### Refine

#### Keywords

The Cost of Not Knowing Enough: Mixed-Integer Optimization with Implicit Lipschitz Nonlinearities
(2018)

It is folklore knowledge that nonconvex mixed-integer nonlinear optimization problems can be notoriously hard to solve in practice. In this paper we go one step further and drop analytical properties that are usually taken for granted in mixed-integer nonlinear optimization. First, we only assume Lipschitz continuity of the nonlinear functions and additionally consider multivariate implicit constraint functions that cannot be solved for any parameter analytically. For this class of mixed-integer problems we propose a novel algorithm based on an approximation of the feasible set in the domain of the nonlinear function - in contrast to an approximation of the graph of the function considered in prior work. This method is shown to compute global optimal solutions in finite time and we also provide a worst-case iteration bound. However, first numerical experiences reveal that a lot of work is still to be done for this highly challenging class of problems and we thus finally propose some possible directions of future research.

We consider the combination of a network design and graph partitioning model in a multilevel framework for determining the optimal design of zonal pricing electricity markets. This together with nonlinearities due to economic modeling yields extremely challenging mixed-integer nonlinear multilevel models for which we develop two problem-tailored solution techniques. The first approach relies on an equivalent bilevel formulation and a standard KKT transformation thereof, whereas the second is a tailored generalized Benders decomposition. We prove for both methods that they yield global optimal solutions. Finally, we compare the approaches in a numerical study and show that the tailored Benders approach clearly outperforms the standard KKT transformation.

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to be NP-complete even on trees. In order to obtain a tractable problem, we introduce a method for generating a finite scenario set such that optimality of a sizing for this finite set implies the sizing's optimality for the originally given infinite set of scenarios. We further prove that the size of the finite scenario set is quadratically bounded above in the number of nodes of the underlying tree and that it can be computed in polynomial time. The resulting problem can then be solved as a standard mixed-integer linear optimization problem. Finally, we show the applicability of our theoretical results by computing globally optimal arc sizes for a realistic hydrogen transport network of Eastern Germany.

The inverse problem of identifying the friction coefficient in an isothermal semilinear Euler system is considered. Adopting a Bayesian approach, the goal is to identify the distribution of the quantity of interest based on a finite number of noisy measurements of the pressure at the boundaries of the domain. First well-posedness of the underlying non-linear PDE system is shown using semigroup theory, and then Lipschitz continuity of the solution operator with respect to the
friction coefficient is established. Based on the Lipschitz property, well-posedness of the resulting Bayesian inverse problem for the identification of the friction coefficient is inferred. Numerical tests for scalar and distributed parameters are performed to validate the theoretical results.

We consider model adaptivity for gas flow in pipeline networks. For each instant in time and for each pipe in the network a model for the gas flow is to be selected from a hierarchy of models in order to maximize a performance index that balances model accuracy and computational cost for a simulation of the entire network. This combinatorial problem involving partial differential equations is posed as an optimal switching control problem for abstract semilinear evolutions. We provide a theoretical and numerical framework for solving this problem using a two stage gradient descent approach based on switching time and mode insertion gradients. A numerical study demonstrates the practicability of the approach.

Consider a star-shaped network
of strings. Each string is governed by the wave equation.
At each boundary node of the network there is
a player that performs Dirichlet boundary control action
and in this way influences the system state.
At the central node, the states are coupled
by algebraic conditions in such a way that the energy is conserved.
We consider the corresponding antagonistic game
where each player minimizes a certain quadratic objective function
that is given by the sum of a control cost and
a tracking term for the final state.
We prove that under suitable assumptions
a unique Nash equilibrium exists
and give an explicit representation
of the equilibrium strategies.

Chance constraints represent a popular tool for finding decisions that enforce the satisfaction of random inequality systems in terms of probability. They are widely used in optimization problems subject to uncertain parameters as they arise in many engineering applications. Most structural results of chance constraints (e.g., closedness, convexity, Lipschitz continuity, differentiability etc.) have been formulated in finite dimensions. The aim of this paper is to generalize some of these well-known semi-continuity and convexity properties as well as a stability result to an infinite dimensional setting. The abstract results are applied to a simple PDE constrained control problem subject to (uniform) state chance constraints.

Probability functions figure prominently in optimization problems
of engineering. They may be nonsmooth even if all input data are smooth.
This fact motivates the consideration of subdifferentials for such typically just
continuous functions. The aim of this paper is to provide subdifferential formulae
of such functions in the case of Gaussian distributions for possibly
infinite-dimensional decision variables and nonsmooth (locally Lipschitzian)
input data. These formulae are based on the spheric-radial decomposition of
Gaussian random vectors on the one hand and on a cone of directions of
moderate growth on the other. By successively adding additional hypotheses,
conditions are satisfied under which the probability function is locally Lipschitzian
or even differentiable.

An identification problem for the friction parameter in a semilinear system of balance laws, describing the transport of gas through a passive network of pipelines, is considered. The existence of broad solutions to the state system is proven and sensitivity results for the corresponding solution operator are obtained. The existence of solutions to the output least squares formulation of the identification problem, based on noisy measurements over time at fixed spatial positions is established. Finally, numerical experiments validate the theoretical findings.

The minimization of operation costs for natural gas transport networks is studied. Based on a recently developed model hierarchy ranging from detailed models of instationary partial differential equations with temperature dependence to highly simplified algebraic equations, modeling and discretization error estimates are presented to control the overall error in an optimization method for stationary and isothermal gas flows. The error control is realized by switching to more detailed models or finer discretizations if necessary to guarantee that a prescribed model and discretization error tolerance is satisfied in the end. We prove convergence of the adaptively controlled optimization method and illustrate the new approach with numerical examples.