks learn best in the overparametrized regime, when seen from the large layer perspective.
We also propose a learning problem consisting of minimizing a cost with a state tracking term, and establish the well-known turnpike property, which indicates that the solutions of the learning problem in long time intervals consist of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal solution of an associated static learning problem. This property in fact stipulates a quantitative estimate for the number of layers required to reach the zero training error regime.
Both of the aforementioned asymptotic regimes are addressed in the context of continuous-time and continuous space-time neural networks, the latter taking the form of nonlinear, integro-differential equations, hence covering residual neural networks with both fixed and possibly variable depths.

We study the inverse problem, or inverse design problem, for a time-evolution Hamilton-Jacobi equation. More precisely, given a target function [katex]u_T[/katex] and a time horizon [katex]T > 0[/katex], we aim to construct all the initial conditions for which the viscosity solution coincides with [katex]u_T[/katex] at time [katex]T[/katex]. As it is common in this kind of nonlinear equations, the target might not be reachable. We first study the existence of at least one initial condition leading the system to the given target. The natural candidate, which indeed allows determining the reachability of [katex]u_T[/katex] , is the one obtained by reversing the direction of time in the equation, considering [katex]u_T[/katex] as terminal condition. In this case, we use the notion of backward viscosity solution, that provides existence and uniqueness for the terminal-value problem. We also give an equivalent reachability condition based on a differential inequality, that relates the reachability of the target with its semiconcavity properties. Then, for the case when [katex]u_T[/katex] is reachable, we construct the set of all initial conditions for which the solution coincides with [katex]u_T[/katex] at time [katex]T[/katex]. Note that in general, such initial conditions are not unique. Finally, for the case when the target [katex]u_T[/katex] is not necessarily reachable, we study the projection of [katex]u_T[/katex] on the set of reachable targets, obtained by solving the problem backward and then forward in time. This projection is then identified with the solution of a fully nonlinear obstacle problem, and can be interpreted as the semiconcave envelope of [katex]u_T[/katex] , i.e. the smallest reachable target bounded from below by [katex]u_T[/katex] .