An Algorithmic Framework for Optimal Control of Hybrid Dynamical System with Parabolic PDEs
- We present an algorithmic approach for the computational solution of optimal control problems with hybrid nature governed by linear parabolic PDEs featuring implicit switches. We propose a stepwise reformulation of the original formulation into a more tractable setting via application of methods from disjunctive programming and a time transformation method.
After removal of the implicit switching rule at the cost of the introduction of explicit switching variables and vanishing constraints, the connection of the resulting formulation to problems with equilibrium constraints is established and studied. The previous steps in combination with smoothening and a Moreau-Yosida type penalty approach allow the derivation of necessary first order optimality conditions to characterize candidates for optimality to the original system. Following the discussion of each individual reformulation step, we introduce the algorithmic framework founded on a semismooth Newton method. Finally, we report on computational of the proposed framework.